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When I wrote the first version of this textbook in 2001, my opening 
paragraph was as follows:

Why write a textbook for a course that has pretty much disappeared from 
the curriculum at many universities? The only possible answer is in hopes 
of reviving it (as we have been able to do at the University of Minnesota) 
because of enormous future opportunities that await us including bio-
medical applications such as heart pumps, harnessing of renewable 
energy resources such as wind, factory automation using robotics, and 
clean transportation in the form of hybrid-electric vehicles.

Here we are, more than a decade later, and unfortunately the situa-
tion is no different. It is hoped that the conditions would have changed 
when the time comes for the next revision of this book in a few years 
from now.

This textbook follows the treatment of electric machines and drives 
in my earlier textbook, Electric Machines and Drives: A First Course, 
published by Wiley (http://www.wiley.com/college/mohan).

My attempt in this book is to present the analysis, control, and mod-
eling of electric machines as simply and concisely as possible, such that 
it can easily be covered in one semester graduate-level course. To do 
so, I have chosen a two-step approach: first, provide a “physical” picture 
without resorting to mathematical transformations for easy visualiza-
tion, and then confirm this physics-based analysis mathematically.

The “physical” picture mentioned above needs elaboration. Most 
research literature and textbooks in this field treat dq-axis transforma-
tion of a-b-c phase quantities on a purely mathematical basis, without 
relating this transformation to a set of windings, albeit hypothetical, 
that can be visualized. That is, we visualize a set of hypothetical  
dq windings along an orthogonal set of axes and then relate their cur-
rents and voltages to the a-b-c phase quantities. This discussion follows 

xiii
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xiv  PREFACE

seamlessly from the treatment of space vectors and the equivalent 
winding representations in steady state in the previous course and the 
textbook mentioned earlier.

For discussion of all topics in this course, computer simulations are 
a necessity. For this purpose, I have chosen MATLAB/Simulink® for 
the following reasons: a student-version that is more than sufficient  
for our purposes is available at a very reasonable price, and it takes 
extremely short time to become proficient in its use. Moreover, this 
same software simplifies the development of a real-time controller of 
drives in the hardware laboratory for student experimentation—such 
a laboratory using 42-V machines is developed using digital control and 
promoted by the University of Minnesota. The MATLAB and Simulink 
files used in examples are included on the accompanying website to this 
textbook: www.wiley.com/go/advancedelectricdrives.

As a final note, this textbook is not intended to cover power electron-
ics and control theory. Rather, the purpose of this book is to analyze 
electric machines in a way that can be interfaced to well-known power 
electronic converters and controlled using any control scheme, the 
simplest being proportional-integral control, which is used in this 
textbook.

Ned Mohan
University of Minnesota

http://www.wiley.com/go/advancedelectricdrives


1.  Variables that are functions of time v, i, λ
2.  Peak values (of time-varying variables) V̂ ,  Î , λ̂
3.  Phasors V V v= ∠ˆ θ , I I i= ∠ˆ θ
4.  Space vectors

�
H t( ), 

�
B t( ), 

�
F t( ), 

�
v t Ve j( ) = ˆ θ, 

�
i t Ie j( ) = ˆ θ, 

�
λ λ θ( )t e j= ˆ

For space vectors, the exponential notion is used where, 

e j e jj jθ θθ θ θ θ θ θ= ∠ = + = ∠ = +1 1cos sin cos sin .

Note that both phasors and space vectors, two distinct quantities, have 
their peak values indicated by “.”

SUBSCRIPTS

Stator phases a, b, c
Rotor phases A, B, C
dq windings d, q
Stator s
Rotor r
Magnetizing m
Mechanical m (as in θm or ωm)
Mechanical mech (as in θmech or ωmech)
Leakage ℓ

SUPERSCRIPTS

Denotes the axis used as reference for defining a space vector (lack of 
superscript implies that the d-axis is used as the reference).

* Reference Value

xv
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xvi    NOTATION

SYMBOLS

p Number of poles (p ≥ 2, even number)
θ All angles, such as θm and the axes orientation (for example, 

ej2π/3), are in electrical radians (electrical radians equal p/2 
times the mechanical radians).

ω All speeds, such as ωsyn, ωd, ωdA, ωm, and ωslip (except for ωmech), 
are in electrical radians per second.

ωmech The rotor speed is in actual (mechanical) radians per second: 
ωmech = (2/p)ωm.

θmech The rotor angle is in actual (mechanical) radians per second: 
θmech = (2/p)θm.

fl Flux linkages are represented by fl in MATLAB and 
Simulink examples.

INDUCTION MOTOR PARAMETERS USED 
INTERCHANGEABLY

′ =R Rr r

′ =L Lr r� �



There are many electromechanical systems where it is important to 
precisely control their torque, speed, and position. Many of these, such 
as elevators in high-rise buildings, we use on daily basis. Many others 
operate behind the scene, such as mechanical robots in automated 
factories, which are crucial for industrial competitiveness. Even in 
general-purpose applications of adjustable-speed drives, such as pumps 
and compressors systems, it is possible to control adjustable-speed 
drives in a way to increase their energy efficiency. Advanced electric 
drives are also needed in wind-electric systems to generate electricity 
at variable speed, as described in Appendix 1-A in the accompanying 
website. Hybrid-electric and electric vehicles represent an important 
application of advanced electric drives in the immediate future. In most 
of these applications, increasing efficiency requires producing maximum 
torque per ampere, as will be explained in this book. It also requires 
controlling the electromagnetic toque, as quickly and as precisely as 
possible, illustrated in Fig. 1-1, where the load torque TLoad may take a 
step-jump in time, in response to which the electromagnetic torque 
produced by the machine Tem must also take a step-jump if the speed 
ωm of the load is to remain constant.

1-1  HISTORY

In the past, many applications requiring precise motion control utilized 
dc motor drives. With the availability of fast signal processing capability, 
the role of dc motor drives is being replaced by ac motor drives. The 

Advanced Electric Drives: Analysis, Control, and Modeling Using  
MATLAB/Simulink®, First Edition. Ned Mohan.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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2  APPLIcATIoNS: SPEEd ANd TorquE coNTroL 

use of dc motor drives in precise motion control has already been dis-
cussed in the introductory course using the textbook [1] especially 
designed for this purpose. Hence, our emphasis in this book for an 
advanced course (designed at a graduate level but that can be easily 
followed by undergraduates) will be entirely on ac motor drives.

1-2  BACKGROUND

In the introductory course [1], we discussed electric drives in an integra-
tive manner where the theory of electric machines was discussed using 
space vectors to represent sinusoidal field distribution in the air gap. 
This discussion included a brief introduction to power-processing units 
(PPus) and feedback control systems. In this course, we build upon that 
discussion and discover that it is possible to understand advanced 
control of electric drives on a “physical” basis, which allows us to visual-
ize the control process rather than leaving it shrouded in mathematical 
mystery.

1-3  TYPES OF AC DRIVES DISCUSSED AND THE 
SIMULATION SOFTWARE

In this textbook, we will discuss all types of ac drives and their control 
in common use today. These include induction-motor drives, permanent-

Fig. 1-1  Need for controlling the electromagnetic torque Tem.

TLoad;Tem

0

0

t

t

ωm

http://c1-bib-0001
http://c1-bib-0001


“TEST” INducTIoN MoTor  3

magnet ac drives and switched-reluctance drives. We will also discuss 
encoder-less operation of induction-motor drives.

A simulation-based study is essential for discussing advanced elec tric 
drive systems. After a careful review of the available software, the author 
considers MATLAB/Simulink® to be ideal for this purpose—a student 
version that is more than sufficient for our purposes is available [2] at 
a very reasonable price, and it takes extremely short time to become 
proficient in its use. Moreover, the same software simplifies the devel-
opment of a real-time controller of drives in the hardware laboratory 
for student experimentation—such a laboratory, using 42-V machines 
is being developed at the university of Minnesota using digital control.

1-4  STRUCTURE OF THIS TEXTBOOK

chapter 1 has introduced advanced electric drives. chapter 2, chapter 
3, chapter 4, chapter 5, chapter 6, chapter 7 and chapter 9 deal with 
induction-motor drives.

chapter 8 deals with the synthesis of stator voltage vector, supplied 
by the inverter of the PPu, using a digital signal processor.

The permanent-magnet ac drives (ac servo drives) are discussed in 
chapter 10 and the switched-reluctance motor drives are discussed in 
chapter 11.

A “test” motor is selected for discussing the design of controllers and 
for obtaining the performance by means of simulation examples for 
which the specifications are provided in the next section. In all chapters 
dealing with induction motor drives, the “test” induction motor used is 
described in the following section. The “test” motor for a permanent-
magnet ac drive is described in chapter 10.

1-5  “TEST” INDUCTION MOTOR

For analyzing the performance of various control procedures, we will 
select a 1.5-MW induction machine as a “test” machine, for which the 
specifications are as follows:

Power: 1.5 MW
Voltage: 690 V (L-L, rms)

http://c1-bib-0002
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c1
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c2
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c3
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c4
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c5
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c6
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c7
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c9
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c8
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c10
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c11
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c10


4  APPLIcATIoNS: SPEEd ANd TorquE coNTroL 

Frequency: 60 Hz
Phases: 3
Number of Poles: 6
Full-Load Slip 1%
Moment of Inertia  70 kg·m2

Per-Phase circuit Parameters:
Rs = 0 002. Ω
Rr = 0 0015. Ω
X s� = 0 05. Ω
X r� = 0 047. Ω
Xm = 0 86. .Ω

1-6  SUMMARY

This chapter describes the application of advanced ac motor drives and 
the background needed to undertake this study. The structure of this 
textbook is described in terms of chapters that cover all types of ac 
motor drives in common use. An absolute need for using a computer 
simulation program in a course like this is pointed out, and a case  
is made for using a general-purpose software, MATLAB/Simulink®. 
Finally, the parameters for a “test” induction machine are described—
this machine is used in induction machine related chapters for analysis 
and simulation purposes.
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PROBLEMS

1-1 read the report “Adaptive Torque control of Variable Speed 
Wind Turbines” by Kathryn E. Johnson, National renewable 
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ProBLEMS  5

Energy Laboratory (http://www.nrel.gov). upon reading section 
2.1, describe the Standard region 2 control and describe how it 
works in your own words.

1-2 read the report “Final report on Assessment of Motor Technolo-
gies for Traction drives of Hybrid and Electric Vehicles” (http://
info.ornl.gov/sites/publications/files/pub28840.pdf) and answer 
the following questions for HEV/EV applications:

(a) What are the types of machines considered?
(b) What type of motor is the most popular choice?
(c) What are the alternatives if NdFeB magnets are not available?
(d) What are the advantages and disadvantages of Sr motors?

1-3 read the report “Evaluation of the 2010 Toyota Prius Hybrid 
Synergy drive System” (http://info.ornl.gov/sites/publications/
files/Pub26762.pdf) and answer the following questions:

(a) What are EcVT, Pcu, and IcE?
(b) What type of motor is used in this application?

http://www.nrel.gov
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c2:c2-sec-0001
http://info.ornl.gov/sites/publications/files/pub28840.pdf
http://info.ornl.gov/sites/publications/files/pub28840.pdf
http://info.ornl.gov/sites/publications/files/Pub26762.pdf
http://info.ornl.gov/sites/publications/files/Pub26762.pdf


2-1  INTRODUCTION

In ac machines, the stator windings are intended to have a sinusoidally 
distributed conductor density in order to produce a sinusoidally distrib-
uted field distribution in the air gap. In the squirrel-cage rotor of induc-
tion machines, the bar density is uniform. Yet the currents in the rotor 
bars produce a magnetomotive force (mmf) that is sinsuoidally distrib-
uted. Therefore, it is possible to replace the squirrel-cage with an equiv-
alent wound rotor with three sinsuoidally distributed windings.

In this chapter, we will briefly review the sinusoidally distributed 
windings and then calculate their inductances for developing equations 
for induction machines in phase (a-b-c) quantities. The development of 
these equations is assisted by space vectors, which are briefly reviewed. 
The analysis in this chapter establishes the framework for the dq 
winding-based analysis of induction machines under dynamic condi-
tions carried out in the next chapter.

2-2  SINUSOIDALLY DISTRIBUTED STATOR WINDINGS

In the following analysis, we will also assume that the magnetic material 
in the stator and the rotor is operated in its linear region and has an 
infinite permeability.

6

2 Induction Machine Equations in 
Phase Quantities: Assisted by 
Space Vectors

Advanced Electric Drives: Analysis, Control, and Modeling Using  
MATLAB/Simulink®, First Edition. Ned Mohan.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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In ac machines of Fig. 2-1a, windings for each phase ideally should 
produce a sinusoidally distributed radial field (F, H, and B) in the air 
gap. Theoretically, this requires a sinusoidally distributed winding in 
each phase. If each phase winding has a total of Ns turns (i.e., 2Ns con-
ductors), the conductor density ns(θ) in phase-a of Fig. 2-1b can be 
defined as

 n
N

s
s( ) sin , .θ θ θ π= ≤ ≤

2
0  (2-1)

The angle θ is measured in the counter-clockwise direction with 
respect to the phase-a magnetic axis. rather than restricting the con-
ductor density expression to a region 0 < θ < π, we can interpret the 
negative of the conductor density in the region π < θ < 2π in Eq. (2-1) 
as being associated with carrying the current in the opposite direction, 
as indicated in Fig. 2-1b.

In a multi-pole machine (with p  >  2), the peak conductor density 
remains Ns/2, as in Eq. (2-1) for a two-pole machine, but the angle θ is 
expressed in electrical radians. Therefore, we will always express angles 
in all equations throughout this book by θ in electrical radians, thus 
making the expressions for field distributions and space vectors appli-
cable to two-pole as well as multi-pole machines. For further discussion 
on this, please refer to example 9-2 in reference [1].

The current ia through this sinusoidally distributed winding results 
in the air gap a magnetic field (mmf, flux density, and field intensity) 
that is co-sinusoidally distributed with respect to the position θ away 
from the magnetic axis of the phase

Fig. 2-1  Stator windings.
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 H
N
p

a
s

g
a( ) cosθ θ=

�
i  (2-2)

 B H
N

p
a o a

o s

g
a( ) cosθ µ θ

µ
θ= ( )=









�
i  (2-3)

and

 F H
N
p

a g a
s

aθ θ θ( )= ( )=� i cos .  (2-4)

The radial field distribution in the air gap peaks along the phase-a 
magnetic axis, and at any instant of time, the amplitude is linearly pro-
portional to the value of ia at that time. Notice that regardless of the 
positive or the negative current in phase-a, the flux-density distribution 
produced by it in the air gap always has its peak (positive or negative) 
along the phase-a magnetic axis.

2-2-1  Three-Phase, Sinusoidally Distributed Stator Windings

In the previous section, we focused only on phase-a, which has its mag-
netic axis along θ = 0°. There are two more identical sinusoidally dis-
tributed windings for phases b and c, with magnetic axes along θ = 120° 
and θ  =  240°, respectively, as represented in Fig. 2-2a. These three 

Fig. 2-2  Three-phase windings.
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windings are generally connected in a wye-arrangement by joining 
terminals a′, b′, and c′ together, as shown in Fig. 2-2b. a positive current 
into a winding terminal is assumed to produce flux in the radially 
outward direction. Field distributions in the air gap due to currents ib 
and ic are identical in sinusoidal shape to those due to ia, but they peak 
along their respective phase-b and phase-c magnetic axes.

2-3  STATOR INDUCTANCES (ROTOR OPEN-CIRCUITED)

The stator windings are assumed to be wye-connected as shown in Fig. 
2-2b where the neutral is not accessible. Therefore, at any time

 i t i t i ta b c( ) ( ) ( ) .+ + = 0  (2-5)

For defining stator-winding inductances, we will assume that the 
rotor is present but it is electrically inert, that is “somehow” hypotheti-
cally of-course, it is electrically open-circuited.

2-3-1  Stator Single-Phase Magnetizing Inductance Lm,1-phase

as shown in Fig. 2-3a, hypothetically exciting only phase-a (made pos-
sible only if the neutral is accessible) by a current ia results in two 
equivalent flux components represented in Fig. 2-3b: (1) magnetizing 
flux which crosses the air gap and links with other stator phases and 
the rotor, and (2) the leakage flux which links phase-a only. Therefore, 
the self-inductance of a stator phase winding is

 L
i i

s
a

a i

a

a

L

a

a

s

,
, ,

self
only

leakage magnetizing
= = +

λ λ λ

�

� ���� ���� iia
Lm, -

.

1 phase

� ������� �������
 (2-6a)

Therefore,

 L L Ls s m, , .self -phase= +� 1  (2-6b)

It requires no-load and blocked-rotor tests to estimate the leakage 
inductance Lℓs, but the single-phase magnetizing inductance Lm,1-phase 

http://c2-fig-0002
http://c2-fig-0002
http://c2-fig-0003
http://c2-fig-0003
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can be easily calculated by equating the energy storage in the air gap 
to 1

2
2Li :

 L
r N

p
m

o

g

s
, - ,1

2

phase =








πµ �
�

 (2-7)

where r is the mean radius at the air gap, ℓ is the length of the rotor 
along its shaft axis, Ns equals the number of turns per phase, and p 
equals the number of poles.

Fig.  2-3  Single-phase magnetizing inductance Lm,1-phase and leakage induc-
tance Lℓs.

n

b

c

a

r

(a)

(b)

ia

ia

ia

a-axis

leakage

magnetizing



STaTor INduCTaNCES (roTor oPEN-CIrCuITEd)  11

2-3-2  Stator Mutual-Inductance Lmutual

as shown in Fig. 2-4, the mutual-inductance Lmutual between two stator 
phases can be calculated by hypothetically exciting phase-a by ia and 
calculating the flux linkage with phase-b

 L
i
b

a i ib c

mutual
rotor open

=
=

λ

, ,

.
0

 (2-8)

Note that only the magnetizing flux (not the leakage flux) produced 
by ia links the phase-b winding. The current ia produces a sinusoidal 
flux-density distribution in the air gap, and the two windings are sinu-
soidally distributed. Therefore, the flux linking phase-b winding due to 
ia can be shown to be the magnetic flux linkage of phase-a winding 
times the cosine of the angle between the two windings (which in this 
case is 120°):

 λ λb i
o

a ia a, ,cos( )due to magnetizing due to= 120  (2-9a)

 = −
1
2

λa ia, .magnetizing due to  (2-9b)

Therefore, in Eq. (2-8), using Eq. (2-6a) and Eq. (2-9b),

 L Lmmutual phase= −
1
2

1, - .  (2-10)

The same mutual inductance exists between phase-a and phase-c, and 
between phase-b and phase-c.

The expression for the mutual inductance can also be derived from 
energy storage considerations (see Problem 2-2).

Fig. 2-4  Mutual inductance Lmutual.
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2-3-3  Per-Phase Magnetizing-Inductance Lm

under the condition that the rotor is open-circuited, and all three 
phases are excited in Fig. 2-2b such that the sum of the three phase 
currents is zero as given by Eq. (2-5),

 λa

i i i

m

a b c

L i, , -magnetizing
(rotor open-circuited)

phase

+ + =

=
0

1 aa b cL i L i+ +mutual mutual .  (2-11)

using Eq. (2-10) for Lmutual, and from Eq. (2-5) replacing (−ib − ic) by 
ia in Eq. (2-11),

 L
i

Lm
a

a i i i
m

a b c

= =
+ + =

λ ,

,
, - .magnetizing

rotor open
phase

0
1

3
2

 (2-12)

using Eq. (2-7),

 L
r N

p
m

o

g

s=








3
2

2
πµ �
�

.  (2-13)

Note that the single-phase magnetizing inductance Lm,1-phase does not 
include the effect of mutual coupling from the other two phases, whereas 
the per-phase magnetizing-inductance Lm in Eq. (2-13) does. Hence, Lm 
is 3/2 times Lm,1-phase.

2-3-4  Stator-Inductance Ls

due to all three stator currents (not including the flux linkage due to 
the rotor currents), the total flux linkage of phase-a can be expressed as

 

λ λ λa a a

s a m a

s a

L i L i

L i

rotor-open leakage magnetizing= +

= +
=

, ,

,
�  (2-14)

where the stator-inductance Ls is

 L L Ls s m= +� .  (2-15)

http://c2-fig-0002
http://c2-disp-0005
http://c2-disp-0010
http://c2-disp-0005
http://c2-disp-0011
http://c2-disp-0007
http://c2-disp-0013
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2-4  EQUIVALENT WINDINGS IN A 
SQUIRREL-CAGE ROTOR

For developing equations for dynamic analysis, we will replace the 
squirrel cage on the rotor by a set of three sinusoidally distributed 
phase windings. The number of turns in each phase of these equivalent 
rotor windings can be selected arbitrarily. However, the simplest, hence 
an obvious choice, is to assume that each rotor phase has Ns turns 
(similar to the stator windings), as shown in Fig. 2-5a. The voltages and 
currents in these windings are defined in Fig. 2-5b, where the dotted 
connection to the rotor-neutral is redundant for the following reason: 
In a balanced rotor, all the bar currents sum to zero at any instant of 
time (equal currents in either direction). Therefore, in Fig. 2-5b, the 
three rotor phase currents add up to zero at any instant of time

 i t i t i tA B C( ) ( ) ( ) .+ + = 0  (2-16)

Note that similar to the stator windings, a positive current into a 
rotor winding produces flux lines in the radially outward direction 
along its magnetic axis.

2-4-1  Rotor-Winding Inductances (Stator Open-Circuited)

The magnetizing flux produced by each rotor equivalent winding has 
the same magnetic path in crossing the air gap and the same number 
of turns as the stator phase windings. Hence, each rotor phase has the 
same magnetizing inductance Lm,1-phase as the magnetic flux produced by 
the stator phase winding, although its leakage inductance Lℓr may be 
different than Lℓs. Similarly, Lmutual between the two rotor phases would 
be the same as that between two stator phases. The above equalities 
also imply that the per-phase magnetizing-inductance Lm in the rotor 
circuit (under the condition that at any time, iA +  iB +  iC = 0) is the 
same as that in the stator

 L Lm m=
3
2

1, -phase  (2-17)

and

 L L Lr r m= +� .  (2-18)

http://c2-fig-0005
http://c2-fig-0005
http://c2-fig-0005


14  INduCTIoN MaCHINE EQuaTIoNS IN PHaSE QuaNTITIES

Fig. 2-5  rotor circuit represented by three-phase windings.
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Note that with the choice of the same number of turns in the equiva-
lent three-phase rotor windings as in the stator windings, the rotor 
leakage inductance Lℓr in Eq. (2-18) is the same as ′L r�  in the per-
phase, steady-state equivalent circuit of an induction motor. The same 
applies to the resistances of these equivalent rotor windings, that  
is, R Rr r= ′.

http://c2-disp-0018
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2-5  MUTUAL INDUCTANCES BETWEEN THE STATOR AND 
THE ROTOR PHASE WINDINGS

If θm  =  0 in Fig. 2-5a so that the magnetic axes of stator phase-a is 
aligned with the rotor phase-A, the mutual inductance between the two 
is at its positive peak and equals Lm,1-phase. at any other position of the 
rotor (including θm  =  0), this mutual inductance between the stator 
phase-a and the rotor phase-A can be expressed as

 L LaA m m= ⋅, cos .1-phase θ  (2-19)

Similar expressions can be written for mutual inductances between 
any of the stator phases and any of the rotor phases (see Problem 2-3). 
Eq. (2-19) shows that the mutual inductance and hence the flux linkages 
between the stator and the rotor phases vary with position θm as the 
rotor turns.

2-6  REVIEW OF SPACE VECTORS

at any instant of time, each phase winding produces a sinusoidal flux-
density distribution (or mmf) in the air gap, which can be represented 
by a space vector (of the appropriate length) along the magnetic axis 
of that phase (or opposite to, if the phase current at that instant is nega-
tive). These mmf space vectors are 

�
F ta

a( ), 
�
F tb

a( ), and 
�
F tc

a( ), as shown in 
Fig. 2-6a, with an arrow (“→”) on top of an instantaneous quantity 

Fig. 2-6  Space vector representation of mmf.
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where the superscript “a” indicates that the space vectors are expressed 
as complex numbers, with the stator a-axis chosen as the reference axis 
with an angle of 0°. assuming that there is no magnetic saturation, the 
resultant mmf distribution in the air gap due to all three phases at that 
instant can simply be represented, using vector addition, by the resul-
tant space vector shown in Fig. 2-6b, where the subscript “s” represents 
the combined stator quantities:

 
� � � �
F t F t F t F ts

a
a
a

b
a

c
a( ) ( ) ( ) ( ).= + +  (2-20)

The earlier explanation provides a physical basis for understanding 
space vectors. We should note that unlike phasors, space vectors are 
also applicable under dynamic conditions.

It is easy to visualize the use of space vectors to represent field dis-
tributions (F, B, H), which are distributed sinusoidally in the air gap at 
any instant of time. However, unlike the field quantities, the currents, 
the voltages, and the flux linkages of phase windings are treated as 
terminal quantities. The resultant current, voltage, and flux linkage 
space vectors for the stator are calculated by multiplying instantaneous 
phase values by the stator winding orientations shown in Fig. 2-7a:

 
�
i t i t e i t e i t e I t es

a
a

j
b

j
c

j
s

j tis( )= ( ) + ( ) + ( ) = ( ) ( )0 2 3 4 3π π θˆ  (2-21)

 
�
v t v t e v t e v t e V t es
a

a
j

b
j

c
j

s
j tvs( )= ( ) + ( ) + ( ) = ( ) ( )0 2 3 4 3π π θˆ  (2-22)

and

 
�
λ λ λ λ λπ π θλ
s
a

a
j

b
j

c
j

s
j tt t e t e t e t e s( )= ( ) + ( ) + ( ) = ( ) ( )0 2 3 4 3 ˆ .  (2-23)

Fig. 2-7  Physical interpretation of stator current space vector.
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The stator current space vector 
�
i ts
a( ) lends itself to a following very 

useful and simple physical interpretation shown by Fig. 2-7b, noting that 
in Eq. (2-20), 

� �
F t N p i ts

a
s s

a( ) ( ) ( )= :

at a time instant t, the three stator phase currents in Fig. 2-7a result 
in the same mmf acting on the air gap (hence the same flux-density 

distribution) as that produced by 
�
i I es

a
s

j is=( )ˆ θ , that is, by a current equal 

to its peak value Ȋs flowing through a hypothetical sinusoidally distrib-
uted winding shown in Fig. 2-7b, with its magnetic axis oriented at 
θ θi Fs s( )= . This hypothetical winding has the same number of turns Ns 
sinusoidally-distributed as any of the phase windings.

The earlier physical explanation not only permits the stator current 
space vector to be visualized, but it also simplifies the derivation of the 
electromagnetic torque, which can now be calculated on just this single 
hypothetic winding, rather than having to calculate torques separately 
on each of the phase windings and then summing them. Similar space 
vector equations can be written in the rotor circuit with the rotor axis-A 
as the reference.

2-6-1  Relationship between Phasors and Space Vectors in 
Sinusoidal Steady State

under a balanced sinusoidal steady-state condition, the voltage and 
current phasors in phase-a have the same orientation as the stator 
voltage and current space vectors at time t = 0, as shown for the current 
in Fig. 2-8; the amplitudes are related by a factor of 3/2:

 
�
i I I Is

a

t
a s a

=
= =







0

3
2

3
2

ˆ ˆ .  (2-24)

Fig. 2-8  relationship between space vector and phasor in sinusoidal steady 
state.
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This relationship is very useful because in our dynamic analyses, we 
often begin with the induction machine initially operating in a bal-
anced, sinusoidal steady state. (See Problem 2-5.)

2-7  FLUX LINKAGES

In this section, we will develop equations for stator and rotor flux link-
ages in terms of currents. We will begin by assuming the stator and the 
rotor to be open-circuited, one at a time. Then, by superposition, based 
on the assumption of magnetic material in its linear range, we will be 
able to obtain flux linkages when the stator and the rotor currents are 
simultaneously present.

