


echa  of R  FluidsMechanics of Real Fluidsha   R  sec  of  FluidMechanics of Real Fluids

WITeLibrary
Home of the Transactions of the Wessex Institute, the WIT electronic-library

provides the  international scientific community with immediate and permanent
access to individual papers presented at WIT conferences.  Visit the WIT eLibrary

athttp://library.witpress.com

WIT Press publishes leading books in Science and Technology.
Visit our website for the current list of titles.

www.witpress.com

WITPRESS



This page intentionally left blank 



M hanics   FluidMechanics of Real Fluids   M hanics   FluidMechanics of Real Fluids

M. Rahman
Halifax, Nova Scotia, Canada



Published by

WIT Press
Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK
Tel: 44 (0) 238 029 3223; Fax: 44 (0) 238 029 2853
E-Mail: witpress@witpress.com
http://www.witpress.com

For USA, Canada and Mexico

WIT Press
25 Bridge Street, Billerica, MA 01821, USA
Tel: 978 667 5841; Fax: 978 667 7582
E-Mail: infousa@witpress.com
http://www.witpress.com

British Library Cataloguing-in-Publication Data
A Catalogue record for this book is available
from the British Library

ISBN: 978-1-84564-502-1

Library of Congress Catalog Card Number: 2010931097

The texts of the papers in this volume were set
individually by the authors or under their supervision.

No responsibility is assumed by the Publisher, the Editors and Authors for any injury
and/or damage to persons or property as a matter of products liability, negligence or
otherwise, or from any use or operation of any methods, products, instructions or
ideas contained in the material herein. The Publisher does not necessarily endorse
the ideas held, or views expressed by the Editors or Authors of the material contained
in its publications.

© WIT Press 2011

Printed in Great Britain by Martins the Printers.

All rights reserved.  No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the
Publisher.

M. Rahman
Halifax, Nova Scotia, Canada



This book is dedicated to the loving memory of
Sir James Lighthill, F.R.S. who gave the author tremendous

inspiration and a love for fluid mechanics science.



This page intentionally left blank 



A fluid mechanics memoir

Fluid mechanics is an important branch of applied mathematics. It has
enormous applications in our real world problems. Since it originated about
three centuries ago it is considered old, but because of the new development
in new diverse directions it is modern. On the basis of the classical theories
with solid foundation, researchers in this field have advanced the subject
tremendously. Many excellent treaties on fluid mechanics are available in
the literature. There are many books in this area that were written by many
pioneers in the subject. We can name a few books which are written during
the last two centuries and which are still useful as reference texts for the
scientists, engineers and applied mathematicians.

The Modern Development in Fluid Dynamics, published by the Clarendon
Press, Oxford in 1938, was an outstanding treaty under the editorship of
Sydney Goldstein. Laminar Boundary Layers, the fluid motion memoir,
published by the Clarendon Press in 1963, under the editorship of
L. Rosenhead was another excellent book authored by some pioneers in
fluid mechanics. High-speed Flow edited by Leslie Howarth is another
excellent book.

The Hydrodynamics authored by Sir Horace Lamb is considered a
masterpiece of fluid mechanics. The Introduction to the Homogeneous
Turbulence published by Cambridge University Press in 1953 was written
by G.K. Batchelor and it is considered as a very good book in the fluid
mechanics field. Recently Sir James Lighthill wrote an excellent book on
Informal Introduction to Theoretical Fluid Mechanics published by the
Clarendon Press in 1979. This book describes the fundamental theoretical
development of fluid flow problems in the real world and is considered an
outstanding masterpiece for the young scientists and applied mathematicians.
The Dynamics of Upper Ocean written by O.M. Phillips and published by
Cambridge University Press is another outstanding book in the water related
science. Modern Fluid Dynamics published by Van Nostrand Company,
London in 1968 written by N.J. Curle and H.J. Davies is one of the best



students’ paperback editions. G.B. Whitham’s book on Linear and Nonlinear
Waves is a very good book on water wave problems. This fluid mechanics
memoir is a compendium of works by many pioneering authors and research
works of the author since he started publishing scientific papers in reputed
journals. I have borrowed some physical concepts from my book Water
Waves: Relating Modern Theory to Engineering Applications published by
the Clarendon Press in 1995.

This book, I hope, will be suitable for the young scientists, graduate
students, applied mathematicians and professional engineers. Theory is
explained clearly and some applications are manifested in the book. The
theory part is heavily borrowed from the standard textbooks but the
applications part is completely new and hopefully the reader will appreciate
my effort.

M. Rahman
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Preface

Fluid mechanics is one of the most major areas of successful applications of
mathematics. It can be considered as one of the branches of applied
mathematics. The idea of writing this important book springs from Lighthill’s
An Informal Introduction to Theoretical Fluid Mechanics published by the
Clarendon Press in 1986. Although fluid motion is concerned in both gas
and liquids, as both of them are fluids, this book mainly deals with the
motion of liquids in general, and water in particular. The theory of fluid
mechanics has grown so considerably in recent years that study of the
mechanics of fluids is important in many aspects of our real life.

In our real world all creatures live immersed in fluids (air or water) and
their capability of motion through it is of crucial importance for their life
style. As we know, systems of circulating fluid offer important means for
distributing things where they are needed. As for example, the blood
circulation in our body is vital. Similarly, the ocean is another great circulation
system practically equally important to man. Energy stored as potential
energy, chemical energy or heat energy becomes converted into kinetic
energy in a water turbine, a gas turbine or a steam turbine, in each case by
means of fluid flow action on rotating blades. Such flow is studied in order
to improve the efficiency of turbines, which may also, in many cases, depend
upon effective fluid motion for transferring heat quickly from one part to
another in such an engine. Electric power generated by tides is the application
of motion of water through the turbine. The design of structures intended to
resist strong winds, river erosion, or violent sea motions requires an
understanding of the forces exerted by winds, currents or waves upon
stationary structures. So, comprehensive knowledge of flow of fluids is very
important in all these cases. These are very complex problems and can be
tackled only by advanced knowledge of boundary layer flow and turbulence
because the fluid motion is usually propagated in a random fashion.

For complex fluid flow problem we must take recourse to the laboratory
experiment or field experiment in association with the theory. Most fluid



motions are much too complex and a computer is essential to find solutions,
but still the problem is so complex that even if the largest and fastest of the
modern computers may fail to obtain the correct result. Great progress with
the effective study, and the effective computations have been made, however,
it is realized that such progress required creative input on a continuing basis
both from theory and experiment.

The study of fluid flow, especially the theory of water waves, has been
the subject of intense scientific research since the days of Airy in 1845. As
we have described above, it is of great practical importance to scientists and
engineers from many disciplines in gaining insight into the complex systems
of fluid motions in oceans.

Chapter 1 briefly outlines the content of the book and gives an overview
of the specification of the fluid motion. Described in Chapter 2 are the basic
equations of fluid motion from the view point of general fluid dynamics.
Developments of Euler equations of motion for inviscid fluids have been
described from a mathematical view point due to the fact that Euler equations
form the backbone for the study of water wave motion. This chapter also
considers two important concepts with regard to vortex kinematics and vortex
dynamics. Some examples of practical interest are solved using the theory
developed in this chapter. Navier-Stokes equations, only, are cited for
examples as equations for viscous fluid motion. The philosophy behind the
source, sink, singularities and circulation of water particles is explained
accompanied by some examples. Physical interpretations of velocity
potentials and stream functions are clearly explained.

Chapter 3 contains the concept of mechanics of real fluids. We describe
the motion in axially symmetric 3-D bodies; pressure distribution and drag
forces on a sphere are evaluated. Some exact solutions of Navier-Stokes
equations are considered in this chapter. Very slow motions of fluids as
manifested by Stokes and Oseen are explained with examples.  Chapters 4
deals with the two-dimensional fluid motion in laminar boundary layers.
Boundary layer equations for a variety of problems are discussed. The Von
Misses transformations and Pohlhausen’s method are discussed. Concepts
of momentum and energy integrals are clearly explained. Boundary layer
thicknesses such as displacement ä1, momentum ä2 and energy ä3 are defined
in integral forms. Flow in laminar wakes and jets are also considered.

Chapter 5 is devoted to the development of similarity technique and the
perturbation method in fluid mechanics. Natural convection flow along a
vertical plate is considered and its solution technique discussed by similarity
analysis. The book concludes with Chapter 6 which is devoted to the
theoretical development of turbulent flow. Some interesting theoretical
examples are solved for the benefit of the graduate students who are working
in the field of turbulence.

Some knowledge of vector calculus including the integral theorems such
as Green’s theorem, Stokes’s theorem and divergence theorem is assumed



on the part of the reader. Isotropic tensor calculus is used sparingly in some
chapters. A familiarity with the Bessel functions, Legendre polynomials
and hypergeometric functions is also expected.

Matiur Rahman, 2011
Halifax, Canada
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CHAPTER 1

Introduction

Sir Isaac Newton

Sir Isaac Newton (1642–1727), mathematician and physicist, one of the fore-
most scientific intellects of all time was born at Woolsthorpe, near Grantham
in Lincolnshire, United Kingdom, where he attended school. He entered
Cambridge University in 1661, and was elected a Fellow of Trinity College
in 1667 and Lucasian Professor of Mathematics in 1669. He remained at the
university, lecturing in most years until 1696. During two to three years of
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intense mental effort he prepared Mathematical Principles of Natural Phi-
losophy commonly known as the Principia, although this was not published
until 1687. For almost 300 years Newton has been regarded as the found-
ing father of modern physical science, his achievements in experimental
investigation being as innovative as those in mathematical research.

1.1 Preliminary background

The main topics of this book relate to an introduction to theoretical fluid mechanics.
A proper understanding of the flow of fluids is important to most of the physical
problems in our real life and is an exciting area of study. Many scientific papers in
learned journals and many relevant books have been published in which mathemat-
ical models have been used to correlate predicted and experimental data. Perfect
correlation is the ultimate goal of the mathematical models, and although much has
been achieved, there is great scope for future work. This chapter begins with some
important concepts underlying the fluid flow phenomena. In this book, the analysis
is derived under the basic principles of mechanics such as Newton’s laws of motion
and momentum and energy principles. It is assumed that the reader is familiar with
these principles associated with the most elementary properties of fluids.

The inherent nonlinearity of any physical problem makes its behaviour very
complicated. However, a particular fluid motion may be adequately represented by
a linear model under certain realistic assumptions. Especially in the ocean wave
problem, the assumption that the wave amplitude is small compared to the wave-
length holds for most, but not all, oceanic wave phenomena. In a linear system the
modes are uncoupled and can be classified and studied independently.

The effect of wind on surface waves was studied by many pioneers of theoretical
fluid mechanics, including Lagrange, Airy [1], Stokes and Rayleigh [12]. They
attempted to account for the elementary properties of surface waves in terms of
perfect fluid theory. The problem of relating the rate of wave growth to the wind
was first recognized by Kelvin. However, no progress was made on this problem
until 1850, when Stevenson [14] made observations on surface waves on a number
of lakes, and derived an empirical relationship between the ‘greatest wave height’
and the fetch. Seventy-five years later, Jeffreys [3] experimentally modelled the
generation of waves by wind.

The first solutions to the problem of waves striking an internal interface were
obtained by Stokes in 1847 [15]. The development of new instruments, the careful
carrying out of experiments, and the more detailed data analysis have since revealed
a variety of dynamical behaviours, which were previously unapparent and which
offer a continuing challenge to the theoretical scientists. The greatest experimental
contribution has been made by Long in his work on the problem of the excitation
of internal waves caused by the flow over irregular beds.

In the nineteenth century, mathematicians and physicists were very interested
in the study of disturbance generated by an obstacle in a stream of air, and of the
forces between the air stream and the obstacle. The difficulty in finding the correct
solution was not due to lack of a theory, but rather the existence of many theories
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formulated by the mathematical physicists. This subject is usually classified as
external aerodynamics and it was a disturbingly mysterious subject before Ludwig
Prandtl solved the mystery with his work on boundary layer theory from 1904
onwards.

In fluid mechanics, the physical effect of diffusion competes with other physical
effects such as convection and this produces a more complicated behaviour. We
shall give below a lucid analysis of how kinematic viscosity ν plays an important
role in the study of boundary layer growth and separation. The definition of viscosity
μ shows that it produces diffusion of momentum with a diffusivity (also sometimes
called the kinematic viscosity)

ν = μ/ρ, (1.1)

where ρ is the density of the fluid. We know that in the thermal process the

expression (αt)
1
2 describes the thermal boundary layer thickness. Similarly, in fluid

mechanics, a vortex sheet which initially has zero thickness, and so represents a
surface of slip or discontinuity in tangential velocity, may be expected to develop
into a continuous layer whose thickness at first growth is in proportion to

(νt)
1
2 , (1.2)

where ν has the dimension (�2/t) and so the expression (1.2) has the dimension �, a
typical length scale. The value of the diffusivity ν = μ/ρ at atmospheric pressure
is greater for air than for water. In a frame of reference in which the body is at
rest, the effect of diffusion in the boundary layer which causes the layer thickness

to increase in proportion to (νt)
1
2 is combined with the effect of convection (i.e.

vortexlines moving within the fluid). If U is the velocity of the body relative to
the undisturbed fluid, then U also represents a typical magnitude of the velocity
of the fluid at the outer edge of the boundary layer. The vortexlines in the outer
part of the boundary layer are being carried along by the fluid; thus at a velocity
whose magnitude is around U , and, for a body of length (�), they are swept clear
of the body after a time t , which is around �/U . This tends to limit the growth in
the boundary layer thickness to a value proportional to

(
ν�

U

) 1
2

(1.3)

essentially because the vorticity generated at the solid surface is swept away after

a time around �/U , when by the expression (νt)
1
2 it has diffused such a distance.

That vorticity must, of course, be replaced by a new vorticity generated at the solid
surface so that the overall strength of the vortex sheet maintains the magnitude of
‘slip’ needed by the external irrotational flow, and this new vorticity once more dif-

fuses a distance proportional to (ν�/U)
1
2 before being swept away. The expression

(ν�/U)
1
2 now tells us that the ratio of � to the boundary layer thickness can be very

large only if the quantity

(U�/ν)
1
2 (1.4)
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is very large. This is the square of the Reynolds number

R = U�

ν
, (1.5)

a non-dimensional measure of the flow speed and of the scale of the body in relation

to the magnitude of viscous diffusion effects. Evidently, the square root R
1
2 can be

very large indeed, but values

R > 104 (1.6)

are large enough for boundary layers to remain very thin.
It was Osborne Reynolds (1842−1912) who first introduced the important con-

cept of the Reynolds number R = U�/ν. His experiments from 1883 onwards
showed the significance of this number [13], not for the boundary layers which
were to be discovered much later by Ludwig Prandtl (1875−1955), but in relation
to the chaotic form of motion known as turbulence. Reynolds demonstrated that
for a variety of particular types of motion of fluids the onset of chaotic or turbulent
motion occurred when the Reynolds number exceeded a particular critical value.

Much later, experiments also showed that, although irrotational motions are
immune to turbulence, any boundary layer may become turbulent at a sufficiently
large value of Reynolds number. The required value depends on various factors
but is typically rather nearer to 106 than to the limit of 104 noted in the inequality
R > 104. The random motions of turbulence increase rates of transfer of quantities
down their gradients and thus enhance the effective diffusivity above the viscous
value ν = μ/ρ. Although this increases the boundary layer thickness to a value

significantly above that in the expression (ν�/U)
1
2 , the boundary layer at these

Reynolds numbers continues to be very thin compared with �.
Because diffusion is a slow process, its direct effect upon the growth of the

boundary layers on solid boundaries in flows of fluid at speeds substantial enough
to satisfy the condition in the inequality R > 104 may be extremely limited, thus
allowing them to remain very thin. If that happens, the flow outside such a boundary
layer may be predicted quite well with the relatively simple Euler model. On the
other hand, in a wide class of flows no such conclusion can be drawn because the
flow separates from the solid surface. It is, in fact, the counterplay of the convection
and diffusion of vorticity within the boundary layer which can cause it to become
separated from the solid boundary in certain circumstances.

In summary, the boundary layer shows no tendency to separate where there is an
accelerating external flow; where the external flow is weakly related, the tendency
to separate, associated with a modest rate of generation of vorticity of opposite
sign at the surface, is overcome by the rate of diffusion of the main boundary layer
vorticity towards that surface. On the other hand, where the external flow is strongly
retarded, the flow separates because the rate of diffusion cannot overcome the much
greater rate of generation of vorticity in the sense associated with reverse flow.

Even after the appearance of Prandtl’s great paper of 1904 [10] containing all
the essentials of the solution to the mystery, the same type of error continued
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to be published. Oseen’s alternative linearization of the equation of steady vis-
cous motion made a really valuable improvement to our knowledge of very slow
motions (U�/ν < 1). However, his use of this linearization in his book Hydrody-
namik in 1927 to discuss the behaviour of the flows in the limit of small viscosity
(i.e. U�/ν → ∞) was hardly valuable in 1927, since it gives results in complete
disagreement with the features of the flow in this limit discovered by Prandtl; in
particular, the fact that the part of the flow separation from the surface is determined
by the situation in the boundary layer.

In 1883, Reynolds published his celebrated account of laboratory observations
on turbulent flow. Later, with the stimulus of the development of aerodynamics,
Prandtl introduced the concept of a mixing length. A more fundamental approach
to the dynamics of turbulence was given by Taylor in 1935 in a series of papers
to the Royal Society; this is recognized as the beginning of the modern theory
of turbulence. Further advancements in the subject of turbulence were made by
Batchelor [2], Kolmogorov [5] and Townsend [18]. Some remarkable observations
on the structure of atmospheric turbulence were made by Taylor in 1915, but it
was not until 30 years later that suitable instrumentation was available to make
systematic investigations.

An informal introduction to theoretical fluid mechanics can be found in a book
written by Lighthill [7] and published by the Clarendon Press, Oxford. With regard
to the dynamics of the upper ocean, the reader is referred to Phillips (1966). For
matters concerned with waves in fluids such as sound waves, shock waves, stratified
fluids and a brief description of water waves, readers are referred to Lighthill’s
Waves in Fluids [8]. Engineering applications of water waves by Rahman [11] is
an important addition to the literature of fluid mechanics.

1.2 Real and ideal fluids

In fluid mechanics, most theoretical investigations begin from the concept of a per-
fect fluid where two contacting layers experience no tangential forces (i.e. shearing
stresses) but act on each other with normal forces (i.e. pressure only). It means that
no internal resistance exists in a perfect fluid. On the other hand, the inner layers
of a real fluid experience tangential as well as normal stresses. These frictional
tangential forces in a real fluid describe the existence of viscosity. The theory on
the motion of a perfect fluid supplies many satisfactory descriptions of a real fluid.
Due to the absence of tangential forces, there exists, in general, a difference in the
relative tangential velocities of the perfect fluid and the solid wall wetted by the
fluid. Hence, there is a slip. The existence of tangential stress and the condition
of no slip near a solid wall constitute the essential differences between a perfect
and a real fluid. The concepts of vorticity and circulation are founded on the basic
analysis of the rotation of a fluid particle in real fluid motions and are discussed in
Chapter 2.

It is important to note that certain fluids which are of great practical importance,
such as water and air, have very small coefficients of viscosity. In many instances,
the motion of such fluids of small viscosity agrees very well with that of a perfect
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Fluid Mechanics

Laminar Flow Turbulent Flow
Eulerian Flow

Rotational

Potential Flow,
Irrotational
∇ × V = 0

Real Fluid Flow
- Compressible flow
- Incompressible flow, = 0

dr
—
dt

Ideal Fluid Flow
- Compressible flow
- Incompressible flow, = 0

dr
—
dt

Figure 1.1: Classification of real and ideal fluid flows.

fluid, because in most cases the shearing stresses are very small. Hence, the effect
of viscosity is neglected in the perfect fluid theory. A basic classification of the real
and ideal fluid flows are given in Fig. 1.1.

1.3 Specification of the motion

Fluid motion is usually described in one of two ways: (a) Eulerian description of
motion (i.e. observing the fluid velocity at locations that are fixed in space); (b)
Lagrangian description of motion (i.e. accomplished by tracking specific, identi-
fiable fluid material volumes that are carried about with the flow). A schematic
description is shown in Fig. 1.2.

In an Eulerian description of motion, physical quantities such as the velocity v,
pressure p and density ρ are regarded as functions of the position x and time t .
Thus v = v(x, t) and ρ represent the velocity and density of the fluid, respectively,
at prescribed points in space time. In a Lagrangian description of motion, the fluid
elements can be identified in terms of an initial position a at some initial time t0
and the elapsed time t − t0.

Thus the current position and initial position vectors are given by x = x(a, t − t0)

and x0 = x(a), respectively. The velocity of a fluid element is the time derivative
of its position v(a, t − t0) = ∂

∂t
x(a, t − t0) so that x = a + ∫ t

t0
v(a, t − t0)dt. The

fluid acceleration is then given by f(a, t − t0) = dv
dt

= ∂2

∂t2 x(a, t − t0).

The total time derivative, or the derivative ‘following the motion’ can be
expressed in Eulerian terms as (see Chapter 2) d

dt
= ∂

∂t
+ (v · ∇), the sum of the

time rate of change at a fixed point and a convective rate of change.
In this book the Eulerian approach is used. Many instruments measuring fluid

properties at a fixed point provide Eulerian information directly. On the other hand,
in questions of diffusion or mass transport, if the motion of fluid elements is of
interest, then a Lagrangian specification of the problem may be more natural. In
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Material
Fluid
Volume

Control
Volume

t = t0 + Δtt = t0

Figure 1.2: A velocity field, represented by a regular array set of velocity vec-
tors, and within which there is a material (Lagrangian) fluid volume
(solid boundary and shaded) and a control (Eulerian) volume (dotted
boundary).

observation, the marking of fluid elements by dye or other traces gives Lagrangian
information.

1.4 Outline of the book

This book is intended for the benefit of senior undergraduates, graduates, young sci-
entists and engineers whose main interests are in theoretical and numerical analysis
of fluid flow and its applications. The subject matter is arranged such that the topics
follow in sequence, each one progressing from the previous material. Exercises at
the end of each chapter are intended to give the reader experience of the principles
developed in the book. The book contains plenty of solved problems.

Chapters 2–6 give the derivation of the fundamental mathematical equations. In
Chapter 1, we look at the general description of the motion of fluids rather than
going deep into the mathematical deduction of governing equations of motion of
fluids. Chapter 2 outlines the governing equations of fluid motion to describe the
physical phenomena. The coordinate systems – Cartesian, cylindrical and spherical
polar – are described in developing the Navier–Stokes equations with some impor-
tant classical physical problems. Chapter 3 reviews the mechanics of real fluids.
This chapter portrays some classical problems with their solutions. Some solutions
of Navier–Stokes equations for steady and unsteady flows are demonstrated in this
chapter. Very slow motions such as Stokes’s flow and Oseen’s flow are considered
to understand the existence of boundary layer theory.

Chapter 4 outlines the development of laminar boundary layers. Some practical
problems and their analytical solutions are described in this chapter. The Von Mises
transformation and the Pohlhausen’s interesting series method are demonstrated
with some practical problems. Some interesting problems are considered here.
Chapter 5 deals with the application of similar solutions of natural convection
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flow with diffusion and chemical reactions, which is demonstrated clearly using
the concept of boundary layer phenomenon. The book concludes with Chapter 6,
which deals with turbulent flow. Reynolds equations for turbulent fluid motion and
the spectral theory for homogeneous turbulence are described in this chapter.

For further information about this topic, the reader is referred to the work of
Jeffreys, H. [4], Laufer, J. [6], Phillips, O.M. [9], Taylor, G.I. [16] and Thompson,
S. Townsend, W. [17] listed in the reference section.
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CHAPTER 2

The equations of fluid motion

Sir Horace Lamb

Sir Horace Lamb (1849–1934) was born in Stockport, England in 1849, edu-
cated at Owen College, Manchester, and then Trinity College, Cambridge
University. He is best known for his extremely thorough and well-written
book Hydrodynamics, which first appeared in 1876 and has been reprinted
numerous times. It still serves as a compendium of useful information as
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well as the source of a great number of papers and books. Professor Lamb
was noted for his excellent teaching and writing abilities. His research
areas encompassed tides, waves, and earthquake properties as well as
mathematics.

2.1 Introduction

The study of fluid motion and other related processes, begins when the laws govern-
ing these processes have been expressed in mathematical form. Usually, in inves-
tigating the fluid flow problems, the physical situation is described by a set of
differential equations, and the solution of the differential equation predicts the fluid
flow pattern. For a comprehensive derivation of these equations, the reader should
turn to standard textbooks including Aris [1] and Phillips (1966). In this book, we
shall avoid the rigorous mathematical development of the equations.

2.2 The equations of motion

Sir Isaac Newton conceived the notion that a fluid consists of a granulated struc-
ture of discrete particles. However, the range of validity of Newton’s method was
limited as shown by the comparison of the theoretical and the experimental results.
Later, Lagrange and Euler developed improved methods in which the fluid was
regarded as a continuous medium. It is usual to adopt the Lagrangian method,
where the actual paths of fluid particles are required. The Eulerian method is based
on the observation of the characteristic variation of the fluid as it flows past a point
previously occupied by the fluid. Thus, any quantity associated with the fluid may
be functionally represented in the form f (r, t).

As mentioned already, the motion of a fluid is governed by the conservation laws
of mass and momentum, by the equation of state, and the laws of thermodynamics.
The first of these is the conservation of mass,

dρ

dt
+ ρ∇ · v = 0 (2.1)

where ρ is the density of fluid, v the velocity vector, and t the time. Since d
dt

=
∂
∂t

+ v · ∇, (2.1) can be expressed alternatively as

∂ρ

∂t
+ ∇ · (ρv) = 0. (2.2)

If the density of fluid does not change for the element, although it may change
for different element, (2.1) simplifies to

∇ · v = 0. (2.3)

The momentum equation, referred to axes at rest relative to the rotating earth,
takes the form

ρ
dv
dt

+ ρ� × v + ∇p − ρg = f . (2.4)
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The first term in (2.4) represents the mass-acceleration and the second the Coriolis
force, in which � is the rotating vector, or twice the earth’s angular velocity. Its
magnitude

� = |�| = 2π

12
h−1 = 1.46 × 10−4s−1,

is considered constant. In the gravitational term, g = (0, 0, −g) represents the grav-
itational acceleration. The direction of g defines the local vertical; its magnitude
varies throughout the ocean from its mean value of approximately 981 cm s−2 by
less than 0.3%, and for dynamical purposes it can be considered constant. p is the
fluid pressure. The term f on the right-hand side of equation (2.4) represents the
resultant of all other forces acting on unit volume of the fluid. The most important
of all these arises from the molecular viscosity. In almost all oceanic circumstances,
where viscosity effects are important, the water can be regarded as an isotropic,
incompressible Newtonian fluid, and the stress tensor

pij = −pδij + 2μeij , (2.5)

where δij is the unit tensor (δij = 1 if i = j , and vanishes otherwise), μ is the
viscosity of the fluid and

eij = 1

2

(
∂vi

∂xj

+ ∂vj

∂xi

)
(2.6)

is the rate of strain tensor. The frictional force per unit volume is therefore

fi = 2μ
∂eij

∂xj

= μ

(
∂2vi

∂x2
j

+ ∂2vj

∂xj ∂xi

)
= μ

∂2vi

∂x2
j

= μ∇2v, (2.7)

from the incompressibility condition (2.3). Thus equation (2.4) will take the fol-
lowing familiar form

ρ
dv
dt

+ ρ� × v + ∇p − ρg = μ∇2v. (2.8)

If L is the differential length scale of a given motion in which the velocity varies in
magnitude by U , the ratio R = ρUL

μ
(the Reynolds number) represents the relative

magnitudes of the inertial and viscous terms in the momentum equation. In many
fluid motions, the Reynolds number is very large, and the viscous term is often
quite negligible over most of the field of motion. Specially in the oceanic problem,
the viscosity term is negligible.

Two alternative forms of the momentum equation (2.4) are of interest. If the
continuity equation (2.2) is multiplied by vi and added to (2.4), there results

∂

∂t
(ρvi) + ∂

∂xj

(ρvivj ) + εijkρ�jvk + ∂p

∂xi

− ρgi = fi (2.9)
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in the notation of Cartesian tensor. The permutation notation is defined as

εijk =
⎧⎨
⎩

0, if any two of i, j, k are the same
1, if i, j, k are an even permutation of 1, 2, 3

−1, if i, j, k are an odd permutation of 1, 2, 3

Equation (2.9) expresses the force balance directly in terms of the rate of change
of the momentum and the divergence of the momentum flux ρvivj − pij . Also, if
ω = ∇ × v is the vorticity of the fluid, the vector identity

ω × v = (∇ × v) × v = v · ∇v − ∇
(

1

2
v2
)

enables (2.4) to be expressed as

ρ
∂v
∂t

+ ρ(� + ω) × v + ∇p + ρ∇
(

1

2
v2
)

− ρg = f . (2.10)

When ρ is in effect constant, two of the terms of this equation combine to give
∇(p + 1

2ρv2), the gradient of total pressure. The Eulerian mass acceleration is
therefore given as a balance between this, the gravitational force the and viscous
force, and the term ρ(� + ω) × v, which can be called the total vortex force, is
analogous to the Coriolis force in ordinary mechanics.

If the fluid is sea water, then we know that it is a chemical solution, its density ρ is
a function of three thermodynamic variables, such as the pressure p, temperature T ,
and salinity S, which is the mass of dissolved solids per unit mass of sea water. The
functional relation among these variables is the equation of state:

ρ = ρ(p, T , S). (2.11)

In practice it has no simple analytical form except various empirical
approximations.

Laws of thermodynamics

The entropy η (a measure of disorder indicating the amount of energy that, rather
than being concentrated, has become more evenly distributed and so cannot be used
to do work within a particular system) per unit mass is defined so that

ρ
dη

dt
= (Q − ∇ · h)

T
, (2.12)

where Q is the rate of generation of heat by friction and other irreversible processes,
h is the heat flux and T the absolute temperature. Finally, the conservation of the
dissolved solids can be expressed as

ρ
dS

dt
+ ∇ · s = 0. (2.13)

where s is the flux density of salt (mass per unit area per unit time).
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The expressions for the molecular fluxes h and s in terms of temperature and
salinity gradient in the fluid have been given by Landau and Lifshitz [7]. When the
gradients are sufficiently small

h = βs − κ∇T ,

s = −ρD

(
∇S + kT

T
∇T + kp

p
∇p

)
, (2.14)

where D is the diffusion coefficient and κ the thermal conductivity. The second
law of thermodynamics requires that both of these coefficients be positive; the
other three β, kT , and kp may have either sign. In pure water there is, of course,
no diffusion flux, so that kT and kp must both vanish as S → 0. In sea water at
20◦C, D ∼ 1.3 × 10−5 cm2 s−1, and κ ∼ 6 × 10−3 W cm−1 deg−1; the values of
the other coefficients are unknown.

An equation for the temperature field can be derived from these expressions. Since
the temperature is a function of the state variables, ρ, η, and S, as for example,

dT

dt
= ∂T

∂ρ

dρ

dt
+ ∂T

∂η

dη

dt
+ ∂T

∂S

dS

dt
,

so that, from (2.1), (2.12) and (2.13)

dT

dt
= −ρ

(
∂T

∂ρ

)
ηS

∇ · v + 1

ρT

(
∂T

∂η

)
ρS

(Q − ∇ · h)

− 1

ρ

(
∂T

∂S

)
ηρ

∇ · s, (2.15)

as given by Eckart [4]. The suffixes here indicate the variables to be held constant
in the partial differentiation. The last term on the right is negligible. In the first
term, simple thermodynamical considerations indicate that

ρ

(
∂T

∂ρ

)
ηS

= γ − 1

α
= αT c2

CpS

, (2.16)

where α is the coefficient of thermal expansion,

γ = CpS

CvS

= specific heat at constant pressure

specific heat at constant volume

the ratio of specific heats (both at constant salinity), c is the speed of sound. This
term represents the cooling or heating that results from adiabatic expansion or
contraction. Finally, in the second term arising from dissipation and heat flux,

1

T

(
∂T

∂η

)
ρS

= 1

CvS

, (2.17)
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so that (2.15) becomes

dT

dt
= −

(
αT c2

CpS

)
∇ · v +

(
1

ρCvS

)
(Q − ∇ · h). (2.18)

If the potential temperature θ is defined as

θ = T −
∫ ρ

ρ0

(
∂T

∂ρ

)
ηS

dρ, (2.19)

it can be seen from (2.1) and the expression above that

dθ

dt
= 1

ρCvS

(Q − ∇ · h); (2.20)

in the absence of dissipation and heat transfer, the potential temperature is con-
served. Since (dP )ηS = c2(dρ)ηS, (2.19) can be expressed alternatively as

θ = T −
∫ p

p0

(
∂T

∂p

)
ηS

dp, (2.21)

and interpreted as the temperature of a fluid element if reduced adiabatically and
with constant salinity from its ambient pressure to the reference pressure p0.

2.3 The mechanical energy equation

The balance of mechanical energy can be found by forming an equation by scalar
multiplication of the momentum equation (2.9) by the velocity vector v, and we
obtain

ρ
d

dt

(
1

2
v2
)

+ v · ∇p − ρv · g = v · f . (2.22)

It is worth noting that in deducing this equation we have used the vector identity
v · (� + ω) × v = 0. Now if ζ measures the vertical displacement of a fluid element
(measured upward), then

−ρv · g = −ρ(u, v, w) · (0, 0, −g) = ρgw = ρg
dζ

dt

and with the use of the continuity equation (2.1), this equation can be expressed as

∂

∂t

(
1

2
ρv2 + ρgζ

)
+ ∇ ·

(
v(p + 1

2
ρv2 + ρgζ )

)
− p∇ · v = v · f . (2.23)

Here, the kinetic energy is the expression 1
2ρv2 and the potential energy is the

expression ρgζ . The rate of change of kinetic and potential energy per unit volume
is specified in terms of the divergence of the energy flux

F = v
(

p + 1

2
ρv2 + ρgζ

)
,
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together with the rate of working in compressing the fluid and against frictional
forces. If the fluid is incompressible, ∇ · v = 0; if it can be supposed inviscid, f = 0.

It is worth mentioning that the Coriolis forces do not work, since their direction
is always normal to the velocity v. They can, however, influence the energy flux
indirectly.

2.4 The Boussinesq approximation

This section considers a very simplified momentum equation to derive some impor-
tant formulas for the fluids. The momentum equation (2.4) reduces to a simple
balance between the vertical pressure gradient and the gravitational force:

∂p

∂z
+ ρg = 0, (2.24)

Since in this state the fluid is isentropic, dp = c2dρ, and (2.24) yields the density
distribution as a function z

ρ(z) = ρ0 exp

{
−g

∫ z

0
dz/c2

}
, (2.25)

where ρ0 is the reference density at the free surface z = 0 and can be taken as
the mean oceanic surface density. If, in the real ocean, the variations in pressure
on a fluid element are predominantly the result of variations in its depth, then
dp = −ρgdz. We know that dp = c2dρ, and hence

dρ

dt
= 1

c2

dp

dt
= −ρg

c2
w. (2.26)

From (2.1), then

∇ · v = g

c2
w. (2.27)

In this equation, the ratio of the term on the right to the term ∂w
∂z

on the left is of order
�/H where � is the differential length scale of the vertical motion and H = c2/g

is the local scale height for the density field. This ratio is always negligibly small,
so that (2.27) can be approximated by the incompressibility condition

∇ · v = 0. (2.28)

In almost all applied fluid mechanics problem including oceanic motions, this is
an adequate approximation to the continuity equation. The hydrostatic pressure gra-
dient of the reference state, i.e., ∇pr = ρrg can be subtracted from the momentum
equation (2.4), giving

ρ
dv
dt

+ ρ(� × v) + ∇p̂ − (ρ − ρr)g = f , (2.29)
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where p̂ = p − pr . In the ocean water the difference ρ−ρr

ρr
<< 1, being of the order

10−3 at most. If ρr is replaced by ρ0 in the inertia term, and since

∂(pr + ρ0gz)

∂z
= −g(ρr − ρ0),

(2.29) reduces to

dv
dt

+ � × v + 1

ρ0
∇p − ρ − ρ0

ρ0
g = ν∇2v, (2.30)

where p now represents the difference between the actual and the hydrostatic pres-
sure in the ocean at rest with constant density ρ0 and ν = μ/ρ0 is the kinematic
viscosity.

The set of equations (2.26, 2.28, 2.30) are called the Boussinesq approximate
equations of motion. In the Boussinesq approximation, variations in the fluid density
are neglected in so far as they influence the inertia; variations in the weight or
buoyancy of the fluid may not be neglected.

In the Boussinesq approximate equations of motion, it is important to recognize
that the gravitational acceleration and the variations in density occur only in the
combination

b̂ = −g
ρ − ρ0

ρ0
, (2.31)

which describes the buoyancy per unit volume. Equation (2.30) may be written in
terms of buoyancy as

dv
dt

+ � × v + 1

ρ0
∇p − b̂m = ν∇2v, (2.32)

where m is a unit vector vertically upwards, while from (2.26)

db̂

dt
= g2

c2
w. (2.33)

If the density field be regarded as ρ = ρ(z) + ρ′(x, t), where ρ(z) is the mean
density and ρ′(x, t) is the fluctuating density about the mean, and similarly if

b̂ = B(z) + b(x, t),

and
db

dt
=
{
−∂B

∂z
+ g2

c2

}
w,

=
{

g

ρ0

∂ρ

∂z
+ g2

c2

}
w,

= −N2w, say. (2.34)

The Brunt Väisälä, or stability frequency is defined as

N =
{
− g

ρ0

∂ρ

∂z
− g2

c2

} 1
2

=
{
− g

ρ0

∂ρpot

∂z

} 1
2

(2.35)
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to be the natural frequency of oscillation of a vertical column of fluid given a small
displacement from its equilibrium position. The fluid is statistically stable when N

is real, that is, when
∂ρpot

∂z
< 0. The distribution of N is one of the most important

dynamical characteristics of the ocean. The corresponding period 2π
N

varies usually
from a few minutes in the thermocline to many hours in the deep oceans where the
water is nearly neutrally stable.

An alternative form of the momentum equation (2.30), corresponding to (2.10)
can be written as

∂v
∂t

+ (� + ω) × v + ∇
[
(p/ρ0) + 1

2
v2
]

− b̂m = ν∇2v. (2.36)

The curl of (2.36) gives for the rate of change vorticity:

dω

dt
= (� + ω) · ∇v + ∇ × (b̂m) + ν∇2ω. (2.37)

The terms on the right describe the generation of vorticity by stretching of the lines
of total vorticity (� + ω) and by the horizontal variations in buoyancy, together
with the diffusion of vorticity by molecular viscosity. When the time scale of a
motion is small compared with both 2π/�(12h) and 2π/N , the vorticity equation
reduces to

dω

dt
= ω · ∇v + ν∇2ω. (2.38)

the form appropriate to a homogeneous incompressible fluid in inertial frame of
reference. This equation is known as Helmholtz’s equation for the vorticity. The
significance of the two terms on the right-hand side may be descibed as follows.
Firstly, the vorticity of a given fluid element changes with time as the element is
convected. Secondly, the vorticity of a fluid element is diffused by viscosity, in
much the same way that heat diffuses because of conduction.

2.5 The Bernoulli equation

The corresponding momentum equation in terms of the total pressure is

∂v
∂t

+ ω × v + ∇
[
(p/ρ0) + 1

2
v2 + gz

]
= ν∇2v. (2.39)

In many fluid motions, the influence of the viscous term in the momentum equation
is quite negligible. In this situation, (2.38) shows that if, at some initial instant
the vorticity of the fluid element is zero, then dω

dt
= 0 and it remains zero. If the

vorticity vanishes everywhere in the field of flow, the motion is irrotational, and,
in the absence of viscous or buoyancy effects, remains so. In such flow, since
ω = ∇ × v = 0, it follows that v can be represented as the gradient of a scalar
function, the velocity potential φ:

v = ∇φ, (2.40)
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and, in virtue of the incompressibility condition, ∇ · v = 0, φ obeys Laplace’s
equation

∇2φ = 0. (2.41)

The term Bernoulli’s equation is used to describe a family of first integrals of
the momentum equation. In irrotational or potential flow, for instance, v = ∇φ,
ω = 0, ν = 0 and (2.39) becomes

∇
{

∂φ

∂t
+ p

ρ0
+ 1

2
v2 + gz

}
= 0,

which can be integrated immediately to give

∂φ

∂t
+ p

ρ0
+ 1

2
v2 + gz = f (t), (2.42)

where f (t) is an arbitrary function of time determined by the pressures imposed at
the boundaries of the motion.

Another form of Bernoulli’s equation can be found for steady frictionless flow,
which may be stratified and rotational. It can be shown from (2.36) that in this
circumstances

p

ρ0
+ 1

2
v2 + ρ

ρ0
gz

is constant along streamlines.

2.6 The Reynolds stresses

In most of the fluid mechanics, we are confronted with motions that vary in random
manner in both space and time. These motions may be turbulent, or they may be
associated with an irregular wave field of one kind or another, but is the randomness
that is their characteristic property. The detailed velocity field and its development
with time are not reproducible from experiment to experiment, though the exper-
imental conditions are unchanged. Only the average or the statistical properties
of the motion can be reproduced. The average process denoted by an over-bar is
defined, it allow a separation of the motion into mean and fluctuating parts. The
velocity field can be expressed as V + v, where v = 0. When ensemble means
are taken, both v and v may be functions of x, y, z and t . The incompressibility
condition is

∇ · (V + v) = 0; (2.43)

if this equation is averaged, there results ∇ · v = 0 for the mean motion and by
subtraction of this from (2.43), ∇ · v = 0 for the fluctuation velocity field also.

With the same substitution, and with the neglect of molecular viscosity, the
momentum equation can be written

∂

∂t
(V + v) + (V + v) · ∇(V + v) + � × (V + v)

+ ∇(P + p′) − (B + b)m = 0, (2.44)
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where the total derivative is written out fully and the pressure and the buoyancy
fields are simply expressed as the sum of mean and fluctuating parts. The constant
density factor ρ0 has been incorporated into the pressure term:

p

ρ0
= P + p′.

The mean of equation (2.44) reduces to

∂v
∂t

+ v · ∇V + � × v + ∇P − Bm = 0, (2.45)

where, in tensor notation,

�i = −uj

∂ui

∂xj

= − − ∂

∂xj

uiuj

= 1

ρ0

∂

∂xj

τij , say (2.46)

The Reynolds stress τij = −ρ0uiuj is a second-order tensor. The influence of the
turbulence on the mean flow is equivalent to that of an applied force �i . So from
(2.46), τij can be interpreted as a stress set up by the fluctuating motion and acting
on the mean flow, or equivalently as the mean momentum flux per unit volume
carried by the velocity fluctuations.

A corresponding equation can be found to describe the mean buoyancy or density
field.

∂b̂

∂t
+ v · ∇b̂ = 0. (2.47)

When the velocity field is replaced as V + v and the buoyancy field as B + b and
the average taken, there results

∂B

∂t
+ V · ∇B = −∇ · N , (2.48)

where
N = vb (2.49)

is the mean flux of buoyancy by the fluctuating motion.

2.7 Derivations of equations of motion

We have already outlined the equations of fluid motion in the previous sections. In
this section, we shall briefly consider the mathematical development of some impor-
tant equations, namely, the conservations of mass and momentum, also derivations
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of Euler’s equations of motion and then Bernoulli’s equation. Some special sig-
nificance of irrotational motion and three-dimensional stream functions is demon-
strated in this section. Navier-Stokes equations in Cartesian, cylindrical polar and
spherical polar coordinates are cited using the concept of orthogonal curvilinear
coordinate systems [12].

2.7.1 Conservation of mass

Let ρ(r, t) = density of the fluid occupying a volume V enclosed by a surface S.
Then �M = ρ(r, t) � V, where �M is the elementary mass of the fluid which
has occupied an elementary volume �V . Hence, the total mass can be obtained by
integration to give

M =
∫

V

ρ(r, t)dV . (2.50)

By definition

dM

dt
= lim

δt→0

∫
V +δV

ρ(r, t + δt)dV − ∫
V

ρ(r, t)dV

δt
.

However,∫
V +δV

ρ(r, t + δt)dV =
∫

V

ρ(r, t + δt)dV +
∫

δV

ρ(r, t + δt)dV .

By Taylor’s theorem∫
V

ρ(r, t + δt)dV =
∫

V

ρ(r, t)dV +
∫

V

∂ρ

∂t
δtdV + O(δt2)

and ∫
δV

ρ(r, t + δt)dV =
∫

δV

ρ(r, t)dV +
∫

δV

∂ρ

∂t
δtdV + O(δt2)

where ρ and ∂ρ
∂t

are functions of r and t only. Hence

dM

dt
= lim

δt→0

∫
V

∂ρ
∂t

δtdV + ∫
δV

ρ(r, t)dV + ∫
δV

∂ρ
∂t

δtdV

δt
+ O(δt).

As δt → 0, consequently δV must go to zero. In that situation
∫
δV

∂ρ
∂t

dV = 0.

Thus dM
dt

= ∫
V

∂ρ
∂t

dV + limδt→0

∫
δV ρ(r,t)dV

δt
. With reference to Curle and

Davies [3], it may be easily shown that limδt→0
∫
δV

ρδV
δt

= limδt→0∫
S

ρ(lu+mv+nw)δtδS
δt

= ∫
S

ρv · ndS, where v is the velocity vector and n is the
unit normal vector. Using the divergence theorem, we obtain limδt→0

∫
δV

ρ δV
δt

=∫
V

div(ρv)dV . Therefore

dM

dt
=
∫

V

[
∂ρ

∂t
+ div(ρv)

]
dV . (2.51)
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Equation (2.51) can be deduced in the following manner also [1]. Let ρ(r, t) be
the mass per unit volume of a homogeneous fluid at a position r and time t. Then
the mass of any finite volume V(t) is M = ∫∫∫

V (t)
ρ(r, t)dV .

We know that if the coordinate system is changed from coordinates r0 to the
coordinates r, the element of volume changes by the formula dV = J dV0 , where
J = ∂(x,y,z)

∂(x0,y0,z0)
is called the Jacobian of transformations. Then we have the total

derivative of M with respect to time t,

dM

dt
= d

dt

∫ ∫ ∫
V (t)

ρ(r, t)dV

= d

dt

∫ ∫ ∫
V0

ρ[r(r0, t), t]JdV0.

