
</>

LEARNING PATH

Javascript: Object Oriented
Programming
Build sophisticated web applications by mastering the
art of Object-Oriented Javascript

Javascript: Object Oriented
Programming

Build sophisticated web applications by mastering the
art of Object-Oriented Javascript

A course in three modules

BIRMINGHAM - MUMBAI

Javascript: Object Oriented Programming

Copyright © 2016 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course
is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Published on: August 2016

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78712-359-5

www.packtpub.com

Credits

Authors
Ved Antani

Gastón C. Hillar

Stoyan Stefanov

Kumar Chetan Sharma

Reviewers
Ivano Malavolta

Róman Joos

Hugo Solis

Kumar Chetan Sharma

Alex R. Young

Content Development Editor
Deepti Thore

Production Coordinator
Arvindkumar Gupta

[i]

Preface
It may seem that everything that needs to be written about JavaScript has already
been written. However, JavaScript is changing rapidly. ECMAScript 6 has the
potential to transform the language and how we code in it. Node.js has changed
the way we write servers in JavaScript. Newer ideas such as React and Flux will
drive the next iteration of the language. If you are already an experienced JavaScript
developer, you will realize that modern JavaScript is vastly different from the
language that most people have known. Tools are more powerful and slowly
becoming an integral part of the development workflow.

Object-oriented programming, also known as OOP, is a required skill in absolutely
any modern software developer job. It makes a lot of sense because object-oriented
programming allows you to maximize code reuse and minimize the maintenance
costs. However, learning object-oriented programming is challenging because it
includes too many abstract concepts that require real-life examples to make it
easy to understand.

JavaScript has moved from being mostly used in browsers for client-side
technologies to being used even on server side.

This course will help you change some common coding practices and empower
you by giving you the tools you need for more efficient development. We'll look at
implementing these principles to build sophisticated web applications.

We hope that you enjoy this course as much as we enjoyed developing it.

Preface

[ii]

What this learning path covers
Module 1, Mastering Javascript, provides you with a detailed overview of the
language's fundamentals and some of the modern tools and libraries, such as jQuery,
Underscore.js, and Jasmine.

Module 2 Learning Object-Oriented Programming, helps you to learn how to capture
objects from real-world elements and create object-oriented code that represents them.

Module 3, Object-Oriented JavaScript - Second Edition, This module doesn't assume any
prior knowledge of JavaScript and works from the ground up to give you a thorough
understanding of the language What you need for this learning path. Exercises at the
end of the chapters help you assess your understanding.

What you need for this learning path
• A computer with Windows 7 or higher, Linux, or Mac OS X installed.
• The latest version of the Google Chrome or Mozilla Firefox browser.
• A text editor of your choice. Sublime Text, vi, Atom, or Notepad++ would be

ideal. The choice is entirely yours
• A computer with at least an Intel Core i3 CPU or equivalent with 4 GB RAM,

running on Windows 7 or a higher version, Mac OS X Mountain Lion or a
higher version, or any Linux version that is capable of running Python 3.4,
and a browser with JavaScript support.

• You will need Python 3.4.3 installed on your computer. You can work with
your favorite editor or use any Python IDE that is compatible with the
mentioned Python version.

• In order to work with the C# examples, you will need Visual Studio 2015
or 2013.

• You can use the free Express editions to run all the examples. If you aren't
working on Windows, you can use Xamarin Studio 5.5 or higher.

• In order to work with the JavaScript examples, you will need web browsers
such as Chrome 40.x or higher, Firefox 37.x or higher, Safari 8.x or higher,
Internet Explorer 10 or higher that provides a JavaScript console

• You need a modern browser—Google Chrome or Firefox are
recommended—and an optional Node.js setup. The latest version of Firefox
comes with web developer tools, but Firebug is highly recommended. To edit
JavaScript you can use any text editor of your choice.

Preface

[iii]

Who this learning path is for
JavaScript developers looking to enhance their web developments skills by learning
object-oriented programming.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this course—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the course's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt course, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this course from your account at
http://www.packtpub.com. If you purchased this course elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the course in the Search box.
5. Select the course for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this course from.
7. Click on Code Download.

Preface

[iv]

You can also download the code files by clicking on the Code Files button on the
course's webpage at the Packt Publishing website. This page can be accessed by
entering the course's name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at https://github.com/
PacktPublishing/Object-oriented-programming-for-JavaScript-developers.
We also have other code bundles from our rich catalog of books, videos, and courses
available at https://github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our courses—maybe a mistake in the text
or the code—we would be grateful if you could report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this course. If you find any errata, please report them by visiting http://www.
packtpub.com/submit-errata, selecting your course, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the course in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

https://github.com/PacktPublishing/Object-oriented-programming-for-JavaScript-developers
https://github.com/PacktPublishing/Object-oriented-programming-for-JavaScript-developers

Preface

[v]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this course, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[i]

Course Module 1: Mastering JavaScript

Chapter 1: JavaScript Primer 3
A little bit of history 4
How to use this book 5
Hello World 8
Summary 45

Chapter 2: Functions, Closures, and Modules 47
A function literal 48
Functions as data 51
Scoping 52
Function declarations versus function expressions 60
The arguments parameter 62
Anonymous functions 66
Closures 68
Timers and callbacks 71
Private variables 71
Loops and closures 72
Modules 73
Summary 75

Chapter 3: Data Structures and Manipulation 77
Regular expressions 78
Exact match 79
Match from a class of characters 79
Repeated occurrences 83
Beginning and end 86

Table of Contents

[ii]

Backreferences 86
Greedy and lazy quantifiers 87
Arrays 88
Maps 97
Sets 97
A matter of style 99
Summary 99

Chapter 4: Object-Oriented JavaScript 101
Understanding objects 101
Instance properties versus prototype properties 106
Inheritance 112
Getters and setters 119
Summary 122

Chapter 5: JavaScript Patterns 123
Design patterns 124
The namespace pattern 125
The module pattern 126
The factory pattern 133
The mixin pattern 135
The decorator pattern 136
The observer pattern 139
JavaScript Model-View-* patterns 141
The Model-View-Presenter pattern 143
Model-View-ViewModel 144
Summary 145

Chapter 6: Testing and Debugging 147
Unit testing 148
JavaScript debugging 156
Summary 164

Chapter 7: ECMAScript 6 165
Shims or polyfills 166
Transpilers 166
ES6 syntax changes 167
Summary 181

Chapter 8: DOM Manipulation and Events 183
DOM 183
Chaining 193
Traversal and manipulation 193
Working with browser events 195

Table of Contents

[iii]

Propagation 196
jQuery event handling and propagation 197
Event delegation 200
The event object 201
Summary 202

Chapter 9: Server-Side JavaScript 203
An asynchronous evented-model in a browser 204
Callbacks 208
Timers 212
EventEmitters 213
Modules 214
npm 217
JavaScript performance 220
Summary 224

Course Module 2: Learning Object-Oriented
Programming

Chapter 1: Objects Everywhere 227
Recognizing objects from nouns 227
Generating blueprints for objects 230
Recognizing attributes/fields 231
Recognizing actions from verbs – methods 232
Organizing the blueprints – classes 235
Object-oriented approaches in Python, JavaScript, and C# 237
Summary 238

Chapter 2: Classes and Instances 239
Understanding classes and instances 239
Understanding constructors and destructors 240
Declaring classes in Python 242
Customizing constructors in Python 243
Customizing destructors in Python 245
Creating instances of classes in Python 247
Declaring classes in C# 249
Customizing constructors in C# 249
Customizing destructors in C# 252
Creating instances of classes in C# 253
Understanding that functions are objects in JavaScript 255
Working with constructor functions in JavaScript 256

Table of Contents

[iv]

Creating instances in JavaScript 260
Summary 261

Chapter 3: Encapsulation of Data 263
Understanding the different members of a class 263
Protecting and hiding data 265
Working with properties 266
Understanding the difference between mutability and immutability 267
Encapsulating data in Python 269
Encapsulating data in C# 279
Encapsulating data in JavaScript 292
Summary 300

Chapter 4: Inheritance and Specialization 301
Using classes to abstract behavior 301
Understanding inheritance 304
Understanding method overloading and overriding 307
Understanding operator overloading 307
Taking advantage of polymorphism 308
Working with simple inheritance in Python 308
Working with simple inheritance in C# 317
Working with the prototype-based inheritance in JavaScript 330
Summary 337

Chapter 5: Interfaces, Multiple Inheritance, and Composition 339
Understanding the requirement to work with multiple base classes 339
Working with multiple inheritance in Python 341
Interfaces and multiple inheritance in C# 354
Working with composition in JavaScript 369
Summary 384

Chapter 6: Duck Typing and Generics 385
Understanding parametric polymorphism and duck typing 385
Working with duck typing in Python 386
Working with generics in C# 396
Working with duck typing in JavaScript 411
Summary 420

Chapter 7: Organization of Object-Oriented Code 421
Thinking about the best ways to organize code 421
Organizing object-oriented code in Python 424
Organizing object-oriented code in C# 433

Table of Contents

[v]

Organizing object-oriented code in JavaScript 449
Summary 456

Chapter 8: Taking Full Advantage of Object-Oriented
Programming 457

Putting together all the pieces of the object-oriented puzzle 457
Refactoring existing code in Python 460
Refactoring existing code in C# 467
Refactoring existing code in JavaScript 474
Summary 478

Course Module 3: Object-Oriented
JavaScript - Second Edition

Chapter 1: Object-oriented JavaScript 481
A bit of history 482
ECMAScript 5 486
Object-oriented programming 486
Setting up your training environment 487
Summary 492

Chapter 2: Primitive Data Types, Arrays, Loops, and Conditions 493
Variables 493
Operators 496
Primitive data types 500
Strings 505
Booleans 508
Logical operators 509
Comparison 513
Primitive data types recap 516
Arrays 517
Conditions and loops 520
Code blocks 522
Switch 526
Loops 528
Comments 533
Summary 533
Exercises 534

Table of Contents

[vi]

Chapter 3: Functions 535
What is a function? 536
Scope of variables 544
Functions are data 547
Closures 557
Summary 566
Exercises 567

Chapter 4: Objects 569
From arrays to objects 569
Built-in objects 584
Summary 620
Exercises 621

Chapter 5: Prototype 625
The prototype property 626
Using the prototype's methods and properties 627
Augmenting built-in objects 636
Summary 641
Exercises 641

Chapter 6: Inheritance 643
Prototype chaining 643
Inheriting the prototype only 649
Uber – access to the parent from a child object 653
Isolating the inheritance part into a function 654
Copying properties 656
Heads-up when copying by reference 658
Objects inherit from objects 660
Deep copy 662
object() 664
Using a mix of prototypal inheritance and copying properties 665
Multiple inheritance 667
Parasitic inheritance 669
Borrowing a constructor 670
Summary 673
Case study – drawing shapes 677
Exercises 683

Chapter 7: The Browser Environment 685
Including JavaScript in an HTML page 685
BOM and DOM – an overview 686
BOM 687

Table of Contents

[vii]

DOM 699
Events 722
XMLHttpRequest 732
Summary 739
Exercises 740

Chapter 8: Coding and Design Patterns 743
Coding patterns 744
Design patterns 761
Summary 771

Chapter 9: Reserved Words 773
Keywords 773
Future reserved words 774
Previously reserved words 775

Chapter 10: Built-in Functions 777
Chapter 11: Built-in Objects 781

Object 781
Array 790
Function 797
Boolean 799
Number 799
String 801
Date 805
Math 811
RegExp 813
Error objects 815
JSON 815

Chapter 12: Regular Expressions 819
Biblography 825

Module 1

Mastering JavaScript

Explore and master modern JavaScript techniques in order
to build large-scale web applications

[3]

JavaScript Primer
It is always difficult to pen the first few words, especially on a subject like JavaScript.
This difficulty arises primarily because so many things have been said about this
language. JavaScript has been the Language of the Web—lingua franca, if you will,
since the earliest days of the Netscape Navigator. JavaScript went from a tool of the
amateur to the weapon of the connoisseur in a shockingly short period of time.

JavaScript is the most popular language on the web and open source ecosystem.
http://githut.info/ charts the number of active repositories and overall
popularity of the language on GitHub for the last few years. JavaScript's popularity
and importance can be attributed to its association with the browser. Google's V8
and Mozilla's SpiderMonkey are extremely optimized JavaScript engines that power
Google Chrome and Mozilla Firefox browsers, respectively.

Although web browsers are the most widely used platforms for JavaScript, modern
databases such as MongoDB and CouchDB use JavaScript as their scripting and
query language. JavaScript has become an important platform outside browsers
as well. Projects such as Node.js and io.js provide powerful platforms to develop
scalable server environments using JavaScript. Several interesting projects are
pushing the language capabilities to its limits, for example, Emscripten (http://
kripken.github.io/emscripten-site/) is a Low-Level Virtual Machine (LLVM)-
based project that compiles C and C++ into highly optimizable JavaScript in an asm.
js format. This allows you to run C and C++ on the web at near native speed.

JavaScript is built around solid foundations regarding, for example, functions,
dynamic objects, loose typing, prototypal inheritance, and a powerful object
literal notation.

http://githut.info/
http://kripken.github.io/emscripten-site/
http://kripken.github.io/emscripten-site/

JavaScript Primer

[4]

While JavaScript is built on sound design principles, unfortunately, the language
had to evolve along with the browser. Web browsers are notorious in the way
they support various features and standards. JavaScript tried to accommodate all
the whims of the browsers and ended up making some very bad design decisions.
These bad parts (the term made famous by Douglas Crockford) overshadowed the
good parts of the language for most people. Programmers wrote bad code, other
programmers had nightmares trying to debug that bad code, and the language
eventually got a bad reputation. Unfortunately, JavaScript is one of the most
misunderstood programming languages (http://javascript.crockford.com/
javascript.html).

Another criticism leveled at JavaScript is that it lets you get things done without
you being an expert in the language. I have seen programmers write exceptionally
bad JavaScript code just because they wanted to get the things done quickly and
JavaScript allowed them to do just this. I have spent hours debugging very bad
quality JavaScript written by someone who clearly was not a programmer. However,
the language is a tool and cannot be blamed for sloppy programming. Like all crafts,
programming demands extreme dedication and discipline.

A little bit of history
In 1993, the Mosaic browser of National Center for Supercomputing Applications
(NCSA) was one of the first popular web browsers. A year later, Netscape
Communications created the proprietary web browser, Netscape Navigator. Several
original Mosaic authors worked on Navigator.

In 1995, Netscape Communications hired Brendan Eich with the promise of letting
him implement Scheme (a Lisp dialect) in the browser. Before this happened,
Netscape got in touch with Sun Microsystems (now Oracle) to include Java in the
Navigator browser.

Due to the popularity and easy programming of Java, Netscape decided that a
scripting language had to have a syntax similar to that of Java. This ruled out
adopting existing languages such as Python, Tool Command Language (TCL), or
Scheme. Eich wrote the initial prototype in just 10 days (http://www.computer.
org/csdl/mags/co/2012/02/mco2012020007.pdf), in May 1995. JavaScript's
first code name was Mocha, coined by Marc Andreessen. Netscape later changed
it to LiveScript, for trademark reasons. In early December 1995, Sun licensed the
trademark Java to Netscape. The language was renamed to its final name, JavaScript.

http://javascript.crockford.com/javascript.html
http://javascript.crockford.com/javascript.html
http://www.computer.org/csdl/mags/co/2012/02/mco2012020007.pdf
http://www.computer.org/csdl/mags/co/2012/02/mco2012020007.pdf

Chapter 1

[5]

How to use this book
This book is not going to help if you are looking to get things done quickly. This
book is going to focus on the correct ways to code in JavaScript. We are going to
spend a lot of time understanding how to avoid the bad parts of the language and
build reliable and readable code in JavaScript. We will skirt away from sloppy
features of the language just to make sure that you are not getting used to them—if
you have already learned to code using these habits, this book will try to nudge you
away from this. There will be a lot of focus on the correct style and tools to make
your code better.

Most of the concepts in this book are going to be examples and patterns from real-
world problems. I will insist that you code each of the snippets to make sure that your
understanding of the concept is getting programmed into your muscle memory. Trust
me on this, there is no better way to learn programming than writing a lot of code.

Typically, you will need to create an HTML page to run an embedded JavaScript
code as follows:

<!DOCTYPE html>
<html>
<head>
 <script type="text/javascript" src="script.js"></script>
 <script type="text/javascript">
 var x = "Hello World";
 console.log(x);
 </script>
</head>
<body>
</body>
</html>

This sample code shows two ways in which JavaScript is embedded into the HTML
page. First, the <script> tag in <head> imports JavaScript, while the second
<script> tag is used to embed inline JavaScript.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

JavaScript Primer

[6]

You can save this HTML page locally and open it in a browser. On Firefox, you can
open the Developer console (Firefox menu | Developer | Web Console) and you
can see the "Hello World" text on the Console tab. Based on your OS and browser
version, the screen may look different:

You can run the page and inspect it using Chrome's Developer Tool:

A very interesting thing to notice here is that there is an error displayed on the
console regarding the missing .js file that we are trying to import using the
following line of code:

<script type="text/javascript" src="script.js"></script>

Using browser developer consoles or an extension such as Firebug can be very useful
in debugging error conditions in the code. We will discuss in detail the debugging
techniques in later chapters.

Creating such HTML scaffolds can be tedious for every exercise in this book. Instead,
we want to use a Read-Eval-Print-Loop (REPL) for JavaScript. Unlike Python,
JavaScript does not come packaged with an REPL. We can use Node.js as an REPL. If
you have Node.js installed on your machine, you can just type node on the command
line and start experimenting with it. You will observe that Node REPL errors are not
very elegantly displayed.

Chapter 1

[7]

Let's see the following example:

EN-VedA:~$ node

>function greeter(){
 x="World"l

SyntaxError: Unexpected identifier

 at Object.exports.createScript (vm.js:44:10)

 at REPLServer.defaultEval (repl.js:117:23)

 at bound (domain.js:254:14)

 …

After this error, you will have to restart. Still, it can help you try out small fragments
of code a lot faster.

Another tool that I personally use a lot is JS Bin (http://jsbin.com/). JS Bin
provides you with a great set of tools to test JavaScript, such as syntax highlighting
and runtime error detection. The following is a screenshot of JS Bin:

Based on your preference, you can pick the tool that makes it easier to try out the
code samples. Regardless of which tool you use, make sure that you type out every
exercise in this book.

http://jsbin.com/

JavaScript Primer

[8]

Hello World
No programming language should be published without a customary Hello World
program—why should this book be any different?

Type (don't copy and paste) the following code in JS Bin:

function sayHello(what) {
 return "Hello " + what;
}
console.log(sayHello("world"));

Your screen should look something as follows:

An overview of JavaScript
In a nutshell, JavaScript is a prototype-based scripting language with dynamic
typing and first-class function support. JavaScript borrows most of its syntax from
Java, but is also influenced by Awk, Perl, and Python. JavaScript is case-sensitive
and white space-agnostic.

Comments
JavaScript allows single line or multiple line comments. The syntax is similar to
C or Java:

// a one line comment

/* this is a longer,
 multi-line comment
 */

/* You can't /* nest comments */ SyntaxError */

Chapter 1

[9]

Variables
Variables are symbolic names for values. The names of variables, or identifiers, must
follow certain rules.

A JavaScript variable name must start with a letter, underscore (_), or dollar sign
($); subsequent characters can also be digits (0-9). As JavaScript is case sensitive,
letters include the characters A through Z (uppercase) and the characters a through z
(lowercase).

You can use ISO 8859-1 or Unicode letters in variable names.

New variables in JavaScript should be defined with the var keyword. If you declare a
variable without assigning a value to it, its type is undefined by default. One terrible
thing is that if you don't declare your variable with the var keyword, they become
implicit globals. Let me reiterate that implicit globals are a terrible thing—we will
discuss this in detail later in the book when we discuss variable scopes and closures,
but it's important to remember that you should always declare a variable with the
var keyword unless you know what you are doing:

var a; //declares a variable but its undefined
var b = 0;
console.log(b); //0
console.log(a); //undefined
console.log(a+b); //NaN

The NaN value is a special value that indicates that the entity is not a number.

Constants
You can create a read-only named constant with the const keyword. The constant
name must start with a letter, underscore, or dollar sign and can contain alphabetic,
numeric, or underscore characters:

const area_code = '515';

A constant cannot change the value through assignment or be redeclared, and it has
to be initialized to a value.

JavaScript Primer

[10]

JavaScript supports the standard variations of types:

• Number
• String
• Boolean
• Symbol (new in ECMAScript 6)
• Object:

 ° Function
 ° Array
 ° Date
 ° RegExp

• Null
• Undefined

Number
The Number type can represent both 32-bit integer and 64-bit floating point values.
For example, the following line of code declares a variable to hold an integer value,
which is defined by the literal 555:

var aNumber = 555;

To define a floating point value, you need to include a decimal point and one digit
after the decimal point:

var aFloat = 555.0;

Essentially, there's no such thing as an integer in JavaScript. JavaScript uses a 64-bit
floating point representation, which is the same as Java's double.

Hence, you would see something as follows:

EN-VedA:~$ node

> 0.1+0.2

0.30000000000000004

> (0.1+0.2)===0.3

false

Chapter 1

[11]

I recommend that you read the exhaustive answer on Stack Overflow (http://
stackoverflow.com/questions/588004/is-floating-point-math-broken) and
(http://floating-point-gui.de/), which explains why this is the case. However,
it is important to understand that floating point arithmetic should be handled with
due care. In most cases, you will not have to rely on extreme precision of decimal
points but if you have to, you can try using libraries such as big.js (https://
github.com/MikeMcl/big.js) that try to solve this problem.

If you intend to code extremely precise financial systems, you should represent $
values as cents to avoid rounding errors. One of the systems that I worked on used
to round off the Value Added Tax (VAT) amount to two decimal points. With
thousands of orders a day, this rounding off amount per order became a massive
accounting headache. We needed to overhaul the entire Java web service stack and
JavaScript frontend for this.

A few special values are also defined as part of the Number type. The first two are
Number.MAX_VALUE and Number.MIN_VALUE, which define the outer bounds of the
Number value set. All ECMAScript numbers must fall between these two values,
without exception. A calculation can, however, result in a number that does not
fall in between these two numbers. When a calculation results in a number greater
than Number.MAX_VALUE, it is assigned a value of Number.POSITIVE_INFINITY,
meaning that it has no numeric value anymore. Likewise, a calculation that results
in a number less than Number.MIN_VALUE is assigned a value of Number.NEGATIVE_
INFINITY, which also has no numeric value. If a calculation returns an infinite value,
the result cannot be used in any further calculations. You can use the isInfinite()
method to verify if the calculation result is an infinity.

Another peculiarity of JavaScript is a special value called NaN (short for Not a
Number). In general, this occurs when conversion from another type (String, Boolean,
and so on) fails. Observe the following peculiarity of NaN:

EN-VedA:~ $ node

> isNaN(NaN);

true

> NaN==NaN;

false

> isNaN("elephant");

true

> NaN+5;

NaN

http://stackoverflow.com/questions/588004/is-floating-point-math-broken
http://stackoverflow.com/questions/588004/is-floating-point-math-broken
http://floating-point-gui.de/
https://github.com/MikeMcl/big.js
https://github.com/MikeMcl/big.js

JavaScript Primer

[12]

The second line is strange—NaN is not equal to NaN. If NaN is part of any
mathematical operation, the result also becomes NaN. As a general rule, stay away
from using NaN in any expression. For any advanced mathematical operations, you
can use the Math global object and its methods:

> Math.E

2.718281828459045

> Math.SQRT2

1.4142135623730951

> Math.abs(-900)

900

> Math.pow(2,3)

8

You can use the parseInt() and parseFloat() methods to convert a string
expression to an integer or float:

> parseInt("230",10);

230

> parseInt("010",10);

10

> parseInt("010",8); //octal base

8

> parseInt("010",2); //binary

2

> + "4"

4

With parseInt(), you should provide an explicit base to prevent nasty surprises on
older browsers. The last trick is just using a + sign to auto-convert the "42" string to
a number, 42. It is also prudent to handle the parseInt() result with isNaN(). Let's
see the following example:

var underterminedValue = "elephant";
if (isNaN(parseInt(underterminedValue,2)))
{
 console.log("handle not a number case");
}
else
{
 console.log("handle number case");
}

Chapter 1

[13]

In this example, you are not sure of the type of the value that the
underterminedValue variable can hold if the value is being set from an external
interface. If isNaN() is not handled, parseInt() will cause an exception and the
program can crash.

String
In JavaScript, strings are a sequence of Unicode characters (each character takes 16
bits). Each character in the string can be accessed by its index. The first character
index is zero. Strings are enclosed inside " or '—both are valid ways to represent
strings. Let's see the following:

> console.log("Hippopotamus chewing gum");
Hippopotamus chewing gum
> console.log('Single quoted hippopotamus');
Single quoted hippopotamus
> console.log("Broken \n lines");
Broken
 lines

The last line shows you how certain character literals when escaped with a backslash
\ can be used as special characters. The following is a list of such special characters:

• \n: Newline
• \t: Tab
• \b: Backspace
• \r: Carriage return
• \\: Backslash
• \': Single quote
• \": Double quote

You get default support for special characters and Unicode literals with JavaScript
strings:

> '\xA9'

'©'

> '\u00A9'

'©'

JavaScript Primer

[14]

One important thing about JavaScript Strings, Numbers, and Booleans is that they
actually have wrapper objects around their primitive equivalent. The following
example shows the usage of the wrapper objects:

var s = new String("dummy"); //Creates a String object
console.log(s); //"dummy"
console.log(typeof s); //"object"
var nonObject = "1" + "2"; //Create a String primitive
console.log(typeof nonObject); //"string"
var objString = new String("1" + "2"); //Creates a String object
console.log(typeof objString); //"object"
//Helper functions
console.log("Hello".length); //5
console.log("Hello".charAt(0)); //"H"
console.log("Hello".charAt(1)); //"e"
console.log("Hello".indexOf("e")); //1
console.log("Hello".lastIndexOf("l")); //3
console.log("Hello".startsWith("H")); //true
console.log("Hello".endsWith("o")); //true
console.log("Hello".includes("X")); //false
var splitStringByWords = "Hello World".split(" ");
console.log(splitStringByWords); //["Hello", "World"]
var splitStringByChars = "Hello World".split("");
console.log(splitStringByChars); //["H", "e", "l", "l", "o", " ",
 "W", "o", "r", "l", "d"]
console.log("lowercasestring".toUpperCase()); //"LOWERCASESTRING"
console.log("UPPPERCASESTRING".toLowerCase());
 //"upppercasestring"
console.log("There are no spaces in the end ".trim());
 //"There are no spaces in the end"

JavaScript allows multiline strings also. Strings enclosed within ` (Grave accent—
https://en.wikipedia.org/wiki/Grave_accent) are considered multiline. Let's
see the following example:

> console.log(`string text on first line

string text on second line `);

"string text on first line

string text on second line "

This kind of string is also known as a template string and can be used for string
interpolation. JavaScript allows Python-like string interpolation using this syntax.

https://en.wikipedia.org/wiki/Grave_accent

Chapter 1

[15]

Normally, you would do something similar to the following:

var a=1, b=2;

console.log("Sum of values is :" + (a+b) + " and multiplication is :"
 + (a*b));

However, with string interpolation, things become a bit clearer:

console.log(`Sum of values is :${a+b} and multiplication is :
 ${a*b}`);

Undefined values
JavaScript indicates an absence of meaningful values by two special values—null,
when the non-value is deliberate, and undefined, when the value is not assigned to
the variable yet. Let's see the following example:

> var xl;

> console.log(typeof xl);

undefined

> console.log(null==undefined);

true

Booleans
JavaScript Boolean primitives are represented by true and false keywords. The
following rules govern what becomes false and what turns out to be true:

• False, 0, the empty string (""), NaN, null, and undefined are represented
as false

• Everything else is true

JavaScript Booleans are tricky primarily because the behavior is radically different in
the way you create them.

There are two ways in which you can create Booleans in JavaScript:

• You can create primitive Booleans by assigning a true or false literal to a
variable. Consider the following example:
var pBooleanTrue = true;

var pBooleanFalse = false;

JavaScript Primer

[16]

• Use the Boolean() function; this is an ordinary function that returns a
primitive Boolean:

var fBooleanTrue = Boolean(true);

var fBooleanFalse = Boolean(false);

Both these methods return expected truthy or falsy values. However, if you create a
Boolean object using the new operator, things can go really wrong.

Essentially, when you use the new operator and the Boolean(value) constructor,
you don't get a primitive true or false in return, you get an object instead—and
unfortunately, JavaScript considers an object as truthy:

var oBooleanTrue = new Boolean(true);

var oBooleanFalse = new Boolean(false);

console.log(oBooleanTrue); //true

console.log(typeof oBooleanTrue); //object

if(oBooleanFalse){

 console.log("I am seriously truthy, don't believe me");

}

>"I am seriously truthy, don't believe me"

if(oBooleanTrue){

 console.log("I am also truthy, see ?");

}

>"I am also truthy, see ?"

//Use valueOf() to extract real value within the Boolean object

if(oBooleanFalse.valueOf()){

 console.log("With valueOf, I am false");

}else{

 console.log("Without valueOf, I am still truthy");

}

>"Without valueOf, I am still truthy"

So, the smart thing to do is to always avoid Boolean constructors to create a new
Boolean object. It breaks the fundamental contract of Boolean logic and you should
stay away from such difficult-to-debug buggy code.

Chapter 1

[17]

The instanceof operator
One of the problems with using reference types to store values has been the use of
the typeof operator, which returns object no matter what type of object is being
referenced. To provide a solution, you can use the instanceof operator. Let's see
some examples:

var aStringObject = new String("string");

console.log(typeof aStringObject); //"object"

console.log(aStringObject instanceof String); //true

var aString = "This is a string";

console.log(aString instanceof String); //false

The third line returns false. We will discuss why this is the case when we discuss
prototype chains.

Date objects
JavaScript does not have a date data type. Instead, you can use the Date object
and its methods to work with dates and times in your applications. A Date object
is pretty exhaustive and contains several methods to handle most date- and time-
related use cases.

JavaScript treats dates similarly to Java. JavaScript store dates as the number of
milliseconds since January 1, 1970, 00:00:00.

You can create a Date object using the following declaration:

var dataObject = new Date([parameters]);

The parameters for the Date object constructors can be as follows:

• No parameters creates today's date and time. For example, var today = new
Date();.

• A String representing a date as Month day, year hours:minutes:seconds.
For example, var twoThousandFifteen = new Date("December 31, 2015
23:59:59");. If you omit hours, minutes, or seconds, the value will be set
to 0.

• A set of integer values for the year, month, and day. For example, var
christmas = new Date(2015, 11, 25);.

• A set of integer values for the year, month, day, hour, minute, and seconds.
For example, var christmas = new Date(2015, 11, 25, 21, 00, 0);.

JavaScript Primer

[18]

Here are some examples on how to create and manipulate dates in JavaScript:

var today = new Date();
console.log(today.getDate()); //27
console.log(today.getMonth()); //4
console.log(today.getFullYear()); //2015
console.log(today.getHours()); //23
console.log(today.getMinutes()); //13
console.log(today.getSeconds()); //10
//number of milliseconds since January 1, 1970, 00:00:00 UTC
console.log(today.getTime()); //1432748611392
console.log(today.getTimezoneOffset()); //-330 Minutes

//Calculating elapsed time
var start = Date.now();
// loop for a long time
for (var i=0;i<100000;i++);
var end = Date.now();
var elapsed = end - start; // elapsed time in milliseconds
console.log(elapsed); //71

For any serious applications that require fine-grained control over date and time
objects, we recommend using libraries such as Moment.js (https://github.com/
moment/moment), Timezone.js (https://github.com/mde/timezone-js), or date.
js (https://github.com/MatthewMueller/date). These libraries simplify a lot of
recurrent tasks for you and help you focus on other important things.

The + operator
The + operator, when used as a unary, does not have any effect on a number.
However, when applied to a String, the + operator converts it to numbers as follows:

var a=25;
a=+a; //No impact on a's value
console.log(a); //25

var b="70";
console.log(typeof b); //string
b=+b; //converts string to number
console.log(b); //70
console.log(typeof b); //number

https://github.com/moment/moment
https://github.com/moment/moment
https://github.com/mde/timezone-js
https://github.com/MatthewMueller/date

Chapter 1

[19]

The + operator is used often by a programmer to quickly convert a numeric
representation of a String to a number. However, if the String literal is not something
that can be converted to a number, you get slightly unpredictable results as follows:

var c="foo";
c=+c; //Converts foo to number
console.log(c); //NaN
console.log(typeof c); //number

var zero="";
zero=+zero; //empty strings are converted to 0
console.log(zero);
console.log(typeof zero);

We will discuss the effects of the + operator on several other data types later
in the text.

The ++ and -- operators
The ++ operator is a shorthand version of adding 1 to a value and -- is a shorthand
to subtract 1 from a value. Java and C have equivalent operators and most will be
familiar with them. How about this?

var a= 1;
var b= a++;
console.log(a); //2
console.log(b); //1

Err, what happened here? Shouldn't the b variable have the value 2? The ++ and
-- operators are unary operators that can be used either prefix or postfix. The order
in which they are used matters. When ++ is used in the prefix position as ++a, it
increments the value before the value is returned from the expression rather than
after as with a++. Let's see the following code:

var a= 1;
var b= ++a;
console.log(a); //2
console.log(b); //2

Many programmers use the chained assignments to assign a single value to multiple
variables as follows:

var a, b, c;
a = b = c = 0;

JavaScript Primer

[20]

This is fine because the assignment operator (=) results in the value being assigned.
In this case, c=0 is evaluated to 0; this would result in b=0, which also evaluates to 0,
and hence, a=0 is evaluated.

However, a slight change to the previous example yields extraordinary results.
Consider this:

var a = b = 0;

In this case, only the a variable is declared with var, while the b variable is created
as an accidental global. (If you are in the strict mode, you will get an error for this.)
With JavaScript, be careful what you wish for, you might get it.

Boolean operators
There are three Boolean operators in JavaScript—AND(&), OR(|), and NOT(!).

Before we discuss logical AND and OR operators, we need to understand how they
produce a Boolean result. Logical operators are evaluated from left to right and they
are tested using the following short-circuit rules:

• Logical AND: If the first operand determines the result, the second operand
is not evaluated.
In the following example, I have highlighted the right-hand side expression if
it gets executed as part of short-circuit evaluation rules:

console.log(true && true); // true AND true returns true
console.log(true && false);// true AND false returns false
console.log(false && true);// false AND true returns false
console.log("Foo" && "Bar");// Foo(true) AND Bar(true)
 returns Bar
console.log(false && "Foo");// false && Foo(true) returns
 false
console.log("Foo" && false);// Foo(true) && false returns
 false
console.log(false && (1 == 2));// false && false(1==2) returns
false

Chapter 1

[21]

• Logical OR: If the first operand is true, the second operand is not evaluated:

console.log(true || true); // true AND true returns true
console.log(true || false);// true AND false returns true
console.log(false || true);// false AND true returns true
console.log("Foo" || "Bar");// Foo(true) AND Bar(true) returns Foo
console.log(false || "Foo");// false && Foo(true) returns Foo
console.log("Foo" || false);// Foo(true) && false returns Foo
console.log(false || (1 == 2));// false && false(1==2) returns
false

However, both logical AND and logical OR can also be used for non-Boolean
operands. When either the left or right operand is not a primitive Boolean
value, AND and OR do not return Boolean values.

Now we will explain the three logical Boolean operators:

• Logical AND(&&): If the first operand object is falsy, it returns that object. If
its truthy, the second operand object is returned:
console.log (0 && "Foo"); //First operand is falsy -
 return it
console.log ("Foo" && "Bar"); //First operand is truthy,
 return the second operand

• Logical OR(||): If the first operand is truthy, it's returned. Otherwise, the
second operand is returned:
console.log (0 || "Foo"); //First operand is falsy -
 return second operand
console.log ("Foo" || "Bar"); //First operand is truthy,
 return it
console.log (0 || false); //First operand is falsy, return
 second operand

The typical use of a logical OR is to assign a default value to a variable:
function greeting(name){
 name = name || "John";
 console.log("Hello " + name);
}

greeting("Johnson"); // alerts "Hi Johnson";
greeting(); //alerts "Hello John"

You will see this pattern frequently in most professional JavaScript libraries.
You should understand how the defaulting is done by using a logical OR
operator.

JavaScript Primer

[22]

• Logical NOT: This always returns a Boolean value. The value returned
depends on the following:

//If the operand is an object, false is returned.
var s = new String("string");
console.log(!s); //false

//If the operand is the number 0, true is returned.
var t = 0;
console.log(!t); //true

//If the operand is any number other than 0, false is returned.
var x = 11;
console.log(!x); //false

//If operand is null or NaN, true is returned
var y =null;
var z = NaN;
console.log(!y); //true
console.log(!z); //true
//If operand is undefined, you get true
var foo;
console.log(!foo); //true

Additionally, JavaScript supports C-like ternary operators as follows:

var allowedToDrive = (age > 21) ? "yes" : "no";

If (age>21), the expression after ? will be assigned to the allowedToDrive variable
and the expression after : is assigned otherwise. This is equivalent to an if-else
conditional statement. Let's see another example:

function isAllowedToDrive(age){
 if(age>21){
 return true;
 }else{
 return false;
 }
}
console.log(isAllowedToDrive(22));

Chapter 1

[23]

In this example, the isAllowedToDrive() function accepts one integer parameter,
age. Based on the value of this variable, we return true or false to the calling
function. This is a well-known and most familiar if-else conditional logic. Most of
the time, if-else keeps the code easier to read. For simpler cases of single conditions,
using the ternary operator is also okay, but if you see that you are using the ternary
operator for more complicated expressions, try to stick with if-else because it is easier
to interpret if-else conditions than a very complex ternary expression.

If-else conditional statements can be nested as follows:

if (condition1) {
 statement1
} else if (condition2) {
 statement2
} else if (condition3) {
 statement3
}
..
} else {
 statementN
}

Purely as a matter of taste, you can indent the nested else if as follows:

if (condition1) {
 statement1
} else
 if (condition2) {

Do not use assignments in place of a conditional statement. Most of the time,
they are used because of a mistake as follows:

if(a=b) {
 //do something
}

Mostly, this happens by mistake; the intended code was if(a==b), or better,
if(a===b). When you make this mistake and replace a conditional statement with
an assignment statement, you end up committing a very difficult-to-find bug.
However, if you really want to use an assignment statement with an if statement,
make sure that you make your intentions very clear.

JavaScript Primer

[24]

One way is to put extra parentheses around your assignment statement:

if((a=b)){
 //this is really something you want to do
}

Another way to handle conditional execution is to use switch-case statements.
The switch-case construct in JavaScript is similar to that in C or Java. Let's see the
following example:

function sayDay(day){
 switch(day){
 case 1: console.log("Sunday");
 break;
 case 2: console.log("Monday");
 break;
 default:
 console.log("We live in a binary world. Go to Pluto");
 }
}

sayDay(1); //Sunday
sayDay(3); //We live in a binary world. Go to Pluto

One problem with this structure is that you have break out of every case; otherwise,
the execution will fall through to the next level. If we remove the break statement
from the first case statement, the output will be as follows:

>sayDay(1);
Sunday
Monday

As you can see, if we omit the break statement to break the execution immediately
after a condition is satisfied, the execution sequence follows to the next level. This
can lead to difficult-to-detect problems in your code. However, this is also a popular
style of writing conditional logic if you intend to fall through to the next level:

function debug(level,msg){
 switch(level){
 case "INFO": //intentional fall-through
 case "WARN" :
 case "DEBUG": console.log(level+ ": " + msg);
 break;
 case "ERROR": console.error(msg);
 }
}

Chapter 1

[25]

debug("INFO","Info Message");
debug("DEBUG","Debug Message");
debug("ERROR","Fatal Exception");

In this example, we are intentionally letting the execution fall through to write a
concise switch-case. If levels are either INFO, WARN, or DEBUG, we use the switch-
case to fall through to a single point of execution. We omit the break statement for
this. If you want to follow this pattern of writing switch statements, make sure that
you document your usage for better readability.

Switch statements can have a default case to handle any value that cannot be
evaluated by any other case.

JavaScript has a while and do-while loop. The while loop lets you iterate a set of
expressions till a condition is met. The following first example iterates the statements
enclosed within {} till the i<10 expression is true. Remember that if the value of the
i counter is already greater than 10, the loop will not execute at all:

var i=0;
while(i<10){
 i=i+1;
 console.log(i);
}

The following loop keeps executing till infinity because the condition is always
true—this can lead to disastrous effects. Your program can use up all your memory
or something equally unpleasant:

//infinite loop
while(true){
 //keep doing this
}

If you want to make sure that you execute the loop at least once, you can use the do-
while loop (sometimes known as a post-condition loop):

var choice;
do {
 choice=getChoiceFromUserInput();
} while(!isInputValid(choice));

JavaScript Primer

[26]

In this example, we are asking the user for an input till we find a valid input from the
user. While the user types invalid input, we keep asking for an input to the user. It is
always argued that, logically, every do-while loop can be transformed into a while
loop. However, a do-while loop has a very valid use case like the one we just saw
where you want the condition to be checked only after there has been one execution
of the loop block.

JavaScript has a very powerful loop similar to C or Java—the for loop. The for loop
is popular because it allows you to define the control conditions of the loop in a
single line.

The following example prints Hello five times:

for (var i=0;i<5;i++){
 console.log("Hello");
}

Within the definition of the loop, you defined the initial value of the loop counter i
to be 0, you defined the i<5 exit condition, and finally, you defined the increment
factor.

All three expressions in the previous example are optional. You can omit them if
required. For example, the following variations are all going to produce the same
result as the previous loop:

var x=0;
//Omit initialitzation
for (;x<5;x++){
 console.log("Hello");
}

//Omit exit condition
for (var j=0;;j++){
 //exit condition
 if(j>=5){
 break;
 }else{
 console.log("Hello");
 }
}
//Omit increment
for (var k=0; k<5;){
 console.log("Hello");
 k++;
}

Chapter 1

[27]

You can also omit all three of these expressions and write for loops. One interesting
idiom used frequently is to use for loops with empty statements. The following loop
is used to set all the elements of the array to 100. Notice how there is no body to the
for-loop:

var arr = [10, 20, 30];
// Assign all array values to 100
for (i = 0; i < arr.length; arr[i++] = 100);
console.log(arr);

The empty statement here is just the single that we see after the for loop statement.
The increment factor also modifies the array content. We will discuss arrays later in
the book, but here it's sufficient to see that the array elements are set to the 100 value
within the loop definition itself.

Equality
JavaScript offers two modes of equality—strict and loose. Essentially, loose equality
will perform the type conversion when comparing two values, while strict equality
will check the values without any type conversion. A strict equality check is
performed by === while a loose equality check is performed by ==.

ECMAScript 6 also offers the Object.is method to do a strict equality check like ===.
However, Object.is has a special handling for NaN: -0 and +0. When NaN===NaN
and NaN==NaN evaluates to false, Object.is(NaN,NaN) will return true.

Strict equality using ===
Strict equality compares two values without any implicit type conversions. The
following rules apply:

• If the values are of a different type, they are unequal.
• For non-numerical values of the same type, they are equal if their values are

the same.
• For primitive numbers, strict equality works for values. If the values are the

same, === results in true. However, a NaN doesn't equal to any number and
NaN===<a number> would be a false.

JavaScript Primer

[28]

Strict equality is always the correct equality check to use. Make it a rule to always
use === instead of ==:

Condition Output
"" === "0" false
0 === "" false
0 === "0" false
false === "false" false
false === "0" false
false === undefined false
false === null false
null === undefined false

In case of comparing objects, we get results as follows:

Condition Output
{} === {}; false
new String('bah') === 'bah'; false
new Number(1) === 1; false
var bar = {};

bar === bar;

true

The following are further examples that you should try on either JS Bin or Node REPL:

var n = 0;
var o = new String("0");
var s = "0";
var b = false;

console.log(n === n); // true - same values for numbers
console.log(o === o); // true - non numbers are compared for their
values
console.log(s === s); // true - ditto

console.log(n === o); // false - no implicit type conversion, types
are different
console.log(n === s); // false - types are different
console.log(o === s); // false - types are different
console.log(null === undefined); // false
console.log(o === null); // false
console.log(o === undefined); // false

You can use !== to handle the Not Equal To case while doing strict equality checks.

Chapter 1

[29]

Weak equality using ==
Nothing should tempt you to use this form of equality. Seriously, stay away from
this form. There are many bad things with this form of equality primarily due to the
weak typing in JavaScript. The equality operator, ==, first tries to coerce the type
before doing a comparison. The following examples show you how this works:

Condition Output
"" == "0" false
0 == "" true
0 == "0" true
false == "false" false
false == "0" true
false == undefined false
false == null false
null == undefined true

From these examples, it's evident that weak equality can result in unexpected
outcomes. Also, implicit type coercion is costly in terms of performance. So, in
general, stay away from weak equality in JavaScript.

JavaScript types
We briefly discussed that JavaScript is a dynamic language. If you have a
previous experience of strongly typed languages such as Java, you may feel a bit
uncomfortable about the complete lack of type checks that you are used to. Purists
argue that JavaScript should claim to have tags or perhaps subtypes, but not types.
Though JavaScript does not have the traditional definition of types, it is absolutely
essential to understand how JavaScript handles data types and coercion internally.
Every nontrivial JavaScript program will need to handle value coercion in some
form, so it's important that you understand the concept well.

Explicit coercion happens when you modify the type yourself. In the following
example, you will convert a number to a String using the toString() method and
extract the second character out of it:

var fortyTwo = 42;
console.log(fortyTwo.toString()[1]); //prints "2"

This is an example of an explicit type conversion. Again, we are using the word type
loosely because type was not enforced anywhere when you declared the fortyTwo
variable.

JavaScript Primer

[30]

However, there are many different ways in which such coercion can happen.
Coercion happening explicitly can be easy to understand and mostly reliable; but if
you're not careful, coercion can happen in very strange and surprising ways.

Confusion around coercion is perhaps one of the most talked about frustrations
for JavaScript developers. To make sure that you never have this confusion in your
mind, let's revisit types in JavaScript. We talked about some concepts earlier:

typeof 1 === "number"; // true
typeof "1" === "string"; // true
typeof { age: 39 } === "object"; // true
typeof Symbol() === "symbol"; // true
typeof undefined === "undefined"; // true
typeof true === "boolean"; // true

So far, so good. We already knew this and the examples that we just saw reinforce
our ideas about types.

Conversion of a value from one type to another is called casting or explicit coercion.
JavaScript also does implicit coercion by changing the type of a value based on
certain guesses. These guesses make JavaScript work around several cases and
unfortunately make it fail quietly and unexpectedly. The following snippet shows
cases of explicit and implicit coercion:

var t=1;
var u=""+t; //implicit coercion
console.log(typeof t); //"number"
console.log(typeof u); //"string"
var v=String(t); //Explicit coercion
console.log(typeof v); //"string"
var x=null
console.log(""+x); //"null"

It is easy to see what is happening here. When you use ""+t to a numeric value of
t (1, in this case), JavaScript figures out that you are trying to concatenate something
with a "" string. As only strings can be concatenated with other strings, JavaScript
goes ahead and converts a numeric 1 to a "1" string and concatenates both into a
resulting string value. This is what happens when JavaScript is asked to convert
values implicitly. However, String(t) is a very deliberate call to convert a number
to a String. This is an explicit conversion of types. The last bit is surprising. We are
concatenating null with ""—shouldn't this fail?

So how does JavaScript do type conversions? How will an abstract value become
a String or number or Boolean? JavaScript relies on toString(), toNumber(), and
toBoolean() methods to do this internally.

Chapter 1

[31]

When a non-String value is coerced into a String, JavaScript uses the toString()
method internally to do this. All primitives have a natural string form—null has
a string form of "null", undefined has a string form of "undefined", and so on.
For Java developers, this is analogous to a class having a toString() method that
returns a string representation of the class. We will see exactly how this works in
case of objects.

So essentially you can do something similar to the following:

var a="abc";
console.log(a.length);
console.log(a.toUpperCase());

If you are keenly following and typing all these little snippets, you would have
realized something strange in the previous snippet. How are we calling properties
and methods on primitives? How come primitives have objects such as properties
and methods? They don't.

As we discussed earlier, JavaScript kindly wraps these primitives in their wrappers
by default thus making it possible for us to directly access the wrapper's methods
and properties as if they were of the primitives themselves.

When any non-number value needs to be coerced into a number, JavaScript uses the
toNumber() method internally: true becomes 1, undefined becomes NaN, false
becomes 0, and null becomes 0. The toNumber() method on strings works with
literal conversion and if this fails, the method returns NaN.

What about some other cases?

typeof null ==="object" //true

Well, null is an object? Yes, an especially long-lasting bug makes this possible. Due to
this bug, you need to be careful while testing if a value is null:

var x = null;
if (!x && typeof x === "object"){
 console.log("100% null");
}

What about other things that may have types, such as functions?

f = function test() {
 return 12;
}
console.log(typeof f === "function"); //prints "true"

JavaScript Primer

[32]

What about arrays?

console.log (typeof [1,2,3,4]); //"object"

Sure enough, they are also objects. We will take a detailed look at functions and
arrays later in the book.

In JavaScript, values have types, variables don't. Due to the dynamic nature of the
language, variables can hold any value at any time.

JavaScript doesn't does not enforce types, which means that the language doesn't
insist that a variable always hold values of the same initial type that it starts out with.
A variable can hold a String, and in the next assignment, hold a number, and so on:

var a = 1;
typeof a; // "number"
a = false;
typeof a; // "boolean"

The typeof operator always returns a String:

typeof typeof 1; // "string"

Automatic semicolon insertion
Although JavaScript is based on the C style syntax, it does not enforce the use of
semicolons in the source code.

However, JavaScript is not a semicolon-less language. A JavaScript language
parser needs the semicolons in order to understand the source code. Therefore,
the JavaScript parser automatically inserts them whenever it encounters a parse
error due to a missing semicolon. It's important to note that automatic semicolon
insertion (ASI) will only take effect in the presence of a newline (also known as a
line break). Semicolons are not inserted in the middle of a line.

Basically, if the JavaScript parser parses a line where a parser error would occur (a
missing expected ;) and it can insert one, it does so. What are the criteria to insert a
semicolon? Only if there's nothing but white space and/or comments between the
end of some statement and that line's newline/line break.

There have been raging debates on ASI—a feature justifiably considered to be a
very bad design choice. There have been epic discussions on the Internet, such as
https://github.com/twbs/bootstrap/issues/3057 and https://brendaneich.
com/2012/04/the-infernal-semicolon/.

https://github.com/twbs/bootstrap/issues/3057
https://brendaneich.com/2012/04/the-infernal-semicolon/
https://brendaneich.com/2012/04/the-infernal-semicolon/

Chapter 1

[33]

Before you judge the validity of these arguments, you need to understand what is
affected by ASI. The following statements are affected by ASI:

• An empty statement
• A var statement
• An expression statement
• A do-while statement
• A continue statement
• A break statement
• A return statement
• A throw statement

The idea behind ASI is to make semicolons optional at the end of a line. This way,
ASI helps the parser to determine when a statement ends. Normally, it ends with a
semicolon. ASI dictates that a statement also ends in the following cases:

• A line terminator (for example, a newline) is followed by an illegal token
• A closing brace is encountered
• The end of the file has been reached

Let's see the following example:

if (a < 1) a = 1 console.log(a)

The console token is illegal after 1 and triggers ASI as follows:

if (a < 1) a = 1; console.log(a);

In the following code, the statement inside the braces is not terminated by a
semicolon:

function add(a,b) { return a+b }

ASI creates a syntactically correct version of the preceding code:

function add(a,b) { return a+b; }

JavaScript Primer

[34]

JavaScript style guide
Every programming language develops its own style and structure. Unfortunately,
new developers don't put much effort in learning the stylistic nuances of a language.
It is very difficult to develop this skill later once you have acquired bad practices. To
produce beautiful, readable, and easily maintainable code, it is important to learn
the correct style. There are a ton of style suggestions. We will be picking the most
practical ones. Whenever applicable, we will discuss the appropriate style. Let's set
some stylistic ground rules.

Whitespaces
Though whitespace is not important in JavaScript, the correct use of whitespace
can make the code easy to read. The following guidelines will help in managing
whitespaces in your code:

• Never mix spaces and tabs.
• Before you write any code, choose between soft indents (spaces) or real tabs.

For readability, I always recommend that you set your editor's indent size to
two characters—this means two spaces or two spaces representing a real tab.

• Always work with the show invisibles setting turned on. The benefits of this
practice are as follows:

 ° Enforced consistency.
 ° Eliminates the end-of-line white spaces.
 ° Eliminates blank line white spaces.
 ° Commits and diffs that are easier to read.
 ° Uses EditorConfig (http://editorconfig.org/) when possible.

Parentheses, line breaks, and braces
If, else, for, while, and try always have spaces and braces and span multiple lines.
This style encourages readability. Let's see the following code:

//Cramped style (Bad)
if(condition) doSomeTask();

while(condition) i++;

for(var i=0;i<10;i++) iterate();

//Use whitespace for better readability (Good)

http://editorconfig.org/

Chapter 1

[35]

//Place 1 space before the leading brace.
if (condition) {
 // statements
}

while (condition) {
 // statements
}

for (var i = 0; i < 100; i++) {
 // statements
}

// Better:

var i,
 length = 100;

for (i = 0; i < length; i++) {
 // statements
}

// Or...

var i = 0,
 length = 100;

for (; i < length; i++) {
 // statements
}

var value;

for (value in object) {
 // statements
}

if (true) {
 // statements
} else {
 // statements
}

JavaScript Primer

[36]

//Set off operators with spaces.
// bad
var x=y+5;

// good
var x = y + 5;

//End files with a single newline character.
// bad
(function(global) {
 // ...stuff...
})(this);

// bad
(function(global) {
 // ...stuff...
})(this);↵
↵

// good
(function(global) {
 // ...stuff...
})(this);↵

Quotes
Whether you prefer single or double quotes shouldn't matter; there is no difference
in how JavaScript parses them. However, for the sake of consistency, never mix
quotes in the same project. Pick one style and stick with it.

End of lines and empty lines
Whitespace can make it impossible to decipher code diffs and changelists. Many
editors allow you to automatically remove extra empty lines and end of lines—you
should use these.

Chapter 1

[37]

Type checking
Checking the type of a variable can be done as follows:

//String:
typeof variable === "string"
//Number:
typeof variable === "number"
//Boolean:
typeof variable === "boolean"
//Object:
typeof variable === "object"
//null:
variable === null
//null or undefined:
variable == null

Type casting
Perform type coercion at the beginning of the statement as follows:

// bad
const totalScore = this.reviewScore + '';
// good
const totalScore = String(this.reviewScore);

Use parseInt() for Numbers and always with a radix for the type casting:

const inputValue = '4';
// bad
const val = new Number(inputValue);
// bad
const val = +inputValue;
// bad
const val = inputValue >> 0;
// bad
const val = parseInt(inputValue);
// good
const val = Number(inputValue);
// good
const val = parseInt(inputValue, 10);

JavaScript Primer

[38]

The following example shows you how to type cast using Booleans:

const age = 0; // bad
const hasAge = new Boolean(age); // good
const hasAge = Boolean(age); // good
const hasAge = !!age;

Conditional evaluation
There are various stylistic guidelines around conditional statements. Let's study the
following code:

// When evaluating that array has length,
// WRONG:
if (array.length > 0) ...

// evaluate truthiness(GOOD):
if (array.length) ...

// When evaluating that an array is empty,
// (BAD):
if (array.length === 0) ...

// evaluate truthiness(GOOD):
if (!array.length) ...

// When checking if string is not empty,
// (BAD):
if (string !== "") ...

// evaluate truthiness (GOOD):
if (string) ...

// When checking if a string is empty,
// BAD:
if (string === "") ...

// evaluate falsy-ness (GOOD):
if (!string) ...

// When checking if a reference is true,
// BAD:
if (foo === true) ...

Chapter 1

[39]

// GOOD
if (foo) ...

// When checking if a reference is false,
// BAD:
if (foo === false) ...

// GOOD
if (!foo) ...

// this will also match: 0, "", null, undefined, NaN
// If you MUST test for a boolean false, then use
if (foo === false) ...

// a reference that might be null or undefined, but NOT false, "" or
0,
// BAD:
if (foo === null || foo === undefined) ...

// GOOD
if (foo == null) ...