2-7-1  Stator Flux Linkage (Rotor Open-Circuited)

In accordance with the Kirchhoff’s current law, the currents in the stator 
windings sum to zero. Initially, we will assume that the rotor is 
“somehow” open-circuited. using Eq. (2-14) and Eq. (2-15), writing the 
flux-linkage equation for each phase and multiplying each equation 
with its winding orientation

 λa i s a m a
j

s t L i t L i t e, ( ) ( ) ( )= +[ ]×�
0  (2-25a)

 λ π
b i s b m b

j
s t L i t L i t e, ( ) ( ) ( )= +[ ]×�

2 3  (2-25b)

and

 λ π
c i s c m c

j
s t L i t L i t e, ( ) ( ) ( ) .= +[ ]×�

4 3  (2-25c)

using Eq. (2-25a through c) into Eq. (2-23) (where the stator flux 
linkage due to the rotor currents is not included), the stator flux linkage 
space vector is
� �

� ���� ����
�

�λs i
a

s s
a

m s
a

s t L i t L i t, ( ) ( ) (= +
due to leakage flux

)) ( ) .
due to magnetizing flux

rotor open� ���� ����
�

= ( )L i ts s
a  (2-26)

as in the case of stator current and voltage space vectors, the projec-
tion of the stator flux-linkage space vector along a phase axis, multiplied 
by a factor of 2/3, equals the flux linkage of that phase.

http://c2-ex-0005
http://c2-disp-0014
http://c2-disp-0015
http://c2-disp-0025|c2-disp-0054|c2-disp-0055
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We have seen earlier that 
�
i ts
a( ) and 

�
F ts

a( ) space vectors are collinear, 
as shown in Fig. 2-9; they are related by a constant. Collinear with 

�
F ts

a( ), 
related by a constant μ0/ℓg, is the 

�
B ts i

a
s, ( ) space vector, which represents 

the flux density distribution due the stator currents only, “cutting” the 
stator conductors. Similarly, the stator flux linkage 

�
λs i
a
s t, ( ) in Fig. 2-9 (not 

including the flux linkage due to the rotor currents) is related to 
�
i ts
a( ) 

by a constant Ls as shown by Eq. (2-26). Therefore, all the field quanti-
ties, with the rotor open-circuited are collinear, as shown in Fig. 2-9. 
Note that the superscript “a” is not used while drawing the various 
space vectors; it needs to be used only while expressing them mathe-
matically, as defined with respect a reference axis, which here is phase-a 
magnetic axis.

2-7-2  Rotor Flux Linkage (Stator Open-Circuited)

The currents in the rotor equivalent windings sum to zero, as expressed 
by Eq. (2-16). assuming that the rotor “somehow” has currents while 
the stator is open-circuited, by analogy, we can write the expression for 
the rotor flux linkage space vector as

� �
� ���� ����

�
�λr i

A
r r

A
m r

A
r t L i t L i t, ( ) ( ) (= +

due to leakage flux

)) ( ) ,
due to magnetizing flux

stator open� ���� ����
�

= ( )L i tr r
A  (2-27)

Fig. 2-9  all stator space vectors are collinear (rotor open-circuited).
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where the superscript “A” indicates that the rotor phase-A axis is 
chosen as the reference axis with an angle of 0°, and Lr = Lℓr + Lm. 
Similar to the stator case, all the field quantities with the stator open 
circuited are collinear, as shown in Fig. 2-10.

2-7-3  Stator and Rotor Flux Linkages (Simultaneous Stator and 
Rotor Currents)

When the stator and the rotor currents are present simultaneously, the 
flux linking any of the stator phases is due to the stator currents as well 
as the mutual magnetizing flux due to the rotor currents. The magnetiz-
ing flux density space vectors in the air gap due to the stator and the 
rotor currents add up as vectors when these currents are simultaneously 
present. Therefore, the stator flux linkage, including the leakage flux 
due to the stator currents can be obtained using Eq. (2-26) and Eq.  
(2-27) as

 
� � �
λs
a

s s
a

m r
at L i t L i t( ) ( ) ( ),= +  (2-28)

Fig. 2-10  all rotor space vectors are collinear (stator open-circuited).
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where the rotor current space vector is also defined with respect to the 
stator phase-a axis.

Similarly in the rotor circuit, we can write

 
� � �
λr
A

m s
A

r r
At L i t L i t( ) ( ) ( ),= +  (2-29)

where the stator current space vector is also defined with respect to the 
rotor phase-A axis.

2-8  STATOR AND ROTOR VOLTAGE EQUATIONS IN TERMS 
OF SPACE VECTORS

The individual phase equations can be combined to obtain the space 
vector equation as follows:

 v t R i t
d
dt

t ea s a a
j( ) ( ) ( )= +










×λ 0  (2-30a)

 v t R i t
d
dt

t eb s b b
j( ) ( ) ( )= +










×λ π2 3  (2-30b)

and

 v t R i t
d
dt

t ec s c c
j( ) ( ) ( ) .= +










×λ π4 3  (2-30c)

adding the above three equations and applying the definitions of space 
vectors, the stator equation can be written as

 
� � �
v t R i t

d
dt

ts
a

s s
a

s
a( ) ( ) ( ).= + λ  (2-31)

Similar to the development in the stator circuit, in the rotor circuit

 
�
�

� �
v t R i t

d
dt

tr
A

r r
A A

r( ) ( ) ( ),
=

= +
0

λ  (2-32)

where in a squirrel-cage rotor, all the equivalent phase voltages are 
individually zero and 

�
v tr
A( ) = 0.
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2-9  MAKING THE CASE FOR A dq-WINDING ANALYSIS

at this point, we should assess how far we have come. The use of space 
vectors has very quickly allowed us to express the stator and the rotor 
flux linkages (Eq. 2-28 and Eq. 2-29), which in a compact form include 
mutual coupling between the six windings: three on the stator and three 
on the equivalent rotor. In terms of phase quantities of an induction 
machine, we have developed voltage equations for the rotor and the 
stator, expressed in a compact space vector form (Eq. 2-31 and Eq. 
2-32). These voltage equations include the time derivatives of flux link-
ages that depend on the rotor position. This dependence can be seen  
if we examine the flux linkage equations by expressing them with 
current space vectors defined with respect to their own reference axes 
in Fig. 2-5 as

 
� �
i t i t er
a

r
A j m( ) ( )= θ  (2-33)

and

 
� �
i t i t es
A

s
a j m( ) ( ) .= − θ  (2-34)

using the above two equations in the flux linkage equations (Eq. 2-28 
and Eq. 2-29),

 
� � �
λ θ
s
a

s s
a

m r
A jt L i t L i t e m( ) ( ) ( )= +  (2-35)

and

 
� � �
λ θ
r
A

m s
a j

r r
At L i t e L i tm( ) ( ) ( ).= +−  (2-36)

The flux linkage equations in the above form clearly show their 
dependence on the rotor position θm for given values of the stator and 
the rotor currents at any instant of time. For this reason, the voltage 
equations in phase quantities, expressed in a space vector form by Eq. 
(2-31) and Eq. (2-32), which include the time derivatives of flux link-
ages, are complicated to solve. It is possible to make these equations 
simpler by using a transformation called dq transformation, which is 
the topic of the next chapter.

The earlier argument alone on the basis of simplifying the equations, 
especially in the age of fast (and faster!) computers is not sufficient to 
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search for an alternative, such as the dq winding analysis. The power of 
the dq winding analysis lies in the fact that it allows the torque and the 
flux in the machine to be controlled independently under dynamic 
conditions, which is not clear in our foregoing analysis based on the 
phase (a-b-c) quantities. an obvious question at this point is if the 
analysis in this chapter has been a waste. The answer is a resounding 
“no.” We will use every bit of the analysis in this chapter to carry out 
the dq analysis in the next chapter.

before we embark on the dq analysis in the next chapter, we will 
further look at the analysis of an induction machine in phase quantities 
by means of the following examples.

EXAMPLE 2-1

First take a two coupled-coil system, one on the stator and the other 
on the rotor. derive the electromagnetic torque expression by energy 
considerations and then generalize it in terms of three-phase stator 
and rotor currents.

Solution

Neglecting losses, the differential electrical input energy, mechanical 
energy output, and the stored field energy can be written as follows:

 dW dW dWin mech mag= + .  (2-37)

For coupled two-coil system of coils 1 and 2, the differential electrical 
input energy is as follows:

 

dW v i dt v i dt

i d i d

i d L i L i i d L i

in = +
= +
= + + +

1 1 2 2

1 1 2 2

1 11 1 12 2 2 12 1

λ λ
( ) ( LL i

L i di L i di i dL i i dL L i di

L i d

22 2

11 1 1 12 1 2 1
2

11 1 2 12 22 2 2

12 2

)

= + + + +

+ ii i dL i i dL1 2
2

22 1 2 12+ + .

 (2-38)

(Continued)
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The stored magnetic energy is

 W L i L i L i imag = + +
1
2

1
2

11 1
2

22 2
2

12 1 2.  (2-39)

Therefore, the differential increase in the stored magnetic energy is

 
dW L i di L i di i dL L i di

L i di i d

mag = + + +

+ +

11 1 1 12 1 2 1
2

11 22 2 2

12 2 1 2
2

1
2

1
2

LL i i dL22 1 2 12+

 (2-40)

From Eq. (2-37), Eq. (2-38), and Eq. (2-40),

 T i
dL
d

i
dL
d

i i
dL
d

em
m m m

= + +
1
2

1
2

1
2 11

2
2 22

1 2
12

θ θ θ
.  (2-41)

In terms of a matrix equation, Eq. (2-41) can be written as

 
T i i

d L L

L L

i

i

d

em
m

t

m

= [ ]























= [ ]

1
2
1
2

1 2
11 12

12 22

1

2θ

θ

.

i LL i[ ][ ]
 (2-42)

Equation (2-42) can be generalized to six windings, a-b-c on the 
stator, and A-B-C on the rotor, for a p-pole machine as follows:

 T
p d

em
t

m

= [ ] [ ][ ]
2

1
2
i L i

θ
,  (2-43)

where θ θm p= ( / )2 mech .
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2-10  SUMMARY

In this chapter, we have briefly reviewed the sinusoidally distributed 
windings and then calculated their inductances for developing equa-
tions for induction machines in phase (a-b-c) quantities. The develop-
ment of these equations is assisted by space vectors, which are briefly 
reviewed. The analysis in this chapter establishes the framework and 
the rationale for the dq windings-based analysis of induction machines 
under dynamic conditions carried out in the next chapter.

REFERENCE

1. N. Mohan, Electric Machines and Drives: A First Course, Wiley, Hoboken, 
NJ, 2011. http://www.wiley.com/college/mohan.

EXAMPLE 2-2

For the “test” machine given in Chapter 1, simulate the induction 
machine start-up in MaTlab using the equations derived in this 
chapter from a completely powered-down state with no external 
load connected to it. Plot rotor speed, electromagnetic torque, and 
stator and rotor currents.

Solution

See the complete results, including the computer files, in appendix 
2-a in the accompanying website.

EXAMPLE 2-3

verify the results in Example 2-2 by simulations in Simulink.

Solution

See the complete results, including the simulation files, in appendix 
2-b in the accompanying website.

http://www.wiley.com/college/mohan
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c1
http://c2-fea-0002
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PROBLEMS

2-1 derive Eq. (2-7) for Lm,1-phase.

2-2 derive the expression for Lmutual in Eq. (2-8) by energy storage 
considerations. Hint: assume that only the stator phases a and b 
are excited so that ib = −ia. To keep this derivation general, begin 
by assuming an arbitrary angle θ between the magnetic axes of 
the two windings.

2-3 Write the expressions for LkJ as functions of θm, where k ≡ a, b, c 
and J ≡ A, B, C.

2-4 Calculate Ls, Lr, and Lm for the “test” motor described in Chapter 1.

2-5 a motor with the following nameplate data is operating in a bal-
anced sinusoidal steady state under its rated condition (with rated 
voltages applied to it and it is loaded to its rated torque). assume 
that the voltage across phase-a is at its positive peak at t = 0. (a) 
obtain at time t = 0, 

�
vs( )0 , 

�
is( )0 , and 

�
′ir( )0 , and (b) express phase 

voltages and currents as functions of time.

Nameplate Data

Power: 3 HP/2.4 kW
voltage: 460 v (l-l, rms)
Frequency: 60 Hz
Phases: 3
Full load Current: 4 a
Full-load Speed: 1750 rpm
Full-load Efficiency: 88.5%
Power Factor: 80.0%
Number of Poles: 4
Per-Phase Motor Circuit Parameters:

Rs = 1 77. Ω
Rr = 1 34. Ω
X s� = 5 25 60. ( )Ω at Hz

http://c2-disp-0007
http://c2-disp-0008
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c1
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X r� = 4 57 60. ( )Ω at Hz
Xm = 139 0 60. ( )Ω at Hz

Full-load Slip = 1.72%

The iron losses are specified as 78 W and the mechanical (friction 
and windage) losses are specified as 24 W. The inertia of the 
machine is given. assuming that the reflected load inertia is 
approximately the same as the motor inertia, the total equivalent 
inertia of the system is Jeq = 0.025 kg · m2.

2-6 at an instant of time in an induction machine, hypothetically 
assume that the stator currents ia = 10 a, ib = −3 a, ic = −7 a, and 

the rotor currents iA = 3 a, iB = −1 a, iC = −2 a. Calculate 
�
�λs

a

is
t( ), 

�
�λr

A

ir
t( ), 
�
λs
a t( ), and 

�
λr
A t( ) in terms of machine inductances Lm, Ls, 

and Lr, if the rotor angle θm has the following values: (a) 0° and 
(b) 30°.

2-7 Write the expression for the stator phase-a flux linkage in terms 
of three stator and three rotor phase currents and the appropriate 
inductances, for a rotor position of θm. repeat this for the other 
stator and rotor phases.

2-8 Show that Eq. (2-28) and Eq. (2-29) can be written with respect 
to any arbitrary axis, rather than a-axis or A-axis.

2-9 Show the intermediate steps in generalizing Eq. (2-42) to Eq. 
(2-43).

http://c2-disp-0028
http://c2-disp-0029
http://c2-disp-0042
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3-1  INTRODUCTION

In this chapter, we will develop equations to analyze induction machine 
operation under dynamic conditions. We will make use of space vectors 
as intermediary in transforming a-b-c phase winding quantities into 
equivalent dq-winding quantities that we will use for dynamic (non-
steady state) analysis. We will see in later chapters the benefits of d- and 
q-axis analysis in controlling ac machines.

3-2  dq WINDING REPRESENTATION

We studied in the previous chapter that the stator and the rotor flux 
linkages 

�
λs
a t( ) and 

�
λr
a t( ) depend on the rotor angle θm because the 

mutual inductances between the stator and the rotor windings are posi-
tion dependent. The main reason for the d- and q-axis analysis in 
machines like the induction machines is to control them properly, for 
example, using vector control principles. In most textbooks, this analysis 
is discussed as a mathematical transformation called the Park’s trans-
formation. In this chapter, we will take a physical approach to this 
transformation, which is much easier to visualize and arrive at identical 
results.

28

3  Dynamic Analysis of Induction 
Machines in Terms of dq 
Windings

Advanced Electric Drives: Analysis, Control, and Modeling Using  
MATLAB/Simulink®, First Edition. Ned Mohan.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.



3-2-1  Stator dq Winding Representation

In Fig. 3-1a at time t, phase currents ia (t), ib (t), and ic (t) are represented 
by a stator current space vector 

�
i ts( ). A collinear magnetomotive force 

(mmf) space vector 
�
F ts( ) is related to 

�
i ts( ) by a factor of (Ns/p), where 

Ns equals the number of turns per phase and p equals the number of 
poles:

 
�
i t i t i t e i t es
a

a b
j

c
j( ) ( ) ( ) ( )/ /= + +2 3 4 3π π  (3-1)

and

 
� �
F t

N
p
i ts

a s
s
a( ) ( ).=  (3-2)

Fig. 3-1  Representation of stator mmf by equivalent dq windings.
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We should note that the space vector 
�
i ts( )  in Fig. 3-1 is written 

without a superscript “a.” The reason is that a reference axis is needed 
only to express it mathematically by means of complex numbers. 
However, 

�
i ts( ) in Fig. 3-1 depends on the instantaneous values of 

phase currents and is independent of the choice of the reference axis 
to draw it.

In the previous course for analyzing ac machines under balanced 
sinusoidal steady-state conditions, we replaced the three windings by a 
single hypothetical equivalent winding that produced the same mmf 
distribution in the air gap. This single winding was sinusoidally distrib-
uted with the same number of turns Ns (as any phase winding), with its 
magnetic axis along the stator current space vector and a current Ȋs 
(peak value of 

�
is) flowing through it.

However, for dynamic analysis and control of ac machines, we need 
two orthogonal windings such that the torque and the flux within the 
machine can be controlled independently. At any instant of time, the 
air gap mmf distribution by three phase-windings can also be produced 
by a set of two orthogonal windings shown in Fig. 3-1b, each sinusoi-
dally distributed with 3 2/ Ns  turns: one winding along the d-axis, and 
the other along the q-axis. The reason for choosing 3 2/ Ns turns will 
be explained shortly. This dq winding set may be at any arbitrary angle 
θda with respect to the phase-a axis. However, the currents isd and isq in 
these two windings must have specific values, which can be obtained by 
equating the mmf produced by the dq windings to that produced by 
the three phase windings and represented by a single winding with Ns 
turns in Eq. (3-2)

 
3 2/

,
N

p
i ji

N
p
is

sd sq
s

s
d+( )=
�

 (3-3)

where the stator current space vector is expressed using the d-axis as 
the reference axis, hence the superscript “d.” Eq. (3-3) results in

 i ji isd sq s
d+( )=

2
3

�
,  (3-4)

which shows that the dq winding currents are 2 3/  times the projec-
tions of 

�
i ts( ) vector along the d- and q-axis, as shown in Fig. 3-1c:

http://c3-fig-0001
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 i i t dsd s= ×2 3/ ( )projection of along the -axis
�

 (3-5)

and

 i i t qsq s= ×2 3/ ( ) .projection of along the -axis
�

 (3-6)

The factor 2 3/ , reciprocal of the factor 3 2/  used in choosing the 
number of turns for the dq windings, ensures that the dq-winding cur-
rents produce the same mmf distribution as the three-phase winding 
currents.

In Fig. 3-1b, the d and the q windings are mutually decoupled mag-
netically due to their orthogonal orientation. Choosing 3 2/ Ns turns 
for each of these windings results in their magnetizing inductance to 
be Lm (same as the per-phase magnetizing inductance in Chapter 2 for 
three-phase windings with ia + ib + ic = 0) for the following reason: the 
inductance of a winding is proportional to the square of the number of 
turns and therefore, the magnetizing inductance of any dq winding 
(noting that there is no mutual inductance between the two orthogonal 
windings) is

 

dq L

L
m

m

winding magnetizing inductance -phase=

=

( / )

( / )
,

,

3 2

3 2

2
1

11

2 12
-phase

using Eq -=Lm ( . ).

 (3-7)

Each of these equivalent windings has a resistance Rs and a leakage 
inductance Lℓs, similar to the a-b-c phase windings (see Problem 3-1). 
In fact, if a three-phase machine were to be converted to a two-phase 
machine using the same stator shell (but the windings could be differ-
ent) to deliver the same power output and speed, we will choose the 
number of turns in the each of the two-phase windings to be 3 2/ Ns.

3-2-2  Rotor dq Windings (Along the Same dq-Axes as in 
the Stator)

The rotor mmf space vector 
�
F tr ( ) is produced by the combined effect 

of the rotor bar currents, or by the three equivalent phase windings, 
each with Ns turns, as shown in Fig. 3-2 (short-circuited in a squirrel-
cage rotor). The phase currents in these equivalent rotor phase wind-
ings can be represented by a rotor current space vector, where

http://c3-fig-0001
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c2
http://c3-fig-0002
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�
i t i t i t e i t er
A

A B
j

C
j( ) ( ) ( ) ( ) ,/ /= + +2 3 4 3π π  (3-8)

where

 
�

�

i t
F t
N p

r
A r

A

s

( )
( )
/

.=  (3-9)

The mmf 
�
F tr ( ) and the rotor current 

�
i tr ( ) in Fig. 3-2 can also be pro-

duced by the components ird (t) and irq (t) flowing through their respec-
tive windings as shown. (Note that the d- and the q-axis are the same 
as those chosen for the stator in Fig. 3-1. Otherwise, all benefits of the 
dq-analysis will be lost.) Similar to the stator case, each of the dq wind-
ings on the rotor has 3 2/ Ns turns, and a magnetizing inductance of 
Lm, which is the same as that for the stator dq windings because of the 
same number of turns (by choice) and the same magnetic path for flux 
lines. Each of these rotor equivalent windings has a resistance Rr and 
a leakage inductance Lℓr (equal to ′Rr  and ′L r� , respectively, in the per-
phase equivalent circuit of induction machines in the previous course). 
The mutual inductance between these two orthogonal windings is zero.

3-2-3  Mutual Inductance between dq Windings on the Stator and 
the Rotor

The equivalent dq windings for the stator and the rotor are shown in 
Fig. 3-3. The mutual inductance between the stator and the rotor d-axis 
windings is equal to Lm due to the magnetizing flux crossing the air gap. 
Similarly, the mutual inductance between the stator and the rotor q-axis 

Fig. 3-2  Representation of rotor mmf by equivalent dq winding currents.
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windings equals Lm. Out of four dq windings, the mutual inductance 
between any d-axis winding with any q-axis winding is zero because of 
their orthogonal orientation, which results in zero mutual magnetic 
coupling of flux.

3-3  MATHEMATICAL RELATIONSHIPS OF THE dq 
WINDINGS (AT AN ARBITRARY SPEED ωd)

Next, we will describe relationships between the stator and the rotor 
quantities and their equivalent dq winding components in Fig. 3-3, 
which in combination produce the same mmf as the actual three phase 
windings.

It is worth repeating that the space vectors at some arbitrary time t 
in Fig. 3-3 are expressed without a superscript “a” or “A.” The reason 
is that a reference axis is needed only to express them mathematically 
by means of complex numbers. In other words, these space vectors in 
Fig. 3-3 would be in the same position, independent of the choice of 
the reference axis to express them. We should note that the relative 
position of 

�
is and 

�
ir is shown arbitrarily here just for definition purposes 

(in an induction machine, the angle between 
�
is  and 

�
ir is very large—

more than 145°).

Fig. 3-3  Stator and rotor representation by equivalent dq winding currents. 
The dq winding voltages are defined as positive at the dotted terminals. Note 
that the relative positions of the stator and the rotor current space vectors are 
not actual, rather only for definition purposes.
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Hereafter, we will drop the superscript to any space vector expressed 
using d-axis as the reference.

From Fig. 3-3, we note that at time t, the d-axis is shown at an angle 
θda with respect to the stator a-axis. Therefore,

 
� �
i t i t es s

a j tda( ) ( ) .( )= − θ  (3-10)

Substituting for 
�
isa from Eq. (3-1),

 
�
i t i e i e i es a

j
b

j
c

jda da da( ) .( / ) ( / )= + +− − − − −θ θ π θ π2 3 4 3  (3-11)

Equating the real and imaginary components on the right side of Eq. 
(3-11) to isd and isq in Eq. (3-4)
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(3-12)

where [Ts]abc→dq is the transformation matrix to transform stator a-b-c 
phase winding currents to the corresponding dq winding currents. This 
transformation procedure is illustrated by the block diagram in Fig. 
3-4a. The same transformation matrix relates the stator flux linkages 
and the stator voltages in phase windings to those in the equivalent 
stator dq windings.

A similar procedure to that in the stator case is followed for the rotor 
where in terms of the phase currents, the rotor current space vector is

 
�
i t i t i t e i t er
A

A B
j

C
j( ) ( ) ( ) ( ) ./ /= + +2 3 4 3π π  (3-13)

Fig. 3-4  Transformation of phase quantities into dq winding quantities.
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From Fig. 3-3, we note that at time t, d-axis is at an angle θdA with 
respect to the rotor A-axis. Therefore,

 
� �
i t i t er r

A j tdA( ) ( ) .( )= − θ  (3-14)

The currents in the dq rotor windings must be ird and irq, where these 
two current components are 2 3/  times the projections of 

�
i tr( ) vector 

along the d- and q-axis, as shown in Fig. 3-3

 i i t drd r= ×2 3/ ( )projection of along the -axis
�

 (3-15)

and

 i i t qrq r= ×2 3/ ( ) .projection of along the -axis
�

 (3-16)

Similar to Eq. (3-12), replacing θda by θdA
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(3-17)

where [Tr]ABC→dq is the transformation matrix for the rotor. This trans-
formation procedure is illustrated by the block diagram in Fig. 3-4b, 
similar to that in Fig. 3-4a. The same transformation matrix relates the 
rotor flux linkages and the rotor voltages in the equivalent A-B-C wind-
ings to those in the equivalent rotor dq windings. Same relationships 
apply to voltages and flux linkages.

3-3-1  Relating dq Winding Variables to Phase Winding Variables

In case of an isolated neutral, where all three phase currents add up to 
zero at any time, the variables in a-b-c phase windings can be calculated 
in terms of the dq-winding variables. In Eq. (3-12), we can add a row 
at the bottom to represent the condition that all three phase currents 
sum to zero. Inverting the resulting matrix and discarding the last 
column whose contribution is zero, we obtain the desired relationship
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,  (3-18)

where [Ts]dq→abc is the transformation matrix in the reverse direction 
(dq to abc). A similar transformation matrix [Tr]dq→ABC for the rotor can 
be written by replacing θda in Eq. (3-18) by θdA.

3-3-2  Flux Linkages of dq Windings in Terms of Their Currents

We have a set of four dq windings as shown in Fig. 3-3. There is no 
mutual coupling between the windings on the d-axis and those on the 
q-axis. The flux linking any winding is due to its own current and that 
due to the other winding on the same axis. Let us select the stator 
d-winding as an example. Due to isd, both the magnetizing flux as well 
as the leakage flux link this winding. However, due to ird, only the mag-
netizing flux (leakage flux does not cross the air gap) links this stator 
winding. Using this logic, we can write the following flux expressions 
for all four windings:

Stator Windings

 λsd s sd m rdL i L i= +  (3-19)

and

 λsq s sq m rqL i L i= + ,  (3-20)

where in Eq. (3-19) and Eq. (3-20), Ls = Lℓs + Lm.

Rotor Windings

 λrd r rd m sdL i L i= +  (3-21)

and

 λrq r rq m sqL i L i= + ,  (3-22)

where in Eq. (3-21) and Eq. (3-22), Lr = Lℓr + Lm.
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3-3-3  dq Winding Voltage Equations

Stator Windings
To derive the dq winding voltages, we will first consider a set of 

orthogonal αβ windings affixed to the stator, as shown in Fig. 3-5, where 
the α-axis is aligned with the stator a-axis. In all windings, the voltage 
polarity is defined to be positive at the dotted terminal. In αβ windings, 
in terms of their variables,

 v R i
d
dt

s s s sα α αλ= +  (3-23)

and

 v R i
d
dt

s s s sβ β βλ= + .  (3-24)

The above two equations can be combined by multiplying both sides 
of Eq. (3-24) by the operator (j) and then adding to Eq. (3-23). In terms 
of resulting space vectors

 
� � �
v R i

d
dt

s s s s_ _ _αβ
α

αβ
α

αβ
αλ= + ,  (3-25)

where 
�
v v jvs s s_αβ

α
α β= +  and so on. As can be seen from Fig. 3-5, the 

current, voltage, and flux linkage space vectors with respect to the α-
axis are related to those with respect to the d-axis as follows:

 
� �
v v es s dq

j da
_ _αβ

α θ= ⋅  (3-26a)

 
� �
i i es s dq

j da
_ _αβ
α θ= ⋅  (3-26b)

Fig. 3-5  Stator αβ and dq equivalent windings.
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and

 
� �
λ λαβ

α θ
s s dq

je da
_ _= ⋅ ,  (3-26c)

where 
�
v v jvs dq sd sq_ = +  and so on. Substituting expressions from Eq. 

