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Preface

Food quality quantization and process control are two important fields in
the automation of food engineering. Food quality quantization is a key tech-
nique in automating food quality evaluation. Food quality process control is
the focus in food production lines. In the past 10 years, electronics and
computer technologies have significantly pushed forward the progress of
automation in the food industry. Research, development, and applications of
computerized food quality evaluation and process control have been accom-
plished time after time. This is changing the traditional food industry. The
growth of applications of electronics and computer technologies to automa-
tion for food engineering in the food industry will produce more nutritious,
better quality, and safer items for consumers.

The book describes the concepts, methods, and theories of data acquisi-
tion, data analysis, modeling, classification and prediction, and control as
they pertain to food quality quantization and process control. The book
emphasizes the applications of advanced methods, such as wavelet analysis
and artificial neural networks, to automated food quality evaluation and
process control and introduces novel system prototypes such as machine
vision, elastography, and the electronic nose for food quality measurement,
analysis, and prediction. This book also provides examples to explain real-
world applications.

Although we expect readers to have a certain level of mathematical back-
ground, we have simplified this requirement as much as possible to limit the
difficulties for all readers from undergraduate students, researchers, and engi-
neers to management personnel. We hope that the readers will benefit from
this work.

Outline of the Book

Six chapters follow the Introduction.

Chapter 2 concerns data acquisition (DAQ) from the measurement of
food samples. In Chapter 2, the issues of sampling are discussed with exam-
ples of sampling for beef grading, food odor measurement, and meat quality
evaluation. Then, the general concepts and systems structure are introduced.
The examples of ultrasonic A-mode signal acquisition for beef grading, elec-
tronic nose data acquisition for food odor measurement, and snack food
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frying data acquisition for process quality control are presented. Imaging
systems, as they are applied more and more in the area of food quality
characterization, are discussed in a separate section. Generic machine vision
systems and medical imaging systems are described. Image acquisition for
snack food quality evaluation, ultrasonic B-mode imaging for beef grading,
and elastographic imaging for meat quality evaluation are presented as
examples.

Chapter 3 is about processing and analysis of acquired data. In this
chapter, the methods of data preprocessing, such as data scaling, Fourier
transform, and wavelet transform are presented first. Then, the methods of
static and dynamic data analysis are described. Examples of ultrasonic A-
mode signal analysis for beef grading, electronic nose data analysis for food
odor measurement, and dynamic data analysis of snack food frying process
are presented. Image processing, including image preprocessing, image seg-
mentation, and image feature extraction, is discussed separately. The methods
of image morphological and textural feature extraction (such as Haralick’s
statistical and wavelet decomposition) are described. Examples of segmenta-
tion of elastograms for the detection of hard objects in packaged beef rations,
morphological and Haralick’s statistical textural feature extraction from
images of snack food samples, Haralick’s statistical textural and gray-level
image intensity feature extraction from ultrasonic B-mode images for beef
grading, and Haralick’s statistical and wavelet textural feature extraction
from meat elastograms are presented.

Chapter 4 concerns modeling for food quality quantization and process
control. Model strategies, both theoretical and empirical, are discussed first
in this chapter. The idea of an input-output model based on system identi-
fication is introduced. The methods of linear statistical modeling and ANN
(artificial neural network) -based nonlinear modeling are described. In
dynamic process modeling, the models of ARX (autoregressive with exoge-
nous input) and NARX (nonlinear autoregressive with exogenous input) are
emphasized. In statistical modeling, examples of modeling based on ultra-
sonic A-mode signals for beef grading, meat attribute prediction modeling
based on Haralick’s statistical textural features extracted from ultrasonic elas-
tograms, and snack food frying process ARX modeling are presented. In ANN
modeling, the examples of modeling for beef grading, modeling for food odor
pattern recognition with electronic nose, meat attribute prediction modeling,
and snack food frying process NARX modeling are presented.

Chapter 5 discusses classification and prediction of food quality. In this
chapter, the methods of classification and prediction for food quality quanti-
zation are introduced first. Examples of beef sample classification for grading
based on statistical and ANN modeling, electronic nose data classification for
food odor pattern recognition, and meat attribute prediction based on statis-
tical and ANN modeling are presented. For food quality process control, the
methods of one-step-ahead and multiple-step-ahead predictions of linear and
nonlinear dynamic models, ARX and NARX, are described. The examples of
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one-step-ahead and multiple-step-ahead predictions for the snack food frying
process are presented.

Chapter 6 concentrates on food quality process control. In this chapter,
the strategies of IMC (internal model control) and PDC (predictive control)
are introduced. Based on the linear IMC and PDC, the ANN-based nonlinear
IMC and PDC, that is, NNIMC (neural network-based internal model con-
trol) and NNPDC (neural network-based predictive control), are extended
and described. The algorithms for controller design also are described. The
methods of controller tuning are discussed. The examples of NNIMC and
neuro-fuzzy PDC for the snack food frying process are presented.

Chapter 7 concludes the work. This chapter is concerned with systems
integration for food quality quantization and process control. In this chapter,
based on the discussion and description from the previous chapters concern-
ing system components for food quality quantization and process control,
the principles, methods, and tools of systems integration for food quality
quantization and process control are presented and discussed. Then, the
techniques of systems development, especially software development, are
discussed for food quality quantization and process control.

Yanbo Huang
A. Dale Whittaker
Ronald E. Lacey

College Station, Texas
May 2001
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chapter one

Introduction

1.1 Food quality: a primary concern of the food industry

The quality of foods is of primary importance to the food industry and to
consumers. Consumers want food products that are good, nutritious, and
safe. High quality food products can boost the profitability of the food
supply chain from farming, processing, and production to sales, thus,
strengthening the entire enterprise. However, any failure of a food product
may result in a consumer returning the product to the seller, writing a
complaint letter to the manufacturer, or even filing a lawsuit against the
food company. The failure may be the under fill of a package, off-flavor,
odor, staleness, discoloration, defective packaging, expired shelf life,
incurred illness, and so on. For the sake of meeting consumers’ needs,
the food industry has the obligation to produce food items that are uniform
in quality, nutritious, and safe. A food company needs to have adequate
quality assurance systems and active quality control systems to keep its
products competitive in the market.

1.2 Automated evaluation of food quality

Evaluation is the key to ensuring the quality of food products. Often,
evaluation detects component adequacy and documents mechanical, chem-
ical, and microbiological changes over the shelf life of food items. Both
qualitative and quantitative evaluation can provide the basis for determin-
ing if a food product meets target specifications. This quality information
also provides feedback for adjustments to processes and products needed
to achieve target quality

There are two methods for evaluation of food quality. One is subjective,
based on the judgment of human evaluators. The other is objective, based
on observations excluding human evaluators” opinions.

Subjective methods require the human evaluators to give their opinions
regarding the qualitative and quantitative values of the characteristics of the
food items under study. These methods usually involve sensed perceptions
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of texture, flavor, odor, color, or touch. However, even though the evaluators
are highly trained, their opinions may vary because of the individual
variability involved. Sensory panels are a traditional way to evaluate food
quality. Although highly trained human evaluators are intelligent and able
to perceive deviation from food quality standards, their judgments may not
be consistent because of fatigue or other unavoidable mental and physical
stresses.

The output of food quality evaluation is the primary basis for establish-
ing the economic value of the food products for farmers, manufacturers, and
consumers, and it can be useful for quality control of food products. Because
traditional manual quality control is time-consuming, can be error prone,
and cannot be conducted in real time, it has been highly desirable for the
food industry to develop objective methods of quality evaluation for differ-
ent food products in a consistent and cost-effective manner. The objective
methods of food quality evaluation are based on scientific tests rather than
the perceptions of human evaluators. They can be divided into two groups:

1. Physical measurement methods are concerned with such attributes
of food product quality as size, texture, color, consistency, and
imperfections. There are several sensors adapted for the physical
evaluation of food product quality.

2. Chemical measurement methods test for enzyme, moisture, fiber, pH,
and acidity. In many cases, these tests can be used to determine
nutritive values and quality levels.

The development of computer and electronics technologies provides
strong support to fast, consistent signal measurement, data collection, and
information analysis. The greatest advantage of using computer technology
is that once the food quality evaluation systems are set up and implemented,
the system will perceive deviation from food quality standards in a consistent
way and not experience the mental and physical problems of human eval-
uators. Another major benefit of using computer technology in food quality
systems is that it is possible to integrate a large number of components to
automate the processes of food quality evaluation. This automation can
result in objective, fast, consistent food quality evaluation systems, a signif-
icant advancement for food engineering and industry.

This book will focus on the techniques for objective and automated
food quality evaluation, especially nonintrusive/noninvasive food quality
evaluation.

1.3 Food quality quantization and process control

Food quality quantization allows information to be represented numerically
in a mathematical expression. The process of the representation is often auto-
mated. In evaluation, indicators of food quality such as analytical, on-line
sensor, and mechanical measurements of food samples need to be quantized
in use for assessing quality. Basically, food quality quantization is the mimic
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of human intelligence with machine intelligence in food quality evaluation.
The machine intelligence is used to “view,” “touch,” and/or “taste” the food
samples and, then, to differentiate them in a way that is often guided by results
from a human sensory panel. The performance of the quantization is usually
measured by a comparison of the quantitative data with sensory, classification
assignment, or mechanical and chemical attribute measurements.

In general, the procedure of food quality quantization is as follows:

1. Sampling—the first step in food quality quantization involves col-
lecting food samples according to a designed sampling procedure.
The procedure is designed to produce enough data samples under
different experimental conditions to be able to draw a conclusion
with a certain statistical significance. When the samples are extracted,
they need to be further processed, stored, and delivered onto the
experimental board for measurement.

2. Data acquisition—sensors and transducers measure the collected
food samples. The electrical signals indicate physical properties of
the food products. The signal data are conditioned, converted, and
stored for later processing and analysis.

3. Data processing and analysis—the data are processed, usually scaled
or normalized, to produce a consistent magnitude between variables.
The relationships between variables are tested and correlations between
variables are determined. This step helps make decisions based on
modeling strategy.

4. Modeling—mathematical models are statistically built between the
(input) variables of the physical property measurements of food sam-
ples and the (output) variables of human sensory quantities, classi-
fication assignments, or mechanical and chemical measurements of the
samples. The models determine quantitative relationships between the
input and output variables.

5. Classification or prediction—based on the models, the food samples
can be classified or predicted for their sensory, mechanical, and chem-
ical attributes. The accuracy of the classification or prediction is cal-
culated.

In this way the performance of the quantization can be evaluated based
on the accuracy of the classification or prediction. If the performance is
satisfactory, the food quality quantization scheme can be used in practical
food quality evaluation; otherwise, it becomes necessary to reassess the
modeling, data processing and analysis, data acquisition, or even sampling
procedures to locate the spot(s) to refine the scheme. Figure 1.1 shows a
diagram of the procedure for food quality quantization.

Food quality process control occurs when the difference between mea-
surements of actual food quality and specifications of food quality is used
to adjust the variables that can be manipulated to change product quality.
The variables that indicate food quality may be quantities like color and
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( Start )

Sampling

Data Acquisition

Data Processing and Analysis

Modeling

Classification or Prediction

Unsatisfied

Satisfied
y
( Stop )

Figure 1.1 Diagram of the procedure for food quality quantization.

moisture content. The adjusted variables are quantities such as inlet tem-
perature and material cooling conveyor speed in a continuous snack food
frying process. These adjustments are made based on the computation of
certain algorithms in an attempt to eliminate the deviation of observed
quality from the target specifications for the product. In general, the adjust-
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ments can be done either when the problems occur or on a regular basis.
The former is quality control (Besterfield, 1990) while the latter is process
control, the topic of this book. Food quality process control applies methods
and tools of process control to adjust the operating conditions in terms of
the quality specifications of food processes for the consistency of food
product quality.

In general, the procedure of food quality process control is as follows:

1. Sampling—sampling is performed in terms of the requirements of food
quality process control. It needs to design experiments which produce
enough data samples in different conditions with certain statistical sig-
nificance. For effective process control, the collected samples need to be
able to produce the measured data to cover the designated frequency
range to represent the process dynamics sufficiently.

2. Data acquisition—with the prepared samples, the values of the food
quality indication variables are measured by sensors and transduc-
ers, and the corresponding data for process operating conditions are
recorded.

3. Data processing and dynamic analysis—the data are processed, usu-
ally scaled or normalized, to produce a consistent magnitude be-
tween variables. The dynamic relationships between variables are
tested. The autocorrelations and cross correlations between variables
are determined. This step helps make the decision about the process
modeling strategy.

4. Modeling—Ilinear or nonlinear discrete-time dynamic mathematical
models are statistically built between the (input) variables of the
levels of actuators in food processes and the (output) variables of
food quality indication. The models determine quantitative, dynamic
relationships between the input and output variables.

5. Prediction—based on the models, the quantities of food quality
indications can be predicted in one-step-ahead or multiple-step-
ahead modes. The accuracy of the predictions reflects the capability
of the prediction models in control loops.

6. Controller design—the built process models are used to design the
controllers based on certain algorithms. The controllers are tuned in
order to perform well in the regulation of the process operating
conditions to ensure the consistent quality of the final products.

The performance of the process control systems can be evaluated based
on the specifications and requirements of the food processes. If the perfor-
mance is satisfactory, the food quality process control scheme may be imple-
mented in practice; otherwise, it needs to go back to the starting points of
controller design, prediction, modeling, data processing and dynamic anal-
ysis, data acquisition, or even an experiment design to locate places to refine
the scheme. Figure 1.2 shows the diagram of the procedure for food quality
process control.
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Figure 1.2 Diagram of the procedure for food quality process control.

The food quality quantization is the key technique for objective, auto-
mated food quality evaluation. It provides a quantitative representation of
food quality. Food quality process control uses the feedback from food
quality evaluation to make adjustment in order to meet food quality spec-
ifications in the process of food production. This book will focus on tech-
nical aspects of food quality quantization for establishment of objective,
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automated food quality evaluation systems and food quality process control
in the production of food products for consistent quality in food processes.

1.4 Typical problems in food quality evaluation
and process control

Various problems need to be solved in food quality evaluation and process
control. Over the past 10 years, we have conducted research and development
projects at different size operations in this area. These projects have resolved
some typical problems in food quality evaluation and process control.
Throughout this book, a number of our projects in food quality evaluation
and process control will be presented in chapter by chapter examples for the
purpose of explanation of the technical aspects from sampling, data acquisi-
tion, data processing and analysis, modeling, classification and prediction, to
control. By going though the problem solving processes in these projects,
related concepts, methods, and strategies can be understood better. Next, the
basis of three typical projects in our research and development work will be
initially described by stating the problems which need to be solved through
food quality quantization and process control. These projects will be further
described in subsequent chapters in terms of the topics, and some other
projects also will be involved for the purpose of explanation.

1.4.1 Beef quality evaluation

The U.S. Standards for Grades of Carcass Beef was revised a number of times
from its tentative version in 1916 to the current version (USDA, 1997). In
these standards, the quality grading system is designed to segregate beef
carcasses into groups based on expected difference in quality using the
subjective evaluation of human graders. When assigning quality grade scores,
highly trained graders evaluate the degree of marbling in the lean surface at
the 12th to 13th rib interface and the overall maturity of the carcass. This
grading system is considered to be the best system available for determining
expected beef quality. However, owing to the subjectivity involved, varia-
tions exist between graders although they are highly trained for the task.
The grading process is primarily based on establishing the value of the
carcass to the ranchers, packers, and consumers. The formulation of a meth-
odology with alternative techniques is desired to evaluate objectively the
carcass quality for the purpose of grading. The methodology is expected to
be more accurate and consistent to better segregate products and, thereby,
to reduce the variation in products.

In industry operations, with the growth of the beef industry, the speed
of lines has increased dramatically. The subjective, inconsistent, inaccurate,
and slow grading of live and slaughtered beef cattle combined with the wide
variations in beef cattle genetics and management may cause wide variations
in beef products. In order to reduce and even avoid such wide variations in
beef products, methods need to be developed for fast, objective, consistent,
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and accurate determination of quality and yield grades of beef carcasses and
the rank of live beef animals.

Computerized electronic instrumentation was considered as an alterna-
tive for fast and objective beef grading. This kind of grading system would
objectively measure, classify, and predict the quality of beef cattle in order
to have a beef product with high quality consistency. In later chapters, the
projects of applications of ultrasound-based methods will be introduced in
developing objective, noninvasive, nondestructive, and rapid beef quality
evaluation systems.

1.4.2 Food odor measurement

In characterizing food quality, odor can be a useful parameter. Humans tend
to utilize odor as an indicator of quality. Pleasant odors can enhance overall
quality of the interaction with a particular system, whether it is the aroma
of fresh coffee or baking bread. Unpleasant odors act as a signal that there
is a problem, for example, spoilage in a food product. Unfortunately, odors
are difficult to measure because they are usually comprised of a complex
mixture of volatile molecules in small (i.e., parts per billion) concentrations.

Typically, odor measurement depends on human sensory evaluation
(olfactometry) to establish odor parameters. Odors can be classified on a
quantitative basis (odor intensity) or on a qualitative basis (odor hedonics).
However, olfactometry has limitations in establishing specific odor measure-
ments that fully characterize a system of interest. Hence, there have been
ongoing efforts to develop a biomimicry instrument (a.k.a. the electronic
nose) that can replace or supplement olfactory measurements. For example,
the intensity and offensiveness of objectionable odors is of interest to food
consumers. Continuous or semicontinuous measurements of an odor are not
practical using olfactometry because of cost and methodology constraints.
An electronic nose could provide continuous measurements in the same
manner as a weather station provides ongoing measurements of wind speed,
direction, and precipitation. Electronic noses cannot completely mimic the
human nose. Considerations in applying an electronic nose to specific food
products must be addressed.

Technology is needed for the quantization of aromas. In the upcoming chap-
ters, the work of the electronic nose will be introduced in developing the tech-
nique of “smelling” the odors of food products, for example, detecting high
temperature curing off-flavors in peanuts (Osborn et al., in press), that can mea-
sure the quality of foods continuously, fast, objectively, and nondestructively.

1.4.3 Continuous snack food frying quality process control

There are two basic types of frying for snack food items: batch and contin-
uous. Batch frying is typically used in small-scale operations, such as res-
taurants. Continuous frying is used at large-scale operations such as the
snack food industry. In continuous frying, a continuous input of snack food
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Figure 1.3 Diagram of the continuous snack food frying system.

material is put in one end of a fryer, pushed through by a submerger and
oil flow, and, then, extracted at the other end.

The fryer for snack chips can be sketched as shown in Figure 1.3. The
raw material exists in an extruder in the form of a ribbon. Along the inlet
belt, a cutter slices the ribbon into set lengths. The cut ribbon is dropped
into the oil of the fryer where it encounters a short free-float zone. A sub-
merger that covers most of the length of the fryer pushes the chips below
the surface of the oil and carries them to the other end. After the submerger,
the chips are taken out by a conveyor. Then, the chips are placed on a separate
cooling conveyor where ambient air flow cools them. Finally, the chips are
transferred to a weight belt where sensors measure the brightness (or color
intensity) and moisture content, indicators of the final product quality. The
quality control is maintained by monitoring and stabilizing the levels of
these indicators in terms of setpoints of the process operation. If human
operators are involved in the control, they may be subject to overcorrection
and overreaction to normal process variability.

In order to ensure consistency in product quality, automatic control is
desired. The snack food frying process is complex. It has complicated
interactions between the product quality indication variables and those
factors that can be changed independently to affect these product quality
indication variables. For the purpose of controlling such a complex process,
it is first necessary to model it. Owing to the complexity of the snack food
frying process, it is difficult to develop an analytical model of it. In order
to determine heat transfer to the chips and subsequent moisture loss, a
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multitude of parameters must be considered, such as

¢ Qil inlet and outlet temperature.

¢ Qil mass flow.

e Raw material flow rate.

¢ Material moisture content at the inlet and outlet.
e Chip oil content, and so on.

However, even though all of the preceding parameters have been considered,
it is still difficult to model a fryer operation in this manner. Instead, it is
more feasible to develop an input—output model using the idea of system
identification which views the process as a “black box” based on the
input—output process model to develop a strategy to control the operation
of the process. Based on process models, the following chapters will present
the manner in which system identification is used to model effectively the
frying process and the manner in which the food quality controllers are
developed.

1.5 How to learn the technologies

This book focuses on using computer and electronics technologies to develop
rapid and objective methods for food quality evaluation and process control.
Readers are strongly encouraged to relate their problems to the relevant parts
or to the entire book. Readers can understand the related concepts and
methods and, then, go over the corresponding examples in related chapters
to learn from real-world practice. Readers can find the references cited in
the book for more details and consult with the authors for suggestion of
solutions.

This book intends to provide a technical direction for application devel-
opment of technologies for food quality evaluation and process control. It
supplies theoretical descriptions and practical examples. Readers can study
them, get hints, and solve their own problems. Similar to other engineering
fields, application development in food engineering is a science and, also,
an art. It is a good practice to extract the nature from the precedent and,
based on the study, form your own structure to solve the problem. In this
way, you will work out a unique technique for the problem solution. This
is significant in both theory and practice.
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chapter two

Data acquisition

Data generation and collection is generally the first step in food quality
evaluation and process control. The work of data generation and collection
is often done through computer based data acquisition (DAQ). In the food
industry, DAQ techniques are often combined with other tools or methods
to measure unique quality related parameters such as texture, color, or
aroma. The acquired data may be single quantities (scalar), one-dimensional
sequences or time series (vector), or two-dimensional images (matrix) in
representation of selected food parameters. In this chapter, concepts of DAQ
for food quality are established through the description of the software and
hardware. The acquisition of images will be discussed separately, because
they are being applied more frequently in food engineering. In addition,
real-world examples will be provided to help understand the concepts with
practical DAQ systems for food quality.

2.1 Sampling

As a first step in data acquisition, a sampling scheme for the product must
be devised. The number of product units produced in a food processing
plant is typically so large that it precludes testing the entire population. Thus,
sampling is the process used to select objects for analysis so that the popu-
lation is represented by the samples.

Consequently, a sampling procedure must be designed to select samples
from a population to estimate the quality characteristics of the population.
In order to develop an automated system for food quality evaluation, sample
data are first acquired instrumentally, then they are analyzed. Mathematical
models of quality classification and prediction are applied and, finally, con-
trol systems are developed on the basis of the models. Obviously, the per-
formance of the control system is closely related to the sample selection.
Samples need to sufficiently represent the population to be considered. In
other words, in order to infer the variations of the properties of a population,
it is necessary to select enough representative samples from each section of
the population.
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The following items are important to consider in developing a sampling
plan.

1. Clearly establish the goal of the project—what are the critical param-
eters related to the quality of the food product? For example, the
tenderness of beef muscle may be the primary attribute that deter-
mines the acceptability of the product to the consumer. Thus, a mea-
sure of tenderness is the critical parameter in an automated quality
evaluation method. Clearly establishing the goal leads directly to the
second consideration.

2. Determine the quantitative measurements that best represent the crit-
ical parameters identified in the goal—the critical parameters of food
quality are often not easily measured using quantitative methods be-
cause they are qualitative attributes (i.e., flavor, texture, aroma). How-
ever, in order to develop an automated control system, a representative
quantitative measurement of that parameter must be devised. Con-
tinuing the example of beef tenderness, much research has gone into
establishing instrumental methods for measuring tenderness including
various stress-strain techniques, correlation of electrical properties,
correlation of chemical properties, and image analysis for determining
fat distribution (i.e., marbling).

The quantitative measurements used also establish the data types to
be evaluated. As previously noted, single point measurements are scalar
quantities (one-dimension—the measurement), time series are vector
quantities (two-dimensional—the measurement and the time variable),
and images are matrix quantities (three-dimensions—the measurement,
the x coordinate, and the y coordinate). The data type has implications
for the post sampling data processing methods to be applied, the
computational time required, and the storage space needed for in-
termediate and final calculation results. While the continuing trend
toward faster computers and less expensive storage continues, large
data sets are often generated through higher order data types (i.e.,
matrix vs. vector) and increased sampling rates.

Finding a representative instrumental measurement is not always
easy and obtaining good correlation with the quality parameter may
not always be possible. However, there are numerous examples, some
discussed in this text, of quantitative measurements that do represent
qualitative properties of a food.

3. Establish the control limits—automated control systems monitor con-
trol variables (i.e., the quantitative measures established in step 2) and
adjust the process through manipulated variables based on the devia-
tion from some desired condition (i.e., the setpoint). The upper and
lower boundaries of the control variables, beyond which the product
is unacceptable, determine the number of samples and the frequency
of sampling necessary to represent the quality parameters of the
population.
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Representative samples must be taken from the population to determine
quality characteristics. Therefore, some prior assumptions must be made for
the selection of samples. If the selected samples do not represent the under-
lying population, the measurements from these samples will not make any
sense and, if these results are used, they will produce incorrect conclusions.

Sampling can become a very complicated issue. The following questions
must be answered:

Where is the optimum location of the sampling point?

How should the samples be taken from the population?

With what frequency should the sample be selected?

How many samples are sufficient, that is, what is the optimum
sample size?

L N

Typically the sampling task is planned to select random samples from
a lot to determine the acceptability of the quality level. Then, the samples
are examined for one or more characteristics and the decision is made on
acceptance or rejection of the lot.

The determination of the size of samples to be selected is important. The
number of samples should accurately and adequately describe the population.
There are two extremes in sampling: none of the samples are selected, that is,
0 sample size and all of the samples are selected, that is, 100 percent sample
size. On some occasions, no samples at all need to be drawn because some
materials in a process do not need to be examined. In general, 100 percent
sampling is not efficient. Statistical sampling techniques work in the area
between 0 sampling and 100 percent sampling.

Randomly taken samples are useful in representing the characteristics
of the population because they are selected in such a way that every item
in the population has an equal chance to be chosen. Basically, there are simple
random sampling and clustered random sampling. If “good” or “bad” prod-
ucts scatter uniformly over a population, then use of simple random sam-
pling is appropriate. In many cases the population is divided into small
subgroups, such as lots, each of which has products with uniform quality
distribution, in which case clustered random sampling needs to be used.

Details of techniques for sample selection and preparation are beyond
the scope of this book. Interested readers can refer to textbooks on the topics
of Sample Surveys, Experimental Design, and Quality Control.

2.1.1 Example: Sampling for beef grading

For a study to grade beef samples, Whittaker et al. (1992) had 57 slaughtered
test animals and a subset of 35 live test animals. The test animals (Simmental-
Angus crossbred steers) were all classified as “A” carcass maturity (9 to 30
months of age). Each slaughtered test animal was scheduled to be measured
no later than 15 min after the animal was killed. By measuring slaughtered
animals, the variability in each measurement owing to respiratory action,
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blood circulation, muscle contraction, and other dynamic body functions
caused by animal body movements were expected to be reduced or elimi-
nated. Measurement of live animals was limited to a subset of the total
number of test animals because of the restrictions placed on these animals
owing to the excessive preslaughter handling by other research projects
being conducted at the time. The measurement of live animals was needed
primarily to determine the degree of difference existing between the mea-
surements of each test animal when measured alive and immediately after
slaughter.
The process for this study was categorized into the following phases.

Sampling.
Measuring.

Data acquisition.
Data preprocessing.
Data processing.
Quality grading.
Data analysis.

NS Tk

In the sampling phase, each test animal was prepared by using an electric
clipper to remove the hair from the measuring area, an area approximately
15 x 30 cm located over the 12th and 13th rib section on the upper back
portion of the animal. This area was brushed clean and mineral or vegetable
oil was applied to improve instrumental contact. The live animals were
measured in squeeze chutes, and the slaughtered animals were measured
on the abattoir floor while hanging from the rail by both hind legs.

Similarly, Park (1991) used fresh longissimus dorsi (LD) muscles for estab-
lishing an instrument method for beef grading. For this study, all animals
had a carcass maturity of A (9 to 30 months of age). Trained graders classified
the samples into different groups from Abundant to Practically Devoid.
Steaks 30 mm thick were excised from the LD of the 13th rib from the right
side of each carcass. A 75 mm X 42 mm X 30 mm sample was excised from
each steak. In this way, 124 specimens were sampled from 124 beef carcasses
ranging across the marbling classes.

The number of test animals measured for the study was determined by
the number of head available for slaughter during the experimental process.
The samples from 124 slaughtered test animals were planned to be measured
in co-ordination with experimentation by the Animal Science Department
of Texas A&M University.

The task of predetermining the exact number of test animals needed for
this study was practically impossible because actual fat concentration in
muscle could only be known through chemical analysis after each sample
was measured instrumentally. Every effort, therefore, was made to sample
the test animals expected to represent a uniform distribution based upon a
prespecified number of test animals representing the USDA quality grades
across each marbling category for A carcass maturity.
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Figure 2.1. Profile of sample distribution. (From Park, 1991. With permission.)

Because of the limited number of test animals that were available for
this study and the narrow distribution of fat classes within the marketplace,
the distribution of test animals was not uniform. The sample number of most
marbling categories was at least 6 specimens with the exception of sample
categories located between 9 percent and 15 percent (very abundant mar-
bling) as shown in Figure 2.1.

Thane (1992) had 90 live and 111 slaughtered beef animals available for
instrumental measurement. Because of the accumulation of a high number
of animals falling in the lower marbling classes (Traces, Slight, and Small),
ranging in fat content from 2.5 percent to 5.0 percent, animals were randomly
eliminated. Consequently, 71 live animals and 88 slaughtered carcasses
remained for the study.

The Angus—-Hereford crossbred heifers and Angus-Simmental crossbred
steers were provided. The live weights of the Angus—Hereford crossbred heif-
ers ranged from 338 to 585 kg (1290 Ib), and their carcass weights ranged from
210 to 334 kg (737 1b). For the Angus-Simmental crossbred steers, live
weights ranged from 332 to 683 kg (1506 Ib), and carcass weights ranged
from 207 to 453 kg (999 Ib). All animals were classified as A carcass maturity
(9 to 30 months of age).

The task of obtaining the exact number of animals needed for an exper-
imental study of this type is practically impossible. Marbling scores and
actual percentage of intramuscular fat (marbling) can only be determined once
each animal has been slaughtered, dressed, chilled, USDA-quality graded,
and after ether extraction tests were performed on the excised samples of
beef carcass LD muscle. The sample distribution of animals targeted for this
study was to represent a uniformly distributed profile of 10 to 20 animals
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Figure 2.2 Targeted sample distribution with a range of 10 to 20 animals throughout
each USDA-quality grade. (From Thane, 1992. With permission.)

representing the USDA-quality grades across each marbling category for A
carcass maturity as illustrated in Figure 2.2.

Because of the limited number of animals that fell within the high mar-
bling categories (Slightly Abundant, Moderately Abundant, and Abundant)
and low marbling categories (Devoid and Practically Devoid), the target
sample distribution was unobtainable. A market profile based on the average
numbers of beef animals representing USDA-quality grades across each
marbling category for “A” carcass maturity is shown in Figure 2.3. Sample
distributions of the 71 live animals and the 88 slaughtered carcasses for this
study are shown in Figures 2.4 and 2.5, respectively. The actual number of
animals used in this study was further reduced to 62 live animals and 79
slaughtered carcasses. Animals that fell below 2 percent fat content and
above 8.5 percent fat content were eliminated from the study. This was done
because of the limited number of animals that fell within the ether extractable
fat concentration range of 2 percent and below and 8.5 percent and above.

2.1.2  Example: Sampling for detection of peanut off-flavors

Osborn et al. (in press) developed an instrumental method to detect peanut
off-flavors. Peanuts from the 1996 season were dug from border rows of exper-
imental plots. The peanuts were shaped into inverted windrows and cured
in this orientation for approximately 20 h. Ambient temperature ranged from
an overnight low of approximately 16°C to a daytime temperature of approx-
imately 24°C. No rain was observed during this time period. Approximately
10 kg of pods were hand picked from windrows. The moisture content of the
pods was approximately 20 percent wet basis when removed from the wind-
row. The pods were placed in a burlap bag and transported to the lab. The pods
were rinsed in tap water to remove soil and patted dry with paper towels.
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Figure 2.3 Typical market profile of the average number of beef animals represented
according to marbling class for each USDA-quality grade. (From Thane, 1992. With
permission.)
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Figure 2.4 Sample distribution of 71 live beef animals. (From Thane, 1992. With per-
mission.)
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Figure 2.5 Sample distribution of 88 slaughtered beef carcasses. (From Thane, 1992.
With permission.)

The maturity of a random sample of the peanuts was determined using the
hull scrape method (Williams and Drexler, 1981; Henning, 1983).

The pods were thoroughly mixed and separated into two lots of equal
mass. One lot was placed in a gravity convection-drying oven with an air
temperature of 50°C. This temperature was higher than reasonably expected
in typical peanut curing operations. This temperature was selected to ensure
off-flavor volatiles were produced. Osborn et al. (1995) indicated that the
potential for off-flavor volatile production decreases with the decrease in pea-
nut moisture content and increases with the increase in temperature. The
peanuts were dried to 20 percent moisture content wet basis under ideal field
conditions that were not expected to produce any off-flavor volatiles.

The high temperature curing treatment using a temperature slightly
above 35°C may produce off-flavors in peanuts at high moisture content but
not in peanuts at 20 percent moisture content. The pods were cured in the
oven for 65 h. The pods were oven dried from an initial moisture content of
approximately 20 percent wet basis to a final moisture content of 6 percent
wet basis. The pods were then removed from the oven, cooled to room
temperature, and placed in burlap bags for storage at room conditions. This
lot is referred to as high temperature cured peanuts.

The remaining lot was placed in a single layer on a countertop in the
lab at room temperature (approximately 23°C). These peanuts were allowed
to cure for eight days until a hand-held Dickey-John (Auburn, IL) moisture
meter indicated a steady moisture content reading. The pods were room
dried from an initial moisture content of approximately 20 percent wet basis

© 2001 by CRC Press LLC



to a final moisture content of 6 percent wet basis. This lot is referred to as
room temperature cured peanuts.

The two lots of peanuts were dried to the same final moisture content to
avoid water vapor effects being responsible for different sensor output readings.
Both lots of cured peanuts were stored in nonairtight burlap bags in separate
cabinets at room conditions for 10 weeks to allow for moisture equilibration.
The condition of the air in the room during storage was such that no further
drying of the peanuts occurred. The moisture content of the pods, kernels, and
hulls was determined after storage using an oven method specified by ASAE
standard 5410.1 (ASAE, 1998): 130°C for 6 h in a forced air convection oven.

After moisture equilibration and determination, the peanuts were ana-
lyzed using the GC (gas chromatograph) and OVM (organic volatiles meter)
to verify high concentrations of off-flavor volatiles in the high temperature
cured peanuts and low concentrations in the room temperature cured pea-
nuts. GC analysis was performed on 3 different 100 g random samples of
kernels removed from both the high temperature cured lot and the room
temperature cured pods. The kernels were ground in water and sampled
according to the method of Singleton and Pattee (1980, 1989). Data were
reported in units of micromoles of volatile compound per kg kernel dry
matter. The OVM was used to determine the HSVC (Head Space Volatile
Concentration) in parts per million according to the method developed by
Dickens et al. (1987). The three OVM tests were performed on the room
temperature cured peanuts, and four tests were performed on the high
temperature cured peanuts. Each test used 100 g of ground kernels.

In the experimental sampling, each curing temperature treatment lot of
pods was thoroughly mixed and separated into 10 replicant sublots of 45 g
each. The sample sublots were placed into paper bags and labeled. The order
of sublot testing was randomized.

The testing began by shelling the pods in the sublot to be analyzed, remov-
ing the redskin from the kernels, and then grinding the kernels using a rotary
blade-type coffee grinder for 10 sec without water. Once the hulls were
removed from the sublot, the sample size was reduced to approximately 5 g
of kernels. The ground kernels were then placed into instrument sampling
bags. The filled bag was air conditioned to 25°C and 40 percent relative humid-
ity by the controller within the equipment. This air condition was very near
moisture equilibrium conditions for the kernel. The sample plastic bag was
then sealed and allowed to equilibrate in the equipment holding chamber at
the test temperature (25°C) for 15 min. The reference test air temperature was
set to 25°C and the relative humidity set to 30 percent.

2.1.3  Example: Sampling for meat quality evaluation

For a project of meat attributes prediction, 30 beef carcasses were available for
study (Moore, 1996). The 30 beef carcasses were obtained from beef animals
of known genehc background from three breed types (3 Angus x 1 Brahman,

i
! jAngus X 3 3 Brahman crosses, and F, Angus x Brahman crosses). From each
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of the three breed types, five steers and five heifers were slaughtered at a
constant age at the Meat Science and Technology Center of Texas A&M Uni-
versity. Each carcass was split, and the right side of each carcass was electrically
stimulated (ES). Electrical stimulation was achieved using a Lectro-Tender™
electrical stimulation unit (LeFiell Company, San Francisco, CA).

The ES procedure was performed within 1 h postmortem and consisted
of 17 impulses of 550 volts and 2 to 6 amps for 1 min. Impulses were 1.8 sec
in duration with 1.8 sec of rest between impulses. At 24 h postmortem,
approximately 50 g of muscle tissue were removed from 4 muscles on each
side of the carcasses [semimembranosus (Sm), semitendinosus (St), triceps
brachii (Tb) and biceps femoris (Bf), and the longissimus muscle from the
nonelectrically stimulated side for calpastatin enzyme activity and sarcomere
length measurements]. At 48 h postmortem, 2 trained personnel collected
USDA-quality and yield grade characteristics (hot carcass weight; percent
kidney, pelvic, and heart fat (KPH); ribeye area (REA); fat thickness opposite
the 12th rib; adjusted fat thickness; marbling score; lean maturity; skeletal
maturity; quality grade and yield grade) (USDA, 1989).

Each carcass then was fabricated, and the nine major muscles were
removed. A total of four steaks 2.54 cm thick were cut from the anterior
end of each muscle for Warner—Bratzler shear force determination and
assigned to 1 of 4 aging periods: 2, 14, 28, and 42 days postmortem. Steaks
were stored at 4 £ 2°C until completion of the respective aging period. An
approximately 80 x 80 x 50 mm block was taken from the posterior end of
each muscle at 2 days postmortem for elastography analysis (samples were
not taken from the nonelectrically stimulated (NS) LD owing to the limited
size of the muscle allocated for this study). The remaining tissue was ground
for percent fat, percent moisture, collagen amount, and solubility analysis.
Samples were vacuum packaged in high oxygen barrier bags (B540 bags;
Cryovac Division, W.R. Grace & Co., Duncan, SC) and frozen at -10°C until
the analyses could be conducted.

2.1.4 Example: Sampling for snack food eating quality evaluation

In order to evaluate the eating quality of snacks and chips, a project was
planned to develop an objective method through quantization of the quality
characteristics of the products (Sayeed et al., 1995). For this study, a consid-
erably large number of samples (at least 600 bags, roughly 100 samples per
bag) of the snacks were prepared. These samples were produced under
different process and machine wear conditions. In addition, the raw material
was varied to evaluate its effect on the snack quality. Each of the machine
wear-raw product scenarios was tested under different (at least 10) process
conditions referred to as “cells.” The samples for each of the cell conditions
were sealed in different bags. For this study, five bags of samples under the
same cell condition were mixed in order to obtain a representative sample.
Then, samples were collected randomly under the same cell conditions.
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2.1.5 Example: Sampling for snack food frying quality process control

The data from the process were generated around typical setpoints by per-
turbing the process with a pseudo random binary signal (PRBS). The PRBS
test, also known as a dither test, was designed for the identification of the
input-output models of the process. A PRBS is easy for linear process mod-
eling. A PRBS that contains a random sequence of zeros and ones can be
generated by the following codes.

if r < fc then

u(k + 1) = u(k)
else

u(k+1)=1- u(k)

end

where r is uniformly distributed on [0 1], fc is a preset threshold value, and
u(0) is 0 or 1.

The value of the fc depends on the sampling rate, the dynamics of the
process (fast or slow), and the frequency components. It represents the
chance the PRBS flips from 0 to 1 or from 1 to 0. The smaller the value of
fc, the lower the frequency components in the data from the process are
collected. In this study, low frequency components are concerned because
process models are needed to be able to do long-term prediction. There-
fore, for the fryer, the sampling time was set at 5 sec, and the fc value was
set in the range of 0.125 and 0.15. With the PRBS, the inlet oil temperature,
the submerger speed, and takeout speed were each dithered between 3
independent setpoints for approximately 6500 time steps as the process
input.

The exogenous inputs are setup values, not actual values. For exam-
ple, in the frying process, the setup values for temperature are provided
to a PID (proportional-integral-derivative) controller, which then con-
trols the oil inlet temperature. It is important to know the relationship
between the setup input and actual input in order to model the process
correctly.

It also is important to have suitable experimental conditions and to keep
the conditions stable in order to acquire valid data to build effective models
for the process. In this case, the temperature in the plant has such an effect
on the frying process that the test should be done when the plant temperature
is constant in order to make the process stationary. Further, before the test
starts, it is imperative that the frying process is in a steady state, otherwise
the process becomes nonstationary. In this way, the stationary data acquired
from the test is able to facilitate the analysis, modeling, and controller design
of the process.
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2.2 Concepts and systems for data acquisition

When samples are selected and prepared for study;, it is time for sample data
acquisition. Currently, a typical DAQ system is based on a personal computer
(PC) in connection with sensors or transducers, signal conditioning, DAQ
hardware, and software. In laboratory analysis, industrial measurement, test,
and control, personal computers with expansion buses are being used for
data acquisition. Figure 2.6 describes the typical structure of such a DAQ
system. In the system, depending upon the design of the components, the
PC, transducers, signal conditioning box, DAQ hardware box, and software
are integrated to produce the desired data.