But we know dJ
dt

= (∇ · v)J . Thus,

dM

dt
=
∫ ∫ ∫

V0

[
dρ

dt
+ ρ(∇ · v)

]
JdV0

=
∫ ∫ ∫

V (t)

[
dρ

dt
+ ρ(∇ · v)

]
dV .

Since d
dt

= ∂
∂t

+ v · ∇, we can write this formula as follows:

dM

dt
=
∫ ∫ ∫

V (t)

[
∂ρ

∂t
+ ∇ · ρv

]
dV

=
∫ ∫ ∫

V (t)

[
∂ρ

∂t
+ div(ρv)

]
dV

which is identical to (2.51).
If fluid is neither being injected nor removed from the flow field, the total mass

of the fluid body must remain constant and so dM
dt

= 0. Thus eqn (2.51) reduces to∫
V
[ ∂ρ

∂t
+ div(ρv)]dV = 0. But the volume V is arbitrary and consequently

∂ρ

∂t
+ div(ρv) = 0. (2.52)

Equation (2.52) describes the basic assumption that the fluid is continuous, and
is known as the equation of continuity for a viscous compressible flow. Equation
(2.52) can be further simplified to yield

dρ

dt
+ ρdiv(v) = 0. (2.53)

If the fluid is incompressible, then ρ is constant and in this situation dρ
dt

= 0, and
consequently eqn (2.53) reduces to

div v = 0. (2.54)

This is the equation of continuity when the fluid is incompressible.
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2.7.2 Euler’s equation of motion

Consider the following momentum integral

I =
∫

V

ρvdV, (2.55)

where ρ is the density, v is the resultant velocity vector, δV is the elementary
volume, and δS is the elementary surface area.

Here ρ dV is the elementary mass and I represents the total momentum.
The rate of change of momentum of the fluid bounded by the surface S, whether

compressible or incompressible, real or ideal fluid, will be given by

dI

dt
= d

dt

∫ ∫ ∫
V (t)

ρvdV

= d

dt

∫ ∫ ∫
V0

ρvJdV0

=
∫ ∫ ∫

V0

[
d

dt
(ρv)J + (ρv)

dJ

dt

]
dV0

However, dJ
dt

= (∇ · v)J .
Therefore,

dI

dt
=
∫ ∫ ∫

V0

[
d

dt
(ρv)J + (ρv)(∇ · v)J

]
dV0

=
∫ ∫ ∫

V (t)

[
d

dt
(ρv) + (ρv)(∇ · v)

]
dV

=
∫ ∫ ∫

V (t)

[
ρ

dv
dt

+ v
{

dρ

dt
+ ρ(∇ · v)

}]
dV .

Since dρ
dt

+ ρ(∇ · v) = 0 , we have

dI

dt
=
∫ ∫ ∫

V (t)

ρ
dv
dt

dV . (2.56)

By Newton’s law we know the rate of change of momentum is equal to the sum of
the impressed forces. These forces are given by (a) the normal pressure thrust on
the boundary S; and (b) the external force F per unit mass.

Therefore
dI

dt
=
∫

V

ρFdV −
∫

S

pndS, (2.57)

where n is the unit normal vector to δS. By using Gauss’ theorem, eqn (2.57) may
be written as

dI

dt
=
∫

V

ρFdV −
∫

V

(grad p)dV . (2.58)
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From eqns (2.56) and (2.58) we obtain∫
V

[
ρ

dv
dt

+ grad p − ρF
]

dV = 0. (2.59)

Equation (2.59) is true for any arbitrary volume V; it follows that dv
dt

=
F − 1

ρ
grad p, which can be written as

∂v
∂t

+ (v · grad)v = F − 1

ρ
grad p. (2.60)

Equation (2.60) is known as Euler’s equation of motion for an ideal compressible
or incompressible fluid.

2.7.3 Bernoulli’s equation revisited

If the external force F is conservative, that is the forces which are single valued
functions of space coordinates, then F may be written as

F = −grad Ve, (2.61)

where Ve is defined as the scalar potential. Also, from vector calculus

(v · grad)v = grad
(

1

2
v2
)

− v ∧ curl v. (2.62)

Assuming that the pressure is a function of density only, then Euler’s equation of
motion (2.60) can be written as

∂v
∂t

− v ∧ curl v + grad
[∫

dp

ρ
+ 1

2
v2 + Ve

]
= 0. (2.63)

Defining

grad
[∫

dp

ρ
+ 1

2
v2 + Ve

]
= grad H, (2.64)

and substituting from eqn (2.64) into eqn (2.63) gives

∂v
∂t

− v ∧ curl v + grad H = 0. (2.65)

Integration of eqn (2.65) yields∫
dp

ρ
+ 1

2
v2 + V e = H, (2.66)

where H is known as the Bernoulli function. Equation (2.66) is known as
Bernoulli’s equation.
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Special case:

We now consider irrotational flows which are defined as flows throughout which
the vorticity is zero, i.e., curl v = 0. A particular property of irrotational flows
is the existence of a velocity potential which greatly facilitates their calculations.
This particular property allows the Bernoulli relationship between the velocity field
and the pressure field which is normally restricted to steady flows to be modified
so as to become applicable in the general case of unsteady fields when these are
irrotational.

When the motion is irrotational curl v = 0. For this case a scalar function φ(r, t)
exists such that

v = grad φ, (2.67)

where φ is the velocity potential. Substituting from eqn (2.67) into eqn (2.60) yields
∂
∂t

(grad φ) + grad[∫ dp
ρ

+ 1
2v2 + Ve] = 0. By integrating partially with respect

to the space variables

∂φ

∂t
+
∫

dp

ρ
+ 1

2
v2 + Ve = C(t), (2.68)

where the integration constant C is a function of t .
For steady motion ∂φ

∂t
= 0 and eqn (2.68) reduces to∫

dp

ρ
+ 1

2
v2 + Ve = C, (2.69)

where C is an absolute constant. Using v = ∇φ in the continuity eqn (2.54), it
follows that the velocity potential φ satisfies Laplace’s equation

∇2φ = 0. (2.70)

2.8 The existence of irrotational motion

The vector quantity ω = curl v is defined as the vorticity vector and if the fluid
moves in such a way that the vorticity vector is zero, then the motion is said to be
irrotational. That the irrotational motion exists in ideal fluids can be demonstrated
by taking the curl of Euler’s equation of motion (2.60) yielding ∂ω

∂t
- curl(v ∧ ω)

which is identically satisfied if ω = curl v = 0. As a matter of fact such a motion
exists for many physical problems including water wave mechanics in inviscid
oceans. That the irrotational motion persists in inviscid fluids can be demonstrated
below.

If C be a closed contour which moves with the fluid consisting of the same fluid
particles, then the circulation can be defined as the integral � = ∫

C
v · dr where v

is the velocity vector and dr the elementary length of C. This by Stokes’s theorem
[15] can be written as

� =
∫ ∫

S

curl vdS =
∫ ∫

S

ωdS
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where S is the surface bounded by the curve C every point of which lies within
the fluid. Thus if ω = 0 is initially so will � be zero. From another perspective by
differentiating following the motion of the fluid with respect to time we obtain

d�

dt
=
∫

C

dv
dt

· dr +
∫

C

v · dv =
∫

C

dv
dt

· dr +
∫

C

d

(
1

2
v2
)

.

The second integral around the closed contour C is zero. However, using the Euler’s
equation (2.60) and after some simplification we can write

d�

dt
= −

∫
C

grad
(

H − 1

2
v2
)

· dr = −
∫ ∫

S

curl grad
(

H − 1

2
v2
)

dS

where in the surface integral we have used the Stokes’s theorem. It is now obvious
that as because curl grad of a scalar function is identically zero, consequently we
have d�

dt
= 0 which expresses the fact that the circulation round a closed contour

moving with the fluid is constant for all time. This result is usually known as
Kelvin’s theorem. In conclusion we state that the zero vorticity condition, namely,
the irrotational motion exists for inviscid fluid flow motion.

2.9 Two-dimensional flow

It has been found experimentally that a large class of problems exists in which one
of the velocity components, say w, is small when compared with the components u

and v. Modelling such flows with the simplification obtained by setting w = 0 and
allowing u and v to be functions of x and y, but not of z, leads to excellent agreement
between theory and observation. The flow is defined as being two dimensional.

For incompressible flow in two dimensions the continuity equation, div v = 0,
where v = (u, v, 0), becomes

∂u

∂x
+ ∂v

∂y
= 0. (2.71)

Consider the following first-order ordinary differential equation:

u dy − v dx = 0. (2.72)

From the theory of first order ordinary differential equations we know that eqn
(2.72) will be exact if the following condition is satisfied: ∂u

∂x
+ ∂v

∂y
= 0, which

is precisely the equation of continuity (2.71). Thus there exists a scalar function
ψ(x, y) such that

dψ = u dy − v dx = 0. (2.73)

Integrating eqn (2.73) gives

ψ(x, y) = constant. (2.74)
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Here ψ(x, y) is a stream function, since by definition, the velocity is tangential to
a streamline; therefore the differential equation of streamlines can be written as

dx

u
= dy

v
. (2.75)

This equation can be derived from eqn (2.73). From eqn (2.73) we have ∂ψ
∂x

dx +
∂ψ
∂y

dy = u dy − v dx. Hence

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (2.76)

It is noted that ψ(x, y) is related to u and v; and also that this stream function exists
only in two dimensional flow. A good account of a velocity field and its streamlines
can be found in Lighthill [8].

For the case where the motion is irrotational then we must have curl v = 0,

that is
∂v

∂x
− ∂u

∂y
= 0. (2.77)

Equation (2.77) can be recognized as the condition for the differential equation

u dx + v dy = 0, (2.78)

to be exact. Thus there exists a scalar function φ(x, y) such that

dφ = u dx + v dy, (2.79)

such that dφ = 0 and upon integration yields φ(x, y) = constant.
From eqn (2.79), we have ∂φ

∂x
dx + ∂φ

∂y
dy = u dx + v dy. Therefore by compar-

ison it can be seen that

u = ∂φ

∂x
, v = ∂φ

∂y
, (2.80)

and the velocity vector, v can be written as

v = grad φ. (2.81)

Here φ(x, y) is called the velocity potential. This function exists in both two- and
three-dimensional flow. It is easily shown that both the stream function ψ(x, y) and
the velocity potential φ(x, y) satisfy Laplace’s equation. Using eqn (2.76) together
with the irrotational flow condition (2.77) yields

∂2ψ

∂x2
+ ∂2ψ

∂y2
= 0. (2.82)

Similarly, using eqn (2.80) together with the continuity condition (2.71) yields

∂2φ

∂x2
+ ∂2φ

∂y2
= 0. (2.83)
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2.9.1 Physical interpretation of velocity potential

In practice the velocity potential φ is defined as the value of the line integral of the
velocity vector v = (u, v, w) as φ = ∫

C
v · dr = ∫

C
(udx + vdy + wdz) where C

is the contour of integration. The quantity v · dr is a measure of the fluid velocity
in the direction of the contour at each point. Therefore φ is related to the product
of the velocity and length along the path between two distinct points on C. For the
value of φ to be independent of the path, i.e., for the flow rate between these two
points to be the same no matter how the integration is carried out, the term in the
integrand must be an exact differential dφ, so that dφ = udx + vdy + wdz, and
therefore, v = grad φ. To ensure that this scalar function φ exists, it is confirmed
that curl of the velocity vector v must be zero, which indeed is so. Because the
vector calculus identity confirms that curl v = curl grad φ = 0 always. This curl
of the velocity vector is referred to as the vorticity ω as described in the last section.

2.9.2 Physical interpretation of stream function

For the velocity potential, we defined φ in three-dimensions as the line integral
of the velocity vector projected on the line element. Let us define in a similar
manner the line integral composed of the velocity components perpendicular to the
line element in two-dimensions as ψ = ∫

C
v · n dl where dl = |dr|. The integrand

here will physically imply that ψ represents the amount of fluid crossing the line
C between two distinct points of C. The unit normal vector n is perpendicular
to the path of integration C. This vector can be obtained from the relation that
n · dr = 0 such that the normal unit vector components can be obtained as nx = dy

dl

and ny = − dx
dl

. The integral then can be written as ψ = ∫
C
(udy − vdx). The value

of this integral, i.e., the flow between these two distinct points will be independent
of the path of integration provided the integrand becomes an exact differential, dψ .
This requires that u = ψy and v = −ψx from which we deduce that ux + vy = 0
which is precisely the continuity equation in two-dimensions. The ψ is defined as
the stream function. It is to be noted from this mathematical analysis that there exists
a stream function for two-dimensional incompressible flow. However, in general,
there can be no stream function for three-dimensional flows with the exception
of the axisymmetric flows whereas as we have seen already the velocity potential
exists in any three-dimensional flow that is irrotational.

2.10 Complex potential

We have seen that the velocity components in two-dimensional flow can be related
to ψ(x, y) and φ(x, y) by the following equations:

u = ∂ψ

∂y
= ∂φ

∂x
, v = ∂φ

∂y
= −∂ψ

∂x
. (2.84)

The above equations are usually defined as the Cauchy-Riemann equations and
enables the hydrodynamicists to utilize the powerful techniques of function of
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complex variable [9]. Using the Cauchy-Riemann conditions it can be easily verified
that the lines of constant stream function (ψ = const.) and the lines of constant
velocity potential (φ = const.) are perpendicular. Also these conditions provide
the necessary condition for the function

W = φ + iψ, (2.85)

to be an analytic function of z, where z = x + iy.
The complex function W , whose real and imaginary parts are the velocity poten-

tial and stream function, respectively, is called the complex potential of the flow.
W is an analytic function of z and, hence

dW

dz
= ∂φ

∂x
+ i

∂ψ

∂x
= u − iv = q e−iθ , (2.86)

where q is the speed of the fluid, and is given by

q =
∣∣∣∣dW

dz

∣∣∣∣ =
√

u2 + v2, (2.87)

and θ is the velocity direction relative to the real axis

θ = tan−1 v

u
= arg

(
dW

dz

)
. (2.88)

Also, at a stagnation point the fluid velocity is zero. Thus, if the complex potential
W , describing the motion is known, the stagnation points can be obtained from the
equation dW

dz
= 0.

2.11 Flow along a stream tube

Sir Isaac Newton conceived the notion that a fluid consists of granulated structure
of discrete particles. However, the range of validity of Newton’s conjecture was
limited, as shown by a comparison of the theoretical and experimental results. Later,
Lagrange and Euler developed improved methods in which the fluid was regarded
as a continuous medium. It is usual to adopt the Lagrangian method where the
actual paths of the fluid particles are required. The Eulerian method is based on
the observation of the characteristic variation of the fluid as it flows past a point
previously occupied by the fluid. Thus any quantity associated with the fluid may
be functionally represented in the form f (r, t).

Using the Eulerian method, the state of the fluid flow along a streamline is defined
as a line drawn in the fluid such that a tangent at each point of the line is the direction
of the fluid velocity at that point. A stream tube is formed by drawing a set of such
streamlines through all the points of a small, closed curve. More precisely, the
streamlines of a steady flow are the paths along which fluid particles move. In fact,
a particle on any one streamline remains always on that streamline. The streamlines
associated with the velocity field

v(x) = (u(x, y, z), v(x, y, z), w(x, y, z))



The Equations of Fluid Motion 31

represent the doubly infinite set of solutions of the differential equations

dx

u
= dy

v
= dz

w
,

where each expression represents the very short time dt during which a particle of
fluid makes a change of position (dx, dy, dz). In unsteady flow, the paths of the
particle of fluid (called pathlines) are completely different in shape of the stream-
lines at any one instant. As a particle moves along a pathline it is at each instant
moving tangentially to each local streamline, but the pattern of those streamlines
is changing in time. These pathlines associated with the velocity field

v(x, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t))

can be determined by solving a system of ordinary differential equation

dx

dt
= u

dy

dt
= v

dz

dt
= w.

In a steady flow, of course, a stream tube has unchanging shape because the
motion of each particle of fluid on its boundary is directed along the streamline on
which it is situated, and these lines are the bounding surface of the tube. Instanta-
neously, of course, a streamline pattern exists for an unsteady flow and this allows
a stream tube to be defined such that the motion of each particle of the fluid on
the surface of the tube is directed tangentially to the streamline on which it is sit-
uated and therefore tangentially to the tube composed of the streamlines. Thus the
characteristics of this flow in one dimension will be fully defined once the pressure
p, density ρ, velocity v, and the cross-sectional area A of the tube are known as
functions of the axial distance of the tube. Hence, four equations are needed to
evaluate these four unknowns. It should be noted here that when the cross-section
A is infinitesimally small, the stream tube is known as the stream filament.

2.12 Vortex kinematics

We have already introduced the vorticity vector ω in two- and three-dimensional
cases. In this section, we shall try to explore a little bit more about this impor-
tant entity of fluid mechanics. To get full qualitative information regarding three-
dimensional motions specified in general by four unknown quantities such as
the density ρ, the velocity components u, v, and w. It was, accordingly, only
after another brilliant simplification has been introduced into the theoretical fluid
mechanics, and developed through the work of Joseph Lagrange (1736–1831),
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Augustin Cauchy (1789–1857), Hermann von Helmholtz (1821–1894), George
Stokes (1819–1903), and Lord Kelvin (1824–1907), that significant progress could
be made in the analysis of the forbiddingly nonlinear equations of motions described
in the previous sections. As a result of their work, we recognize that the study of
fluid motions lies in the related concepts of vorticity and circulation. These concepts
are formed on an acceptance of the need to analyse the rotation of a particle of fluid.
In the rigid body vortex motion, there are two factors, rotation and the associated
angular momentum. But in the fluid motion, the fluid particle, however, exhibits a
major difference from a rigid body: it does not simply rotate (in its motion relative
to its mass centre) but is also deformed at the same time in certain ways.

2.12.1 Vortexlines and vortextubes

We have already defined the streamlines that are composed of joining velocity
vectors. In the same way we can form the vortexlines by joining the vorticity
vectors and then form vortextubes. The vorticity vector is given as

∇ × v = ω = (ξ, η, ζ ) (2.89)

such that the components of the vorticity ω can be explicitly written as

ξ = ∂w

∂y
− ∂v

∂z

η = ∂u

∂z
− ∂w

∂x

ζ = ∂v

∂x
− ∂u

∂y
(2.90)

First of all we note that the vorticity field is solenoidal, which means that

∇ · ω = 0.

Indeed, for any vector field v we have ∇ · ∇ × v = div curl v = 0 which follows
from the vector identity. This makes the result seem very natural as the vanishing
of a scalar triple product in which the gradient operator ∇ appears twice.

To construct the vortexlines and vortextubes we follow Lighthill’s work [8].
As suggested by Lighthill, we can draw large numbers of very short arrows, each
proportional to the local value of the vorticity field, and join these to form an
assemblage of curves called vortexlines. Mathematically, they are specified at each
time t by the equations (Fig. 2.1)

dx

ξ
= dy

η
= dz

ζ
(2.91)

Next we draw a general vortextube as shown in Fig. 2.2 composed of the vor-
texlines passing through a particular loop, and a very thin vortextube. For either
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Figure 2.1: Vorticity vectors joined to form vortexlines. (From Lighthill [8], with
permission from IMA.)

Figure 2.2: Avortextube is a surface comprising all the vortexlines passing through
points of a particular loop. (From Lighthill [8], with permission from
IMA.)
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vortexlines or vortextube, the solenoidal property div ω = 0 implies that all along
the vortextube a certain quantity takes an unchanging value. For the thin vortex-
tube that quantity is expected to be the product of its cross sectional area with the
magnitude of the vorticity [8].

2.12.2 Circulation

Following Lighthill we can show that the surface integral of a vortextube (Fig. 2.2)
can be expressed as

∫ ∫
S

ω · ndS =
∫ ∫

S

curl v · ndS = constant (2.92)

for all surfaces S spanning a given vortextube. The quantity stated in eqn (2.92) to
take everywhere a constant value along a general vortextube is a characteristic
property of that vortextube, sometimes called its “strength”. We consider now
whether any special physical interpretation can be assigned to this quantity. We
know that the corresponding quantity for a general streamtube would be the integral

∫ ∫
S

v · ndS (2.93)

across a surface spanning the streamtube. The physical interpretation of this quantity
is readily seen to be the rate of volume flow along the streamtube.

It is a famous mathematical theorem due to Stokes which gives a special inter-
pretation of the left-hand side of eqn (2.92). Stokes’s theorem applies to any surface
S for which we are able to make a consistent, continuously varying selection of a
direction for the unit normal vector n at each point of the surface and for which the
boundary C consists of one or more closed curves. Stokes’s theorem states that, for
any vector field v, ∫ ∫

S

(curl v) · ndS =
∫

C

v · dx (2.94)

Here, the integral of

v · dx = udx + vdy + wdz (2.95)

along each of the closed curves making up a boundary C must be taken in positive
sense relative to the direction chosen for n.

For any closed curve C, the integral of

∮
C

v · dx (2.96)

taken around C in a particular sense, given the special name Circulation. More
precisely, it is called the circulation in that sense around C. Here the meaning of
the small vector displacement dx along C is a small element ds of arc length along
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C

S

x

y

(u,v,0)

(v,−u,0)

(tx,ty,0)

Figure 2.3: Stokes’s theorem (Green’s theorem) is applied here to a flat surface S

with the normals to S pointing out of the paper towards the reader. A
component utx + vty of (u, v, 0) along the tangent to C is identical with
a component of the perpendicular vector (v, −u, 0) along the outward
normal to C. (From Lighthill [8], with permission from IMA.)

C, while its direction is that of t, a unit tangent vector in the chosen sense. Thus
the circulation (expression (2.96)) can be written∮

C

(v · t)ds; (2.97)

and, it takes a positive value if, on an average with respect to arc length along the
curve, positive values of the tangential resultant v · t of the velocity field out weigh
negative values.

There are some dynamical reasons why circulation is important, but confine
our attention here to its importance for the kinematics of vortextube (Fig. 2.2),
its boundary is a single closed curve C embracing the vortextube once, and any
such curve C is the boundary of a spanning surface S. Stokes’s theorem tells us,
then, that ∫ ∫

S

ω · ndS =
∮

C

v · dx; (2.98)

i.e. the ‘strength’ of the vortextube (the quantity which takes the same constant
value (eqn (2.92) for any surface spanning it) is equal to the circulation around any
closed curve C, which embraces it once, taken in the positive sense with respect to
the direction of the normal n.

In two-dimensional case (Fig. 2.3), to facilitate the proof of equation (2.98) for
a flat surface S we are free to adopt coordinates x, y and z for which S is a part
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of the plane z = 0 and n is a normal unit vector in the z direction. The eqn (2.98)
becomes ∫ ∫

S

(vx − uy)dS =
∮

C

(udx + vdy)

=
∮

C

(utx + vty)ds (2.99)

in terms of the z component, and the components (tx, ty, 0) of the unit tangent
vector which in the form of expression

∮
(v · t)ds. Equation (2.99) is also usually

known as Green’s theorem.

2.13 Vortex dynamics

The meanings and interrelationships of vorticity and circulation have been illus-
trated in the previous section from the pure standpoint of kinematics, which deals
with the analysis of motions without considering the dynamical effect of forces.
The present section explores the study of their very fruitful contribution to an
understanding of the dynamics of fluid motions.

A single discovery by Kelvin in 1869 about the persistence of circulation is used
to derive all the theoretical results given in this section, including some discoveries
by Lagrange, Cauchy and Helmholtz. The section ends with a first attempt at giving
insight into the properties of boundary layers, based on combination of theoretical
understanding and experimental data.

2.13.1 The persistence of circulation

The persistence ascribed to circulation by Kelvin’s theorem does not refer to the
circulation around a closed curve C whose shape and position are fixed in space.
The theorem is concerned, rather, with a closed curve C consisting always of the
same particles of fluid. We can think of C, then, as a necklace of particles of fluids
one whose shape and position change continually as those particles of fluids move.
This is why it is usually described as a closed curve moving with the fluid.

Kelvin’s theorem is exact for the Euler model, which is being derived from the
momentum equation

ρ
Dv
Dt

= −grad(p + ρgH − p0), (2.100)

where the material derivative is given by Dv
Dt

= ∂v
∂t

+ v · ∇v. It states that the cir-
culation around a closed curve C moving with the fluid remains constant.

Consider now a curve C which, because it is made up of a necklace of identified
particles of fluid, can be described as moving with the fluid. Assuming the momen-
tum equation (2.100) at each point of C, we deduce Kelvin’s result that the rate of
change of circulation around a closed curve C is zero.
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If we denote circulation by the symbol � such that � = ∮
C

v · dx then the rate
of change of circulation is

D�

Dt
= D

Dt

(∮
C

v · dx
)

=
∮

C

D

Dt
(v · dx)

=
∮

C

v · dv + Dv
Dt

· dx

=
∮

C

d

(
1

2

)
(v · v) +

(
− 1

ρ

)
∇(p + ρgH − p0) · dx

=
∮

C

d

(
1

2
|v|2

)
− 1

ρ
dp

= 0. (2.101)

This mathematical deduction simply describes the persistence of circulation
around a closed curve moving with the fluid.

One especially valuable deduction from Kelvin’s theorem is concerned with the
movement of vortexlines. This is Helmholtz theorem which states that vortexlines
move with the fluid. Such a statement has to be understood in the same sense as the
statements about a closed curve C moving with the fluid as demonstrated above. It
means, in fact, that the particle of fluid of which any vortexline is composed at any
one instant move in such a way that the same chain of particles of fluid continue to
form a vortexline at all later instant.

2.13.2 Line vortices and vortex sheets

Lighthill [8] has given a lucid description with illustrations about the line vortex
and vortex sheets in his book on An information introduction to theoretical fluid
mechanics. In this section we shall just define these two important entities of fluid
mechanics without going into detailed calculations. The true condition is that a
solid boundary equates not only the normal components of the velocities of the
fluid and of the solid surface but also their tangential components. The effect of
this is to destroy any exact permanence of irrotational flows, essentially through
the generation of vorticity at any such solid surface.

Often, the convection and diffusion of vorticities, which initially emerged from
the solid boundary, are found to leave and then concentrated in a very thin region.
It may, in many cases, be thin in just one of its dimensions, as a sheet is, and
then it is often called a vortex sheet. A boundary layer is an example of a vortex
sheet.Alternatively, some vortexlines that have been convected away from the solid
boundary may, in certain circumstances, become concentrated in a region thin in
two of its dimensions (essentially in the immediate neighbourhood of a single line),
and such a concentration of vorticity around a single line is usually called a line
vortex . A schematic diagram is depicted in Fig. 2.4.
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Line Vortex

C2

C2

C1

S

Figure 2.4: The circulations �1 and �2 around two different closed curves C1 and
C2, that each embrace a line vortex exactly once in the same sense,
are necessarily equal. This is proven by applying Stokes’s theorem to a
collar-shaped surface S whose boundary C consists of C1 and C2 taken
in opposite sense. (From Lighthill [8], with permission from IMA.)

For the simplicity of the properties of line vortex and vortex sheet, it may, often,
allow us to make calculations of flows in which all of the vorticity is concentrated
in very thin regions. Such calculations use the simple equation ∇ × v = 0 for
irrotational motion outside these regions.

2.14 Navier-Stokes equations of motion

In this section the equation of continuity and the momentum equations for viscous
incompressible fluid are presented without detailed derivations. For such details,
see the work of Lamb [6], Rosenhead [14], and Batchelor [2]. A more sophisticated
derivation, using the full power of the tensor properties, is given by Jeffreys [5].
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Using the advanced analysis of vector calculus in developing the orthogonal curvi-
linear coordinate systems, the equations of mass and momentum are derived in
an elegant recent book by Rahman [12]. For advanced water wave problems, the
reader is referred to Rahman [11].

It is assumed that throughout the motion of any element of fluid, its mass is
conserved; hence, for incompressible flow, the volume of the fluid element must
remain constant. This condition yields the equation of continuity. The momentum
equations, which must be satisfied by the flow quantities at each point of the fluid,
are deduced by applying Newton’s second law of motion to the fluid which occupies
an elementary volume.

2.14.1 Cartesian coordinates

In a Cartesian coordinate set of axes, the equation of continuity and the equations
of motion can be written as

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ

∂p

∂x
+ X + ν∇2u

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − 1

ρ

∂p

∂y
+ Y + ν∇2v

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − 1

ρ

∂p

∂z
+ Z + ν∇2w, (2.102)

where ρ is the density, μ the dynamic viscosity and ν = μ
ρ

the kinematic viscosity
of the fluid, and

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. (2.103)

Here u, v, and w are the velocity components along the x, y, and z directions,
and given by ẋ = u, ẏ = v, and ż = w.

2.14.2 Cylindrical polar coordinates

With the cylindrical polar coordinates (r, θ, z), where x = r cos θ , y = r sin θ ,
and z = z, the equation of continuity and the equations of motion can be written as

∂vr

∂r
+ 1

r
vr + 1

r

∂vθ

∂θ
+ ∂vz

∂z
= 0

∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
+ vz

∂vr

∂z
− v2

θ

r

= − 1

ρ

∂p

∂r
+ ν

{
∇2vr − vr

r2
− 2

r2

∂vθ

∂θ

}
+ Xr



40 Mechanics of Real Fluids

∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vz

∂vθ

∂z
+ vrvθ

r

= − 1

ρ

∂p

r∂θ
+ ν

{
∇2vθ + 2

r2

∂vr

∂θ
− vθ

r2

}
+ Xθ

∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r

∂vz

∂θ
+ vz

∂vz

∂z
= − 1

ρ

∂p

∂z
+ ν∇2vz + Xz (2.104)

where

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
+ ∂2

∂z2
. (2.105)

The velocity components are given by ṙ = vr , θ̇ = vθ

r
and ż = vz.

2.14.3 Spherical polar coordinates

With spherical polar coordinates (r, θ, φ) where x = r sin θ cos φ, y =
r sin θ sin φ, and z = r cos θ , the equation of continuity and the momentum equa-
tions can be written as

∂vr

∂r
+ 2

r
vr + 1

r

∂vθ

∂θ
+
(

1

r
cot θ

)
vθ + 1

r sin θ

∂vφ

∂φ
= 0

∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
+ vφ

r sin θ

∂vr

∂φ
− v2

θ + v2
φ

r

= − 1

ρ

∂p

∂r
+ ν

{
∇2vr − 2vr

r2
− 2

r2

∂vθ

∂θ
− 2vθ cot θ

r2
− 2

r2 sin θ

∂vφ

∂φ

}
+ Xr

∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vφ

r sin θ

∂vθ

∂φ
+ vrvθ

r
− v2

φ cot θ

r

= − 1

ρ

∂p

r∂θ
+ ν

{
∇2vθ + 2

r2

∂vr

∂θ
− vθ

r2 sin2 θ
− 2 cos θ

r2 sin2 θ

∂vφ

∂φ

}
+ Xθ

∂vφ

∂t
+ vr

∂vφ

∂r
+ vθ

r

∂vφ

∂θ
+ vφ

r sin θ

∂vφ

∂φ
+ vrvφ

r
+ vθvφ cot θ

r

= − 1

ρ

1

r sin θ

∂p

∂φ
+ ν

{
∇2vφ − vφ

r2 sin2 θ
+ 2

r2 sin θ

∂vr

∂φ
+ 2 cos θ

r2 sin2 θ

∂vθ

∂φ

}
+ Xφ

(2.106)

where

∇2 = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂φ2
. (2.107)

The velocity components are given by ṙ = vr , θ̇ = vθ

r
and φ̇ = vφ

r sin φ
. Navier-

Stokes equations reduce to Euler’s equation of motion when ν = 0, i.e. when the
fluid is inviscid.
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Example 2.1

If the position vector r = (x, y, z) has magnitude r , and f (r) is any differentiable
function, show that grad f (r) = f ′(r)r−1r.

Proof

Using the gradient operator ∇ we have ∇ f (r) = f ′(r)∇ r = f ′(r) r
r

=
f ′(r)r−1r. This is the required proof.

Example 2.2

If v = (2x2y, xz2 − y3, xyz), calculate div v, curl v and div curl v.

Solution

Using the ∇ operator, we have

∇ · v = ∂

∂x
(2x2y) + ∂

∂y
(xz2 − y3) + ∂

∂z
(xyz)

= 4xy − 3y2 + xy = 5xy − 3y2.

curl v = i
(

∂

∂y
(xyz) − ∂

∂z
(xz − y3)

)

+ j
(

∂

∂z
(2x2y) − ∂

∂x
(xyz)

)

+ k
(

∂

∂x
(xz − y3) − ∂

∂y
(2x2y)

)

= i(xz − x) + j(0 − yz) + k(z − 2x2).

div curl v = ∂

∂x
(xz − x) + ∂

∂y
(−yz) + ∂

∂z
(z − 2x2)

= z − 1 − z + 1 = 0.

This is true for any arbitrary vector field.

Example 2.3

Within a fluid, a solid sphere of radius a moves in a circle of radius c so that at time
t the coordinates of its centre are (0, c cos ωt, c sin ωt). After writing the equation
of the sphere’s surface in the form F(x, y, z, t) = 0, deduce that the fluid velocity
adjacent to it satisfies the boundary condition

ux + v(y − c cos ωt) + w(z − c sin ωt) = c ω(z cos ωt − y sin ωt).
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Solution

If the solid boundary is at rest, the condition of zero normal flow through it can be
written as

v · n = 0.

But if vS is the velocity of the solid, the relative velocity is v − vS and the boundary
condition is therefore

(v − vS) · n = 0.

Acertain alternative form of the above equation, which is very often useful, involves
an interesting application of the operator D

Dt
= ∂

∂t
+ v · ∇. It can be applied if the

geometrical equation of the solid surface in Cartesian coordinates x, y, z is known
at each time t , in (say) the form

F(x, y, z, t) = 0.

We consider now the rate of change DF/Dt following a particle of fluid on the
solid boundary. The condition v · n = 0 means that the particles motion relative to
that of the solid surface is purely tangential to the boundary (it has zero normal
component). Thus, the particle moves along the solid surface and the value of
F(x, y, z, t) following the particle continues to be zero as specified by the equation
(v − vS) · n = 0. In short, there is zero rate of change of F for a particle at the
surface:

0 = DF/Dt = ∂F/∂t + v · ∇F.

Although this condition looks very different to v · n = 0, they are, in fact, mathe-
matically equivalent. Thus we calculate the boundary condition using this condition
as illustrated below.

In this problem,

F(x, y, z, t) = x2 + (y − c cos ωt)2 + (z − c sin ωt)2 − a2.

v = iu + jv + kw.

Hence to find the boundary condition we calculate:

∂F

∂t
= 2cω(y sin ωt − z cos ωt)

∇ F = i(2x) + j2(y − c cos ωt) + k2(z − c sin ωt)

And, therefore, the boundary condition can be written as

ux + v(y − c cos ωt) + w(z − c sin ωt) = cω(z cos ωt − y sin ωt).

This is the required solution.
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Example 2.4

Each particle of water in an open vessel is moving in a circular path about a vertical
axis with a speed q(r) depending only on the radius r of the path. Prove that the
vorticity is a vertically directed vector with magnitude q ′(r) + r−1q(r).

If the magnitude of the vorticity takes a constant value ω0, for r < a and zero for
r > a, determine the value of q(r) in both regions. Also, find the pressure from the
Bernoulli’s equation of motion taking gravity into account and deduce the shape
of the free surface, showing it to be lower by a distance (ω2

0a
2/4g) at the centre of

the vortex than it is in the undisturbed fluid.

Solution

The vorticty ω = ∇ × v can be calculated using the circular cylindrical polar coor-
dinate (r, θ, z) as follows:

∇ × v = 1

r

∣∣∣∣∣∣∣∣∣

r rθ k

∂

∂r

∂

∂θ

∂

∂z
vr rvθ vz

∣∣∣∣∣∣∣∣∣
(2.108)

In this particular problem, v = (0, rq(r), 0), and so the vertical component of
vorticity will survive and hence it is given by ω = 1

r
d
dr

(rq(r)).

We can write this differential equation in two regions. It is given that for the
region r < a, q(r) satisfies the differential equation

1

r

d

dr
(rq(r)) = ω0,

the solution of which is simply

q(r) = ω0r

2
.

Also for the region r > a, q(r) satisfies the differential equation

1

r

d

dr
(rq(r)) = 0,

the solution of which is simply

q(r) = C/r,

where C is an arbitrary constant. This completes the solution of the first part of the
problem.

For the second part of the problem, in the region r < a, we evaluate the pressure
at any point (r, z) from Bernoulli’s equation

p/ρ + gz + 1

2
q2(r) = p0/ρ.
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Using the value of q(r) in this equation we obtain the pressure at any point (r, z) as

p = −ρgz − ρ

2

(
ω2

0r
2

4

)
+ p0.

Now the pressure on the circumference of the circular path, i.e., at r = a for any z

is simply

p = −ρgz − ρ

2

(
ω2

0a
2

4

)
+ p0.

The pressure at z = 0 is given by p = −ρ
2

(
ω2

0a2

4

)
+ p0. But at the free surface

z = η, p = p0 and so the free surface elevation is given by

η = −1

2

(
ω2

0a
2

4g

)
.

This completes the solution of the problem.
For further information, the reader is referred to the work of Phillips, O.M. [10]

and Reynolds, O. [13] as listed in the reference section.

2.15 Exercises

1. If p = r = √
x2 + y2 + z2 and q = xy

z2 , calculate ∇p and ∇q. Show that the
scalar product ∇p · ∇q = 0. Could this result be predicted in advance without
separately calculating ∇p and ∇q?

2. Verify the Divergence Theorem by evaluating∫ ∫ ∫
V

∇ · vdV

and ∫ ∫
S

v · ndS,

where V is the sphere x2 + y2 + z2 ≤ a2 and

v = (2xy2 + 2xz2, x2y, x2z).

[Hint: The spherical coordinates are: x = r sin θ cos φ, y = r sin θ sin φ,

z = r cos θ. The elementary lengths are: dr, rdθ, r sin θdφ. Therefore∫ ∫ ∫
V

∇ · vdV = 8
5πa5 = ∫ ∫

S
v · ndS.]

3. In a certain fluid motion, the velocity field is v = (ax, by, cz), where a, b

and c are constants. Show that the fluid density ρ takes the value ρ =
ρ0 exp[−(a + b + c)t] at time t , given that ρ = ρ0 throughout the fluid at
t = 0. [Hint: Consider the continuity equation dρ

dt
+ ρ∇ · v = 0.]
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4. If u and v are any two vector fields, show that the divergence of the vector
product takes the form

div(u × v) = v · curlu − u · curlv.

By applying the Divergence Theorem to u × v where v is a constant vector,
show that ∫ ∫ ∫

V

curludV =
∫ ∫

S

n × udS.

5. In a velocity field (cy2 + cz2, 2cxy, −2cxz), where c is constant, show that
the density of each fluid element is constant. Show that the vortexlines are all
parallel straight lines, and that along any very thin vortextube the magnitude
of the vorticity takes a constant value. At what points are the principal axes of
rate of strain parallel to the coordinate axes?

6. Verify Stokes’s theorem for a vector field with components

u = 0, v = z sin θ, w = r cos θ,

where the surface S is specified in cylindrical polar coordinates as

r = a, 0 ≤ θ ≤ π, 0 ≤ z ≤ b.

7. For any fluid motion it is possible to consider that the particle of fluid whose
position vector was r at time t = 0 and to ask where the particle so defined
has moved to at a particular later time t . If its position vector takes the value
R at time t then we regard R as a vector field in relation to its variation with
the initial position r of the particle. With R so regarded as a vector field, and
ω taken as the vorticity of the particle at time t = 0, investigate the expression
ω · ∇R. Show how Helmholtz’s theorem implies that this expression represents
the particle’s vorticity at the later time.

8. For the vector field v defined as

v = (z − 2x/r, 2y − 3z − 2y/r, x − 3y − 2z/r),

where r = √
x2 + y2 + z2, prove that ∇ × v = 0 and find φ such that v = ∇φ,

in which φ is the velocity potential.
9. Prove that, for steady irrotational flow of a compressible fluid of nonuniform

ρ, the velocity potential φ satisfies an equation of continuity

∇ · (ρ∇φ) = 0.

Deduce that a steady irrotational flow of compressible fluid in a finite simply
connected region with its boundaries at rest has zero kinetic energy, so that the
fluid itself is at rest.

10. Calculate the distribution of temperature, which results from the diffusion of
heat with the diffusivity α = k

ρc
, after a cold body is immersed in hot liquid.

A thin slice of the body, of unit area, at distances from the boundary between
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z and z + dz, is gaining heat transferred across unit area at the rate −k ∂T
∂z

and
losing it at the rate equal to the same quantity with z replaced by z + dz, thus

giving a net rate of gain k( ∂2T

∂z2 )dz. But the thin slice has mass ρdz so that the

rate of increase of heat can be written c(ρdz) ∂T
∂t

where c is the specific heat.
Deduce the differential equation for the temperature T and look for a solution
in which T has the functional form

T = f (η) with η = z(αt)−
1
2 .

Show that

f ′(η) = C exp

(
−1

4
η2
)

,

where C is a constant, and deduce the solution which satisfies the boundary
conditions

f = Th at η = 0 and f → Tc as η → ∞
in terms of the indefinite integral of the above exponential. [Solution is: Th−T

Th−Tc
=

erf (
η
2 ) = 2√

π

∫ η/2
0 exp(−x2)dx.]
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CHAPTER 3

Mechanics of viscous fluids

Albert Einstein

Albert Einstein (March 14, 1879, to April 18, 1955) was a German-born
mathematician and theoretical physicist. He is best known for his theory
of relativity and specially mass–energy equivalence, E = mc2. Einstein
received the 1921 Nobel Prize in Physics “for his services to Theoretical
Physics, and especially for his discovery of the law of photoelectric effects”.
He was born in Ulm, Württemberg, Germany, on March 14, 1879. Einstein’s
many contributions to physics include his special theory of relativity, which
reconciled mechanics with electromagnetism, and his general theory of rel-
ativity, which extended the principle of relativity to non-uniform motion,
creating a new theory of gravitation. Works by Albert Einstein include more
than fifty scientific papers and also non-scientific books. In 1999, Einstein
was named Time Magazine’s “People of the Century”, and a poll of promi-
nent physicists named him the greatest physicist of all time. In popular
culture the name “Einstein” has become synonymous with genius.

3.1 Introduction

We have seen in the previous chapter that the motion of a fluid particle can be
described by partial differential equations. In the study of fluid flow problems,
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Figure 3.1: Rheological behaviour of various viscous fluids.

partial differential equations play a central role. We have seen, for example, how the
velocity potential and the stream function, in fluid flow, are described by Laplace’s
equation. In this chapter we propose to deal with the mechanics of real fluids. Here
again, the physics of the problems will be described by a set of partial differential
equations. The solution techniques manifested in Rahman [9] will be employed
here when they are warranted.

In this chapter, our study is directed to viscous incompressible fluids with the
concept of Reynolds number. In chapter one, we have defined precisely the distinc-
tion between an ideal fluid and the viscous fluid. Ideal fluid theory assumes that if
a surface is drawn in the fluid then the action exerted across the surface consists
only of a normal pressure. In a real fluid, however, tangential stresses are possible,
though in practice these are usually very small. The fluid property which causes
these tangential stresses is known as viscosity.

For common fluids such as water and air, the shearing stress is proportional
linearly to the variation of the velocity in the direction normal to the direction of
the flow velocity. Such fluids are called Newtonian fluids. On the other hand, liquid
which demonstrate a nonlinear behaviour or has a yield stress to deform is called a
non-Newtonian fluid. These fluids are further classified as shown in Fig. 3.1 by the
relationship between the shearing stress and the velocity gradient, i.e. a rheological
diagram.
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In many fluids, the coefficient of viscosity μ is very small, which is fundamentally
the reason why viscous stresses are neglected in the ideal fluid-flow theory. In
practice, the relative magnitude of viscous forces to pressure forces may be obtained
as follows. The tangential stress produced by viscosity is directly proportional to
the velocity gradient, i.e.,

τ = μ
∂u

∂y
.

The constant of proportionality, μ, depends entirely upon the physical properties
of the fluid, and is called the coefficient of viscosity or dynamic viscosity, and τ

is the stress or force per unit area in the x direction exerted by the faster moving
fluid upon the slower moving fluid. If we consider a typical viscous stress of the
above form and if U is at typical velocity and L a typical length in the flow, then
the viscous forces are of order

μU

L
per unit area.

In the same manner, a typical pressure force will be of the order

ρU2per unit area.

The ratio of these two forces is accordingly

typical pressure force

typical viscous force
= ρU2

μU/L
= UL

ν
, (3.1)

where ν = μ
ρ

is called the kinematic viscosity. The non-dimensional parameter

R = UL

ν

is referred to as the Reynolds number. The viscosity μ and the kinematic viscosity
ν are both functions of temperature and pressure. Typical values at atmospheric
pressure and temperature of 20◦C are

μ =
{

1.215 × 10−5 lb/ft s for air
0.675 × 10−5 lb/ft s for water

}
,

ν =
{

1.610 × 10−4 ft2/s for air
1.084 × 10−5 ft2/s for water

}
.

In many practical illustrations it can be easily seen that for the medium of air
and water the viscosity is so small that the Reynolds number becomes very large
and in that situation, viscosity plays less important role in fluid flow problems.
Nonetheless, viscosity can still play a very important role in many other flows. It
is worth mentioning here that when the pressure gradients are either favourable
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or small, ideal fluid theory usually gives a reasonable picture of the behaviour of
a real fluid. In the presence of large unfavourable pressure gradients, however,
severe discrepancies can occur. With respect to large pressure gradients, we need a
qualitative study of the flow near the boundary, and this region is usually referred
to as boundary layer. We propose to investigate this important area of investigation
in the next chapter.