(3-26a through c) into Eq. (3-25),

� � �
v e R i e

d
dt

es dq
j

s s dq
j

s dq
jda da da

_ _ _⋅ = ⋅ + ⋅θ θ θλ( )

or

� �
�

�

�
v e R i e

d

dt
e j

d
dt

s dq
j

s s dq
j s dq j da

s
da da da

d

_ _
_⋅ = ⋅ + ⋅ + ⋅θ θ θ

ω

λ θ
λ __dq

je da⋅ θ .

Hence,

 
� � � �
v R i

d
dt

js dq s s dq s dq d s dq_ _ _ _= + +λ ω λ ,  (3-27)

where ( / )d dt da dθ ω=  is the instantaneous speed (in electrical radians 
per second) of the dq winding set in the air gap, as shown in Fig. 3-3 
and Fig. 3-5. Separating the real and imaginary components in Eq. (3-
27), we obtain

 v R i
d
dt

sd s sd sd d sq= + −λ ω λ  (3-28)

and

 v R i
d
dt

sq s sq sq d sd= + +λ ω λ .  (3-29)

In Eq. (3-28) and Eq. (3-29), the speed terms are the components 
that are proportional to ωd (the speed of the dq reference frame relative 
to the actual physical stator winding speed) and to the flux linkage of 
the orthogonal winding.

Equation (3-28) and Equation (3-29) can be written as follows in a 
vector form, where each vector contains a pair of variables—the first 
entry corresponds to the d-winding and the second to the q-winding:
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v

v
R

i

i
d
dt

sd

sq
s

sd

sq

sd

sq
d












=












+












+

−λ
λ

ω
0 1

1 0




















[ ]

.

Mrotate

� ��� ���

λ
λ
sd

sq
 (3-30)

Note that the 2 × 2 matrix [Mrotate] in Eq. (3-30) in the vector form 
corresponds to the operator (j) in Eq. (3-27), where j(= ejπ/2) has the 
role of rotating the space vector 

�
λs dq_  by an angle of π/2.

Rotor Windings
An analysis similar to the stator case is carried out for the rotor, 

where the αβ windings affixed to the rotor are shown in Fig. 3-6 with 
the α-axis aligned with rotor A-axis. The d-axis (same as the d-axis for 
the stator) in this case is at an angle θdA with respect to the A-axis. Fol-
lowing the procedure for the stator case by replacing θda by θdA results 
in the following equations for the rotor winding voltages

 v R i
d
dt

rd r rd rd dA rq= + −λ ω λ  (3-31)

and

 v R i
d
dt

rq r rq rq dA rd= + +λ ω λ ,  (3-32)

where 
d
dt

dA dAθ ω=

is the instantaneous speed (in electrical radians per second) of the dq 
winding set in the air gap with respect to the rotor A-axis speed (rotor 
speed), that is,

Fig. 3-6  Rotor αβ and dq equivalent windings.
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40  ANALYSIS OF INDUCTION MACHINES IN TERMS OF dq WINDINGS

 ω ω ωdA d m= − .  (3-33)

In Eq. (3-33), ωm is the rotor speed in electrical radians per second. 
It is related to ωmech, the rotor speed in actual radians per second, by 
the pole-pairs as follows:

 ω ωm p= ( / ) .2 mech  (3-34)

In Eq. (3-31) and Eq. (3-32), the speed terms are the components 
that are proportional to ωdA (the speed of the dq reference frame rela-
tive to the actual physical rotor winding speed) and to the flux linkage 
of the orthogonal winding.

Equation (3-31) and Equation (3-32) can be written as follows in a 
vector form, where each vector contains a pair of numbers—the first 
entry corresponds to the d-axis and the second to the q-axis:
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λ
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rq
 (3-35)

3-3-4  Obtaining Fluxes and Currents with Voltages as Inputs

We can write Eq. (3-30) and Eq. (3-35) in a state space form as follows:
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 (3-36)

and

 
d
dt
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v
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i
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� ��� ���

λ
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rq

 (3-37)

Assigning [λs_dq], [νs_dq], and so on to represent these vectors, Eq. 
(3-36) and Eq. (3-37) can be written as

 
d
dt

v R is dq s dq s s dq d s dq[ ] [ ] [ ] [ ]λ ω λ_ _ _ rotate _M= − − [ ]  (3-38)

and

 
d
dt

v R ir dq r dq r r dq dA r dq[ ] [ ] [ ] [ ].λ ω λ_ _ _ rotate _M= − − [ ]  (3-39)
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Equation (3-38) and Equation (3-39) are represented by a block 
diagram in Fig. 3-7, where the calculation of dq winding currents from 
flux linkages is formalized in Section 3-9.

3-4  CHOICE OF THE dq WINDING SPEED ωd

It is possible to assume any arbitrary value for the dq winding speed 
ωd. However, there is one value (out of three) that usually makes sense: 
ωd  =  ωsyn, 0 or ωm, where ωsyn is the synchronous speed in electrical 
radians per second. The corresponding values for ωdA equal ωslip, −ωm 
or 0, respectively, where ωslip = ωsyn − ωm in electrical radians per second.

Under a balanced sinusoidal steady state, the choice of ωd  =  ωsyn 
(hence ωdA = ωslip) results in the hypothetical dq windings rotating at 
the same speed as the field distribution in the air gap. Therefore, all the 
currents, voltages, and flux linkages associated with the stator and  
the rotor dq windings are dc in a balanced sinusoidal steady state. It is 

Fig. 3-7  Calculating dq winding flux linkages and currents.
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42  ANALYSIS OF INDUCTION MACHINES IN TERMS OF dq WINDINGS

easy to design PI controllers for dc quantities, hence ωsyn is often the 
choice for ωd.

In contrast, choosing ωd = 0, that is, a stationary d-axis (often chosen 
to be aligned with the a-axis of the stator with θda =  0), leads to the 
rotor and the stator dq winding voltages and currents oscillating at the 
synchronous frequency in a balanced sinusoidal steady state. The choice 
of ωd = ωm results in dq winding voltages and currents in the stator and 
the rotor varying at the slip frequency; this choice is made for analyzing 
synchronous machines, as we will discuss in Chapter 9.

3-5  ELECTROMAGNETIC TORQUE

3-5-1  Torque on the Rotor d-Axis Winding

On the rotor d-axis winding, the torque produced is due to the flux 
density produced by the q-axis windings in Fig. 3-8. The peak of the 
flux density distribution “cutting” the rotor d winding due to isq and irq, 
each flowing through 3 2/ Ns turns of the q-axis windings (using 
Eq. 2-3), is:

 ˆ /
B

N
p

i
L
L

irq
g

s
sq

r

m
rq=











+








µ0 3 2
� � ������

mmf
������ �����������

,  (3-40)

Fig. 3-8  Torque on the rotor d-axis.
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where the factor Lr/Lm allows us to include both the magnetizing and 
the leakage flux produced by irq. Using the torque expression in chapter 
10 of Reference [1] used in the previous course, and noting that the 
current ird in the rotor d-axis winding flows through 3 2/ Ns turns, the 
instantaneous torque on the d-axis rotor winding is (see problem 10-1 
in chapter 10 of Reference [1])

 T
p N

p
r B id

s
rq rd,rotor

 / 
=









2

3 2
π � ˆ .  (3-41)

As shown in Fig. 3-8, this torque on the rotor is counter-clockwise 
(CCW), hence we will consider it as positive. Substituting for B̂rq from 
Eq. (3-40) into Eq. (3-41),

 T
p

r
N

p
i

L
L

id
g

s
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r

m
r,

/
rotor =




















+
2

3 20
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π
µ
�
� qq rdi







 .  (3-42)

Rewriting Eq. (3-42) below, we can recognize Lm from Eq. (2-13)
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Hence,

 T
p
L i L i i

p
id m sq r rq rd rq rd

rq

, ( ) .rotor = + =
2 2

λ

λ� ������� �������  (3-43)

3-5-2  Torque on the Rotor q-Axis Winding

On the rotor q-axis winding, the torque produced is due to the flux 
density produced by the d-axis windings in Fig. 3-9. This torque on the 
rotor is clockwise (CW), hence we will consider it as negative. The 
derivation similar to that of the torque expression on the rotor d-axis 
winding results in the following torque expression on the q-axis rotor 
winding:

 T
p
L i L i i

p
iq m sd r rd rq rd rq

rd

, ( ) .rotor = − + = −
2 2

λ

λ� ������� �������  (3-44)
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44  ANALYSIS OF INDUCTION MACHINES IN TERMS OF dq WINDINGS

3-5-3  Net Electromagnetic Torque Tem on the Rotor

By superposition, adding the torques acting on the d-axis and the q-axis 
of the rotor windings, the instantaneous torque is

 T T Tem d q= +, , ,rotor rotor  (3-45)

which, using Eq. (3-43) and Eq. (3-44), results in

 T
p

i iem rq rd rd rq= −
2

( ).λ λ  (3-46)

Substituting for flux linkages in Eq. (3-46), the electromagnetic torque 
can be expressed in terms of inductances as

 T
p
L i i i iem m sq rd sd rq= −

2
( ).  (3-47)

3-6  ELECTRODYNAMICS

The acceleration is determined by the difference of the electromagnetic 
torque and the load torque (including friction torque) acting on Jeq, the 
combined inertia of the load and the motor. In terms of the actual 
(mechanical) speed of the rotor ωmech in radians per second, where 
ωmech = (2/p)ωm,

Fig. 3-9  Torque on the rotor q-axis.
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d
dt

T T
J

em L

eq

ωmech =
−

.  (3-48)

3-7  d- AND q-AXIS EQUIVALENT CIRCUITS

Substituting for flux linkage derivatives in terms of inductances into the 
voltage equations (Eq. 3-28 and Eq. 3-29 for the stator and Eq. 3-31 
and Eq. 3-32 for the rotor),

 v R i L
d
dt
i L

d
dt

i isd s sd d sq s sd m sd rd= − + + +ω λ � ( )  (3-49)

 v R i L
d
dt
i L

d
dt

i isq s sq d sd s sq m sq rq= + + + +ω λ � ( )  (3-50)

and

 v R i L
d
dt
i L

d
dt

i ird r rd dA rq r rd m sd rd

=

= − + + +
0
� �ω λ ( )  (3-51)

 v R i L
d
dt
i L

d
dt

i irq r rq dA rd r rq m sq rq

=

= + + + +
0
� �ω λ ( ).  (3-52)

For each axis, the stator and the rotor winding equations are com-
bined to result in the dq equivalent circuits shown in Fig. 3-10a,b. Using 
Eq. (3-28), we can label the terminals across which the voltage is dλsd/dt 

Fig. 3-10  dq-winding equivalent circuits.
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in Fig. 3-10a. Similarly, using Eq. (3-29), Eq. (3-31), and Eq. (3-32), 
respectively, we can label terminals in Fig. 3-10a,b with dλsq/dt, dλrd/dt, 
and dλrq/dt.

3-8  RELATIONSHIP BETWEEN THE dq WINDINGS AND 
THE PER-PHASE PHASOR-DOMAIN EQUIVALENT CIRCUIT 
IN BALANCED SINUSOIDAL STEADY STATE

In this section, we will see that under a balanced sinusoidal steady-state 
condition, the dq-winding equations combine to result in the per-phase 
equivalent circuit of an induction machine that we have derived in the 
previous course [1]. It will be easiest to choose ωd = ωsyn (although any 
other choice of reference speed would lead to the same results; see 
Problem 3-8) so that the dq-winding quantities are dc and their time 
derivatives are zero under a balanced sinusoidal steady-state condition. 
Therefore, in the stator voltage equation Eq. (3-27) in steady state

 
� � �
v R i js dq s s dq s dq_ _ syn _ steady state= + ω λ ( ).  (3-53)

Similarly, the voltage equation for the rotor dq windings under a 
balanced sinusoidal steady state with ωd = ωsyn (thus, ωdA = ωslip = sωsyn) 
results in

 0 = +
R
s
i jr
r dq r dq

� �
_ syn _ steady stateω λ ( ),  (3-54)

where s is the slip. Substituting for flux linkage space vectors in Eq. 
(3-53) and Eq. (3-54) results in

 
� � � � �

�v R i j L i j L i is dq s s dq s s dq m s dq r dq_ _ syn _ syn _ _= + + +ω ω ( )  (3-55)

and

 0 = + + +
R
s
i j L i j L i ir
r dq r r dq m s dq r dq

� � � �
�_ syn _ syn _ _ω ω ( ).  (3-56)

The above space vector equations in a balanced sinusoidal steady 
state correspond to the following phasor equations for phase a:

 V R I j L I j L I Ia s a s a m a A= + + +ω ωsyn syn� ( )  (3-57)
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and

 0 = + + +
R
s

I j L I j L I Ir
A r A m a Aω ωsyn syn� ( ).  (3-58)

The above two equations combined correspond to the per-phase 
equivalent circuit of Fig. 3-11 that was derived in the previous course 
[1] under a balanced sinusoidal steady-state condition. Note that in Fig. 
3-11, I IA ra= − ′ .

3-9  COMPUTER SIMULATION

In dq windings, the flux linkages and voltage equations are derived 
earlier. We will use λsd, λsq, λrd, and λrq as state variables, and express isd, 
isq, ird, and irq in terms of these state variables. The reason for choosing 
flux linkages as state variables has to do with the fact that these quanti-
ties change slowly compared with currents, which can change almost 
instantaneously.

We can calculate dq-winding currents from the stator and the rotor 
flux linkages of the respective windings as follows: Referring to Fig. 3-3, 
the stator and the rotor d-winding flux linkages are related to their 
winding currents (rewriting Eq. 3-19 and Eq. 3-21 in a matrix form) as
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Fig. 3-11  Per-phase equivalent circuit in steady state.
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Similarly, in the q-axis windings, from Eq. (3-20) and Eq. (3-22), the 
matrix [L] of the above equation relates flux linkages to respective 
currents
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Combining matrix Eq. (3-59) and Eq. (3-60), we can relate fluxes to 
currents as follows:
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From Eq. (3-61), currents can be calculated by using the inverse of 
matrix [M]:
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With voltages as input, and choosing the speed ωd of the dq windings, 
the flux linkages are calculated as shown in Fig. 3-7 using Eq. (3-38) 
and Eq. (3-39) derived earlier. The currents are calculated using Eq. 
(3-62) derived above. Combining these with the torque equation Eq. 
(3-47) and the electrodynamics Eq. (3-48), we can draw the overall 
block diagram for computer modeling in Fig. 3-12.

3-9-1  Calculation of Initial Conditions

In order to carry out computer simulations, we need to calculate initial 
values of the state variables, that is, of the flux linkages of the dq wind-
ings. These can be calculated in terms of the initial values of the dq 
winding currents. These currents allow us to compute the electromag-
netic torque in steady state, thus the initial loading of the induction 
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machine. To accomplish this, we will make use of the phasor analysis in 
the initial steady state as follows:

Phasor Analysis
In the sinusoidal steady state, we can calculate current phasors Ia 

and ′ = −I Ira A( ) in Fig. 3-11 for a given Va. All the space vectors and the 
dq-winding variables at t = 0 can be calculated. The phasor current for 
phase-a allows the stator current space vector at t = 0 to be calculated 
as follows:

 I I i I ea a i s a

I

j

s

i= ∠ ⇒ =ˆ ( ) ˆ .

ˆ

θ θ
�

�
0

3
2

 (3-63)

Assuming the initial value of θda to be zero (i.e., the d-axis along the 
stator a-axis), and using Fig. 3-3 and Eq. (3-5) and Eq. (3-6)
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Fig. 3-12  Induction motor model in terms of dq windings.
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and
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ssin( ).θi  (3-65)

Similarly, we can calculate νsd(0) and νsq(0). The phasor I IA ra( )= − ′  
allows ird(0) and ir (0) to be calculated. Knowing the currents in the dq 
windings at t  =  0 allows the initial values of the flux linkages to be 
calculated from Eq. (3-61). Also, these currents allow the computation 
of the electromagnetic torque in steady state by Eq. (3-47) to calculate 
the initial loading of the induction machine.

EXAMPLE 3-1

An induction machine with the following nameplate data is initially 
operating under its rated condition in steady state, supplying its rated 
torque. Calculate initial values of flux linkages and the load torque. 
Assume that the phase-a voltage has its positive peak at time t = 0.

Nameplate Data

Power: 3 HP/2.4 kW
Voltage: 460 V (L-L, rms)
Frequency: 60 Hz
Phases: 3
Full-Load Current: 4 A
Full-Load Speed: 1750 rpm
Full-Load Efficiency: 88.5%
Power Factor: 80.0%
Number of Poles: 4

http://c3-disp-0066
http://c3-disp-0052
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Per-Phase Motor Circuit Parameters

Rs = 1 77. Ω
Rr = 1 34. Ω
X s� = 5 25 60. ( )Ω at Hz
X r� = 4 57 60. ( )Ω at Hz
Xm = 139 0 60. ( )Ω at Hz

Full-Load Slip = 1.72%
The iron losses are specified as 78 W and the mechanical (friction 

and windage) losses are specified as 24 W. The inertia of the 
machine is given. Assuming that the reflected load inertia is 
approximately the same as the motor inertia, the total equiva-
lent inertia of the system is Jeq = 0.025 kg · m2.

Solution

A MATLAB file EX3_1.m on accompanying website is based on the 
following steps:

Step 1 Calculate by phasor analysis Va, Ia, and I IA ra( )= − ′ , given 
that the phase-a voltage has a positive peak at time t = 0.

Step 2 Calculate the current space vectors 
�
isa  and 

�
ira  at time t = 0 

from the phasors for phase-a.
Step 3 In the dq analysis, choose ωd = ωsyn and θda(0) = 0. Calculate 

isα, isβ, irα, and irβ from the space vectors in step 2, using equations 
similar to Eq. (3-64) and Eq. (3-65).

Step 4 Calculate flux linkages of dq windings using Eq. (3-61).
Step 5 Calculate torque TL(0), which equals Tem in steady state, 

from Eq. (3-46) or Eq. (3-47).

The results from EX3_1.m are listed below:

λsd(0) = 0.0174 Wb-turns
λrd(0) = −0.1237 Wb-turns
λsq(0) = −1.1951 Wb-turns
λrq(0) = −1.1363 Wb-turns
Tem(0) = TL(0) = 12.644 Nm.
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EXAMPLE 3-2

Calculate the initial conditions of the induction machine operating 
in steady state in Example 3-1 using the voltage equations Eq. (3-28), 
Eq. (3-29), Eq. (3-31), and Eq. (3-32). Also calculate the load torque.

Solution

In a balanced steady state, with ωd chosen as the synchronous speed 
ωsyn, all dq winding variables are dc quantities and ωdA = sωsyn. There-
fore, their time derivatives are zero in Eq. (3-28), Eq. (3-29), Eq. 
(3-31), and Eq. (3-32), resulting in the following equations:

 v R isd s sd sq= −ω λsyn  (3-66)

 v R isq s sq sd= + ω λsyn  (3-67)

 0 = −R i sr rd rqω λsyn  (3-68)

 0 = +R i sr rq rdω λsyn .  (3-69)

Substituting in the above equations for flux linkages from Eq.  
(3-19) through Eq. (3-22)

 

v

v

R L L

L R L
sd

sq

s s m

s s m

0

0

0

0

0























=

− −ω ω
ω ω

syn syn

syn syn

−− −























s L R s L

s L s L R
m r r

m r r

A

ω ω
ω ω

syn syn

syn syn0
[ ]

� ��������������������� ��������������������

i

i

i

i

sd

sq

rd

rq























.  (3-70)

The machine currents can be calculated from Eq. (3-70) by invert-
ing matrix [A]:
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Once the dq winding currents are calculated, the flux linkages can 
be calculated from Eq. (3-61).
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The results from a MATLAB file EX3_2.m on the accompanying 
website are as follows for currents, with flux linkages and the load 
torque exactly as in Example 3-1.

isd(0) = 5.34 A
isq(0) = −3.7 A
ird(0) = −5.5 A
irq(0) = 0.60 A.

EXAMPLE 3-3

In Simulink, develop a simulation of the induction machine described 
in Example 3-1 operating in steady state as specified in Example 3-1. 
At t = 0.1 seconds, the load torque TL suddenly goes to one-half of 
its initial value and stays at that level. Assume θda(0) = 0 and a syn-
chronously rotating dq reference frame.

Plot the electromagnetic torque developed by the motor and the 
rotor speed as functions of time.

Solution

The Simulink file EX3_3.mdl included on the accompanying website 
follows the block diagram in Fig. 3-12. Prior to its execution, initial 
conditions for the flux linkages, the rotor speed, and the load torque 
must be calculated either by executing the file for Example 3-1 
(EX3_1.m) or for Example 3-2 (EX3_2.m) by double clicking on the 
start icon shown in the schematic of Fig. 3-13. The resulting wave-
forms are plotted in Fig. 3-14.
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Fig. 3-13  Simulation of Example 3-3.

Fig. 3-14  Simulation results of Example 3-3.
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EXAMPLE 3-4

Consider the “test” machine described in Chapter 1. Simulate the 
machine starting from a completely powered-down state with no 
external load connected to it. Simulate for three different assump-
tions regarding the d-axis:

(a) ωd = ωsyn

(b) ωd = ωm

(c) The d-axis is aligned with the rotor flux linkage space vector.

Solution

See the complete solution on the accompanying website.

EXAMPLE 3-5

Consider the “test” machine described in Chapter 1. Assume that 
this machine is operating under its rated condition in steady state, 
supplying its rated torque. Calculate the initial values of the flux 
linkages of dq windings, the dq currents, the rotor speed, and the 
torque for the following three assumptions:

(a) ωd = ωsyn; assume θda(0) = 0 and θdA(0) = 0.
(b) ωd = ωm; assume θda(0) = 0 and θdA(0) = 0.
(c) The d-axis is aligned with the rotor flux linkage space vector.

Solution

See the complete solution on the accompanying website.
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EXAMPLE 3-6

Use the initial conditions calculated in Example 3-5 to simulate a 
sudden change in load torque to one-half of its initial value. Plot 
various quantities as a function of time.

Solution

See the complete solution on the accompanying website.

EXAMPLE 3-7

The machine in Example 3-5 is made to go into the generator mode. 
Make the load torque change linearly from its initial rated positive 
value to the rated negative value in 0.2 seconds. Plot various quanti-
ties as a function of time.

Solution

See the complete solution on the accompanying website.

3-10  SUMMARY

In this chapter, the actual stator phase windings and the equivalent 
rotor phase windings are represented by an equivalent set of dq wind-
ings, which produce the same air gap mmf. There are many advantages 
of doing so: there is zero magnetic coupling between the windings on 
the d-axis and those on the q-axis due to their orthogonal orientation. 
This procedure results in much simpler expressions and allows air gap 
flux and electromagnetic torque to be controlled independently, which 
will be discussed in the following chapters.

REFERENCE
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PROBLEMS

3-1 Derive that each of the two windings with 3 2/ Ns turns in an 
equivalent two-phase machine has the magnetizing inductance 
of Lm, leakage inductance of Lℓs, and the resistance Rs, where 
these quantities correspond to those of an equivalent three-
phase machine.

3-2 Show that the instantaneous power loss in the stator resistances 
is the same in the three-phase machine as in an equivalent two-
phase machine.

3-3 Show that the instantaneous total input power is the same in 
a-b-c and in the dq circuits.

3-4 Rederive all the equations used in obtaining the torque expres-
sions of Eq. (3-46) and Eq. (3-47) for a p-pole machine from 
energy considerations.

3-5 Draw dynamic equivalent circuits of Fig. 3-9 for the following 
values of the dq winding speed ωd: 0 and ωm. What is the fre-
quency of dq winding variables in a balanced sinusoidal steady 
state, including the condition that ωd = ωsyn?

3-6 The “test” motor described in Chapter 1 is operating at its rated 
conditions. Calculate νsd(t) and νsq(t) as functions of time, (a) if 
ωd = ωsyn, and (b) if ωd = 0.

3-7 Under a balanced sinusoidal steady state, calculate the input 
power factor of operation based on the d- and the q-axis equiva-
lent circuits of Fig. 3-10 in the “test” motor described in Chapter 1.

3-8 Show that the equations for the dq windings in a balanced sinu-
soidal steady state result in the per-phase equivalent circuit of 
Fig. 3-11 for ωd = 0 and ωd = ωm.

3-9 Using Eq. (3-46) and Eq. (3-47), derive the torque expressions 
in terms of (1) stator dq winding flux linkages and currents, and 
(2) stator dq winding currents and rotor dq winding flux 
linkages.

3-10 Show that for the transformation matrix in Eq. (3-12),
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[ ] [ ] [ ].T T Iabc dq dq abc→

×

→

× ×

=
2 3 3 2 2 2

� ���� ���� � ���� ���� �

3-11 Derive the voltage equations in the dq stator windings (Eq. 3-28 
and Eq. 3-29) using the transformation matrix of Eq. (3-12) (also 
for the rotor dq windings).

3-12 In Examples 3-1 and 3-2, plot 
�
vs, 
�
λs, 
�
λr , 
�
is, and 

�
ir  at time t = 0.

3-13 In the simulation of Example 3-3, plot the dq winding currents 
and the a-b-c phase currents. Also plot the slip speed.

3-14 Repeat Example 3-3, assuming ωd = 0. Plot the dq winding cur-
rents, the a-b-c phase currents, and the slip speed.

3-15 Repeat Example 3-3 assuming ωd = ωm. Plot the dq winding cur-
rents, the a-b-c phase currents, and the slip speed.

3-16 Modify the simulation file of Example 3-3 to simulate line start 
with the rated load connected to the motor, without the load 
disturbance at t = 0.1 seconds.

3-17 The “test” machine is made to go into the generator mode. 
Modify the file of Example 3-3 by making the load toque change 
linearly from its initial rated positive value to the rated negative 
value in 0.2 seconds, starting at t  =  0.1 seconds. Plot the same 
variables as in that example, as well as the phase voltages and 
currents.
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4-1  INTRODUCTION

Applications such as robotics and factory automation require accurate 
control of speed and position. This can be accomplished by vector 
control of induction machines, which emulate the performance of dc 
motor and brushless dc motor servo drives. Compared with dc and 
brushless dc motors, induction motors have a lower cost and a more 
rugged construction.

In any speed and position control application, torque is the funda-
mental variable that needs to be controlled. The ability to produce a 
step change in torque on command represents total control over the 
drives for high performance speed and position control.

This chapter qualitatively shows how a step change in torque is 
accomplished by vector control of induction-motor drives. For this 
purpose, the steady-state analysis of induction motors discussed in the 
previous course serves very well because while delivering a step change 
in electromagnetic torque under vector control, an induction machine 
instantaneously transitions from one steady state to another.

4-2  EMULATION OF dc AND BRUSHLESS dc 
DRIVE PERFORMANCE

Under vector control, induction-motor drives can emulate the perfor-
mance of dc-motor and brushless-dc motor servo drives discussed  
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in the previous course. These are briefly reviewed in the following 
sections.

In the dc-motor drive shown in Fig. 4-1a, the commutator and brushes 
ensure that the armature-current-produced magnetomotive force (mmf) 
is at a right angle to the field flux produced by the stator. Both of these 
fields remain stationary. The electromagnetic torque Tem developed by 
the motor depends linearly on the armature current ia:

 T k iem T a= ,  (4-1)

where kT is the dc motor torque constant. To change Tem as a step, the 
armature current ia is changed (at least, attempted to be changed) as a 
step by the power-processing unit (PPU), as shown in Fig. 4-1b.

In the brushless-dc drive shown in Fig. 4-2a, the PPU keeps the stator 
current space vector i ts

��
( ) 90° ahead of the rotor field vector B tr

� ��
( ) 

Fig. 4-1  dc motor drive.

φf

φa
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Fig. 4-2  Current-controlled brushless dc (BLDC) motor drive.
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(produced by the permanent magnets on the rotor) in the direction of 
rotation. The position θm(t) of the rotor field is measured by means of 
a sensor, for example, a resolver. The torque Tem depends on Îs, the 
amplitude of the stator current space vector 

�
i ts( ):

 T k Iem T s= ˆ ,  (4-2)

where kT is the brushless dc motor torque constant. To produce a step 
change in torque, the PPU changes the amplitude Îs in Fig. 4-2b by 
appropriately changing ia(t), ib(t), and ic(t), keeping i ts

��
( ) always ahead 

of B tr

� ��
( ) by 90° in the direction of rotation.