// Don't complicate matters
return x === 0 ? 'sunday' : x === 1 ? 'Monday' : 'Tuesday';

// Better:
if (x === 0) {
 return 'Sunday';
} else if (x === 1) {
 return 'Monday';
} else {
 return 'Tuesday';
}

// Even Better:
switch (x) {
 case 0:
 return 'Sunday';
 case 1:
 return 'Monday';
 default:
 return 'Tuesday';
}

JavaScript Primer

[40]

Naming
Naming is super important. I am sure that you have encountered code with terse and
undecipherable naming. Let's study the following lines of code:

//Avoid single letter names. Be descriptive with your naming.
// bad
function q() {

}

// good
function query() {
}

//Use camelCase when naming objects, functions, and instances.
// bad
const OBJEcT = {};
const this_is_object = {};
function c() {}

// good
const thisIsObject = {};
function thisIsFunction() {}

//Use PascalCase when naming constructors or classes.
// bad
function user(options) {
 this.name = options.name;
}

const bad = new user({
 name: 'nope',
});

// good
class User {
 constructor(options) {
 this.name = options.name;
 }
}

Chapter 1

[41]

const good = new User({
 name: 'yup',
});

// Use a leading underscore _ when naming private properties.
// bad
this.__firstName__ = 'Panda';
this.firstName_ = 'Panda';

// good
this._firstName = 'Panda';

The eval() method is evil
The eval() method, which takes a String containing JavaScript code, compiles it and
runs it, is one of the most misused methods in JavaScript. There are a few situations
where you will find yourself using eval(), for example, when you are building an
expression based on the user input.

However, most of the time, eval() is used is just because it gets the job done. The
eval() method is too hacky and makes the code unpredictable. It's slow, unwieldy,
and tends to magnify the damage when you make a mistake. If you are considering
using eval(), then there is probably a better way.

The following snippet shows the usage of eval():

console.log(typeof eval(new String("1+1"))); // "object"
console.log(eval(new String("1+1"))); //1+1
console.log(eval("1+1")); // 2
console.log(typeof eval("1+1")); // returns "number"
var expression = new String("1+1");
console.log(eval(expression.toString())); //2

I will refrain from showing other uses of eval() and make sure that you are
discouraged enough to stay away from it.

The strict mode
ECMAScript 5 has a strict mode that results in cleaner JavaScript, with fewer
unsafe features, more warnings, and more logical behavior. The normal (non-strict)
mode is also called sloppy mode. The strict mode can help you avoid a few sloppy
programming practices. If you are starting a new JavaScript project, I would highly
recommend that you use the strict mode by default.

JavaScript Primer

[42]

You switch on the strict mode by typing the following line first in your JavaScript file
or in your <script> element:

'use strict';

Note that JavaScript engines that don't support ECMAScript 5 will simply ignore the
preceding statement and continue as non-strict mode.

If you want to switch on the strict mode per function, you can do it as follows:

function foo() {
 'use strict';

}

This is handy when you are working with a legacy code base where switching on the
strict mode everywhere may break things.

If you are working on an existing legacy code, be careful because using the strict
mode can break things. There are caveats on this:

Enabling the strict mode for an existing code can break it
The code may rely on a feature that is not available anymore or on behavior that
is different in a sloppy mode than in a strict mode. Don't forget that you have the
option to add single strict mode functions to files that are in the sloppy mode.

Package with care
When you concatenate and/or minify files, you have to be careful that the strict
mode isn't switched off where it should be switched on or vice versa. Both can
break code.

The following sections explain the strict mode features in more detail. You normally
don't need to know them as you will mostly get warnings for things that you
shouldn't do anyway.

Variables must be declared in strict mode
All variables must be explicitly declared in strict mode. This helps to prevent typos.
In the sloppy mode, assigning to an undeclared variable creates a global variable:

function sloppyFunc() {
 sloppyVar = 123;
} sloppyFunc(); // creates global variable `sloppyVar`
console.log(sloppyVar); // 123

Chapter 1

[43]

In the strict mode, assigning to an undeclared variable throws an exception:

function strictFunc() {
 'use strict';
 strictVar = 123;
}
strictFunc(); // ReferenceError: strictVar is not defined

The eval() function is cleaner in strict mode
In strict mode, the eval() function becomes less quirky: variables declared in the
evaluated string are not added to the scope surrounding eval() anymore.

Features that are blocked in strict mode
The with statement is not allowed. (We will discuss this in the book later.) You get a
syntax error at compile time (when loading the code).

In the sloppy mode, an integer with a leading zero is interpreted as octal (base 8) as
follows:

> 010 === 8 true

In strict mode, you get a syntax error if you use this kind of literal:

function f() {
'use strict';
return 010
}
//SyntaxError: Octal literals are not allowed in

Running JSHint
JSHint is a program that flags suspicious usage in programs written in JavaScript.
The core project consists of a library itself as well as a command line interface (CLI)
program distributed as a Node module.

If you have Node.js installed, you can install JSHint using npm as follows:

npm install jshint –g

JavaScript Primer

[44]

Once JSHint is installed, you can lint a single or multiple JavaScript files. Save the
following JavaScript code snippet in the test.js file:

function f(condition) {
 switch (condition) {
 case 1:
 console.log(1);
 case 2:
 console.log(1);
 }
}

When we run the file using JSHint, it will warn us of a missing break statement in
the switch case as follows:

>jshint test.js

test.js: line 4, col 19, Expected a 'break' statement before 'case'.

1 error

JSHint is configurable to suit your needs. Check the documentation at http://
jshint.com/docs/ to see how you can customize JSHint according to your project
needs. I use JSHint extensively and suggest you start using it. You will be surprised
to see how many hidden bugs and stylistic issues you will be able to fix in your code
with such a simple tool.

You can run JSHint at the root of your project and lint the entire project. You can
place JSHint directives in the .jshintrc file. This file may look something as
follows:

{
 "asi": false,
 "expr": true,
 "loopfunc": true,
 "curly": false,
 "evil": true,
 "white": true,
 "undef": true,
 "indent": 4
}

http://jshint.com/docs/
http://jshint.com/docs/

Chapter 1

[45]

Summary
In this chapter, we set some foundations around JavaScript grammar, types, and
stylistic considerations. We have consciously not talked about other important
aspects such as functions, variable scopes, and closures primarily because they
deserve their own place in this book. I am sure that this chapter helps you
understand some of the primary concepts of JavaScript. With these foundations in
place, we will take a look at how we can write professional quality JavaScript code.

[47]

Functions, Closures,
and Modules

In the previous chapter, we deliberately did not discuss certain aspects of JavaScript.
These are some of the features of the language that give JavaScript its power and
elegance. If you are an intermediate- or advanced-level JavaScript programmer, you
may be actively using objects and functions. In many cases, however, developers
stumble at these fundamental levels and develop a half-baked or sometimes
wrong understanding of the core JavaScript constructs. There is generally a
very poor understanding of the concept of closures in JavaScript, due to which
many programmers cannot use the functional aspects of JavaScript very well. In
JavaScript, there is a strong interconnection between objects, functions, and closures.
Understanding the strong relationship between these three concepts can vastly
improve our JavaScript programming ability, giving us a strong foundation for any
type of application development.

Functions are fundamental to JavaScript. Understanding functions in JavaScript
is the single most important weapon in your arsenal. The most important fact
about functions is that in JavaScript, functions are first-class objects. They are
treated like any other JavaScript object. Just like other JavaScript data types, they
can be referenced by variables, declared with literals, and even passed as function
parameters.

Functions, Closures, and Modules

[48]

As with any other object in JavaScript, functions have the following capabilities:

• They can be created via literals
• They can be assigned to variables, array entries, and properties of other

objects
• They can be passed as arguments to functions
• They can be returned as values from functions
• They can possess properties that can be dynamically created and assigned

We will talk about each of these unique abilities of a JavaScript function in this
chapter and the rest of the book.

A function literal
One of the most important concepts in JavaScript is that the functions are the
primary unit of execution. Functions are the pieces where you will wrap all your
code, hence they will give your programs a structure.

JavaScript functions are declared using a function literal.

Function literals are composed of the following four parts:

• The function keyword.
• An optional name that, if specified, must be a valid JavaScript identifier.
• A list of parameter names enclosed in parentheses. If there are no parameters

to the function, you need to provide empty parentheses.
• The body of the function as a series of JavaScript statements enclosed in braces.

A function declaration
The following is a very trivial example to demonstrate all the components of a
function declaration:

function add(a,b){
 return a+b;
}
c = add(1,2);
console.log(c); //prints 3

Chapter 2

[49]

The declaration begins with a function keyword followed by the function name.
The function name is optional. If a function is not given a name, it is said to be
anonymous. We will see how anonymous functions are used. The third part is the
set of parameters of the function, wrapped in parentheses. Within the parentheses
is a set of zero or more parameter names separated by commas. These names will
be defined as variables in the function, and instead of being initialized to undefined,
they will be initialized to the arguments supplied when the function is invoked. The
fourth part is a set of statements wrapped in curly braces. These statements are the
body of the function. They are executed when the function is invoked.

This method of function declaration is also known as function statement. When you
declare functions like this, the content of the function is compiled and an object with
the same name as the function is created.

Another way of function declaration is via function expressions:

var add = function(a,b){
 return a+b;
}
c = add(1,2);
console.log(c); //prints 3

Here, we are creating an anonymous function and assigning it to an add variable; this
variable is used to invoke the function as in the earlier example. One problem with
this style of function declaration is that we cannot have recursive calls to this kind of
function. Recursion is an elegant style of coding where the function calls itself. You
can use named function expressions to solve this limitation. As an example, refer to
the following function to compute the factorial of a given number, n:

var facto = function factorial(n) {
 if (n <= 1)
 return 1;
 return n * factorial(n - 1);
};
console.log(facto(3)); //prints 6

Here, instead of creating an anonymous function, you are creating a named function.
Now, because the function has a name, it can call itself recursively.

Finally, you can create self-invoking function expressions (we will discuss them
later):

(function sayHello() {
 console.log("hello!");
})();

Functions, Closures, and Modules

[50]

Once defined, a function can be called in other JavaScript functions. After the
function body is executed, the caller code (that executed the function) continues to
execute. You can also pass a function as a parameter to another function:

function changeCase(val) {
 return val.toUpperCase();
}
function demofunc(a, passfunction) {
 console.log(passfunction(a));
}
demofunc("smallcase", changeCase);

In the preceding example, we are calling the demofunc() function with two
parameters. The first parameter is the string that we want to convert to uppercase
and the second one is the function reference to the changeCase() function. In
demofunc(), we call the changeCase() function via its reference passed to the
passfunction argument. Here we are passing a function reference as an argument
to another function. This powerful concept will be discussed in detail later in the
book when we discuss callbacks.

A function may or may not return a value. In the previous examples, we saw that the
add function returned a value to the calling code. Apart from returning a value at the
end of the function, calling return explicitly allows you to conditionally return from
a function:

var looper = function(x){
 if (x%5===0) {
 return;
 }
 console.log(x)
}
for(var i=1;i<10;i++){
 looper(i);
}

This code snippet prints 1, 2, 3, 4, 6, 7, 8, and 9, and not 5. When the if (x%5===0)
condition is evaluated to true, the code simply returns from the function and the rest
of the code is not executed.

Chapter 2

[51]

Functions as data
In JavaScript, functions can be assigned to variables, and variables are data. You will
shortly see that this is a powerful concept. Let's see the following example:

var say = console.log;
say("I can also say things");

In the preceding example, we assigned the familiar console.log() function to the
say variable. Any function can be assigned to a variable as shown in the preceding
example. Adding parentheses to the variable will invoke it. Moreover, you can pass
functions in other functions as parameters. Study the following example carefully
and type it in JS Bin:

var validateDataForAge = function(data) {
 person = data();
 console.log(person);
 if (person.age <1 || person.age > 99){
 return true;
 }else{
 return false;
 }
};

var errorHandlerForAge = function(error) {
 console.log("Error while processing age");
};

function parseRequest(data,validateData,errorHandler) {
 var error = validateData(data);
 if (!error) {
 console.log("no errors");
 } else {
 errorHandler();
 }
}

var generateDataForScientist = function() {
 return {
 name: "Albert Einstein",
 age : Math.floor(Math.random() * (100 - 1)) + 1,
 };
};

Functions, Closures, and Modules

[52]

var generateDataForComposer = function() {
 return {
 name: "J S Bach",
 age : Math.floor(Math.random() * (100 - 1)) + 1,
 };
};

//parse request
parseRequest(generateDataForScientist, validateDataForAge,
errorHandlerForAge);
parseRequest(generateDataForComposer, validateDataForAge,
errorHandlerForAge);

In this example, we are passing functions as parameters to a parseRequest() function.
We are passing different functions for two different calls, generateDataForScientist
and generateDataForComposers, while the other two functions remain the same.
You can observe that we defined a generic parseRequest(). It takes three functions
as arguments, which are responsible for stitching together the specifics: the data,
validator, and error handler. The parseRequest() function is fully extensible and
customizable, and because it will be invoked by every request, there is a single, clean
debugging point. I am sure that you have started to appreciate the incredible power
that JavaScript functions provide.

Scoping
For beginners, JavaScript scoping is slightly confusing. These concepts may seem
straightforward; however, they are not. Some important subtleties exist that must
be understood in order to master the concept. So what is Scope? In JavaScript, scope
refers to the current context of code.

A variable's scope is the context in which the variable exists. The scope specifies from
where you can access a variable and whether you have access to the variable in that
context. Scopes can be globally or locally defined.

Chapter 2

[53]

Global scope
Any variable that you declare is by default defined in global scope. This is one of
the most annoying language design decisions taken in JavaScript. As a global
variable is visible in all other scopes, a global variable can be modified by any scope.
Global variables make it harder to run loosely coupled subprograms in the same
program/module. If the subprograms happen to have global variables that share
the same names, then they will interfere with each other and likely fail, usually
in difficult-to-diagnose ways. This is sometimes known as namespace clash.
We discussed global scope in the previous chapter but let's revisit it briefly to
understand how best to avoid this.

You can create a global variable in two ways:

• The first way is to place a var statement outside any function. Essentially,
any variable declared outside a function is defined in the global scope.

• The second way is to omit the var statement while declaring a variable (also
called implied globals). I think this was designed as a convenience for new
programmers but turned out to be a nightmare. Even within a function
scope, if you omit the var statement while declaring a variable, it's created
by default in the global scope. This is nasty. You should always run your
program against ESLint or JSHint to let them flag such violations. The
following example shows how global scope behaves:

//Global Scope
var a = 1;
function scopeTest() {
 console.log(a);
}
scopeTest(); //prints 1

Here we are declaring a variable outside the function and in the global scope. This
variable is available in the scopeTest() function. If you assign a new value to a
global scope variable within a function scope (local), the original value in the global
scope is overwritten:

//Global Scope
var a = 1;
function scopeTest() {
 a = 2; //Overwrites global variable 2, you omit 'var'
 console.log(a);
}
console.log(a); //prints 1
scopeTest(); //prints 2
console.log(a); //prints 2 (global value is overwritten)

Functions, Closures, and Modules

[54]

Local scope
Unlike most programming languages, JavaScript does not have block-level scope
(variables scoped to surrounding curly brackets); instead, JavaScript has function-
level scope. Variables declared within a function are local variables and are only
accessible within that function or by functions inside that function:

var scope_name = "Global";
function showScopeName () {
 // local variable; only accessible in this function
 var scope_name = "Local";
 console.log (scope_name); // Local
}
console.log (scope_name); //prints - Global
showScopeName(); //prints – Local

Function-level scope versus block-level
scope
JavaScript variables are scoped at the function level. You can think of this as a small
bubble getting created that prevents the variable to be visible from outside this
bubble. A function creates such a bubble for variables declared inside the function.
You can visualize the bubbles as follows:

-GLOBAL SCOPE---|
var g =0; |
function foo(a) { -----------------------| |
 var b = 1; | |
 //code | |
 function bar() { ------| | |
 // ... |ScopeBar | ScopeFoo |
 } ------| | |
 // code | |
 var c = 2; | |
}--| |
foo(); //WORKS |
bar(); //FAILS

Chapter 2

[55]

JavaScript uses scope chains to establish the scope for a given function. There is
typically one global scope, and each function defined has its own nested scope. Any
function defined within another function has a local scope that is linked to the outer
function. It's always the position in the source that defines the scope. When resolving a
variable, JavaScript starts at the innermost scope and searches outwards. With this,
let's look at various scoping rules in JavaScript.

In the preceding crudely drawn visual, you can see that the foo() function is defined
in the global scope. The foo() function has its local scope and access to the g variable
because it's in the global scope. The a, b, and c variables are available in the local scope
because they are defined within the function scope. The bar() function is also declared
within the function scope and is available within the foo() function. However, once
the function scope is over, the bar() function is not available. You cannot see or call
the bar() function from outside the foo() function—a scope bubble.

Now that the bar() function also has its own function scope (bubble), what is
available in here? The bar() function has access to the foo() function and all the
variables created in the parent scope of the foo() function—a, b, and c. The bar()
function also has access to the global scoped variable, g.

This is a powerful idea. Take a moment to think about it. We just discussed how
rampant and uncontrolled global scope can get in JavaScript. How about we take an
arbitrary piece of code and wrap it around with a function? We will be able to hide
and create a scope bubble around this piece of code. Creating the correct scope using
function wrapping will help us create correct code and prevent difficult-to-detect
bugs.

Another advantage of the function scope and hiding variables and functions within
this scope is that you can avoid collisions between two identifiers. The following
example shows such a bad case:

function foo() {
 function bar(a) {
 i = 2; // changing the 'i' in the enclosing scope's for-loop
 console.log(a+i);
 }
 for (var i=0; i<10; i++) {
 bar(i); // infinite loop
 }
}
foo();

Functions, Closures, and Modules

[56]

In the bar() function, we are inadvertently modifying the value of i=2. When we
call bar() from within the for loop, the value of the i variable is set to 2 and we
never come out of an infinite loop. This is a bad case of namespace collision.

So far, using functions as a scope sounds like a great way to achieve modularity and
correctness in JavaScript. Well, though this technique works, it's not really ideal.
The first problem is that we must create a named function. If we keep creating such
functions just to introduce the function scope, we pollute the global scope or parent
scope. Additionally, we have to keep calling such functions. This introduces a lot of
boilerplate, which makes the code unreadable over time:

var a = 1;
//Lets introduce a function -scope
//1. Add a named function foo() into the global scope
function foo() {
 var a = 2;
 console.log(a); // 2
}
//2. Now call the named function foo()
foo();
console.log(a); // 1

We introduced the function scope by creating a new function foo() to the global
scope and called this function later to execute the code.

In JavaScript, you can solve both these problems by creating functions that
immediately get executed. Carefully study and type the following example:

var a = 1;
//Lets introduce a function -scope
//1. Add a named function foo() into the global scope
(function foo() {
 var a = 2;
 console.log(a); // 2
})(); //<---this function executes immediately
console.log(a); // 1

Notice that the wrapping function statement starts with function. This means that
instead of treating the function as a standard declaration, the function is treated as a
function expression.

Chapter 2

[57]

The (function foo(){ }) statement as an expression means that the
identifier foo is found only in the scope of the foo() function, not in the outer
scope. Hiding the name foo in itself means that it does not pollute the enclosing
scope unnecessarily. This is so useful and far better. We add () after the function
expression to execute it immediately. So the complete pattern looks as follows:

(function foo(){ /* code */ })();

This pattern is so common that it has a name: IIFE, which stands for Immediately
Invoked Function Expression. Several programmers omit the function name when
they use IIFE. As the primary use of IIFE is to introduce function-level scope, naming
the function is not really required. We can write the earlier example as follows:

var a = 1;
(function() {
 var a = 2;
 console.log(a); // 2
})();
console.log(a); // 1

Here we are creating an anonymous function as IIFE. While this is identical to the
earlier named IIFE, there are a few drawbacks of using anonymous IIFEs:

• As you can't see the function name in the stack traces, debugging such code
is very difficult

• You cannot use recursion on anonymous functions (as we discussed earlier)
• Overusing anonymous IIFEs sometimes results in unreadable code

Douglas Crockford and a few other experts recommend a slight variation of IIFE:

(function(){ /* code */ }());

Both these IIFE forms are popular and you will see a lot of code using both these
variations.

You can pass parameters to IIFEs. The following example shows you how to pass
parameters to IIFEs:

(function foo(b) {
 var a = 2;
 console.log(a + b);
})(3); //prints 5

Functions, Closures, and Modules

[58]

Inline function expressions
There is another popular usage of inline function expressions where the functions are
passed as parameters to other functions:

function setActiveTab(activeTabHandler, tab){
 //set active tab
 //call handler
 activeTabHandler();
}
setActiveTab(function (){
 console.log("Setting active tab");
}, 1);
//prints "Setting active tab"

Again, you can name this inline function expression to make sure that you get a
correct stack trace while you are debugging the code.

Block scopes
As we discussed earlier, JavaScript does not have the concept of block scopes.
Programmers familiar with other languages such as Java or C find this very
uncomfortable. ECMAScript 6 (ES6) introduces the let keyword to introduce
traditional block scope. This is so incredibly convenient that if you are sure your
environment is going to support ES6, you should always use the let keyword. See
the following code:

var foo = true;
if (foo) {
 let bar = 42; //variable bar is local in this block { }
 console.log(bar);
}
console.log(bar); // ReferenceError

However, as things stand today, ES6 is not supported by default in most popular
browsers.

This chapter so far should have given you a fair understanding of how scoping
works in JavaScript. If you are still unclear, I would suggest that you stop here and
revisit the earlier sections of this chapter. Research your doubts on the Internet or
put your questions on Stack Overflow. In short, make sure that you have no doubts
related to the scoping rules.

Chapter 2

[59]

It is very natural for us to think of code execution happening from top to bottom, line
by line. This is how most of JavaScript code is executed but with some exceptions.

Consider the following code:

console.log(a);
var a = 1;

If you said this is an invalid code and will result in undefined when we call
console.log(), you are absolutely correct. However, what about this?

a = 1;
var a;
console.log(a);

What should be the output of the preceding code? It is natural to expect undefined
as the var a statement comes after a = 1, and it would seem natural to assume that
the variable is redefined and thus assigned the default undefined. However, the
output will be 1.

When you see var a = 1, JavaScript splits it into two statements: var a and a = 1.
The first statement, the declaration, is processed during the compilation phase. The
second statement, the assignment, is left in place for the execution phase.

So the preceding snippet would actually be executed as follows:

var a; //----Compilation phase

a = 1; //------execution phase
console.log(a);

The first snippet is actually executed as follows:

var a; //-----Compilation phase

console.log(a);
a = 1; //------execution phase

So, as we can see, variable and function declarations are moved up to the top of the
code during compilation phase—this is also popularly known as hoisting. It is very
important to remember that only the declarations themselves are hoisted, while any
assignments or other executable logic are left in place. The following snippet shows
you how function declarations are hoisted:

foo();
function foo() {
 console.log(a); // undefined
 var a = 1;
}

Functions, Closures, and Modules

[60]

The declaration of the foo() function is hoisted such that we are able to execute
the function before defining it. One important aspect of hoisting is that it works per
scope. Within the foo() function, declaration of the a variable will be hoisted to the
top of the foo() function, and not to the top of the program. The actual execution of
the foo() function with hoisting will be something as follows:

function foo() {
 var a;
 console.log(a); // undefined
 a = 1;
}

We saw that function declarations are hoisted but function expressions are not. The
next section explains this case.

Function declarations versus function
expressions
We saw two ways by which functions are defined. Though they both serve identical
purposes, there is a difference between these two types of declarations. Check the
following example:

//Function expression
functionOne();
//Error
//"TypeError: functionOne is not a function

var functionOne = function() {
 console.log("functionOne");
};
//Function declaration
functionTwo();
//No error
//Prints - functionTwo

function functionTwo() {
 console.log("functionTwo");
}

Chapter 2

[61]

A function declaration is processed when execution enters the context in which it
appears before any step-by-step code is executed. The function that it creates is given
a proper name (functionTwo() in the preceding example) and this name is put in the
scope in which the declaration appears. As it's processed before any step-by-step code
in the same context, calling functionTwo() before defining it works without an error.

However, functionOne() is an anonymous function expression, evaluated when it's
reached in the step-by-step execution of the code (also called runtime execution); we
have to declare it before we can invoke it.

So essentially, the function declaration of functionTwo() was hoisted while the
function expression of functionOne() was executed when line-by-line execution
encountered it.

Both function declarations and variable declarations are hoisted but
functions are hoisted first, and then variables.

One thing to remember is that you should never use function declarations
conditionally. This behavior is non-standardized and can behave differently across
platforms. The following example shows such a snippet where we try to use function
declarations conditionally. We are trying to assign different function body to
function sayMoo() but such a conditional code is not guaranteed to work across all
browsers and can result in unpredictable results:

// Never do this - different browsers will behave differently
if (true) {
 function sayMoo() {
 return 'trueMoo';
 }
}
else {
 function sayMoo() {
 return 'falseMoo';
 }
}
foo();

However, it's perfectly safe and, in fact, smart to do the same with function
expressions:

var sayMoo;
if (true) {
 sayMoo = function() {

Functions, Closures, and Modules

[62]

 return 'trueMoo';
 };
}
else {
 sayMoo = function() {
 return 'falseMoo';
 };
}
foo();

If you are curious to know why you should not use function declarations in
conditional blocks, read on; otherwise, you can skip the following paragraph.

Function declarations are allowed to appear only in the program or function body.
They cannot appear in a block ({ ... }). Blocks can only contain statements and
not function declarations. Due to this, almost all implementations of JavaScript have
behavior different from this. It is always advisable to never use function declarations
in a conditional block.

Function expressions, on the other hand, are very popular. A very common pattern
among JavaScript programmers is to fork function definitions based on some kind
of a condition. As such forks usually happen in the same scope, it is almost always
necessary to use function expressions.

The arguments parameter
The arguments parameter is a collection of all the arguments passed to the function.
The collection has a property named length that contains the count of arguments,
and the individual argument values can be obtained using an array indexing
notation. Okay, we lied a bit. The arguments parameter is not a JavaScript array, and
if you try to use array methods on arguments, you'll fail miserably. You can think of
arguments as an array-like structure. This makes it possible to write functions that
take an unspecified number of parameters. The following snippet shows you how
you can pass a variable number of arguments to the function and iterate through
them using an arguments array:

var sum = function () {
 var i, total = 0;
 for (i = 0; i < arguments.length; i += 1) {
 total += arguments[i];
 }
 return total;
};
console.log(sum(1,2,3,4,5,6,7,8,9)); // prints 45
console.log(sum(1,2,3,4,5)); // prints 15

Chapter 2

[63]

As we discussed, the arguments parameter is not really an array; it is possible to
convert it to an array as follows:

var args = Array.prototype.slice.call(arguments);

Once converted to an array, you can manipulate the list as you wish.

The this parameter
Whenever a function is invoked, in addition to the parameters that represent the
explicit arguments that were provided on the function call, an implicit parameter
named this is also passed to the function. It refers to an object that's implicitly
associated with the function invocation, termed as a function context. If you have
coded in Java, the this keyword will be familiar to you; like Java, this points to an
instance of the class in which the method is defined.

Equipped with this knowledge, let's talk about various invocation methods.

Invocation as a function
If a function is not invoked as a method, constructor, or via apply() or call(),
it's simply invoked as a function:

function add() {}
add();
var substract = function() {

};
substract();

When a function is invoked with this pattern, this is bound to the global object.
Many experts believe this to be a bad design choice. It is natural to assume that this
would be bound to the parent context. When you are in a situation such as this, you
can capture the value of this in another variable. We will focus on this pattern later.

Invocation as a method
A method is a function tied to a property on an object. For methods, this is bound to
the object on invocation:

var person = {
 name: 'Albert Einstein',
 age: 66,
 greet: function () {

Functions, Closures, and Modules

[64]

 console.log(this.name);
 }
};
person.greet();

In this example, this is bound to the person object on invoking greet because greet
is a method of person. Let's see how this behaves in both these invocation patterns.

Let's prepare this HTML and JavaScript harness:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>This test</title>
 <script type="text/javascript">
 function testF(){ return this; }
 console.log(testF());
 var testFCopy = testF;
 console.log(testFCopy());
 var testObj = {
 testObjFunc: testF
 };
 console.log(testObj.testObjFunc ());
 </script>
</head>
<body>
</body>
</html>

In the Firebug console, you can see the following output:

The first two method invocations were invocation as a function; hence, the this
parameter pointed to the global context (Window, in this case).

Chapter 2

[65]

Next, we define an object with a testObj variable with a property named
testObjFunc that receives a reference to testF()—don't fret if you are not really
aware of object creation yet. By doing this, we created a testObjMethod() method.
Now, when we invoke this method, we expect the function context to be displayed
when we display the value of this.

Invocation as a constructor
Constructor functions are declared just like any other functions and there's nothing
special about a function that's going to be used as a constructor. However, the way in
which they are invoked is very different.

To invoke the function as a constructor, we precede the function invocation with the
new keyword. When this happens, this is bound to the new object.

Before we discuss more, let's take a quick introduction to object orientation in
JavaScript. We will, of course, discuss the topic in great detail in the next chapter.
JavaScript is a prototypal inheritance language. This means that objects can inherit
properties directly from other objects. The language is class-free. Functions that
are designed to be called with the new prefix are called constructors. Usually, they
are named using PascalCase as opposed to CamelCase for easier distinction. In
the following example, notice that the greet function uses this to access the name
property. The this parameter is bound to Person:

var Person = function (name) {
 this.name = name;
};
Person.prototype.greet = function () {
 return this.name;
};
var albert = new Person('Albert Einstein');
console.log(albert.greet());

We will discuss this particular invocation method when we study objects in the next
chapter.

Invocation using apply() and call() methods
We said earlier that JavaScript functions are objects. Like other objects, they also
have certain methods. To invoke a function using its apply() method, we pass two
parameters to apply(): the object to be used as the function context and an array
of values to be used as the invocation arguments. The call() method is used in a
similar manner, except that the arguments are passed directly in the argument list
rather than as an array.

Functions, Closures, and Modules

[66]

Anonymous functions
We introduced you to anonymous functions a bit earlier in this chapter, and as they're
a crucial concept, we will take a detailed look at them. For a language inspired by
Scheme, anonymous functions are an important logical and structural construct.

Anonymous functions are typically used in cases where the function doesn't need
to have a name for later reference. Let's look at some of the most popular usages of
anonymous functions.

Anonymous functions while creating an object
An anonymous function can be assigned to an object property. When we do that,
we can call that function with a dot (.) operator. If you are coming from a Java or
other OO language background, you will find this very familiar. In such languages,
a function, which is part of a class is generally called with a notation—Class.
function(). Let's consider the following example:

var santa = {
 say :function(){
 console.log("ho ho ho");
 }
}
santa.say();

In this example, we are creating an object with a say property, which is an
anonymous function. In this particular case, this property is known as a method and
not a function. We don't need to name this function because we are going to invoke it
as the object property. This is a popular pattern and should come in handy.

Anonymous functions while creating a list
Here, we are creating two anonymous functions and adding them to an array. (We
will take a detailed look at arrays later.) Then, you loop through this array and
execute the functions in a loop:

<script type="text/javascript">
var things = [
 function() { alert("ThingOne") },
 function() { alert("ThingTwo") },
];
for(var x=0; x<things.length; x++) {
 things[x]();
}
</script>

Chapter 2

[67]

Anonymous functions as a parameter to
another function
This is one of the most popular patterns and you will find such code in most
professional libraries:

// function statement
function eventHandler(event){
 event();
}

eventHandler(function(){
 //do a lot of event related things
 console.log("Event fired");
});

You are passing the anonymous function to another function. In the receiving
function, you are executing the function passed as a parameter. This can be very
convenient if you are creating single-use functions such as object methods or event
handlers. The anonymous function syntax is more concise than declaring a function
and then doing something with it as two separate steps.

Anonymous functions in conditional logic
You can use anonymous function expressions to conditionally change behavior. The
following example shows this pattern:

var shape;
if(shape_name === "SQUARE") {
 shape = function() {
 return "drawing square";
 }
}
else {
 shape = function() {
 return "drawing square";
 }
}
alert(shape());

Here, based on a condition, we are assigning a different implementation to the shape
variable. This pattern can be very useful if used with care. Overusing this can result
in unreadable and difficult-to-debug code.

Functions, Closures, and Modules

[68]

Later in this book, we will look at several functional tricks such as memoization
and caching function calls. If you have reached here by quickly reading through the
entire chapter, I would suggest that you stop for a while and contemplate on what
we have discussed so far. The last few pages contain a ton of information and it will
take some time for all this information to sink in. I would suggest that you reread
this chapter before proceeding further. The next section will focus on closures and
the module pattern.

Closures
Traditionally, closures have been a feature of purely functional programming
languages. JavaScript shows its affinity with such functional programming
languages by considering closures integral to the core language constructs. Closures
are gaining popularity in mainstream JavaScript libraries and advanced production
code because they let you simplify complex operations. You will hear experienced
JavaScript programmers talking almost reverently about closures—as if they are
some magical construct far beyond the reach of the intellect that common men
possess. However, this is not so. When you study this concept, you will find closures
to be very obvious, almost matter-of-fact. Till you reach closure enlightenment, I
suggest you read and reread this chapter, research on the Internet, write code, and
read JavaScript libraries to understand how closures behave—but do not give up.

The first realization that you must have is that closure is everywhere in JavaScript. It
is not a hidden special part of the language.

Before we jump into the nitty-gritty, let's quickly refresh the lexical scope in
JavaScript. We discussed in great detail how lexical scope is determined at the
function level in JavaScript. Lexical scope essentially determines where and how all
identifiers are declared and predicts how they will be looked up during execution.

In a nutshell, closure is the scope created when a function is declared that allows the
function to access and manipulate variables that are external to this function. In other
words, closures allow a function to access all the variables, as well as other functions,
that are in scope when the function itself is declared.

Let's look at some example code to understand this definition:

var outer = 'I am outer'; //Define a value in global scope
function outerFn() { //Declare a a function in global scope
 console.log(outer);
}
outerFn(); //prints - I am outer

Chapter 2

[69]

Were you expecting something shiny? No, this is really the most ordinary case of a
closure. We are declaring a variable in the global scope and declaring a function in
the global scope. In the function, we are able to access the variable declared in the
global scope—outer. So essentially, the outer scope for the outerFn() function is a
closure and always available to outerFn(). This is a good start but perhaps then you
are not sure why this is such a great thing.

Let's make things a bit more complex:

var outer = 'Outer'; //Variable declared in global scope
var copy;
function outerFn(){ //Function declared in global scope

 var inner = 'Inner'; //Variable has function scope only, can not be
 //accessed from outside

 function innerFn(){ //Inner function within Outer function,
 //both global context and outer
 //context are available hence can access
 //'outer' and 'inner'
 console.log(outer);
 console.log(inner);
 }
 copy=innerFn; //Store reference to inner function,
 //because 'copy' itself is declared
 //in global context, it will be available
 //outside also
}
outerFn();
copy(); //Cant invoke innerFn() directly but can invoke via a
//variable declared in global scope

Let's analyze the preceding example. In innerFn(), the outer variable is available
as it's part of the global context. We're executing the inner function after the outer
function has been executed via copying a reference to the function to a global
reference variable, copy. When innerFn() executes, the scope in outerFn() is gone
and not visible at the point at which we're invoking the function through the copy
variable. So shouldn't the following line fail?

console.log(inner);

Functions, Closures, and Modules

[70]

Should the inner variable be undefined? However, the output of the preceding code
snippet is as follows:

"Outer"
"Inner"

What phenomenon allows the inner variable to still be available when we execute
the inner function, long after the scope in which it was created has gone away? When
we declared innerFn() in outerFn(), not only was the function declaration defined,
but a closure was also created that encompasses not only the function declaration,
but also all the variables that are in scope at the point of the declaration. When
innerFn() executes, even if it's executed after the scope in which it was declared
goes away, it has access to the original scope in which it was declared through its
closure.

Let's continue to expand this example to understand how far you can go with
closures:

var outer='outer';
var copy;
function outerFn() {
 var inner='inner';
 function innerFn(param){
 console.log(outer);
 console.log(inner);
 console.log(param);
 console.log(magic);
 }
 copy=innerFn;
}
console.log(magic); //ERROR: magic not defined
var magic="Magic";
outerFn();
copy("copy");

In the preceding example, we have added a few more things. First, we added a
parameter to innerFn()—just to illustrate that parameters are also part of the
closure. There are two important points that we want to highlight.

All variables in an outer scope are included even if they are declared after the
function is declared. This makes it possible for the line, console.log(magic), in
innerFn(), to work.

However, the same line, console.log(magic), in the global scope will fail because
even within the same scope, variables not yet defined cannot be referenced.

Chapter 2

[71]

All these examples were intended to convey a few concepts that govern how closures
work. Closures are a prominent feature in the JavaScript language and you can see
them in most libraries.

Let's look at some popular patterns around closures.

Timers and callbacks
In implementing timers or callbacks, you need to call the handler asynchronously,
mostly at a later point in time. Due to the asynchronous calls, we need to access
variables from outside the scope in such functions. Consider the following example:

function delay(message) {
 setTimeout(function timerFn(){
 console.log(message);
 }, 1000);
}
delay("Hello World");

We pass the inner timerFn() function to the built-in library function, setTimeout().
However, timerFn() has a scope closure over the scope of delay(), and hence it can
reference the variable message.

Private variables
Closures are frequently used to encapsulate some information as private variables.
JavaScript does not allow such encapsulation found in programming languages such
as Java or C++, but by using closures, we can achieve similar encapsulation:

function privateTest(){
 var points=0;
 this.getPoints=function(){
 return points;
 };
 this.score=function(){
 points++;
 };
}

var private = new privateTest();
private.score();
console.log(private.points); // undefined
console.log(private.getPoints());

Functions, Closures, and Modules

[72]

In the preceding example, we are creating a function that we intend to call as a
constructor. In this privateTest() function, we are creating a var points=0
variable as a function-scoped variable. This variable is available only in
privateTest(). Additionally, we create an accessor function (also called a getter)—
getPoints()—this method allows us to read the value of only the points variable
from outside privateTest(), making this variable private to the function. However,
another method, score(), allows us to modify the value of the private point variable
without directly accessing it from outside. This makes it possible for us to write code
where a private variable is updated in a controlled fashion. This pattern can be very
useful when you are writing libraries where you want to control how variables are
accessed based on a contract and pre-established interface.

Loops and closures
Consider the following example of using functions inside loops:

for (var i=1; i<=5; i++) {
 setTimeout(function delay(){
 console.log(i);
 }, i*100);
}

This snippet should print 1, 2, 3, 4, and 5 on the console at an interval of 100 ms, right?
Instead, it prints 6, 6, 6, 6, and 6 at an interval of 100 ms. Why is this happening? Here,
we encounter a common issue with closures and looping. The i variable is being
updated after the function is bound. This means that every bound function handler
will always print the last value stored in i. In fact, the timeout function callbacks are
running after the completion of the loop. This is such a common problem that JSLint
will warn you if you try to use functions this way inside a loop.

How can we fix this behavior? We can introduce a function scope and local copy of
the i variable in that scope. The following snippet shows you how we can do this:

for (var i=1; i<=5; i++) {
 (function(j){
 setTimeout(function delay(){
 console.log(j);
 }, j*100);
 })(i);
}

Chapter 2

[73]

We pass the i variable and copy it to the j variable local to the IIFE. The introduction
of an IIFE inside each iteration creates a new scope for each iteration and hence
updates the local copy with the correct value.

Modules
Modules are used to mimic classes and focus on public and private access to
variables and functions. Modules help in reducing the global scope pollution.
Effective use of modules can reduce name collisions across a large code base. A
typical format that this pattern takes is as follows:

Var moduleName=function() {
 //private state
 //private functions
 return {
 //public state
 //public variables
 }
}

There are two requirements to implement this pattern in the preceding format:

• There must be an outer enclosing function that needs to be executed at least
once.

• This enclosing function must return at least one inner function. This is
necessary to create a closure over the private state—without this, you can't
access the private state at all.

Check the following example of a module:

var superModule = (function (){
 var secret = 'supersecretkey';
 var passcode = 'nuke';

 function getSecret() {
 console.log(secret);
 }

 function getPassCode() {
 console.log(passcode);
 }

Functions, Closures, and Modules

[74]

 return {
 getSecret: getSecret,
 getPassCode: getPassCode
 };
})();
superModule.getSecret();
superModule.getPassCode();

This example satisfies both the conditions. Firstly, we create an IIFE or a named
function to act as an outer enclosure. The variables defined will remain private
because they are scoped in the function. We return the public functions to make sure
that we have a closure over the private scope. Using IIFE in the module pattern will
actually result in a singleton instance of this function. If you want to create multiple
instances, you can create named function expressions as part of the module as well.

We will keep exploring various facets of functional aspects of JavaScript and closures
in particular. There can be a lot of imaginative uses of such elegant constructs. An
effective way to understand various patterns is to study the code of popular libraries
and practice writing these patterns in your code.

Stylistic considerations
As in the previous chapter, we will conclude this discussion with certain stylistic
considerations. Again, these are generally accepted guidelines and not rules—feel
free to deviate from them if you have reason to believe otherwise:

• Use function declarations instead of function expressions:
// bad
const foo = function () {
};

// good
function foo() {
}

• Never declare a function in a non-function block (if, while, and so on). Assign
the function to a variable instead. Browsers allow you to do it, but they all
interpret it differently.

• Never name a parameter arguments. This will take precedence over the
arguments object that is given to every function scope.

Chapter 2

[75]

Summary
In this chapter, we studied JavaScript functions. In JavaScript, functions play a
critical role. We discussed how functions are created and used. We also discussed
important ideas of closures and the scope of variables in terms of functions. We
discussed functions as a way to create visibility classes and encapsulation.

In the next chapter, we will look at various data structures and data manipulation
techniques in JavaScript.

[77]

Data Structures and
Manipulation

Most of the time that you spend in programming, you do something to manipulate
data. You process properties of data, derive conclusions based on the data, and
change the nature of the data. In this chapter, we will take an exhaustive look at
various data structures and data manipulation techniques in JavaScript. With the
correct usage of these expressive constructs, your programs will be correct, concise,
easy to read, and most probably faster. This will be explained with the help of the
following topics:

• Regular expressions
• Exact match
• Match from a class of characters
• Repeated occurrences
• Beginning and end
• Backreferences
• Greedy and lazy quantifiers
• Arrays
• Maps
• Sets
• A matter of style

Data Structures and Manipulation

[78]

Regular expressions
If you are not familiar with regular expressions, I request you to spend time
learning them. Learning and using regular expressions effectively is one of the most
rewarding skills that you will gain. During most of the code review sessions, the first
thing that I comment on is how a piece of code can be converted to a single line of
regular expression (or RegEx). If you study popular JavaScript libraries, you will be
surprised to see how ubiquitous RegEx are. Most seasoned engineers rely on RegEx
primarily because once you know how to use them, they are concise and easy to test.
However, learning RegEx will take a significant amount of effort and time. A regular
expression is a way to express a pattern to match strings of text. The expression itself
consists of terms and operators that allow us to define these patterns. We'll see what
these terms and operators consist of shortly.

In JavaScript, there are two ways to create a regular expression: via a regular
expression literal and constructing an instance of a RegExp object.

For example, if we wanted to create a RegEx that matches the string test exactly, we
could use the following RegEx literal:

var pattern = /test/;

RegEx literals are delimited using forward slashes. Alternatively, we could construct
a RegExp instance, passing the RegEx as a string:

var pattern = new RegExp("test");

Both of these formats result in the same RegEx being created in the variable pattern.
In addition to the expression itself, there are three flags that can be associated with a
RegEx:

• i: This makes the RegEx case-insensitive, so /test/i matches not only test,
but also Test, TEST, tEsT, and so on.

• g: This matches all the instances of the pattern as opposed to the default of
local, which matches the first occurrence only. More on this later.

• m: This allows matches across multiple lines that might be obtained from the
value of a textarea element.

These flags are appended to the end of the literal (for example, /test/ig) or passed
in a string as the second parameter to the RegExp constructor (new RegExp("test",
"ig")).

Chapter 3

[79]

The following example illustrates the various flags and how they affect the pattern
match:

var pattern = /orange/;
console.log(pattern.test("orange")); // true

var patternIgnoreCase = /orange/i;
console.log(patternIgnoreCase.test("Orange")); // true

var patternGlobal = /orange/ig;
console.log(patternGlobal.test("Orange Juice")); // true

It isn't very exciting if we can just test whether the pattern matches a string. Let's see
how we can express more complex patterns.

Exact match
Any sequence of characters that's not a special RegEx character or operator
represents a character literal:

var pattern = /orange/;

We mean o followed by r followed by a followed by n followed by …—you get
the point. We rarely use exact match when using RegEx because that is the same as
comparing two strings. Exact match patterns are sometimes called simple patterns.

Match from a class of characters
If you want to match against a set of characters, you can place the set inside []. For
example, [abc] would mean any character a, b, or c:

var pattern = /[abc]/;
console.log(pattern.test('a')); //true
console.log(pattern.test('d')); //false

You can specify that you want to match anything but the pattern by adding a ^ (caret
sign) at the beginning of the pattern:

var pattern = /[^abc]/;
console.log(pattern.test('a')); //false
console.log(pattern.test('d')); //true

Data Structures and Manipulation

[80]

One critical variation of this pattern is a range of values. If we want to match against
a sequential range of characters or numbers, we can use the following pattern:

var pattern = /[0-5]/;
console.log(pattern.test(3)); //true
console.log(pattern.test(12345)); //true
console.log(pattern.test(9)); //false
console.log(pattern.test(6789)); //false
console.log(/[0123456789]/.test("This is year 2015")); //true

Special characters such as $ and period (.) characters either represent matches to
something other than themselves or operators that qualify the preceding term. In
fact, we've already seen how [,], -, and ^ characters are used to represent something
other than their literal values.

How do we specify that we want to match a literal [or $ or ^ or some other special
character? Within a RegEx, the backslash character escapes whatever character
follows it, making it a literal match term. So \[specifies a literal match to the [
character rather than the opening of a character class expression. A double backslash
(\\) matches a single backslash.

In the preceding examples, we saw the test() method that returns true or false
based on the pattern matched. There are times when you want to access occurrences
of a particular pattern. The exec() method comes in handy in such situations.

The exec() method takes a string as an argument and returns an array containing all
matches. Consider the following example:

var strToMatch = 'A Toyota! Race fast, safe car! A Toyota!';
var regExAt = /Toy/;
var arrMatches = regExAt.exec(strToMatch);
console.log(arrMatches);

The output of this snippet would be ['Toy']; if you want all the instances of the
pattern Toy, you can use the g (global) flag as follows:

var strToMatch = 'A Toyota! Race fast, safe car! A Toyota!';
var regExAt = /Toy/g;
var arrMatches = regExAt.exec(strToMatch);
console.log(arrMatches);

Chapter 3

[81]

This will return all the occurrences of the word oyo from the original text. The String
object contains the match() method that has similar functionality of the exec()
method. The match() method is called on a String object and the RegEx is passed to
it as a parameter. Consider the following example:

var strToMatch = 'A Toyota! Race fast, safe car! A Toyota!';
var regExAt = /Toy/;
var arrMatches = strToMatch.match(regExAt);
console.log(arrMatches);

In this example, we are calling the match() method on the String object. We pass the
RegEx as a parameter to the match() method. The results are the same in both these
cases.

The other String object method is replace(). It replaces all the occurrences of a
substring with a different string:

var strToMatch = 'Blue is your favorite color ?';
var regExAt = /Blue/;
console.log(strToMatch.replace(regExAt, "Red"));
//Output- "Red is your favorite color ?"

It is possible to pass a function as a second parameter of the replace() method. The
replace() function takes the matching text as a parameter and returns the text that
is used as a replacement:

var strToMatch = 'Blue is your favorite color ?';
var regExAt = /Blue/;
console.log(strToMatch.replace(regExAt, function(matchingText){
 return 'Red';
}));
//Output- "Red is your favorite color ?"

The String object's split() method also takes a RegEx parameter and returns an
array containing all the substrings generated after splitting the original string:

var sColor = 'sun,moon,stars';
var reComma = /\,/;
console.log(sColor.split(reComma));
//Output - ["sun", "moon", "stars"]

Data Structures and Manipulation

[82]

We need to add a backslash before the comma because a comma is treated specially
in RegEx and we need to escape it if we want to use it literally.

Using simple character classes, you can match multiple patterns. For example, if you
want to match cat, bat, and fat, the following snippet shows you how to use simple
character classes:

var strToMatch = 'wooden bat, smelly Cat,a fat cat';
var re = /[bcf]at/gi;
var arrMatches = strToMatch.match(re);
console.log(arrMatches);
//["bat", "Cat", "fat", "cat"]

As you can see, this variation opens up possibilities to write concise RegEx patterns.
Take the following example:

var strToMatch = 'i1,i2,i3,i4,i5,i6,i7,i8,i9';
var re = /i[0-5]/gi;
var arrMatches = strToMatch.match(re);
console.log(arrMatches);
//["i1", "i2", "i3", "i4", "i5"]

In this example, we are matching the numeric part of the matching string with a
range [0-5], hence we get a match from i0 to i5. You can also use the negation class
^ to filter the rest of the matches:

var strToMatch = 'i1,i2,i3,i4,i5,i6,i7,i8,i9';
var re = /i[^0-5]/gi;
var arrMatches = strToMatch.match(re);
console.log(arrMatches);
//["i6", "i7", "i8", "i9"]

Observe how we are negating only the range clause and not the entire expression.

Several character groups have shortcut notations. For example, the shortcut \d
means the same thing as [0-9]:

Notation Meaning
\d Any digit character
\w An alphanumeric character (word character)
\s Any whitespace character (space, tab, newline, and similar)
\D A character that is not a digit
\W A non-alphanumeric character
\S A non-whitespace character
. Any character except for newline

Chapter 3

[83]

These shortcuts are valuable in writing concise RegEx. Consider this example:

var strToMatch = '123-456-7890';
var re = /[0-9][0-9][0-9]-[0-9][0-9][0-9]/;
var arrMatches = strToMatch.match(re);
console.log(arrMatches);
//["123-456"]

This expression definitely looks a bit strange. We can replace [0-9] with \d and
make this a bit more readable:

var strToMatch = '123-456-7890';
var re = /\d\d\d-\d\d\d/;
var arrMatches = strToMatch.match(re);
console.log(arrMatches);
//["123-456"]

However, you will soon see that there are even better ways to do something like this.

Repeated occurrences
So far, we saw how we can match fixed characters or numeric patterns. Most often,
you want to handle certain repetitive natures of patterns also. For example, if I want
to match 4 as, I can write /aaaa/, but what if I want to specify a pattern that can
match any number of as?

Regular expressions provide you with a wide variety of repetition quantifiers.
Repetition quantifiers let us specify how many times a particular pattern can occur.
We can specify fixed values (characters should appear n times) and variable values
(characters can appear at least n times till they appear m times). The following table
lists the various repetition quantifiers:

• ?: Either 0 or 1 occurrence (marks the occurrence as optional)
• *: 0 or more occurrences
• +: 1 or more occurrences
• {n}: Exactly n occurrences
• {n,m}: Occurrences between n and m
• {n,}: At least an n occurrence
• {,n}: 0 to n occurrences

Data Structures and Manipulation

[84]

In the following example, we create a pattern where the character u is optional (has 0
or 1 occurrence):

var str = /behaviou?r/;
console.log(str.test("behaviour"));
// true
console.log(str.test("behavior"));
// true

It helps to read the /behaviou?r/ expression as 0 or 1 occurrences of character u.
The repetition quantifier succeeds the character that we want to repeat. Let's try out
some more examples:

console.log(/'\d+'/.test("'123'")); // true

You should read and interpret the \d+ expression as ' is a literal character match, \d
matches characters [0-9], the + quantifier will allow one or more occurrences, and '
is a literal character match.

You can also group character expressions using (). Observe the following example:

var heartyLaugh = /Ha+(Ha+)+/i;
console.log(heartyLaugh.test("HaHaHaHaHaHaHaaaaaaaaaaa"));
//true

Let's break the preceding expression into smaller chunks to understand what is
going on in here:

• H: literal character match
• a+: 1 or more occurrences of character a
• (: start of the expression group
• H: literal character match
• a+: 1 or more occurrences of character a
•): end of expression group
• +: 1 or more occurrences of expression group (Ha+)

Now it is easier to see how the grouping is done. If we have to interpret the
expression, it is sometimes helpful to read out the expression, as shown in the
preceding example.

Chapter 3

[85]

Often, you want to match a sequence of letters or numbers on their own and not just
as a substring. This is a fairly common use case when you are matching words that
are not just part of any other words. We can specify the word boundaries by using
the \b pattern. The word boundary with \b matches the position where one side is
a word character (letter, digit, or underscore) and the other side is not. Consider the
following examples.

The following is a simple literal match. This match will also be successful if cat is
part of a substring:

console.log(/cat/.test('a black cat')); //true

However, in the following example, we define a word boundary by indicating \b
before the word cat—this means that we want to match only if cat is a word and
not a substring. The boundary is established before cat, and hence a match is found
on the text, a black cat:

console.log(/\bcat/.test('a black cat')); //true

When we use the same boundary with the word tomcat, we get a failed match
because there is no word boundary before cat in the word tomcat:

console.log(/\bcat/.test('tomcat')); //false

There is a word boundary after the string cat in the word tomcat, hence the
following is a successful match:

console.log(/cat\b/.test('tomcat')); //true

In the following example, we define the word boundary before and after the word
cat to indicate that we want cat to be a standalone word with boundaries before
and after:

console.log(/\bcat\b/.test('a black cat')); //true

Based on the same logic, the following match fails because there are no boundaries
before and after cat in the word concatenate:

console.log(/\bcat\b/.test("concatenate")); //false

Data Structures and Manipulation

[86]

The exec() method is useful in getting information about the match found because
it returns an object with information about the match. The object returned from
exec() has an index property that tells us where the successful match begins in the
string. This is useful in many ways:

var match = /\d+/.exec("There are 100 ways to do this");
console.log(match);
// ["100"]
console.log(match.index);
// 10

Alternatives – OR
Alternatives can be expressed using the | (pipe) character. For example, /a|b/
matches either the a or b character, and /(ab)+|(cd)+/ matches one or more
occurrences of either ab or cd.

Beginning and end
Frequently, we may wish to ensure that a pattern matches at the beginning of a
string or perhaps at the end of a string. The caret character, when used as the first
character of the RegEx, anchors the match at the beginning of the string such that
/^test/ matches only if the test substring appears at the beginning of the string
being matched. Similarly, the dollar sign ($) signifies that the pattern must appear at
the end of the string: /test$/.

Using both ^ and $ indicates that the specified pattern must encompass the entire
candidate string: /^test$/.

Backreferences
After an expression is evaluated, each group is stored for later use. These values are
known as backreferences. Backreferences are created and numbered by the order in
which opening parenthesis characters are encountered going from left to right. You
can think of backreferences as the portions of a string that are successfully matched
against terms in the regular expression.

The notation for a backreference is a backslash followed by the number of the
capture to be referenced, beginning with 1, such as \1, \2, and so on.

Chapter 3

[87]

An example could be /^([XYZ])a\1/, which matches a string that starts with any
of the X, Y, or Z characters followed by an a and followed by whatever character
matched the first capture. This is very different from /[XYZ] a[XYZ]/. The character
following a can't be any of X, or Y, or Z, but must be whichever one of those that
triggered the match for the first character. Backreferences are used with String's
replace() method using the special character sequences, $1, $2, and so on. Suppose
that you want to change the 1234 5678 string to 5678 1234. The following code
accomplishes this:

var orig = "1234 5678";
var re = /(\d{4}) (\d{4})/;
var modifiedStr = orig.replace(re, "$2 $1");
console.log(modifiedStr); //outputs "5678 1234"

In this example, the regular expression has two groups each with four digits. In the
second argument of the replace() method, $2 is equal to 5678 and $1 is equal to
1234, corresponding to the order in which they appear in the expression.

Greedy and lazy quantifiers
All the quantifiers that we discussed so far are greedy. A greedy quantifier starts
looking at the entire string for a match. If there are no matches, it removes the last
character in the string and reattempts the match. If a match is not found again, the
last character is again removed and the process is repeated until a match is found or
the string is left with no characters.

The \d+ pattern, for example, will match one or more digits. For example, if your
string is 123, a greedy match would match 1, 12, and 123. Greedy pattern h.+l would
match hell in a string hello—which is the longest possible string match. As \d+ is
greedy, it will match as many digits as possible and hence the match would be 123.

In contrast to greedy quantifiers, a lazy quantifier matches as few of the quantified
tokens as possible. You can add a question mark (?) to the regular expression to
make it lazy. A lazy pattern h.?l would match hel in the string hello—which is the
shortest possible string.

The \w*?X pattern will match zero or more words and then match an X. However, a
question mark after * indicates that as few characters as possible should be matched.
For an abcXXX string, the match can be abcX, abcXX, or abcXXX. Which one should
be matched? As *? is lazy, as few characters as possible are matched and hence the
match is abcX.

With this necessary information, let's try to solve some common problems using
regular expressions.