3.2 Motion of a liquid in two-dimensions

Let us consider the problem of an infinitely long circular cylinder of radius a

moving with velocity U perpendicular to its length in an infinite mass of liquid
which is at rest at infinity. Let the origin be taken in the axis of the cylinder, and
the axes of x, y in a plane perpendicular to its length. Further let the axis of x be
in the direction of the velocity U . The motion, supposed originated from rest, will
necessarily be irrotational, and the velocity potential φ will be single-valued. The
fluid motion will not, of course, be steady but we can find the velocity potential
at any given instant. As the motion is symmetrical we can write the solution of
Laplace’s equation ∇2φ = 0 in cylindrical polar form as

φ =
∞∑

n=0

(
Anr

n + Bnr
−n
)

cos nθ (3.2)

where the coefficient An and Bn must be found to satisfy the boundary conditions(
∂φ

∂r

)
r=a

= U cos θ (3.3)

the fluid velocity relative to the cylindrical surface r = a is zero and

[φ]r→∞ = 0 (3.4)

the fluid being at rest at infinity. Condition (3.3) requires n = 1, and condition (3.4)
requires An = 0. Therefore

φ = B1

r
cos θ. (3.5)

Using the surface boundary condition (3.3) we obtain the solution for φ as

φ = −Ua2

r
cos θ (3.6)

3.2.1 Pressure distribution

We know that the existence of the function φ such that

∇φ = v

and ∇2φ = 0,
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satisfy the assumptions of irrotational motion and continuity. To complete the anal-
ysis of the problem, the solution of Euler’s equation of motion is required. For the
non-steady irrotational motion of incompressible inviscid fluid, we use Bernoulli’s
equation

p

ρ
+ 1

2
|∇φ|2 + ∂φ

∂t
= f (t) (3.7)

neglecting the external field. In the expression for the velocity potential of the fluid
motion due to a moving cylinder,

φ = −Ua2

r
cos θ,

both r and θ , being related to the centre of moving cylinder, are functions of t . Thus,
in order to find the pressure on the cylinder it is required to find ∂φ

∂t
. To do this it is

convenient to write the expression for the velocity potential in the following form

φ = −a2

r2
(U · r).

Thus differentiating the above equation with respect to time t partially, we obtain

∂φ

∂t
= −a2

r2

(
∂U
∂t

· r
)

− a2

r2

(
U · ∂r

∂t

)
+ 2a2

r3 (U · r)
∂r

∂t
(3.8)

If R0 is the position vector of the point P (fixed in space) and R is the position
vector of the centre of the cylinder, both of which are referred to a fixed origin, then

r = R0 − R and r2 = (r · r),

so that

∂r
∂t

= −∂R
∂t

= −U

and 2r
∂r

∂t
= 2

(
r · ∂r

∂t

)
.

On substituting in (3.8) and expanding the scalar products we then obtain

∂φ

∂t
= −a2

r

dU

dt
cos θ + a2

r2
U2 − 2

a2

r2
U2 cos2 θ (3.9)

for an accelerating cylinder. The speed, q = |∇φ|, at any point is given by

q2 =
(

∂φ

∂r

)2

+
(

1

r

∂φ

∂θ

)2

= a4

r4
U2 (3.10)
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With the total pressure at infinity denoted by p∞ the pressure at any point on the
surface of the cylinder r = a is then found, from the equation to be given by

p − p∞
ρ

= −∂φ

∂t
− 1

2
q2

= a
dU

dt
cos θ − U2 + 2U2 cos2 θ − 1

2
U2

= a
dU

dt
cos θ − 3

2
U2 + 2U2 cos2 θ

= a
dU

dt
cos θ + 1

2
U2(1 − 4 sin2 θ). (3.11)

If U is uniformly constant and does not depend on t , then dU
dt

= 0, and in that
situation, we have

p − p∞
1
2ρU2

= 1 − 4 sin2 θ. (3.12)

The above results are valid for the solid circular cylinder moving in the infinite liquid
region when r ≥ a. But for the hollow circular cylinder when the fluid motion is
inside the cylinder r ≤ a, then the velocity potential φ must satisfy the boundary
condition ∂φ

∂r
|r=a = U cos θ and φ must be finite at the centre of the cylinder r = 0.

In this situation, then, the velocity potential must be

φ = Ur cos θ (3.13)

which is finite at the centre of the cylinder and at the same time it satisfies the body
surface boundary condition. The speed of the fluid can be calculated as

q2 =
(

∂φ

∂r

)2

+
(

1

r

∂φ

∂θ

)2

= U2 cos θ + U2 sin2 θ

= U2 (3.14)

and hence q = U same as the case when r ≥ a. To determine the pressure inside
and on the cylinder surface we use Bernoulli’s equation. We know the velocity
potential

φ = Ur cos θ

= U · r

We calculate the ∂φ
∂t

as follows:

∂φ

∂t
= dU

dt
· r + U · ∂r

∂t

= dU

dt
r cos θ − U2 (3.15)
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Therefore we have on the cylinder surface r = a

∂φ

∂t
|r=a = a

dU

dt
cos θ − U2. (3.16)

With the total pressure at infinity denoted by p∞ the pressure at any point on the
surface of the cylinder r = a is then found, from the equation to be given by

p − p∞
ρ

= −∂φ

∂t
− 1

2
q2

= −a
dU

dt
cos θ + U2 − 1

2
U2

= −a
dU

dt
cos θ + 1

2
U2. (3.17)

If U is constant, then dU
dt

= 0, and so we have the dimensionless pressure as

p − p∞
1
2ρU2

= 1.

The next important case may be to determine the velocity and pressure field when
0 < r < ∞ the intermediate region of the fluid domain. This situation can be visu-
alized by considering the fluid flow described by the complex potential defined by
the uniform stream velocity U plus the singularity doublet. By the famous circle
theorem we have the complex potential for a circular cylinder of radius a as follows:

W = U

(
z + a2

z

)
(3.18)

The velocity potential φ and the stream function ψ are, respectively, given by

φ = U

(
r + a2

r

)
cos θ

and

ψ = U

(
r − a2

r

)
sin θ.

With these expressions we can determine the fluid velocity and pressure at any

point in the fluid domain. With the complex potential W = U(z + a2

z
), the fluid
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velocity is obtained as

q =
∣∣∣∣dW

dz

∣∣∣∣
= U

∣∣∣∣
(

1 − a2

z2

)∣∣∣∣
= U

√(
1 − 2

a2

r2
cos 2θ + a4

r4

)

= U

√(
1 − a2

r2

)2

+ 4
a2

r2
sin2 θ. (3.19)

Also it is worth mentioning that dW
dz

= 0 predicts the stagnation points that are
given by z = ±a where the fluid particle stops. But at r = a, i.e., on the surface of
the cylinder (other than the two stagnation points)

q = 2U sin θ. (3.20)

To determine the pressure on the circular cylinder with the given velocity poten-

tial φ = U(r + a2

r
) cos θ = (1 + a2

r2 )U · r, we need to find the values of ∂φ
∂t

. So we
proceed as before to obtain the expression of this term.

∂φ

∂t
=
(

1 + a2

r2

)
dU
dt

· r +
(

1 + a2

r2

)
U · ∂r

∂t
− 2a2

r3

∂r

∂t
(U · r)

=
(

r + a2

r

)
dU

dt
cos θ −

(
1 + a2

r2

)
U2 + 2a2

r2
U2 cos2 θ.

Thus on the surface of the cylinder we have

∂φ

∂t
|r=a = 2a

dU

dt
cos θ − 2U2 sin2 θ.

The pressure expression is then given by

p − p∞
ρ

= −∂φ

∂t
− 1

2
q2

= −2a
dU

dt
cos θ.

This result is good for the unsteady flow when ∂φ
∂t

= 0. However, for steady flow,
∂φ
∂t

= 0, and so in this situation we have

p

ρ
+ 1

2
q2 = C.
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We know that at infinity, when r → ∞, q = U and p = p∞. Therefore C = p∞
ρ

+
1
2U2. Thus

p − p∞
ρ

= 1

2
U2(1 − 4 sin2 θ) (3.21)

Which can be subsequently written in dimensionless form as

p − p∞
1
2ρU2

= 1 − 4 sin2 θ. (3.22)

3.2.2 The drag force on the cylinder

The drag force on the cylinder may be obtained by integrating the resolved pressure
force over the surface of the cylinder. Alternatively, this result may also be obtained
by equating the rate of change of kinetic energy of the fluid to the work done by
the fluid forces. As the motion is irrotational, we can write v = ∇φ and so q2 =
|∇φ|2. The kinetic energy T of the fluid of volume V bounded by the surface S is
given by

T = 1

2

∫
V

ρq2dV (3.23)

ρ being constant, as the fluid assumed to be incompressible. Equation (3.23) can
be conveniently expressed using vector identity. We know that

∇ · φ∇φ = ∇φ · ∇φ + φ∇2φ.

As φ satisfies Laplace’s equation ∇2φ = 0, we have the simple expression for
q2 = ∇ · φ∇φ. Then (3.23) can be written as

T = ρ

2

∫
V

∇ · φ∇φ

= ρ

2

∫
s

φ∇φ · nds

= ρ

2

∫
s

φ
∂φ

∂n
ds (3.24)

In obtaining this formula for T , we have used the divergence theorem of vector
analysis. We know that the kinetic energy is given by T = 1

2ρ
∫
s
φ

∂φ
∂n

ds, where
∂φ/∂n is the specified velocity of the boundary along the outward normal from the
fluid. This integration is to be performed along the circumference of the circle and

hence the elementary length ds = adθ and ∂φ
∂n

= − ∂φ
∂r

= −U a2

r2 cos θ . Therefore

[φ ∂φ
∂n

]r=a = (−Ua cos θ)(−U cos θ) = U2a cos2 θ.
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The kinetic energy of the fluid is

T1 = ρ

2

∫
s

φ
∂φ

∂n
ds

= 1

2
ρU2a2

∫ 2π

0
cos2 θdθ

= 1

2
[πρa2]U2 = M ′

2
U2.

where M ′ = ρπa2 is the mass of the liquid displaced by the cylinder. Usually 1
2M ′

is defined as the added mass of the cylinder due to the motion.
However, the kinetic energy produced by the moving cylinder is equal to 1

2MU2,
where M is the mass of the cylinder. Therefore, the total kinetic energy is given
by T = 1

2MU2 + 1
2M ′U2 = 1

2 (M + M ′)U2. The virtual mass of the cylinder is
M + M ′; thus the effect of the liquid is to increase the inertia of the sphere by half
the mass of the liquid displaced.

If the total force (including the inertial field) component is X in the direction of
U, then dT

dt
= d

dt
[ 1

2MU2 + 1
2M ′U2] = rate at which work is being done = XU .

Therefore M dU
dt

+ M ′ dU
dt

= X.

Writing this in the form

M
dU

dt
= X − M ′ dU

dt
,

we learn that the pressure of the fluid is equivalent to a force −M ′ dU
dt

per unit length
in the direction of the motion. This vanishes when U is constant.

Note that the displaced liquid mass is equal to the mass of the cylinder itself.

3.3 Motion in an axially symmetric 3D-body

In two-dimensional motion, we have seen that the velocity potential φ, and the
stream function ψ satisfy two-dimensional Laplace’s equation. These two variables
can be obtained as the real and imaginary parts of an analytic function, W(z), which
is known as the complex potential. Although no such development can be discussed
in the case of general three-dimensional flow, a stream function may be defined for
the case of axially symmetric flow, which represents the flux across any surface
of revolution about the axis of symmetry. This stream function is attributed to
Stokes [11]. Although the relationship between the stream function and the velocity
potential does not satisfy the Cauchy-Riemann conditions, nevertheless the velocity
potential φ satisfies the three-dimensional Laplace’s equation. In spherical polar
coordinates (r, θ, ω), Laplace’s equation can be written as

∂

∂r

(
r2 ∂φ

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+ 1

sin2 θ

∂2φ

∂ω
= 0. (3.25)
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By using the method of separation of variables, the solution of φ can be written as

φ =
∞∑

n=0

∞∑
m=0

(Anr
n + Bnr

−n−1)P m
n (μ){Cm cos mω + Dm sin mω} (3.26)

where P m
n (μ) is the solution of the ordinary differential equation known as the

associated Legendre equation, namely

d

dμ

{
(1 − μ2)

dP

dμ

}
+
{
n(n + 1) − m2

1 − μ2

}
P = 0 (3.27)

where μ = cos θ . For simplicity the superscript m and subscript n in the symbol
P m

n have been omitted.
For axi-symmetric flow about θ = 0, the flow configuration in all axial planes,

ω being constant, the velocity potential φ is independent of ω. This is equivalent
to equating m to zero in (3.27), which then becomes Legendre’s equation

d

dμ

{
(1 − μ2)

dP

dμ

}
+ n(n + 1)P = 0. (3.28)

The solution of Pn(μ) can be obtained by means of Frobenius’ method and exists
in the following form:

Pn(μ) =
p∑

r=0

(−1)r (2n − 2r)!
2nr!(n − r)!(n − 2r)!μ

n−2r (3.29)

where the integer p is 1
2n or 1

2 (n − 1), according as n is even or odd. Then the
velocity potential φ in the axi-symmetric case is

φ =
∞∑

n=0

(Anr
n + Bnr

−n−1)Pn(cosθ). (3.30)

For instance, the motion induced by a sphere moving at the speed of U(t) through
an infinite fluid at rest, can be regarded as the axi-symmetric flow (see Fig. 3.1).

The velocity potential is given by (3.30). To determine the two constants, An and
Bn, we need two boundary conditions, which are given by(

∂φ

∂r

)
r=a

= U cos θ (3.31)

and

(φ)r→∞ = 0. (3.32)

Using these two boundary conditions we see that (3.32) requires An = 0 and con-
dition (3.31) yields(

∂φ

∂r

)
r=a

=
∞∑

n=0

[Bn(−n − 1)r−n−2Pn(cos θ)]r=a = U cos θ (3.33)
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The first few Legendre polynomials ([2] and [14]) are

P0(cos θ) = 1

P1(cos θ) = cos θ

P2(cos θ) = 1

2
(3 cos2 θ − 1)

P3(cos θ) = 1

2
(5 cos3 θ − 3 cos θ)

P4(cos θ) = 1

8
(35 cos4 θ − 30 cos2 θ + 3).

3.3.1 Pressure distribution

In the following, we demonstrate to determine the pressure distribution on the
surface of the sphere. Corresponding to n = 1, from (3.33) we have −2B1a

−3 = U ,
giving B1 = − 1

2Ua3. Hence

φ = −1

2
Ua

(a

r

)2
cos θ. (3.34)

The pressure distribution exerted on the surface of the sphere can be obtained from
Bernoulli’s equation

P

ρ
+ 1

2
(|∇φ|2) + ∂φ

∂t
= C(t) (3.35)

where φ = − 1
2

a3

r2 U cos θ and

∂φ

∂t
= −1

2

a3

r2

dU

dt
cos θ + a3

r3
U cos θ ṙ + 1

2

a3

r2
U sin θ θ̇ . (3.36)

If R0 is the position vector of the point P (fixed in space) and R is the position
vector of the centre of the sphere, both of which are referred to a fixed origin
(Fig. 3.1), then r = R0 − R. Thus ṙ = Ṙ0 − Ṙ = −Ucosθ, rθ̇ = U sin θ , and θ̇ =
U sin θ

r
.

Substituting the above into the expression ∂φ/∂t , gives

∂φ

∂t
= −1

2

a3

r2
cos θ

dU

dt
+ 1

2

a3

r3
U2 − 3

2

a3

r3
U2 cos2 θ. (3.37)

The speed at any point is given by (|∇φ|2) =
(

∂φ
∂r

)2 +
(

∂φ
r∂θ

)2 =
U2a6

r6

(
cos2 θ + 1

4 sin2 θ
)
. From (3.37), the expression for the pressure is

P

ρ
= C(t) + 1

2

a3

r2
cos θ

dU

dt
− 1

2

a3

r3
U2 + 3

2

a3

r3
U2 cos2 θ

− U2a6

2r6

(
cos2 θ + 1

4
sin2 θ

)
.
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When r → ∞, p = p∞ and hence C(t) = P∞
ρ

. Thus the pressure force on the
body of the sphere, r = a, is given by

P − P∞
ρ

= 1

2
a cos θ

dU

dt
+ 1

8
U2(9 cos2 θ − 5). (3.38)

3.3.2 The drag force on the sphere

The drag force on the sphere can be obtained by integrating the resolved pressure
force over the surface of the sphere. Alternatively, this result may be obtained by
equating the rate of change of the kinetic energy of the fluid to the work done by
the fluid forces. We know that the kinetic energy is given by T = 1

2ρ
∫
s
φ

∂φ
∂n

ds,

where ∂φ/∂n is the specified velocity of the boundary along the outward normal
from the fluid.

Referring to Fig. 3.2 we have δs = (2πa sin θ)(aδθ) and ∂φ
∂n

= − ∂φ
∂r

=
−Ua3

r3 cos θ . Therefore [φ ∂φ
∂n

]r=a = 1
2aU2 cos2 θ.

The kinetic energy of the fluid is

T1 = ρ

2

∫
s

φ
∂φ

∂n
ds

= ρ

2

∫ π

0

(
1

2
aU2 cos2 θ

)
(2πa2 sin θdθ)

= ρ

2
πa3U2

∫ π

0
sin θ cos2 θdθ

= ρ

2
πa3U2 1

3
(− cos3 θ)π0

= ρ

3
πa3U2

= 1

4
M ′U2,

where M ′ = 4
3ρπa3 = mass of the liquid displaced by the sphere. Usually 1

2M ′ is
defined as the added mass of the sphere due to the motion. However, the kinetic
energy produced by the moving sphere is equal to 1

2MU2, where M is the mass of
the sphere. Therefore, the total kinetic energy is given by T = 1

2MU2 + 1
4M ′U2 =

1
2 (M + 1

2M ′)U2. The virtual mass of the sphere is M + 1
2M ′; thus the effect of the

liquid is to increase the inertia of the sphere by half the mass of the liquid displaced.
If the total force (including the inertial field) component is X in the direction of
U, then dT

dt
= d

dt
[ 1

2MU2 + 1
4M ′U2] = rate at which work is being done = XU .

Therefore M dU
dt

+ 1
2M ′ dU

dt
= X.
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Figure 3.2: Moving sphere referred to fixed origin (from Rahman [9]).
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Figure 3.3: Drag force on a moving sphere (from Rahman [9]).

3.4 Distinction between ideal and real fluids

One of the simplest examples of the use of conformal mapping is that by which the
two-dimensional inviscid incompressible flow past a circular cylinder (Fig. 3.3) is
calculated. It is found that the flow pattern is perfectly symmetrical, as shown in
the following figure, with stagnation points S at the front and rear of the cylinder.
If the velocity and pressure far from the cylinder are U , p0, respectively, then the
velocity v and pressure p on the surface of the cylinder, at an angular distance θ

radians from the forward stagnation point, are given by

q = 2U sin θ,

p − p0
1
2ρU2

= 1 − 4 sin2 θ.
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Figure 3.4: Inviscid flow past a circular cylinder (from Rahman [9]).
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Figure 3.5: Real fluid flow around a circular cylinder: (a) Laminar flow;
(b) Turbulent flow.

The velocity along the surface of the cylinder accordingly increases from zero
at the forward stagnation point to a maximum of 2U at the position of maximum
breadth of the cylinder, deceases symmetrically to zero at the rear stagnation point.
The pressure, in an analogous way, has a maximum at the forward stagnation point,
decreases to a minimum at θ = π/2, and recovers fully to the same maximum at
the rear stagnation point.

In Fig 3.5 real fluid flow around a circular cylinder is given for the case of laminar
and turbulent flow. In Fig 3.4 a plot of this predicted values is shown, together
with the pressure distributions measured in typical experimental flows at Reynolds
number of about 2 × 105 and 7 × 105, when the flows are respectively subcritical
and supercritical. It will be interesting to note that in each case the experimental
pressure is in agreement with inviscid theory roughly the front quadrant of the
cylinder, but that beyond this point the agreement becomes poorer, and that, in
particular, the pressure rise at the rear of the cylinder is not obtained experimentally.
A possible explanation of this observation is now given.

The approximation made in the ideal fluid theory may be described either phys-
ically or mathematically. Physically the assumptions, or simplification, is made
that the action exerted across any surface in the fluid consists only of a normal
pressure force acting whose magnitude is independent of the orientation of the sur-
face. In a real fluid, tangential stresses are possible, though these are usually very
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Figure 3.6: Inviscid theory and experiment for pressure on a circular cylinder
(from [2]).

small. Mathematically, those terms in the full equations of motion which represent
the tangential stresses are neglected. The neglected terms are those involving the
higher derivatives of the velocity components, so that the order of the equations is
reduced. As a result, fewer boundary conditions can be satisfied, and it is necessary
to allow a velocity of slip at a solid boundary, whereas in a real fluid the boundary
condition of zero velocity of slip is applied. More precisely, in the inviscid flow, a
vortex sheet of appropriate strength is assumed to exist at the surface.

In view of the fact that ideal fluid theory allows a velocity of slip at a solid
boundary, whereas in a real fluid no slip can exist, there must always be a region of
slow- moving fluid close to the boundary, which is ignored in the ideal-fluid flow
theory. This fluid will experience the pressure gradient along the surface, and will be
affected considerably more than the faster-moving fluid further out. If the predicted
pressure gradient is large enough and oppose the motion, then it is possible for the
slow-moving fluid to be brought to rest, and even for a slow back- flow to be set
up. The forward-moving fluid is then forced outwards to by-pass the back flow.

To sum up this qualitative discussion, we note that when the pressure gradients are
either favourable or small, ideal- fluid theory usually gives a reasonable picture of
the behaviour of a real fluid. In the presence of large unfavourable pressure gradient,
however, severe discrepancies can occur, The question as to what constitutes a large
pressure gradient in this context requires a qualitative investigation of the flow near
to the wall. This region, usually referred to as the boundary layer, will be studied
in the next chapter.
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3.5 Drag forces in a real fluid

According to ideal-fluid theory, the over all force exerted by a solid body in a homo-
geneous fluid flow is exactly zero. On the other hand, it is observed experimentally
that in general a body experiences a considerable drag, particularly if it is bluff.
The reason why ideal-fluid theory predicts exactly zero drag may be illustrated by
referring to the case of the circular cylinder, where the pressure distribution is sym-
metrical, excess pressure at the front of the body being exactly balanced by excess
pressure at the rear. We may expect that if a body can be so designed that most of the
predicted pressure recovery occurs, then the drag caused by the resultant pressure
force will be close to the ideal-fluid value, that is close to zero. This is borne out
by experiment, as we shall see shortly.

We know that the forces exerted on a body depends on the parameters of the flow.
Let us suppose that flows of different fluids at different speeds past bodies of fixed
shapes but variable scales. Then if L is the characteristic length of the body, and
U is the typical fluid speed, the whole flow is determined by L, U, μ and ρ. It is
worth noting that quantities as p

ρU2 are non-dimensional, that is they do not depend
upon units used, although they may vary from position to position and from flow to
flow. Thus p

ρU2 must depend on some non-dimensional combination of L, U, μ and

ρ. Now the dimensions of these quantities are, respectively, L, LT −1, ML−1T −1

and ML−3 where T is the characteristic time scale. Thus Lα × Uβ × μγ × ρδ has
dimensions

(Lα)

(
L

T

)β (
M

LT

)γ (
M

L3

)δ

=
(
Lα+β−γ−3δ

) (
Mγ+δ

) (
T −β−γ

)
.

This is non-dimensional if and only if

α + β − γ − 3δ = 0

γ + δ = 0

−β − γ = 0

which implies that α = β = −γ = δ. We therefore conclude that the only non-
dimensional combination of L, U, μ and ρ is ULμ−1ρ = UL

ν
which may easily

be recognized as the Reynolds number R = UL
ν

, and that the pressure p at the point
is given by

p = ρU2F
( x

L
,

y

L
,

z

L
, R
)
.

Likewise the overall force exerted upon a body of surface area S in a given direction
is of the form

F

1
2ρU2S

= f (R).

Here the factor of one half in the denominator is a standard convention and S

represents a typical area associated with body. The component of force in the
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direction of the undisturbed stream is called the drag force D, and a component
right-angles to this is called the lift force L. The expressions

CD = D

1
2ρU2S

,

CL = L

1
2ρU2S

,

are called the drag coefficient and lift coefficient, respectively, and these are func-
tions of R, which are in general determined by experiment.

3.6 Secondary flows

A further manifestation of real fluid effects may be seen in the phenomenon known
as secondary flow. Consider, for example, the flow in a straight channel, representing
an idealized river. Then according to ideal-fluid theory the flow across any section
will be independent of position along the river; it will, in fact, be uniform. Suppose
we now consider a channel having a slight bend, with straight section upstream and
downstream of the bend. We may again assume that the flow is uniform in both the
upstream and downstream sections, and that the fluid moving near to the outer wall
of the bend will move faster than the fluid near to the inner wall. Accordingly, there
must be a radial pressure gradient to balance the centrifugal force, the pressure
being greatest at the outer wall and least at the inner wall. Consider, however, the
fluid very close to the bed of the river. In a real fluid this will not be moving at
the speed of the main body of fluid, but will be moving slowly, the fluid at the
bed itself being at rest in order to satisfy the no-slip boundary condition. This fluid
cannot withstand the radial pressure gradient imposed upon the fluid as a whole,
and accordingly a secondary flow is set up, in which the fluid close to the bed of the
river moves inwards. This motion clearly requires, by continuity, an upward motion
close to the inner wall, an outward motion near the free surface and a downward
motion close to the outer wall.

This secondary- flow phenomenon provides an explanation of the observation
that a bend in a river loose materials are deposited near to the inside of the bend,
whereas one might expect that they would be carried along in essentially straight
paths and stick to the outer wall of the bend. The secondary flow ensures that
material is removed from the outer side of the inner side of the bend, so that the
bend becomes more and more pronounced.

3.7 Some exact solutions of Navier-Stokes equations

Navier-Stokes equations are inherently nonlinear because of the presence of con-
vective term in the momentum equation which are nonlinear. The fundamental
difficulty in solving the Navier-Stokes equation lies in the convective terms. There
exist, of course, non-trivial flows in which the convective terms can be neglected,
and these provide the simplest class of solutions of the equations of motion.
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If we consider the components of velocity v = 0 and w = 0 except u, then
immediately from the equation of continuity we infer that ∂u

∂x
= 0 which means u

is independent of x. It follows that all the convective terms in the Navier-Stokes
equations in Cartesian coordinates vanish. Neglecting the external forces X, Y and
Z, the equations of motion can be written as

∂u

∂t
= − 1

ρ

∂p

∂x
+ ν

(
∂2u

∂y2
+ ∂2u

∂z2

)
∂p

∂y
= 0

∂p

∂z
= 0. (3.39)

Since u is independent of x, we see that ∂p
∂x

is a function of t alone. This pressure
gradient can be prescribed by an arbitrary function of time t , then u(y, z, t) is
determined by solving the linear equation (3.39). This equation has a similarity
with the two-dimensional heat conduction equation provided we treat the (− 1

ρ
∂p
∂x

)

as a uniform distribution of heat source. Thus the known solutions in the theory of
heat conduction may be taken over differently and interpreted as the fluid flows.

It is clear that the flows to which this theory applies are parallel to cylindrical
structures whose generators are in the x− direction. There are two main problems:
(i) steady flows through the pipes of uniform cross-section with constant pressure
gradient, and (ii) unsteady flows produced by the motion of a solid boundary in the
x− direction.

For steady state problem (i), u(y, z) satisfies Poisson’s equation

∂2u

∂y2
+ ∂2u

∂z2
= 1

μ

dp

dx
= −P

μ
(3.40)

where − dp
dx

= P > 0 and the boundary condition u = 0 at the wall of the pipe. It
is clear that in all cases u may be expressed as

u = − 1

μ

dp

dx
f (y, z) = P

μ
f (y, z). (3.41)

Thus (3.40) can be written in a simple form as

∂2f

∂y2
+ ∂2f

∂z2
= −1 (3.42)

with the boundary condition f = 0 on the wall of the pipe, where f (y, z) depends
only in cross-sectional shape; similarly the mass flux takes the form −M 1

μ
dp
dx

=
M P

μ
, where M = ∫ ∫

S
ρu(y, z)dydz.The problem can be solved for several special

shapes cross-section. We consider five different cases in the following for steady
state flows.
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Figure 3.7: The fluid flow between two infinite parallel planes.

3.7.1 Steady flow between two-dimensional channel −c ≤ z ≤ c

We consider two infinite parallel planes to represent a two-dimensional channel,
taken as z = −c, and z = c. Because the channel along the y− direction is infi-
nite, the differential equation (3.42) reduces to a simple form with the boundary
conditions at z = −c and at z = c.

d2f

dz2
= −1, (3.43)

with boundary conditions f (−c) = f (c) = 0. The solution of (3.43) is simply
f (z) = −z2/2 + Az + B where A and B are arbitrary constants. It can be easily
seen that the two boundary conditions are satisfied if A = 0 and B = c2/2. Hence
the solution is f (z) = 1

2 (c2 − z2). Therefore,

u(z) = P

μ
f (z)

= P

2μ
(c2 − z2)

which is a parabolic profile as given in Fig. 3.7.
The mass–flux per unit width of the channel per unit time is obtained as

M =
∫

s

ρu(z)dz

=
∫ c

−c

ρ
P

2μ
(c2 − z2)dz

= 2ρP

3μ
c3.
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3.7.2 Steady flow through a circular section of radius c

Let us consider the steady flow through a circular cylinder of radius c as shown
in Fig. 3.5. We transform the equation (3.42) into polar coordinates r , θ , such that
y = r cos θ , and z = r sin θ , and note that the velocity u or f along the tube will
be a function of r alone. Thus,

∇2(f (r)) = 1

r

∂

∂r

(
r
∂f

∂r

)
= −1,

which integrates to yield

r
∂f

∂r
= A − r2

2
,

and hence

f (r) = A ln r + B − r2

4
, (3.44)

where A and B are arbitrary constants of integration. The constant A must be zero
if the solution is to be physically acceptable along the axis r = 0, and B is then
determined by condition that f = 0 when r = c ,i.e., on the surface of the cylinder.
Thus equation (3.44) becomes

f (r) = 1

4
(c2 − r2)

and hence u(r) = P

4μ
(c2 − r2). (3.45)

The velocity profile and the sectional description are given in Fig. 3.9.
From this velocity profile we may deduce the mass–flux per unit time passing

any cross-section of the tube, namely

M =
∫ ∫

S

(ρu)dS

=
∫ c

r=c

∫ 2π

θ=0
ρ

P

4μ
(c2 − r2)(rdθ)dr

= πρP

2μ

∫ c

0
r(c2 − r2)dr

= πρPc4

8μ
. (3.46)

This result is known as Poiseuille’s law. This law provides a basis of a method
of measuring the viscosity of a fluid. Since the density of the fluid ρ and the



70 Mechanics of Real Fluids

z

c

0

v

x

θ

l

Figure 3.8: Steady flow through a circular cylinder.
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Figure 3.9: The fluid flow inside a circular cylinder.

radius of the tube c are known, we need only to measure the mass–flux and the
pressure gradient to leave μ as the only unknown in equation (3.46), when μ can
be calculated.

3.7.3 Steady flow through the annular region b ≤ r ≤ c

It is the extension of the previous problem, except that the boundary conditions
are given by (b) = u(c) = 0, or f (b) = f (c) = 0. We have the general solution
as given in (3.44), i.e.,

f (r) = A ln r + B − r2

4
, (3.47)

Using the boundary conditions we have the two algebraic equations

A ln b + B = b2

4

A ln c + B = c2

4
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Figure 3.10: The fluid flow inside an annular region.

The solutions for A and B are given by

A = c2 − b2

4 ln(c/b)

B = b2

4
− (c2 − b2) ln b

4 ln(c/b)

Using these two values in (3.47) yields the following after a little reduction

f (r) = 1

4

[
b2 − r2 + c2 − b2

ln(c/b)
ln(r/b)

]

and subsequently, the expression for u is given by

u(r) = P

4μ

[
b2 − r2 + c2 − b2

ln(c/b)
ln(r/b)

]
(3.48)

It can be easily verified that when b → 0, (3.48) reduces to (3.45). The velocity
profile is given in Fig. 3.10.

More generally, this result can be accomplished by using the following substitu-
tion. We write

ψ = u + P

4μ
(y2 + z2) (3.49)

so that ∇2ψ = ∇2u + P
μ

= 0. We note that ψ is a function of y and z only since u

is, and the boundary condition is that u = ψ − P
4μ

(y2 + z2) = 0 on the boundary

of the circular cylinder y2 + z2 = c2, that is,

ψ = P

4μ
(y2 + z2) = Pc2

4μ
(3.50)

The solution of Laplace’s equation ∇2ψ = 0 is simply ψ = A ln r + B. But at
r = 0 the solution must be finite. And hence A = 0. Therefore, using the boundary



72 Mechanics of Real Fluids

condition at y2 + z2 = c2, yields A = P
4μ

c2. Hence the solution for u is given by

u = ψ − P

4μ
(y2 + z2)

= P

4μ

{
c2 − y2 − z2

}

= P

4μ
(c2 − r2).

3.7.4 Steady flow through an elliptic cylinder

Using the similar technique, we can determine the velocity profile u for an elliptic

cylinder y2

b2 + z2

c2 = 1. We make the similar substitution as before

ψ = u + P

2μ

b2c2

(b2 + c2)

(
y2

b2
+ z2

c2

)

such that

∇2ψ = ∇2u + P

μ
= 0.

The solution of Laplace’s equation ∇2ψ = 0 is simply ψ = B. To determine B

we use the boundary condition on the surface of the elliptical cylinder y2/b2+
z2/c2 = 1. This yields B = P

2μ
b2c2

(b2+c2)
because u = 0 on the surface. Hence the

solution u can be written as

u = ψ − P

2μ

b2c2

(b2 + c2)

(
y2

b2
+ z2

c2

)

= Pb2c2

2μ(b2 + c2)
(1 − y2/b2 − z2/c2)

The profile of fluid velocity is depicted in Fig. 3.11.
The mass–flux across a section of the elliptic cylinder per unit time is

M =
∫ ∫

S

(ρu)dydz

= (4)
ρPb2c2

2μ(b2 + c2)

∫ b

y=0

∫ c
√

1−y2/b2

z=0
(1 − y2/b2 − z2/c2)dzdy

= 4c

3

ρPb2c2

μ(b2 + c2)

∫ b

0
(1 − y2/b2)3/2dy

= πρPb3c3

4μ(b2 + c2)
. (3.51)
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Figure 3.11: The fluid velocity profile through an elliptic cylinder.

For a circular cylinder of radius
√

bc, having the same cross-sectional area, the
mass–flux is given by (3.46) as

M = πρPb2c2

8μ
,

and the ratio of these last two expressions yields the following interesting
result that

Mc

Me

= b2 + c2

2bc
= 1

2

(
b

c
+ c

b

)
,

where Mc = Mass–flux through circular cylinder, and Me = Mass–flux through
elliptic cylinder of same cross-sectional area.

3.7.5 Steady flow in a rectangular section

We consider a rectangular region −b ≤ y ≤ b and −c ≤ z ≤ c. The flow is gov-
erned by Poisson’s equation

∇2f = −1

with the zero boundary condition along the bounded region of the rectangular
region. It can be easily verified that the particular solution of this problem is simply

f = b2

2
− y2

2
,

and this solution satisfies the boundary conditions at y = ±b and at z = ±c. Now
to determine the general solution of the homogeneous equation, i.e., Laplace’s
equation

∇2f = 0,

we use the separation of variables method. The solution is as follows.

f (y, z) = (A cos λy + B sin λy)(C cosh λz + D sinh λz) (3.52)
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Using the boundary conditions at y = ±b, it can be easily found that the eigenvalue

λn = (2n + 1)π

2b
,

and hence the complete solution is given by

f (y, z) = b2

2
− y2

2
+

∞∑
n=0

[
An cosh

(2n + 1)πz

2b
+ Bn sinh

(2n + 1)πz

2b

]

cos
(2n + 1)πy

2b
(3.53)

Using the boundary conditions at z = ±c we find that

An = − (−1)n6b2

π3(2n + 1)3 cosh (2n+1)πc
2b

Bn = 0

Therefore, we have the solution for f (y, z) as

f (y, z) = b2

2
− y2

2
− 2b2

(
2

π

)3 ∞∑
n=0

(−1)n

(2n + 1)3

cosh(2n + 1)πz/2b

cosh(2n + 1)πc/2b

cos(2n + 1)πy/2b

and hence u(y, z) is given by

u(y, z) = P

μ

[
b2

2
− y2

2
− 2b2

(
2

π

)3 ∞∑
n=0

(−1)n

(2n + 1)3

cosh(2n + 1)πz/2b

cosh(2n + 1)πc/2b

cos(2n + 1)πy/2b

]

The mass–flux across the cross-section of the rectangular region per unit time is

M =
∫ c

−c

∫ b

−b

(ρu)dydz

= 4
ρP

μ

∫ c

0

∫ b

0
f (y, z)dydz

= ρP

μ

[
4cb3

3
− 8b4

(
2

π

)5 ∞∑
0

1

(2n + 1)5 tanh(2n + 1)
(πc

2b

)]
(3.54)
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3.7.6 Steady Couette flow between rotating cylinders

Let us consider now the viscous flow between two concentric, rotating circular
cylinders of infinite length. Let r, θ, z be cylindrical polar coordinates and vr , vθ , vz

the corresponding components of velocity. Consider that the inner cylinder has
angular velocity �1 and radius r1, and the outer cylinder has the angular velocity
�2 and radius r2. Thus r2 > r1. We look for a solution in which

vr = 0, vθ = vθ (r), vz = 0, p = p(r).

The equations of motion in cylindrical polar coordinates are given in the last
section of Chapter 2 and for the special case under consideration, these equations
become simply

−v2
θ

r
= − 1

ρ

∂p

∂r

0 = ∇2vθ − vθ

r2
(3.55)

It is worth noting here that from the continuity equation we obtain − 1
r

∂vθ

∂θ
= 0,

which implies that v − θ = vθ (r, z) but here we assume that vθ is entirely a function
of r alone. The second equation of (3.55) can be explicitly written as

d2vθ

dr2
+ 1

r

dvθ

dr
− vθ

r2
= 0.

This equation is of Euler-Cauchy type which can be transformed to a simple
differential equation by the change of independent variable r = eη to the following
form

d2vθ

dη2
− vθ = 0.

The solution of this equation is simply

vθ = Aeη + Be−η

= Ar + B

r
(3.56)

The constants A and B are determined by boundary conditions that

vθ = r1�1, when r = r1,

and
vθ = r2�2, when r = r2.

The explicit form of these constants are

A = r2
1�1 − r2

2�2

r2
1 − r2

2

B = r2
1 r2

2 (�2 − �1)

r2
1 − r2

2

(3.57)



76 Mechanics of Real Fluids

r1 r1 r1

r2r2r2

rrr

r1Ω

r2Ω

r1Ω1 r1Ω1

r2Ω2r2Ω2

Ω
1

Ω
1

Ω
2

Ω
2

ΩΩ

(a) (b) (c)

Figure 3.12: The fluid velocity profile between two rotating cylinder:
(a) �1 = �2 = � (b) �1 < �2 (c) �1 > �2.

Thus the solution for vθ is completely known with the known values of the constants
A and B. The velocity profile is given for several cases in Fig. 3.12.

The pressure can be obtained from the first equation of (3.55), i.e.,

dp

dr
= ρ

v2
θ

r
,

which is given by after integration

p = ρ

(
A2
(

r2

2

)
+ 2AB(ln r) − B2

(
1

2r2

))
+ C.

The constant C depends on some characteristic pressure.

Remark

The relationship between stress and rate of strain in general orthogonal coordinates
is derived in Love’s Mathematical Theory of Elasticity [6]. For incompressible flow
it is found that

pij = pδij − μ

⎧⎨
⎩hj

hi

∂

∂xi

(
vj

hj

)
+ hi

hj

∂

∂xj

(
vi

hi

)
+ 2δij

3∑
j=1

vj

hihi

∂hi

∂xj

⎫⎬
⎭ (3.58)

where no summation is implied by a repeated suffix except where explicitly shown
in the formula. For cylindrical polar coordinates, h1 = 1, h2 = r and h3 = 1. Using
this information in the above equation (3.58) and taking into consideration that
vr = 0, vz = 0, we can write the expression for stress-strain relationship as

p12 = −μr
∂

∂r

(
1

r
vθ

)
.

Note that

δij =
{

1 i = j

0 i = j.
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The force due to rotation of the cylinder exerted on the walls (usually known as
torque) can be obtained from the following formula

τ =
∫ ∫

S

p12dS

=
∫ r2

r1

∫ 2π

θ=0
−μr

∂

∂r

(
1

r
vθ

)
rdθdr

= 4πμB ln

(
r2

r1

)

If the inner cylinder is at rest, i.e., �1 = 0, then B = r2
1 r2

2 (�2)

r2
1 −r2

2
.

3.7.7 Steady flow between parallel planes

Let us consider two infinite parallel planes, taken as y = 0, and y = h, as in Fig. 3.7.
Basically there are two problems to consider. Firstly, when both the planes are
at rest, flow can be caused by an appropriate pressure gradient, as in the flow
through a tube, this flow being called plane Poiseuille flow. Secondly, a flow without
pressure gradient can be set up when one plane moves relative to the other, such a
flow is called plane Couette flow, the cylindrical analogue having been previously
considered. We shall not consider these cases separately.

With coordinates as in Fig 3.7, we consider that the plane y = 0 is at rest, and
the plane y = h moves with velocity U , the flow is caused by the pressure gradient
dp
dx

parallel to the planes. In this situation, we assume that u = u(y), v = 0, and
w = 0. The continuity and momentum equations reduce to simple forms as

continuity equation:
∂u

∂x
= 0

momentum equations: 0 = − 1

ρ

dp

dx
+ ν

du

dy2

∂p

∂y
= 0

∂p

∂z
= 0.

The boundary value problem can be recast as follows:

d2u

dy2
= 1

μ

(
dp

dx

)
(3.59)

The boundary conditions are

u = 0 when y = 0

u = U when y = h. (3.60)
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x

y

U

h

Figure 3.13: The coordinate for flow between two parallel plate.

It is worth noting that 1
μ
(
dp
dx

) is a pure constant. The solution of this boundary value
problem can be obtained at once and is given by

u = Uy

h
+ 1

μ

(
dp

dx

)
y(y − h). (3.61)

The mass–flux per unit time and unit width z over planes perpendicular to the
x− axis is derived as

M =
∫ h

0
(ρu)dy

= ρ
U

h

∫ h

0
ydy + ρ

1

μ

(
dp

dx

)∫ h

0
y(y − h)dy

= ρ

2
Uh − ρ

12μ

(
dp

dx

)
h3. (3.62)

The retarding force per unit area experienced by the moving plane is obtained as

τ = μ
du

dy
|y=h

= μ
U

h
+ 1

2

dp

dx
h (3.63)

3.8 Reynolds theory of lubrication

This generalized Couette flow is the basis for Reynolds theory of lubrication. To
develop this theory, we consider a body, separated from a fixed plane by a thin layer
of fluid, as shown in Fig 3.7. We assume that the region occupied by the fluid is
approximately that between two parallel planes, and that the velocity profile at each
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U

Figure 3.14: Reynolds lubrication theory (from [2]).

station is approximately of the form (3.61) with h and dp
dx

both depending slightly
upon x. Thus

u = Uy

h(x)
+ 1

μ

(
dp

dx

)
y(y − h(x)). (3.64)

The condition that the mass–flux in the x direction must be constant is then
applied, and by (3.62) this gives

ρ

2
Uh(x) − ρ

12μ

(
dp

dx

)
h3(x) = constant = ρ

2
Uh0, say

where h0 is an unknown constant to be determined later. The above equation may
be written as

dp

dx
= 6μU

h − h0

h3
. (3.65)

Suppose we consider now the case when the upper body is almost a plane at an
angle α to the lower plane. When α is very small and is positive then the stream is
expanding that is h2 > h1 and when negative then the stream is contracting that is
h2 < h1. We know that for very small α the slope dh

dx
= tan α ≈ α and (3.64) may

be written as
dp

dh
= dp

dx

dx

dh
= 1

α
6μU

h − h0

h3
.

This equation integrates to yield

p = 6μU

α

(
− 1

h
+ h0

2h2

)
+ A (3.66)

There are two unknown constants h0 and A which are determined by the end
conditions that p = p0 when h = h1 and also when h = h2. Thus (3.66) must be
expressed as

p − p0 = 6μU

α

(h − h1)(h − h2)

(h1 + h2)h2
(3.67)
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By usual procedure we can find the constants A and h0 , and these constants are
obtained as

A = p0 + 6μU

α(h1 + h2)

h0 = 2h1h2

h1 + h2

and the pressure equation can be obtained exactly as presented in (3.67).
In equation (3.67) we note that if p − p0 is to be positive, yielding a thrust rather

than a suction, then α must be negative, that is the stream must contract. Thus a
necessary condition for lubrication is that the relative motion should tend to drag
the fluid from the wider to the narrower part of the intervening space. It must be
seen, by comparison of (3.66) and (3.67) that

h0 = 2h1h2

h1 + h2
(3.68)

Having obtained the pressure distribution,we now calculate two very important
factors namely the total thrust F , and the frictional resistance R experienced by the
moving body. The normal stress exerted on the upper body is p22, and by (3.58)
this equals

p − 2μ
∂v

∂y
,

which is equal simply to p, since v = 0 in this flow. Thus the thrust (force) on the
body, per unit width in the z− direction, is

F =
∫

(p − p0)dx

= 1

α

∫ h2

h1

(p − p0)dh

and by (3.67) this gives

F = 6μU

α2(h1 + h2)

∫ h2

h1

(h − h1)(h − h2)

h2
dh

= 6μU

α2

{
2(h2 − h1)

h1 + h2
− ln

(
h2

h1

)}

= 6μU�2

(λ − 1)2h2
2

{
ln λ − 2(λ − 1)

λ + 1

}
(3.69)

where λ = h1
h2

> 1, and � is the length of the body. Here we have used the approx-

imate value of α = dh
dx

= h1−h2
�

such that h(x) = h1 + αx, and h2 = h1 + α�.



Mechanics of Viscous Fluids 81

In a similar manner the total frictional force R on the body can be obtained by
integrating the expression given in (3.63) μU

h
+ 1

2
dp
dx

h with respect x

R =
∫ {

μU

h
+ 1

2

dp

dx
h

}
dx

= 1

2

∫ h2

h1

h
dp

dh
dh + μU

α

∫ h2

h1

dh

h

= 3μU

α

∫ h2

h1

h − h0

h2
dh + μU

α

∫ h2

h1

dh

h
. (3.70)

Integrating this equation and using the value of h0 from (3.68) we obtain

R = 2μU�

(λ − 1)h2

{
2 ln λ − 3(λ − 1)

λ + 1

}
. (3.71)

For a maximum upward thrust we may deduce from (3.69) that λ ≈ 2, 2,(this was
found by Reynolds and confirmed by Rayleigh) so that the normal force (thrust) F

and the frictional force(resistance) R on the body are given by

F ≈ 0.16
μU�2

h2
2

and ≈ 0.75
μU�

h2
.