4-2-1  Vector Control of Induction-Motor Drives

We will look at one of many ways in which an induction motor drive 
can emulate the performance of dc and brushless dc motor drives. 
Based on the steady state analysis in Reference [1], we observed that 
in an induction machine, 

�
F tr( ) and 

�
′F tr( ) space vectors are naturally at 

90° to the rotor flux-density space vector 
�
B tr( ), as shown in Fig. 4-3a. 

In terms of the amplitude ˆ′Ir , where

�
�

′ =
′

i t
F t
N p

r
r

s

( )
( )
/

,

keeping B̂r  constant results in the following torque expression:

 T k Iem T r= ′ˆ ,  (4-3)

Fig. 4-3  (a) Rotor flux density and mmf space vectors; (b) vector-controlled 
induction-motor drive.
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where kT is the induction-motor torque constant. The earlier discussion 
shows that induction-motor drives can emulate the performance of dc 
motor and the brushless dc motor drives. In induction machines, in this 
emulation (called vector control), the PPU in Fig. 4-3b controls the 
stator current space vector 

�
i ts( ) as follows: a component of 

�
i ts( ) is con-

trolled to keep B̂r constant, while the other orthogonal component of �
i ts( ) is controlled to produce the desired torque.

4-3  ANALOGY TO A CURRENT-EXCITED TRANSFORMER 
WITH A SHORTED SECONDARY

To understand vector control in induction-motor drives, an analogy of 
a current-excited transformer with a short-circuited secondary, as shown 
in Fig. 4-4, is very useful. Initially at time t = 0−, both currents and the 
core flux are zero. The primary winding is excited by a step-current at 
t = 0+. Changing this current as a step, in the presence of leakage fluxes, 
requires a voltage impulse, but as has been argued in Reference [2], the 
volt-seconds needed to bring about such a change are not all that large. 
In any case, we will initially assume that it is possible to produce a step 
change in the primary winding current. Our focus is on the short-
circuited secondary winding; therefore, we will neglect the leakage 
impedance of the primary winding.

In the transformer of Fig. 4-4 at t = 0−, the flux linkage λ2(0−) of the 
secondary winding is zero, as there is no flux in the core. From the 
theorem of constant flux linkage, we know that the flux linkage of a 
short-circuited coil cannot change instantaneously. Therefore, at t = 0+,

Fig. 4-4  Current-excited transformer with secondary short-circuited.
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 λ λ2 20 0 0( ) ( ) .+ −= =  (4-4)

To maintain the above condition, i2 will jump instantaneously at 
t = 0+. As shown in Fig. 4-4 at t = 0+, there are three flux components 
linking the secondary winding: the magnetizing flux φm i, 1 produced by 
i1, the magnetizing flux φm i, 2  produced by i2, and the leakage flux φℓ2 
produced by i2, which links only winding 2 but not winding 1. The condi-
tion that λ2(0+) = 0 requires that the net flux linking winding 2 be zero; 
hence, including the flux directions shown in Fig. 4-4,

φ φ φm i m i, ,( ) ( ) ( )1 20 0 0 02
+ + +− − =�

or

 φ φ φm i m i, ,( ) ( ) ( ).2 10 0 02
+ + ++ =�  (4-5)

Choosing the positive flux direction to be in the downward direction 
through coil 2, the flux linkage of coil 2 can be written as

 λ φ φ φ2 22

2 2 2

1

1

= − − +N N Nm i

L i L i

m i

L im m

, ,� ��� ��� � � ��� ����

�

 (4-6a)

or

 λ2 2 2 1= − +L i L im ,  (4-6b)

where

 Lm = the mutual inductance between the two coils  (4-7)

and

 L L Lm2 2 2= + =� the self-inductance of coil .  (4-8)

Therefore at t = 0+,

 λ2 2 2 10 0 0 0( ) ( ) ( )+ + += = − +L i L im  (4-9)

or

 i
L
L

im
2

2
10 0( ) ( ).+ +=  (4-10)

We should note that the secondary winding current i2(0+) does not 
depend on the secondary winding resistance R2. Also, if the secondary 
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winding leakage flux is neglected (Lℓ2  =  0), then i2(0+) equals i1(0+), 
with the assumption of unity turns-ratio between the two windings.

In the current-excited transformer of Fig. 4-5a, the equivalent circuit 
of the secondary winding for t > 0 is shown in Fig. 4-5b. Note that in 
Fig. 4-5a for t > 0, φm i, 1  is a constant and therefore does not induce any 
voltage in Fig. 4-5b. Due to the voltage drop across R2, the current i2 
declines, thus causing both φm i, 2 and φℓ2 to decline (both of these are 
produced by i2). In accordance with the equivalent circuit of Fig. 4-5b, 
i2 decays exponentially, as shown in Fig. 4-5c

 i t i e t
2 2 0 2( ) ( ) ,= + − τ  (4-11)

where τ2 is the time constant of winding 2:

 τ2
2

2

=
L
R

.  (4-12)

Theoretically, we can see that at t = 0+, a voltage impulse is necessary 
to make the current i1 jump because a finite amount of energy must be 

Fig.  4-5  Analogy of a current-excited transformer with a short-circuited 
secondary; N1 = N2.
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transferred instantaneously. This instantaneous energy increase (all of 
these associated energy levels were zero at t = 0−) is associated with:

1. Leakage flux of the primary (neglected in this discussion)
2. Leakage flux of the secondary in air
3. Slight increase of flux φ φ φ�2 1 2( ), ,= −m i m i  in the core.

However, as argued in Reference [2], the volt-seconds needed to 
accomplish this instantaneous change in current are not excessive. After 
all, note that in a dc-motor drive, for a step change in torque, the arma-
ture current must be built up overcoming the inductive nature of the 
armature winding. A similar situation occurs in “brushless-dc” motor 
drives.

4-3-1  Using the Transformer Equivalent Circuit

The earlier discussion can also be confirmed by considering the equiva-
lent circuit of a two winding transformer with N1 = N2, shown in Fig. 
4-6. For a step change in i1 at t = 0+, the instantaneous current division 
is based on inductances of the two parallel branches (resistance R2 will 
have a negligible effect):

 i
L

L L
i

L
L

im

m

m
2

2
1

2
10 0 0( ) ( ) ( )+ + +=

+
=

�
 (4-13)

and

 i
L

L L
i

L
L

im
m

( ) ( ) ( ).0 0 02

2
1

2

2
1

+ + +=
+

=�

�

�  (4-14)

Fig. 4-6  Equivalent-circuit representation of the current-excited transformer 
with a short-circuited secondary.
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Equation (4-13) shows the jump in i2 at t = 0+. Noting that di1/dt = 0 
for t > 0, solving for i2 in the circuit in Fig. 4-6 confirms the decay in i2 
due to R2

 i t i e t
2 2 0 2( ) ( ) .= + − τ  (4-15)

4-4  d- AND q-AXIS WINDING REPRESENTATION

A step change in torque requires a step change in the rotor current of 
a vector-controlled induction motor. We will make use of an orthogonal 
set of d- and q-axis windings, introduced in Chapter 3, producing the 
same mmf as three stator windings (each with Ns turns, sinusoidally 
distributed), with ia, ib, and ic flowing through them. In Fig. 4-7 at a time 
t, 
�
i ts( ) and 

�
F ts( ) are produced by ia(t), ib(t), and ic(t). The resulting mmf � �

F t N p i ts s s( ) ( / ) ( )=  can be produced by the set of orthogonal stator 
windings shown in Fig. 4-7, each sinusoidally distributed with 3 2/ Ns 
turns: one winding along the d-axis, and the other along the q-axis. Note 
that this d–q axis set may be at any arbitrary angle with respect to the 
phase-a axis. In order to keep the mmf and the flux-density distributions 
the same as in the actual machine with three-phase windings, the cur-
rents in these two windings would have to be isd and isq, where, as shown 

Fig.  4-7  Stator and rotor mmf representation by equivalent dq winding 
currents.
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in Fig. 4-7, these two current components are 2 3/  times the projec-
tions of the 

�
i ts( ) vector along the d-axis and q-axis.

4-5  VECTOR CONTROL WITH d-AXIS ALIGNED WITH THE 
ROTOR FLUX

In the following analysis, we will assume that the d-axis is always 
aligned with the rotor flux-linkage space vector, that is, also aligned  
with 

�
B tr( ).

4-5-1  Initial Flux Buildup Prior to t = 0−

We will apply the information of the last section to vector control of 
induction machines. As shown in Fig. 4-8, prior to t = 0−, the magnetiz-
ing currents are built up in three phases such that

 i I i i Ia m b c m( ) and ( ) ( ) .,rated ,rated0 0 0
1
2

− − −= = = −ˆ ˆ  (4-16)

The current buildup prior to t  =  0− may occur slowly over a long 
period of time and represents the buildup of the flux in the induction 
machine up to its rated value. These currents represent the rated mag-
netizing currents to bring the air gap flux density to its rated value. Note 

Fig. 4-8  Currents and flux at t−.
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that there will be no rotor currents at t = 0− (they decay out prior to 
t = 0−). Also, at t = 0−, the stator mmf can be represented by that pro-
duced by the d-axis winding (chosen to be along the a-axis) with a 
current isd, where

 i I I Isd ms m m( ) ,rated ,rated ,rated0
2
3

2
3

3
2

3
2

− = =






=ˆ ˆ ˆ  (4-17)

and

 isq = 0.  (4-18)

We should note that the isd-produced stator leakage flux does 
not link the rotor, and hence it is of no concern in the following 
discussion.

At t = 0−, the peak of the flux lines φm isd,  linking the rotor is horizon-
tally oriented. There is no rotor leakage flux because there are no cur-
rents flowing through the rotor bars. Only the flux φm isd,  produced by 
the stator links the rotor. Therefore, 

�
Br( )0− , equal to 

�
Bms( )0− , is hori-

zontally oriented along the d-axis (same as the a-axis at t = 0−).

4-5-2  Step Change in Torque at t = 0+

Next, we will see how this induction machine can produce a step change 
in torque. Initially, we will assume that the rotor is blocked from turning 
(ωmech = 0), a restriction that will soon be removed. At t = 0+, the three 
stator currents are changed as a step in order to produce a step change 
in the q-axis current isq, without changing isd, as shown in Fig. 4-9a. The 
current isq in the stator q winding produces the flux lines φm isq,  that cross 
the air gap and link the rotor. The leakage flux produced by isq can be 
safely neglected from the discussion here (because it does not link the 
shorted rotor cage), similar to neglecting the leakage flux produced by 
the primary winding of the transformer in the previous analogy.

Turning our attention to the rotor at t = 0+, we note that the rotor 
is a short-circuited cage, so its flux linkage cannot change instanta-
neously. To oppose the flux lines produced by isq, currents are instanta-
neously induced in the rotor bars by the transformer action, as shown 
in Fig. 4-9a.

http://c4-fig-0009
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This current distribution in the rotor bars is sinusoidal, as justified 
below using Fig. 4-9b:

To justify the sinusoidal distribution of current in the rotor bars, assume 
that the bars x − x′ constitute one short-circuited coil, and the bars y − y′ 
the other coil. The density of flux lines produced by isq is sinusoidally 
distributed in the air gap. The coil x − x′ links most of the flux lines pro-
duced by isq. But the coil y − y′ links far fewer flux lines. Therefore, the 
current in this coil will be relatively smaller than the current in x − x′.

These rotor currents in Fig. 4-9a produce two flux components with 
peak densities along the q-axis and of the direction shown:

1. The magnetizing flux φm ir,  that crosses the air gap and links the 
stator.

2. The leakage flux φℓr that does not cross the air gap and links only 
the rotor.

By the theorem of constant flux linkage, at t = 0+, the net flux linking 
the short-circuited rotor in the q-axis must remain zero. Therefore, at 
t  =  0+, for the condition that φrq,net  =  0 (taking flux directions into 
account):

Fig. 4-9  Currents at t = 0+.
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 φ φ φm i m i rsq ro o o, ,( ) ( ) ( ).+ + += + �  (4-19)

Since isd and the d-axis rotor flux linkage have not changed, the net 
flux, Br

� ��
, linking the rotor remains the same at t = 0+ as it was at t = 0−.

The space vectors at t = 0+ are shown in Fig. 4-10. No change in the 
net flux linking the rotor implies that Br

� ��
 has not changed; its peak is 

still horizontal along the a-axis and of the same magnitude as before.
The rotor currents produced instantaneously by the transformer 

action at t = 0+, as shown in Fig. 4-9a, result in a torque Tem(0+). This 
torque will be proportional to B̂r and isq (slightly less than isq by a factor 
of Lm/Lr due to the rotor leakage flux, where Lr equals L Lm r+ ′�  in the 
per-phase equivalent circuit of an induction machine):

 T k B
L
L

iem r
m

r
sq=







1

ˆ ,  (4-20)

where k1 is a constant. If no action is taken beyond t = 0+, the rotor 
currents will decay and so will the force on the rotor bars. This current 
decay would be like in a transformer of Fig. 4-6 with a short-circuited 
secondary and with the primary excited with a step of current source.

In the transformer case of Fig. 4-6, decay of i2 could be prevented by 
injecting a voltage equal to R2i2(0+) beyond t  =  0+ to overcome the 
voltage drop across R2. In the case of an induction machine, beyond 
t = 0+, as shown in Fig. 4-11, we will equivalently rotate both the d-axis 
and the q-axis stator windings at an appropriate slip speed ωslip in order 
to maintain 

�
B tr( ) completely along the d-axis with a constant amplitude 

of B̂r, and to maintain the same rotor-bar current distribution along the 
q-axis. This corresponds to the beginning of a new steady state. There-
fore, the steady-state analysis of induction machine applies.

As the d-axis and the q-axis windings rotate at the appropriate value 
of ωslip (notice that the rotor is still blocked from turning in Fig. 4-11), 

Fig. 4-10  Flux densities at t = 0+.
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there is no net rotor flux linkage along the q-axis. The flux linkage along 
the d-axis remains constant with a flux density B̂r “cutting” the rotor 
bars and inducing the bar voltages to cancel the iRbar voltage drops. 
Therefore, the entire distribution rotates with time, as shown in Fig. 4-11 
at any arbitrary time t > 0. For the relative distribution and hence the 
torque produced to remain the same as at t = 0+, the two windings must 
rotate at an exact ωslip, which depends linearly on both the rotor resis-
tance ′Rr  and isq (slightly less by the factor Lm/Lr due to the rotor 
leakage flux), and inversely on B̂r

 ωslip
( / )

,=
′

k
R L L i

B
r m r sq

r
2 ˆ  (4-21)

where k2 is a constant. Now we can remove the restriction of ωmech = 0. 
If we need to produce a step change in torque while the rotor is turning 
at some speed ωmech, then the d-axis and the q-axis windings should be 
equivalently rotated at the appropriate slip speed ωslip relative to the 
rotor speed ω ωm p=( )( / )2 mech  in electrical rad/s, that is, at the synchro-
nous speed ωyn = ωm + ωslip, as shown in Fig. 4-12.

Fig. 4-11  Current and fluxes at some time t > 0, with the rotor blocked.
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4-6  TORQUE, SPEED, AND POSITION CONTROL

In vector control of induction-motor drives, the stator phase currents 
ia(t), ib(t), and ic(t) are controlled in such a manner that isq(t) delivers 
the desired electromagnetic torque while isd(t) maintains the peak 
rotor-flux density at its rated value. The reference values i tsq

* ( ) and i tsd
* ( ) 

are generated by the torque, speed, and position control loops, as dis-
cussed in the following section.

4-6-1  The Reference Current i tsq
* ( )

The reference value i tsq
* ( ) depends on the desired torque, which is cal-

culated within the cascade control of Fig. 4-13, where the position loop 
is the outermost loop and the torque loop is the innermost loop. The 
loop bandwidths increase from the outermost to the innermost loop. 
The error between the reference (desired) position, θmech

* ( )t , and the 
measured position θmech(t) is amplified by a proportional (P) amplifier 
to generate the speed reference signal ωmech

* ( )t . The error between the 
reference speed ωmech

* ( )t  and the measured speed ωmech(t) is amplified 

Fig. 4-12  Vector-controlled condition with the rotor speed ω ωm p=( )( / )2 mech  
electrical rad/s.
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by a proportional-integral (PI) amplifier to generate the torque refer-
ence T tem

* ( ). Finally, the error between T tem
* ( ) and the calculated torque 

Tem(t) is amplified by another PI amplifier to generate the reference 
value i tsq

* ( ).

4-6-2  The Reference Current i tsd
* ( )

For measured speed values below the rated speed of the motor, the 
rotor flux-density peak B̂r  is maintained at its rated value as shown 
by the speed versus flux-density block in Fig. 4-13. Above the rated 
speed, the flux density is reduced in the flux-weakening mode, as dis-
cussed in the previous course. The error between B̂r

* and the calculated 
flux-density peak B̂r  is amplified by a PI amplifier to generate the refer-
ence value i tsd

* ( ).

4-6-3  Transformation and Inverse-Transformation of  
Stator Currents

Fig. 4-13 shows the angle θBr t( ) of the d-axis, with respect to the station-
ary a-axis, to which the rotor flux-density space vector 

�
B tr( ) is aligned. 

The angle θBr  is the same as θda in Chapter 3 if the d-axis is aligned with 
the rotor flux 

�
λr  at all times such that λrq = 0. This angle is computed 

by the vector-controlled motor model, which is described in the next 

Fig. 4-13  Vector-controlled induction motor drive with a current-regulated 
PPU. In a multipole machine, measured speed should be converted into electri-
cal radians per second.
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section. Using the d-axis angle θBr t( ), the reference current signals i tsd
* ( ) 

and i tsq
* ( ) are transformed into the stator current reference signals i ta

*( ), 
i tb

*( ), and i tc
*( ), as shown in Fig. 4-13 by the transform block (dq − to 

− abc), same as [Ts]dq→abc in Equation (3-18) of the previous chapter. 
The current-regulated PPU uses these reference signals to supply the 
desired currents to the motor (details of how it can be accomplished 
are discussed briefly in Section 4-7).

The stator currents are measured and the d-axis angle θBr t( ) is used 
to transform them using a matrix same as [Ts]abc→dq in Equation (3-12) 
of the previous chapter into the signals isd(t) and isq(t), as shown by the 
inverse transform block (abc − to − dq) in Fig. 4-13.

4-6-4  The Estimated Motor Model for Vector Control

The estimated motor model in Fig. 4-13 has the following measured 
inputs: the three stator phase currents ia(t), ib(t), and ic(t), and the mea-
sured rotor speed ωmech(t). The motor model also needs accurate estima-
tion of the rotor parameters Lm, ′L r� , and ′Rr . The following parameters 
are calculated in the motor model for internal use and also as outputs: 
the angle θBr  (with respect to the stationary phase-a axis) to which the 
d-axis is aligned, the peak of the rotor flux density B̂ tr( ), and the elec-
tromagnetic torque Tem(t).

In the estimated motor model, B̂ tr( )  is computed by considering the 
dynamics along the d-axis, which is valid in the flux-weakening mode, 
where B̂ tr( ) is decreased to allow operation at higher than rated speed.

The electromagnetic torque Tem(t) is computed based on Eq. (4-20) 
(the complete torque expression will be derived in the next chapter). 
The angle θBr t( ) is computed by first calculating the slip speed ωslip(t) 
based on Eq. (4-21) (the complete expression will be derived in the 
next chapter). This slip speed is added to the measured rotor speed 
ω ωm p=( )( / )2 mech  to yield the instantaneous synchronous speed of the 
d- and the q-axes:

 ω ω ωsyn slip( ) ( ) ( ).t t tm= +  (4-22)

With θBr = 0 at starting by initially aligning the rotor flux-density 
space vector along the a-axis, integrating the instantaneous synchro-
nous speed results in the d-axis angle as follows:
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 θ ω τ τB

t

r t d( ) ( ) ,= + ⋅∫0
0

syn  (4-23)

where τ is a variable of integration. Based on these physical principles, 
the mathematical expressions are clearly and concisely developed in 
the next chapter.

4-7  THE POWER-PROCESSING UNIT (PPU)

The task of the PPU in Fig. 4-13 is to supply the desired currents based 
on the reference signals to the induction motor. This PPU is further 
illustrated in Fig. 4-14a, where phases b and c are omitted for simplifica-
tion. One of the easiest ways to ensure that the motor is supplied the 
desired currents is to use hysteresis control similar to that discussed in 
Chapter 7 for ECM drives and Chapter 10 for PMAC drives in the 
previous course [1]. The measured phase current is compared with its 

Fig. 4-14  (a) Block diagram representation of hysteresis current control; (b) 
current waveform.
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reference value in the hysteresis comparator, whose output determines 
the switch state (up or down), resulting in a current waveform as shown 
in Fig. 4-14b.

In spite of the simplicity of the hysteresis control, one perceived 
drawback of this controller is that its switching frequency changes as a 
function of the back-emf waveform. For this reason, constant switching 
frequency PPU are used as described in Chapter 8 of this book.

4-8  SUMMARY

In this chapter, we have qualitatively examined how it is possible to 
produce a step in torque in a squirrel-cage induction machine. This 
analysis is aided by the steady-state analysis of induction machines 
using space vectors in the previous course, which clearly shows the 
orthogonal relationship between the rotor flux-linkage space vector 
and the rotor mmf space vector.

In vector control, we keep the rotor flux linkage constant in ampli-
tude (which can be decreased in the flux-weakening mode). Controlling 
the rotor flux linkage requires a dq winding analysis, where the current 
in the equivalent d winding of the stator is kept constant in order to 
keep the rotor flux along the d-axis constant. A step change in the stator 
q winding current suddenly induces currents in the rotor equivalent 
q-axis winding while keeping its flux linkage zero. Therefore, the rotor 
flux linkage remains unchanged in amplitude. Sudden appearance of 
currents along the rotor q-axis, in the presence of d-axis flux, results in 
a step change in torque. To maintain the induced rotor q winding 
current from decaying, the dq winding set must be rotated at an appro-
priate slip speed with respect to the rotor.
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PROBLEMS

4-1 Draw the dynamic dq-axis equivalent circuits under the condition 
that the rotor flux is aligned with d-axis, such that λrq and dλrq/dt 
are zero at all times. Apply a step change of current in the q-axis 
circuit and explain what happens.

4-2 In an induction motor described with the following nameplate 
data, establishing the rated air gap flux density requires Îm = 2.54 A. 
To build up to this rated flux, calculate the three-phase currents 
at t = 0−.

Nameplate Data

Power: 3 HP/2.4 kW
Voltage: 460 V (L-L, rms)
Frequency: 60 Hz
Phases: 3
Full Load Current: 4 A (rms)
Full-Load Speed: 1750 rpm
Full-Load Efficiency: 88.5%
Power Factor: 80.0%
Number of Poles: 4
Per-Phase Motor Circuit Parameters:
Rs = 1 77. Ω
Rr = 1 34. Ω
X s� = Ω5 25 60. ( )at Hz
X r� = Ω4 57 60. ( )at Hz
Xm = Ω139 0 60. ( )at Hz

Full-Load Slip = 1.72%

The iron losses are specified as 78 W and the mechanical (friction 
and windage) losses are specified as 24 W. The inertia of the 
machine is given. Assuming that the reflected load inertia is 
approximately the same as the motor inertia, the total equivalent 
inertia of the system is Jeq = 0.025 kg · m2.
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4-3 In the machine of Problem 4-2, a desired step-torque at t  =  0+ 
requires step change in isq = 2 A from its initial zero value. Calcu-
late the phase currents at t = 0+, which result in the desired step 
change in q-axis current while maintaining the rated flux density 
in the air gap.

4-4 In the machine of Problems 4-1 and 4-2, the slip speed at which 
the equivalent d-axis and the q-axis windings need to be rotated 
is ωslip = 2.34 electrical rad/s. Assuming that the rotor is blocked 
from turning, calculate the phase currents at t = 8 ms.

4-5 Repeat Problem 4-4, if the rotor is turning and the speed can be 
assumed constant at 1100 rpm even after the step change in torque 
at t = 0+.



In vector control described qualitatively in Chapter 4, the d-axis is 
aligned with the rotor flux linkage space vector such that the rotor flux 
linkage in the q-axis is zero. With this as the motivation, we will first 
develop a model of the induction machine where this condition is 
always met. Such a model of the machine would be valid regardless if 
the machine is vector controlled, or if the voltages and currents are 
applied as under a general-purpose operation (line-fed or in adjustable 
speed drives described in the previous course).

After developing the motor model, we will study vector control of 
induction-motor drives, assuming that the exact motor parameters are 
known—effects of errors in parameter estimates are discussed in the 
next chapter. We will first use an idealized current-regulated PWM 
(CR-PWM) inverter to supply motor currents calculated by the con-
troller. As the last step in this chapter, we will use an idealized space 
vector pulse width-modulated inverter (discussed in detail in Chapter 
7) to supply motor voltages that result in the desired currents calculated 
by the controller.

5-1  MOTOR MODEL WITH THE d-AXIS ALIGNED ALONG 
THE ROTOR FLUX LINKAGE 

�
λr -AXIS

As noted in the qualitative description of vector control, we will align 
the d-axis (common to both the stator and the rotor) to be along the 
rotor flux linkage 

�
λ λr r

je( )= ˆ 0 , as shown in Fig. 5-1. Therefore,
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Fig. 5-1  Stator and rotor mmf representation by equivalend dq winding cur-
rents. The d-axis is aligned with λ̂r .
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Fig. 5-2  Dynamic circuits with the d-axis aligned with 
�
λr.

λλ

λω

λ
λ

λ ω

λω

 λrq t( ) .= 0  (5-1)

Equating λrq in Eq. (3-22) to zero,

 i
L
L

irq
m

r
sq= − .  (5-2)

The condition that the d-axis is always aligned with 
�
λr  such that 

λrq = 0 also results in dλrq/dt to be zero. Using λrq = 0 and dλrq/dt = 0 
in the d- and the q-axis dynamic circuits, we can obtain the simplified 
circuits shown in Fig. 5-2a and b. Note that Eq. (5-2) is consistent with 
the equivalent circuit of Fig. 5-2b, where Lr = Lℓr + Lm.

http://urn:x-wiley:9781118485484:xml-component:w9781118485484c3:c3-disp-0022
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Next, we will calculate the slip speed ωdA and the electromagnetic 
torque Tem in this new motor model in terms of the rotor flux λrd and 
the stator current component isq in the q-winding (under vector control 
conditions, λrd would be kept constant except in the field-weakening 
mode and the toque production will be controlled by isq).

We will also establish the dynamics of the rotor flux λrd in the rotor 
d-winding (λrd varies during flux buildup at startup and when the motor 
is made to go into the flux weakening mode of operation).

5-1-1  Calculation of ωdA

As discussed earlier, under the condition that the d-axis is always 
aligned with the rotor flux, the q-axis rotor flux linkage is zero, as well 
as dλrq/dt = 0. Therefore, in a squirrel-cage rotor with vrq = 0, Eq. (3-32) 
results in

 ω
λ

dA r
rq

rd

R
i

= − ,  (5-3)

which is consistent with the equivalent circuit of Fig. 5-2b. In the rotor 
circuit, the time-constant τr, called the rotor time-constant, is

 τr
r

r

L
R

= .  (5-4)

Substituting for irq from Eq. (5-2), in terms of τr, the slip speed can be 
expressed as

 ω
τ λ

dA
m

r rd
sq

L
i= .  (5-5)

5-1-2  Calculation of Tem

Since the flux linkage in the q-axis of the rotor is zero, the electromag-
netic torque is produced only by the d-axis flux in the rotor acting on 
the rotor q-axis winding. Therefore, from Eq. (3-46),

 T
p

iem rd rq= −
2

λ .  (5-6)

http://urn:x-wiley:9781118485484:xml-component:w9781118485484c3:c3-disp-0036
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In Eq. (5-6), substituting for irq from Eq. (5-2)

 T
p L

L
iem rd

m

r
sq=







2

λ .  (5-7)

5-1-3  d-Axis Rotor Flux Linkage Dynamics

To obtain the dependence of λrd on isd, we will make use of the equiva-
lent circuit in Fig. 5-2a, and redraw it as in Fig. 5-3 with a current excita-
tion by isd. From Fig. 5-3, in terms of Laplace domain variables,

 i s
sL

R sL
i srd

m

r r
sd( ) ( ).= −

+
 (5-8)

In the rotor d-axis winding, from Eq. (3-21),

 λrd r rd m sdL i L i= + .  (5-9)

Substituting for ird from Eq. (5-8) into Eq. (5-9), and using τr from 
Eq. (5-4),

 λ
τ

rd
m

r
sds

L
s

i s( )
( )

( ).=
+1

 (5-10)

In time domain, the rotor flux linkage dynamics expressed by Eq. 
(5-10) is as follows:

 
d
dt

L
ird

rd

r

m

r
sdλ

λ
τ τ

+ = .  (5-11)

5-1-4  Motor Model

Based on above equations, a block diagram of an induction-motor 
model, where the d-axis is aligned with the rotor flux linkage, is shown 

Fig. 5-3  The d-axis circuit simplified with a current excitation.

