Transfinite number
Transfinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers, yet not necessarily absolutely infinite. The term transfinite was coined by Georg Cantor, who wished to avoid some of the implications of the word infinite in connection with these objects, which were nevertheless not finite. Few contemporary writers share these qualms; it is now accepted usage to refer to transfinite cardinals and ordinals as "infinite". However, the term "transfinite" also remains in use.
Definition
As with finite numbers, there are two ways of thinking of transfinite numbers: as ordinal and cardinal numbers. Unlike the finite ordinals and cardinals, the transfinite ordinals and cardinals define different classes of numbers.
 ω (omega) is defined as the lowest transfinite ordinal number and is the order type of the natural numbers under their usual linear ordering.
 Alephnull, , is defined as the first transfinite cardinal number and is the cardinality of the infinite set of the natural numbers. If the axiom of choice holds, the next higher cardinal number is alephone, . If not, there may be other cardinals which are incomparable with alephone and larger than alephzero. But in any case, there are no cardinals between alephzero and alephone.
The continuum hypothesis states that there are no intermediate cardinal numbers between alephnull and the cardinality of the continuum (the set of real numbers): that is to say, alephone is the cardinality of the set of real numbers. (If Zermelo–Fraenkel set theory (ZFC) is consistent, then neither the continuum hypothesis nor its negation can be proven from ZFC.)
Some authors, including P. Suppes and J. Rubin, use the term transfinite cardinal to refer to the cardinality of a Dedekindinfinite set, in contexts where this may not be equivalent to "infinite cardinal"; that is, in contexts where the axiom of countable choice is not assumed or is not known to hold. Given this definition, the following are all equivalent:
 m is a transfinite cardinal. That is, there is a Dedekind infinite set A such that the cardinality of A is m.
 m + 1 = m.
 ≤ m.
 there is a cardinal n such that + n = m.
See also

References
 Levy, Azriel, 2002 (1978) Basic Set Theory. Dover Publications. ISBN 0486420795
 O'Connor, J. J. and E. F. Robertson (1998) "Georg Ferdinand Ludwig Philipp Cantor," MacTutor History of Mathematics archive.
 Rubin, Jean E., 1967. "Set Theory for the Mathematician". San Francisco: HoldenDay. Grounded in MorseKelley set theory.
 Rudy Rucker, 2005 (1982) Infinity and the Mind. Princeton Univ. Press. Primarily an exploration of the philosophical implications of Cantor's paradise. ISBN 9780691001722.
 Patrick Suppes, 1972 (1960) "Axiomatic Set Theory". Dover. ISBN 0486616304. Grounded in ZFC.