The ratio of resistance to thrust is simply

R

F
≈ 4.7

h2

�
.

Hence, by making h2 small enough compared with �, we can ensure a small fric-
tional drag, i.e., good lubrication, and this is borne out experimentally.

Remark

The coordinate x of the centre of pressure is given by

Fx =
∫ �

0
x(p − p0)dx

= 1

α2

∫ h2

h1

(h − h1)(p − p0)dh

= 1

α2

[
(h − h1)

2

2
(p − p0)

]h2

h1

− 1

α2

∫ h2

h1

(h − h1)
2

2

(
dp

dh

)
dh
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= − 1

2α2

∫ h2

h1

(h2 − 2hh1 + h2
1)

(
dp

dh

)
dh

= 1

2α2

∫ h2

h1

(2hh1 − h2
1)

(
dp

dh

)
dh − 1

2α2

∫ h2

h1

h2
(

dp

dh

)
dh

= λ�F

λ − 1
− 1

2α2

∫ h2

h1

h2
(

dp

dh

)
dh

= λ�F

λ1
− 3μU�3

(λ − 1)2h2
2

(
1 − 2λ

λ2 − 1
ln λ

)
.

Hence the dimensionless coordinate of the centre of pressure is

x

�/2
= 2λ

λ2 − 1
− λ2 − 1 − 2λ ln λ

(λ2 − 1) ln λ − 2(λ − 1)2
.

When there is flow in the direction of y as well as x, we have

∫ h

0
udz = 1

2
hU − h2

12μ

∂p

∂x∫ h

0
vdz = 1

2
hV − h2

12μ

∂p

∂y
,

and the equation of continuity is

∂

∂x

∫ h

0
udz + ∂

∂y

∫ h

0
vdz = 0,

or
∂

∂x

(
h2 ∂p

∂x

)
+ ∂

∂y

(
h2 ∂p

∂y

)
= 6μ

{
∂

∂x
(hU) + ∂

∂y
(hV )

}
.

This can be applied to the case of rectangular block of finite dimensions sliding
over a plane surface.

3.9 Steady flow due to a rotating circular disc

Let us consider that an infinite plane disc, rotating with angular velocity � in an
otherwise unbounded fluid, at rest apart from the motion induced by the disc. We
use cylindrical polar coordinates r, θ, z, with velocity components vr , vθ , vz where
r = 0 is the axis of rotation of the plane of the disc, z = 0 (Fig. 3.8). Then the
equations of continuity and motion in cylindrical polar coordinates are as follows.

With cylindrical polar coordinates (r, θ, z) where x = r cos θ , y = r sin θ , and
z = z, the equation of continuity and the equations of motion can be written as

∂vr

∂r
+ 1

r
vr + 1

r

∂vθ

∂θ
+ ∂vz

∂z
= 0 (3.72)
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r

z

q

Figure 3.15: Coordinate system for rotating-disc flow.

∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
+ vz

∂vr

∂z
− v2

θ

r

= − 1

ρ

∂p

∂r
+ ν

{
∇2vr − vr

r2
− 2

r2

∂vθ

∂θ

}
+ Xr

∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vz

∂vθ

∂z
+ vrvθ

r

= − 1

ρ

∂p

r∂θ
+ ν

{
∇2vθ + 2

r2

∂vr

∂θ
− vθ

r2

}
+ Xθ

∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r

∂vz

∂θ
+ vz

∂vz

∂z
= − 1

ρ

∂p

∂z
+ ν∇2vz + Xz (3.73)

where

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
+ ∂2

∂z2
. (3.74)

The velocity components are given by ṙ = vr , θ̇ = vθ

r
and ż = vz.

The boundary conditions for this problem are given by

vr = 0, vθ = r�, vz = 0 when z = 0,

vr = vθ = 0 when z → ∞. (3.75)

We look for a solution which is independent of θ and t . Then guided partly by the
dimensional considerations and partly by the boundary conditions we consider the
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possibility that
vθ = �rg(z),

and that vr , vz are each of the form

vr = �rf (z) or (ν�)
1
2 f (z),

vz = �rh(z) or (ν�)
1
2 h(z),

the argument being the �r and (ν�)
1
2 each have the dimension of velocity. By

examining the equations of motion it is found that a solution of the type is possible
only if we take

vr = �rf (z),

vθ = �rg(z),

vz = �rh(z),

and p = ρ(ν�)p1(z). (3.76)

Upon substituting these forms into (3.73) and (3.72) it is found, after some tedious
algebraic reduction, that

2f +
( ν

�

) 1
2
h′ = 0,

f 2 − g2 +
( ν

�

) 1
2
f ′h = ν

�
f ′′,

2fg +
( ν

�

) 1
2
g′h = ν

�
g′′,

and hh′ = −p′
1 +

( ν

�

) 1
2
h′′, (3.77)

where primes denote derivatives with respect to z. It is fairly straightforward to
remove the constant coefficients involving ν

�
by writing

η =
(

�

ν

) 1
2

z,

such that

f (z) = F(η),

g(z) = G(η),

h(z) = H(η),

p1(z) = P(η).
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Thus we have

vr = �rF(η),

vθ = �rG(η),

vz = �rH(η),

and p = ρ(ν�)P (η). (3.78)

and equation (3.77) become

2F + H ′ = 0,

F 2 − G2 + F ′H = F ′′,
2FG + G′H = G′′,
and HH ′ = −P ′ + H ′′, (3.79)

with boundary conditions

F = 0, G = 1, H = 0 when η = 0,

F → 0, G → 0, when η → ∞. (3.80)

In effect the last of equations (3.79) may be regarded as an equation for P in terms
of H .

A solution for small values of η

It is a set of nonlinear ordinary differential equations, and the solutions are obtained
using the power series if η is small. Thus we write

F = a0 + a1η + a2η
2 + a3η

3 + · · ·
G = b0 + b1η + b2η

2 + b3η
3 + · · ·

H = c0 + c1η + c2η
2 + c3η

3 + · · · (3.81)

By virtue of the primary boundary conditions (3.80) at η = 0 we deduce that

a0 = 0, b0 = 1, c0 = 0.

Further, by putting η = 0 in each of the equations (3.79) we deduce that

H ′(0) = 0

F ′′(0) = −1

and G′′(0) = 0,

so that

c1 = 0, a2 = −1

2
, b2 = 0.
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By making use of equations (3.79) and the series expansion (3.81), we can obtain

a3 = −1

3
b1, b3 = 1

3
a1, c2 = −a1, c3 = f rac13.

By making use of the values of the coefficients an, bn, cn, so far obtained, we
deduce that

F = a1η − 1

2
η2 − 1

3
b1η

3 = · · ·

G = 1 + b1η + 1

3
a1η

3 · · ·

H = −a1η
2 + 1

3
η3 · · · (3.82)

where a1 and b1 alone are as yet unknown.

A solution for large values of η

We now look for a solution for large values of η. We note, first of all, that by virtue of
the primary boundary conditions (3.80), the equations (3.79) may be approximated
when η is large by

F ′H∞ = F ′′

and G′H∞ = G′′

Thus F ′ and G′, be integrated, are both proportional to exp(H∞η, as H∞ must be
negative for consistency. If we write H(∞) = H∞ = −c, then for large η we have

F(η) ∝ e−cη

G(η) ∝ e−cη

and H(η) → −c

We may therefore reasonably look for a solution of the form

F = A1e
−cη + A2e

−2cη + · · ·
G = B1e

−cη + B2e
−2cη + · · ·

H = −c + C1e
−cη + C2e

−2cη + · · ·
By proceeding as before, the equations (3.79 may be shown to imply certain

relationships between the unknown coefficients in these equations. In fact, it may
be shown that

F = A1e
−cη − A2

1 + B2
1

2c2
e−2cη + · · ·

G = B1e
−cη + · · ·

and H = −c
2A1

c
e−cη − A2

1 + B2
1

2c2
e−2cη + · · · (3.83)
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Figure 3.16: Functions F(η), G(η), H(η) giving the velocity components in
the flow produced by a rotating disc. Courtesy of Rosenhead [10]
(from [2]).

where A1, B1 and c are to be determined.
We now choose A1, B1 c, a1 and b1, so that F, G, H, F ′ and G′ are continuous

where the expansion (3.81) and (3.83) are joined. By retaining a sufficient number
of terms in each expansion any desired accuracy can be obtained, and the numerical
results are

a1 = 0.510

b1 = −0.616

c = 0.886

A1 = 0.934

B1 = 1.208.

The functions F , G, H are depicted in Fig.3.9.
This figure shows that, for all practical purposes, F , G, and H have reached their

limiting values when

η ≈ 5
( r

�

) 1
2
.

It is worth noting therefore that the scale normal to the disc is proportional to

rR− 1
2 , where R, the Reynolds number, is equal to

R = �r2

ν
= (�r)

ν
(3.84)
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For a finite disc, of radius a, we may calculate the retarding torque experienced by
the disc, provided we ignore the effects of the edge, in the vicinity of which the
pressure solution is not valid, since the boundary condition vθ = �r when z = 0
holds only on the surface of the disc, i.e., when r ≤ a. The appropriate retarding
shearing stress is p23, and this is equal by (3.58)

p23 = −μ

(
∂vθ

∂z

)

= −μ�r

(
�

ν

) 1
2

G′(0).

Thus the retarding torque on one side of the disc is

M =
∫ 2π

0

∫ a

0
p23(rdθ)dr

= 2π

∫ a

0

{
−μ�r

(
�

ν

) 1
2

G′(0)

}
r2dr

= −1

2
πG′(0)μ

(
�3

ν

) 1
2

a4. (3.85)

This result may alternatively be expressed in terms of a non-dimensional “moment
coefficient” by dividing by 1

2ρa2�2S, where S = πa2 is the surface area of the
disc, and this yields

CM = −
( ν

�a2

) 1
2
G′(0)

= 0.616R
− 1

2
a

where Ra = (
(a�)a

ν
) is the Reynolds number based upon the radius a of the disc.

The moment arising from the flow on two sides of the disc will, of course, be twice
the value. That means CM = 1.232

R
1/2
a

.

Remark

When the cross-section is not one of the special shapes that is for arbitrary cross-
section for which an analytic solution can be found, the desired results may be
obtained making certain measurements on soap films as liquids. For, if a soap film
is stretched across a hole of a given shape and has a small excess pressure p on one
side of it, then the displacement X(y, z) satisfies

2T

(
∂2X

∂y2
+ ∂2X

∂z2

)
+ p = 0,
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where T is the surface tension, together with the boundary condition X = 0 on the
edge of the hole. Therefore,

X = p

2T
f (y, z)

and is proportional to u. Thus the velocity distribution can be deduced from the
measurement of the displacement X. The volume flux is proportional to

∫ ∫
Xdydz

and this is found by measuring the total volume under the soap film. These measure-
ments are much more easily made than direct measurements of the velocity in the
fluid-flow problem or of the displacement in the torsion problem. The experimental
technique is described by Taylor [12].

3.10 Some solutions of Navier-Stokes equations
for unsteady flows

3.10.1 Flow due to motion of an infinite plate

In the previous section we have investigated many steady state fluid-flow problems
with simple geometry. This section will be devoted to problems with unsteady
flows. Perhaps the simplest case in this category is that of an infinite plate which,
starting at t = 0, is moved in its own plane with constant velocity U0 through fluid
initially at rest. If the plate lies in the plane z = 0, the velocity u(z, t) satisfies the
first momentum equation

∂u

∂t
= ν

∂2u

∂z2
(3.86)

and the appropriate boundary and initial conditions are

The boundary condition at z = 0 : u(0, t) = U0 (t > 0) (3.87)

The boundary condition at z → ∞ : u(∞, t) = 0 (3.88)

The initial condition at t = 0: u(z, 0) = 0 (3.89)

It is worth mentioning here that the effect of the motion of the plate will diffuse
outwards under the influence of viscosity. Since the plate is infinite we may rea-
sonably assume that the extent of the diffusion will not depend on x, so that the
solution will be of the form

u = u(z, t) = f (η),

where η = z

g(t)
,

v = w = 0, p = constant (3.90)

The equation (3.86) is exactly the same as the equation of heat conduction [1]. By
analogy we may expect that the appropriate value of g(t) = 2

√
νt , and this can be



90 Mechanics of Real Fluids

shown in the following:

ut = f ′ηt = −f ′ z

g2
g′ = −f ′ηg′

g

uzz = f ′′

g2

After substitution, and rearranging the terms we obtain

− f ′′

ηf ′ = gg′

ν
= constant.

The form of g(t) can be obtained as g(t) = 2
√

νt . Hence the solution for f is given
by after integration

f (η) = U0

{
1 − 2√

π

∫ η

0
e−ξ2

dξ

}
= U0(1 − erf (η))

= U0 erf c(η) (3.91)

The procedure we have used here is known as the similarity technique. This problem
can be very easily solved by using the Laplace transform method. We have after
taking the Laplace transform of (3.86) and using the boundary and initial conditions

d2

dz2
L{u} − s

ν
L{u} = 0

at z = 0, L{u} = U0

s

at z → ∞ , L{u} → 0.

The solution of this set after taking the Laplace inverse yields

u(z, t) = U0 erf c

(
z

2
√

νt

)
,

which is identical as before. Here erf (η) = 2√
π

∫ η

0 e−ξ2
dξ , and erf c(η) =

2√
π

∫∞
η

e−ξ2
dξ ; and hence erf (η) + erf c(η) = 1.

3.10.2 Flow due to constant pressure gradient and motion of the plate

A second important solution for unsteady flow is that which applies when the flow
is caused by constant pressure gradient in addition to motion of the infinite plate.
In this situation, the differential equation is given by

∂u

∂t
= − 1

ρ

∂p

∂x
+ ν

∂2u

∂z2
(3.92)
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and the appropriate boundary and initial conditions are

The boundary condition at z = 0 : u(0, t) = U0 (t > 0)

The boundary condition at z → ∞ : |u(∞, t)| = finite

The initial condition at t = 0: u(z, 0) = 0 (3.93)

The solution can be effected by taking the Laplace transform of the differential
equation and the boundary conditions

d2

dz2
L{u} − s

ν
L{u} = − P

μs
(3.94)

z = 0, L{u} = U0

s

z → ∞, L{u} → finite. (3.95)

where P = − ∂p
∂x

.
The solution of (3.94) subject to the conditions (3.95) is given by

L{u} = U0

s
e−√

s/νz − P

ρs2
e−√

s/νz + P

ρs2
(3.96)

The inverse is obtained as

u(z, t) = U0 erf c

(
z

2
√

νt

)

− P

ρ

{(
t + z2

2ν

)
erf c

(
z

2
√

νt

)
− z

(
t

πν

) 1
2

e−z2/4νt

}
+ P t

ρ
.

It can be easily verified that this solution satisfies all the boundary and initial
conditions. Note that erf c(0) = 1, and erf c(∞) = 0. However, for large time,
because of the presence of constant pressure gradient in the fluid flow, the solution
will behave for large time t while z is fixed as

u ≈ U0 − P

ρ

[
z2

2ν
− z

(
t

πν

) 1
2
]

.

In a similar manner, for large z, while t is kept fixed, the solution behaves like

u ≈ P t

ρ
.

These observations are very interesting from the fluid-flow perspective.
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3.10.3 Flow due to oscillation of the plate

A third important solution for unsteady flow is that which applies when the plate
oscillates with a prescribed velocity

u(0, t) = U0e
iωt .

Suppose we consider the flow after a long time when a ‘quasi-steady’ oscillation
has been set up. Thus, since (3.86) is linear, we may look for a solution satisfying
the given boundary condition.

We try
u(z, t) = U0e

iωtf (z)

and substituting into the equation (3.86) yields, after simplification,

f ′′ = iω

ν
f

= β2f (3.97)

where β = ( ω
2ν

)
1
2 (1 + i) = k(1 + i) say.

The solution of (3.97) is exp(±βz), and we choose the negative sign so that
f → 0 as z → ∞. Thus we have

u = U0 exp(iωt) exp(−kz)

= U0 exp(−kz) exp(i(ωt − kz))

= U0 exp(−kz) {cos(ωt − kz) + i sin(ωt − kz)}
Therefore equating the real and imaginary parts of the above solution, we can write
two solutions as

u1 = Re(u) = U0 exp(−kz) cos(ωt − kz)

u2 = Im(u) = U0 exp(−kz) sin(ωt − kz)

Remark

For the motion of the infinite plate, the solution can be obtained for any prescribed
variations of velocity of the plate with time. For the case of the plate oscillating
periodically, that is, u = U0 cos ωt at z = 0, the solution satisfying the boundary
condition is

u = U0e
−kz cos(ωt − kz), k =

√
ω

2ν
.

It represents waves spreading out from the plate with velocity

dz

dt
=
(ω

k

)
= √

2νω,
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and amplitude decaying exponentially with z. When ν is small the damping is heavy
and the disturbance is then confined mainly to the thin boundary near the plate with
thickness of order

√
ν/ω. The actual thickness is

k = 2π

δ
=
√

ω

2ν
.

And hence the thickness of the boundary layer is given by

δ = 2
√

2π
√

ν/ω.

Therefore δ = O(
√

ν/ω).

There are, of course, many other solutions of the heat conduction, which may be
applied to fluid flows, but we do not attempt a complete survey in this book. We
may consider some convective heat flow problems in the later sections. However,
it should be pointed out that the solutions are not confined to the Cartesian form
of equations. For example, in the cylindrical polar coordinates, we may consider,
vr = vz = 0, and vθ = vθ (r, t), p = constant. Then vθ satisfies the momentum
equation

∂vθ

∂t
= ν

{
∂2vθ

∂r2
+ 1

r

∂vθ

∂r
− vθ

r2

}

and the vorticity

ωz = 1

r

∂

∂r
(rvθ )

satisfying the diffusion equation

∂ωz

∂t
= ν

{
∂2ωz

∂r2
+ 1

r

∂ωz

∂r

}
. (3.98)

A well-known solution of this equation is

ωz = �

4πνt
e− r2

4νt ,

in the application to fluid flow. It describes the dissolution of vortex filament, which
is concentrated at the origin at t = 0, and � is the initial value of the circulation
about the origin.

Another application of (3.98) is to the motion of fluid contained in or surrounding
an infinite cylinder which starts to rotate. Equation (3.98) may be used to determine
how the vorticity, which is initially concentrated at the surface of the cylinder,
spreads out into the fluid. Outside the cylinder, ωz → 0 as t → ∞ and then vθ ∝ 1

r
;

inside the cylinder, ωz tends to a constant value equal to twice the angular velocity
of the cylinder, and the fluid rotates like a solid body.
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Example 3.1

Find a solution of the vorticity equation

∂ωz

∂t
= ν

{
∂2ωz

∂r2
+ 1

r

∂ωz

∂r

}
.

in the form
ωz = f (t)g(η)

with
η = r

2
√

νt
.

Verify that the velocity distribution by this approach is of the form

vθ = �

2πr

{
1 − exp

(
− r2

4νt

)}
,

which represents a diffusing line vortex of strength �.

Solution

Given that ω = f (t)g(η) and hence we calculate

∂ω

∂t
= f ′(t)g(η) + f (t)g′(η)ηt

= f ′g − fg′ r

4
√

νt3

= f ′g − fg′ ( η

2t

)
Also we have

∂ω

∂r
= f (t)g′(η)ηr = fg′

(
1

2
√

νt

)
= fg′ (η

r

)
∂2ω

∂r2
= fg′′

(
1

4νt

)
= fg′′

(
η2

r2

)

Thus substituting these expressions into the vortex equation yields

f ′g − fg′ ( η

2t

)
= ν

{
fg′′

(
η2

r2

)
+ fg′ ( η

r2

)}

= νf

{
g′′
(

η2

r2

)
+ g′ ( η

r2

)}

Now after a little more reduction the variable can be separated as

(4t)
f ′

f
= g′′

g
+
(

2η + 1

η

)
g′

g
= C(a constant of separation).



Mechanics of Viscous Fluids 95

We have two ordinary differential equations to be solved.

f ′ =
(

C

4t

)
f

g′′ +
(

2η + 1

η

)
g′ = Cg

The solution of the first equation can be written at once as

f (t) = BtC/4;
and the solution of the second equation is assumed as an exponentially decaying
solution as

g(η) = e−η2
.

It is now easy to verify that these two solution will be valid provided C = −4, and
hence the solution can be written as

wz =
(

B

t

)
e−η2 =

(
B

t

)
e− r2

4νt .

To determine the unknown constant B we evaluate the circulation around a huge
circle using the vortex filament ωz

� =
∫ 2π

0

∫ ∞

0
wz(rdθ)dr

=
(

B

t

)
(2π)

∫ ∞

0
e− r2

4νt rdr

=
(

B

t

)
(2π)

∫ ∞

0

1

2
e− r2

4νt dr2

=
(

Bπ

t

)
(4νt)

[
−e− r2

4νt

]∞

0

= B(4πν)

and hence B = �
4νπ

. Therefore

wz =
(

B

t

)
e− r2

4νt = �

4πνt
e− r2

4νt .

To determine the velocity component vθ we use the relationship

wz = 1

r

∂

∂r
(rvθ ).

Rearranging the terms, we have

∂

∂r
(rvθ ) = �

4πνt
re− r2

4νt .
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After integration with respect to r from 0 to r yields

vθ = �

2πr

{
1 − e− r2

4νt

}
.

This is the required solution.

Remark

The circulation � of a velocity vector v around a closed circuit C, which surrounds
a region S, is defined by

� =
∫

C

v · dR

=
∫ ∫

S

∇ × v · ndS (by Stokes’s theorem)

=
∫ ∫

S

wzk · kdS (in this problem)

=
∫ 2π

0

∫ ∞

0
wz(rdθ)dr

This vorticity problem can be successfully handled by using the Laplace trans-
form method as described below. Taking the Laplace transform of the vorticity
equation using the initial condition wz(r, 0) = 0, we obtain an ordinary differential
equation in terms of Laplace’s parameter s and is given by

d2

dr2
L{wz} + 1

r

d

dr
L{wz} − s

ν
L{wz} = 0.

This equation, in essence, is a modified Bessel differential equation. The solu-
tion must be bounded in the interval 0 < r < ∞. It has two solutions, namely,
I0(

√
s/νr) and K0(

√
s/νr). We discard the I0(

√
s/νr) solution because it becomes

infinite at ∞. So the acceptable solution is

L{wz} ∼ K0(
√

s/νr).

The inverse is given by

wz = A
1

2t
e−r2/4νt

and so A must be equal to �
2πν

to comply with our previous result so that

wz = �

4πνt
e−r2/4νt .
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3.11 Very slow motion

3.11.1 Stokes’s flow using tensor calculus

We have already seen in the Navier-Stokes equations for in compressible flow,

∂vi

∂xi

= 0,

∂vi

∂t
+ vj

∂vi

∂xj

= − 1

ρ

∂p

∂xi

+ ν∇2vi,

the ratio of the inertia terms to the viscous terms is of the order UL
ν

, the Reynolds
number. Thus, if the Reynolds number is very small, either because the velocity
is very small, or because the scale of the flow is very small, or because the fluid
is very viscous, then it should be possible to neglect the convective inertia terms
which are usually nonlinear. When this is possible, the equations of motion take
the following form

∂vi

∂xi

= 0,

∂vi

∂t
= − 1

ρ

∂p

∂xi

+ ν∇2vi . (3.99)

These simplified equations are due to Stokes and, being linear, are easy to solve
rather than the full Navier-Stokes equations. There are many physical situations for
which the Reynolds number is vary small to allow us to apply the equations (3.99).

We now explore the method to determine the basic solutions of the equations
(3.99) for the case of steady flow, for which they become

∂vi

∂xi

= 0 (3.100)

and ∇2vi = 1

μ

∂p

∂xi

. (3.101)

In much the same way as basic solutions can be found for the ideal inviscid fluid,
for example, the source and the doublet, so we can look for a number of basic
solutions of Stokes’s equations. In fact it is fairly straightforward to obtain two
families of solutions of these equations. By adding together suitable multiples of
these solutions we can, in principle at any rate, obtain solutions with any required
boundary conditions. For simple configurations, such as flow past a sphere, this
procedure can be carried out in detail.

The first family of solutions may be obtained as follows. By differentiating
equation (3.101) with respect to xi , and using (3.100), we see

1

μ

∂2p

∂x2
i

= ∇2 ∂vi

∂xi

= 0,
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that means
∇2p = 0.

Accordingly we may consider any function which satisfies Laplace’s equation as
the pressure p, and then obtain the velocity field by solution of (3.101). The obvious
example is p = 1

r
, but this breaks down because the resulting velocities become

infinite as r → ∞, so the boundary conditions at infinity preclude this case. As a
second example we take the three cases

p = 2μxj

r3
j = 1, 2, 3, (3.102)

for which the solution of (3.101) may be shown to be

vi = 1

r
δij + xixj

r3
, i = 1, 2, 3.) (3.103)

Addition to this family may be obtained by using anyp whatsoever which satisfies
Laplace’s equation.

The second family of solutions to the basic equations is obtained by taking

vi = ∂φ

∂xi

where φ is any function which satisfies

∇φ = 0.

All such solutions will automatically satisfy the continuity equation (3.100), since

∂vi

∂xi

= ∂

∂xi

(
∂φ

∂xi

)
= ∇2φ = 0,

and will also satisfy (3.101) provided

1

μ

∂p

∂xi

= ∇2
(

∂φ

∂xi

)

= ∂

∂xi

(∇2φ)

= 0.

In other words, the second family of solutions corresponds to uniform pressure.
As simple examples we consider

vi = ∂

∂xi

(
1

r

)
= − xi

r3
, (3.104)
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and the three solutions (j = 1, 2, 3)

vi = ∂

∂xi

( xi

r3

)

= 1

r3
δij − 3xixj

r5 . (3.105)

By adding together suitable multiples of the solutions (3.102) to (3.105) and of such
further basic solutions as may be required, we can in principle obtain the solution of
any problem. As an example we consider the case of flow past a sphere, for which
the above solutions are adequate.

By adding arbitrary multiples of the above solutions to a uniform velocity field
(U, 0, 0) we can show that the Stokes solution for flow past a sphere, r = a, with
uniform flow (U, 0, 0) at infinity and satisfying the boundary conditions v1 = v2 =
v3 = 0 on the sphere, is

v1 = U

{
1 − 3a

4r
− a3

4r3
+ 3

4

ax2
1

r3

(
a2

r2
− 1

)}
,

v2 = 3

4
U

ax1x2

r3

(
a2

r2
− 1

)
,

v3 = 3

4
U

ax1x3

r3

(
a2

r2
− 1

)
,

p = −3μUax1

2r3
. (3.106)

We note that the solution (3.106) may be written as

vi = U

{
1 − 3a

4r
− a3

4r3

}
δi1 + 3

4
U

ax1xi

r3

(
a2

r2
− 1

)
,

p = −3μUax1

2r3
. (3.107)

To calculate the drag on the sphere, we note, from (3.107), that when r = a

we have

∂vi

∂xj

= 3

4
U

{
1 + a2

r2

}
axj

r3
δi1 + 3

4
U

ax1xi

r3

(
−2a2xj

r4

)
+ zero terms,

= 3

2
U

xjδi1

a2
− 3

2
U

x1xixj

a4
.
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Then the force per unit area exerted on the sphere is given, by Fi = ljpij, where
lj is the direction cosines, as

Fi = ljpij

= −x

a
pij

= 1

a

(
−xip + 3

2
μU

x2
j δi1

a2
+ 3

2
μU

xixj δj1

a2
− 3μU

x1xix
2
j

a4

)

= 1

a

(
−xip + 3

2
μUδi1 − 3

2
μU

x1xi

a2

)
,

remembering throughout that all quantities are to be evaluated at r = a. Upon
substituting for p from (3.107 we find that

Fi = 3μU

2a
δi1,

showing that the resultant stress at any point on the body is purely in the x1 direction,
is uniform and is a drag. The total drag experienced by the sphere is then

D = 3μU

2a
× (surface area of sphere) = 6πμUa. (3.108)

We may alternatively express this as drag coefficient, dividing by 1
2ρU2S, where

S is equal to the area of the maximum section perpendicular to the stream.
This yields

CD = D

1
2ρU2(πa2)

= 24

Ra

. (3.109)

Equations (3.108) and (3.110) are, like the whole analysis, valid only for very
small values of Reynolds number. Comparison with experimental data indicates
that agreement is good when

Ra < 0.5.

3.11.2 Stokes flow using vector calculus

(a) Flow past a sphere
In this section we shall use Stokes’s equation for steady flow in the vector form

∇ · v = 0, (3.110)

∇ × ω = − 1

μ
∇p. (3.111)

These equations are also valid for unsteady flow if the frequency is such that ωl2

ν
=

0(1). It follows immediately from (3.111) that

∇2p = 0, (3.112)

and ∇ × (∇ × ω) = 0. (3.113)
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Equations (3.112) show that p is a harmonic function, and this result is the start-
ing point for solving Stokes’s equations in terms of spherical harmonic function.
Referring to steady streaming motions we shall now describe the Stokes flow past a
fixed sphere of radius a in terms of the Stokes stream function ψ . In spherical polar
coordinates r, θ, φ, with the axis θ = 0 chosen to lie in the direction of the free
stream U , where x = r sin θ cos φ, y = r sin θ sin φ, and z = r cos θ , the equa-
tion of continuity (3.110) is satisfied if the velocity components are given in terms
of ψ by

vr = 1

r2 sin θ

∂ψ

∂θ
,

vθ = − 1

r sin θ

∂ψ

∂r
. (3.114)

In the absence of swirling , vφ = 0, and the only component of vorticity is

ωφ = − 1

r sin θ
D2ψ, (3.115)

where D2 represents the differential operator

D2 = ∂2

∂r2
+ 1 − λ2

r2

∂2

∂λ2
,

in which λ = cos θ . Equation (3.113) reduces to

D4ψ = 0, (3.116)

and the required solution of this equation satisfying zero velocity at the surface
r = a, and the velocity U i at infinity, is

ψ = 1

2
Ua2 sin2 θ

( r

a
− 1

)2 (
1 + a

2r

)
. (3.117)

It follows that

ωφ = −3

2
U

a

r2
sin θ, (3.118)

and then it is easy to establish from (3.111) that

p − p∞ = −3

2
μU

a

r2
cos θ. (3.119)

Since ψ is symmetrical above the plane θ = π
2 , the streamline distribution is sym-

metrical before and after and therefore shows no wake. This defect in the Stokes
solution arises because the convection of vorticity was eliminated from the problem
when the inertia term was discarded.

The stream function (3.117) can be written in two parts. The first,

ψ = 1

2
Ur2 sin2 θ

(
1 + 1

2
(a/r)3

)
,
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represents irrotational flow past a doublet of moment 2πUa3i; this makes no con-
tribution to the total force on the sphere. The second part, ψ = − 3

4Uar sin2 θ ,
represents rotational flow with radial and transverse velocity component equal
to − 3

2U(a/r) cos θ and 3
4U(a/r) sin θ respectively, and involve a singularity at

r = 0 that has been called a Stokeslet. The stress on the surface of the sphere has
components p∞ radially inward and 3

2μU/a downstream, and so the action of the
viscosity is to produce a drag

D = 6πμUa. (3.120)

This drag is entirely associated with the flow due to the Stokeslet, and it follows
that a Stokeslet may be interpreted physically as a force applied to the fluid at a
point. For the sphere, the drag coefficient is

CD = D

1
2ρU2(πa2)

= 24

Ra

, (3.121)

where the Reynolds number Ra is based on diameter of the sphere. The formula
(3.121) agrees with the experimental measurement of the drag of sphere for Ra < 1,
but that it begins to underestimate the drag when Ra = 1.

(b) Flow past a circular cylinder
In two-dimensional flow parallel to the x, z plane, the vorticity η is given in terms of
the Lagrangian stream function ψ by the relation η = ∇2ψ , and (3.113) becomes

∇4ψ = 0. (3.122)

For flow past a circular cylinder r = a, the stream function representing the free
stream at infinity is Ur sin θ in the plane polar coordinates r , θ , and so we seek
a solution of (3.122) in the form ψ = f (r) sin θ . It then appears that the general
form of f (r) can be written as

f (r) = A1r
3 + A2r ln r + A3r + A4

1

r
,

and the first two terms would have to be omitted, and put A3 = U , in order to match
the free stream at infinity. This would leave only A4 to be determined, and it would
be impossible for both vr and vθ to vanish at r = a. The solution which satisfies
the no-slip condition and tends to infinity most slowly as r → ∞ is, in fact,

ψ = A sin θ

{( r

a

)
ln
( r

a

)
− 1

2

( r

a

)
+ 1

2

a

r

}
, (3.123)

obtained by discarding only the term involving r3. This expression for ψ leads to a
definite formula for the drag, namely 4πμA/a, and the expression is valid at points
not too far from the cylinder, but of course the solution suffers from the defect that
it does not determine the value of the constant A. This solution appears to be the
first approximation, and the value of A must be obtained matching with the second
approximation. We do not want to pursue the matter any further. But the interested
reader is referred to Rosenhead’s Boundary Layer Theory [10].
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3.11.3 Oseen flow

We have seen in the Stokes flow, there are sever limitations of the solution. These
limitations may be recognized again by noticing that v × ω, a typical inertial term
neglected, has a magnitude Ur

ν
= Rr/l compared with ν∇ × ω, the viscous stress

represented in Stokes’s equation. However, no matter how small R may be, the
assumptions underlying Stokes’s equations are not valid at sufficiently large dis-
tances r from obstacles. To avoid this difficulty Oseen [15] proposed that the inertial
terms should be retained in the far field where the velocity is approximately equal to
U i. These inertia terms are of the order R near the obstacle, where it is permissible
to neglect them altogether, and so we find that in three-dimensional flow Stokes’s
and Oseen’s equations both yield the same terms of order 1, and only differ in terms
of order R.

Oseen’s equations for steady flow are given in the following form

∇ · v = 0, (3.124)

U

(
∂v
∂x

)
= − 1

ρ
∇p − ν∇ × ω

= − 1

ρ
∇p + ν∇2v. (3.125)

By taking the divergence of (3.125) we find that

∇2p = 0, (3.126)

and, by taking the curl, that {
∇2 − 2k

∂

∂x

}
ω = 0, (3.127)

where k = U
2ν

. It follow from (3.126) that p can be expressed by

p − p∞ = −ρU

(
∂φ

∂x
− U

)
, (3.128)

where φ satisfies
∇2φ = 0. (3.129)

It then follows that the velocity vector can be assumed as

v = ∇φ + 1

2k
∇χ − iχ, (3.130)

provided that (
∇2 − 2k

∂

∂x

)
χ = 0. (3.131)
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The flow field is seen to consist of two components, an irrotational flow with velocity
v1 = ∇φ satisfying

∇ · v1 = 0,

U

(
∂v1

∂x

)
= − 1

ρ
∇p, (3.132)

and a rotational flow with velocity v2 = 1
2k

∇χ − iχ satisfying

∇ · v2 = 0

U

(
∂v2

∂x

)
= −ν∇ × ω = ν∇2v2. (3.133)

Thus the pressure is entirely associated with the irrotational flow, while the
vorticity in the rotational flow is given by

ω = −∇ × (χ i). (3.134)

The representation of the flow in the manner of (3.128) and (3.130) is due to Lamb
[4]. Details will not be given here, except for the comment that accurate calculation
of flow past a sphere in the Oseen approximation require the use of more basic
solution that were needed to obtain the Stokes solution. Among the results that
may be obtained, we note that the drag coefficient for uniform flow past a sphere
is obtained as

CD = 24

Ra

(
1 + 3

16
Ra + O(R2

a)

)
, (3.135)

in which the term 3
16Ra is Oseen’s correction to the Stokes drag coefficient.

Remark

For two-dimensional flow past a cylinder, Oseen’s momentum equations and the
continuity equation are satisfied by

u = ∂φ

∂x
+ 1

2k

∂χ

∂x
− χ

v = ∂φ

∂y
+ 1

2k

∂χ

∂y
,

p = −ρU
∂φ

∂x
;

where k = U
2ν

and U is the undisturbed stream velocity parallel to the x− axis,
provided

∇2φ = 0,

and

(
∇2 − 2k

∂

∂x

)
χ = 0.
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The lifting force per unit length on the cylinder is given by ρUK , where K is the
circulation in a very large contour surrounding the cylinder.

For further information about this topic, the reader is referred to the work of
Hellwig, G. [3], Lamb, H. [5], Milne-Thomson, L.M. [7], Rahman, M. [8] and
Wylie, C.R. & Barrett, L.C. [13] as listed in the reference section.

3.12 Exercises

1. The velocity potential, φ(r, θ), for the two-dimensional irrotational flow of an
ideal fluid satisfies Laplace’s equation. The velocity of the fluid is V = grad φ,
and the radial velocity is ∂φ

∂r
. If the velocity of the fluid at infinity is parallel

to θ = 0 and is V = Ui, and if the flow passes around a circular cylinder
r = a on which the boundary condition is ∂φ

∂r
= 0, confirm that the velocity

potential is φ = Urcosθ + U a2

r
cosθ.

2. The velocity potential due to a two-dimensional point source (a line source
normal to the x, y plane) of strength m at the point x = 0, y = d in an infinite
fluid is φ = mln{x2 + (y − d)2}1/2. If a fixed boundary, y = 0, is inserted
into the flow giving rise to the boundary condition ∂φ

∂y
= 0 on y = 0, show that

the potential in the region y > 0 is φ = mln{x2 + (y − d)2}1/2 + mln{x2 +
(y + d)2}1/2.

Interpret the second term as an image source at x = 0, y = −d . Determine
the flow in the quadrant x ≥ 0, y ≥ 0, with the boundary conditions ∂φ

∂x
= 0

on x = 0, ∂φ
∂y

= 0 on y = 0, due to a fluid source of strength m at the point
x = a, y = b of the quadrant.

3. The Legendre polynomials, P0, P1, P2, are P0(cosθ) = 1, P1(cosθ) =
cosθ , P2(cosθ) = 1

2 (3cos2θ − 1). Hence, the simplest axially symmet-
ric solutions of Laplace’s equation in spherical polar coordinates are

A0 + B0
r

,
(
A1r + B1

r2

)
cosθ, and

(
A2r

2 + B2
r3

)
(3cos2θ − 1). The irrota-

tional flow of an ideal fluid has the velocity field V = grad φ, where φ is
the velocity potential which satisfies �2φ = 0. Confirm that the uniform flow
field, V = Uk, corresponds to the case φ = Urcosθ where U is a constant.
Similarly show that if a rigid sphere of radius r = a is placed in this uni-
form flow field then the potential becomes φ = U(r + a3/2r2)cosθ , where
the boundary condition of zero normal flow on the sphere is ∂φ

∂r
= 0 on r = a.

4. If φ = rns is a spherical harmonic, prove that, s being independent of r,
1

sinθ
∂
∂θ

(sinθ ∂s
∂θ

) + 1
sin2θ

∂2s

∂ω2 + n(n + 1)s = 0, Deduce that s/rn+1 is also a
spherical harmonic. (Note: φ is defined to be spherical harmonic provided it
satisfies Laplace’s equation in spherical coordinates).

5. If φ = rns is a spherical harmonic symmetrical about the x-axis, and s is
independent of r , show that d

dμ
[(1 − μ2) ds

dμ
] + n(n + 1)s = 0 where μ =

cosθ . Show that the solutions of this equation corresponding to n = 0 and n =
1, are P0(μ), P1(μ), show that Q0(μ) = 1

2 ln
1+μ
1−μ

, Q1(μ) = 1
2 ln

1+μ
1−μ

− 1
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6. The motion of fluid is given by the velocity potential φ = C{(1 + 1
n
) rn

an−1 +
an+2

rn+1 }Pn(cosθ), in which C is a constant, and r and θ are spherical polar
coordinates. Determine the stream function.

7. A sphere of radius a is surrounded by a concentric spherical shell of radius
b, and the space between is filled with liquid. If the sphere is moving

with velocity V , show that φ = V a3

b3−a3 {r + b3

2r2 }cosθ and find the current
function.

8. Asolid sphere of radius a moves in a fluid which far from the sphere remains at
rest at pressure P0. At time the centre of the sphere is at (csinσ t, 0, 0). Show
that the pressure at the point r(x, y, z) at time t = ( π

2σ
), when the sphere is

instantaneously at rest, is p = p0 − 1
2ca3σ 2(x/r3).

9. Find the values of A and B for which (Ar + B

r2 )cosθ is the velocity function
of the motion of an incompressible fluid which fills the space between a solid
sphere of radius a, and a concentric spherical shell of radius 2a. The sphere
has a velocity U and the shell is at rest. Prove that the kinetic energy of the
fluid of density ρ is 10πρa3U2/21.

10. A sphere, of mass M and radius a, is at rest with its centre at a distance h

from a plane boundary. Show that the magnitude of the impulse necessary
to start the sphere with a velocity V directly towards the boundary is, very

nearly, V {M + 1
2M ′(1 + 3a3

8h3 )}, where M ′ is the mass of the displaced fluid.
Find also the impulse on the plane boundary.

11. A sphere of radius a moves in a semi-infinite liquid of density ρ bounded
by a plane wall, its centre being at a great distance h from the wall. Show

that the approximate kinetic energy of the fluid is 1/3πρa3V 2{(1 + 3
16

a3

h3 (1 +
sin2α)}. The sphere is moving at an angle α with the wall, at a speed V .

12. The ellipsoid x2/a2 + y2/b2 + z2/c2 = 1 is placed in a uniform stream par-
allel to the x-axis. Prove that the lines of equal pressure on the ellipsoid are
its curves of intersection with the cones y2/b2 + z2/c2 = x2/h2, where h is
an arbitrary constant.
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CHAPTER 4

Laminar boundary layers

Pierre Simon Laplace

Pierre Simon Laplace (1749–1827) is well known for the equation that bears
his name. The Laplace equation is one of the most ubiquitous equations of
mathematical physics; it appears in electrostatics, electro-magnetics, hydro-
dynamics, groundwater flow, thermodynamics, and many other fields. As had
Euler, Laplace worked in a great variety of areas, applying his knowledge
of mathematics to physical problems. He has been called the Newton of
France. Laplace was born in Beaumont-en-Auge, Normandy, France, and
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educated at Caen (1765–1768). In 1768 he became Professor of Mathemat-
ics at École Militaire in Paris. Later, he moved to École Normale, also in
Paris. Napoleon appointed him Minister of Interior in 1799, and he became
a Count in 1806 and a Marquis in 1807; in the same year he assumed the
presidency of the French Academy of Sciences. Laplace devoted consider-
able time doing research on astronomy. He wrote on orbital motion of the
planets and celestial mechanisms and on the stability of the solar system.

4.1 Introduction

4.1.1 The concept of the boundary layer

In the previous chapter we have discussed flows with slow motion as manifested
by Stokes and Oseen. It is now evident that there must always be a region of slow-
moving fluid close to a solid body in which the approximation of inviscid flow
breaks down. In 1904, Ludwig Prandtl was the first scientist who observed that
these regions of slow-moving fluid are frequently thin. Thus, close to the wall of a
body in the fluid, the velocity component parallel to the wall rises rapidly from a
value 0 at the wall itself to a value U within a short distance, say δ, from the wall.
Accordingly, the velocity gradient ∂u

∂y
is large, and the viscous stress μ∂u

∂y
becomes

important even when μ is small.
It is fairly straightforward to indicate, by dimensional analysis, that the ratio δ

L

of the length scale normal to and parallel to the wall is of the order R− 1
2 , where

R = UL
ν

is the Reynolds number. To see this point clearly, let us consider two-
dimensional incompressible flow, and look first of all at the equation of continuity
∇ · v = 0, which can be written in two-dimensional form in x, y coordinates with
velocity components (u, v) as

∂u

∂x
+ ∂v

∂y
= 0 (4.1)

Consider that the typical value of u to be U , and the typical length scale parallel
to the wall to be L, and it follows that the order of ∂u

∂x
= O(U

L
). But a typical length

scale normal to the wall is δ, and hence (4.1) shows that

v = O

(
Uδ

L

)
, (4.2)

so that the velocity component normal to the wall is small if δ
L

is small. To make
the order analysis of the momentum equations, we consider the first momentum
equation in two-dimensions which is simply

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+ ∂2u

∂y2

)
. (4.3)

By using the order of magnitude (4.2) for v, and by assuming that a typical value
of the pressure p is ρU2, we can deduce that the magnitudes of the five terms in
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(4.3) are of the order

u
∂u

∂x
= U

(
U

L

)
= U2

L
,

v
∂u

∂y
= Uδ

L

(
U

δ

)
= U2

L
,

1

ρ

∂p

∂x
= U2

L
,

ν
∂2u

∂x2
= νU

L2
,

ν
∂2u

∂y2
= νU

δ2
.

Using these orders in (4.3), we see the proportions of the five terms of momentum
equation in the following order

1 : 1 : 1 : 1

R
: 1

R

(
L

δ

)2

.

We note that when the Reynolds number R is large, the viscous terms are both small
when δ and L have the same order. However, if R is large but

1

R

(
L

δ

)2

= O(1),

that means
δ

L
= O

(
R− 1

2

)
, (4.4)

then although the term ν ∂2u

∂x2 is small, the term ν ∂2u

∂y2 is not small. This thin region,

in which the viscous effects are important, is called a boundary layer.
A more precise criterion for the existence of a well-defined laminar boundary

layer is that the Reynolds number should be large, but should not be so large as to
breakdown of the laminar layer. This is one of the important features of the exact
solutions of Navier-Stokes equations discussed in the last chapter. For the large
values of R, these solutions exactly exhibit regions of steep velocity gradient in
the boundary layer in the sense already defined. To this theoretical evidence may
be added the results of much experimental observation, which shows that these
boundary layers exist in practice.

4.1.2 Mathematical expression of the boundary-layer thickness δ(x)

A method of indicating the possibility of a thin boundary-layer of thickness given
by (4.4) is as follows. Let us consider the motion of a fluid bounded by a semi-
infinite plate, x > 0, y = 0, the flow far from the plate being uniform, parallel to the



112 Mechanics of Real Fluids

plate, and with velocity U . If we assume that the flow starts impulsively from rest at
time t = 0, initially the flow will be completely irrotational and in fact completely
uniform, with a vortex sheet of appropriate strength on the plate, across which the
velocity parallel to the plate rises rapidly from zero on the plate itself to the free
stream velocity U . We know that the viscosity has the diffusive property just like
heat diffusion, this vortex sheet will not remain of zero thickness; due to diffusive
nature, its thickness at time t > 0 will be of the order (νt)

1
2 . As we know that the

time needed for fluid to travel a distance x along the plate is of the order x
U

, and in
this time the vortex sheet has grown to a thickness of the order ( νx

U
)1/2, which is

precisely the order of boundary-layer thickness, i.e., δ(x) = ( νx
U

)1/2.