Data Structures and Manipulation

[88]

Removing extra white space from the beginning and end of a string is a very
common use case. As a String object did not have the trim() method until recently,
several JavaScript libraries provide and use an implementation of string trimming
for older browsers that don't have the String.trim() method. The most commonly
used approach looks something like the following code:

function trim(str) {
 return (str || "").replace(/^\s+|\s+$/g, "");
}
console.log("--"+trim(" test ")+"--");
//"--test--"

What if we want to replace repeated whitespaces with a single whitespace?

re=/\s+/g;
console.log('There are a lot of spaces'.replace(re,' '));
//"There are a lot of spaces"

In the preceding snippet, we are trying to match one or more space character
sequences and replacing them with a single space.

As you can see, regular expressions can prove to be a Swiss army knife in your
JavaScript arsenal. Careful study and practice will be extremely rewarding for you in
the long run.

Arrays
An array is an ordered set of values. You can refer to the array elements with a name
and index. These are the three ways to create arrays in JavaScript:

var arr = new Array(1,2,3);
var arr = Array(1,2,3);
var arr = [1,2,3];

When these values are specified, the array is initialized with them as the array's
elements. An array's length property is equal to the number of arguments. The
bracket syntax is called an array literal. It's a shorter and preferred way to initialize
arrays.

Chapter 3

[89]

You have to use the array literal syntax if you want to initialize an array with a single
element and the element happens to be a number. If you pass a single number value
to the Array() constructor or function, JavaScript considers this parameter as the
length of the array, not as a single element:

var arr = [10];
var arr = Array(10); // Creates an array with no element, but with
 arr.length set to 10
// The above code is equivalent to
var arr = [];
arr.length = 10;

JavaScript does not have an explicit array data type. However, you can use the
predefined Array object and its methods to work with arrays in your applications.
The Array object has methods to manipulate arrays in various ways, such as joining,
reversing, and sorting them. It has a property to determine the array length and
other properties for use with regular expressions.

You can populate an array by assigning values to its elements:

var days = [];
days[0] = "Sunday";
days[1] = "Monday";

You can also populate an array when you create it:

var arr_generic = new Array("A String", myCustomValue, 3.14);
var fruits = ["Mango", "Apple", "Orange"]

In most languages, the elements of an array are all required to be of the same type.
JavaScript allows an array to contain any type of values:

var arr = [
 'string', 42.0, true, false, null, undefined,
 ['sub', 'array'], {object: true}, NaN
];

You can refer to elements of an Array using the element's index number. For
example, suppose you define the following array:

var days = ["Sunday", "Monday", "Tuesday"]

You then refer to the first element of the array as colors[0] and the second element
of the array as colors[1]. The index of the elements starts with 0.

Data Structures and Manipulation

[90]

JavaScript internally stores array elements as standard object properties, using the
array index as the property name. The length property is different. The length
property always returns the index of the last element plus one. As we discussed,
JavaScript array indexes are 0-based: they start at 0, not 1. This means that the
length property will be one more than the highest index stored in the array:

var colors = [];
colors[30] = ['Green'];
console.log(colors.length); // 31

You can also assign to the length property. Writing a value that is shorter than the
number of stored items truncates the array; writing 0 empties it entirely:

var colors = ['Red', 'Blue', 'Yellow'];
console.log(colors.length); // 3
colors.length = 2;
console.log(colors); // ["Red","Blue"] - Yellow has been removed
colors.length = 0;
console.log(colors); // [] the colors array is empty
colors.length = 3;
console.log(colors); // [undefined, undefined, undefined]

If you query a non-existent array index, you get undefined.

A common operation is to iterate over the values of an array, processing each one in
some way. The simplest way to do this is as follows:

var colors = ['red', 'green', 'blue'];
for (var i = 0; i < colors.length; i++) {
 console.log(colors[i]);
}

The forEach() method provides another way of iterating over an array:

var colors = ['red', 'green', 'blue'];
colors.forEach(function(color) {
 console.log(color);
});

The function passed to forEach() is executed once for every item in the array, with
the array item passed as the argument to the function. Unassigned values are not
iterated in a forEach() loop.

The Array object has a bunch of useful methods. These methods allow the
manipulation of the data stored in the array.

Chapter 3

[91]

The concat() method joins two arrays and returns a new array:

var myArray = new Array("33", "44", "55");
myArray = myArray.concat("3", "2", "1");
console.log(myArray);
// ["33", "44", "55", "3", "2", "1"]

The join() method joins all the elements of an array into a string. This can be useful
while processing a list. The default delimiter is a comma (,):

var myArray = new Array('Red','Blue','Yellow');
var list = myArray.join(" ~ ");
console.log(list);
//"Red ~ Blue ~ Yellow"

The pop() method removes the last element from an array and returns that element.
This is analogous to the pop() method of a stack:

var myArray = new Array("1", "2", "3");
var last = myArray.pop();
// myArray = ["1", "2"], last = "3"

The push() method adds one or more elements to the end of an array and returns
the resulting length of the array:

var myArray = new Array("1", "2");
myArray.push("3");
// myArray = ["1", "2", "3"]

The shift() method removes the first element from an array and returns that
element:

var myArray = new Array ("1", "2", "3");
var first = myArray.shift();
// myArray = ["2", "3"], first = "1"

The unshift() method adds one or more elements to the front of an array and
returns the new length of the array:

var myArray = new Array ("1", "2", "3");
myArray.unshift("4", "5");
// myArray = ["4", "5", "1", "2", "3"]

The reverse() method reverses or transposes the elements of an array—the first
array element becomes the last and the last becomes the first:

var myArray = new Array ("1", "2", "3");
myArray.reverse();
// transposes the array so that myArray = ["3", "2", "1"]

Data Structures and Manipulation

[92]

The sort() method sorts the elements of an array:

var myArray = new Array("A", "C", "B");
myArray.sort();
// sorts the array so that myArray = ["A","B","c"]

The sort() method can optionally take a callback function to define how the
elements are compared. The function compares two values and returns one of three
values. Let us study the following functions:

• indexOf(searchElement[, fromIndex]): This searches the array for
searchElement and returns the index of the first match:
var a = ['a', 'b', 'a', 'b', 'a','c','a'];
console.log(a.indexOf('b')); // 1
// Now try again, starting from after the last match
console.log(a.indexOf('b', 2)); // 3
console.log(a.indexOf('1')); // -1, 'q' is not found

• lastIndexOf(searchElement[, fromIndex]): This works like indexOf(),
but only searches backwards:
var a = ['a', 'b', 'c', 'd', 'a', 'b'];
console.log(a.lastIndexOf('b')); // 5
// Now try again, starting from before the last match
console.log(a.lastIndexOf('b', 4)); // 1
console.log(a.lastIndexOf('z')); // -1

Now that we have covered JavaScript arrays in depth, let me introduce you to a
fantastic library called Underscore.js (http://underscorejs.org/). Underscore.js
provides a bunch of exceptionally useful functional programming helpers to make
your code even more clear and functional.

We will assume that you are familiar with Node.js; in this case, install Underscore.js
via npm:

npm install underscore

As we are installing Underscore as a Node module, we will test all the examples by
typing them in a .js file and running the file on Node.js. You can install Underscore
using Bower also.

Like jQuery's $ module, Underscore comes with a _ module defined. You will call all
functions using this module reference.

http://underscorejs.org/

Chapter 3

[93]

Type the following code in a text file and name it test_.js:

var _ = require('underscore');
function print(n){
 console.log(n);
}
_.each([1, 2, 3], print);
//prints 1 2 3

This can be written as follows, without using each() function from underscore
library:

var myArray = [1,2,3];
var arrayLength = myArray.length;
for (var i = 0; i < arrayLength; i++) {
 console.log(myArray[i]);
}

What you see here is a powerful functional construct that makes the code much
more elegant and concise. You can clearly see that the traditional approach is
verbose. Many languages such as Java suffer from this verbosity. They are slowly
embracing functional paradigms. As JavaScript programmers, it is important for us
to incorporate these ideas into our code as much as possible.

The each() function we saw in the preceding example iterates over a list of
elements, yielding each to an iteratee function in turn. Each invocation of iteratee
is called with three arguments (element, index, and list). In the preceding example,
the each() function iterates over the array [1,2,3], and for each element in the
array, the print function is called with the array element as the parameter. This
is a convenient alternative to the traditional looping mechanism to access all the
elements in an array.

The range() function creates lists of integers. The start value, if omitted, defaults to
0 and step defaults to 1. If you'd like a negative range, use a negative step:

var _ = require('underscore');
console.log(_.range(10));
// [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
console.log(_.range(1, 11));
//[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
console.log(_.range(0, 30, 5));
//[0, 5, 10, 15, 20, 25]
console.log(_.range(0, -10, -1));
//[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
console.log(_.range(0));
//[]

Data Structures and Manipulation

[94]

By default, range() populates the array with integers, but with a little trick, you can
populate other data types also:

console.log(_.range(3).map(function () { return 'a' }));
['a', 'a', 'a']

This is a fast and convenient way to create and initialize an array with values.
We frequently do this by traditional loops.

The map() function produces a new array of values by mapping each value in
the list through a transformation function. Consider the following example:

var _ = require('underscore');
console.log(_.map([1, 2, 3], function(num){ return num * 3; }));
//[3,6,9]

The reduce() function reduces a list of values to a single value. The initial state is
passed by the iteratee function and each successive step is returned by the iteratee.
The following example shows the usage:

var _ = require('underscore');
var sum = _.reduce([1, 2, 3], function(memo, num){
 console.log(memo,num);return memo + num; }, 0);
console.log(sum);

In this example, the line, console.log(memo,num);, is just to make the idea clear.
The output will be as follows:

0 1
1 2
3 3
6

The final output is a sum of 1+2+3=6. As you can see, two values are passed to the
iteratee function. On the first iteration, we call the iteratee function with two values
(0,1)—the value of the memo is defaulted in the call to the reduce() function and
1 is the first element of the list. In the function, we sum memo and num and return
the intermediate sum, which will be used by the iterate() function as a memo
parameter—eventually, the memo will have the accumulated sum. This concept is
important to understand how the intermediate states are used to calculate eventual
results.

Chapter 3

[95]

The filter() function iterates through the entire list and returns an array of all the
elements that pass the condition. Take a look at the following example:

var _ = require('underscore');
var evens = _.filter([1, 2, 3, 4, 5, 6], function(num){
 return num % 2 == 0; });
console.log(evens);

The filter() function's iteratee function should return a truth value. The resulting
evens array contains all the elements that satisfy the truth test.

The opposite of the filter() function is reject(). As the name suggests, it iterates
through the list and ignores elements that satisfy the truth test:

var _ = require('underscore');
var odds = _.reject([1, 2, 3, 4, 5, 6], function(num){
 return num % 2 == 0; });
console.log(odds);
//[1, 3, 5]

We are using the same code as the previous example but using the reject() method
instead of filter()—the result is exactly the opposite.

The contains() function is a useful little function that returns true if the value is
present in the list; otherwise, returns false:

var _ = require('underscore');
console.log(_.contains([1, 2, 3], 3));
//true

One very useful function that I have grown fond of is invoke(). It calls a specific
function on each element in the list. I can't tell you how many times I have used it
since I stumbled upon it. Let us study the following example:

var _ = require('underscore');
console.log(_.invoke([[5, 1, 7], [3, 2, 1]], 'sort'));
//[[1, 5, 7], [1, 2, 3]]

In this example, the sort() method of the Array object is called for each element in
the array. Note that this would fail:

var _ = require('underscore');
console.log(_.invoke(["new","old","cat"], 'sort'));
//[undefined, undefined, undefined]

Data Structures and Manipulation

[96]

This is because the sort method is not part of the String object. This, however,
would work perfectly:

var _ = require('underscore');
console.log(_.invoke(["new","old","cat"], 'toUpperCase'));
//['NEW', 'OLD', 'CAT']

This is because toUpperCase() is a String object method and all elements of the
list are of the String type.

The uniq() function returns the array after removing all duplicates from the
original one:

var _ = require('underscore');
var uniqArray = _.uniq([1,1,2,2,3]);
console.log(uniqArray);
//[1,2,3]

The partition() function splits the array into two; one whose elements satisfy
the predicate and the other whose elements don't satisfy the predicate:

var _ = require('underscore');
function isOdd(n){
 return n%2==0;
}
console.log(_.partition([0, 1, 2, 3, 4, 5], isOdd));
//[[0, 2, 4], [1, 3, 5]]

The compact() function returns a copy of the array without all falsy values (false,
null, 0, "", undefined, and NaN):

console.log(_.compact([0, 1, false, 2, '', 3]));

This snippet will remove all falsy values and return a new array with elements
[1,2,3]—this is a helpful method to eliminate any value from a list that can
cause runtime exceptions.

The without() function returns a copy of the array with all instances of the specific
values removed:

var _ = require('underscore');
console.log(_.without([1,2,3,4,5,6,7,8,9,0,1,2,0,0,1,1],0,1,2));
//[3, 4, 5, 6, 7, 8, 9]

Chapter 3

[97]

Maps
ECMAScript 6 introduces maps. A map is a simple key-value map and can iterate its
elements in the order of their insertion. The following snippet shows some methods
of the Map type and their usage:

var founders = new Map();
founders.set("facebook", "mark");
founders.set("google", "larry");
founders.size; // 2
founders.get("twitter"); // undefined
founders.has("yahoo"); // false

for (var [key, value] of founders) {
 console.log(key + " founded by " + value);
}
// "facebook founded by mark"
// "google founded by larry"

Sets
ECMAScript 6 introduces sets. Sets are collections of values and can be iterated in the
order of the insertion of their elements. An important characteristic about sets is that
a value can occur only once in a set.

The following snippet shows some basic operations on sets:

var mySet = new Set();
mySet.add(1);
mySet.add("Howdy");
mySet.add("foo");

mySet.has(1); // true
mySet.delete("foo");
mySet.size; // 2

for (let item of mySet) console.log(item);
// 1
// "Howdy"

Data Structures and Manipulation

[98]

We discussed briefly that JavaScript arrays are not really arrays in a traditional sense.
In JavaScript, arrays are objects that have the following characteristics:

• The length property
• The functions that inherit from Array.prototype (we will discuss this in the

next chapter)
• Special handling for keys that are numeric keys

When we write an array index as numbers, they get converted to strings—arr[0]
internally becomes arr["0"]. Due to this, there are a few things that we need to be
aware of when we use JavaScript arrays:

• Accessing array elements by an index is not a constant time operation as it is
in, say, C. As arrays are actually key-value maps, the access will depend on
the layout of the map and other factors (collisions and others).

• JavaScript arrays are sparse (most of the elements have the default value),
which means that the array can have gaps in it. To understand this, look at
the following snippet:

var testArr=new Array(3);
console.log(testArr);

You will see the output as [undefined, undefined, undefined]—
undefined is the default value stored on the array element.

Consider the following example:

var testArr=[];
testArr[3] = 10;
testArr[10] = 3;
console.log(testArr);
// [undefined, undefined, undefined, 10, undefined, undefined,
 undefined, undefined, undefined, undefined, 3]

You can see that there are gaps in this array. Only two elements have elements
and the rest are gaps with the default value. Knowing this helps you in a couple of
things. Using the for...in loop to iterate an array can result in unexpected results.
Consider the following example:

var a = [];
a[5] = 5;
for (var i=0; i<a.length; i++) {
 console.log(a[i]);
}

Chapter 3

[99]

// Iterates over numeric indexes from 0 to 5
// [undefined,undefined,undefined,undefined,undefined,5]

for (var x in a) {
 console.log(x);
}
// Shows only the explicitly set index of "5", and ignores 0-4

A matter of style
Like the previous chapters, we will spend some time discussing the style
considerations while creating arrays.

• Use the literal syntax for array creation:
// bad
const items = new Array();
// good
const items = [];

• Use Array#push instead of a direct assignment to add items to an array:

const stack = [];
// bad
stack[stack.length] = 'pushme';
// good
stack.push('pushme');

Summary
As JavaScript matures as a language, its tool chain also becomes more robust and
effective. It is rare to see seasoned programmers staying away from libraries such
as Underscore.js. As we see more advanced topics, we will continue to explore
more such versatile libraries that can make your code compact, more readable,
and performant. We looked at regular expressions—they are first-class objects
in JavaScript. Once you start understanding RegExp, you will soon find yourself
using more of them to make your code concise. In the next chapter, we will look at
JavaScript Object notation and how JavaScript prototypal inheritance is a new way
of looking at object-oriented programming.

[101]

Object-Oriented JavaScript
JavaScript's most fundamental data type is the Object data type. JavaScript objects
can be seen as mutable key-value-based collections. In JavaScript, arrays, functions,
and RegExp are objects while numbers, strings, and Booleans are object-like
constructs that are immutable but have methods. In this chapter, you will learn the
following topics:

• Understanding objects
• Instance properties versus prototype properties
• Inheritance
• Getters and setters

Understanding objects
Before we start looking at how JavaScript treats objects, we should spend some time
on an object-oriented paradigm. Like most programming paradigms, object-oriented
programming (OOP) also emerged from the need to manage complexity. The main
idea is to divide the entire system into smaller pieces that are isolated from each
other. If these small pieces can hide as many implementation details as possible,
they become easy to use. A classic car analogy will help you understand this very
important point about OOP.

Object-Oriented JavaScript

[102]

When you drive a car, you operate on the interface—the steering, clutch, brake, and
accelerator. Your view of using the car is limited by this interface, which makes it
possible for us to drive the car. This interface is essentially hiding all the complex
systems that really drive the car, such as the internal functioning of its engine, its
electronic system, and so on. As a driver, you don't bother about these complexities.
A similar idea is the primary driver of OOP. An object hides the complexities of how
to implement a particular functionality and exposes a limited interface to the outside
world. All other systems can use this interface without really bothering about the
internal complexity that is hidden from view. Additionally, an object usually hides
its internal state from other objects and prevents its direct modification. This is an
important aspect of OOP.

In a large system where a lot of objects call other objects' interfaces, things can
go really bad if you allow them to modify the internal state of such objects. OOP
operates on the idea that the state of an object is inherently hidden from the outside
world and it can be changed only via controlled interface operations.

OOP was an important idea and a definite step forward from the traditional
structured programming. However, many feel that OOP is overdone. Most OOP
systems define complex and unnecessary class and type hierarchies. Another big
drawback was that in the pursuit of hiding the state, OOP considered the object state
almost immaterial. Though hugely popular, OOP was clearly flawed in many areas.
Still, OOP did have some very good ideas, especially hiding the complexity and
exposing only the interface to the outside world. JavaScript picked up a few
good ideas and built its object model around them. Luckily, this makes JavaScript
objects very versatile. In their seminal work, Design Patterns: Elements of Reusable
Object-Oriented Software, the Gang of Four gave two fundamental principles of a
better object-oriented design:

• Program to an interface and not to an implementation
• Object composition over class inheritance

These two ideas are really against how classical OOP operates. The classical style
of inheritance operates on inheritance that exposes parent classes to all child classes.
Classical inheritance tightly couples children to its parents. There are mechanisms
in classical inheritance to solve this problem to a certain extent. If you are using
classical inheritance in a language such as Java, it is generally advisable to program
to an interface, not an implementation. In Java, you can write a decoupled code using
interfaces:

//programming to an interface 'List' and not implementation
 'ArrayList'
List theList = new ArrayList();

Chapter 4

[103]

Instead of programming to an implementation, you can perform the following:

ArrayList theList = new ArrayList();

How does programming to an interface help? When you program to the List
interface, you can call methods only available to the List interface and nothing
specific to ArrayList can be called. Programming to an interface gives you the
liberty to change your code and use any other specific child of the List interface.
For example, I can change my implementation and use LinkedList instead of
ArrayList. You can change your variable to use LinkedList instead:

List theList = new LinkedList();

The beauty of this approach is that if you are using the List at 100 places in your
program, you don't have to worry about changing the implementation at all these
places. As you were programming to the interface and not to the implementation,
you were able to write a loosely coupled code. This is an important principle when
you are using classical inheritance.

Classical inheritance also has a limitation where you can only enhance the child class
within the limit of the parent classes. You can't fundamentally differ from what you
have got from the ancestors. This inhibits reuse. Classical inheritance has several
other problems as follows:

• Inheritance introduces tight coupling. Child classes have knowledge about
their ancestors. This tightly couples a child class with its parent.

• When you subclass from a parent, you don't have a choice to select what you
want to inherit and what you don't. Joe Armstrong (the inventor of Erlang)
explains this situation very well—his now famous quote:

"The problem with object-oriented languages is they've got all this
implicit environment that they carry around with them. You want-
ed a banana but what you got was a gorilla holding the banana and
the entire jungle."

Behavior of JavaScript objects
With this background, let's explore how JavaScript objects behave. In broad terms, an
object contains properties, defined as a key-value pair. A property key (name) can be
a string and the value can be any valid JavaScript value. You can create objects using
object literals. The following snippet shows you how object literals are created:

var nothing = {};
var author = {

Object-Oriented JavaScript

[104]

 "firstname": "Douglas",
 "lastname": "Crockford"
}

A property's name can be any string or an empty string. You can omit quotes around
the property name if the name is a legal JavaScript name. So quotes are required
around first-name but are optional around firstname. Commas are used to
separate the pairs. You can nest objects as follows:

var author = {
 firstname : "Douglas",
 lastname : "Crockford",
 book : {
 title:"JavaScript- The Good Parts",
 pages:"172"
 }
};

Properties of an object can be accessed by using two notations: the array-like notation
and dot notation. According to the array-like notation, you can retrieve the value
from an object by wrapping a string expression in []. If the expression is a valid
JavaScript name, you can use the dot notation using . instead. Using . is a preferred
method of retrieving values from an object:

console.log(author['firstname']); //Douglas
console.log(author.lastname); //Crockford
console.log(author.book.title); // JavaScript- The Good Parts

You will get an undefined error if you attempt to retrieve a non-existent value. The
following would return undefined:

console.log(author.age);

A useful trick is to use the || operator to fill in default values in this case:

console.log(author.age || "No Age Found");

You can update values of an object by assigning a new value to the property:

author.book.pages = 190;
console.log(author.book.pages); //190

If you observe closely, you will realize that the object literal syntax that you see is
very similar to the JSON format.

Chapter 4

[105]

Methods are properties of an object that can hold function values as follows:

var meetingRoom = {};
meetingRoom.book = function(roomId){
 console.log("booked meeting room -"+roomId);
}
meetingRoom.book("VL");

Prototypes
Apart from the properties that we add to an object, there is one default property
for almost all objects, called a prototype. When an object does not have a
requested property, JavaScript goes to its prototype to look for it. The Object.
getPrototypeOf() function returns the prototype of an object.

Many programmers consider prototypes closely related to objects' inheritance—
they are indeed a way of defining object types—but fundamentally, they are closely
associated with functions.

Prototypes are used as a way to define properties and functions that will be applied
to instances of objects. The prototype's properties eventually become properties
of the instantiated objects. Prototypes can be seen as blueprints for object creation.
They can be seen as analogous to classes in object-oriented languages. Prototypes in
JavaScript are used to write a classical style object-oriented code and mimic classical
inheritance. Let's revisit our earlier example:

var author = {};
author.firstname = 'Douglas';
author.lastname = 'Crockford';

In the preceding code snippet, we are creating an empty object and assigning
individual properties. You will soon realize that this is not a very standard way of
building objects. If you know OOP already, you will immediately see that there is
no encapsulation and the usual class structure. JavaScript provides a way around
this. You can use the new operator to instantiate an object via constructors. However,
there is no concept of a class in JavaScript, and it is important to note that the new
operator is applied to the constructor function. To clearly understand this, let's look
at the following example:

//A function that returns nothing and creates nothing
function Player() {}

Object-Oriented JavaScript

[106]

//Add a function to the prototype property of the function
Player.prototype.usesBat = function() {
 return true;
}

//We call player() as a function and prove that nothing happens
var crazyBob = Player();
if(crazyBob === undefined){
 console.log("CrazyBob is not defined");
}

//Now we call player() as a constructor along with 'new'
//1. The instance is created
//2. method usesBat() is derived from the prototype of the function
var swingJay = new Player();
if(swingJay && swingJay.usesBat && swingJay.usesBat()){
 console.log("SwingJay exists and can use bat");
}

In the preceding example, we have a player() function that does nothing. We
invoke it in two different ways. The first call of the function is as a normal function
and second call is as a constructor—note the use of the new() operator in this call.
Once the function is defined, we add a usesBat() method to it. When this function
is called as a normal function, the object is not instantiated and we see undefined
assigned to crazyBob. However, when we call this function with the new operator,
we get a fully instantiated object, swingJay.

Instance properties versus prototype
properties
Instance properties are the properties that are part of the object instance itself, as
shown in the following example:

function Player() {
 this.isAvailable = function() {
 return "Instance method says - he is hired";
 };
}
Player.prototype.isAvailable = function() {
 return "Prototype method says - he is Not hired";
};
var crazyBob = new Player();
console.log(crazyBob.isAvailable());

Chapter 4

[107]

When you run this example, you will see that Instance method says - he is hired
is printed. The isAvailable() function defined in the Player() function is called
an instance of Player. This means that apart from attaching properties via the
prototype, you can use the this keyword to initialize properties in a constructor.
When we have the same functions defined as an instance property and also as
a prototype, the instance property takes precedence. The rules governing the
precedence of the initialization are as follows:

• Properties are tied to the object instance from the prototype
• Properties are tied to the object instance in the constructor function

This example brings us to the use of the this keyword. It is easy to get confused
by the this keyword because it behaves differently in JavaScript. In other OO
languages such as Java, the this keyword refers to the current instance of the class.
In JavaScript, the value of this is determined by the invocation context of a function
and where it is called. Let's see how this behavior needs to be carefully understood:

• When this is used in a global context: When this is called in a global
context, it is bound to the global context. For example, in the case of a
browser, the global context is usually window. This is true for functions also.
If you use this in a function that is defined in the global context, it is still
bound to the global context because the function is part of the global context:
function globalAlias(){
 return this;
}
console.log(globalAlias()); //[object Window]

• When this is used in an object method: In this case, this is assigned or
bound to the enclosing object. Note that the enclosing object is the immediate
parent if you are nesting the objects:
var f = {
 name: "f",
 func: function () {
 return this;
 }
};
console.log(f.func());
//prints -
//[object Object] {
// func: function () {
// return this;
// },
// name: "f"
//}

Object-Oriented JavaScript

[108]

• When there is no context: A function, when invoked without any object, does
not get any context. By default, it is bound to the global context. When you
use this in such a function, it is also bound to the global context.

• When this is used in a constructor function: As we saw earlier, when a
function is called with a new keyword, it acts as a constructor. In the case of
a constructor, this points to the object being constructed. In the following
example, f() is used as a constructor (because it's invoked with a new
keyword) and hence, this is pointing to the new object being created. So
when we say this.member = "f", the new member is added to the object
being created, in this case, that object happens to be o:

var member = "global";
function f()
{
 this.member = "f";
}
var o= new f();
console.log(o.member); // f

We saw that instance properties take precedence when the same property is defined
both as an instance property and prototype property. It is easy to visualize that
when a new object is created, the properties of the constructor's prototype are copied
over. However, this is not a correct assumption. What actually happens is that the
prototype is attached to the object and referred when any property of this object
is referred. Essentially, when a property is referenced on an object, either of the
following occur:

• The object is checked for the existence of the property. If it's found, the
property is returned.

• The associated prototype is checked. If the property is found, it is returned;
otherwise, an undefined error is returned.

This is an important understanding because, in JavaScript, the following code
actually works perfectly:

function Player() {
 isAvailable=false;
}
var crazyBob = new Player();
Player.prototype.isAvailable = function() {
 return isAvailable;
};
console.log(crazyBob.isAvailable()); //false

Chapter 4

[109]

This code is a slight variation of the earlier example. We are creating the object
first and then attaching the function to its prototype. When you eventually call the
isAvailable() method on the object, JavaScript goes to its prototype to search for
it if it's not found in the particular object (crazyBob, in this case). Think of this as
hot code loading—when used properly, this ability can give you incredible power to
extend the basic object framework even after the object is created.

If you are familiar with OOP already, you must be wondering whether we can
control the visibility and access of the members of an object. As we discussed earlier,
JavaScript does not have classes. In programming languages such as Java, you have
access modifiers such as private and public that let you control the visibility of the
class members. In JavaScript, we can achieve something similar using the function
scope as follows:

• You can declare private variables using the var keyword in a function. They
can be accessed by private functions or privileged methods.

• Private functions may be declared in an object's constructor and can be called
by privileged methods.

• Privileged methods can be declared with this.method=function() {}.
• Public methods are declared with Class.prototype.method=function()

{}.
• Public properties can be declared with this.property and accessed from

outside the object.

The following example shows several ways of doing this:

function Player(name,sport,age,country){

 this.constructor.noOfPlayers++;

 // Private Properties and Functions
 // Can only be viewed, edited or invoked by privileged members
 var retirementAge = 40;
 var available=true;
 var playerAge = age?age:18;
 function isAvailable(){ return available &&
(playerAge<retirementAge); }
 var playerName=name ? name :"Unknown";
 var playerSport = sport ? sport : "Unknown";

Object-Oriented JavaScript

[110]

 // Privileged Methods
 // Can be invoked from outside and can access private members
 // Can be replaced with public counterparts
 this.book=function(){
 if (!isAvailable()){
 this.available=false;
 } else {
 console.log("Player is unavailable");
 }
 };
 this.getSport=function(){ return playerSport; };
 // Public properties, modifiable from anywhere
 this.batPreference="Lefty";
 this.hasCelebGirlfriend=false;
 this.endorses="Super Brand";
}

// Public methods - can be read or written by anyone
// Can only access public and prototype properties
Player.prototype.switchHands = function(){ this.
batPreference="righty"; };
Player.prototype.dateCeleb = function(){ this.hasCelebGirlfriend=true;
} ;
Player.prototype.fixEyes = function(){ this.wearGlasses=false; };

// Prototype Properties - can be read or written by anyone (or
overridden)
Player.prototype.wearsGlasses=true;

// Static Properties - anyone can read or write
Player.noOfPlayers = 0;

(function PlayerTest(){
 //New instance of the Player object created.
 var cricketer=new Player("Vivian","Cricket",23,"England");
 var golfer =new Player("Pete","Golf",32,"USA");
 console.log("So far there are " + Player.noOfPlayers + " in the
guild");

Chapter 4

[111]

 //Both these functions share the common 'Player.prototype.
wearsGlasses' variable
 cricketer.fixEyes();
 golfer.fixEyes();

 cricketer.endorses="Other Brand";//public variable can be updated

 //Both Player's public method is now changed via their prototype
 Player.prototype.fixEyes=function(){
 this.wearGlasses=true;
 };
 //Only Cricketer's function is changed
 cricketer.switchHands=function(){
 this.batPreference="undecided";
 };

})();

Let's understand a few important concepts from this example:

• The retirementAge variable is a private variable that has no privileged
method to get or set its value.

• The country variable is a private variable created as a constructor argument.
Constructor arguments are available as private variables to the object.

• When we called cricketer.switchHands(), it was only applied to the
cricketer and not to both the players, although it's a prototype function of
the Player itself.

• Private functions and privileged methods are instantiated with each new
object created. In our example, new copies of isAvailable() and book()
would be created for each new player instance that we create. On the other
hand, only one copy of public methods is created and shared between all
instances. This can mean a bit of performance gain. If you don't really need to
make something private, think about keeping it public.

Object-Oriented JavaScript

[112]

Inheritance
Inheritance is an important concept of OOP. It is common to have a bunch of objects
implementing the same methods. It is also common to have an almost similar object
definition with differences in a few methods. Inheritance is very useful in promoting
code reuse. We can look at the following classic example of inheritance relation:

Here, you can see that from the generic Animal class, we derive more specific classes
such as Mammal and Bird based on specific characteristics. Both the Mammal and
Bird classes do have the same template of an Animal; however, they also define
behaviors and attributes specific to them. Eventually, we derive a very specific
mammal, Dog. A Dog has common attributes and behaviors from an Animal class
and Mammal class, while it adds specific attributes and behaviors of a Dog. This can
go on to add complex inheritance relationships.

Traditionally, inheritance is used to establish or describe an IS-A relationship.
For example, a dog IS-A mammal. This is what we know as classical inheritance.
You would have seen such relationships in object-oriented languages such as C++
and Java. JavaScript has a completely different mechanism to handle inheritance.
JavaScript is classless language and uses prototypes for inheritance. Prototypal
inheritance is very different in nature and needs thorough understanding. Classical
and prototypal inheritance are very different in nature and need careful study.

Chapter 4

[113]

In classical inheritance, instances inherit from a class blueprint and create subclass
relationships. You can't invoke instance methods on a class definition itself. You
need to create an instance and then invoke methods on this instance. In prototypal
inheritance, on the other hand, instances inherit from other instances.

As far as inheritance is concerned, JavaScript uses only objects. As we discussed
earlier, each object has a link to another object called its prototype. This prototype
object, in turn, has a prototype of its own, and so on until an object is reached with
null as its prototype; null, by definition, has no prototype, and acts as the final link
in this prototype chain.

To understand prototype chains better, let's consider the following example:

function Person() {}
Person.prototype.cry = function() {
 console.log("Crying");
}
function Child() {}
Child.prototype = {cry: Person.prototype.cry};
var aChild = new Child();
console.log(aChild instanceof Child); //true
console.log(aChild instanceof Person); //false
console.log(aChild instanceof Object); //true

Here, we define a Person and then Child—a child IS-A person. We also copy the
cry property of a Person to the cry property of Child. When we try to see this
relationship using instanceof, we soon realize that just by copying a behavior, we
could not really make Child an instance of Person; aChild instanceof Person
fails. This is just copying or masquerading, not inheritance. Even if we copy all the
properties of Person to Child, we won't be inheriting from Person. This is usually
a bad idea and is shown here only for illustrative purposes. We want to derive a
prototype chain—an IS-A relationship, a real inheritance where we can say that
child IS-A person. We want to create a chain: a child IS-A person IS-A mammal
IS-A animal IS-A object. In JavaScript, this is done using an instance of an object as a
prototype as follows:

SubClass.prototype = new SuperClass();
Child.prototype = new Person();

Let's modify the earlier example:

function Person() {}
Person.prototype.cry = function() {
 console.log("Crying");
}

Object-Oriented JavaScript

[114]

function Child() {}
Child.prototype = new Person();
var aChild = new Child();
console.log(aChild instanceof Child); //true
console.log(aChild instanceof Person); //true
console.log(aChild instanceof Object); //true

The changed line uses an instance of Person as the prototype of Child. This is an
important distinction from the earlier method. Here we are declaring that child IS-A
person.

We discussed about how JavaScript looks for a property up the prototype chain till
it reaches Object.prototype. Let's discuss the concept of prototype chains in detail
and try to design the following employee hierarchy:

This is a typical pattern of inheritance. A manager IS-A(n) employee. Manager has
common properties inherited from an Employee. It can have an array of reportees.
An Individual Contributor is also based on an employee but he does not have any
reportees. A Team Lead is derived from a Manager with a few functions that are
different from a Manager. What we are doing essentially is that each child is deriving
properties from its parent (Manager being the parent and Team Lead being the child).

Chapter 4

[115]

Let's see how we can create this hierarchy in JavaScript. Let's define our Employee
type:

function Employee() {
 this.name = '';
 this.dept = 'None';
 this.salary = 0.00;
}

There is nothing special about these definitions. The Employee object contains three
properties—name, salary, and department. Next, we define Manager. This definition
shows you how to specify the next object in the inheritance chain:

function Manager() {
 Employee.call(this);
 this.reports = [];
}
Manager.prototype = Object.create(Employee.prototype);

In JavaScript, you can add a prototypical instance as the value of the prototype
property of the constructor function. You can do so at any time after you define the
constructor. In this example, there are two ideas that we have not explored earlier.
First, we are calling Employee.call(this). If you come from a Java background,
this is analogous to the super() method call in the constructor. The call() method
calls a function with a specific object as its context (in this case, it is the given the
this value), in other words, call allows to specify which object will be referenced
by the this keyword when the function will be executed. Like super() in Java,
calling parentObject.call(this) is necessary to correctly initialize the object being
created.

The other thing we see is Object.create() instead of calling new. Object.create()
creates an object with a specified prototype. When we do new Parent(), the
constructor logic of the parent is called. In most cases, what we want is for Child.
prototype to be an object that is linked via its prototype to Parent.prototype. If
the parent constructor contains additional logic specific to the parent, we don't want
to run this while creating the child object. This can cause very difficult-to-find bugs.
Object.create() creates the same prototypal link between the child and parent as
the new operator without calling the parent constructor.

Object-Oriented JavaScript

[116]

To have a side effect-free and accurate inheritance mechanism, we have to make sure
that we perform the following:

• Setting the prototype to an instance of the parent initializes the prototype
chain (inheritance); this is done only once (as the prototype object is shared)

• Calling the parent's constructor initializes the object itself; this is done
with every instantiation (you can pass different parameters each time you
construct it)

With this understanding in place, let's define the rest of the objects:

function IndividualContributor() {
 Employee.call(this);
 this.active_projects = [];
}
IndividualContributor.prototype = Object.create(Employee.prototype);

function TeamLead() {
 Manager.call(this);
 this.dept = "Software";
 this.salary = 100000;
}
TeamLead.prototype = Object.create(Manager.prototype);

function Engineer() {
 TeamLead.call(this);
 this.dept = "JavaScript";
 this.desktop_id = "8822" ;
 this.salary = 80000;
}
Engineer.prototype = Object.create(TeamLead.prototype);

Based on this hierarchy, we can instantiate these objects:

var genericEmployee = new Employee();
console.log(genericEmployee);

You can see the following output for the preceding code snippet:

[object Object] {
 dept: "None",
 name: "",
 salary: 0
}

Chapter 4

[117]

A generic Employee has a department assigned to None (as specified in the default
value) and the rest of the properties are also assigned as the default ones.

Next, we instantiate a manager; we can provide specific values as follows:

var karen = new Manager();
karen.name = "Karen";
karen.reports = [1,2,3];
console.log(karen);

You will see the following output:

[object Object] {
 dept: "None",
 name: "Karen",
 reports: [1, 2, 3],
 salary: 0
}

For TeamLead, the reports property is derived from the base class (Manager in this
case):

var jason = new TeamLead();
jason.name = "Json";
console.log(jason);

You will see the following output:

[object Object] {
 dept: "Software",
 name: "Json",
 reports: [],
 salary: 100000
}

When JavaScript processes the new operator, it creates a new object and passes this
object as the value of this to the parent—the TeamLead constructor. The constructor
function sets the value of the projects property and implicitly sets the value of the
internal __proto__ property to the value of TeamLead.prototype. The __proto__
property determines the prototype chain used to return property values. This
process does not set values for properties inherited from the prototype chain in the
jason object. When the value of a property is read, JavaScript first checks to see
whether the value exists in that object. If the value does exist, this value is returned.
If the value is not there, JavaScript checks the prototype chain using the __proto__
property. Having said this, what happens when you do the following:

Employee.prototype.name = "Undefined";

Object-Oriented JavaScript

[118]

It does not propagate to all the instances of Employee. This is because when you
create an instance of the Employee object, this instance gets a local value for the
name. When you set the TeamLead prototype by creating a new Employee object,
TeamLead.prototype has a local value for the name property. Therefore, when
JavaScript looks up the name property of the jason object, which is an instance of
TeamLead), it finds the local value for this property in TeamLead.prototype. It does
not try to do further lookups up the chain to Employee.prototype.

If you want the value of a property changed at runtime and have the new value be
inherited by all the descendants of the object, you cannot define the property in the
object's constructor function. To achieve this, you need to add it to the constructor's
prototype. For example, let's revisit the earlier example but with a slight change:

function Employee() {
 this.dept = 'None';
 this.salary = 0.00;
}
Employee.prototype.name = '';
function Manager() {
 this.reports = [];
}
Manager.prototype = new Employee();
var sandy = new Manager();
var karen = new Manager();

Employee.prototype.name = "Junk";

console.log(sandy.name);
console.log(karen.name);

You will see that the name property of both sandy and karen has changed to Junk.
This is because the name property is declared outside the constructor function. So,
when you change the value of name in the Employee's prototype, it propagates to all
the descendants. In this example, we are modifying Employee's prototype after the
sandy and karen objects are created. If you changed the prototype before the sandy
and karen objects were created, the value would still have changed to Junk.

All native JavaScript objects—Object, Array, String, Number, RegExp, and
Function—have prototype properties that can be extended. This means that we
can extend the functionality of the language itself. For example, the following
snippet extends the String object to add a reverse() method to reverse a string.
This method does not exist in the native String object but by manipulating String's
prototype, we add this method to String:

Chapter 4

[119]

String.prototype.reverse = function() {
 return Array.prototype.reverse.apply(this.split('')).join('');
};
var str = 'JavaScript';
console.log(str.reverse()); //"tpircSavaJ"

Though this is a very powerful technique, care should be taken not to overuse
it. Refer to http://perfectionkills.com/extending-native-builtins/ to
understand the pitfalls of extending native built-ins and what care should be taken if
you intend to do so.

Getters and setters
Getters are convenient methods to get the value of specific properties; as the name
suggests, setters are methods that set the value of a property. Often, you may want
to derive a value based on some other values. Traditionally, getters and setters used
to be functions such as the following:

var person = {
 firstname: "Albert",
 lastname: "Einstein",
 setLastName: function(_lastname){
 this.lastname= _lastname;
 },
 setFirstName: function (_firstname){
 this.firstname= _firstname;
 },
 getFullName: function (){
 return this.firstname + ' '+ this.lastname;
 }
};
person.setLastName('Newton');
person.setFirstName('Issac');
console.log(person.getFullName());

As you can see, setLastName(), setFirstName(), and getFullName() are functions
used to do get and set of properties. Fullname is a derived property by concatenating
the firstname and lastname properties. This is a very common use case and
ECMAScript 5 now provides you with a default syntax for getters and setters.

http://perfectionkills.com/extending-native-builtins/

Object-Oriented JavaScript

[120]

The following example shows you how getters and setters are created using the
object literal syntax in ECMAScript 5:

var person = {
 firstname: "Albert",
 lastname: "Einstein",
 get fullname() {
 return this.firstname +" "+this.lastname;
 },
 set fullname(_name){
 var words = _name.toString().split(' ');
 this.firstname = words[0];
 this.lastname = words[1];
 }
};
person.fullname = "Issac Newton";
console.log(person.firstname); //"Issac"
console.log(person.lastname); //"Newton"
console.log(person.fullname); //"Issac Newton"

Another way of declaring getters and setters is using the Object.defineProperty()
method:

var person = {
 firstname: "Albert",
 lastname: "Einstein",
};
Object.defineProperty(person, 'fullname', {
 get: function() {
 return this.firstname + ' ' + this.lastname;
 },
 set: function(name) {
 var words = name.split(' ');
 this.firstname = words[0];
 this.lastname = words[1];
 }
});
person.fullname = "Issac Newton";
console.log(person.firstname); //"Issac"
console.log(person.lastname); //"Newton"
console.log(person.fullname); //"Issac Newton"

In this method, you can call Object.defineProperty() even after the object is
created.

Chapter 4

[121]

Now that you have tasted the object-oriented flavor of JavaScript, we will go through
a bunch of very useful utility methods provided by Underscore.js. We discussed the
installation and basic usage of Underscore.js in the previous chapter. These methods
will make common operations on objects very easy:

• keys(): This method retrieves the names of an object's own enumerable
properties. Note that this function does not traverse up the prototype chain:
var _ = require('underscore');
var testobj = {
 name: 'Albert',
 age : 90,
 profession: 'Physicist'
};
console.log(_.keys(testobj));
//['name', 'age', 'profession']

• allKeys(): This method retrieves the names of an object's own and inherited
properties:
var _ = require('underscore');
function Scientist() {
 this.name = 'Albert';
}
Scientist.prototype.married = true;
aScientist = new Scientist();
console.log(_.keys(aScientist)); //['name']
console.log(_.allKeys(aScientist));//['name', 'married']

• values(): This method retrieves the values of an object's own properties:
var _ = require('underscore');
function Scientist() {
 this.name = 'Albert';
}
Scientist.prototype.married = true;
aScientist = new Scientist();
console.log(_.values(aScientist)); //['Albert']

• mapObject(): This method transforms the value of each property in the
object:
var _ = require('underscore');
function Scientist() {
 this.name = 'Albert';
 this.age = 90;
}

Object-Oriented JavaScript

[122]

aScientist = new Scientist();
var lst = _.mapObject(aScientist, function(val,key){
 if(key==="age"){
 return val + 10;
 } else {
 return val;
 }
});
console.log(lst); //{ name: 'Albert', age: 100 }

• functions(): This returns a sorted list of the names of every method in an
object—the name of every function property of the object.

• pick(): This function returns a copy of the object, filtered to just the values
of the keys provided:
var _ = require('underscore');
var testobj = {
 name: 'Albert',
 age : 90,
 profession: 'Physicist'
};
console.log(_.pick(testobj, 'name','age')); //{ name: 'Albert',
age: 90 }
console.log(_.pick(testobj, function(val,key,object){
 return _.isNumber(val);
})); //{ age: 90 }

• omit(): This function is an invert of pick()—it returns a copy of the object,
filtered to omit the values for the specified keys.

Summary
JavaScript applications can improve in clarity and quality by allowing for the
greater degree of control and structure that object-orientation can bring to the code.
JavaScript object-orientation is based on the function prototypes and prototypal
inheritance. These two ideas can provide an incredible amount of wealth to
developers.

In this chapter, we saw basic object creation and manipulation. We looked at how
constructor functions are used to create objects. We dived into prototype chains and
how inheritance operates on the idea of prototype chains. These foundations will
be used to build your knowledge of JavaScript patterns that we will explore in the
next chapter.

[123]

JavaScript Patterns
So far, we have looked at several fundamental building blocks necessary to write
code in JavaScript. Once you start building larger systems using these fundamental
constructs, you soon realize that there can be a standard way of doing a few things.
While developing a large system, you will encounter repetitive problems; a pattern
intends to provide a standardized solution to such known and identified problems.
A pattern can be seen as a best practice, useful abstraction, or template to solve
common problems. Writing maintainable code is difficult. The key to write modular,
correct, and maintainable code is the ability to understand the repeating themes and
use common templates to write optimized solutions to these. The most important
text on design patterns was a book published in 1995 called Design Patterns: Elements
Of Reusable Object-Oriented Software written by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides—a group that became known as the Gang of Four (GOF
for short). This seminal work gave a formal definition to various patterns and
explained implementation details of most of the popular patterns that we use today.
It is important to understand why patterns are important:

• Patterns offer proven solutions to common problems: Patterns provide
templates that are optimized to solve a particular problem. These patterns are
backed by solid engineering experience and tested for validity.

• Patterns are designed to be reused: They are generic enough to fit variations
of a problem.

• Patterns define vocabulary: Patterns are well-defined structures and hence
provide a generic vocabulary to the solution. This can be very expressive
when communicating across a larger group.

JavaScript Patterns

[124]

Design patterns
In this chapter, we will take a look at some of the design patterns that make sense
for JavaScript. However, coding patterns are very specific for JavaScript and are of
great interest to us. While we spend a lot of time and effort trying to understand and
master design patterns, it is important to understand anti-patterns and how to avoid
pitfalls. In the usual software development cycle, there are several places where bad
code is introduced, mainly around the time where the code is nearing a release or
when the code is handed over to a different team for maintenance. If such bad design
constructs are documented as anti-patterns, they can provide guidance to developers
in knowing what pitfalls to avoid and how not to subscribe to bad design patterns.
Most languages have their set of anti-patterns. Based on the kind of problems that
they solve, design patterns were categorized into a few broad categories by the GOF:

• Creational design patterns: These patterns deal with various mechanisms of
object creation. While most languages provide basic object creation methods,
these patterns look at optimized or more controlled mechanisms of object
creation.

• Structural design patterns: These patterns are all about the composition of
objects and relationships among them. The idea is to have minimal impact on
overall object relationships when something in the system changes.

• Behavioral design patterns: These patterns focus on the interdependency
and communication between objects.

The following table is a useful ready reckoner to identify categories of patterns:

• Creational patterns:
 ° Factory method
 ° Abstract factory
 ° Builder
 ° Prototype
 ° Singleton

• Structural patterns:
 ° Adapter
 ° Bridge
 ° Composite
 ° Decorator
 ° Façade

Chapter 5

[125]

 ° Flyweight
 ° Proxy

• Behavioral patterns

 ° Interpreter
 ° Template method
 ° Chain of responsibility
 ° Command
 ° Iterator
 ° Mediator
 ° Memento
 ° Observer
 ° State
 ° Strategy
 ° Visitor

Some patterns that we will discuss in this chapter may not be part of this list as they
are more specific to JavaScript or a variation of these classical patterns. Similarly, we
will not discuss patterns that do not fit into JavaScript or are not in popular use.

The namespace pattern
Excessive use of the global scope is almost a taboo in JavaScript. When you build
larger programs, it is sometimes difficult to control how much the global scope is
polluted. Namespace can reduce the number of globals created by the program
and also helps in avoiding naming collisions or excessive name prefixing. The idea
of using namespaces is creating a global object for your application or library and
adding all these objects and functions to that object rather than polluting the global
scope with objects. JavaScript doesn't have an explicit syntax for namespaces, but
namespaces can be easily created. Let's consider the following example:

function Car() {}
function BMW() {}
var engines = 1;
var features = {
 seats: 6,
 airbags:6
};

JavaScript Patterns

[126]

We are creating all this in the global scope. This is an anti-pattern, and this is never a
good idea. We can, however, refactor this code and create a single global object and
make all the functions and objects part of this global object as follows:

// Single global object
var CARFACTORY = CARFACTORY || {};
CARFACTORY.Car = function () {};
CARFACTORY.BMW = function () {};
CARFACTORY.engines = 1;
CARFACTORY.features = {
 seats: 6,
 airbags:6
};

By convention, the global namespace object name is generally written in all caps.
This pattern adds namespace to the application and prevents naming collisions in
your code and between your code and external library that you use. Many projects
use a distinct name after their company or project to create a unique name for their
namespace.

Though this seems like an ideal way to restrict your globals and add a namespace
to your code, it is a bit verbose; you need to prefix every variable and function
with the namespace. You need to type more and the code becomes unnecessarily
verbose. Additionally, a single global instance would mean that any part of the code
can modify the global instance and the rest of the functionality gets the updated
state—this can cause very nasty side-effects. A curious thing to observe in the earlier
example is this line—var CARFACTORY = CARFACTORY || {};. When you are
working on a large code base, you can't assume that you are creating this namespace
(or assigning a property to it) for the first time. It is possible that the namespace may
pre-exist. To make sure that you create the namespace only if it is not already created,
it is safe to always rely on the quick defaulting via a short-circuit || operator.

The module pattern
As you build large applications, you will soon realize that it becomes increasingly
difficult to keep the code base organized and modular. The module patterns help in
keeping the code cleanly separated and organized.

Module separates bigger programs into smaller pieces and gives them a namespace.
This is very important because once you separate code into modules, these modules
can be reused in several places. Carefully designing interfaces for the modules will
make your code very easy to reuse and extend.

Chapter 5

[127]

JavaScript offers flexible functions and objects that make it easy to create robust
module systems. Function scopes help create namespaces that are internal for the
module, and objects can be used to store sets of exported values.

Before we start exploring the pattern itself, let's quickly brush up on a few concepts
that we discussed earlier.

We discussed object literals in detail. Object literals allow you to create name-value
pairs as follows:

var basicServerConfig = {
 environment: "production",
 startupParams: {
 cacheTimeout: 30,
 locale: "en_US"
 },
 init: function () {
 console.log("Initializing the server");
 },
 updateStartup: function(params) {
 this.startupParams = params;
 console.log(this.startupParams.cacheTimeout);
 console.log(this.startupParams.locale);
 }
};
basicServerConfig.init(); //"Initializing the server"
basicServerConfig.updateStartup({cacheTimeout:60,
 locale:"en_UK"}); //60, en_UK

In this example, we are creating an object literal and defining key-value pairs to
create properties and functions.

In JavaScript, the module pattern is used very heavily. Modules help in mimicking
the concept of classes. Modules allow us to include both public/private methods and
variables of an object, but most importantly, modules restrict these parts from the
global scope. As the variables and functions are contained in the module scope, we
automatically prevent naming conflict with other scripts using the same names.

Another beautiful aspect of the module pattern is that we expose only a public API.
Everything else related to the internal implementation is held private within the
module's closure.

JavaScript Patterns

[128]

Unlike other OO languages, JavaScript has no explicit access modifiers and, hence,
there is no concept of privacy. You can't have public or private variables. As we
discussed earlier, in JavaScript, the function scope can be used to enforce this
concept. The module pattern uses closures to restrict variable and function access
only within the module; however, variables and functions are defined in the object
being returned, which is available to the public.

Let's consider the earlier example and turn this into a module. We are essentially
using an IIFE and returning the interface of the module, namely, the init and
updateStartup functions:

var basicServerConfig = (function () {
 var environment= "production";
 startupParams= {
 cacheTimeout: 30,
 locale: "en_US"
 };
 return {
 init: function () {
 console.log("Initializing the server");
 },
 updateStartup: function(params) {
 this.startupParams = params;
 console.log(this.startupParams.cacheTimeout);
 console.log(this.startupParams.locale);
 }
 };
})();
basicServerConfig.init(); //"Initializing the server"
basicServerConfig.updateStartup({cacheTimeout:60,
 locale:"en_UK"}); //60, en_UK

In this example, basicServerConfig is created as a module in the global context. To
make sure that we are not polluting the global context with modules, it is important
to create namespaces for the modules. Moreover, as modules are inherently reused, it
is important to make sure that we avoid naming conflicts using namespaces. For the
basicServerConfig module, the following snippet shows you the way to create a
namespace:

// Single global object
var SERVER = SERVER||{};
SERVER.basicServerConfig = (function () {
 Var environment= "production";
 startupParams= {

Chapter 5

[129]

 cacheTimeout: 30,
 locale: "en_US"
 };
 return {
 init: function () {
 console.log("Initializing the server");
 },
 updateStartup: function(params) {
 this.startupParams = params;
 console.log(this.startupParams.cacheTimeout);
 console.log(this.startupParams.locale);
 }
 };
})();
SERVER.basicServerConfig.init(); //"Initializing the server"
SERVER.basicServerConfig.updateStartup({cacheTimeout:60,
 locale:"en_UK"}); //60, en_UK

Using namespace with modules is generally a good idea; however, it is not required
that a module must have a namespace associated.

A variation of the module pattern tries to overcome a few problems of the original
module pattern. This improved variation of the module pattern is also known as the
revealing module pattern (RMP). RMP was first popularized by Christian Heilmann.
He disliked that it was necessary to use the module name while calling a public
function from another function or accessing a public variable. Another small problem
is that you have to use an object literal notation while returning the public interface.
Consider the following example:

var modulePattern = function(){
 var privateOne = 1;
 function privateFn(){
 console.log('privateFn called');
 }
 return {
 publicTwo: 2,
 publicFn:function(){
 modulePattern.publicFnTwo();
 },
 publicFnTwo:function(){
 privateFn();
 }
 }
}();
modulePattern.publicFn(); "privateFn called"

JavaScript Patterns

[130]

You can see that we need to call publicFnTwo() via modulePattern in publicFn().
Additionally, the public interface is returned in an object literal. The improvement
on the classic module pattern is what is known as the RMP. The primary idea
behind this pattern is to define all of the members in the private scope and return an
anonymous object with pointers to the private functionality that needs to be revealed
as public.

Let's see how we can convert our previous example to an RMP. This example is
heavily inspired from Christian's blog:

var revealingExample = function(){
 var privateOne = 1;
 function privateFn(){
 console.log('privateFn called');
 }
 var publicTwo = 2;
 function publicFn(){
 publicFnTwo();
 }
 function publicFnTwo(){
 privateFn();
 }
 function getCurrentState(){
 return 2;
 }
 // reveal private variables by assigning public pointers
 return {
 setup:publicFn,
 count:publicTwo,
 increaseCount:publicFnTwo,
 current:getCurrentState()
 };
}();
console.log(revealingExample.current); // 2
revealingExample.setup(); //privateFn called

An important distinction here is that you define functions and variables in the
private scope and return an anonymous object with pointers to the private variables
and functions that you want to reveal as public. This is a much cleaner variation and
should be preferred over the classic module pattern.

Chapter 5

[131]

In production code, however, you would want to use more a standardized approach
to create modules. Currently, there are two main approaches to create modules. The
first is known as CommonJS modules. CommonJS modules are usually more suited
for server-side JavaScript environments such as Node.js. A CommonJS module
contains a require() function that receives the name of the module and returns the
module's interface. The format was proposed by the volunteer group of CommonJS;
their aim was to design, prototype, and standardize JavaScript APIs. CommonJS
modules consist of two parts. Firstly, list of variables and functions the module needs
to expose; when you assign a variable or function to the module.exports variable,
it is exposed from the module. Secondly, a require function that modules can use
to import the exports of other modules:

//Add a dependency module
var crypto = require('crypto');
function randomString(length, chars) {
 var randomBytes = crypto.randomBytes(length);
 ...
 ...
}
//Export this module to be available for other modules
module.exports=randomString;

CommonJS modules are supported by Node.js on the server and curl.js in the
browser.