In such a DAQ system, the PC is the center. It co-ordinates the operation
of the system from data sensing, signal conditioning, A/D (analog to digital)
conversion, and signal analysis and processing.

The physical properties of an object are measured by sensors. Then, the
transducers convert the measurements into electrical signals which are pro-
portional to the physical parameters. For example, in the food industry
temperature is the most common physical parameter that is measured. In
PC-based DAQ systems, thermocouples, resistance temperature detectors
(RTD), thermistors, optical pyrometers, or solid-state temperature sensors
may be used to convert temperature into a voltage or resistance value. Other
common sensors are strain gauges to measure changing length and pressure
transducers and flow transducers that transform pressure and flow rate to
electrical signals. Other sensors and transducers measure rheological prop-
erties, level, pH and other ions, color, composition, and moisture.

Sensor/
Transducer

Data Acquisition and —’\
Analysis —1/

Signal Conditioning

I

e —]
] ] L]

PC (Software)

System Electronic/
Mechanical Control |

Figure 2.6 A typical DAQ system.
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Often the terms “transducer” and “sensor” are used interchangeably.
However, there is a distinction that must be made between them. Sensors
are devices or elements that interact with a desired measurand with a
response that is detectable. For example, a thermistor is a sensor that changes
resistance in response to changes in the thermodynamic energy (i.e., tem-
perature) of the surrounding fluid. While the sensor creates a measurable
response, all DAQ systems require a voltage input at the point of A/D
conversion. Thus, the transducer is comprised of a sensor and circuitry that
converts the sensor output to a voltage. The transducer may also be designed
to scale (amplify or attenuate) the signal, linearize the output, or change the
signal in some other manner. It is also possible that the conversion of the
signal occurs partially at the sensor and partly at the DAQ. For example,
many industrial grade transducers produce a 4 to 20 mA output signal.
Current signals have the advantage of being relatively immune to electrical
noise in plant environments and free of resistance changes in the electrical
wires used to connect the transducer to the DAQ. Because the DAQ is often
enclosed in an instrument room or control cabinet some distance from the
transducer, small changes in wire resistance can introduce significant error.
In this case, the current signal is transformed to voltage at the DAQ through
a relatively simple circuit. There are specialized DAQ systems designed to
accept direct sensor inputs and perform the signal conversions at the DAQ.

Signal conversion in the transducer can be thought as part of the signal-
conditioning element. Typically, signal conditioning is an analog process and
may include signal amplification, attenuation, linearization, impedance
matching, and filtering. Signal amplification involves increasing the ampli-
tude of the signal. This generally improves the signal to noise ratio (SNR)
and can enhance resolution in DAQ. As will be discussed further, the reso-
lution of the A/Dconversion is determined by the number of digital bits and
the range of the reference voltage and is a fixed value. For a 12 bit A/D with
a 0 to 10 V reference, the resolution is 2.44 mV regardless of the amplitude
of the input signal. Thus, if the signal is amplified before entering the A/D
converter, the error owing to A/D resolution becomes a smaller fraction of
the signal. Signal attenuation is the reduction of the signal amplitude and
may be applied when the input is greater than the reference voltage on the
A/D converter.

Linearization is another common type of signal conditioning. Often the
output of a transducer is nonlinear with respect to the input. A typical
example is the thermistor, a device whose resistance decreases exponentially
with respect to temperature. While the correct reading can be calculated from
a known mathematical function, it is often preferred to convert the nonlinear
response to a linear output using analog electronics. Analog linearization is
faster than calculating the conversion on a digital signal and is well suited
to a direct readout.

Impedance matching is an important type of signal conditioning that is
sometimes overlooked. As a general rule, the output impedance of any stage
of the transducer should be at least 1/10 of the input impedance of the DAQ.
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This minimizes the current flow through the DAQ and subsequent errors in
reading the voltage at the DAQ. If, for example, the output impedance of
the transducer and the input impedance of the DAQ were equal, then
approximately one-half of the current would flow through the DAQ and
one-half through the transducer circuit. This would result in a voltage read-
ing at the DAQ that was approximately one-half of the true voltage.

Filtering is not usually part of commercial transducers (i.e., sensors plus
signal conditioning) but sometimes added to improve the measurement pro-
cess. Signal filters are designed to attenuate some frequencies contained
within a signal while allowing others to pass through relatively unchanged.
A low pass filter allows low frequencies to pass through the circuit to the
DAQ while reducing the amplitude of the higher frequency signals. High
pass filters block low frequency signals, band pass filters allow only signals
within a certain frequency range to pass, and notch filters block signals in a
set frequency range. In many applications, electrical interference at a fre-
quency of 60 Hz is pronounced. If the signals we are interested in occur at a
lower frequency, for example, a temperature change that occurs less than once
per second (1 Hz), then a low pass filter can be designed to block the 60 Hz
noise while passing the 1 Hz signal. Analog filter design is covered in most
elementary electrical engineering texts and is beyond the scope of this book.
The signal of interest and the surrounding electrical interference determine
which type of filter is needed for a given application.

Biosensors are used in food analysis and process control. Biosensors are
devices joining molecular biology and electronics. They are called biosensors
because they use biomaterial as the sensor component and have electronic
components to modify and condition the detected signal. Generally, a bio-
sensor consists of a biological receptor and a transducer. The biological
component is close to, or fixed on, the surface of the transducer. The trans-
ducer converts the biological reactions from the output of the receptors into
a response that can be processed as an electrical signal. Biosensor techniques
originated in the field of medical science, but more applications are seen in
all stages of food production, from raw materials through processing. For
example, fruit ripeness, pesticide and herbicide levels of vegetables, and rapid
microbial change in dairy products, fish, and meat have all been measured
by biosensors. Interested readers can refer to the works of Taylor (1990),
Wagner and Guilbault (1994), and Scott (1998).

Understanding the specifications of the DAQ system is important in
establishing the capability and the accuracy of the system. DAQ parameters
include the sampling rate per channel, voltage resolution, the input voltage
range, and the number of channels for analog input. In a PC-based DAQ
system, the rate at which samples are taken is important. The sampling rate
can be expressed either in the sampling interval, that is, the time between
samples or more typically by the sampling frequency (samples per second).
Sampling frequency can be misleading because a manufacturer may quote
a sampling frequency across all analog input channels. For example, a DAQ
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that may be specified as sampling at 8 kHz and having 16 analog input
channels may only sample each channel at a rate of 500 Hz.

The required sampling rate is determined by the frequency content of
the signal that is to be recorded. The Nyquist criteria specify that the sam-
pling frequency must be at least twice the highest signal frequency. Other-
wise, the signal will be distorted and appear to be at a completely different
frequency. This phenomenon is known as aliasing. A good rule of thumb in
selecting the sampling rate is to use a rate that is approximately 10 times
the desired frequency, but note that signals with a broad frequency range
may require a low pass filter prior to the D/Astep to prevent aliasing which
would create error in the values at lower frequencies.

The voltage resolution is determined by the method of A/D conversion.
There are three basic methods used in A/D converters: successive approxi-
mation, flash, and dual slope. Each works on a different basis, but successive
approximation A/D is far and away the most commonly used. In a successive
approximation A/D converter, the number of bits used to represent an analog
voltage and the reference voltage of the converter determine the resolution
by the formula

Vref
2)1

AD =

where AD is the resolution in the digital number, V. is the reference voltage,
and 7 is the number of bits in the converter. Thus, a 12-bit converter with a
reference voltage of 10 V will have a resolution of 2.44 mV.

Input voltage range is established by the design of the A/D converter
and can be unipolar (e.g., 0 to 10 V) or bipolar (e.g., =10 V to 10 V). Less
expensive DAQ equipment may only have a single input range, but more
expensive equipment will provide a selection of ranges. It is generally good
practice to select a range that best matches the input voltage from the
transducer.

Only one analog input voltage at a time can be processed per A/D converter.
However, many applications require the DAQ system to process multiple
voltage inputs. This is usually accomplished by using a multiplexer (MUX).
The MUX switches between incoming signals and feeds each in turn to the
A/Dfor processing. Modern DAQ systems usually are built to accommodate
8 to 16 channels, and with additional hardware that number may be increased
to 96 or more. However, increasing the number of channels beyond those
contained in the A/D board decreases the sampling frequency per sample.

Image signals require a special interface card, usually referred to as an
image acquisition card, or a “frame grabber,” in combination with a camera
or other image-producing device in order to capture digital images.

Measurement and data acquisition techniques are in development to mea-
sure very high viscosities, moisture content, and color of uneven surfaces.
Nondestructive, real-time measurement of enzyme activity, microorganism
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activity, flavor/aroma, and shelf life will enhance and ensure food quality,
consistency, integrity, and safety. The following examples of system setup
are ultrasonic A-mode signal acquisition for beef grading, an electronic nose
which emulates human nose sensing peanut flavor, and on-line measure-
ment for color, moisture content, and oil content of snack food products.

2.2.1 Example: Ultrasonic Amode signal acquisition for beef grading

Meat palatability is often related to the percent of intramuscular fat present
in a meat cut. In fact, the USDA-quality grades are based primarily upon
“marbling,” the visual appraisal of intramuscular fat on a cut surface of a
chilled carcass between the 12th and 13th ribs (USDA, 1997). Other factors
that influence palatability include animal age, amount of connective tissue,
and aging effects. However, intramuscular fat is the primary component. Park
and Whittaker (Park and Whittaker, 1990 and 1991; Park, 1992; Whittaker
et al,, 1992) conducted an overall study focused on developing a robust
method for measuring the amount of intramuscular fat in a beef cut non-
invasively. This section describes their work in setting up the ultrasonic
A-mode signal acquisition system for beef grading.

There are several types of ultrasonic diagnostic instruments, such as
A-mode, B-mode, C-mode, M-mode, Doppler devices, etc. (Christensen,
1988). Among them the A-mode technique is the oldest. A-mode ultrasound
gives one-dimensional information, which shows the amplitude of the sig-
nal. Beef quality is generally evaluated using a marbling score as an indicator
of the percentage of intramuscular fat in the LD muscle. Because the ultra-
sonic speeds are different between fat and muscle, the marbling scores can
be predicted by measuring the ultrasonic longitudinal and shear speed in
biological tissue.

Longitudinal and shear ultrasonic transducers (1 MHz, 2.25 MHz, and
5 MHz) were used to obtain data from each beef sample. The longitudinal
acoustic velocity and attenuation were recorded from the signal in time
domain. Contact transducers (Panametrics, Waltham, MA), 12.7 mm in diam-
eter, with longitudinal wave frequencies of 1 MHz, 2.25 MHz, and 5 MHz
were used. An ultrasonic analyzer (Model 5052UA, Panametrics) that incor-
porated a broadband pulser—receiver and a gated peak detector were used
to measure ultrasonic speed and attenuation.

The signal from the ultrasonic analyzer was then acquired through an
8-bit, 20-MHz A/D converter board (PCTR-160, General Research, McLean, VA)
and processed by software (PC-DAS, General Research) that enabled ultra-
sound speed and attenuation to be measured and the results displayed on
the monitor screen. The peak amplitude measurement method was used to
quantify attenuation. Figure 2.7 shows a schematic diagram for the experi-
mental set-up, and Figure 2.8 shows the diagram of system blocks.

Theoretically, the sensitivity of the speed to fat percentage of the longis-
simus muscle was 1.6 m per (s minus the percent of fat). In fact, the average
distance the ultrasound wave traveled through the meat sample was 25.9 mm
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Figure 2.7 Schematic diagram for the experimental setup for measuring ultrasonic
speed and attenuation. (Adapted from Whittaker et al., 1992. With permission.)

PULSE TRANSMITTING MEAT RECEIVING
AMPLIFIER TRANSDUCER SAMPLE TRANSDUCER
RF A/D
AMPLIFIER CONVERTER PCDAS

Figure 2.8 Block diagram for experimental setup for measuring ultrasonic speed and
attenuation. (Adapted from Whittaker et al., 1992. With permission.)
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for excised meat samples that were nominally 30 mm. These samples were
put into a sample holder (aluminum block) to be measured ultrasonically. In
this case, the sample thickness was rescaled using a micrometer for accurate
ultrasonic speed measurement. Assuming an average velocity of propagation
of 1,500 m per s, the time of flight of an ultrasonic pulse in a section 2.59 cm
thick was about 17.27 us. The average minimum difference of fat between
traces and practically devoid marbling scores was approximately 0.71 percent.
Assuming a decrease in velocity of 1.14 m per s because of the increase in fat
content going from practically devoid to traces, the time of flight in a 2.59 cm
thick meat section would be 17.28 us. Therefore, the resolution required for
measuring the arrival time of the ultrasonic signal was 0.01 us.

Ultrasonic speed measurements were taken at 22 to 24°C temperature
in thawed beef samples that were previously frozen. The measurements were
obtained using the normal incidence pulse-echo method. In this configura-
tion, the incident beam strikes the interface, resulting in a reflected beam
returning in the opposite direction in the same material and a refracted beam
passing through the interface into the next material. Ultrasonic energy that
is reflected and returned to the probe is the source of the indications shown
on the monitor. All ultrasonic energy that travels completely through the
test piece was reflected at the end by a back reflector, giving a large back-
echo indication. This technique could be used in scanning hot carcasses and
live beef animals, provided that either

1. The ultrasonic speed of the medium is known.
2. The exact distance to the back reflector can be determined.

The ultrasonic signal obtained in the DAQ system was further prepro-
cessed, analyzed, modeled, and classified to establish a robust method for
measuring the amount of intramuscular fat in a beef cut noninvasively.

2.2.2  Example: Electronic nose data acquisition for food
odor measurement

The process of olfaction in mammals is useful to consider in the development
and application of an electronic nose. The fundamental problems in olfaction
are establishing the limits of detection, recognizing a particular odorant,
coding the response to establish odor intensity and quality, and discriminat-
ing between similar odorants. From these problems, the need to understand
the nature of the olfactory chemoreceptors, the mechanisms of transduction,
the neural coding mechanisms for intensity and quality, and the nature of the
higher information processing pathways follows (Persaud et al., 1988).
Figure 2.9 shows a schematic of the olfactory anatomy in humans.
Perception of odor in humans is not well understood. Odorant molecules
must reach the olfactory epithelium at the top of the nasal passages where
the olfactory receptors are located. Transport to the epithelium is turbulent
and results in a nonlinear relationship between concentrations, flow rate,
and the number of molecules reaching the membrane. Approximately 5 to
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Figure 2.9 Schematic of the human olfactory organs. (From Lacey and Osborn, 1998.
With permission.)

20 percent of the air inhaled will pass through the olfactory cleft, depending
on the nasal flow rate. Higher nasal flow rates correspond to increased
perceived odor intensity. In addition to transport via the nasal flow, humans
possess a retronasal pathway from the mouth to the olfactory epithelium
that allows odorant molecules to reach the olfactory receptors by a second
pathway. This accounts for much of the sensory perception attributed to
flavor when eating. Once odorant molecules reach the epithelium, they must
be dissolved into the mucus that covers the olfactory epithelium. The dis-
solved molecules are transported to the receptor cells and their cilia where
they interact with the receptors and are converted to neural signals. Volatile
molecules are also capable of stimulating the trigeminal nerve endings.
While this effect is not fully understood, it is believed that the trigeminal
nerves also play an important role in odor perception. Transduction and
coding of the receptor response to odorants is not easily reduced and there
is no clearly defined theory that covers the perception of the odors (Engen,
1982; Lawless, 1997). The olfactory system responds nonspecifically to a wide
variety of volatile molecules. However, most people are able to easily rec-
ognize a variety of odors even at very low concentrations.

The electronic nose in Figure 2.10 can be viewed as a greatly simplified
copy of the olfactory anatomy, seen in Table 2.1. The receptor cells and cilia
are replaced with nonspecific gas sensors that react to various volatile com-
pounds. Because there is generally no mucus into which the odorants must
dissolve, the molecules must adsorb onto the sensor. There are a variety of
sensors that have been employed including those based on metal oxides
(Brynzari et al., 1997; Ishida et al., 1996; Egashira and Shimizu, 1993; Nanto
etal., 1993), semiconducting polymers (Buehler, 1997; Freund and Lewis, 1997;
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Table 2.1 Comparison of Human Nose vs. Electronic Nose

Item Human Nose Electronic Nose

Number of olfactory receptor 40 million 4 to 32
cells/sensors

Area of olfactory mucosa/sensors 5 cm’ 1cm’

Diameter of olfactory receptor 40-50 micron 800 micron
cell/sensor

Number of cilia per olfactory receptor 10-30 0
cell

Length of cilia on olfactory receptor cell 100-150 micron N/A

Concentration for detection threshold 0.00004 mg/liter air Unknown
of musk

Adapted From Lacey and Osborn, 1998. With permission.

Sensors Signal Data Artificial
Conditioning Preprocessing Neural
Network

Figure 2.10 Schematic of generic electronic nose. (From Lacey and Osborn, 1998. With
permission.)

Yim et al., 1993; Miasik et al., 1986), optical methods (White et al., 1996; Collins
and Rose-Pehrsson, 1995), and quartz resonance (di Natale et al., 1996; Matsuno
et al., 1995; Moriizumi et al., 1994). Metal oxide and semiconducting polymer
sensors are the two most commonly used sensors in commercial instruments.
Generally, steady state sensor response has been used in electronic nose
systems (Egashira, 1997; Brailsford et al., 1996), but research indicates that
transient response measurements can enhance the ability of the sensors to
differentiate between different molecular species (Eklov et al., 1997; Llobert
et al., 1997; Nakata et al., 1996, Amrani et al., 1995).

Transduction of the olfactometry receptors is replaced with signal condi-
tioning circuits that involve a conversion to voltage (Corcoran, 1994). Coding
of the neural signals for odor intensity and odor recognition in humans is
replaced with some type of pattern recognition method (Wide et al., 1997;
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Hanaki et al., 1996, Moy and Collins, 1996; Ping and Jun, 1996; Davide et al,,
1995; Yea et al., 1994; Nayak et al., 1993; Sundgren et al., 1991).

Despite the limitations of the electronic nose as compared to human
olfaction, there have been a number of reports of successful application of
the electronic nose to problems in foods (Gardner et al., 1998; Lacey and
Osborn, 1998; Osborn et al., 1995; Bartlett et al., 1997; Simon et al., 1996;
Strassburger, 1996; Vernat-Rossi et al., 1996; Pisanelli et al., 1994; Winquist
et al., 1993).

There are sources of error in an electronic nose. Many of them are the
same as the error sources in olfactometry. These errors include a lack of
sensitivity to odors of interest, interference from nonodorous molecules,
effects of temperature and humidity, nonlinearity of the sensor response,
and errors from sampling methodology. It is beyond the scope of this book
to discuss these errors as they affect olfactometry measurements. However,
there are several references to quality control in olfactometry (Berglund et al.,
1988; Williams, 1986) and published standards for olfactometry measurements
(ASTM, 1991; ASTM, 1988).

Osborn et al. (in press) developed an application of a commercial elec-
tronic nose for detecting high temperature curing off-flavors in peanuts.
Peanuts were tested in four progressive states of destruction: whole pods,
whole kernels with red skins, half kernels without red skins, and ground
kernels. Off-flavors in ground kernels were also measured using GC and an
OVM for comparison to the electronic nose. The electronic nose sensor array
was able to separate good from off-flavored peanuts after some data pro-
cessing to remove bias effects from an unknown source. The bias was sus-
pected to come from slight water vapor differences between the samples that
affected all sensors equally. Further, the electronic nose was able to differ-
entiate between the samples nondestructively suggesting that there may be
a potential to use this technique to establish quality control points in the
processing that could reduce or eliminate off-flavor peanuts.

2.2.3 Example: Snack food frying data acquisition for quality
process control

The data used for the study of snack food frying quality process control were
acquired from a frying process described in Chapter 1. The food materials
were dropped into a fryer by a conveyor. Then, a submerger conveyor kept
the materials immersed in the oil and pushed them forward through the
fryer. The submerger conveyor speed was changed to adjust the residence
time of the product in the fryer.

A takeout conveyor moved the products out of the oil through a series
of paddles. The products were then transported by a conveyor to a cooling
section which was open to ambient conditions. After this, the product passed
over a weigh belt where the sensors for product quality attribute measure-
ments were located. The quality attributes measured on-line were color, mois-
ture content, and oil content of the final products.
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The color was measured with a Colorex sensor (InfraRed Engineering,
Inc., Waltham, MA) placed after the cooling section. The sensor measured
color CIELAB units in L*a*b space. The CIELAB scale is preferred (over the
CIELUYV scale) by those who work with products that have been pigmented
or dyed (HunterLab, 1995). This scale correlates more closely with the manner
in which humans actually see color because it is based on the opponent
colors theory of vision (HunterLab, 1995). This theory assumes that humans
do not see red and green or yellow and blue at the same time. Therefore, single
values can be used to express the red or green and yellow or blue attributes
of objects.

The b value of the CIELAB scale is positive when the product is yellow
and negative when the product is blue. In other words, b is a measure of
yellowness-blueness in the product. In this work, the b value was used over
a and L for modeling and control because it was affected the most when the
process was varied.

Moisture content is the quality of water per unit mass of either wet or
dry product, wet basis, or dry basis, respectively. In this case, it was done
in a wet basis. The oil content measurements were also performed in a
wet basis. Moisture content and oil content were measured with a MM55
sensor (InfraRed Engineering, Inc., Waltham, MA) located after the cooling
section.

For the purposes of modeling and control, the frying process was
simplified to an input-output structure (Figure 2.11) by studying the pro-
cess mechanism. In this structure, the inlet frying oil temperature, the speed
of the submerger conveyors, and the speed of the takeout conveyors were
chosen as the process input variables (independent variables in the context
of modeling or manipulative variables in the context of automatic control).
These input variables had a strong impact on the process output variables
(also known as the dependent variables or controlled variables) that are
the product quality attributes: color b, moisture content, and oil content.

Disturbances

Inlet Ol Color B
Temperature
———
Submerger . Moisture Content
Conveyor Speed Continuous Snack
e . —
Food Frying Process
Takeout Conveyor .
Oil Content
Speed
———

Figure 2.11 A simplified input-output structure of the snack food frying process.
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This structure is the basis of data acquisition, analysis, modeling, and control
of the process.

2.3 Image acquisition

In recent years, techniques of image acquisition, analysis, and pattern recog-
nition have merged with computer technology and increasingly have been
applied to problems in food quality evaluation and process control. Current
imaging methods rely on digital images to visualize physical properties of
food or ingredients in order to quantify parameters for analysis and process
control. Applications in food engineering mostly have involved the evalua-
tion of food quality based on the information derived from image texture,
product morphology (size and shape), and product color features extracted
from digital images of food samples. Images have been developed from
various sensors capable of visualizing the food samples such as digital cam-
eras measuring visible light reflectance; detection devices for ultraviolet (UV),
infrared (IR), and near infrared (NIR) reflected radiation; X-ray transmission;
ultrasound transmission; and nuclear magnetic resonance (NMR). A com-
puter is usually needed to process and analyze the acquired images. In an
imaging system, the computer is analogous to the human brain and the sensor
is analogous to human eyes. An imaging system can be viewed as a simulation
and extension of the human vision system and, in many cases, imaging
systems are also called machine vision systems.

The signals from the imaging sensor are analog. The analog imaging
signals are sent to an A/D converter in order to transform them into digital
signals. Then, the digital signals are formed directly into images or are
manipulated with a mathematical transformation to a final image. After that,
images are stored. The process of image transforms and formation is gener-
ally referred to as image processing and is an important aspect for application
development. In general, image processing for machine vision systems
includes the following steps:

1. Load the raw images from the storage.
2. Enhance and segment the images for desired information.
3. Extract textural, morphological, and/or color features of the images.

The extracted features can be used to classify the samples by quality param-
eters. The results can be fed back to adjust the image acquisition for better
performance of the system. This section focuses on image acquisition while
image processing and classification are discussed in the following chapters.

The structure of a generic machine vision system is shown in Figure 2.12.
In machine vision systems, the most common imaging sensor is a digital
camera. The digital camera, in connection to a computer, takes pictures directly
from the food samples with the help of illumination from different light
sources. This imaging sensing method performs visual detection of external
features of the food samples. Recently, there have been more exotic imaging
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Figure 2.12 Structure of generic machine vision system.

PC

methods applied to food quality evaluation and process control. Many of
these imaging methods originate from the medical profession. Dual energy
X-ray (Ergun et al., 1994), ultrasonic B-mode (Christensen, 1988) and elas-
tography (Ophir et al., 1991), NMR and MRI (Magnetic Resonance Imaging)
(Ruan et al., 1991; Zeng et al., 1996), are a few examples.

These imaging methods are especially effective in detection of internal
characteristics within food products. An example is ultrasonic elastography.
This technique was invented for diagnosis of breast cancer (Ophir et al.,
1991) where tumors within soft tissue were difficult to detect with X-ray
images but differences in tissue elasticity yielded better detection with ultra-
sound combined with tissue compression. Elastography was later applied
to the prediction of meat quality attributes (Lozano, 1995; Moore, 1996;
Huang et al., 1997). Imaging methods utilizing different sensors generally
differ only in image acquisition and formation. The algorithms for imaging
processing and classification are basically the same.

2.3.1 Example: Image acquisition for snack food quality evaluation

Sayeed et al. (1995) developed a machine vision system for quantization of
snack quality in order to develop a methodology that was useful in the snack
food industry to evaluate product quality in a nondestructive manner. A
color camera captured images of a snack product. After image processing,
the image texture, size, and shape features were used as input to an artificial
neural network (ANN) model to predict the sensory attributes of the snack
food quality.
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Figure 2.13 Structural diagram of the imaging system for the snack food quality quan-
tization. (Adapted from Sayeed et al., 1995. With permission.)

Figure 2.13 shows a schematic of the image acquisition and processing
system. The samples were imaged using a Quantimet imaging system
(Quantimet 570 Image Processing and Analysis System, Leica Cambridge
Ltd., 1991). The image acquisition system was equipped with a CCD
(charged coupled device) color camera that captured multiple frames (as
many as 32 images per acquisition) of size 512 x 512 pixels. The imaging
system had a lighting setup that could be controlled via software for proper
illumination. Before capturing images, all camera and stage parameters
were set so that all conditions remained the same in subsequent image
acquisitions. An image was captured as follows: 32 frames were digitized
per sample, and these samples were averaged to ensure image quality by
reducing random noise. In this experiment, 50 sample images were acquired
for each cell. For example, one wear/raw material scenario had 16 cells. So,
under such a condition, a total of 800 (16 x 50) images were captured. The
resolution calibration factor for all images was 0.183 mm per pixel. In this
experiment, the cross-sectional images of a typical puffed extruded corn collet
were used.

Such acquired images were used for the extraction of textural and mor-
phological features to classify snack sensory attributes. You will see the
discussions of the topic in the following chapters.
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2.3.2  Example: Ultrasonic B-mode imaging for beef grading

Real-time diagnostic ultrasound is an important technology used by meat
science practitioners for quality prediction. The most successful interpretation
was performed by human interpretation of an ultrasonic image (Brethour,
1990). A study performed by Whittaker et al. (1992) was intended to develop
automated image enhancement and interpretation techniques to remove
human judgment from the process of predicting the percentage of fat in ultra-
sonic images of beef tissues.

If an image is needed for visualization in ultrasonic signal analysis,
B-mode, where B represents “brightness,” is often used. In B-mode, the ampli-
tude of the signal is represented by a gray-level intensity in an image. The
image is a two-dimensional reconstruction of reflecting interface locations.
There are several methods for constructing a B-mode image, but in all cases
the image represents a plane away from the transducer, as opposed to a ray
in the case of A-mode. Real-time imaging also is used often when an image is
needed for visualization. It is similar to B-mode with the exception that it is
updated at the video frame rate. This allows the operator to observe movement
within the target. This B-mode work was designed to enable the technology
to be used to predict intramuscular fat.

The image acquisition-transfer system for the experiment consisted of

1. Anultrasonic diagnostic unit (Aloka Model 633, Corometrics Medical
Systems, Wallingford, CT).

2. A 3.5 MHz linear array transducer (Aloka Model UST-5024N, Coro-
metrics Medical Systems).

3. Apersonal computer (IBM 286 Compatible CompuAdd, CompuAdd,
Austin, TX) for image capture.

4. A color video monitor (Sony Model PVM-1341 Trinitron Color Mon-
itor, Sony, Park Ridge, NJ).

5. Animage processor (Targa-16 Image Processor, Truevision, Indianap-
olis, IN).

6. A personal computer-network file server (PC-NFS) software package
(PC-NFS, Sun Microsystems, Billerica, MA).

7. A communication board (3C503 Etherlink II, 3Com, Santa Clara, CA).

The image processing system consisted of a color workstation (Sun 3/60, Sun
Microsystems) and a software package (HIPSPLUS, SharpImage Software,
NY) for image processing. The HIPSPLUS software package included HIPS,
HIPSADDON, and SUNANIM modules.

The experimental process for this study was categorized into the follow-
ing phases.

1. Signal prescanning.

2. Signal scanning.
3. Image acquisition.
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Live cattle were scanned in squeeze chutes and the slaughtered animals were
scanned on the abattoir floor while hanging from the rail by both hind legs.
In the scanning phase, a 3.5 MHz linear array transducer was applied to the
scanning area between the 12th and 13th rib cross-section. Signal gain was
kept constant for all animals. In the acquisition phase, five cross-sectional
images of each test animal’s longissimus muscle were captured at the same
location. These images were saved on data cartridge tapes for later image
processing and data analysis.

2.3.3  Example: Elastographic imaging for meat quality evaluation

Elastography is a method for quantitative imaging of strain and elastic
modulus distribution in soft tissues. It is based on time shift estimation
between ultrasonic A-line pairs, which are signal lines for the ultrasonic
A-mode, at different compressions (Ophir et al., 1991). This approach was
proposed for use in evaluating meat muscles (Ophir et al., 1994; Lozano,
1995; Moore, 1996; Huang et al., 1997). Images generated by elastography,
called elastograms, were correlated with sensory, chemical, and mechanical
attributes of the same meat samples to analyze the relationship between
meat tissue profiles and meat quality attributes (Lozano, 1995; Moore, 1996;
Huang et al., 1997, 1998). This section presents data acquisition and image
formation of elastography. The following chapters discuss image processing,
modeling, and prediction of meat attributes based on elastographic imaging.

Elastography was originally developed in the medical field for cancer
diagnosis (Ophir et al., 1991; Cespedes et al., 1993). It is a technique for
making quantitative cross-sectional images of tissue elasticity. Elastography
uses ultrasonic pulses to track the internal displacements of small tissue
elements in response to an externally applied stress. These displacements
are converted into local strain values along the axis of compression by
comparing pre- and postcompression signals from within the tissue. The
strain values may be converted into calibrated Young’s modulus values
with the additional knowledge of the applied stress and its distribution
along the compression axis. The resultant image is called an elastogram.
For practical reasons, elastograms actually display the inverse Young's
modulus values, such that lighter regions in the image correspond to the
softer, less elastic structures. Figure 2.14 shows an elastogram of beef sample
in the LD muscle, in which the compression direction was from top to
bottom.

Elastograms have several interesting properties over sonograms (Ophir
et al., 1994) which make elastography a suitable method for the evaluation of
bovine muscle structure and composition. Elastography combines ultrasonic
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Figure 2.14 An elastogram of beef sample in LD muscle. (From Huang et al., 1997.
With permission.)

technology with compression tests resulting in images (elastograms) that
carry structural and textural information.

In order to illustrate the principle, consider a simple one-dimensional
cascaded spring system where the spring constants represent the elastic
moduli of tissue regions and each spring represents the behavior of a cylin-
drical tissue element with a unit cross section. The total strain will be dis-
tributed such that the stress is equal within each spring. For example, if three
springs are assumed to have the same modulus, then an axial downward
force compresses each spring in the same deformation, one-third of the total
deformation. In another situation, if the two outer springs are assumed to
have the same modulus and the middle spring a larger modulus, then a
force will deform that the outer springs will be the same, but the middle
spring will deform less. The strain profile is dependent on the initial com-
pression and on the number and stiffness of all springs. A given local mea-
sured value of the strain is influenced by the elastic properties of elements
located elsewhere along the axis of compression. For these reasons, it appears
that while strain profiling could be useful for imaging, it may be of limited
use for quantitative estimation of local tissue elasticity.

It might become possible to estimate the elastic modulus of each com-
ponent in this system of springs through applying a known stress instead
of imparting a known displacement because the stress remains constant with
depth in this one-dimensional system. Thus, the measurable strain in each
spring and the known stress on each spring could be used to construct an
elastic modulus profile along the compression axis. Such a profile would be
independent of the initial compression and the interdependence among the
component springs would disappear.

In the more realistic three-dimensional cases, however, the applied stress
would not be constant along the axis of the compressor. The reason for this
lies in the fact that stresses along the transverse direction become important
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and because their vertical force components are a function of the displacement
which, in turn, is a function of the depth and the resultant forces along the
compression axis vary with depth. It seems intuitive that by enlarging the
area of compression, the transverse springs that are actually stretched and
contribute to the depth dependent stress field would become less important.
Thus, the applied stress field would be more uniform. Indeed, the theoretical
solution to the three-dimensional problem demonstrates this effect. Experi-
ments have also confirmed that a larger area of compression results in a
more uniform axial stress field (Ponnekanti et al., 1992).

When tissue is compressed by a quasi-static stress, all points in the tissue
experience a resulting level of three-dimensional strain. Although tissue exhib-
its viscoelastic properties, only the elastic properties are observed. Generally,
a rapid compression is applied and the slow viscous properties are ignored.
In elastography, a static stress is applied from one direction and the estima-
tion of strain along the ultrasound beam (longitudinal strain) in small tissue
elements is measured. If one or more of the tissue elements has a different
hardness than the others, the level of strain in that element will be higher
or lower. Thus a harder tissue element will experience less strain than a
softer one.

The longitudinal component of the strain is estimated from the displace-
ment determined by a time shift measurement assuming a constant speed
of sound. This is accomplished by

1. Acquiring a set of digitized ultrasonic A-lines from a region of interest
in the tissue.

2. Compressing the tissue (usually using the ultrasonic transducer)
along the ultrasonic radiation axis.

3. Acquiring a second postcompression set of A-lines from the same
region of interest in the tissue.

4. Performing cross-correlation estimates of time shifts.

Congruent A-lines are windowed into temporal segments, and the corre-
sponding time shifts of the segments are measured using correlation analysis.
Accurate estimates of the time shift were obtained using the correlation
coefficient function in combination with quadratic peak interpolation. The
change in arrival time of the echoes in the segment before and after com-
pression thus can be estimated. The local longitudinal strain at the depth
given by the product i x (AT X ¢ x 2), is calculated as

At(i) - At(i—1)

s(i) = T @2.1)

where c is the speed of sound in the elastic medium, At(i) is the time shift
between segments in the indexed segment pair, and AT is the space between
segments. The window is translated along the temporal axis of the A-line,
and the calculation is repeated for all depths.
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In general, the precision of the time shift estimate improves with increas-
ing segment size. However, in order to improve the axial resolution of the
estimate a small segment size is preferred. Because the relative compression
and cross-correlation estimate deteriorates with increasing segment size, this
degrades the precision of the estimate. Thus, there are two competing mech-
anisms that affect the precision of the time shift estimate as a function of the
segment size.

As noted previously, strain is a relative measure of elasticity because it
depends on the magnitude of the applied compression as well as on the
elastic composition of the material. Ultimately, it may be useful to obtain an
absolute measure of the local elasticity in the tissue. For three-dimensional
tissue elements, the parameters of interest are the elastic modulus in three
directions and shear modulus. The elastic modulus E; is defined as

Q

E; = -2 (2.2)

1
ij

2]

where s; and o are the strains and stresses in three directions, respectively.
In a uniform isotropic medium under uniaxial stress, the elastic modulus or
Young’s modulus is simplified as

E = (2.3)

®wlq

where o and s are the strain and stress along the compression direction,
respectively. Therefore, one can think of elastograms as basically strain
images. The strain estimates can be normalized by the estimated local stress
to obtain calibrated elastograms. When the tissue is assumed to be uniform
and isotropic, and uniaxial longitudinal stress is applied, the calibrated elas-
tograms are images of the inverse elastic modulus.

The internal stress is defined by the boundary conditions and by the
structure of the tissue. Therefore, a priori estimation of the exact stress field
is impossible because it is target dependent. However, the theoretical esti-
mates of the stress distribution owing to the external boundary conditions
can be obtained (Ponnekanti et al., 1992). In practice, when the compression
is applied with a compressor that is large compared to the dimension of the
tissue volume under examination, the stress in the tissue is approximately
uniform and uniaxial with a slight magnitude decay with depth. Previous
experiments showed that if the width and the depth of the region of interest
are close to the dimensions of the compressor, the stress variations owing to
external boundary conditions are minimal (Cespedes and Ophir, 1991).
Figure 2.15 shows the functional diagram of the formation of elastograms.

Data acquisition of elastography is performed to capture the arrays of
ultrasonic A-lines. Each of the arrays of A-lines represents a quantitative
cross-sectional image of tissue elasticity. A standard biomedical ultrasonic
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Figure 2.15 Functional diagram of the formation of elastograms.

scanner with a 5 MHz ultrasonic probe is typically used in elastography. The
probe is a linear array of ultrasonic transducers where the total number of
transducers is 236. Each transducer contributes one A-line and all of the
transducers together provide two-dimensional information.

Cespedes et al. (1993) reported a clinical setup of the elastography system.
The elastography system consisted of a Diasonic Spectra II ultrasound scan-
ner (Diasonics Inc., Milpitas, CA) equipped with a 5 MHz linear array, a
Lecroy 8 bit digitizer (Lecroy Corp., Spring Valley, NY) operating at 50 MHz,
a motion control system, a compression device, and a personal computer
that controlled the operation of the system. The compression device con-
sisted of a CGR-600 X-ray mammography paddle (GE/CGR, Milwaukee, WI)
that was modified to accommodate a transducer holder and a positioning
device. Chen (1996) reported a laboratory setup of the elastography system
for meat inspection. This system was used to scan a cattle carcass and obtain
elastograms of the bovine muscle tissue. The system setup consisted of a
mechanical system and an electronic system. The mechanical system
included a pneumatic system and a motor and was used to hold the carcass
in position and move the transducer probe to make sufficient contact between
the probe and the carcass. Figure 2.16 gives a general description of the
mechanical system. The pneumatic system provided an up-down motion
(location A in Figure 2.16) and an in—out motion (location B in Figure 2.16).
The motor carrying the ultrasonic probe was on B and controlled by the
motor controller (C). An arm (D) was moved simultaneously with the probe
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Note: 1. The arrows show the direction of the motion.

2. The moving parts are named --A, for up/down carriage (pneumatic)

--B, for left/right carriage (pneumatic)
--C, for the probe carriage (motor)
--D, for the carcass front support (static)
--E, for the carcass rear

holder (pneumaitc)

Figure 2.16 Mechanical part of elastographic meat inspection system. (From Chen,
1996. With permission.)

(both are on carriage B) along with the holder (E). The holder had an artic-
ulation that was swung on the rear side of the carcass that was now between
the arm D and the articulation E. Moving the articulation back immobilized
the carcass between D and E. The probe could be moved by the motor over
a range of +75 mm. It could also rotate on its axis so that it could be moved
between adjacent ribs to make contact with the meat. The electronic system
included a Hitachi ultrasonic scanner, an interface board, a timing control
board, a digitizer, a motor control, and a personal computer.

Figure 2.17 gives a general description of the electronic system. A-line
radio frequency (RF) signals and the synchronizing control signals were
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Figure 2.17. Electronic part of elastographic meat inspection system. (From Chen,
1996. With permission.)

obtained from the Hitachi ultrasonic scanner. The signals could be shown
by the scanner as a B-scan. The signals were then fed to the interface
board. The timing board controlled the data acquisition and the digitizer
performed the A/D conversion and temporarily stored the data that was
processed by the computer and stored as a file in the hard disk. The digitizer
had a sampling frequency of 50 MHz and 8 Mb memory. The signal fre-
quency was around 5 MHz, so the sampling frequency was well above the
Nyquist rate. The PC was a Pentium 60 Gateway 200 PC (Gateway 2000,
Inc.) and the whole system was put into a movable electronic cabinet for
easy use.
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chapter three

Data analysis

Analysis of acquired data is an important step in the process of food quality
quantization. Data analysis can help explain the process it concerns. Also, the
analysis is beneficial for determining whether the available data is usable to
extract the information to fulfill the goals in problem solving. In general, there
are two kinds of data analysis. One is the analysis for static relationships,
called static analysis. For example, in food quality classification and predic-
tion, the functions between input and output variables are usually static. That
is to say, such input and output relationships may not vary with time. The
other kind of data analysis, dynamic analysis, seeks dynamic relationships
within the process. This second kind is usually needed for food quality process
control because in food process modeling and control, the relationships that
are mainly dealt with are dynamic. This means that these relationships change
with time. In this chapter, these two kinds of data analysis, static and dynamic,
will be discussed with practical examples in food engineering.