λ
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in Fig. 5-4. The currents isd and isq are the inputs, and λrd, θda, and Tem are 
the outputs. Note that ωd (= ωdA + ωm) is the speed of the rotor field, 
and therefore, the rotor-field angle with respect to the stator a-axis (see 
Fig. 5-1) is

 θ ω τ τda d

t

t d( ) ( ) ,= +∫0
0

 (5-12)

where τ is the variable of integration, and the initial value of θda is 
assumed to be zero at t = 0.

Fig. 5-4  Motor model with d-axis aligned with 
�
λr.

mech

(Continued)

EXAMPLE 5-1

The motor model developed earlier, with the d-axis aligned with 
�
λr , 

can be used to model induction machines where vector control is not 
the objective. To illustrate this, we will repeat the simulation of 
Example 3-3 of a line-fed motor using this new motor model (which 
is much simpler) and compare simulation results of these two 
examples.

Solution

We need to recalculate initial flux values because now the rotor flux 
linkage is completely along the d-axis. This is done in a MATLAB 
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5-2  VECTOR CONTROL

One of the vector control methods is discussed in this section. It is 
called indirect vector control in the rotor flux reference frame. For 
many other possible methods and their pros and cons, readers are urged 
to look at several books on vector control and the IEEE transactions 
and conference proceedings of its various societies.

file EX5_1calc.m on the accompanying website. The initial part in 
this file is the same as in EX3_1.m (used in Example 3-3), in which 
the initial values of the angles thetar and thetas for 

�
λr  and 

�
λs  are 

calculated with respect to the d-axis aligned to the stator a-axis with 
θda(0) = 0. In the present model, with the d-axis aligned with 

�
λr , the 

rotor flux linkage angle is zero, and the stator flux linkage angle with 
respect to the d-axis equals (thetas—thetar) in terms of their values 
in EX3.1m.

The Simulink schematic for this example is called EX5_1.mdl 
(included on the accompanying website) and its top-level diagram is 
shown in Fig. 5-5. The resulting torque and speed plots due to a load 
torque disturbance in this line-fed machine are plotted in Fig. 5-6, 
which are identical to the results obtained in Example 3-3.

Fig. 5-5  Simulation of Example 5-1.

http://urn:x-wiley:9781118485484:xml-component:w9781118485484c3:c3-fea-0003
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A partial block diagram of a vector-controlled induction motor drive 
is shown in Fig. 5-7, with the two reference (or command) currents 
indicated by “*” as inputs. The d-winding reference current isd*  controls 
the rotor flux linkage λrd, whereas the q-winding current isq*  controls the 
electromagnetic torque Tem developed by the motor. The reference dq 
winding currents (the outputs of the proportional-integral PI control-
lers described in the next section) are converted into the reference 
phase currents i ta

*( ), i tb
*( ), and i tc

*( ). A current-regulated switch-mode 
converter (the power-processing unit, PPU) can deliver the desired 

Fig. 5-6  Results of Example 5-1.

Fig. 5-7  Vector-controlled induction motor with a CR-PWM inverter.
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currents to the induction motor, using a tolerance-band control 
described in the previous chapter. However, in such a current-regulation 
scheme, the switching frequency within the PPU does not remain con-
stant. If it is important to keep this switching frequency constant, then 
an alternative is described in a Section 5-3 using a space-vector pulse-
width-modulation scheme, which is discussed in detail in Chapter 8.

5-2-1  Speed and Position Control Loops

The current references isd*  and isq*  (inputs in the block diagram of Fig. 
5-7) are generated by the cascaded torque, speed, and position control 
loops shown in the block diagram of Fig. 5-8, where θmech

*  is the position 
reference input. The actual position θmech and the rotor speed ωmech 
(where ωm = p/2 × ωmech) are measured, and the rotor flux linkage λrd 
is calculated as shown in the block diagram of Fig. 5-8 (same as Fig. 
4-13 of the previous chapter). For operation in an extended speed range 
beyond the rated speed, the flux weakening is implemented as a func-
tion of rotor speed in computing the reference for the rotor flux linkage.

EXAMPLE 5-2

In this example, we will consider the drive system of Example 5-1 
under vector control described earlier. The initial conditions in the 
motor are identical to that in the previous example. We will neglect 
the torque loop in this example, where all the motor parameter esti-
mates are assumed to be perfect. (We will see the effect of estimate 
errors in the motor parameters in the next chapter.) The objective 
of the speed loop is to keep the speed at its initial value, in spite of 
the load torque disturbance at t  =  0.1 second. We will design the 
speed loop with a bandwidth of 25 rad/s and a phase margin of 60°, 
using the same procedure as in Reference [1].

Solution

Initial flux values are the same as in Example 5-1. These calculations 
are repeated in a MATLAB file EX5_2calc.m on the accompanying 
website. To design the speed loop (without the torque loop), the 
torque expression is derived as follows at the rated value of isd* : In 

http://c5-sec-0020
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c8
http://c5-fig-0007
http://c5-fig-0008
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Fig. 5-9  Design of the speed-loop controller.

ωmechωmech
* isq (s)

1kikp

Tem

sJeq

k
s

Σ

Fig. 5-10  Simulation of Example 5-2.

steady state under vector control, ird  =  0 in Fig. 5-3. Therefore, in 
Eq. (5-9)

 λrd m sdL i= ( ).under vector control in steady state  (5-13)

Substituting for λrd from Eq. (5-13) and for irq from Eq. (5-2) into the 
torque expression of Eq. (5-7) at the rated isd* ,

 T
p L
L

i iem
m

r
sd

k

sq=
2

2
* (

� ���� ����
under vector control in steady statte),  (5-14)

where k is a constant. The speed loop diagram is shown in Fig. 5-9 
where the PI controller constants are calculated in EX5_2calc.m on 
the basis that the crossover frequency of the open loop is 25 rad/s 
and the phase margin is 60°.

The simulation diagram of the file EX5_2.mdl (included on the 
accompanying website) is shown in Fig. 5-10, and the torque and 
speed are plotted in Fig. 5-11.
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Fig. 5-11  Simulation results of Example 5-2.

5-2-2  Initial Startup

Unlike the example above where the system was operating in steady 
state initially, the system must be started from standstill conditions. 
Initially, the flux is built up to its rated value, keeping the torque to be 
zero. Therefore, initially isq*  is zero. The reference value λrd

*  of the rotor 
flux at zero speed is calculated in the block diagram of Fig. 5-8. The 
value of the rotor-field angle θda is assumed to be zero. The division by 
zero in the block diagram of Fig. 5-4 is prevented until λrd takes on some 
finite (nonzero) value. This way, three stator currents build up to their 
steady state dc magnetizing values. The rotor flux builds up entirely 
along the a-axis. Once the dynamics of the flux build-up is completed, 
the drive is ready to follow the torque, speed and position commands.

5-2-3  Calculating the Stator Voltages to Be Applied

It is usually desirable to keep the switching frequency within the switch-
mode converter (PPU) constant. Therefore, it is a common practice to 
calculate the required stator voltages that the PPU must supply to the 
motor, in order to make the stator currents equal to their reference 
values.

http://c5-fea-0002
http://c5-fig-0008
http://c5-fig-0004
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We will first define a unitless term called the leakage factor σ of the 
induction machine as:

 σ = −1
2L

L L
m

s r

.  (5-15)

Substituting for ird from Eq. (5-9) into Eq. (3-19) for λsd,

 λ σ λsd s sd
m

r
rdL i

L
L

= + .  (5-16)

From Eq. (3-20) for λsq, using Eq. (5-2) under vector-controlled 
conditions

 λ σsq s sqL i= .  (5-17)

Substituting these into Eq. (3-28) and Eq. (3-29) for vsd and vsq,

 v R i L
d
dt
i

L
L

d
dt

L isd s sd s sd

v

m

r
rd d s

sd

= + + −

′

σ λ ω σ
� �������� ��������

ssq

vsd ,comp

� ��������� ���������
 (5-18)

and

 v R i L
d
dt
i

L
L

L isq s sq s sq

v

d
m

r
rd d s s

sq

= + + +

′

σ ω λ ω σ
� �������� ��������

dd

vsq,

.

comp

� ��������� ���������
 (5-19)

5-2-4  Designing the PI Controllers

In the d-axis voltage equation of Eq. (5-18), on the right side only the 
first two terms are due to the d-axis current isd and disd/dt. The other 
terms due to λrd and isq can be considered as disturbances. Similarly in 
Eq. (5-19), the terms due to λrd and isd can be considered as disturbances. 
Therefore, we can rewrite these equations as:

 ′ = +v R i L
d
dt
isd s sd s sdσ  (5-20)

and

 ′ = +v R i L
d
dt
isq s sq s sqσ ,  (5-21)
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http://urn:x-wiley:9781118485484:xml-component:w9781118485484c3:c3-disp-0019
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c3:c3-disp-0020
http://c5-disp-0002
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c3:c3-disp-0032
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c3:c3-disp-0033
http://c5-disp-0018
http://c5-disp-0019


VECTOR CONTROL  91

where the compensation terms are

 v
L
L

d
dt

L isd
m

r
rd d s sq,comp = −λ ω σ  (5-22)

and

 v
L
L

L isq d
m

r
rd s sd, .comp = +







ω λ σ  (5-23)

As shown in the block diagram of Fig. 5-12, we can generate the 
reference voltages vsd*  and vsq*  from given isd*  and isq* , and using the cal-
culated values of λrd, isd, and isq, and the chosen value of ωd. Using the 
calculated value of θda in the block diagram of Fig. 5-12, the reference 
values va*, vb*, and vc* for the phase voltages are calculated. The actual 
stator voltages va, vb, and vc are supplied by the power electronics con-
verter, using the stator voltage space vector modulation technique dis-
cussed in Chapter 8.

To obtain ′vsd and ′vsq signals in Fig. 5-12, we will employ PI controllers 
in the current loops. To compute the gains of the proportional and the 
integral portions of the PI controllers, we will assume that the compen-
sation is perfect. Hence, each channel results in a block diagram of  
Fig. 5-13 (shown for d-axis), where the “motor-load plant” can be 
represented by the transfer functions below, based on Eq. (5-20) and 
Eq. (5-21):

Fig. 5-12  Vector control with applied voltages.
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 i s
R s L

v ssd
s s

sd( ) ( )=
+

′1
σ

 (5-24)

and

 i s
R s L

v ssq
s s

sq( ) ( ).=
+

′1
σ

 (5-25)

Now, the gain constants of the PI controller in Fig. 5-13 (same in the 
q-winding) can be calculated using the procedure illustrated in the fol-
lowing example.

EXAMPLE 5-3

Repeat the vector control of Example 5-2 by replacing the CR-PWM 
inverter by a space vector pulse width-modulated inverter, which is 
assumed to be ideal. The speed loop specifications are the same as 
in Example 5-2. The current (torque) loop to generate reference 
voltage has 10 times the bandwidth of the speed loop and the same 
phase margin of 60°.

Solution

Calculations for the initial conditions are repeated in the MATLAB 
file EX5_3calc.m, which is included on the accompanying website. It 
also shows the procedure for calculating the gain constants of the PI 
controller of the current loop. The simulation diagram of the SIMU-
LINK file EX5_3.mdl (included on the accompanying website) is 
shown in Fig. 5-14, and the simulation results are plotted in Fig. 5-15.

Fig. 5-13  Design of the current-loop controller.

http://c5-fig-0013
http://c5-fea-0002
http://c5-fea-0002
http://c5-fig-0014
http://c5-fig-0015


F
ig

. 5
-1

4 
Si

m
ul

at
io

n 
of

 E
xa

m
pl

e 
5-

3.

93

http://c5-fea-0003


94  MATHEMATICAL DESCRIPTION OF VECTOR CONTROL

EXAMPLE 5-4

Consider the “test” machine described in Chapter 1. This machine  
is operating in steady state under its rated conditions, supplying its 
rated torque. At t = 1 second, the load torque suddenly goes to one-
half of its initial value and stays there. The objective is to maintain 
the speed of this machine at its initial value.

Design a vector control scheme with the d-axis aligned to the rotor 
flux. Design the speed loop to have a bandwidth of 25 rad/s and the 
phase margin of 60°. Design the torque (current) loop to have a 
bandwidth of 250 rad/second and a phase margin of 60°.

Simulate the system with and without the compensation terms and 
plot various quantities as functions of time.

Solution

See the complete solution on the accompanying website.

Fig. 5-15  Simulation results of Example 5-3.

http://urn:x-wiley:9781118485484:xml-component:w9781118485484c1
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5-3  SUMMARY

In this chapter, we first developed a model of the induction machine 
where the d-axis is always aligned with the rotor flux linkage space 
vector. Such a model of the machine is valid regardless if the machine 
is vector controlled, or if the voltages and currents to it are applied as 
under a general-purpose operation as discussed in Chapter 3. This is 
illustrated by Example 5-1.

After developing the earlier-mentioned motor model, we studied 
vector control of induction motor drives, assuming that the exact motor 
parameters are known—effects of errors in parameter estimates are 
discussed in the next chapter. We first used an idealized CR-PWM 
inverter to supply motor currents calculated by the controller. This 
vector control is illustrated by means of Example 5-2.

As the last step in this chapter, we used an idealized space vector 
pulse-width-modulated inverter (discussed in detail in Chapter 8) to 
supply motor voltages that result in the desired currents calculated by 
the controller. This is illustrated by means of Example 5-3.

REFERENCE

1. N. Mohan, Electric Machines and Drives: A First Course, Wiley, Hoboken, 
NJ, 2011. http://www.wiley.com/college/mohan.

PROBLEMS

5-1 In Example 5-1, comment how isd, isq, and λ̂r  vary under the 
dynamic condition caused by the change in load torque. Plot and 
comment on ωd under steady state, as well as under dynamic 
conditions.

5-2 Modify the simulation of Example 5-1 for a line start from stand-
still at t = 0, with the rated load torque.

5-3 In Example 5-2, plot the stator dq winding currents, the phase 
currents, ωd, and ωdA.
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5-4 Add the blocks necessary in the simulation of Example 5-2 to plot 
phase voltages.

5-5 In the simulation of Example 5-2, include the torque loop, assum-
ing its bandwidth to be 10 times larger than the speed loop band-
width of 25 rad/s (keeping the phase margin in both loops at 60°). 
Compare results with those in Example 5-2.

5-6 Include flux weakening in the simulation of Example 5-2 by modi-
fying the simulation as follows: initially in the steady-state operat-
ing condition, the load torque is one-half the rated torque of the 
motor. Instead of the load disturbance at t = 0.1 second, the speed 
reference is ramped linearly to reach 1.5 times the full-load motor 
speed in 2 seconds.

5-7 Plot phase voltages in Example 5-3.

5-8 Add the compensation terms in the simulation of Example 5-3. 
Compare results with those of Example 5-3.

5-9 Repeat Problem 5-6 in the simulation of Example 5-3 by including 
flux weakening, 0.1 second, the speed reference.
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In vector control described in Chapters 4 and 5, we assumed that the 
induction machine parameters were known exactly. In practice, the 
estimated parameters may be off by a significant amount. This is par-
ticularly true of the rotor time constant τr (=Lr/Rr), which depends on 
the rotor resistance that increases significantly as the rotor heats up. In 
this chapter, we will calculate the steady-state error due to the incorrect 
estimate of the rotor resistance and also look at its effect on the dynamic 
response of vector-controlled drives [1,2].

6-1  EFFECT OF DETUNING DUE TO INCORRECT ROTOR 
TIME CONSTANT τr

We will define a detuning factor to be the ratio of the actual and the 
estimated rotor time constants as

 k r

r
τ

τ
τ

=
,

,
est

 (6-1)

where the estimated quantities are indicated by the subscript “est.” To 
analytically study the sensitivity of the vector control to kτ, we will 
simplify our system by assuming that the rotor of the induction machine 
is blocked from turning, that is, ωmech = 0. Also, we will assume an open-
loop system, where the command (reference) currents are isd*  and isq* .

As shown in Fig. 6-1 at t = 0−, the stator a-axis, the rotor A-axis, and 
the d-axis are all aligned with 

�
λr , which is built up to its rated value. 
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Also initially, i isd sd= * , and θda = θda,est = 0. Initially, the torque compo-
nent of the stator current is assumed to be zero, that is i isq sq

* = = 0. At 
t = 0+ and beyond, isd*  remains unchanged, but there is a step jump in 
isq*  to produce a step change in torque.

The commanded currents are supplied to the estimated dq windings 
shown in Fig. 6-2, drawn for kτ < 1 at some time t. on the basis of dis-
cussions later on, we will show that for kτ < 1, θda,est will be less than 
the actual θda. The angle θda is the angle of the actual d-axis along which 
the rotor flux-linkage vector lies (not the estimated axis, which the 

Fig. 6-1  dq windings at t = 0−.
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Fig. 6-2  dq windings at t > 0; drawn for kτ < 1.
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controller considers, incorrectly of course, to be the actual d-axis). 
Therefore, with the help of Fig. 6-2, we can compute the currents in the 
dq stator windings (along the correct dq axes in the actual motor) by 
projecting the dq winding currents along the estimated axes

 
� � �
i i e i es dq
d

s dq
d j

s dq
d jda da

_ _
est

_
estest err= =− − −, ( ) , ( ), ,θ θ θ  (6-2)

where

 θ θ θerr est= −da da, .  (6-3)

Note that in this detuned case, we are applying (although mistak-
enly) the commanded currents to the windings along the estimated d–q 
axes. Therefore,

 
�
i i jis dq
d

sd sq_
est, * * .= +  (6-4)

using Eq. (6-4) in Eq. (6-2),

 
�
i i ji es dq
d

sd sq
j

_
err= + −( ) ,* * ( )θ  (6-5)

where 
�
i i jis dq
d

sd sq_ = + . Therefore, in Eq. (6-5), the currents in the d- and 
q-axis windings (in the actual motor) can be calculated as

 i i isd sd sq= +* *cos sinθ θerr err  (6-6)

and

 i i isq sq sd= −* *cos sin .θ θerr err  (6-7)

Figure 6-3 shows the block diagram under the blocked-rotor condi-
tion, where the feedback controller is omitted for clarity; instead, isd*  
and isq*  are the command (reference) inputs. The torque command is 
applied at time t = 0, assuming that the rotor flux prior to that has built 
up to the correct value λrd m sdL i( )*=  and both θda and θda,est are initially 
equal to zero. Assuming that the Cr-PWM inverter in Fig. 6-3 is ideal, 
the currents in the windings along the estimated axis-set equal the com-
manded values, that is i isd sd,

*
est =  and i isq sq,

*
est =  in the estimated motor 

model. The estimated slip speed ωdA,est (=ωd,est since ωmech equals 0) 
immediately reaches its steady state value, which is an incorrect value 
due to the error in the rotor time constant τr.

http://c6-fig-0002
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In the actual motor model, modeled in the rotor-flux frame (with the 
actual d-axis aligned with 

�
λr) with the correct τr, the currents in the 

dq-windings go through dynamics, as shown in the following example.

Fig. 6-3  Actual and the estimated motor models (blocked-rotor).

EXAMPLE 6-1

In an induction motor, with the nameplate data given below, under 
a blocked-rotor condition, the flux is initially built up to its rated 
value (with isd (0) = 3.1 A). The toque is commanded to change as a 
step (isq* .= 4 0 A) from zero to nearly 50% of its rated value. Plot the 
dynamics of isd, isq, slip speed ωdA, and the error θerr as functions of 
time if all the motor parameters are estimated correctly except the 
rotor resistance is estimated to be one-half its actual value.

Nameplate Data

Power: 3 HP/2.4 kW
Voltage: 460 V (l-l, rms)
Frequency: 60 Hz
Phases: 3
Full-load Current: 4 A
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Full-load Speed: 1750 rpm
Full-load Efficiency: 88.5%
Power Factor: 80.0%
Number of Poles: 4

Per-Phase Motor Circuit Parameters

Rs = 1 77. Ω
Rr = 1 34. Ω
X s� = 5 25 60. ( )Ω at Hz
X r� = 4 57 60. ( )Ω at Hz
Xm = 139 0 60. ( )Ω at Hz

Full-load Slip = 1.72%
The iron losses are specified as 78 W and the mechanical (friction 
and windage) losses are specified as 24 W. The inertia of the 
machine is given. Assuming that the reflected load inertia is 
approximately the same as the motor inertia, the total equivalent 
inertia of the system is Jeq = 0.025 kg · m2.

Solution

Figure 6-4 shows the simulation diagram in Simulink and the dynam-
ics of isd, isq, slip speed ωdA, and the error θerr are plotted in Fig. 6-5. 
We should note that after a dynamic response, each variable comes 
to a constant steady state value. Also, for Rr_est = 0.5Rr, which results 
in kτ = 0.5, θerr has a positive value in steady state.

6-2  STEADY-STATE ANALYSIS

We can obtain the results of detuning in steady state by making use of 
two conditions:

1. The actual slip speed equals its estimated value in steady state. We 
can show this to be the case as follows: In Fig. 6-3, the three-phase 
currents reach steady state at a frequency of ωdA,est, and the rotor 
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Fig. 6-5  Simulation results of Example 6-1.

flux 
�
λr in the actual motor has a constant amplitude and rotates 

at ωdA,est in steady state. Therefore, in the actual motor model in 
the rotor-flux reference frame, modeled with the actual motor 
parameters, isd and isq are dc quantities in steady state. This is pos-
sible only if ωdA = ωdA,est in steady state.

2. The magnitude of the stator dq current vector is the same in the 
estimator block and in the actual motor model—however, the pro-
jections are different because the actual and the estimated dq-axes 
sets are not aligned.

From Eq. (5-5) of the previous chapter repeated here,

 ω
τ λ

dA
r rd

m sqL i= ( )
1

.  (6-8)

In steady state, the rotor d-winding current is zero (ird = 0 in steady 
state). Therefore,

 λrd m sdL i= ( ).steady state  (6-9)

Substituting the expression for the rotor flux in steady state from Eq. 
(6-9) into the slip speed expression of Eq. (6-8),

http://c6-fea-0001
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 ω
τ

dA
r

sq

sd

i

i
=

1
( ).steady state  (6-10)

In the rotor flux and the slip estimator block of Fig. 6-3, the estimated 
slip speed is based on the commanded currents, which are applied to 
the windings along the estimated dq-axis:

 ω
τ

dA est
r est

sq

sd

i

i
,

,

*

*
( ).=

1
steady state  (6-11)

Therefore, using condition 1 discussed earlier,

 
1 1

τ τ
ω ω

r est

sq

sd r

sq

sd

i

i

i

i
dA est dA

,

*

*

,

(
� ��� ��� �

= in steady statee).  (6-12)

using condition 2 discussed before,

 i i i i Isd sq sd sq s dq
2 2 2 2+ = + =* *

_
ˆ .  (6-13)

We will introduce a factor m, called the torque factor, which is the 
ratio of the commanded toque component to the flux component of 
the stator current

 m
i

i
sq

sd

=
*

*
.  (6-14)

6-2-1  Steady-State i isd sd/ *

From Eq. (6-12) and Eq. (6-13) with kτ given by Eq. (6-1) and m defined 
in Eq. (6-14),

 i
i

m
k m

sd

sd
*

.=
+

+ ⋅
1

1

2

2 2
τ

 (6-15)

6-2-2  Steady-State  i isq sq/ *

Similar to the d-axis, in the q-axis,

 
i

i
k

m
k m

sq

sq
*

.=
+

+ ⋅
τ

τ

1
1

2

2 2
 (6-16)
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From Eq. (6-15) and Eq. (6-16) in steady state

 
i

i
k
i
i

sq

sq

sd

sd
* *

.= τ  (6-17)

6-2-3  Steady-State θerr

We can calculate the steady state angle error θerr (defined by Eq. 6-3) 
in Fig. 6-6, noting that

 θ θ θ θi da i das s, , .est est+ = +  (6-18)

Therefore, from Eq. (6-3), using Eq. (6-18)

 θ θ θerr est= −i is s, ,  (6-19)

where

 θi est
sq

sd
s

i
i

,

*

*
tan=









−1  (6-20)

and

 θi
sq

sd
s

i

i
=









−tan .1  (6-21)

Hence, in terms of the torque factor defined in Eq. (6-14), and using 
Eq. (6-17),

 θ τerr steady state= − ⋅− −tan ( ) tan ( ) ( ).1 1m k m  (6-22)

Fig. 6-6  dq winding currents at t > 0; drawn for kτ < 1.
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EXAMPLE 6-2

In the induction motor under the operating conditions described in 
Example 6-1, all the motor parameters are estimated correctly except 
the rotor resistance is estimated to be one-half its actual value. 
obtain the steady state values of

i
i

i
i

T
T

sd

sd

sq

sq

em

em
* * *

, , , .and errθ

Solution

The results obtained using the MATlAB file EX6-2calc.m included 
on the accompanying website are as follows:

i
i

i
i

T
T

sd

sd

sq

sq

em

em
* * *

. , . , . , . .= = = =1 37 0 69 0 94 0 338and raderrθ

All of these values match the steady-state values obtained in Exam-
ple 6-1.

6-2-4  Steady-State T Tem em/ *

In Eq. (5-7) of Chapter 5, substituting from Eq. (6-9),

 T
p L
L

i iem
m

r
sd sq=







2

2

( ).steady state  (6-23)

Therefore, assuming that the estimates of Lm and Lr are correct,

 
T
T

k
m

k m
em

em
* ( )

( ).=
+

+ ⋅
τ

τ

1
1

2

2
steady state  (6-24)
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EXAMPLE 6-3

Consider the “test” machine described in Chapter 1 and considered 
in Example 5-4 of the previous chapter. Now consider that the esti-
mated rotor resistance is incorrect and Rr_est = 1.1Rr.

Modify your simulation in Example 5-4 and simulate the system 
without the compensation terms. Assume that the load toque is con-
stant at its rated value. Keep the same initial conditions as in Example 
5-4. Plot the error in the estimated θda (error = θda − θda,est) as a func-
tion of time. Compare in steady state the amplitudes of the phase 
currents to the case with no error in the rotor resistance estimate, as 
was the case in Example 5-4.

Solution

See the complete solution on the accompanying website.

6-3  SUMMARY

In this chapter, we have calculated the steady-state error due to the 
incorrect estimate of the rotor resistance and also looked at its effect 
on the dynamic response of vector-controlled drives. The discussion in 
this chapter is carried out using a blocked-rotor condition, ignoring the 
feedback loops to show the angle error resulting due to the error in 
estimation. This discussion can be extended to finite speeds and to the 
error in the rotor inductance estimation. Another extension of this 
analysis is to replace the mechanical encoder by a speed estimation 
block, described in Chapter 8, dealing with the direct torque control 
(DTC), and to look at the sensitivity of performance to errors in the 
speed estimation.
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PROBLEMS

6-1 obtain the results in Example 6-1 for three values of kτ: 0.75, 1.0, 
and 1.5.

