# 100000 (number)

"100000" redirects here. For other uses, see 100000 (disambiguation).
 ← 99999 100000 100001 →
Cardinal one hundred thousand
Ordinal 100000th
(one hundred thousandth)
Factorization 25× 55
Roman numeral C
Unicode symbol(s)
Binary 110000110101000002
Ternary 120020112013
Quaternary 1201222004
Quinary 112000005
Senary 20505446
Octal 3032408
Duodecimal 49A5412
Vigesimal CA0020
Base 36 255S36

One hundred thousand (100,000) is the natural number following 99,999 and preceding 100,001. In scientific notation, it is written as 105.

## Terms for 100000

In India, Pakistan and South Asia, one hundred thousand is called a lakh, and is written as 1,00,000. The Thai, Lao, Khmer and Vietnamese languages also have separate words for this number: แสน, ແສນ, សែន [saen] and ức respectively. No other major language has a special word for this number, preferring to refer to it as a multiple of smaller numbers.

## Values of 100000

In astronomy, 100,000 metres, 100 kilometres, or 100 km (62 miles) is the altitude at which the Fédération Aéronautique Internationale (FAI) defines spaceflight to begin.

In the Irish Language, céad míle fáilte (pronounced: Irish pronunciation: [ceːd̪ˠ ˈmʲiːlʲə ˈfˠaːlʲtʲə]) is a popular greeting meaning "A Hundred Thousand Welcomes".

In piphilology, one hundred thousand is the current world record for the number of digits of pi memorized by a human being.