Images are an important data type in food engineering applications.
Image analysis is conducted through image processing. In this chapter, image
processing will be discussed for the purpose of image analysis. Through
image processing, image pixel values are converted into numerical data as
the input parameters to modeling systems.

3.1 Data preprocessing

Before data analysis, data preprocessing is necessary to remove “noise” from
the data to let analysis and modeling tools work on “clean” data covering
similar ranges.

In general, data preprocessing involves scaling all input and output data
from a process to a certain range and the reduction of dimensionality. Many
tools of analysis and modeling work better with data within similar ranges,
so it is generally useful to scale raw input and output data to a common
mean and range. The scaling methods are usually used to scale the input
and output data to a mean of zero and a standard deviation of one or to a
mean of zero with a range of plus or minus one.
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Assume process input and output observations are u; and y,, then the
data with zero mean and one standard deviation are

~ Up—1U
U = kS
o=t k=1,,N) (3.1)

y

where # and j are the means of raw input and output data, respectively;
s, and s, are the standard deviations of raw input and output data, respec-
tively; k is a data sample sequential number; and N is the sample size or the
number of samples.

In data preprocessing, a good example is that, for artificial neural net-
work modeling (discussed further in later chapters), all input and output
data should be scaled to the range of the processing units of the networks.
The most popular transfer function of the network processing units is the
sigmoidal function

1
1+e”

S(x) =

where x is the input of one of the processing units in the network. The range
of the function is [0, 1]. So, the input and output data are often scaled as
follows to fall into the range

~ _ u(k) — Umin
u(k) B Umax = Umin
~ y(k) _ymin
(k) = Y228~ Ymin (3.2)
y ymax _ymin

where u,,,,, and u,, are the maximum and minimum values of the raw input
data, respectively, and ., and v, are the maximum and minimum values
of the raw output data, respectively. This scaling method scales the data into
the range of [0, 1]. If any other ranges are required, only simple arithmetic is
needed on the scaled data #(k) and (k). For example, if a range of [-1, 1]
is required, then 2ii(k) — 1 and 2j/(k) — 1 produce the data in this range that
can actually be used to construct a different nonlinear transfer function of
processing units of the networks

For dynamic systems, input and output data often contain constant or
low frequency components. No model identification methods can remove
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the negative impact of these components on the modeling accuracy. Also in
many cases, high frequency components in the data may not be beneficial
for model identification. In general data analysis and modeling of dynamic
systems, the input and output data need to be preprocessed to zero mean
to eliminate high frequency components. This may significantly improve the
accuracy of model identification.

For many years, transform theory has played an important role in data
preprocessing and analysis. There are various types of transforms, but our
emphasis is on the methods of Fourier and wavelet transforms because of
their wide range applications in data preprocessing and analysis problems.

Fourier transform is a classic tool in signal processing and analysis.
Given a signal f(x), the one-dimensional discrete Fourier transform of it can
be computed by

F(k) =

Z|=

= 2 7ki/N

Y faiye = (3.3)
i=0

fork=1,2,.., N-land j = J-1.The signal f(x) can be reconstructed by

f(x) = Nj‘jp(i)e‘ﬂ”w (3.4)

i=0

forx=1,2,..., N-1.
If Fourier transform is expressed as follows

S(f(x)) = F(k)
then,

—j2mkxy/N

S(f(x-xy)) = F(k)e (35)

This is the translation property of the Fourier transform. In spectral
analysis, the magnitude of the Fourier transform of f(x) is displayed as

IS(fC)I = [F(k)| (3.6)

Note from Eq. (3.5) that a shift in the signal f(x) does not affect the
magnitude of its Fourier transform

—jZEkXO/N‘

F(k)e = |F(k)
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Figure 3.1 Spectrum power curve for ultrasonic transducer. (Adapted from Park,
1991. With permission.)

In food quality inspection, frequency analysis techniques are useful to
reveal characteristics of materials. Frequency analysis is based on discrete
Fourier transformation of signal data from experiments, such as ultrasonic
A-mode experiments. Then, spectral analysis will indicate which frequen-
cies are most significant. Let us study a little bit more detail about frequency
analysis for ultrasonic A-mode experiments. Figure 3.1 shows an ideal
spectrum curve for a homogeneous ultrasonic signal. This curve is in a
Gaussian, or normal, shape. The spectrum is symmetric about the peak
frequency, f,; thus, there is no skewness. The frequency half-power points,
f, and f,, in this case occur equidistant to either side of the peak. The central
frequency can be calculated as

fe= %(fu"‘fb) (3.7)

For a symmetric spectrum, f,, peak-power (resonant) frequency is equal to f,
the central frequency. The percentage bandwidth, B', expresses the broadness
of the curve as

B" = f"—f_cffxmo (3.8)

The skewness, f,;, can be represented as

_ P_fﬂ
fsk - fb_fp (39)
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Local maxima is another parameter which is useful in spectral analysis.
It describes the multiple peaks of the Fourier spectrum from an ultrasonic
signal.

Wavelet transform presents a breakthrough in signal processing and
analysis. In comparison to the Fourier transform, wavelet basis functions are
local both in frequency and time while Fourier basis functions are local only
in frequency. Wavelets are “small” waves that should integrate to zero
around the x axis. They localize functions well, and a “mother” wavelet can
be translated and dilated into a series of wavelet basis functions. The basic
idea of wavelets can be traced back to very early in the century. However,
the development of the construction of compactly supported orthonormal
wavelets (Daubechies, 1988) and the wavelet-based multiresolution analysis
(Mallat, 1989) have resulted in extensive research and applications of wave-
lets in recent years.

In practice, the wavelet analysis can be used to transform the raw signals,
process the transformed signals, and transform the processed results
inversely to get the processed, reconstructed signals. Given a signal f(x), a
scaling function ®(x), and a wavelet function ¥(x), the one-dimensional
discrete orthogonal wavelet transform of f(x) along the dyadic scales can be
computed by Mallat’s recursive algorithm

F (k) = Y (i - 2k) f (i) (3.10)

d™ (k) = Z g(i—2k) f™ V(i) (3.11)

where f"™(k) is the smoothed signal of f(x) at the resolution m and the
sampling point k, d" (k) is the detail signal of f(x) at the resolution 7 and
sampling point k, k(i) is the impulse response of a unique low-pass FIR (finite
impulse response) filter associated with ®(x) at the sampling point k, g(i)
and is the impulse response of a unique FIR filter associated with ®(x) and
¥ (x) at the sampling point k.

This computation is a convolution process followed by j/2 subsampling
at one-half rate. Here j=N,N-1,...,1and N = 2M where M is the highest
level of the resolution of the signal, is the number of signal samplings. In
the preceding equations, f is the smoothed signal at scale 2" while d"
is the detail signal that is present in f" but lost in ™" at scale 2"*'.

An image is a two-dimensional data array. The concepts and methods
described previously are all extendable to the two-dimensional case. Espe-
cially, we will see such an extension of wavelet transform to two dimensions
in Section 3.3.2. These two-dimensional tools are very useful in image pro-
cessing and analysis.

Image preprocessing is important for human perception and subsequent
analysis. A poorly preprocessed image will be less understood by a human
or computer analyzer. It is critical to remove the noises, adhere to the image,
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and enhance the region that we are concerned with in order to ensure the
performance of an imaging system.

Images are subject to various types of noises. These noises may degrade
the quality of an image and, hence, this image may not provide enough
information. In order to improve the quality of an image, operations need to
be performed on it to remove or decrease degradations suffered by the image
in its acquisition, storage, or display. Through such preprocessing, the appear-
ance of the image should be improved for human perception or subsequent
analysis.

Image enhancement techniques are important in image preprocessing.
The purpose of image enhancement is to process an image to create a more
suitable one than the original for a specific application. Gonzalez and Woods
(1992) explained that the word specific is important because it establishes at
the outset that the enhancement techniques are very much problem-oriented.
Thus, for example, a method that is quite useful for enhancing x-ray images
may not necessarily be the best approach for enhancing pictures of apples
taken by a digital camera.

Image enhancement techniques can be divided into two categories: spa-
tial domain methods and frequency domain methods. Spatial domain refers
to the image plane itself. Approaches in this category are based on direct
manipulation of pixels in an image which includes point processing and
spatial filtering (smoothing filtering and sharpening filtering) (Gonzalez and
Woods, 1992). Frequency domain processing techniques are based on mod-
ifying the Fourier transform of an image which involves the design of low-
pass, highpass, and homomorphic filters (Gonzalez and Woods, 1992).

3.2 Data analysis

Data analysis is necessary before model building and controller design. Data
analysis captures the relationships between inputs and outputs. The analysis
is basically performed by the methods of correlation analysis in classical
statistics. The correlation analysis is a tool to show qualitatively the connec-
tion between inputs and outputs. It is used to determine the degree of
connection between variables but does not account for the causality. The
outcome of data analysis strongly assists accurate process modeling and
effective process control. Next, static and dynamic data analysis will be
discussed based on correlation analysis.

3.2.1 Static data analysis

Static data analysis is based on the cross-correlation analysis between vari-
ables. The cross-correlation function is used to detect the relationships
between different variables at the same time instant. For example, in food
quality quantization, the cross correlation between input variables, such as
features of electronic measurement data on food samples, and output vari-
ables, such as food sensory attributes, is needed.
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The correlation between variables can be simple or multiple. The simple
correlation refers to the connection between two variables while the multiple
correlation refers to the connection between three or more variables. The
simple correlation is the basis of correlation theory. It will be explained in
this section. The multiple correlation is closely related to multivariate regres-
sion. It can be extended based on simple correlation. Interested readers can
refer to books on this topic.

Scatter plot is a basic graphic tool for correlation analysis. It plots one
variable vs. the other in a two-dimensional co-ordinate system. The correla-
tion between two variables can be positive, negative, or uncorrelated. If two
variables change in the same direction, that is, they increase and decrease
together, they are said to be positively correlated. If two variables change in
the opposite direction, that is, when x increases, y decreases, or when x
decreases, y increases, they are said to be negatively correlated. If two vari-
ables have no connection in change at all, they are said to be uncorrelated
or zero correlated. In addition, the correlation can be linear or nonlinear.
Linear correlation means that all data points in the scatter plot gather around
a straight line. Nonlinear correlation means that all data points in the scatter
plot form around a curve. Figure 3.2 shows the positive correlation in linear
and nonlinear cases. Figure 3.3 shows the negative correlation in linear and
nonlinear cases. Figure 3.4 shows the situation at which data points scatter
in the whole x-y plane without a function pattern.

Through the preceding description, the type and strength of correlation
between two variables can be understood by direct observation of the scatter
plot. If data points are closely around a straight line or a curve, they are
strongly correlated. If data points scatter from a straight line or a curve, they
are weakly correlated or even uncorrelated. However, a scatter plot only gives
a rough profile of the correlation between two variables. For precise measure-
ment of the correlation between two variables, a statistic of correlation coeffi-
cient is used. Conventionally, the symbol p is used to represent the correlation
coefficient of the population of x and y, written as p,, while the symbol r is
used to represent the estimated sample correlation coefficient, written as r,,,.
The equation for calculation of a sample correlation coefficient is as follows:

N
Z(Xi -0)Yi-¥y)
= L (3.12)

Ty N N
JZ(xi—x)z J2<yi—y)2
i=1 i

i-1

where N is the number of samples. In practice, the correlation coefficient of
the population is unknown while the sample correlation coefficient can
always be calculated to estimate the population correlation coefficient. Eq. (3.12)
is widely used in practical data analysis. The following examples present
the use of the correlation coefficient r,, for static data analysis in the process
of food quality quantization.
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Figure 3.2 Scatter plots of (a) linear and (b) nonlinear positively correlated relationships.

3.2.1.1 Example: Ultrasonic A-mode signal analysis for beef grading
One of the primary factors in determining beef grades is the amount of
intramuscular fat or marbling. Table 3.1 shows the parameters used by
human graders in determining marbling levels involves visual inspection of
a cross-sectional area of the ribeye steak. In the study, the specimens were
selected ranging from practically devoid to abundant marbling score as
assigned by human graders. The fat concentration of these specimens by
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Figure 3.3 Scatter plots of (a) linear and (b) nonlinear negatively correlated relationships.

biochemical analysis (ether extraction) was different. Actually, the cross-
correlation coefficient between the visual marbling score and fat concentra-
tion was 0.7.

At the initial stage to quantify the beef grade, Park (1991) performed
correlation analysis between the ultrasonic signals and the marbling levels
designed by human graders. The ultrasonic speed and attenuation were
measured with the ultrasonic analyzer. The ultrasonic longitudinal speed

© 2001 by CRC Press LLC



Table 3.1 Mean Ether Extractable Fat of Beef Longissimus Steaks
Stratified According to Marbling Level*

Fat( 0/0)
Marbling Level Marbling Score =~ Mean  Std. Dev.
Moderately abundant 800-899 10.42 2.16
Slightly abundant 700-799 8.56 1.60
Moderate 600-699 7.34 1.50
Modest 500-599 5.97 1.15
Small 400-499 4.99 1.10
Slight 300-399 3.43 0.89
Traces 200-299 2.48 0.59
Practically devoid 100-199 1.77 1.12
* Adapted from Park (1991). With permission.
S 3

Figure 3.4 Scatter plot of noncorrelated data.

showed a gradual decrease with the increase of the fat concentration in the
beef samples. Figure 3.5 shows that the fat concentration and the ultrasonic
longitudinal speed were negatively correlated. The value of the correlation
was —0.82, which was significantly higher than —0.72, the one between the
visual marbling score and longitudinal speed.

Ultrasonic attenuation gradually increased as fat concentration increased,
that is, they were positively correlated with each other. The cross-correlation
coefficients between them increased at 0.24, 0.36, and 0.47 when the probe
frequencies were 1 MHz, 2.25 MHz, and 5 HMz, respectively. This indicated
that the attenuation was more sensitive at higher frequencies than at lower
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Figure 3.5 Fat concentration and ultrasonic longitudinal speed relationship. (From
Park, 1991. With permission.)
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Figure 3.6 Fat concentration and moisture content relationship. (From Park, 1991.
With permission.)

probe frequencies. The main reason for the low correlation coefficients was
that the measurement of the attenuated signal was not precise enough.

Figure 3.6 shows that the fat concentration of the beef samples mono-
tonically decreased as the moisture content of the samples increased. The
cross-correlation coefficient between them was —0.92.
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Figure 3.7 Moisture content and ultrasonic longitudinal speed relationship. (From
Park, 1991. With permission.)

The ultrasonic speed and attenuation coefficients were correlated with
the moisture content (% wet weight basis) in the beef samples. As shown in
Figure 3.7, the ultrasonic longitudinal speed monotonically increased as the
moisture content increased with the cross-correlation coefficient of 0.74. The
attenuation coefficient appeared to remain the same or decrease as the mois-
ture content of beef samples increased, but no significant trends appeared
for the attenuation coefficient to be correlated with the moisture content.

The preceding correlation analysis indicated initially that ultrasonic lon-
gitudinal speed could be an important factor for the estimation of the intra-
muscular fat in the time domain.

With frequency analysis, it is possible to provide sufficient information
about marbling. In frequency analysis experiments, broadband, highly damped
probes send a wide range of frequencies into the sample. Spectral analysis
then indicates which frequencies are most affected by the amount of mar-
bling found in the longissimus muscle area. Following the Fourier transform
of a RF signal, seven parameters in the frequency domain can be recorded
as shown in Table 3.2 which were described earlier in Section 3.1.

Frequency analysis results should designate a particular central fre-
quency that experiences the most significant spectrum change between dif-
ferent marbled meat samples. With a probe having this central frequency, a
sample with lower marbling should be indicated by a large increase in the
echo height compared with a sample with higher marbling. With this antic-
ipated result, changes in echo amplitude (attenuation) may be more useful
as the indicating parameter for detecting intramuscular fat (marbling) in the
longissimus muscle area.
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Table 3.2 Ultrasonic Parameters in the Frequency Domain*

Parameter Description

fa Frequency at lower one-half power point in
the power spectrum

f Frequency at higher one-half power point in
the power spectrum

fo Peak pulse frequency of the power spectrum

1. Central pulse frequency of the power
spectrum

B* Bandwidth

fa Skewness of the power spectrum

Lm Number of local maxima

* Adapted from Park (1991). With permission.

Table 3.3 Pearson Correlation Coefficients between Fat Concentration
and Parameters in the Frequency Domain'

Fat Concentration

Probe Longitudinal (MHz) Shear (MHz)
Parameter 1 2.25 5 1 2.25 5
N

(number of

samples) 60 97 60 61 96 60
fa 0.44 -0.15 0.12 0.13 0.01 0.39
fo 0.22 -0.25 0.04 0.12 -0.02 0.13
1o 0.43 -0.20 0.08 0.06 0.02 0.27
1. 0.36 -0.20 -0.08 -0.36 —-0.01 0.29
B* -0.45* -0.10 -0.35 0.34 -0.05 -0.36
S 0.07 -0.07 -0.06 0.13 0.24 -0.11
Lm -0.10 0.59* 0.68* 0.68* 0.89** 0.76*

* Significant parameters within same probe.
** The most significant parameter between different probes.
¥ Adapted from Park (1991). With permission.

Park (1991) initially investigated the seven parameters of the Fourier
spectra to determine which ones are more affected by marbling score through
cross-correlation coefficients. The number of local maxima was the most
correlated parameter with fat concentration for each ultrasonic probe except
the 1 MHz longitudinal probe. In that case, the bandwidth was more corre-
lated than other parameters as shown in Table 3.3.

Among the different probes, the parameter values for the shear probes were
more highly correlated than those for the longitudinal probes. For example, the
correlation coefficient between number of local maxima and fat concentration
for longitudinal probes were 0.59 in 2.25 MHz and 0.68 in 5 MHz; whereas, those
values for shear probes were 0.89 in 2.25 MHz and 0.76 in 5 MHz, respectively.
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Table 3.4 Pearson Correlation Coefficients between Moisture
Content and Parameters in the Frequency Domain'

Moisture Content

Probe Longitudinal (MHz)
Parameter 1 2.25 5
N

(number of

samples) 60 97 60
fa -0.41 0.24 -0.10
fo —-0.04 0.28 -0.01
fo —0.38 0.25 -0.07
1. -0.25 0.26 —0.06
B* 0.56* —0.08 0.31
S -0.26 —-0.03 0.01
Lm 0.06 -0.36* —0.72**

* Significant parameters within same probe.
** The most significant parameter between different probes.
¥ Adapted from Park (1991). With permission.

This result shows that the ultrasonic shear probe is more sensitive to intramus-
cular fat concentration than the longitudinal probe. As a result of parameter
analysis, the number of local maxima in the 2.25 MHz shear probe was the most
significant parameter for predicting intramuscular fat concentration. The corre-
lation coefficient between fat concentration and the number of local maxima
was 0.89 in the 2.25 MHz shear probe.

Also, the number of local maxima was the most correlated parameter
with moisture content for each ultrasonic probe except the 1 MHz longitu-
dinal probe, in which the correlation of bandwidth was higher than any
other parameter. As shown in Table 3.4, the correlation coefficient between
the number of local maxima and the moisture content for longitudinal probes
were —0.36 in 2.25 MHz and —0.72 in 5 MHz. This result shows that the
ultrasonic longitudinal probe also is sensitive to moisture content. As a result
of the parameter analysis, the number of local maxima in the 5 MHz longi-
tudinal probe was the most significant parameter for predicting moisture
content, of which the correlation coefficient between moisture content and
the number of local maxima was —0.72.

According to experimental results, increasing intramuscular fat con-
centration corresponds to an increase of the number of local maxima, and
increasing moisture content corresponds to a decrease of the number of
local maxima. In this study, the number of local maxima was counted
manually from the Fourier spectra of the ultrasonic signal. Figure 3.8 shows
an example of typical discontinuity in the frequency spectra, from which
the number of local maxima in a practically devoid marbling meat sample
was three.
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Figure 3.8 Fourier spectrum of 1.111 percent fat (practically devoid) with a 2.25 MHz
shear probe. (From Park, 1991. With permission.)

3.2.1.2 Example: Electronic nose data analysis for detection
of peanut off-flavors

Temperature and humidity cause certain effects to the performance in elec-
tronic nose applications. Temperature variation during testing results in two
compounding errors. Temperature affects the partition coefficient between
the gaseous phase and the absorbed phase for each volatile molecule. This
alters the amount of the molecule absorbed to the sensor and, thus, the sensor
response. Additionally, many gas sensors used in electronic noses are resis-
tive devices whose resistance is a function of temperature as well as absorbed
molecules. Temperature effects from self-heating in signal conditioning cir-
cuits must also be taken into account.

Like temperature, humidity creates two potentially confounding effects
in electronic nose applications. First, semiconducting polymer sensors are very
reactive to humidity, and small changes in water vapor can overshadow them.
Figure 3.9 shows the response of a commercial electronic nose (Neotronics,
Flowery Branch, GA) to water vapor pressure for a series of ground peanut
samples. The samples were at the same moisture content, and vapor pressure
effects were thought to be caused by absorption kinetics by the sensors.
Although only 1 of the 12 sensors is shown, all sensors in the instrument had
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Figure 3.9 Response of a single sensor in the Neotronics electronic nose to vapor
pressure for ground peanut samples. (From Lacey and Osborn, 1998. With permission.)

a similar response. The dependence on vapor pressure masked any variability
from the sample treatments.

The AromaScan electronic nose was set up for the experiments to deter-
mine if significant differences could be detected between peanuts cured at
high temperatures containing off-flavors and peanuts cured at low tempera-
tures not containing off-flavors (Osborn et al., in press). For the experiments,
sensor readings were averaged over a time period of 5 s. This procedure
produced a total of 60 data points (300 s test length/5 s each data point) for
each sensor. Data was collected in this manner in an attempt to determine
the best sample time for separating the two curing treatments. There was also
some indication that the sensor readings would not stabilize during the test
so the kinetics behavior of the sensor output was needed. Figure 3.10 shows
a sample of the data collected from a single sensor on the low temperature
cured ground kernels for all 10 test replications. The data shown in Figure 3.11
is the data from the same sensor for the high temperature cured ground
kernels. Note that the low temperature readings appear to be generally con-
stant over time, while the high temperature readings appear to increase as the
test progresses. Also note the 10 replications have differences in the “offset”
value, but the slope appears to be consistent between replications. All sensors
and tests are not shown owing to space limitations for this book. The two
figures shown are representative of the trends found on most tests.

Sample means were compared using a t test between each sensor at each
time for each level of sample destruction (whole pod, whole kernel, half
kernel, and ground kernel). For example, data from sensor 11 for the low
temperature cured ground kernels was compared to the sensor 11 data from
the high temperature ground kernel test at each time step (0 through 300 s).
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Figure 3.10 Raw AromaScan data from sensor 11, ground kernels, low temperature
curing treatment for 10 replications. (From Osborn et al., in press. With permission.)

1
cece
evee®® ‘e o
08 e cevee
.....
eoce® sppaatetites
06 ST tn,nﬁ‘“
X + —==
.oe . nt**“““ g T X ¢ Rep 1
o oo U o .sscEm"" 8
S . . uA;i‘i#“* ---;';--":;;Qxxzszsé&"ﬁﬁ‘-’ﬁ“ = Rep2
M A T m e R X X5 5% 50 -
5 o¢AA¢¢$:¢+§*t___-;;!..!;!ggggggééé‘)‘)??é_?---""" - 4 Rep3
$iattic - gm XX AL -
i oz Xx!xx<><><>°°?.--' ese6C6g 5 - * Rep 4
. wgw QL LXX g -
) 5559 . JURRITL LA * Rep5
---T .
o £ cessssese? ® Rep6
o ok} R aaa
= - .,“.0° + Rep7
AxXXXXXXXKXXXKX g " Rep8
02 T S £ haam -
xR KR RFEIIIE Rep 9
xx
,x**"* © Rep 10
04 Xxxxxxxxx*¥
06
0 50 100 150 200 250 300
Time (s)

Figure 3.11 Raw AromaScan data from sensor 11, ground kernels, high temperature
curing treatment for 10 replications. (From Osborn et al., in press. With permission.)

Raw value of the change in sensor resistance per initial sensor resistance
(AR/R) x 100 was compared without any further data processing. For each
t test (sample size 10, degree of freedom 9) equal variances between samples
were assumed. Typical results for the ¢ test are shown in Figure 3.12 for the
sensors 8 through 15 for ground kernels. Note, the peak ¢ value is attained
at the end of the test. If a significance level of 0.05 is assumed, the t value
for a 2 tailed t test must exceed 2.101 in order for the means of the sensor
readings at each time step to be considered significantly different. Note in
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Table 3.5 Test Results for All Data Collected’

Whole Whole Half Ground
Pods Kernels Kernels Kernels
No. of sensors significant (o = 0.05)  0/32 0/32 3/32 26/32
Highest t value (any sensor) 1.21 0.651 2.66 6.68
Time at peak ¢ (s) (any sensor) 135 235 230 305

" Adapted from Osborn et al. (1998). With permission.
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Figure 3.12 Raw AromaScan data t-test comparing sensors, ground kernels, and sen-
sors 8 through 15. (From Osborn et al., in press. With permission.)

Figure 3.12 that six sensors are significantly different between curing
treatments, and two are not significantly different. Table 3.5 summarizes
the ¢ test results for all the data collected.

In summary, ¢ tests conducted on each sensor showed 26 sensors with
significant differences between curing treatments for ground kernels. Only
three sensors showed significant differences for whole kernels. The half
kernels and whole pod tests were not significantly different between high
and low temperature curing.

3.2.2  Dynamic data analysis

Dynamic data analysis is based on the autocorrelation analysis of the same
variable and the cross-correlation analysis between different variables at
different time instants and lags. The autocorrelation is used to detect the
relationships in a variable itself at different time lags. For example, in modeling
for food quality process control, autocorrelation analysis of the controlled
variables, such as product quality indicating variables in color and moisture
content, is needed to find out the most significant relationship of variables
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between current instant ¢ and some previous instant t — f, to determine the
order of the model.

In dynamic data analysis, the autocorrelation coefficients of process data
sequences, or time series, are computed. Besides scatter plotting, a sample
correlogram is a graphic technique in dynamic data analysis. Dynamic data
sequences exhibit the characteristic of sequential correlation, that is, corre-
lation over time. For example, Figure 3.13 shows two scatter plots of series
y1(t) vs. y4(t — 1) and series y,(t) vs. y,(t — 1). From the plots, the series y,(f)
appears to be high positively autocorrelated, and the series y,(t) appears not
to be correlated.

In order to describe the sequential correlation numerically and graphi-
cally, Eq. (3.12) is extended to calculate sample autocorrelation coefficients.
Unlike static data analysis, in dynamic data analysis the measurements are
needed for the correlation of the data sequence with itself in certain time lags.
Therefore, the following equation can be defined to evaluate the sample
autocorrelation coefficient of lag I for the sequence y(1), y(2),..., y(N)

N-I
Y -yt +H-7)
r(l) = Ey , I<N (3.13)

>yt -)

t=1

Avplot of r(l) vs. I for I =1, 2,..., I ,,x where [, is a maximum time lag
is called the correlogram of the data sequence.

There are some points that need to be noted in Eq. (4.4). r,(0) = 1 and
Imax= N — 1, which means that the maximum possible value of time lag [ is
N - 1. Also, r,(I) = r,(-]).

For further dynamic input and output data sequences u(1), u(2),..., u(N)
and y(1), y(2),..., y(N), the sample cross-correlation coefficient of lag I can be
evaluated by the following equation

N-1
> (ut) - w)(y(t+1)-7)
= [=0,...,N-1
T =1 | & L0 S
>ty —m)” Y (y(H)-p)

t=1 t=1

(rp(-1), 1=-(N-1),..,0)

(3.14)

It should be noted that r,,(!) is not symmetric about the point / = 0. A
plot of r,,(I) vs. I for I = —I,,,..., L.y is called the cross correlogram of u(t)
and y(t).

In the following example, you can see the use of correlation coefficients
and correlograms in the data analysis for the dynamical characteristics of
the snack food frying process.
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Yi(t)

Y1(t-1)
(a) High positively autocorrelated

Ya(t

Y2(t-1)
(b) Almost no correlation

Figure 3.13 Scatter plots of series y,(t) vs. y,(t — 1) and series y,(f) vs. y,(t — 2).

3.2.2.1 Example: Dynamic data analysis of the snack food
frying process
The input-output data of the snack food frying process were obtained accord-
ing to the sampling procedure described earlier. In the operating ranges of the
process in the experiments, the process input sequence, u(t), needs to be able
to keep stimulating process dynamics adequately so that the process output
sequence, y(t), can present process characteristics as much as possible. Several
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Figure 3.14 (a) Autocorrelogram of color y(t). (b) Crosscorrelogram between inlet
temperature u(tf) and color y(t). (c) Local enlargement of (b). (From Huang and
Whittaker, 1993. With permission.)

single-input single-output (SISO) and multiple-input multiple-output (MIMO)
data sets were sampled for different products and purposes. Here, only a SISO
set is demonstrated in order to explain the use of correlation analysis to reveal
the process dynamics, while the correlation analysis can be similarly operated
on other process input-output data of SISO and/or MIMO systems.
Specifically, the SISO data for demonstration were sampled every 10 s.
The time lag between the process input, inlet temperature, and output, color,
was measured around 100 s in the production line. The cross-correlation func-
tion between the inlet temperature and color was computed. Figures 3.14(b)
and (c) show that the inlet temperature as the input sequence, u(f), and the
color as the output sequence, y(t), have the highest correlation around 10,
which is obviously caused by the time lag (10 x 10 = 100) between the process
input and output. Further, it is clear to see in Figure 3.15 that, overall, the color
sequence, y(t), has no clear linear relationship with the inlet temperature
sequence, u(t), but there exists a linear link between them. Owing to the 100 s
time lag between the process input and output, when the lag parameter, d,
is much smaller or much larger than 10, the relationship between u(t — d) and
y(t) is not quite clear. Only when d is around 10, the relationship between
u(t — d) and y(t) is clearly nonlinear where there is a linear component.
Figure 3.16 shows the linear relationship between y(t) and y(t —i) (i=1, 2,...),
in which the smaller i is, the clearer the linear relationship between them.
The autocorrelation function of y(t) in Figure 3.14(a) verifies this relationship.
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Figure 3.15 Scatter plot between inlet temperature u(t — d) and color y(t). (From
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Figure 3.16 Scatter plot between color outputs in y(t — i) and y(t). (From Huang and
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Whittaker, 1993. With permission.)
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3.3 Image processing

Imaging is an important way to quantify food quality. As described previ-
ously, there are several methods such as machine vision, medical imaging,
and so on to acquire images of food samples. Once the images are available,
the approaches to image processing are similar. Image preprocessing and
image analysis are two major steps in image processing. Image preprocess-
ing was discussed in Section 3.1 for image denoising and enhancement,
and image processing is for extracting information from images and includes
image segmentation and feature extraction, mainly in the process of food
quality quantization.

3.3.1 Image segmentation

To segment an image is an important step in image processing and analysis.
Gonzalez and Woods (1992) described the concept of image segmentation
as that segmentation subdivides an image into its constituent parts or objects,
and the level to which this subdivision is carried depends on the problem
being solved, that is, the segmentation should stop when the objects of
interest in an application have been isolated. For example, in beef marbling
scoring applications, the interest lies in identifying beef muscles in a beef
sample. The first step is to segment the beef sample from the image and then
to segment muscle from fat within the sample. The segmentation may stop
at the level of separating the muscle from marbling flecks.

Image segmentation techniques are generally based on either disconti-
nuity or similarity of gray-level values. These gray-level discontinuity-based
techniques partition an image based on abrupt changes in gray level. Those
gray-level similarity-based techniques are based on thresholding, region
growing, and region splitting and merging.

Thresholding is one of the effective techniques in image segmentation. The
assumption of the thresholding technique in image segmentation is that
the object and background pixels in a digital image can be distinguished by
their gray-level values. With the optimal threshold, it is possible to divide the
image into two gray levels that correspond to the background and the object.
Therefore, selection of the threshold value is critical to ensure the successful
use of this technique in image segmentation.

There are a number of methods for the determination of the optimal
threshold values for image segmentation. Among the methods, image contour
lines, local minima in an image histogram, and the magnitude of the gradient
of images have been used widely.

Contour lines for an image can be drawn to represent discrete levels of
intensity, where each of the lines represents pixels having the same value.
The pixels included in the contour line have a value larger than the value
represented by the contour line. Then, the image can be segmented into
regions by classifying all of the pixels lying below a certain contour line
as the object of interest and those having intensities greater than the con-
tour line as the background pixels. This algorithm proceeds in two steps.
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First, the contour lines are drawn for the image by dividing the image into
a number of equal spaces. Second, based on the contour lines, the optimal
threshold for segmenting an interested object is selected, and a binary image
is generated.

Gray-level histogram is a simple method for threshold selection. The
optimal threshold is determined by optimizing some criterion functions
obtained from the gray-level distribution of image. Let f(x, y) be the gray
value of the pixel located at the point (x, y) in a digital image {f(x, y) |m €
{1,2,..., M}, n €(1, 2,..., N}} of size M x N, let the histogram be h(x) for x €
{0, 1, 2,..., 255}, t be a threshold value, and B = {b;, by} be a pair of binary
gray levels where by, b, €{0, 1, 2,..., 255}. The result of thresholding an image
function f(x, y) at gray level T is a binary function f(x, y) such that

by if f(x,y)>T

fr(x, ]/)={b1 if foy)<T (3.15)

Thus, pixels labeled b, correspond to objects, whereas pixels labeled b;
correspond to the background. In general, a thresholding method determines
the value T™ of t based on a certain criterion function. If T* is determined
solely from the gray level of each pixel, then the thresholding method is
point dependent (Cheng and Tsai, 1993). Over the years, many researchers
in image processing have treated {f(x, y)| x € {1,2,..., M}, n € {1, 2,..., N}}
as a sequence of independent, identically distributed random variables
with the density function H(x). The density function H(x) can be obtained
from

H(x) = prob[ f(x,y) = x] (3.16)

where x € {0, 1, 2,..., 255}. Given an image, the density function can be
estimated using the method of relative frequency. In this method, the den-
sity function (or the normalized histogram) H(x) is approximated by using
the formula

h(x) = w (3.17)
14

where h(x) denotes the estimate of H(x), N,(x) represents the number of
pixels with the gray value x, and N, is the number of pixels in the image.
The value of the threshold can be selected from the local minimal, or “valleys,”
in the histogram.

Usually, the objects contained in an image have a different range of gray
levels than the background. If a histogram is plotted for the gray levels, the
object and background subparts yield distinct peaks on the histogram. A
threshold can usually be selected at the bottom of the valley between these
peaks. This algorithm involves computing histograms for gray-level values
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and then applying thresholds at the local minima or “valleys” (Perwitt and
Mendlesohn, 1966). The details can be described as follows

1. Filter the pixels whose values are above the mean value in the
image.

2. Generate the histogram.

3. Smooth histogram and take derivations.

4. Apply thresholds at local minima (zero-crossing).

Magnitude of the gradient of an image is another thresholding method
based on the gradient of an image, which is similar to edge detection in gray
levels. An edge is the boundary between two regions with relatively distinct
gray level properties. Basically, the idea underlying most edge-detection
techniques is the computation of a local derivation operator. The first deriv-
ative is positive for an edge transiting from dark to light while it is negative
for an edge transiting from light to dark, and zero in areas of a constant gray
level. Hence, the magnitude of the first derivative can be used to define the
value of the threshold. Usually, the first derivative at any point in an image
is obtained by using the magnitude of the gradient at that point. The gradient
of an image f(x, y) at location (x, y) is the vector

6q |
Vf{ }: o (3.18)
dy

and the gradient vector points to the direction of maximum rate of change
of f at (x, y). The magnitude of this vector, generally referred to simply as
the gradient and denoted as

VF = mag(Vf)

1

= G+ G (3.19)

An edge having a relatively high magnitude must lie at a point of relatively
high contrast. Thus, it may be considered important for object detection.

This algorithm selects the segmentation threshold by averaging the
intensity of those pixels with high gradients, that is, edge pixels (Katz, 1965).
The algorithm followed these procedures

1. Calculate the gradient of the image.

2. Generate the gradient histogram, define the nth percentile, and find
the set of pixels with high gradient values.

3. Calculate the gradient threshold by averaging the pixel values in this
set.

4. Segment the image with the gradient threshold to generate the binary
image.
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3.3.1.1 Example: Segmentation of elastograms for detection of hard
objects in packaged beef rations

Wang (1998) developed and tested three important algorithms: image con-
tour lines, local minima in an image histogram, and the magnitude of the
gradient of images on the modeled elastograms in order to detect hard
objects within the packaged beef rations. The three algorithms were tested
using a group of different samples. The success rate based upon the number
of images with the correct number of hard spots detected, the dependence
of detection on the control parameter, and the sensitivity of detection to pixel
values were used to evaluate these algorithms.

Figure 3.17 is a typical ultrasonic elastogram of beef sample modeling
with a hard object in the center of the image. Figure 3.18 shows the contour
lines of this elastogram. The solid line is the selected location of the threshold
value. Figure 3.19 shows the segmented binary image created by applying
the selected threshold to the original elastogram.

Figure 3.20 shows a histogram of the smoothed elastogram in Figure 3.17.
Because the valleys were not easy to find, the first derivative was taken on the
histogram by convoluting the histogram using a special operator. The location
of the zero crossing, as shown by the marker “* was used as the location of
local minima where the value of the first derivative changed from negative to
positive. After the threshold was determined, the elastogram was segmented
to a binary image, and the hard spot was clearly noticed (Figure 3.21).

Figure 3.22 shows the gradient histogram of the elastogram and Figure 3.23
shows the segmented image of the elastogram.

3.3.2 Image feature extraction

Once an image has been segmented into areas interested in applications, the
areas of segmented pixels need to be described and represented for further
processing and analysis. In general, a segmented area can be represented in

Figure 3.17 A typical ultrasonic elastogram of beef sample modeling containing a
hard object in the center of the image. (From Wang, 1998. With permission.)
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Figure 3.18 Plot of contour lines of the elastogram in Figure 3.17. (From Wang, 1998.
With permission.)

terms of its external characteristics like boundary or shape, or its internal char-
acteristics like the values of the pixels in the area. In food quality quantization,
information on sample morphology and/or texture from images has been
widely used. The extraction of morphological and textual features from images
uses the principles of the external and internal representations respectively.
The morphological features of an image are represented as the size and
shape of the objects of interest in the image. The term morphology originated
from a branch of biology that deals with the form and structure of animals and
plants. In image processing, the same term is used in the context of mathemat-
ical morphology as a method for extracting image components that represent
and describe the region shape and the convex hull (Gonzalez and Woods, 1992).
In food quality quantization, we are interested in the technique of extraction
of morphological (size and shape) features from the images of food samples.
Quantifying the texture content of a segmented area is an important
approach to area description. There are three major methods to describe
the texture of an area in image processing: statistical, structural, and spec-
tral. Statistical approaches provide textural characteristics such as smooth-
ness, coarseness, graininess, and so on. A typical approach among them
was proposed by Haralick et al. (1973). Structural methods deal with the

© 2001 by CRC Press LLC



50 F E

100 E

y-axis ‘

150 E
200 b

250 1 1 1 1 1]

50 100 150 200 250

X-axis

Figure 3.19 The segmented elastogram using the contour line algorithm on the elas-
togram in Figure 3.17. (From Wang, 1998. With permission.)

T T T T T
1500 - B
1000 - -1

Frequency
500 - 4
0 i
Position of Threshold \ .

s00k Derivative ]

B 1 1 1 1 1

1000 0 50 100 150 200 250 300

Bin

Figure 3.20 Plot of the histogram and the derivative of the histogram of the elasto-
gram in Figure 3.17. (From Wang, 1998. With permission.)
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Figure 3.21 The segmented elastogram using the histogram local minima algorithm
on the elastogram in Figure 3.17. (From Wang, 1998. With permission.)
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Figure 3.22 Plot of the gradient histogram of the elastogram in Figure 3.17. (From
Wang, 1998. With permission.)
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Figure 3.23 The segmented elastogram using the gradient algorithm on the elasto-
gram in Figure 3.17. (From Wang, 1998. With permission.)

arrangement of image primitives, such as the description of texture based on
regularly spaced parallel lines. Spectral techniques are based on properties of
the Fourier spectrum. Wavelet textural analysis (Daubechies, 1988; Mallat, 1989;
Huang et al., 1997) can be viewed as a combination of spectral and statistical
methods. It is based on the wavelet transform and decomposition of an image
for different textural orientations, and then the statistic of each decomposed
component is computed as one of the textural features of the image.

Haralick’s statistical method (Haralick et al., 1973) consists of 14 easily
computable textural features based on graytone spatial dependencies. Haralick
et al. (1973) illustrated the theory and applications in category-identification
tasks of three different kinds of image data: photomicrographs, aerial pho-
tographs, and satellite multispectral imagery. These textural features have
been being widely used in the area of food engineering since they were first
reported in 1973.

