Hot water storage tank

2 red parallelled hot water storage tanks connected to a wood-fueled furnace.
A hot water storage tank where one of the heat sources is solar heating A, that is sent into the hot water storage tank via a smaller pump B (circle with triangle) and the heat exchanger spiral in the hot water storage tank. The other spiral C can be used for a e.g. oil-fired boiler or a wood burner. At D the hot water gets out and domestic cold water is sent back at the bottom at E.
A hot water storage tank where one of the heat sources is solar heating. Almost the same example as above, but in a domestic habitat.

A hot water storage tank (also called a hot water tank, thermal storage tank, hot water thermal storage unit, heat storage tank and hot water cylinder) is a water tank used for storing hot water for space heating or domestic use.

Water is a convenient heat storage medium because it has a high specific heat capacity. This means, compared to other substances, it can store more heat per unit of weight (and volume). Water is non-toxic and in many countries available free of charge or at low cost.

An efficiently insulated tank can retain stored heat for days, reducing fuel costs.[1] Hot water tanks may have a built-in gas or oil burner system, electric immersion heaters, an external heat exchanger such as a central heating system, or heated water from another energy source such as a wood-burning stove, district heating system, solar collectors, a biomass heat source, or an air, water or earth source heat pump or any combination of the above. The most typical, in the domestic context, is a fossil-fuel burner supplemented by electric imersion elements, whether grid powered or using renewable generation such as wind power as an independent installation or a district heating scheme].[2]

Largely due to the move towards smaller households in developed countries, along with high density housing and high levels of private home ownership, the trend has been increasingly away from maintaining any hot water storage tanks, opting instead for integrated central heating systems supplied by combination boilers that can supply mains pressure hot water on demand.

Water heaters for washing, bathing, or laundry have thermostat controls to regulate the temperature, in the range of 40 to 60 °C (104 to 140 °F), and are connected to the domestic cold water supply.

Where the local water supply has a high content of dissolved minerals such as limestone, heating the water causes the minerals to precipitate in the tank (scaling) and a tank may develop leaks due to corrosion after only a few years, a problem exacerbated by dissolved oxygen in the water which accelerates corrosion of both tank and fittings.

Typically hot water storage tanks are wrapped in heat insulation to reduce energy consumption, speed up the heating process, and maintain the desired operating temperature.

Insulation

In general terms the more thermal insulation the better, since it reduces standby heat loss. Water heaters are available with various insulation ratings but it is possible to add layers of extra insulation in the form of a blanket or 'jacket' on the outside of an un-insulated, or poorly insulated, water heater to reduce heat loss, to increase energy efficiency and, in extreme conditions, the heater itself might be wholly enclosed in a specially constructed insulated space.

The most commonly available type of water heater blanket is fiberglass insulation with a vinyl film on the outside, the insulating blanket being wrapped around the tank fixed in place with tape or straps.

It is important that the blanket be the right size for the tank, not block air flow or cover safety and drainage valves, the controls, or block airflow through an exhaust vent, if present. In extremely humid locations, adding insulation to an already well-insulated tank may cause condensation leading to rust, mold, or other operational problems so some air flow must be maintained, usually by convection caused by waste heat, but in particularly humid conditions such ventilation may be fan-assisted.

Most modern water heaters have applied polyurethane foam (PUF) insulation. Where access to the inner tank is a priority (in cases of particularly aggressive minerals or oxygen levels in the local water supply) the PUF can be applied in encapsulated form, allowing the removal of insulation layer for regular integrity checks and if required, repairs to the water tank proper.

Solar hot water storage tank

In a solar water heating system, a solar hot water storage tank stores heat from solar thermal collectors.[3] The tank has a built-in heat-exchanger to heat domestic cold water. In relatively mild climates, such as the Mediterranean, the (heavily insulated but metal-wrapped) storage tanks are often roof-mounted. All such tanks share the same problems as artificially-heated tanks including limestone deposit and corrosion, and suffer similar reductions in overall efficiency unless scrupulously maintained.

Water tank leakage

Water heater tanks may be made of vitreous enamel-lined carbon steel, stainless steel, or copper.

While copper and stainless steel domestic hot water tanks are more commonplace in Europe, carbon steel tanks are more common in the United States, where typically the periodic check is neglected, the tank develops a leak whereupon the entire appliance is replaced.[4] Even when neglected, carbon steel tanks tend to last for a few years more than their manufacturer's warranty, which is typically 3 to 12 years in the US.

Vitreous-lined tanks are much lower in initial cost, and often include one or more sacrificial anode rods designed to protect the tank from perforation caused by corrosion[5] made necessary since chlorinated water is very corrosive to carbon steel. As it is very nearly impossible to apply any protective coating perfectly (without microscopic cracks or pinhole defects in the protective layer)[6] manufacturers may recommend a periodic check of any sacrificial anode, replacing it when necessary.

Some manufacturers offer an extended warranty kit that includes a replacement anode rod. Because conventional hot water storage tanks can be expected to leak every 5 to 15 years, high-quality installations will include, and most US building/plumbing codes now require, a shallow metal or plastic pan to collect the inevitable seepage when it occurs.

In such installations the pan should be connected to a drain, or plumbed to discharge directly outdoors. (No equivalent requirement exists in most countries requiring stainless steel or copper tanks.) When this is not possible, or uneconomic, an alternative precaution is to install a water leakage alarm coupled to an automatic water shutoff valve.

While apparently obvious, the need to install heater tanks in spaces with adequate physical access for inspection and replacement of the long anode rod, and for eventual replacement of the entire tank,[7]) is sometimes neglected with the result that an existing tank has been 'walled off' or 'built in' and must be cut up before being removed. In some cases limited demolition is required to install a replacement.