4.1.3 Boundary layer separation

There will exist a stage of the fluid flow when a back-flow takes place close to the
wall, the forward-moving fluid in the mainstream is forced to move away or separate
from the wall in order to by-pass the reverse-flow region. From theoretical point
of view we may say that all available calculations relevant to separating laminar
boundary layer indicate that the reverse-flow velocities is very low, but persists over
a considerable distance from the wall. This is certainly borne out by the available
experimental evidence, which indicates that the Reynolds number s, which are in
practical situations boundary layer separation usually causes a distortion of the
mainstream sufficient to make it differ considerably from that given the inviscid
flow past the same body. Accordingly, if boundary layer separation does occur, it
may be impossible to calculate the flow pattern on a purely theoretical basis; it
certainly is impossible to calculate an inviscid flow and then add the effects of the
boundary layer.

To have some more practical insight about the laminar boundary theory, we can
consider the flow through a diffuser, that is through a pipe of increasing cross-
section. In steady motion, the mass of fluid flowing across any cross-section must
remain constant. Thus, if the fluid follows on the walls, as it would do in inviscid
flow, the velocity must decrease and the pressure must increase with increasing
cross-section. Accordingly, the fluid is moving against the pressure gradient, and
the thickness of the boundary layers on the walls may be expected. If the expansion
of the tube is rapid and the adverse pressure gradient is correspondingly great, we
may expect boundary layer separation.

Afurther practical manifestation of the boundary layer separation is in the stalling
of the flow past a thin aerofoil as the thickness increases. For a carefully designed
streamline body such as an aerofoil, that at small angles of incidence, the pressure
on the upper surface falls sharply from a maximum at a forward stagnation point
and then rises again downstream of a suction peak, the rise being relatively sharp
initially and gradually becoming gentler further back. On the lower surface of the
aerofoil, the pressure gradient is everywhere favourable downstream of the pressure
peak at the forward stagnation point so no tendency to separate exists.
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4.2 Derivation of the boundary layer equations for flow along
a flat plate

In developing a mathematical theory of boundary layers, the first step is to show the
existence, as the Reynolds number R tends to infinity, or the kinematic viscosity
ν tends to zero in a limiting form but not just putting ν = 0. A solution of these
limiting equations may then reasonably be expected to describe approximately the
flow in a laminar boundary layer for which R is large but not infinity.

The full equations of motion for two-dimensional flow are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+ ∂2u

∂y2

)
, (4.5)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+ ∂2v

∂y2

)
, (4.6)

∂u

∂x
+ ∂v

∂y
= 0. (4.7)

The x − y plane is taken as the plane of the boundary-layer flow, with the axis of
x along, and that of z perpendicular to, the plane wall; thus u = v = 0 on y = 0.

The equation of conservation of mass (4.7) implies that there exists a stream
function ψ(x, y, t) such that

u = −∂ψ

∂y
, v = ∂ψ

∂x
. (4.8)

and a fourth-order equation for ψ may be obtained by eliminating the pressure p

from equations (4.5) and (4.6), and using (4.8). It is convenient to use the vec-
tor notation of the continuity and momentum equations in two-dimensions in the
following manner.

∇ · v = 0, (4.9)

∂v
∂t

+ (v · ∇)v = − 1

ρ
∇p + ν∇2v. (4.10)

The vorticity vector is
ω = ∇ × v = −k∇2ψ.

Using vector identities, the second term, i.e., the convective inertia term can be
simplified as

(v · ∇)v = ∇
(

1

2
q2
)

− v × ω.

Substituting this information in (4.10), and after taking curl of the resulting equation
yields

∂ω

∂t
− ∇ × (v × ω) = ν∇ × (∇2v), (4.11)
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which can be subsequently reduced to the following simple form

∂ω

∂t
+ (v · ∇)ω − (ω · ∇)v = ν∇ × (∇2v) = ν∇2ω. (4.12)

Since the only component of vorticity is η = ∂u
∂y

− ∂v
∂x

= ∇2ψ , (4.12) may also be
written in the form

∂η

∂t
+ ∂ψ

∂y

∂η

∂x
− ∂ψ

∂x

∂η

∂y
= ν∇2η. (4.13)

In order to derive the boundary layer equations, a non-dimensional form of
equations is convenient. If L is the typical length, U0 a typical speed and R =
UL
ν

the corresponding Reynolds number for the flow as a whole, the following
dimensionless variables are defined:

X = x

L
, Y = R

1
2 y

L

U = u

U0
, V = R

1
2 v

U0

T = tU0

L
, P = p

ρU2
0

. (4.14)

Equations (4.5–4.7) become

∂U

∂T
+ U

∂U

∂X
+ V

∂U

∂Y
= −∂P

∂X
+ 1

R

∂2U

∂X2
+ ∂2U

∂Y 2
, (4.15)

1

R

(
∂V

∂T
+ U

∂V

∂Y
+ V

∂V

∂Y

)
= −∂P

∂Y
+ 1

R2

∂2V

∂X2
+ 1

R

∂2V

∂Y 2
, (4.16)

∂U

∂X
+ ∂V

∂Y
= 0, (4.17)

in which quantities denoted by capital letters are non-dimensional. On the assump-
tions that all the derivatives in these equations are of the same order of magnitude
for large values of R, their limiting forms are

∂U

∂T
+ U

∂U

∂X
+ V

∂U

∂Y
= −∂P

∂X
+ ∂2U

∂Y 2
, (4.18)

0 = −∂P

∂Y
(4.19)

∂U

∂X
+ ∂V

∂Y
= 0, (4.20)

Equations (4.18–4.20) are the boundary layer equations in non-dimensional form.
The original method of deriving the boundary-layer equations, due to Prandtl (1904)
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and Blasius (1908), is based on a consideration of approximate orders of magnitude.
It is less precise but may be physically easier to understand. Suppose that L is the
typical length, and U is the typical speed, along the boundary layer; and that δ is
a typical length, and V is a typical speed, across the layer. In some sense δ is the
thickness of the boundary layer. Then in (4.7) the terms ∂u

∂x
and ∂v

∂y
are respectively

of order U
L

and V
δ

, Consequently V
U

= O( δ
L
), and the ratio δ

L
is supposed to be

small compared with unity.
Thus with all these observations and also with the order analysis already man-

ifested, the two-dimensional boundary layer equations in dimensional form are
given by

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+ ν

(
∂2u

∂y2

)
, (4.21)

0 = − 1

ρ

∂p

∂y
, (4.22)

∂u

∂x
+ ∂v

∂y
= 0. (4.23)

Remark

If U(x, t) now denotes the main-stream velocity, so that − 1
ρ

∂p
∂x

= ∂U
∂t

+ U ∂U
∂x

,
elimination of pressure from (4.21) gives

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− ν

(
∂2u

∂y2

)
= f (x, t) = ∂U

∂t
+ U

∂U

∂x
, (4.24)

This equation was derived by Kármán (1921) by seeking a solution of (4.13) in the

form ψ = ν
1
2 �(x, yν− 1

2 , t). It may be seen to be of third-order when writing the
terms of the stream function, and this is an important mathematical difference from
the full equation (4.13), leading to certain anomalies which are discussed in later
section.

4.3 Boundary conditions for steady flow

The steady boundary layer equations for u and v are then given by

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+ ν

(
∂2u

∂y2

)
, (4.25)

p = p(x), (4.26)

∂u

∂x
+ ∂v

∂y
= 0. (4.27)
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By virtue of the continuity equation (4.27), we may introduce a stream function ψ

such that

u = ∂ψ

∂y
v = −∂ψ

∂x
. (4.28)

Introducing these relations into (4.25) we obtain a third-order partial differential
equation in ψ

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= − 1

ρ

(
dp

dx

)
+ ν

∂3ψ

∂y3
. (4.29)

The boundary conditions are that

u = v = 0 when y = 0. (4.30)

In addition the velocity u(x, y) must join smoothly on to the main stream velocity
for some suitable values of y. From physical consideration it is found that the join
must take place asymptotically. That means the third boundary condition becomes

u → U(x) as y → ∞. (4.31)

The relationship between the pressure p(x) and the external velocity U(x) is given
either by reference to Bernoulli’s equation for inviscid flow or by letting y → ∞
in (4.25). Thus, since ∂u

∂y
→ 0, and ∂2u

∂y2 → 0 as y → ∞, we have then

U
dU

dx
= − 1

ρ

dp

dx

or, upon integration

p + 1

2
ρU2 = constant = p0 + 1

2
ρU2

0 .

Hence the pressure coefficient Cp is given by

Cp = p − p0
1
2ρU2

0

= 1 − U2

U2
0

.

4.4 Boundary layer equations for flow along a curved surface

This section is devoted to the boundary layer equation for flow along a curved sur-
face. The surface may be a surfaces of cylinder, sphere or any other regular geom-
etry. We accordingly choose general orthogonal coordinates in two-dimensional
motion of a viscous fluid. The equations of motion and the continuity equation in
vector notation are written as

∂v
∂t

+ (v · ∇)v = − 1

ρ
∇p + ν∇2v, (4.32)

∇ · v = 0. (4.33)
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In two-dimensional curvilinear coordinate system these equations take the follow-
ing form: (see Rahman [12])

∂v1

∂t
+ v2ω3 = − 1

h1

∂

∂x1

(
p

ρ
+ 1

2
(v2

1 + v2
2)

)
− ν

h2

∂ω3

∂x2
, (4.34)

∂v2

∂t
− v1ω3 = − 1

h2

∂

∂x2

(
p

ρ
+ 1

2
(v2

1 + v2
2)

)
+ ν

h2

∂ω3

∂x2
, (4.35)

∂

∂x1
(h2v1) + ∂

∂x2
(h1v2) = 0, (4.36)

where

ω3 = 1

h1h2

{
∂

∂x1
(h2v2) − ∂

∂x2
(h1v1)

}
(4.37)

is the only component of vorticity present. Other two components are zero in two-
dimensional case.

The coordinates x and y are now defined as distances measured along the wall
and at right angles to the wall, so that these form a set of orthogonal curvilinear
coordinates. The corresponding velocity components are then u and v, respectively.
These coordinates and velocity components are made dimensionless as introduced
in the previous section. We introduce the non-dimensional variables X, Y , U , V

again here for ready reference. When X and Y are taken for the variables x1, x2
and then are used in equations (4.34) to (4.37), we obtain

h1 = L
(

1 + κLR− 1
2 Y
)

= LH, h2 = LR− 1
2 , (4.38)

where κ is the curvature of the wall, considered positive in the case of Fig. 4.1, in
which the centre of curvature is on the side y < 0.

X = x

L
, Y = R

1
2 y

L

U = u

U0
, V = R

1
2 v

U0

T = tU0

L
, P = p

ρU2
0

.

In terms of these non-dimensional variables, (4.34) to (4.36) become

H
∂U

∂T
+ U

∂U

∂X
+ V

∂(HU)

∂Y
= −∂P

∂X
+ H

∂

∂Y

{
1

H

∂(HU)

∂Y
− 1

R

1

H

∂V

∂X

}
,

(4.39)

1

R

{
∂V

∂T
+ U

H

∂V

∂X
+ V

∂V

∂Y

}
− U2

H

∂H

∂Y

= −∂P

∂Y
+ 1

H

∂

∂X

{
1

R2

1

H

∂V

∂X
− 1

R

1

H

∂(HU)

∂Y

}
, (4.40)
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Figure 4.1: Coordinates for boundary-layer flow along a curved surface.

∂U

∂X
+ ∂(HV )

∂Y
= 0. (4.41)

Now from (4.38), as ν → 0, so that R → ∞, H tends to 1 and ∂H
∂X

, ∂H
∂Y

both
tend to 0. Then the limiting forms of (4.39) to (4.41) as ν → 0 may be seen to
be identical with the equations (4.21) to (4.23) obtained in the case of flow over a
plane surface. Thus when R is large the equations of motion reduce to the boundary
layer equations

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ∂U

∂t
+ U

∂U

∂x
+ ν

∂2u

∂y2
, (4.42)

∂u

∂x
+ ∂v

∂y
= 0, (4.43)

which have the same form for flow over a curved surface as for flow past a plane
wall. It is, however necessary that ∂H

∂X
and ∂H

∂Y
shall be small compared with 1,

so that κδ and δLdκ/dx must be small, where δ is a measure of boundary-layer
thickness. The pressure gradient across the layer is given by (4.39) and (4.40) as
approximately

∂P

∂Y
= κLR− 1

2 U2

or
∂p

∂y
= κρu2. (4.44)

This is just the gradient of pressure required to balance the centrifugal effect of the
flow round the curved surface. When dealing with the boundary-layer on a surface
whose radius of curvature is continuous and large compared with the boundary-
layer thickness, we may treat the problem as being that for a plane surface, although
the external flow, and hence the pressure distribution, will depend crucially upon
the details of the surface curvature.
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4.5 Boundary-layer thicknesses, skin friction, and energy
dissipation

In the previous section we have introduced the boundary-layer thickness δ. In most
physical problems the solution of the equations (4.42) and (4.43) are such that the
velocity component u attains its main-stream velocity U only asymptotically as

R
1
2 y/L → ∞. The thickness of the layer is therefore a nebulous quantity, and is

indefinite, as there is always some departure from the asymptotic value at any finite
distance y from the surface. It is clear, however, that for all practical purposes
the edge of the boundary layer may be defined as being where the velocity has
reached 95 per cent of its mainstream value, or perhaps 98 per cent or 99 per cent;
in this sense the value of δ is somewhat arbitrary. It would therefore be possible
to regard the boundary-layer thickness as the distance δ from the surface beyond
which u

U
> 0.99, for example, but this is not sufficiently precise since ∂u

∂y
is very

small there for experimental work, and is not of theoretical significance.
The scale of the boundary-layer thickness can, however, be specified adequately

by certain length capable of precise definition, both for experimental measurement
and for theoretical study. These measures of boundary-layer thickness are defined
as follows:

Displacement boundary-layer thickness δ1:

δ1 =
∫ ∞

0

(
1 − u

U

)
dy. (4.45)

Momentum boundary-layer thickness δ2:

δ2 =
∫ ∞

0

u

U

(
1 − u

U

)
dy. (4.46)

Energy boundary-layer thickness δ3:

δ3 =
∫ ∞

0

u

U

(
1 − u2

U2

)
dy. (4.47)

The upper limit of the integration is taken as infinity to reach the asymptotic value
of u

U
to 1, but in practice the upper limit is the point beyond which the integrand is

negligible.
We can forward some further explanation of how we have arrived at those inte-

gral equations. Suppose we consider a particular streamline which is at a distance
h(x, ψ0) from the wall. In inviscid flow, the streamline would have been at a dis-
tance hi(x, ψ0) from the wall. Thus, by definition, the total mass of fluid flowing in
unit time between y = 0 and y = h is equal to the mass which would flow between
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y = 0 and y = hi inviscid flow with u = U(x) for all y. Thus

∫ h

0
ρudy =

∫ hi

0
ρUdy

or
∫ h

0
udy = Uhi.

Hence the amount by which the streamline is displaced outwards under the influence
of viscosity is

h − hi = h −
∫ h

0

u

U
dy

=
∫ h

0

(
1 − u

U

)
dy

It follows that the amount by which streamlines far from the wall are displaced is

lim
h→∞(h − hi) = δ1

=
∫ ∞

0

(
1 − u

U

)
dy,

where δ1(x) is referred to as the displacement thickness. The significance of this
parameter is that it indicates the extent to which the boundary-layer displaces the
external flow.

A second important measure of the boundary-layer thickness which has been
already defined is the momentum thickness δ2 as defined in (4.46). We note that

ρU2δ2 =
∫ ∞

0
u(ρU − ρu)dy,

so that ρU2δ2 is equal to the flux of the defect of momentum in the boundary-layer.
A third important physical measure of boundary-layer thickness is the kinetic-

energy thickness defined in (4.47), which measures the flux of the kinetic energy
defect within the boundary layer as compared with an inviscid flow.

Two other quantities related to these boundary-layer thicknesses are the skin
friction τw and the dissipation integral D. The skin friction is defined as the shearing
stress exerted by the fluid on the surface over which it flows, and is therefore the
value of pyx at y = 0 which is given by

τw = μ

(
∂u

∂y

)
y=0

(4.48)
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We consider the following mathematical development to establish the expression
for skin friction cited in (4.48). We know that the components of stress in two-
dimension are given by

p11 = p − 2μ
∂u

∂x
,

p12 = p21 = −μ

(
∂u

∂y
+ ∂v

∂x

)
,

p22 = p − 2μ
∂u

∂y
.

Within the boundary layer, ∂u
∂y

is of order U/δ, and ∂v
∂x

is of order δU

L2 , so that the

ratio of these terms is 1 : ( δ
L
)2, that is 1 : R−1; ∂v

∂x
may therefore be neglected

by comparison with ∂u
∂y

. Thus using also the two-dimensional continuity equation,
we may write

p11 = p − 2μ

(
∂u

∂x

)

p12 = p21 = −μ

(
∂u

∂y

)

p22 = p + 2μ

(
∂u

∂x

)
.

At the wall itself, the stress acting on the wall in the x-direction is simply −p12, so
we have

τw = μ

(
∂u

∂y

)
,

where τw is usually known as the skin-friction or wall shearing stress.
The rate of energy is dissipated by the action of viscosity, which has been found

to be μ(∂u
∂y

)2 per unit time per unit volume,

� =
∫ ∞

0
μ

(
∂u

∂y

)2

dy. (4.49)

Consequently � is the total dissipation in a cylinder of small cross-section with
axis normal to the layer per unit time per unit area of cross-section.

4.6 Momentum and energy equations

The skin friction and viscous dissipation are both connected with the boundary layer
thicknesses by two equations, which represent the balance of momentum and of
energy within a small section of boundary layer. We shall present here the integral
equations of these two important quantities.
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4.6.1 Momentum integral

The integral is most simply obtained by integration of the boundary layer equations
(4.42) and (4.43) as demonstrated by Pohlhausen in 1921. They may be written as

−ν
∂2u

∂y2
= ∂

∂t
(U − u) + U

∂U

∂x
− u

∂u

∂x
− v

∂u

∂y
,

0 = (U − u)
∂u

∂x
+ (U − u)

∂v

∂y
,

By addition of these two equations we obtain

−ν
∂2u

∂y2
= ∂

∂t
(U − u) + ∂

∂x
(Uu − u2) + (U − u)

∂U

∂x
+ ∂

∂y
(vU − uv).

On integration with respect to y from 0 to ∞ yields, since ∂u
∂y

and v(U − u) tend
to 0 as y → ∞,

ν

(
∂u

∂y

)
= ∂

∂t

∫ ∞

0
(U − u)dy + ∂

∂x

∫ ∞

0
(Uu − u2)dy

+ ∂U

∂x

∫ ∞

0
(U − u)dy + vsU, (4.50)

where vs = vs(x) = −v(x, 0) is the velocity of suction. When the integrals are
expressed in terms of the boundary layer thicknesses, this becomes

τw

ρ
= ∂

∂t
(Uδ1) + ∂

∂x
(U2δ2) + U

∂U

∂x
δ1 + vsU, (4.51)

or, in non-dimensional form,

τw

ρU2
= 1

U2

∂

∂t
(Uδ1) + ∂δ2

∂x
+ δ1 + 2δ2

U

∂U

∂x
+ vs

U
. (4.52)

This equation is referred to as the momentum integral equation and originally
derived by Kármán in 1921. The physical interpretation of the equation (4.50)
multiplied by ρδx is the equation for the rate of change of momentum defect,
ρ(U − u) per unit volume, for the small slice of the boundary layer between the
planes x and x + δx. On the right-hand side of (4.50) the first term represents the
local rate of change of the momentum defect, the second term is the rate of change
due to convection across the planes x and x + δx, and the last term represents
convection across the porous surface y = 0. Since there is no convection at the
edge of the layer, where the momentum defect is zero, the total rate of change is
equal to the opposing frictional force, which gives the term on the left-hand side,
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together with two terms which cancel outside the boundary layer. One of these is
the opposing pressure force

∂p

∂x
= −ρ

(
∂U

∂t
+ U

∂U

∂x

)

per unit volume, and the other is the rate of change of the main stream momentum
ρU associated with any particle of fluid in the boundary layer, namely ρ(∂U

∂t
+

U ∂U
∂x

). The net effect of these two is a term

−∂U

∂x

∫ ∞

0
(U − u)dy

on the left-hand side of (4.50), which appears as the third term on the right-hand
side with the opposite sign.

4.6.2 Energy integral

To derive the energy integral, we consider again the equations (4.42) and (4.43).
By multiplying these two equations by 2u and (U2 − u2) respectively, we obtain,

−2νu
∂2u

∂y2
= 2u

∂

∂t
(U − u) + 2uU

∂U

∂x
− 2u2 ∂u

∂x
− 2uv

∂u

∂y
,

0 = (U2 − u2)
∂u

∂x
+ (U2 − u2)

∂v

∂y
,

and by adding they imply

2ν

(
∂u

∂y

)2

− 2ν
∂

∂y

(
u

∂u

∂y

)
= ∂

∂t
(Uu − u2) + U2 ∂

∂t

(
1 − U

u

)

+ ∂

∂x
(U2u − u3) + ∂

∂y
(vU2 − vu2)

It is to be noted here that since v(U2 − u2) and ∂u
∂y

both tend to 0 as y → ∞, this
equation gives on integration with respect to y from 0 to ∞,

2�

ρ
= ∂

∂t
(U2δ2) + U2 ∂δ1

∂t
+ ∂

∂x
(U3δ3) + vsU

2. (4.53)

Equation (4.53) may be expressed in non-dimensional form as

2�

ρU3
= 1

U

∂

∂t
(δ1 + δ2) + 2δ2

U2

∂U

∂t
+ 1

U3

∂

∂x
(U3δ3) + vs

U
. (4.54)
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The energy integral may also be regarded as an equation for the ‘kinetic energy
defect’ 1

2ρ(U2 − u2) per unit volume, namely

∂

∂t

∫ ∞

0

1

2
ρ(U2 − u2)dy + ∂

∂x

∫ ∞

0

1

2
ρ(U2 − u2)udy + 1

2
ρU2vs

= � + ρ
∂U

∂t

∫ ∞

0
(U − u)dy. (4.55)

In this equation, the left-hand side represents the sum of the local and convective
rates of change of kinetic energy defect. On the right-hand side the first term is the
contribution of viscous dissipation. The second is the sum of (a) the rate of energy
loss due to pressure gradient forces, which is

u
∂p

∂x
= −ρu

(
∂U

∂t
+ U

∂U

∂x

)

per unit volume, and (b) the rate of change of main-stream kinetic energy 1
2ρU2

associated with a particle of fluid in the boundary layer, namely

∂
(

1
2ρU2

)
∂t

+ u
∂
(

1
2ρU2

)
∂x

per unit volume. As before, these balance outside the boundary layer, but in it have
the net effect given by the last term in equation (4.55).

4.7 The von Mises transformation for steady flow

The boundary layer equations in either two-dimensions or in three-dimensions are
inherently non-linear. In view of the immense complexity of these boundary layer
equations, to solve even the steady two-dimensional incompressible boundary layer
equations, various attempts have been made in the past. One of the most useful is
that due to von Mises in which new independent variables are considered using the
continuity equation.

We know the continuity equation is

∇ · (ρv) = ρ

(
∂u

∂x
+ ∂v

∂y

)
= 0,

which is satisfied by the stream function ψ

ρu = ∂ψ

∂y
, ρv = −∂ψ

∂x
.

We introduce a new independent variable

ψ =
∫ y

0
(ρu)dy,
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so that u(x, y) = u(x, ψ) and ψ = ψ(x, y). Thus, (x, y) → (x, ψ). With this new
set of independent variables, the boundary layer equation

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dx
+ ν

∂2u

∂y2

can be transformed evaluating the partial derivatives in the equation above.
Thus we calculate according to partial derivative rules,(

∂u

∂x

)
y

=
(

∂u

∂x

)
ψ

+
(

∂u

∂ψ

)
x

(
∂ψ

∂x

)
y

= ∂u

∂x
− ρv

∂u

∂ψ

(
∂u

∂y

)
x

=
(

∂u

∂ψ

)
x

(
∂ψ

∂y

)
x

= ρu
∂u

∂ψ

Thus, substituting these in the momentum equation above we obtain which
simplifies to yield

u
∂u

∂x
− U

dU

dx
= μρu

∂

∂ψ

{
u

∂u

∂ψ

}
(4.56)

Here the partial derivatives with respect to x now mean derivatives with ψ held
constant. This equation is to be solved subject to the boundary conditions

u = 0 when ψ = 0,

u = U as ψ → ∞, (4.57)

and when u has been determined, the value of v follows from the continuity equa-
tion. The von Mises transformation has been used in a number of practical problems
specially in respect of heat transfer through a laminar boundary layer.

4.8 Analytical solutions of boundary layer equations

This section is devoted to the analytic solutions of practical problems, which gov-
ern the boundary-layer equations. In solving the two-dimensional boundary layer
equation, we have to make crucial assumption that the pressure distribution around
the body or equivalently the external velocity U(x) is known a priori. Given U(x)

then, it is required to solve the boundary-layer equations such as the momentum
and continuity equations is subject to the appropriate boundary conditions. One of
the most important elements in the development of the methods which are currently
used in the boundary layer analysis is to assume the specific convenient forms of
the external velocity.

Mathematically speaking, these special solutions are of two types. For example,
where the geometrical configuration is extremely simple, such as the problem of
flow past a flat plate held parallel to the stream, or where the domain considered is
very limited, for example, flow sufficiently near to the forward stagnation point of a
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x

y

U0

u

δ

Figure 4.2: The schematic description of laminar boundary layer over a flat plate.

bluff body where the body may in effect be regarded as a plane surface normal to the
stream. In those cases, we should look for appropriate transformations to reduce the
boundary layer equations to a single ordinary differential equation, whose solution
may be obtained to any required accuracy.

The second type of special solution arises when the shape of the body is assumed
such that the external velocity U(x) may be expressed as a power series in x

containing, say, two or three terms. In those cases, the velocity u in the boundary
layer may be expanded as a power series in x, the coefficients being functions of
y
δ

, say, where δ is representative of the scale normal to the wall.

4.8.1 Flow along a flat plate at zero incidence in a uniform stream

We consider, first of all, what is geometrically the simplest possible configuration,
in which a semi-infinite flat plate of zero thickness is placed in a uniform stream
U0. The inviscid-flow solution is, of course, trivial, in that the stream is not affected
at all by the plate. The fluid is supposed unlimited, in the external, and the origin of
the coordinates is taken at the leading edge, with x measured downstream along the
plate and y is perpendicular to it, as shown in Fig. 4.2. This problem was originally
solved by Blasius in 1908, and so it is known as the Blasius problem.

In the absence of a pressure gradient, the equations of steady motion in the
boundary layer reduces to extremely simple forms

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
, (4.58)

u = ∂ψ

∂y
, v = −∂ψ

∂x
, (4.59)
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and the appropriate boundary conditions are

y = 0, x > 0 : u = v = 0.

y = ∞, all x : u = U0.

x = 0 : u = U0.

These boundary conditions, in fact, demand an infinite gradient in speed at the lead-
ing edge x = y = 0 implies a singularity in mathematical solution there. However,
the assumptions implicit in the boundary layer approximation breaks down for the
region of slow flow around the leading edge, and the solution to be derived here
must be considered to apply only from a short distance downstream of x = 0.

In this type of problem, as found in many mathematical physics problem, we
look first for similarity solutions, depending not upon x and y independently but
only on some combination of x and y. Since the boundary layer velocity profile
vary only in scale and is fixed in shape in such a solution, the obvious choice of
parameter is y

δ
, where δ is representative of the boundary layer thickness. We have

already seen that the order of boundary layer thickness is ( νx
U0

)
1
2 and indeed, for a

semi-infinite plate it is impossible to conceive of any other representative length.
So the appropriate non-dimensional parameter is

y

(
U0

νx

) 1
2

.

Blasius’s solution for the stream function is of the form

ψ = (2νU0x)
1
2 f (η) (4.60)

where η =
(

U0

2νx

) 1
2

y (4.61)

although each of these expressions differ by a constant factor
√

2 from Blasius’s
original definition. Introduction of this factor smooth out the mathematical calcu-
lations considerably without any change in the final result. By differentiation, the
velocity components are obtained as follows:

u = ∂ψ

∂y
=
(

U0

2νx

) 1
2 ∂ψ

∂η
= U0f

′(η). (4.62)

It will be apparent that the particular forms, (4.60) and (4.61), for ψ and η was
carefully chosen to yield this simple expression for u, such a form being required,
by virtue of the boundary condition that u

U0
→ 1 as y → ∞. We now deduce
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successively that

−v = ∂ψ

∂x
=
(

U0ν

2x

) 1
2

f − (2U0νx)
1
2

(
U0

2νx3

) 1
2 1

2
yf ′

=
(

U0ν

2x

) 1
2 (

f − ηf ′) ,
∂u

∂x
= −1

2
U0

(
U0

2νx3

) 1
2

yf ′′ = −U0

2x
ηf ′′

∂u

∂y
= U0

(
U0

2νx

) 1
2

f ′′,

and
∂2u

∂y2
= U0

(
U0

2νx

)
f ′′′.

Then upon substitution into (4.58) it is found that the factors which explicitly
involve U0, ν, and x cancel identically, and we obtain

f ′′′ + ff ′′ = 0. (4.63)

The boundary conditions becomef (0) = f ′(0) = 0; f ′(∞) = 1.Equation (4.63)
is usually referred to as the Blasius equation.This is a third-order non-linear ordinary
differential equation and there are many ways to solve this equation with the given
boundary conditions. The shear stress at any point on the plate is given by

τ = μ

(
∂u

∂y

)
w

= μ

(
U3

0

2νx

) 1
2

f ′′(0). (4.64)

4.8.2 Method of solution

The method of solution of (4.63) given by Blasius required a series expansion for
small η which was matched smoothly at a point on to an asymptotic expansion for
large η. But the accuracy of the solution depends on the number of terms in each
series. A somewhat better method has been used to obtain very accurate solutions.

We first expand in a power series about the origin. We note that f (0) = f ′(0) =
0 and, and by letting η → 0 in (4.63), we further deduce that f ′′′(0) = 0. By
differentiating (4.63) successively with respect to η and then letting η → 0 we find
in turn that f iv(0) = 0, f v(0) = − (

f ′′(0)
)2

, and also f vi(0) = f vii(0) = 0 and
so on. By this procedure it is found that

f (η) = a0αη2 + a1α
2η5 + a2αη8 + · · ·

=
∞∑
0

anα
n+1η3n+2, (4.65)
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where the a′
ns are absolute constants, which in fact take values

a0 = 1

2! , a1 = − 1

5! , a2 = 11

8! , a3 = −375

11! ,

and the constant α = f ′′(0) is determined by the boundary condition at infinity.
Now (4.65) may be written as

f = α
1
3

∞∑
0

an(α
1
3 η)3n+2

= α
1
3 F(α

1
3 η), (4.66)

where F(η) is the solution of equation (4.63) satisfying the boundary conditions
F(0) = F ′(0) = 0, F ′′(0) = 1. This solution is now easily obtained by step-by-
step integration, using the above series as a starting point, and the value of F ′(∞)

readily follows. The solution for (4.63) satisfying f ′(∞) = 1, is then such that

1 = lim
η→∞(f ′(η)) = α

2
3 lim

η→∞(F ′(α
1
3 η) = α

2
3 F ′(∞),

and hence
α = (F ′(∞))−

3
2 .

The value of α = f ′′(0) being now known, it is easy to derive f (η) from F(η) by
using (4.66) or by direct integration of (4.63) step by step. The correct value is

α = 0.46960,

and the velocity distribution
u

U0
= f ′(η)

is shown in Fig. 4.2.
The skin friction is easily calculated from our knowledge of the velocity profiles.

Thus we have

τ = μ

(
∂u

∂y

)
w

= μ

(
U3

0

2νx

) 1
2

f ′′(0)

= 0.33206μ

(
U3

0

νx

) 1
2

. (4.67)

In the non-dimensional form, the skin friction can be expressed as

τw

ρU2
0

= 0.33206

(
ν

xU0

) 1
2

.
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Figure 4.3: The Blasius velocity profile (from [1]).

The drag on one side of a plate of length � and unit breadth is then given by

D =
∫ �

0
τwdx

= μ

(
U3

0

2ν

) 1
2

f ′′(0)

∫ �

0
x− 1

2 dx

= √
2(ρU2

0 �).

(
U0�

ν

)− 1
2

f ′′(0),

and the drag coefficient is

CD =
{

D

1
2ρU2

0 �

}
= 2

3
2 f ′′(0)R− 1

2 = 1.3282R− 1
2 (4.68)

where R = �U0
ν

= Reynolds number. It should be noted here that the solution is
used from x = 0, although a slight error may thereby be introduced.
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The displacement thickness is, without any approximation,

δ1 =
∫ ∞

0

(
1 − u

U0

)
dy

=
(

2νx

U0

) 1
2
∫ ∞

0
(1 − f ′)dη

=
(

2νx

U0

) 1
2

. lim
η→∞(η − f )

= 1.72077

(
νx

U0

) 1
2

. (4.69)

Remark

The numerical values of the following integrals are cited from Rosenhead ([7],
p. 224).

∫ ∞

0
(1 − f ′)dη = lim

η→∞(η − f ) = 1.21678

∫ ∞

0
f ′(1 − f ′)dη = f ′′(0) = 0.46960

∫ ∞

0
f ′(1 − f ′2)dη = 0.73849

The momentum thickness is

δ2 =
∫ ∞

0

(
u

U0
−
(

u

U0

)2
)

dy

=
(

2νx

U0

) 1
2
∫ ∞

0
(f ′ − f ′2)dη

=
(

2νx

U0

) 1
2

f ′′(0)

= 0.6641

(
νx

U0

) 1
2

(4.70)

Note that in the Blassius equationf ′′′ + ff ′′ = 0 if we add and subtractf ′2 on the
left-hand side and integrate from 0 to ∞ we obtain that

∫∞
0 (f ′ − f ′2)dη = f ′′(0).
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An asymptotic form of solution

An asymptotic formula valid for large values of η may be found as follows: in
the Blassius equation (4.63) namely f ′′′ + ff ′′ = 0, substitute f (η) = η − β +
φ(η), where φ(η) is small. If the product φφ′′ is neglected, and approximate linear
equation for φ(η) is obtained:

φ′′′ + (η − β)φ′′ = 0. (4.71)

Hence, writing ξ = η − β, it follows that

φ′′ ∼ A exp

(
−1

2
ξ2
)

,

and that its solution is

φ ∼ Aξ−2 exp

(
−1

2
ξ2
)

(4.72)

The constant β has been obtained as

β = lim
η→∞(η − f ) = 1, 21678 (4.73)

Thus an approximate formula for f (η) , valid for large η, is

f (η) ∼ η − β + A(η − β)−2 exp

(
−1

2
(η − β)2

)
. (4.74)

An immediate consequence of this result is that the transverse velocity component
v is given by the asymptotic formula

v

U0
∼ β(2Rx)

− 1
2 . (4.75)

Thus, v does not tend to zero, and this is one of the characteristic features of
boundary-layer solutions.

4.8.3 Steady flow in the boundary layer along a cylinder near the forward
stagnation point

We consider in this section a two-dimensional flow around a cylindrical obstacle,
with a boundary layer extending from the front stagnation point in both directions
around the cylinder. Sufficiently near x = 0, the velocity U just outside the bound-
ary layer may be represented by the formula U = U1

x
�

, where U1 is a velocity and
� is a length determined by the overall flow; x is measured along the surface from
the stagnation point, see Fig. 4.4. This problem was also dealt with by Blassius
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S ≡ Stagnation point

Figure 4.4: The schematic description of boundary layer along a cylinder.

in 1908. The equations of motion and continuity (4.42) and (4.43) in steady state
flow, then become

u
∂u

∂x
+ v

∂u

∂y
= U1

x

�
+ ν

∂2u

∂y2
, (4.76)

∂u

∂x
+ ∂v

∂y
= 0, (4.77)

The boundary conditions needed here are:

y = 0, u = v = 0; x = 0, u = 0; y = ∞, u = U1

(x

�

)
. (4.78)

As before, we can look for a similarity solution in which

ψ =
(

νU1

�

) 1
2

xf (η),

η =
(

U1

ν�

) 1
2

y = R
1
2 (y/�).

The differential equation in the non-dimensional form with the boundary conditions
given by

f ′′′ + ff ′′ − f ′2 + 1 = 0, (4.79)

f (0) = f ′(0) = 0, f ′(∞) = 1 (4.80)
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Figure 4.5: The Hiemenz velocity profile (from [1]).

We also have the velocity components as

u = (U1x/�)f ′(η) = Uf ′(η)

v = −(νU1/�)
1
2 f (η).

The equation (4.79) is usually known as the Hiemenz (1911) equation, although
it was originally derived by Blasius. The method of solution is that described for
the Blasius equation, and the solution for the velocity profile f ′(η) is depicted here
in Fig. 4.3.

Remark

Given that f ′′(0) = 1.23259 for the Hiemenz solution, and that (η − f ) →
0.64790, the following quantities can be deduced:

τw = 1.23259μU1(U1/ν�)1/2x/�,

δ1 = 0.64790(ν�/U1)
1/2,

δ2 = 0.29234(ν�/U1)
1/2.

We note that the momentum and displacement thicknesses of the boundary layer are
not zero x = 0, but that they are constant. The reason for this is that the tendency
to thicken with increasing x due to viscous diffusion is precisely balanced by the
tendency to thin in the presence of a favourable pressure gradient.
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pm
2

Figure 4.6: The flow around a wedge

4.8.4 Steady flow along a wedge: the Falkner-Skan solutions

Falkner and Skan have noted that the solutions of the preceding problems are special
cases of a class of solutions for which

U(x) = Um(x/�)m,

this external velocity being attained for the values of 0 ≤ m ≤ 1 in the vicinity of
the apex of a wedge of semi-angle πm/2 upon which a uniform stream impinges
symmetrically, see Fig. 4.6.

We introduce a stream function

ψ =
(

2Uνx

m + 1

)1/2

f (η),

η =
{

(m + 1)U

2νx

}1/2

y,
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and after deriving the appropriate values of u, v, etc., and submitting these into the
momentum equation, it is found that

f ′′′ + ff ′′ + 2m

m + 1

(
1 − (f ′)2

)
= 0, (4.81)

with boundary conditions

f (0) = f ′(0) = 0, f ′(∞) = 1.

This particular form of the equation was first given by Hartree, the equation obtained
by Falkner and Skan differing therefrom to the extent of a linear transformation. It
is found that (4.81) has a unique solution when m is positive, but for negative values
of m there is more than one solution. Hartree calculated a range of solutions for
different values of m, including m = 1 (the Hiemenz solution), m = 0 (the Blasius
solution) and for negative m decreasing to m = −0.0904. For this last value of m,
it is found that

f ′′(0) = 0,

so that τw = 0 for all x. This solution therefore represents a flow whose external
velocity forces the boundary layer to be everywhere on the point of separation.

Remark

It is worth mentioning that the Falkner-Skan solutions are very valuable as special
cases, for each of which the solutions of the boundary layer equations depend
on the solution of a single ordinary differential equation, which can readily be
obtained with great accuracy. On the other hand, the solutions are of limited physical
significance. The Blasius solution, strictly speaking, is appropriate to flow in an
unbounded medium into which is introduced a plate of zero thickness. The Hiemenz
solution, although an exact solution of the Navier-Stokes equation, is strictly related
to flow towards an infinite plane, and for a finite body is correct only near to the
forward stagnation point. The Falkner-Skan solutions are valid near the apex of
the wedge of semi-angle πm/2, which immediately creates difficulties when m

is negative. We do not want to pursue this matter any further. Interested readers
are referred to Curle and Davies [1]. In the following section, we demonstrate the
Pohlhausen’s method of solving boundary layer equations.

4.9 Pohlhausen’s method

Pohlhausen’s method seems to be a practical method in solving boundary layer
equations. The methods discussed in the previous sections, although extremely
accurate, but it is most unlikely that they will, in themselves, be of any practical
use. The idea used by Pohlhausen consists essentially of making some sort of
plausible assumptions concerning the general shape of the velocity profile. Thus
we write

u

U
= f (η, ε1, ε2, ε3, · · · ) (4.82)
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where η = y/δ, and ε1, ε2, ε3, etc. are parameters to be determined; δ is the
characteristic length of boundary layer thickness. The greater accuracy depends
on the number of parameters we use; the more parameter we use the more accuracy
we can expect. For simplicity, Pohlhausen used a one parameter method, in which
chose

u

U
= f (η) = a0 + a1η + a2η

2 + a3η
3 + a4η

4. (4.83)

The boundary conditions which are satisfied by the true velocity profile are as
follows. At the edge of the boundary layer, y → ∞, we have u → U , and hence

∂u

∂y
,

∂2u

∂y2
,

∂3u

∂y3
, · · · → 0.

At the wall y = 0, the primary boundary conditions are

u = 0, v = 0.

Secondary boundary conditions are given by the momentum equation, namely,

μ

(
∂2u

∂y2

)
w

= dp

dx
= −ρU

dU

dx
,

and

(
∂3u

∂y3

)
w

= 0.

The coefficients in (4.83) are chosen by Pohlhausen to satisfy the conditions

u = 0,
∂2u

∂y2
= −U

μ

dU

dx
, when y = 0

and u = U,
∂u

∂y
= 0,

∂2u

∂y2
= 0, when y = δ.

Example 4.1

By direct substitution, it can be shown that when Pohlhausen’s boundary conditions
are used to determine the coefficients, (4.83) becomes

u

U
= f (η) = 2η − 2η3 + η4 + 1

6
Aη(1 − η)3,

where A = δ2

ν
dU
dx

.

Details are given below.
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Solution

The dimensionless form of the solution of the boundary layer equation is assumed
in quartic polynomial as

u

U
= f (η) = a0 + a1η + a2η

2 + a3η
3 + a4η

4.

where η = y
δ

. This solution has five unknown constants, namely, a0, a1, a2, a3, and
a4. Therefore we need five boundary conditions to determine these five constants
explicitly. According to Pohlhausen we can have these five boundary conditions,
two at the plate wall y = 0 and the other three at the edge of the boundary layer y =
δ(x). They can be written systematically in the non-dimensional form as follows.

η = 0 : f (0) = 0; f ′′(0) = −
(

δ2

ν

dU

dx

)
= −A

η = 1 : f (1) = 1; f ′(1) = f ′′(1) = 0.

Using these five conditions we get five algebraic equations to determine these
five constants. It is easy to verify that these constants are found as

a0 = 0,

a1 = 2 + A

6
,

a2 = −A

2
,

a3 = A

2
− 2,

and a4 = 1 − A

6
.

Thus using these values in the solution above, and after a little reduction we
obtain exactly

u

U
= f (η) = 2η − 2η3 + η4 + 1

6
Aη(1 − η)3.

If we use the cubic polynomial such as

u

U
= f (η) = a0 + a1η + a2η

2 + a3η
3

with four boundary conditions; two at the wall namely f (0) = 0 and f ′′(0) − A and
the other two at the edge of the boundary layer, namely f (1) = 1 and f ′(1) = 0,
we obtain

a0 = 0, a1 = 3

2
+ A

4
, a2 = −A

2
, a3 = −1

2
+ A

4
.
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The solution can be written as

u

U
= f (η) = 1

2
(3η − η3) + A

4
η(1 − η)2.

It will be hard to see how accurate these two solutions are unless tested with the
experimental data. However, we have to appreciate the efforts made by Pohlhausen
to determine the solution in a very simple way for such a complicated problem.

Now it can be easily deduced using the qartic polynomial solution that

τ = μU

δ

(
1 + 1

6
A

)
,

δ1 = δ

(
3

10
− A

120

)
,

δ2 = 1

315
δ

(
37 − A

3
− 5

14
A2
)

. (4.84)

By substituting into the momentum integral (4.52), it can be easily shown that
the resulting equation for δ (or A) may be written in the form

dZ

dx
= g(A)

U
+ Z2U ′′h(A),

or
dA

dx
= g(A)

U ′

U
+ (A + A2h(A))

U ′′

U ′ ,

where Z = δ2

ν
and g(A), h(A), are functions of A.

Concluding remarks

It is recognized that Pohlhausen’s method appears to give good results in region
of favourable pressure gradient. However, there are two criticisms that may be
levelled in his method. The first concerns the arbitrary choice as to which boundary
conditions shall be satisfied by the approximate velocity profile chosen. For a simple
instance, Pohlhausen, using a quartic polynomial, satisfies three conditions at the
edge of the boundary-layer, and two conditions at the wall. Suppose, instead, he had
chosen either a cubic velocity-profile and rejected one of the boundary conditions
at the wall, or a quintic profile, satisfying a further condition at the wall. It is hard to
predict the accuracy of the method unless the results are compared with available
experimental data. It is advisable therefore, to see the accuracy of the method, use
a cubic or quintic profile, satisfying the appropriate boundary conditions.

A second, and very practical, criticism of Pohlhausen method is that U ′′, the
second derivative of the external velocity U , appears explicitly in the formulation.
If U(x) is given analytically, this hardly matters, but if U(x) has been obtained
by experiment the resulting scatter will make it extremely difficult to obtain more
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than a very rough estimate of the second derivative. Fortunately, we can avoid this
difficulty by introducing the parameter

λ = U ′ δ2
2

ν
=
(

δ2

δ

)2

A.

The momentum integral equation may be written as

τw

ρ
= U2 dδ2

dx
+ UU ′(δ1 + 2δ2)

or
τwδ2

μU
= Uδ2

ν

dδ2

dx
+ U ′δ2

2

ν

(
δ1

δ2
+ 2

)
.

This can be further reduced to the following.

� = Uδ2

2ν

dδ2
2

dx
+ λ(H + 2)

where

� = τwδ2

μU
and H = δ1

δ2
. (4.85)

Thus we have

U
d

dx

(
δ2

2

ν

)
= U

d

dx

(
λ

U ′

)
= 2 (� − λ(H + 2)) = L. (4.86)

It is fairly easy to use the results (4.84), together with the definition of (4.85) and
(4.86), to deduce �, H and L as a function of λ.