Haralick et al. (1973) assumed that the textural information is adequately
represented by the spatial gray-level dependence matrices (co-occurrence
matrices) computed for four angular relationship (£6 = 0°, 45°, 90°, and
135°) and at an absolute fixed distance (d = 1, 2,..., D) between the neigh-
boring resolution cell pairs in an image. Each computed textural feature was
derived from the four angular, nearest-neighbor co-occurrence matrices. The
co-occurrence matrices are a function of the angular relationship and a func-
tion of the absolute distance between neighboring resolution cells and, as a
result, these matrices are symmetric.
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Figure 3.24 Diagram of nearest-neighbor resolution cells. (Adapted from Haralick
et al., 1973. With permission.)

The co-occurrence matrices measure the probability that a pixel of a par-
ticular gray level will occur at an orientation and a specified distance from its
neighboring pixels given that these pixels have a second particular gray level.
The co-occurrence matrices can be represented by the function P(i, j, d, £6),
where i represents the gray level at location (x, i), and j represents the gray
level at its neighbor pixel at a distance 4 and an orientation of £6 from the
location (x, y). Figure 3.24 shows eight nearest-neighbor resolution cells, where
the surrounding resolution cells are expressed in terms of their spatial orienta-
tion to the central reference pixel denoted by the asterisk. In the diagram, the
eight neighbors represent all neighbors at a distance of 1. Resolution cells 1 and
5 are the nearest neighbors to the reference cell (*) in the horizontal direction
(£6=0°) and at a distance of 1 (d = 1). Resolution cells 2 and 6 are the nearest
neighbors to the reference cell (+) in the left diagonal direction (£6 = 135°) and
at a distance of 1. Resolution cells 3 and 7 are the nearest neighbors to the
reference cell (*) in the vertical direction (£6 = 90°) and at a distance of 1.
Resolution cells 4 and 8 are the nearest neighbors to the reference cell (*) in
the right diagonal direction (£6 = 45°) and at a distance of 1.

Based on the description of the spatial relationship between the resolu-
tion cells in the diagram of Figure 3.24, 4 co-occurrence matrices of a 4 x 4
image I(x, y) are formed by summing the gray-level values of its neighbor
at a specified distance in both directions over the entire image.

Assume
0 011
02 2 2
2 2 3 3

This image has four gray tones from 0 to 3.
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The general form of the nearest-neighbor resolution cells of a 4 x 4 image
which is used in computing the co-occurrence matrices is as follows

0,0 (0,1 (@©2 (03
(Lo @1 1,2 (@53
2,00 2,1) 22 (273
3,0 31 G,2) G3)

Then, the four distance 1 angular co-occurrence matrices are computed as

4 2 1 0
PG, j,1,00 = 2+ 00
106 1
00 1 2
2 1 3 0
PG, j,1,1359) = |+ 2 1 0
3102
0 0 2 0
6 0 2 0
P@i,j,1,90°) = [0 4 2 0
222 2
0 0 2 0
4 1 0 0
PG, j,1,45°) = |+ 2 20
02 4 1
00 1 0

Let us look at an example for explaining the computation, the element
in the (1, 0) position of the distance 1 horizontal P(i, j, 1, 0°) matrix is the
total number of times 2 gray tones of value 1 and 0 occurred horizontally
adjacent to each other. To determine this number, the number of pairs of
resolution cells is counted so that the first resolution cell of the pair has gray
tone 1, and the second resolution cell of the pair has gray tone 0. Because
there are two such pair of (1, 0), the number is 2.

Haralick et al. (1973) presented 14 statistical parameters of image textural
features which are computed from each co-occurrence matrix

1. Angular second moment (ASM)
Ng-1 N,-1

fi=3 S0 (3.20)

=0 j=0
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where N, is the number of gray levels from 0 to 255 in the quantified
image, p(i, j) = P(i, j)/R for matrix normalization, in which P(j, j) is
the co-occurrence matrix, and R is the number of neighboring reso-
lution cell pairs.

ASM is a measure of the homogeneity in an image. A minimal
number of values of large magnitude in the co-occurrence matrix is an
indication of fewer intensity transitions characteristic of homogeneous
images. This usually results in a high ASM, whereas numerous entries
of less magnitude in the co-occurrence matrix owing to more inten-
sity transitions usually results in a low ASM.

2. Contrast

Ngfl Ng—] Ng—l
fa= dz(z Y, j)} (3.21)
i j Ji—jl

1=d

Contrast is the difference moment of the co-occurrence matrix and
is a measure of the amount of local variation presented in an image.
A large amount of local variation presented in an image is an indi-
cation of high contrast, thereby resulting in higher values for that
particular measure.
3. Correlation

1 NS_l Ng—l
fs = > Y Ghpl, ) -, (3.22)
0x%| i35 j=0

where 1., u,, o,, and o, are the means and standard deviations of p,
and p,, while the p, and p, are the marginal probability matrices of p.
Correlation is a measure of the linear dependencies of gray-level
values (intensities) in an image. Correlation will be much higher for
an image with large areas of similar intensities than for an image
with noisier, uncorrelated scenes.
4. Variance

Ng—1 Ne-1

fo= Y Y G-wpd, ) (3.23)

=0 j=0

where u is the mean of p.

Variance is a measure indicating the variation in values of image
intensity. Variance would be zero for an image whose pixels all have
the same gray level, whereas images containing scenes of variable pixel
intensities would result in higher values for variance.
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5. Inverse different moment

Ng—l Ng—l 1
= —pr, )) (3.24)
s ;‘ §1+(1_])2p J

Inverse difference moment is another measure of image contrast.
The more frequently intensities of similar magnitude occur in an
image, the greater the value for this measure.
6. Sum average

2(Ng-1)
fo= Y, (Oper, () (3.25)

i=0

where p,., is the sum matrix given by

Ng-1 Ng-1
px+y(k) = {Z zp(l’ ])} (k=0/1/2/~~/2(Ng_1))
i=0  j=0 i+j=k

7. Sum variance

2(Ng-1)
fr= Y (i=fe)Prsy(i) (3.26)
i=0
8. Sum entropy
2(Ng-1)
fs == 2 Peny(DIoglpe, (i) + el (3.27)
i=0

where € is an arbitrarily small positive constant which is used to
avoid log(0) happening in entropy computation.
Sum entropy is a measure of randomness within an image.
9. Entropy

1

p(i,j)loglp(i,j) + €] (3.28)

Ng—l N

=
fo = z
=0 j=0
Entropy is a measure of the complexity or the amount of order-
liness within an image. The more complex (more randomness of gray

levels) the image, the higher the entropy value. Low entropy values
correspond to high levels of order.
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10.

11.

12.

13.

14.

Difference variance
f10 = variance of p,_, (3.29)

where p, _, is the difference matrix given by

Ng—l Ng—l

px—y(k) = {z zp(lr])} (k=0/ 1121---1 Ng_1)~
i—j=k

i=0 =0
Difference entropy

Ng-1

fu=- Z P y(1) log[px_y(i) +£] (3.30)

i=0

Difference entropy is also a measure of the amount of order in
image.
Informational measure of correlation — 1

HXY-HXY1
fr = SaXIHX, BY] (3:31)

Informational measure of correlation — 2
fis = J1—exp[-2.0(HXY2 - HXY)] (3.32)

where HXY is the entropy of p, HX and HY are entropies of p, and
p,, and

Ng—l Ng—l
HXY1 = - p(i, j) loglp.(i)p,(j) + €l
=0 j=0
Ng—l Ng—l
HXY2 = - p(D)p,(j)logp.()p,(j) + €]
i=0  j=0

Maximal correlation coefficient

f14 = (second largest eigenvalue of Q)'? (3.33)

where q(i, ) = 250 [pG, Dp(j, Dip.()p,H)].

Besides the 14 statistical textural feature parameters, other gray-level image
features are also extracted and used for image analysis. Whittaker et al. (1992)
grouped statistics of image intensity, Fourier transform, fractal dimension,
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and slope of attenuation extracted from ultrasonic images for prediction of
a beef marbling score. Thane (1992) gave a description of five gray-level
image intensity features

1. Image intensity measurements—there are three parameters related
to measures of image intensity.

a. Mean of image intensity (IM)—intensity mean, as defined by
Gonzalez and Wintz (1987), is a measure of the average brightness
in an image. The following equation represents a mathematical
expression for IM

1 N,-1 N.-1
X = ﬁ{z 2 I(i, j)} (3.34)

i=0  j=0

where N, is the total number of rows in the image, N. is the total
number of columns in the image, and 7 is the total number of
pixels having intensity levels greater than zero. x is the summa-
tion of image intensity values (I(, j) > 0, for each pixel.

b. Sample standard deviation of image intensity (ISD)—variance or
standard deviation is a measure of image contrast related to the
variability of image intensity values about the mean. The expression
of the ISD is as follows

1 N,-1 N1 )
SD = m{z Y (i, j)-X) (3.35)

=0 j=0

c. Total pixel count (IC)—the total count of all pixels in the image
having an intensity level greater than a given threshold value
(T = 0) is computed by the following equation

N,~1 N1

IC=73% YIG,j (3.36)

=0 j=0

2. Ratio of Euclidean to linear distance of image intensity (RELI)—the
RELI measure can be considered as an indicator of image texture.
The computation of RELI is performed as follows. First, the horizontal
curvilinear distance for each row in the image is determined by
adding the linear distances between each pixel intensity in the row
and dividing by the number of columns in the image

N,-1 1 N-1
D@) =Y, LV[Z Jid, =13, j—1)2+1-0ﬂ

i=0 j=1

© 2001 by CRC Press LLC



So, the RELI can be calculated by dividing the sum of the values
for D(i) by the total number of rows in the image

1N
RELI == ) D( .
N, 2 D) (337)

RELI is the calculated average horizontal ratio of Euclidean to
linear length of the intensity for the image.

3. A measure of slope of attenuation (SLP)—the slope of attenuation is
one of the most commonly used parameters for estimating ultrasonic
attenuation and is calculated through Least Squares regression anal-
ysis (Wilson et al., 1984). Milton and Arnold (1986) gave the comput-
ing expression of the SLP

NC NC NE
ch XilYi— in Zy,-
i=1 i=1

SLP = — izl S (3.38)

N, N. 2
Nc szz - [inj
i=1 i=1

where y is the average value of intensity for each corresponding value
of x in the image.

Each of these features is primarily image-content dependent and was
computed for an 80 x 80 AOI (area of interest) extracted from the original
ultrasonic images.

For the 14 statistical textural features, 4 angular (£6 = 0°, 45°, 90°, and
135°) co-occurrence matrices were derived for each of the 8 nearest neighbors
for each image. Distinct distances of d =1, 2, and 3 were considered.

Wavelet decomposition is another way for image textural feature extrac-
tion. Wavelet bases that are two-dimensional can be constructed from
one-dimensional bases by the tensor product (Mallat, 1989). For the scaling
function, it is

D(x, y) = ()P (y) (3.39)

For wavelets, they are

Yi(x, y) = ®()¥Y(y) (3.40)
Ya(x, y) = Y(0)P(y) (3.41)
Ws(x, y) = Y(0)¥(y) (3.42)
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For a two-dimensional signal f(x, v), the resulting equations of the exten-
sion of the Mallat’s algorithm to the two-dimensional wavelet transform are

f, k) =33 "0, i)h(2k, ~i)h(2k, - i,) (3.43)
iy iy

" (ke k) = 3DV 1,)8(2k = i)h(2k, 1) (3.44)

" (ke k) = 33 "V 1)K, - 1) g (2K, - i) (3.45)

d,"(k, k) = 33 "V, i) g(2k, ~ i) (2k, ~1,) (3.46)
by Iy

where k, and i, are sample points on the x axis, and k, and i, are sample

points on the y axis. In the case of two dimensions, a smoothed signal f”

and three detail signals, d\"’, dy", and d5", which represent the detail signal

array in the x, y, and diagonal directions, respectively, are obtained.

The two-dimensional wavelet transform algorithm decomposes a two-
dimensional signal array into smoothed and detail signals at different resolu-
tions. For extraction of image textural features, this algorithm can be applied
directly to images of food samples. The implementation of this algorithm is
row convolutions followed by column subsamplings at one-half rate, then
column convolutions followed by row subsamplings at one-half rate. The sub-
samplings are in increasing scales until the image is reduced to a single pixel.

When using the two-dimensional wavelet decomposition algorithm to
extract textural features from each image, the number of features is depen-
dent on the size of the image. If the size of an image is N x N (N = 2"), the
wavelet decomposition of the image has M levels (resolutions) and 4 x M + 1
blocks for feature generation. Figure 3.25 shows that the original image is
set as the initial smoothed component and then, at each level, the smoothed
component is decomposed into four subcomponents: smoothed, vertical,
horizontal, and diagonal, at a coarser resolution until the smoothed compo-
nent is a single pixel. In performing the wavelet decomposition, at each level
the smoothed component is transformed in rows first and then in columns.
This is shown in Figure 3.26. It can be shown that H.H,E™ is the smoothed
component at the next lower resolution, and three other components,
G.G,E™ HGE™, and G.H,E™ are details.

Color information is also useful in quantifying the images of food sam-
ples. The attributes of color information in images are R (red), G (green),
and B (blue) or H (hue), S (saturation), and I (intensity). This book does not
intend to detail color image processing. Interested readers can refer to the
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Figure 3.25 Wavelet decomposition scheme for image feature extraction, where E™
represents the original image, and E”, H”, V%, and DV (j = M - 1,..., 1, 0) are
smoothed, horizontal, vertical, and diagonal components, respectively, at each level.
(Adapted from Huang et al., 1997. With permission.)

book by Gonzalez and Woods (1992) for theoretical fundamentals, and the
paper by Gerrard et al. (1996) for the application in food quality quantization.

3.3.2.1 Example: Morphological and Haralick’s statistical textural
feature extraction from images of snack food samples
In the study of the evaluation of the quality of typical snack food products
(Sayeed et al., 1995), the size and shape features together with the external
texture features that can reflect the internal structure of the snack images
were used to describe the quality from a texture (mouthfeel) standpoint.
The machine vision system described in the last chapter captured the
images of the snacks and chips. Then, in order to quantify the quality of
the snack products in terms of morphology and texture, certain operations
were performed on the images.
To obtain the morphological features, the images were thresholded based
on their histograms. The binary images were then formed and processed by
a closing morphology operation with a disk structuring element to obtain the
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Figure 3.26 Transform scheme in wavelet decomposition for image feature extrac-
tion, where H, and G, are the row transforms associated with the k(i) and g(i) filters,
respectively, and H, and G, are the column transforms associated with the k(i) and
g(i) filters, respectively. (Adapted from Huang et al., 1997. With permission.)

size and shape features (Gonzalez and Woods, 1992). The following nine
measurable features were used to describe the size and shape of the snacks:

1.

Area (AREA)—the number of pixels contained in a snack object; this
number is converted into a physical size by using the calibration
parameter of the camera.

Perimeter (PERIM)—the number of pixels along the boundary of a
snack object; again, the calibration parameter is used to compute the
corresponding physical length.

Fiber length (FIBERL) and width (BREADTH)—fiber length and
width are considered to be the length and width of a rectangle sur-
rounding a snack object.

Length (LENGTH) and breadth (BREADTH)—Ilength is considered
to be the longest chord passing through a snack object. Breadth is
the shortest chord passing through it.

Roundness (ROUND)—this is a shape factor which has a minimum
value of 1.0 for a circular shape snack. Large values of roundness
indicate thinner and longer snacks.

© 2001 by CRC Press LLC



Fullness ratio (FULLR)—fullness ratio is the ratio of the snack area
to the circumscribed area.

Aspect ration (ASPR)—this is the ratio of the length to the breadth
of a snack object.

Except for the maximal correlation coefficient, 13 of the 14 textural features
as defined by Haralick et al. (1973) were calculated based on co-occurrence
matrices reflecting the spatial distribution of intensity variations from the
images of the snacks:

PN

Angular second moment (F;).

Contrast (F,).

Correlation (F5).

Variance (F,).

Inverse difference moment (Fs).

Sum average (F).

Sum variance (F;).

Sum entropy (Fj).

Entropy (Fj).

Difference variance (F,).

Difference entropy (Fy;).

Information measure of correlation number 1 (F;,).
Information measure of correlation number 2 (F;;).

A total of 22 features, 9 morphological and 13 textural, from snack images
were extracted as the quality evaluation process input parameters to corre-
late with 7 sensory attributes as the process output parameters that define
the visual quality of the snack products by the taste panel

NS Tk W=

Bubble.
Roughness.

Cell size.
Firmness.
Crispiness.

Tooth packing.
Grittiness of mass.

The taste panel scaled these sensory attributes in the range of -3 to 3
with 0 indicating the optimum value.

3.3.2.2 Example: Feature extraction from ultrasonic B-mode images

for beef grading

Besides 14 statistical textural feature parameters, 5 gray-level image intensity
features were also performed on the AOI of ultrasonic images for beef mar-
bling prediction purposes (Thane, 1992). There were a total of 19 features
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extracted from the beef ultrasonic images. The five gray-level image intensity
features included image intensity measurements IM, ISD, and IC, RELI, and
SLP. Each of these features is primarily image-content dependent and was
computed for an 80 x 80 AOI extracted from the original ultrasonic images.

For the 14 statistical textural features, 4 angular (£6 = 0°, 45°, 90°, and
135°) co-occurrence matrices were derived for each of the 8 nearest neighbors
for each image. Distinct distances of d = 1, 2, and 3 were considered.

3.3.2.3 Example: Haralick’s statistical textural feature extraction
from meat elastograms

For meat quality evaluation, elastograms of beef and pork samples were
used to produce parameters of textural features using the method of Haralick
etal. (1973) (Lozano, 1995; Moore, 1996). In the extraction of textural features,
for each elastographic image, all 14 parameters originally presented by
Haralick et al. (1973) were computed for four angles (0°, 45°, 90°, and 135°)
and four neighborhood distances (d = 1, 2, 5, and 10). There are 16 (4 x 4)
independent groups of statistical textural features, each of which contains
the 14 parameters, for each meat elastogram. Figure 3.27 shows a typical
output list from the computation of Haralick’s statistical textural features of
a beef elastogram.

The 14 parameters were used as the input of the quality evaluation
process to correlate with 10 mechanical and chemical variables as the output
of the quality evaluation process

Warner-Bratzler shear force at 2 days (WB1).
Warner-Bratzler shear force at 14 days (WB2).
Warner-Bratzler shear force at 28 days (WB3).
Warner-Bratzler shear force at 42 days (WB4).
Calpastatin (Calp).

Sarcomere length (Sarc).

Total collagen amount (T.Coll).

Soluble collagen in percentage (%Sol).
Percent moisture (%Mois).

Percent fat (%Fat).

CORPNG L=

=

3.3.2.4 Example: Wavelet textural feature extraction from meat
elastograms

For meat quality prediction based on the technique of elastography, Huang
et al. (1997) developed the method of wavelet decomposition for extraction
of textural features from elastograms. Figure 2.15 in the last chapter shows
a beef elastogram of LD muscle. This image is used to explain the process of
wavelet decomposition for this application. First, the image was resized to the
power of 2 in order to meet the requirement of wavelet analysis. Figure 3.28
is the resized elastogram. The size of the elastogram now is 128 x 128
compared to the original size 134 x 198.
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distance = 1
Angle
Angular Second Moment
Contrast
Correlation
Variance
Inverse Diff Moment
Sum Average
Sum Variance
Sum Entropy
Entropy
Difference Variance
Difference Entropy
Means of Correlation-1
Means of Correlation-2
Max Correlation Coeff

distance = 2
Angle
Angular Second Moment
Contrast
Correlation
Variance
Inverse Diff Moment
Sum Average
Sum Variance
Sum Entropy
Entropy
Difference Variance
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0
1.319e-03
4.254e+01
2.411e+08
9.770e+02
2.383e-01
5.617e+01
3.642e+03
2.023e+00
3.029e+00
2.006e-05
1.083e+00

—-2521e-01
7.633e-01
1.650e-03

0
8.618e-04
9.309e+01
2.348e+08
9.784e+02
1.657e-01
5.624e+01
3.599e+03
2.008e+00
3.214e+00
1.306e-05

45
1.014e-03
6.288e+01
2.389e+08
9.780e+02
1.788e—01
5.621e+01

3.626+03
2.019e+00
3.132e+00
1.557e-05
1.191e+00
-1.925e-01
6.978e-01
4.050e-03

45
6.676e—04
1.389e+02
2.305e+08
9.832e+02
1.176e-01
5.641e+01
3.573e+03
1.995e+00
3.300e+00
9.889¢-06

90
1.535e-03
2.492e+01
2.473e+08
9.871e+02
2.594e-01
5.637e+01
3.699e+03
2.027e+00
2.968e+00
2.216e-05
1.031e+00

—2.898e-01
7.964e-01
1.180e-02

90
8.681e—04
8.105e+01
2.414e+08
9.908e+02
1.560e-01
5.650e+01
3.659e+03
2.014e+00
3.205e+00
1.245e-05

135
1.007e-03
6.349¢e+01
2.388e+08
9.779e+02
1.784e-01
5.621e+01
3.625e+03
2.018e+00
3.133e+00
1.547e-05
1.192e+00

-1.918e-01
6.968e-01
1.937e-02

135
6.638e—04
1.400e+02
2.303e+08
9.832e+02
1.185e—01
5.641e+01
3.572e+03
1.995e+00
3.304e+00
9.913e-06

Avg
1.219e-03
4.846e+01
2.415e+08
9.800e+02
2.138e-01
5.624e+01
3.648e+03
2.022e+00
3.066e+00
1.831e-05
1.125e+00

—2.316e-01
7.386e-01
9.219e-03

Avg
7.653e-04
1.133e+02
2.342e+08
9.839%e+02
1.394e-01
5.639%e+01
3.600e+03
2.003e+00
3.256e+00
1.133e-05



Difference Entropy

Means of Correlation-1
Means of Correlation-2
Max Correlation Coeff

distance = 5
Angle

Angular Second Moment

Contrast

Correlation

Variance

Inverse Diff Moment
Sum Average

Sum Variance

Sum Entropy

Entropy

Difference Variance
Difference Entropy
Means of Correlation-1
Means of Correlation-2
Max Correlation Coeff

distance = 10
Angle

Angular Second Moment

Contrast

Correlation

Variance

Inverse Diff Moment
Sum Average

© 2001 by CRC Press LLC

1.282e+00
—1.445e-01

6.276e—-01

6.503e-03

0
6.122e—-04
1.664e+02
2.270e+08
9.837e+02
1.097e-01

5.643e+1
3.548e+03
1.985e+00
3.335e+00
8.975e-06
1.426e+00
~7.463e-02
4.773e-01
4.565e—03

0
5.630e-04
2.025e+02
2.244e+08
9.918e+02
9.902e-02
5.672e+01

1.384e+00
-9.507e-02

5.298e-01

7.247e-03

45
5.086e—04
2.411e+02
2.234e+08
1.005e+03
8.079e-02
5.720e+01
3.557e+03
1.959e+00
3.397e+00
7.103e-06
1.511e+00

—-3.925e-02
3.566e-01
1.815e-02

45
4.703e-04
3.037e+02
2.259e+08
1.043e+03
6.783e—-02
5.855e+01

1.279e+00
-1.535e-01

6.427e-01

2.519e-02

90
5.230e-04
2.621e+02
2.229e+08
1.007e+03
8.668e—-02
5.709e+01
3.547e+03
1.948e+00
3.396e+00
6.754e—-06
1.531e+00

—4.410e-02
3.768e-01
1.506e-03

90
4.932e-04
3.248e+02
2.234e+08
1.036e+03
7.636e—02
5.813e+01

1.385e+00
—9.309e-02

5.251e-01

1.363e-02

135
5.165e-04
2.426e+02
2.238e+08
1.006e+03
8.697e-02
5.723e+01
3.562e+03
1.955e+00
3.395e+00
7.143e-06
1.512e+00

—4.134e-02
3.654e-01
1.235e-02

135
4.966e-04
2.813e+02
2.299e+08
1.048e+03
7.733e-02
5.871e+01

1.333e+00
-1.215e-01

5.813e-01

1.314e-02

Avg
5.401e-04
2.281e+02
2.243e+08
1.000e+03
9.105e-02
5.699%e+01
3.554e+03
1.962e+00
3.381e+00
7.494e-06
1.495e+00

—4.983e—02
3.940e-01
9.145e-03

Avg
5.058e-04
2.781e+02
2.259¢e+08
1.030e+03
8.013e-02
5.803e+01



Sum Variance 3.545e+03 3.645e+03 3.601e+03 3.686e+03 3.619e+03

Sum Entropy 1.971e+00 1.930e+00 1.919e+00 1.942¢+00 1.941e+00
Entropy 3.368e+00 3.418e+00 3.415e+00 3.407e+00 3.402e+00
Difference Variance 7.928e—-06 6.229e-06 6.049¢-06 6.671e-06 6.719e-06
Difference Entropy 1.472e+00 1.561e+00 1.577e+00 1.543e+00 1.538e+00
Means of Correlation-1 —5.524e-02 —2.771e-02 —3.433e-02 —3.419e-02 -3.787e-02
Means of Correlation-2 4.173e-01 3.026e-01 3.353e-01 3.343e-01 3.474e-01
Max Correlation Coeff 7.902e—03 1.264e—02 7.117e-03 8.468e—-03 9.031e-03

Figure 3.27 An output list of Haralick’s statistical textural features of a beef elastogram from a C language program.
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Figure 3.28 The resized elastogram of beef in LD muscle. (From Huang et al., 1997.
With permission.)
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Figure 3.29 The first-step, second-order Daubechies wavelet-transformed beef elas-
togram of the image in Figure 3.28. (From Huang et al., 1997. With permission.)

In the process of decomposition, the second order Daubechies wavelet
was used. As shown in Figure 3.29, at the first step of the decomposition
process, the upper left quarter in the transformed image approximates the
image of Figure 3.28 by a downsampling at 2; the upper right quarter in the
transformed image captures the horizontal textures of the image of Figure 3.28
by a downsampling at 2; the lower left quarter in the transformed image
captures the vertical textures of the image of Figure 3.28 by a downsampling
at 2; and the lower right quarter in the transformed image captures the
diagonal textures of the image of Figure 3.28 by a downsampling at 2. In this
way, the first-step second-order Daubechies wavelet-transformed elastogram
was built up in Figure 3.29. In this and later images, the bright straight lines
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Figure 3.30 The second-step, second-order Daubechies wavelet-transformed beef
elastogram of the image in Figure 3.28. (From Huang et al., 1997. With permission.)

are used to describe the decomposition frame, from which the relationships
between the four quarters and the image of Figure 3.28 can be seen clearly.

At the second step, the decomposition components in the upper right,
lower left, and lower right quarters in the transformed image of Figure 3.29
remain unchanged because they are all detail components. The decomposi-
tion is enacted only on the smoothed part (upper left quarter) of the trans-
formed image of Figure 3.29. As shown in Figure 3.30, the upper left quarter
of the upper left quarter in the transformed image approximates the
smoothed part (upper left quarter) of Figure 3.30 by a downsampling at 2;
the upper right quarter of the upper left quarter in the transformed image
captures the horizontal textures of the smoothed part (upper left quarter) of
Figure 3.30 by a downsampling at 2; the lower left quarter of the upper left
quarter in the transformed image captures the vertical textures of the
smoothed part (upper left quarter) of Figure 3.29 by a downsampling at 2;
and the lower right quarter of the upper left quarter in the transformed
image captures the diagonal textures of the smoothed part (upper left quarter)
of Figure 3.29 by a downsampling at 2. In this way, the second-step second-
order Daubechies wavelet-transformed elastogram was further built up in
Figure 3.30. With the help of the bright straight lines for the decomposition
frame, the relationships between the transformed images of Figures 3.29
and 3.30 can be seen clearly.

We continued this decomposition until the lowest resolution (a single
pixel) was reached. Figure 3.31 shows the complete wavelet-transformed
elastogram with the second-order Daubechies basis. In the transformed elas-
togram, all detail components and one smoothed component are in the single
pixel at the left top corner. In this transformed elastogram, a series of the upper
right quarters were reduced in size by 31 until the last pixel at the upper left
corner was reached. These quarters captured the horizontal textures. Like-
wise, a series of the lower left quarters were reduced in size by }1 until the last

© 2001 by CRC Press LLC



Number of Pixels

-
o
o

100

60 80
Number of Pixels

Figure 3.31 The complete second-order Daubechies wavelet-transformed beef elas-
togram of the image in Figure 3.28. (From Huang et al., 1997. With permission.)

pixel at the upper left corner was reached. These quarters captured the
vertical textures. A series of the lower right quarters was reduced in size by
}1 until the last pixel at the upper left corner was reached. These quarters
captured the diagonal textures.

In the decomposition of the second-order Daubechies wavelets, bound-
ary problems occurred because the image signals were only specified over
a finite interval. In order to handle the problem, the symmetric boundary
conditions (Aldroubi and Unser, 1996) were used (Huang et al., 1997).
Because of the boundary problem, handling the quarters in image decom-
position were extended. Consequently, in the preceding image displays for
wavelet decomposition, some extended pixels were removed to fit the quar-
ter size reduction in the power of 2.

In this way, a given elastogram was decomposed into smoothed and
detailed quarter components corresponding to the blocks as described in
Figure 3.25. Each of these components or blocks can be used to generate a
texture feature parameter. In this application, the feature parameter was
defined as the root mean square (RMS)

RMS = [¥ PV} (3.47)
ij

where PV is the pixel value in a quarter component, and all squared PVs
in the quarter component are summed. With this parameter, for a 128 x 128
elastogram, there are 29 (=4 x 7 + 1) RMS wavelet textural feature parameters.

The 29 parameters were used as the input of the quality evaluation to
correlate with 10 mechanical and chemical parameters as the output of the
quality evaluation process described previously.

© 2001 by CRC Press LLC



References

Aldroubi, A. and Unser, M., Wavelets in Medicine and Biology, CRC Press, Boca Raton,
FL, 1996.

Cheng, S. C. and Tsai, W. H., A neural network implementation of the moment-
preserving technique and its applications to thresholding, IEEE Trans. Comput.,
42,501, 1993.

Daubechies, 1., Orthonormal bases of compactly supported wavelets, Comm. Pure
Appl. Math., 41(7), 909, 1988.

Gerrard, D. E., Gao, X., and Tan, J., Beef marbling and color score determination by
image processing, J. Food Sci., 61(1), 145, 1996.

Gonzalez, R. C. and Woods, R. E., Digital Image Processing., Addison-Wesley Reading,
MA, 1992.

Gonzalez, R. C. and Wintz, P.,, Digital Image Processing, 2nd ed., Addison-Wesley,
Reading, MA, 1987.

Haralick, R. M., Shanmugam, K., and Dinstein, I., Textural features for image classi-
fication, IEEE Trans. Syst., Man, Cybern., 3(6), 610, 1973.

Huang, Y., Snack food frying process input-output modeling and control through
artificial neural networks, Ph.D. dissertation, Texas A&M University, College
Station, TX, 1995.

Huang, Y. and Whittaker, A. D., Input—output modeling of biological product pro-
cessing through neural networks, ASAE paper No. 93-3507. St. Joseph, MI,
1993.

Huang, Y., Lacey, R. E., Moore, L. L., Miller, R. K., Whittaker, A. D., and Ophir, J.,
Wavelet textural features from ultrasonic elastograms for meat quality pre-
diction, Trans. ASAE, 40(6), 1741, 1997.

Katz, Y. H., Pattern recognition of meteorological satellite photography, Proc. Symp.
Remote Sens. Environ., 12, 173, 1965.

Lacey, R. E. and Osborn, G. S., Applications of electronic noses in measuring biolog-
ical systems, ASAE paper No. 98-6116, St. Joseph, MI, 1998.

Lozano, M. S. R,, Ultrasonic elastography to evaluate beef and pork quality, Ph.D.
dissertation, Texas A&M University, College Station, TX, 1995.

Mallat, S., A theory of multiresolution signal decomposition: the wavelet represen-
tation, [EEE Trans. Patt. Anal. Mach. Intell., 11(7), 674, 1989.

Milton, J. S. and Arnold, . C., Probability and Statistics in the Engineering and Computing
Sciences, McGraw-Hill, New York, 1986.

Moore, L. L., Ultrasonic elastography to predict beef tenderness, M.Sc. thesis, Texas
A&M University, College Station, TX, 1996.

Osborn, G. S., Lacey, R. E., and Singleton, J. A., A method to detect peanut off-flavors
using an electronic nose, Trans. ASAE, in press.

Osborn, G. S., Lacey, R. E., and Singleton, J. A., Detecting high temperature curing
off-flavors in peanuts using an electronic nose, ASAE Paper no. 986075, 1998.

Park, B., Non-invasive, objective measurements of intramuscular fat in beef through
ultrasonic A-model and frequency analysis, Ph.D. dissertation, Texas A&M
University, College Station, TX, 1991.

Perwitt, . and Mendlesohn, M., The analysis of cell images, Ann. N.Y. Acad. Sci., 135,
1035, 1966.

Sayeed, M. S., Whittaker, A. D., and Kehtarnavaz, N. D., Snack quality evaluation
method based on image features and neural network prediction, Trans. ASAE,
38(4), 1239, 1995.

© 2001 by CRC Press LLC



Thane, B. R, Prediction of intramuscular fat in live and slaughtered beef animals
through processing of ultrasonic images, M.Sc. thesis, Texas A&M University,
College Station, TX, 1992.

Wang, W., Development of elastography as a non-invasive method for hard spots
detection of packaged beef rations, M.Sc. thesis, Texas A&M University, College
Station, TX, 1998.

Whittaker, A. D., Park, B., Thane, B. R., Miller, R. K., and Savell, . W., Principles of
ultrasound and measurement of intramuscular fat, . Anim. Sci., 70, 942, 1992.

Wilson, L. S., Robinson, D. E., and Doust, B. D., Frequency domain processing for
ultrasonic attenuation measurement in liver, Ultrason. Imag., 6, 278, 1984.

© 2001 by CRC Press LLC



chapter four

Modeling

4.1 Modeling strategy

Data analysis reveals qualitative, noncausal relationships between variables.
For example, data analysis can determine that a variable x is closely related
to a variable y, but it cannot express how a variable affects another variable.
If classification or prediction of a variable is needed, then the causal relation-
ship between this variable and affecting variable(s) must be characterized. In
other words, one must set up a quantitative relationship to characterize how
one variable affects the other. This is the goal of modeling. In modeling, the
affected variable is called a dependent variable, usually an output variable,
and the affecting variable is called an independent variable, usually an input
variable. In food quality quantization, based on data analysis, modeling is
performed to establish quantitative relationships between inputs and outputs
using mathematical and statistical methods. Modeling is critical for effective
food quality classification, prediction, and process control.

The meaning of process is broad. It can be a manufacturing system, a
biological system, and an economic or sociological system as well. The pro-
cesses in this book are in food manufacturing and processing; for example,
processes of extrusion and frying in the snack food industry. This chapter
focuses on how to build mathematical models of a process in order to better
analyze process mechanism, predict and understand process performance,
and design effective process control systems for food quality assurance.

4.1.1 Theoretical and empirical modeling

A model is a description of the useful information extracted from a given
practical process. This description is about the mechanism of process oper-
ation and it is an abstract or simplification of the practice. Modeling is a tool
for data analysis, classification, prediction, and process control. In general,
there are two methods in modeling: theoretical and empirical.

Theoretical modeling is the process of building a mathematical model
about a relationship through analyzing the operating mechanism and using
known laws, theorems, and principles, such as chemical kinetic principles,
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biological laws, Newtonian laws, material equilibrium equations, energy equi-
librium equations, thermodynamic equations, heat and mass transfer prin-
ciples, and so on. Theoretical modeling is often used in food analysis. For
example, Moreira et al. (1995) modeled deep-fat frying of tortilla chips with
a mathematical description of heat transfer coupled to the transport of mass.
However, this method is limited for complex relationships and processes in
the food industry because theoretical modeling is based on assumptions
of reasonable simplification of the concerned relationship or process or the
problem may get to be too complicated. Also, it is a difficult task to make
these assumptions fit the practical situation, and some mechanism of prac-
tical process may be unknown. In addition, some factors in a process may
change constantly, making it difficult to describe it precisely. For such rea-
sons, a different modeling method is needed to handle the uncertainty and
the unknowns.

Empirical modeling has been widely used in process modeling and con-
trol. Empirical modeling is used when the relationship between variables is
difficult to describe or implement by theoretical methods. In this case, the
details about the links between variables usually are set aside, and the focus
is put on the effect of input variables to output variables. A typical procedure
for empirical modeling is as follows:

1. Model hypothesis—in this step, a model structure for system input
and output is hypothesized. A typical one is the simple regression
model

y=ax+b+e (4.1)

where y is the system output, x is the system input, 2 and b are model
coefficients, and ¢ is the term of modeling residuals, representing
other affecting factors that are minor compared to x, and € is also
assumed to be an independent random variable with zero mean and
the same variance as .

In this hypothesized model, one system input, x, is assumed to
linearly relate to one system output, y, with a slope, 4, and an inter-
cept, b, in a straight line.

2. Model estimation—in this step, the values of the slope, a, and the
intercept, b, are chosen to make the term residuals, & minimal. This
can be done by the method of least squares (Milton and Arnold, 1990)
with the experimental data of x and y to get the estimated values of
a and b.

3. Model test—in this step, the significance of the estimated values of
2 and b is tested. This may be done by a t test when the sample size
is less than 30 or by Z test when the sample size is more than 30
(Milton and Arnold, 1990). If the test passes, that is, 4 and b are
significantly different from 0, go to the next step; otherwise go back
to Step 1 to adjust the model hypothesis.
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4. Model application—in this step, the model is built up for classifica-
tion, prediction, or process control. The model is

y=ax+b (4.2)

The preceding model is a simple one for the case of SISO. Actually, it is
not difficult to extend it to the case of MIMO as long as y, x, 2, b, and ¢ are
set as vectors y, x, a, b, and &. Also, it is not necessary for the relationship
between inputs and outputs to be linear. It could be in some form of non-
linearity to capture the causality.

4.1.2  Static and dynamic modeling

Static modeling is often performed for food quality classification and attribute
prediction. In many cases of food quality modeling, the relationship between
system inputs and outputs does not take the dimension of time into account,
which means that the constant relationship is sought and the inputs and
outputs are statically related. The systems of this kind are generally assumed
to be governed by the equation

y=f(x,0)+¢ (4.3)

where y= (y,, yz,...,ym)T is an m-dimension vector representing m system
outputs in the model assumption, x = (x;, x,..., x,,)T is an n-dimension vector
representing 1 system inputs in the model assumption, £= (g, &,,..., &,)" is
an m-dimension vector representing m system residual variables correspond-
ing to system outputs, © represents the set of coefficients in the model (in
the linear case, © should be a vector of size n + 1 while in the nonlinear case,
it depends on the model structure and f( ) is the function describing how
the inputs and outputs relate.

Dynamic modeling is necessary in process modeling for process control.
In many other cases of food quality modeling, especially those for food process
control, the models need to take into account, the dimension of time that is,
the relationship changes with time and the system inputs and outputs are
related through time. Thus, the variables that are connected in this way relate
dynamically to each other. Dynamic models are used to describe the relation-
ships between state variables in a transient stage. The models need to charac-
terize the changes in outputs caused by the changes in inputs to make the
system move from one state to the other. The dynamic systems generally can
be assumed as following the equation

}j(t) = f(y(t_ 1)/ ]j(t—z)// y(t_p)r Iil(t_ 1)/ Til(t_z)rrlil(t_q)/
91 (S(t)r ‘S((t - 1)/~~-/ ‘S(t_ 7’)) (44)
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where p, g, and r represent the orders of past variables in the vectors of y(t)
u(t), and g(t). For example, fora2x2 dynamlc system, if y(t) = [y:(t), yz(t)] ,
u(t) = [1(8), w()]', and. £(t) = [&,(8), &1, then y(t - p) = [y,(t - py), yalt -
Pz)] u(t —q) = [u(t — q1), u(t —q2)] and g(t —r) = [&(t — 1)), &(t - 7”2)] where
p1 and p,, g, and g,, and r; and r, are the maximum orders of the past outputs
related to the present outputs y,(t) and y,(t), the past inputs related to the
present inputs u;(t) and u,(t), and the past residuals related to the present
residuals &(t) and &) (f), respectively.

Obviously this model assumption is much more complex than the static
case described in Eq. (4.3). In Eq. (4.4), the output vector at current time instant
y(t) is assumed to relate itself, system input vector u(t), and modeling residual
vector g(t) from past one time instant up to past p, g, and r time instants,
respectively.

Eq. (4.4) is a general form of discrete time Nonlinear AutoRegressive
Moving Average with eXogenous input (NARMAX) relationship. This gen-
eral equation can be simplified to obtain the following equation of a discrete
time Nonlinear AutoRegressive with eXogenous input (NARX) relationship.
This relationship has been widely used in process modeling, prediction, and
control.

y(t) = fy(t-1), y(t=2),...,y(t=p), u(t=1), u(t-2),...,u(t - q), ©) + &(t)
(4.5)

Actually, static models represent dynamic models in steady state, that is,
static models describe the relationships between state variables in steady state.