The other flavor of JavaScript modules is called Asynchronous Module Definition
(AMD). They are browser-first modules and opt for asynchronous behavior. AMD
uses a define function to define the modules. This function takes an array of module
names and a function. Once the modules are loaded, the define function executes
the function with their interface as an argument. The AMD proposal is aimed at the
asynchronous loading of both the module and dependencies. The define function is
used to define named or unnamed modules based on the following signature:

define(
 module_id /*optional*/,
 [dependencies] /*optional*/,
 definition function /*function for instantiating the module or
 object*/
);

JavaScript Patterns

[132]

You can add a module without dependencies as follows:

define(
{
 add: function(x, y){
 return x + y;
 }
});

The following snippet shows you a module that depends on two other modules:

define("math",
 //dependency on these two modules
 ["sum", "multiply"],
 // module definition function
 // dependencies (foo and bar) are mapped to function parameters
 function (sum, multiply) {
 // return a value that defines the module export
 // (that is, the functionality we want to expose for consumption)

 // create your module here
 var math = {
 demo : function () {
 console.log(sum.calculate(1,2));
 console.log(multiply.calculate(1,2));
 }
 };
 return math;
});

The require module is used as follows:

require(["math","draw"], function (math,draw) {
 draw.2DRender(math.pi);
});

RequireJS (http://requirejs.org/docs/whyamd.html) is one of the module
loaders that implements AMD.

http://requirejs.org/docs/whyamd.html

Chapter 5

[133]

ES6 modules
Two separate module systems and different module loaders can be a bit
intimidating. ES6 tries to solve this. ES6 has a proposed module specification that
tries to keep the good aspects of both the CommonJS and AMD module patterns.
The syntax of ES6 modules is similar to CommonJS and the ES6 modules support
asynchronous loading and configurable module loading:

//json_processor.js
function processJSON(url) {
 ...
}
export function getSiteContent(url) {
 return processJSON(url);
}
//main.js
import { getSiteContent } from "json_processor.js";
content=getSiteContent("http://google.com/");

ES6 export lets you export a function or variable in a way similar to CommonJS.
In the code where you want to use this imported function, you use the import
keyword to specify from where you want the dependency to be imported. Once the
dependency is imported, it can be used as a member of the program. We will discuss
in later chapters how you can use ES6 in environments where ES6 is not supported.

The factory pattern
The factory pattern is another popular object creation pattern. It does not require the
usage of constructors. This pattern provides an interface to create objects. Based on
the type passed to the factory, that particular type of object is created by the factory.
A common implementation of this pattern is usually using a class or static method of
a class. The purposes of such a class or method are as follows:

• It abstracts out repetitive operations when creating similar objects
• It allows the consumers of the factory to create objects without knowing the

internals of the object creation

JavaScript Patterns

[134]

Let's take a common example to understand the usage of a factory. Let's say that we
have the following:

• A constructor, CarFactory()
• A static method in CarFactory called make() that knows how to create

objects of the car type
• Specific car types such as CarFactory.SUV, CarFactory.Sedan, and so on

We want to use CarFactory as follows:

var golf = CarFactory.make('Compact');
var vento = CarFactory.make('Sedan');
var touareg = CarFactory.make('SUV');

Here is how you would implement such a factory. The following implementation
is fairly standard. We are programmatically calling the constructor function that
creates an object of the specified type—CarFactory[const].prototype = new
CarFactory();.

We are mapping object types to the constructors. There can be variations in how you
can go about implementing this pattern:

// Factory Constructor
function CarFactory() {}
CarFactory.prototype.info = function() {
 console.log("This car has "+this.doors+" doors and a
 "+this.engine_capacity+" liter engine");
};
// the static factory method
CarFactory.make = function (type) {
 var constr = type;
 var car;
 CarFactory[constr].prototype = new CarFactory();
 // create a new instance
 car = new CarFactory[constr]();
 return car;
};

CarFactory.Compact = function () {
 this.doors = 4;
 this.engine_capacity = 2;
};

Chapter 5

[135]

CarFactory.Sedan = function () {
 this.doors = 2;
 this.engine_capacity = 2;
};
CarFactory.SUV = function () {
 this.doors = 4;
 this.engine_capacity = 6;
};
 var golf = CarFactory.make('Compact');
 var vento = CarFactory.make('Sedan');
 var touareg = CarFactory.make('SUV');
 golf.info(); //"This car has 4 doors and a 2 liter engine"

We suggest that you try this example in JS Bin and understand the concept by
actually writing its code.

The mixin pattern
Mixins help in significantly reducing functional repetition in our code and help
in function reuse. We can move this shared functionality to a mixin and reduce
duplication of shared behavior. You can then focus on building the actual
functionality and not keep repeating the shared behavior. Let's consider the
following example. We want to create a custom logger that can be used by any object
instance. The logger will become a functionality shared across objects that want to
use/extend the mixin:

var _ = require('underscore');
//Shared functionality encapsulated into a CustomLogger
var logger = (function () {
 var CustomLogger = {
 log: function (message) {
 console.log(message);
 }
 };
 return CustomLogger;
}());

//An object that will need the custom logger to log system
 specific logs
var Server = (function (Logger) {
 var CustomServer = function () {
 this.init = function () {
 this.log("Initializing Server...");
 };

JavaScript Patterns

[136]

 };

 // This copies/extends the members of the 'CustomLogger' into
 'CustomServer'
 _.extend(CustomServer.prototype, Logger);
 return CustomServer;
}(logger));

(new Server()).init(); //Initializing Server...

In this example, we are using _.extend from Underscore.js—we discussed this
function in the previous chapter. This function is used to copy all the properties
from the source (Logger) to the destination (CustomServer.prototype). As you
can observe in this example, we are creating a shared CustomLogger object that is
intended to be used by any object instance needing its functionality. One such object
is CustomServer—in its init() method, we call this custom logger's log() method.
This method is available to CustomServer because we are extending CustomLogger
via Underscore's extend(). We are dynamically adding functionality of a mixin to
the consumer object. It is important to understand the distinction between mixins
and inheritance. When you have shared functionality across multiple objects and
class hierarchies, you can use mixins. If you have shared functionality along a single
class hierarchy, you can use inheritance. In prototypical inheritance, when you
inherit from a prototype, any change to the prototype affects everything that inherits
the prototype. If you do not want this to happen, you can use mixins.

The decorator pattern
The primary idea behind the decorator pattern is that you start your design with a
plain object, which has some basic functionality. As the design evolves, you can use
existing decorators to enhance your plain object. This is a very popular pattern in the
OO world and especially in Java. Let's take an example of BasicServer—a server
with very basic functionality. This basic functionality can be decorated to serve
specific purposes. We can have two different cases where this server can serve both
PHP and Node.js and serve them on different ports. These different functionality are
decorated to the basic server:

var phpServer = new BasicServer();
phpServer = phpServer.decorate('reverseProxy');
phpServer = phpServer.decorate('servePHP');
phpServer = phpServer.decorate('80');
phpServer = phpServer.decorate('serveStaticAssets');
phpServer.init();

Chapter 5

[137]

The Node.js server will have something as follows:

var nodeServer = new BasicServer();
nodeServer = nodeServer.decorate('serveNode');
nodeServer = nodeServer.decorate('3000');
nodeServer.init();

There are several ways in which the decorator pattern is implemented in JavaScript.
We will discuss a method where the pattern is implemented by a list and does not
rely on inheritance or method call chain:

//Implement BasicServer that does the bare minimum
function BasicServer() {
 this.pid = 1;
 console.log("Initializing basic Server");
 this.decorators_list = []; //Empty list of decorators
}
//List of all decorators
BasicServer.decorators = {};

//Add each decorator to the list of BasicServer's decorators
//Each decorator in this list will be applied on the BasicServer
 instance
BasicServer.decorators.reverseProxy = {
 init: function(pid) {
 console.log("Started Reverse Proxy");
 return pid + 1;
 }
};
BasicServer.decorators.servePHP = {
 init: function(pid) {
 console.log("Started serving PHP");
 return pid + 1;
 }
};
BasicServer.decorators.serveNode = {
 init: function(pid) {
 console.log("Started serving Node");
 return pid + 1;
 }
};

JavaScript Patterns

[138]

//Push the decorator to this list everytime decorate() is called
BasicServer.prototype.decorate = function(decorator) {
 this.decorators_list.push(decorator);
};
//init() method looks through all the applied decorators on
 BasicServer
//and executes init() method on all of them
BasicServer.prototype.init = function () {
 var running_processes = 0;
 var pid = this.pid;
 for (i = 0; i < this.decorators_list.length; i += 1) {
 decorator_name = this.decorators_list[i];
 running_processes =
 BasicServer.decorators[decorator_name].init(pid);
 }
 return running_processes;
};

//Create server to serve PHP
var phpServer = new BasicServer();
phpServer.decorate('reverseProxy');
phpServer.decorate('servePHP');
total_processes = phpServer.init();
console.log(total_processes);

//Create server to serve Node
var nodeServer = new BasicServer();
nodeServer.decorate('serveNode');
nodeServer.init();
total_processes = phpServer.init();
console.log(total_processes);

BasicServer.decorate() and BasicServer.init() are the two methods where
the real stuff happens. We push all decorators being applied to the list of decorators
for BasicServer. In the init() method, we execute or apply each decorator's
init() method from this list of decorators. This is a cleaner approach to decorator
patterns that does not use inheritance. This method was described by Stoyan
Stefanov in his book, JavaScript Patterns, O'Reilly Media, and has gained prominence
among JavaScript developers due to its simplicity.

Chapter 5

[139]

The observer pattern
Let's first see the language-agnostic definition of the observer pattern. The GOF book,
Design Patterns: Elements of Reusable Object-Oriented Software, defines the observer
pattern as follows:

One or more observers are interested in the state of a subject and register their interest with
the subject by attaching themselves. When something changes in our subject that the observer
may be interested in, a notify message is sent which calls the update method in each observer.
When the observer is no longer interested in the subject's state, they can simply detach
themselves.

In the observer design pattern, the subject keeps a list of objects depending on it
(called observers) and notifies them when the state changes. The subject uses a
broadcast to the observers to inform them of the change. Observers can remove
themselves from the list once they no longer wish to be notified. Based on this
understanding, we can define the participants in this pattern:

• Subject: This keeps the list of observers and has methods to add, remove,
and update observers

• Observer: This provides an interface for objects that need to be notified when
the subject's state changes

Let's create a subject that can add, remove, and notify observers:

var Subject = (function() {
 function Subject() {
 this.observer_list = [];
 }
 // this method will handle adding observers to the internal list
 Subject.prototype.add_observer = function (obj) {
 console.log('Added observer');
 this.observer_list.push(obj);
 };
 Subject.prototype.remove_observer = function (obj) {
 for(var i = 0; i < this.observer_list.length; i++) {
 if(this.observer_list[i] === obj) {
 this.observer_list.splice(i, 1);
 console.log('Removed Observer');
 }
 }
 };

JavaScript Patterns

[140]

 Subject.prototype.notify = function () {
 var args = Array.prototype.slice.call(arguments, 0);
 for(var i = 0; i<this.observer_list.length; i++) {
 this.observer_list[i].update(args);
 }
 };
 return Subject;
})();

This is a fairly straightforward implementation of a Subject. The important fact
about the notify() method is the way in which all the observer objects' update()
methods are called to broadcast the update.

Now let's define a simple object that creates random tweets. This object is providing
an interface to add and remove observers to the Subject via addObserver() and
removeObserver() methods. It also calls the notify() method of Subject with the
newly fetched tweet. When this happens, all the observers will broadcast that the
new tweet has been updated with the new tweet being passed as the parameter:

function Tweeter() {
 var subject = new Subject();
 this.addObserver = function (observer) {
 subject.add_observer(observer);
 };
 this.removeObserver = function (observer) {
 subject.remove_observer(observer);
 };
 this.fetchTweets = function fetchTweets() {
 // tweet
 var tweet = {
 tweet: "This is one nice observer"
 };
 // notify our observers of the stock change
 subject.notify(tweet);
 };
}

Let's now add two observers:

var TweetUpdater = {
 update : function() {
 console.log('Updated Tweet - ', arguments);
 }
};

Chapter 5

[141]

var TweetFollower = {
 update : function() {
 console.log('"Following this tweet - ', arguments);
 }
};

Both these observers will have one update() method that will be called by the
Subject.notify() method. Now we can actually add these observers to the
Subject via Tweeter's interface:

var tweetApp = new Tweeter();
tweetApp.addObserver(TweetUpdater);
tweetApp.addObserver(TweetFollower);
tweetApp.fetchTweets();
tweetApp.removeObserver(TweetUpdater);
tweetApp.removeObserver(TweetFollower);

This will result in the following output:

Added observer
Added observer
Updated Tweet - { '0': [{ tweet: 'This is one nice observer' }] }
"Following this tweet - { '0': [{ tweet: 'This is one nice
observer' }] }
Removed Observer
Removed Observer

This is a basic implementation to illustrate the idea of the observer pattern.

JavaScript Model-View-* patterns
Model-View-Controller (MVC), Model-View-Presenter (MVP), and Model-View-
ViewModel (MVVM) have been popular with server applications, but in recent
years JavaScript applications are also using these patterns to structure and manage
large projects. Many JavaScript frameworks have emerged that support MV*
patterns. We will discuss a few examples using Backbone.js.

Model-View-Controller
MVC is a popular structural pattern where the idea is to divide an application into
three parts so as to separate the internal representations of information from the
presentation layer. MVC consists of components. The model is the application object,
view is the presentation of the underlying model object, and controller handles the
way in which the user interface behaves, depending on the user interactions.

JavaScript Patterns

[142]

Models
Models are constructs that represent data in the applications. They are agnostic of the
user interface or routing logic. Changes to models are typically notified to the view
layer by following the observer design pattern. Models may also contain code to
validate, create, or delete data. The ability to automatically notify the views to react
when the data is changed makes frameworks such as Backbone.js, Amber.js, and
others very useful in building MV* applications. The following example shows you a
typical Backbone model:

var EmployeeModel = Backbone.Model.extend({
 url: '/employee/1',
 defaults: {
 id: 1,
 name: 'John Doe',
 occupation: null
 }
 initialize: function() {
 }
}); var JohnDoe = new EmployeeModel();

This model structure may vary between different frameworks but they usually have
certain commonalities in them. In most real-world applications, you would want
your model to be persisted to an in-memory store or database.

Views
Views are the visual representations of your model. Usually, the state of the model is
processed, filtered, or massaged before it is presented to the view layer. In JavaScript,
views are responsible for rendering and manipulating DOM elements. Views
observe models and get notified when there is a change in the model. When the user
interacts with the view, certain attributes of the model are changed via the view layer
(usually via controllers). In JavaScript frameworks such as Backbone, the views are
created using template engines such as Handlebar.js (http://handlebarsjs.com/)
or mustache.js (https://mustache.github.io/). These templates themselves are
not views. They observe models and keep the view state updated based on these
changes. Let's see an example of a view defined in Handlebar:

<li class="employee_photo">
 <h2>{{title}}</h2>

 <div class="employee_details">
 {{employee_details}}
 </div>

http://handlebarsjs.com/
https://mustache.github.io/

Chapter 5

[143]

Views such as the preceding example contain markup tags containing template
variables. These variables are delimited via a custom syntax. For example, template
variables are delimited using {{ }} in Handlebar.js. Frameworks typically transmit
data in JSON format. How the view is populated from the model is handled
transparently by the framework.

Controllers
Controllers act as a layer between models and views and are responsible for updating
the model when the user changes the view attributes. Most JavaScript frameworks
deviate from the classical definition of a controller. For example, Backbone does not
have a concept called controller; they have something called a router that is responsible
to handle routing logic. You can think of a combination of the view and router as a
controller because a lot of the logic to synchronize models and views is done within the
view itself. A typical Backbone router would look as follows:

var EmployeeRouter = Backbone.Router.extend({
 routes: { "employee/:id": "route" },
 route: function(id) {
 ...view render logic...
 }
});

The Model-View-Presenter pattern
Model-View-Presenter is a variation of the original MVC pattern that we discussed
previously. Both MVC and MVP target the separation of concerns but they are
different on many fundamental aspects. The presenter in MVP has the necessary
logic for the view. Any invocation from the view gets delegated to the presenter.
The presenter also observes the model and updates the views when the model
updates. Many authors take the view that because the presenter binds the model
with views, it also performs the role of a traditional controller. There are various
implementations of MVP and there are no frameworks that offer classical MVP out
of the box. In implementations of MVP, the following are the primary differences
that separate MVP from MVC:

• The view has no reference to the model
• The presenter has a reference to the model and is responsible for updating

the view when the model changes

JavaScript Patterns

[144]

MVP is generally implemented in two flavors:

• Passive view: The view is as naïve as possible and all the business logic is
within the presenter. For example, a plain Handlebars template can be seen
as a passive view.

• Supervising controller: Views mostly contain declarative logic. A presenter
takes over when the simple declarative logic in the view is insufficient.

The following figure depicts MVP architecture:

Model-View-ViewModel
MVVM was originally coined by Microsoft for use with Windows Presentation
Foundation (WPF) and Silverlight. MVVM is a variation of MVC and MVP and
further tries to separate the user interface (view) from the business model and
application behavior. MVVM creates a new model layer in addition to the domain
model that we discussed in MVC and MVP. This model layer adds properties as
an interface for the view. Let's say that we have a checkbox on the UI. The state of
the checkbox is captured in an IsChecked property. In MVP, the view will have
this property and the presenter will set it. However, in MVVM, the presenter will
have the IsChecked property and the view is responsible for syncing with it. Now
that the presenter is not really doing the job of a classical presenter, it's renamed as
ViewModel:

Chapter 5

[145]

Implementation details of these approaches are dependent on the problem that we
are trying to solve and the framework that we use.

Summary
While building large applications, we see certain problem patterns repeating over
and over. These patterns have well-defined solutions that can be reused to build a
robust solution. In this chapter, we discussed some of the important patterns and
ideas around these patterns. Most modern JavaScript applications use these patterns.
It is rare to see a large-scale system built without implementing modules, decorators,
factories, or MV* patterns. These are foundational ideas that we discussed in this
chapter. We will discuss various testing and debugging techniques in the next chapter.

[147]

Testing and Debugging
As you write JavaScript applications, you will soon realize that having a sound
testing strategy is indispensable. In fact, not writing enough tests is almost always a
bad idea. It is essential to cover all the non-trivial functionality of your code to make
sure of the following points:

• The existing code behaves as per the specifications
• Any new code does not break the behavior defined by the specifications

Both these points are very important. Many engineers consider only the first point
the sole reason to cover your code with enough tests. The most obvious advantage
of test coverage is to really make sure that the code being pushed to the production
system is mostly error-free. Writing test cases to smartly cover the maximum
functional areas of the code generally gives you a good indication about the overall
quality of the code. There should be no arguments or compromises around this
point. It is unfortunate though that many production systems are still bereft of
adequate code coverage. It is very important to build an engineering culture where
developers think about writing tests as much as they think about writing code.

The second point is even more important. Legacy systems are usually very difficult
to manage. When you are working on code written either by someone else or a large
distributed team, it is fairly easy to introduce bugs and break things. Even the best
engineers make mistakes. When you are working on a large code base that you are
unfamiliar with and if there is no sound test coverage to help you, you will introduce
bugs. As you won't have the confidence in the changes that you are making (because
there are no test cases to confirm your changes), your code releases will be shaky,
slow, and obviously full of hidden bugs.

Testing and Debugging

[148]

You will refrain from refactoring or optimizing your code because you won't really
be sure what changes to the code base would potentially break something (again,
because there are no test cases to confirm your changes)—all this is a vicious circle.
It's like a civil engineer saying, "though I have constructed this bridge, I have no
confidence in the quality of the construction. It may collapse immediately or never."
Though this may sound like an exaggeration, I have seen a lot of high impact
production code being pushed with no test coverage. This is risky and should
be avoided. When you are writing enough test cases to cover majority of your
functional code and when you make a change to these pieces, you immediately
realize if there is a problem with this new change. If your changes make the test case
fail, you realize the problem. If your refactoring breaks the test scenario, you realize
the problem—all this happens much before the code is pushed to production.

In recent years, ideas such as test-driven development and self-testing code are
gaining prominence, especially in agile methodology. These are fundamentally
sound ideas and will help you write robust code—code that you are confident of. We
will discuss all these ideas in this chapter. You will understand how to write good
test cases in modern JavaScript. We will also look at several tools and methods to
debug your code. JavaScript has been traditionally a bit difficult to test and debug
primarily due to lack of tools, but modern tools make both of these easy and natural.

Unit testing
When we talk about test cases, we mostly mean unit tests. It is incorrect to assume
that the unit that we want to test is always a function. The unit (or unit of work) is a
logical unit that constitutes a single behavior. This unit should be able to be invoked
via a public interface and should be testable independently.

Thus, a unit test performs the following functions:

• It tests a single logical function
• It can be run without a specific order of execution
• It takes care of its own dependencies and mock data
• It always returns the same result for the same input
• It should be self-explanatory, maintainable, and readable

Chapter 6

[149]

Martin Fowler advocates the test pyramid (http://martinfowler.
com/bliki/TestPyramid.html) strategy to make sure that we have
a high number of unit tests to ensure maximum code coverage. The test
pyramid says that you should write many more low-level unit tests than
higher level integration and UI tests.

There are two important testing strategies that we will discuss in this chapter.

Test-driven development
Test-driven development (TDD) has gained a lot of prominence in the last
few years. The concept was first proposed as part of the Extreme Programming
methodology. The idea is to have short repetitive development cycles where the
focus is on writing the test cases first. The cycle looks as follows:

1. Add a test case as per the specifications for a specific unit of code.
2. Run the existing suite of test cases to see if the new test case that you wrote

fails—it should (because there is no code for this unit yet). This step ensures
that the current test harness works well.

3. Write the code that serves mainly to confirm the test case. This code is not
optimized or refactored or even entirely correct. However, this is fine at the
moment.

4. Rerun the tests and see if all the test cases pass. After this step, you will be
confident that the new code is not breaking anything.

5. Refactor the code to make sure that you are optimizing the unit and handling
all corner cases.

These steps are repeated for all the new code that you add. This is an elegant strategy
that works really well for the agile methodology. TDD will be successful only if the
testable units of code are small and confirm only to the test case and nothing more.
It is important to write small, modular, and precise code units that have input and
output confirming the test case.

Behavior-driven development
A very common problem while trying to follow TDD is vocabulary and the
definition of correctness. BDD tries to introduce a ubiquitous language while writing
the test cases when you are following TDD. This language makes sure that both the
business and engineering teams are talking about the same thing.

http://martinfowler.com/bliki/TestPyramid.html
http://martinfowler.com/bliki/TestPyramid.html

Testing and Debugging

[150]

We will use Jasmine as the primary BDD framework and explore various testing
strategies.

You can install Jasmine by downloading the standalone package from
https://github.com/jasmine/jasmine/releases/download/
v2.3.4/jasmine-standalone-2.3.4.zip.

When you unzip this package, you will have the following directory structure:

The lib directory contains the JavaScript files that you need in your project to start
writing Jasmine test cases. If you open SpecRunner.html, you will find the following
JavaScript files included in it:

<script src="lib/jasmine-2.3.4/jasmine.js"></script>
<script src="lib/jasmine-2.3.4/jasmine-html.js"></script>
<script src="lib/jasmine-2.3.4/boot.js"></script>

<!-- include source files here... -->
<script src="src/Player.js"></script>

https://github.com/jasmine/jasmine/releases/download/v2.3.4/jasmine-standalone-2.3.4.zip
https://github.com/jasmine/jasmine/releases/download/v2.3.4/jasmine-standalone-2.3.4.zip

Chapter 6

[151]

<script src="src/Song.js"></script>
<!-- include spec files here... -->
<script src="spec/SpecHelper.js"></script>
<script src="spec/PlayerSpec.js"></script>

The first three are Jasmine's own framework files. The next section includes the
source files that we want to test and the actual test specifications.

Let's experiment with Jasmine with a very ordinary example. Create a
bigfatjavascriptcode.js file and place it in the src/ directory. We will test the
following function:

function capitalizeName(name){
 return name.toUpperCase();
}

This is a simple function that does one single thing. It receives a string and returns a
capitalized string. We will test various scenarios around this function. This is the unit
of code that we discussed earlier.

Next, create the test specifications. Create one JavaScript file, test.spec.js, and
place it in the spec/ directory. The file should contain the following. You will need
to add the following two lines to SpecRunner.html:

<script src="src/bigfatjavascriptcode.js"></script>
<script src="spec/test.spec.js"></script>

The order of this inclusion does not matter. When we run SpecRunner.html, you
will see something as follows:

Testing and Debugging

[152]

This is the Jasmine report that shows the details about the number of tests that were
executed and the count of failures and successes. Now, let's make the test case fail.
We want to test a case where an undefined variable is passed to the function. Add
one more test case as follows:

it("can handle undefined", function() {
 var str= undefined;
 expect(capitalizeName(str)).toEqual(undefined);
});

Now, when you run SpecRunner.html, you will see the following result:

As you can see, the failure is displayed for this test case in a detailed error stack.
Now, we go about fixing this. In your original JavaScript code, we can handle an
undefined condition as follows:

function capitalizeName(name){
 if(name){
 return name.toUpperCase();
 }
}

With this change, your test case will pass and you will see the following in the
Jasmine report:

Chapter 6

[153]

This is very similar to what a test-driven development would look. You write test
cases, you then fill in the necessary code to confirm to the specifications, and rerun
the test suite. Let's understand the structure of the Jasmine tests.

Our test specification looks as follows:

describe("TestStringUtilities", function() {
 it("converts to capital", function() {
 var str = "albert";
 expect(capitalizeName(str)).toEqual("ALBERT");
 });
 it("can handle undefined", function() {
 var str= undefined;
 expect(capitalizeName(str)).toEqual(undefined);
 });
});

The describe("TestStringUtilities" is a test suite. The name of the test suite
should describe the unit of code that we are testing—this can be a function or group
of related functionality. In the specifications, you call the global Jasmine it function
to which you pass the title of the specification and test function used by the test
case. This function is the actual test case. You can catch one or more assertions or
the general expectations using the expect function. When all expectations are true,
your specification is passed. You can write any valid JavaScript code in the describe
and it functions. The values that you verify as part of the expectations are matched
using a matcher. In our example, toEqual() is the matcher that matches two values
for equality. Jasmine contains a rich set of matches to suit most of the common use
cases. Some common matchers supported by Jasmine are as follows:

• toBe(): This matcher checks whether two objects being compared are equal.
This is the same as the === comparison, as shown in the following code:
var a = { value: 1};
var b = { value: 1 };

expect(a).toEqual(b); // success, same as == comparison
expect(b).toBe(b); // failure, same as === comparison
expect(a).toBe(a); // success, same as === comparison

• not: You can negate a matcher with a not prefix. For example, expect(1).
not.toEqual(2); will negate the match made by toEqual().

Testing and Debugging

[154]

• toContain(): This checks whether an element is part of an array. This is not
an exact object match as toBe(). For example, look at the following code:
expect([1, 2, 3]).toContain(3);
expect("astronomy is a science").toContain("science");

• toBeDefined() and toBeUndefined(): These two matches are handy to
check whether a variable is undefined (or not).

• toBeNull(): This checks whether a variable's value is null.
• toBeGreaterThan() and toBeLessThan(): These matchers perform numeric

comparisons (they work on strings too):

expect(2).toBeGreaterThan(1);
expect(1).toBeLessThan(2);
expect("a").toBeLessThan("b");

One interesting feature of Jasmine is the spies. When you are writing a large system,
it is not possible to make sure that all systems are always available and correct. At
the same time, you don't want your unit tests to fail due to a dependency that may be
broken or unavailable. To simulate a situation where all dependencies are available
for a unit of code that we want to test, we mock these dependencies to always give
the response that we expect. Mocking is an important aspect of testing and most
testing frameworks provide support for the mocking. Jasmine allows mocking using
a feature called a spy. Jasmine spies essentially stub the functions that we may not
have ready; at the time of writing the test case but as part of the functionality, we
need to track that we are executing these dependencies and not ignoring them.
Consider the following example:

describe("mocking configurator", function() {
 var configurator = null;
 var responseJSON = {};

 beforeEach(function() {
 configurator = {
 submitPOSTRequest: function(payload) {
 //This is a mock service that will eventually be replaced
 //by a real service
 console.log(payload);
 return {"status": "200"};
 }
 };
 spyOn(configurator,
 'submitPOSTRequest').and.returnValue({"status": "200"});
 configurator.submitPOSTRequest({

Chapter 6

[155]

 "port":"8000",
 "client-encoding":"UTF-8"
 });
 });

 it("the spy was called", function() {
 expect(configurator.submitPOSTRequest).toHaveBeenCalled();
 });

 it("the arguments of the spy's call are tracked", function() {
 expect(configurator.submitPOSTRequest).toHaveBeenCalledWith({"port
":"8000","client-encoding":"UTF-8"});
 });
});

In this example, while we are writing this test case, we either don't have the real
implementation of the configurator.submitPOSTRequest() dependency or
someone is fixing this particular dependency. In any case, we don't have it available.
For our test to work, we need to mock it. Jasmine spies allow us to replace a function
with its mock and track its execution.

In this case, we need to ensure that we called the dependency. When the actual
dependency is ready, we will revisit this test case to make sure that it fits the
specifications, but at this time, all that we need to ensure is that the dependency is
called. The Jasmine tohaveBeenCalled() function lets us track the execution of a
function, which may be a mock. We can use toHaveBeenCalledWith() that allows
us to determine if the stub function was called with the correct parameters. There
are several other interesting scenarios that you can create using Jasmine spies. The
scope of this chapter won't permit us to cover them all, but I would encourage you to
discover these areas on your own.

You can refer to the user manual for Jasmine for more information
on Jasmine spies at http://jasmine.github.io/2.0/
introduction.html.

Mocha, Chai, and Sinon
Though Jasmine is the most prominent JavaScript testing framework,
Mocha and Chai are gaining prominence in the Node.js environment.
Mocha is the testing framework used to describe and run test cases.
Chai is the assertion library supported by Mocha. Sinon.JS comes in
handy while creating mocks and stubs for your tests. We won't discuss
these frameworks in this book, but experience on Jasmine will be handy
if you want to experiment with these frameworks.

http://jasmine.github.io/2.0/introduction.html
http://jasmine.github.io/2.0/introduction.html

Testing and Debugging

[156]

JavaScript debugging
If you are not a completely new programmer, I am sure you must have spent some
amount of time debugging your or someone else's code. Debugging is almost like an
art form. Every language has different methods and challenges around debugging.
JavaScript has traditionally been a difficult language to debug. I have personally
spent days and nights of misery trying to debug badly-written JavaScript code
using alert() functions. Fortunately, modern browsers such as Mozilla Firefox
and Google Chrome have excellent developer tools to help debug JavaScript in
the browser. There are IDEs like IntelliJ WebStorm with great debugging support
for JavaScript and Node.js. In this chapter, we will focus primarily on Google
Chrome's built-in developer tool. Firefox also supports the Firebug extension and
has excellent built-in developer tools, but as they behave more or less the same as
Google Chrome's Developer Tools (DevTools), we will discuss common debugging
approaches that work in both of these tools.

Before we talk about the specific debugging techniques, let's understand the type of
errors that we would be interested in while we try to debug our code.

Syntax errors
When your code has something that does not confirm to the JavaScript language
grammar, the interpreter rejects this piece of code. These are easy to catch if your
IDE is helping you with syntax checking. Most modern IDEs help with these errors.
Earlier, we discussed the usefulness of the tools such as JSLint and JSHint around
catching syntax issues with your code. They analyze the code and flag errors in the
syntax. JSHint output can be very illuminating. For example, the following output
shows up so many things that we can change in the code. This snippet is from one of
my existing projects:

temp git:(dev_branch) ✗ jshint test.js
test.js: line 1, col 1, Use the function form of "use strict".
test.js: line 4, col 1, 'destructuring expression' is available in
 ES6 (use esnext option) or Mozilla JS extensions (use moz).
test.js: line 44, col 70, 'arrow function syntax (=>)' is only
 available in ES6 (use esnext option).
test.js: line 61, col 33, 'arrow function syntax (=>)' is only
 available in ES6 (use esnext option).
test.js: line 200, col 29, Expected ')' to match '(' from line 200
 and instead saw ':'.
test.js: line 200, col 29, 'function closure expressions' is only
 available in Mozilla JavaScript extensions (use moz option).
test.js: line 200, col 37, Expected '}' to match '{' from line 36
 and instead saw ')'.

Chapter 6

[157]

test.js: line 200, col 39, Expected ')' and instead saw '{'.
test.js: line 200, col 40, Missing semicolon.

Using strict
We briefly discussed the strict mode in earlier chapters. The strict mode in JavaScript
flags or eliminates some of the JavaScript silent errors. Rather than silently failing,
the strict mode makes these failures throw errors instead. The strict mode also helps
in converting mistakes to actual errors. There are two ways of enforcing the strict
mode. If you want the strict mode for the entire script, you can just add the use
strict statement as the first line of your JavaScript program. If you want a specific
function to conform with the strict mode, you can add the directive as the first line of
a function:

function strictFn(){
// This line makes EVERYTHING under this strict mode
'use strict';
…
function nestedStrictFn() {
//Everything in this function is also nested
…
}
}

Runtime exceptions
These errors appear when you execute the code and try to refer to an undefined
variable or process a null. When a runtime exception occurs, any code after that
particular line (which caused the exception) does not get executed. It is essential to
handle such exceptional scenarios correctly in the code. While exception handling
can help prevent crashes, they also aid in debugging. You can wrap the code that
may encounter a runtime exception in a try{ } block. When any code in this block
generates a runtime exception, a corresponding handler captures it. The handler is
defined by a catch(exception){} block. Let's clarify this using an example:

try {
 var a = doesnotexist; // throws a runtime exception
} catch(e) {
 console.log(e.message); //handle the exception
 //prints - "doesnotexist is not defined"
}

Testing and Debugging

[158]

In this example, the var a = doesnotexist; line tries to assign an undefined
variable, doesnotexist, to another variable, a. This causes a runtime exception.
When we wrap this problematic code in the try{} catch(){} block and when the
exception occurs (or is thrown), the execution stops in the try{} block and goes
directly to the catch() {} handler. The catch handler is responsible for handling
the exceptional scenario. In this case, we are displaying the error message on the
console for debugging purposes. You can explicitly throw an exception to trigger an
unhandled scenario in the code. Consider the following example:

function engageGear(gear){
 if(gear==="R"){ console.log ("Reversing");}
 if(gear==="D"){ console.log ("Driving");}
 if(gear==="N"){ console.log ("Neutral/Parking");}
 throw new Error("Invalid Gear State");
}
try
{
 engageGear("R"); //Reversing
 engageGear("P"); //Invalid Gear State
}
catch(e){
 console.log(e.message);
}

In this example, we are handling valid states of a gear shift (R, N, and D), but when
we receive an invalid state, we are explicitly throwing an exception clearly stating
the reason. When we call the function that we think may throw an exception, we
wrap the code in the try{} block and attach a catch(){} handler with it. When
the exception is caught by the catch() block, we handle the exceptional condition
appropriately.

Console.log and asserts
Displaying the state of execution on the console can be very useful while debugging.
However, modern developer tools allow you to put breakpoints and halt execution
to inspect a particular value during runtime. You can quickly detect small issues by
logging some variable state on the console.

With these concepts, let's see how we can use Chrome Developer Tools to debug
JavaScript code.

Chapter 6

[159]

Chrome DevTools
You can start Chrome DevTools by navigating to menu | More tools | Developer
Tools:

Chrome DevTools opens up on the lower pane of your browser and has a bunch of
very useful sections:

The Elements panel helps you inspect and monitor the DOM tree and associated
style sheet for each of these components.

The Network panel is useful to understand network activity. For example, you can
monitor the resources being downloaded over the network in real time.

Testing and Debugging

[160]

The most important pane for us is the Sources pane. This pane is where the
JavaScript source and debugger are displayed. Let's create a sample HTML with the
following content:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>This test</title>
 <script type="text/javascript">
 function engageGear(gear){
 if(gear==="R"){ console.log ("Reversing");}
 if(gear==="D"){ console.log ("Driving");}
 if(gear==="N"){ console.log ("Neutral/Parking");}
 throw new Error("Invalid Gear State");
 }
 try
 {
 engageGear("R"); //Reversing
 engageGear("P"); //Invalid Gear State
 }
 catch(e){
 console.log(e.message);
 }
 </script>
</head>
<body>
</body>
</html>

Save this HTML file and open it in Google Chrome. Open DevTools in the browser
and you will see the following screen:

Chapter 6

[161]

This is the view of the Sources panel. You can see the HTML and embedded
JavaScript source in this panel. You can see the Console window as well. You can see
that the file is executed and output is displayed in the Console.

On the right-hand side, you will see the debugger window:

Testing and Debugging

[162]

In the Sources panel, click on the line numbers 8 and 15 to add a breakpoint. The
breakpoints allow you to stop the execution of the script at the specified point:

In the debugging pane, you can see all the existing breakpoints:

Now, when you rerun the same page, you will see that the execution stops at the
debug point. One very useful technique is to inject code during the debugging phase.
While the debugger is running, you can add code in order to help you understand
the state of the code better:

Chapter 6

[163]

This window now has all the action. You can see that the execution is paused on
line 15. In the debug window, you can see which breakpoint is being triggered. You
can see the Call Stack also. You can resume execution in several ways. The debug
command window has a bunch of actions:

You can resume execution (which will execute until the next breakpoint) by clicking
on the button. When you do this, the execution continues until the next
breakpoint is encountered. In our case, we halt at line 8:

You can observe that the Call Stack window shows you how we arrived at line 8.
The Scope panel shows the Local scope where you can see the variables in the scope
when the breakpoint was arrived at. You can also step into or step over the next
function.

There are other very useful mechanisms to debug and profile your code using
Chrome DevTools. I would suggest you to go experiment with the tool and make it a
part of your regular development flow.

Testing and Debugging

[164]

Summary
Both the testing and debugging phases are essential to developing robust JavaScript
code. TDD and BDD are approaches closely associated with the agile methodology
and are widely embraced by the JavaScript developer community. In this chapter,
we reviewed the best practices around TDD and usage of Jasmine as the testing
framework. We saw various methods of debugging JavaScript using Chrome
DevTools. In the next chapter, we will explore the new and exciting world of ES6,
DOM manipulation, and cross-browser strategies.

[165]

ECMAScript 6
So far, we have taken a detailed tour of the JavaScript programming language. I am
sure that you must have gained significant insight into the core of the language. What
we saw so far was as per the ECMAScript 5 (ES5) standards. ECMAScript 6 (ES6)
or ECMAScript 2015 (ES2015) is the latest version of the ECMAScript standard.
This standard is evolving and the last round of modifications was done in June,
2015. ES2015 is significant in its scope and the recommendations of ES2015 are being
implemented in most JavaScript engines. This is great news. ES6 introduces a huge
number of features that add syntactic forms and helpers that enrich the language
significantly. The pace at which ECMAScript standards keep evolving makes it a
bit difficult for browsers and JavaScript engines to support new features. It is also a
practical reality that most programmers have to write code that can be supported by
older browsers. The notorious Internet Explorer 6 was once the most widely used
browser in the world. To make sure that your code is compatible with the most
number of browsers is a daunting task. So, while you want to jump to the next set
of awesome ES6 features, you will have to consider the fact that several ES6 features
may not be supported by the most popular of browsers or JavaScript frameworks.

This may look like a dire scenario, but things are not that dark. Node.js uses the
latest version of the V8 engine that supports majority of ES6 features. Facebook's
React also supports them. Mozilla Firefox and Google Chrome are two of the most
used browsers today and they support a majority of ES6 features.

To avoid such pitfalls and unpredictability, certain solutions have been proposed.
The most useful among these are polyfills/shims and transpilers.

ECMAScript 6

[166]

Shims or polyfills
Polyfills (also known as shims) are patterns to define behavior from a new version
in a compatible form supported by an older version of the environment. There's a
great collection of ES6 shims called ES6 shim (https://github.com/paulmillr/
es6-shim/); I would highly recommend a study of these shims. From the ES6 shim
collection, consider the following example of a shim.

The Number.isFinite() method of the ECMAScript 2015 (ES6) standard determines
whether the passed value is a finite number. The equivalent shim for it would look
something as follows:

var numberIsFinite = Number.isFinite || function isFinite(value) {
 return typeof value === 'number' && globalIsFinite(value);
};

The shim first checks if the Number.isFinite() method is available; if not, it fills
it up with an implementation. This is a pretty nifty technique to fill in gaps in
specifications. Shims are constantly upgraded with newer features and, hence, it is a
sound strategy to keep the most updated shims in your project.

The endsWith() polyfill is described in detail at https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/String/endsWith. String.endsWith() is part
of ES6 but can be polyfilled easily for pre-ES6 environments.

Shims, however, cannot polyfill syntactical changes. For this, we can consider
transpilers as an option.

Transpilers
Transpiling is a technique that combines both compilation and transformation. The
idea is to write ES6-compatible code and use a tool that transpiles this code into a
valid and equivalent ES5 code. We will be looking at the most complete and popular
transpiler for ES6 called Babel (https://babeljs.io/).

Babel can be used in various ways. You can install it as a node module and invoke
it from the command line or import it as a script in your web page. Babel's setup
is exhaustive and well-documented at https://babeljs.io/docs/setup/. Babel
also has a great Read-Eval-Print-Loop (REPL). We will Babel REPL for most of the
examples in this chapter. An in-depth understanding of various ways in which Babel
can be used is out of the scope of this book. However, I would urge you to start using
Babel as part of your development workflow.

https://github.com/paulmillr/es6-shim/
https://github.com/paulmillr/es6-shim/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith
https://babeljs.io/
https://babeljs.io/docs/setup/

Chapter 7

[167]

We will cover the most important part of ES6 specifications in this chapter. You
should explore all the features of ES6 if possible and make them part of your
development workflow.

ES6 syntax changes
ES6 brings in significant syntactic changes to JavaScript. These changes need careful
study and some getting used to. In this section, we will study some of the most
important syntax changes and see how you can use Babel to start using these newer
constructs in your code right away.

Block scoping
We discussed earlier that the variables in JavaScript are function-scoped. Variables
created in a nested scope are available to the entire function. Several programming
languages provide you with a default block scope where any variable declared
within a block of code (usually delimited by {}) is scoped (available) only within this
block. To achieve a similar block scope in JavaScript, a prevalent method is to use
immediately-invoked function expressions (IIFE). Consider the following example:

var a = 1;
(function blockscope(){
 var a = 2;
 console.log(a); // 2
})();
console.log(a); // 1

Using the IIFE, we are creating a block scope for the a variable. When a variable is
declared in the IIFE, its scope is restricted within the function. This is the traditional
way of simulating the block scope. ES6 supports block scoping without using IIFEs.
In ES6, you can enclose any statement(s) in a block defined by {}. Instead of using
var, you can declare a variable using let to define the block scope. The preceding
example can be rewritten using ES6 block scopes as follows:

"use strict";
var a = 1;
{
 let a = 2;
 console.log(a); // 2
}
console.log(a); // 1

ECMAScript 6

[168]

Using standalone brackets {} may seem unusual in JavaScript, but this convention is
fairly common to create a block scope in many languages. The block scope kicks in
other constructs such as if { } or for (){ } as well.

When you use a block scope in this way, it is generally preferred to put the variable
declaration on top of the block. One difference between variables declared using
var and let is that variables declared with var are attached to the entire function
scope, while variables declared using let are attached to the block scope and they
are not initialized until they appear in the block. Hence, you cannot access a variable
declared with let earlier than its declaration, whereas with variables declared using
var, the ordering doesn't matter:

function fooey() {
 console.log(foo); // ReferenceError
 let foo = 5000;
}

One specific use of let is in for loops. When we use a variable declared using
var in a for loop, it is created in the global or parent scope. We can create a block-
scoped variable in the for loop scope by declaring a variable using let. Consider the
following example:

for (let i = 0; i<5; i++) {
 console.log(i);
}
console.log(i); // i is not defined

As i is created using let, it is scoped in the for loop. You can see that the variable is
not available outside the scope.

One more use of block scopes in ES6 is the ability to create constants. Using the
const keyword, you can create constants in the block scope. Once the value is set,
you cannot change the value of such a constant:

if(true){
 const a=1;
 console.log(a);
 a=100; ///"a" is read-only, you will get a TypeError
}

A constant has to be initialized while being declared. The same block scope rules
apply to functions also. When a function is declared inside a block, it is available
only within that scope.

Chapter 7

[169]

Default parameters
Defaulting is very common. You always set some default value to parameters passed
to a function or variables that you initialize. You may have seen code similar to the
following:

function sum(a,b){
 a = a || 0;
 b = b || 0;
 return (a+b);
}
console.log(sum(9,9)); //18
console.log(sum(9)); //9

Here, we are using || (the OR operator) to default variables a and b to 0 if no value
was supplied when this function was invoked. With ES6, you have a standard way of
defaulting function arguments. The preceding example can be rewritten as follows:

function sum(a=0, b=0){
 return (a+b);
}
console.log(sum(9,9)); //18
console.log(sum(9)); //9

You can pass any valid expression or function call as part of the default parameter
list.

Spread and rest
ES6 has a new operator, …. Based on how it is used, it is called either spread or rest.
Let's look at a trivial example:

function print(a, b){
 console.log(a,b);
}
print(...[1,2]); //1,2

What's happening here is that when you add … before an array (or an iterable) it
spreads the element of the array in individual variables in the function parameters.
The a and b function parameters were assigned two values from the array when it
was spread out. Extra parameters are ignored while spreading an array:

print(...[1,2,3]); //1,2

ECMAScript 6

[170]

This would still print 1 and 2 because there are only two functional parameters
available. Spreads can be used in other places also, such as array assignments:

var a = [1,2];
var b = [0, ...a, 3];
console.log(b); //[0,1,2,3]

There is another use of the … operator that is the very opposite of the one that we just
saw. Instead of spreading the values, the same operator can gather them into one:

function print (a,...b){
 console.log(a,b);
}
console.log(print(1,2,3,4,5,6,7)); //1 [2,3,4,5,6,7]

In this case, the variable b takes the rest of the values. The a variable took the first
value as 1 and b took the rest of the values as an array.

Destructuring
If you have worked on a functional language such as Erlang, you will relate to the
concept of pattern matching. Destructuring in JavaScript is something very similar.
Destructuring allows you to bind values to variables using pattern matching.
Consider the following example:

var [start, end] = [0,5];
for (let i=start; i<end; i++){
 console.log(i);
}
//prints - 0,1,2,3,4

We are assigning two variables with the help of array destructuring:

var [start, end] = [0,5];

As shown in the preceding example, we want the pattern to match when the first
value is assigned to the first variable (start) and the second value is assigned to the
second variable (end). Consider the following snippet to see how the destructuring of
array elements works:

function fn() {
 return [1,2,3];
}
var [a,b,c]=fn();
console.log(a,b,c); //1 2 3

Chapter 7

[171]

//We can skip one of them
var [d,,f]=fn();
console.log(d,f); //1 3
//Rest of the values are not used
var [e,] = fn();
console.log(e); //1

Let's discuss how objects' destructuring works. Let's say that you have a function f
that returns an object as follows:

function f() {
 return {
 a: 'a',
 b: 'b',
 c: 'c'
 };
}

When we destructure the object being returned by this function, we can use the
similar syntax as we saw earlier; the difference is that we use {} instead of []:

var { a: a, b: b, c: c } = f();
console.log(a,b,c); //a b c

Similar to arrays, we use pattern matching to assign variables to their corresponding
values returned by the function. There is an even shorter way of writing this if you
are using the same variable as the one being matched. The following example would
do just fine:

var { a,b,c } = f();

However, you would mostly be using a different variable name from the one being
returned by the function. It is important to remember that the syntax is source:
destination and not the usual destination: source. Carefully observe the following
example:

//this is target: source - which is incorrect
var { x: a, x: b, x: c } = f();
console.log(x,y,z); //x is undefined, y is undefined z is undefined
//this is source: target - correct
var { a: x, b: y, c: z } = f();
console.log(x,y,z); // a b c

This is the opposite of the target = source way of assigning values and hence will take
some time in getting used to.

ECMAScript 6

[172]

Object literals
Object literals are everywhere in JavaScript. You would think that there is no scope
of improvement there. However, ES6 wants to improve this too. ES6 introduces
several shortcuts to create a concise syntax around object literals:

var firstname = "Albert", lastname = "Einstein",
 person = {
 firstname: firstname,
 lastname: lastname
 };

If you intend to use the same property name as the variable that you are assigning,
you can use the concise property notation of ES6:

var firstname = "Albert", lastname = "Einstein",
 person = {
 firstname,
 lastname
 };

Similarly, you are assigning functions to properties as follows:

var person = {
 getName: function(){
 // ..
 },
 getAge: function(){
 //..
 }
}

Instead of the preceding lines, you can say the following:

var person = {
 getName(){
 // ..
 },
 getAge(){
 //..
 }
}

Chapter 7

[173]

Template literals
I am sure you have done things such as the following:

function SuperLogger(level, clazz, msg){
 console.log(level+": Exception happened in class:"+clazz+" -
 Exception :"+ msg);
}

This is a very common way of replacing variable values to form a string literal. ES6
provides you with a new type of string literal using the backtick (`) delimiter. You
can use string interpolation to put placeholders in a template string literal. The
placeholders will be parsed and evaluated.

The preceding example can be rewritten as follows:

function SuperLogger(level, clazz, msg){
 console.log(`${level} : Exception happened in class: ${clazz} -
 Exception : {$msg}`);
}

We are using `` around a string literal. Within this literal, any expression of the
${..} form is parsed immediately. This parsing is called interpolation. While
parsing, the variable's value replaces the placeholder within ${}. The resulting string
is just a normal string with the placeholders replaced with actual variable values.

With string interpolation, you can split a string into multiple lines also, as shown in
the following code (very similar to Python):

var quote =
`Good night, good night!
Parting is such sweet sorrow,
that I shall say good night
till it be morrow.`;
console.log(quote);

You can use function calls or valid JavaScript expressions as part of the string
interpolation:

function sum(a,b){
 console.log(`The sum seems to be ${a + b}`);
}
sum(1,2); //The sum seems to be 3

ECMAScript 6

[174]

The final variation of the template strings is called tagged template string. The idea
is to modify the template string using a function. Consider the following example:

function emmy(key, ...values){
 console.log(key);
 console.log(values);
}
let category="Best Movie";
let movie="Adventures in ES6";
emmy`And the award for ${category} goes to ${movie}`;

//["And the award for "," goes to ",""]
//["Best Movie","Adventures in ES6"]

The strangest part is when we call the emmy function with the template literal. It's not
a traditional function call syntax. We are not writing emmy(); we are just tagging the
literal with the function. When this function is called, the first argument is an array
of all the plain strings (the string between interpolated expressions). The second
argument is the array where all the interpolated expressions are evaluated and
stored.

Now what this means is that the tag function can actually change the resulting
template tag:

function priceFilter(s, ...v){
 //Bump up discount
 return s[0]+ (v[0] + 5);
}
let default_discount = 20;
let greeting = priceFilter `Your purchase has a discount of
 ${default_discount} percent`;
console.log(greeting); //Your purchase has a discount of 25

As you can see, we modified the value of the discount in the tag function and
returned the modified values.

Maps and Sets
ES6 introduces four new data structures: Map, WeakMap, Set, and WeakSet.
We discussed earlier that objects are the usual way of creating key-value pairs in
JavaScript. The disadvantage of objects is that you cannot use non-string values as
keys. The following snippets demonstrate how Maps are created in ES6:

Chapter 7

[175]

let m = new Map();
let s = { 'seq' : 101 };

m.set('1','Albert');
m.set('MAX', 99);
m.set(s,'Einstein');

console.log(m.has('1')); //true
console.log(m.get(s)); //Einstein
console.log(m.size); //3
m.delete(s);
m.clear();

You can initialize the map while declaring it:

let m = new Map([
 [1, 'Albert'],
 [2, 'Douglas'],
 [3, 'Clive'],
]);

If you want to iterate over the entries in the Map, you can use the entries()
function that will return you an iterator. You can iterate through all the keys using
the keys() function and you can iterate through the values of the Map using the
values() function:

let m2 = new Map([
 [1, 'Albert'],
 [2, 'Douglas'],
 [3, 'Clive'],
]);
for (let a of m2.entries()){
 console.log(a);
}
//[1,"Albert"] [2,"Douglas"][3,"Clive"]
for (let a of m2.keys()){
 console.log(a);
} //1 2 3
for (let a of m2.values()){
 console.log(a);
}
//Albert Douglas Clive

ECMAScript 6

[176]

A variation of JavaScript Maps is a WeakMap—a WeakMap does not prevent its keys
from being garbage-collected. Keys for a WeakMap must be objects and the values
can be arbitrary values. While a WeakMap behaves in the same way as a normal
Map, you cannot iterate through it and you can't clear it. There are reasons behind
these restrictions. As the state of the Map is not guaranteed to remain static (keys
may get garbage-collected), you cannot ensure correct iteration.

There are not many cases where you may want to use WeakMap. Most uses of a Map
can be written using normal Maps.

While Maps allow you to store arbitrary values, Sets are a collection of unique
values. Sets have similar methods as Maps; however, set() is replaced with add(),
and the get() method does not exist. The reason that the get() method is not there
is because a Set has unique values, so you are interested in only checking whether
the Set contains a value or not. Consider the following example:

let x = {'first': 'Albert'};
let s = new Set([1,2,'Sunday',x]);
//console.log(s.has(x)); //true
s.add(300);
//console.log(s); //[1,2,"Sunday",{"first":"Albert"},300]

for (let a of s.entries()){
 console.log(a);
}
//[1,1]
//[2,2]
//["Sunday","Sunday"]
//[{"first":"Albert"},{"first":"Albert"}]
//[300,300]
for (let a of s.keys()){
 console.log(a);
}
//1
//2
//Sunday
//{"first":"Albert"}
//300
for (let a of s.values()){
 console.log(a);
}
//1
//2
//Sunday
//{"first":"Albert"}
//300

Chapter 7

[177]

The keys() and values() iterators both return a list of the unique values in the Set.
The entries() iterator yields a list of entry arrays, where both items of the array are
the unique Set values. The default iterator for a Set is its values() iterator.

Symbols
ES6 introduces a new data type called Symbol. A Symbol is guaranteed to be unique
and immutable. Symbols are usually used as an identifier for object properties.
They can be considered as uniquely generated IDs. You can create Symbols with the
Symbol() factory method—remember that this is not a constructor and hence you
should not use a new operator:

let s = Symbol();
console.log(typeof s); //symbol

Unlike strings, Symbols are guaranteed to be unique and hence help in preventing
name clashes. With Symbols, we have an extensibility mechanism that works for
everyone. ES6 comes with a number of predefined built-in Symbols that expose
various meta behaviors on JavaScript object values.

Iterators
Iterators have been around in other programming languages for quite some time.
They give convenience methods to work with collections of data. ES6 introduces
iterators for the same use case. ES6 iterators are objects with a specific interface.
Iterators have a next() method that returns an object. The returning object has two
properties—value (the next value) and done (indicates whether the last result has
been reached). ES6 also defines an Iterable interface, which describes objects that
must be able to produce iterators. Let's look at an array, which is an iterable, and the
iterator that it can produce to consume its values:

var a = [1,2];
var i = a[Symbol.iterator]();
console.log(i.next()); // { value: 1, done: false }
console.log(i.next()); // { value: 2, done: false }
console.log(i.next()); // { value: undefined, done: true }

As you can see, we are accessing the array's iterator via Symbol.iterator() and
calling the next() method on it to get each successive element. Both value and done
are returned by the next() method call. When you call next() past the last element
in the array, you get an undefined value and done: true, indicating that you have
iterated over the entire array.

ECMAScript 6

[178]

For..of loops
ES6 adds a new iteration mechanism in form of the for..of loop, which loops over
the set of values produced by an iterator.

The value that we iterate over with for..of is an iterable.

Let's compare for..of to for..in:

var list = ['Sunday','Monday','Tuesday'];
for (let i in list){
 console.log(i); //0 1 2
}
for (let i of list){
 console.log(i); //Sunday Monday Tuesday
}

As you can see, using the for..in loop, you can iterate over indexes of the list
array, while the for..of loop lets you iterate over the values stored in the list
array.

Arrow functions
One of the most interesting new parts of ECMAScript 6 is arrow functions. Arrow
functions are, as the name suggests, functions defined with a new syntax that uses an
arrow (=>) as part of the syntax. Let's first see how arrow functions look:

//Traditional Function
function multiply(a,b) {
 return a*b;
}
//Arrow
var multiply = (a,b) => a*b;
console.log(multiply(1,2)); //2

The arrow function definition consists of a parameter list (of zero or more parameters
and surrounding (..) if there's not exactly one parameter), followed by the =>
marker, which is followed by a function body.