Example 4.2

Approximate solutions to the boundary-layer equations may be obtained from the
momentum integral equation

τw

ρU2
= dδ2

dx
+ δ1 + 2δ2

U

dU

dx
,

using an approximate velocity-profile

u

U
= f (η) = a + b sin(πη/2) + c sin2(πη/2),

where η = y/δ.
Indicate how suitable values of a, b, c, may be obtained, and thence determine

the value of λ = U ′δ2/ν corresponding to the separation profile of this family.
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Solution

There are three arbitrary constants to be determined in this case. Therefore, we
need three boundary conditions of the boundary layer equations. These are two wall
conditions and one condition at the edge of the boundary layer will be sufficient to
determine these three constants.

We know that the boundary conditions are

η = 0, f (0) = 0; f ′′(0) = −A,

η = 1, f (1) = 1.

The solution is assumed as above and so we calculate the f ′ and f ′′:

f (η) = a + b sin(πη/2) + c

2
[1 − cos(πη)] ,

f ′(η) = bπ

2
cos(πη/2) + cπ

2
sin(πη),

f ′′(η) = −b
(π

2

)2
sin(πη/2) + c

π2

2
cos(πη).

Using the given boundary conditions, we obtain the values of a = 0, b = 1 + 2A

π2 ,

and c = − 2A

π2 .

Therefore

f (η) =
(

1 + 2A

π2

)
sin(πη/2) − 2A

π2
sin2(πη/2).

To determine the value of λ = U ′δ2
2/ν, we need to evaluate the momentum

thickness δ2(x) first. So let us calculate this important factor. By definition, we
have

δ2(x) =
∫ δ

0

u

U

(
1 − u

U

)
dy

= δ(x)

∫ 1

0
f (1 − f )dη

= δ(x)

∫ 1

0
(f − f 2)dη

= δ(x)

{∫ 1

0

[
(b sin(πη/2) + c sin2(πη/2))

− (b sin(πη/2) + c sin2(πη/2))2
]
dη

}

Now using the substitution πη/2 = θ such that dη = 2
π
dθ with the limits 0 ≤

θ ≤ π/2, we evaluate the integrals at once.
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Let

I1 = 2

π

∫ π/2

0
(b sin(θ) + c sin2(θ))dθ

= 2

π

(
b + c

π

4

)

Let

I2 = 2

π

∫ π/2

0
(b sin(θ) + c sin2(θ))2dθ

= 2

π

∫ π/2

0
[b2sin2θ + c2 sin4 θ + 2bc sin3 θ ]dθ

= 2

π

[
π

4
b2 + 3π

16
c2 + 4

3
bc

]

Hence the momentum thickness δ2(x) is given by

δ2(x) = 2

π
δ(x)

{(
b + c

π

4

)
−
[
π

4
b2 + 3π

16
c2 + 4

3
bc

]}

Once the value of δ2(x) has been determined the value of λ in question is obvious.

Example 4.3

If U = U0 (constant), and assuming an approximate velocity-profile

u = U tanh η, η = y/δ

determine the skin-friction using the momentum integral equation

τw

ρU2
= dδ2

dx
+ δ1 + 2δ2

U

dU

dx
.

Solution

When the external velocity U is uniform, the momentum integral equation reduces
to a simple form

τw

ρU2
= dδ2

dx
.
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Thus we need to evaluate only the δ2(x). By definition we have

δ2(x) =
∫ ∞

0

u

U

(
1 − u

U

)
dy

= δ(x)

∫ ∞

0
f (1 − f )dη

= δ(x)

∫ ∞

0
(tanh η − tanh2 η)dη

We know tanh2 η = 1 − sech2η and so inserting this relation into the integral,
we obtain

δ2(x) = δ(x)

∫ ∞

0
(tanh η − 1 + sech2η)dη

= δ(x)[ln(cosh η) − η + tanh η]∞0
= δ(x)[ lim

η→∞(ln(cosh η) − η) + 1]
= δ(x)[1 − ln 2]

Hence

τw

ρU2
0

= dδ2

dx
=
(

1 − ln 2

2

)(
U0x

ν

)− 1
2 = 0.153426

(
U0x

ν

)− 1
2

.

This is the required skin-friction.

4.10 Flow in laminar wakes and jets

There are many interesting problems that may be studied by means of boundary-
layer approximation. It is impossible to investigate many of these problems by the
method already discussed in this chapter. We shall consider the following interesting
and important physical problem in this section.

Let us consider the wake behind a flat plate, set parallel to a uniform stream. We
assume that Blasius boundary layers develop on either side of the plate, as illustrated
in Fig. 4.4. Downstream of the plate, the profile is distorted, since viscosity requires
it to be rounded at the plane of symmetry.The region of significant distortion diffuses
outwards at positions downstream, until a region of fully developed wake flow is
reached. We note that, mathematically, the change in profile downstream of the
trailing edge is characterized by a change in the boundary conditions from u = 0
when y = 0, to ∂u

∂y
= 0 when y = 0.

It is fairly clear that there are two transverse length scales in the adjustment region,
one characteristic of the overall wake thickness, and the other of the thickness of
the region. Clearly there is little hope of obtaining a simple mathematical solution
in this region. In the fully developed wake flow, however, it is fairly straightforward
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Figure 4.7: Flow in a laminar wake.

to obtain a solution which is valid asymptotically for larger values of x when the
wake has become wide and the velocity defect correspondingly small.

Let us assume that the wake spreads slowly, so that the boundary layer approxi-
mation holds, and we write

u = u0 + u′

v = v′

where squares, products and higher powers of u′, v′, are neglected. Then the con-
tinuity and momentum equations become

∂u′

∂x
+ ∂v′

∂y
= 0,

and u0
∂u′

∂x
= ν

∂2u′

∂y2
.

We now look for a solution in the following similarity form

u′ = Axmf (η), η = y
( u0

νx

)1/2
, (4.87)

and it is found, after substitution, that

f ′′ + 1

2
ηf ′ − mf = 0, (4.88)

with boundary conditions

f ′(0) = f ′′′(0) = f v(0) = · · · = 0,

and f (η) → 0 as η → ∞.
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The value of m can be found either mathematically or physically. Mathematically
we write (4.88) as

f ′′ + 1

2
ηf ′ + 1

2
f =

(
m + 1

2

)
f,

so that, integrating with respect to η from 0 to ∞,

[
f ′ + 1

2
ηf

]∞

0
= 0 =

(
m + 1

2

)∫ ∞

0
f dη.

Hence we have m + 1
2 = 0, i.e., m = − 1

2 , since
∫∞

0 f dη cannot be zero, being
proportional to the flux of mass defect in the wake.

Alternatively, the flux of momentum defect in the wake must be constant, since
there is no pressure gradient, as may be shown by integrating the momentum equa-
tion from y = 0 to y = ∞. Thus, after linearizing, we find that∫ ∞

0
u′dy = constant.

But, (4.87), ∫ ∞

0
u′dy ∝ xm+ 1

2

∫ ∞

0
f dη,

and this can only be constant when m = − 1
2 , the value given above.

With this value of m, (4.88) becomes

f ′′ + 1

2
ηf ′ + 1

2
f = 0,

which integrates twice to yield

f ((η) ∝ exp

(
−1

4
η2
)

.

Hence (4.87) becomes

u′ = Ax− 1
2 exp

(
−1

4
η2
)

, η = y
( u0

νx

)1/2
, (4.89)

for some constant A. To calculate A we note that the momentum thickness of half
of the wake is given, after linearizing, by

δ2 = −
∫ ∞

0

u′

u0
dy

= −A

(
πν

u3
0

)1/2

.
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Being constant along the wake, this equals its value at the trailing edge, so by setting
x = � in δ2 = 0.66412( νx

u0
)1/2, we find that

A = −
(

u2
0

πν

)1/2

δ2

= −0.66412

π1/2
u0�

1/2.

Finally, (4.89) then becomes

u′ = u0

{
1 − 0.66412

π1/2

(
�

x

)1/2

exp

(
−u0y

2

4νx

)}
.

Example 4.4

Repeat the above analysis for the analogous problem of flow in a two-dimensional
laminar jet, far from the orifice.

Solution

We assume that there is no pressure gradient along the jet, and use the boundary
layer approximation. Then the equations become

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2

∂u

∂x
+ ∂v

∂y
= 0.

We look for a similar solution in the following form

ψ = u0x
(u0x

ν

)m

f (η),

where η = y

x

(u0x

ν

)n

.

Substitution and simplification leads to(u0x

ν

)−m+n−1
f ′′′ + (m + 1)ff ′′ − (m + n)f ′2 = 0.

For consistency n = m + 1, and so

f ′′′ + (m + 1)ff ′′ − (2m + 1)f ′2 = 0.

The value of m then follows either mathematically or physically as before, and this
yields m = − 2

3 , so that the differential equation becomes

f ′′′ + 1

3
ff ′′ + 1

3
f ′2 = 0.
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Hence after two integrations, we find that

f = a tanh

(
1

6
aη

)
,

where the constant a may be related to the momentum flux in the jet. It can be
shown that the maximum velocity in the jet varies as x−1/3, and the mass flux in
the jet varies as x1/3, so that the jet must entrain air.

For further information on this topic, the reader is referred to the work of
Jen, Y. [2] to Rahman, M. [6] and Sarpkaya, T. [8] to Stoker, J.J. [11] as listed
in the reference section.

4.11 Exercises

1. Assume that the local velocity u(x, y) differs slightly from the value U(x) at
the edge of the boundary layer, then linearize the boundary layer equation in
the manner of Oseen to obtain

U
∂u

∂x
+ u

dU

dx
= 2U

dU

dx
+ ν

∂2u

∂y2
.

Seek a similar solution of this equation, for which the external velocity U

is U = βmξm, ξ = x/c, for some value of m. By choosing u = Uf ′(η) for
suitably chosen η, show that f satisfies the equation of the form

f ′′′ + 2m(1 − f ′) − 1

2
(m − 1)ηf ′′ = 0.

By obtaining, in effect, the equivalent momentum integral equation, deduce
that the resulting boundary layer is everywhere on the point of separation if
m = − 1

3 .
2. Assume that the boundary layer approximation may be applied, obtain the

equation governing flow in the wake behind a flat plate at zero incidence to a
uniform stream velocity U0. Deduce, from first principles that the momentum
integral equation takes the form

δ2 =
∫ ∞

0

u

U0

(
1 − u

U0

)
dy = 0.664

(
ν�

U0

)1/2

,

where � is the length of the plate and nu is the kinematic viscosity of the fluid.
3. Prove that W = Acos k(z + ih − ct) is the complex potential for the propa-

gation of simple harmonic surface waves of small height on water of depth
h, the origin being in the undisturbed free surface. Express A in terms of the
amplitude a of the small oscillations. Prove that c2 = g

k
tanhkh, and deduce

that every value of V less than (gh)
1
2 is the velocity of some wave. Prove that

each particle describes an elliptical path about its equilibrium position. Obtain
the corresponding result when the water is infinitely deep (Note: z = x + iy).
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4. Calculate the kinetic and potential energies associated with a single train of
progressive waves on deep water, and, from the condition that these energies
are equal, obtain the formula c2 = (gL/2π). Show how this result is modified
when the wavelength is so small that the potential energy due to surface tension
is not negligible.
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CHAPTER 5

Similarity analysis in fluid flow

Professor Carlos A Brebbia

Professor Carlos Brebbia graduated at the University of Litoral, Argentina.
He received his PhD in Civil Engineering at Southampton University, Eng-
land in 1968 and worked at MIT, USA and the Central Electrical Research
Laboratory, UK as well as the University of Princeton, USA.

Professor Carlos Brebbia was appointed as Lecturer at the University of
Southampton, UK, in 1969 and as senior lecturer in 1976 before becoming
a Reader in Computational Engineering. In 1979, he became Professor
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of Civil Engineering at the University of California at Irvine. He is now
Chairman of Computational Mechanics and Director of Wessex Institute of
Technology.

Professor Carlos Brebbia has written over 250 scientific papers, is author
or co-author of 13 books and editor or co-editor of over 80 other books.
He is an internationally well-known specialist in numerical methods, finite
and boundary elements and the computer solution of engineering problems.
Professor Carlos Brebbia is the Editor or co-editor of five scientific journals
and has carried out a great deal of consultancy work for the engineering
industry as well as having participated in many international projects and
conferences.

This chapter is dedicated to Professor Carlos Brebbia, the Founding
Director of the Wessex Institute of Technology, Ashurst Lodge, Ashurst,
Southampton, UK. He introduced the Boundary Element Method (known
as BEM) to solve engineering problems. For a couple of years he was in
the University of California, USA as Professor and then he left for Eng-
land to create Wessex Institute of Technology (WIT) in Ashurst for the post-
graduate students. He created the WIT Press for publication of high-level
research books and international conference papers. He dedicated his entire
life for higher education and learning to the benefit of young engineers and
scientists.

Because of his devotion to the higher learning and scholarship, I was very
impressed at his scientific endeavour and was associated with the institute
since 1980, and now I am a member of the Governing Council of WIT.
Professor Brebbia has published numerous scientific papers and books as
mentioned above. It is worth noting that he organizes every year about 30
international conferences in various engineering subjects in different cities
in the world. Through his service, many graduate students, scientists and
engineers around the world derive benefits. It is my pleasure to dedicate this
chapter of my fluid mechanics memoir to this elite person for his unparallel,
unmatched, unique and extraordinary innovative contributions to the world
of science and engineering and also for his loving care to the higher learning
and scholarship.

5.1 Introduction

In this chapter we discuss a very important fluid flow problem of physical interest.
In the last chapter we devoted significantly to the development of boundary layer
theory in two-dimensional fluid flow. As we have seen in the previous chapter,
considerable amount of knowledge about similar solutions is needed and so we
considered the fundamentals of the similarity technique and how this method can
be used in real physical problems. We discussed the problem of natural convection
flow with diffusion and chemical reactions in an infinite vertical plate and the
solutions are obtained using the similarity technique. The main idea of this method
is to reduce the dimension of the problem by one and then use analytical procedure
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or numerical method to get the solution in the similarity variables. This is exactly
what we have done in this problem.

5.2 Concept and definition of heat and mass diffusion

Boundary value problems involving the principles of heat and mass diffusion in a
fluid medium, where the results are directly influenced by the process of fluid motion
may in general be termed convection process. If the motion of the fluid is determined
by the boundary conditions specified externally to the system, such as forcing air
through a passage in which an external pressure gradient is specified, the process is
called forced convection. Otherwise, if the fluid velocities are caused by the effects
of gravity force, i.e. by the interaction of a body force with variable density arising
from heat or mass diffusion, then the process is called natural convection.

The phenomena of natural convection can be observed in the atmosphere, in
bodies of water, adjacent to domestic heating radiators or over sun-heated fields
and roads. The basic equations which describe natural convection flows are similar
to those of other fluid flows and diffusion processes, with the essential difference
that, in natural convection, the motion of a fluid arises from buoyancy and not
from an imposed motion or pressure gradient. The fundamental equations and their
boundary layer approximations for natural convection flows are derived in the
following section.

The characteristic numbers of natural convection flows which are commonly
used are as follows:

Local Grashof number: Grx = gβ ∗ (c0 − c∞)x3

ν2

Local Nusselt number: Nux = J ′′(x)

(c0 − c∞)x3

( x

D

)

Local reaction rate number: ε(x) = 2k(c0 − c∞)n−3/2

√
gβ∗ x1/2

Schmidt number: Sc = ν

D

Prandtl number: Pr = ν

α

where g is the acceleration due to gravity, β∗ is the volumetric coefficient of expan-
sion with concentration species, c0 is the species concentration at the plate surface,
c∞ is the species concentration at the ambient fluid, x is the coordinate length along
the plate, ν is the kinematic viscosity of the fluid, D is the chemical molecular dif-
fusivity, α is the thermal molecular diffusivity, J ′′(x) is the local mass flux, k is the
chemical reaction-rate constant and n is the order of reaction.

The quantity

Gr = gβ∗(c0 − c∞)L3

ν2
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where L is a characteristic length of the plate, is known as the Grashof number.
This number is a measure of the vigor of the flow induced due to buoyancy-effects.
It arises in the forced momentum balance as the ratio of the relative magnitudes
of viscous force and the inertia force. The Grashof number of natural convection
flow is analogous to the Reynolds number of forced flow,

√
Gr corresponds to R.

The characteristic feature of this number is that stability and transition are defined
in the limits of this number. The quantities Pr = ν

α
and Sc = ν

D
are defined as

the Prandtl and Schmidt numbers, respectively. The former one occurs in energy
equation whereas the latter one occurs in mass-diffusion equation. These numbers
are the indicators of the steepness of the gradient of temperature and concentration,
respectively, in the flow field. As for instance, for high Prandtl number fluids, the
temperature gradient is much steeper than that for low Prandtl number fluids.

The local mass flow per unit area (mass flux) from the surface of the plate to the
fluid may be calculated from Fick’s first law of diffusion:

J = −D∇c,

which is the three-dimensional form of Fick’s law. For a two-dimensional case,
if we assume that the mass flux component parallel to the surface is very small
compared to that perpendicular to the surface, then the mass flux from the plate to
the fluid may be written as

J ′′(x) = −D

(
∂c

∂y

)
y=0

.

It is customary to express mass transfer characteristics in terms of a mass transfer
coefficient h, defined as the mass transfer per unit area (i.e., mass flux) divided
by the concentration difference causing the mass-transfer. Since the flux is often
variable over the surface even for a uniform concentration difference, the mass
transfer coefficient h varies over the surface. Therefore, one may speak of local
values hx or of average values h. This local value is given by

hx = J ′′(x)

c0 − c∞
= − D

c0 − c∞

(
∂c

∂y

)
y=0

.

Multiplying through by x
D

, a dimensionless combination is found which is called
the local Nusselt number (a mass transfer parameter):

Nux = hxx

D
.

The average mass transfer coefficient h from x = 0 to � may be determined from
the following integral:

h = average mass flux

average concentration difference
=

(
1
�

∫ �

0 J ′′(x)dx
)

(
1
�

∫ �

0 (c0 − c∞)dx
) .
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Thus the average transport parameter is given by

Nu� = h�

D
,

which is a measure of mass flow per unit area from the surface of the plate to the
fluid in dimensionless form. The quantity

2k(c0 − c∞)n−3/2x1/2

√
gβ∗

arises as an indication of the relative importance of the chemical reaction-rate in
the mass diffusion equation and is called the reaction-rate number.

5.3 General statement of the problem

We consider a steady two-dimensional laminar viscous flow over a semi-infinite ver-
tical plate immersed in an ambient fluid. It is assumed that a homogeneous isother-
mal irreversible chemical reaction of nth order takes place between the chemical
constituents of plate and fluid.

Further, we assume the following: the fluid is Newtonian; two-dimensional lam-
inar steady flow is considered; the physical properties associated with the prob-
lem such as viscosity, diffusivity, etc. are constant; the Boussinesq approximation
is taken into consideration for buoyancy effects, which implies the small density
changes in the gravitational field; the reaction number is assumed small; static pres-
sure gradients arising from the convection currents are neglected; inertial forces
in the convective field are assumed to be in balance with buoyancy and viscosity
forces; and there is no externally applied pressure gradients.

A change in chemical composition of the fluid near the surface of the plate
is considered to produce lighter fluid there, which rises as the buoyancy force
overcomes gravity force resulting in an upward moving particle. If a heavier fluid
were produced the reverse effect would be observed but the mathematical problem
be essentially the same. The chemical species is first transferred from the plate to the
ambient fluid by diffusion and then carried away by induced convection currents.
A distinguishing feature of this problem is that when a chemical reaction occurs in
the bulk of the fluid, the diffusing species may be depleted, whereas in problems
without chemical reaction, no such effect is possible. The basic equations which
govern this process derive from the following principles:

(i) conservation of mass (fluid);
(ii) conservation of momentum;

(iii) conservation of mass (species)- i.e., Fick’s second-law of diffusion; and
(iv) appropriate law of chemical reaction.
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The boundary layer equations governing this chemical diffusion problem are
given by

∂u

∂x
+ ∂v

∂y
= 0, (5.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ gβ∗C, (5.2)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− kCn, (5.3)

where C = c − c∞. The relevant boundary conditions are:

y = 0, u = v = 0, for all x (no slip condition), (5.4)

y → ∞ u = v = 0, for all x (uniformity at ∞). (5.5)

y → ∞ C → 0, for all x (uniformity at ∞). (5.6)

Further, C = C0(x) is prescribed at the plate surface y = 0. Here C0(x) is a given
function of x representing the concentration distribution prescribed along the plate.
The velocity field and the concentration distribution are illustrated in Fig. 5.1
and 5.2.

5.4 Similarity analysis of the basic equations

Introducing the stream function ψ(x, y) defined by u = ∂ψ
∂y

, and v = − ∂ψ
∂x

into the
above boundary value problem we obtain

∂ψ

∂y

∂2ψ

∂y∂x
− ∂ψ

∂x

∂2ψ

∂y2
= ν

∂3ψ

∂y3
+ gβ∗C, (5.7)

∂ψ

∂y

∂C

∂x
− ∂ψ

∂x

∂C

∂y
= D

∂2C

∂y2
− kCn, (5.8)

with boundary conditions

y = 0 : ∂ψ

∂y
= ∂ψ

∂x
= 0,

y = 0 : C = C0(x), (5.9)

y → ∞: ∂ψ

∂y
= ∂ψ

∂x
= 0,

y → ∞: C = 0. (5.10)
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x

y

Figure 5.1: Physical plane of velocity field in natural convention.

Consider the following one-parameter transformation group,

x̂ = amx

ŷ = aly

ψ̂ = apψ

Ĉ = aqC (5.11)

where a is a parameter and the exponents m, l, p and q are all constants. Then we
have the following quantities:

ψy = a−p+l ψ̂ŷ ,

ψyy = a−p+2l ψ̂ŷŷ ,

ψyyy = a−p+3l ψ̂ŷŷŷ ,

ψx = a−p+m ψ̂x̂,
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x

y

C0

C∞

u = 0u = 0

Concentration distribution

Velocity distribution

Figure 5.2: Velocity and concentration distributions in the physical plane.

ψyx = a−p+m+l ψ̂ŷx̂ ,

Cx = a−q+m Ĉx̂,

Cy = a−q+l Ĉŷ ,

Cyy = a−q+2l Ĉŷŷ . (5.12)

Here the subscript notations are meant for the partial derivatives. Substituting (5.12)
into the equations (5.7) and (5.8), after a little reduction we obtain

ψ̂ŷ ψ̂ŷx̂ − ψ̂x̂ ψ̂ŷŷ = νap−m+l ψ̂ŷŷŷ + a−q+2p−2l−mgβ∗Ĉ (5.13)

ψ̂ŷ Ĉx̂ − ψ̂x̂ Ĉŷ = Dal−m+pĈŷŷ − ka−nq+p+q−l−mĈn (5.14)

It (5.13) and (5.14) are invariant under the transformation group (5.11), then we
must have

p = m − l

q = m − 4l

m

l
= 6 − 4n

1 − n
(5.15)
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Now consider the following group of independent variables:

x̂αŷβ = aαm+βl(xαyβ).

This group will be invariant if α = − β
γ

, where

γ = m

l
= 6 − 4n

1 − n
. (5.16)

Thus we have the following possible similarity variables:

η(x, y) = k1e
−k2(yx−1/γ )β (5.17)

η(x, y) = k2(yx−1/γ )β (5.18)

where k1, k2 and β are arbitrary constants.
Next consider the complete group with respect to the stream function ψ(x, y),

x̂μ1 ŷμ2ψ̂μ3 = amμ1+lμ2+pμ3(xμ1yμ2ψμ3).

This group will be invariant if

μ3 = −μ2 + γμ1

γ − 1
.

Without loss of generality, choose μ2 = 0, and μ1 = 1. With this choice we can
write the transformation of the stream function ψ(x, y) as follows:

ψ(x, y) = λ1x
γ−1
γ f1(η) (5.19)

where λ1 is an arbitrary constant and f1(η) is a function of η alone.
Similarly, we can write the transformation of the concentration distribution as

follows:
C(x, y) = λ2x

γ−4
γ f2(η) (5.20)

where λ2 is an arbitrary constant, and f2(η) is another function of η alone. These
general transformation group (5.17), (5.18), (5.19) and (5.20) are found to be valid
except for the order of reaction n = 1, 3

2 and n = 5
3 .

Using relations (5.17), (5.19) and (5.20), the boundary conditions (5.9) and (5.10)
imply that

η = 0 : f1(0) = 0,

f2(0) = 0, (5.21)

η = k1 : f1(k1) = 0,

f ′
1(k1) = 0,

f2(k1) = 1

λ2

{
x

4−γ
γ C0(x)

}
. (5.22)
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Also using relations (5.18), (5.19) and (5.20), the boundary conditions (5.9) and
(5.10) would require that

η = 0 : f1(0) = 0,

f ′
1(0) = 0,

f2(0) = 1

λ2

{
x

4−γ
γ C0(x)

}
. (5.23)

η = ∞ : f1(∞) = 0,

f2(∞) = 0. (5.24)

5.4.1 Use of the similarity variable η(x, y) = k1e
−k2(yx−1/γ )β

Thus for β = 1, with the transformations (5.17), (5.19) and (5.20), the following
ordinary differential equations result:

The momentum equation is

λ1k2β

(
γ − 2

γ

)(
− ln(η/k1)

k2

) β+1
β

(ηf ′
1)

2

+ λ1(β − 1)

(
γ − 1

γ

)(
− ln(η/k1)

k2

) 1
β

ηf1f
′
1

− λ1k2β

(
γ − 1

γ

)(
− ln(η/k1)

k2

) β+1
β

(ηf1f
′
1 + η2f1f

′′
1 )

= −ν

[
(β − 1)(β − 2)ηf ′

1 − 3k2β(β − 1)

(
− ln(η/k1)

k2

)
(ηf1 + η2f1)

+ k2
2β2

(
− ln(η/k1)

k2

)2

(ηf ′
1 + 3η2f ′′

1 + η3f ′′′
1 )

]

+ gβ∗λ2

λ1k2β

(
− ln(η/k1)

k2

) 3−β
β

f2 (5.25)

The mass-diffusion equation is

λ1λ2k2β

(
− ln(η/k1)

k2

) β−1
β
(

γ − 1

γ
ηf1f

′
2 − γ − 4

γ
ηf ′

1f2

)

= −Dλ2βk2

⎡
⎣(β − 1)

(
− ln(η/k1)

k2

) β−2
β

ηf ′
2

−k2β

(
− ln(η/k1)

k2

) 2β−2
β

(ηf ′
2 + η2f ′′

2 )

⎤
⎦− kλn

2f n
2 (5.26)
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For β = 1, equations (5.25) and (5.26) reduce to the following simple forms:

The momentum equation is

f ′
1 + 3η2f ′′

1 + η3f ′′′
1 − f2

+
{

γ − 2

γ
(ηf ′

1)
2 − γ − 1

γ
(ηf1f

′
1 + η2f1f

′′
1 )

}
= 0 (5.27)

The mass-diffusion equation is

1

Sc

{
ηf ′

2 + η2f ′′
2

}
+ γ − 4

γ
ηf ′

1f2 − γ − 1

γ
ηf1f

′
2 −

(
kλ

n−3/2
2√
gβ∗

)
f n

2 = 0. (5.28)

5.4.2 Use of the similarity variable η(x, y) = k2(yx−1/γ )β

In this case again, for β = 1, with the transformation (5.18), (5.19) and (5.20), we
obtain the following ordinary differential equations:

The momentum equation is

νEβ2f ′′′
1 = 2β(2 − n)η

1−β
β f ′2

1 − (β − 1)(5 − 3n)η
1−2β

β f1f
′
1

− β(5 − 3n)η
1−β
β f1f

′′
1

− νE
(
(β − 1)(β − 2)η−2f ′

1 + 3β(β − 1)η−1f ′′
1

)
− gβ∗Mη

3(1−β)
β f2 (5.29)

The mass-diffusion equation is

DEβf ′′
2 = η

1−β
β
{
2f ′

1f2 + (3n − 5)f1f
′
2

}
− DE(β − 1)η−1f ′

2 + kGη
2 1−β

β f n
2 (5.30)

where

E = k
1/β

2 (6 − 4n)

λ1

M = λ2(6 − 4n)

βλ2
1k

2/β

2

G = λn−1
2 (6 − 4n)

βλ1k
1/β

2
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For β = 1, equations (5.29) and (5.30) reduce to the simple forms:

f ′′′ + f2 + γ − 1

γ
f1f

′′
1 − γ − 2

γ
f ′2

1 = 0, (5.31)

1

Sc
f ′′

2 + γ − 1

γ
f1f

′
2 − γ − 4

γ
f ′

1f2 − kλn−1
2

νk2
2

f n
2 = 0. (5.32)

The boundary conditions for (5.29) and (5.30) or for (5.31) and (5.32) are given
by (5.23) and (5.24).

Remark

Examination of the boundary conditions (5.22) and (5.23) reveals that similar-
ity analysis based on the transformation group (5.11) is not meaningful when
(a) C0(x) = constant, i.e., uniform concentration along the plate; (b) C0(x) =
F(x), i.e., the most general condition where F is an arbitrary function of x alone.
However, a tractable problem can be obtained provided that

C0(x) = Nx
γ−4
γ (5.33)

It appears from this analysis that a formal simplification of the problem using
similarity analysis with the simplified transformation group (5.11), that is a precise
definition of the problem in terms of ordinary differential equations, is possible
only if the initial concentration is described along the plate according to (5.33).
This would be useful in the case where the prescribed distribution approximates a
simple power-law where the form depends on the particular order of reaction of the
system. In practice, depending on the particular chemical constituents chosen, it
may or may not be possible to achieve and maintain in steady-state a concentration
distribution along the plate in accordance with (5.33), such as to permit useful
application of this approach. The mathematical treatment is valid, however, and
some theoretical inferences may be of considerable academic interest.

5.5 Natural convection flow along a vertical plate

A study of laminar natural convection flow over a semi-infinite vertical plate at
constant species concentration is examined. The plate is maintained at a given con-
centration of some chemical species while convection is induced by diffusion into
and chemical reaction with the ambient fluid. In the absence of chemical reaction,
a similarity transform is possible. When chemical reaction occurs, perturbation
expansions about an additional similarity variable dependent on reaction rate must
be employed. Two fundamental parameters of the problem are the Schmidt number,
Sc, and the reaction order, n. Results are presented for the Schmidt number ranging
from 0.01 to 10000 and reaction order up to 5. In the presence of a chemical reac-
tion, the diffusion and velocity domains expand out from the plate. This results in
a larger, less distinct convection layer.
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Natural Convection flow near a semi-infinite vertical plate has been studied
extensively in the existing literature [5–7, 9, 15]. These studies have included
the effect of temperature gradients on the flow of fluid medium. Situations where
the plate is held at uniform temperature, as well as with a step change in wall
temperature, have been studied [13, 16]. Yang et al. [21] extended the study to
include a nonisothermal vertical plate immersed in a temperature stratified medium.
Kulkarni et al. [11] considered natural convection flow over an isothermal vertical
wall immersed in a thermally stratified medium. Angirasa et al. [2] studied heat
and mass transfer by natural convection adjacent to vertical surfaces situated in
fluid-saturated porous media. They give special attention to opposing buoyancy
effects of the same order and unequal thermal and species diffusion coefficients.
Their numerical results support the validity of the boundary layer analysis for high
Rayleigh number aiding flows and for opposing flows when one of the buoyant
forces overpowers the other.

Levich [14] reported on a problem of steady-state natural convection induced by
chemical diffusion. In this formulation, the plate was held at zero concentration of
a chemical species, A, containing catalytic substances. Upon contact with a fluid
solution, a heterogeneous chemical reaction occurs at the plate which in the presence
of a gravitational field led to natural convection flow near the plate. Kostin and Gray
[10] studied the problem in which a homoegeneous chemical reaction takes place in
a vertical, adiabatic, steady-state flow reactor. They observed that the release of heat
by the chemical reaction(exothermic reaction) sets up density gradients which cause
natural convection flow to be superimposed on the laminar up-flow. In their analysis,
they observed that the heat generated by the chemical reaction caused temperature
gradients which produced density gradients which in turn caused natural convection
flow to be superimposed on the laminar up-flow. Gebhart and Pera [7] investigated
natural convection flows caused by the simultaneous diffusion of thermal energy
and of chemical species. They assumed small species concentration levels and
showed that the Boussinesq approximations led to similarity solutions similar in
form to those found for single buoyancy mechanism flows.

Meadley and Rahman [15] considered the effects of chemical diffusion and
reaction from a vertical plate and presented analytical and numerical solutions
for the ranges 10−2 ≤ Sc ≤ 104 and 0 ≤ n ≤ 5. They found that the presence of
chemical reaction expanded the diffusion and velocity domains out from the plate
resulting in a larger, less distinct convection layer. Additional work in this direction
has not been actively pursued in recent years. The present work examines natural
convection flow in the presence of both chemical reaction and diffusion and the
resulting flow patterns. Of particular interest is the observed flow reversal for higher
Schmidt numbers.

5.6 Mathematical formulation

A vertical plate is composed of a chemical species maintained at a given concen-
tration and immersed in a fluid. The ambient fluid is similarly maintained at a
constant but distinct concentration away from the plate. The species on the plate
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is first transferred from the plate to the adjacent fluid by diffusion after which a
homogeneous isothermal irreversible chemical reaction of order n is assumed to
occur in the fluid between the constituents of the plate and fluid. We have made the
following assumptions:

• the fluid is Newtonian
• two-dimensional laminar steady flow is considered
• the physical properties associated with the problem, such as viscosity, Diffusiv-

ity, etc. are assumed constant
• the Boussinesq approximation is taken into consideration for buoyancy effects,

which implies small variations in the properties which lead to buoyancy forces
• the reaction number is small
• the static pressure gradients arising from the convection currents are neglected.

A change in chemical composition of the fluid near the surface of the plate
produces a lighter fluid which rises due to the induced buoyancy forces. The result
is an upward movement of fluid particles near the plate surface. If a heavier fluid is
produced, the reverse effect is observed but the mathematical formulation is still the
same. When a chemical reaction occurs in the bulk of the fluid, the diffusing species
may be depleted. The equations governing the flow are derived from conservation
of mass (fluid and species) and momentum. They can be written as [15]:

∂U

∂X
+ ∂V

∂Y
= 0 (5.34)

U
∂U

∂X
+ V

∂U

∂Y
= gβ∗(C − C∞) + ν

∂2U

∂Y 2
(5.35)

U
∂C

∂X
+ V

∂C

∂Y
= Ċ

′′′ + D
∂2C

∂Y 2
(5.36)

where X is the coordinate chosen vertically upwards along the plane, Y is the
horizontal coordinate perpendicular to X, U is the velocity component along X,
V the velocity component along Y , C is the species concentration, C∞ the species
concentration at infinity, D is the diffusion coefficient, ν the dynamic viscosity,
g the acceleration due to gravity, β∗ is the volumetric expansion of concentration
and Ċ

′′′
is the reaction rate term. The reaction rate term Ċ

′′′
represents the reaction

kinetics of the system whose overall reaction is described by the power-law model.
This term takes the form

Ċ
′′′ = −k(C − C∞)n

where k is the reaction rate constant and n the order of the reaction (see Aris [4]
for details). To completely describe the problem, suitable boundary conditions are
required. These are given by

at Y = 0, U = V = 0, ∀X (no slip condition)
at Y → ∞, U = V = 0, ∀X (uniformity at ∞)

and (C − C∞) → 0, ∀X (uniformity at ∞)

⎫⎬
⎭ (5.37)



Similarity Analysis in Fluid Flow 163

In addition, at the plate surface Y = 0,

C = C0(X) (5.38)

The nature of the function C0(X) along the plate length may be subject to severe
limitations which arise from the chemical kinetics involved in setting up steady-
state conditions for a given species and ambient fluid. For the formulation of the
mathematical model, the concentration of the species at the plate surface is main-
tained (by some external means) at uniform concentration C0. Using the definition
of the two-dimensional stream function ψ(X, Y ) as U = ψY and V = −ψX, the
governing equations (5.34)–(5.36) can be simplified as follows:

ψY ψYX − ψXψYY = νψYYY + gβ∗(C − C∞) (5.39)

ψY CX − ψXCY = DCYY − k(C − C∞)n (5.40)

The boundary conditions (5.37)) and (5.38) are:

Y = 0 : ψY = ψX = 0
C = C0(X)

}
(5.41)

Y → ∞ : ψY = ψX = 0
C − C∞ = 0

}
(5.42)

The following similarity transformations are then introduced into the above
equations:

c = C − C∞
C0 − C∞

(5.43)

η(X, Y ) = Y

X

{
Grx

4

}1/4

(5.44)

ψ(X, Y ) = 4ν

{
Grx

4

}1/4

f (η) (5.45)

where

Grx = gβ∗X3(C0 − C∞)

ν2
. (5.46)

Here c is the dimensionless species concentration, η is the similarity variable,
f (η) is the dimensionless stream function and Grx is the Grashof number. Grashof
number represents the vigour of the buoyancy force exerted on the fluid. The trans-
formations produce the ordinary differential equations shown below [8].

f ′′′ + c + 3ff ′′ − 2f ′2 = 0 (5.47)

c′′

Sc
+ 3f c′ − ε(X)cn = 0 (5.48)
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where

ε(X) = 2k(C0 − C∞)n−3/2

√
gβ∗ X1/2

and Sc = ν
D

is the Schmidt number.
In the absence of chemical reaction, the similarity analysis is complete. How-

ever, in the presence of a chemical reaction, the local reaction-rate number, ε(X),
may be considered arbitrarily small depending on the “ smallness” of the reaction.
Most chemical species with slow reaction rate have small reaction numbers. As
an example, chemicals such as sodium chloride or potassium chloride with dilute
acids, and sugar with dilute acids can be categorised in this class of species. Recall
that the basic perturbation expansion is [20]

c(η, ε) = c0(η) + ε(X)c1(η) + ε2(X)c2(η) + . . . (5.49)

Suppose | c2
c1

| ≤ K , where K is the upper bound which is known numerically for
all η in the calculation. Assume that limη→∞ | c2

c1
| = 0 and that the perturbation

expansion (5.49) is a convergent series. If we let∣∣∣∣ε2(X)c2(η)

ε(X)c1(η)

∣∣∣∣ ≤ 0.1%, say, for 0 < η < ∞

so that the error in using the truncated solution

c = c0(η) + ε(X)c1(η) (5.50)

is of order 0.1% or |ε(X)| < 0.001| c1(η)
c2(η)

|. Since | c1
c2

| has the lower bound 1
K

, we
therefore require that

|ε(X)| ≤ 0.001

K
(5.51)

in order to ensure the desired accuracy. Let 0.001
K

= ξ , so that 0 < |ε(X)| ≤ ξ and
ε(X) must be of order ξ . But the requirement

|ε(X)| = 2k(C0 − C∞)n−3/2

(gβ∗)1/2
|X1/2| ≤ ξ

implies that 0 < x ≤ ξ2, where x = 4k2(C0−C∞)2n−3

gβ∗ X would appear to be the
approximate non-dimensional plate coordinate. Thus, a solution may be possible by
perturbation expansion about ε(X) of the order ξ - provided attention is confined
to the region downstream of leading edge given by 0 < x ≤ ξ2. In this chapter,
we have used the value of ε(X) = 0.01. With these additional observations, the
similarity transformations take the form

c(X, Y ) = c(η, ε) (5.52)

ψ(X, Y ) = 4ν

{
Grx

4

}1/4

f (η, ε) (5.53)
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where

η(X, Y ) = Y

X

{
Grx

4

}1/4

(5.54)

ε(X) = 2k(C0 − C∞)n−3/2

√
gβ∗ X1/2 (5.55)

These transformations can be combined with a regular perturbation scheme about
ε as shown below. Since we are considering a regular perturbation problem, there
is no need for the matching of layers or for multiple scales.

f (η, ε) = f0(η) + εf1(η) + ε2f2(η) + . . . (5.56)

c(η, ε) = c0(η) + εc1(η) + ε2c2(η) + . . . (5.57)

The transformations combined with the perturbation expansions about ε lead to the
following sets of ordinary differential equations up to first order in ε:

• Zeroth-order approximation

f ′′′
0 + c0 + 3f0f

′′
0 − 2f ′

0
2 = 0 (5.58)

c′′
0 + 3Scf0c

′
0 = 0 (5.59)

• First-order approximation

f ′′′
1 + c1 + 5f1f

′′
0 + 3f0f

′
0

2 = 0 (5.60)

c′′
1 + Sc(5f1c

′
0 + 3f0c

′
1 − 2c1f

′
0 − c0

n) = 0 (5.61)

These equations parallel to those found in Gebhart et al. [8] and Merkin and Mah-
mood [17]. Note that for the first order equations, there are terms from the zeroth-
order equations coupled with first order terms. For each subsequent order (second,
third, etc.) the equations will contain terms from the previous orders coupled with
the present order terms as seen in this case. The boundary conditions for these
approximations may be written as

at η = 0 : fr(0) = 0
f ′

r (0) = 0
c0(0) = 1

cr+1(0) = 0

⎫⎪⎪⎬
⎪⎪⎭ (5.62)

when η → ∞, f ′
r (∞) = cr(∞) = 0 where r = 0, 1.

Equations (5.58) to (5.61) have been integrated numerically using the classical
fourth-order Runge-Kutta method in combination with the shooting technique for
determining correct initial conditions. These initial conditions at the surface are
needed so that the asymptotic boundary conditions may be satisfied. The results
are presented for the case where no chemical reaction occurs and when chemical
reactions of order up to n = 5 occur.
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It must be noted that it is possible to obtain equations with fractional reaction
orders, i.e. n = 1

2 , n = 3
2 , etc. This further analysis has been performed by the

authors and is to be presented for publication in a later work. In the fractional
reaction order case, a similarity analysis is used with a group theoretic approach
to obtain the relevant equations for each reaction order. The equations obtained
through this analysis can be solved using the same numerical technique described
in the present work. For the benefit of the reader a general numerical scheme has
been presented in the following section.

5.7 Method of numerical solution

These approximations have been integrated numerically for various Schmidt num-
bers and reaction orders using a Runge-Kutta integration scheme to correct for
assumed starting values of the initial conditions at the surface. The general forms
of the equations to be treated are:

f ′′′(η) = F(f ′′, f ′, g′, f, g, η) (5.63)

g′′(η) = G(f ′′, f ′, g′, f, g, η) (5.64)

with the initial and asymptotic boundary conditions (5.62). With the two asymptotic
boundary conditions, it was necessary to assume starting values for the two missing
conditions at η = 0 that were required. Let

A = f ′′(0) (5.65)

B = g′(0) (5.66)

to fulfill the requirement that

lim
η→∞ f ′(A, B, η) = f ′∞(A, B) = 0 (5.67)

lim
η→∞ g(A, B, η) = g∞(A, B) = 0 (5.68)

If it is assumed that A1 and B1 are trial values of A and B such that

A = A1 + h

B = B1 + k

where h and k are small and thus by (5.67) and (5.68) we have

f ′∞(A1 + h, B1 + k) = 0 (5.69)

g∞(A1 + h, B1 + k) = 0 (5.70)

In addition, to satisfying the asymptotic boundary conditions, it was assumed that
the gradients of (5.69) and (5.70) were zero at infinity. This leads to

f ′′∞(A1 + h, B1 + k) = 0 (5.71)

g′∞(A1 + h, B1 + k) = 0 (5.72)
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Taylor’s expansions for small h and k were then applied to equations (5.69) to
(5.72). In matrix form, the problem may be expressed as:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f ′∞
∂A

∂f ′∞
∂B

∂g∞
∂A

∂g∞
∂B

∂f ′′∞
∂A

∂f ′′∞
∂B

∂g′∞
∂A

∂g′∞
∂B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
h

k

)
= −

⎛
⎜⎜⎝

f ′∞(A, B)

g∞(A, B)

f ′′∞(A, B)

g′∞(A, B)

⎞
⎟⎟⎠ (5.73)

The application of the least squares method yields the least square error shown
below. The partial derivatives appearing in the solutions of h and k can be obtained
by integrating the perturbed differential equations with their appropriate initial
conditions. From equations (5.63) and (5.64) we obtain the perturbed differential
equations for theA-derivatives with the initial conditions as shown in the following:

∂f ′′′

∂A
= ∂F

∂f ′′
∂f ′′

∂A
+ ∂F

∂f ′
∂f ′

∂A
+ ∂F

∂g′
∂g′

∂A
+ ∂F

∂f

∂f

∂A
+ ∂F

∂g

∂g

∂A
(5.74)

∂g′′

∂A
= ∂G

∂f ′′
∂f ′′

∂A
+ ∂G

∂f ′
∂f ′

∂A
+ ∂G

∂g′
∂g′

∂A
+ ∂G

∂f

∂f

∂A
+ ∂G

∂g

∂g

∂A
(5.75)

η = 0 : ∂f

∂A
= ∂f ′

∂A
= ∂g′

∂A
= ∂g

∂A
= 0

∂f ′′

∂A
= 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.76)

Perturbed differential equations for the B-derivatives with appropriate initial con-
ditions were obtained from equations (5.63) and (5.64). To correct the trial values
of A1 and B1, the original equations (5.63) to (5.66) with the perturbed equations
for A and B with their appropriate initial conditions were integrated simultaneously
up to a certain suitable point. At this point, the trial values of A1 and B1 were cor-
rected to refine the solution. After two or three iterations at the same point where
the least-square error appeared to be steady, the integration range was extended and
the process repeated up to the extended point. This iterative process was continued
until the desired solution accuracy was obtained.

5.8 Numerical results

The results obtained by the numerical solution procedure introduced in the preced-
ing section are fairly consistent with that in the literature. The convergence of the
procedure is fairly rapid and is found to depend upon the choice of step-size. It is
observed that for larger step-sizes, convergence is slower than when smaller step-
sizes are used. This seems to indicate some stiffness in the solution. The graphical
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output of the results reveals that there is a great degree of variability in the solution
close to the plate surface. The results obtained here are similar to those obtained
by Kostin and Gray [10] although the geometries are different. They found that
the flow affects the concentration and temperature distributions which in turn can
affect the flow. Their analysis included a homogeneous chemical reaction which
was exothermic and thus caused temperature gradients which in turn produced den-
sity gradients. The present analysis involves a constant temperature formulation. It
is observed that the velocity profile in the present analysis is also parabolic near the
wall. However, unlike the procedure in their case, rapid convergence is obtained
with the correct choice of step-size.