Egs. (4.4) and (4.5) present a general form of model structure based on
input-output data {u(1), y(1), u(2), y(2),..., u(N - 1), y(N = 1), u(N), y(N)}
measured from the system. This method for dynamic system modeling from
input-output measurements is called system identification (Ljung, 1999). In
general, input-output signals in a system or process are measurable. Because
the dynamic characteristics of a process are reflected in the input-output data,
the mathematical model of the process can be built using the input-output
data. This is what system identification implies.

The mechanism of practical food manufacturing and processing systems
is complex. Describing mass and heat transfer activities in complex food
manufacturing and processing systems is difficult. Therefore, it is not easy
to build mathematical models for these processes theoretically. However, if
only the external characteristics of the processes are of concern, these pro-
cesses can be viewed as a “black box” as shown in Figure 4.1. In terms of
the information of inputs and outputs presented to the black box, a process
model with external characteristics equivalent to the characteristics of the
black box, can be built. This is a direct application of system identification
in food quality process modeling.

In some sense, the method of input—output modeling has an advantage
over the method of theoretical modeling because it is not necessary to know
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Figure 4.1 “Black box” structure of system identification.

the internal operating mechanism of the process for system identification.
The key for success in system identification is to design an effective exper-
iment to produce a maximal amount of information for modeling, but it is
very difficult to do so even though various powerful tools, such as PRBS-
based statistical experiment design and analysis methods are available. There-
fore, in practical dynamic process modeling, two modeling methods, system
identification and theoretical, are often used together to achieve the goal of
the modeling task. In the theory of modeling, the problems in theoretical
modeling are viewed as a “white box”; the problems in system identification
modeling are viewed as a “black box”; and the problems combining both
theoretical and system identification modeling are viewed as a “gray box,”
in which the part of known mechanism uses theoretical modeling, and the
part of unknown mechanism uses system identification modeling.

The focus of this chapter is on food process modeling using input—output
data based on the method of system identification. In general, the procedure
for identification of a process input-output model includes the following
steps:

1. Identification and preparation—the objective of modeling needs to
be determined. This is important for the determination of modeling
type, methods, and accuracy. For example, if the model is used for
constant control, the requirement for accuracy should not be high;
if the model is used for servos or forecasting and prediction, the
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requirement for accuracy cannot be low. In addition, before identifi-
cation, some information needs to be collected or measured from the
concerned process in some way, such as nonlinearity, time constant,
transient response, noise characteristics, process operating condi-
tions, and so on. The prior knowledge of the process will direct the
experiment design.

2. Experimental design—experimental design includes the choice and
determination of the following:

a. Input signal (magnitude, bands, etc.).
b. Sampling time.

c. Identification time (length of data).
d. Open or closed loop identification.

e. Off-line or on-line identification.

3. Data preprocessing—generally, this involves transform of input- output
data into zero-mean sequences and elimination of high frequency
components in the input-output data. This work could improve iden-
tification accuracy significantly if appropriately done.

4. Model structure identification—this includes a prior assumption of
model structure and the determination of model structure parame-
ters. Model structure parameters usually are orders of input—output
variables and the amount of time lag between the input variables
and the output variables.

5. Model parameter identification—after the model structure is deter-
mined, the model parameters need to be identified. Many methods
are available for model parameter identification. The Least Squares
is the most popular of these methods.

6. Model validation—model validation involves procedures to evaluate
how the identified model fits the input—output data in terms of the
modeling objectives and prior knowledge of the process. If the model
is rejected according to the designated criterion, the previous steps
are repeated with appropriate adjustments. If the model is accepted
as an acceptable description of the concerned process, the model can
be put into practice.

4.2 Linear statistical modeling

Statistical modeling is based on conventional linear regression techniques.
The linear regression can be divided further into simple regression which is
used to establish the statistical relationship between a single input and a
single output as described earlier, and multiple regression, which is used to
establish the statistical relationships between multiple inputs and single or
multiple outputs. The principle of multiple regression is similar to simple
regression, but the computation is much more complex.

For example, consider the relationship between one output and two or
more inputs with the technique of multiple regression. If a variable y in a
system is correlated linearly with n variables x;, x,,..., x,, then the linear
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regression model between these variables can be expressed as

y = Bo+Bixi+ Box,+ -+ Bx, + € (4.6)

In this expression, € is assumed to have the following properties:

—_

E(¢e) = 0, that is, the random variable has 0 mean.

2. Cov(g,g)=0(i#j) and of(i = j) where Cov(g;, &) represents the cova-
riance of ¢ and g, that is, each observation is independent.

3. The variables x;(i =1, 2,..., n) are nonrandom and determinant, that is,

E(ex;) = 0.

It is impossible to know the real value of the population, so the output
cannot be evaluated from the population regression equation

E(]/) = ﬁO + ﬁlxl + ﬂ2x2 L ﬁnxn (4:63)

The sample regression model is

E(y) =/§0 +/§1x1+/§2x2+~~~+[§nxn+e (4.7)

where e is the error term of the model.
The population is inferred from this sample regression model as follows

9 = BO +le1 +B2x2 + - +ann (48)

The work of multiple linear regression is to calculate the regression
coefficients Bi (i=1,2,..., n)based on sample observations (y;, xi, Xo,..., X,)
(i=1,2,...,N), and to have these coefficients tested statistically to show the
confidence levels of the estimates.

Now let us discuss the calculation of the regression coefficients. Least
squares is the most widely used method for calculation of the regression
coefficients. Calculation with the least squares is a type of optimization to
produce the coefficients to make the model “best” fit the data. From Eqgs. (4.6)
and (4.8), there exists

2
€;

Q=

VP

]
[u

(y; —?i)Z

I
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[yi_(l;0+lel+Bzx2+ +an11)]2 (49)
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For the given data, Eq. (4.9) represents that Q is a nonnegative sum of squares
of deviations of these regression coefficients Bi1, B, ..., Bn, so there must exist
a minimal value for Q. In terms of the principle of extremum in calculus,
the following simultaneous equations hold for fi, B2,..., Bx

,89=0
9Bo

0 _

o1 (4.10)
90 _,

LB

It can be derived from 9Q/9B, = 0 that

N
23 [y~ (Bo+ Brxiy + - + Buxi)1(-1) = 0 (4.11)

i=1

If the sample means of the observations are expressed as
1 N
5('] = Nle](] = 1,2,..., 1’1)
i=1
-1
J= g2y
i=1
Then, Eq. (4.11) becomes
Bo = 7 (B +Baxs + - +But,) 4.12)
Replace this equation in Eq. (4.8) with

Xij = x;= X,

Yi=yi_y (j=1,2,...,7’1,'i=1,2,...,N)
So,
91, = y+ﬁ,\1Xi1 +ﬁ2Xf2+"'+BnX,‘n (413)

and

Q = SV~ BiXiy +BaXip + - +uX,)] (4.14)
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Now except 0Q/9f, n other equations in the simultaneous Eqs. (4.10)
become

r N

%2 = ZZ[Yi_(leil +,82Xi2+ +BnXin)](—Xi1) =0
1 i=1
N

g—g— = 23 (Y- (BiXy +BoXin + - +BuXi)I(X) = 0 (415)

2 i=1
N

g/‘; = 23 1Y, - (BiXy + BaXin + - +BuXi)](-X,) = 0
L n i=1

Rearrange these equations with

r N
Sjp = S = ZXinil
i=1

G 1=1,2..,m) (4.16)

N
sy = 2 XY
i=1
Then, Eq. (4.13) becomes

511[31 + 51232 +oeeet SlnB” =

S2131 + 32232 L SZnﬁ” =

|
)
=

|
»
N

y 4.17)
Snlﬁl + SnZﬁZ +ot Snnﬁfl = Suy

These are normal equations for multivariate least squares. When given
the observation data, s; and s;, can be solved iteratively. Therefore, the normal
eAquaAtions, Eqs. (4.17), are the nth order linear simultaneous equations with
B1, B2, ..., Bnas the unknown variables. If the number of samples N is greater
than the number of unknown variables #, that is, N > 1, and any unknown
variable is not a linear combination of other unknown variables, then Egs.
(4.17) have a unique solution which can be represented as

Bi=Ycs, (=1,2,..,m (418)
i=1

where c; is the element of the matrix (c;) = (sﬂ)f1 (j,1=1,2,..,n). Once
ﬁ,- (j=1,2,..., n) are solved, they can be used to solve o with Eq. (4.12).
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The calculation for multiple regression coefficients is similar to the one for
simple regression coefficients, but the amount of computation is significantly
more. For the model of simple regression represented as Egs. (4.1) and (4.2),
the regression coefficients 4 and b can be calculated as

_ Zl\i] X,'Yi
N, X7 (4.19)

S

~

-bx

>
I}
<

It can be proven that the least squares estimate B;of the multiple linear
regression and aand b of the simple linear regression are linear, unbiased,
and with minimal variance (Milton and Arnold, 1990). They are linear, unbi-
ased, and minimal variance estimates of the population variables 3, and a
and b.

When the coefficients of the sample regression equation are estimated,
it is necessary to perform statistical tests in order to give the confidence level
for population inference from the equation.

If used just for parameter estimation, no assumption on the distribution
of £ is needed. However, if the issues of statistical tests and confidence
interval are concerned, it is necessary to assume the distribution of & (or the
distribution of f3). In general, there are two types of distribution assumptions
on ¢

1. Assume ¢ is normally distributed. This is a strict assumption.

2. Do not assume ¢ to be specifically distributed. However, in terms of
the central limit theorem (Milton and Arnold, 1990), when the sample
size tends to be large, the distribution of € is approximately normally
distributed.

Considering the preceding assumptions, the tests of significance include
the significance test of each independent variable and the overall significance
test of all independent variables. The following hypothesis is often con-
structed for the significance test of each independent variable

H0: ﬁ/ZO (j=1,2,..., I’Z)
Hy: 20 (j=1,2,..., 1)

where H, is the null hypothesis and H, is the alternative hypothesis. For the
case of £being assumed to be normally distributed, y is normally distributed
as well, and f; is the combination of y;. Therefore,

-N (ﬂj, JVar(Bj))
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Using the Z transform, we have

Z= BB ~N(0, 1) (4.20)

NVar(B))

When a level of significance, ¢, is given, the value of N, can be looked
up in the table of standard normal distribution (refer to any book about basic
statistics, e.g., Milton and Arnold, 1990). The two-tailed test with the signif-
icance level o, if |Z| < | N, |, means that f3;is not significantly different
from 0, that is, 3;and B;are not significantly different. In this case, the null
hypothesw H, is accepted. Otherwise, |Z| > |N,,|, and it means that Bi
is significantly different from 0, that is, Bjand B; are significantly different.
In this case, the null hypothesis H, is rejected, and the alternative hypothesis
H, is accepted.

The preceding test based on the Z statistic is for problems with a large
sample size (number of samples greater than 30). For the problems with a
small sample size (number of samples less than 30), the student ¢ statistic is
often used. The student ¢ statistic depends on the degree of freedom N —n
and uses the variance estimate to replace the true variance of the population

Bi-B;
t = (4.21)
A/Var(ﬁj

When performing a test with the student ¢ statistic with the given level of
significance ¢, the value of ¢,,, can be looked up in the table for the student
t distribution for the degree of freedom N —n. If |t| < |t4,], B; and B; are
not significantly different and the null hypothesis Hj is accepted; otherwise,
if |t| > |toal, Bjand B;are significantly different, the null hypothesis H, is
rejected and the alternative hypothesis H; is accepted.

The overall significance test is for the test of the significance of n inde-
pendent variables x;, x,,..., x, on y. For this, the following hypothesis needs
to be constructed

Hppi=B=...=p,=0
lenotallﬁ]:o, j=1,2,...,n

This implies that if H is accepted, all of the population parameters are
zero and the linear relationship between y and these independent variables
does not exist. Otherwise, if Hy is rejected, then it can be inferred that the n
independent variables have significant impact on .

As described earlier, when any of the independent variables cannot be
represented by other independent variables, the normal Egs. (4.17) have a
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unique solution. Under this condition, the following F statistic observes the
F distribution with the degree of freedom of n and N —n -1

o Ehi-9)/n
= (§i-9)'/(N-n-1)

When given the level of significance ¢, the value of F, can be looked up in
the table of F distribution according to the degree of freedom v;=n and v, =
N —-n—1.If F > F,, then reject H, and accept H;, which means that these
independent variables have significant impact on y. Otherwise, if F < F,,,
then accept Hy, which means that none of these independent variables has
a significant impact on .

Further, the F test can be extended to test the significance of some of the
regression coefficients. Variable selection is very useful in practice. Assume
y strongly impacted by n independent variables x;, x,,..., x,. The regression
model can be expressed as Eq. (4.6). If it is also impacted by other | — n
independent variables x,.,1, X,,..., X; (I > n), the regression model, including
all independent variables, should be

~Fn,N-n-1) (4.22)

y= :BO + ﬁlxl + .Bzxz +e ﬁnxn + ,Bn+1xn+1 + ﬁn+2 Xppp+oee t ﬂlxl + & (423)

Now, consider the impact of each of x,,,;, X,;5,..., X, on y, and at the same
time consider whether they all have the impact on y. The former problem
can be solved using the Z or t test as described previously. Here the latter
problem only will be discussed. For this, the following hypothesis can be
constructed

Hot B = Bua = = B = 0
Hiy:notall ;=0, j=n+1,n+2,.,1
Define the following terms
N N N
SST=3(y:i-y)",  SSR=.(yi-9)’, and SSE =Y (§;-y)’
=1 =1 i=1
It can be proved that for Eq. (4.6), there exists
SST, = SSR,, + SSE,,
and for Eq. (4.23), there exists
SST, = SSR; + SSE,;

So, the F statistic for the increase of new independent variables in Eq. (4.23)

with respect to Eq. (4.6) is

p _ (SSRi=SSR,)/(-m)
~ SSE,/(N-1-1)

(4.24)

Calculate the value of F in Eq. (4.24) and compare it with the value in the
table of F distribution for the degree of freedom [ —n and N -/ — 1. By doing
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so, Hy is either rejected or accepted, and the impact of some of the regression
coefficients in independent variables on y can be inferred.

Because simple regression has only one independent variable, there is
no need to test the overall impact. The impact of each regression coefficient
is necessary. For the case of a large sample size (number of samples greater
than 30), the Z statistic for a and b is, respectively,

~N(0, 1)
. (4.25)
Z, = % ~N(0, 1)
lot/ Y X:

So, with the given level of significance, the decision will be made to accept
or reject the null hypothesis based on the value in the table of standard
normal distribution.

For the case of a small sample size (number of samples less than 30), the
t statistic for a and b is, respectively,

‘tu _ a-—a
Jaﬁixf/ NinJ
- o (4.26)
t, = b‘j
0./ 3. X;

Similarly, with the given level of significance, the decision will be made to
accept or reject the null hypothesis based on the value in the table of ¢
distribution with the degree of freedom N — 1.

Instead of t and F tests, the reliability of a regression equation is fre-
quently measured by the multiple correlation coefficient. The multiple cor-
relation coefficient can be represented as R, ., . . or R for short. This
parameter measures the correlation between y and all the independent vari-
ables xy, x,,..., x,. It can be interpreted as the proportion of the variability
that has been accounted for by the regression equation, that is,

N
ZY? 2(%—?)2 D (vi— )

R? = = _ =l =1-=_ (4.27)
N

N N
XY Y-y S Wi=
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R’ has another name, the coefficient of multiple determination. If R*= 1, the
model is perfect. If R* = 0, the model does no better than predicting the
average value it tries to estimate.

In statistical modeling, often a subset of the full set of independent vari-
ables can contribute to build a model to adequately fit the data. The model
with the full set of independent variables may increase the complexity of
the standard errors of the estimates and add little accuracy to the estimates.
In general, there are two approaches commonly used to select a subset of
the possible independent variables to build the smallest and most adequate
model: backward elimination and forward addition. Backward elimination
is a step-down procedure. With this procedure, the process of modeling
begins with the model with the full set of independent variables. The vari-
ables, then, are eliminated one at a time as long as they are determined to
make little contribution to the model. The approach of forward addition is
a step-up procedure. In this procedure, the model is built by adding inde-
pendent variables one at a time through testing their contribution to the
model. This approach was used to establish the method of stepwise regres-
sion (Efroymson, 1962). Stepwise regression tests the contribution of each
variable at each step. A variable that is already in the model will be removed
later when its contribution is redundant with some other variables.

For structure identification of process models, the values of the orders of
output y(t) and input u(t), numbers of past y(f) and u(t) used in model input,
are determined. Typically, as the orders of y(t) and u(t) increase, the accuracy
of the model increases. However, if the order is too large, the model will overfit
the data, that is, the model will fit the data extremely well but poorly predict
outputs based on data not included in building the model. In order to balance
the model accuracy against the order of the model, Akaike’s information
criterion (AIC) (Akaike, 1973) can be used. Order determination with AIC is
an application of the principle of maximum likelihood. It looks for a model
where the output probability distribution approximates the probability distri-
bution of the actual process output to the maximum degree. AIC is defined as

AIC(Ny) = -2 log (ml) + 2N, (4.28)

where ml is the maximum likelihood function of the output of the process
model, and N, is the total number of parameters in the model. In AIC, the
term -2 log(ml) measures the error of the model, and the term 2N, provides
a penalty for the complexity of the model, which penalizes the model with a
large N,. A high value of model error rejects the overly simple model, and
a high value of penalty term rejects the highly complex model. Therefore, a
model that achieves the least AIC will produce optimal model orders. Because
the penalty term increases linearly with the number of parameters in the model
and the model error term decreases with each additional parameter, a mini-
mum point of AIC is guaranteed. Figure 4.2 shows the relationship between
AIC(N,y) and N,,.
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Figure 4.2 Relationship between AIC(N,) and N, where N is the optimal value
of Nj.

4.2.1 Example: Linear statistical modeling based on ultrasonic
A-mode signals for beef grading

Whittaker et al. (1992) and Park (1991) conducted regression analysis to
obtain a functional relationship between ultrasonic A-mode parameters and
the beef tissue constituent property. The first linear regression model was
developed to estimate fat concentration from a longitudinal in the time
domain. This simple regression model was built based on 100 randomly
selected samples among 124 meat samples. The model used to predict intra-
muscular fat concentration through ultrasonic speed was

% Fat = 330.86 — 0.2114 x LSPD
R* = 0.66

where LSPD is longitudinal speed (m/sec).
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Table 4.1 Multiple Regression Models of D1fferent Ultrasonic Probes
and Corresponding R* Values*

Probe (MHz) R’ Model

Longitudinal

1 0.37 % Fat=3.392 + 7.078f, —0.143 B+ 1.293f;, —0.955 Lm
2.25 0.41 % Fat=5.412 — 1.262f, — 0.055 B+ 0.98 Lm

5 0.55 % Fat =0.733 — 8.937f, + 8.507f. + 1.591 Lm

Shear

1 0.50 % Fat=0.331 - 0.059B" + 0.784f, + 0.731 Lm

2.25 0.82 % Fat =1.790 — 2.373f, + 0.049 B*+1.178 Lm

5 0.58 % Fat =-2.539 + 1.148f, + 0.864 Lm

* Adapted from Park, (1991). With permission.

Further, based on the frequency analysis data, the multiple regression
models of six different ultrasonic probes were built for the prediction of
fat concentration. The result showed that the determinant coefficients,
R?, of the models of the shear probes were greater than those for the
longitudinal probes. Table 4.1 shows the models of different ultrasonic
probes and the corresponding values of R”. The full model should be in
the form

% Fat = ﬁo +ﬁ1fﬂ+ﬁ2fh+ﬁ3fp+ﬁ4fc+B5B*+ﬁ6fsk+ﬁ7Lm

Some of the variables do not appear in the table. This indicates that the
corresponding regression coefficients are zero, and these variables do not
strongly relate to the output. From the table, it can be seen that the highest
value of R” occurred for the model of the 2.25 MHz shear probe and that the
local maxima Lm appeared as the dominant term in all models.

4.2.2  Example: Linear statistical modeling for food odor pattern
recognition by an electronic nose

The purpose of food odor pattern recognition by an electronic nose is to
classify the food samples based on readings of a sensor array in an electronic
nose. Linear statistical modeling for food odor pattern recognition by an
electronic nose found the following relationship

¢ = Bo+ Py + oy + o + P, (4.29)

where ¢ is the sample classification assignment, x(i=1,2,...,n)is the ith
normalized reading in the n-sensor array, and /3 (i=0,1,2,..., n)is the ith
coefficient estimate of the corresponding sensor reading.

With a 32-sensor commercial electronic nose (AromaScan), a classification
model of peanut off-flavor had a binary output of 1 representing off-flavor and
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0 representing non-off-flavor, related 32 inputs to the binary output (Osborn
et al., in press).

4.2.3 Example: Linear statistical modeling for meat attribute
prediction based on textural features extracted from ultrasonic
elastograms

Lozano (1995), Moore (1996), and Huang et al. (1997) conducted statistical
modeling for meat attribute prediction based on textural features extracted
from ultrasonic elastograms in a variety of data sets. Their work was the
prediction of mechanical and chemical attributes of beef samples of LD muscle.
One original and one replicate elastogram were generated from each beef
sample and were averaged to produce a single image. The number of sam-
ples was 29. A total of 10 mechanical and chemical attributes data of the beef
samples were collected.

Haralick’s statistical textural features and wavelet textural features were
extracted from the elastograms of the beef samples (Huang et al., 1997).

For a single elastogram, if all 14 parameters originally presented by
Haralick et al. (1973) are computed for 4 angles (0°, 45°, 90°, and 135°) and
4 neighborhood distances (d =1, 2, 5, and 10), there will be 224 (4 x 4 x 14)
independent statistical textural features. In this application, the feature values
in angles were averaged. In this way, there still existed 56 (4 x 14) independent
statistical textural feature parameters.

In using the method of regular regression, if all of the 54 independent
statistical textural feature parameters are used as the input, a unique solution
for the regression equation will not exist because the number of parameters
(65) is greater than the number of the samples (29). So, the linear regression
models were fitted by separating distances at 1, 2, 5, and 10. In this way, each
model had 14 inputs. Table 4.2 shows the values of R” of all models.

Table 4.2 R*Values of Linear Regression Models for Beef Attribute Prediction
Based on Haralick’s Statistical Textural Feature Parameters*

Distance 1 Distance 2 Distance 5 Distance 10
Average Average Average Average
R? Angle Angle Angle Angle
WBI1 (kg) 0.3894 0.2868 0.3997 0.5597
WB2 (kg) 0.4077 0.4323 0.4417 0.5998
WB3 (kg) 0.6808 0.7629 0.7700 0.5774
WB4 (kg) 0.3580 0.4552 0.2917 0.4222
Calp (ug/g) 0.2591 0.1701 0.2299 0.1898
Sarc (um) 0.4226 0.4574 0.5158 0.5079
T.Coll (mg/g) 0.3569 0.3873 0.3875 0.4060
%Sol 0.5781 0.5804 0.3687 0.4961
%Mois 0.4769 0.3564 0.4969 0.5248
Y%Fat 0.4687 0.7423 0.6193 0.6150

* Adapted from Huang et al. (1997). With permission.
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In order to find major independent variables and remove minor inde-
pendent variables, the method of stepwise regression was used with a level
of significance of & < 0.15 to determine the effectiveness of the information
extracted from elastograms (Haralick’s statistical textural features) to predict
WB1, WB2, WB3, WB4, Calp, Sarc, T.Coll, %Sol, %Mois, and %Fat. The final
multiple regression equations were

WBI = —2.06 —254.90 f 14045 — 45.60 f 12002

+04fr0m1 + 0.2 f2002 = 0.2 f 2010 (R* = 0.47)

WB2 = —38.62 - 177.95 f 12041 + 235.56 f 12042
+49.74 f 1300 (R? = 0.40)
WB3 = 2.20 — 14.83 f 15042 — 12424 f 1,045 (R* = 0.40)
%Sol = 16.36 + 0.01 f a5 (R*=0.12)
%Mois = 41.43 +41.21 f 301 (R* = 0.23)
%Fat = 16.15 - 5.89 fsau10 (R* = 0.25)

However, the equations of WB4, Calp, Sarc, T.Coll could not be established
because the operation of stepwise regression failed in building models for
them owing to the lack of a significance for the parameter test. In the equation
of WB1, fisass is the 14th Haralick’s statistical textural feature, maximal cor-
relation coefficient, at the distance of 5, fi,e,, is the 12th Haralick’s statistical
textural feature; informational measure of correlation —1, at the distance of 2,
foam is the second Haralick’s statistical textural feature; contrast, at the dis-
tance of 1, foas, is also the second Haralick’s statistical textural feature but at
the distance of 2; and f,q410 is the second Haralick'’s statistical textural feature
at the distance of 10. In this equation, the remaining 49 independent
variables were removed by the process of stepwise regression because they
did not significantly impact on the dependent variable WB1. The equations
of WB2, WB3, %Sol, %Mois, and %Fat were built in a similar way.

All of the elastograms of beef samples were cropped into the size of
128 x 128 for wavelet analysis. The number of independent wavelet textural
features was 29 (4 x 7 + 1). In this way, if all of the 29 feature parameters
were used, fewer samples would be used to determine more parameters
because the number of the samples was 29. Therefore, the wavelet decom-
position was performed one step less than the standard procedure, and 25
feature parameters were produced instead. Table 4.3 shows that all regres-
sion models based on wavelet textural feature parameters had much higher
R? values than the models based on Haralick’s statistical textural feature
parameters. This indicates that these models account for a high percentage
of the variations in the outputs as beef mechanical and chemical attributes
and that the wavelet textural features can be used to effectively predict
these beef attributes.
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Table 4.3 R*Values of Linear Regression Models for Beef Attribute
Prediction Based on Wavelet Textural Feature Parameters*

R Daubechies-4 Wavelet Textural Features
WB1 (kg) 0.9562
WB2 (kg) 0.9432
WB3 (kg) 0.9008
WB4 (kg) 0.8392
Calp (ug/g) 0.8349
Sarc (um) 0.8770
T.Coll (mg/g) 0.8798
%Sol 0.9060
%Mois 0.9100
%Fat 0.8851

* Adapted from Huang et al. (1997). With permission.
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Figure 4.3 Black box structure of the snack food frying process.

4.2.4 Example: Linear statistical dynamic modeling for snack food
frying process control
Based on the black box idea, the snack food frying process can be seen in

Figure 4.3. Mathematically, Eq. (4.5) can be simplified further to represent
the snack food frying process in the assumption of a linear SISO system:

y(t) = oqy(t -1+ opy(t=2) + --- + o,y (t —p) + Biu(t —d - 1)
+Bou(t—d=2)+ -+ Bu(t—d—q)+et) (4.30)

where d represents the time lag between the input and output. Comparison
of Egs. (4.29) and (4.5) shows the latter to be significantly simplified. Eq. (4.30)
is a discrete time AutoRegressive with eXogenous input (ARX) description
of the process. In general, for linear systems the models can be described in
this form as long as y(t) and h(t) are observable at discrete instants:

y(t) = h'() - O+ &(t) (4.31)
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Figure 4.5 Representative structure of an identified model.

where h(t) = (hy(t), hy(1),..., hn(t))T is the model input vector, and © =
(6, 6,,..., 6,)" is the vector for model unknown parameters. This is the so-
called least squares form of the model. From this form, it is not difficult to
get the least squares solution of the model.

If h(t)= ((t-1), y(t=2),...,y(t —p), u(t—d—-1), ut —d—-2),..., u (t —d— q))T
and © = (g, O, ..., O, By, Bor-., ﬁq)T, then Eq. (4.5) can be written in the form
of Eq. (4.30). This is described in Figures 4.4 and 4.5. For the process to be
identified as shown in Figure 4.3, the model describing it can be expressed
in the form shown as Figure 4.4. This is a form of least squares. It should be
noted that in this form the output scalar y(t) is the linear combination of
input vector h(t), and the input k(t) is no longer just u(t) which includes
the past inputs of the original process, u(t — -), and past outputs of the original
process, y(t — -) and at the same time, model residual &(t) is no longer the
original measurement noise w(t).

The preceding model can be extended to the case of MIMO processes as
follows

y(t) = H(t) - ©+&(t) (4.32)
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where the output vector is

y(t) = [y (1), Yot o, Yu(DT

The noise vector is

&) = L&), &xt),..., &, (D'
The parameter vector is

@ = (91/ 92/-~/ en]T

The input data matrix is

hll(t) hlz(t) hln(t)
H(t) = h21'(t) hzz(t) th(t)

hml(t) hmZ(t) hmn(t)

Bullock (1995) used the System Identification Toolbox of MATLAB (The
MathWorks, Inc., Natick, MA) to develop two linear multiple-input, single-
output ARX models for the snack food frying process. The data were broken
into training and validation groups. The training data were used for modeling
while the validation data were used to test the predictive ability of the model.
First, all the possible reasonable ARX model structures were created using the
struc command that produced a matrix holding all possible combinations
of orders and lags. Next, the loss functions for all the possible ARX model
structures defined in the matrix were calculated using the arxstruc com-
mand. Then, the best model structure was determined using the selstruc
command with AIC. The last step was to use the arx command to build the
ARX model, that is, to estimate the parameters. The model was simulated
using the idsim command.

The numbers of past outputs and inputs and time-lags determined for
the model structure are shown in Table 4.4. The coefficients for the ARX
models are plotted in Figures 4.6 and 4.7. The performance of the model was
evaluated by its ability of prediction and will be discussed in the next chapter.

Table 4.4 Model Structural Parameters of the ARX Model*
Model  Time-Lag Order

Variable Related (5s) (55s)
Inlet temperature u,(t) Input 19 12
Exposure time u,(t) Input 14 13
Color yy(t) Output 0 12
Moisture y,(t) Output 0 12

* Adapted from Bullock, (1995). With permission.
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Figure 4.6 Color ARX model coefficients. (From Bullock, 1995. With permission.)

Autoregressive Coefficients for Moisture ARX Model
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Figure 4.7 Moisture ARX model coefficients. (From Bullock, 1995. With permission.)
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4.3 ANN modeling

Artificial neural networks provide a way to organize synthetic neurons to
solve complex problems in the same manner as the human brain. Based on
studies about the mechanisms and structure of human brain, they have been
used as a new computational technology for solving complex problems like
pattern recognition, fast information processing, and adaptation. The archi-
tecture and implementation of an artificial neural network (ANN) model are
a simplified version of the structure and activities of the human brain. For
problem solving, the human brain uses a web of interconnected processing
units called neurons to process information. Each of the neurons is autono-
mous, independent, and works asynchronously. The vast processing power
inherent in biological neural structures has inspired the study of the structure
itself as a model for designing and organizing man-made computing struc-
tures. McCulloch and Pitts (1943), Hebb (1949), Rosenblatt (1958), Minsky and
Papert (1969), Grossberg (1976), and Hopfield (1982) conducted pioneer stud-
ies on the theoretical aspect of ANNSs. In 1986, the Parallel Distributed Pro-
cessing (PDP) group published a series of results and algorithms (Rumelhart
and McClelland, 1986, Rumelhart et al. 1986a) about back propagation (BP)
training for multilayer feedforward networks. This work gave a strong impe-
tus to the area and provided the catalyst for much of the subsequent research
and application of ANNSs.

An ANN consists of interconnected processing units similar to the neurons
in the human brain. It is typically implemented by performing independent
computations in some of the units and passing the results of the computa-
tions to other units. Each of the processing units performs its computation
based on a weighted sum of its input. In an ANN, the processing units are
grouped by layers. The input units are grouped as the input layer and the
output units are grouped as the output layer. Other units are grouped into
hidden layers between the input and the output layer. An activation function
usually is used to determine the output of each unit in the hidden and output
layers. The connections between processing units, like synapses between
neurons, are quantified as weights.

ANNSs are used in mathematical modeling to establish a map between
system inputs and outputs. ANNs are especially useful when classical sta-
tistical modeling, which is based on linear model structure and parameter
estimation, cannot be validated. Unlike statistical modeling, before using
ANNSs in modeling it is not necessary to assume how the system inputs and
outputs are related. ANNs always build a relationship between system
inputs and outputs as long as they are related in some way in reality. So,
ANN:Ss play an important role in applications where classical statistical mod-
eling does not work well.

ANNSs have been widely used in nonlinear data modeling, classification,
prediction, and process control. In recent years, they have been developed for
problem solving in food science analysis and engineering development,
including quality quantization and process control.
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Figure 4.8 Structure of a fully connected MFN.

Review of the contributions made by pioneer and current studies reveal
that there exist a number of different ANN architectures. Among them, the
multilayer feedforward network with the BP training algorithm is the most
widely used in scientific research and engineering applications. A multilayer
feedforward network (MFN) includes an input layer with a number of input
processing units or nodes, hidden layers with hidden processing units or
nodes between the input and output layers, and an output layer with a
number of output processing units or nodes. In the network, each input node
in the input layer is connected to every node in the adjacent hidden layer.
Each node in this hidden layer is connected to every node in the next hidden
layer. This is repeated until every node in the last hidden layer is connected
to each node in the output layer. The connections are represented by the
values of the weights for the strength of the connections. This results in a
fully connected MEN. Figure 4.8 shows the structure. Usually, the output of
each hidden node is a sigmoid transfer function of the weighted sum on all
inputs and a bias term to that node, and the output of each output node in
the network is either a sigmoidal function of the summation or a linear
function of the summation. This type of MFN, especially with one hidden
layer, was proven as the universal approximator for any continuous function
(Hornik et al., 1989; Cybenko, 1989).

The training algorithm of the network is as important as the ANN
architecture. Consider the one-hidden-layered feedforward neural networks
with multiple inputs and single output, the most widely used MFN. The
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equations for the computation in forward pass are

<>
|

h
= S{w0 + Zwisz

i=1

N
I

= S;{wo,- + zw]1x]J (433)

i=1

where S,( ) is the output function of the output node in the network which
can be sigmoid or linear, S,( ) is the output function of each hidden node
which is usually sigmoid, w, is the bias term of the network output node,
w; is the connection weight between the ith hidden node and the output
node, z; is the output value of the ith hidden node,  is the number of the
hidden nodes, w; is the bias term of the ith hidden node, w;; is the connection
weight between the jth input node and the ith hidden node, and 7 is the
number of the network inputs. This equation represents a static relationship
between inputs and outputs. It can be applied to the dynamic case as long
as the network output § and inputs x;, x,,..., x, are replaced with §(t) and
yit =1), yt = 2),..., y(t — p), u(t = 1), u(t - 2),..., u(t — q), respectively. So, the
number of network inputs n =p + g.

Based on the forward pass equations, the training algorithm of the net-
work can be derived by solving the optimization problem to minimize the
following objective function

1 N2
J=52i=9) (4.34)
i=1

A variety of methods to solve the optimization problem exist. Rumelhart et al.
(1986a) used the method of gradient descent to develop the BP training algorithm
for the network. In the BP training algorithm, the weights are updated as follows

Wnew — Wold +AW01d

od _ d]
AW = 3

0!
w=w

(4.35)

1d

where 7 is a constant as the adaptation rate of network training and the
capitalized W represents the set of all weights, small w. This equation indi-
cates that the weights are updated in proportion to the gradient of | with
respect to the weights. Rumelhart et al. (1986a) gave the derivation of the
BP algorithm. Earlier, Werbos (1974) gave a different version of the derivation.
They used different approaches, but the results were exactly the same. In the
derivation, Rumelhart used the chain rule directly while in Werbos’ derivation,
the chain rule was used in a convenient way by ordered derivatives. Werbos’
derivation is more general and mathematically rigorous than Rumelhart’s.
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The details of the derivations can be found in their works. Huang (1995)
gave the derivations of the BP algorithm following the ideas of Rumelhart’s
and Werbos for modeling and control of a snack food frying process. The
final equations of the BP algorithm for weight updating based on Egs. (4.34)
and (4.35) are as follows

1d
w™ = w +ndz;
1d
= s
4 NS old
A 7 0. 0Ol
6 = (y-1)S;| wo +zwi Z; (4.36)
i=1
new old
i = Wi+ N6x;
new old
Wy, = Wy +1NG;
o =

n
old o old old
= 5wi S,{wo,» +2wﬂ x])
j=1

where 6 and ¢, are the values from the network output node and the ith
hidden node which are used to propagate the error at the output back to the
input.

With the structure and the training algorithm for modeling a static rela-
tionship similar to Eq. (4.3), the input vector, X, and the output variable, y,
can be used to approximate the functional relationship as

7= fx, W) (4.37)

where x= (x;, xy,..., x,,)T, and Wis a matrix representing the connection
weights in the network including w;, w, w;;, and w,,. For modeling a dynamic
process similar to Eq. (4.5), the input variable, 1, and the output variable, y,
can be used to approximate the functional relationship as

9(” = ]Ac(}/(f— 1)/ y(t_z)rr ]/(t—P)/ M(t— 1)r u(t—2),..., “(t—IJ)/ W)
(4.38)

When applying the BP algorithm, the network can be unstable when the
learning rate, 7, is set too large, which is sometimes done in order to speed
up the convergence of the training process. A simple method to increase the
learning rate and avoid the instability is to include a momentum term in the
update equations of weights (Rumelhart et al., 1986b)

Wnew — W01d+AWold

9]

old _ 9
AW = g

+p AWM
w=w"d (439)
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where AW represents the weight update at the last iteration, and p is the
momentum constant between 0 and 1, which acts on the momentum term
to keep the direction of the gradient descent from changing too rapidly when
the learning rate is increased.

In addition to the gradient descent method, a number of other optimi-
zation methods can be used to increase the efficiency of the BP training
process. Conjugate gradient and Levenberg-Marquardt methods have been
used in many ANN applications. Choosing a method for nonlinear optimi-
zation depends on the characteristics of the problem to be solved. For objec-
tive functions with continuous second derivatives (which would include
feedforward nets with the most popular differentiable activation functions
and error functions), three general types of algorithms have been found to
be effective for most practical purposes (Sarle, 1999).

¢ For asmall number of weights, stabilized Newton and Gauss—Newton
algorithms, including various Levenberg—-Marquardt and trust-region
algorithms, are efficient.

¢ For a moderate number of weights, various quasi-Newton algorithms
are efficient.

e Foralarge number of weights, various conjugate-gradient algorithms
are efficient.

The Levenberg-Marquardt algorithm is a standard nonlinear least
square technique that can be incorporated into the BP process to increase
the training efficiency although the computational requirements are much
higher (Hagan and Menhaj, 1994). In order to extend the BP algorithm with the
Levenberg-Marquardt method, the objective function of training in Eq. (4.34)
can be re-expressed according to Eq. (4.37) as

1 2
J(W) EZ(%‘?:‘)
N
= %Z[y,-—fi(zc, W)’
T 2
=526 W)

1
= EeT(x, W) -e(x, W) (4.40)

where 612 (.X, W) =Y;i— fi (X/ W)r and ¢ (X/ W) = [31(3,5/ W)r 62(2(/ W)/'--r eN(Xr W)]T

So, for the following optimization problem,

in J(W
min J(W) (4.41)
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where W* is the optimal matrix of W for the objective function ], using the
Gauss-Newton method (Scales, 1985). The following updating equation can
be obtained

W™ = W - [D'e(x, W) De(x, WDT" - DTe(x, W) - e(x, W)
(4.42)

where De (x, W) is the first derivative of the vector function e (x, W) at W,
that is, the Jacobian matrix of e¢(x, W) at W. In general, W*" is a better
approximation of W,

The Levenberg-Marquardt algorithm modified the Gauss—Newton algo-
rithm to the following

Wnew — Wold_ [DTQ(-ZC, Wold) . D@(-X, Wold) + ‘ul]*l . DTQ‘(ZC, Wold) . Q(ZC, Wold)
(4.43)

where [ is a unit matrix. The factor u is important. When it is zero, Eq. (4.43)
reverts back to the Gauss-Newton algorithm. When it is large, it becomes
the gradient descent algorithm. The values of 11 for the Levenberg-Marquardt
algorithm occur in between. This algorithm can determine the search direc-
tion even when the matrix D¢ (x, W) - De(x, W) is singular. The factor u
is also a convenient parameter to adjust the convergence of the iterative
process. Hagan and Menhaj (1994) used this algorithm in neural network
training for five approximation problems with significant improvement on
the computational efficiency. Huang et al. (1998) investigated the application
of a Levenberg-Marquardt algorithm-based BP training algorithm to
improve the efficiency of the training processes and generalization of the
MFNs in prediction modeling for meat quality evaluation with wavelet
textural features from ultrasonic elastograms.

In the BP training process, the output of the feedforward network tends
to approximate the target value given the inputs inside the training data set.
For the purpose of modeling for prediction, a neural network needs to
generalize what is established in training, that is, to let the network output
approximate its target value outside the training data set for the given inputs.
Several techniques can be used to improve the generalization of a neural
network (Finnoff et al., 1993). Among them, weight decay is effective. Weight
decay adds a penalty term to the regular objective function for network
training

Jwa =T+ Apt (4.44)

where [,4is the overall objective function for weight decay, /. is the penalty
term that causes the weights to converge to smaller absolute values than they
would in the regular case, and A is the decay constant, which can be tuned
for the performance of the weight decay.
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For the minimization problem of ], 4 the optimal vector W* should
satisfy the following equation

V]wa=0 (4.45)

where V represents the gradient operator. If the Gauss—-Newton method is
used, and the penalty term is the squared sum of all weights in the network,
the weight updating equation is

W = [D"e(x, W)De(x, W)+ 2AWI] " - [D"e(x, W)De(x, W)]W
— [D"e(x, W)De(x, W) +2AWIT " - D"e(x, W)e(x, W) (4.46)

The generalization ability of a network depends on the decay constant.
With weight-decay training, the network can avoid oscillation in the outputs
caused by large weights.