## Selected 6-digit numbers (100001–999999)

• 100003 – smallest 6-digit prime number
• 100255Friedman number[1]
• 101101 – smallest palindromic Carmichael number
• 101723 – smallest prime number whose square is a pandigital number containing each digit from 0 to 9
• 102564 – The smallest parasitic number
• 103680highly totient number[2]
• 103769 – the number of combinatorial types of 5-dimensional parallelohedra
• 103823 – nice Friedman number
• 104723 – the 9,999th prime number
• 104729 – the 10,000th prime number
• 104869 – the smallest prime number containing every non-prime digit.
• 105664harmonic divisor number[3]
• 110880highly composite number[4]
• 111111repunit
• 111777 – smallest natural number requiring 17 syllables in American English, 19 in British English
• 113634Motzkin number for n = 14[5]
• 114689prime factor of F12
• 115975Bell number[6]
• 116281 = 341^2 square number, centered decagonal number, 18-gon number.
• 117067 – first prime vampire number
• 117649 = 76
• 117800 – harmonic divisor number[3]
• 120284Keith number[7]
• 120960 – highly totient number[2]
• 121393Fibonacci number[8]
• 124000 – number of Islamic prophets
• 127777 – smallest natural number requiring 18 syllables in American English, 20 in British English
• 127912Wedderburn–Etherington number[9]
• 128981 – Starts the first prime gap sequence of 2, 4, 6, 8, 10, 12, 14
• 129106 – Keith number[7]
• 131071Mersenne prime[10]
• 131072 = 217
• 131361Leyland number[11]
• 134340Pluto's minor planet designation
• 135137Markov number[12]
• 142129 = 3772, square number, dodecagonal number
• 142857Kaprekar number, Harshad number smallest cyclic number in decimal.
• 144000 – number with religious significance
• 147640 – Keith number[7]
• 148149 – Kaprekar number[13]
• 156146 – Keith number[7]
• 161051 = 115
• 161280 – highly totient number[2]
• 166320 – highly composite number[4]
• 167400 – harmonic divisor number[3]
• 173600 – harmonic divisor number[3]
• 174680 – Keith number[7]
• 174763Wagstaff prime[14]
• 177147 = 311
• 177777 – smallest natural number requiring 19 syllables in American English, 21 in British English
• 178478 – Leyland number[11]
• 181440 – highly totient number[2]
• 181819 – Kaprekar number[13]
• 183186 – Keith number[7]
• 187110 – Kaprekar number[13]
• 195025Pell number,[15] Markov number[12]
• 196418 – Fibonacci number,[8] Markov number[12]
• 196883 – the dimension of the smallest nontrivial irreducible representation of the Monster group
• 196884 – the coefficient of q in the Fourier series expansion of the j-invariant. The adjacency of 196883 and 196884 was important in suggesting monstrous moonshine.
• 207360 – highly totient number[2]
• 208012Catalan number[16]
• 208335 – the largest number to be both triangular and square pyramidal
• 208495 – Kaprekar number[13]
• 221760 – highly composite number[4]
• 222222repdigit
• 237510 – harmonic divisor number[3]
• 241920 – highly totient number[2]
• 242060 – harmonic divisor number[3]
• 248832 – the smallest fifth power that can be represented as the sum of only 6 fifth powers.
• 261119Carol number[17]
• 262144 = 218; exponential factorial of 4;[18] a superperfect number[19]
• 262468 – Leyland number[11]
• 263167Kynea number[20]
• 268705 – Leyland number[11]
• 274177 – prime factor of F6
• 277200 – highly composite number[4]
• 279936 = 67
• 280859 – a six-digit prime number whose square (algebra) is tridigital.
• 293547 – Wedderburn–Etherington number[9]
• 294685 – Markov number[12]
• 298320 – Keith number[7]
• 310572 – Motzkin number[5]
• 317811 – Fibonacci number[8]
• 318682 – Kaprekar number[13]
• 326981alternating factorial[21]
• 329967 – Kaprekar number[13]
• 332640 – highly composite number;[4] harmonic divisor number[3]
• 333333 – repdigit
• 333667sexy prime and unique prime[22]
• 333673 – sexy prime
• 333679 – sexy prime
• 351352 – Kaprekar number[13]
• 355419 – Keith number[7]
• 356643 – Kaprekar number[13]
• 360360 – harmonic divisor number;[3] the smallest number divisible by all of the numbers 1 through 15
• 362880 = 9!, highly totient number[2]
• 370261 – first prime followed by a prime gap of over 100
• 371293 = 135
• 389305self-descriptive number in base 7
• 390313 – Kaprekar number[13]
• 390625 = 58
• 397585 – Leyland number[11]
• 409113 – sum of the first nine factorials
• 422481 – smallest number whose fourth power is the sum of three smaller fourth powers
• 423393 – Leyland number[11]
• 426389 – Markov number[12]
• 437760 to 440319 – any of these numbers will cause the Apple ][+ and Apple //e computers to crash to a monitor prompt when entered at the Basic prompt, due to a short-cut in the Applesoft code programming of the overflow test when evaluating 16 bit numbers.[23] Entering 440000 at the prompt has been used to hack games that are protected against entering commands at the prompt after the game is loaded.
• 444444 – repdigit
• 461539 – Kaprekar number[13]
• 466830 – Kaprekar number[13]
• 470832 – Pell number[15]
• 483840 – highly totient number[2]
• 498960 – highly composite number[4]
• 499393 – Markov number[12]
• 499500 – Kaprekar number[13]
• 500500 – Kaprekar number,[13] sum of first 1000 integers
• 509203Riesel number[24]
• 510510 – the product of the first seven prime numbers, thus the seventh primorial[25]
• 514229Fibonacci prime,[26] Markov number[12]
• 524287 – Mersenne prime[10]
• 524288 = 219, power of two
• 524649 – Leyland number[11]
• 531441 = 312
• 533169 – Leyland number[11]
• 533170 – Kaprekar number[13]
• 539400 – harmonic divisor number[3]
• 548834 – equal to the sum of the sixth powers of its digits
• 554400 – highly composite number[4]
• 555555 – repdigit
• 604800 – number of seconds in a week
• 646018 – Markov number[12]
• 665280 – highly composite number[4]
• 666666 – repdigit
• 676157 – Wedderburn–Etherington number[9]
• 678570 – Bell number[6]
• 694280 – Keith number[7]
• 695520 – harmonic divisor number[3]
• 720720superior highly composite number;[27] colossally abundant number;[28] the smallest number divisible by all the numbers 1 through 16
• 725760 – highly totient number[2]
• 726180 – harmonic divisor number[3]
• 742900 – Catalan number[16]
• 753480 – harmonic divisor number[3]
• 765623emirp, Friedman number 56 × 72 − 6 ÷ 3
• 777777 – repdigit, smallest natural number requiring 20 syllables in American English, 22 in British English
• 823543 = 77
• 832040 – Fibonacci number[8]
• 853467 – Motzkin number[5]
• 873612 – 11 + 22 + 33 + 44 + 55 + 66 + 77
• 888888 – repdigit
• 925765 – Markov number[12]
• 925993 – Keith number[7]
• 950976 – harmonic divisor number[3]
• 967680 – highly totient number[2]
• 999983 – largest 6-digit prime number
• 999999 – repdigit. The divisibility of this number by 7 and by 13 accounts for the fact that rational numbers with those denominators have 6-digit repetends when expressed in decimal form.

## References

1. "Problem of the Month (August 2000)". Retrieved 2013-01-13.
2. "Sloane's A097942 : Highly totient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
3. "Sloane's A001599 : Harmonic or Ore numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
4. "Sloane's A002182 : Highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
5. "Sloane's A001006 : Motzkin numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
6. "Sloane's A000110 : Bell or exponential numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
7. "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
8. "Sloane's A000045 : Fibonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
9. "Sloane's A001190 : Wedderburn-Etherington numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
10. "Sloane's A000668 : Mersenne primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
11. "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
12. "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
13. "Sloane's A006886 : Kaprekar numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
14. "Sloane's A000979 : Wagstaff primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
15. "Sloane's A000129 : Pell numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
16. "Sloane's A000108 : Catalan numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
17. "Sloane's A093112 : a(n) = (2^n-1)^2 - 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
18. "Sloane's A049384 : a(0)=1, a(n+1) = (n+1)^a(n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
19. "Sloane's A019279 : Superperfect numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
20. "Sloane's A093069 : a(n) = (2^n + 1)^2 - 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
21. "Sloane's A005165 : Alternating factorials". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
22. "Sloane's A040017 : Unique period primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
23. http://www.txbobsc.com/scsc/scdocumentor/D912.html Disassembled ROM. See comments at \$DA1E.
24. "Sloane's A101036 : Riesel numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
25. "Sloane's A002110 : Primorial numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
26. "Sloane's A005478 : Prime Fibonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
27. "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
28. "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.