The results are comparable to those found in Gebhart and Pera [7]. For the
zeroth order perturbation solution, the concentration profiles reveal that increasing
the Schmidt number reduces the species diffusion layer (Fig. 5.1). At the same time,
the velocity level is reduced as seen in the velocity profiles (Fig. 5.2). These results
confirm Gebhart and Pera’s observations that aiding buoyancy effects decrease the
diffusion boundary region and at the same time increases the velocity level (and its
extent) as the Schmidt number decreases.

In the case of first order perturbation solution, numerical results are plotted in
Figs. 5.3 and 5.4. The velocity and concentration profiles for n = 1, 2, 3, 5 and
Sc = 10 are plotted in Figs. 5.3 and 5.4. It is seen from these figures that the extent
of these profiles increases as the order of reaction rate increases for fixed Schmidt
number. This result agrees with the physical situation.

From Fig 5.4, as the chemical species on the plate reacts with the fluid and rises
(due to buoyancy changes), dense fluid is brought into contact with the plate. What
then occurs is a downward movement of fluid above to replace the less dense, rising
fluid. Even though the less dense fluid is lighter, it appears that in the particular
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1.0

0.8

0.6

0.4
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0
0.4 0.6 0.8

η
1.0 1.2 1.4

Figure 5.3: Dimensionless concentration profiles without reaction (zeroth-order
approximation) for Sc = 10, 100, 1000, 10000 (from [18]).
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Figure 5.4: Dimensionless velocity profiles without reaction (zeroth-order approx-
imation) for Sc = 10, 100, 1000, 10, 000 (from [18]).
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Figure 5.5: Dimensionless velocity profiles with reaction (up to first-order
approximation) for Sc = 10 and n = 1, 2, 3, 5 (from [18]).

cases depicted (Sc = 10), the more dense fluid from above displaces the less dense
fluid by moving downward. In addition to this movement, fluid from the region
near the plate, which is also less dense than the rising fluid, moves to displace the
lighter fluid resulting in the upward movement of lighter fluid in the region near
the plate.

Fig. 5.5 and Fig. 5.6 displayed the dimensionless velocity profiles and the dimen-
sionless concentration profiles, respectively, for various parameters of the problem
studied here. The results showed fair agreement with the available experimental
data.
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Figure 5.6: Dimensionless concentration profiles with reaction (up to first-order
approximation) for Sc = 10 and n = 1, 2, 3, 5 (from [18]).

For further information about this problem, the reader is referred to the work of
Ames, W.F. [1], Angirasa, D. & Srinivasan, J. [3], Lamb, H. [12], and Reynolds, O.
[19] as listed in the reference section.

5.9 Exercises

1. Consider the heat conduction in a semi-infinite medium. In one-dimensional
case the partial differential equation is given by ut = αuxx subject to the bound-
ary conditions x = 0 : u(x, 0) = u0, and x → ∞ : u(x, t) = 0; and the initial
condition t = 0 : u(x, 0) = 0, x > 0. Using similarity method find the solution
of problem. [Hint: It can be shown that the similarity variable is η(x, t) = x

2
√

αt
.

Use the dependent variable as u = u0f (η) and then show that this initial bound-
ary problem can ce written as f ′′ + 2ηf ′ = 0; η(0) : f = 1; η → ∞; f = 0.

The solution is f = u
u0

= erf c(η) = 2√
π

∫∞
η

exp(−z2)dz.

2. A semi-infinite flat plate is immersed in a steady uniform stream of an incom-
pressible fluid with a viscosity ν. The flow behaviour about the flat plate
is considered to be boundary-layer flow in two dimensions. The mathemat-
ical theory of boundary layer flow was first developed by Ludwig Prandtl
in 1904. The mathematical equations are given as: Momentum equation is
uux + vuy = νuyy; Continuity equation is: ux + vy = 0. The boundary con-
ditions are given by u = v = 0; at y = 0; u = u0; y → ∞. Determine the
solution of this boundary value problem. [η = y

√
u0/2νx and ψ(x, y) =

u0
√

2νx/u0f (η), and then show that f ′′′ + ff ′′ = 0.]
3. In cylindrical polar coordinates, the vorticity of a fluid is related to the veloc-

ity of the fluid in the following manner, ω = ∂v
∂r

+ v
r
, where v is the velocity

and ω is the vorticity. The vorticity ω satisfies also the equation of motion
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∂ω
∂t

= ν{ ∂2ω

∂r2 + 1
r

∂ω
∂r

}. Find a similarity solution in the form of ω = f (η)g(t),

where η = r/2
√

νt and verify the velocity distribution obtained by this method

is of the form v = K
2πr

{1 − exp(− r2

4νt
)}, where K is the strength of the

vortex line.
4. Consider the following boundary-layer equations ux + vy = 0; uux + vuy =

νuyy . Using the similarity variables ψ = u0x(u0x
ν

)mf (η); η = y
x
( u0x

ν
)n, show

that ( u0x
ν

)−m+n−1f ′′′ + (m + 1)ff ′′ − (m + n)f ′2 = 0.
5. In Exercise 4, if n = m + 1, then the above equation can be written f ′′′ +

(m + 1)ff ′′ − (2m + 1)f ′2 = 0. Now assume m − 2
3 ], show that the solution

of this resultant equation may be written as f (η) = C tanh(
Cη
6 ), where C is a

constant.
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CHAPTER 6

Turbulence

Professor Jyotiprasad Medhi

Professor Jyotiprasad Medhi was the Professor and Head of the Depart-
ment of Statistics, Gauhati University, Gauhati, India. He earned his MSc
degree in pure mathematics from the University of Calcutta, India, and
another MSc in Statistics (by thesis) from the University of Manchester, UK,
and his doctorate in Statistics (Stochastic Processes) from the University of
Paris, France in 1956. Since 1949 he has been a Faculty member of the
Post-Graduate Department of Mathematics and Statistics, Gauhati Univer-
sity. He was a Visiting Professor at the University of Montreal, Canada
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6.1 Introduction

This chapter contains the study of two important areas of fluid motions. We first start
with the preliminaries of turbulent flow and then its application is demonstrated in
nonlinear wave–wave interactions. The Boltzmann integral equation is modified to
obtain the nonlinear energy spectrum.

The study of fluid flow may be conveniently manifested considering three main
classes, namely, steady laminar flow, unsteady laminar flow and turbulent flow. The
essential feature of the steady laminar flow is that if some property of the fluid flow
is measured, as for example the pressure, we can assert that the value at any point
will not vary with time in a given experiment, nor will it vary from experiment to
experiment, in other words it is both determinate and non-fluctuating. Then this kind
of fluid flow is classified as the steady laminar flow. Unsteady laminar flow differs
from the steady laminar flow in that although the pressure measured at any instant at
corresponding points will not differ from experiment to experiment, they will vary
with time. In other words, the pressure is determinate but fluctuating. Turbulent
flow, on the other hand, is characterized by the fact that the pressure measured at a
point is random in nature. If the same experiment is performed several times under
apparently idealized conditions, then the pressure will not be the same in different
experiments, but will fluctuate randomly. In other words, it is not determinate in
any simple sense.

Osborne Reynolds was the first to illustrate these differences of fluid flow struc-
tures by performing classical experiments. In these experiments, water was allowed
to flow slowly through various circular pipes of diameter of up to 2 inches, the
mouth of the pipes being bell-shaped to ensure a smooth entry flow. At the entrance
of the pipe, water with coloring matters (dye) was introduced, and its subsequent
behaviour was examined. It was observed that at sufficiently low velocity the dye
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was seen to be drawn out in a single straight filament right through the pipe, this
behaviour indicates the steady laminar flow. When the water in the supply-tank was
made to oscillate, this causes the filament to fluctuate in a sinusoidal manner but
well-defined form, which was characterized as an unsteady laminar flow. Returning
now to the case of steady laminar flow, when the velocity is sufficiently increased
then, no matter how carefully this is done, and no matter how smooth the entry
flow is, a point is ultimately reached at which the straight filament breaks down
into series of eddies, which become progressively more and more unstable and
random in nature if the velocity is further increased. Such a flow is called turbu-
lent flow, the term being due to Reynolds. It was discovered by Reynolds that the
parameters determining the onset of this turbulent flow is Ud/ν, where U is the
mean velocity through the pipe, d is the diameter of the pipe and ν is the kinematic

viscosity of the fluid. This number, namely, R = Ud
ν

is a dimensionless number and
subsequently became known as the Reynolds number. This is a highly significant
number to determine whether a fluid flow is laminar or turbulent.

This change-over from laminar flow to turbulent flow is known as the transition
to turbulence, and the Reynolds number at which transition occurs is called the
critical Reynolds number. In the experiment performed by Reynolds the critical
Reynolds number was approximately 13,000. It has subsequently found, however,
laminar flow can still be achieved at much higher Reynolds numbers, provided that
sufficient care is taken to ensure a perfect smooth entry flow.

6.2 The mechanism of transition to turbulence

To determine the nature of transition to turbulence is a very complex situation.
Most of the mathematical investigations have considered the problem of stability
and transition to turbulence of the so-called two-dimensional parallel flows, where
the basic flow is parallel in nature, being of the form

u = U(y), v = w = 0 (6.1)

in two-dimensions or

u = U(r), v = w = 0 (6.2)

in axi-symmetric flow. The only flows which strictly satisfies these conditions are
the Poiseuille and Couette flows, but boundary layers, jets, wakes and mixing
regions are approximately parallel, and have usually been treated as such in stability
investigations. The procedure is to consider a small perturbation to the flow cited
in (6.1) or (6.2), of the form

u = U + u′, v = v′, w = 0, (6.3)
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where

u′ = ∂ψ

∂y
,

v′ = −∂ψ

∂x
,

ψ = φ(y) exp(ik(x − ct)), (6.4)

real parts being implied, hence restricting all operations on the functions to being
linear. It may be shown after the appropriate analysis that φ(y) satisfies a fourth-
order linear differential equation, when square and higher power of disturbance are
neglected.

It is worth noting in here that the assumed disturbance, (6.3), is two-dimensional.
It is recognized that the flows of the type (6.1) are more unstable to two-dimensional
disturbances than to three-dimensional ones. The disturbance (6.4) represents a
progressive wave motion, having a wavelength λ = 2π

k
, where k is called the

wavenumber, and the waves are propagated in the x-direction at a speed equal
to the real part of c. The crucial matter is whether the imaginary part of c is positive
or negative. If positive then the disturbance will grow exponentially as t increases,
and if negative the disturbance will decay exponentially as t increases. By solv-
ing the aforementioned fourth-order differential equation and examining for which
values of the parameters physically acceptable solutions exist, it is possible to
predict a Reynolds number for the flow such that at lower Reynolds numbers all
small disturbances will be damped, but at higher Reynolds numbers, disturbances
exist which can grow spontaneously. This situation is, however, far removed from
turbulence. The flow is really a two-dimensional unsteady laminar flow, whereas
turbulence is essentially three-dimensional in nature. As a simple example of the
kind of situation, we note that the flow between two rotating concentric cylinders
is, at a certain relative angular velocity, unstable and changes from the laminar
pattern to another laminar pattern with a disturbance of a cellular form. It is only
as the relative angular velocity is increased further that turbulent flow is obtained.

6.3 The essential characteristics of turbulence

One of the most essential characteristics of turbulent flow is that the fluctuations,
of pressure or velocity say, at a point are not significantly related to fluctuations
at a neighbouring point a relatively short distance away. Thus if we consider a
point at which a velocity component is instantaneously positive, then clearly the
same velocity component at an adjacent point must also be positive, since vis-
cous dissipation limits the magnitudes of the instantaneous velocity gradients
which a flow can sustain. At a sufficiently long distance, however, the veloc-
ity component can be positive or negative. We may therefore think of a dis-
tance, �c which is such that, there is a good correlation between fluctuations at
two points separated by a distance less than �c, and a poor correlation for points
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separated by a distance greater than �c. This distance �c is called the correlation
radius.

We now consider a fluid flow being divided up into a large number of small
regions, say spheres of radius �c. For any two points in the same sphere the respec-
tive fluctuations will be well correlated, but for points in different spheres the
correlation will be poor. Such volumes of fluid are called correlation volumes or
eddies. It is indeed an essential characteristic of turbulence that, in general, there
are disturbances having a very wide range of wavelengths. The initial instabil-
ity of a laminar flow would occur with disturbances of large wavelengths, that
is small wave-numbers. Because of the essential nonlinearity of the equations
of motions, the various modes which are present will interact, and there will be
energy transfer between modes and into new modes, the direction of this energy
transfer is from smaller wave-number to higher wave-number, since large-scale
disturbances break down into small-scale disturbances. The transfer takes place in
what is sometimes called a cascade process, the term rightly implying the succes-
sive breakdown into disturbances of smaller and smaller scale. After a sufficiently
large number of steps of the cascade, the disturbance of large wave-number will, in
effect, be independent of the initial form of the small wave-number disturbances.
In other words, there is statistical decoupling between the low wave-number and
high wave-number modes. There is a limit of the extent to which this process can
continue. As the wave-number increases, so does the viscous dissipation of energy.
The range of wave-numbers carrying significant energy is accordingly limited by
viscosity.

6.4 Reynolds equations for turbulent motion

Reynolds was the first scientist to put the study of turbulence upon a firm math-
ematical foundation. To deduce the equations, we begin with the Navier-Stokes
equations for incompressible flow, which are valid quite generally for laminar or
turbulent flow, namely,

∂vi

∂xi

= 0 (6.5)

∂vi

∂t
+ ∂

∂xj

(vivj ) = − 1

ρ

∂p

∂xi

+ ν∇2vi, (6.6)

where rectangular Cartesian coordinates are used, and the suffix notation is used. It
is obvious that the convective terms in the momentum equation (6.6) ∂

∂xj
(vivj ) =

vj
∂ui

∂xj
+ ui

∂vj

∂xj
= vj

∂ui

∂xj
. However, since the characteristics of turbulent flow fluc-

tuate rapidly and also randomly, it is useful to regard them as made up of a mean
part and a fluctuating part. Hence we define

vi = vi + v′
i

p = p + p′, (6.7)
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where

vi = 1

2T

∫ T

−T

vidt

p = 1

2T

∫ T

−T

pdt

Here vi and p represent the mean velocities and pressure, respectively. v′
i and p′ are

the fluctuations about the mean, the averaging time 2T being larger than the largest
time scale of fluctuations in the turbulence. If the turbulence is not statistically
steady, but is decaying with time for example, it will be tacitly assumed that 2T

is small compared with the time scale of the decay, otherwise the concept of mean
velocity or pressure becomes somewhat nebulous. It is worth noting here that the
mean of the fluctuating terms are zero, i.e. 1

2T

∫ T

−T
v′dt = 0, 1

2T

∫ T

−T
p′dt = 0.

We now take the means of equations (6.5) and (6.6). There is no difficulty in deal-
ing with the various linear terms, since the process of differentiating and of taking
mean values may easily be shown to commute, as follows. For space derivatives
we may write

∂F

∂xi

= 1

2T

∫ T

−T

∂F

∂xi

dt

= ∂

∂xi

(
1

2T

∫ T

−T

Fdt

)

= ∂F

∂xi

where F is any scalar function. For time derivatives, similarly we write

∂F

∂t
= 1

2T

∫ T

−T

∂F

∂t
dt

= ∂

∂t

(
1

2T

∫ T

−T

Fdt

)

= ∂F

∂t

Thus, using these formulas the mean values of (6.5) and (6.6) can be written as

∂vi

∂xi

= 0, (6.8)

∂vi

∂t
+ ∂

∂xi

(vivj ) = − 1

ρ

∂p

∂xi

+ ν∇2vi, (6.9)
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Now let us deal with the nonlinear terms. Using (6.7) it follows that

vivj = (vi + v′
i )(vj + v′

j )

= vivj + viv
′
j + vjv

′
i + v′

iv
′
j

Upon taking mean values, remembering that all fluctuations have zero mean values,
we obtain

vivj = vivj + v′
iv

′
j .

Hence (6.9) may be written as

∂vi

∂t
+ ∂

∂xj

(vivj ) = − 1

ρ

∂p

∂xi

+ ν∇2vi − ∂

∂xj

(v′
iv

′
j )

= − 1

ρ

∂

∂xj

{
pδij − μ

∂vi

∂xj

+ ρ(v′
iv

′
j )

}
. (6.10)

Note the striking similarity between the equations (6.5) and (6.6), for the instanta-
neous pressure and velocities, and equations (6.8) and (6.10), for the mean pressure
and velocities, the equations being identical except for the one term. The three terms
on the right-hand side of (6.10) represent, respectively, the mean normal pressure,
the mean viscous stresses and the mean transfer of momentum by the turbulence.
The nine components of the tensor

ρ(v′
iv

′
j )

are usually referred to as the Reynolds stresses. The fact that these cannot usually be
neglected in turbulent flow is alone responsible for the fact that the mean velocity
profile in a turbulent flow is very different from that in the associated laminar flow.

In order to see more clearly the significance of the Reynolds stresses, we shall
consider the turbulent analogue of the laminar Poiseuille flow between parallel
planes in the following section.

6.5 Turbulent flow between parallel planes

In this section we consider Poiseuille’s flow in two dimension between two infinite
parallel planes. A distance between the planes is 2h apart. We take the x1 axis
parallel to the planes, and in the direction of the flow, x2 normal to the planes and
x3 at right-angles to both x1 and x2. We follow the procedure adopted in case of
laminar flow discussed before, and we seek solutions in which the mean streamlines
are parallel to the planes, so that v2 and v3 are both zero. Then we consider that v1
is a function only of x2, and t . For statistically steady flow we therefore write

v1 = v1(x2), v2 = v3 = 0. (6.11)
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It is also assumed that the Reynolds stresses are function of x2 alone. The continuity
equation (6.8) is automatically satisfied by (6.11). Upon substituting into (6.10)
from (6.11) many terms disappear identically. Thus, for all values of i, we have

∂vi

∂t
= 0,

∂

∂xj

(vivj ) = ∂

∂x2
(viv2) = 0,

∂

∂xj

(
∂vi

∂xj

)
= ∂2vi

∂x2
2

,

and
∂

∂xj

(ρ(v′
iv

′
j )) = ∂

∂x2
(ρv′

iv
′
2).

Since the mean pressure may be assumed not to depend on x3, it follows that
(6.11) yields

0 = − 1

ρ

∂p

∂xi

+ ν
∂2vi

∂x2
2

− ∂

∂x2
(v′

iv
′
2).

Upon setting i = 1, 2, 3, respectively, we obtain

∂p

∂x1
+ ∂

∂x2
(ρv′

1v
′
2) = ν

∂2v1

∂x2
2

(6.12)

∂p

∂x2
+ ∂

∂x2
(ρv′

2v
′
2) = 0 (6.13)

∂

∂x2
(ρv′

3v
′
2) = 0 (6.14)

Since the Reynolds stresses are independent of x1 and x3, we deduce from (6.14)
that ρv′

3v
′
2 is an absolute constant. By virtue of the boundary conditions on either

of the planes, v′
2 = v′

3 = 0, it follows that

ρv′
3v

′
2 = 0.

Likewise (6.13) shows that p + ρ(v′
2v

′
2) is independent of x2, and since the two

terms are separately independent of x3, it follows that

p + ρ(v′
2v

′
2) = F(x1).

The first term of (6.12) is thus a function of x1 alone, whereas the remaining two
terms depend on x2 alone. Therefore, we have

∂p

∂x1
= −P = μ

∂2v1

∂x2
2

− ∂

∂x2
(ρv′

1v
′
2), (6.15)
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Integrating this equation with respect to x2 partially, we obtain

μ
∂v1

∂x2
− ρv′

1v
′
2 = −Px2 + G(x1, x3), (6.16)

where G(x1, x3) must in fact be a constant, since the other two terms of this equation
are dependent on x2 alone. If we assume that the flow is symmetrical in nature, so
that ∂v1/∂x2 and v′

1v
′
2 are both zero on the plane of symmetry, x2 = 0, it follows

that G is zero, and (6.16) may then be written simply

μ
∂v1

∂x2
= ρv′

1v
′
2 − Px2. (6.17)

Integrating again with respect to x2 we have an alternative form

v1(x2) = v1(0) − P

2μ
x2

2 + 1

μ

∫ x2

0
ρv′

1v
′
2dx2

= P

2μ
(h2 − x2

2) − 1

μ

∫ h

x2

ρv′
1v

′
2dx2

In obtaining the last result we used the boundary condition v1(h) = 0 such that the
unknown constant v1(0) = P

2μ
h2 − 1

μ

∫ h

0 ρv′
1v

′
2dx2.

Remark

These results, in principle, could be used in either of two ways. First, by making use
of experimental measurements, with hot-wire anemometer, of either v1(x2) or v′

1v
′
2

equation (6.17) could be used to calculate the other. Secondly, if some assumptions
or guess be made as to a relationship for v′

1v
′
2 in terms of v1,

∂v1
∂x2

etc., then (6.17)
becomes a differential equation for v1. Plausible relationships of this nature have
been given by Prandtl and other researchers. We pursue this matter in the next
section.

6.6 Mixing-length theories of turbulence

Prandtl’s momentum-transfer theory

We start with the general ideas behind Prandtl’s hypothesis to study the quasi-
steady parallel shear flow. We use the (x, y) coordinates with (u, v) as associated
velocity components, and consider an element of fluid in a flow with a mean velocity
u(y) parallel to the x-axis. Due to the general mixing-up which takes place in the
turbulent flow, this fluid element is assumed to be carried away a distance � in the
transverse direction, conserving its momentum as it does so. The mean velocity of
the fluid now surrounding the element is

u(y + �) ≈ u(y) + �
∂u

∂y
. (6.18)
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The element accordingly has an excess momentum, as compared with the surround-
ing fluid, of amount

−ρ�
∂u

∂y
dτ,

which is assumed to be representative of the turbulent momentum fluctuation

ρu′dτ.

By equating these expressions we deduce that

u′ ∼ −�
∂u

∂y
. (6.19)

Now it is a matter of experimental observation that the turbulent velocity fluc-
tuations have equal orders of magnitude. Accordingly we may deduce from
(6.19) that

ρu′v′ ≈ −ρ�2 ∂u

∂y

∣∣∣∣∂u

∂y

∣∣∣∣ , (6.20)

the sign again being in accord with experimental observation. The length � is
called the mixing-length, and is representative of the distance in which an element
of fluid mixes completely with the surrounding fluid. The mixing-length is usually
determined on the following basis. For flow in a region very close to a rigid wall,
since u′ and v′ are both zero on the wall it is reasonable to assume that

� ∝ distance from the wall. (6.21)

For flow in a jet, wake or mixing region, we take

� ∝ width. (6.22)

For flow in any shear layer, � probably depends on the local mean velocity profile.
It has been suggested that the simplest expression, derived from the mean velocity
profile and having the dimensions of a length, is

� ∝ ∂u

∂y
/
∂2u

∂y2
. (6.23)

It may be noted that (6.21) and (6.22) are, in effect, special cases of (6.23) and are
considered with it. The choice of the constant of proportionality in (6.21) to (6.23)
is determined empirically by reference to experimental results.

The above hypothesis treats momentum as a transferable property, and is due to
Prandtl. There are two other hypotheses which we shall not pursue here. One, which
is due to Taylor, treats vorticity as a transferable property, and the other which is
due to Prandtl, introduces the concept of a constant turbulent exchange coefficient.
Rather we illustrate the general principles behind the use of mixing-length theories
by applying the momentum-transfer theory to calculate the flow in a turbulent jet.
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The mean velocity in a two-dimensional turbulent jet

We consider the flow of a thin jet into fluid at rest. We shall assume that the boundary
layer approximation may be made so that pressure gradients are neglected, and that
the viscous stresses are negligible in comparison with the Reynolds stresses. Then
in (6.10) we neglect pressure gradients and viscous terms, and by appropriate use
of the condition

∂

∂y
>>

∂

∂x
,

it may be shown, as in deriving the laminar boundary layer equation

u
∂u

∂x
+ v

∂u

∂y
= − ∂

∂y
(u′v′), (6.24)

and
∂u

∂x
+ ∂v

∂y
= 0. (6.25)

In view of the symmetry about the axis of the jet, we consider only the flow for
which y ≥ 0, and since ∂u

∂y
≤ 0 when y ≥ 0, it follows from (6.20) that

u′v′ = �2
(

∂u

∂y

)2

, y ≥ 0.

We introduce a stream function ψ , such that

u = ∂ψ

∂y
= ψy

v = −∂ψ

∂x
= −ψx (6.26)

so that (6.25) is automatically satisfied, and (6.24) becomes

ψyψyx − ψxψyy = − ∂

∂y

(
�2ψ2

yy

)
. (6.27)

We look for a similar solution of the form

ψ = xnf (η), (6.28)

where η = y/xm so that the width of the jet at any station x is proportional to xm.
The mixing-length � is accordingly taken to be of the form

� = axm,

where a is any absolute constant.
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By the appropriate differentiation of equation (6.28) it follows that

ψx = xn−1(nf − mηf ′),
ψy = xn−mf ′,

ψyy = xn−2mf ′′,

ψyyy = xn−3mf ′′′,

ψyx = xn−m−1((n − m)f ′ − mηf ′′), (6.29)

where primes here denote derivatives with respect to η, and substitution into (6.27)
then yields, after a little reduction,

nff ′′ + (m − n)f ′2 = 2a2x1−mf ′′′. (6.30)

This equation is self consistent only if

m = 1.

Further, the condition of constant momentum flux at different station down the jet
must be satisfied. This condition follows by integrating (6.24) from y = −∞ to
y = ∞, yields

d

dx

∫ ∞

−∞
u2dy = 0. (6.31)

By virtue of (6.26) and (6.29)

u2 = x2n−2m(f ′)2,

and, by (6.28) since the integral is to be evaluated along a section x = constant, we
may write dy = xmdη, so that (6.31) yields

d

dx

{
x2n−m

∫ ∞

−∞
(f ′)2dη

}
= 0.

Thus, in order that the momentum flux shall be independent of x, we must have
2n − m = 0, so that n = 1

2 . Upon substituting for m and n the equation (6.30)
simply becomes

ff ′′ + f ′2 = 4a2f ′′f ′′′,

the boundary conditions being those of symmetry and of zero mean velocity at the
edge of the jet.

This equation may be immediately integrated once to yield

ff ′ = 2a2(f ′′)2,

which may be integrated numerically, subject to the conditions of symmetry, f (0) =
f ′′(0) = f iv(0) = · · · = 0, and the zero mean velocity at the edge of the jet, f ′ =
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f ′′ = f ′′′ = · · · = 0. It is found that the conditions at the edge of the jet must be
satisfied at

η = y/x = 3.04a2/3. (6.32)

When the value of the constant a has been suitably chosen, comparison with
experiment confirms that a turbulent jet spreads linearly in the manner predicted

by (6.32), and that the maximum velocity of the jet decreases as x− 1
2 , as the theory

also requires.

6.7 Turbulent boundary layers

Two-dimensional turbulent boundary layer

We consider in this section the development of turbulent boundary layer equations
in two-dimension with steady mean flow. This may be done by starting from the
boundary layer approximation for an arbitrary flow discussed before, namely

∂u

∂x
+ ∂v

∂y
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+ ν

∂2u

∂y2
.

This is set of unsteady two-dimensional boundary layer equations. In these equa-
tions we write the transformations as

u = u + u′

v = v + v′

and take the mean values. It has been found successively, following the procedure
adopted in deriving Reynolds’s form of the full motion, that

∂u

∂t
= ∂u

∂t

which is zero, because the main flow is steady

u
∂u

∂x
= u

∂u

∂x
+ 1

2

∂

∂x
(u′2);

v
∂u

∂x
= v

∂u

∂y
+ v′ ∂u′

∂y

= v
∂u

∂y
+ ∂

∂y
(u′v′) − u′ ∂v′

∂y

= v
∂u

∂y
+ ∂

∂y
(u′v′) + 1

2

∂

∂x
(u′2),
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upon using the continuity equation. The boundary layer equations for turbulent
flow, with a steady mean velocity, then become

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+ ν

∂2u

∂y2
− ∂

∂y
(u′v′) − ∂

∂x
(u′2)

= − 1

ρ

∂p

∂x
+ 1

ρ

∂τ

∂y
− ∂

∂x
(u′2) (6.33)

where τ = μ∂u
∂y

− ρu′v′. It is usual to neglect the last term on the right-hand side of
(6.33), since it is found experimentally that the Reynolds stresses vary only slowly
with x, so we have

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+ 1

ρ

∂τ

∂y
(6.34)

which is identical with the equations for laminar flow, except that τ is the sum of
a viscous stress and a Reynolds stress. By examining the form we see that when
y → ∞, we define that

− 1

ρ

∂p

∂x
= U

dU

dx
.

Thus, we have the complete turbulent boundary layer equations together with the
continuity equation as

∂u

∂x
+ ∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dx
+ 1

ρ

∂τ

∂y
(6.35)

Remark

The boundary layer can be visualized to consist of three regions. (a) If the boundary
layer is really turbulent, then the Reynolds stress will be much greater than the
viscous stress throughout the greater part of the boundary layer. (b) On the other
hand, the Reynolds stress must tend to zero at the wall itself, by virtue of the
boundary condition thereon, so there must always be a region very close to the
wall in which the viscous stress dominates. This region is usually referred to as
the laminar sub-layer. (c) There is, finally, an intermediate region, in which the
velocity profile changes gradually from the appropriate to the laminar sub-layer to
that appropriate to the fully developed turbulent later.

We now put these ideas on an approximate quantitative basis. In the laminar sub-

layer we may write τ ≈ μ∂u
∂y

≈ τw.Thus after integration we have u ≈ τw

μ
y = u2

τ y

ν
,

or we can write u
uτ

= yuτ

ν
, where we have defined τw

ρ
= u2

τ , and uτ is referred to
as the friction velocity.

In the fully turbulent part of the boundary layer we may write

τ ≈ −ρu′v′.
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Now it is a matter of experimental observation that the shearing stress remains
reasonably constant in the region close to the wall, particularly when the pressure
gradient along the wall is small. Hence using the Prandtl mixing-length ideas, we
may write

u′v′ = −�2 ∂u

∂y
|∂u

∂y
|

= −�2
(

∂u

∂y

)2

,

and using relation � = ky and also τw

ρ
= u2

τ we may write

τw ≈ ρk2y2
(

∂u

∂y

)2

,

close to the wall but in the fully turbulent layer. Upon taking the square root of this
equation and rearranging yields

∂u

∂y
= uτ

ky
,

which integrates to give u = uτ

k
ln y + constant, and in non-dimensional form it

can be written as
u

uτ

= A ln
yuτ

ν
+ B

where A = 1
k

.
Figure 11.1 shows a number of experimentally measured mean velocity profiles

for turbulent boundary-layer on smooth surface. The results are plotted on a semi-
logarithmic scale, and it is clearly seen that when 20 < yuτ /ν < 400, the mean
velocity follows the form given by the above equation, the constant being A = 2.5
and B = 5.5.

Flow in the absence of pressure gradient

We consider in this section flow in the absence of pressure gradient. The preceding
study can be applied to the special case of zero pressure gradient. Let us consider
an approach which has proved useful in the study of the turbulent boundary layer
on a flat plate. It is a matter of experimental observation that the mean velocity
profile of a turbulent boundary layer on a flat plate may be expressed overall by
power law

u

U
=
(y

δ

) 1
n = η

1
n (6.36)

wheren is a slowly varying function of the Reynolds number, varying about between
5 and 9 as Rx = Ux

ν
varies between 105 and 1010. It is now useful to note that in
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Figure 6.1: Experimental mean velocity profiles. (Adapted from Thwaites, B.,
Incompressible Thermodynamics, Clarendon Press: Oxford, 1960.
From [2].)

the remainder of this chapter for convenience we shall omit the bar from the mean
velocity u, which will therefore be denoted simply by u: it is hoped that there should
be no ambiguity as a result of this simplified notation. Thus with the profile (6.36)
it is easily seen that the displacement thickness of boundary layer in turbulent flow

δ1 =
∫ δ

0

(
1 − u

U

)
dy

= δ

∫ 1

0

(
1 − η1/n

)
dη

= δ

(
1 − 1

1 + 1/n

)
= δ

1 + n
(6.37)

Likewise we can show that the momentum thickness of turbulent boundary
layer is

δ2 =
∫ δ

0

u

U

(
1 − u

U

)
dy

= nδ

(n + 1)(n + 2)
(6.38)

so that H = δ1

δ2
= n + 2

n
.
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Thus we may write (6.36) as

u

U
=
(

H − 1

H(H + 1)
.
y

δ2

)(H−1)/2

or
u

U
=
(

H − 1

H + 1
.
y

δ1

)(H−1)/2

. (6.39)

For flow with zero pressure gradient or small pressure gradient, since the non-
dimensional velocity profile (6.36) holds over a good portion of the boundary layer,
it must be possible to write (6.36) as u

uτ
= C

( yuτ

ν

)1/n
, and hence

u

uτ

= C

(
uτ δ

ν

)1/n

= C
n

n+1

(
Uδ

ν

) 1
n+1

. (6.40)

Now the momentum integral equation may be written as

dδ2

dx
= τw

ρU2
=
(uτ

U

)2
,

when there is no pressure gradient. Thus, upon neglecting the small variations of n

with x, substitution from (6.38) and (6.40) yields

dδ

dx
= (n + 1)(n + 2)

2
C− 2n

n+1

(
Uδ

ν

)− 2
n+1

,

which integrates to give

δ
n+3
n+1 = (n + 2)(n + 1)

n
C− 2n

n+1

(
U

ν

)− 2
n+1

x,

Therefore, δ can be evaluated to yield

δ =
{

(n + 2)(n + 1)

n

} n+1
n+3

C− 2n
n+1 R

− 2n
n+3

x x

= DR
− n

n+3
x x. (6.41)

Having calculated δ, we may use (6.40) to derive utau, or Cf , where

Cf = τw

1
2ρU2

= 2
(utau

U

)2
.
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Thus we have

Cf = 2C− 2n
n+1

(
Uδ

ν

)− 2
n+1

= 2C− 2n
n+1

{
D(Rx)

n+1
n+3

}− 2
n+1

= 2nD

(n + 2)(n + 3)
(Rx)

2
n+3 . (6.42)

Similarly we can calculate

δ2 = nδ

(n + 1)(n+)

= nD

(n + 1)(n + 2)
R

− 2
n+3

x x. (6.43)

The relationship between Cf and Rx as given by the experimental results is found
in Curle and Davies [2] (Table 7.1: Properties of the turbulent boundary layer at
constant pressure, p. 251) and will not be repeated here.

6.8 Correlation theory of homogeneous turbulence

In the previous section we have demonstrated various aspects of the mean motion.
In this section, we shall turn our attention to a brief consideration of turbulence
itself. For simplicity we shall consider turbulence whose mean flow is zero, and
which is homogeneous in space. By homogeneous we mean that any mean value,
F(x)G(x′) of the product of one function F taken at a point x and a second function
G taken at a point x′, will be a function only of the separation r = x′ − x of the
two points; it will not depend independently upon the two points. As a special case
of this definition we deduce that all mean values at a point, such as F(x)G(x)

will be constant, and hence will have zero derivative. Since the mean flow is zero,
the velocity fluctuations are exactly equal to the overall velocity components, and
primes need not be used to indicate fluctuations. We assumed throughout that the
motion is governed by the Navier-Stokes equations, which we write as

∂vi

∂xi

= 0, (6.44)

∂vi

∂t
+ ∂

∂xj

(vivj ) = − 1

ρ

∂p

∂xi

+ ν∇2vi . (6.45)
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6.8.1 Theoretical development of correlation theory

To develop the correlation theory from the Navier-Stokes equations, we multiply
each term in (6.45) by vi , and then take the mean values. It is implicit that summation
over the values i = 1, 2, 3 is implied in this process. We obtain the result as follows.

∂

∂t

(
1

2
v2
i

)
+ vi

∂

∂xj

(vivj ) = − 1

ρ
vi

∂p

∂xi

+ νvi∇2vi . (6.46)

In this equation we note the identity

2vi

∂

∂xj

(vivj ) = ∂

∂xj

(v2
i vj ) + v2

i

∂vj

∂xj

.

Since the last term is zero by virtue of continuity equation it follows that

vi

∂

∂xj

(vivj ) = 1

2

∂

∂xj

(v2
i vj ) = 0, (6.47)

because of the condition of homogeneity. Likewise we have

vi

∂p

∂xi

= ∂

∂xi

(pvi) − p
∂vi

∂xi

= 0, (6.48)

the two terms being zero by virtue of homogeneity and continuity, respectively.
Again, we may write

vi∇2vi = vi

∂

∂xj

(
∂vi

∂xj

)

= ∂

∂xj

(
vi

∂vi

∂xj

)
−
(

∂vi

∂xj

)2

= −
(

∂vi

∂xj

)2

. (6.49)

This is also by virtue of the homogeneity condition. Upon substituting from (6.47)
to (6.49), we see that (6.46) becomes

∂

∂t

(
1

2
v2
i

)
= −ν

(
∂vi

∂xj

)2

. (6.50)

This equation has a simple physical interpretation. It is that the rate of change
of mean kinetic energy is determined by the mean rate of dissipation. We may
alternatively interpret this equation in terms of mean-square vorticity. We also note
that the three components of vorticity are of the form

∂vi

∂xj

− ∂vj

∂xi
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for appropriately chosen i and j . Thus if we consider

(
∂vi

∂xj

− ∂vj

∂xi

)2

,

there are six non-zero terms, the three terms where i = j being each zero, the non-
zero terms being equal, respectively, to the squares of plus and minus each of the
three components of vorticity. Thus the mean square vorticity is

ω2 = ω2
i = 1

2

(
∂vi

∂xj

− ∂vj

∂xi

)2

.

We expand this equation and it is interesting to see that the two squared terms are
identically equal and hence we have

ω2 =
(

∂vi

∂xj

)2

− ∂vi

∂xj

· ∂vj

∂xi

=
(

∂vi

∂xj

)2

− ∂

∂xj

(
vi

∂vj

∂xi

)
,

by using the continuity equation. By taking mean values, we find that

ω2 =
(

∂vi

∂xj

)2

,

in the case of homogeneous turbulence. Hence we may write (6.50) as

∂

∂t

(
1

2
v2
i

)
= −νω2

i = −νω2. (6.51)

In the following we will obtain a somewhat more general formula than (6.50). In
doing so, we introduce a velocity covariance tensor, Rij , defined as follows.

vi(x)vj (x′) = Rij (x′ − x),

or vivj = Rij (r), (6.52)

where the notation is almost self-explanatory. It is fairly clear from this defini-
tion that

Rij (r) = Rji(r) = Rij (−r) = Rji(−r).

Also by using the continuity equation, we have

∂

∂x′
j

(viv
′
j ) = vi

∂v′
j

∂x′
j

= 0,



Turbulence 193

remembering that unprimed quantities are not functions of the primed coordinate.
Thus we have

∂

∂x′
j

(viv
′
j ) = ∂

∂rj
(Rij ) = 0. (6.53)

In order to obtain an equation for Rij we write down the momentum equation (6.45)
twice, once for vi and once for vj as follows:

∂vi

∂t
+ ∂

∂xk

(vivk) = − 1

ρ

∂p

∂xi

+ ν∇2vi,

and
∂v′

j

∂t
+ ∂

∂x′
k

(v′
j v

′
k) = − 1

ρ

∂p′

∂x′
j

+ ν∇2v′
j .

We multiply the first of these equations by v′
j , the second by vi and add, and take

mean values. This yields

∂

∂t
(viv

′
j ) + ∂

∂xk

(vivkv
′
j ) + ∂

∂x′
k

(viv
′
j v

′
k) + 1

ρ

(
v′
j

∂p

∂xi

+ vi

∂p′
∂x′

j

)

= ν
(
vi∇′2v′

j + v′
j∇2vi

)
. (6.54)

We have noticed in (6.54) that

∇2(viv
′
j ) = v′

j∇2vi = vi∇2v′
j .

Therefore we may write

∂

∂t
(Rij ) = Tij + Pij + 2ν∇2Rij , (6.55)

where Tij = − ∂

∂xk

(vivkv
′
j ) − ∂

∂x′
k

(viv
′
j v

′
k)

= ∂

∂rk

(
vivkv

′
j − viv

′
j v

′
k

)
(6.56)

and Pij = − 1

ρ

(
v′
j

∂p

∂xi

+ vi

∂p′
∂x′

j

)

= 1

ρ

(
∂

∂ri
(pv′

j ) − ∂

∂rj
(p′vi)

)
. (6.57)

In due course we shall show that when the turbulence is isotropic, Pij is iden-
tically zero. For this reason it was once believed that the term Pij represented a
tendency towards isotropy, although it is not now believed that any built-in ten-
dency to isotropy, exists. The term Tij represents energy transfer between different
modes of the spectrum. Finally the term 2ν∇2Rij represents dissipation of energy
due to viscosity.
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We now turn our attention to the spectral case in which the turbulence, already
assumed to be homogeneous, is also isotropic, i.e. it has no directional preferences.
This at once simplifies the theory considerably; at the same time, approximately
isotropic turbulence can easily be produced on a laboratory scale, for example when
a uniform stream of fluid passes through a regular grid in a wind-tunnel, so any
predictions of the theory can be tested experimentally.

6.8.2 Isotropic turbulence

In this section we shall investigate the special forms which Rij , Tij , Pij , take when
the turbulence is isotropic. To find these forms, we consider an arbitrary vector
Qi(r) and an arbitrary reference vector ai . Then if Qi is isotropic, the scalar product
Q · a = Qiai will depend on a2, r2 and a · r but not upon a or r independently.
But Qiai is linear in ai , so it follow that

Qiai = A(r)airi ,

or Qi = A(r)ri,

since this result must hold for all ai . If, in addition,

∂

∂ri
(Qi) = 0,

so that the isotropic vector Qi is solenoidal, then

A(r)
∂ri

∂ri
+ A′(r) ∂r

∂ri
ri = 0,

or, since the repeated suffix implies summation,

3A + rA′ = 0.

Thus, upon integration, we have

A(r) = C/r3,

where C is a constant. Now pvi satisfies all these conditions. It is an isotropic
vector function of r , and since ( ∂

∂x′
i

)(pv′
i ) is zero by the continuity equation, it

follows that
∂

∂ri
(pv′

i ) = 0,

that is pv′
i is solenoidal. Thus pv′

i is of the form Cr−3, and if this is to be phys-

ically reasonable as r → 0, we must have C = 0, and hence pv′
i = 0 in isotropic

turbulence. It follows from (6.57) that

Pij = 0. (6.58)
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In a similar manner we consider an isotropic tensor function Qij (r). The function
Qijaibj must be dependent only on a2, b2, r2, a · r, b · r and a · b but not a, b, r
independently. However, it is linear in both a and b, so

Qijaibj = A(r)(airi)(bj rj ) + B(r)aibi

= A(r)(airi)(bj rj ) + B(r)aibj δij

where A, B are functions of r2, that is even function of r . This result holds for all
a and b, so it follows that

Qij = A(r)rirj + B(r)δij , (6.59)

if, in addition,
∂

∂rj
(Qij ) = 0

for all i, so that Qij is solenoidal, then (6.59) yields

0 = A′rirj
∂r

∂rj
+ Aδij rj + Ari

∂rj

∂rj
+ B ′ ∂r

∂rj
δij

= A′rri + Ari + 3Ari + B ′ri/r

so that
A′r2 + 4rA + B ′ = 0. (6.60)

Now Rij satisfies all these conditions, so it may be expressed in the form (6.59)
with A and B related by (6.60). We introduce now the longitudinal velocity corre-
lation coefficient, f (r) defined by

R11(r, 0, 0) = u2f (r), (6.61)

where
u2 = v2

1 = v2
2 = v2

3 .

This involves a correlation between the velocity components at two points,
each component being parallel to the vector separation of the points. It follows,
by (6.59), that

R11(r, 0, 0) = r2A + B, (6.62)

and we may solve (6.60) to (6.62) to yield A and B in terms of f (r).

Example 6.1

Deduce that

Rij (r) = u2
{(

f + 1

2
rf ′
)

δij − 1

2r
f ′rirj

}
. (6.63)
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Solution

Given that R11(r, 0, 0) = u2f (r) = A(r)r2 + B(r). Also we have A′r2 + 4rA +
B ′ = 0. To obtain the values of A and B in terms of f (r), we differentiate the
equation

u2f (r) = A(r)r2 + B(r)

with respect to r yielding

r2A′ + 2rA + B ′ = u2f ′(r).

The values of A and B are given by

A(r)r2 = −u2
[

1

2
rf ′(r)

]

B(r) = u2
[(

f + 1

2
rf ′(r)

)]

Hence, we have

R11(r, 0, 0) = u2
{(

f + 1

2
rf ′
)

− 1

2
rf ′
}

.

Now to determine the general solution for Rij (r)), we modify the values of A and
B as follows.

A(r)rirj = −u2
[

1

2r
f ′rirj

]

B(r)δij = u2
[(

f + 1

2
rf ′
)]

δij

Hence the solution for Rij (r) is given by

Rij (r) = u2
{(

f + 1

2
rf ′
)

δij − 1

2r
rirj f

′
}

which is the required solution. Note that r2 = riri = rj rj . But rirj is a tensor and
has nine terms.

Let us introduce the lateral velocity correlation coefficient, g(r), defined by

R11(0, r, 0) = u2g(r),

which involves the velocity components at two points, each component being
normal to the vector separation of the points. We deduce from (6.63) that
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g(r) = f + 1
2 rf ′, so that∫ ∞

0
rngdr =

∫ ∞

0
rn

(
f + 1

2
rf ′
)

dr

=
∫ ∞

0

{
d

dr

(
1

2
rn+1f

)
+ 1 − n

2
rnf

}
dr

=
[

1

2
rn+1f

]∞

0
+ 1

2
(1 − n)

∫ ∞

0
rnf dr

= 1

2
(1 − n)

∫ ∞

0
rnf dr, (6.64)

provided f (r) → 0 sufficiently rapidly as r → ∞. It is found experimentally
that f (r) is positive for all r , so the integral on the right-hand side of (6.64) is
positive, and ∫ ∞

0
rng(r)dr > 0 if n < 1

= 0 if n = 1

< 0 if n > 1.

To satisfy these conditions, g(r) must have a negative loop for large r , and the
general forms of f (r) and g(r) must be as shown in Fig. 11.2.

Eddy sizes and energy dissipation

In this section we now introduce two scales of turbulence. The first is called the
longitudinal integral scale, and is defined by

� =
∫ ∞

0
f (r)dr.