6-2 repeat the calculations in Example 6-2 and compare results with 
Problem 6-1 in steady state for kτ: 0.75, 1.0, and 1.5.
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Doubly fed induction generators (DFIGs) are used in harnessing wind 
energy. The principle of operation of doubly wound induction machines 
was described in steady state in Reference [1]. In this chapter, we will 
mathematically describe doubly wound induction machines in order to 
apply vector control. As an introduction, Fig. 7-1 shows a doubly fed 
induction generator.

The cross-section of a DFIG is shown in Fig. 7-2. It consists of a stator, 
similar to the squirrel-cage induction machines, with a three-phase 
winding, each having Ns turns per phase that are assumed to be distrib-
uted sinusoidally in space. The rotor consists of a wye-connected three-
phase windings, each having Nr turns per phase that are assumed to 
be distributed sinusoidally in space. Its terminals, A, B, and C, are sup-
plied appropriate currents through slip-rings and brushes, as shown in 
Fig. 7-1b.

The benefits of using a DFIG in wind applications are as follows:

1. The speed can be control over a sufficiently wide range to make 
the turbine operate at its optimum coefficient of performance Cp.

2. The stator is directly connected to the grid. Only the rotor is sup-
plied through power electronics that is approximately rated at 
30% of the rated power of the wind turbine.

3. The reactive power supplied to the rotor is controllable and it is 
amplified on the stator-side.
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Fig. 7-1 Doubly fed induction generator (DFIG) where P and Q inputs are 
defined into the stator and the rotor.
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Fig. 7-2 Cross-section of DFIG.
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A major disadvantage of DFIGs is the periodic maintenance required 
of slip-rings and brushes.

7-1 UNDERSTANDING DFIG OPERATION

Prior to writing dynamic equations, we will describe the DFIG opera-
tion by first assuming steady state and neglecting all parasitic, such as 
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stator and rotor leakage inductances and resistances. We will assume 
the number of turns on the stator and the rotor windings to be the same. 
This operation is described in terms of dq-axis, as compared with the 
steady-state analysis in Reference [1], which was described without the 
help of dq-axis analysis. In this analysis, we will assume that the d-axis 
is aligned with the rotor flux-linkage space vector such that the rotor 
flux linkage in the q-axis is zero. This is shown in Fig. 7-3.

It should be noted that having neglected the leakage fluxes, the flux-
linkage in the rotor d-axis is the same as the stator flux in the d-axis 
(refer to Eq. 3-19, Eq. 3-20, Eq. 3-22). We will write all the necessary 
equations in steady state under the assumptions indicated earlier and 
where P and Q inputs are defined into the stator and the rotor. Using 
the equations in Chapter, the following equations can be written.

Stator Voltages

 vsd d sq sq= − = =ω λ λ0 0( )since  (7-1)

 vsq d sd= ω λ  (7-2)

 v V vsq d sd s sd= = ≡ =ω λ
2
3

0ˆ ( ),constant since  (7-3)

where V̂s is the amplitude of the stator voltage space vector.

Fig. 7-3 d-axis aligned with the rotor flux; stator and rotor current vectors 
are shown for definition purposes only.

q-axis

a-axis
stator

A-axis
rotor

d-axis

ird

isd

irq

irq

isq

at t

ωd

θdA

ωm

ωd

3
2

isq
3
2

Ns
3
2

Ns
3
2

Ns
3
2

3
2

ir

is

ird

3
2isd

θm

θda

http://c7-bib-0001
http://c7-fig-0003
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c3:c3-disp-0019
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c3:c3-disp-0020
http://urn:x-wiley:9781118485484:xml-component:w9781118485484c3:c3-disp-0022


112  DYNAMIC ANALYSIS OF DOUBLY FED INDUCTION GENERATORS

Flux Linkages and Currents

d-axis

 λ λ
ω

rd sd
sq

d

v
= = ≡ constant  (7-4)

 λ λsd rd m sd rdL i i= = +( )  (7-5)

 i
L

i i isd
sd

m
rd md rd= − = −

λ
,  (7-6)

where the magnetizing current imd = (λsd/Lm).

q-axis

 λ λrq sq= = 0  (7-7)

 since λ λsq rq m sq rqL i i= = + =( ) 0  (7-8)

 i isq rq= −  (7-9)

 
�
i i ji i i jis dq sd sq md rd rq_ ( ) .= + = − −  (7-10)

Rotor Voltages

 vrd dA rq rq= − = =ω λ λ0 0( )since  (7-11)

 vrq dA rd= ω λ  (7-12)

 v srq d sd= ω λ ,  (7-13)

where s is the slip.

Stator and Rotor Power Inputs

Stator

 P jQ v jv i ji v i jv is s sd sq sd sq sq sq sq sd+ = +










−( )= +

=( )0
�  (7-14)

 P v i is sq sq d sd sq= = ω λ  (7-15)

 Q v i is sq sd d sd sd= = ω λ .  (7-16)
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Rotor

 P jQ v jv i ji v i jv ir r rd rq rd rq rq rq rq rd+ = +










−( )= +

=( )0
�  (7-17)

 P v i s ir rq rq d rd rq= = ω λ  (7-18)

 Q v i s ir rq rd d rd rd= = ω λ .  (7-19)

Electromagnetic Torque

 T
p

iem rd rq rq= − =
2

3 46 0λ λ( . ).using Eq - and  (7-20)

Relationships of Stator and Rotor Real and Reactive Powers

 
P
P s
s

r

= −
1

 (7-21)

 Q L i
Q
s

Q
Q
s

s d m md
r r= − = −( ) .ω 2

mag  (7-22)

EXAMPLE 7-1

A DFIG is operating in the motoring mode at a subsynchronous 
speed at a lagging power factor (drawing Qs from the grid). Calculate 
the signs of various quantities in this mode of operation.

Solution

 ω ωslip = = +dA  (7-23)

 s = = +
ω
ω

slip

syn

 (7-24)

 Tem = +  (7-25)

 P v i is sq sq d sd sq= = = +ω λ  (7-26)

 ∴ = +isq  (7-27)
(Continued)
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 irq = −  (7-28)

 Q v i is sq sd d sd sd= = = +ω λ
given
�  (7-29)

 ∴ = +isd  (7-30)

 P v i s ir rq rq d rd rq= = = −ω λ  (7-31)

Q v i s ir rq rd d rd rd= = ω λ

 i irq sq= − = +( )since  (7-32)

 i i ird rd md= + <taken as positive but  (7-33)

vrd = 0  (7-34)

v srq d rd= = +ω λ  (7-35)

 

v t
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2
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π

v

v
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.  (7-36)

Various space vectors are shown in Fig. 7-4.

Fig. 7-4 Space vector diagram for Example 7-1.
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EXAMPLE 7-2

A DFIG is operating in the generator mode at a supersynchronous 
speed at a leading power factor (supplying Qs to the grid). Calculate 
the signs of various quantities in this mode of operation (Fig. 7-5).

Solution

ω ωslip = = −dA

s slip

syn

= = −
ω
ω

Tem = −

Ps = −

P v i is sq sq d sd sq= = ω λ

isq = −

Q v i is sq sd d sd sd= = = −ω λ
given
�

isd = −

Q Q
Q
s

Q
Q
s

Qs
r

r
r= − = − ∴ = − >mag magsuch that

ω ω ωdA m= − = −syn

i irq sq= + = −( )since

P v i ir rq rq dA rd rq= = = −ω λ

i i isd md rd= − = −

i i ird rd md= + >such that

Q v i ir rq rd dA rd rd= = = −ω λ

vrd = 0

vrq dA rd= = −ω λ
(Continued)
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7-2 DYNAMIC ANALYSIS OF DFIG

Equations for DFIG in terms of dq windings are the same as described 
in Chapter 3, where it is assumed that the rotor windings have the same 
number of turns as the stator windings, that is, Nr = Ns However, for 
n  =  (Nr/Ns), these equations can be rewritten, left as homework 
problems.

7-3 VECTOR CONTROL OF DFIG

In Chapter 5, vector control was described by aligning the d-axis with 
the rotor flux. However, in controlling DFIG, it is common to align the 
d-axis with the stator voltage vector since stator voltages are easy to 

v t
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=

−
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π
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Various space vectors are shown in Fig. 7-5.

Fig. 7-5 Space vector diagram for Example 7-2.
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7-4 SUMMARY

Doubly fed induction generators (DFIGs) are used in harnessing wind 
energy. In this chapter, the principle of operation of doubly fed induc-
tion machines is described mathematically in order to apply vector 
control.

REFERENCES

1. N. Mohan, Electric Machines and Drives, Wiley, Hoboken, NJ, 2012. http://
www.wiley.com/college/mohan.

2. T. Brekken, “A Novel Control Scheme for a Doubly-Fed Wind Generator 
under Unbalanced Grid Voltage Conditions,” PhD thesis, University of 
Minnesota, July 2005.

PROBLEMS

7-1 A DFIG is operating in the motoring mode at a subsynchronous 
speed at a leading power factor (supplying Qs from the grid). 

EXAMPLE 7-3

Consider a DFIG as a “test” machine, described in Chapter 1. Design 
the controller and show the output results.

Solution

A detailed controller design procedure and the results are on the 
accompanying website.

measure [2]. With this choice of the reference frame, the d-axis stator 
current contributes to the real power P, and the q-axis stator current 
contributes to the reactive power of the DFIG. As discussed earlier, 
these are controlled by controlling the rotor currents ird and irq.

http://www.wiley.com/college/mohan
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Calculate the signs of various quantities in this mode of 
operation.

7-2 A DFIG is operating in the generator mode at a subsynchronous 
speed at a leading power factor (supplying Qs to the grid). Calcu-
late the signs of various quantities in this mode of operation.

7-3 Equations for DFIG in terms of dq windings are the same as 
described in Chapter 3, where it is assumed that the rotor wind-
ings have the same number of turns as the stator windings, that is, 
Nr = Ns. However, write these equations for n = (Nr/Ns) and draw 
dq winding equivalent circuits

(a) “Seen” from the stator-side.
(b) “Seen” from the rotor-side.

http://urn:x-wiley:9781118485484:xml-component:w9781118485484c3


8-1  INTRODUCTION

In Chapter 5, we briefly discussed current-regulated pulse width-
modulated (PWM) inverters using current-hysteresis control, in which 
the switching frequency fs does not remain constant. The desired cur-
rents can also be supplied to the motor by calculating and then applying 
appropriate voltages, which can be generated based on the sinusoidal 
pulse-width-modulation principles discussed in basic courses in electric 
drives and power electronics [1]. However, the availability of digital 
signal processors in control of electric drives provides an opportunity 
to improve upon this sinusoidal pulse-width modulation by a procedure 
described in this chapter [2,3], which is termed space vector pulse-width 
modulation (SV-PWM). We will simulate such an inverter using Simu-
link for use in ac drives.

8-2  SYNTHESIS OF STATOR VOLTAGE SPACE VECTOR 
�
vsa

In terms of the instantaneous stator phase voltages, the stator space 
voltage vector is

 
�
v t v t e v t e v t es
a

a
j

b
j

c
j( ) ( ) ( ) ( ) ./ /= + +0 2 3 4 3π π  (8-1)

In the circuit of Fig. 8-1, in terms of the inverter output voltages with 
respect to the negative dc bus and hypothetically assuming the stator 
neutral as a reference ground

119
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Modulated (SV-PWM) Inverters
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 v v v v v v v v va aN N b bN N c cN N= + = + = +; ; .  (8-2)

Substituting Eq. (8-2) into Eq. (8-1) and recognizing that

 e e ej j j0 2 3 4 3 0+ + =π π/ / ,  (8-3)

the instantaneous stator voltage space vector can be written in terms 
of the inverter output voltages as

 
�
v t v e v e v es
a

aN
j

bN
j

cN
j( ) ./ /= + +0 2 3 4 3π π  (8-4)

A switch in an inverter pole of Fig. 8-1 is in the “up” position if the 
pole switching function q = 1, otherwise in the “down” position if q = 0. 
In terms of the switching functions, the instantaneous voltage space 
vector can be written as

 
�
v t V q e q e q es
a

d a
j

b
j

c
j( ) ( )./ /= + +0 2 3 4 3π π  (8-5)

With three poles, eight switch-status combinations are possible. In 
Eq. (8-5), the stator voltage vector 

�
v ts
a( ) can take on one of the follow-

ing seven distinct instantaneous values, where in a digital representa-
tion, phase “a” represents the least significant digit and phase “c” the 
most significant digit (e.g., the resulting voltage vector due to the switch-

status combination 011
3( )=
�  is represented as 

�
v3):

Fig. 8-1  Switch-mode inverter.
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� �

� �
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 (8-6)

In Eq. (8-6), 
�
v0 and 

�
v7 are the zero vectors because of their values. 

The resulting instantaneous stator voltage vectors, which we will call 
the “basic vectors,” are plotted in Fig. 8-2. The basic vectors form six 
sectors, as shown in Fig. 8-2.

The objective of the SV-PWM control of the inverter switches is to 
synthesize the desired reference stator voltage space vector in an 
optimum manner with the following objectives:

• A constant switching frequency fs

• Smallest instantaneous deviation from its reference value
• Maximum utilization of the available dc-bus voltages

Fig. 8-2  Basic voltage vectors (
�
v0  and 

�
v7 not shown).
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• Lowest ripple in the motor current, and
• Minimum switching loss in the inverter.

The above conditions are generally met if the average voltage vector 
is synthesized by means of the two instantaneous basic nonzero voltage 
vectors that form the sector (in which the average voltage vector to be 
synthesized lies) and both the zero voltage vectors, such that each tran-
sition causes change of only one switch status to minimize the inverter 
switching loss.

In the following analysis, we will focus on the average voltage vector 
in sector 1 with the aim of generalizing the discussion to all sectors. To 
synthesize an average voltage vector 

�
v V es
a

s
j s( )= ˆ θ  over a time period Ts 

in Fig. 8-3, the adjoining basic vectors 
�
v1 and 

�
v3 are applied for intervals 

xTs and yTs, respectively, and the zero vectors 
�
v0 and 

�
v7 are applied for 

a total duration of zTs. In terms of the basic voltage vectors, the average 
voltage vector can be expressed as

 
� � �
v

T
xT v yT v zTs

a

s
s s s= + + ⋅

1
01 3[ ]  (8-7)

or

 
� � �
v xv yvs
a = +1 3,  (8-8)

where

 x y z+ + = 1.  (8-9)

In Eq. (8-8), expressing voltage vectors in terms of their amplitude 
and phase angles results in

Fig. 8-3  Voltage vector in sector 1.

yv3

vs = Vs e jθs

xv1
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v3 = Vd ejπ / 3
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 ˆ ./V e xV e yV es
j

d
j

d
jsθ π= +0 3  (8-10)

By equating real and imaginary terms on both sides of Eq. (8-10), 
we can solve for x and y (in terms the given values of V̂s, θs, and Vd) 
to synthesize the desired average space vector in sector 1 (see Prob-
lem 8-1).

Having determined the durations for the adjoining basic vectors and 
the two zero vectors, the next task is to relate the earlier discussion to 
the actual poles (a, b, and c). Note in Fig. 8-2 that in any sector, the 
adjoining basic vectors differ in one position; for example, in sector 1 
with the basic vectors 

�
v1 001( ) and 

�
v3 011( ), only the pole “b” differs 

in the switch position. For sector 1, the switching pattern in Fig. 8-4 
shows that pole-a is in “up” position during the sum of xTs, yTs, and 
z7Ts intervals, and hence for the longest interval of the three poles. 
Next in the length of duration in the “up” position is pole-b for the 
sum of yTs, and z7Ts intervals. The smallest in the length of duration is 
pole-c for only z7Ts interval. Each transition requires a change in switch 
state in only one of the poles, as shown in Fig. 8-4. Similar switching 

Fig. 8-4  Waveforms in sector 1; z = z0 + z7.
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patterns for the three poles can be generated for any other sector (see 
Problem 8-2).

8-3  COMPUTER SIMULATION OF SV-PWM INVERTER

In computer simulations, for example, using Simulink, as well as in 
hardware implementation using rapid prototyping tools such as from 
DSPACE [4], the earlier described pulse-width modulation of the stator 
voltage space vector can be carried out by comparing control voltages 
with a triangular waveform signal at the switching frequency to gener-
ate switching functions. It is similar to the sinusoidal PWM approach 
only to the extent of comparing control voltages with a triangular 
waveform signal. However, in SV-PWM, the control voltages do not 
have a purely sinusoidal nature as those in the sinusoidal PWM.

In an induction machine with an isolated neutral, the three-phase 
voltages sum to zero (see Problem 8-3)

 v t v t v ta b c( ) ( ) ( ) .+ + = 0  (8-11)

To synthesize an average space vector 
�
vsa with phase components va, 

vb, and vc (the dc-bus voltage Vd is specified), the control voltages can 
be written in terms of the phase voltages as follows, expressed as a ratio 
of V̂tri (the amplitude of the constant switching frequency triangular 
signal vtri used for comparison with these control voltages):

 

v

V

v v
V

v

V

v v
V

v

a a k

d

b b k

d

control,

tri

control,

tri

control

/ 2

/ 2

ˆ

ˆ

=
−

=
−

,,

tri / 2
.c c k

dV

v v
Vˆ =

−

 (8-12)

where

 v
v v v v v v

k
a b c a b c=

+max( , , ) min( , , )
.

2
 (8-13)

Deriving Eq. (8-13) is left as a homework problem (Problem 8-5).
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8-4  LIMIT ON THE AMPLITUDE V̂s OF THE STATOR 
VOLTAGE SPACE VECTOR 

�
vsa

First, we will establish the absolute limit on the amplitude V̂s of the 
average stator voltage space vector at various angles. The limit on the 
amplitude equals Vd (the dc-bus voltage) if the average voltage vector 
lies along a nonzero basic voltage vector. In between the basic vectors, 
the limit on the average voltage vector amplitude is that its tip can lie 
on the straight lines shown in Fig. 8-7, forming a hexagon (see Problem 
8-6).

However, the maximum amplitude of the output voltage 
�
vsa  should 

be limited to the circle within the hexagon in Fig. 8-7 to prevent distor-
tion in the resulting currents. This can be easily concluded from the fact 
that in a balanced sinusoidal steady state, the voltage vector 

�
vsa rotates 

at the synchronous speed with its constant amplitude. At its maximum 
amplitude,

 
�
v t V es
a

s
j t

,max ,max( ) .syn= ˆ ω  (8-14)

Therefore, the maximum value that V̂s can attain is

 ˆ cos .,maxV V Vs d d=






=

60
2

3
2

0

 (8-15)

EXAMPLE 8-1

In a three-phase inverter, the dc bus voltage Vd = 700 V. Using the 
space vector modulation principles, calculate and plot the control 
voltages in steady state to synthesize a 60-Hz output with a line-line 
rms value of 460 V. Assume that V̂tri V= 5  and the switching fre-
quency fs = 10 kHz.

Solution

Fig. 8-5 shows the block diagram in Simulink, which is included on 
the accompanying website, to synthesize the ac output voltages. The 
results are plotted in Fig. 8-6.
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Fig. 8-6  Simulation results of Example 8-1.

Fig. 8-7  Limit on amplitude V̂s .

30°

V̂s,max

Vd

Vd

ˆ
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From Eq. (8-15), the corresponding limits on the phase voltage and 
the line–line voltages are as follows:

 ˆ ˆ
,max ,maxV V

V
s

d
phase = =

2
3 3

 (8-16)

and

 V rms
V V

VLL
d

d,max
phase,max( ) 3

2 2
0.707 .= = =

ˆ
 (8-17)

The sinusoidal pulse-width modulation in the linear range discussed 
in the previous course on electric drives and power electronics results 
in a maximum voltage

 V rms V VLL d d,max ( ) . ( ).= =
3

2 2
0 612 sinusoidal PWM  (8-18)

Comparison of Eq. (8-17) and Eq. (8-18) shows that the SV-PWM 
discussed in this chapter better utilizes the dc bus voltage and results 
in a higher limit on the available output voltage by a factor of ( / )2 3 , 
or by approximately 15%higher, compared with the sinusoidal PWM.

SUMMARY

In this chapter, an approach called SV-PWM is discussed, which is 
better than the sinusoidal PWM approach in utilizing the available 
dc-bus voltage. Its modeling using Simulink is described.

REFERENCES

1. N. Mohan, Electric Machines and Drives: A First Course, Wiley, Hoboken, 
NJ, 2011. http://www.wiley.com/college/mohan.

2. H.W. van der Broek et al., “Analysis and Realization of a Pulse Width 
Modulator Based on Voltage Space Vectors,” IEEE Industry Applications 
Society Proceedings, 1986, pp. 244–251.

http://c8-disp-0015
http://c8-disp-0017
http://c8-disp-0018
http://www.wiley.com/college/mohan


PROBLEMS  129

3. J. Holtz, “Pulse Width Modulation for Electric Power Converters,” chapter 
4 in Power Electronics and Variable Frequency Drives, ed. B.K. Bose, IEEE 
Press, New York, 1997.

4. http://www.dspace.de.

PROBLEMS

8-1 In a converter, Vd = 700 V. To synthesize an average stator voltage 
vector 

�
v es
a j= 563 38 0 44. . V, calculate x, y, and z.

8-2 Repeat if 
�
v es
a j= 563 38 2 53. . V. Plot results similar to those in Fig. 

8-4.

8-3 Show that in an induction machine with isolated neutral, at any 
instant of time, va(t) + vb(t) + vc(t) = 0.

8-4 Given that 
�
v es
a j= 563 38 0 44. . V, calculate the phase voltage 

components.

8-5 Derive Eq. (8-12).

8-6 Derive that the maximum limit on the amplitude of the space 
vector forms the hexagonal trajectory shown in Fig. 8-7.
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9-1  INTRODUCTION

Unlike vector-control techniques described in previous chapters, in the 
direct-control (DTC) scheme, no dq-axis transformation is needed, and 
the electromagnetic torque and the stator flux are estimated and directly 
controlled by applying the appropriate stator voltage vector [1–3]. It is 
possible to estimate the rotor speed, thus eliminating the need for rotor 
speed encoder.

9-2  SYSTEM OVERVIEW

Figure 9-1 shows the block diagram of the overall system, which includes 
the speed and the torque feedback loops, without a speed encoder. The 
estimated speed ωmech,est is subtracted from the reference (desired) 
speed ωmech

* , and the error between the two acts on a PI-controller to 
generate the torque reference signal Tem* . The estimated speed generates 
the reference signal for the stator flux linkage λ̂s

* (thus allowing flux 
weakening for extended range of speed operation), which is compared 
with the estimated stator flux linkage λ̂s,est. The errors in the electro-
magnetic torque and the stator flux, combined with the angular position 
∠θs of the stator flux linkage space vector, determine the stator voltage 
space vector 


vs that is applied to the motor during each sampling inter-

val ΔT, for example, equal to 25 μs.
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Estimating the electromagnetic torque and the stator flux linkage 
vector requires measuring the stator currents and the stator phase 
voltages—the latter, as shown in Fig. 9-1, are indirectly calculated by 
measuring the dc-bus voltage and knowing within the digital controller 
the status of the inverter switches.

9-3  PRINCIPLE OF ENCODERLESS DTC OPERATION

Prior to detailed derivations, we can enumerate the various steps in the 
estimator block of Fig. 9-1 as follows, where all space vectors are implic-
itly expressed in electrical radians with respect to the stator a-axis as 
the reference axis (unless explicitly mentioned otherwise):

1. From the measured stator voltages and currents, calculate the 
stator flux linkage space vector 


λs:

   
λ λ τ λ θ
s s s s s

t T

t

s
jt t T v R i d e s( ) ( ) ( )= −∆ + − ⋅ =

−∆
∫ ˆ .

Fig. 9-1  Block diagram of DTC.
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2. From 

λs and 


is , calculate the rotor flux space vector 


λr  and hence 

the speed of the rotor flux linkage vector, where ΔTω is a sampling 
time for speed calculation:

  
λ λ σ λ ω θ

θ θθ ω

ω
r

r

m
s s s r

j
r r

r rL
L

L i e
d
dt

t t T
T

r= − = = =
− −∆

∆
( ) and

( ) ( )ˆ ..

3. From 

λs and 


is , calculate the estimated electromagnetic torque Tem:

T
p

iem s s=








2
3 2

Im( ).
 
λ conj

4. From 

λr and Tem,est, estimate the slip speed ωslip and the rotor 

speed ωm:

ω
λ

ω ω ωslip slipand .=








 = −

2 3
2 2p
R
T

r
em

r
m rˆ

In the stator voltage selection block of Fig. 9-1, an appropriate stator 
voltage vector is calculated to be applied for the next sampling interval 
ΔT based on the errors in the torque and the stator flux, in order to 
keep them within a hysteretic band.

9-4  CALCULATION OF 

λs, 

λr, Tem, AND ωm

9-4-1  Calculation of the Stator Flux 

λs

The stator voltage equation with the stator a-axis as the reference is

 
  
v R i

d
dt

s s s s= + λ .  (9-1)

From Eq. (9-1), the stator flux linkage space vector at time t can be 
calculated in terms of the flux linkage at the previous sampling time as

 
   
λ λ τ λ θ
s s s s s

t T

t

s
jt t T v R i d e s( ) ( ) ( ) ,= −∆ + − ⋅ =

−∆
∫ ˆ  (9-2)

where τ is the variable of integration, the applied stator voltage remains 
constant during the sampling interval ΔT, and the stator current value 
is that measured at the previous time step.
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9-4-2  Calculation of the Rotor Flux 

λr

From Chapter 3,

 
  
λs s s m rL i L i= +  (9-3)

and

 
  
λr r r m sL i L i= + .  (9-4)

Calculating 

ir  from Eq. (9-3),

 





i
L

L
L

ir
s

m

s

m
s= −

λ
,  (9-5)

and substituting it into Eq. (9-4),

 

� � � �

� �

λ λ

λ

r
r

m
s

s r

m
s m s

r

m
s s s

m

s r

L
L

L L
L

i L i

L
L

L i
L
L L

= − +

= − −






1

2





















=( )

,

σ
� ����� �����

 (9-6)

where the leakage factor σ is defined as (similar to Eq. 5-15 in Chapter 5)

 σ = −1
2L

L L
m

s r

.  (9-7)

Therefore, the rotor flux linkage space vector in Eq. (9-6) can be  
written as

 
  
λ λ σ λ θ
r

r

m
s s s r

jL
L

L i e r= − =( ) .ˆ  (9-8)

We should note that similar to Eq. (9-2), for the stator flux linkage 
vector, the rotor flux linkage space vector can be expressed as follows, 
recognizing that the rotor voltage in a squirrel-cage rotor is zero

 
  
λ λ τ λ θ
r
A

r
A

r r
A

t T

t

r
jt t T R i d e r
A

( ) ( ) ( ) ,= −∆ + − ⋅ =
−∆
∫ ˆ  (9-9)
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where the space vectors and angles (in electrical radians) are expressed 
with respect to the rotor A-axis shown in Fig. 9-2. The above equation 
shows that the rotor flux changes very slowly with time (in amplitude 
and in phase angle θrA with respect to the rotor A-axis) only due to a 
small voltage drop across the rotor resistance.

9-4-3  Calculation of the Electromagnetic Torque Tem

The electromagnetic torque developed by the motor can be estimated 
in terms of the stator flux and the stator current, or in terms of the 
stator flux and the rotor flux. We will derive both expressions in appen-
dix 9-a; however, the final expressions that we need are given below.

Torque depends on the magnitude of the stator and the rotor fluxes, 
and the angle between the two space vectors. as derived in appendix 
9-a, in terms of the machine leakage inductance Lσ (also defined in 
appendix 9-a)

 T
p L
L

em
m

s r sr=








2
3 2 2

σ

λ λ θˆ ˆ sin ,  (9-10a)

where

 θ θ θsr s r= − .  (9-10b)

The angles in Eq. (9-10) are expressed in electrical radians with respect 
the stator a-axis, as shown in Fig. 9-2.

Equation (9-2) and Fig. 9-2 show that the torque can be controlled 
quickly by rapidly changing the position of the stator flux linkage space 
vector (i.e., θs, hence θsr) by applying an appropriate voltage space 

Fig. 9-2  Changing the position of stator flux-linkage vector.
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vector during the sampling interval ΔT, while the rotor flux space 
vector position θ θ θr r

A
m( )= +  changes relatively slowly. Thus, in accor-

dance with Eq. (9-10a), a change in θsr results in the desired change in 
torque.