Chapter 7

[179]

The body of the function can be enclosed by { .. } if there's more than one
expression in the body. If there's only one expression, and you omit the surrounding
{ .. }, there's an implied return in front of the expression. There are several
variations of how you can write arrow functions. The following are the most
commonly used:

// single argument, single statement
//arg => expression;
var f1 = x => console.log("Just X");
f1(); //Just X

// multiple arguments, single statement
//(arg1 [, arg2]) => expression;
var f2 = (x,y) => x*y;
console.log(f2(2,2)); //4

// single argument, multiple statements
// arg => {
// statements;
// }
var f3 = x => {
 if(x>5){
 console.log(x);
 }
 else {
 console.log(x+5);
 }
}
f3(6); //6

// multiple arguments, multiple statements
// ([arg] [, arg]) => {
// statements
// }
var f4 = (x,y) => {
 if(x!=0 && y!=0){
 return x*y;
 }
}
console.log(f4(2,2));//4

ECMAScript 6

[180]

// with no arguments, single statement
//() => expression;
var f5 = () => 2*2;
console.log(f5()); //4

//IIFE
console.log((x => x * 3)(3)); // 9

It is important to remember that all the characteristics of a normal function
parameter are available to arrow functions, including default values, destructuring,
and rest parameters.

Arrow functions offer a convenient and short syntax, which gives your code a
very functional programming flavor. Arrow functions are popular because they offer
an attractive promise of writing concise functions by dropping function, return,
and { .. } from the code. However, arrow functions are designed to fundamentally
solve a particular and common pain point with this-aware coding. In normal ES5
functions, every new function defined its own value of this (a new object in case of
a constructor, undefined in strict mode function calls, context object if the function
is called as an object method, and so on). JavaScript functions always have their own
this and this prevents you from accessing the this of, for example, a surrounding
method from inside a callback. To understand this problem, consider the following
example:

function CustomStr(str){
 this.str = str;
}
CustomStr.prototype.add = function(s){ // --> 1
 'use strict';
 return s.map(function (a){ // --> 2
 return this.str + a; // --> 3
 });
};

var customStr = new CustomStr("Hello");
console.log(customStr.add(["World"]));
//Cannot read property 'str' of undefined

On the line marked with 3, we are trying to get this.str, but the anonymous
function also has its own this, which shadows this from the method from line 1. To
fix this in ES5, we can assign this to a variable and use the variable instead:

function CustomStr(str){
 this.str = str;
}

Chapter 7

[181]

CustomStr.prototype.add = function(s){
 'use strict';
 var that = this; // --> 1
 return s.map(function (a){ // --> 2
 return that.str + a; // --> 3
 });
};

var customStr = new CustomStr("Hello");
console.log(customStr.add(["World"]));
//["HelloWorld]

On the line marked with 1, we are assigning this to a variable, that, and in the
anonymous function we are using the that variable, which will have a reference to
this from the correct context.

ES6 arrow functions have lexical this, meaning that the arrow functions capture
the this value of the enclosing context. We can convert the preceding function to an
equivalent arrow function as follows:

function CustomStr(str){
 this.str = str;
}
CustomStr.prototype.add = function(s){
 return s.map((a)=> {
 return this.str + a;
 });
};
var customStr = new CustomStr("Hello");
console.log(customStr.add(["World"]));
//["HelloWorld]

Summary
In this chapter, we discussed a few important features being added to the language
in ES6. It's an exciting collection of new language features and paradigms and, using
polyfills and transpilers, you can start with them right away. JavaScript is an ever
growing language and it is important to understand what the future holds. ES6
features make JavaScript an even more interesting and mature language. In the next
chapter, we will dive deep into manipulating the browser's Document Object Model
(DOM) and events using JavaScript with jQuery.

[183]

DOM Manipulation
and Events

The most important reason for JavaScript's existence is the web. JavaScript is the
language for the web and the browser is the raison d'être for JavaScript. JavaScript
gives dynamism to otherwise static web pages. In this chapter, we will dive deep
into this relationship between the browser and language. We will understand the
way in which JavaScript interacts with the components of the web page. We will look
at the Document Object Model (DOM) and JavaScript event model.

DOM
In this chapter, we will look at various aspects of JavaScript with regard to the
browser and HTML. HTML, as I am sure you are aware, is the markup language
used to define web pages. Various forms of markups exist for different uses. The
popular marks are Extensible Markup Language (XML) and Standard Generalized
Markup Language (SGML). Apart from these generic markup languages, there are
very specific markup languages for specific purposes such as text processing and
image meta information. HyperText Markup Language (HTML) is the standard
markup language that defines the presentation semantics of a web page. A web
page is essentially a document. The DOM provides you with a representation of this
document. The DOM also provides you with a means of storing and manipulating
this document. The DOM is the programming interface of HTML and allows
structural manipulation using scripting languages such as JavaScript. The DOM
provides a structural representation of the document. The structure consists of nodes
and objects. Nodes have properties and methods on which you can operate in order
to manipulate the nodes themselves. The DOM is just a representation and not a
programming construct. DOM acts as a model for DOM processing languages such
as JavaScript.

DOM Manipulation and Events

[184]

Accessing DOM elements
Most of the time, you will be interested in accessing DOM elements to inspect their
values or processing these values for some business logic. We will take a detailed
look at this particular use case. Let's create a sample HTML file with the following
content:

<html>
<head>
 <title>DOM</title>
</head>
<body>
 <p>Hello World!</p>
</body>
</html>

You can save this file as sample_dom.html; when you open this in the Google
Chrome browser, you will see the web page displayed with the Hello World text
displayed. Now, open Google Chrome Developer Tools by navigating to options |
More Tools | Developer Tools (this route may differ on your operating system and
browser version). In the Developer Tools window, you will see the DOM structure:

Next, we will insert some JavaScript into this HTML page. We will invoke the
JavaScript function when the web page is loaded. To do this, we will call a function
on window.onload. You can place your script in the <script> tag located under the
<head> tag. Your page should look as follows:

<html>
 <head>
 <title>DOM</title>
 <script>

Chapter 8

[185]

 // run this function when the document is loaded
 window.onload = function() {
 var doc = document.documentElement;
 var body = doc.body;
 var _head = doc.firstChild;
 var _body = doc.lastChild;
 var _head_ = doc.childNodes[0];
 var title = _head.firstChild;
 alert(_head.parentNode === doc); //true
 }
 </script>
 </head>
 <body>
 <p>Hello World!</p>
 </body>
</html>

The anonymous function is executed when the browser loads the page. In the
function, we are getting the nodes of the DOM programmatically. The entire HTML
document can be accessed using the document.documentElement function. We
store the document in a variable. Once the document is accessed, we can traverse the
nodes using several helper properties of the document. We are accessing the <body>
element using doc.body. You can traverse through the children of an element using
the childNodes array. The first and last children of a node can be accessed using
additional properties—firstChild and lastChild.

It is not recommended to use render-blocking JavaScript in the <head>
tag. This slows down the page render dramatically. Modern browsers
support the async and defer attributes to indicate to the browsers
that the rendering can go on while the script is being downloaded.
You can use these tags in the <head> tag without worrying about
performance degradation. You can get more information at http://
stackoverflow.com/questions/436411/where-is-the-best-
place-to-put-script-tags-in-html-markup.

Accessing specific nodes
The core DOM defines the getElementsByTagName() method to return NodeList
of all the element objects whose tagName property is equal to a specific value. The
following line of code returns a list of all the <p/> elements in a document:

var paragraphs = document.getElementsByTagName('p');

http://stackoverflow.com/questions/436411/where-is-the-best-place-to-put-script-tags-in-html-markup
http://stackoverflow.com/questions/436411/where-is-the-best-place-to-put-script-tags-in-html-markup
http://stackoverflow.com/questions/436411/where-is-the-best-place-to-put-script-tags-in-html-markup

DOM Manipulation and Events

[186]

The HTML DOM defines getElementsByName() to retrieve all the elements that
have their name attribute set to a specific value. Consider the following snippet:

<html>
 <head>
 <title>DOM</title>
 <script>
 showFeelings = function() {
 var feelings = document.getElementsByName("feeling");
 alert(feelings[0].getAttribute("value"));
 alert(feelings[1].getAttribute("value"));
 }
 </script>
 </head>
 <body>
 <p>Hello World!</p>
 <form method="post" action="/post">
 <fieldset>
 <p>How are you feeling today?</p>
 <input type="radio" name="feeling" value="Happy" />
 Happy

 <input type="radio" name="feeling" value="Sad" />Sad

 </fieldset>
 <input type="button" value="Submit"
 onClick="showFeelings()"/>
 </form>
 </body>
</html>

In this example, we are creating a group of radio buttons with the name attribute
defined as feeling. In the showFeelings function, we get all the elements with the
name attribute set to feeling and we iterate through all these elements.

The other method defined by the HTML DOM is getElementById(). This is a
very useful method in accessing a specific element. This method does the lookup
based on the id associated with an element. The id attribute is unique for every
element and, hence, this kind of lookup is very fast and should be preferred over
getElementsByName(). -However, you should be aware that the browser does
not guarantee the uniqueness of the id attribute. In the following example, we are
accessing a specific element using the ID. Element IDs are unique as opposed to tags
or name attributes:

<html>
 <head>

Chapter 8

[187]

 <title>DOM</title>
 <script>
 window.onload= function() {
 var greeting = document.getElementById("greeting");
 alert(greeting.innerHTML); //shows "Hello World" alert
 }
 </script>
 </head>
 <body>
 <p id="greeting">Hello World!</p>
 <p id="identify">Earthlings</p>
 </body>
</html>

What we discussed so far was the basics of DOM traversal in JavaScript. When
the DOM gets complex and you want sophisticated operations on the DOM, these
traversal and access functions seem limiting. With this basic knowledge with us, it's
time to get introduced to a fantastic library for DOM traversal (among other things)
called jQuery.

jQuery is a lightweight library designed to make common browser operations easier.
Common operations such as DOM traversal and manipulation, event handling,
animation, and Ajax can be tedious if done using pure JavaScript. jQuery provides
you with easy-to-use and shorter helper mechanisms to help you develop these
common operations very easily and quickly. jQuery is a feature-rich library, but as
far as this chapter goes, we will focus primarily on DOM manipulation and events.

You can add jQuery to your HTML by adding the script directly from a content
delivery network (CDN) or manually downloading the file and adding it to the
script tag. The following example shows you how to download jQuery from Google's
CDN:

<html>
 <head>
 <script src="https://ajax.googleapis.com/ajax/libs/
 jquery/2.1.4/jquery.min.js"></script>
 </head>
 <body>
 </body>
</html>

DOM Manipulation and Events

[188]

The advantage of a CDN download is that Google's CDN automatically finds the
nearest download server for you and keeps an updated stable copy of the jQuery
library. If you wish to download and manually host jQuery along with your website,
you can add the script as follows:

<script src="./lib/jquery.js"></script>

In this example, the jQuery library is manually downloaded in the lib directory.
With the jQuery setup in the HTML page, let's explore the methods of manipulating
the DOM elements. Consider the following example:

<html>
 <head>
 <script src="https://ajax.googleapis.com/ajax/libs/
 jquery/2.1.4/jquery.min.js"></script>
 <script>
 $(document).ready(function() {
 $('#greeting').html('Hello World Martian');
 });
 </script>
 </head>
 <body>
 <p id="greeting">Hello World Earthling ! </p>
 </body>
</html>

After adding jQuery to the HTML page, we write the custom JavaScript that selects
the element with a greeting ID and changes its value. The strange-looking code
within $() is the jQuery in action. If you read the jQuery source code (and you
should, it's brilliant) you will see the final line:

// Expose jQuery to the global object
window.jQuery = window.$ = jQuery;

The $ is just a function. It is an alias for the function called jQuery. The $ is a
syntactic sugar that makes the code concise. In fact, you can use both $ and jQuery
interchangeably. For example, both $('#greeting').html('Hello World
Martian'); and jQuery('#greeting').html('Hello World Martian'); are the
same.

Chapter 8

[189]

You can't use jQuery before the page is completely loaded. As jQuery will need to
know all the nodes of the DOM structure, the entire DOM has to be in-memory.
To ensure that the page is completely loaded and in a state where it's ready to be
manipulated, we can use the $(document).ready() function. Here, the IIFE is
executed only after the entire documented is ready:

$(document).ready(function() {
 $('#greeting').html('Hello World Martian');
});

This snippet shows you how we can associate a function to jQuery's .ready()
function. This function will be executed once the document is ready. We are using
$(document) to create a jQuery object from our page's document. We are calling the
.ready() function on the jQuery object and passing it the function that we want to
execute.

This is a very common thing to do when using jQuery—so much so that it has its
own shortcut. You can replace the entire ready() call with a short $() call:

$(function() {
 $('#greeting').html('Hello World Martian');
});

The most important function in jQuery is $(). This function typically accepts a
CSS selector as its sole parameter and returns a new jQuery object pointing to the
corresponding elements on the page. The three primary selectors are the tag name,
ID, and class. They can be used either on their own or in combination with others.
The following simple examples illustrate how these three selectors appear in code:

Selector CSS Selector jQuery Selector Output from the selector
Tag p{} $('p') This selects all the p tags

from the document.
Id #div_1 $('#div_1') This selects single elements

that have a div_1 ID. The
symbol used to identify the
ID is #.

Class .bold_fonts $('.bold_fonts') This selects all the elements
in the document that have
the CSS class bold_fonts.
The symbol used to identify
the class match is ".".

DOM Manipulation and Events

[190]

jQuery works on CSS selectors.

As CSS selectors are not in the scope of this book, I would suggest that
you go to http://www.w3.org/TR/CSS2/selector.html to get a
fair idea of the concept.

We also assume that you are familiar with HTML tags and syntax. The following
example covers the fundamental idea of how jQuery selectors work:

<html>
 <head>
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/
jquery.min.js"></script>
 <script>
 $(function() {
 $('h1').html(function(index, oldHTML){
 return oldHTML + "Finally?";
 });
 $('h1').addClass('highlight-blue');
 $('#header > h1 ').css('background-color', 'cyan');
 $('ul li:not(.highlight-blue)').addClass(
 'highlight-green');
 $('tr:nth-child(odd)').addClass('zebra');
 });
 </script>
 <style>
 .highlight-blue {
 color: blue;
 }
 .highlight-green{
 color: green;
 }
 .zebra{
 background-color: #666666;
 color: white;
 }
 </style>
 </head>
 <body>

http://www.w3.org/TR/CSS2/selector.html

Chapter 8

[191]

 <div id=header>
 <h1>Are we there yet ? </h1>

 <p>Journey to Mars</p>

 First
 Second
 <li class="highlight-blue">Third

 <table>
 <tr><th>Id</th><th>First name</th><th>Last Name</th></tr>
 <tr><td>1</td><td>Albert</td><td>Einstein</td></tr>
 <tr><td>2</td><td>Issac</td><td>Newton</td></tr>
 <tr><td>3</td><td>Enrico</td><td>Fermi</td></tr>
 <tr><td>4</td><td>Richard</td><td>Feynman</td></tr>
 </table>
 </div>
 </body>
</html>

In this example, we are selecting several DOM elements in the HTML page using
selectors. We have an H1 header with the text, Are we there yet ?; when the page
loads, our jQuery script accesses all H1 headers and appends the text Finally? to
them:

$('h1').html(function(index, oldHTML){
 return oldHTML + "Finally ?";
});

The $.html() function sets the HTML for the target element—an H1 header in this
case. Additionally, we select all H1 headers and apply a specific CSS style class,
highlight-blue, to all of them. The $('h1').addClass('highlight-blue')
statement selects all the H1 headers and uses the $.addClass(<CSS class>)
method to apply a CSS class to all the elements selected using the selector.

We use the child combinator (>) to custom CSS styles using the $.css() function. In
effect, the selector in the $() function is saying, "Find each header (h1) that is a child
(>) of the element with an ID of header (#header)." For each such element, we apply
a custom CSS. The next usage is interesting. Consider the following line:

$('ul li:not(.highlight-blue)').addClass('highlight-green');

DOM Manipulation and Events

[192]

We are selecting "For all list elements (li) that do not have the class highlight-
blue applied to them, apply CSS class highlight-green. The final line—
$('tr:nth-child(odd)').addClass('zebra')—can be interpreted as: From all
table rows (tr), for every odd row, apply CSS style zebra. The nth-child selector is
a custom selector provided by jQuery. The final output looks something similar to
the following (Though it shows several jQuery selector types, it is very clear that
knowledge of jQuery is not a substitute for bad design taste.):

Once you have made a selection, there are two broad categories of methods that
you can call on the selected element. These methods are getters and setters. Getters
retrieve a piece of information from the selection, and setters alter the selection in
some way.

Getters usually operate only on the first element in a selection while setters operate
on all the elements in a selection. Setters use implicit iteration to automatically iterate
over all the elements in the selection.

For example, we want to apply a CSS class to all list items on the page. When we call
the addClass method on the selector, it is automatically applied to all elements of
this particular selection. This is implicit iteration in action:

$('li').addClass(highlighted');

Chapter 8

[193]

However, sometimes you just don't want to go through all the elements via implicit
iteration. You may want to selectively modify only a few of the elements. You can
explicitly iterate over the elements using the .each() method. In the following code,
we are processing elements selectively and using the index property of the element:

$('li').each(function(index, element) {
 if(index % 2 == 0)
 $(elem).prepend('' + STATUS + '');
});

Chaining
Chaining jQuery methods allows you to call a series of methods on a selection
without temporarily storing the intermediate values. This is possible because every
setter method that we call returns the selection on which it was called. This is a
very powerful feature and you will see it being used by many professional libraries.
Consider the following example:

$('#button_submit')
 .click(function() {
 $(this).addClass('submit_clicked');
 })
 .find('#notification')
 .attr('title', 'Message Sent');x

In this snippet, we are chaining click(), find(), and attr() methods on a selector.
Here, the click() method is executed, and once the execution finishes, the find()
method locates the element with the notification ID and changes its title
attribute to a string.

Traversal and manipulation
We discussed various methods of element selection using jQuery. We will discuss
several DOM traversal and manipulation methods using jQuery in this section. These
tasks would be rather tedious to achieve using native DOM manipulation. jQuery
makes them intuitive and elegant.

DOM Manipulation and Events

[194]

Before we delve into these methods, let's familiarize ourselves with a bit of HTML
terminology that we will be using from now on. Consider the following HTML:

 <-This is the parent of both 'li' and ancestor of everything
 in
 <-The first (li) is a child of the (ul)
 <-this is the descendent of the 'ul'
 <i>Hello</i>

 World <-both 'li' are siblings

Using jQuery traversal methods, we select the first element and traverse through
the DOM in relation to this element. As we traverse the DOM, we alter the original
selection and we are either replacing the original selection with the new one or we
are modifying the original selection.

For example, you can filter an existing selection to include only elements that match
a certain criterion. Consider this example:

var list = $('li'); //select all list elements
// filter items that has a class 'highlight' associated
var highlighted = list.filter('.highlight);
// filter items that doesn't have class 'highlight' associated
var not_highlighted = list.not('.highlight);

jQuery allows you to add and remove classes to elements. If you want to toggle class
values for elements, you can use the toggleClass() method:

$('#usename').addClass('hidden');
$('#usename').removeClass('hidden');
$('#usename').toggleClass('hidden');

Most often, you may want to alter the value of elements. You can use the val()
method to alter the form of element values. For example, the following line alters the
value of all the text type inputs in the form:

$('input[type="text"]').val('Enter usename:');

To modify element attributes, you can use the attr() method as follows:

$('a').attr('title', 'Click');

jQuery has an incredible depth of functionality when it comes to DOM
manipulation—the scope of this book restricts a detailed discussion of all the
possibilities.

Chapter 8

[195]

Working with browser events
When are you developing for browsers, you will have to deal with user interactions
and events associated to them, for example, text typed in the textbox, scrolling of the
page, mouse button press, and others. When the user does something on the page,
an event takes place. Some events are not triggered by user interaction, for example,
load event does not require a user input.

When you are dealing with mouse or keyboard events in the browser, you can't
predict when and in which order these events will occur. You will have to constantly
look for a key press or mouse move to happen. It's like running an endless
background loop listening to some key or mouse event to happen. In traditional
programming, this was known as polling. There were many variations of these
where the waiting thread used to be optimized using queues; however, polling is still
not a great idea in general.

Browsers provide a much better alternative to polling. Browsers provide you with
programmatic means to react when an event occurs. These hooks are generally called
listeners. You can register a listener that reacts to a particular event and executes an
associated callback function when the event is triggered. Consider this example:

<script>
 addEventListener("click", function() {
 ...
 });
</script>

The addEventListener function registers its second argument as a callback function.
This callback is executed when the event specified in the first argument is triggered.

What we saw just now was a generic listener for the click event. Similarly, every
DOM element has its own addEventListener method, which allows you to listen
specifically on this element:

<button>Submit</button>
<p>No handler here.</p>
<script>
 var button = document.getElementById("#Bigbutton");
 button.addEventListener("click", function() {
 console.log("Button clicked.");
 });
</script>

DOM Manipulation and Events

[196]

In this example, we are using the reference to a specific element—a button with
a Bigbutton ID—by calling getElementById(). On the reference of the button
element, we are calling addEventListener() to assign a handler function for the
click event. This is perfectly legitimate code that works fine in modern browsers such
as Mozilla Firefox or Google Chrome. On Internet Explorer prior to IE9, however,
this is not a valid code. This is because Microsoft implements its own custom
attachEvent() method as opposed to the W3C standard addEventListener()
prior to Internet Explorer 9. This is very unfortunate because you will have to write
very bad hacks to handle browser-specific quirks.

Propagation
At this point, we should ask an important question—if an element and one of
its ancestors have a handler on the same event, which handler will be fired first?
Consider the following figure:

For example, we have Element2 as a child of Element1 and both have the onClick
handler. When a user clicks on Element2, onClick on both Element2 and Element1
is triggered but the question is which one is triggered first. What should the event
order be? Well, the answer, unfortunately, is that it depends entirely on the browser.
When browsers first arrived, two opinions emerged, naturally, from Netscape and
Microsoft.

Netscape decided that the first event triggered should be Element1's onClick. This
event ordering is known as event capturing.

Microsoft decided that the first event triggered should be Element2's onClick. This
event ordering is known as event bubbling.

Chapter 8

[197]

These are two completely opposite views and implementations of how browsers
handled events. To end this madness, World Wide Web Consortium (W3C) decided
a wise middle path. In this model, an event is first captured until it reaches the
target element and then bubbles up again. In this standard behavior, you can choose
in which phase you want to register your event handler—either in the capturing
or bubbling phase. If the last argument is true in addEventListener(), the event
handler is set for the capturing phase, if it is false, the event handler is set for the
bubbling phase.

There are times when you don't want the event to be raised by the parents if it was
already raised by the child. You can call the stopPropagation() method on the
event object to prevent handlers further up from receiving the event. Several events
have a default action associated with them. For example, if you click on a URL link,
you will be taken to the link's target. The JavaScript event handlers are called before
the default behavior is performed. You can call the preventDefault() method on
the event object to stop the default behavior from being triggered.

These are event basics when you are using plain JavaScript on a browser. There is
a problem here. Browsers are notorious when it comes to defining event-handling
behavior. We will look at jQuery's event handling. To make things easier to manage,
jQuery always registers event handlers for the bubbling phase of the model. This
means that the most specific elements will get the first opportunity to respond to
any event.

jQuery event handling and propagation
jQuery event handling takes care of many of these browser quirks. You can focus on
writing code that runs on most supported browsers. jQuery's support for browser
events is simple and intuitive. For example, this code listens for a user to click on any
button element on the page:

$('button').click(function(event) {
 console.log('Mouse button clicked');
});

Just like the click() method, there are several other helper methods to cover almost
all kinds of browser event. The following helpers exist:

• blur

• change

• click

• dblclick

DOM Manipulation and Events

[198]

• error

• focus

• keydown

• keypress

• keyup

• load

• mousedown

• mousemove

• mouseout

• mouseover

• mouseup

• resize

• scroll

• select

• submit

• unload

Alternatively, you can use the .on() method. There are a few advantages of using
the on() method as it gives you a lot more flexibility. The on() method allows you to
bind a handler to multiple events. Using the on() method, you can work on custom
events as well.

Event name is passed as the first parameter to the on() method just like the other
methods that we saw:

$('button').on('click', function(event) {
 console.log(' Mouse button clicked');
});

Once you've registered an event handler to an element, you can trigger this event as
follows:

$('button').trigger('click');

Chapter 8

[199]

This event can also be triggered as follows:

$('button').click();

You can unbind an event using jQuery's .off() method. This will remove any event
handlers that were bound to the specified event:

$('button').off('click');

You can add more than one handler to an element:

$("#element")
.on("click", firstHandler)
.on("click", secondHandler);

When the event is fired, both the handlers will be invoked. If you want to remove
only the first handler, you can use the off() method with the second parameter
indicating the handler that you want to remove:

$("#element).off("click",firstHandler);

This is possible if you have the reference to the handler. If you are using anonymous
functions as handlers, you can't get reference to them. In this case, you can use
namespaced events. Consider the following example:

$("#element").on("click.firstclick",function() {
 console.log("first click");
});

Now that you have a namespaced event handler registered with the element, you
can remove it as follows:

$("#element).off("click.firstclick");

A major advantage of using .on() is that you can bind to multiple events at once.
The .on() method allows you to pass multiple events in a space-separated string.
Consider the following example:

$('#inputBoxUserName').on('focus blur', function() {
 console.log(Handling Focus or blur event');
});

DOM Manipulation and Events

[200]

You can add multiple event handlers for multiple events as follows:

$("#heading").on({
 mouseenter: function() {
 console.log("mouse entered on heading");
 },
 mouseleave: function() {
 console.log("mouse left heading");
 },
 click: function() {
 console.log("clicked on heading");
 }
});

As of jQuery 1.7, all events are bound via the on() method, even if you call helper
methods such as click(). Internally, jQuery maps these calls to the on() method.
Due to this, it's generally recommended to use the on() method for consistency and
faster execution.

Event delegation
Event delegation allows us to attach a single event listener to a parent element. This
event will fire for all the descendants matching a selector even if these descendants
will be created in the future (after the listener was bound to the element).

We discussed event bubbling earlier. Event delegation in jQuery works primarily
due to event bubbling. Whenever an event occurs on a page, the event bubbles up
from the element that it originated from, up to its parent, then up to the parent's
parent, and so on, until it reaches the root element (window). Consider the following
example:

<html>
 <body>
 <div id="container">
 <ul id="list">
 Google
 Myntra
 Bing

 </div>
 </body>
</html>

Chapter 8

[201]

Now let's say that we want to perform some common action on any of the URL
clicks. We can add an event handler to all the a elements in the list as follows:

$("#list a").on("click", function(event) {
 console.log($(this).text());
});

This works perfectly fine, but this code has a minor bug. What will happen if there
is an additional URL added to the list as a result of some dynamic action? Let's say
that we have an Add button that adds new URLs to this list. So, if the new list item
is added with a new URL, the earlier event handler will not be attached to it. For
example, if the following link is added to the list dynamically, clicking on it will not
trigger the handler that we just added:

Yahoo

This is because such events are registered only when the on() method is called. In
this case, as this new element did not exist when .on() was called, it does not get the
event handler. With our understanding of event bubbling, we can visualize how the
event will travel up the DOM tree. When any of the URLs are clicked on, the travel
will be as follows:

a(click)->li->ul#list->div#container->body->html->root

We can create a delegated event as follows:

$("#list").on("click", "a", function(event) {
 console.log($(this).text());
});

We moved a from the original selector to the second parameter in the on() method.
This second parameter of the on() method tells the handler to listen to this specific
event and check whether the triggering element was the second parameter (the a in
our case). As the second parameter matches, the handler function is executed. With
this delegate event, we are attaching a single handler to the entire ul#list. This
handler will listen to the click event triggered by any descendent of the ul element.

The event object
So far, we attached anonymous functions as event handlers. To make our event
handlers more generic and useful, we can create named functions and assign them to
the events. Consider the following lines:

function handlesClicks(event){
 //Handle click event
}
$("#bigButton").on('click', handlesClicks);

DOM Manipulation and Events

[202]

Here, we are passing a named function instead of an anonymous function to the
on() method. Let's shift our focus now to the event parameter that we pass to
the function. jQuery passes an event object with all the event callbacks. An event
object contains very useful information about the event being triggered. In cases
where we don't want the default behavior of the element to kick in, we can use the
preventDefault() method of the event object. For example, we want to fire an
AJAX request instead of a complete form submission or we want to prevent the
default location to be opened when a URL anchor is clicked on. In these cases, you
may also want to prevent the event from bubbling up the DOM. You can stop the
event propagation by calling the stopPropagation() method of the event object.
Consider this example:

$("#loginform").on("submit", function(event) {
 // Prevent the form's default submission.
 event.preventDefault();
 // Prevent event from bubbling up DOM tree, also stops any
 delegation
 event.stopPropagation();
});

Apart from the event object, you also get a reference to the DOM object on which the
event was fired. This element can be referred by $(this). Consider the following
example:

$("a").click(function(event) {
 var anchor = $(this);
 if (anchor.attr("href").match("google")) {
 event.preventDefault();
 }
});

Summary
This chapter was all about understanding JavaScript in its most important role—
that of browser language. JavaScript plays the role of introducing dynamism on the
web by facilitating DOM manipulation and event management on the browser. We
discussed both of these concepts with and without jQuery. As the demands of the
modern web are increasing, using libraries such as jQuery is essential. These libraries
significantly improve the code quality and efficiency and, at the same time, give you
the freedom to focus on important things.

We will focus on another incarnation of JavaScript—mainly on the server side. Node.js
has become a popular JavaScript framework to write scalable server-side applications.
We will take a detailed look at how we can best utilize Node.js for server applications.

[203]

Server-Side JavaScript
We have been focusing so far on the versatility of JavaScript as the language of the
browser. It speaks volumes about the brilliance of the language given that JavaScript
has gained significant popularity as a language to program scalable server systems.
In this chapter, we will look at Node.js. Node.js is one of the most popular JavaScript
frameworks used for server-side programming. Node.js is also one of the most
watched project on GitHub and has superb community support.

Node uses V8, the virtual machine that powers Google Chrome, for server-side
programming. V8 gives a huge performance benefit to Node because it directly
compiles the JavaScript into native machine code over executing bytecode or using
an interpreter as a middleware.

The versatility of V8 and JavaScript is a wonderful combination—the performance,
reach, and overall popularity of JavaScript made Node an overnight success. In this
chapter, we will cover the following topics:

• An asynchronous evented-model in a browser and Node.js
• Callbacks
• Timers
• EventEmitters
• Modules and npm

Server-Side JavaScript

[204]

An asynchronous evented-model in a
browser
Before we try to understand Node, let's try to understand JavaScript in a browser.

Node relies on event-driven and asynchronous platforms for server-side JavaScript.
This is very similar to how browsers handle JavaScript. Both the browser and Node
are event-driven and non-blocking when they use I/O.

To dive deeper into the event-driven and asynchronous nature of Node.js, let's first
do a comparison of the various kinds of operations and costs associated with them:

L1 cache read 0.5 nanoseconds
L2 cache read 7 nanoseconds
RAM 100 nanoseconds
Read 4 KB randomly from SSD 150,000 ns
Read 1 MB sequentially from SSD 1,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns

These numbers are from https://gist.github.com/jboner/2841832 and show
how costly Input/Output (I/O) can get. The longest operations taken by a computer
program are the I/O operations and these operations slow down the overall program
execution if the program keeps waiting on these I/O operations to finish. Let's see an
example of such an operation:

console.log("1");
var log = fileSystemReader.read("./verybigfile.txt");
console.log("2");

When you call fileSystemReader.read(), you are reading a file from the
filesystem. As we just saw, I/O is the bottleneck here and can take quite a while
before the read operation is completed. Depending on the kind of hardware,
filesystem, OS, and so on, this operation will block the overall program execution
quite a bit. The preceding code does some I/O that will be a blocking operation—
the process will be blocked till I/O finishes and the data comes back. This is the
traditional I/O model and most of us are familiar with this. However, this is costly
and can cause terribly latency. Every process has associated memory and state—both
these will be blocked till I/O is complete.

https://gist.github.com/jboner/2841832

Chapter 9

[205]

If a program blocks I/O, the Node server will refuse new requests. There are several
ways of solving this problem. The most popular traditional approach is to use
several threads to process requests—this technique is known as multithreading.
If are you familiar with languages such as Java, chances are that you have written
multithreaded code. Several languages support threads in various forms—a thread
essentially holds its own memory and state. Writing multithreaded applications on a
large scale is tough. When multiple threads are accessing a common shared memory
or values, maintaining the correct state across these threads is a very difficult task.
Threads are also costly when it comes to memory and CPU utilization. Threads that
are used on synchronized resources may eventually get blocked.

The browser handles this differently. I/O in the browser happens outside the main
execution thread and an event is emitted when I/O finishes. This event is handled by
the callback function associated with that event. This type of I/O is non-blocking and
asynchronous. As I/O is not blocking the main execution thread, the browser can
continue to process other events as they come without waiting on any I/O. This is a
powerful idea. Asynchronous I/O allows browsers to respond to several events and
allows a high level of interactivity.

Node uses a similar idea for asynchronous processing. Node's event loop runs as
a single thread. This means that the application that you write is essentially single-
threaded. This does not mean that Node itself is single-threaded. Node uses libuv
and is multithreaded—fortunately, these details are hidden within Node and you
don't need to know them while developing your application.

Every call that involves an I/O call requires you to register a callback. Registering a
callback is also asynchronous and returns immediately. As soon as an I/O operation
is completed, its callback is pushed on the event loop. It is executed as soon as
all the other callbacks that were pushed on the event loop before are executed.
All operations are essentially thread-safe, primarily because there is no parallel
execution path in the event loop that will require synchronization.

Essentially, there is only one thread running your code and there is no parallel
execution; however, everything else except for your code runs in parallel.

Node.js relies on libev (http://software.schmorp.de/pkg/libev.html) to
provide the event loop, which is supplemented by libeio (http://software.
schmorp.de/pkg/libeio.html) that uses pooled threads to provide asynchronous
I/O. To learn even more, take a look at the libev documentation at http://pod.tst.
eu/http://cvs.schmorp.de/libev/ev.pod.

http://software.schmorp.de/pkg/libev.html
http://software.schmorp.de/pkg/libeio.html
http://software.schmorp.de/pkg/libeio.html
http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod
http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod

Server-Side JavaScript

[206]

Consider the following example of asynchronous code execution in Node.js:

var fs = require('fs');
console.log('1');
fs.readFile('./response.json', function (error, data) {
 if(!error){
 console.log(data);
 });
console.log('2');

In this program, we read the response.json file from the disk. When the disk I/O is
finished, the callback is executed with parameters containing the argument's error, if
any error occurred, and data, which is the file data. What you will see in the console
is the output of console.log('1') and console.log('2') one immediately after
another:

Node.js does not need any additional server component as it creates its own server
process. A Node application is essentially a server running on a designated port. In
Node, the server and application are the same.

Chapter 9

[207]

Here is an example of a Node.js server responding with the Hello Node string when
the http://localhost:3000/ URL is run from a browser:

var http = require('http');
var server = http.createServer();
server.on('request', function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello Node\n');
});
server.listen(3000);

In this example, we are using an http module. If you recall our earlier discussions
on the JavaScript module, you will realize that this is the CommonJS module
implementation. Node has several modules compiled into the binary. The core
modules are defined within Node's source. They can be located in the lib/ folder.

They are loaded first if their identifier is passed to require(). For instance,
require('http') will always return the built-in HTTP module, even if there is a file
by this name.

After loading the module to handle HTTP requests, we create a server object and
use a listener for a request event using the server.on() function. The callback is
called whenever there is a request to this server on port 3000. The callback receives
request and response parameters. We are also setting the Content-Type header
and HTTP response code before we send the response back. You can copy the
preceding code, save it in a plain text file, and name it app.js. You can run the
server from the command line using Node.js as follows:

$ » node app.js

Once the server is started, you can open the http://localhost:3000 URL in a
browser and you will be greeted with unexciting text:

http://localhost:3000/
http://localhost:3000

Server-Side JavaScript

[208]

If you want to inspect what's happening internally, you can issue a curl command
as follows:

~ » curl -v http://localhost:3000
* Rebuilt URL to: http://localhost:3000/
* Trying ::1...
* Connected to localhost (::1) port 3000 (#0)
> GET / HTTP/1.1
> Host: localhost:3000
> User-Agent: curl/7.43.0
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Type: text/plain
< Date: Thu, 12 Nov 2015 05:31:44 GMT
< Connection: keep-alive
< Transfer-Encoding: chunked
<
Hello Node
* Connection #0 to host localhost left intact

Curl shows a nice request (>) and response (<) dialog including the request and
response headers.

Callbacks
Callbacks in JavaScript usually take some time getting used to. If you are coming
from some other non-asynchronous programming background, you will need
to understand carefully how callbacks work; you may feel like you're learning
programming for the first time. As everything is asynchronous in Node, you will be
using callbacks for everything without trying to carefully structure them. The most
important part of the Node.js project is sometimes the code organization and module
management.

Callbacks are functions that are executed asynchronously at a later time. Instead of
the code reading top to bottom procedurally, asynchronous programs may execute
different functions at different times based on the order and speed that earlier
functions such as HTTP requests or filesystem reads happen.

Chapter 9

[209]

Whether a function execution is sequential or asynchronous depends on the context
in which it is executed:

var i=0;
function add(num){
 console.log(i);
 i=i+num;
}
add(100);
console.log(i);

If you run this program using Node, you will see the following output (assuming
that your file is named app.js):

~/Chapter9 » node app.js
0
100

This is what we are all used to. This is traditional synchronous code execution where
each line is executed in a sequence. The code here defines a function and then on the
next line calls this function, without waiting for anything. This is sequential control
flow.

Things will be different if we introduced I/O to this sequence. If we try to read
something from the file or call a remote endpoint, Node will execute these operations
in an asynchronous fashion. For the next example, we are going to use a Node.js
module called request. We will use this module to make HTTP calls. You can install
the module as follows:

npm install request

We will discuss the use of npm later in this chapter. Consider the following example:

var request = require('request');
var status = undefined;
request('http://google.com', function (error, response, body) {
 if (!error && response.statusCode == 200) {
 status_code = response.statusCode;
 }
});
console.log(status);

Server-Side JavaScript

[210]

When you execute this code, you will see that the value of the status variable
is still undefined. In this example, we are making an HTTP call—this is an I/O
operation. When we do an I/O operation, the execution becomes asynchronous. In
the earlier example, we are doing everything within the memory and there was no
I/O involved, hence, the execution was synchronous. When we run this program,
all of the functions are immediately defined, but they don't all execute immediately.
The request() function is called and the execution continues to the next line. If there
is nothing to execute, Node will either wait for I/O to finish or it will exit. When
the request() function finishes its work, it will execute the callback function (an
anonymous function as the second parameter to the request() function). The reason
that we got undefined in the preceding example is that nowhere in our code exists
the logic that tells the console.log() statement to wait until the request() function
has finished fetching the response from the HTTP call.

Callbacks are functions that get executed at some later time. This changes things
in the way you organize your code. The idea around reorganizing the code is as
follows:

• Wrapping the asynchronous code in a function
• Passing a callback function to the wrapper function

We will organize our previous example with these two ideas in mind. Consider this
modified example:

var request = require('request');
var status = undefined;
function getSiteStatus(callback){
 request('http://google.com', function (error, response, body) {
 if (!error && response.statusCode == 200) {
 status_code = response.statusCode;
 }
 callback(status_code);
 });
}
function showStatusCode(status){
 console.log(status);
}
getSiteStatus(showStatusCode);

When you run this, you will get the following (correct) output:

$node app.js
200

Chapter 9

[211]

What we changed was to wrap the asynchronous code in a getSiteStatus()
function, pass a function named callback() as a parameter to this function, and
execute this function on the last line of getSiteStatus(). The showStatusCode()
callback function simply wraps around console.log() that we called earlier. The
difference, however, is in the way the asynchronous execution works. The most
important idea to understand while learning how to program with callbacks is that
functions are first-class objects that can be stored in variables and passed around
with different names. Giving simple and descriptive names to your variables is
important in making your code readable by others. Now that the callback function
is called once the HTTP call is completed, the value of the status_code variable
will have a correct value. There are genuine circumstances where you want an
asynchronous task executed only after another asynchronous task is completed.
Consider this scenario:

http.createServer(function (req, res) {
 getURL(url, function (err, res) {
 getURLContent(res.data, function(err,res) {
 ...
 });
 });
});

As you can see, we are nesting one asynchronous function in another. This kind of
nesting can result in code that is difficult to read and manage. This style of callback
is sometimes known as callback hell. To avoid such a scenario, if you have code
that has to wait for some other asynchronous code to finish, then you express that
dependency by putting your code in functions that get passed around as callbacks.
Another important idea is to name your functions instead of relying on anonymous
functions as callbacks. We can restructure the preceding example into a more
readable one as follows:

var urlContentProcessor = function(data){
 ...
}
var urlResponseProcessor = function(data){
 getURLContent(data,urlContentProcessor);
}
var createServer = function(req,res){
 getURL(url,urlResponseProcessor);
};
http.createServer(createServer);

Server-Side JavaScript

[212]

This fragment uses two important concepts. First, we are using named functions and
using them as callbacks. Second, we are not nesting these asynchronous functions. If
you are accessing closure variables within the inner functions, the preceding would
be a bit different implementation. In such cases, using inline anonymous functions is
even more preferable.

Callbacks are most frequently used in Node. They are usually preferred to define
logic for one-off responses. When you need to respond to repeating events, Node
provides another mechanism for this. Before going further, we need to understand
the function of timers and events in Node.

Timers
Timers are used to schedule the execution of a particular callback after a specific
delay. There are two primary methods to set up such delayed execution: setTimeout
and setInterval. The setTimeout() function is used to schedule the execution of
a specific callback after a delay, while setInterval is used to schedule the repeated
execution of a callback. The setTimeout function is useful to perform tasks that need
to be scheduled such as housekeeping. Consider the following example:

setTimeout(function() {
 console.log("This is just one time delay");
},1000);
var count=0;
var t = setInterval(function() {
 count++;
 console.log(count);
 if (count> 5){
 clearInterval(t);
 }
}, 2000);

First, we are using setTimeout() to execute a callback (the anonymous function)
after a delay of 1,000 ms. This is just a one-time schedule for this callback. We
scheduled the repeated execution of the callback using setInterval(). Note that we
are assigning the value returned by setInterval() in a variable t—we can use this
reference in clearInterval() to clear this schedule.

Chapter 9

[213]

EventEmitters
We discussed earlier that callbacks are great for the execution of one-off logic.
EventEmitters are useful in responding to repeating events. EventEmitters fire
events and include the ability to handle these events when triggered. Several
important Node APIs are built on EventEmitters.

Events raised by EventEmitters are handled through listeners. A listener is a callback
function associated with an event—when the event fires, its associated listener
is triggered as well. The event.EventEmitter is a class that is used to provide a
consistent interface to emit (trigger) and bind callbacks to events.

As a common style convention, event names are represented by a camel-cased string;
however, any valid string can be used as an event name.

Use require('events') to access the EventEmitter class:

var EventEmitter = require('events');

When an EventEmitter instance encounters an error, it emits an error event. Error
events are treated as a special case in Node.js. If you don't handle these, the program
exits with an exception stack.

All EventEmitters emit the newListener event when new listeners are added and
removeListener when a listener is removed.

To understand the usage of EventEmitters, we will build a simplistic telnet server
where different clients can log in and enter certain commands. Based on these
commands, our server will respond accordingly:

var _net = require('net');
var _events = require ('events');
var _emitter = new events.EventEmitter();
_emitter.on('join', function(id,caller){
 console.log(id+" - joined");
});
_emitter.on('quit', function(id,caller){
 console.log(id+" - left");
});

Server-Side JavaScript

[214]

var _server = _net.createServer(function(caller) {
 var process_id = caller.remoteAddress + ':' + caller.remotePort;
 _emitter.emit('join',id,caller);
 caller.on('end', function() {
 console.log("disconnected");
 _emitter.emit('quit',id,caller);
 });
});
_server.listen(8124);

In this code snippet, we are using the net module from Node. The idea here is to
create a server and let the client connect to it via a standard telnet command. When
a client connects, the server displays the client address and port, and when the client
quits, the server logs this too.

When a client connects, we are emitting a join event, and when the client
disconnects, we are emitting a quit event. We have listeners for both these events
and they log appropriate messages on the server.

You start this program and connect to our server using telnet as follows:

telnet 127.0.0.1 8124

On the server console, you will see the server logging which client joined the server:

» node app.js
::ffff:127.0.0.1:51000 - joined
::ffff:127.0.0.1:51001 – joined

If any client quits the session, an appropriate message will appear as well.

Modules
When you are writing a lot of code, you soon reach a point where you have to start
thinking about how you want to organize the code. Node modules are CommonJS
modules that we discussed earlier when we discussed module patterns. Node
modules can be published to the Node Package Manager (npm) repository. The npm
repository is an online collection of Node modules.

Chapter 9

[215]

Creating modules
Node modules can be either single files or directories containing one or more files.
It's usually a good idea to create a separate module directory. The file in the module
directory that will be evaluated is normally named index.js. A module directory
can look as follows:

node_project/src/nav
 --- >index.js

In your project directory, the nav module directory contains the module code.
Conventionally, your module code needs to reside in the index.js file—you can
change this to another file if you want. Consider this trivial module called geo.js:

exports.area = function (r) {
 return 3.14 * r * r;
};
exports.circumference = function (r) {
 return 3.14 * 3.14 * r;
};

You are exporting two functions via exports. You can use the module using the
require function. This function takes the name of the module or system path to the
module's code. You can use the module that we created as follows:

var geo = require('./geo.js');
console.log(geo.area(2));

As we are exporting only two functions to the outside world, everything else
remains private. If you recollect, we discussed the module pattern in detail—Node
uses CommonJS modules. There is an alternative syntax to create modules as well.
You can use modules.exports to export your modules. Indeed, exports is a helper
created for modules.exports. When you use exports, it attaches the exported
properties of a module to modules.exports. However, if modules.exports already
has some properties attached to it, properties attached by exports are ignored.

Server-Side JavaScript

[216]

The geo module created earlier in this section can be rewritten in order to return a
single Geo constructor function rather than an object containing functions. We can
rewrite the geo module and its usage as follows:

var Geo = function(PI) {
 this.PI = PI;
}
Geo.prototype.area = function (r) {
 return this.PI * r * r;
};
Geo.prototype.circumference = function (r) {
 return this.PI * this.PI * r;
};
module.exports = Geo;

Consider a config.js module:

var db_config = {
 server: "0.0.0.0",
 port: "3306",
 user: "mysql",
 password: "mysql"
};
module.exports = db_config;

If you want to access db_config from outside this module, you can use require()
to include the module and refer the object as follows:

var config = require('./config.js');
console.log(config.user);

There are three ways to organize modules:

• Using a relative path, for example, config = require('./lib/config.
js')

• Using an absolute path, for example, config = require('/nodeproject/
lib/config.js')

• Using a module search, for example, config = require('config')

The first two are self-explanatory—they allow Node to look for a module in a
particular location in the filesystem.

Chapter 9

[217]

When you use the third option, you are asking Node to locate the module using the
standard look method. To locate the module, Node starts at the current directory and
appends ./node_modules/ to it. Node then attempts to load the module from this
location. If the module is not found, then the search starts from the parent directory
until the root of the filesystem is reached.

For example, if require('config') is called in /projects/node/, the following
locations will be searched until a match a found:

• /projects/node /node_modules/config.js

• /projects/node_modules/config.js

• /node_modules/config.js

For modules downloaded from npm, using this method is relatively simple. As
we discussed earlier, you can organize your modules in directories as long as you
provide a point of entry for Node.

The easiest way to do this is to create the ./node_modules/supermodule/ directory,
and insert an index.js file in this directory. The index.js file will be loaded by
default. Alternatively, you can put a package.json file in the mymodulename folder,
specifying the name and main file of the module:

{
 "name": "supermodule",
 "main": "./lib/config.js"
}

You have to understand that Node caches modules as objects. If you have two (or
more) files requiring a specific module, the first require will cache the module in
memory so that the second require will not have to reload the module source code.
However, the second require can alter the module functionality if it wishes to. This
is commonly called monkey patching and is used to modify a module behavior
without really modifying or versioning the original module.

npm
The npm is the package manager used by Node to distribute modules. The npm
can be used to install, update, and manage modules. Package managers are popular
in other languages such as Python. The npm automatically resolves and updates
dependencies for a package and hence makes your life easy.

Server-Side JavaScript

[218]

Installing packages
There are two ways to install npm packages: locally or globally. If you want to use
the module's functionality only for a specific Node project, you can install it locally
relative to the project, which is default behavior of npm install. Alternatively, there
are several modules that you can use as a command-line tool; in this case, you can
install them globally:

npm install request

The install directive with npm will install a particular module—request in this
case. To confirm that npm install worked correctly, check to see whether a node_
modules directory exists and verify that it contains a directory for the package(s) that
you installed.

As you start adding modules to your project, it becomes difficult to manage the
version/dependency of each module. The best way to manage locally installed
packages is to create a package.json file in your project.

A package.json file can help you in the following ways:

• Defining versions of each module that you want to install. There are times
when your project depends on a specific version of a module. In this case,
your package.json helps you download and maintain the correct version
dependency.

• Serving as a documentation of all the modules that your project needs.
• Deploying and packaging your application without worrying about

managing dependencies every time you deploy the code.

You can create package.json by issuing the following command:

npm init

After answering basic questions about your project, a blank package.json is created
with content similar to the following:

{
 "name": "chapter9",
 "version": "1.0.0",
 "description": "chapter9 sample project",
 "main": "app.js",
 "dependencies": {
 "request": "^2.65.0"
 },

Chapter 9

[219]

 "devDependencies": {},
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [
 "Chapter9",
 "sample",
 "project"
],
 "author": "Ved Antani",
 "license": "MIT"
}

You can manually edit this file in a text editor. An important part of this file is the
dependencies tag. To specify the packages that your project depends on, you need
to list the packages you'd like to use in your package.json file. There are two types
of packages that you can list:

• dependencies: These packages are required by your application in
production

• devDependencies: These packages are needed only for development and
testing (for example, using the Jasmine node package)

In the preceding example, you can see the following dependency:

"dependencies": {
 "request": "^2.65.0"
},

This means that the project is dependent on the request module.

The version of the module is dependent on the semantic versioning
rules—https://docs.npmjs.com/getting-started/semantic-
versioning.

Once your package.json file is ready, you can simply use the npm install
command to install all the modules for your projects automatically.

https://docs.npmjs.com/getting-started/semantic-versioning
https://docs.npmjs.com/getting-started/semantic-versioning

Server-Side JavaScript

[220]

There is a cool trick that I love to use. While installing modules from the command
line, we can add the --save flag to add that module's dependency to the package.
json file automatically:

npm install async --save
npm WARN package.json chapter9@1.0.0 No repository field.
npm WARN package.json chapter9@1.0.0 No README data
async@1.5.0 node_modules/async

In the preceding command, we installed the async module with the normal npm
command with a --save flag. There is a corresponding entry automatically created
in package.json:

"dependencies": {
 "async": "^1.5.0",
 "request": "^2.65.0"
},

JavaScript performance
Like any other language, writing correct JavaScript code at scale is an involved task.
As the language matures, several of the inherent problems are being taken care of.
There are several exceptional libraries that aid in writing good quality code. For
most serious systems, good code = correct code + high performance code. The demands of
new-generation software systems are high on performance. In this section, we will
discuss a few tools that you can use to analyze your JavaScript code and understand
its performance metrics.

We will discuss the following two ideas in this section:

• Profiling: Timing various functions and operations during script-profiling
helps in identifying areas where you can optimize your code

• Network performance: Examining the loading of network resources such as
images, stylesheets, and scripts

JavaScript profiling
JavaScript profiling is critical to understand performance aspects of various parts of
your code. You can observe timings of the functions and operations to understand
which operation is taking more time. With this information, you can optimize the
performance of time-consuming functions and tune the overall performance of your
code. We will be focusing on the profiling options provided by Chrome's Developer
Tools. There are comprehensive analysis tools that you can use to understand the
performance metrics of your code.

Chapter 9

[221]

The CPU profile
The CPU profile shows the execution time spent by various parts of your code.
We have to inform DevTools to record the CPU profile data. Let's take the profiler for
a spin.

You can enable the CPU profiler in DevTools as follows:

1. Open the Chrome DevTools Profiles panel.
2. Verify that Collect JavaScript CPU Profile is selected:

For this chapter, we will be using Google's own benchmark page, http://octane-
benchmark.googlecode.com/svn/latest/index.html. We will use this because
it contains sample functions where we can see various performance bottlenecks and
benchmarks. To start recording the CPU profile, open DevTools in Chrome, and
in the Profiles tab, click on the Start button or press Cmd/Ctrl + E. Refresh the V8
Benchmark Suite page. When the page has completed reloading, a score for the
benchmark tests is shown. Return to the Profiles panel and stop the recording by
clicking on the Stop button or pressing Cmd/Ctrl + E again.

Server-Side JavaScript

[222]

The recorded CPU profile shows you a detailed view of the functions and the
execution time taken by them in the bottom-up fashion, as shown in the following
image:

The Timeline view
The Chrome DevTools Timeline tool is the first place you can start looking at the
overall performance of your code. It lets you record and analyze all the activity in
your application as it runs.

The Timeline provides you with a complete overview of where time is spent when
loading and using your site. A timeline recording includes a record for each event
that occurred and is displayed in a waterfall graph:

Chapter 9

[223]

The preceding screen shows you the timeline view when we try to render https://
twitter.com/ in the browser. The timeline view gives you an overall view of which
operation took how much time in execution:

In the preceding screenshot, we can see the progressive execution of various JavaScript
functions, network calls, resource downloads, and other operations involved in
rendering the Twitter home page. This view gives us a very good idea about which
operations may be taking longer. Once we identify such operations, we can optimize
them for performance. The Memory view is a great tool to understand how the
memory is used during the lifetime of your application in the browser. The Memory
view shows you a graph of the memory used by your application over time and
maintains a counter of the number of documents, DOM nodes, and event listeners that
are held in the memory. The Memory view can help detect memory leaks and give you
good enough hints to understand what optimizations are required:

JavaScript performance is a fascinating subject and deserves its own dedicated text. I
would urge you to explore Chrome's DevTools and understand how best to use the
tools to detect and diagnose performance problems in your code.

Server-Side JavaScript

[224]

Summary
In this chapter, we looked at a different avatar of JavaScript—that of a server-side
framework in the form of Node.js.

Node offers an asynchronous evented-model to program scalable and high-
performance server applications in JavaScript. We dived deep into some core
concepts on Node, such as an event loop, callbacks, modules, and timers.
Understanding them is critical to write good Node code. We also discussed several
techniques to structure Node code and callbacks in a better way.

With this, we reach the conclusion of our exploration of a brilliant programming
language. JavaScript has been instrumental in the evolution of the World Wide Web
because of its sheer versatility. The language continues to expand its horizons and
improves with each new iteration.

We started our journey with understanding the building blocks of the grammar
and syntax of the language. We grasped the fundamental ideas of closures and
the functional behavior of JavaScript. These concepts are so essential that most of
the JavaScript patterns are based on them. We looked at how we can utilize these
patterns to write better code with JavaScript. We studied how JavaScript can operate
on a DOM and how to use jQuery to manipulate the DOM effectively. Finally, we
looked at the server-side avatar of JavaScript in Node.js.

This book should have enabled you to think differently when you start programming
in JavaScript. Not only will you think about common patterns when you code, but
also appreciate and use newer language features by ES6.

Module 2

Learning Object-Oriented Programming

Explore and crack the OOP code in Python, JavaScript, and C#

[227]

Objects Everywhere
Objects are everywhere, and therefore, it is very important to recognize elements,
known as objects, from real-world situations. It is also important to understand
how they can easily be translated into object-oriented code. In this chapter, you
will learn the principles of object-oriented paradigms and some of the differences
in the approaches towards object-oriented code in each of the three programming
languages: Python, JavaScript, and C#. In this chapter, we will:

• Understand how real-world objects can become a part of fundamental
elements in the code

• Recognize objects from nouns
• Generate blueprints for objects and understand classes
• Recognize attributes to generate fields
• Recognize actions from verbs to generate methods
• Work with UML diagrams and translate them into object-oriented code
• Organize blueprints to generate different classes
• Identify the object-oriented approaches in Python, JavaScript, and C#

Recognizing objects from nouns
Let's imagine, we have to develop a new simple application, and we receive a
description with the requirements. The application must allow users to calculate
the areas and perimeters of squares, rectangles, circles, and ellipses.