The leave-one-out procedure (Duda and Hart, 1973) can be used to
validate only one sample at a time and train the network with the rest of
the samples. This can be useful where the total sample size is small. The
procedure used in network training is as follows:

1. Set the counter ¢ = 1.

2. For the data set with N samples, set up a training data subset con-
taining N — 1 input-output pairs excluding the cth pair.

3. Train the network with the training data until the training process
converges satisfactorily.

4. Validate the network using the excluded input-output pair.

5. If ¢ = N, then finish the training process. Otherwise, let c =c + 1 and
go to Step 2.

The generalization ability of the network can be assessed by evaluating
all of the validations done in the implementation of the procedure.

The BP algorithm is an example of supervised training algorithms. Super-
vised training algorithms use an external teacher or input-target (output)
pairs. In supervised training, inputs are applied to the network and the
network’s output is calculated and compared to the target values. The dif-
ference or error is propagated back to the network. With the back propagated
error, the network weights are adjusted in a manner to reduce the error in
the next iteration. Unlike supervised training, unsupervised training has no
“teacher,” and input patterns are applied to the network and the network
self-organizes by adjusting the weights according to a well-defined algorithm
and network structure.

One important self-organizing principle of sensory pathways in the brain
is that the position of neurons is orderly and often reflects some physical
characteristics of the external stimulus being sensed. Kohonen presented such
a self-organizing network that produces what he called self-organizing feature
maps (SOM) similar to those that occur in the brain (Kohonen, 1984; Lippman,
1987). Kohonen'’s self-organizing network is an important method in unsuper-
vised training.
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Kohonen's self-organizing network is a two-layer structure. The network’s
output nodes are arranged orderly in a one- or two-dimensional array, and
every input is connected to every output node by an adjustable connection
weight.

There are two steps in the training process of a Kohonen self-organizing
network. The first step is to generate a coarse mapping. In this step, the
neighbors, NE . as an example for the one-dimensional case, are defined for
updating as

NE;« = (max(1, j*~-1), j*, min(m, j*+1)) (4.47)

This means that every output node j has the neighbors j — 1 and j + 1, except
at the borders of the array, whereby the neighbor of node 1 is 2, and the
neighbor of the node m is m — 1, respectively. Also in this step, in order to allow
for large weight modifications and to settle into an approximate mapping as
quickly as possible, the adaptation gain term, 7, should remain high (>0.5).

The second step is to fine-tune the output nodes to the input vectors
within localized regions of the map. In this step, the neighbors are reduced
to winning nodes only, that is, NE;x = (j*), and the adaptation gain term, 7,
should be low (<<0.5).

The Kohonen self-organizing network has been successfully applied in
areas such as speech recognition (Aleksander, 1989) and image processing
(Nasrabadi and Feng,1988). Whittaker et al. (1991) used it for ultrasonic
signal classification in beef quality grading.

In an ANN model, the final model needs not only to perform satisfactorily
for the training data, but also to produce acceptable outputs when presented
with input data not used in the training data. In general, the neural network
training error is different than the error generated in validation of the neural
network. The neural network process model with acceptable training error
and generalization should have the smallest structure, that is, the minimum
number of hidden nodes and past process inputs and outputs.

Usually two sets of data are grouped from the process input-output data
without overlap. One set of data is used to train the network, and the other
is used to test or validate the network model. In general, with the increase
of model complexity, that is, the increase of model order or the number of
network hidden nodes, the model error measurement on the training data
decreases continuously and the model error measurement on the test or
validation data decreases initially, then reaches a minimum point, and
increases again afterwards. This behavior can be used to determine the struc-
ture parameters of a neural network with the cross validation of the two data
sets. As the number of model structure parameters, model order, or number
of network hidden nodes increases, the model training error decreases sig-
nificantly. Although the training error still decreases, this decrease is not
significant, and the model generalization is not improved after the minimum
point of the test or validation error. Too many model structure parameters
may result in a network model that overfits the data. Obviously, the model
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with the complexity corresponding to the minimum point of the test or
validation error is the best choice. The number of model structure parameters
corresponding to this point determines the smallest structure of the model.

The model error measurement on the training data and the number of
model structure parameters can be combined to make statistical criteria that
are used to help find the smallest model structure. Model identification is a
process of model selection in which a number of models are fitted, and then
the best one is determined. Shibata (1985) surveyed a variety of criteria for
model selection. It has been found that during the process of model selection,
model overfitting and underfitting can be balanced effectively if a given
criterion contains not only a model training error measurement but also an
assignment of cost to the introduction of each additional parameter in the
model. A number of criteria based on this idea are in this form

C = F(TE, Ny) (4.48)

where TE is any statistic which measures the network model training error,
N is the total number of parameters in the model, and C or F( ) represents
the quantity of a criterion. The criterion is formed to penalize the models
with a large N,. A large TE rejects overly simple models, and a high penalty
term rejects highly complex models. Therefore, a model that achieves the least
C is the final product in modeling. Earlier than AIC described in Section 4.2
of this chapter, Akaike (1969) proposed such a criterion named Akaike’s final
prediction error (FPE)

N+NOTSE

FPE =
N-N, (4.49)

where TSE is the summed squared error of the training data. The FPE rejects
overly simple models and penalizes highly complex models. The final model
is determined when the FPE reaches the minimum point. The penalty term
of the FPE works gradually in terms of the given nonlinear function and the
TSE multiplies the penalty term to constitute the criterion.

Sufficient numbers of hidden layers and hidden nodes are essential for
a neural network to approximate a nonlinear function. The order of a model
is important for a neural network to fit and generalize dynamic process
input—-output data accurately. One hidden layer in a neural network provides
sufficient function approximation ability (Hornik et al., 1989; Cybenko, 1989).
The determination of the number of hidden nodes in a neural network along
with the determination of the order of the network model is crucial in the
identification of a neural network process model. A cross-validation proce-
dure can be used to determine the number of network hidden nodes and
model order. As illustrated previously, the training error decreases as the
number of hidden nodes or model order increases. However, as the number
of network hidden nodes or model order increases, the test or validation
error reaches a minimum point and then increases. The FPE may have a
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minimum value of the network test or validation error, so it can be used to
cross validate the network training and test or validation errors.

Huang et al. (1998a) gave a specific cross-validation procedure for iden-
tification of the smallest structure of the neural network process models as
follows

Start the network hidden nodes or model order with 1.

Set a seed for the random number generator.

Initialize all of the weights to small random numbers.

Train the network.

Compute the FPE of the network process model.

Validate the network.

Check whether the validation error or the FPE reaches a minimum
point. If any minimum point is reached, stop. If the minimum point
is not yet reached, make an increment of 1 for hidden node or model
order and repeat from Step 3.

NG ®N =

In order to have a common starting point for training different-sized
networks, all weights in each updated network are initialized to small random
numbers using the random number generator with a fixed seed. In this way,
the overlapped weights remain the same although for each updating the
number of weights is different.

The FPE is incorporated in this procedure to verify the minimum point
alternately with the validation error. In general, the minimum point of the
FPE may be consistent with the minimum point of the validation error.
However, in some cases, they are inconsistent. When this happens, the net-
work models corresponding to the two different minimum points will be
compared to make the final decision.

4.3.1 Example: ANN modeling for beef grading

Whittaker et al. (1991) used two ANN approaches (supervised and unsuper-
vised training) and a conventional statistical approach to develop classifiers
for beef grading based on ultrasonic signals. The classifiers were trained for
all of the approaches using the same data set containing 100 individual meat
samples. These samples covered the marbling ranges typically found in U.S.
markets. In addition, the majority of the samples fell into the most important
economic quality grades—USDA Select and Choice. The classifiers were eval-
uated using a separate data set of 24 samples. The validation data set had a
very similar distribution to the training set.

Only the 2.25 MHz probe data was used for supervised training. Conver-
gence of the BP training process was not obtained with all seven frequency
parameters because a priori information from statistical analysis was used to
select fewer input variables, that is, f,, f,, and Lm. The performance of these
classifiers was evaluated by the accuracy of classification, which will be dis-
cussed in the corresponding example in the next chapter.
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In order to evaluate the optimal effectiveness of the network in the unsu-
pervised training, experiments were performed according to the number of
inputs (2 to 7 ultrasonic frequency parameters) and the number of output
nodes (2 to 8 classes). There existed 119 (C; + C, + C; + C; + Co+ CJ)
possibilities of the combinations of input variables, so there were 833 (7 X
119) experiments. Obviously, conducting so many experiments was not
worthwhile. Therefore, through experimentation and a priori statistical
knowledge, important combinations were selected.

In the experiments, different combinations of 7 ultrasonic A-mode signal
features were used and classified into 3, 4, and 8 classes, which are also
presented in the next chapter.

According to Kohonen’s recommendation, the number of training cycles
should be at least 500 the number of output nodes for good statistical accuracy.
For a different number of classes, that is, the number of output nodes, the
required numbers of training cycles were different. For instance, for 3 output
nodes, the required number of training cycles was 1500 (3 x 500); for 4 output
nodes, the number was 2000 (4 x 500); and for 8 output nodes, the number
was 4000 (8 x 500). In training the adaptation gain term, 1, was taken in the
expression of an exponent function of the training step, k:

n(k) = 0.99¢ "

When k=0, n(0) = 0.99 which is very close to 1. In order to reasonably divide
the training process into two steps (coarse mapping and fine-tuning), the
required number of training cycles, T, should be different. For instance, for
3 output nodes, T should be 200; for 4 output nodes, T should be 250; and
for 8 output nodes, T should be 2000.

4.3.2  Example: ANN modeling for food odor pattern recognition
by an electronic nose

Because many of the responses are nonlinear with respect to odorant con-
centration, ANNs are usually the most successful at coding the sensor
response. Typically, ANNs model the nonlinear relationship between sensor
readings and sample classification assignments

PN

¢ = f(Fy, Xyeor, X5 ©) (4.50)

where f () is the nonlinear function estimate, ® is the set of coefficient
estimates, and other symbols are the same as in Eq. (4.29).

However, a significant amount of work on neural network methods for
application to electronic noses is needed. Applications of electronic noses
thus far have involved a supervised training process. The electronic nose
must be trained by presenting several examples of known odors. The target
values of these odors, whether quantitative, as with intensity, or qualitative,
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as with odor hedonics, must be known independently of the electronic nose.
Often this means that olfactometry data must be collected on the training
samples in order to establish the target values for the neural network. When
presented with an odor on which no training data exists, the electronic nose
is unable to classify the sample from the catalog of known odors. In this aspect,
the electronic nose is similar to human response which is shaped through
experience.

A variety of ANN architectures have been applied to specific problems
with the electronic nose. In many cases, these strategies include the application
of fuzzy membership functions to enhance classification. Determining the
appropriate ANN for a given problem is currently an empirical process and,
consequently, time consuming. Once established, however, the selected ANN
model can be used to rapidly classify a new series of data for a particular odor.

4.3.3 Example: ANN modeling for snack food eating quality
evaluation

A statistical analysis was performed to select prominent image features that
define the quality in terms of the sensory attributes. Then these prominent
texture and morphology features were determined as input to a model for
quality classification. The purpose of this analysis was to reduce the model
size and, hence, the computing time. In this analysis, textural, size, and shape
features were considered to be independent variables, and the sensory
attributes were dependent variables.

Through two separate stepwise regressions, 11 features (5 textural fea-
tures, F;, F;, F¢, Fo, and Fyp, and 6 size-shape features, PERIM, FIBERW,
LENGTH, ROUND, ASPR and FULLR) were selected as the input to the
classification model, that is, the classifier. When all 22 features were regressed
together, 8 textural and shape features, Fs, Fj,, PERIM, LENGTH, FIBERW,
ROUND, FULLR, and ASPR, were determined to be the prominent ones.
The originally considered textural features (F,, F;, Fs, Fo, and F,;) were
excluded because of their high correlation with the shape features, and the
textural features (Fs, F;,) were included because of their low correlation with
the shape features.

A one-hidden-layer ANN trained with BP was used to model the rela-
tionship between textural and morphological features of snack images and
snack sensory attributes.

Consider a set of N vector pairs, (x, yl), (x5, 32),...,(9;]\,, gN), where x
and y are related by some nonlinearity. In our case, x represents textural and
morphological features and y represents sensory attributes. The neural net-
work is trained to learn the unknown nonlinear relationship. This is achieved
by minimizing the mean square error (MSE) between the desired and actual
sensory attributes. The size of the network input layer is equal to the size of
the feature vector, that is, 22. The size of the output layer is taken to be the
number of the output attributes, that is, seven. However, the size of the
hidden layer should be obtained by experiments. In our case, the number
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Table 4.5 Training and Validation Samples for Different
Experimental Setups*

Machine Wear-Raw Number of Number of
Material Conditions Training Samples Validation Samples
A 700 100

B 400 50

C 400 50

D 400 100

* Adapted from Sayeed et al. (1995). With permission.

of hidden nodes was incremented by 1 starting from one hidden node until
the mean square error was reached at 0.1 percent. Hence, the smallest amount
of hidden nodes, leading to the smallest amount of training time that
achieved convergence was nine. Thus a 22 x 9 x 7 network was structured.
The network outputs were normalized to real numbers between 0 and 1.
The taste panel grading from -3 to 3 was also mapped to a value between
0and 1.

The machine conditions play an important role in the formation of the
snacks. The raw material conditions are also important in the formation of
the snacks. With the preset conditions, the samples were BP trained by neural
networks consisting of 22 input nodes, 9 hidden nodes, and 7 output nodes
designed to model the nonlinear relationship between the input textural-
morphological features divided into four “machine wear-raw material cat-
egories (A, B, C, and D).” A total of 50 samples per cell constituted the
training and validation samples for ANN classification. Table 4.5 shows the
number of randomly arranged training and validation samples used.

4.3.4 Example: ANN modeling for meat attribute prediction

Data from elastography analysis and mechanical and chemical tests for beef
samples in LD muscle were available for modeling to predict the beef quality
attributes. Huang et al. (1998) used the data to build the neural network
prediction models with the Levenberg—-Marquardt’s algorithm for effective
training and network generalization. There were 29 sample vectors in the
data. Each vector included the wavelet image textural feature parameters
from each beef sample from the elastograms as the inputs and the mechanical
and chemical measurements as outputs. Because each of the elastograms
was cropped into a 128 x 128 image, the number of feature inputs was 29.
The mechanical and chemical measurements were used as the indicators of
beef tenderness.

The modeling work was implemented using the regular BP algorithm
for training with and without a momentum term, and then using the
Levenberg-Marquardt BP algorithm for training with and without weight
decay. The leave-one-out procedure was built in all of the training processes.
The performance difference of these training processes was then compared.
The programs were coded using MATLAB (The MathWorks, Inc.).
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Table 4.6 Result of the Determination of the
Number of Hidden Nodes for the
Network Model of WBSF*

Validation
Number of Hidden Nodes MSE
1 0.1294
2 0.0410
3 0.0414
4 0.0416

* From Huang et al. (1998). With permission.

Table 4.7 Results of the Determination of the Number of Hidden Nodes for the
Models with Daubechies-4 Wavelet Features in the Regular Leave-One-Out
BP Training without a Momentum Term*

No. of No. of

Model Hidden Validation Training No. of

Output Nodes Training R MSE Epoches Flops

WBSF 2 0.95 0.0207 3048 x 10'  25.48 x 10°
Calp 3 0.96 0.0203 4458 x 10°  54.85 x 10°
Sarc 2 0.91 0.0387 17.40 x 10° 1454 x 10’
T. Coll 4 0.96 0.0207 29.08 x 10°  47.25 x 10°
%S0l 4 0.95 0.0218 4727 x 10°  76.81 x 10
%Mois 2 0.95 0.0214 1097 x 10°  91.70 x 10°
%Fat 4 0.95 0.0205 98.89 x 10°  16.07 x 10’

* From Huang et al. (1998). With permission.

As the first step, the model structure of the neural networks, that is, the
number of hidden nodes for the one-hidden-layered network, was identi-
fied. The method of identification was to determine the optimal number of
hidden nodes by selecting the number with the lowest validation MSE value
of a network model by the increment of the number of the hidden nodes
from 1, 2,..., H where H was a number, 4 or 6, as long as an optimal number
with the lowest validation MSE was found. Table 4.6 shows the MSE for 1
to 4 hidden nodes for the neural network model of WBSF, where 2 nodes
was the optimal number. Table 4.7 shows the results of the determination
of the number of hidden nodes for the models based on inputs of
Daubechies-4 wavelet features using the leave-one-out regular BP training
without a momentum term. In order to present the efficiency of the training
processes completely, both the number of training epochs and the number
of floating point operations (flops) for the training computation were
recorded. The learning rate was 7= 0.025, and the training stopping criterion
was MSE = 0.01 in order to ensure the stability of the training processes. If
it is desirable for the training process to be accelerated, the learning rate
should be increased. However, if the learning rate parameter 7 is increased
arbitrarily for the purpose of increasing the learning rate, the network may
become unstable. To overcome this problem, the learning rate of the training
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Table 4.8 Results of Convergence Acceleration Using a Momentum Term
in the Regular Leave-One-Out BP Training with
Daubechies-4 Wavelet Features™

No. of

Model Validation Training No. of

Output Training R’ MSE p Epoches Flops

WBSF 0.95 0.0207 090 29.61x10" 25.13x10°
Calp 0.96 0.0200  0.60  44.45x10" 55.55x10°
Sarc 0.91 0.0387 0.025 17.40x10° 14.77x10°
T. Coll 0.96 0.0207 090 1057x10* 17.45x10°
%S0l 0.96 0.0204 0.05 29.46x10° 48.63x10
%Mois 0.95 0.0206 090 1335x10" 11.33x10°
%Fat 0.95 0.0205 0.025 98.89x10° 16.32x10

* From Huang et al. (1998). With permission.

Table 4.9 Ratios of Training Epochs and Flops without and with
a Momentum Term in the Regular Leave-One-Out BP
Training Using Daubechies-4 Wavelet Features*

Model Output Ratio of Epochs Ratio of Flops
WBSF 1.03 1.01
Calp 1.00 0.99
Sarc 1.00 0.98
T. Coll 2.75 2.71
%Sol 1.60 1.58
%Mois 8.22 8.09
%Fat 1.00 0.98

* From Huang et al. (1998). With permission.

process can be increased and the network kept stable at the same time by
introducing a momentum term in weight updating, that is, let 0 < 7 < 1.
Table 4.8 shows the results of leave-one-out BP training with a momentum
term. Table 4.9 shows the ratios of training epochs and the number of flops
with and without momentum terms. Training with momentum terms took
more flops for the models of Sarc and %Fat where the number of training
epochs remained the same. Training with momentum terms for the model
of Calp also increased flops but the number of training epochs was reduced
a bit. The training with momentum term for the rest of the models took a
range of flops reduced by a factor of 0.01 up to 7.09x where the training
epochs were reduced.

Incorporating the Levenberg-Marquardt algorithm into the leave-one-
out BP training is another possibility to accelerate the training process. Table
4.10 shows the results of Levenberg—Marquardt leave-one-out BP training.
The factor y was determined as 1 in all the cases in order to ensure that the
algorithm converged effectively. All of the models converged to the given
error criterion with much less training epochs. Table 4.11 shows the ratios
of the training epochs and number of flops before and after using the
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Table 4.10 Results of the Leave-One-Out BP Training Using the
Levenberg-Marquardt Algorithm with the
Daubechies-4 Wavelet Features*

No. of

Model Validation Training No. of

Output Training R’ MSE u Epoches Flops

WBSF 0.97 0.0155 1.00 580 20.90 x 10
Calp 0.98 0.0120 1.00 464  44.06x107
Sarc 0.95 0.0296 1.00 1827 72.13x10°
T. Coll 0.96 0.0200 1.00 493 89.98 x 10
%Sol 0.97 0.0158 1.00 464 83.07x 10
%Mois 0.96 0.0159 1.00 580 22.44x107
%Fat 0.96 0.0193 100 261 47.40x107

* From Huang et al. (1998). With permission.

Table 4.11 Ratios of Training Epochs and Flops before and after Using
the Levenberg-Marquardt Algorithm in the Leave-One-Out BP
Training with Daubechies-4 Wavelet Features*

Model Output Ratio of Epochs Ratio of Flops
WBSF 525.60 12.19
Calp 960.75 12.45
Sarc 9523.81 20.16
T. Coll 589.82 5.25
%Sol 101.88 0.92
%Mois 1891.75 40.87
%Fat 37.89 0.34

* From Huang et al. (1998). With permission.

Levenberg-Marquardt algorithm in the leave-one-out BP processes. From
Table 4.10, it can be seen that all models obtained higher R* values and lower
validation MSE values. This indicates that these network models have better
output variation accounting and generalization. This may be related to the
flexibility in the convergence space of the Levenberg—-Marquardt algorithm.
Table 4.11 further indicates that after using the Levenberg—-Marquardt algo-
rithm for this application, the number of training epochs was reduced greatly.
However, when the reduction was only 100X or less, the number of flops
was more, such as the models of %Sol and %Fat. This means that in each
iteration step, the Levenberg-Marquardt algorithm needed more operations.
Thus, this algorithm had a higher computation requirement. In the cases
where the epoch reduction was over several hundred times, the number of
flops required for training was reduced approximately from 4 to 40 x.
Further, on the basis of the use of the Levenberg-Marquardt algorithm,
the weight-decay algorithm can be incorporated to improve the network
generalization. Basically, the weight-decay algorithm, as described previ-
ously, suppressed excessively large weights in the network to maintain the

© 2001 by CRC Press LLC



Table 4.12 Results of the Leave-One-Out BP Training Using Weight-Decay
with the Levenberg-Marquardt Algorithm in
Daubechies-4 Wavelet Features*

No. of

Model Validation Training No. of

Output Training R’ MSE A Epoches Flops

WBSF 0.98 0.0097 0.01 522 19.52x 107
Calp 0.99 0.0044 0.001 406 34.45x10°
Sarc 0.98 0.0086 0.01 464 16.29x 10
T. Coll 0.98 0.0079 0.01 493 87.86x 10"
%Sol 0.99 0.0052 0.01 435 82.51x 10
%Mois 0.98 0.0054 0.01 493 18.83 x 10
Y%Fat 0.98 0.0068 0.01 261 47.40x10°

* From Huang et al. (1998). With permission.

network stability and to reduce noise fitting in modeling. Table 4.12 shows
that incorporating weight-decay into the leave-one-out Levenberg-Marquardt
BP training achieved better models which had higher R* and lower validation
MSE values. The decay constant 1 was determined to see if it gave a better
model generalization. The results indicated that these models had better out-
put variation accounting and generalization. These models were evaluated as
the best models with good output variation accounting and less noise fitting.
It was also interesting that incorporating weight decay made the training
slightly more efficient vs. implementing the Levenberg-Marquardt algorithm
alone.

4.3.5  Example: ANN modeling for snack food frying process control

As described earlier, there are several factors affecting the product quality
of the continuous, snack food frying process. Huang et al. (1998a) studied
the process based on the structure of a 2 x 2 system in modeling for the
purpose of process control. In the 2 x 2 system, the inlet temperature of the
frying oil and the residence time of the product in the fryer were identified
as significant control variables that affect the final product quality. Sensors
were placed at the end of the production line to measure the product quality
attributes of color and moisture content, which are controlled variables, to
indicate the final product quality. This 2 X 2 process is governed by the
following discrete-time, time-delayed, NARX system equation

y(t) = f(y(t=-1), y(t-2),..., y(t=p), U(t-d-1),

U(t—d-2),..., u(t—d—q), ©) + &(t) (4.51)
where y(t) = [y:(t), yz(t)]T. It is the process output vector in which y;(#) is color
and y,(t) is the moisture content (percent) at time ; U(t) = [u,(t), u,(t)]". It is the

process input vector in which u,(t) is inlet temperature (°C) and u,(f) is resi-
dence time (5 s) at time +: © = (O,, GZ)T is the set of parameters in which ©; is
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for the equation of y,(t) and O, is for the equation of y,(t): d represents the
time lags between the process input %4(t) and the process output y(t), that is,
Ut —d) = [uy(t — dy), uy(t — d2)]T in which 4, and d, are the minimum time lags
of the inputs related to the present outputs y,(t) and y,(f), respectively: () =
[&(), Sz(t)]T is the measurement noise vector in which g(f) is for the equation
of y,(t) and &(t) is for the equation of y,(t) at time ¢, which is assumed to be
two-dimensional Gaussian distributed with zero mean and constant variance.

Eq. (4.4) provided a more general description of this representation. In
Eq. (4.47), the time lags are represented explicitly with the symbol d (5 s)
because in the process any action from the actuators for controlling the
temperature and the conveyor speed will take a period of time to take effect
on the sensor readings for color and moisture content. These time lags were
determined through field measurement and statistical analysis. They were
20 and 16 units (5 s), respectively, from inlet temperature, residence time to
the process outputs, color and moisture content.

ANNs could be used to directly approximate the function f() as
described in Eq. (4.51) as follows

Pt = fly(t=1), y(t=2),..., y(t-p), u(t-d-1),
u(t—-d-2),...,u(t—-d-q), W) (4.52)

This modeling approach has no network output feedback and takes the
structure of a MEN. It can provide the one-step-ahead predictor, described
in the next chapter, for internal model control (IMC) which is described in
Chapter 6.

A one-hidden-layered feedforward neural network was trained with the
BP algorithm to model the 2 X 2 system. Before training, the data were scaled
as Eq. (3.1). Following the procedure of model identification for neural net-
works, the smallest structure of the neural network process model was
identified. From Table 4.13, it can be seen that although the FPE still
decreased, 3 was chosen as the number of hidden nodes of the neural network
process model because the test MSE had a minimum there. Table 4.14 shows
that the test MSE and FPE had the minimum values at (2, 2, 2, 2) of the

Table 4.13 Results of the Determination of the Number of Hidden
Nodes of the Neural Network Model for the Snack
Food Frying Process*

Number of

Hidden Nodes Training MSE Test MSE FPE

1 0.107641 0.132214 0.108852
2 0.031462 0.051293 0.032226
3 0.029928 0.050594 0.030994
4 0.029437 0.050692 0.030823
5 0.028460 0.052278 0.030130

* From Huang et al. (1998a). With permission.
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Table 4.14 Results of the Order Determination of the Neural Network
Model for the Snack Food Frying Process*

Model Order Training MSE Test MSE FPE

(1,1,1,1) 0.032226 0.055117 0.032648
(2,2,2,2) 0.029928 0.050594 0.030655
3,3,3,3) 0.031292 0.052863 0.032407
4,444 0.034187 0.054443 0.043841

* From Huang et al. (1998a). With permission.
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Figure 4.9 Resulting structure of the neural network model for the snack food frying
process.

model order (p;, p,, 41, 42)- The order of the neural network model was
determined as (2, 2, 2, 2). The resulting smallest structure of the neural
network model was 8 x 3 x 2, that is, 8 inputs by 3 hidden nodes by 2 outputs,
which is shown in Figure 4.9.
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chapter five

Prediction

5.1 Prediction and classification

Prediction is performed by a quantitative target variable through the opera-
tion of the model which is typically a regular linearly regressed function. For
example, based on ultrasonic scans, mechanical, chemical, and sensory
attributes of beef samples can be predicted by a linear or nonlinear regression
prediction model. Classification, as opposed to prediction, is performed by a
categorical target variable through the model, typically, a discriminant func-
tion. For example, based on ultrasonic scans, beef samples can be classified
according to USDA’s standards by a linear or nonlinear discriminant function.

The purposes of modeling in food quality quantization and process
control are sample classification, attribute prediction, and controller design.
Sample classification and attribute prediction are usually based on a static
mapping of process inputs and outputs, while controller design needs sup-
port from process dynamic models that provide one-step-ahead or multiple-
step-ahead predictions, depending on the control schemes used in the control
loops.

For the problems of sample classification and attribute prediction, refer
to Eq. (4.3), at which the input vector x and the output vector y are assumed
to relate to each other with a function f( ). In the process of modeling, the
function parameter vector © is estimated and, hence, the function is esti-
mated whether it is linear or nonlinear. Based on the function parameter
estimation, the equation for classification or prediction can be represented as

§=f(x, 0 (5.1)

In this equation, the input vector contains the parameters by the mea-
sured data of food samples, and the output vector generates the classification
indices or attribute values of the food samples. The input parameters can be
the specifically measured data or a transformation of the data in the same
or reduced dimension. Reduced dimension is referred to as feature extraction
from the input parameter space. The features can be extracted from sensor
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readings or image quantization to facilitate the computation of modeling for
prediction and classification. Each of the classification indices is usually
assigned binary numbers; for example, a good apple sample is labeled 1,
and bad apple is labeled 0. Attribute values can be from survey or experi-
ments. For example, beef sensory attributes may include values in tender-
ness, juiciness, flavor, and so on.

As discussed previously, the function f{ ) may be linear or nonlinear. It
can be built by linear and nonlinear statistical analysis or ANNs for prediction
or classification. In the area of classification, the function f( ) is usually called
a classifier, a term adopted from pattern recognition. In the area of prediction,
the function f( ) is called a predictor, a term adopted from dynamic process
modeling.

5.1.1 Example: Sample classification for beef grading based on linear
statistical and ANN models

As described in the last chapter, two ANN approaches in supervised and
unsupervised training algorithms along with statistical analysis were devel-
oped for beef classification in quality grading based on ultrasonic A-mode
signals. Table 5.1 presents a summary of the results obtained with BP train-
ing. The outputs were processed in a winner-take-all fashion, that is, the node
with the largest value was declared the winner. The accuracy was calculated
simply as the number of correct classifications divided by the total number
of samples in the validation data set.

Table 5.2 gives the classification results for the adaptive logic network.
Increasing the quantization level increased the accuracy of encoding, but
also slightly increased the mean error. Lower levels of quantization also
slightly increased the mean error. The number of training pairs varied from
93 to 97. A total of 24 samples were used for classification.

In the experiments of unsupervised training, different combinations of
seven ultrasonic A-mode signal features were used and divided into three,
four and eight classes as shown in Table 5.3.

Table 5.1 Classification of Marbling Levels with Back Propagation Training*

CPU (min)
forTraining
Number of in Sun
Number of Validation Classification  Workstation
Probe Training Pairs Samples Accuracy 4/490
Shear 9 24 54.2% 214
Longitudinal 9 24 70.8% 9.3
Shear 9 61 41.0% 150
Longitudinal 9 58 41.4% 6.1
Longitudinal 9 100 57.0% 28.5

* Adapted from Whittaker et al. (1991). With permission.
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Table 5.2 Classification of Marbling Levels with Adaptive Logic Networks*

Probe and Classification Accuracy CPU (min) for
Input <3%  3%-7% >7% Mean Trainingin Sun
Parameters Fat Fat Fat Overall Error  Sparcstation 1

Longitudinal 50.0 61.5 57.1 58.3 1.93 11.9
with all seven

frequency

parameters

Shear with all 100 53.8 57.1 62.5 1.81 20.0
seven

frequency

parameters

Longitudinal 75.0 61.5 42.0 58.3 2.05 15.7
with the

frequency

parametersf,,

far and Lm

Longitudinal 100 61.5 57.1 58.3 3.85 5.1
with the

frequency

parameters

fo for and Lm

* Adapted from Whittaker et al. (1991). With permission.

Table 5.3 Accuracies of Classification of Beef Ultrasonic A-Mode Signals
with Unsupervised Training*

3 Classes of 4 Classes of 8 Classes of
Input Parameters Accuracy Accuracy Accuracy
fur for for fir B, fao and Lm 68.9% 63.5% 31.1%
fo for fo B, for and Lm 67.6% 54.1% 29.7%
fp fo B, far and Lm 67.6% 54.1% 29.7%
fo B, far and Lm 66.2% 54.1% 29.7%
B, f4, and Lm 67.9% 58.1% 29.7%
far and Lm 40.5% 23.0% 16.2%

* Adapted from Whittaker et al. (1991). With permission.

A benchmark study was performed to compare these methods using
statistical, supervised, and unsupervised ANN training approaches on the
basis of independent experiments. In the study, 97 samples with all 7 2.25 MHz
shear probe frequency parameters were used for training, and 24 samples
extracted from the same data set before training were used for classification.
Accuracy was determined in the following ranges: < 3% fat, 3 to 7% fat, and
> 7% fat. The number of near misses (NM) was recorded, where a NM was
defined as misclassification by + < 0.5% fat. Table 5.4 shows the results of
the benchmark study:.
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Table 5.4 Benchmark Comparison of Statistical, Supervised,
and Unsupervised ANN Approaches*

Actual Predicted Classes Type I
Classes <3% 3to 7% >7% NM Accuracy
(a) Statistical Regression
<3% 4 0 0 0 100.0%
3to 7% 4 8 1 1 61.5%
>7% 0 4 3 3 42.8%
Type 1 50.0% 66.7% 75.0% — 63.9%
accuracy
(b) Supervised Training (Adaptive Logic Neural Network)
<3% 4 0 0 0 100.0%
3 to 7% 6 6 1 2 46.1%
>7% 2 2 3 0 42.9%
Typel 33.0% 75.0% 75.0% — 54.2%
accuracy

(O) Unsupervised Training (Kohonen Self-Organizing Feature Maps
Neural Network)

<3% 3 1 0 0 75.0%

3to 7% 2 8 3 1 61.5%

>7% 1 4 2 0 28.6%

Type I 50.0% 61.5% 40.0% — 55.5%
accuracy

* Adapted from Whittaker et al. (1991). With permission.

5.1.2 Example: Electronic nose data classification for food odor

By recalling Eq. (4.29), obviously, the classification modeling of food odor
by an electronic nose is a multivariate problem with high dimensionality
because usually n >> 1, similar to AromaScan’s n = 32. It usually happens
that in a multivariate problem with high dimensionality, the variables are
partly correlated. So, a technique is needed to reduce the dimensionality and
allow the information to be retained in much fewer dimensions. Principal
Component Analysis (PCA) (Hotelling, 1933) is such a linear statistical tech-
nique. Through the manipulation of the PCA, a high dimensional data set,
such as x; (i=1,2,...,n), can be converted into a new data set, such as
X (i=1,2,...,n), which are uncorrelated. From the new data set, the first
two or three variables are usually good enough to get good model, that is,

or

pattern recognition
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Figure 5.1 Generic plot of an electronic nose data differentiation for three groups of
data by the first two principal components.

where ﬁAfl (i =0, 1, 2) are the coefficient estimates of the new model. These
equations significantly simplify Eq. (4.29). Figure 5.1 shows generically the
relationship between three groups of data after principal component pro-
cessing before the three groups of data may be mixed up together. After the
processing, the first two principle components may be used to differentiate
the data sufficiently. When the groups of data can be differentiated linearly,
that is, they are “linearly separable,” the discriminant function can be fitted
statistically or with single-layer perceptron neural networks (Rosenblatt,
1959): Otherwise advanced ANN architectures are needed to handle the cases
of nonlinear separable or nonlinear. Similarly, if the first three principle
components are used to differentiate the data, three dimensional co-ordinates
are needed to visualize the data with similar linear separable or nonlinear
separable cases handled by statistical and ANN methods.

PCA is the most widely used method for electronic nose data classifica-
tion. There are, also partial least squares (PLS) (Wold, 1966), cluster analysis
(Gardner and Bartlett, 1992), discriminant function analysis (Gardner and
Bartlett, 1992), and so on. PLS is especially effective for small sample problems
(Yan et al., 1998). Cluster analysis is an unsupervised pattern recognition
method, which is self-organized. It is often used together with PCA to identify
groups or clusters of points in configuration space (Gardner and Bartlett,
1992). Discriminant function analysis assumes that the data are normally
distributed, which limits the use of the method (Gardner and Bartlett, 1992).
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5.1.3 Example: Snack food classification for eating quality evaluation
based on linear statistical and ANN models

The classification performance of the back propagational trained neural net-
work was judged by defining the classification rate as

Classification rate % = % % 100 (5.2)

where NC is the number of correctly classified samples.

The classification performance of the network varies depending on the
number of features used. Tables 5.5 and 5.6 show the classification rate of
the network on some training and validation samples respectively, using all
22 textural, size, and shape features. Tables 5.5 and 5.6 indicate that the
classification rate was very high on the training samples and acceptably good
on the corresponding validation samples. However, the classification of the
quality with the network for reduced 11 and 8 features was not so efficient
as the full 22 features, shown in Tables 5.7 and 5.8, respectively. This supports
the assumption of nonlinearity between the textural and morphological fea-
tures and sensory panel scores. Stepwise regression only can help find a

Table 5.5 Performance (% Classification Rate) of Neural Networks with 9 Hidden
Nodes on Validation Samples with All 22 Features*

Machine

Wear/Raw

Material Quality/Sensory Attributes

Conditions Bubble Rough Cell Firm Crisp Tooth  Grit
A 92 90 83 88 85 84 94
B 90 98 98 98 94 94 92
C 90 94 86 78 82 82 90
D 90 93 78 95 87 88 90

* Adapted from Sayeed et al. (1995). With permission.

Table 5.6 Performance (% Classification Rate) of Neural Network with 9 Hidden
Nodes on Training Samples with All 22 Features*

Machine

Wear/Raw

Material Quality/Sensory Attributes

Conditions Bubble Rough Cell Firm Crisp Tooth  Grit
A 96 98 90 94 93 94 97
B 91 91 98 97 96 89 93
C 95 95 94 88 92 91 97
D 99 100 96 96 99 97 98

* Adapted from Sayeed et al. (1995). With permission.
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Table 5.7 Performance (% Classification Rate) of Neural Networks
with Reduced 11 Features*

Machine

Wear/Raw

Material Quality/Sensory Attributes

Conditions Bubble Rough Cell Firm Crisp Tooth  Grit
A 81 86 78 65 59 69 88
B 82 94 94 82 82 74 80
C 72 78 60 56 54 48 80
D 82 94 62 75 75 46 75

* Adapted from Sayeed et al. (1995). With permission.

Table 5.8 Performance (% Classification Rate) of Neural Networks
with Reduced 8 Features*

Machine

Wear/Raw . .

Material Quality/Sensory Attributes

Conditions Bubble Rough Cell Firm Crisp Tooth  Grit
A 84 90 76 73 71 71 87
B 96 100 96 96 88 96 92
C 68 84 50 54 68 62 74
D 84 92 73 92 76 80 86

* Adapted from Sayeed et al. (1995). With permission.

compact linear relationship between input and output variables while the
reduced features were derived by the stepwise regression which could not
identify the nonlinearity. This confirms that ANNs were able to model the
nonlinear relationship between the image textural and morphological fea-
tures and sensory attributes.

The results of this work indicate that the combination of textural and mor-
phological image features can be employed to quantify the sensory attributes
of snack quality with a high degree of accuracy from the ANN classifier when
compared with human experts.

5.1.4 Example: Meat attribute prediction based on linear
statistical and ANN models

Wavelet decomposition as a promising alternative for textural feature extrac-
tion from beef elastograms performed much better than the Haralick’s sta-
tistical method for extraction of textural features in the statistical modeling.
This conclusion was based on the prediction ability of the models in terms
of the feature parameters extracted by one of the two methods. Huang et
al. (1997) showed that the relationship between Haralick’s statistical textural
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feature parameters from beef elastograms and the beef attribute parameters
were not significant in the sense of linear statistics. Wavelet textural features
from beef elastograms were more informative, consistent, and compact and
were used to build models with the ability to predict the attribute parameters
acceptably.

Further, Huang et al. (1998) explored the relationship between the wavelet
textural features from beef elastograms and the attribute parameters of the
beef samples. The purpose of prediction was using the one-hidden-layered
feedforward neural networks trained by different methods to implement
the process of BP. When compared to the regular BP using the gradient
descent method, adding a momentum term improved the training efficiency,
and the training epochs were reduced (0.03 to 7.22 times). The Levenberg-
Marquardt algorithm was less efficient than the gradient descent algorithm
for the cases with reduction of training epochs by 100 times or less. However,
it was more efficient for the cases with reduction of training epochs greater
than a few hundred times. In the case of difficult convergence in the SARC
model using the gradient descent algorithm, the Levenberg—Marquardt
algorithm converged much more efficiently. In all cases, the Levenberg-—
Marquardt algorithm achieved better model output variation accounting
and network generalization for attribute prediction. If the consideration of
training efficiency were not necessary, the Levenberg—-Marquardt algorithm
would be a good choice. Further, incorporating the weight decay vs. imple-
menting the Levenberg-Marquardt algorithm alone was effective in improv-
ing network generalization resulting in higher R” and lower validation MSE
values.

This study concluded that ANNs were effective in the prediction of beef
quality using wavelet textural feature parameters of the ultrasonic elasto-
grams. ANNs can capture some unknown nonlinear relation between the
process inputs and outputs and effectively model the variation in the textural
feature space.