For torque estimation, it is better to use the expression below (derived 
in appendix 9-a) in terms of the estimated stator flux linkage and the 
measured stator currents,

 T
p

iem s s=








2
3 2

Im( ),
 
λ conj  (9-11)

which, unlike the expression in Eq. (9-10a), does not depend on the 
rotor flux linkage (note that the rotor flux linkage in Eq. (9-8) depends 
on correct estimates of Ls, Lr, and Lm).

9-4-4  Calculation of the Rotor Speed ωm

a much slower sampling rate with a sampling interval ΔTω, for example, 
equal to 1 ms, may be used for estimating the rotor speed. The speed  
of the rotor flux in electrical radians per second (rad/s) is calculated 
from the phase angle of the rotor flux space vector in Eq. (9-8) as 
follows:

 ω θ
θ θ ω

ω
r r

r rd
dt

t t T
T

= =
− −( ) ( )

.
∆

∆
 (9-12)

The slip speed is calculated as follows: In Chapter 5, the torque and 
the speed expressions are given by Eq. (5-7) and Eq. (5-5), where in 
the motor model, the d-axis is aligned with the rotor flux linkage space 
vector. These equations are repeated below:

 T
p L

L
iem rd

m

r
sq=







2

λ  (9-13)

and

 ω
λ

slip =






R

L
L

ir
rd

m

r
sq

1
,  (9-14)

where ωslip is the slip speed, the same as ωdA in Eq. (5-5) of Chapter 5. 
Calculating isq from Eq. (9-13) and substituting it into Eq. (9-14) (and 
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recognizing that in the model with the d-axis aligned with the rotor flux 
linkage, λ λrd r= 2 / 3 ˆ ), the slip speed in electrical radians per second is

 ω
λ

slip .=










2 3
2 2p
R
T

r
em

r
ˆ  (9-15)

Therefore, the rotor speed can be estimated from Eq. (9-12) and Eq. 
(9-15) as

 ω ω ωm r= − slip,  (9-16)

where all speeds are in electrical radians per second. In a multipole 
machine with p ≥ 2,

 ω ωmech = ( / ) .2 p m  (9-17)

9-5  CALCULATION OF THE STATOR VOLTAGE  
SPACE VECTOR

a common technique in DTC is to control the torque and the stator 
flux amplitude with a hysteretic band around their desired values. 
Therefore, at a sampling time (with a sampling interval of ΔT), the 
decision to change the voltage space vector is implemented only if the 
torque and/or the stator flux amplitude are outside their range. Selec-
tion of the new voltage vector depends on the signs of the torque and 
the flux errors and the sector in which the stator flux linkage vector lies, 
as explained later.

The plane of the stator voltage space vector is divided into six sectors, 
as shown in Fig. 9-3. We should note that these sectors are different 
than those defined for the stator voltage space vector-PWM in Chapter 
8. The central vectors for each sector, which lie in the middle of a sector, 
are the basic inverter vectors, as shown in Fig. 9-3.

The choice of the voltage space vector for sector 1 is explained later 
with the help of Fig. 9-4 and Eq. (9-10). assuming that the stator flux 
linkage space vector is along the central vector, the roles of various 
voltage vectors can be tabulated in Table 9-1.

There are some additional observations: The voltage vectors would 
have the same effects as tabulated earlier, provided the stator flux-
linkage space vector is anywhere in sector 1. The use of voltage vectors 
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Fig. 9-3  Inverter basic vectors and sectors.
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Fig. 9-4  Stator voltage vector selection in sector 1.

sector 1

v2 v3

v1

v5v4

v6

λs

TABLE 9-1  Effect of Voltage Vector on the 
Stator Flux-linkage Vector in Sector 1

vs Tem λ̂s


v3 Increase Increase

v2 Increase Decrease
v4 Decrease Decrease
v5 Decrease Increase


v1 and 


v6 is avoided because their effect depends on where the stator 

flux-linkage vector is in sector 1. a similar table can be generated for 
all other sectors.

Use of zero vectors 

v0 000( ) and 


v7 111( ) results in the stator flux 

linkage vector essentially unchanged in amplitude and in the angular 
position θs. In the torque expression of Eq. (9-10b), for small values of 
θsr in electrical radians,
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 sin ( ).θ θ θsr s r≈ −  (9-18)

With a zero voltage vector applied, assuming that the amplitudes of 
the stator and the rotor flux linkage vectors remain constant,

 T kem s r ( ),θ θ−  (9-19)

where k is a constant. With the zero voltage vector applied, the position 
of the stator flux-linkage vector remains essentially constant, thus 
Δθs   0. Similarly, the position of the rotor flux-linkage vector, with 
respect to the rotor A-axis, remains essentially constant, that is, ΔθrA  0. 
however, as can be observed from Fig. 9-2, ∆ ∆ ∆θ θ θr m r

A= + . Therefore 
the position of the rotor flux-linkage vector changes, albeit slowly, and 
the change in torque in Eq. (9-19) can be expressed as

 ∆ ∆T kem m− ( ) ( ).θ with zero voltage vector applied  (9-20)

Equation (9-20) shows that applying a zero stator voltage space 
vector causes change in torque in a direction opposite to that of ωm. 
Therefore, with the rotor rotating in a positive (counter-clockwise) 
direction, for example, it may be preferable to apply a zero voltage 
vector to decrease torque in order to keep it within a hysteretic band.

In literature, there is no uniformity on the logic of space vector selec-
tion to keep the stator flux amplitude and the electromagnetic torque 
within their respective hysteretic bands. one choice of space vectors is 
illustrated by means of Example 9-1.

EXAMPLE 9-1

The “test” induction motor described in Chapter 1 is operated using 
encoderless DTC for speed control, as described in a file Ex9_1.pdf 
(which can be printed) on the website accompanying this textbook. 
Model this system using Simulink and plot the desired results.

Solution

Various subsystems and the simulation results are included on the 
website associated with this textbook.
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9-6  DIRECT TORQUE CONTROL USING dq-AXES

It is possible to perform the same type of control by aligning the d-axis 
with the stator flux-linkage vector. The amplitude of the stator flux-
linkage vector is controlled by applying vsd along the d-axis, and the 
torque is controlled by applying vsq along the q-axis. The advantage of 
this type of control over the hysteretic control described earlier is that 
it results in a constant switching frequency. This is described by Example 
9-2 in accompanying website.

9-7  SUMMARY

This chapter discusses the direct torque control (DTC) scheme, where, 
unlike the vector control, no dq-axis transformation is needed and the 
electromagnetic torque and the stator flux are estimated and directly 
controlled by applying the appropriate stator voltage vector. It is pos-
sible to estimate the rotor speed, thus eliminating the need for rotor 
speed encoder.
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PROBLEMS

9-1 Using the parameters of the “test” induction machine described in 
Chapter 1, show that it is much faster to change electromagnetic 
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torque by changing the position of the stator flux-linkage vector, 
rather than by changing its amplitude. assume that the machine 
is operating under rated conditions.

9-2 obtain the stator voltage vectors needed in other sectors, similar 
to what has been done in Table 9-1 for sector 1.

9-3 assuming that the “test” machine is operating under the rated 
conditions, compute the effect of applying a zero voltage space 
vector on the flux linkage space vectors and on the electromag-
netic torque produced.

9-4 In the system of Example 9-1, how can the modeling be simplified 
if the speed is never required to reverse?

9-5 Experiment with other schemes for selecting voltage space vector 
and compare results with that in Example 9-1.

9-6 In Example 9-1, include the field-weakening mode of operation.

APPENDIX 9-A

Derivation of Torque Expressions

The electromagnetic torque in terms of the stator flux and the stator 
current can be expressed as follows:

 T
p

iem s
conj

s=
2
3 2

Im( )
 
λ  (9a-1)

To derive the above expression, it is easiest to assume it be correct 
and to substitute the components to prove it. Taking the complex con-
jugate on both sides of Eq. 9-3,

 
  
λs
conj

s s
conj

m r
conjL i L i= +  (9a-2)

Substituting in Eq. 9a-1,

 T
p
L i i L i iem s s

conj
s m r

conj
s= +

=

2
3 2

0

{ Im( ) Im( )}
( )

� �
� ����� �����

� �
==

2
3 2
p
L i im r

conj
sIm( )

� �
 (9a-3)
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Even though the dq transformation is not used in DTC, we can make 
use of dq transformations to prove our expressions. Therefore, in terms 
of an arbitrary dq reference set and the corresponding components 
substituted in Eq. 9a-3,

 T
p
L i ji i ji

p
L i i i iem m rd rq sd sq m sq rd sd rq= − + = −

2
3 2

3
2

3
2 2

Im{ ( ) ( )} ( )  

(9a-4)

which is identical to Eq. 3-47 of Chapter 3, thus proving the torque 
expression of Eq. 9a-1 to be correct.

another torque expression, which we will not use directly but which 
is the basis on which the selection of the stator voltage vector is made, 
is as follows:

 T
p L
L

em
m

s r
conj=

2
3 2 2

σ

λ λIm( )
 

 (9a-5)

where the machine leakage inductance is defined as

 L L L Ls r mσ = − 2  (9a-6)

again assuming the above expression in Eq. 9a-5 to be correct and 
substituting the expressions for the fluxes from Eqs. 9-3 and 9-4,

 

T
p L
L

L i L i L i L i

p L

em
m

s s m r r r
conj

m s
conj

m

= + +

=

2
3 2
2
3 2

2
σ

Im{( )( )}
   

LL
L L i i

p L
L

L i is r s r
conj m

m r s
conj

σ σ
2 2

22
3 2

Im( ) Im( ).
   

+
 (9a-7)

Note that Im( ) Im( )
   
i i i ir s

conj
s r

conj= − . Therefore, in Eq. 9a-7,

 

T
p L
L

L L L i iem
m

s r m

L

s r
conj= − =

=
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3 2

2
2

2

2σ
σ

( )Im( )
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L i ji i ji
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Im( )

Im{( )( )}

(

� �
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= ii i ird sd rq− ),

 (9a-8)
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which is identical to Eq. 3-47 of Chapter 3, thus proving the torque 
expression of Eq. 9a-5 to be correct.

In Eq. 9a-5, expressing flux linkages in their polar form,

 
T

p L
L

e e
p L
L

eem
m

s
j

r
j m

s r
js r sr= ⋅ =−2

3 2
2
3 22 2

σ

θ θ

σ

θλ λ λ λIm( ) Im( )ˆ ˆ ˆ ˆ

==
2
3 2 2

p L
L
m

s r sr
σ

λ λ θˆ ˆ sin
 (9a-9)

where

 θ θ θsr s r= −  (9a-10)

is the angle between the two flux-linkage space vectors.
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10-1  INTRODUCTION

In the previous course [1], we looked at permanent-magnet synchro-
nous motor drives, also known as “brushless-dc motor” drives in steady 
state, where without the help of dq analysis, it was not possible to 
discuss dynamic control of such drives. In this chapter, we will make 
use of the dq-analysis of induction machines, which is easily extended 
to analyze and control synchronous machines.

10-2  d-q ANALYSIS OF PERMANENT MAGNET 
(NONSALIENT-POLE) SYNCHRONOUS MACHINES

In synchronous motors with surface-mounted permanent magnets, the 
rotor can be considered magnetically round (non-salient) that has the 
same reluctance along any axis through the center of the machine. A 
simplified representation of the rotor magnets is shown in Fig. 10-1a. 
The three-phase stator windings are sinusoidally distributed in space, 
like in an induction machine, with Ns number of turns per phase.

In Fig. 10-1b, d-axis is always aligned with the rotor magnetic axis, 
with the q-axis 90° ahead in the direction of rotation, assumed to be 
counter-clockwise. The stator three-phase windings are represented by 
equivalent d- and q-axis windings; each winding has 3 2/ Ns turns, 
which are sinusoidally distributed.
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10-2-1  Flux Linkages

The stator d and q winding flux linkages can be expressed as follows:

 λ λsd s sd fdL i= +  (10-1)

and

 λsq s sqL i= ,  (10-2)

where in Eq. (10-1) and Eq. (10-2), Ls = Lℓs + Lm, and λfd is the flux 
linkage of the stator d winding due to flux produced by the rotor 
magnets (recognizing that the d-axis is always aligned with the rotor 
magnetic axis).

10-2-2  Stator dq Winding Voltages

Using Eq. (3-28) and Eq. (3-29), developed for induction machines in 
Chapter 3, in dq windings,

 v R i
d
dt

sd s sd sd m sq= + −λ ω λ  (10-3)

and

 v R i
d
dt

sq s sq sq m sd= + +λ ω λ ,  (10-4)

Fig. 10-1  Permanent-magnet synchronous machine (shown with p = 2).
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where the speed of the equivalent dq windings is ωd = ωm (in electrical 
rad/s) in order to keep the d-axis always aligned with the rotor magnetic 
axis [2]. The speed ωm is related to the actual rotor speed ωmech as

 ω ωm
p

=
2

mech.  (10-5)

10-2-3  Electromagnetic Torque

Using the analysis for induction machines in Chapter 3 and Eq. (3-46) 
and Eq. (3-47), we can derive the following equation (see Problem 3-9a 
in Chapter 3), which is also valid for synchronous machines:

 T
p

i iem sd sq sq sd= −
2

( ).λ λ  (10-6)

Substituting for flux linkages in the above equation for a nonsalient-
pole machine,

 T
p

L i i L i i
p

iem s sd fd sq s sq sd fd sq= + − =
2 2

[( ) ] ( ).λ λ nonsalient  (10-7)

10-2-4  Electrodynamics

The acceleration is determined by the difference of the electromagnetic 
torque and the load torque (including friction torque) acting on Jeq, the 
combined inertia of the load and the motor:

 
d
dt

T T
J

em L

eq

ωmech =
−

,  (10-8)

where ωmech is in rad/s and is related to ωm as shown in Eq. (10-5).

10-2-5  Relationship between the dq Circuits and the Per-Phase 
Phasor-Domain Equivalent Circuit in Balanced Sinusoidal  
Steady State

In this section, we will see that under a balanced sinusoidal steady state 
condition, the two dq winding equivalent circuits combine to result in 
the per-phase equivalent circuit of a synchronous machine that we have 
derived in the previous course. Note that in a synchronous motor used 
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in a “brush-less dc” drive, the synchronous speed equals the rotor speed 
on an instantaneous basis, therefore our choice of ωd = ωm also results 
in ωd = ωm = ωsyn. Under a balanced sinusoidal steady-state condition, 
dq winding quantities are dc and their time derivatives are zero. In Eq. 
(10-3) and Eq. (10-4), for stator voltages, substituting flux linkages from 
Eq. (10-1) and Eq. (10-2) results in

 v R i L isd s sd m s sq= −ω  (10-9)

and

 v R i L isq s sq m s sd m fd= + +ω ω λ .  (10-10)

Multiplying both sides of Eq. (10-10) by (j) and adding to Eq. (10-9) 
(and multiplying both sides of the resulting equation by 3 2/ ) 
leads to the following space vector equation, with the d-axis as the 
reference axis:

 
� � �

� ������ �������
v R i j L i js s s m s s m fd

efs

= + +ω ω λ3 2/ ,  (10-11)

noting that 
�
v v jvs sd sq= +3 2/ ( ) and so on. Dividing both sides of the 

above space vector equation by 3/2, we obtain the following phasor 
equation for phase a in a balanced sinusoidal steady state:

 V R I j L I ja s a m s a m fd

Efa

= + +ω ω λ
2
3� ����� �����

.  (10-12)

The above equation corresponds to the per-phase equivalent circuit 
of Fig. 10-2 that was derived in the previous course under a balanced 
sinusoidal steady-state condition.

Fig. 10-2  Per-phase equivalent circuit in steady state (ωm in electrical rad/s).

aV
ˆEfa (Efa = kEωm)

−

+

−

+

aI
jωmLmjωmLlsRs

jωmLs

http://c10-disp-0003
http://c10-disp-0004
http://c10-disp-0001
http://c10-disp-0002
http://c10-disp-0010
http://c10-disp-0009
http://c10-fig-0002


Relationship between kE and λfd

From Eq. (10-12),

 Ê kfa fd

k

m E m

E

= =
2
3

λ ω ω
� ��� ���

,  (10-13)

Therefore,

 kE fd=
2
3

λ .  (10-14)

10-2-6  dq-Based Dynamic Controller for “Brushless DC” Drives

In the previous course, in the absence of the dq analysis, a hysteretic 
converter was used, where the switching frequency does not remain 
constant. In this section, we will see that it is possible to use a converter 
with a constant switching frequency. The block diagram of such a control 
system is shown in Fig. 10-3. In Eq. (10-3) and Eq. (10-4), using the flux 
linkages of Eq. (10-1) and Eq. (10-2), voltages can be expressed as 
follows, recognizing that the time-derivative of the rotor-produced flux 
λfd is zero:

 v R i L
d
dt
i L isd s sd s sd m s sq= + + −( )ω

compd

� ����� �����  (10-15)

Fig. 10-3  Controller in the dq reference frame.
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and

 v R i L
d
dt
i L isq s sq s sq m s sd fd= + + +ω λ( ).

compq

� ������� �������  (10-16)

In Fig. 10-3, the PI controllers in both channels are designed assum-
ing that the inverter is ideal and the compensation (decoupling) terms 
in Eq. (10-15) and Eq. (10-16) are utilized, to result in the desired phase 
margin at the chosen open-loop crossover frequency.

Flux Weakening In the normal speed range below the rated speed, 
the reference for the d winding current is kept zero (ids = 0). Beyond 
the rated speed, a negative current in the d winding causes flux weaken-
ing (a phenomenon similar to that in brush-type dc machines and 
induction machines), thus keeping the back-emf from exceeding the 
rated voltage of the motor. A negative value of isd in Eq. (10-10) causes 
vsq to decrease.

To operate synchronous machines with surface-mounted permanent 
magnets at above the rated speed requires a substantial negative d 
winding current to keep the terminal voltage from exceeding its rated 
value. Note that the total current into the stator cannot exceed its  
rated value in steady state. Therefore, the higher the magnitude of the 
d winding current, the lower the magnitude of the q winding current 
has to be, since

 i i I Isd sq dq a
2 2 3

2
+ ≤ =











ˆ ˆ
,rated ,rated .  (10-17)

EXAMPLE 10-1

For analyzing performance of the dynamic control procedure, a 
motor from a commercial vendor catalog [3] is selected, whose speci-
fications are as follows:

Nameplate Data

Continuous Stall Torque: 3.2 Nm
Continuous Current: 8.74 A
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Peak Torque: 12.8 Nm
Peak Current: 31.5 A
Rated Voltage: 200 V
Rated Speed: 6000 rpm
Phases: 3
Number of Poles: 4

Per-Phase Motor Circuit Parameters

Rs = 0 416. Ω
Ls = 1 365. mH
Voltage Constant kE (as in Eq. 10-13 and Fig. 10-2): 0.0957 V/

(electrical rad/s)

The total equivalent inertia of the system (motor–load combina-
tion) is

Jeq = × ⋅−3 4 10 4 2. .kg m

Initially, the drive is operating in steady state at its rated  
speed, supplying its rated torque of 3.2 Nm to the mechanical load 
connected to its shaft.

At time t = 0.1 second, a load-torque disturbance occurs, which 
causes it to suddenly decrease by 50% (there is no change in load 
inertia). The feedback control objective is to keep the shaft speed at 
its initial steady-state value subsequent to the load–torque distur-
bance. Design the speed feedback controller with the open-loop 
crossover frequency of 2500 rad/s and a phase margin of 60 degrees. 
The open-loop crossover frequency of the internal current feedback 
loop is ten times higher than that of the speed loop and the phase 
margin is 60°.

Solution

The simulation block diagram is shown in Fig. 10-4 and the Simulink 
file EX9_1.mdl is included in the accompanying website to this text-
book. The simulation results are shown in Fig. 10-5.
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Fig. 10-6  Salient-pole machine.
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Fig. 10-5  Simulation results of Example 10-1.

10-3  SALIENT-POLE SYNCHRONOUS MACHINES

Synchronous machines with interior permanent magnets result in 
unequal reluctance along the d- and the q-axis. In this section, we will 
go a step further and assume a salient-pole rotor structure as shown  
in Fig. 10-6a with a rotor field excitation and nonidentical damper  
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windings along the d- and the q-axis. In such a machine, we have the 
inductances described in the next section.

10-3-1  Inductances

In the stator dq windings,

 L L Lsd md s= + �  (10-18)

and

 L L Lsq mq s= + � ,  (10-19)

where the magnetizing inductance of the d winding is not equal to that 
of the q winding (Lmd ≠ Lmq) due to the nonsalient nature of the rotor. 
however, both windings have the same leakage inductance Lℓs, which 
is not affected by the rotor structure.

As shown in Fig. 10-6b, we will replace the actual field winding of Nf 
turns in the rotor by an equivalent field winding with 3 2/ Ns  turns 
(where Ns equals the number of turns in each phase of the stator wind-
ings), supplied by an equivalent field-winding current ifd. This procedure 
results in the equivalent field winding having the same magnetizing 
inductance Lmd as the stator d winding, hence the equivalent field 
winding inductance can be written as

 L L Lfd md fd= + � ,  (10-20)

where Lℓfd is the leakage inductance of the equivalent field winding.
Similarly in Fig. 10-6b, replacing the actual damper windings with 

equivalent damper windings, each with 3 2/ Ns turns, we can write the 
following equations for the inductances of the equivalent rotor damper 
windings (with a subscript “r”):

 L L Lrd md rd= + �  (10-21)

and

 L L Lrq mq rq= + � ,  (10-22)

where Lℓrd and Lℓrq are the leakage inductance of the equivalent rotor 
damper windings.
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10-3-2  Flux Linkages

In terms of these inductances, the flux linkages of the various windings 
can be expressed as follows:

Stator dq Winding Flux Linkages

 λsd sd sd md rd md fdL i L i L i= + +  (10-23)

and

 λsq sq sq mq rqL i L i= + .  (10-24)

Rotor dq Winding Flux Linkages

 λrd rd rd md sd md fdL i L i L i d= + + ( )-axis damper  (10-25)

 λrq rq sq mq sqL i L i q= + ( )-axis damper  (10-26)

and

 λfd fd d md sd md rdL i L i L i= + + .  (10-27)

10-3-3  Winding Voltages

In terms of the above flux linkages, winding voltages can be written as 
follows, assuming that ωd = ωm in order to keep the d-axis aligned with 
the rotor magnetic axis.

Stator dq Winding Voltages

 v R i
d
dt

sd s sd sd m sq= + −λ ω λ  (10-28)

and

 v R i
d
dt

sq s sq sq m sd= + +λ ω λ .  (10-29)

Rotor dq Winding Voltages

 v R i
d
dt

rd rd rd rd

( )=

= +
0
� λ  (10-30)

 v R i
d
dt

rq rq rq rq

( )=

= +
0
� λ  (10-31)
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and

 v R i
d
dt

fd fd fd fd= + λ .  (10-32)

10-3-4  Electromagnetic Torque

Substituting for flux linkages from above in Eq. (10-6):

 T
p
L i i iem md fd rd sq

d

= + +
+

2
[ ( )

field damper in -axis
� ������� ������� (( ) ].L L i i L i isd sq sd sq mq rq sd− −

saliency
� ������� �������  (10-33)

10-3-5  dq-Axis Equivalent Circuits

Following the procedure used in Chapter 3 for deriving the dq-axis 
equivalent circuits for induction machines, we can draw the equivalent 
circuits shown in Fig. 10-7 for the d- and q-axis windings, respectively.

10-3-6  Space Vector Diagram in Steady State

In a balanced sinusoidal steady state with ωd = ωm, the damper winding 
currents in the rotor are zero, as well as all the time derivatives of  

Fig. 10-7  Equivalent circuits for a salient-pole machine.
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currents and flux linkages in dq windings. Therefore, in Eq. (10-23) and 
Eq. (10-24),

 λsd sd sd md fdL i L i= +  (10-34)

and

 λsq sq sqL i= .  (10-35)

From Eq. (10-28) and Eq. (10-29), using Eq. (10-34) and Eq. (10-35)

 v R i L isd s sd m sq sq= −ω  (10-36)

and

 v R i L i L isq s sq m sd sd m md fd= + +ω ω .  (10-37)

Multiplying Eq. (10-37) by (j) and adding to Eq. (10-36),

 v jv R i jR i j L i j L i L isd sq s sd s sq m sd sd m md fd m sq sq+ = + + + −ω ω ω ,  (10-38)

which is represented by a space vector diagram in Fig. 10-8a, where

 v jv vsd sq s+ =
2
3
�

 (10-39)

and

 i ji isd sq s+ =
2
3

�
.  (10-40)

The corresponding phasor diagram is shown in Fig. 10-8b.

Fig. 10-8  Space vector and phasor diagrams.
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10-4  SUMMARY

In this chapter, we have extended the dq-analysis of induction machines 
to analyze and control synchronous machines.
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PROBLEMS

10-1 In the simulation of Example 10-1, replace the ideal inverter by 
an appropriate SV-PWM inverter, similar to that described in 
Chapter 8.

10-2 Implement flux-weakening in Example 10-1 for extended speed 
operation.

10-3 Derive the torque expression in Eq. (10-33) for a salient-pole 
synchronous motor.
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11-1  INTRODUCTION

In the previous course [1], we have studied variable reluctance stepper 
motors, whose construction requires a salient stator and a salient rotor. 
Stepper motors are generally used for position control in an open-loop 
manner, where by counting the number of electrical pulses supplied 
and knowing the step angle of the motor, it is possible to rotate the 
shaft by a desired angle without any feedback. In contrast, switched-
reluctance motor (SRM) drives, also doubly salient in construction, are 
intended to provide continuous rotation and compete with induction 
motor and brushless dc motor drives in certain applications, such as 
washing machines and automobiles, with many more applications being 
contemplated.

In this chapter, we will briefly look at the basic principles of SRM 
operation and how it is possible to control them in an encoderless 
manner.

11-2  SWITCHED-RELUCTANCE MOTOR

Cross-section of a four-phase SRM is shown in Fig. 11-1, which looks 
identical to a variable-reluctance stepper motor. It has a four-phase 
winding on the stator. In order to achieve a continuous rotation, each 
phase winding is excited by an appropriate current at an appropriate 
rotor angle, as well as de-excited at a proper angle. For rotating it in 
the counterclockwise direction, the excitation sequence is a-b-c-d.
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An SRM must be designed to operate with magnetic saturation and 
the reason to do so will be discussed later on in this chapter. Fig. 11-2 
shows the aligned and the unaligned rotor positions for phase a. For 
phase a, the flux linkage λa as a function of phase current ia is plotted 
in Fig. 11-3 for various values of the rotor position. In the unaligned 
position where the rotor pole is midway between two stator poles (see 
Fig. 11-2b, where θmech equals θun), the flux path includes a large air gap, 
thus the reluctance is high. Low flux density keeps the magnetic struc-
ture in its linear region, and the phase inductance has a small value.

Fig. 11-1  Cross-section of a four-phase 8/6 switched reluctance machine.
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As the rotor moves toward the aligned position of Fig. 11-2a (where 
θmech equals zero), the characteristics become progressively more satu-
rated at higher current values.

11-2-1  Electromagnetic Torque Tem

With the current built up to a value I1, as shown in Fig. 11-4, holding 
the rotor at a position θ1 between the unaligned and the aligned 

Fig. 11-3  Typical flux linkage characteristics of an SRM.