Objects Everywhere

[228]

It is indeed a very simple application, and you can start writing code in Python,
JavaScript, and C#. You can create four functions that calculate the areas of the
shapes mentioned earlier. Moreover, you can create four additional functions that
calculate the perimeters for them. For example, the following seven functions would
do the job:

• calculateSquareArea: This receives the parameters of the square and
returns the value of the calculated area for the shape

• calculateRectangleArea: This receives the parameters of the rectangle and
returns the value of the calculated area for the shape

• calculateCircleArea: This receives the parameters of the circle and returns
the value of the calculated area for the shape

• calculateEllipseArea: This receives the parameters of the ellipse and
returns the value of the calculated area for the shape

• calculateSquarePerimeter: This receives the parameters of the square and
returns the value of the calculated perimeter for the shape

• calculateRectanglePerimeter: This receives the parameters of the
rectangle and returns the value of the calculated perimeter for the shape

• calculateCirclePerimeter: This receives the parameters of the circle and
returns the value of the calculated perimeter for the shape

However, let's forget a bit about programming languages and functions. Let's
recognize the real-world objects from the application's requirements. It is necessary
to calculate the areas and perimeters of four elements, that is, four nouns in the
requirements that represent real-life objects:

• Square
• Rectangle
• Circle
• Ellipse

We can design our application by following an object-oriented paradigm. Instead of
creating a set of functions that perform the required tasks, we can create software
objects that represent the state and behavior of a square, rectangle, circle, and an
ellipse. This way, the different objects mimic the real-world shapes. We can work
with the objects to specify the different attributes required to calculate their areas
and their perimeters.

Chapter 1

[229]

Now, let's move to the real world and think about the four shapes. Imagine that you
have to draw the four shapes on paper and calculate both their areas and perimeters.
What information do you require for each of the shapes? Think about this, and then,
take a look at the following table that summarizes the data required for each shape:

Shape Required data
Square Length of side
Rectangle Width and height
Circle Radius (usually labeled as r)
Ellipse Semi-major axis (usually labeled as a) and semi-minor

axis (usually labeled as b)

The data required by each of the shapes is going to be encapsulated
in each object. For example, the object that represents a rectangle
encapsulates both the rectangle's width and height. Data encapsulation
is one of the major pillars of object-oriented programming.

The following diagram shows the four shapes drawn and their elements:

Objects Everywhere

[230]

Generating blueprints for objects
Imagine that you want to draw and calculate the areas of four different rectangles.
You will end up with four rectangles drawn, with their different widths, heights,
and calculated areas. It would be great to have a blueprint to simplify the process
of drawing each rectangle with their different widths and heights.

In object-oriented programming, a class is a blueprint or a template definition
from which the objects are created. Classes are models that define the state and
behavior of an object. After defining a class that defines the state and behavior
of a rectangle, we can use it to generate objects that represent the state and
behavior of each real-world rectangle.

Objects are also known as instances. For example, we can say
each rectangle object is an instance of the rectangle class.

The following image shows four rectangle instances drawn, with their widths and
heights specified: Rectangle #1, Rectangle #2, Rectangle #3, and Rectangle #4. We
can use a rectangle class as a blueprint to generate the four different rectangle
instances. It is very important to understand the difference between a class and
the objects or instances generated through its usage. Object-oriented programming
allows us to discover the blueprint we used to generate a specific object. Thus, we
are able to infer that each object is an instance of the rectangle class.

Chapter 1

[231]

We recognized four completely different real-world objects from the application's
requirements. We need classes to create the objects, and therefore, we require the
following four classes:

• Square
• Rectangle
• Circle
• Ellipse

Recognizing attributes/fields
We already know the information required for each of the shapes. Now, it is time
to design the classes to include the necessary attributes that provide the required
data to each instance. In other words, we have to make sure that each class has the
necessary variables that encapsulate all the data required by the objects to perform
all the tasks.

Let's start with the Square class. It is necessary to know the length of side for each
instance of this class, that is, for each square object. Thus, we need an encapsulated
variable that allows each instance of this class to specify the value of the length of side.

The variables defined in a class to encapsulate data for each
instance of the class are known as attributes or fields. Each
instance has its own independent value for the attributes or
fields defined in the class.

The Square class defines a floating point attribute named LengthOfSide whose initial
value is equal to 0 for any new instance of the class. After you create an instance of the
Square class, it is possible to change the value of the LengthOfSide attribute.

For example, imagine that you create two instances of the Square class. One of the
instances is named square1, and the other is square2. The instance names allow
you to access the encapsulated data for each object, and therefore, you can use them
to change the values of the exposed attributes.

Imagine that our object-oriented programming language uses a dot (.) to allow
us to access the attributes of the instances. So, square1.LengthOfSide provides
access to the length of side for the Square instance named square1, and square2.
LengthOfSide does the same for the Square instance named square2.

Objects Everywhere

[232]

You can assign the value 10 to square1.LengthOfSide and 20 to square2.
LengthOfSide. This way, each Square instance is going to have a different
value for the LengthOfSide attribute.

Now, let's move to the Rectangle class. We can define two floating-point attributes
for this class: Width and Height. Their initial values are also going to be 0. Then, you
can create two instances of the Rectangle class: rectangle1 and rectangle2.

You can assign the value 10 to rectangle1.Width and 20 to rectangle1.Height.
This way, rectangle1 represents a 10 x 20 rectangle. You can assign the value 30 to
rectangle2.Width and 50 to rectangle2.Height to make the second Rectangle
instance, which represents a 30 x 50 rectangle.

The following table summarizes the floating-point attributes defined for each class:

Class name Attributes list
Square LengthOfSide
Rectangle Width

Height
Circle Radius
Ellipse SemiMajorAxis

The following image shows a UML (Unified Modeling Language) diagram with the
four classes and their attributes:

Recognizing actions from
verbs – methods
So far, we have designed four classes and identified the necessary attributes for
each of them. Now, it is time to add the necessary pieces of code that work with
the previously defined attributes to perform all the tasks. In other words, we have
to make sure that each class has the necessary encapsulated functions that process
the attribute values specified in the objects to perform all the tasks.

Chapter 1

[233]

Let's start with the Square class. The application's requirements specified that we
have to calculate the areas and perimeters of squares. Thus, we need pieces of code
that allow each instance of this class to use the LengthOfSide value to calculate the
area and the perimeter.

The functions or subroutines defined in a class to encapsulate the
behavior for each instance of the class are known as methods. Each
instance can access the set of methods exposed by the class. The code
specified in a method is able to work with the attributes specified in
the class. When we execute a method, it will use the attributes of the
specific instance. A good practice is to define the methods in a logical
place, that is, in the place where the required data is kept.

The Square class defines the following two parameterless methods. Notice that we
declare the code for both methods in the definition of the Square class:

• CalculateArea: This returns a floating-point value with the calculated area
for the square. The method returns the square of the LengthOfSide attribute
value (LengthOfSide2 or LengthOfSide ^ 2).

• CalculatePerimeter: This returns a floating-point value with the calculated
perimeter for the square. The method returns the LengthOfSide attribute
value multiplied by 4 (4 * LengthOfSide).

Imagine that, our object-oriented programming language uses a dot (.) to allow
us to execute methods of the instances. Remember that we had two instances of
the Square class: square1 with LengthOfSide equal to 10 and square2 with
LengthOfSide equal to 20. If we call square1.CalculateArea, it would return the
result of 102, which is 100. On the other hand, if we call square2.CalculateArea, it
would return the result of 202, which is 400. Each instance has a diverse value for the
LengthOfSide attribute, and therefore, the results of executing the CalculateArea
method are different.

If we call square1.CalculatePerimeter, it would return the result of 4 * 10, which
is 40. On the other hand, if we call square2.CalculatePerimeter, it would return
the result of 4 * 20, which is 80.

Objects Everywhere

[234]

Now, let's move to the Rectangle class. We need exactly two methods with the
same names specified for the Square class. However, they have to calculate the
results in a different way.

• CalculateArea: This returns a floating-point value with the calculated area
for the rectangle. The method returns the result of the multiplication of the
Width attribute value by the Height attribute value (Width * Height).

• CalculatePerimeter: This returns a floating-point value with the
calculated perimeter for the rectangle. The method returns the sum
of two times the Width attribute value and two times the Height
attribute value (2 * Width + 2 * Height).

Remember that, we had two instances of the Rectangle class: rectangle1
representing a 10 x 20 rectangle and rectangle2 representing a 30 x 50 rectangle. If
we call rectangle1.CalculateArea, it would return the result of 10 * 20, which is
200. On the other hand, if we call rectangle2.CalculateArea, it would return the
result of 30 * 50, which is 1500. Each instance has a diverse value for both the Width
and Height attributes, and therefore, the results of executing the CalculateArea
method are different.

If we call rectangle1.CalculatePerimeter, it would return the result of 2 * 10 +
2 * 20, which is 60. On the other hand, if we call rectangle2. CalculatePerimeter,
it would return the result of 2 * 30 + 2 * 50, which is 160.

The Circle class also needs two methods with the same names. The two methods
are explained as follows:

• CalculateArea: This returns a floating-point value with the calculated area
for the circle. The method returns the result of the multiplication of π by the
square of the Radius attribute value (π * Radius2 or π * (Radius ^ 2)).

• CalculatePerimeter: This returns a floating-point value with the calculated
perimeter for the circle. The method returns the result of the multiplication of
π by two times the Radius attribute value.

Finally, the Ellipse class defines two methods with the same names but with
different code and a specific problem with the perimeter. The following are the
two methods:

• CalculateArea: This returns a floating-point value with the calculated area
for the ellipse. The method returns the result of the multiplication of π by the
square of the Radius attribute value (π * SemiMajorAxis * SemiMinorAxis).

Chapter 1

[235]

• CalculatePerimeter: This returns a floating-point value with the calculated
approximation of the perimeter for the ellipse. Perimeters are very difficult
to calculate for ellipses, and therefore, there are many formulas that provide
approximations. An exact formula needs an infinite series of calculations.
Thus, let's consider that the method returns the result of a formula that isn't
very accurate and that we will have to improve on it later. The method returns
the result of 2 * π * SquareRoot ((SemiMajorAxis2 + SemiMinorAxis2) / 2).

The following figure shows an updated version of the UML diagram with the four
classes, their attributes, and their methods:

Organizing the blueprints – classes
So far, our object-oriented solution includes four classes with their attributes and
methods. However, if we take another look at these four classes, we would notice that
all of them have the same two methods: CalculateArea and CalculatePerimeter.
The code for the methods in each class is different, because each shape uses a different
formula to calculate either the area or the perimeter. However, the declarations or the
contracts for the methods are the same. Both methods have the same name, are always
parameterless, and both return a floating-point value.

When we talked about the four classes, we said we were talking about four
different geometrical shapes or simply, shapes. Thus, we can generalize the required
behavior for the four shapes. The four shapes must declare the CalculateArea and
CalculatePerimeter methods with the previously explained declarations. We can
create a contract to make sure that the four classes provide the required behavior.

The contract will be a class named Shape, and it will generalize the requirements
for the geometrical shapes in our application. The Shape class declares two
parameterless methods that return a floating-point value: CalculateArea and
CalculatePerimeter. Then, we can declare the four classes as subclasses of the
Shape class that inherit these definitions, but provide the specific code for each of
these methods.

Objects Everywhere

[236]

We can define the Shape class as an abstract class, because we don't
want to be able to create instances of this class. We want to be able
to create instances of Square, Rectangle, Circle, or Ellipse. In
this case, the Shape abstract class declares two abstract methods. We
call CalculateArea and CalculatePerimeter abstract methods
because the abstract class declares them without an implementation,
that is, without code. The subclasses of Shape implement the methods
because they provide code while maintaining the same method
declarations specified in the Shape superclass. Abstraction and hierarchy
are the two major pillars of object-oriented programming.

Object-oriented programming allows us to discover whether an object is an instance
of a specific superclass. After we changed the organization of the four classes and
they became subclasses of the Shape class, any instance of Square, Rectangle,
Circle, or Ellipse is also an instance of the Shape class. In fact, it isn't difficult to
explain the abstraction because we are telling the truth about the object-oriented
model that represents the real world. It makes sense to say that a rectangle is indeed
a shape, and therefore, an instance of a Rectangle class is a Shape class. An instance
of a Rectangle class is both a Shape class (the superclass of the Rectangle class) and
a Rectangle class (the class that we used to create the object).

When we were implementing the Ellipse class, we discovered a specific problem
for this shape; there are many formulas that provide approximations of the perimeter
value. Thus, it makes sense to add additional methods that calculate the perimeter
using other formulas.

We can define the following two additional parameterless methods, that is, two
methods without any parameter. These methods return a floating-point value to the
Ellipse class to solve the specific problem of the ellipse shape. The following are the
two methods:

• CalculatePerimeterWithRamanujanII: This uses the second version of a
formula developed by Srinivasa Aiyangar Ramanujan

• CalculatePerimeterWithCantrell: This uses a formula proposed by
David W. Cantrell

This way, the Ellipse class implements the methods specified in the Shape
superclass. The Ellipse class also adds two specific methods that aren't included
in any of the other subclasses of Shape.

Chapter 1

[237]

The following diagram shows an updated version of the UML diagram with the
abstract class, its four subclasses, their attributes, and their methods:

Object-oriented approaches in Python,
JavaScript, and C#
Python, JavaScript, and C# support object-oriented programming, also known
as OOP. However, each programming language takes a different approach. Both
Python and C# support classes and inheritance. Therefore, you can use the different
syntax provided by each of these programming languages to declare the Shape class
and its four subclasses. Then, you can create instances of each of the subclasses and
call the different methods.

Objects Everywhere

[238]

On the other hand, JavaScript uses an object-oriented model that doesn't use classes.
This object-oriented model is known as prototype-based programming. However,
don't worry. Everything you have learned so far in your simple object-oriented
design journey can be coded in JavaScript. Instead of using inheritance to achieve
behavior reuse, we can expand upon existing objects. Thus, we can say that objects
serve as prototypes in JavaScript. Instead of focusing on classes, we work with
instances and decorate them to emulate inheritance in class-based languages.

The object-oriented model known as prototype-based programing
is also known by other names such as classless programming,
instance-based programming, or prototype-oriented programming.

There are other important differences between Python, JavaScript, and C#. They
have a great impact on the way you can code object-oriented designs. However,
you will learn different ways throughout this book to make it possible to code
the same object-oriented design in the three programming languages.

Summary
In this chapter, you learned how to recognize real-world elements and translate them
into the different components of the object-oriented paradigm: classes, attributes,
methods, and instances. You understood the differences between classes (blueprints
or templates) and the objects (instances). We designed a few classes with attributes
and methods that represented blueprints for real-life objects. Then, we improved the
initial design by taking advantage of the power of abstraction, and we specialized in
the Ellipse class.

Now that you have learned some of the basics of the object-oriented paradigm, you
are ready to start creating classes and instances in Python, JavaScript, and C# in the
next chapter.

[239]

Classes and Instances
In this chapter, we will start generating blueprints to create objects in each of the
three programming languages: Python, JavaScript, and C#. We will:

• Understand the differences between classes, prototypes, and instances in
object-oriented programming

• Learn an object's lifecycle and how object constructors and destructors work
• Declare classes in Python and C# and use workarounds to have a similar

feature in JavaScript
• Customize the process that takes place when you create instances in Python,

C#, and JavaScript
• Customize the process that takes place when you destroy instances in

Python, C#, and JavaScript
• Create different types of objects in Python, C#, and JavaScript

Understanding classes and instances
In the previous chapter, you learned some of the basics of the object-oriented
paradigm, including classes and objects, also known as instances. Now, when you
dive deep into the programming languages, the class is always going to be the type
and the blueprint. The object is the working instance of the class, and one or more
variables can hold a reference to an instance.

Classes and Instances

[240]

Let's move to the world of our best friends, the dogs. If we want to model an
object-oriented application that has to work with dogs and about a dozen dog
breeds, we will definitely have a Dog abstract class. Each dog breed required in
our application will be a subclass of the Dog superclass. For example, let's assume
that we have the following subclasses of Dog:

• TibetanSpaniel: This is a blueprint for the dogs that belong to the Tibetan
Spaniel breed

• SmoothFoxTerrier: This is a blueprint for the dogs that belong to the
Smooth Fox Terrier breed

So, each dog breed will become a subclass of Dog and a type in the programming
language. Each dog breed is a blueprint that we will be able to use to create
instances. Brian and Merlin are two dogs. Brian belongs to the Tibetan Spaniel
breed, and Merlin belongs to the Smooth Fox Terrier breed. In our application,
Brian will be an instance of the TibetanSpaniel subclass, and Merlin will be an
instance of the SmoothFoxTerrier subclass.

As both Brian and Merlin are dogs, they will share many attributes. Some of
these attributes will be initialized by the class, because the dog breed they belong
to determines some features, for example, the area of origin, the average size, and
the watchdog ability. However, other attributes will be specific to the instance, such
as the name, weight, age, and hair color.

Understanding constructors and
destructors
When you ask the programming language to create an instance of a specific class,
something happens under the hood. The programming language runtime creates
a new instance of the specified type, allocates the necessary memory, and then
executes the code specified in the constructor. When the runtime executes the code
within the constructor, there is already a live instance of the class. Thus, you have
access to the attributes and methods defined in the class. However, as you might
have guessed, you must be careful with the code you put within the constructor,
because you might end up generating large delays when you create instances of
the class.

Constructors are extremely useful to execute setup code and
properly initialize a new instance.

Chapter 2

[241]

So, for example, before you can call the CalculateArea method, you want the Width
and Height attributes for each new Rectangle instance to have a value initialized
to 0. Constructors are extremely useful when we want to define the attributes of the
instances of a class right after their creation.

Sometimes, we need specific arguments to be available when we are creating an
instance. We can design different constructors with the necessary arguments and use
them to create instances of a class. This way, we can make sure that there is no way
of creating specific classes without using the authorized constructors that ask for the
necessary arguments.

At some point, your application won't need to work with an instance anymore. For
example, once you calculate the perimeter of an ellipse and display the results to the
user, you don't need the specific Ellipse instance anymore. Some programming
languages require you to be careful about leaving live instances alive. You have to
explicitly destroy them and de-allocate the memory that it was consuming.

The runtimes of Python, C#, and JavaScript use a garbage-collection mechanism that
automatically de-allocates memory used by instances that aren't referenced anymore.
The garbage-collection process is a bit more complicated, and each programming
language and runtime has specific considerations that should be taken into account
to avoid unnecessary memory pressure. However, let's keep our focus on the object's
life cycle. In these programming languages, when the runtime detects that you aren't
referencing an instance anymore and when a garbage collection occurs, the runtime
executes the code specified within the instance's destructor.

You can use the destructor to perform any necessary cleanup before
the object is destroyed and removed from memory. However, take
into account that JavaScript doesn't provide you with the possibility
to customize a destructor.

For example, think about the following situation. You need to count the number of
instances of a specific class that are being kept alive. You can have a variable shared
by all the classes. Then, you customize the class constructor to atomically increase
the value for the counter, that is, increase the value of the variable shared by all the
classes of the same time. Finally, you customize the class destructor to automatically
decrease the value for the counter. This way, you can check the value of this variable
to know the objects that are being referenced in your application.

Classes and Instances

[242]

Declaring classes in Python
Throughout this book, we will work with Python 3.4.3. However, all the explanations
and code samples are compatible with Python 3.x.x. Therefore, you can work with
previous Python versions as long as the major version number is 3. We will use
JetBrains PyCharm Community Edition 4 as the main Python IDE and the supplier
of an interactive Python console. However, you can use your favorite Python IDE or
just the Python console.

Everything is a class in Python, that is, all the elements that can be
named in Python are classes. Guido van Rossum designed Python
according to the first-class everything principle. Thus, all the types are
classes, from the simplest types to the most complex ones: integers,
strings, lists, dictionaries, and so on. This way, there is no difference
between an integer (int), a string, and a list. Everything is treated
in the same way. Even functions, methods, and modules are classes.

For example, when we enter the following lines in a Python console, we create a new
instance of the int class. The console will display <class 'int'> as a result of the
second line. This way, we know that area is an instance of the int class:

area = 250
type(area)

When we type the following lines in a Python console, we create a new instance of
the function class. The console will display <class 'function'> as a result of the
second line. Thus, calculateArea is an instance of the function class:

def calculateArea(width, height):
 return width * height

type(CalculateArea)

Let's analyze the simple calculateArea function. This function receives two
arguments: width and height. It returns the width value multiplied by the height
value. If we call the function with two int values, that is, two int instances, the
function will return a new instance of int with the result of width multiplied by
height. The following lines call the calculateArea function and save the returned
int instance in the rectangleArea variable. The console will display <class 'int'>
as a result of the third line. Thus, rectangleArea is an instance of the int class:

rectangleArea = calculateArea(300, 200)
print(rectangleArea)
type(rectangleArea)

Chapter 2

[243]

The following lines create a new minimal Rectangle class in Python:

class Rectangle:
 pass

The class keyword followed by the class name (Rectangle) and a colon (:)
composes the header of the class definition. In this case, the class doesn't have
a parent class or a superclass. Therefore, there aren't superclasses enclosed in
parentheses after the class name and before the colon (:). The indented block of
statements that follows the class definition composes the body of the class. In
this case, there is just a single statement, pass, and the class doesn't define either
attributes or methods. The Rectangle class is the simplest possible class we can
declare in Python.

Any new class you create that doesn't specify a superclass will be
a subclass of the builtins.object class. Thus, the Rectangle
class is a subclass of builtins.object.

The following line prints True as a result in a Python console, because the Rectangle
class is a subclass of object:

issubclass(Rectangle, object)

The following lines represent an equivalent way of creating the Rectangle class
in Python. However, we don't need to specify that the class inherits from an object
because it adds unnecessary boilerplate code:

class Rectangle(object):
 pass

Customizing constructors in Python
We want to initialize instances of the Rectangle class with the values of both
width and height. After we create an instance of a class, Python automatically
calls the __init__ method. Thus, we can use this method to receive both the width
and height arguments. We can then use these arguments to initialize attributes
with the same names. We can think of the __init__ method as the equivalent of a
constructor in other object-oriented programming languages.

Classes and Instances

[244]

The following lines create a Rectangle class and declare an __init__ method
within the body of the class:

class Rectangle:
 def __init__(self, width, height):
 print("I'm initializing a new Rectangle instance.")
 self.width = width
 self.height = height

This method receives three arguments: self, width, and height. The first argument
is a reference to the instance that called the method. We used the name self for
this argument. It is important to notice that self is not a Python keyword. It is just
the name for the first argument, and it is usually called self. The code within the
method prints a message indicating that the code is initializing a new Rectangle
instance. This way, we will understand when the code within the __init__ method
is executed.

Then, the following two lines create the width and height attributes for the instance
and assign them the values received as arguments with the same names. We use
self.width and self.height to create the attributes for the instance. We create
two attributes for the Rectangle instance right after its creation.

The following lines create two instances of the Rectangle class named rectangle1
and rectangle2. The Python console will display I'm initializing a new
Rectangle instance. after we enter each line in the Python console:

rectangle1 = Rectangle(293, 117)
rectangle2 = Rectangle(293, 137)

Chapter 2

[245]

The preceding screenshot shows the Python console. Each line that creates an instance
specifies the class name followed by the desired values for both the width and the
height as arguments enclosed in parentheses. If we take a look at the declaration of
the __init__ method within the Rectangle class, we will notice that we just need to
specify the second and third arguments (width and height). Also, we just need to skip
the required first parameter (self). Python resolves many things under the hood. We
just need to make sure that we specify the values for the required arguments after self
to successfully create and initialize an instance of Rectangle.

After we execute the previous lines, we can check the values for rectangle1.width,
rectangle1.height, rectangle2.width, and rectangle2.height.

The following line will generate a TypeError error and won't create an instance
of Rectangle because we missed the two required arguments: width and height.
The specific error message is TypeError: __init__() missing 2 required
positional arguments: 'width' and 'height'. The error message is shown
in the following screenshot:

rectangleError = Rectangle()

Customizing destructors in Python
We want to know when the instances of the Rectangle class are removed from
memory, that is, when the objects become inaccessible and get deleted by the
garbage-collection mechanism. However, it is very important to notice that the
ways in which garbage collection works depends on the implementation of Python.
Remember that, Python runs on a wide variety of platforms.

Classes and Instances

[246]

Before Python removes an instance from memory, it calls the __del__ method.
Thus, we can use this method to add any code we want to run before the instance is
destroyed. We can think of the __del__ method as the equivalent of a destructor in
other object-oriented programming languages.

The following lines declare a __del__ method within the body of the Rectangle
class. Remember that Python always receives self as the first argument for any
instance method:

def __del__(self):
 print('A Rectangle instance is being destroyed.')

The following lines create two instances of the Rectangle class:
rectangleToDelete1 and rectangleToDelete2. Then, the next lines assign None
to both variables. Therefore, the reference count for both objects reaches 0, and the
garbage-collection mechanism deletes them. The Python console will display I'm
initializing a new Rectangle instance. and then A Rectangle instance is
being destroyed. twice in the Python console. Python executes the code within the
__del__ method after we assign None to each variable that had the only reference to
an instance of the Rectangle class:

rectangleToDestroy1 = Rectangle(293, 117)
rectangleToDestroy2 = Rectangle(293, 137)
rectangleToDestroy1 = None
rectangleToDestroy2 = None

Chapter 2

[247]

You can add some cleanup code within the __del__ method. However,
take into account that most of the time, you can follow best practices to
release resources without having to add code to the __del__ method.
Remember that you don't know exactly when the __del__ method
is going to be executed. Even when the reference count reaches 0, the
Python implementation might keep the resources until the appropriate
garbage collection destroys the instances.

The following lines create a rectangle3 instance of the Rectangle class and then
assign a referenceToRectangle3 reference to this object. Thus, the reference
count to the object increases to 2. The next line assigns None to rectangle3,
and therefore, the reference count for the object goes down from 2 to 1. As the
referenceToRectangle3 variable stills holds a reference to the Rectangle instance,
Python doesn't destroy the instance, and we don't see the results of the execution of
the __del__ method:

rectangle3 = Rectangle(364, 257)
referenceToRectangle3 = rectangle3
rectangle3 = None

Python destroys the instance if we add a line that assigns None to
referenceToRectangle3:

referenceToRectangle3 = None

However, it is very important to know that you don't need to assign None to a
reference to force Python to destroy objects. In the previous examples, we wanted to
understand how the __del__ method worked. Python will automatically destroy the
objects when they aren't referenced anymore.

Creating instances of classes in Python
We already created instances of the simple Rectangle class. We just needed to use
the class name, specify the required arguments enclosed in parentheses, and assign
the result to a variable.

The following lines declare a calculate_area method within the body of the
Rectangle class:

def calculate_area(self):
 return self.width * self.height

Classes and Instances

[248]

The method doesn't require arguments to be called from an instance because it
just declares the previously explained self parameter. The following lines create
an instance of the Rectangle class named rectangle4 and then print the results
of the call to the calculate_area method for this object:

rectangle4 = Rectangle(143, 187)
print(rectangle4.calculate_area())

Now, imagine that we want to have a function that receives the width and height
values of a rectangle and returns the calculated area. We can take advantage of the
Rectangle class to code this new function. We just need to create an instance of the
Rectangle class with the width and height received as parameters and return the
result of the call to the calculate_area method. Remember that we don't have to
worry about releasing the resources required by the Rectangle instance, because the
reference count for this object will become 0 after the function returns the result. The
following lines show the code for the calculateArea independent function, which
isn't part of the Rectangle class body:

def calculateArea(width, height):
 return Rectangle(width, height).calculate_area()

print(calculateArea(143, 187))

Notice that the Python console displays the following messages. Thus, we can see
that the instance is destroyed and the code within the __del__ method is executed.
The messages are shown in the following screenshot:

I'm initializing a new Rectangle instance.
A Rectangle instance is being destroyed.
26741

Chapter 2

[249]

Declaring classes in C#
Throughout this book, we will work with C# 6.0 (introduced in Microsoft Visual
Studio 2015). However, most of the explanations and code samples are also
compatible with C# 5.0 (introduced in Visual Studio 2013). If a specific example uses
C# 6.0 syntax and isn't compatible with C# 5.0, the code will be properly labeled
with the compatibility warning. We will use Visual Studio Community 2015 as the
main IDE. However, you can also run the examples using Mono or Xamarin.

The following lines declare a new minimal Circle class in C#:

class Circle
{
}

The class keyword followed by the class name (Circle) composes the header of
the class definition. In this case, the class doesn't have a parent class or a superclass.
Therefore, there aren't any superclasses listed after the class name and a colon (:).
A pair of curly braces ({}) encloses the class body after the class header. In this case,
the class body is empty. The Circle class is the simplest possible class we can declare
in C#.

Any new class you create that doesn't specify a superclass will be a
subclass of the System.Object class in C#. Thus, the Circle class
is a subclass of System.Object.

The following lines represent an equivalent way of creating the Circle class in C#.
However, we don't need to specify that the class inherits from System.Object,
because it adds unnecessary boilerplate code:

class Circle: System.Object
{
}

Customizing constructors in C#
We want to initialize instances of the Circle class with the radius value. In order
to do so, we can take advantage of the constructors in C#. Constructors are special
class methods that are automatically executed when we create an instance of a given
type. The runtime executes the code within the constructor before any other code
within a class.

Classes and Instances

[250]

We can define a constructor that receives the radius value as an argument and use
it to initialize an attribute with the same name. We can define as many constructors
as we want. Therefore, we can provide many different ways of initializing a class. In
this case, we just need one constructor.

The following lines create a Circle class and define a constructor within the
class body.

class Circle
{
 private double radius;

 public Circle(double radius)
 {
 Console.WriteLine(String.Format("I'm initializing a new Circle
instance with a radius value of {0}.", radius));
 this.radius = radius;
 }
}

The constructor is a public class method that uses the same name as the class:
Circle. The method receives a single argument: radius. The code within the
method prints a message on the console, indicating that the code is initializing
a new Circle instance with a specific radius value. This way, we will understand
when the code within the constructor is executed. As the constructor has an
argument, it is known as a parameterized constructor.

Then, the following line assigns the radius double value received as an argument
to the private radius double field. We use this.radius to access the private radius
attribute for the instance and radius to reference the argument. In C#, the this
keyword provides access to the instance that has been created and the one we want
to initialize. The line before the constructor declares the private radius double field.
At this time, we won't pay attention to the difference between the private and
public keywords. We will dive deep into the proper usage of these keywords in
Chapter 3, Encapsulation of Data.

The following lines create two instances of the Circle class: circle1 and circle2.
The Windows Console application will display I'm initializing a new Circle
instance with a radius value of, followed by the radius value specified in the
call to the constructor of each instance:

class Chapter01
{
 public static void Main(string[] args)
 {

Chapter 2

[251]

 var circle1 = new Circle(25);
 var circle2 = new Circle(50);
 Console.ReadLine();
 }
}

Each line that creates an instance uses the new keyword, followed by the desired
value for the radius as an argument enclosed in parentheses. We used the var
keyword to let C# automatically assign the Circle type for each of the variables.
After we execute the two lines that create the instances of Circle, we can use
an inspector, such as the Autos Window, the Watch Window, or the Immediate
Window, to check the values for circle1.radius and circle2.radius.

The following line prints "System.Object" as a result in the Immediate Window in
the IDE. This is because the Circle class is a subclass of System.Object:

circle1.GetType().BaseType.ToString()

Classes and Instances

[252]

The following line won't allow the console application to compile and will display
a build error. This is because the compiler cannot find a parameterless constructor
declared in the Circle class. The specific error message is ConsoleApplication
does not contain a constructor that takes 0 arguments. The following
screenshot displays the var circleError = new Circle(); error:

Customizing destructors in C#
We want to know when the instances of the Circle class are removed from memory,
that is, when the objects go out of scope and the garbage-collection mechanism
removes them from memory. Destructors are the special class methods that are
automatically executed when the run time destroys an instance of a given type. Thus,
we can use them to add any code we want to run before the instance is destroyed.

The destructor is a special class method that uses the same name as the class, but
prefixed with a tilde (~): ~Circle. The destructor must be parameterless, and it
cannot return a value.

Chapter 2

[253]

The following lines declare a destructor (a ~Circle method) within the body of the
Circle class:

~Circle()
{
 Console.WriteLine(String.Format("I'm destroying the Circle instance
with a radius value of {0}.", radius));
}

The code within the destructor prints a message on the console indicating that the
runtime is destroying a Circle instance with a specific radius value. This way, we
will understand when the code within the destructor is executed.

If we execute the console application after adding the code for the destructor to the
Circle class, we will see the following lines in the console output. The first two lines
will appear before we press a key. After we press a key, we will see the two lines
indicating that the code within the destructor has been executed. This is because the
two variables circle1 and circle2 have run out of scope and the garbage collector
has destroyed the objects:

I'm initializing a new Circle instance with a radius value of 25.
I'm initializing a new Circle instance with a radius value of 50.

I'm destroying the Circle instance with a radius value of 50.
I'm destroying the Circle instance with a radius value of 25.

Creating instances of classes in C#
We already created instances of the simple Circle class. We just needed to use the
new keyword followed by the class name, specify the required arguments enclosed
in parentheses, and assign the result to a variable.

The following lines declare a public CalculateArea method within the body of the
Circle class:

public double CalculateArea()
{
 return Math.PI * Math.Pow(this.radius, 2);
}

Classes and Instances

[254]

The method doesn't require arguments to be called. It returns the result of the
multiplication of π by the square of the radius field value (this.radius). The
following lines show a new version of the Main method. These lines create two
instances of the Circle class: circle1 and circle2. The lines then display the
results of calling the CalculateArea method for the two objects. The new lines
are highlighted, as follows:

class Chapter01
{
 public static void Main(string[] args)
 {
 var circle1 = new Circle(25f);
 var circle2 = new Circle(50f);
 Console.WriteLine(String.Format("The area for circle #1 is {0}",
circle1.CalculateArea()));
 Console.WriteLine(String.Format("The area for circle #2 is {0}",
circle2.CalculateArea()));
 Console.ReadLine();
 }
}

Now, imagine that we want to have a function that receives the radius value
of a circle and has to return the calculated area. We can take advantage of the
Circle class to code this new function. We just need to create an instance of the
Circle class with the radius received as a parameter and return the result of the
call to the CalculateArea method. Remember that, we don't have to worry about
releasing the resources required by the Circle instance, because the object will go
out of scope after the function returns the result. The following lines show the code
for the new CalculateCircleArea function that isn't part of the Circle class body.
The function is a method of the Chapter 1, Objects Everywhere class body, which also
has the Main method:

class Chapter01
{
 private static double CalculateCircleArea(double radius)
 {
 return new Circle(radius).CalculateArea();
 }

 static void Main(string[] args)
 {
 double radius = 50;
 Console.WriteLine(String.Format("The area for a circle with a
radius of {0} is {1} ", radius, CalculateCircleArea(radius)));
 Console.ReadLine();
 }
}

Chapter 2

[255]

The Windows command line displays the following messages. Thus, we can see that
the instance is destroyed and the code within the destructor is executed:

I'm initializing a new Circle instance with a radius value of 50.

The area for a circle with a radius of 50 is 7853.98163397448

I'm destroying the Circle instance with a radius value of 50.

Understanding that functions are objects
in JavaScript
We will use Chrome Developer Tools (CDT), as the main JavaScript console.
However, you can run the examples in any other browser that provides a
JavaScript console.

Functions are first-class citizens in JavaScript. In fact, functions are objects in
JavaScript. When we type the following lines in a JavaScript console, we create
a new function object. Thus, calculateArea is an object, and its type is function.
Notice the results of writing the following lines in a JavaScript console. The
displayed type for calculateArea is a function, as follows:

function calculateArea(width, height) { return width * height; }
typeof(calculateArea)

The calculateArea function receives two arguments: width and height. It returns the
width value multiplied by the height value. The following line calls the calculateArea
function and saves the returned number in the rectangleArea variable:

var rectangleArea = calculateArea(300, 200);
console.log(rectangleArea);

Functions are special objects in JavaScript that contain code and that you can invoke.
They contain properties and methods. For example, if we type the following line, the
JavaScript console will display the value for the name property of the function object,
that is, the calculateArea function:

console.log(calculateArea.name);

Downloading the example code
You can download the example code files from your account
at http://www.packtpub.com for all the Packt Publishing
books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

Classes and Instances

[256]

Working with constructor functions in
JavaScript
The following lines of code create an object named myObject without any specific
properties or methods. This line checks the type of the variable (myObject) and then
prints the key-value pairs that define the object on the JavaScript console:

var myObject = {};
typeof(myObject);
myObject

The preceding lines created an empty object. Therefore, the result of the last line
shows Object {} on the console. There are no properties or methods defined in the
object. However, if we enter myObject. (myObject followed by a dot) in a JavaScript
console with autocomplete features, we will see many properties and methods listed,
as shown in the following screenshot. The object includes many built-in properties
and methods:

Chapter 2

[257]

The following lines of code create an object named myRectangle with two key-value
pairs enclosed within a pair of curly braces ({}). A colon (:) separates the key from
the value and a comma (,) separates the key-value pairs. The next line checks the
type of the variable (object) and prints the key-value pairs that define the object
on the JavaScript console:

var myRectangle = { width: 300, height: 200 };
typeof(myRectangle);
myRectangle

The preceding lines created an object with two properties: width and height.
The result of the last line shows Object {width: 300, height: 200} on the
console. Thus, the width property has an initial value of 300, and the height
property has an initial value of 200. If we enter myRectangle. (myRectangle
followed by a dot) in a JavaScript console with autocomplete features, we will
see the width and height properties listed with the built-in properties and
methods, as shown in the following screenshot:

So far, we have been creating independent objects. The first example was an empty
object, and the second case was an object with two properties with their initial values
initialized. However, if we want to create another object with the same properties but
different values, we would have to specify the property names again. For example,
the following line creates another object named myRectangle2, with the same two
keys, but different values:

var myRectangle2 = { width: 500, height: 150 };

Classes and Instances

[258]

However, we are repeating code and can have typos when we enter the key names,
that is, the names for the future properties of the instance. Imagine that we had
written the following line instead of the preceding line (notice that the code
contains typos):

var myRectangle2 = { widh: 500, hight: 150 };

The previous line will generate widh and hight properties instead of width and
height. Thus, if we want to retrieve the value from myRectangle2.width, we would
receive undefined as a response. This is because myRectangle2 created the widh
property instead of width.

We want to initialize new rectangle objects with the values of both the width and the
height. However, we don't want a typo to generate problems in our code. Thus, we
need a blueprint that generates and initializes properties with the same names. In
addition, we want to log a message to the console whenever we have a new rectangle
object. In order to do so, we can take advantage of the constructor function. The
following lines declare a Rectangle constructor function in JavaScript:

function Rectangle(width, height) {
 console.log("I'm creating a new Rectangle");
 this.width = width;
 this.height = height;
}

Notice the capitalized name of the function, Rectangle instead of
rectangle. It is a good practice to capitalize constructor functions to
distinguish them from the other functions.

The constructor function receives two arguments: width and height. The code within
the function is able to access the new instance of the current object that has been
created with the this keyword. Thus, you can translate this to the current object.
The code within the function prints a message on the JavaScript console, indicating
that it is creating a new rectangle. The code then uses the received width and height
arguments to initialize properties with the same names. We use this.width and
this.height to create the properties for the instance. We create two properties for
the instance right after its creation. We can think of the constructor function as the
equivalent of a constructor in other object-oriented programming languages.

Chapter 2

[259]

The following lines create two Rectangle objects named rectangle1 and
rectangle2. Notice the usage of the new keyword to call the constructor function,
with the width and height values enclosed in parentheses. The Python console will
display I'm initializing a new Rectangle instance. after we enter each line
in the Python console:

var rectangle1 = new Rectangle(293, 117);
var rectangle2 = new Rectangle(293, 137);

Each line that creates an instance uses the new keyword followed by the constructor
function and the desired values for both the width and the height as arguments
enclosed in parentheses. After we execute the previous lines, we can check the
values for rectangle1.width, rectangle1.height, rectangle2.width, and
rectangle2.height.

Enter the following two lines in the console:

rectangle1;
rectangle2;

The console will display the following two lines:

Rectangle {width: 293, height: 117}

Rectangle {width: 293, height: 137}

It is very clear that we have created two Rectangle objects and not just two Object
objects. We can see that the constructor function name appears before the key-value
pairs.

Classes and Instances

[260]

Enter the following line in the console:

rectangle1 instanceof Rectangle

The console will display true as a result of the evaluation of the previous expression,
because rectangle1 is an instance of Rectangle. This way, we can determine
whether an object is a Rectangle object, that is, an instance created using the
Rectangle constructor function.

Creating instances in JavaScript
We already created instances with the simple Rectangle constructor function.
We just needed to use the new keyword and the constructor function name.
We then need to specify the required arguments enclosed in parentheses
and assign the result to a variable.

The following lines declare a new version of the Rectangle constructor function that
adds a calculateArea function to the blueprint:

function Rectangle(width, height) {
 console.log("I'm creating a new Rectangle");
 this.width = width;
 this.height = height;

 this.calculateArea = function() {
 return this.width * this.height;
 }
}

The new constructor function adds a parameterless calculateArea method to
the instance. The following lines of code create a new Rectangle object named
rectangle3 and then print the results of the call to the calculateArea method
for this object:

var rectangle3 = new Rectangle(143, 187);
rectangle3.calculateArea();

If we enter the following line, the JavaScript console will display the same code
we entered to create the new version of the Rectangle constructor function. Thus,
we might create a new Rectangle object by calling the rectangle3.constructor
function in the next line. Remember that the constructor property is automatically
generated by JavaScript, and this property in is a function:

var rectangle4 = new rectangle3.constructor(300, 200);

Chapter 2

[261]

Now, imagine that we want to have a function that receives the width and height
values of a rectangle and returns the calculated area. We can take advantage of a
Rectangle object to code this new function. We just need to create a Rectangle
object using the Rectangle constructor function with width and height received
as parameters. We then need to return the result of the call to the calculateArea
method. Remember that we don't have to worry about releasing the resources
required by the Rectangle object, because the variable will go out of scope after the
function returns the result. The following lines show the code for the calculateArea
independent function, which isn't a part of the Rectangle constructor function:

function calculateArea(width, height) {
 return new Rectangle(width, height).calculateArea();
}

calculateArea(143, 187);

Summary
In this chapter, you learned about an object's life cycle. You also learned how object
constructors and destructors work. We declared classes in Python and C# and used
constructor functions in JavaScript to generate blueprints for objects. We customized
constructors and destructors, and tested their personalized behavior in action. We
understood different ways of generating instances in the three programming languages.

Now that you have learned to start creating classes and instances, we are ready
to share, protect, and hide data with the data-encapsulation features of Python,
JavaScript, and C#, which is the topic of the next chapter.

[263]

Encapsulation of Data
In this chapter, we will start organizing data in blueprints that generate objects. We
will protect and hide data in each of the three covered programming languages:
Python, JavaScript, and C#. We will:

• Understand the different members of a class
• Learn the difference between mutability and immutability
• Customize methods and fields to protect them against undesired access
• Work with access modifiers, naming conventions, and properties
• Customize getter and setter methods
• Create properties with getters and setters in Python, C#, and JavaScript

Understanding the different members of
a class
So far, we have been working with simple classes and used them to generate
instances in Python and C#. We also defined the functions of a constructor
to generate objects based on prototypes in JavaScript. Now, it's time to dive
deeper to understand the different members of a class.

The following list enumerates all the possible element types that you can include in a
class definition. We already worked with many of these elements:

• Constructor
• Destructor
• Class fields or class attributes
• Class methods
• Nested classes

Encapsulation of Data

[264]

• Instance fields or instance attributes
• Properties with getters and/or setters
• Events

You already learned how constructors and destructors work in Python and C#.
We also worked with constructor functions in JavaScript. So far, we have been
using instance fields, also known as instance attributes, to encapsulate data in our
instances. We can access these fields or attributes without any kind of restriction as
variables within an instance. We also worked with instance methods that we could
invoke without any kind of restrictions.

However, as happens in real-world situations, sometimes restrictions are necessary to
avoid serious problems. Sometimes, we want to restrict access or transform-specific
instance fields in read-only attributes. The different programming languages take
different approaches that allow you to establish restrictions for the different members
of a class. We can combine these restrictions with properties that can define getters
and/or setters.

Properties can define get and/or set methods, also known as
getters and setters. Setters allow you to control how values are set
to protected instance attributes, that is, these methods are used to
change the values of underlying instance attributes. Getters allow
you to control how values are returned. Getters don't change the
values of the underlying attributes.

Sometimes, all the members of a class share the same field or attribute, and we don't
need to have a specific value for each instance. For example, the dog breeds have
some profile values, such as the average size of males (width and height) and the
average size of females (width and height). We can define the following class fields
to store the values that are shared by the averageMaleWidth, averageMaleHeight,
averageFemaleWidth, and averageFemaleHeight instances. All these instances
have access to the same class field and their values. However, it's also possible to
apply restrictions to their access.

Events allow instances to notify other objects when an event takes place. A publisher
instance raises or sends an event, whereas a subscriber instance receives or handles
the event. Instances can subscribe to events to add the necessary code to be executed
when an event is raised, that is, when something of interest occurs. You can think
about events as a mechanism to generate subscriber-publisher relationships between
instances. For example, you can use events to make a dog bark when another dog
arrives near it.

Chapter 3

[265]

It's also possible to define methods that don't require an instance of a specific class
to be called; therefore, you can invoke them by specifying the class name and
the method name. These methods are known as class methods; they operate on a
class as a whole and have access to class fields, but they don't have access to any
instance members (such as instance fields, properties, or methods) because there is
no instance at all. The class methods are useful when you want to include methods
related to a class; you don't want to generate an instance to call them.

Protecting and hiding data
When we design classes, we want to make sure that all the necessary data is
available to the methods that will operate on this data; therefore, we encapsulate the
data. However, we just want the relevant information to be visible to the users of our
classes that will create instances, change values of accessible attributes or properties,
and call the available methods. Therefore, we want to hide or protect some data that
is just needed for internal use. We don't want accidental changes to sensitive data.

For example, when we create a new instance of any dog breed, we can use its name
and birth date as two parameters for a constructor. The constructor initializes the
values of two internal fields: m_name and m_birthDate.

We don't want a user of our dog breed class to be able to change a dog's name after an
instance has been initialized because the name is not supposed to change. Thus, we
define a property called Name with a getter method, but without a setter method. This
way, it's possible to retrieve the dog's name, but we cannot change it because there isn't
a setter method defined for the property. The getter method just returns the value of
the m_name internal field. In addition, we can protect the internal m_name field to avoid
the users of a class to access the m_name field from any instance of the class.

We don't want a user of our dog breed class to be able to change a dog's birth date
after an instance has been initialized because the dog won't be born again on a
different date. In fact, we just want to make the dog's age available to different users.
Thus, we define a property called Age with a getter method, but without a setter
method. This way, it's possible to retrieve the dog's age, but we cannot change it
because there isn't a setter method defined for a property. The getter method returns
the result of calculating the dog's age based on the current date and the value of
the m_birthDate internal field. As in the previous example, we can also protect the
internal m_birthDate field to prevent the users of a class to access a field from any
instance of a class.

Encapsulation of Data

[266]

This way, our class can make two read-only properties, Name and Age, public.
The m_name and m_birthDate internal fields aren't public and cannot be accessed
from the instances of a class. The read-only properties expose the values of all
internal fields.

Working with properties
It's possible to manually add getter and setter methods to emulate how properties
work. For example, we can add a GetName method that just returns the value of
the m_name internal field. Each time we want to retrieve a dog's name, it will be
necessary to call the GetName method for that specific instance.

A dog's favorite toy may change over time. However, we still want to use getter and
setter methods to keep control over the procedure of retrieving and setting the value
of an underlying m_favoriteToy internal field. We always want users to change
the values of a field using the getter and setter methods, just in case we need to add
some code within these methods in the future. For example, we can decide that
whenever a dog's favorite toy changes, it's necessary to update the dog's playfulness
score. If we force the user to use the setter method whenever he/she needs to update
the dog's favorite toy, we can easily add the necessary code that updates the dog's
playfulness score within this setter method.

We can manually add both getter and setter methods to emulate how properties
work for the m_favoriteToy internal field. We have to add a GetFavoriteToy getter
method and a SetFavoriteToy setter method. This way, whenever we want to
retrieve a dog's favorite toy, it will be necessary to call the GetFavoriteToy method
for a specific instance. Whenever we want to specify a new value to a dog's favorite
toy, it will be necessary to call the SetFavoriteToy method with the new favorite
toy as an argument.

The getter and setter methods combined with the access protection of the
m_favoriteToy internal field make it possible to have absolute control over the
way in which the dog's favorite toy is retrieved and set. However, it would be nicer
to define a public property named FavoriteToy. Whenever we assign a value to
the FavoriteToy property, the SetFavoriteToy setter method is called under
the hood with the value to be assigned as an argument. Whenever we specify the
FavoriteToy property in any expression, the GetFavoriteToy getter method is
called under the hood to retrieve the actual value.

Chapter 3

[267]

Each programming language provides a different mechanism
and syntax to define properties and customize the getter and
setter methods. Based on our goals, we can combine properties,
getter and setters methods, the underlying fields, and the
access protection mechanisms.

Understanding the difference between
mutability and immutability
By default, any instance field or attribute works like a variable; therefore, we can
change their values. When we create an instance of a class that defines many public
instance fields, we are creating a mutable object, that is, an object that can change
its state.

For example, let's think about a class named MutableVector3D that represents a
mutable 3D vector with three public instance fields: X, Y, and Z. We can create a new
MutableVector3D instance and initialize the X, Y, and Z attributes. Then, we can call
the Sum method with their delta values for X, Y, and Z as arguments. The delta values
specify the difference between the existing value and the new or desired value. So,
for example, if we specify a positive value of 20 in the deltaX parameter, it means
that we want to add 20 to the X value.

The following lines show pseudocode in a neutral programming language that create
a new MutableVector3D instance called myMutableVector, initialized with values
for the X, Y, and Z fields. Then, the code calls the Sum method with the delta values
for X, Y, and Z as arguments, as shown in the following code:

myMutableVector = new MutableVector3D instance with X = 30, Y = 50 and
Z = 70
myMutableVector.Sum(deltaX: 20, deltaY: 30, deltaZ: 15)

The initial values for the myMutableVector field are 30 for X, 50 for Y, and 70 for Z.
The Sum method changes the values of all the three fields; therefore, the object state
mutates as follows:

• myMutableVector.X mutates from 30 to 30 + 20 = 50
• myMutableVector.Y mutates from 50 to 50 + 30 = 80
• myMutableVector.Z mutates from 70 to 70 + 15 = 85

Encapsulation of Data

[268]

The values for the myMutableVector field after the call to the
Sum method are 50 for X, 80 for Y, and 85 for Z. We can say this
method mutated the object's state; therefore, myMutableVector
is a mutable object: an instance of a mutable class.

Mutability is very important in object-oriented programming. In fact, whenever we
expose fields and/or properties, we will create a class that will generate mutable
instances. However, sometimes a mutable object can become a problem. In certain
situations, we want to avoid objects to change their state. For example, when we
work with a concurrent code, an object that cannot change its state solves many
concurrency problems and avoids potential bugs.

For example, we can create an immutable version of the previous MutableVector3D
class to represent an immutable 3D vector. The new ImmutableVector3D class has
three read-only properties: X, Y, and Z. Thus, there are only three getter methods
without setter methods, and we cannot change the values of the underlying internal
fields: m_X, m_Y, and m_Z. We can create a new ImmutableVector3D instance and
initialize the underlying internal fields: m_X, m_Y, and m_Z. X, Y, and Z attributes.
Then, we can call the Sum method with the delta values for X, Y, and Z as arguments.

The following lines show the pseudocode in a neutral programming language that
create a new ImmutableVector3D instance called myImmutableVector, which is
initialized with values for X, Y, and Z as arguments. Then, the pseudocode calls the
Sum method with the delta values for X, Y, and Z as arguments:

myImmutableVector = new ImmutableVector3D instance with X = 30, Y = 50
and Z = 70
myImmutableSumVector = myImmutableVector.Sum(deltaX: 20, deltaY: 30,
deltaZ: 15)

However, this time the Sum method returns a new instance of the
ImmutableVector3D class with the X, Y, and Z values initialized to the sum of X,
Y, and Z and the delta values for X, Y, and Z. So, myImmutableSumVector is a new
ImmutableVector3D instance initialized with X = 50, Y = 80, and Z = 85. The call to
the Sum method generated a new instance and didn't mutate the existing object.

The immutable version adds an overhead as compared with the mutable version
because it's necessary to create a new instance of a class as a result of calling the
Sum method. The mutable version just changed the values for the attributes and it
wasn't necessary to generate a new instance. Obviously, the immutable version has a
memory and a performance overhead. However, when we work with the concurrent
code, it makes sense to pay for the extra overhead to avoid potential issues caused by
mutable objects.

Chapter 3

[269]

Encapsulating data in Python
First, we will add attributes to a class in Python and then use prefixes to hide specific
members of a class. We will use property getters and setters to control how we
write and retrieve values to and from related attributes. We will use methods to
add behaviors to classes, and we will create the mutable and immutable version of a
3D vector to understand the difference between an object that mutates state and an
object that doesn't.

Adding attributes to a class
The TibetanSpaniel class is a blueprint for dogs that belong to the Tibetan Spaniel
breed. This class should inherit from a Dog superclass, but we will forget about
inheritance and other dog breeds for a while. We will use the TibetanSpaniel class
to understand the difference between class attributes and instance attributes.

As happens with any other dog breed, Tibetan Spaniel dogs have some profile
values. We will define the following class attributes to store the values that are
shared by all the members of the Tibetan Spaniel breed. Note that the valid values
for scores are from 0 to 10; 0 is the lowest skill and 10 the highest.

• family: This is the family to which the dog breed belongs
• area_of_origin: This is the are a of origin of the dog breed
• learning_rate: This is the typical learning rate score for the members of this

dog breed
• obedience: This is the average obedience score for the members of this

dog breed
• problem_solving: This is the average problem solving score for the

members of this dog breed

The following lines create a TibetanSpaniel class and declare the previously
enumerated class attributes and a __init__ method within the body of a class:

class TibetanSpaniel:
 family = "Companion, herding"
 area_of_origin = "Tibet"
 learning_rate = 9
 obedience = 3
 problem_solving = 8

 def __init__(self, name, favorite_toy, watchdog_ability):
 self.name = name
 self.watchdog_ability = watchdog_ability
 self.favorite_toy = favorite_toy

Encapsulation of Data

[270]

The preceding code assigns a value to each class variable after the class header
within the class body and without self. as its prefix. This code assigns a value
outside of any method because there is no need to create any instance to access
the attributes of a class.

It's common practice to place the class attributes at the
top, right after the class header.

The following command prints the value of the previously declared family class
attribute. Note that we didn't create any instance of the TibetanSpaniel class.
Also, we specify an attribute after the class name and a dot:

print(TibetanSpaniel.family)

The following command creates an instance of the TibetanSpaniel class and then
prints the value of the family class attribute. In this case, we will use an instance to
access the class attribute:

brian = TibetanSpaniel("Brian", "Talking Minion", 4)
print(brian.family)

You can assign a new value to any class attribute. For example, the following
command assigns 4 to the obedience class attribute:

TibetanSpaniel.obedience = 4

However, we must be very careful when we want to assign a new value to a class
variable. We must address the class attribute through a class and not through an
instance. If we assign a value to obedience through an instance named brian,
Python will create a new instance attribute called obedience, instead of changing
the value of the class attribute with the same name.

The following commands illustrate the problem. The first command creates a
new instance attribute called obedience and sets its value to 8; therefore, brian.
obedience will be 8. However, if we check the value of the TibetanSpaniel.
obedience or type(brian).obedience class variable, the value continues to be 4:

brian.obedience = 8

print(brian.obedience)
print(type(brian).obedience)
print(TibetanSpaniel.obedience)

Chapter 3

[271]

Hiding data in Python using prefixes
The previously declared TibetanSpaniel class exposes the instance and class
attributes without any kind of restriction. Thus, we can access these attributes
and change their values. Python uses a special naming convention for attributes to
control their accessibility. So far, we have been using attribute names without any
kind of prefix; therefore, we could access attribute names within a class definition
and outside of a class definition. These kinds of attributes are known as public
attributes and are exposed without any restriction.

In Python, we can mark an attribute as protected by prefixing the attribute name
with a leading underscore (_). For example, if we want to convert the name attribute
from a public to a protected attribute, we just need to change its name from name
to _name.