An accepted rule of thumb among plumbers and heating specialists is that any leak from the bottom of the tank will require total replacement of the unit because this type of leak cannot be repaired. However, if the leak is coming from in or around the pipes or taps on the storage tank, then repair is economically feasible.[8]

Hot water storage tank with closed water circuit

This method stores heat in a tank by using external heat-exchangers (coils) that can be directly tapped or used to power other (external) heat-exchangers.

The chief benefit is that by avoiding drawing-off domestic hot water directly the tank is not continually fed with cold water, which in 'hard' water areas reduces the deposit of limescale to whatever is dissolved in the original charge of water plus relatively trivial amounts added to replace losses due to seepage.

An added benefit is reduced oxygen levels in such a closed system, which allows for some relaxation in the requirements for materials used in the hot water storage tank and the closed water circuits, external heat exchangers, and associated pipework.

While an external heat exchanger system used for domestic hot water will inevitably suffer to some degree from mineral deposits, the use of descaling agent from time to time extends the life of such a system to the point where it is cheaper than exchanging the hot water storage tank before its useful life is exceeded for want of proper maintenance.

Stratified hot water storage tank with closed water circuit

For an illustration - see reference[9]

Another method to store heat in a hot water storage tank has many names: Stratified hot water storage tank with closed water circuit, stratified thermal storage, thermocline tank and water stratified tank storage but in all cases the significant difference is that pains are taken to maintain the vertical stratification of the water column, in other words to keep the hot water at the top of the tank while the water at the bottom is at a distinctly lower temperature.

This is desirable in places with a wide climatic range where summer cooling is as important as heating in winter, and entails one or more of the following measures:

When a stratified hot water storage tank has closed water circuits, the water temperatures can be up to 90 to 95 °C at the top and 20 to 40 °C at the bottom. Calm, undisturbed water is a relatively poor heat conductor when compared to glass, bricks and soil.

(Illustrated by a still lake, where the surface water can be comfortably warm for swimming but deeper layers be so cold as to represent a danger to swimmers, the same effect as gives rise to notices in London's city docks warning 'Danger Cold Deep Water).

Accordingly, an arbitrary volume of hot water can be stored, as long as the stratification is kept intact. In this case there must not be vertical metal plates or tubes as they would conduct heat through the water layers, defeating the purpose of stratification. When effectively employed this technique can maintain water as high as 95 °C (i.e. just below boiling) yielding a higher energy density, and this energy can be stored a long time provided the hot water remains undiluted.

Depending on the purpose of the installations, water exchanges tapping different levels allow water temperatures appropriate to the required use to be selected.[9]

In many solar heating systems the energy parameters can be read as a function of time, from the 'dwell' time necessary to transform daylight into heat, at its peak the maximum hot water temperature near the top of the tank.[1]

Dual element electric

When flow starts from the uppermost outlet, cold water enters the tank at the bottom. This drop in temperature causes the thermostat to switch on the electric heating element at the bottom of the tank. When the water at the top of the tank is drawn off the hot water at the top is displaced by relatively cooler water, the top thermostat turns the top element on. When the flow stops, the elements stay on until their settings are met.[12]

While it is common to have the top and bottom thermostats set differently in order to save energy, the fact that hot water rises means the thermostat controlling the upper element should feed the hottest supply, while the lower element the warmest.

If the thermostats in such a system are reversed - warm feed from the top, hot from the center - it may not only affect the energy efficiency of the system, feeding scalding water to a domestic hot water outlet may be dangerous, or if directed to warm-feed washers damage them beyond repair.

References

  1. 1 2 invest-tools.com: Graphs, Main page and description: Overview of the DHW system, The water tank (heat reservoir) Quote: "...With the tank there came a 10 cm "soft foam" isolation that fulfills the minimum insulation requirements...So after several months, I added another round of 16 cm aluminum coated glass wool, and now the tank stores enough heat for about 7 or 8 days when it is full loaded (temperature range is 95°C down to 40°C)..."
  2. "District Heating from Wind: Kirkwall". University of Strathclyde Engineering. Retrieved 20 January 2016.
  3. .Brian Norton (2011) Solar Water Heaters: A Review of Systems Research and Design Innovation, Green. 1, 189–207, ISSN (Online) 1869-8778
  4. Schuyler, Randy. "The Basics: What kills water heaters". Water Heater Rescue. waterheaterrescue.com. Retrieved 2012-03-31.
  5. Schuyler, Randy. "The Basics: Anodes and Longevity". Water Heater Rescue. waterheaterrescue.com. Retrieved 2012-03-31.
  6. Schuyler, Randy. "The Basics: Choosing a water heater". Water Heater Rescue. waterheaterrescue.com. Retrieved 2012-03-31.
  7. Schuyler, Randy. "The Harry Houdini Memorial Showcase". Water Heater Rescue. waterheaterrescue.com. Retrieved 2012-03-31.
  8. Rankin, Chris. "How Do I Know Whether I Need A New Hot Water Cylinder?". Cylinder Guy. cylinderguy.co.nz. Retrieved 2014-09-16.
  9. 1 2 Solar heating system with stratified hot water storage tank with closed water circuit and the possibility of reading many current parameters: solar.webseiten.cc: Live-Daten Holzhausen
  10. "Water Storage Solutions". Greatbasinindustrial. Retrieved 2016-08-13.
  11. Technische Alternative: Freely programmable universal controller UVR1611, Manuals and firmware in english and german: downloads, Programing examples: UVR-Beispielsammlung, Practical examples on solar heating systems with hot water storage tanks with current measuring date: Livedaten
  12. "How It Works: Water Heater". Popular Mechanics. Retrieved 26 November 2014.
This article is issued from Wikipedia - version of the 9/9/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.