Fig. 11-4  Calculation of torque.
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positions, the instantaneous electromagnetic torque can be calculated 
as follows: Allowing the rotor to move incrementally under the influ-
ence of the electromagnetic torque from position θ1 to θ1  +  Δθmech, 
keeping the current constant at I1, the incremental mechanical work 
done is

 ∆ = ∆W Temmech mechθ .  (11-1)

The increment of energy supplied by the electrical source is

 ∆Welec area= − − − −( ),1 2 11 2λ λ  (11-2)

and the incremental increase in energy storage associated with the 
phase-a winding is

 ∆Wstorage area area= − − − − − − −( ) ( ).0 2 0 0 1 02 1λ λ  (11-3)

The mechanical work performed is the difference of the energy sup-
plied by the electrical source minus the increase in energy storage

 ∆ ∆ ∆W W Wmech elec storage.= −  (11-4)

Therefore in Eq. (11-4),

 

Tem∆θ λ λ λ
λ

= − − − − − − − −
− − − −

=

area area

area

a

( ) { ( )

( )}

{

1 2 1 0 2 0

0 1 0
1 2 2

1

rrea area
area

( ) ( )}
( )

1 2 1 0 1 01 2 1

0 1 2 02

− − − − + − − −
− − − −

λ λ λ
λ

� ����������������������� ����������������������

− − − −
=

area

area

( )

(

0 2 02λ
00 1 2 0− − − ),

 (11-5)

which is shown shaded in Fig. 11-4. Therefore,

 Tem =
− − −area

mech

( )
,

0 1 2 0
∆θ

 (11-6)

which is in the direction to increase this area. The area between the 
λ − i characteristic and the horizontal current axis is usually defined as 
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the co-energy W′. Therefore, the area in Eq. (11-6) shown shaded in Fig. 
11-4 represents an increase in co-energy. Thus, on a differential basis, 
we can express the instantaneous electromagnetic torque developed by 
this motor as the partial derivative of co-energy with respect to the 
rotor angle, keeping the current constant

 T
W

em
ia

=
∂ ′

∂ =θmech constant

.  (11-7)

11-2-2  Induced Back-EMF ea

With phase a excited by ia, the movement of the rotor results in a back-
emf ea, and the voltage across the phase-a terminals includes the voltage 
drop across the resistance of the phase winding:

 v Ri ea a a= +  (11-8)

and

 e
d
dt

ia a a= ( )λ θ, ,mech  (11-9)

where the phase winding flux linkage is a function of the phase current 
and the rotor position, as shown in Fig. 11-3. In terms of partial deriva-
tives, we can rewrite the back-emf in Eq. (11-9) as:

 e
i

d
dt
i

d
dt

a
a

a
a

a

ia

=
∂
∂

+
∂

∂
λ λ

θ
θ

θmech mech
mech,  (11-10)

where it is important to recognize that a partial derivative with respect 
to one variable is obtained by keeping the other variable constant.

In Fig. 11-3, the movement of the rotor by an angle Δθmech, keeping 
the current constant results in a back-emf, which from Eq. (11-10) can 
be written as:

 e
d
dt

d
dt
ia

a

i

a

i
a

a a

=
∂

∂
=

∂
∂

=
λ

θ
θ

λ
θ

ω

ω
mech

mech
mech

mech

mech

� ��� ���
0







,  (11-11)
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where ωmech is the instantaneous rotor speed. However, the instanta-
neous power (eaia) is not equal to the instantaneous mechanical output 
due to the change in stored energy in the phase winding.

11-3  INSTANTANEOUS WAVEFORMS

For clear understanding, we will initially assume an idealized condition 
where it is possible to supply the phase winding with a current ia that 
has a rectangular waveform as a function of θmech, as shown in Fig. 11-5. 
The current is assumed to be built up instantaneously (this will require 
infinite voltage) at the unaligned position θun and instantaneously goes 
to zero at the aligned position θal. The corresponding waveforms for 
the electromagnetic torque Tem,a and the induced back-emf ea are also 
plotted by means of Eq. (11-7) and Eq. (11-11) respectively, with the 
current held constant.

Fig. 11-5  Performance assuming idealized current waveform.
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The objectives in selecting these two rotor positions θun and θal for 
current flow are twofold: (1) to maximize the average torque per 
ampere, and (2) to build up the current to its desired level while the 
back-emf is small. We can appreciate that with the current flow prior 
to the unaligned position and after the aligned position, the instanta-
neous torque would be negative, which would be counter to our objec-
tive of maximizing the average torque per ampere. At the unaligned 
position, the winding inductance is the lowest, and it is easier to build 
up current in that position compared with other rotor positions.

To achieve instantaneous build-up and decay of phase current 
assumed in the plots of Fig. 11-5 would require that an infinite phase 
voltage (positive and negative) is available. In reality with a finite 
voltage available from the power processing unit to the motor, the 
phase current waveform for a four-phase motor may look as shown in 
Fig. 11-6, with the corresponding flux linkage and torque waveforms. 

Fig. 11-6  Performance with a power-processing unit.
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The phase current build-up is started at an angle θon (prior to the 
unaligned position), and the current decay is started at an angle θoff 
(prior to the aligned position). In order to reduce torque ripple, there 
is generally overlapping of phases where during a short duration, two 
of the phases are simultaneously excited. The bottom part in Fig. 11-6 
shows the resultant electromagnetic torque Tem by summing the torque 
developed by each of the four phases.

11-4  ROLE OF MAGNETIC SATURATION [2]

Magnetic saturation plays an important role in SRM drives. During 
each excitation cycle, a large ratio of the energy supplied to a phase 
winding should be converted into mechanical work, rather than returned 
to the electrical source at the end of the cycle. We will call this an energy 
conversion factor. In Fig. 11-7, assuming magnetic saturation and a finite 
voltage available from the power-processing unit, this factor is as 
follows:

 Energy Conversion Factor =
+

W
W W

em

em f

.  (11-12)

As can be seen from Fig. 11-7, this factor would be clearly higher  
in the idealized case where an instantaneous build-up and decay of 

Fig. 11-7  Flux linkage trajectory during motoring.
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phase current is assumed. However, without saturation this energy 
conversion factor is limited to a value of nearly 50%. Magnetic satura-
tion also keeps the rating of the power processor unit from becoming 
unacceptable.

It should be noted that the Energy Conversion factor is not the same 
as energy efficiency of the motor, although there is a correlation—a 
lower energy conversion factor means that a larger fraction of energy 
sloshes back and forth between the power-processing unit and the 
machine, resulting in power losses in the form of heat and thus in a 
lower energy efficiency.

11-5  POWER PROCESSING UNITS FOR SRM DRIVES

A large number of topologies for SRM converters have been proposed 
in the literature. Fig. 11-8 shows a topology that is most versatile. For 
current build-up, both transistors are turned on simultaneously. (This 
also shows the robustness of the SRM drive power processing unit, 
where turning on both transistors simultaneously is normal, which can 
be catastrophic in other drives.) To maintain the current within a hys-
teretic band around the reference value, either one of the transistors is 
turned off, thus making the current freewheel through the opposite 
diode, or both transistors are tuned off, in which case the current flows 
into the dc bus and decreases in magnitude. The later condition is also 
used to quickly de-energize a phase winding.

Fig. 11-8  Power converter for a four-phase switched reluctance drive.
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11-6  DETERMINING THE ROTOR POSITION FOR 
ENCODERLESS OPERATION

It is necessary to determine the rotor position so that the current 
build-up and decay can be started at rotor positions θon and θoff, respec-
tively, for each phase. There are various methods proposed in the litera-
ture to determine the rotor position. One of the easiest methods to 
explain is shown by means of Fig. 11-3 and Fig. 11-9. The motor can  
be characterized to achieve the family of curves shown in Fig. 11-3, 
where the flux linkage of a phase is plotted as a function of the phase 
current for various values of the rotor position. From this, information, 
knowing the flux linkage and the current allows the determination of 
the rotor position. In Fig. 11-9, the flux linkage of an excited phase is 
computed by integrating the difference of the applied phase voltage 
and the voltage drop across the winding resistance (see Eq. 11-8). The 
combination of the measured phase current and the estimated flux 
linkage then determines the rotor position, using the information of 
Fig. 11-3.

11-7  CONTROL IN MOTORING MODE

A simple block diagram for speed control is shown in Fig. 11-10, where 
the actual rotor position is either sensed or estimated using the method 
described in the previous section or some other technique. The speed 
error between the reference speed and the actual speed is amplified by 
means of a PI (proportional-integral) controller to generate a current 
reference. The rotor angle determines which phases are to be excited, 
and their current is controlled to equal the reference current as much 

Fig. 11-9  Estimation of rotor position.
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as possible in view of the limited dc-bus voltage of the power-processing 
unit shown in Fig. 11-8.

11-8  SUMMARY

This chapter discusses SRM drives, doubly salient in construction, 
which are intended to provide continuous rotation and compete with 
induction motor and brushless dc motor drives in certain applications, 
such as washing machines and automobiles, with many more applica-
tions being contemplated. In this chapter, we briefly looked at the basic 
principles of SRM operation and how it is possible to control them in 
an encoderless manner.
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PROBLEMS

11-1 Show that without magnetic saturation, the energy conversion 
factor in Fig. 11-7 would be limited to 50%.

Fig. 11-10  Control block diagram for motoring.
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11-2 What would the plot of the phase inductance be as a function of 
the rotor angle (between the unaligned and the aligned rotor 
positions) for various values of the phase current.

11-3 Although only the motoring mode is discussed in this chapter, 
SRM drives (like all other drives) can also be operated in a 
generator mode. Explain how this mode of operation is possible 
in SRM drives.
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equivalent circuit and, in 
balanced sinusoidal steady 
state, 145–147

dq transformation, xiii, 22, 141
dq winding analysis

case for, 22–25
of induction machines operating 

under dynamic conditions (see 
Induction machines, dynamic 
analysis of in terms of dq 
windings)

of permanent magnet 
synchronous machines,  
143–151

dq winding currents, 85
stator and rotor representation by 

equivalent, 32–33, 33
dq-winding equivalent 

circuits, 45–46, 45
dq winding flux linkages and 

currents, 40–41, 41

dq winding quantities, 
transformation of phase 
quantities into, 34–35, 34

dq windings
detuning effect due to incorrect 

rotor time constant and,  
97–101, 98

dynamic analysis of induction 
machines in terms of (see 
Induction machines, dynamic 
analysis of in terms of dq 
windings)

flux linkages of, in term of their 
currents, 36

induction motor model in terms 
of, 47–56, 49

mathematical relationships of, at 
arbitrary speed, 33–41

per-phase phasor-domain 
equivalent circuit, in balanced 
sinusoidal steady state, 46–47, 
47

representation, 28–33, 29
subscripts, xv

dq winding speed, choice of, 41–42
dq winding variables, relating to 

phase winding variables, 35–36
dq winding voltages, 33

equations, 37–40
DSPACE, 124
DTC. See Direct torque control 

(DTC)
d-winding reference current, 85
Dynamic analysis

of doubly fed induction 
generators, 116

of induction machines operating 
under dynamic conditions (see 
Induction machines, dynamic 
analysis of in terms of dq 
windings)



172  INDEX

Dynamic controller, dq-based, 
147–151, 147

Electrical Machines and Drives: A 
First Course (Mohan), xiii

Electrical radians, 7
Electric vehicles, 1
Electrodynamics

of induction machines, 44–45
of permanent-magnet 

synchronous motor drives,  
145

Electromagnetic torque, 42–44
acceleration and, 44
calculating, 131, 132, 134–135
controlling, 1, 2
in dc-motor drive, 60–61
in doubly fed induction 

generators, 113
inductances and, 44
in motor model, 74
in motor model with d-axis 

aligned along rotor flux linkage �
λr-axis, 81–82

net, on the rotor, 44
in permanent-magnet synchronous 

motor drives, 145
plotting, 53, 54
on rotor d-axis winding, 42–43, 

42
on rotor q-axis winding, 43, 44
in salient-pole synchronous 

machines, 154
space vector equations and, 17
speed, position control, 

and, 72–75
steady-state, 106
in switched-reluctance motor 

drives, 159–161, 159, 162, 
164

See also Torque

Encoderless operation
of induction-motor drives, 3 (see 

also Direct torque control 
(DTC))

of switched-reluctance motor 
drives, 166

Energy conversion factor, 165

Factory automation, 59
Feedback control systems, 2
Field distributions, space vectors 

representing, 16–17, 16
Flux

dq winding analysis and, 23, 30
obtaining, with voltages as 

inputs, 40–41, 41
See also Magnetic flux

Flux currents, in doubly fed 
induction generators, 112

Flux density, 10
rotor, 61, 84

Flux-density distributions, 8, 11
Flux linkages, 18–21

calculating, 50–51, 55
in current-excited transformer 

with secondary 
short-circuited, 62–63

in doubly fed induction 
generators, 112

dq-winding currents from, 
47–48

of dq windings in terms of their 
currents, 36

magnetic, 11
in permanent-magnet synchronous 

motor drives, 144
of phase-a, 12
in salient-pole synchronous 

machines, 153
in switched-reluctance motor 

drives, 158, 159, 164, 166



INDEX  173

symbol, xvi
See also Rotor flux linkage; Stator 

flux linkage
Flux weakening,, dq-based dynamic 

controller and, 148
Four-phase switched reluctance 

drive, power converter for, 165, 
165

Friction torque, 44

Hybrid-electric vehicles, 1
Hysteresis control, 75–76, 75
Hysteretic band, direct torque 

control and, 136, 139
Hysteretic converter, 147

Indirect vector control, in rotor flux 
reference frame, 84–94, 85

initial start-up, 89
PI controllers, designing, 90–92
speed and position control loops 

and, 86–89
stator voltages, calculating, 89–90

Induced back-EMF, for switched-
reluctance motor 
drives, 161–162

Inductance
electromagnetic torque and, 44
in salient-pole synchronous 

machines, 152
single-phase magnetizing, 9–10, 

10, 12
See also Magnetizing inductance; 

Mutual inductance
Induction machine equations in 

phase quantities, 6–25
dq-winding analysis of induction 

machines, 22–25
equivalent windings in a squirrel-

cage rotor, 13–14
flux linkages, 18–21

mutual inductances between the 
stator and the rotor phase 
windings, 15

sinusoidally distributed stator 
windings, 6–9

space vectors, 15–18
stator and rotor voltage equations 

in terms of space vectors, 21
stator inductances (rotor 

open-circuited), 9–12
Induction machines, dynamic 

analysis of in terms of dq 
windings, 28–56

choice of dq winding 
speed, 41–42

computer simulation, 47–56
d- and q-axis equivalent 

circuits, 45–46
dq winding representation, 28–33
electrodynamics, 44–45
electromagnetic torque 

and, 42–44
mathematical relationships of dq 

windings, 33–41
relationship between dq windings 

and per-phase phasor-domain 
equivalent circuit in balanced 
sinusoidal steady state, 46–47

Induction motor, 2, 3
encoderless operation of (see 

Direct torque control (DTC))
parameters, xvi
specifications for “test,” 3–4
vector control of (see Vector 

control of induction-motor 
drives)

Induction motor model computer 
simulation, 47–56, 49

initial conditions, 
calculating, 48–56

phasor analysis, 49–56



174  INDEX

Instantaneous waveforms, switched-
reluctance motor drives 
and, 162–164, 162

Inverse-transformation, of stator 
currents, 73–74

Inverters
current-regulated pulse-width 

modulated, 79, 85, 99, 100
pulse-width modulated, 121
switch-modulated, 120, 120
See also Space vector pulse 

width-modulated (SV-PWM) 
inverters

Kirchhoff’s current law, 18

Leakage factor, 90
Leakage flux

in current-excited transformer 
with secondary short-
circuited, 63–64, 65

phase-a, 9
step change in torque and, 69

Leakage inductance, 9–10, 10, 152
of equivalent windings, 31, 32
of rotor phase, 13–14

Leakage subscript, xv
Line-line voltages, limits on, 128
Load torque

acceleration and, 44
calculating, 50–53, 56

Magnetic flux linkage, 11
Magnetic saturation, switched-

reluctance motor drives 
and, 158, 164–165, 164

Magnetizing flux, 9, 11
in current-excited transformer 

with secondary 
short-circuited, 63

step change in torque and, 69

Magnetizing inductance
per-phase, 12, 13
of rotor phase, 13
single-phase, 9–10, 10, 12

Magnetizing subscript, xv
Magnetomotive force (mmf) space 

vectors, 15–16, 15, 29, 61
Mathematical description of vector 

control
indirect vector control in rotor 

flux reference frame,  
84–94

motor model with the d-axis 
aligned along the rotor flux 
linkage 

�
λr-axis, 79–95, 80, 

83
Mathematical relationships of dq 

windings, at arbitrary 
speed, 33–41

MATLAB, xiv, 3
Mechanical subscript, xv
mmf. See Magnetomotive force 

(mmf) space vectors
Motor model

with d-axis aligned along rotor 
flux linkage 

�
λr-axis, 79–84, 80, 

83
for vector control, 74–75

Multi-pole machine, peak conductor 
density in, 7

Mutual inductance, 11, 11
between dq windings on stator 

and rotor, 32–33, 33
between stator and rotor phase 

windings, 15

Nonsalient-pole synchronous 
machines, 143–151

Park’s transformation, 28
Peak values, symbols for, xv



INDEX  175

Permanent-magnet ac drives, 2–3
Permanent-magnet synchronous 

machine, 144
Permanent-magnet synchronous 

motor drives, vector control 
of, 143–156

d-q analysis of permanent magnet 
synchronous machines,  
143–151

salient-pole synchronous 
machines, 151–155, 151

Per-phase magnetizing 
inductance, 12, 13

Per-phase phasor-domain equivalent 
circuit

dq circuits and, in balanced 
sinusoidal steady state, 145–147, 
146

dq windings and, in balanced 
sinusoidal steady state, 46–47, 
47

Phase a
flux linkage of, 12
sinusoidally distributed stator 

windings for, 6–8, 7
switched-reluctance motor drive 

positions for, 158
Phase b, sinusoidally distributed 

stator windings for, 8–9
Phase c, sinusoidally distributed 

stator windings for, 8–9
Phase currents, dq windings for, 

29
Phase quantities

analysis of induction machine 
in, 23–25

transformation into dq winding 
quantities, 34–35, 34

Phase voltage, limits on, 128
Phasor analysis, induction motor 

model simulation, 49–56

Phasor diagram, for salient-pole 
synchronous machines, 155

Phasors
space vectors and, in sinusoidal 

steady state, 17–18, 17
symbols, xv

PI. See Proportional-integral (PI) 
amplifier; Proportional-integral 
(PI) controller

PMAC drives, 75
Position control, 1–4

torque, speed, and, 72–75
Position control loops, 72,  

86–89
Position of rotor field, 61
Power electronics converter, 91
Power-processing unit (PPU), 2, 

75–76
current-regulated, 85–86, 87
induction motor drive with 

current-regulated, 72–75, 73
switched-reluctance motor drives 

and, 163, 163, 165, 165
switching frequency and, 86, 89
vector control and, 60–61

Proportional-integral (PI) 
amplifier, 72–73

Proportional-integral (PI) 
controller, 148

designing, 90–92, 92
direct torque control and, 130
switched-reluctance motor drives 

and, 166
PSpice, 3
Pulse-width modulated (PWM) 

inverter
current-regulated, 79, 85, 99, 100
objective of, 121
See also Space vector pulse 

width-modulated (SV-PWM) 
inverters



176  INDEX

q-axis, flux linkages and currents in 
doubly fed induction 
generators, 112

q-axis equivalent circuits, 45–46, 45
q-axis winding representation, 66–67, 

66
q-winding current, 85

Radial field distribution, 8
Reference current, 72–73
Reference phase currents, 85
Reference voltages, 91
Resistance

of equivalent windings, 14, 31, 32
phase winding, 161, 166
rotor, 71, 97, 100, 106–107, 111, 134
secondary winding, 63

Robotics, 59
Rotor

in doubly fed induction 
generator, 109

mutual inductance between dq 
windings on, 32–33, 33

net torque on, 44
subscripts, xv
in surface-mounted permanent 

magnets, 143
See also Squirrel-cage rotor

Rotor αβ windings, dq winding 
voltages and, 39–40, 39

Rotor angle, 28, 83, 84, 89, 157, 161, 
164

Rotor angle symbol, xvi
Rotor axis-A, 17
Rotor current space vector, 21, 

31–32
Rotor d-axis, torque on, 42–43, 42
Rotor dq winding, 31–32
Rotor dq winding flux linkages, in 

salient-pole synchronous 
machines, 153

Rotor dq winding voltages, in 
salient-pole synchronous 
machines, 153

Rotor-field angle, 89
Rotor flux, 89

steady state analysis of, 103–104
Rotor flux density, 61, 84
Rotor flux linkage, 19–21, 20

d-axis aligned along, 79–84, 80
dq-winding currents from, 47–48

Rotor flux linkage space vector, 138
calculating, 132, 133–134
calculation of electromagnetic 

torque and, 135
vector control with d-axis aligned 

with the, 67–72, 67–72
Rotor mmf space vector, 31–32, 32
Rotor phase subscripts, xv
Rotor phase windings, mutual 

inductances between, 15
Rotor positions, for switched-

reluctance motor drives, 158, 
163, 166, 166

Rotor power inputs, in doubly fed 
induction generators, 113

Rotor q-axis, torque on, 43, 44
Rotor real and reactive powers, in 

doubly fed induction 
generators, 113

Rotor resistance, 71, 97, 100, 106–107, 
111, 134

Rotor resistance, steady-state error 
and, 97, 101–102, 106–107

Rotor speed
calculation of, 132, 135–136
plotting, 53, 54
symbol for, xvi

Rotor time constant, detuning 
effects due to incorrect, 97–101

Rotor voltage equations, in terms of 
space vectors, 21, 22



INDEX  177

Rotor voltages in doubly fed 
induction generators, 112

Rotor windings, 36
Rotor-windings inductances (stator 

open-circuited), 13–14, 14

Salient-pole synchronous 
machines, 151–155, 151

Secondary winding current, 63
Secondary winding leakage 

flux, 63–64
Secondary winding resistance,  

63
Self-inductance of stator phase 

winding, 9
Simulation software. See Matlab; 

Simulink
Simulink®, xiv, xvi, 3, 4, 25, 51, 53, 83, 

86, 92, 106, 124
Single-phase magnetizing 

inductance, 9–10, 10, 12
Sinusoidally distributed stator 

windings, 6–9, 7
Sinusoidal steady state

dq circuits and per-phase phasor-
domain equivalent circuit in 
balanced, 145–147, 146

dq windings and per-phase 
phasor-domain equivalent 
circuit in, 46–47, 47

phasors and space vectors 
in, 17–18, 17

space vector diagram in, 154–155, 
155

Slip speed
calculation of, 132, 135–136
in motor model with d-axis 

aligned along rotor flux linkage �
λr-axis, 81

steady state estimated value 
and, 101–103

Space vector diagram in steady state, 
salient-pole synchronous 
machines and, 154–155, 155

Space vector pulse width-modulated 
(SV-PWM) inverters, 92, 93–94, 
95, 119–128

computer simulation of, 124–125, 
126–127

limit on amplitude of stator 
voltage space vector, 125–128, 
128

synthesis of stator voltage space 
vector, 119–124

Space vectors
magnetomotive force, 15–16, 15, 

29, 61
phasors and, in sinusoidal steady 

state, 17–18, 17
review of, 15–18
rotor current, 21, 31–32
stator and rotor voltage equations 

in terms of, 21
stator current, 16–17, 16, 21, 29–30
superscripts and, 33–34
symbols, xv
See also Rotor flux linkage space 

vector; Stator flux linkage space 
vector; Stator voltage space 
vector

Speed
symbols for, xvi
torque, position control, 

and, 72–75
See also Rotor speed; Slip speed

Speed control, 1–4
of switched-reluctance motor 

drives, 166–167, 167
Speed control loops, 86–89, 88
Squirrel-cage rotor

equivalent phase voltages in, 21
equivalent windings in, 6, 13–14



178  INDEX

rotor voltage in, 133
slip speed in, 81

SRM. See Switched-reluctance motor 
(SRM) drives

Stator
in doubly fed induction 

generator, 109
mutual inductance between dq 

windings on, 32–33, 33
subscripts, xv

Stator αβ windings, dq winding 
voltages and, 37–39, 37

Stator currents, transformation and 
inverse-transformation 
of, 73–74

Stator current space vector, 16–17, 
16, 21, 29–30

Stator dq current vector, 103
Stator dq winding flux linkages, in 

salient-pole synchronous 
machines, 153

Stator dq windings
inductance and, 152
representation, 29–31

Stator dq winding voltages
in permanent-magnet synchronous 

motor drives, 144–145
in salient-pole synchronous 

machines, 153
Stator flux amplitude, direct torque 

control and, 136
Stator flux linkage, 18–19, 19, 

20–21
calculation of electromagnetic 

torque and, 134–135
dq-winding currents from, 

47–48
Stator flux linkage space 

vector, 137–138

calculating, 131, 132, 134
calculation of electromagnetic 

torque and, 134
d-axis aligned with, 139

Stator inductances, 9–12
Stator mutual-inductance, 11, 11
Stator phase subscripts, xv
Stator phase windings, mutual 

inductances between, 15
Stator power inputs, in doubly fed 

induction generators, 112
Stator real and reactive powers, in 

doubly fed induction 
generators, 113

Stator single-phase magnetizing 
inductance, 9–10, 10, 12

Stator voltage equations, in terms of 
space vectors, 21, 22

Stator voltages
calculating, 89–90
in doubly fed induction 

generators, 111, 116–117
Stator voltage space vector

calculation of, 136–138
limit on amplitude of, 125–128, 

127
sectors, 136–137, 137, 137(table)
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drives, 157–167

control in motoring mode, 166–
167, 167

electromagnetic torque and, 159–
161, 159

four-phase 8/6 switched reluctance 
machine, 157, 158, 163, 165

induced back-EMF and,  
161–162

instantaneous waveforms 
and, 162–164, 162

power-processing units for, 165, 
165

role of magnetic saturation 
in, 164–165, 164

rotor position for encoderless 
operation in, 166, 166

switched-reluctance motor, 157–
162, 158

Switching frequency
direct torque control and 

constant, 139
in power-processing unit, 86,  

89
Switch-mode inverter, 120, 120
Symbols, xv–xvi

Test induction motor, 138
specifications for, 3–4

Theorem of constant flux linkage,  
69

Three-phase, sinusoidally distributed 
stator windings, 8–9, 8

Tolerance-band control, 86
Torque

dq winding analysis and, 23, 30
friction, 44
speed and position control 

and, 59

step change in, 68–72, 69
See also Electromagnetic torque; 

Load torque
Torque control, 1–4
Torque factor, 104, 105
Torque loop, 72
Torque per ampere, maximum, 1
Torque reference, 73
Torque reference signal, 130
Transformation

dq, xiii, 22, 141
Park’s, 28
of stator currents, 34, 73–74

Transformation matrix, 34, 35,  
36

Transformer equivalent circuit, in 
current-excited transformer 
with secondary short-
circuited, 65–66, 65

Two coupled-coil system,  
23–24

Variables that are functions of time, 
symbols for, xv

Vector control
detuning effects in, 97–107
of doubly fed induction 

generators, 109–117
indirect (see Indirect vector 

control, in rotor flux reference 
frame)

principles of, 28
Vector control in induction 

machines, mathematical 
description of, 79–95

indirect vector control in rotor 
flux reference frame, 84–94

motor model with the d-axis 
aligned along the rotor flux 
linkage 

�
λr-axis, 79–84, 80, 83
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Vector control of induction-motor 
drives, 59–76, 61

current-excited transformer with 
shorted secondary and, 62–66, 
62

with current-regulated power-
processing unit, 72–75, 73

d- and q-axis winding 
representation, 66–67

with d-axis aligned with rotor 
flux, 67–72

emulation of dc and brushless dc 
drive performance, 59–62

estimated motor model,  
74–75

power-processing unit, 75–76
torque, speed, and position 

control and, 72–75
Vector control of permanent-magnet 

synchronous motor 
drives, 143–156

d-q analysis of permanent magnet 
synchronous machines, 143–151

salient-pole synchronous 
machines, 151–155, 151

Voltage impulse, current-excited 
transformer with secondary 
short-circuited and, 64–65

Voltages
rotor, 112
stator, 89–90, 111, 116–117

Voltage vectors, 121, 121, 122–123, 
122. See also Stator voltage 
space vector

Wind-electric systems, 1
Wind energy, doubly fed induction 

generators and, 109
Winding voltages, in salient-pole 

synchronous machines, 153–154

Zero vectors, 121–123, 137–138
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