We shall later demonstrate that this scale is representative of the energy-bearing
eddies. To define the second scale we write

f (r) = f (0) + 1

2
f ′′(0)r2 + · · · ,

for small r . Note here that f ′(0) = 0. This expansion is appropriate, since f (r) is
a even function. Since 2vv′ ≤ v2 + v′2, with equality only occurring when v ≡ v′,
we note that f ′′(0) < 0, so we write

f ′′(0) = − 1

λ2

whence

f (r) = 1 − r2

2λ2
+ · · ·
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Figure 6.2: Basic velocity correlation functions f (r) and g(r) (from [2]).

It may likewise be shown that when r is small the function g(r) may be
expanded as

g(r) = 1 − r2

λ2
+ · · · .

The rate of energy dissipation, appearing in (6.50), may conveniently be
expressed in terms of the length λ, as follows. We note that

(
∂v1

∂x1

)2

= lim
r→0

(
∂v1

∂x1
· ∂v′

1

∂x′
1

)

= − lim
r1→0

{
∂2

∂r2
1

(v1v
′
1)

}
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= −u2f ′′(0)

= u2

λ2
.

Similarly

(
∂v1

∂x2

)2

= −u2g′′(0)

= 2u2

λ2
.

So the dissipation rate per unit mass is

ε = ν

(
∂vi

∂xj

)2

= ν

{
3 terms like

(
∂v1

∂x1

)2

+ 6 terms like

(
∂v1

∂x2

)2
}

= 15νu2

λ2
.

Accordingly equations (6.50) and (6.51) may be written

d

dt
(u2) = −10νu2

λ2
(6.65)

and ω2 = 15u2

λ2
. (6.66)

Let us now express in approximate quantitative form the idea that the dissipation
rate is equal to the rate of break-up of the energy-bearing eddies. Since � is a
characteristic length of these eddies, we have

− d

dt

(
3

2
u2
)

≈ 3

2
u2/(�/u),

and hence

− d

dt
(u2) = 10νu2

λ2
≈ u3

�
. (6.67)

Experiments indicate that the right-hand side of (6.67) should be multiplied by
a factor which varies only slightly with experimental conditions within the range
0.8 to 1.3.

For the sort of turbulence that is produced under laboratory conditions, when a
stream of velocity U impinges on grids of mesh M , it is found that

R� = u�

ν
≈ 0.01

UM

ν
= 0.01RM.
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Hence, since (6.67) shows that

�2

λ2
≈ 0.1R�

it follows that
�2

λ2
≈ 0.001R�.

Since typical RM lies in the range from 2,000 to 100,000, it follows that (�/λ)2

will lie in the range 2–100, and so (�/λ) will be between 1 and 10.

The momentum equation in isotropic turbulence

It is clear from (6.58) that Pij = 0 in isotropic turbulence, and hence the momentum
equation (6.55) can be written as

∂

∂t
(Rij ) − 2ν∇2Rij = Tij , (6.68)

where, by (6.56) we may write

Tij = ∂

∂rk

(
Sikj (r) − Sjki(−r)

)
(6.69)

with Sikj = vivkv
′
j (6.70)

Since ∂
∂rk

(
Sikj (r)

)
is an isotropic function of r, it is of the form rirjA(r) + δijB(r).

Thus it is unchanged if i and j are interchanged or when the sign of r is changed.
It follows that (6.69) becomes

Tij = 2
∂

∂rk

(
Sikj (r)

)
.

Now the three terms appearing in (6.68) are all solenoidal. The left-hand side has
previously been shown to be solenoidal, and the right-hand side is solenoidal since

∂

∂x′
j

(vivkv
′
j ) = 0.

Thus the three terms may be expressed in the forms

Rij = u2
{(

f + 1

2
rf ′
)

δij − 1

2r
f ′rirj

}
, (6.71)

∇2Rij = u2
{(

s + 1

2
rs′
)

δij − 1

2r
s′rirj

}
, (6.72)

∂

∂rk
(Sikj ) = u2

{(
t + 1

2
rt ′
)

δij − 1

2r
t ′rirj

}
, (6.73)
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where f, s, t are even functions of r . We deduce s in terms of f by using (6.71)
and (6.72) and taking special cases. For example, by setting i = j , we have

u2(3s + rs′) = ∇2Rii

= u2

r2

∂

∂r

{
r2 ∂

∂r
(3f + rf ′)

}
.

This leads to the result

s = f ′′ + 4

r
f ′. (6.74)

Note that ∇2 = 1
r2

∂
∂r

(
r2 ∂

∂r

)
in spherical polar coordinates.

We next examine equation (6.73), and seek to learn something of the form of t ,
which clearly may be related to a basic triple velocity correlation. We note first that
Sikj is of the form

Sikj = rirj rkA(r) + riSkjB(r) + rkSijC(r) + rj δikD(r). (6.75)

As usual, these four functions, A, B, C, D, can be reduced to one. For instance,
we note from (6.70) that Sikj is symmetrical in i and k, so that

B(r) = C(r).

Also, since Sikj is solenoidal, we have

∂

∂rj
(Sikj ) = 0,

and after performing the relevant algebra this yields

0 = rirk

(
rA′ + 5A + 2B ′

r

)
+ δik(2B + rD′ + 3D).

Since this must hold for all values of i and k, we have

r2A′ + 5rA + 2B ′ = 0

and 2B + rD′ + 3D = 0.

Upon solving for A and B in terms of D, we obtain

A = D′/r

B = C = −1

2
(rD′ + 3D). (6.76)

As an alternative, we may relate A, B, C, D, to one of the basic two point triple
velocity correlations. For example, suppose we write

u3h(r) = S112 = v2
1(0, 0, 0)v2(0, r, 0),
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then (6.75) shows that
u3h(r) = rD(r), (6.77)

indicating that h(r) is an odd function . We substitute in (6.75) from (6.76), and
obtain the result

Sikj = u3
{

rh′ − h

r3
rirj rk − rh′ + 2h

2r
(rkδij + riδkj ) + h

r
rj δik

}
(6.78)

Example 6.2

Deduce from (6.73) and (6.78), by considering a special case, that

t = −u(h′ + 4h/r) (6.79)

Solution

This problem can be solved by using the following hint. We do not want to pursue
its detailed calculations. It is left to the reader as an exercise. [Hint: Examine the
value of ∂

∂rk
(Siki).]

We have now obtained expressions for the scalar functions s and t corresponding
to the terms in (6.68), which may therefore be written as

∂

∂t
(u2f ) − 2νu2s = 2u2t.

When we substitute for s from (6.74) and t from (6.79), this becomes

∂

∂t
(u2f ) − 2νu2

(
f ′′ + 4

r
f ′
)

= −2u3
(

h′ + 4

r
h

)
. (6.80)

This equation was first derived by Kármán and Howarth.

Some deductions from the Kármán and Howarth

This section is devoted in deriving certain forms of the Kármán - Howarth equation,
to illustrate various forms of isotropic turbulence.

We begin by letting r → 0 in t(6.80). Since f (r) is an even function of r , and
h(r) is an odd function of r , it follows that

4

r
f ′(r) → 4f ′′(0)

and
4

r
h(r) → 4h′(0).

Thus, in the limits, (6.80) yields

∂

∂t
(u2) + 10ν

(
u2

λ2

)
= −10u2h′(0).
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But, in (6.65), the left-hand side is exactly zero. Hence we have

h′(0) = 0. (6.81)

We now differentiate (6.80) twice with respect to r and then put r = 0. Proceeding
as before we obtain the result

∂

∂t

(
−u2

λ2

)
− 14

3
νu2f iv(0) = −14

3
u3h′′′(0).

This equation may be integrated in terms of mean-square velocity. Using (6.66) we
see that it may be written as

d

dt
(ω2) = 70u3h′′′(0) − 70νu2f iv(0).

The two terms on the right-hand side of this equation show how the mean-square
vorticity changes. The first term which is positive, represents the fact that turbulence
tends to stretch the vortex lines, causing a greater vorticity in a smaller volume and
hence a greater mean-square vorticity. The second term represents the dissipation
effects of viscosity, must of course be negative. We deduce from the signs of these
terms that

f iv(0) > 0, and h′′′(0) > 0.

Since h is an odd function of r , h(0) and h′′(0) are both zero, and we have already
shown that h′(0) is zero. We therefore deduce that h′(r) > 0 for small values of r .
Experimentally it is found that this is true, and indeed that h(r) is positive for all
values of r .

We now multiply equation (6.80) by r4 and integrate from 0 to ∞. Thus we
obtain

∂

∂t

{∫ ∞

0
u2f (r)r4dr

}
= 2νu2

∫ ∞

0

∂

∂r

(
r4 ∂f

∂r

)
dr − 2u3

∫ ∞

0

∂

∂r
(r4h)dr,

or
∂

∂t

{
u2
∫ ∞

0
r4f dr

}
= 2νu2

[
r4 ∂f

∂r

]∞

0
− 2u3[r4h]∞0 . (6.82)

Now the first term on the right-hand side is known experimentally to be zero. If the
second term were also zero, then the expression u2

∫∞
0 r4f dr would be invariant

with time. This expression id referred to as Loitsianskii’s invariant. Because of the
factor r4 in the integral the suggestion arose of some measure of permanence in
those eddies which contribute to f (r) for large varus of r , namely the large eddies,
but this interesting possibility is invalidated because the last term in (6.82) is no
longer believed to vanish at infinity.

Finally, we integrate (6.80) itself. This yields

∂

∂t

{
u2
∫ ∞

0
f (r)dr

}
= 2νu2

∫ ∞

0

(
f ′′ + 4

r
f ′
)

dr − 2u2
∫ ∞

0

(
h′ + 4h

r

)
dr

or
∂

∂t
(u2�) = 8νu2

∫ ∞

0

1

r
f ′(r)dr − 8u3

∫ ∞

0

1

r
h(r)dr. (6.83)
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By making suitable assumptions regarding this equation, it may be solved simul-
taneously with the empirical relationship (6.67). We note that the left-hand side of
(6.83) is of order u3, as (6.67) shows, whereas the first term on the right-hand side
is of the order 8u3(Rλ)

−1; accordingly we may neglect this latter term, provided
Rλ is large enough. If, further, we assume that the second integral in (6.83) varies
only slowly with time, and therefore write∫ ∞

0

1

r
h(r)dr = C,

then the equation approximates to

∂

∂t
(u2�) = −Cu3.

Upon solving simultaneously with (6.67) we obtain the result

u = u0(t − t0)
−n

� = ku0

2n
(t − t0)

1−n, (6.84)

where u0 and t0 are arbitrary and

n = (3 − 2C/k)−1.

Example 6.3

Given that the vector Qi = A(r)ri is solenoidal, that is Qi satisfies the continuity
equation. Deduce the value of the function A(r) in the form A(r) = C/r3, where
C is an arbitrary constant.

Solution

Since Qi is solenoidal, we have

∂Qi

∂ri
= 0.

This implies that

∂

∂ri
(A(r)ri) = 0

or A′(r)
(

∂r

∂ri

)
ri + A(r)(

∂ri

∂ri
) = 0

or A′(r)
( ri

r

)
ri + A(r)δii = 0
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The last equation can be written as a first-order ordinary differential equation

r
dA

dr
+ 3A = 0

the solution of which is simply A(r) = C/r3, where C is an arbitrary constant.
Therefore Qi = (C/r3)ri . Hence the required result.

Example 6.4

If Qij = A(r)rirj + B(r)δij is solenoidal, then prove that A and B satisfy this
ordinary differential equation A′r2 + 4rA + B ′ = 0.

Proof

Given that Qij (r) is solenoidal with respect to i and j . Therefore, we must have

by the continuity equation
∂Qij

∂rj
= 0. Thus we obtain

∂

∂rj

(
A(r)rirj + B(r)δij

) = 0

or

A′(r)
(

∂r

∂rj

)
rirj + A(r)

(
∂ri

∂rj

)
rj + A(r)ri

(
∂rj

∂rj

)
+ B ′(r)

(
∂r

∂rj

)
δij =0.

It is noted that ∂r
∂rj

= rj
r

, ∂ri
∂rj

= δij and
∂rj
∂rj

= δjj . Hence using these entities, we

obtain

A′ ( rj

r

)
rirj + Aδij rj + Ariδjj + B ′ ( rj

r

)
δij = 0,

which is

rA′ri + Aδiiri + 3Ari +
(

B ′

r

)
ri = 0.

Using the tensor identity Aδjj = 3A and then equating the coefficient of ri to
zero, the last equation can be written as

rA′ + 4A + B ′/r = 0.

Example 6.5

Given that Sikj (r) = rirj rkA(r) + riδkjB(r) + rkδijC(r) + rj δikD(r) is sole-
noidal, then show that A, B, C, D are related to the ordinary differential equations

r2A′ + 5rA + 2B ′ = 0

2B + rD′3D = 0.
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Solution

Given that Sikj (r) = vivkv
′
j is a symmetric tensor in i and k. Therefore, riδkjB(r) =

rkδij = B(r) = rkδijC(r), and hence we have B(r) = C(r). Thus the given tensor
can be rewritten as

Sikj = rirj rkA(r) + (riδkj + rkδij )B(r) + rj δikD(r).

This tensor is solenoidal, which means that it satisfies the continuity equation. Thus
∂

∂rj
(Sikj ) = 0. Taking the partial derivative with respect to rj we obtain(

∂ri

∂rj

)
rj rkA + ri

(
∂rj

∂rj

)
rkA + rirj

(
∂rk

∂rj

)
A + rirj rkA

′
(

∂r

∂rj

)

+
{(

∂ri

∂rj

)
δkj +

(
∂rk

∂rj

)
δij

}
B + (

riδkj + rkδij

)
B ′
(

∂r

∂rj

)

×
(

∂rj

∂rj

)
δikD + rj δikD

′
(

∂r

∂rj

)
= 0.

There are eight terms in this equation. Let us calculate one after another by using
the tensor identities.(

∂ri

∂rj

)
rj rkA = δij rj rkA = δiirirkA = rirkA

ri

(
∂rj

∂rj

)
rkA = riδjj rkA = 3rirkA

rirj

(
∂rk

∂rj

)
A = rirj δkjA = rirkδkkA = rirkA

rirj rk

(
∂r

∂rj

)
A′ = rirj rkA

′rj /r = rirk(rA
′)

{(
∂ri

∂rj

)
δkj +

(
∂rk

∂rj

)
δij

}
B = (

δij δkj + δkj δij

)
B

= (δikδkk + δkkδik) B = 2δikB(
riδkj + rkδij

) ( ∂r

∂rj

)
B ′ = (

rirj δkj + rj rkδij

)
(B ′/r)

= (rirkδkk + rirkδii) (B ′/r) = 2rirk(B
′/r)(

∂rj

∂rj

)
δikD + rj δikD

′
(

∂r

∂rj

)
= δjj δikD + rj rj δki(D

′/r) = 3δikD + δik(rD
′).

Collecting this information and grouping as the coefficients of rirk and δik , we
can write the above equation in a simple form as(

rA′ + 5A + 2B ′

r

)
rirk + (

2B + rD′ + 3D
)
δik = 0
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Since this equation holds for all values of i and k, we therefore, next equate the
coefficient of rirk and δik to zero, and this yields

r2A′ + 5rA + 2B ′ = 0

2B + rD′ + 3D = 0.

This is the required solution of the problem. The unknown variables are obtained
in the previous section from the physical consideration of the problem. Here we
have shown only how the powerful tensor calculus plays an important role.

6.9 Spectral theory of homogeneous turbulence

The energy spectrum tensor

We have already introduced the correlation tensor, Rij (r). We now introduce its
three-dimensional Fourier transform, �ij (K), defined by the relationship

Rij (r) =
∫ ∞

−∞
�ij (K)eiK·rdK. (6.85)

In this equation the integral is a triple integral taken over all values of each of
three components of wavenumber space (K1, K2, K3), dK being shorthand for the
product dK1dK2dK3. Then inverse of (6.85) is

�ij (K) = 1

8π3

∫ ∞

−∞
Rij (r)e−iK·rdr. (6.86)

It is worth noting that
Rij (r) = Rji(−r),

and an analogous property holds for �ij (K), i.e.,

�ij (K) = �ji(−K).

We note, setting r = 0 in (6.85), that

Rij (0) = vi(x)vj (x) =
∫ ∞

−∞
�ij (K)dK, (6.87)

so �ij (K) represents a density, in wavenumber space, of contributions to
vi(x)vj (x). By letting i = j in (6.87), it is found that

v2
i =

∫ ∞

−∞
�ii(K)dK,

which has the dimension of energy per unit mass. For these reasons, �ij (K) is
called the energy spectrum tensor.
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Note that the velocity covariance tensor, Rij is defined as

vi(x)vj (x′) = Rij (x′ − x),

or viv
′
j = Rij (r)

Spectra in isotropic turbulence

In much the same way that the condition of isotropy determined the functional form
of Rij , it likewise follows that

�ij (K) = B(K)δij + C(K)KiKj (6.88)

for some functions B(K), C(K). The equation of continuity then gives a relation-
ship between B and C. From (6.85), since

viv
′
j = Rij (r) =

∫ ∞

−∞
�ij (K) exp[iK · (x′ − x)]dK,

we have

0 = ∂vi

∂xi

v′
j = −i

∫ ∞

−∞
Ki�ij (K) exp[iK · (x′ − x)]dK,

and hence
Ki�ij (K) = 0.

Upon substituting from (6.88) it is readily deduced that

B(K) + K2C(K) = 0.

With this relationship, (6.88) may be written

�ij (K) = C(K)[KiKj − K2δij ]. (6.89)

It is now convenient at this point to introduce a new scalar function, defined by

E(K) = Energy contained in modes with scalar wavenumber K ± 1
2dK

dK

=
1
2�ii(4πK2dK)

dK

= 2πK2�ii

= −4πK4C(K).

Using E(K) instead of C(K), (6.89) finally becomes

�ij (K) = E(K)

4πK4
[K2δij − KiKj ]. (6.90)
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From experimental view point, it is usual to measure a one-dimensional spectrum
function by the following definition

φ(K1) =
∫ ∞

−∞

∫ ∞

−∞
�11(K1, K2, K3)dK2dK3.

We express this in terms of E(K) by changing in effect from Cartesian coordinates
(K2, K3) to polar coordinates. Thus, considering the K2 − K3 wave number plane
in two-dimension (analogous to x − y plane), we have

K2 = K cos θ

K3 = K sin θ

such that K2 = K2
2 + K2

3 , and θ = tan−1(K3
K2

), hence the elementary area

dK2dK3 = (Kdθ)(dK)

then the above integral can be written as

φ(K1) =
∫ ∞

−∞

∫ 2π

0
�11(K1, K, θ)KdKdθ

= 2π

∫ ∞

K=K1

�11(K1, K)KdK

= 1

2

∫ ∞

K=K1

E(K)

K3
[K2 − K2

1 ]dK.

This equation is easily inverted, by differentiating with respect to K1. Thus
we have

φ′(K1) = −K1

∫ ∞

K1

E(K)

K3
dK

and E(K) = K3
1

d

dK1

{
1

K1
φ′(K1)

}

Now we can write the expression for E(K) as follows.

E(K) = K2φ′′(K) − Kφ′(K). (6.91)

The relationship between E(K) and f (r)

It is convenient to use φ(K) as an intermediate function to obtain the relationship
between E(K) and f (r). Thus upon substituting for �11 from (6.86)

φ(K1) = 1

8π3

∫ ∞

−∞
R11(r1, r2, r3) exp[−i(K1r1 + K2r2 + K3r3)]

dr1dr2dr3dK2dK3

= 1

2π

∫ ∞

−∞
R11(r1, 0, 0) exp[−iK1r1]dr1,
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after twice using the result that∫ ∞

−∞

∫ ∞

−∞
F(x)e−ixydxdy = 2πF(0).

Substituting for R11(r, 0, 0) = u2f (r) where u2 = v2
1 = v2

2 = v2
3, and f (r) is

known as longitudinal velocity correlation coefficient, we obtain

φ(K) = u2

2π

∫ ∞

−∞
f (r)e−iKrdr

= u2

π

∫ ∞

0
cos Krf (r)dr. (6.92)

The value of E(K) then follows from (6.91), and is given by

E(K) = u2

π

∫ ∞

0
f (r)

{
Kr sin Kr − K2r2 cos Kr

}
dr. (6.93)

To invert this equation we note that (6.92) leads to

u2f (r) = 2
∫ ∞

0
φ(K1) cos K1rdK1

=
∫ ∞

0
cos K1rdK1

∫ ∞

K1

E(K)

K3

[
K2 − K2

1

]
dK.

We now invert the order of integration. Hence we obtain

u2f (r) =
∫ ∞

0

E(K)

K3
dK

∫ K

0

[
K2 − K2

1

]
cos K1rdK1

= 2
∫ ∞

0
E(K)

(
sin Kr

K3r3
− cos Kr

K2r2

)
dK. (6.94)

Equations (6.93) and (6.94) have a number of interesting consequences. We
deduce from (6.94) that

u2� = u2
∫ ∞

0
f (r)dr

= 2
∫ ∞

0
E(K)dK

∫ ∞

0

(
sin Kr

K3r3
− cos Kr

K2r2

)
dr

= 2
∫ ∞

0

E(K)

K
dK

∫ ∞

0

(
sin t

t3
− cos t

t2

)
dt

= π

2

∫ ∞

0

E(K)

K
dK.
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But we know that
3

2
u2 =

∫ ∞

0
E(K)dK,

and hence we have

� = 3π

4

∫∞
0

E(K)
K

dK∫∞
0 E(K)dK

= mean value of
3π

4
K−1,

the mean value being taken with respect to the energy spectrum. The result verifies
that � is representative of the size of the energy-bearing eddies.

We now expand sin Kr and cos Kr in powers of Kr , and so (6.94) becomes

u2f (r) = 2

3

∫ ∞

0
E(K)

{
1 − 1

10
K2r2 + · · ·

}
dK.

so that

u2

λ2
= −u2f ′′(0) = 2

15

∫ ∞

0
K2E(K)dK.

Accordingly the rate of energy dissipation per unit mass is given by

ε = − d

dt

(
3

2
u2
)

= 15νu2

λ2

= 2ν

∫ ∞

0
K2E(K)dK, (6.95)

which depends upon the values of E(K) for large K , that is upon the small eddies.

Rate of change of the energy spectrum

We write the equation already deduced in the last section,

∂

∂t
(Rij ) = Tij + Pij + 2ν∇2Rij

and take the three-dimensional Fourier transform of each term. This transformation
leads to

∂

∂t
(�ij ) = �ij + �ij − 2νK2�ij , (6.96)

where

�ij = 1

8π3

∫
Tij e

−iK·rdr.
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and

�ij = 1

8π3

∫
Pij e

−iK·rdr.

It is worth noting here that for isotropic turbulence Pij = 0 and �ij = 0. For non-
isotropic homogeneous turbulence, it was shown that Pii = 0 none the less, and
hence �ii = 0. When we let i = j in (6.96) we therefore obtain the following result

∂

∂t
(�ii) = �ii − 2νK2�ii,

the absence of the pressure term indicates that these do not affect the total energy
contributed by any small region in wave-number space, but merely change the
directional distribution of this energy.

Turning now to isotropic turbulence, we multiply by 2πK2 and write

E(K) = 2πK2�ii

so that

∂

∂t
(E(K)) = T (K) − 2νK2E(K),

where

T (K) = 2πK2�ii .

After formal integration this becomes

∂

∂t

{∫ K

0
E(K1)dK1

}
= S(K) − 2ν

∫ K

0
K2

1E(K1)dK1, (6.97)

with

S(K) = 2π

∫ K

0
K2

1�ii(K1)dK1.

This equation has a simple physical interpretation that the energy of the large
eddies changes because of a transfer S(K) < 0 from the small eddies, and because
of viscous dissipation.

In an attempt to solve the energy decay equation, Heisenberg has made certain
assumptions which are likely to be valid for the energy-bearing eddies, by sug-
gesting that the extraction of energy from the large eddies takes place as if an
eddy-viscosity caused an increased dissipation in the larger eddies. Thus (6.97) is
written as

∂

∂t

{∫ K

0
E(K1)dK1

}
= −2(νe + ν)

∫ K

0
K2

1E(K1)dK1. (6.98)
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By further assuming that νe(K) shall be independent of ν (a reasonable sugges-
tion for those eddies outside the dissipation range), and that νe(K) depends upon
E(K1) for all K1 > K , that is on all the smaller eddies, then dimensional reasoning
suggests that

νe(K) ∝
∫ ∞

K

(K1E(K1))
1/2 1

K1

dK1

K1
,

where the three factors in the integrand have the dimensions of velocity, length and
a number, respectively. Thus, we write

νe(K) = γ

∫ ∞

K

(E(K1))
1
2 K

−3/2
1 dK1,

and (6.98) then becomes

∂

∂t

{∫ K

0
E(K1)dK1

}

= −2

{
ν + γ

∫ ∞

0
(E(K1))

1
2 K

−3/2
1 dK1

}∫ K

0
K2

1E(K1)dK1.

This equation must be solved numerically to give E(K).Afair test of its accuracy
would be its prediction of f (r), which is determined by the medium-sized and larger
eddies. It is found that if γ is taken to be approximately 0.45, the calculated f (r)

at a Reynolds number of 240 is in good agreement with experimental results.

6.10 Probability distribution of u(x)

Consider a given flow, in which a velocity component, say v1, is measured at a
fixed point x. We have already seen that in a truly turbulent flow the value of v1(x)

will vary randomly. Numerous experimental measurements have been made of
the probability distribution of such a single velocity component in approximately
isotropic turbulence, and it has been found to have normal or Gaussian distribution.
The accuracy to which this is true is considerable. For example, values of the flatness

factor v4
1/[(v2

1)]2 have been measured, such values having biased in favour of large
values of |v1|. The experimental results yield flatness factors lying between 2.9 and
3.0 as compared with the value 3.0 appropriate to a normal distribution. Further,

the skewness factor v3
1/[(v2

1)]3/2 has been experimentally found to be very close to
zero. These results are not hard to understand. The velocity at any point is subject
to the influence of a large number of random eddies in its neighborhood, so the
resultant normal probability distribution is not surprising.

Let us now consider velocity components at two different fixed points, and we
want to know the probability distribution of v1(x) − v1(x′). We may surmise that if
r = |x − x′| is sufficiently large, the two velocity components will be independent,
and hence v1 − v′

1 will have a normal distribution. On the other hand when r is suffi-
ciently small the values of v1 and v′

1 will be well correlated, and the probability and
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the probability distribution will be determined by the source of the correlation, that
is, by the equation of motion. The experimental results bear out these contentions.
For example, values of flatness factor

(v1 − v′
1)

4/[(v1 − v′
1)

2]2

have been measured for various values of separation of the two points. It is found
that it deceases from roughly 3.6 when r = 0 to roughly 2.9 when r is large. By
comparison with the correlation function f (r) it is found that the flatness factor lies
between 2.9 and 3.1 provided r is sufficiently large that f (r) < 0.7. In other words,
the relationship between the fourth-order mean value (v1 − v′

1)
4 and the second-

order mean value [(v1 − v′
1)

2] is that corresponding to a normal joint probability
distribution at least as far as the larger eddies are concerned. On the other hand,
measured values of the skewness factor

(v1 − v′
1)

3/[(v1 − v′
1)

2]3/2

fall to zero only for exceedingly large r , but not for values of r for which f (r) is
significantly non-zero. In other words, the relationship between the third-order and
second-order mean values is not that appropriate to a normal distribution.

The above results lead to a reasonable working hypothesis, which has proved
very useful, the part of the probability distribution of v(x) which is determined by
the larger eddies is approximately normal, at least as far as the values of the velocity
at no more than two points are concerned, and particularly as regards the relation
between even-order two-point mean values . This enables us to express complicated
velocity product mean values in terms of the basic correlation function f (r).

6.11 Calculation of the pressure covariance in isotropic
turbulence

In this section we shall discuss an illustration and application of the ideas pre-
sented in the previous section. Here we shall now briefly indicate how the pressure
covariance p(x)p(x′) = pp′ may be expressed in terms of f (r). We begin with the
equation

∂vi

∂t
+ ∂

∂xj

(vivj ) = − 1

ρ

∂p

∂xi

+ ν∇2vi,

which we differentiate with respect to xi . Then by virtue of the continuity equation
∂vi

∂xi
= 0 we have

1

ρ

∂2p

∂x2
i

= ∂2

∂xi∂xj

(vivj )

Likewise

1

ρ

∂2p′

∂x
′2
k

= ∂2

∂x′
k∂x′

l

(v′
kv

′
l )
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and multiplication leads to the result

1

ρ2

∂4

∂x2
i ∂x

′2
k

(pp′) = ∂4

∂xi∂xj ∂x′
k∂x′

l

(vivj v
′
kv

′
l )

We take mean value and write

1

ρ2
pp′ = P(r),

∂4vivj v
′
kv

′
l

∂xi∂xj ∂x′
k∂x′

l

= ∂4vivj v
′
kv

′
l

∂ri∂rj ∂rk∂rl
= W(r). (6.99)

Then, since ∂2

∂x2
i

≡ ∇2 becomes 1
r2

d
dr

(
r2 d

dr

)
for function of r in cylindrical polar

coordinates, we have

1

r2

d

dr

[
r2 d

dr

{
1

r2

d

dr

(
r2 dP

dr

)}]
= W(r),

which may be integrated successively four times to yield

P(r) = 1

6r

∫ ∞

r

y(y − r)3W(y)dy. (6.100)

On the basis of the ideas presented above and taking the approximations, we may
express W(r) in terms of f (r) as follows. When the joint probability distribution
of v and v′ is normal it may be shown that

vivj v
′
kv

′
l = (vivj )(v

′
kv

′
l ) + (viv

′
k)(vj v

′
l ) + (viv

′
l )(viv

′
k).

The proof of this result can be found in Batchelor’s The Theory of Homogeneous
Turbulence [1]. In this equation we note that the first term on the right-hand side is
a constant. Thus, from (6.99), we have

W(r) = ∂4

∂ri∂rj ∂rk∂rl

(
(viv

′
k)(vj v

′
l ) + (viv

′
l )(vj v

′
k)
)

= 2
∂2(viv

′
k)

∂rj ∂rl
· ∂2(vj v

′
l )

∂ri∂rk
, (6.101)

since all the remaining terms which arise in successive differentiation of a product
are zero by virtue of the continuity equation.

We know that

Rij (r) = u2
{(

f + 1

2
rf ′
)

δij − 1

2r
f ′rirj

}
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and hence by this equation we have

viv
′
k = u2

{(
f + 1

2
rf ′
)

δik − 1

2r
f ′rirk

}
,

and upon substitution into (6.101) it may be shown, after much tedious but straight-
forward algebraic reduction, that

W(r) = 4u2
{

2(f ′′)2 + 2f ′f ′′ + 10

r
f ′f ′′ + 3

r2
(f ′)2

}
.

We then substitute into (6.100), and after integration by ‘parts’ several times it
may be shown that

P(r) = 1

ρ2
(pp′) = 2u4

∫ ∞

r

(
y − r2

y

)
[f ′(y)]2dy.

Thus, once f is prescribed, PP ′ follows by integration. We here note that, by setting
r = 0 we have that

p2 = 2ρ2u4
∫ ∞

0
y(f ′)2dy,

and with the values of f this integral yields (see the previous section)

p2 = 0.34ρ2u4.

Example 6.6

Show that ∫ ∞

−∞

∫ ∞

−∞
F(x)e±ixydxdy = 2πF(0).

Proof

Let us denote the integral as I+ with positive exponential such that

I+ =
∫ ∞

−∞

∫ ∞

−∞
F(x)eixydxdy

=
∫ ∞

−∞
F(x)

(∫ ∞

−∞
eixydy

)
dx
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=
∫ ∞

−∞
F(x)

[
eixy

ix

]∞

y=−∞
dx

=
∫ ∞

−∞
F(x) lim

y→∞

(
eixy − e−ixy

ix

)

=
∫ ∞

−∞
F(x) lim

y→∞ 2π

{
sin(xy)

πx

}
dx

= 2π

∫ ∞

−∞
F(x)δ(x)dx

= 2πF(0).

Note that limy→∞ sin(xy)
x

= δ(x) by definition. Similar analysis can be made taking
the negative exponential and the result will be identical. Let us show it explicitly.

I− =
∫ ∞

−∞

∫ ∞

−∞
F(x)e−ixydxdy

=
∫ ∞

−∞
F(x)

(∫ ∞

−∞
e−ixydy

)
dx

=
∫ ∞

−∞
F(x)

[
e−ixy

−ix

]∞

y=−∞
dx

=
∫ ∞

−∞
F(x) lim

y→∞

(
eixy − e−ixy

ix

)

=
∫ ∞

−∞
F(x) lim

y→∞ 2π

{
sin(xy)

πx

}
dx

= 2π

∫ ∞

−∞
F(x)δ(x)dx

= 2πF(0).

Hence I+ = I− = I . This is the required proof.

Example 6.7

Show that

∫ ∞

0

(
sin t

t3
− cos t

t2

)
dt = π

4
.
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Proof

Let us consider the left-hand side as I .

I =
∫ ∞

0

(
sin t

t3
− cos t

t2

)
dt

=
[

sin t

−2t2

]∞

0
−
∫ ∞

0

{
cos t

−2t2
+ cos t

t2

}
dt

=
[

sin t

−2t2

]∞

0
−
∫ ∞

0

{
cos t

2t2

}
dt

= lim
t→0

(
1

2t

)
−
[

cos t

−2t

]∞

0
+
∫ ∞

0

sin t

2t
dt

= lim
t→0

(
1

2t
− 1

2t

)
+ 1

2

∫ ∞

0

sin t

t
dt

= π

4
.

Hence the proof. Note that
∫∞

0
sin t

t
dt = π

2 .

Example 6.8

The Fourier transform in three-dimensions is defined as

�11(K1, K2, K3)

= 1

8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
R11(r1, r2, r3)e

−i(K1r1+K2r2+K3r3)dr1dr2dr3.

Here �11 is called the spectrum and R11 is the correlation coefficient. Now let us
define for our convenience

φ(K1) =
∫ ∞

−∞

∫ ∞

−∞
�11(K1, K2, K3)dK2dK3.

Then show that

φ(K1) = 1

2π

∫ ∞

−∞
R11(r1, 0, 0)e−iK1r1dr1.
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Proof

Given that

φ(K1) =
∫ ∞

−∞

∫ ∞

−∞
�11(K1, K2, K3)dK2dK3

=
∫ ∞

−∞

∫ ∞

−∞

{
1

8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
R11(r1, r2, r3)

}

e−i(K1r1+K2r2+K3r3)dr1dr2dr3dK2dK3

= 1

8π3

(∫ ∞

r1=−∞
e−iK1r1dr1

)(∫ ∞

r2=−∞

∫ ∞

K2=−∞
e−iK2r2dK2dr2

)
(∫ ∞

r3=−∞

∫ ∞

K3=−∞
R11(r1, r2, r3)e

−iK3r3dK3dr3

)

= 1

4π2

(∫ ∞

r1=−∞
e−iK1r1dr1

)
(∫ ∞

r2=−∞

∫ ∞

K2=−∞
R11(r1, r2, 0)e−iK2r2dK2dr2

)

= 1

2π

∫ ∞

r1=−∞
R11(r1, 0, 0)e−iK1r1dr1.

This is the required proof. In obtaining this result we have used the result of
Example 11.6.

Example 6.9

Fluid flows with uniform speed U0 in the region y > 0, x < 0. When x > 0 it mixes
with fluid at rest in the region y < 0. Show that the equation for the mean velocity
in the turbulent mixing region is, on the basis of mixing-length theory,

u
∂u

∂x
+ v

∂u

∂y
= 2�2 ∂u

∂y

∂2u

∂y2
,

∂u

∂x
+ ∂v

∂y
= 0,

where the mixing-length � = axm is proportional to the width of the mixing region.
Then look for a solution of the form

u = ∂ψ

∂y
, v = −∂ψ

∂x

where ψ is a stream function which satisfies the continuity equation. Consider a
similar solution in the form ψ(x, y) = xnf (η) such that η = y/xm known as the
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similarity variable. Deduce that for m = 1, the equation for f (η) is the following
ordinary differential equation

2a2f ′′f ′′′ + nff ′′ = (n − 1)f ′2.

By consideration of the boundary condition on u, deduce that n = 1, and thus that

2a2f ′′′ + f = 0.

Solution

The two-dimensional turbulent boundary layer equations are given by

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dx
+ 1

ρ

∂τ

∂y
,

∂u

∂x
+ ∂v

∂y
= 0,

where τ = μ∂u
∂y

− ρu′v′. From experimental observation, Prandtl’s mixing-length

theory can be derived as −ρu′v′ = �2 ∂u
∂y

| ∂u
∂y

| = �2
(

∂u
∂y

)2
. Thus, we have τ =

μ∂u
∂y

+ �2
(

∂u
∂y

)2
. Hence

∂τ

∂y
= μ

∂2u

∂y2
+ 2�2

(
∂u

∂y

)(
∂2u

∂y2

)

= 2�2
(

∂u

∂y

)(
∂2u

∂y2

)

Here the viscous stress μ∂2u

∂y2 = 0 because it is very small in comparison with the

Reynolds stress. Also we have dU
dx

= 0 because U is a uniform stream speed. Thus
collecting all these information, we can write the boundary layer equations in the
turbulent mixing region as

u
∂u

∂x
+ v

∂u

∂y
= 2�2 ∂u

∂y

∂2u

∂y2
,

∂u

∂x
+ ∂v

∂y
= 0,

This set of equations can be solved by the similarity technique. We introduce a
stream function ψ(x, y) which satisfies the continuity equation. This function is
related to the velocity components u = ∂ψ

∂y
and v = − ∂ψ

∂x
. We look for a solution in

the form ψ(x, y) = xnf (η) where η = y/xm is defined as the similarity variable.
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With these information, we deduce the different terms in the above equations in
terms of f (η). The following calculations are presented here.

u = ψ

∂y
= xn−mf ′

v = −∂ψ

∂x
= −nxn−1f + mxn−1ηf ′

∂u

∂y
= xn−2mf ′′

∂2u

∂y2
= xn−3mf ′′′

∂u

∂x
= (n − m)xn−m−1f ′ − mxn−m−1ηf ′′

Substituting these values into the above boundary layer equation yields

x2n−2m−1(n − m)f ′2 − mx2n−2m−1ηf ′f ′′

−nx2n−2m−1ff ′′ + mx2n−2m−1ηf ′f ′′

= 2�2x2n−5mf ′′f ′′′

which can be written after reduction as

x2n−2m−1(n − m)f ′2 − nx2n−2m−1ff ′′ = 2�2x2n−5mf ′′f ′′′

Now if we let � = axm such that �2 = a2x2m, then the above equation reduces to

(n − m)f ′2 − nff ′′ = 2a2x1−mf ′′f ′′′.

Let m = 1 in which case the x variable will be eliminated from the differential
equation and the differential equation will be completely in terms of the similarity
variable η. This is a reasonable assumption so far as the boundary conditions are
concerned. Hence the differential equation becomes

2a2f ′′f ′′′ + nff ′′ = (n − 1)f ′2.

If we let n = 1, then the ordinary differential equation becomes simply

2a2f ′′′ + f = 0.

This is the required result.

Example 6.10

Starting from the kinetic-energy integral equation for a turbulent boundary layer,

d

dx
(ρU3δ3) = 2

∫ ∞

0
τ

∂u

∂y
dy,
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and assuming that the turbulent shearing stress is approximately

τ ≈ τw + y
dp

dx
,

show that
d

dx
(ρU3δ3) ≈ 2U

(
τw + δ1

dp

dx

)
.

Solution

The kinetic-energy integral equation for a turbulent boundary layer is given by

d

dx
(ρU3δ3) = 2

∫ ∞

0
τ

∂u

∂y
dy.

We know that the turbulent shearing stress is defined as τ = τw + dp
dx

y. Thus sub-
stituting the value of τ in the above equation, yields

d

dx
(ρU3δ3) = 2

∫ ∞

0

(
τw + dp

dx
y

)
∂u

∂y
dy

= 2

{∫ ∞

0
τw

(
∂u

∂y

)
dy +

∫ ∞

0

dp

dx
y

∂u

∂y
dy

}

= 2U

{∫ ∞

0
τw

(
∂(u/U)

∂y

)
dy +

∫ ∞

0

dp

dx
y

∂(u/U)

∂y
dy

}

= 2U

(
τw + δ1

dp

dx

)
.

We can simply show that
∫∞

0 τw(
∂(u/U)

∂y
)dy = τw, and

∫ ∞

0

dp

dx
y

∂(u/U)

∂y
dy = dp

dx

∫ ∞

0

(
1 − u

U

)
dy = dp

dx
δ1.

Thus the required result is

d

dx
(ρU3δ3) ≈ 2U

(
τw + δ1

dp

dx

)
.

Example 6.11

Show that in homogeneous isotropic turbulence, the rate of energy dissipation per
unit mass is

ε = ν

(
∂vi

∂xj

)2

= 15νu2

λ2
.
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Use a physical argument to deduce the approximate equation

d

dt
(u2) = −Au3/�,

for the energy decay of grid turbulence. Hence find a relationship between λ and �,
and comment very briefly on the significance of these two length scales.

Solution

We start with the definitions of longitudinal velocity correlation coefficient, f (r),

defined by R11(r, 0, 0) = u2f (r) where u2 = v2
1 = v2

2 = v2
3. This involves a cor-

relation between the velocity components at two points, each component being
parallel to the vector separation of the points. In actual practice,

Rij (r) = u2
{(

f + 1

2
rf ′
)

δij − 1

2r
f ′rirj

}
.

We now introduce the lateral velocity correlation coefficient, g(r), defined by
Rii(0, r, 0) = u2g(r) = u2(f + 1

2 rf ′), which involves the velocity components
at two points, each component being normal to the vector separation of the points.
We now introduce two scales of turbulence. The first is called the longitudinal
integral scale, and is defined by

� =
∫ ∞

0
f (r)dr.

This is nothing but the representative of the energy-bearing eddies. To define the
second scale we write

f (r) = f (0) + f ′(0)r + 1

2
f ′′(0)r2 + · · · = f (0) + 1

2
f ′′(0)r2 + · · ·

for small r . Since f (r) is an even function, so f ′(0) = 0, and the expansion is
appropriate. We also note that f ′′(0) < 0, so we write f ′′(0) = −1/λ2, and hence

f (r) = f (0) − r2

2λ2 = 1 − r2

2λ2 because the maximum value of f (r) = f (0) = 1.
It may likewise be shown that when r is small the function g(r) may be expanded

as g(r) = f (r) + 1
2 rf ′(r) = 1 − r2

λ2 + · · · . The rate of energy dissipation per unit
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mass may conveniently be expressed in terms of the length λ, as

ε = ν

(
∂vi

∂xj

)2

= ν

{
3 terms like

(
∂v1

∂x1

)2

+ 6 terms like

(
∂v1

∂x2

)2
}

= ν

{
3
u2

λ2
+ 6

2u2

λ2

}

= 15νu2

λ2
.

But we know that
∂

∂t

(
1

2
v2
i

)
= −ν

(
∂vi

∂xj

)
= −ε.

We drop the bar for simplicity. And hence d
dt

( 3
2u2) = −ε = − 15νu2

λ2 . Thus we have
d
dt

(u2) = − 10νu2

λ2 .
We also know that in the case of homogeneous turbulence, the mean square

vorticity is given by

∂

∂t

(
1

2
v2
i

)
= −νω2

i = −νω2 = −ν
15u2

λ2
.

And hence we have

ω2 = 15u2

λ2
.

Since � is a characteristic length of these eddies, we have approximately

− d

dt

(
3

2
u2
)

≈ 3

2
u2/(�/u) = 3

2

u3

�
,

and hence

− d

dt
(u2) = 10νu2

λ2
≈ u3

�
.

This can be written as
d

dt
(u2) = −A

u3

�
,

where A is a constant. This is known as the energy decay for grid turbulence. Now
we can relate λ and � in the following manner.

− d

dt
(u2) = 10νu2

λ2
= A

u3

�
.
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Therefore

λ2 = 10ν�

Au
.

Thus the square of the viscous dissipation length is directly proportional to
the longitudinal integral scale � (representative of the energy bearing eddies) and
inversely proportional to the mean eddy velocity.

From the experimental point of view, the sort of turbulence produced under
laboratory conditions, when a stream of velocity U impinges on the grids of mesh
M , it is found that

R� = u�

ν
≈ 0.01RM = 0.01

UM

ν
.

Hence we have from the above analysis that

�2

λ2
≈ 0.1R�,

and it follows that
�2

λ2
≈ 0.001RM.

Since typical RM lies in a range from 2,000 to 100,000, it follows that (�/λ)2 will
lie in the range 2-100, and so (�/λ) will be between 1 and 10.

For further information about this important topic, the interested reader is referred
to the work of Lamb, H. [3] to Rahman, M. [7] as listed in the reference section.

6.12 Exercises

1. Define the velocity covariance tensor Rij (r) for homogeneous turbulence, and
show that it satisfies a dynamical equation of the form

∂Rij

∂t
= Tij + Pij + 2ν∇2Rij ,

where Tij is the inertia tensor and Pij the pressure tensor. Show that Pij is zero
when the turbulence is isotropic.

Deduce the equation for the energy spectrum function E(K)(=
2πK2�ii(K)) for homogeneous isotropic turbulence, and comment on the
difficulties of solving it.

2. Given that the energy spectrum tensor for homogeneous isotropic turbulence
is of the form

�ij (K) = E(K)

4πK4

(
K2δij − KiKj

)
,

derive the two equations

φ(K1) = 1

2

∫ ∞

K1

E(K)

K3
(K2 − K2

1 )dK,

E(K1) = K3
1

d

dK1

(
1

K1

dφ

dK1

)
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relating the one-dimensional spectrum function φ(K1) and the energy spec-
trum function E(K). Infer the behaviours of φ and E for small values of K ,
given by

u2� = π

2

∫ ∞

0
K−1E(K)dK;

sketch φ and E as a function K .
3. Define the longitudinal velocity correlationf (r), the lateral velocity correlation

g(r) and the energy dissipation length λ in homogeneous isotropic turbulence.
Sketch typical curves of f (r) and g(r), and comment briefly on their respective
shapes.

Two particles of fluid in homogeneous isotropic turbulence are, at a given

instant, a distant r apart. Derive expressions for ( dr
dt

)2 and �2, where � is the
angular velocity of the line joining the particles. Hence show that, for values
of r small compared with λ,

(
dr

dt

)2

= r2u2

λ2

and

�2 = 4u2

λ2
.
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