Whenever we mark an attribute as protected, we are telling the users of the class that
they shouldn't use these attributes outside of the class definition. Thus, only the code
written within the class definition and within subclasses should access attributes
marked as protected. We say should, because Python doesn't provide a real shield
for the attributes marked as protected; the language just expects users to be honest
and take into account the naming convention. The following command shows a new
version of the __init__ method for the TibetanSpaniel class that declares three
instance attributes as protected by adding a leading underscore (_) to names:

def __init__(self, name, favorite_toy, watchdog_ability):
 self._name = name
 self._watchdog_ability = watchdog_ability
 self._favorite_toy = favorite_toy

We can mark an attribute as private by prefixing the attribute name with two
leading underscores (__). For example, if we want to convert the name attribute
from a protected to a private attribute, we just need to change its name from
_name to __name.

Whenever we mark an attribute as private, Python doesn't allow users to access the
attribute outside of the class definition. The restriction also applies to subclasses;
therefore, only the code written within a class can access attributes marked as private.

Encapsulation of Data

[272]

Python still provides access to these attributes outside of the class definition with a
different name composed of a leading underscore (_), followed by the class name
and the private attribute name. For example, if we use __name to mark name as
a private attribute, it will be accessible with the TibetanSpaniel__name name.
Obviously, the language expects users to be honest, take into account the naming
convention, and avoid accessing the renamed private attribute. The following
commands show a new version of the __init__ method for the TibetanSpaniel
class that declares three instance attributes as private by adding two leading
underscores (__) to names:

def __init__(self, name, favorite_toy, watchdog_ability):
 self.__name = name
 self.__watchdog_ability = watchdog_ability
 self.__favorite_toy = favorite_toy

The same naming convention applies to instance attributes,
class attributes, instance methods, and class methods.

Using property getters and setters in Python
Python provides a simple mechanism to define properties and specify the
getter and/or setter methods. We want to make the following changes to our
TibetanSpaniel class:

• Encapsulate the name attribute with a read-only name property
• Encapsulate the __favorite_toy attribute with a favorite_toy property
• Encapsulate the __watchdog_ability attribute with a watchdog_ability

property and include the code in the setter method to assign 0 to the
underlying attribute if the value specified is lower than 0 and 10 if the
value specified is higher than 10

• Define a protection_score read-only property with a getter method
that calculates and returns a protection score based on the values of the
__watchdog_ability private instance attribute, the learning_rate public
class attribute, and the problem_solving public class attribute

Chapter 3

[273]

We want a read-only name property; therefore, we just need to define a getter
method that returns the value of the related __name private attribute. We just need
to define a method named name and decorate it with @property. The following
commands within the class body will do the job. Note that @property is included
before the method's header:

@property
def name(self):
 return self.__name

After we add a getter method to define a read-only name property, we can create
an instance of the edited class and try to change the value of the read-only property
name, as shown in the following command:

merlin = TibetanSpaniel("Merlin", "Talking Smurf", 6)
merlin.name = "brian"

The Python console will display the following error because there is no setter method
defined for the name property:

Traceback (most recent call last):

 File "<input>", line 1, in <module>

AttributeError: can't set attribute

We want to encapsulate the __favorite_toy private attribute with the favorite_
toy property; therefore, we have to define both getter and setter methods. The getter
method returns the value of the related __favorite_toy private attribute. The setter
method receives the new favorite toy value as an argument and assigns this value
to the related __favorite_toy private attribute. We have to decorate the setter
method with @favorite_toy.setter, that is, @, followed by the property name and
.setter. The following commands within the class body will do the job:

@property
def favorite_toy(self):
 return self.__favorite_toy

@favorite_toy.setter
def favorite_toy(self, favorite_toy):
 self.__favorite_toy = favorite_toy

Encapsulation of Data

[274]

The setter method for the favorite_toy property is very simple. The watchdog_
ability property requires a setter method with more code to transform values
lower than 0 in 0 and values higher than 10 in 10. The following class body will
do the job:

@property
def watchdog_ability(self):
 return self.__watchdog_ability

@watchdog_ability.setter
def watchdog_ability(self, watchdog_ability):
 if watchdog_ability < 0:
 self.__watchdog_ability = 0
 elif watchdog_ability > 10:
 self.__watchdog_ability = 10
 else:
 self.__watchdog_ability = watchdog_ability

After we add the watchdog_ability property, we will create an instance of
the edited class and try to set different values to this property, as shown in
the following code:

hugo = TibetanSpaniel("Hugo", "Tennis ball", 7)
hugo.watchdog_ability = -3
print(hugo.watchdog_ability)
hugo.watchdog_ability = 30
print(hugo.watchdog_ability)
hugo.watchdog_ability = 8
print(hugo.watchdog_ability)

In the preceding code, after we specified -3 as the desired value for the watchdog_
ability property, we printed its actual value and the result was 0. After we
specified 30, the actual printed value was 10. Finally, after we specified 8, the actual
printed value was 8. The code in the setter method did its job. This is how we could
control the values accepted for the underlying private instance attribute.

We want a read-only protection_score property. However, this time the getter
method must calculate and return a protection score based on a private instance
attribute and two public class attributes. Note that the code accesses the public
class attributes through type(self), followed by the attribute name. It's a safe
way to access class attributes because we can change the class name or work with
inheritance without unexpected issues. The following commands in the class body
will do the job:

@property
def protection_score(self):

Chapter 3

[275]

 return math.floor((self.__watchdog_ability + type(self).learning_
rate + type(self).problem_solving) / 3)

After we add the protection_score property, we will create an instance of the
edited class and print the value of this read-only property:

cole = TibetanSpaniel("Cole", "Soccer ball", 4)
print(cole.protection_score)

Here is the complete code for the TibetanSpaniel class along with properties:

class TibetanSpaniel:
 family = "Companion, herding"
 area_of_origin = "Tibet"
 learning_rate = 9
 obedience = 3
 problem_solving = 8

 def __init__(self, name, favorite_toy, watchdog_ability):
 self.__name = name
 self.__watchdog_ability = watchdog_ability
 self.__favorite_toy = favorite_toy

 @property
 def name(self):
 return self.__name

 @property
 def favorite_toy(self):
 return self.__favorite_toy

 @favorite_toy.setter
 def favorite_toy(self, favorite_toy):
 self.__favorite_toy = favorite_toy

 @property
 def watchdog_ability(self):
 return self.__watchdog_ability

 @watchdog_ability.setter
 def watchdog_ability(self, watchdog_ability):
 if watchdog_ability < 0:
 self.__watchdog_ability = 0
 elif watchdog_ability > 10:
 self.__watchdog_ability = 10
 else:

Encapsulation of Data

[276]

 self.__watchdog_ability = watchdog_ability

 @property
 def protection_score(self):
 return math.floor((self.__watchdog_ability + type(self).
learning_rate + type(self).problem_solving) / 3)

Using methods to add behaviors to classes
in Python
So far, we have added instance methods to classes and used getter and setter methods
combined with decorators to define properties. Now, we want to generate a class to
represent the mutable version of a 3D vector.

We will use properties with simple getter and setter methods for x, y, and z. The
sum public instance method receives the delta values for x, y, and z and mutates an
object, that is, the setter method changes the values of x, y, and z. Here is the initial
code of the MutableVector3D class:

class MutableVector3D:
 def __init__(self, x, y, z):
 self.__x = x
 self.__y = y
 self.__z = z

 def sum(self, delta_x, delta_y, delta_z):
 self.__x += delta_x
 self.__y += delta_y
 self.__z += delta_z

 @property
 def x(self):
 return self.__x

 @x.setter
 def x(self, x):
 self.__x = x

 @property
 def y(self):
 return self.__y

 @y.setter
 def y(self, y):

Chapter 3

[277]

 self.__y = y

 @property
 def z(self):
 return self.__z

 @z.setter
 def z(self, z):
 self.__z = z

It's a very common requirement to generate a 3D vector with all the values initialized
to 0, that is, x = 0, y = 0, and z = 0. A 3D vector with these values is known as
an origin vector. We can add a class method to the MutableVector3D class named
origin_vector to generate a new instance of the class initialized with all the values
initialized to 0. It's necessary to add the @classmethod decorator before the class
method header. Instead of receiving self as the first argument, a class method
receives the current class; the parameter name is usually named cls. The following
code defines the origin_vector class method:

@classmethod
def origin_vector(cls):
 return cls(0, 0, 0)

The preceding method returns a new instance of the current class (cls) with 0 as
the initial value for the three elements. The class method receives cls as the only
argument; therefore, it will be a parameterless method when we call it because
Python includes a class as a parameter under the hood. The following command
calls the origin_vector class method to generate a 3D vector, calls the sum
method for the generated instance, and prints the values for the three elements:

mutableVector3D = MutableVector3D.origin_vector()
mutableVector3D.sum(5, 10, 15)
print(mutableVector3D.x, mutableVector3D.y, mutableVector3D.z)

Now, we want to generate a class to represent the immutable version of a 3D vector.
In this case, we will use read-only properties for x, y, and z. The sum public instance
method receives the delta values for x, y, and z and returns a new instance of the
same class with the values of x, y, and z initialized with the results of the sum. Here
is the code of the ImmutableVector3D class:

class ImmutableVector3D:
 def __init__(self, x, y, z):
 self.__x = x
 self.__y = y

Encapsulation of Data

[278]

 self.__z = z

 def sum(self, delta_x, delta_y, delta_z):
 return type(self)(self.__x + delta_x, self.__y + delta_y,
self.__z + delta_z)

 @property
 def x(self):
 return self.__x

 @property
 def y(self):
 return self.__y

 @property
 def z(self):
 return self.__z

 @classmethod
 def equal_elements_vector(cls, initial_value):
 return cls(initial_value, initial_value, initial_value)

 @classmethod
 def origin_vector(cls):
 return cls.equal_elements_vector(0)

Note that the sum method uses type(self) to generate and return a new instance of
the current class. In this case, the origin_vector class method returns the results of
calling the equal_elements_vector class method with 0 as an argument. Remember
that the cls argument refers to the actual class. The equal_elements_vector
class method receives an initial_value argument for all the elements of the 3D
vector, creates an instance of the actual class, and initializes all the elements with the
received unique value. The origin_vector class method demonstrates how we can
call another class method in a class method.

The following command calls the origin_vector class method to generate a
3D vector, calls the sum method for the generated instance, and prints the values
for the three elements of the new instance returned by the sum method:

vector0 = ImmutableVector3D.origin_vector()
vector1 = vector0.sum(5, 10, 15)
print(vector1.x, vector1.y, vector1.z)

Chapter 3

[279]

As explained previously, we can change the values of the private
attributes; therefore, the ImmutableVector3D class isn't 100 percent
immutable. However, we are all adults and don't expect the users
of a class with read-only properties to change the values of private
attributes hidden under difficult to access names.

Encapsulating data in C#
First, we will add fields to a class in C# and then use access modifiers to hide
and protect a specific member of a class from unauthorized access. We will use
property getters and setters to control how we write and retrieve values to and
from related fields.

We will work with auto-implemented properties to reduce the boilerplate code. We
will use methods to add behaviors to classes and create the mutable and immutable
version of a 3D vector to understand the difference between an object that mutates
state and an object that doesn't.

Adding fields to a class
The SmoothFoxTerrier class is a blueprint for dogs that belong to the Smooth Fox
Terrier breed. This class should inherit from a Dog superclass, but we will forget
about inheritance and other dog breeds for a while and use the SmoothFoxTerrier
class to understand the difference between class fields and instance fields.

We will define the following class attributes to store the values that are shared by all
the members of the Smooth Fox Terrier breed. The valid values for scores are from 0
to 10; 0 is the lowest skill and 10 the highest:

• Family: This is the family to which the dog breed belongs
• AreaOfOrigin: This is the area of origin of the dog breed
• Energy: This is the average energy score for the dog breed
• ColdTolerance: This is the average cold tolerance score for the dog breed
• HeatTolerance: This is the average heat tolerance score for the dog breed

The following code creates the SmoothFoxTerrier class and declares the previously
enumerated fields and a constructor in the body of the class:

class SmoothFoxTerrier
{
 public static string Family = "Terrier";
 public static string AreaOfOrigin = "England";

Encapsulation of Data

[280]

 public static int Energy = 10;
 public static int ColdTolerance = 8;
 public static int HeatTolerance = 8;

 public string Name;
 public int WatchdogAbility;
 public string FavoriteToy;

 public SmoothFoxTerrier(string name, int watchdogAbility, string
favoriteToy)
 {
 this.Name = name;
 this.WatchdogAbility = watchdogAbility;
 this.FavoriteToy = favoriteToy;
 }
}

The preceding code initializes each class field in the same line that declares the field.
The only difference between a class field and an instance field is the inclusion of the
static keyword. This indicates that we want to create a class field.

In C#, class fields are also known as static fields.

The following command prints the value of the previously declared Family static
field. Note that we didn't create any instance of the SmoothFoxTerrier class, and
we specify a field after the class name and a dot:

Debug.WriteLine(SmoothFoxTerrier.Family);

C# doesn't allow you to access a static field from an instance
reference; therefore, we always require to use a class type to
access a static field.

You can assign a new value to any static field declared as a variable. For example, the
following command assigns 8 to the Energy static field:

SmoothFoxTerrier.Energy = 8;

Chapter 3

[281]

We can easily convert a static field to a read-only static field by replacing the static
keyword with the const one. For example, we don't want the users of a class to
change the average energy score. Therefore, we can change the line that declared
the static Energy field with the following command that creates a static constant
or read-only field:

public const int Energy = 10;

Using access modifiers
The previously declared SmoothFoxTerrier class exposes the instance and static
fields without any kind of restriction because we declared them with the public
access modifier. Therefore, we can access these attributes and change their values,
except for the static Energy field that we converted to a static constant.

C# uses type member access modifiers to control which code has access to a specific
type member. So far, we have been declaring all the fields with the public access
modifier. Therefore, we could access them in a class definition and outside of a
class definition.

We can use any of the following access modifiers instead of public to restrict access
to any field:

• protected: C# doesn't allow users to access a field outside of the class
definition. Only the code in a class or its derived classes can access the field.

• private: C# doesn't allow users to access a field outside of the class
definition. Only the code in the class can access the field. Its derived classes
cannot access the field.

• internal: C# doesn't allow users to access a field outside of the assembly in
which a class is included. The code within the same assembly can access the
field. Its derived classes cannot access the field.

• protected internal: C# doesn't allow users to access a field outside of the
assembly in which a class is included unless it's a derived class. The code
within the same assembly can access the field. Its derived classes can access
the field, as happens with protected fields without the addition of the
internal modifier.

The following command shows how we can change the declaration of the public Name
field to a protected field. We replace the public access modifier with protected and
the name from Name to _name. As a naming convention, we will prefix the field name
with a leading underscore (_) symbol for protected or private fields:

protected string _name;

Encapsulation of Data

[282]

Whenever we use the protected access modifier in a field declaration, we restrict
access to this field to the code written within the class definition and within subclasses.
C# generates a real shield for the fields marked as protected; there is no way to access
them outside of the explained boundaries.

The following commands show a new version of the SmoothFoxTerrier class that
declares three instance fields as protected by replacing the public access modifier
with protected. In addition, field names add a leading underscore (_) as a prefix
and use a lowercase first letter:

class SmoothFoxTerrier
{
 public static string Family = "Terrier";
 public static string AreaOfOrigin = "England";
 public static int Energy = 10;
 public static int ColdTolerance = 8;
 public static int HeatTolerance = 8;

 protected string _name;
 protected int _watchdogAbility;
 protected string _favoriteToy;

 public SmoothFoxTerrier(string name, int watchdogAbility, string
favoriteToy)
 {
 this._name = name;
 this._watchdogAbility = watchdogAbility;
 this._favoriteToy = favoriteToy;
 }
}

The following code shows how we can change the declaration of the _name protected
field to a private field. We replace the protected access modifier with private:

private string _name;

Whenever we use the private access modifier in a field declaration, we restrict
access to the field to the code written in the class definition and subclasses. C#
generates a real shield for the fields marked as private; there is no way to access
these outside of the class definition. The restriction also applies to subclasses;
therefore, only the code written in a class can access attributes marked as private.

Chapter 3

[283]

The following commands show a new version of the instance fields declaration
for the SmoothFoxTerrier class that declares the three instance fields as private,
replacing the protected keyword with private:

private string _name;
private int _watchdogAbility;
private string _favoriteToy;

After the previous changes are done, it's necessary to replace the code in the
constructor with the following commands. This helps initialize new field names:

public SmoothFoxTerrier(string name, int watchdogAbility, string
favoriteToy)
{
 this._name = name;
 this._watchdogAbility = watchdogAbility;
 this._favoriteToy = favoriteToy;
}

We can use the same access modifiers for any type of
member, including instance fields, static fields, instance
methods, and static methods.

Using property getters and setters in C#
C# provides a simple yet powerful mechanism to define properties and specify the
getter method and/or the setter method. We want to make the following changes to
our SmoothFoxTerrier class:

• Encapsulate the _name field with a read-only Name property.
• Encapsulate the _favoriteToy attribute with a FavoriteToy property.
• Encapsulate the _watchdogAbility attribute with a WatchdogAbility

property and include the code in the setter method to assign 0 to the
underlying attribute if the value specified is lower than 0 and assign 10 when
the value specified is higher than 10.

• Define a ProtectionScore read-only property with a getter method
that calculates and returns a protection score based on the values of the
_watchdogAbility private instance field, the ColdTolerance public static
field, and the HeatTolerance public static field.

Encapsulation of Data

[284]

We want a read-only Name property; therefore, we just need to define a getter
method that returns the value of the related _name private field. We just need to add
some code in the class body. We declare the Name property as a public field of the
string type, followed by the definition of the getter method enclosed within a pair
of curly braces ({}). This encloses the definition of the getter method and/or the
setter method. In this case, we just need a getter method. The get keyword starts the
definition of the getter method whose contents are enclosed within a pair of curly
braces ({}). The following code in the class body will do the job:

public string Name
{
 get
 {
 return _name;
 }
}

After we add a getter method to define a read-only Name property, we will create
an instance of the edited class and write code that changes the value of the Name
read-only property, as shown in the following command:

var jerry = new SmoothFoxTerrier("Jerry", 7, "Boomerang");
jerry.Name = "Tom";

The code that assigns a value to the read-only Name property won't allow the console
application to compile. It will display a build error because the compiler cannot
find a setter method declared for the Name property. The specific error message
is Property or indexer 'ConsoleApplication1.SmoothFoxTerrier.Name'
cannot be assigned to -- it is read only. The following screenshot shows
the generated error in the IDE:

Chapter 3

[285]

We want to encapsulate the _favoriteToy private field with a FavoriteToy
property; therefore, we have to define the getter method and the setter method.
The getter method returns the value of the related _favoriteToy private field. The
setter method receives the new favorite toy value as an argument named value
and assigns this value to the related __favoriteToy private field. We declare
the FavoriteToy property as a public field of the string type, followed by the
definition of the getter method and the setter method enclosed in a pair of curly
braces ({}). The get keyword starts the definition of the getter method whose
contents are enclosed within a pair of curly braces ({}). The set keyword starts the
definition of the setter method whose contents are enclosed within a pair of curly
braces ({}). The set keyword doesn't declare an argument named value. However,
the code in this method receives the value assigned to the property in an implicit
argument named value. The following code in the class body will do the job:

public string FavoriteToy
{
 get
 {
 return this._favoriteToy;
 }

 set
 {
 this._favoriteToy = value;
 }
}

The setter method for the FavoriteToy property is very simple because it just
assigns the specified value to the related private field. The WatchdogAbility
property requires a setter method with more code to transform values lower
than 0 to 0 and values higher than 10 to 10. The following code in the class
body will do the job:

public string FavoriteToy
{
 get
 {
 return this._favoriteToy;
 }

 setpublic int WatchdogAbility
 {
 get
 {
 return this._watchdogAbility;

Encapsulation of Data

[286]

 }
 set
 {
 if (value < 0) {
 this._watchdogAbility = 0;
 } else if (value > 10) {
 this._watchdogAbility = 10;
 } else {
 this._watchdogAbility = value;
 }
 }
 }

 {
 this._favoriteToy = value;
 }
}

After we add the WatchdogAbility property, we will create an instance of the edited
class and try to set different values to this property, as shown in the following code:

var tom = new SmoothFoxTerrier("Tom", 8, "Boomerang");
tom.WatchdogAbility = -9;
Console.WriteLine(tom.WatchdogAbility);
tom.WatchdogAbility = 52;
Console.WriteLine(tom.WatchdogAbility);
tom.WatchdogAbility = 9;
Console.WriteLine(tom.WatchdogAbility);

After we specified -9 as the desired value for the WatchdogAbility property, we
printed its actual value to the console and the result was 0. After we specified 52,
the actual printed value was 10. Finally, after we specified 9, the actual printed
value was 9. The code in the setter method did its job; we can control all the values
accepted for the underlying private instance field.

We want a read-only ProtectionScore property. However, this time, the getter
method must calculate and return a protection score based on a private instance
field and two public static fields. Note that the code accesses all the public class
fields through SmoothFoxTerrier, followed by the static field name. The following
code in the class body will do the job:

public int ProtectionScore
{
 get
 {

Chapter 3

[287]

 return (int)Math.Floor ((this._watchdogAbility + SmoothFoxTerrier.
ColdTolerance + SmoothFoxTerrier.HeatTolerance) / 3d);
 }
}

After we add the ProtectionScore property, we will create an instance of the edited
class and print the value of this read-only property to the console:

var laura = new SmoothFoxTerrier("Laura", "Old sneakers", 9);
console.WriteLine(laura.ProtectionScore);

The following code shows the complete code for the SmoothFoxTerrier class with
its properties:

class SmoothFoxTerrier
{
 public static string Family = "Terrier";
 public static string AreaOfOrigin = "England";
 public const int Energy = 10;
 public static int ColdTolerance = 8;
 public static int HeatTolerance = 8;

 private string _name;
 private int _watchdogAbility;
 private string _favoriteToy;

 public string Name
 {
 get
 {
 return this._name;
 }
 }

 public string FavoriteToy
 {
 get
 {
 return this._favoriteToy;
 }

 set
 {
 this._favoriteToy = value;
 }

Encapsulation of Data

[288]

 }

 public int WatchdogAbility
 {
 get
 {
 return this._watchdogAbility;
 }
 set
 {
 if (value < 0) {
 this._watchdogAbility = 0;
 } else if (value > 10) {
 this._watchdogAbility = 10;
 } else {
 this._watchdogAbility = value;
 }
 }
 }

 public int ProtectionScore
 {
 get
 {
 return Math.Floor ((this._watchdogAbility + SmoothFoxTerrier.
ColdTolerance + SmoothFoxTerrier.HeatTolerance) / 3);
 }
 }

 public SmoothFoxTerrier(string name, int watchdogAbility, string
favoriteToy)
 {
 this._name = name;
 this._watchdogAbility = watchdogAbility;
 this._favoriteToy = favoriteToy;
 }
}

Chapter 3

[289]

Working with auto-implemented properties
When we don't require any specific logic in the getter method or the setter method,
we can take advantage of a simplified mechanism to declare properties called
auto-implemented properties. For example, the following code use auto-implemented
properties to simplify the declaration of the FavoriteToy property:

public string FavoriteToy { get; set; }

The previous code declares the FavoriteToy property with empty getter and setter
methods. The compiler creates a private and anonymous field related to the defined
property that only the property's automatically generated getters and setters access.
If you need to customize either the getter method or the setter method in the future,
you can replace the usage of auto-implemented properties with specific getter and
setter methods and add your own private field to support a property if necessary.

If we use the previously defined FavoriteToy property with auto-implemented
properties, we have to remove the _favoriteToy private field. In addition, we have
to assign the favoriteToy private field received as an argument in the constructor to
the FavoriteToy property instead of working with the private field, as shown in the
following code:

this.FavoriteToy = favoriteToy;

We can also use auto-implemented properties when we want to create a read-only
property that doesn't require any specific logic in the getter method. For example, the
following code uses auto-implemented properties to simplify the declaration of the
Name property:

public string Name { get; private set; }

The preceding code declares the setter method, also known as the set accessor, as
private. This way, Name is a read-only property. As in the previous example, if we
use the previously defined Name property with auto-implemented properties, we
have to remove the _name private field. In addition, we have to assign the name
property received as an argument in the constructor to the Name property instead
of working with the private field, as shown in the following line of code:

this.Name = name;

The setter method is private; therefore, we can set the value for Name in the class.
However, we cannot access the setter method outside of this class; therefore, it
becomes a read-only property.

Encapsulation of Data

[290]

Using methods to add behaviors to classes
in C#
So far, we have added instance methods to a class in C#, and used getter and setter
methods to define properties. Now, we want to generate a class to represent the
mutable version of a 3D vector in C#.

We will use auto-implemented properties for X, Y, and Z. The public Sum instance
method receives the delta values for X, Y, and Z (deltaX, deltaY, and deltaZ)
and mutates the object, that is, the method changes the values of X, Y, and Z. The
following shows the initial code of the MutableVector3D class:

class MutableVector3D
{
 public double X { get; set; }
 public double Y { get; set; }
 public double Z { get; set; }

 public void Sum(double deltaX, double deltaY, double deltaZ)
 {
 this.X += deltaX;
 this.Y += deltaY;
 this.Z += deltaZ;
 }

 public MutableVector3D(double x, double y, double z)
 {
 this.X = x;
 this.Y = y;
 this.Z = z;
 }
}

It's a very common requirement to generate a 3D vector with all the values initialized
to 0, that is, X = 0, Y = 0, and Z = 0. A 3D vector with these values is known as
an origin vector. We can add a class method to the MutableVector3D class named
OriginVector to generate a new instance of the class initialized with all the values
initialized to 0. Class methods are also known as static methods in C#. It's necessary
to add the static keyword after the public access modifier before the class method
name. The following commands define the OriginVector static method:

public static MutableVector3D OriginVector()
{
 return new MutableVector3D(0, 0, 0);
}

Chapter 3

[291]

The preceding method returns a new instance of the MutableVector3D class with 0 as
the initial value for all the three elements. The following code calls the OriginVector
static method to generate a 3D vector, calls the Sum method for the generated instance,
and prints the values for all the three elements on the console output:

var mutableVector3D = MutableVector3D.OriginVector();
mutableVector3D.Sum(5, 10, 15);
Console.WriteLine(mutableVector3D.X, mutableVector3D.Y,
mutableVector3D.Z)

Now, we want to generate a class to represent the immutable version of a 3D vector. In
this case, we will use read-only properties for X, Y, and Z. We will use auto-generated
properties with private set. The Sum public instance method receives the delta
values for X, Y, and Z (deltaX, deltaY, and deltaZ) and returns a new instance of the
same class with the values of X, Y, and Z initialized with the results of the sum. The
code for the ImmutableVector3D class is as follows:

class ImmutableVector3D
{
 public double X { get; private set; }
 public double Y { get; private set; }
 public double Z { get; private set; }

 public ImmutableVector3D Sum(double deltaX, double deltaY, double
deltaZ)
 {
 return new ImmutableVector3D (
 this.X + deltaX,
 this.Y + deltaY,
 this.Z + deltaZ);
 }

 public ImmutableVector3D(double x, double y, double z)
 {
 this.X = x;
 this.Y = y;
 this.Z = z;
 }

 public static ImmutableVector3D EqualElementsVector(double
initialValue)
 {
 return new ImmutableVector3D(initialValue, initialValue,
initialValue);

Encapsulation of Data

[292]

 }

 public static ImmutableVector3D OriginVector()
 {
 return ImmutableVector3D.EqualElementsVector(0);
 }
}

In the new class, the Sum method returns a new instance of the ImmutableVector3D
class, that is, the current class. In this case, the OriginVector static method returns
the results of calling the EqualElementsVector static method with 0 as an argument.
The EqualElementsVector class method receives an initialValue argument for all
the elements of the 3D vector, creates an instance of the actual class, and initializes
all the elements with the received unique value. The OriginVector static method
demonstrates how we can call another static method in a static method.

The following code calls the OriginVector static method to generate a 3D vector,
calls the Sum method for the generated instance, and prints all the values for the three
elements of the new instance returned by the Sum method on the console output:

var vector0 = ImmutableVector3D.OriginVector();
var vector1 = vector0.Sum(5, 10, 15);
Console.WriteLine(vector1.X, vector1.Y, vector1.Z);

C# doesn't allow users of the ImmutableVector3D class to change
the values of X, Y, and Z properties. The code doesn't compile if you
try to assign a new value to any of these properties. Thus, we can say
that the ImmutableVector3D class is 100 percent immutable.

Encapsulating data in JavaScript
First, we will add properties to a constructor function in JavaScript. Then, we will
use local variables to hide and protect specific members of a class from unauthorized
access. We will use property getters and setters to control how we write and retrieve
values to and from related local variables.

We will use methods to add behaviors to objects. Also, we will create the mutable
and immutable version of a 3D vector to understand the difference between an object
that mutates state and an object that doesn't.

Chapter 3

[293]

Adding properties to a constructor function
As it so happens with dogs, cats also have breeds. The ScottishFold constructor
function provides a blueprint for cats that belong to the Scottish Fold breed. We
will use the ScottishFold constructor function to understand how we can take
advantage of the fact that a constructor function is an object in JavaScript.

As it so happens with any other cat breeds, Scottish Fold cats have some profile
values. We will add the following properties to the constructor function to store the
values that are shared by all the members of the Scottish Fold breed. Note that the
valid values for scores range from 0 to 5; 0 is the lowest skill and 5 the highest:

• generalHealth: This is a score based on the genetic illnesses that are
common to the cat breed

• affectionateWithFamily: This is a score based on the probability for the cat
to shower the whole family with affection

• intelligence: This is a score based on how smart the cats that belong to this
breed are

• kidFriendly: This is a score based on how tolerant of children the cats that
belong to this breed are

• petFriendly: This is a score based on the likeliness of the cats that belong to
this breed are to accept other pets at home

The following code defines a ScottishFold constructor function and then adds the
previously enumerated attributes as properties of the constructor function:

function ScottishFold(name, favoriteToy, energy) {
 this.name = name;
 this.favoriteToy = favoriteToy;
 this.energy = energy;
}

ScottishFold.generalHealth = 3;
ScottishFold.affectionateWithFamily = 5;
ScottishFold.intelligence = 4;
ScottishFold.kidFriendly = 5;
ScottishFold.petFriendly = 4;

Encapsulation of Data

[294]

The preceding code assigns a value to properties of the ScottishFold constructor
function after the definition of the constructor function. The following line of code
prints the value of the previously declared generalHealth property. Note that we
didn't use the ScottishFold constructor function to create any instance; we specify
an attribute after the constructor function name and a dot:

console.log(ScottishFold.generalHealth)

You can assign a new value to any constructor function property. For example, the
following line of code assigns the value 4 to the generalHealth property:

ScottishFold.generalHealth = 4;

The following lines of code creates an instance with the ScottishFold constructor
function and then prints the value of the generalHealth property. In this case, we
can use an instance to access a property through the constructor function stored in
the constructor property:

Var lucifer = new ScottishFold("Lucifer", "Tennis ball", 4);
console.log(lucifer.constructor.generalHealth);

Hiding data in JavaScript with local variables
The previously declared ScottishFold constructor function generates instances
that expose the instance and constructor function properties without any kind of
restriction. Thus, we can access these properties and change their values.

JavaScript doesn't provide access modifiers. However, we can declare local variables
in constructor functions to protect them from being accessed outside of the object
blueprint definition. Only functions that are declared in the constructor function
will be able to access local variables. The following code shows a new version of the
ScottishFold constructor function that declares three local variables using the var
keyword instead of the this. prefix. In addition, the following code adds a leading
underscore (_) to the names:

function ScottishFold(name, favoriteToy, energy) {
 var _name = name;
 var _favoriteToy = favoriteToy;
 var _energy = energy;
}

Chapter 3

[295]

The constructor function saves the values of all the three arguments in local
variables. Thus, if we create a ScottishFold instance, we won't be able to access
these variables. The following code tries to retrieve the value of all the local variables
from a ScottishFold instance. The three lines that use all the variable names display
undefined because there is no property with specified names. Only functions that are
defined in the constructor function can access all the local variables:

Var lucifer = new ScottishFold("Lucifer", "Tennis ball", 4);
console.log(lucifer._name);
console.log(lucifer._favoriteToy);
console.log(lucifer._energy);

Using property getters and setters in
JavaScript
JavaScript provides a mechanism to specify the getter method and/or setter method
for properties. We want to make the following changes to our ScottishFold class:

• Encapsulate the _name local variable with a read-only name property
• Encapsulate the _favoriteToy local variable with a favoriteToy property
• Encapsulate the _energy local variable with an energy property and include

a code in the setter method to assign 0 to the underlying attribute if the value
specified is lower than 0, and assign 5 if the value specified is higher than 5

We want a read-only name property; therefore, we just need to define a getter
method that returns the value of the related _name local variable. We just need to add
some code in the class function declaration:

function ScottishFold(name, favoriteToy, energy) {
 var _name = name;
 var _favoriteToy = favoriteToy;
 var _energy = energy;

Object.defineProperty(this, 'name', { get: function(){ return _name; }
});
}

The code calls the Object.defineProperty function with the following arguments:

• this: This is the instance.
• 'name': This is the desired name for the property as a string.
• This is an object with the getter function code specified in the get property.

Note that the getter function can access the _name variable defined in the
constructor function.

Encapsulation of Data

[296]

After we add a getter method to define a read-only name property, we can create
an instance of the edited constructor function and write code that reads, tries to
change, and reads again the value of the name read-only property, as shown in
the following code:

var lucifer = new ScottishFold("Lucifer", "Tennis ball", 4);
console.log(lucifer.name);
lucifer.name = "Jerry";
console.log(lucifer.name);

After we change the value of the name property, we can print the value of this
property on the JavaScript console. It's still the same value that we specified
when calling the Lucifer constructor function. There is no setter method
defined; therefore, name is a read-only property.

We want to encapsulate the _favoriteToy local variable with a favoriteToy
property; therefore, we have to define getter and setter methods. The getter method
returns the value of the related _favoriteToy local variable. The setter method
receives the new favorite toy value as a val argument named and assigns this value
to the related _favoriteToy local variable. The following code in the class function
declaration will do the job:

function ScottishFold(name, favoriteToy, energy) {
 var _name = name;
 var _favoriteToy = favoriteToy;
 var _energy = energy;

 Object.defineProperty(this, 'name', { get: function(){ return _name;
} });
 Object.defineProperty(this, 'favoriteToy', { get: function(){
return _favoriteToy; }, set: function(val){ _favoriteToy = val; } });
}

The setter method for the favoriteToy property is very simple because it just
assigns the specified value to the related local variable. The energy property requires
a setter method with more code to transform values lower than 0 to 0 and values
higher than 5 to 5. The following code in the constructor function will do the job:

function ScottishFold(name, favoriteToy, energy) {
 var _name = name;
 var _favoriteToy = favoriteToy;
 var _energy = energy;

 Object.defineProperty(this, 'name', { get: function(){ return _name;
} });

Chapter 3

[297]

 Object.defineProperty(this, 'favoriteToy', { get: function(){ return
_favoriteToy; }, set: function(val){ _favoriteToy = val; } });
 Object.defineProperty(
 this,
 'energy', {
 get: function(){ return _energy; },
 set: function(val){
 if (val < 0) {
 _energy = 0;
 } else if (val > 5) {
 _energy = 5;
 } else {
 _energy = val;
 }
 }
 });
}

After we add the energy property, we can create an instance of the edited class and
try to set different values to this property, as shown in the following code:

var garfield = new ScottishFold("Garfield", "Pillow", 1);
garfield.energy = -7;
console.log(Garfield.energy);
garfield.energy = 35;
console.log(Garfield.energy);
garfield.energy = 3;
console.log(Garfield.energy);

In the preceding code, after we specified -7 as the desired value for the energy
property, we printed its actual value to the console. The result was 0. After we
specified 35, the actual printed value was 5. Finally, after we specified 3, the actual
printed value was 3. The code in the setter method did its job; we could control the
values accepted for the underlying local variable.

Using methods to add behaviors to
constructor functions
So far, we have added methods to a constructor function that produced instance
methods in a generated object. In addition, we used getter and setter methods
combined with local variables to define properties. Now, we want to generate a
constructor function to represent the mutable version of a 3D vector.

Encapsulation of Data

[298]

We will use properties with simple getter and setter methods for x, y, and z. The
sum public instance method receives the delta values for x, y, and z and mutates
an object, that is, the method changes the values of x, y, and z. The following code
shows the initial code of the MutableVector3D constructor function:

function MutableVector3D(x, y, z) {
 var _x = x;
 var _y = y;
 var _z = z;

 Object.defineProperty(this, 'x', {
 get: function(){ return _x; },
 set: function(val){ _x = val; }
 });

 Object.defineProperty(this, 'y', {
 get: function(){ return _y; },
 set: function(val){ _y = val; }
 });

 Object.defineProperty(this, 'z', {
 get: function(){ return _z; },
 set: function(val){ _z = val; }
 });

 this.sum = function(deltaX, deltaY, deltaZ) {
 _x += deltaX;
 _y += deltaY;
 _z += deltaZ;
 }
}

It's a very common requirement to generate a 3D vector with all the values initialized
to 0, that is, x = 0, y = 0, and, z = 0. A 3D vector with these values is known as an
origin vector. We can add a function to the MutableVector3D constructor function
named originVector to generate a new instance of a class with all the values
initialized to 0. The following code defines the originVector function:

MutableVector3D.originVector = function() {
 return new MutableVector3D(0, 0, 0);
};

Chapter 3

[299]

The method returns a new instance built in the MutableVector3D constructor
function with 0 as the initial value for all the three elements. The following code
calls the originVector function to generate a 3D vector, calls the sum method
for the generated instance, and prints all the values for all the three elements:

var mutableVector3D = MutableVector3D.originVector();
mutableVector3D.sum(5, 10, 15);
console.log(mutableVector3D.x, mutableVector3D.y, mutableVector3D.z);

Now, we want to generate a constructor function to represent the immutable
version of a 3D vector. In this case, we will use read-only properties for x, y, and z.
In this case, we will use the ImmutableVector3D.prototype property to define the
sum method. The method receives the values of delta for x, y, and z, and returns a
new instance with the values of x, y, and z initialized with the results of the sum.
The following code shows the ImmutableVector3D constructor function and the
additional code that defines all the other methods:

function ImmutableVector3D(x, y, z) {
 var _x = x;
 var _y = y;
 var _z = z;

 Object.defineProperty(this, 'x', {
 get: function(){ return _x; }
 });

 Object.defineProperty(this, 'y', {
 get: function(){ return _y; }
 });

 Object.defineProperty(this, 'z', {
 get: function(){ return _z; }
 });
}

ImmutableVector3D.prototype.sum = function(deltaX, deltaY, deltaZ) {
 return new ImmutableVector3D(
 this.x + deltaX,
 this.y + deltaY,
 this.z + deltaZ);
};

ImmutableVector3D.equalElementsVector = function(initialValue) {
 return new ImmutableVector3D(initialValue, initialValue,
initialValue);

Encapsulation of Data

[300]

};

ImmutableVector3D.originVector = function() {
 return ImmutableVector3D.equalElementsVector(0);
};

Again, note that the preceding code defines the sum method in the
ImmutableVector3D.prototype method. This method will be available to all
the instances generated in the ImmutableVector3D constructor function. The sum
method generates and returns a new instance of ImmutableVector3D. In this case,
the originVector method returns the results of calling the equalElementsVector
method with 0 as an argument. The equalElementsVector method receives an
initialValue argument for all the elements of the 3D vector, creates an instance of
the actual class, and initializes all the elements with the received unique value. The
originVector method demonstrates how we can call another function defined in
the constructor function.

The following code calls the originVector method to generate a 3D vector, calls
the sum method for the generated instance, and prints the values for all the three
elements of the new instance returned by the sum method:

var vector0 = ImmutableVector3D.originVector();
var vector1 = vector0.sum(5, 10, 15);
console.log(vector1.x, vector1.y, vector1.z);

In this case, we took advantage of the prototype property.
We will dive deeper into the advantages of how to work with
the prototype property through out the course of this book.

Summary
In this chapter, we looked at the different members of a class or a blueprint. We
worked with naming conventions in Python to hide attributes, took advantage of
access modifiers in C#, and worked with local variables in a constructor function
in JavaScript. We declared properties in different programming languages and
customized their getter and setter methods.

We worked with dogs and cats and defined the shared properties of their breeds
in classes and constructor functions. We also worked with mutable and immutable
versions of a 3D vector.

Now that you have learned how to encapsulate data, we are ready to work with
inheritance and specialization in Python, JavaScript, and C#, which are the topics
of the next chapter.

[301]

Inheritance and
Specialization

In this chapter, we will create a hierarchy of blueprints that generate objects. We will
take advantage of inheritance and many related features to specialize behavior in
each of the three covered programming languages. We will:

• Use classes to abstract behavior
• Understand the concept of simple inheritance and design a hierarchy

of classes
• Learn the difference between overloading and overriding methods
• Understand the concept of overloading operators
• Understand polymorphism
• Take advantage of the prototype chain to use inheritance in JavaScript

Using classes to abstract behavior
So far, we have been creating classes on Python and C# to generate blueprints
for real-life objects. In JavaScript we have been using constructor functions to
achieve the same goal. Now it is time to take advantage of more advanced features
of object-oriented programming and start designing a hierarchy of classes instead
of working with isolated classes. Based on our requirements we will first design all
the classes that we need. Then we will use all the features available in each of the
covered programming languages to code the design.

Inheritance and Specialization

[302]

We worked with dogs, cats, and some of their breeds. Now let's imagine that we
have to work with a more complex solution that requires us to work with hundreds
of breeds. In addition, we already know that our application will start working with
domestic cats and dogs, but in the future it will be necessary to work with other
members of the cat family, other mammals, other domestic mammals, reptiles, and
birds. Thus, our object-oriented design needs to be ready for expansion purposes
if required. However, wait! The animal kingdom is extremely complex and we
don't want to model a complete representation of the animal kingdom and its
classification; we just want to create all the necessary classes to have a flexible
model that can be easily expanded.

So, this time a few classes won't be enough to represent the breeds of cats and
dogs. The following list enumerates the classes that we will create along with
their descriptions:

• Animal: This is an abstract class that generalizes all the members of the
animal kingdom. Dogs, cats, reptiles, and birds have one thing in common:
they are animals. Thus it makes sense to create an abstract class that will
be the baseline for all the different classes of animals that we will have to
represent in our object-oriented design.

• Mammal: This is a class that generalizes mammals. They are different from
reptiles, amphibians, birds, and insects. We already know that we will also
have to model reptiles and birds; therefore, we will create a Mammal class at
this level.

• DomesticMammal: The tiger (Panthera tigris) is the largest and heaviest
living species of the cat family. A tiger is a cat but it is completely different
from a domestic cat. Our initial requirements tell us that we will work with
domestic and wild animals; therefore, we will create a class that generalizes
domestic mammals. In the future, we will have WildMammal that will
generalize wild mammals.

• Dog: We could go on specializing the DomesticMammal class with
additional subclasses until we reach a Dog class. For example, we can create
a CanidCarnivorianDomesticMammal subclass and then make the Dog class
inherit from it. However, the kind of application we have to develop doesn't
require any intermediary classes between DomesticMammal and Dog. At this
level, we will also have a Cat class. The Dog class generalizes the properties
and methods required for a dog in our application. Subclasses of the Dog
class will represent the different families of the dog breeds. For example, one
of the main differences between a dog and a cat in our application domain is
that a dog barks and a cat meows.

Chapter 4

[303]

• TerrierDog: Each dog breed belongs to a family. We will work with a large
number of dog breeds, and some profile values determined by their family
are very important for our application. Thus we will create a subclass of
the Dog class for each family. In this case, the sample TerrierDog class
represents the Terrier family.

• SmoothFoxTerrier: Finally, a subclass of the dog breed family class will
represent a specific dog breed that belongs to a family. Its breed determines
the dog's look and behavior. A dog that belongs to the Smooth Fox Terrier
breed will look and behave completely different than a dog that belongs to
the Tibetan Spaniel breed. Thus we will create instances of all the classes
at this level to give life to each dog in our application. In this case, the
SmoothFoxTerrier class models an animal, a mammal, a domestic mammal,
a dog, and a terrier family dog, specifically, a dog that belongs to the Smooth
Fox Terrier breed.

Each class listed in the preceding list represents a specialization of the previous class,
that is, its superclass, parent class, or superset, as shown in the following table:

Superclass, parent class, or superset Subclass, child class, or subset
Animal Mammal

Mammal DomesticMammal

DomesticMammal Dog

Dog TerrierDog

TerrierDog SmoothFoxTerrier

Our application requires many members of the Terrier family; therefore, the
SmoothFoxTerrier class isn't going to be the only subclass of TerrierDog. In the
future, we will have the following three additional subclasses of TerrierDog:

• AiredaleTerrier: This subclass represents the Airedale Terrier breed
• BullTerrier: This subclass represents the Bull Terrier breed
• CairnTerrier: This subclass represents the Cairn Terrier breed

Inheritance and Specialization

[304]

Understanding inheritance
When a class inherits from another class, it inherits all the elements that compose the
parent class, also known as superclass. The class that inherits all the elements of the
parent class is known as a subclass. For example, the Mammal subclass inherits all the
properties, instance fields or attributes, and class fields or attributes defined in the
Animal superclass.

You don't have to forget what you learned in Chapter 3, Encapsulation
of Data, about access modifiers and naming conventions that restrict
access to certain members. We must take them into account to
determine the inherited members that we will be able to access in
subclasses. Some access modifiers and naming conventions applied
to members don't allow subclasses to access these members defined
in superclasses.

The Animal abstract class is the baseline for our class hierarchy. We require each
animal to specify its age; therefore, we will have to specify the age of the animal
when we create an instance of the Animal class. This class will define an age
property and display a message whenever an instance of an animal has been created.
The Animal class defines two attributes that specify the number of legs and pair of
eyes. Both these attributes will be initialized to 0, but its subclasses will have to set a
value for these attributes. The Animal class defines two instance methods:

• Print legs and eyes: This method prints the number of legs and eyes of
an animal

• Print age: This method prints an animal's age

In addition, we want to be able to compare the age of the different Animal instances
using the following comparison operators when the programming language allows
you to do it. The following are the comparison operators:

• Less than (<)
• Less than or equal to (<=)
• Greater than (>)
• Greater than or equal to (>=)

If your programming language doesn't allow you to use the previously enumerated
operators to compare the age of the Animal instances, we can define instance
methods with their appropriate names in the Animal class to achieve the same goal.

Chapter 4

[305]

Wait! We said that we had to print a message whenever we created an Animal
instance. However, we want animal to be an abstract class; therefore, we aren't
supposed to create instances of this class. Thus, it seems that it is completely
impossible to achieve our goal. When we inherit from a class, we also inherit its
constructor; therefore, we can call the inherited constructor to run the initialization
code for the base class. This way, it is possible to know when an instance of Animal is
being created even when it is an abstract class. In fact, all the instances of subclasses
of the Animal class are going to be instances of Animal too.

The Mammal abstract class inherits from the Animal superclass and specifies 1 as the
value for a pair of eyes. The Animal superclass defines this class attribute with 0 as
the initial value, but the Mammal subclass overwrites it with 1. So far, all the mammals
discovered on earth have just one pair of eyes. If scientists discover evidence of a
mammal with more than one pair of eyes, we don't need this weird animal in our
application; therefore, we won't worry about it.

We require each mammal to specify its age and whether it is pregnant when you
create an instance of a mammal. The Mammal class inherits the age property from
the Animal superclass; therefore, it is only necessary to add a property that allows
you to access the is pregnant attribute. Note that we don't specify the gender at
any time in order to keep things simple. If we add a gender attribute, we will need
a validation to avoid a male gender being pregnant. Right now, our focus is on
inheritance. The Mammal class displays a message whenever a mammal is created.

Each class inherits from one class; therefore, each new class
that we will define has just one superclass. In this case, we
will always work with single inheritance.

The DomesticMammal abstract class inherits from the Mammal class. We require each
DomesticMammal abstract class to specify its name and favorite toy. Any domestic
mammal has a name; it always picks a favorite toy. Sometimes, the favorite toy is
not exactly the toy we would like them to pick (our shoes or sneakers), but let's keep
the focus on our classes. It is necessary to add a read-only property that allows you
to access the name attribute and the read/write property for the favorite toy. You
cannot change the name of the domestic mammal, but you can force the mammal to
change its favorite toy. The DomesticMammal class displays a message whenever a
domestic mammal is created.

The talk instance method will display a message. This message indicates that the
domestic mammal name is concatenated with the word talk. Each subclass must
make the specific domestic mammal talk in a different way. A parrot can really talk
but we will consider a dog's bark and a cat's meow as if they were talking.

Inheritance and Specialization

[306]

The Dog class inherits from DomesticMammal and specifies 4 as the value for the
number of legs. The Animal class, that is the Mammal superclass, defined this class
attribute with 0 as its value, but Dog overwrites this inherited attribute with 4. The
Dog class displays a message whenever a dog instance is created.

We want dogs to be able to bark; therefore, we need a bark method. The bark
method has to allow a dog to perform the following things:

• Bark happily just once
• Bark happily a specific number of times
• Bark happily to another domestic mammal with a name just once
• Bark happily to another domestic mammal with a name a specific number

of times
• Bark angrily just once
• Bark angrily a specific number of times
• Bark angrily to another domestic mammal with a name just once
• Bark angrily to another domestic mammal with a name a specific number

of times

We can have just one bark method or many bark methods. There are different
mechanisms to solve the challenges of the different ways in which a dog must be
able to bark. Not all the programming languages support the same mechanisms
introduced in the classic object-oriented programming approach.

When we call the talk method for any dog, we want it to bark happily once. We
don't want to display the message defined in the talk method introduced in the
DomesticMammal class.

We want to know the breed and the breed family to which a dog belongs. Thus,
we will define the dog's breed and breed family class attributes. Each subclass
of the Dog superclass must specify the appropriate value for these class attributes.
In addition, the two class methods will allow you to print the dog's breed and the
dog's breed family.

The TerrierDog class inherits from Dog and specifies Terrier as the value for
the breed family. This class displays a message whenever a TerrierDog class
has been created.

Finally, the SmoothFoxTerrier class inherits from TerrierDog and specifies Smooth
Fox Terrier as the value for the dog's breed. The SmoothFoxTerrier class displays
a message whenever a SmoothFoxTerrier class has been created.

Chapter 4

[307]

Understanding method overloading and
overriding
Some programming languages allow you to define a method with the same name
multiple times by passing different arguments. This feature is known as method
overloading. In some cases, we can overload a constructor. However, it is very
important to mention that a similar effect can be achieved with optional parameters
or default values for specific arguments.

For example, we can take advantage of method overloading in a programming
language that supports it to define multiple instances of the bark method. However,
it is very important to avoid code duplication when we overload methods.

Sometimes, we define a method in a class and know that a subclass may need to
provide a different instance of this method. When a subclass provides a different
implementation of a method defined in a superclass with the same name, same
arguments, and same return type, we say that we have overridden a method. When
we override a method, the implementation in the subclass overwrites the code given
in the superclass.

It is also possible to override properties and other members of a class in subclasses.

Understanding operator overloading
Some programming languages, such as C# and Python, allow you to redefine specific
operators to work in a different way based on the classes in which we apply them.
For example, we can use comparison operators—such as less than (<) and greater
than (>)—to return the results of comparing the age value when they are applied to
instances of Dog.

The redefinition of operators to work in a specific way
when applied to instances of specific classes is known
as operator overloading.

An operator that works in one way when applied to an instance of a class may
work differently on instances of another class. We can also override the overloaded
operators in subclasses. For example, we can make comparison operators work in a
different way in a superclass and its subclasses.

Inheritance and Specialization

[308]

Taking advantage of polymorphism
We can use the same method, the same name, and same arguments to cause
different things to happen according to the class in which we invoke a method.
In object-oriented programming, this feature is known as polymorphism.

For example, consider that we define a talk method in the Animal class. The
different subclasses of Animal must override this method to provide its own
implementation of talk.

A Dog class will override this method to print the representation of a dog barking,
that is, a Woof message. On the other hand, a Cat class will override this method to
print the representation of a cat meowing, that is, a Meow message.

Now, let's think about a CartoonDog class that represents a dog that can really talk
as part of a cartoon. The CartoonDog class will override the talk method to print a
Hello message because the dog can really talk.

Thus, depending on the type of the instance, we will see a different result after
invoking the same method along with the same arguments, even if all of them
are subclasses of the same base class, that is, the Animal class.

Working with simple inheritance in
Python
Firstly, we will create a base class in Python. Then we will use simple inheritance to
create subclasses. We will then override methods and overload comparison operators
to be able to compare different instances of a specific class and its subclasses. We will
take advantage of this polymorphism.

Creating classes that specialize behavior in
Python
Now it is time to code all the classes in Python. The following lines show the code for
the Animal class in Python. The class header doesn't specify a base class; therefore,
this class inherits from an object, that is, the most base type for any class in Python.
Remember that we are working with Python 3.x and that the syntax to achieve the
same goal in Python 2.x is different. In Python 3.x, a class that doesn't specify a base
class implicitly inherits from an object:

class Animal:
 _number_of_legs = 0

Chapter 4

[309]

 _pairs_of_eyes = 0

 def __init__(self, age):
 self._age = age
 print("Animal created")

 @property
 def age(self):
 return self._age

 @age.setter
 def age(self, age):
 self._age = age

 def print_legs_and_eyes(self):
 print("I have " + str(self._number_of_legs) + " legs and " +
str(self._pairs_of_eyes * 2) + " eyes.")

 def print_age(self):
 print("I am " + str(self._age) + " years old.")

The Animal class in the preceding code declares two protected class attributes
initialized to 0: _number_of_legs and _pairs_of_eyes. The __init__ method
requires an age value to create an instance of the Animal class and prints a message
indicating that an animal has been created. This class encapsulates the _age protected
instance attribute as an age property. In addition, the Animal class defines the
following two instance methods:

• print_legs_and_eyes: This method displays the total number of eyes based
on the _pairs_of_eyes value

• print_age: This method displays the age based on the _age value

We have to add more code to this class to be able to compare the age of all the
different Animal instances using operators. We will add the necessary code to
this class later.

Using simple inheritance in Python
The following lines show the code for the Mammal class that inherits from Animal.
Note the class keyword followed by the class name: Mammal, the superclass from
which it inherits enclosed in parenthesis (Animal), and a colon (:)that contains the
header of the class definition:

class Mammal(Animal):

Inheritance and Specialization

[310]

 _pairs_of_eyes = 1

 def __init__(self, age, is_pregnant=False):
 super().__init__(age)
 self._is_pregnant = is_pregnant
 print("Mammal created")

 @property
 def is_pregnant(self):
 return self._is_pregnant

 @is_pregnant.setter
 def is_pregnant(self, is_pregnant):
 self._is_pregnant = is_pregnant

The Mammal class overwrites the value of the _pairs_of_eyes protected class
attribute with 1. Remember that the protected class attribute was present in the
Animal class body, but initialized with 0.

The __init__ method requires an age value to create an instance of a class and
specifies an additional optional argument, is_pregnant, whose default value is
False. If we don't specify the value for is_pregnant, Python will use the default
value indicated in the method declaration. We cannot declare multiple __init__
method versions with a different number of parameters within a class in Python;
therefore, we can take advantage of optional parameters.

The first line in the __init__ method invokes the __init__ method defined in the
superclass, that is, the Animal class. This superclass defined the __init__ method
with just one argument: the age value; therefore, we call it using the age value
received as an argument (age) in our __init__ method:

super().__init__(age)

We use super() to reference the superclass of the
current class.

The __init__ method defined in the superclass initializes the value for the _age
protected instance attribute and prints a message indicating that an Animal instance
has been created. When the __init__ method returns a value, the following code
initializes the value of the _is_pregnant instance attribute and prints a message
indicating that a mammal has been created:

self._is_pregnant = is_pregnant
print("Mammal created")

Chapter 4

[311]

Overriding methods in Python
The following lines show the code for the DomesticMammal class that inherits
from Mammal. The class keyword followed by the class name DomesticMammal, the
superclass from which it inherits enclosed in parenthesis (Mammal), and a colon (:)
that composes the header of the class definition is shown in the following code:

class DomesticMammal(Mammal):
 def __init__(self, name, age, favorite_toy, is_pregnant=False):
 super().__init__(age, is_pregnant)
 self._name = name
 self._favorite_toy = favorite_toy
 print("DomesticMammal created")

 @property
 def name(self):
 return self._name

 @property
 def favorite_toy(self):
 return self._favorite_toy

 @favorite_toy.setter
 def favorite_toy(self, favorite_toy):
 self._favorite_toy = favorite_toy

 def talk(self):
 print(self._name + ": talks")

The __init__ method requires a name, an age, and a favorite_toy to create an
instance of a class. In addition, this method specifies an additional optional argument
(is_pregnant) whose default value is False. As in the Mammal class, the first line
in the __init__ method invokes the __init__ method defined in the superclass,
that is, the Mammal class. The superclass defined the __init__ method with two
arguments: age and is_pregnant. Thus, we call the __init__ method using
arguments that have the same names in our __init__ method:

super().__init__(age, is_pregnant)

After it finishes initializing attributes, the __init__ method prints a message
indicating that a DomesticMammal class has been created. This class defines a name
read-only property and a favorite_toy property that encapsulate the _name and
_favorite_toy protected instance attributes. The talk instance method displays a
message with the _name value, followed by a colon (:) and talks.