5.2 One-step-ahead prediction

In food quality prediction, the purpose of modeling is different for different
applications. Controller design for process control is performed based on
dynamic process models. In food quality process control, controller design is
performed based on prediction from process dynamic models. Some predic-
tion models are for one-step-ahead prediction. Others are for multiple-step-
ahead prediction. Therefore, a process model functions as a one-step-ahead
predictor, and another functions as a multiple-step-ahead predictor in respec-
tive model predictive control (MPC) loops. A one-step-ahead predictor works
in an internal model control (IMC) loop, and a multiple-step-ahead predictor
works in a predictive control (PDC) loop. The concepts and designs of IMC
and PDC loops are discussed in the next chapter. This section focuses on the
concept and implementation of one-step-ahead prediction, and the next sec-
tion covers multiple-step-ahead prediction.
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In general, the NARX Eq. (4.5) can be further written as

y(t+1) = f(y(®), y(t=1),..., y(t—p+1), u(®), u(t-1),...,
u(t-q+1),0)+et+1) (5.3)
The one-step-ahead predictor, j(t+1|t), can be established based on the
preceding equation under the condition that the process output measure-
ments are already known at all previous time instants. For the linear models,

the prediction equation can be developed explicitly. In the case of ARX
system modeling, Eq. (5.3) takes the following form

yt+1) = Ay + A yt-D+ -+ A, y(t-p+1)
+ By u(t)+By-u(t-1)+--+B,-u(t-q+1)
+e(t+1) (5.4)

where A; (i=1,2,...,p) and B; (i =1, 2,..., q) are coefficient matrices. The
model itself takes the form

Jt+1) = Ayt + A y(t-D+ -+ A, yt-p+1)
+Biou(t)+By-u(t-1)+ -+ B, u(t—g+1) (5.5)
where A; (i=1,2,...,p) and B; (i=1,2,...,9) are the estimates of

A (i=1,2,...,p)and B; (i=1,2,..., q), respectively. Then, the equation of
the one-step-ahead predictor can be derived in the following way

y+1yt) = E(y(t+D|y@®), y(t=1),..., y(1), u(t), u(t-1),..., u(1))
E(Ay-y(H) + Ay y(t=1)+ -+ A, y(t-p+1)

+ By u(t)+By-u(t-1)+--+B,-u(t-qg+1)
+e(t+Dy), y(t=1),..., y(1), u(t-1),..., u(1))
Ayt +Ay yt-D+ -+ A, y(t-p+1)

+Biout)+By-u(t-1)+ -+ By u(t—g+1) (5.6)

where E( ) represents the statistical expectation.

However, for the NARX models, the equation of the predictor can only
be developed with an implicit approach. The representation of the NARX
one-step-ahead predictor can be obtained as

gt +10t) = E(y(t+Dy(t),..., y(1), u(t),..., u(1))
E(f(y(t),..., y(t—=p+1), u(t),..., u(t—q+1), ©)
+et+D|y(t),..., y(1), u(t),..., u(1))
fy),.,yt-p+1),ul®),..., ut-q+1),6)  67)
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From this equation, the output of the predictor is the output of the NARX
model at time instant t + 1, that is, §#(f + 1|t) = §(t + 1) . This nonlinear one-
step-ahead prediction equation can be adapted by the feedforward neural
networks. In this way, a one-step-ahead predictor can be established by a
MEN. Eq. (5.7) actually showed that the output of a feedforward network is
the one-step-ahead prediction at the time instant . When, through training,
an ANN process model in the structure of MEN is built, the model can be
extended to perform one-step-ahead prediction.

5.2.1 Example: One-step-ahead prediction for snack food frying
process control

Bullock (1995) presented plots of the predictive ability of the linear ARX
model for the snack food frying process. Figure 5.2 shows the ability of the
linear ARX model to predict the color and moisture content one-step-ahead
on the validation data. It is apparent that the model is highly accurate for
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Figure 5.2 One-step-ahead prediction by the linear ARX model for the snack food
frying process. (From Bullock, 1995. With permission.)
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Table 5.9 MSEs of the 2 x 2 MIMO ANN One-Step-Ahead
Predictions for the Snack Food Frying Process*

Prediction MSE  Prediction MSE

Prediction Output on Training on Validation
Color 0.023177 0.038876
Moisture content 0.006750 0.011718

* From Huang et al. (1998a). With permission.
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Figure 5.3 Residuals from the one-step-ahead prediction by the linear ARX model
for the snack food frying process. (From Bullock, 1995. With permission.)

one-step-ahead prediction because the output of the model is mostly indis-
tinguishable from the actual output. Figure 5.3 shows the plot of the residual
of the model.

With the ANN model identification described in the last chapter
(Section 4.3.4), Table 5.9, Figure 5.4, and Figure 5.5 show the MSEs and plots
of one-step-ahead predictions of the MIMO ANN one-step-ahead predictor.
Each of the predictions appears to be exceptionally good so that the ANN
prediction model is ready for the design of the IMC loop.
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Figure 5.4 (a) One-step-ahead prediction of color from the 2 x 2 MIMO ANN one-
step-ahead predictor on training data from the snack food frying process. (b) One-
step-ahead prediction of color from the 2 x 2 MIMO ANN one-step-ahead predictor
on validation data from the snack food frying process. (From Huang et al., 1998a.
With permission.)

5.3 Multiple-step-ahead prediction

Based on the assumption of Eq. (4.5), a feedforward type model is produced
which is used in modeling

§(t) = fyt=1), y(t=2),..., y(t—p), u(t=1), u(t=2),..., u(t—q), ©)
(5.8)

This model indicates that there is no output feedback to the model input
with this modeling approach. That is why this equation can be established
by MFNs for one-step-ahead prediction. A different modeling approach is
also needed in process control. This approach approximates the general
nonlinear function f{ ) in a different way. In this approach, at model input
the process outputs at different past instant, y(t-1), y(t-2),..., y(t-p),
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Figure 5.5 (a) One-step-ahead prediction of moisture content from the 2 x 2 MIMO
ANN one-step-ahead predictor on training data from the snack food frying process.
(b) One-step-ahead prediction of moisture content from the 2 x 2 MIMO ANN one-
step-ahead predictor on validation data from the snack food frying process. (From
Huang et al., 1998a. With permission.)

are replaced by the model outputs at different past instant, j(t-1),
]:/(t_2)/'--/ ]Z(t_p)

g =f@E=-1), §(t=2),..., §(t-p), u(t-1), u(t-2),..., u(t-q), ©)
(5.9)

This modeling approach feeds the model output back to the model input.
It provides the basis to establish the structure for a multiple-step-ahead
predictor, useful in the loop of PDC.

The one-step-ahead predictor can be used to make multiple-step-ahead
predictions. The approach is to iterate the one-step-ahead predictor as
described in Eq. (5.7), that is, the predictor is to be chained to itself to go
as far as needed into the future through successive substitutions of previous
predictions. For example, if a predicted output, §(t+1|t) (1<I<L), is
needed at a time instant ¢, then, in the computation: the predicted output,
§(t + 1|t), has to replace the actual output, y(f + 1), measured in the process.

© 2001 by CRC Press LLC



¥ @ +1]1) Ja+2|n  Fe+1-1]p

y()

z! z!

T b
Y- p+l) T Je+l- plo) One-Step-
One-Stop- y-prd) |OReStop: Ahead | S+l
u(t-d) e ea u(t- d+1-1) |Prediction ——
Prediction u(t-d+1) Prediction at Time
at time t at time t+1 -1
z! z! z!
u(t-d-g+1) u(t-d- q+2) u(t-d+1- q)
—_— —_— —_—

Figure 5.6 A one-step-ahead prediction chain for a multiple-step-ahead prediction.
(Adapted from Huang, 1995. With permission.)

Then, f(t +2|t) replaces y(f +2) all the way to t + L -1, because the actual
process outputs in the future are not available yet. Figure 5.6 shows the scheme
of such a one-step-ahead prediction chain for multiple-step-ahead prediction.
This scheme can be expressed mathematically as

J+1E) = f@UE+I=18),, G+ 1-p|t), ut+1-1),...,
u(t+1-¢q), ©) (5.10)

§t+0|1>0

P+t = {y(t+l)|l£0 (5.11)

Realizing the scheme for multiple-step-ahead prediction in linear case
is not difficult. The following equation can be derived by chaining Eq. (5.6)
to produce the prediction:

P+ = A gt+1-1D+ Ay Yt +1-2|t)+ - + A, Gt +1-p[b)
+Biou(t+1-1)+Br-u(t+1-2)+ -+ B u(t+1-q)  (5.12)

However, in the nonlinear case, if you want to use a MFN to realize
multiple-step-ahead prediction, a problem occurs. Figure 5.7 shows the
multiple-step-ahead (number-of-samples-step-ahead) predictions of
quality indices in the snack food frying process described in the example.
These predictions were made by the feedforward one-step-ahead predictor.

© 2001 by CRC Press LLC



a) 4 T T T T T T
i = Actual

... Predicted

\S)
T
1

OUTPUTS

o
T

0 500 1000 1500 2000 2500 3000
TIME(5 sec)

— Actual

4+ ..Predicted

OUTPUTS
N
T

VAN
o

0 500 1000 1500 2000 2500 3000
TIME(5 sec)

Figure 5.7 (a) Number-of-samples-step-ahead prediction of color with the 2 x 2
MIMO ANN one-step-ahead predictor. (b) Number-of-samples-step-ahead predic-
tion of moisture content with the 2 x 2 MIMO ANN one-step-ahead predictor. (From
Huang, 1995. With permission.)

These results are not acceptable. Obviously, the one-step-ahead prediction
chained multiple-step-ahead predictions are poor. The reason is that the chain
of the one-step-ahead predictor resulted in a feedforward network being used
as an external recurrent network while the feedforward network was not
trained to make multiple-step-ahead prediction. Because of the inherent dif-
ference between y(t) and f(t), the prediction error can accumulate during
iteration and a large error can occur. Strictly speaking, ANN one-step-ahead
predictor should not be used to make multiple-step-ahead prediction because
the feedforward network is trained to make single-step-ahead predictions
only. A multiple-step-ahead prediction needs predictor chaining while the
training of the feedforward network does not take such chaining into account.
Therefore, the one-step-ahead predictor cannot be used to make reliable mul-
tiple-step-ahead prediction in the sense of ANNS. It is necessary to establish
an ANN multiple-step-ahead predictor specifically.
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Figure 5.8 Architecture of ERECN with one-hidden layer and one output.

Based on the preceding discussion, the representation of the ANN multiple-
step-ahead prediction according to Egs. (5.10) and (5.11) results in a different
ANN architecture compared with the MFN one-step-ahead predictor. This
ANN architecture is different from the standard feedforward network because
it feedforwards the network input signals to the network output inside (inter-
nal) the network and feeds the network output signals back to the network
input outside (external) the network. This kind of ANN is an external recurrent
neural network (ERECN). Figure 5.8 shows the architecture of the ERECN
with one hidden layer and one output. Obviously, the training of this network
should be different from the standard feedforward network.

In order to explain the training algorithm of the ERECN for NARX
process modeling and prediction, let us discuss some detail of the training
algorithm of the MFN first, and then go to the one for the ERECN. For
simplicity, the discussion is based on a SISO system assumption. The exten-
sion of the concepts and equations to the MIMO system is straightforward.

The training of the feedforward neural networks for one-step-ahead
prediction is an optimization problem. The weights in a feedforward net-
work can be adapted to minimize the squared errors as

N
J = 33w -1’ (5.13)
t=1
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Using the gradient descent algorithm, Rumelhart et al. (1986) developed
the BP training algorithm or so-called general delta rule, in which the net-
work weights are updated in proportion to the gradient of | with respect to
the weights. In the last chapter, the results of Rumelhart et al. were presented.
Earlier Werbos (1974) gave a different derivation of the BP algorithm, which
is more general and mathematically more rigorous than the one given by
Rumelhart et al. In Werbos” derivation, the chain rule is expressed in a
convenient way by ordered derivatives. We are presenting the Werbos’ deri-
vation for the BP algorithm for process modeling and prediction. In training,
each weight in the network can be updated iteratively

new(l) _ old () old(l)
w;; = w;  +Aw; (5.14)
new (I a old(!
Awi™" = na O{d(l) + pAw; " (5.15)

where | represents the number of a layer in the network where [ =0 represents
the input layer, [ = 1 represents the hidden layer, and / = 2 represents the
output layer, and 1 and p are the learning rate and the momentum rate,
respectively. The following relationships of ordered (total) derivatives can
be derived from the chain rule

Yo' onet!(t)

ﬁ - tza t<”(t) Tl (5.16)
* * (])
0 ]1 = 8(1)] %, <(l>t) (5.17)
d net’(t) 90\’ (t) dnet! (t)
8*] 3 LD 8*] 8net(l+l>(t)
= + 5.18
20"(t) 90 () kz{ anet!™(t) 90 (1) (5.18)
J]
2 _ -0 (I#2) 5.19
d0(t) 619

"y
&

where represents ordered derivatives, net '(t) represents the net output
of the ith node in the Ith layer at time ¢, 0! (t) represents the output value
after the transfer function at the ith node in the Ith layer at time ¢, and 1"
is the number of nodes in the /th layer. These conventional partial derivatives
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can be calculated by differentiating the function | with the network equations

dnet’(t)

5~ o!™(t) (5.20)
ij
(I
20 (B _ oy (5.21)
dnet!’(t)

b}
anetf (t) _ w(l)

2" Oy 622
]
Define
50t = —91__ 5.23
anetgl)(t) G.5)
So
] _ N5<l> -1
27 = 2 i (£)oj (1) (5.24)

ij t=1

This equation can be explained as the change of weights between the
(I =1)th and the /th layers is determined by the product of the /th layer’s
and the [ —1st layer’s output. Therefore, it is crucial to calculate the Js for
updating weights in training. The calculation can be carried out as

a*

3 = 5o (5.25)
« 71(1+1)

N B o O (5.26)

0(t)  2(t) &

The preceding equations contribute to propagating information about
error backwards from the (I + 1)th layer to the /th layer through the Js
recursively. For the training of the feedforward network described in the last
chapter, these equations become exactly the same as the ¢ in Eq. (4.35) as
long as 87(t) = §, 8(t) = 8,07 (t) = S,( ), and 0" (t) = S,( ).
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For developing the training algorithm of the ERECN for NARX process
modeling and prediction, the input to the ERECN can be arranged in the
following vector

x(t) = §t-1), §(t=2),..., G(t-p), u(t=1), u(t-2),..., u(t-q))"

The time-delayed output from the network model itself is in this vector
g(t-i) (i=1,2,..., p). In fact, this network model is a specific form of time-
lag recurrent networks (Su et al., 1992). Several training algorithms have
been proposed for the time-lag recurrent networks with only one recurrent
connection, thatis, i =1 (Williams and Zipser, 1989; Pineda, 1989; Pearlmutter,
1990). Among the algorithms, the back propagation through time (BPTT) can
be modified for multiple recurrent connections, that is, i >1 using ordered
derivatives (Werbos, 1974). Actually, when the external feedback signal §(f)
replaces y(t) as the input to the network, the change of weights will affect
7(t+1) and, thus, affect §(t + 2) all the way to §#(N). The summation term
in Eq. (5.26) has to account for this chaining from t = 0 to t = N . The input
layer at time t + 1 canbe considered as a part of the third layer of the network
at time t. When calculating the §s of the output layer at time ¢, it is necessary
to calculate the 6 for the input nodes at time t + 1 up to t + p, all of which
are connected to the corresponding output node at time ¢. It can be shown
that

p+q
57t = Y 5(bHw; (5.27)
j=1

The 6 for the network nodes becomes

P , h
8(t) = [y(H) = H(D)] =Y 8ptrysit + DSo (wo + zwjzj(t)] (5.28)
=1

i1

In this equation, the § propagates the required information all the way
from t = N back to the current time instant. This is what BPTT signifies.

This algorithm is used over the whole trajectory of the training data. In
training and validation, the number of prediction steps is equal to the total
number of training or validation samples. In controller design, the prediction
steps are usually specified as a much smaller number than the number of
samples. There are two ways to solve this problem. One is to use the long-
term predictor trained with the preceding algorithm to do short-term pre-
diction for model predictive control. The other is to train the network to do
short-term prediction with a modified training algorithm. Huang (1995)
suggested modifying the standard BPTT algorithm in a way that each time
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instant propagates the 6 from the specified prediction step ¢+ L (L<<N)
instead of N back to the current time instant f. It is noted that this modified
algorithm requires more memory and computational capability.

5.3.1 Example: Multiple-step-ahead prediction for snack food
frying process control

Bullock (1995) demonstrated the ability of the linear ARX model to provide
a reliable multiple-step-ahead prediction of the snack food frying process.
In the performance test, the models were given starting points and then fed
a continuous input of inlet temperature u,(f) and exposure time u,(t). The
outputs at each time step were fed back in as inputs for the next time step.
Figure 5.9 shows the multiple-step-ahead prediction ability of the ARX
model. Figure 5.10 shows the residuals of the prediction.

Multi-step Color Prediction by ARX
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Figure 5.9 Number-of-samples-step-ahead prediction of the ARX model for the snack
food frying process. (Adapted from Bullock, 1995. With permission.)
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Table 5.10 Predictive MSEs of One- and Multiple-Step-Ahead Predictions
of the Linear ARX Model for the Snack Food Frying Process*

One-Step-Ahead Multiple-Step-Ahead
Output Prediction MSE Prediction MSE
Color 0.000183 0.005556
Moisture Content 0.000083 0.004578

* Adapted from Bullock (1995). With permission.

a) Multi-Step Color Prediction Residuals for ARX
0.05 T T T T T T T T T
0 -
©
3
-5 —0.05 |
Q
@
-0.1
-0.15 1 1 1 1 1 1 1 Il 1
100 200 300 400 500 600 700 800 900 1000
b) Multi-Step Moisture Prediction Residuals for ARX
0.05 T T T T T T T T T
0 -
©
3
2-0.05
(V]
(i
-0.1
_o. 1 5 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Time Steps

Figure 5.10 Residuals from the number-of-samples-step-ahead prediction of the
ARX model for the snack food frying process. (Adapted from Bullock, 1995. With
permission.)

It appears that the linear ARX model is undershooting the desired values
for the multiple-step-ahead-prediction. In fact, the ARX model was devel-
oped to provide one-step-ahead prediction only, while multiple-step-ahead
prediction was not integrated into its development.

The results indicate that for the snack food frying process, the linear
ARX model did an excellent job for one-step-ahead prediction and a fairly
good job for multiple-step-ahead prediction. Table 5.10 shows the error mea-
surement of the ARX model for both one- and multiple-step-ahead predic-
tions for comparison.
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Table 5.11 MSEs of the 2 x 2 MIMO ANN Number-of-Samples-Step-
Ahead Predictions for the Snack Food Frying Process*

Prediction MSEon  Prediction MSE on

Prediction Output Training Validation
Color 0.048469 0.060398
Moisture Content 0.048433 0.060044

* From Huang et al. (1998a). With permission.
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Figure 5.11 (a) Number-of-samples-step-ahead prediction of color from the 2 x 2
MIMO ANN multiple-step-ahead predictor on training data from the snack food
frying process. (b) Number-of-samples-step-ahead prediction of color from the 2 x 2
MIMO ANN multiple-step-ahead predictor on validation data from the snack food
frying process. (From Huang et al., 1998a. With permission.)

With the training algorithm just described and the ANN model structure
parameters (model orders and number of hidden nodes) presented in the
Section 4.3.4 for the purpose of comparison, Table 5.11 and Figures 5.11, 5.12
show the MSEs and plots of number-of-sample-steps-ahead predictions of
the MIMO ANN multiple-step-ahead predictor. Although the necessary pre-
diction steps would be much smaller, they are all adequate for use as the
basis for the design and implementation of the PDC loop.
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Figure 5.12 (a) Number-of-samples-step-ahead prediction of moisture content from
the 2 x 2 MIMO ANN multiple-step-ahead predictor on training data from the snack
food frying process. (b) Number-of-samples-step-ahead prediction of moisture con-
tent from the 2 x 2 MIMO ANN multiple-step-ahead predictor on validation data
from the snack food frying process. (From Huang et al., 1998a. With permission.)
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chapter six

Control

6.1 Process control

In food process quality control, human operators are subject to overcorrec-
tion and overreaction to normal process variability. In order to ensure con-
sistency in product quality on-line, automatic control is desired. For control
purposes, it is usually necessary to identify the process model first. Then,
based on the model, determine the scheme or controller needed to regulate
the process dynamics. The process of model building involves sampling,
data acquisition, data dynamic analysis, process modeling, and process pre-
diction. These topics were covered in previous chapters. This chapter focuses
on the issues of controller design, simulation, and implementation in food
processes.

When an accurate model of a process under consideration is obtained, it
can be used in a variety of control strategies. Model predictive control (MPC)
is a well-established model-based control structure in control theory and prac-
tice. In the MPC family, internal model control (IMC) and predictive control
(PDC) have been widely used in practical process control. IMC emphasizes
the role of process forward and inverse models. In this structure, the process
forward and inverse models are used directly as elements in a designed
feedback closed loop, and the difference between the process and model
outputs is fed back for regulating the performance of the control system.
The IMC approach is strongly supported by control theory. However, it
should be noted that the implementation of the IMC structure is limited to
open-loop stable systems. Even so, this control structure still has been widely
used in process control. The PDC is based on the receding horizon technique.
It has been introduced as a natural, computationally feasible, feedback law
in the realm of optimal control. In this approach, a process model can be
used to provide prediction of the future process response over the specified
horizon. The predictions supplied by the process model are passed to a
numerical optimization routine that minimizes a designated system perfor-
mance criterion in the calculation of suitable control signals. An advantage
of the PDC approach is that it can include the constraints for process inputs
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and outputs and model uncertainties in the formulation while IMC does not
consider it explicitly.

In the area of model-based process control, perhaps the most significant
MPC strategies are IMC and PDC. In this chapter, the basic principles of the
two control strategies will be introduced, the algorithms for controller design
will be formulated, and the examples from practical food processes will be
presented.

6.2 Internal model control

The IMC strategy was first proposed by Garcia and Morari in 1982 in terms
of linear SISO systems. Later Economou et al. (1986) extended it to general
nonlinear systems. The linear IMC structure is shown in Figure 6.1. In this
diagram, the following relationship can be established

y=Pxii+e (6.1)

i =[1+C(P-M)]"'Cy -e) (6.2)

where P represents the process, C represents the IMC controller, M represents
the process model, and ¢ represents measurement noise from the process.
There are three properties of the linear IMC structure (Garcia and Morari,
1982).

Figure 6.1 Structure of a linear IMC loop. (Adapted from Huang, 1995. With permission.)
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1. Dual stability—assume the model is perfect, that is, M = P. The closed-
loop system in Figure 6.1 is stable if the controller, C, and the process,
P, are stable. This implies that unless there are modeling errors and
as long as the open-loop system is stable, the stability issue is trivial.

2. Perfect control—assume that the controller is equal to the model in-
verse, that is, C = M, and that the closed-loop system in Figure 6.1
is stable. Then, y(t) = y'(f) for all > 0 and all noises &(f). This reasserts
that the ideal open-loop controller leads to perfect closed-loop per-
formance in the IMC structure.

3. Zero offset—assume that the steady-state gain of the controller is
equal to the inverse of the model gain, that is, C.. = MZ', and that
the closed-loop system in Figure 6.1 is stable. Then, there will be no
offset for asymptotically constant set points and noises, hm y(t) = v
Integral-type control action can be built into the structure without
the need for additional tuning parameters.

In an analogy to the linear case, the design approach of the IMC con-
troller can be extended to nonlinear systems in an orderly fashion as follows
(Economou et al., 1986). The nonlinear IMC structure is shown in Figure 6.2.
The blocks with double lines are used to emphasize that the operators are
nonlinear and that the usual block diagram manipulations do not hold.

Figure 6.2 Structure of a nonlinear IMC loop. (Adapted from Huang, 1995. With
permission.)
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The following relationships are from the diagram

iy = M(C(v)) (6.3)
v=y-y+d (6:4)
h = Py (C(v))-M(C(v))+¢ (6.5)

The three properties of the nonlinear IMC structure are similar to the three
properties of the linear IMC structure (Economou et al., 1986).

1. Stability—if C and P, are input—-output stable and a perfect model of
the process is available, that is, M = P,, then the closed-loop system
is input-output stable.

2. Perfect control—if the right inverse of the model operator M’ exists,
that is, C = M, and the closed-loop system is input-output stable
with this controller, then the control will be perfect, that is, y = y".

3. Zero offset—if the rlght inverse of the steady-state model operator M.,
exists, that is, C.= M., and the closed-loop system is input-output
stable with this controller, then offset free control is attained for asymp-
totically constant inputs.

Avery important difference between linear and nonlinear processes exists.

For a linear process, noises can be assumed to perform additive actions on the
output without loss of generality because of the superposition principle

Pu+n)+e¢

Pxu+Pxn+e¢
Pxu+d with 6 = Pxn+¢

This principle does not hold for a nonlinear process. In the preceding
equation, the symbol P, is used for the process operator to signify the effect
of unmeasurable noises resulting in differences between the model and the
process.

The preceding linear and nonlinear IMC structures provide the direct
methods for the design of linear and nonlinear feedback controllers.

The procedure for IMC design consists of the following two steps:

1. Design the controller C under the assumption of perfect control,
that is, P = M.

2. A filter F needs to be designed to preserve the closed-loop charac-
teristic that C was designed to produce in reality, the control cannot
be perfect, and there always exists a mismatch or error between the
model and the plant (process).
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This procedure can be implemented fairly easily in linear IMC design.
For Step 1, C = 1/M, the controller C is the direct inverse of the model M.
Then, for Step 2, the final IMC controller C is set by augmenting C with F,
a low pass filter, so that C = CF. F is a low pass filter whose parameters, with
the ones in C, can be adjusted to improve the robustness. For example, a
common form of the filter used for discrete SISO is first order (Prett and
Garcia, 1988)

where 0 < 6 < 11s the filter time constant. This procedure can be implemented
in a similar but much more complicated manner in nonlinear IMC design.

ANN is a promising alternative to handling nonlinearity in modeling.
It is also a promising alternative for design and implementation of control-
lers for nonlinear process control. As a general nonlinear control scheme, a
neural network needs to be trained first to represent the process response.
This network is used as the process model, M, in the IMC structure. Then,
a second network is trained to represent the inverse of the process dynamics.
This training work can be performed with the structure shown in Figure 6.3.
Having obtained the inverse network model, this network is used as the
controller, C, in the IMC structure. The inverse of a nonlinear process plays
a central role in the development of the nonlinear IMC controllers.

A~ Y
N C u
Inversed Pa —
Network
ANN Training M '
Algorithm Forward ANN
Model
/

Figure 6.3 Process ANN model inverse training structure. (Adapted from Huang,
1995. With permission.)
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Figure 6.4 Feedback control structure. (Adapted from Huang, 1995. With permission.)

An alternative method for achieving a stable inverse of a neural network
process model is to calculate the inverse model iteratively. With this method,
the neural network process model equations are treated as nonlinear func-
tions, and a numerical method can be used to compute the inverse of these
functions at each sampling instant. This method is effective even for those
processes that are only invertible locally, but training an inverse neural
network requires the process to be invertible globally, that is, over the
whole operating space. In some cases, this may cause difficulty in learning the
accurate inverse of the process dynamics through inverse network training.
Therefore, the iterative inversing method is more reliable than the method
of inverse network training. In this chapter, the iterative inversing method
is recommended for the design of an ANN-based IMC (ANNIMC) controller.

It is important to note that the IMC structure is equivalent to the classical
feedback structure, as shown in Figure 6.4, in which the bold lines emphasize
the general relationship whether they are linear or nonlinear. This equiva-
lence is in the sense that any external inputs, ys, 7, and &, to the closed-loop
system will give rise to the same internal signals, # and y. In the linear case,
the IMC controller, C, and the feedback controller, C;, are related by

C=C(1+MC)" (6.6)
and

C=C(1-MO)" (6.7)
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By this equivalence, the properties of the IMC can be explained easily
through the concept of feedback control. Whatever is possible with the
feedback control is possible with the IMC and vice versa.

In the nonlinear case, the feedback controller, C;, and the IMC controller,
C, are related by

o= C(v)
= Cy(e) (6.8)
and
v=e+ (6.9)

where e =y - y. A filter, F, can be employed in series with the IMC controller,
C, for the robustness of the controller. In the frequency domain, the preced-
ing relationship of v and e can be further expressed as

V(z) = F(z)(E(2) + Y(2)) (6.10)

In an IMC loop, if the process model is perfect and u can be solved from
the model in the form of a one-step-ahead predictor, the following relation
can be obtained

v(t) = §(t+1) (6.11)

Taking a z-transform on this equation and combining with Eq. (6.10),
the relationship between the error signals of feedback control, e, and of IMC,
v, is obtained as

F
(2) _p(z) 6.12)

V(z) = ———
1-F(z)z

In this way, a feedback controller and an IMC controller are equivalent
on the basis of the process prediction model. When designing and imple-
menting a feedback controller based on the process model, an IMC controller
is designed and implemented equivalently.

As mentioned previously, the inverse of the neural network model is
crucial in the design of the nonlinear IMC controller. This inverse can be
calculated iteratively at each numerical sampling instant. Newton’s method
and the gradient descent method (Scales, 1985) can be used to develop algo-
rithms for the calculation. Based on the inverse strategy, the ANNIMC loop
can be diagramed as shown in Figure 6.5 where M"" represents the neural
network one-step-ahead prediction model.

As described in the last two chapters, the neural network one-step-ahead
prediction model can be written in the form

Jt+1) = f(y(t), y(t=-1),..., y(t=p), ut), u(t-1),..., u(t—q), W) (6.13)
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Figure 6.5 Structure of ANNIMC. (Adapted from Huang, 1995. With permission.)

The right inverse of M can be generated by solving the preceding non-
linear equation for the current process input u(t). Because u(t) is unknown
at this instant, {/(f + 1) cannot be estimated. In this way, the IMC controller,
C, is designed by replacing f(f + 1) with an internal signal v (t) in the control
loop and solving the resulting equation for u(f)

v(t) = f(y(t), y(t=1),...,y(t=p), u(t), u(t-1),..., u(t—q), W) (6.14)

A function can be further defined as

U(u(t)) = v(t) —f(y(t), yt-1),...,y(t-p), u(t), u(t-1),..., u(t—q), W)

(6.15)
The general equation for the iteration of u(t) is
') = 2N + A ) (6.16)

where k represents the number of iteration. In terms of the concept of Newton’s

method, A" 'i(¢) in the Eq. (6.19) should be

AT = —__U@®) (6.17)
AU (u(t))/du(t) u(hy=25"1

The forms of U(u(t)) and JU(u(t))/du(t) depend on the chosen neural
network structure. They can be derived according to the equations of the
specified neural network model.

© 2001 by CRC Press LLC



Egs. (6.16) and (6.17) with their expansion from the specified neural
network model formulate the algorithm of the IMC controller based on a
neural network one-step-ahead prediction model with Newton’s method.
By use of this algorithm, the iterative sequence is initialized by the process
input calculated at the previous sampling instant, that is,

2°(t) = u(t-1) (6.18)

If the algorithm converges after m iterations, the current process input

is assigned as

u(t) = 0"(t) (6.19)

In practice, Newton’s method is sensitive to initial conditions. If the initial
conditions are not perfect, the iterative procedure may not converge. In order
to alleviate this problem, a factor simply can be introduced to the iterative
Eq. (6.16) to form a modified iterative equation of Newton's method

25 = 2"+ y AT (6.20)

where yis the factor. The factor can control the convergence speed of the
algorithm. When y= 1, the algorithm is the standard Newton’s method, and
the convergence speed of the algorithm is fastest when the convergence space
is small. When y< 1, the convergence speed may be slower and the conver-
gence space may be larger which, actually, relaxes the requirement for the
initial conditions. On the other hand, in the implementation of the control
system because the factor works in the control loop, it has an effect on the
controller performance. Therefore, the factor can be used as a controller tuning
parameter.

Newton’s method is to approximate a nonlinear function with piecewise
linearization in an iterative procedure. An alternative method is setting up
an objective function

18,
J(u(t)) = QZU (u(t))
t=1
1 N 2
= i;(v(t)_y(tn)) (6.21)

In this way, the problem of solving a nonlinear function is changed to
minimizing an objective function. A number of methods can be used to accom-
plish this. Among these methods, the gradient descent method has been well
established. With the method of gradient descent, the iterative equation of u(t)
is still similar to Eq. (6.16), but the term A*”'a(t) is changed to

sy 9l u(t))
an(h) = —y=5 0 o (6.22)
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This expression guarantees that each update of u(t) makes the objective
function, J, move in the direction of the greatest gradient. Further,

) _ _ 4 d(t+1)
“onn =~V i+ D) (6.23)

The form of di(t +1)/du(t) also depends on the chosen neural network
structure. It can be derived according to the equations of the specified neural
network model.

Egs. (6.16), (6.22), and (6.23) with their expansion from the specified
neural network model formulate the algorithm of the IMC controller based
on a neural network one-step-ahead prediction model with the gradient
descent method. Just as with the implementation of Newton’s method-based
algorithm, the iterative sequence in the gradient descent method is initialized
with the input calculated at the previous sampling instant as in Eq. (6.18). If
the algorithm converges after m iterations, the current input is assigned as
in Eq. (6.19). The parameter y has a similar effect as in the equation of the
modified Newton’s method. It can control the convergence of the algorithm
and has an effect on the control loop as well.

When using the modified Newton’s method or the gradient descent
method to calculate the inverse of the neural network process one-step-ahead
prediction model, the controller will perform differently with respect to slug-
gish tracking, smooth and fast tracking, or oscillation with the change of y.
Therefore, controller tuning is important in controller design. The purpose of
tuning is to find the value of a certain parameter in the control loop resulting
in satisfactory performance of the controller. The parameter, y, discussed pre-
viously can be tuned to achieve smooth control of the ANNIMC controller with
a change of the response. There are two aspects that need to be considered in
controller tuning. In considering the strategy of the solution, tuning with yis
actually a one-dimensional search problem. However, because it is difficult,
in practice, to guarantee that the criterion is convex throughout the search
interval, the direct one-dimensional search method may not be useful. For
specific tuning with yin the ANNIMC loop, the following procedure can be
followed.

1. Determine the tuning interval—the two extremes of y that correspond
to sluggish tracking and oscillation can be determined empirically.
These two numbers define the interval.

2. Determine the increment of y—the increment of y, Ay, is determined
in terms of the sensitivity of the controller performance to y.

3. Perform the experiment—over the tuning interval, beginning from
the left extreme, the controller experiment points are set up according
to

ne

% w_ ')/Old+A'yold (624)
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until the right extreme is reached. The controller is implemented at
each experimental point and the selection criterion is calculated at
each value.

4. Determine the final y—choose the final 7, the point where the corre-
sponding controller has the minimum value of the criterion. If there
are several possible final y candidates from different criteria, it may
be necessary to compare the corresponding controller performance
to make a final decision.

The second aspect is related to the criterion used in tuning a controller.
This criterion usually is an objective function that can represent the charac-
teristics of the control system and is convenient in computation. Obviously,
when different objective functions are selected for use for the same control
system, the final parameters may be different.

In general, there are two types of objective functions. The first is estab-
lished by directly using the output response characteristics of the control
system. Typically, under a step input, the desired output of the control system
changes as shown in Figure 6.6.

RESPONSE

¢ TIME

Figure 6.6 Typical output response of a control system under a step input. (From
Huang, 1995. With permission.)
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The following characteristics are used to establish objective functions.

1. Rising time t,—this is the time at which the output, y(t), reaches the
static value for the first time.

2. Regulating time t;—this is the time at which the output, y(t), reaches
the static area of 95 to 105 percent and never exceeds those limits.

3. Overshoot ¢ percent

5% = 2 x100% (6.25)
y

where A is the maximum difference in which y(f) deviated from y",
and y" is the static value of y(#).

However, only one of these characteristics is often selected to establish the
objective function in tuning, while the other two are used for testing condi-
tions. This method cannot achieve optimal tuning based on all characteristics.

The second type of objective function is called the error objective func-
tion. It is based on the difference between the desired system response
(usually step response) and the real system response. This is done to manip-
ulate mathematically the three characteristics in the first type of objective
function and to integrate them into a single mathematical equation. This
type of objective function achieves comprehensive tuning while integrating
all characteristics.

Three error objective functions are popular in controller evaluation. They
are based on different forms of minimizing

1. The error integral—the minimum integral of square error (ISE),
Jise = [ &) at (6.26)
2. The minimum integral of absolute error (IAE)
Jue = [ le(o)l dt (6:27)
0
3. The minimum integral of absolute error multiplied by time (ITAE)
Jirae = J:t‘e(t)‘ dt (6.28)

In practice, the integral upper limits in the preceding three equations are
set up to be multiples of the transient time of the control system instead of .
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6.2.1 Example: ANNIMC for the snack food frying process

The preceding theoretical description needs to be extended further for the
development of the IMC controller for the snack food frying process. As
shown previously for process quality control, the continuous, snack food
frying process can be generalized as a dynamic system with two inputs, the
inlet temperature of the frying oil and the residence time of the product
staying in the fryer, and two outputs, the product quality attributes of color
and moisture content. If the system equation of discrete-time time-delayed,
nonlinear, autoregressive with exogenous input (TDNARX) is assumed to
govern the 2 x 2 process (Huang et al., 1998), then this process can be modeled
by a feedforward neural network

J(t) = flyt=1), y(t=2),..., y(t-p), u(t-d -1),
u(t—d-2),..., u(t—d—-gq), W) (6.29)

where y (t) = [1(t), yz(t)]T is the process output vector in which y;(f) is the
product color and y,(t) is the product moisture content (percent) at time t,
J(t) = [:1(t), 92(t)]" is the approximated process output vector by the
model, u (f) = [us(t), u(H)]" is the process input vector in which u,(t) is the
inlet temperature (°C) and u,(t) is the residence time (s) at time ¢, p represents
the orders of the past outputs 1;(t) and y,(f) in the vector equation, that is,
yt—=p) =yt —p), vt - pz)]T in which p, and p, are the maximum orders
of the past outputs related to the present outputs y,(t) and ,(t), respectively.
q represents the orders of the past inputs u,(t) and u,(t) in the vector equation,
that is, u (t — q) = [uy(t — q1), us(t - qz)]T in which ¢; and g, are the maximum
orders of the past inputs related to the present outputs y,(¢) and y,(t), respec-
tively, and d represents the time lags from the process input u (t) to the process
output y (), thatis, u (t —d) = [u,(t — d,), uy(t - dz)]T in which d; and d, are the
minimum time lags of the inputs related to the present outputs y;(t) and
y»(t), respectively.

This equation can be further rewritten in the form of a one-step-ahead
prediction. Equivalently,

Gt+d+1) = fly(t+d), y(t+d-1),..., y(t+d-p+1),
u(t), u(t=1),..., u(t—q+1), W] (6.30)

This equation contains the input vector, u (t), to be used to compute the
control action for a unique solution of u (t). A function can be defined for
this purpose

Uu(t) = v(t)—f (J(t+d), §(t+d-1),..., §(t+d-p+1),
u(t), u(t-1),..., u(t—-g+1), W) (6.31)

where v (t) is the tracking signal of the network model predicted output
yt+d+1).
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Therefore, the control actions can be computed with the inverse of the
function U(u(t)). However, the future process outputs y(t+d —p +1),...,
y (t + d) need to be estimated in order to realize the computation.
~ Because the neural network prediction model equation is nonlinear, an
analytical solution cannot be obtained. The control law needs to be evaluated
by solving the nonlinear function U( ), the process prediction model, at each
time instant iteratively in a numerical fashion

~k ~k

o) = o'+ A ) (6.32)
where (t) is the computed u(t) at the kth iteration, and A*19(t) is the
updatmg increment of #(t) at the kth iteration, determined by a certain
numerical method.

The process model one-step-ahead prediction and the control action
computation set up an ANN process one-step-ahead prediction model-based
IMC (ANNIMC) loop for the continuous snack food frying process. The
structure of the ANNIMC loop is shown in Figure 6.7 where £(t) = (&(#),
(sz(t)) is the measurement noise vector in which &(t) is for y,(t) and &(¢) is
for y,(t) at time ¢, assumed to be two-dimensional Gaussian distributed with
zero mean and certain variance, 7 (t) represents the system noises, M is the
neural process one-step-ahead prediction model, M' is the inverse of the
neural process prediction model, F is a filter for the robustness of the con-
troller, and y°(t) contains the setpoints of the process outputs.

n(t)

w(t)

C

pNO) v(®) i)
— )—-| F ) Mi P,

MP

Y@

J+d+1)

50

Z-d-1

)
N

Figure 6.7 Structure of ANNIMC for the snack food frying process. (Adapted from
Huang et al., 1998a. With permission.)

© 2001 by CRC Press LLC



As previously discussed, the inverse of the neural network process one-
step-ahead prediction model is crucial in setting up an IMC loop. This inverse
computes the control actions iteratively at each time instant. For snack food
frying process control, Newton’s method and the gradient descent method
were applied and compared to obtain the inverse.

According to Newton’s method, the term A1) in Eq. (6.32) can be
written as

(6.33)

uh=1""(t)

8Q(u(t)))’1

Ak_lﬁ(t) = —u(@kil(t))( au(t)

where U (u(t))/0u(t)is a 2 x 2 Jacobian matrix, and each component can
be derived from the equations of the process prediction model (Huang, 1995).

