KATRIN

Transport of the main spectrometer to the Karlsruhe Institute of Technology.

KATRIN is a German acronym (Karlsruhe Tritium Neutrino Experiment) for an undertaking to measure the mass of the electron antineutrino with sub-eV precision by examining the spectrum of electrons emitted from the beta decay of tritium. The core of the apparatus is a 200-ton spectrometer. In 2015, the commissioning measurements on this spectrometer were completed, successfully verifying its basic vacuum, transmission and background properties.[1] The experiment began running tests in October 2016, with measurements scheduled in 2017.[2]

Construction and assembly

The spectrometer was built by MAN DWE GmbH in Deggendorf. Although only 350 km from Karlsruhe, the tank's size made land transport impossible.[3] Instead, it was shipped by water, down the Danube to the Black Sea, through the Mediterranean Sea and Atlantic Ocean to Antwerp, then up the Rhine to Karlsruhe. This 8600 km long detour limited land travel to only the final 7 km from the Leopoldshafen docks to the laboratory.

The construction proceeded well with several of the major components on-site by 2010. The main spectrometer test program was scheduled for 2013 and the complete system integration for 2014.[4] The experiment is located at the former Forschungszentrum Karlsruhe, now Campus Nord of the Karlsruhe Institute of Technology.

Experiment

Energy spectrum of the electrons emitted in tritium beta decay. Three graphs for different neutrino masses are shown. These graphs differ only in the range near the high-energetic end-point; the intersection with the abscissa depends on the neutrino mass. In the KATRIN experiment the spectrum around this end-point is measured with high precision to obtain the neutrino mass.

The beta decay of tritium is one of the least energetic beta decays. The electron and the neutrino which are emitted share only 18.6 keV of energy between them. KATRIN is designed to produce a very accurate spectrum of the numbers of electrons emitted with energies very close to this total energy (only a few eV away), which correspond to very low energy neutrinos. If the neutrino is a massless particle, there is no lower bound to the energy the neutrino can carry, so the electron energy spectrum should extend all the way to the 18.6 keV limit. On the other hand, if the neutrino has mass, then it must always carry away at least the amount of energy equivalent to its mass by E = mc2, and the electron spectrum should drop off short of the total energy limit and have a different shape.

In most beta decay events, the electron and the neutrino carry away roughly equal amounts of energy. The events of interest to KATRIN, in which the electron takes almost all the energy and the neutrino almost none, are very rare, occurring roughly once in a trillion decays. In order to filter out the common events so the detector is not overwhelmed, the electrons must pass through an electric potential that stops all electrons below a certain threshold, which is set a few eV below the total energy limit. Only electrons that have enough energy to pass through the potential are counted.

Importance

The precise mass of the neutrino is important not only for particle physics, but also for cosmology. The observation of neutrino oscillation is strong evidence in favor of massive neutrinos, but gives only a weak lower bound, which furthermore depends on whether the neutrino is its own antiparticle or not, i.e., whether it has Majorana mass or Dirac mass.[5]

Along with the possible observation of neutrinoless double beta decay, KATRIN is one of the neutrino experiments most likely to yield significant results in the near future.

Wikimedia Commons has media related to KATRIN.

References

  1. Mertens, S.; et al. (KATRIN Collaboration) (2015). "Status of the KATRIN Experiment and Prospects to Search for keV-mass Sterile Neutrinos in Tritium β-decay". Physics Procedia. 62: 267–273. Bibcode:2015PhPro..61..267M. doi:10.1016/j.phpro.2014.12.043Freely accessible.
  2. "Experiment to Weigh 'Ghost Particles' Starts in Germany". The New York Times. 17 October 2016. Retrieved 31 October 2016.
  3. KATRIN Main Spectrometer Accessed 14 November 2016
  4. Thümmler, T.; et al. (KATRIN collaboration) (2010). "Introduction to direct neutrino mass measurements and KATRIN". Nuclear Physics B: Proceedings Supplements. 229-232: 146. arXiv:1012.2282Freely accessible. Bibcode:2012NuPhS.229..146T. doi:10.1016/j.nuclphysbps.2012.09.024.
  5. Angus, G. W.; Shan, H. Y.; Zhao, H. S.; Famaey, B. (2007). "On the Proof of Dark Matter, the Law of Gravity, and the Mass of Neutrinos". The Astrophysical Journal Letters. 654 (1): L13–L16. arXiv:astro-ph/0609125Freely accessible. Bibcode:2007ApJ...654L..13AFreely accessible. doi:10.1086/510738Freely accessible.

Coordinates: 49°05′45″N 8°26′10″E / 49.09583°N 8.43611°E / 49.09583; 8.43611

This article is issued from Wikipedia - version of the 11/15/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.