Newton’s method is sensitive to initial conditions during iterative com-
putation. If the initial conditions are poor, the iterative procedure may not
converge. To alleviate the problem, a factor, y, can be incorporated into the
standard iterative equation of Newton’s method to form a modified iterative
equation for Newton’s method.

k

2'(h = o'+ AT (6.34)

The factor, y, controls the convergence speed of the algorithm. The algorithm
is the standard Newton’s method when y = (1, l)T; otherwise, it is the mod-
ified Newton’s algorithm with larger convergence space and relaxed require-
ments on the initial conditions. In a control loop, the factor, ¥, can be tuned
for the performance of the controller.

An alternative way to perform the inverse computation is to use the
function U(u(t)) to set up an optimization problem to minimize the following
objective function

Ju(t)) = U (u(t)) - Uu(t)) (6.35)

NI =

The control actions can be updated using the gradient descent method

A = —VT&](u(t)) (6.36)
4 Toou(t) |uwm-d e

where U (u(t))/du(t) is also a 2 x 2 Jacobian matrix, in which each compo-
nent can also be derived from the equations of the neural network process
prediction model (Huang, 1995). Similarly, the factor, y, can also be tuned in
the control loop. This expression guarantees that each update of u(t) makes
the objective function ] move in the direction of the largest gradient decrease.
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The two time lags from the process inputs, inlet temperature and resi-
dence time, are separated 20 and 16 units (each unit accounts for 5 s),
respectively, from the process outputs, color, and moisture content. It can be
derived that at time, f, the model inverse can only be solved for u(t) = (u(t),
u,(t + 4))T instead of u(t)= (u,(t), uz(t))T (Huang, 1995). In the simulation
computation, empirical estimations of future control actions u,(t + 3), u,(t + 2),
uy(t + 1), and u,(t) are needed at the initial stage and, then, the previously
computed u,s are saved to implement u,(t) and u,(t) at the same time instant.

During the controller tuning process, ¥ = % = ¥ was assumed. The tuning
could be performed in the interval with a parameter increment in a one-
dimensional space. The three objective functions, ISE, IAE, and ITAE, test
and verify each other (Huang, 1995).

Using the modified Newton’s method to compute the inverse of the
neural process one-step-ahead prediction model, it was found that as the
values of the factor ¥ were increasing, the performance of the controller
went from sluggish setpoint tracking, to smooth and fast setpoint tracking,
to oscillation.

Table 6.1 shows the tuning parameters where the final ¥ were 0.05 with
ISE and 0.04 with IAE or ITAE. The two different responses of color and
moisture are plotted in Figure 6.8. The responses with ¥ = 0.04 are smoother.
Consequently, 7 = 0.04 with IAE and ITAE was preferred. Note that in the
controller test, the frying process was simulated as 10 percent of control and
0.5 percent of moisture content of Gaussian white noise with 0 mean and
unit variance.

With the final 7 of 0.04, the setpoint tracking responses and step distur-
bance rejection responses of the IMC controller based on the inverse of the
modified Newton’s method are displayed in Figures 6.9 and 6.10, respec-
tively. The setpoint tracking responses show how the process outputs track
the changes of the setpoint values. The step disturbance rejection responses
show how the process outputs sustain the step disturbances that impact on
the process outputs at certain instants during controller implementation.

Table 6.1 The Three Integral Error Objective Functions in the Tuning
of 7 in an IMC Loop with the Process Model Inverse Using
the Modified Newton’s Method*

Y ISE IAE ITAE

0.01 0.018381 0.059220 1.649493
0.02 0.010882 0.030475 0.515131
0.03 0.008664 0.020973 0.333839
0.04 0.007871 0.019237 0.316390
0.05 0.007797 0.020923 0.365465
0.06 0.008321 0.024489 0.449107
0.07 0.009652 0.030951 0.654441
0.08 0.012671 0.044000 1.230824

* From Huang et al. (1998a). With permission.
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Table 6.2 The Three Integral Error Objective Functions in the Tuning
of ¥ in the IMC Loop with the Process Model Inverse Using

the Gradient Descent Method*

Y ISE IAE ITAE

0.001 0.026086 0.113393 0.855017
0.002 0.15497 0.077924 6.807420
0.003 0.012147 0.066104 6.449880
0.004 0.010648 0.060118 6.316670
0.005 0.009940 0.058497 6.308235
0.006 0.009683 0.059158 6.326198
0.007 0.009762 0.060914 6.372906
0.008 0.01158 0.063477 6.436001
0.009 0.010939 0.067334 6.529615
0.010 0.012320 0.073170 6.734011

* From Huang et al. (1998a). With permission.
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Figure 6.8 (a) IMC responses of color for ¥ =0.04 and y = 0.05 with the inverse of
the modified Newton’s method. (b) IMC responses of moisture content for ¥ = 0.04
and y = 0.05 with the inverse of the modified Newton’s method. (From Huang et al.,

1998a. With permission.)

A similar approach was used to tune the 2 x 2 MIMO IMC controller

based on the inverse with the gradient descent method.

Through the tuning shown in Table 6.2, the final ¥ were 0.005 with IAE
or ITAE and 0.006 with ISE. Figure 6.11 shows the output responses, ¥ = 0.005
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Figure 6.9 (a) IMC setpoint tracking response of color with the inverse of the mod-
ified Newton’s method for ¥ = 0.04. (b) IMC setpoint tracking response of moisture
content with the inverse of the modified Newton’s method for y =0.04. (From Huang
et al., 1998a. With permission.)

with IAE or ITAE was determined as the final value for smooth control based
on the inverse of the gradient descent method.

With the final ¥ value of 0.005, the setpoint tracking responses and the
step disturbance rejection responses of the IMC controller are shown in
Figures 6.12 and 6.13.

In this way a 2 x 2 MIMO neural network process one-step-ahead pre-
diction model-based IMC loop has been established for quality control of a
continuous snack food frying process. This control structure can compensate
the time lags between process inputs and outputs by setting the prediction
of the neural process model to track a feedback error signal in a closed loop.
The controller was designed by computing each control action at each time
instant using modified Newton’s and gradient descent methods. Controller
simulation results show that the established control loop can be tuned to
deliver stable control of the product quality for the continuous snack food
frying process.

6.3 Predictive control

The predictive control (PDC) is a different model-based control strategy
from the IMC, which is based on process model multiple-step-ahead pre-
dictions. The basic idea of the PDC originated from dynamic matrix control
(DMC) (Cutler and Ramaker, 1979). Figure 6.14 presents a schematic diagram
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Figure 6.10 (a) IMC step disturbance rejection response of color in the inverse of the
modified Newton’s method with 7 = 0.04. (b) IMC step disturbance rejection response
of moisture content in the inverse of the modified Newton’s method with 7 = 0.04.
(From Huang et al., 1998a. With permission.)

showing how the DMC works. In this figure, the optimizer is used to calcu-
late the future input values. The optimization variables are u(t +1—-1) (I =
1,2,..., L). They can be chosen to minimize an objective function in the form

L
J =W E+D-gt+1]6) (6.37)

I=1

Typically, several future input values would be calculated, but only the
first, fi(t), is implemented as u(t). One of the important features of this control
strategy is that constraints on input and output can be incorporated into the
formulation. This strategy constitutes a window moving horizon approach
as shown in Figure 6.15. The center of the window is taken as the current
time, t. Past and present values of input and output as well as future values
of input are fed to the process predictor. The predictor outputs are the esti-
mated process output values in the future. At the beginning of the implemen-
tation, the window is placed at the starting point. After each data presentation
and calculation, the window moves At. This continues until the end of the
implementation.
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Figure 6.11 (a) IMC responses of color with 7 =0.005 and 0.006 in the inverse of the
gradient descent method. (b) IMC responses of moisture content with 7 = 0.005 and
0.006 in the inverse of the gradient descent method. (From Huang et al., 1998a. With
permission.)

The preceding control strategy was extended to the generalized predic-
tive control (GPC) (Clarke et al., 1987) based on a linear Controlled Autore-
gressive Integrated Moving-Average (CARIMA) model. The GPC has the
following two important characteristics:

1. Assumption on the control signal, u—this control strategy is a receding-
horizon method which depends on predicting the process’s output over
several steps based on an assumption about future control actions. This
assumption is to define a control horizon, L, which is between the
minimum objective horizon, L;, and the maximum objective horizon,
L,, and, beyond it, all control actions are assumed to remain to be
constant, or equivalently, all control increments are assumed to be zero.

2. Suppression on the control signal, u—in the GPC, the control signal,
u, is incorporated in the objective function to be optimized

Ly
J= @ E+D-gt+1|1)

I=L,

LZ
+ 3 At +1-1) - fi(t+1-2))* (6.38)
I=1
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Figure 6.12 (a) IMC setpoint tracking response of color with ¥ = 0.005 in the inverse
of the gradient descent method. (b) IMC setpoint tracking response of moisture content
with 7 = 0.005 in the inverse of the gradient descent method. (From Huang et al.,
1998a. With permission.)

where {4} is the control weighting sequence. In this way, the control signal,
1, is chosen according to the optimization problem and forced to achieve the
desirable action.

It has been proven that the PDC has desirable stability properties for
nonlinear systems (Keerthi and Gilbert, 1986; Mayne and Michalska,
1990). Further, it is possible to train a neural network to mimic the action
of the optimization routine. This controller network is trained to produce
the same control action as the optimization routine for a given process
output. However, this training is usually not easy because it requires
global invertibility of the process over the entire operating space. During
training, the optimization routine can still be used to help achieve the
desirable output (Hunt et al., 1992). The structure of this training is shown
in Figure 6.16. Once the training is complete, the process model and
optimization routine at the outer loop are no longer needed for imple-
mentation. This structure requires double calculations in the optimization
routine and neural network training. Another approach to design the PDC
controller is to use an on-line optimization routine directly to determine
the future process inputs in terms of the minimization of the deviations
between the desired and predicted process outputs over the multiple-step
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time horizon based on the neural process predictor. Thus, the neural network
process model-based predictive controller for a process can be implemented
as follows:

At each sampling instant,

1. Set up the future process output setpoint sequence, y’(t + [) and the
control weighting sequence, A,

2. Measure and save the current process output, y(f).

3. Predict the future process output sequence, ¥ (t + [|#), recursively,
using the neural network process multiple-step-ahead predictor and
formulate the objective function.

4. Minimize the objective function with an on-line optimization routine
to give a suggested sequence of the future control actions, u(t + [ —1).

5. Implement the first element of the control sequence, u(t).

6. Shift the known values of y and u so that the calculations for the
implementation can be repeated at the next sampling instant.

The on-line optimization routine plays an important role in PDC.
Because of the nonlinearity of neural network process models, an analytical
solution of the objective function generally cannot be obtained. If a numer-
ical optimization method is used, the numerical solution to the objective
function can be obtained iteratively. Because the optimization routine needs
to be on-line, it is very important to consider the discontinuities owing to
disturbances in the operation of the process in choosing a specific optimiza-
tion method.

In general, there are two main types of optimization methods. One is to
search the decreasing direction of the objective function based on the calcu-
lation of the gradient of the function. Examples are Least Square, Newton'’s
method, and gradient descent. However, it is difficult to calculate gradients
at different future instants at t + I for the objective function designated for the
neural network process model-based PDC because the detailed expansion is
very complicated. Even though the gradients are calculated, the accumulation
of the calculation error will have a significant impact on the calculation results
when the calculation is of a high dimension. The objective function has a
dimension of L,, which could be high. The second type of optimization
method only requires calculating the value of the objective function at differ-
ent points instead of gradients to determine the decreasing direction of the
objective function. This type of “direct” optimization method is adaptable
to discontinuities in the process operation and avoids gradient calculation
of a highly complicated and/or dimensional objective function. Among these
direct optimization methods are simplex, random search, and conjugate direc-
tion. The method of conjugate direction is suitable for an objective function
in quadratic form. This method can be used to set up an on-line optimization
routine. The implementation of the neural network process model-based
predictive controller using an on-line conjugate direction optimization rou-
tine is as follows.
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The basic idea of the conjugate direction method is to search a specific
direction through calculating the values of the objective function continu-
ously until the algorithm converges to a minimum point. The optimization
problem of the neural network process model-based PDC is to optimize a
L, dimension nonlinear function. In order to minimize the objective function,
J@u(t), u(t +1),..., u(t + L,— 1)), L, future process inputs need to be determined.
For this L, dimensional objective function, the algorithm for conjugate direc-
tion generation can be formulated as follows:

1. Set up the initial point, 2’ = (@ ®), 7’ t+1,.., 7’ t+L,- 1))T and
define the vector as

P

=i

= 61', l= 1,2,...,L2

where ¢;is the ith unit co-ordinate direction, ¢;= (0,..., 0, 1, 0,..., O)T,
here the ith component is 1, and the rest are 0.
2. Seti=1, calculate p; to minimize | (QZ_1 + p;P;), and define

o =0"+pP

and then set i = i + 1, and repeat this until i = L,.

Set P, =P, (i=12.,L,-1),P =n"-a"

4. Calculate pr, to minimize J(ih2+ P, ELz)’ and define QO =q" +
pr, P.,, then proceed to Step 2. After the preceding calculations are
done L, times, continue to Step 1 until |p,, P, | < € where ¢ is the
predefined error for termination of the computation. At this moment,

go is the minimum point, and ](g[’) is the minimum value of the
objective function.

W

As previously mentioned, if there are constraints on the process inputs or
outputs, these constraints can be incorporated into the optimization problem.
It is obvious that optimization is more difficult to perform with constraints
than without them. Numerical optimization methods without constraints
are better established than those with constraints. Therefore, it is desirable
to transform the problem of optimization with constraints into a problem
without constraints, solve the optimization problem without constraints, and
use the solution as the approximation to the optimization problem with
constraints. For convenience in algorithm development and implementation,
it is better to use the same numerical optimization methods to solve the
optimization problem with and without constraints. This transformation can
be done by establishing a new objective function

J@, vy = J(@) + Y ryi(i)

i=1

where J(i1) is the objective function of the optimization problem, m is the
number of the process constraints, r; is the ith penalty constant, and ;(it)
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is the ith process constraints on inputs and outputs in which there are no
outputs explicitly because the process outputs are functions of process
inputs. The second term of the preceding equation is called the penalty
function. It can be understood as a certain cost needed in the objective
function because of constraint violation in the control action, .

Intuitively, the larger the values of r, the closer the solution is to the
original problem without constraints. However, the larger the r values, the
larger the cost. Consequently, the determination of reasonable r values is
important in practical optimization. If r values begin from small values,
increase gradually, and the known solution is used to initialize the next
optimization, the algorithm may converge to the solution of the minimization
with constraints. This produces a sequence of r values and a sequence of
optimization problems corresponding to these different » values while each
of these optimization problems still can be solved through the conjugate
direction method.

Fuzzy logic-based control has emerged as a promising approach for
complex and/or ill-defined process control. It is a control method based on
fuzzy logic (Zadeh, 1965). However, formal methods to identify fuzzy infer-
ence rules do not exist. Several suggested approaches lack adaptability or a
learning algorithm to tune the membership functions in fuzzy logic (Jang,
1992). Control engineers have studied a self-learning fuzzy controller since
Procyk and Mamdani (1979) developed it.

A self-learning fuzzy controller with an ANN estimator was designed
for predictive process control based on Choi et al.’s work in 1996.

The design of the fuzzy controller is composed of a comparator, a fuzzy
controller, and an ANN estimator as shown in Figure 6.17. The ANN esti-
mator predicts process output vector, j(f+ 1), at the time, t, based on the
extension of Eq. (5.9) B

gl+1) = f(H), gt-1),.., §t-p+1), u(t),
u(t—1),..., u(t-g+1), 0) (6.39)

Several fuzzy inference systems using ANNs have been proposed for
automatic extraction of fuzzy rules and tuning of fuzzy membership functions
(Jang, 1992; Horikawa et al., 1992). These approaches realized the process of
fuzzy reasoning by the structure of an ANN and express the parameters in
fuzzy reasoning by the connection weights of an ANN. This methodology
automatically identifies the fuzzy rules and adaptively tunes membership
functions by modifying the connection weights of the networks through a
BP training algorithm. This kind of fuzzy controller is often called a fuzzy
neural network (Horikawa et al., 1992) or an adaptive network-based fuzzy
controller (Jang, 1992).

Figure 6.18 shows a design of a simplified neuro-fuzzy 2 x 2 controller
network. The main features of the controller are
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Figure 6.17 Block diagram of a neuro-fuzzy controller system. (Adapted from Choi
et al., 1996. With permission.)

The gradient descent-based BP is applied to find a set of controller
network weights that minimize the objective function, J, over all time
steps

2 T 2 T-1
= Sl 3 5 pl | (640
i=1 k=1 i=1 k=0

where E is the error measure, y! is the ith desired process output,
vyt is the ith actual process output, i} is the ith controller’s output
at the kth time step, ¢ is the coefficient that is the importance factor
of each error component, f3;is the coefficient which determines the
rate of control energy minimization, and T represents training time
steps.

Fuzzy membership functions are composed of sigmoid functions
with parameters (g, b;) in the premise part of each fuzzy rule, where
a; determines the gradients of a sigmoid function and b; determines
the central position of a sigmoid function. A scaling parameter set,
s, scales the input to the range of —1 to +1. Any other continuous and
piecewise dissimilar functions, such as trapezoidal, bell-shaped, or
triangular-shaped membership functions, can also be used. w, (x)
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u(t)

u(t-1)

Figure 6.18 A simplified neuro-fuzzy inference network. (Adapted from Choi et al.,1996.
With permission.)

determines the degree to which the input, x, satisfies the quantifier A;:

1
1+ exp[-a,(sx+b;)]

s (¥) = (6.41)

3. The multiplication operator labeled II, is used for the calculation of
the firing strength, @, of a rule

; = paler() X pp(ex(t)) X fe(ex(t=1)) X up (ex(t=1)) (i=1,2,...,p)

(6.42)

where A;, B;, C;, and D; are fuzzy membership functions for each input.

4. A fuzzy if-then rule (Takagi and Sugeno, 1983) is used for fuzzy

reasoning. The output of each rule is a linear combination of input

variables and a constant term. The final output of the controller is

the weighted average of each rule’s output. The rule can be stated as

Ife; (t)isA;and e, (t) is B, and e; (t—1)is C, and e, (t — 1) is D,,
thenu =glw, f1(i=1,2,...,p)

p
u= z&)ffi(el(t)z ex(t), ei(t—1), e;(t—1)) (6.43)
i=1
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where

filei(t), ex(t), e(t=1), ex(t —1))
= di+cpei(t) + cpey(f) + cizeq(f—1)+oyue,(t-1) (6.44)

and

o = 2 (6.45)
ZP_lw,‘

i=

wherec; (j=1,2,3,4) and d;are weight parameters in the consequence
part of each fuzzy rule, and w; is the ratio of the ith rule’s firing
strength to the sum of all rules’ firing strengths.

5. The controller has four inputs of two errors and two error changes.
The errors are the differences between the target values and the
actual values of process outputs. The error changes are the differ-
ences between the current error at time, ¢, and the previous errors
at time, t — 1. Also, the controller determines the changes of the
process input vector, Au(t). The final output vector of the controller,
u(t), becomes u(t — 1) + Au(t).

6. The strict gradient descent method for the controller network training
is used. The premise parameters a,, b;, and the consequent parameter
¢j, and d; of the designed controller are updated to identify fuzzy
rules and to tune fuzzy membership functions as the training pro-
ceeds to minimize the objective function in Eq. (6.40). The parameter
update equation is

w(t+1) = @i () + ns PO (6.46)

where in the output layer
5" = (4] -0 £ i) (647)
and in the hidden layer

8§ = @MY 8" Vwi™ (6.48)
1

where O;k_l) is the output of the jth unit in the (k — 1)th layer and
i is the input of the jth unit in the kth layer.
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The error term located in the front layer of the multiplication operation,
11, is expressed as

d?=f%?426W%ﬁ”HP#”dﬂ} (6.49)
1

i#]

There are two kinds of output functions in this controller network—a linear
output function and a sigmoid output function. The derivative of linear
output function is ' = 1, and the derivative of sigmoid output function is f’ =
f(1 - f). The unmarked node is merely to distribute inputs to the next layer
in Figure 6.18. The proposed controller’s structure can be easily extended to
the general MIMO case. For multiple inputs, the same structures in Figure 4.19
can be added parallel to the structure for a single input.

6.3.1 Example: Neuro-fuzzy PDC for snack food frying process

Choi et al. (1996) utilized the neuro-fuzzy control structure described previ-
ously to perform PDC of the snack food frying process. For the snack food
frying process, a significant feature is the long time lag between the inputs
and outputs of the process. The representation of the ANN estimator given
in Eq. (6.39) should be extended into the following equation to express the
time lag, d, explicitly,

g(t+d+1) = f(g(t+d), g(t+d—l),...,g(t+d—p+l),

u(t), u(t-1),..., u(t—q+1), ©) (6.50)

The ANN estimator predicts process output vector, y (t + d + 1), at time, ¢.
The ANN estimator is a time delay multiplayer perceptron with output
feedback with the same structure of ERECN described in Chapter 5. The
training, testing, and validation of the ANN estimator are similar to the
description in Section 5.3, and the results are shown in Section 5.3.1. This
example will focus on the work on controller development.

The neuro-fuzzy predictive controller was applied to the snack food
frying process by computer simulation. Before training the controller, the
process estimator was trained for modeling the frying process. Then, the
controller was trained with a training data set consisting of initial process
states and the desired outputs on color and moisture contents. At time t =
0, the controller generates a process input and the process estimator pre-
dicts the process output based on the controller’s output at a later time
t = r (r is the sampling time). The process estimator repeats the prediction
until the process output at time t + d, the actual process output resulting
from controller’s output at time ¢ and the previous inputs to the process up

© 2001 by CRC Press LLC



to time t are obtained. The controller determines its next output according to
the error between the reference input and the predicted process output for the
training time steps. Controller weights are updated once according to an
accumulated error over all training time steps. This procedure is continued
until the objective function is minimized.

The training data sets for the controller training were selected from the
experimental data, also used for training the process estimator. The controller
was trained with training data that described the desired response including
the transient response; however, it is very difficult to predefine the best-
desired response in cases in which the actual response cannot be predicted.
Also, there is no guarantee of the controller’s training capability for specific
training data.

The goal was to get both the final desired output and an acceptable
transient response. In this study, the batch learning method was used to
minimize error over all time steps, and the number of training time steps
was selected to be 200.

After training the controller, the desired process output was obtained
within 100 iterations. As the training proceeded further, the MSE decreased.
Because it was observed that excessive overshoot in the transient response
appeared when the controller was overtrained, it appeared that memoriza-
tion could negatively affect the desired control performance. This character-
istic may be a result of the batch learning of the controller.

Only two training data sets were used for the controller training. The
initial conditions were (30.0, 28.5; 7.2, 6.6) and (27.3, 28.5; 6.0, 6.6). First and
third values in the parentheses represented initial states which were close
to boundary conditions of color and moisture content, respectively. For
instance, the color of the product was too light at 30.0 and it was too dark
at 27.3. Second and fourth values represented the desired values of color
and moisture content, respectively.

The numeric values used to express conditions were not real values but
rescaled values. In the controller training, the initial values of parameters c
and d were set to zero, and the Least Mean Squares was applied once at the
very beginning to get the initial values of the consequent parameters before
the gradient descent took over to update all parameters.

Eq. (6.40) contains two kinds of coefficients, & and S, in the objective
function. The parameter o weights the importance of color and moisture
content. It is impossible to get both the desired color and the desired mois-
ture content with any values of abecause the color and the moisture content
are not controllable separately because they are chemically related to each
other. The color was considered the most important quality in this case. If
the controller’s output is not used as part of the objective function, the
controller outputs are usually large. Control energy can be minimized by
making the controller learn to make u#* smaller in magnitude. Figure 6.19
shows the effect of the control energy coefficient of exposure temperature,
Bi, on color, moisture content, and exposure temperature. Dashed, solid, and
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Figure 6.19 Effect of control coefficient, 3; (dotted, solid, and dash—dot lines corre-
sponding to B, = 0.002, B, = 0.005, B, = 0.007, respectively). (From Choi et al., 1996.
With permission.)
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Figure 6.20 Typical example of a membership function tuning. (From Choi et al.,
1996. With permission.)

dash—dot lines correspond to f; equal to 0.002, 0.005, and 0.007, respectively.
It was observed that as ; became larger, a shorter settling time could be
obtained; however, the controller outputs were large. The most acceptable
result was obtained for ;= 0.005 because it resulted in a small overshoot in
the transient response. The three membership functions were used for every
input in this study. Figure 6.20 shows the initial membership functions and
trained membership function of the error of exposure temperature as an
example.

Figure 6.21 demonstrates the effect of the control energy coefficient of
exposure time, f3,. Solid, dotted, and dash-dot lines correspond to f3,= 30,
B,=10, and f,=0, respectively. As f3, increased, better transient responses of
color and moisture content could be obtained, and the change of exposure
temperature was small.

Untrained initial conditions were given in order to test the adaptation
of the controller. Figure 6.22 shows the results where dashed, solid,
dash-dot, and dotted lines correspond to the initial conditions, Case 1 (30.0,
28.5; 7.2, 6.6), Case 2 (27.3, 28.5; 6.0, 6.6), Case 3 (32.0, 28.5; 8.1, 6.6), and
Case 4 (26.7, 28.5, 6.0, 6.6), respectively. Cases 1 and 2 are the conditions used
in the controller training, shown again for comparison. Case 3 has larger
differences between the initial value and the desired value of color or moisture
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Figure 6.22 The adaptation of the controller for untrained conditions. (From Choi
et al., 1996. With permission.)

content than do Cases 1 and 2. The initial states of color and moisture content
are almost the same in both Case 2 and 4. However, the responses are
different from each other because they have different previous values of
exposure time at the initial state used as the inputs to the controller. The
settling time of Case 3 was much larger than other cases when the trained
controller was used. To shorten settling time in the cases having a large initial
difference, such as Case 3, the controller output for exposure temperature
was increased in proportion to the initial difference of color between the test
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data set and the training data set. The control task was performed success-
fully in all initial conditions as shown in Figure 6.22. This result confirms
that the controller has an adaptive capability for untrained initial conditions.
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chapter seven

Systems integration

In the previous chapters, the components of systems for food quality quan-
tization and process control were discussed and described in detail in the
chain of data acquisition, data processing and analysis, modeling, classifi-
cation and prediction, and control. This concluding chapter discusses the
principles of systems integration for food quality quantization and process
control. The techniques of systems development, especially software devel-
opment, for food quality quantization and process control are discussed.
Through these works, we hope that readers can visualize the processes of
food quality quantization and process control systems integration and
development.

7.1 Food quality quantization systems integration

As described in previous chapters, systems of food quality quantization
consist of data sampling, data measurement and collection, data processing
and analysis, modeling, and classification and prediction. The integration of
these components into a system needs hardware and software development.
The development of hardware in food quality quantization is typically for
data measurement and collection while the development of software occurs
throughout the complete process of food quality quantization. Computers
are in command of the process of automated food quality evaluation. Figure 7.1
shows the structure of the integration for food quality quantization systems.

In the structure, food samples are prepared based on the experimental
design. With the samples, data of x and y are measured and collected. As
described in previous chapters, ¥ usually represents electronic scans to
produce one-dimensional signals or two-dimensional images that can be
measured and collected by a DAQ system. y usually represents physical
properties of food samples that can be measured and recorded. After data
are collected, the data are preprocessed, and features are extracted from the
signal x” as the input ¥ to the process of food quality quantization. Then,
the cross-correlation analysis is performed between x and y. Next, (, y) is
used to model the relationship between X and y for the purpose of food
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Figure 7.1 Structure of systems integration for food quality quantization.

sample classification or food attribute prediction with the statistical and/or
ANN methods. If the result of the classification or prediction, f, is satisfac-
tory, the procedure stops with a final model for food quality quantization.
Otherwise, the procedure needs to be repeated to make adjustments in data
collection, data preprocessing, data analysis, or modeling, or even to revise
the previous experiment design and run the whole process again.

In the process of food quality quantization, the transitions inside the
system from data measurement, data preprocessing, data analysis, and mod-
eling up to classification and prediction can be automatic. As long as the
protocols for data representation are consistent between components, the
communication between different components should not be a problem.
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The components of DAQ for x and data measurement and recording
for y need electronic hardware support (sensors, signal conditioning, A/D
and D/A conversions, etc.) with the communication of a console computer
(usually PC). The rest of the components are all software driven. The com-
putation can be done in the same computer or a separate, more powerful one.

7.2 Food quality process control systems integration

The integration of components such as data sampling, data acquisition, data
processing and analysis, modeling, prediction, and control into a system
needs hardware and software development. For example, hardware devel-
opment is needed for turning on actuators based on signal generation from
the implementation of experiment design and data acquisition. Software
development occurs throughout the complete process of food quality process
modeling and control. Figure 7.2 shows the structure of the integration for
food quality process control systems.

In the structure, the food process is perturbed by implementing exper-
imental designs to generate input signals, u(t), for turning on the actuators
on the line while logging the output signal, y(f). Unlike food quality quan-
tization systems that are static in general, food quality process control systems
are dynamic. The DAQ system measures and collects the input signal, u(t),
and the dynamic response, y(t), of the process. Then, the data are prepro-
cessed into (u(t), yp (#)). Auto- and cross-correlation analyses are performed
on (u"(t), ¥'(t)) to produce a compact data set (i(t), (t)). The compact
data set is used to model the relationship between the process inputs and
outputs. The modeling focuses on one-step-ahead prediction, §(t + 1|t), or
multiple-step-ahead prediction, §(t+1|t) (I > 1), using statistical or ANN
methods, depending on the degree of nonlinearity of the process dynamics.
When the process model is ready, the controller can be designed based on
inverse dynamics to achieve the specified process output setpoint, y° (f).
The result of the controller design, i (t), is simulated. If it is satisfacjcory,
the system plugs # (t) into the experimental design to implement the con-
trol system; otherwise, the system may need adjustments in the compo-
nents of data preprocessing, data correlation analysis, process prediction
modeling, or controller design. During the implementation of the system,
a component evaluates the performance of the control system based on
certain criteria of minimization of the mismatch between ¥ (t) and y’(t). If
the performance evaluation proves satisfactory, the control system can
accept the design and implement it in the real line; otherwise, the system
needs to go back to revise the experimental design.

In the process of food quality process control, the transitions in the
system beginning with signal generation, and proceeding to data acquisi-
tion, data preprocessing, data analysis, modeling, and control can be auto-
matic. As long as the protocols for data representation are consistent between
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Figure 7.2 Structure of systems integration for food quality process control.

components, the communication between different components should be no
problem.

The components for turning on actuators for generated signal and DAQ
for data measurement and recording for u(t) and y(t) need electronic hard-
ware support (sensors, signal conditioning, A/D and D/A conversions, etc.)
with the communication of a console computer (usually PC). The rest of the
components are all software driven. The computation can be done in the
same computer or a separate more powerful one.

For control systems, the modeling and control computations can be
done off-line with a supervisory computer. For example, the training of
ANN process model and controller (inverse of the forward model) can be
performed off-line because ANN training is time-consuming. Once the
training is done, the model and controller can be plugged into the system
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Figure 7.3 Structure of off-line modeling and control computing.

for implementation. The structure of the off-line modeling and control
computing is shown in Figure 7.3. Either of the computations can be done
on-line with a process computer. For on-line computation, the regular
algorithms, which are usually in batch form, need to be transformed into
recursive form. For example, in Chapter 4 the batch algorithm of least
squares was given. However, because this algorithm needs enormous
space in computer memory, it cannot be used in on-line computation. The
problems can be transformed into a recursive algorithm for solving. The
basic idea of recursive computing can be explained with the following
formula

new estimate [3(k) = old estimate B(k —1) + modification

In this formula, the new estimate [3’ (k) is obtained with the modification
on the basis of the old estimate ﬁ(k —1). Therefore, the computation needs
significantly less computer memory, and it can be used in on-line compu-
tation. Figure 7.4 shows the structure of on-line modeling and control
computing.

In control systems, traditionally there are electromechanical devices such
as switches and relays used to control the operation of a plant and machinery.
Such systems are flexible in design and easy to understand. However, when
they are used to realize a complex control “logic,” for example, a switch may
not directly turn a device on while the switch may have different impacts
on the system to initialize a complex logic, the circuit needs to be redesigned
and rewired. Programmable logic controllers (PLCs) have been used in industry
since late 1960 and they have been established as powerful tools in controlling
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Figure 7.5 Structure diagram of a PLC.

the operation of a plant and machinery. A PLC is a device that can be pro-
grammed to perform a control function. With a PLC, virtually any complex
control logic can be realized without redesigning and rewiring the circuit as
long as the connecting ports of the switches to the input of the PLC and the
devices in the output of the PLC are known to the programmer. Figure 7.5
shows the structure diagram of a PLC. From the diagram, it can be seen that
the input and output modules can be configured to provide different num-
bers of inputs and outputs, and the relationship between them can be pro-
grammed through the programming terminal of the PLC to the CPU (central

processing unit).
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PLCs have a strong ability to perform mathematical functions. They can
be used in process control. For example, in quality process control of the
continuous snack food frying process, the oil temperature, product conveyor
motor speed, and so on, can be controlled using PLCs. Although we do not
discuss PLCs in detail here, we mentioned them to focus your attention on
the technology. PLCs are very useful in practical process control. Interested
readers can refer to the papers and books on this topic for details.

7.3 Food quality quantization and process control
systems development

Similar to general systems development, the development of systems for
food quality quantization and process control should observe the principle
of systems development life cycle. In general, the process of systems devel-
opment consists of five phases: systems analysis, systems design, systems
development and implementation, systems operation and maintenance, and
systems evaluation. Systems analysis includes user requirement analysis,
system economic and technical feasibility analysis, and system logical model-
ing. Systems design establishes a system physical model. Systems development
and implementation is for detailed programming and system testing. Systems
operation and maintenance is for system application. Then, if the evaluation
shows the system cannot provide sufficient benefit, the system may need to
revert to systems analysis to initialize a new process of systems development.
That is what the life cycle implies. Figure 7.6 shows the flow of the systems
development life cycle. Actually, Systems Development Life Cycleis
a process by which systems analysts, software engineers, programmers, and
end-users work together to build information systems and computer appli-
cations. It is a project management tool used to plan, execute, and control
systems development projects. This is useful for food quality quantization
and process control systems development, especially, for complex and large
computer modeling and control systems. Interested readers can refer to the
papers and books on this topic.

As discussed in the previous two sections, software development is
essential in the process of food quality quantization and process control
systems development. Software development is involved in data acquisition,
data analysis, modeling, classification and prediction, and control.

Programming is the work to realize software development using pro-
gramming languages. Different computer programming languages, from
machine language and assembly language to high-level language, are used
for different purposes in different situations. Machine language is the
native language of a computer. Machine language is pure binary code and
is difficult for laymen to understand. To help people manage the code
easier, a direct translation, that is, command by command, of the binary
code to a symbolic form can be made. This is the function of assembly
language. With the help of the assembler, people can better understand the
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operation of their computers and make faster and smaller capable programs
using a language made of symbolic representations. High-level language
provides a higher level of abstraction than assembly language. Usually one
high-level language command represents one or a number of machine or
assembly commands. FORTRAN, Pascal, and C are representative high-
level languages. FORTRAN is for scientific computing. Pascal is a structural
programming language. C is a high-level programming language devel-
oped by Bell Labs (Murray Hill, NJ) in the mid of 1970s (Ritchie and
Kernighan, 1978). Originally, C language was closely related to the UNIX
operation system (Bourne, 1982), an innovation of Bell Labs. Now, it has
become a popular programming language independent of UNIX. Actually,
because C language was originally designed to write systems programs,
it is much closer to assembly language than most other high-level languages.
Sometimes, C is considered a language between assembly and high-level
language. These characteristics allow C language to write very efficient
code.

In food process DAQ systems, C language can be used to write programs
to communicate between sensors, the DAQ board, and the computer.
C language system provides a number of function prototypes for this. Con-
sequently, C language is a language people need to consider when developing
food quality quantization and process control systems.
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In discussions about programming for DAQ systems, LabVIEW, a graph-
ical programming development environment developed by National Instru-
ments Corporation (Austin, TX), is worth mentioning. Unlike other text-based
programming languages, LabVIEW uses a graphical programming language,
G, to create programs in block diagram form. LabVIEW can be used for data
acquisition and control, data analysis, and data presentation. LabVIEW has
been used in food quality DAQ systems development. For example, the
electronic nose system and the meat elastography systems described in pre-
vious chapters used LabVIEW in DAQ systems programming.

In algorithmic computing for food process data analysis, modeling, clas-
sification and prediction, and control, the programs can be coded using lan-
guages like FORTRAN and C. MATLAB, a matrix-based integrated technical
computing environment developed by The MathWorks, Inc. (Natick, MA) is
a powerful tool in computing. MATLAB combines numeric computation,
advanced graphic and visualization, and a high-level programming language.
Besides basic commands and functions, MATLAB provides various applica-
tion-specific toolboxes. The toolboxes we used for food quality quantization
and process control are statistics, signal processing, system identification,
image processing, neural networks, wavelet analysis, and so on.

The emergence and development of object-oriented programming (OOP)
have revolutionized the way software engineers design systems and pro-
grammers write programs. In OOP, programmers can define both the type
of a data structure and the types of operations with the data structure. Now,
the data structure is an object that includes both data and functions. OOP is
characterized by concepts such as inheritance, dynamic binding, polymor-
phism, and information hiding. OOP is a tool to enhance the efficiency and
reliability of code and provides an effective way for extension and reuse of
code. In systems development for food quality quantization and process
control, OOP can be used to structure the basic data representations as
objects, such as vector, matrix, and so on, and design the classes for different
methods for statistical data analysis, modeling, classification and prediction,
and control. For example, for ANN training, under the general ANN training
class, there are different supervised and unsupervised training algorithms.
These can be designed as classes in the sense of OOP. Figure 7.7 shows the
class hierarchy. In the hierarchy, each child class inherits everything from a
parent class. In developing object-oriented software, it is important to have
this kind of class hierarchy diagram, which clarifies the relationships
between classes and helps extend the hierarchy when necessary.

There are several programming languages available to support OOP.
Smalltalk, C++, and Java are the most popular ones. Smalltalk is a pure object-
oriented language. C++ is actually an extension and improvement from C
language. C++ also was developed by Bell Labs (Stroustrup, 1985). C++ adds
object-oriented features to C, and it is a powerful programming language
for graphical applications in Windows environments. Java is another object-
oriented language similar to C++, but it is simplified to eliminate language
features that cause common programming errors. Java interpreters execute
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bytecode, compiled from Java source code. Because Java virtual machines
(JVM), that is, Java interpreters and runtime environments, exist in most
operating systems or platforms, compiled Java code can run on most com-
puters. Java is platform independent and can be used to develop either stand-
alone or Web-based applications.

Information access sites or World Wide Web home pages have been
developed using the information superhighway or Internet in various
areas, including food science and engineering. Today, millions of people,
worldwide, access information on various topics through the Internet.
Through a home page on the Internet, millions of people could potentially
access information as the clients, and the clients could have access to a
host of information providers. Food information systems can be integrated,
managed, and used through the Internet for the food information needs
of our clients.

Letting databases work on the Web is a promising alternative to devel-
oping and applying the information in the databases. Linking the Web pages
to databases instantly adds interactivity, functionality, and excitement. Web
database provides a database with dynamically distributed interfaces for
better information sharing (Huang et al., 1999). Figure 7.8 shows the struc-
tural diagram of the Web database. In the diagram, the functions can be
information retrieving for information management, for example, informa-
tion retrieving for faculty, facilities, and resources for an institute of food
science and engineering. The functions can be information processing for
system integration, for example, information processing for data analysis,
modeling, classification and prediction, and control for food process auto-
mation. All of the functions are co-ordinated by the implementation of sys-
tem management programs through a database on the request from a Web
server. The Web database is driven by the client’s request to the Web page
through the Web server.
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Figure 7.8 Structural diagram of a Web database.

7.4 Concluding remarks

We have examined all of the components, including data acquisition, data
analysis, modeling, classification and prediction, and control used for build-
ing complete systems for food quality quantization or process control. The
development of electronics and computer science provides a solid founda-
tion for developing high-performance food quality quantization and process
control systems. The performance of food quality quantization and process
control systems will increase with the development of electronics and com-
puter science. Of course, careful consideration must be given to the use of
new hardware and software technologies. We need to perform technical and
economic feasibility studies based on the conditions of specific food objects
or processes.

We need to test the techniques, methods, and devices on a limited scale
and, then, extend them when the tests are successful. Development of food
quality evaluation and process control systems is systems engineering. A
system’s engineering should be well scheduled and managed. Engineering
is science, and it is also art. When solving a problem, researchers and devel-
opers need to incorporate the available techniques with the characteristics
of the specific food object or process to discover unique solutions to the
problem. In this book, we have tried to give a sense of science and art both
for the development and integration of food quality evaluation and process
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control systems for food engineering automation. We hope our efforts lead
you to success in your career.
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