Inheritance and Specialization

[312]

The following lines of code show the code for the Dog class that inherits from
DomesticMammal:

class Dog(DomesticMammal):
 _number_of_legs = 4
 _breed = "Just a dog"
 _breed_family = "Dog"

 def __init__(self, name, age, favorite_toy, is_pregnant=False):
 super().__init__(name, age, favorite_toy, is_pregnant)
 print("Dog created")

 def bark(self, times=1, other_domestic_mammal=None, is_
angry=False):
 message = self.name
 if other_domestic_mammal is not None:
 message += " to " + other_domestic_mammal.name + ": "
 else:
 message += ": "
 if is_angry:
 message += "Grr "
 message += "Woof " * times
 print(message)

 def talk(self):
 self.bark()

 @classmethod
 def print_breed(cls):
 print(cls._breed)

 @classmethod
 def print_breed_family(cls):
 print(cls._breed_family)

The Dog class in the preceding code overrides the talk method from
DomesticMammal in Dog. As with the __init__ method that has been overridden
in all the subclasses we have been creating, we just declare this method with the
same name. There is no need to add any decorator or keyword in Python to override
a method defined in a superclass.

Chapter 4

[313]

However, in this case the talk method doesn't invoke the __init__ method with
the same name for its superclass, that is, we don't use super() to invoke the talk
method defined in DomesticMammal. The talk method in the Dog class invokes the
bark method without parameters because dogs bark and don't talk.

The bark method declaration includes three optional arguments. This way, we can
call it without parameters or with values for different optional arguments. Python
doesn't allow us to overload methods; therefore, we can take advantage of optional
arguments. The bark method prints a message based on the specified number of
times (times), the destination domestic mammal (other_domestic_mammal), and
whether the dog is angry or not (is_angry).

The Dog class also declares two class attributes: _breed and _breed_family. We will
override the values of these attributes in the subclasses of Dog. The print_breed
class method displays the value of the _breed class attribute and the print_breed_
family class method displays the value of the _breed_family class attribute.
We won't override these class methods in our subclasses because we just need to
override the values of the class attributes to achieve our goals. If we call these class
methods from an instance of a subclass of Dog, these methods will execute the code
specified in the Dog class, that is, the last class in the class hierarchy to override the
talk method, but this code will use the value of the class attributes overridden
in subclasses. Thus we will see a message that displays the values of all the class
attributes as defined in our subclasses.

The following lines show the code for the TerrierDog class that inherits from Dog:

class TerrierDog(Dog):
 _breed = "Terrier dog"
 _breed_family = "Terrier"

 def __init__(self, name, age, favorite_toy, is_pregnant=False):
 super().__init__(name, age, favorite_toy, is_pregnant)
 print("TerrierDog created")

As happened in other subclasses that we have been coding, the __init__ method
requires a name, an age, and a favorite_toy attribute to create an instance of the
TerrierDog class; we also have the optional is_pregnant argument. The __init__
method invokes a method with the same name defined in the superclass, that is, the
Dog class. Then the __init__ method prints a message indicating that a TerrierDog
instance has been created. The Dog class sets "Terrier dog" and "Terrier" as _ ,
which is the value for the breed and _breed_family class attributes defined in
the superclass.

Inheritance and Specialization

[314]

The following lines show the code for the SmoothFoxTerrier class that inherits from
TerrierDog:

class SmoothFoxTerrier(TerrierDog):
 _breed = "Smooth Fox Terrier"

 def __init__(self, name, age, favorite_toy, is_pregnant=False):
 super().__init__(name, age, favorite_toy, is_pregnant)
 print("SmoothFoxTerrier created")

The SmoothFoxTerrier class sets "Smooth Fox Terrier" as the value for the
_breed class attribute defined in the Dog class. The __init__ method invokes a
method with the same name defined in the superclass, that is the TerrierDog class
and then prints a message. This message indicates that a SmoothFoxTerrier class
instance has been created.

Overloading operators in Python
We want to be able to compare the age of different Animal instances using the
following operators in Python:

• Less than (<)
• Less or equal than (<=)
• Greater than (>)
• Greater or equal than (>=)

We can overload operators in Python to achieve our goals by overriding special
instance methods that Python invokes under the hood whenever we use all the
operators to compare instances of Animal. We have to override the following
methods in the Animal class:

• __lt__: This method gets invoked when we use the less than (<) operator
• __le__: This method gets invoked when we use the less than or equals to

(<=) operator
• __gt__: This method gets invoked when we use the greater than (>) operator
• __ge__: This method gets invoked when we use the greater than or equals to

(>=) operator

All the preceding instance methods have the same declaration. Python passes the
instance specified at the right-hand side of the operator as an argument, which is
usually named as other. Thus we have self and other as the arguments for the
instance method, and we must return a bool value with the result of the application
of the operator, in our case with the result of the comparison operator.

Chapter 4

[315]

Let's consider that we have two instances of Animal or any of its subclasses named
animal1 and animal2. If we enter print(animal1 < animal2) on the Python
console, Python will invoke the animal1.__lt__ method with self equal to animal1
and other equal to animal2. Thus we must return a Boolean value indicating that
self.age < other.age, is equivalent to animal1.age < animal2.age.

We must add the following code to the body of the Animal class:

def __lt__(self, other):
 return self.age < other.age

def __le__(self, other):
 return self.age <= other.age

def __gt__(self, other):
 return self.age > other.age

def __ge__(self, other):
 return self.age >= other.age

Understanding polymorphism in Python
After we code all the classes, we will enter the following lines on a Python console:

SmoothFoxTerrier.print_breed()
SmoothFoxTerrier.print_breed_family()

The following lines show the messages displayed on the Python console after we
enter the preceding lines of code:

Smooth Fox Terrier

Terrier

We coded the print_breed and print_breed_family class methods in the Dog
class and didn't override these methods in any of the subclasses. However, we
have overridden the values of the class attributes whose content these methods
display: _breed and _breed_family. The former class attribute is overridden in
the SmoothFoxTerrier class and the latter in the TerrierDog class.

We called the class methods from the SmoothFoxTerrier class; therefore, these
methods took into account the values of the class attributes overridden in the
TerrierDog and the SmoothFoxTerrier classes.

The following code creates an instance of the SmoothFoxTerrier class named tom:

tom = SmoothFoxTerrier("Tom", 5, "Sneakers")

Inheritance and Specialization

[316]

The Python console will display the following messages as a result of all the
__init__ methods that have been called and prints a message indicating that
an instance of a class has been created. Remember that we have overridden each
__init__ method in all the different classes up to SmoothFoxTerrier and its
included code to call the __init__ method of its superclass and display a message:

Animal created

Mammal created

DomesticMammal created

Dog created

TerrierDog created

SmoothFoxTerrier created

We don't have six different instances; we just have one instance that calls the
__init__ method of six different classes to perform all the necessary initialization
in order to create an instance of SmoothFoxTerrier. If we execute the following
code on the Python console, all of them will display True as the result because
tom is an instance of Animal, Mammal, DomesticMammal, Dog, TerrierDog, and
SmoothFoxTerrier:

print(isinstance(tom, Animal))
print(isinstance(tom, Mammal))
print(isinstance(tom, DomesticMammal))
print(isinstance(tom, Dog))
print(isinstance(tom, TerrierDog))
print(isinstance(tom, SmoothFoxTerrier))

The following code creates two additional instances of SmoothFoxTerrier named
pluto and goofy:

pluto = SmoothFoxTerrier("Pluto", 6, "Tennis ball")
goofy = SmoothFoxTerrier("Goofy", 8, "Soda bottle")

The following code uses all the four operators that we overloaded in the Animal class:
greater than (>), less than (<), greater than or equal to (>=), and less than or equal to
(<=). Remember that we have overridden special instance methods in the Animal class
that Python invokes under the hood whenever we use these operators. In this case, we
apply these operators on instances of SmoothFoxTerrier, and the Animal class inherits
the overridden special instance methods from the Animal base class. These four
operators return the results of comparing the age value of all the different instances:

print(tom > pluto)
print(tom < pluto)
print(goofy >= tom)
print(tom <= goofy)

Chapter 4

[317]

The following code calls the bark method for the instance named tom with a
different number of arguments. This way, we can take advantage of all the optional
arguments in Python. Remember that we coded the bark method in the Dog class,
and the SmoothFoxTerrier class inherits the bark method from this superclass:

tom.bark()
tom.bark(2)
tom.bark(2, pluto)
tom.bark(3, pluto, True)

The following code shows the results of calling the bark method using
different arguments:

Tom: Woof

Tom: Woof Woof

Tom to Pluto: Woof Woof

Tom to Pluto: Grr Woof Woof Woof

Working with simple inheritance in C#
First, we will create a base class in C#. Then we will use simple inheritance to
create subclasses and specialize behavior. We will override methods and overload
comparison operators to be able to compare different instances of a specific class
and its subclasses. We will take advantage of this polymorphism.

Creating classes that specialize behavior
in C#
Now it is time to code all the classes in C#. The following lines show the code for
the Animal abstract class in C#. The class declaration doesn't specify a base class;
therefore, this class inherits from Object, specifically System.Object. System.
Object is the base class for all the classes included in .NET Framework. The usage
of the abstract keyword before class makes this class an abstract class that we
cannot use to create instances:

public abstract class Animal
{
 protected virtual int NumberOfLegs { get { return 0; } }
 protected virtual int PairsOfEyes { get { return 0; } }

 public int Age { get; set; }

 public Animal(int age)

Inheritance and Specialization

[318]

 {
 this.Age = age;
 Console.WriteLine("Animal created.");
 }

 public void PrintLegsAndEyes()
 {
 Console.WriteLine(
 String.Format("I have {0} legs and {1} eyes.",
 this.NumberOfLegs,
 this.PairsOfEyes * 2));
 }

 public void PrintAge()
 {
 Console.WriteLine(
 String.Format("I am {0} years old."),
 this.Age);
 }
}

The preceding class declares two read-only properties: NumberOfLegs and
PairsOfEyes. Both these properties return 0 as its value. The usage of the
virtual keyword allows you to override properties in any subclass of Animal.

In C#, we have to specify the properties or methods that we allow
our subclasses to override by adding the virtual keyword. If we
don't include the virtual keyword, a property or method cannot
be overridden and we will see a compiler error if we try to do so.

The constructor requires an age value to create an instance of a class and
prints a message indicating that an animal has been created. This class uses
auto-implemented properties to generate the Age property. In addition, the
Animal class defines the following two instance methods:

• PrintLegsAndEyes: This method displays the total number of eyes based on
the PairsOfEyes value

• PrintAge: This method displays the age based on the age value

We have to add more code to this class to be able to compare the age of all the
different Animal instances using operators. We will add the necessary code to
this class later.

Chapter 4

[319]

Using simple inheritance in C#
We will create many classes in C# which require the following using statements.
We will dive deep into how the using statement works and the organization of
object-oriented code in Chapter 7, Organization of Object-Oriented Code:

using System;
using System.Linq;
using System.Text;

The following lines show the code for the Mammal abstract class that inherits from
Animal. Note the class keyword followed by the Mammal class name, a colon (:),
and Animal: the superclass from which it inherits in the class definition:

public abstract class Mammal: Animal
{
 protected override int PairsOfEyes { get { return 1; } }
 public bool IsPregnant { get; set; }

 private void Init(bool isPregnant)
 {
 this.IsPregnant = isPregnant;
 Console.WriteLine("Mammal created.");
 }

 public Mammal(int age) : base(age)
 {
 this.Init(false);
 }

 public Mammal(int age, bool isPregnant) : base(age)
 {
 this.Init(isPregnant);
 }
}

The Mammal class name overrides the PairsOfEyes property and defines a new getter
method that returns 1. Remember that the protected class attribute was declared
using the virtual keyword in the Animal class body, but the getter method returned
0. In this case, the property declaration uses the override keyword to override the
property declaration of the superclass.

Inheritance and Specialization

[320]

We will use the virtual keyword to indicate that a property
or method can be overridden in subclasses. Also, we will use
the override keyword to override a property or method that
was declared with the virtual keyword in a superclass.

Note that this Animal class declares two constructors. One of the constructors
requires the age value to create an instance of a class. The other constructor
requires the age and isPregnant value. If we create an instance of this class with
just one int argument, C# will use the first constructor. If we create an instance of
this class with two arguments: one int value and one bool value, C# will use the
second constructor. Thus, we have overloaded the constructor and provided two
different constructors. Of course, we can also take advantage of optional parameters.
However, in this case we want to overload constructors.

The lines that declare two constructors are followed by a colon(:). A call to the
constructor of the superclass with the age value is received as an argument. The
base keyword enables you to call the superclass' constructor. Once the superclass'
constructor finishes its execution, both constructors call the Init private method
which initializes the IsPregnant property with a value received as an argument or
the default false value in case it wasn't specified. The following code shows both
constructor declarations:

public Mammal(int age) : base(age)
public Mammal(int age, bool isPregnant) : base(age)

We use base to reference the superclass' constructor.

The superclass' constructor initializes the value for the Age property and prints
a message indicating that an Animal instance has been created. When a method
returns, the Init private method defined in the Mammal class initializes the value
of the IsPregnant property and prints a message indicating that a Mammal has
been created. Don't forget that we cannot access private methods from subclasses;
therefore, the Init method is only visible in the Mammal class.

Chapter 4

[321]

Overloading and overriding methods in C#
The following lines show the code for the DomesticMammal class that inherits from
Mammal. Note the class keyword followed by the DomesticMammal class name, a
colon (:), and Mammal, the superclass from which it inherits in the class definition:

public abstract class DomesticMammal: Mammal
{
 public string Name { get; private set; }
 public string FavoriteToy { get; set; }

 private void Init(string name, string favoriteToy)
 {
 this.Name = name;
 this.FavoriteToy = favoriteToy;
 Console.WriteLine("DomesticMammal created.");
 }

 public virtual void Talk()
 {
 Console.WriteLine(String.Format("{0}: talks", this.Name));
 }

 public DomesticMammal(string name, int age, string favoriteToy)
 : base(age)
 {
 this.Init(name, favoriteToy);
 }

 public DomesticMammal(string name, int age, string favoriteToy, bool
isPregnant)
 : base(age, isPregnant)
 {
 this.Init(name, favoriteToy);
 }
}

Inheritance and Specialization

[322]

The preceding class declares two constructors. The first constructor requires the name,
age, and favoriteToy values to create an instance of a class. The other constructor
adds the isPregnant argument. As in the Mammal class, the lines that declare both
constructors are followed by a colon (:) and a call to the superclass' constructor. In
one case, we just need the age value received as an argument, whereas in the other
case, it is necessary to add the isPregnant value. Once the superclass' constructor
finishes its execution, both constructors call the Init private method that initializes
the properties of Name and FavoriteToy. After the Init method finishes initializing
its properties, it prints a message indicating that DomesticMammal has been created.
The following code shows the declarations of two constructors:

public DomesticMammal(string name, int age, string favoriteToy) :
base(age)
public DomesticMammal(string name, int age, string favoriteToy, bool
isPregnant) : base(age, isPregnant)

The class defines a Name read-only property and a FavoriteToy property with
autoimplemented properties. The Talk instance method displays a message with the
Name value. This is followed by a colon (:) and talks. Note that a method uses the
virtual keyword in its declaration; therefore, we can override it in any subclass.

The following lines show the code for the Dog class that inherits from DomesticMammal:

public class Dog : DomesticMammal
{
 protected override int NumberOfLegs { get { return 4; } }
 public virtual string Breed { get { return "Just a dog"; } }
 public virtual string BreedFamily { get { return "Dog"; } }

 private void Init()
 {
 Console.WriteLine("Dog created.");
 }

 public Dog(string name, int age, string favoriteToy, bool
isPregnant): base(name, age, favoriteToy, isPregnant)
 {
 this.Init();
 }

 public Dog(string name, int age, string favoriteToy)
 : base(name, age, favoriteToy)
 {

Chapter 4

[323]

 this.Init();
 }

 public void PrintBreed()
 {
 Console.WriteLine(this.Breed);
 }

 public void PrintBreedFamily()
 {
 Console.WriteLine(this.BreedFamily);
 }

 private void PrintBark(int times, DomesticMammal
otherDomesticMammal, bool isAngry)
 {
 var sb = new StringBuilder();
 sb.Append(this.Name);
 if (otherDomesticMammal != null)
 {
 sb.Append(String.Format(" to {0}: ", otherDomesticMammal.Name));
 }
 else
 {
 sb.Append(": ");
 }

 if (isAngry)
 {
 sb.Append("Grr ");
 }
 sb.Append(string.Concat(Enumerable.Repeat("Woof ", times)));
 Console.WriteLine(sb.ToString());
 }

 public void Bark()
 {
 this.PrintBark(1, null, false);
 }

 public void Bark(int times)

Inheritance and Specialization

[324]

 {
 this.PrintBark(times, null, false);
 }

 public void Bark(int times, DomesticMammal otherDomesticMammal)
 {
 this.PrintBark(times, otherDomesticMammal, false);
 }

 public void Bark(int times, DomesticMammal otherDomesticMammal, bool
isAngry)
 {
 this.PrintBark(times, otherDomesticMammal, isAngry);
 }

 public override void Talk()
 {
 this.Bark();
 }
}

The Dog class overrides the Talk method from DomesticMammal in Dog. As in the
overridden properties of other subclasses, we just add the override keyword to the
method declaration. This method doesn't invoke a method with the same name for
its superclass, that is, we don't use the base keyword to invoke the Talk method
defined in DomesticMammal. The Talk method in the Dog class invokes the Bark
method without parameters because dogs bark and don't talk.

The Bark method is overloaded with four declarations with different arguments. The
following lines show all the four different declarations included in the class body:

public void Bark()
public void Bark(int times)
public void Bark(int times, DomesticMammal otherDomesticMammal)
public void Bark(int times, DomesticMammal otherDomesticMammal, bool
isAngry)

This way, we can call any of the defined Bark methods based on the arguments
that are provided. All the four methods end up invoking the PrintBark private
method with different default values for all the arguments not provided in the
call to Bark. The method uses StringBuilder to build and print a message based
on the specified number of times (times), the destination domestic mammal
(otherDomesticMammal), and whether the dog is angry or not (isAngry).

Chapter 4

[325]

The Dog class also declares two read-only properties: Breed and BreedFamily. We
will override the values of these properties in the subclasses of Dog so that they
include the virtual keyword in their declaration. The PrintBreed instance method
displays the value of the Breed property attribute, whereas the PrintBreedFamily
instance method displays the value of the BreedFamily property. We won't override
these instance methods in our subclasses because we just need to override the values
of two read-only properties to achieve our goals. If we call these instance methods
from an instance of a subclass of Dog, these methods will execute the code specified
in the Dog class but this code will use the value of all the properties overridden
in subclasses. Thus, we will see the messages that displays the values of all the
properties as defined in subclasses.

The following lines show the code for the TerrierDog class that inherits from Dog:

public class TerrierDog : Dog
{
 public override string Breed { get { return "Terrier dog"; } }
 public override string BreedFamily { get { return "Terrier"; } }

 private void Init()
 {
 Console.WriteLine("TerrierDog created.");
 }

 public TerrierDog(string name, int age, string favoriteToy)
 : base(name, age, favoriteToy)
 {
 this.Init();
 }

 public TerrierDog(string name, int age, string favoriteToy, bool
isPregnant)
 : base(name, age, favoriteToy, isPregnant)
 {
 this.Init();
 }
}

Inheritance and Specialization

[326]

As in the other subclasses that we have been coding, we have more than one
constructor defined for a class. In this case, one of the constructors require the name,
age, and favoriteToy values to create an instance of the TerrierDog class, and
we also have a constructor that adds the isPregnant argument. Both constructors
invoke the superclass' constructor and then call the private Init method. This
method prints a message. This message indicates that TerrierDog has been created.
The class sets "Terrier dog" and "Terrier" as the value for the properties of
Breed and BreedFamily that were defined in the superclass and overridden in this
TerrierDog class.

The following lines show the code for the SmoothFoxTerrier class that inherits
from TerrierDog:

public class SmoothFoxTerrier : TerrierDog
{
 public override string Breed { get { return "Smooth Fox Terrier"; }
}

 private void Init()
 {
 Console.WriteLine("Smooth Fox Terrier created.");
 }

 public SmoothFoxTerrier(string name, int age, string favoriteToy)
 : base(name, age, favoriteToy)
 {
 this.Init();
 }

 public SmoothFoxTerrier(string name, int age, string favoriteToy,
bool isPregnant)
 : base(name, age, favoriteToy, isPregnant)
 {
 this.Init();
 }
}

The SmoothFoxTerrier class sets "Smooth Fox Terrier" as the value for
the Breed property defined in the Dog class, which is overridden in this class.
The SmoothFoxTerrier class defines two constructors with exactly the same
parameters that were specified in the two constructors defined in the superclass.
Both constructors invoke two constructors defined in the superclass and then call
the Init private method. This method prints a message indicating that an instance
of the SmoothFoxTerrier class has been created.

Chapter 4

[327]

Overloading operators in C#
We want to be able to compare the age of different Animal instances using the
following operators in C#:

• Less than (<)
• Less than or equal to (<=)
• Greater than (>)
• Greater than or equal to (>=)

We can overload the preceding operators in C# to achieve our goals by declaring
operators in the Animal class that work as static methods that receive two
arguments. C# will invoke operators under the hood whenever we use these
operators to compare instances of Animal. We have to declare the following
operators in the Animal class:

• <: This operator is invoked when we use the less than (<) operator
• <=: This operator is invoked when we use the less than or equal to

(<=) operator
• >: This operator is invoked when we use the greater than (>) operator
• >=: This operator is invoked when we use the greater than or equal to

(>=) operator

All the preceding operators have the same declaration. C# passes the instance specified
at the left-hand side of the operator as the first argument and the instance specified at
the right-hand side of the operator as the second argument. We will use names such as
self and other for these arguments. Thus we have self and other as the arguments
for operators, and we must return a bool value with the result of the application of the
operator, in our case, with the result of the comparison operator.

Let's consider that we have two instances of Animal or any of its subclasses named
animal1 and animal2. If we enter Console.WriteLine(animal1 < animal2);, C#
will invoke the < operator for the Animal class as a static method with self equal
to animal1 and other equal to animal2. Thus we must return a bool value indicating
that self.age < other.age is equivalent to animal1.age < animal2.age.

We must add the following code to the body of the Animal class:

public static bool operator <(Animal self, Animal other)
{
 return self.Age < other.Age;

Inheritance and Specialization

[328]

}

public static bool operator <=(Animal self, Animal other)
{
 return self.Age <= other.Age;
}

public static bool operator >(Animal self, Animal other)
{
 return self.Age > other.Age;
}

public static bool operator >=(Animal self, Animal other)
{
 return self.Age >= other.Age;
}

Understanding polymorphism in C#
After we code all the classes, we can write code in the Main method of a console
application. The following are the first code of the Main method that create an
instance of the SmoothFoxTerrier class named tom. Let's use one of its constructors
that doesn't require the isPregnant argument:

var tom = new SmoothFoxTerrier("Tom", 5, "Sneakers");
tom.PrintBreed();
tom.PrintBreedFamily();

The following code shows the messages that will be displayed on the Windows
console after we enter the preceding code:

Animal created.

Mammal created.

DomesticMammal created.

Dog created.

TerrierDog created.

Smooth Fox Terrier created.

Smooth Fox Terrier

Terrier

Chapter 4

[329]

First, the Windows console displays the messages by each constructor that has been
called. Remember that each constructor called its base class constructor and printed
a message indicating that an instance of the class has been created. We don't have
six different instances; we just have one instance that has been calling the chained
constructors of six different classes to perform all the necessary initialization to
create an instance of SmoothFoxTerrier. If we execute the following code in the
Immediate window of Visual Studio, all of them will return true as the result
because tom is an Animal, a Mammal, a DomesticMammal, a Dog, a TerrierDog,
and a breed of SmoothFoxTerrier:

tom is Animal

tom is Mammal

tom is DomesticMammal

tom is Dog

tom is TerrierDog

tom is SmoothFoxTerrier

We coded the PrintBreed and PrintBreedFamily methods in the Dog class
and we didn't override these methods in any of the subclasses. However, we
have overridden the properties whose content these methods display: Breed and
BreedFamily. The former property is overridden in the SmoothFoxTerrier class
and the latter in the TerrierDog class.

The following code creates two additional instances of SmoothFoxTerrier named
pluto and goofy. In this case, both code use the constructor that receives the
isPregnant argument:

var pluto = new SmoothFoxTerrier("Pluto", 6, "Tennis ball", false);
var goofy = new SmoothFoxTerrier("Goofy", 8, "Soda bottle", false);

The following code uses the four operators that we have overloaded in the
Animal class: greater than (>), less than (<), greater than or equal to (>=), and
less than or equal to (<=). In this case, we apply these operators on instances of
SmoothFoxTerrier, and the Animal class inherits the operators from the Animal
base class. The four operators return the results of comparing the age value of the
different instances:

Console.WriteLine(tom > pluto);
Console.WriteLine(tom < pluto);
Console.WriteLine(goofy >= tom);
Console.WriteLine(tom <= goofy);

Inheritance and Specialization

[330]

The following code calls the Bark method for the tom instance with a different
number of arguments. This way, we can take advantage of the Bark method that
we overloaded four times with different arguments in C#. Remember that we coded
the four Bark methods in the Dog class and the SmoothFoxTerrier class inherits the
overloaded methods from this superclass:

tom.Bark();
tom.Bark(2);
tom.Bark(2, pluto);
tom.Bark(3, pluto, true);

The following code shows the results of calling the methods with the different
arguments:

Tom: Woof

Tom: Woof Woof

Tom to Pluto: Woof Woof

Tom to Pluto: Grr Woof Woof Woof

Working with the prototype-based
inheritance in JavaScript
First, we will create a constructor function in JavaScript and define properties
and methods in its prototype. Then, we will take advantage of prototype-based
inheritance in order to create objects that specialize the behavior defined in the
baseline prototype. We will override methods and properties.

Creating objects that specialize behavior in
JavaScript
Now it is time to code objects in JavaScript. The following code defines the Animal
empty constructor function in JavaScript, followed by the declaration of properties
and functions for the Animal prototype:

function Animal() {}

Animal.prototype.numberOfLegs = 0;
Animal.prototype.pairsOfEyes = 0;
Animal.prototype.age = 0;

Animal.prototype.printLegsAndEyes = function() {

Chapter 4

[331]

 console.log("I have " + this.numberOfLegs + " legs and " + this.
pairsOfEyes * 2 + " eyes.");
}

Animal.prototype.printAge = function() {
 console.log("I am " + this.age + " years old.");
}

In this case, we will use an empty constructor function and then declare all the
things that we want to share with the objects that will use Animal as its prototype in
Animal.prototype. The prototype declares three properties initialized with 0 as its
value: age, numberOfLegs, and pairsOfEyes.

In addition, the Animal prototype defines the following two methods:

• printLegsAndEyes: This method displays the total number of eyes based on
the pairsOfEyes value

• printAge: This method displays the age based on the age value

We have to add more code to the object's prototype to be able to compare the age of
the different Animal instances by calling methods. We will add the necessary code to
the object's prototype later.

Using the prototype-based inheritance in
JavaScript
The following is the code for the empty Mammal construction function. Now, let's set
the Mammal.prototype property to a new instance of the previously defined Animal
object. This way, we will be able to access the properties and methods defined in the
Animal object in each Mammal instance:

function Mammal() {}
Mammal.prototype = new Animal();
Mammal.prototype.constructor = Mammal;
Mammal.prototype.isPregnant = false;
Mammal.prototype.pairsOfEyes = 1;

After we change the value of the Mammal.prototype property, we will assign the
Mammal constructor function to the Mammal.constructor property in order to
clean up the side effects on the constructor property when you change the value
of a prototype. We add the isPregnant property initialized to false. Finally,
we overwrite the value of the pairsOfEyes property with 1. Remember that this
property was declared in Animal.prototype.

Inheritance and Specialization

[332]

Any instance of Mammal will be able to access the properties and methods declared in
Animal.prototype.

Overriding methods in JavaScript
Here is the code for the empty DomesticMammal construction function. Here we will
set the DomesticMammal.prototype property to a new instance of the previously
defined Mammal object. This way, we will be able to access the properties and
methods defined in both the Mammal and Animal objects in each DomesticMammal
instance. The prototype chain makes it possible to access all the properties and
methods defined in each prototype property of the different objects:

function DomesticMammal() {}

DomesticMammal.prototype = new Mammal();
DomesticMammal.prototype.constructor = DomesticMammal;
DomesticMammal.prototype.name = "";
DomesticMammal.prototype.favoriteToy = "";

DomesticMammal.prototype.talk = function() {
 console.log(this.name + ": talks");
}

We will use an empty constructor function again. Then we will declare all the things
that we want to share with the objects that will use DomesticMammal as its prototype
in DomesticMammal.prototype. This prototype declares two properties: name and
favoriteToy initialized with an empty string as their value.

In addition, the preceding prototype defines the talk method that displays a
message with the name value, followed by a colon (:) and talks. Note that this
method will be overridden in the Dog object.

The following is the code for the empty Dog construction function. Then we
set the Dog.prototype property to a new instance of the previously defined
DomesticMammal object. This way, we will be able to access the properties and
methods defined in the DomesticMammal, Mammal, and Animal objects in each
Dog instance. We continue to grow the prototype chain:

function Dog() {}
Dog.prototype = new DomesticMammal();
Dog.prototype.constructor = Dog;
Dog.prototype.numberOfLegs = 4;
Dog.prototype.breed = "Just a dog";
Dog.prototype.breedFamily = "Dog";

Dog.prototype.printBreed = function() {

Chapter 4

[333]

 console.log(this.breed);
}

Dog.prototype.printBreedFamily = function() {
 console.log(this.breedFamily);
}

The preceding code overwrites the value of the numberOfLegs inherited property
with 4. In addition, the code adds two new properties for Dog.prototype: breed
and breedFamily. We will overwrite the values of these properties in the new
objects that will have Dog as a prototype. The printBreed method displays the
value of the breed property, and the printBreedFamily method displays the value
of the breedFamily property. We won't override these methods in the objects that
will have Dog as a prototype because we just need to overwrite the values of the
properties to achieve our goals. If we call these methods from an instance of an object
that includes Dog in its prototype chain, these methods will execute the function
code declared in the Dog prototype, but the code will use the value of the properties
overridden in specific objects. Thus, we will see messages that display the values of
the properties as defined in the objects that include Dog in their prototype chain.

The following code declares a bark method and overrides the talk method inherited
from DomesticMammal in Dog:

Dog.prototype.bark = function(times, otherDomesticMammal, isAngry) {
 var message = this.name;
 if (otherDomesticMammal) {
 message += " to " + otherDomesticMammal.name + ": ";
 }
 else {
 message += ": ";
 }
 if (isAngry) {
 message += "Grr ";
 }
 if (!times) {
 times = 1;
 }
 message += new Array(times + 1).join("Woof ");
 console.log(message);
}

Dog.prototype.talk = function() {
 this.bark(1);
}

Inheritance and Specialization

[334]

The talk method overridden in the Dog prototype invokes the bark method
without parameters because dogs bark and don't talk. The bark method builds
and prints a message according to the specified number of times (times), the
destination of the domestic mammal (otherDomesticMammal), and whether
the dog is angry or not (isAngry).

The following lines show the code for the TerrierDog constructor function and its
prototype that inherits from Dog:

function TerrierDog() { }
TerrierDog.prototype = new Dog();
TerrierDog.prototype.constructor = TerrierDog;
TerrierDog.prototype.breed = "Terrier dog";
TerrierDog.prototype.breedFamily = "Terrier";

The TerrierDog class sets "Terrier dog" and "Terrier" as the value for the breed
and breedFamily properties that were defined in Dog.

The following lines show the code for the SmoothFoxTerrier constructor function
and its prototype that inherits from TerrierDog:

function SmoothFoxTerrier() { }
SmoothFoxTerrier.prototype = new TerrierDog();
SmoothFoxTerrier.prototype.constructor = TerrierDog;
SmoothFoxTerrier.prototype.breed = "Smooth Fox Terrier";

SmoothFoxTerrier.create = function (name, age, favoriteToy,
isPregnant) {
 var dog = new SmoothFoxTerrier();
 dog.name = name;
 dog.age = age;
 dog.favoriteToy = favoriteToy;
 dog.isPregnant = isPregnant;

 return dog;
}

The breed object sets "Smooth Fox Terrier" as the value for the breed property
defined in the Dog object and overridden in this object. In addition, the preceding
code declares a create function for the SmoothFoxTerrier construction function.
The create function receives name, age, favoriteToy, and isPregnant as
arguments, creates a new instance of SmoothFoxTerrier, and assigns the values
received as arguments to the properties with the same name. Finally, the create
function returns the created and initialized instance of SmoothFoxTerrier.

Chapter 4

[335]

Overloading operators in JavaScript
We want to be able to compare the age of all the different Animal instances.
JavaScript doesn't allow you to overload operators; therefore, we can create
methods to achieve our goal.

We can add the following methods to Animal.prototype, which will be available in
the prototype chain:

• lessThan: Less than (<)
• lessOrEqualThan: Less than or equal to (<=)
• greaterThan: Greater than (>)
• greaterOrEqualThan: Greater than or equal to (>=)

All the preceding methods have the same declaration. They will receive the instance
that will be located at the right-hand side of the operator. We will use other as the
only argument for these methods, and we must return a bool value with the result of
the application of the operator, in our case, with the result of the comparison operator.

Let's consider that we have two instances of Animal or objects in the prototype
chain named animal1 and animal2. If we enter console.log(animal1.
lessThan(animal2));, the method must return a bool value indicating that this.
age < other.age is equivalent to animal1.age < animal2.age.

We must add the following code to add all the methods to the Animal prototype:

Animal.prototype.lessThan = function(other) {
 return this.age < other.age;
}

Animal.prototype.lessOrEqualThan = function(other) {
 return this.age <= other.age;
}

Animal.prototype.greaterThan = function(other) {
 return this.age > other.age;
}

Animal.prototype.greaterOrEqualThan = function(other) {
 return this.age >= other.age;
}

Inheritance and Specialization

[336]

Understanding polymorphism in JavaScript
After we code all the constructor functions and fill up their prototypes with
properties and methods, we can enter the following code on a JavaScript
console. These lines call the SmoothFoxTerrier.create method to create an
instance of SmoothFoxTerrier named tom and then call the printBreed and
printBreedFamily methods:

var tom = SmoothFoxTerrier.create("Tom", 5, "Sneakers");
tom.printBreed();
tom.printBreedFamily();

The following command lines display the messages displayed on the Python console
after we enter the previous code:

Smooth Fox Terrier

Terrier

We coded the printBreed and printBreedFamily methods in the prototype of the
Dog constructor function; we didn't override these methods in any of the objects in the
prototype chain. However, we have overridden the values of properties whose content
these methods display: breed and breedFamily. The former property is overridden in
the SmoothFoxTerrier prototype and the latter in the TerrierDog prototype.

We called the class methods from the tom instance; therefore, these methods
took into account the values of the properties overridden in the TerrierDog
and SmoothFoxTerrier objects.

If we execute the following code on the JavaScript console, all of them will display
true as its result because tom is an instance of Animal, Mammal, DomesticMammal,
Dog, TerrierDog, and SmoothFoxTerrier:

console.log(tom instanceof Animal);
console.log(tom instanceof Mammal);
console.log(tom instanceof DomesticMammal);
console.log(tom instanceof Dog);
console.log(tom instanceof TerrierDog);
console.log(tom instanceof SmoothFoxTerrier);

The following code creates two additional instances of SmoothFoxTerrier: pluto
and goofy:

var pluto = SmoothFoxTerrier.create("Pluto", 6, "Tennis ball");
var goofy = SmoothFoxTerrier.create("Goofy", 8, "Soda bottle");

Chapter 4

[337]

The following code uses the four methods that we declared in the prototype of
the Animal object: greaterThan (>), lessThan (<), greaterOrEqualThan (>=),
and lessOrEqualThan (<=). In this case, we invoke the methods on instances of
SmoothFoxTerrier and the object inherits these methods from the Animal object.
The methods return the results of comparing the age value of the different instances:

console.log(tom.greaterThan(pluto));
console.log(tom.lessThan(pluto));
console.log(goofy.greaterOrEqualThan(tom));
console.log(tom.lessOrEqualThan(goofy));

The following code calls the bark method for the instance named tom with a
different number of arguments. Remember that we coded the bark method in the
Dog prototype, whereas the SmoothFoxTerrier object inherits the method in the
prototype chain:

tom.bark();
tom.bark(2);
tom.bark(2, pluto);
tom.bark(3, pluto, true);

The following code shows the results of calling the methods with all the
different arguments:

Tom: Woof

Tom: Woof Woof

Tom to Pluto: Woof Woof

Tom to Pluto: Grr Woof Woof Woof

Summary
In this chapter, you learned how to take advantage of simple inheritance to specialize
a base class. We designed many classes from top to bottom using properties and
methods. Then, we coded these classes in Python and C#, taking advantage of the
different mechanisms provided by each programming language. We coded different
objects and prototypes in JavaScript.

We took advantage of operator overloading in C# and Python. We have overridden
methods and properties in subclasses or object prototypes. We took advantage of
polymorphism in each programming language.

Now that you learned how to take advantage of inheritance and its related concepts,
we are ready to work with multiple inheritance, interfaces, and composition in
Python, C#, and JavaScript, which is the topic of the next chapter.

[339]

Interfaces, Multiple
Inheritance, and Composition

In this chapter, we will work with more complex scenarios in which we have to use
instances that belong to more than one blueprint. We will use the different features
included in each of the three covered programming languages to code an application
that requires the combination of multiple blueprints in a single instance. We will:

• Understand how interfaces work in combination with classes
• Work with multiple inheritance of classes in Python
• Take advantage of abstract base classes in Python
• Work with interfaces and multiple inheritance in C#
• Implement interfaces in C#
• Work with composition in JavaScript

Understanding the requirement to work
with multiple base classes
We have to work with two different types of characters: comic characters and
game characters. A comic character has a nickname and must be able to draw
speech balloons and thought balloons. The speech balloon may have another
comic character as a destination.

A game character has a full name and must be able to perform the following tasks:

• Draw itself in a specific 2D position indicated by the x and y coordinates
• Move itself to a specific 2D position indicated by the x and y coordinates
• Check whether it intersects with another game character

Interfaces, Multiple Inheritance, and Composition

[340]

We will work with objects that can be both a comic character and a game character.
However, we will also work with objects that are just going to be either a comic
character or a game character. Neither the game character nor the comic character
has a generic way of performing the previously described tasks. Thus, each object
that declares itself as a comic character must define all the tasks related to speech and
thought balloons. Each object that declares itself as a game character must define how
to draw itself, move, and check whether it intersects with another game character.

An angry dog is a comic character that has a specific way of drawing speech and
thought balloons. An angry cat is both a comic character and a game character;
therefore, it defines all the tasks required by both character types.

The angry cat is a very versatile character. It can use different costumes to participate
in games or comics with different names. An angry cat can also be an alien, a wizard,
or a knight.

An alien has a specific number of eyes and must be able to appear and disappear.

A wizard has a spell power score and can make an alien disappear.

A knight has sword power and weight values. He can unsheathe his sword.
A common task for the knight is to unsheathe his swords and point it to an
alien as a target.

We can create abstract classes to represent a comic character and a game character.
Then, each subclass can provide its implementation of the methods. In this case,
comic characters and game characters are very different. They don't perform similar
tasks that might lead to confusion and problems for multiple inheritance. Thus, we
can use multiple inheritance when available to create an angry cat class that inherits
from both the comic and game character. In some cases, multiple inheritance is not
convenient because similar superclasses might have methods with the same name.
Also, it can be extremely confusing to use multiple inheritance.

In addition, we can use multiple inheritance to combine the angry cat class with the
alien, wizard, and knight. This way, we will have an angry cat alien, an angry cat
wizard, and an angry cat knight. We will be able to use any angry cat alien, angry
cat wizard, or angry cat knight as either a comic character or a game character.

Chapter 5

[341]

Our goals are simple, but we may face a little problem: each programming language
provides different features that allow you to code your application. C# doesn't
support multiple inheritance of classes, but you can use multiple inheritance with
interfaces or combine interfaces with classes. Python supports multiple inheritance
of classes, but it doesn't support interfaces. JavaScript doesn't work with classes or
interfaces; therefore, it doesn't make sense to try to emulate multiple inheritance in
this language. Instead, we will use the best features and the most natural way of each
programming language to achieve our goals.

We will use multiple inheritance of classes in Python, and we will also analyze the
possibility of working with abstract base classes. We will use interfaces in C# and
constructor functions and composition in JavaScript.

Working with multiple inheritance in
Python
We will take advantage of multiple inheritance of classes in Python. First, we will
declare the base classes that we will use to create other classes that inherit from them.
Then, we will create subclasses that inherit from a pair of classes. We will work with
instances of these subclasses that inherit from more than one class. Finally, we will
analyze the usage of abstract base classes as another way of achieving the same goal
with a more strict structure.

Declaring base classes for multiple
inheritance
The following lines show the code for the ComicCharacter class in Python:

class ComicCharacter:
 def __init__(self, nick_name):
 self._nick_name = nick_name

 @property
 def nick_name(self):
 return self._nick_name

 def draw_speech_balloon(self, message, destination):
 pass

 def draw_thought_balloon(self, message):
 pass

Interfaces, Multiple Inheritance, and Composition

[342]

The preceding class declares a nick_name read-only property, a draw_speech_ballon
method, and a draw_thought_balloon method. The __init__ method receives
nick_name as an argument and assigns it to the private _nick_name attribute that
is encapsulated in the nick_name property. In fact, the __init__ method and the
property setter are the only two methods that include code. Our subclasses will
override the draw_speech_ballon and draw_thought_balloon methods.

The following lines show the code for the GameCharacter class in Python:

class GameCharacter:
 def __init__(self, full_name, initial_score, x, y):
 self._full_name = full_name
 self.score = initial_score
 self.x = x
 self.y = y

 @property
 def full_name(self):
 return self._full_name

 def draw(self, x, y):
 pass

 def move(self, x, y):
 pass

 def is_intersecting_with(self, other_character):
 pass

In this case, the class declaration includes the full-name read-only property and
three attributes: score, x, and y. In addition, the class declaration also includes
three empty methods: draw, move, and is_intersecting_with. The subclasses
of GameCharacter will override these methods.

The following lines show the code for the Alien class in Python:

class Alien:
 def __init__(self, number_of_eyes):
 self.number_of_eyes = number_of_eyes

 def appear(self):
 pass

 def disappear(self):
 pass

Chapter 5

[343]

In this case, the __init__ method receives a number_of_eyes argument and
initializes an attribute with the same name. In addition, the class declares two
empty methods: appear and disappear.

The following lines show the code for the Wizard class in Python:

class Wizard:
 def __init__(self, spell_power):
 self.spell_power = spell_power

 def disappear_alien(self, alien):
 pass

In this case, the __init__ method receives a spell_power argument and initializes
an attribute with the same name. In addition, the Wizard class declares an empty
disappear_alien method.

The following lines show the code for the Knight class in Python:

class Knight:
 def __init__(self, sword_power, sword_weight):
 self.sword_power = sword_power
 self.sword_weight = sword_weight

 def unsheath_sword(self, target):
 pass

In this case, the __init__ method receives sword_power and sword_height as
arguments and initializes attributes with the same name. In addition, the Knight
class declares an empty unsheath_sword method.

Declaring classes that override methods
Now, we will declare a class that overrides and implements all the empty methods
defined in the ComicCharacter class. The following lines show the code for the
AngryDog class, a subclass of ComicCharacter:

class AngryDog(ComicCharacter):
 def _speak(self, message):
 print(self.nick_name + ' -> "' + message + '"')

 def _think(self, message):
 print(self.nick_name + ' ***' + message + '***')

 def draw_speech_balloon(self, message, destination):
 if destination is None:

Interfaces, Multiple Inheritance, and Composition

[344]

 composed_message = message
 else:
 composed_message = destination.nick_name + ", " + message
 self._speak(composed_message)

 def draw_thought_balloon(self, message):
 self._think(message)

The AngryDog class doesn't override the __init__ method; therefore, it uses the
method declared in its superclass. Whenever we create an instance of this class,
Python will use the __init__ method defined in the ComicCharacter class.

The AngryDog class overrides the draw_speech_balloon method. This method
composes a message based on the value of the destination parameter and passes a
message to the _speak method. This method prints this message in a specific format
that includes the nick_name value as a prefix. If the destination parameter is not
equal to None, the preceding code uses the value of the nick_name property.

In addition, the AngryDog class declares the code for the draw_thought_balloon
method that invokes the _think method. This method also prints a message
that includes the nick_name value as a prefix. So, the AngryDog class overrides
and implements all the empty methods declared in its superclass, that is, the
ComicCharacter class.

Now, we will declare another subclass of the ComicCharacter class. The following
lines show the code for the AngryCat class:

class AngryCat(ComicCharacter):
 def __init__(self, nick_name, age):
 super().__init__(nick_name)
 self.age = age

 def draw_speech_balloon(self, message, destination):
 if destination is None:
 composed_message = self.nick_name + ' -> "'
 if self.age > 5:
 meow = 'Meow'
 else:
 meow = 'Meeeooow Meeeooow'
 composed_message = '{} -> "{} {}"'.format(self.nick_name,
meow, message)
 else:
 composed_message = '{} === {} ---> {}'.format(
 destination.nick_name,
 self.nick_name,

Chapter 5

[345]

 message)
 print(composed_message)

 def draw_thought_balloon(self, message):
 print('{} thinks: {}'.format(self.nick_name, message))

The AngryCat class declares the __init__ method that overrides the same method
declared in the ComicCharacter superclass. This method uses super().__init__
to invoke the __init__ method of its superclass using nick_name as an argument.
Then, the preceding code assigns the value of the age argument to the age attribute.

The AngryCat class overrides the draw_speech_balloon method. This method
composes a message based on the value of the destination parameter and the
value of the age attribute. The draw_speech_balloon method prints the generated
message. If the destination parameter is not equal to None, the preceding code uses
the value of the nick_name property. In addition, the AngryCat class declares the
code for the draw_thought_balloon method.

The AngryCat class overrides and implements the empty methods declared
in the ComicCharacter class. However, this class also declares an additional
attribute named age.

Declaring a class with multiple base classes
Python allows you to declare a class with multiple base classes or superclasses;
therefore, we can inherit attributes, properties, and methods from more than
one superclass.

We want the previously coded AngryCat class to inherit from the ComicCharacter
class and the GameCharacter class. Thus, we want to use any AngryCat instance
as a comic character and a game character. In order to do so, we must change the
class declaration and add the GameCharacter class to the list of superclasses for this
class, change the code for the __init__ method, and override all the empty methods
declared in the added superclass.

The following line of code shows the new class declaration. This specifies that the
AngryCat class inherits from the ComicCharacter class and the GameCharacter class:

class AngryCat(ComicCharacter, GameCharacter):

Now, we have to make changes to the __init__ method because it worked with
super().__init__ to invoke the __init__ method of its superclass. Now, the
AngryCat class has two superclasses. It is necessary to call the __init__ method for
both superclasses. In addition, we have to add all the arguments required to call the
__init__ method for the added superclass: GameCharacter.

Interfaces, Multiple Inheritance, and Composition

[346]

The following code shows the new version of the __init__ method for the
GameCharacter class:

def __init__(self, nick_name, age, full_name, initial_score, x, y):
 ComicCharacter.__init__(self, nick_name)
 GameCharacter.__init__(self, full_name, initial_score, x, y)
 self.age = age

The new __init__ method receives the nick_name argument required to call
the __init__ method of the ComicCharacter superclass. Note that we use the
ComicCharacter class name to call the __init__ method, and we pass self as
the first argument. This way, we initialize our instance with the ComicChracter.__
init__ method. Note that we don't use super() to call the __init__ method of the
base class because we have two base classes. Also, we need to specify which of them
we want to use to call the __init__ method.

The new __init__ method also receives the arguments required to call the __init__
method of the GameCharacter superclass: full_name, initial_score, x, and y.
We use the GameCharacter class name to call the __init__ method for the second
superclass, and we pass self as the first argument. This way, we initialize our
instance using the GameChracter.__init__ method.

Finally, the new __init__ method also receives an age argument that we use to
initialize an attribute with the same name. This way, we invoked the initializers
of both superclasses and added our own initialization code.

Now, it is necessary to add the code that overrides all the empty methods defined
in the GameCharacter class. We have to add the following code to the body of the
GameCharacter class:

def draw(self, x, y):
 self.x = x
 self.y = y
 print('Drawing AngryCat {} at x: {}, y: {}'.format(
 self.full_name,
 str(self.x),
 str(self.y)))

def move(self, x, y):
 self.x = x
 self.y = y
 print('Moving AngryCat {} to x: {}, y: {}'.format(
 self.full_name,
 str(self.x),

Chapter 5

[347]

 str(self.y)))

def is_intersecting_with(self, other_character):
 return self.x == other_character.x and self.y == other_character.y

The AngryCat class declares the preceding code to override the draw, move, and is_
intersecting_with methods declared in the GameCharacter class. This class uses
multiple inheritance to make AngryCat provide implementations for all the empty
methods declared in its two superclasses: ComicCharacter and GameCharacter.

The following lines show the code for a new AngryCatAlien class that inherits from
the AngryCat class and the Alien class:

class AngryCatAlien(AngryCat, Alien):
 def __init__(self, nick_name, age, full_name, initial_score, x, y,
number_of_eyes):
 AngryCat.__init__(self, nick_name, age, full_name, initial_
score, x, y)
 Alien.__init__(self, number_of_eyes)

 def appear(self):
 print("I'm {} and you can see my {} eyes.".format(
 self.full_name,
 str(self.number_of_eyes)))

 def disappear(self):
 print('{} disappears.'.format(self.full_name))

As a result of the preceding code, we have a new class named AngryCatAlien. This
is a subclass of the AngryCat class and the Alien class. The AngryCatAlien class is
also a subclass of the ComicCharacter class and the GameCharacter class via the
AngryCat superclass.

The __init__ method adds the number_of_eyes argument to the argument list
defined in the __init__ method declared in the AngryCat superclass. We use
the first superclass name called AngryCat to call the __init__ method, and we
pass self as the first argument. This way, we initialize our instance with the
AngryCat.__init__ method.

Then, we use the second superclass class name called Alien to call the __init__
method, and we pass self as the first argument. This way, we initialize our instance
with the Alien.__init__ method. Finally, the AngryCat class overrides the empty
appear and disappear methods declared in the Alien superclass.

Interfaces, Multiple Inheritance, and Composition

[348]

The following lines show the code for a new AngryCatWizard class that inherits from
the AngryCat class and the Wizard class:

class AngryCatWizard(AngryCat, Wizard):
 def __init__(self, nick_name, age, full_name, initial_score, x, y,
spell_power):
 AngryCat.__init__(self, nick_name, age, full_name, initial_
score, x, y)
 Wizard.__init__(self, spell_power)

 def disappear_alien(self, alien):
 print('{} uses his {} to make the alien with {} eyes
disappear.'.format(
 self.full_name,
 self.spell_power,
 alien.number_of_eyes))

The __init__ method adds the spell_power argument to the argument list
defined in the __init__ method declared in the AngryCat superclass. We use
the first superclass name called AngryCat to call the __init__ method, and we
pass self as the first argument. This way, we initialize our instance with the
AngryCat.__init__ method.

Then, we use the second superclass class name called Wizard to call the __init__
method, and we pass self as the first argument. This way, we initialize our instance
with the Wizard.__init__ method. Finally, the AngryCat class overrides the empty
disappear_alien method declared in the Wizard superclass.

The disappear_alien method receives alien as an argument and uses
its number_of_eyes attribute. Thus, any instance of AngryCatAlien would
qualify as an argument for this method because it inherits the attribute from
the Alien superclass.

The following lines show the code for a new AngryCatKnight class that inherits from
the AngryCat class and the Knight class:

class AngryCatKnight(AngryCat, Knight):
 def __init__(self, nick_name, age, full_name, initial_score, x, y,
sword_power, sword_weight):
 AngryCat.__init__(self, nick_name, age, full_name, initial_
score, x, y)
 Knight.__init__(self, sword_power, sword_weight)

 def _write_lines_about_the_sword(self):
 print('{} unsheaths his sword.'.format(self.full_name))
 print('Sword Power: {} Sword Weight: {}'.format(

Chapter 5

[349]

 str(self.sword_power),
 str(self.sword_weight)))

 def unsheath_sword(self, target):
 self._write_lines_about_the_sword()
 if target is not None:
 print('The sword targets an alien with {} eyes.'.format(
 target.number_of_eyes))

The __init__ method adds the sword_power and sword_weight arguments to the
argument list defined in the __init__ method declared in the AngryCat superclass.
We use the first superclass name called AngryCat to call the __init__ method, and
we pass self as the first argument. This way, we initialize our instance with the
AngryCat.__init__ method.

Then, we use the second superclass class name called Knight to call the __init__
method, and we pass self as the first argument. This way, we initialize our instance
with the Knight.__init__ method. Finally, the AngryCatKnight class overrides the
empty unsheath_sword method declared in the Knight superclass.

The unsheath_sword method receives an optional target argument as an argument
and uses its number_of_eyes attribute when it is not equal to None. Thus, any
instance of AngryCatAlien would qualify as an argument for this method because it
inherits the attribute from the Alien superclass. If the target argument is not equal
to None, the unsheath_sword method prints an additional message about the alien
that the sword has a target, specifically, the number of eyes.

The following table summarizes all the superclasses for the classes that we have been
creating. The superclasses column lists all the superclasses via the inheritance chain:

Class name Superclasses
AngryDog ComicCharacter

AngryCat ComicCharacter and GameCharacter
AngryCatAlien ComicCharacter, GameCharacter, AngryCat, and Alien
AngryCatWizard ComicCharacter, GameCharacter, AngryCat, and Wizard
AngryCatKnight ComicCharacter, GameCharacter, AngryCat, and Knight

Interfaces, Multiple Inheritance, and Composition

[350]

Working with instances of classes that use
multiple inheritance
Now, we will work with instances of the previously declared classes. The first
two lines of the following code creates two instances of the AngryDog class named
angry_dog_1 and angry_dog_2. Then, this code calls the draw_speech_balloon
method for angry_dog_1 twice with a different number of arguments. The second
call to this method passes angry_dog_2 as the second argument because angry_
dog_2 is an instance of AngryDog, a class that inherits from the ComicCharacter
class and includes the nick_name property:

angry_dog_1 = AngryDog("Brian")
angry_dog_2 = AngryDog("Merlin")

angry_dog_1.draw_speech_balloon("Hello, my name is " + angry_dog_1.
nick_name, None)
angry_dog_1.draw_speech_balloon("How do you do?", angry_dog_2)
angry_dog_2.draw_thought_balloon("Who are you? I think.")

The following code creates an instance of the AngryCat class named angry_cat_1.
Its nick_name is Garfield. The next line calls the draw_speech_balloon method
for the new instance to introduce Garfield in the comic. Then, angry_dog_1 calls
the draw_speech_balloon method and passes angry_cat_1 as the destination
argument because angry_cat_1 is an instance of AngryCat, a class that inherits from
the ComicCharacter class and includes the nick_name property. Thus, we can also
use instances of AngryCat whenever we need an argument that provides either a
nick_name property or attribute:

angry_cat_1 = AngryCat("Garfield", 10, "Mr. Garfield", 0, 10, 20)
angry_cat_1.draw_speech_balloon("Hello, my name is " + angry_cat_1.
nick_name, None)
angry_dog_1.draw_speech_balloon("Hello " + angry_cat_1.nick_name,
angry_cat_1)

The following code creates an instance of the AngryCatAlien class named
alien_1. Its nick_name is Alien. The next line checks whether the call to the is_
intersecting_with method with the angry_cat_1 parameter returns true. The
is_intersecting_with method requires an instance that provides the x and y
attributes as the argument. We can use angry_cat_1 as the argument because one
of its superclasses is ComicCharacter; therefore, it inherits the attributes of x and y.
The is_intersecting_with method will return true because the x and y attributes
of both instances have the same value. The line in the if block calls the move method
for alien_1. Then, the following code calls the appear method:

alien_1 = AngryCatAlien("Alien", 120, "Mr. Alien", 0, 10, 20, 3)

Chapter 5

[351]

if alien_1.is_intersecting_with(angry_cat_1):
 alien_1.move(angry_cat_1.x + 20, angry_cat_1.y + 20)
alien_1.appear()

The following code creates an instance of the AngryCatWizard class named
wizard_1. Its nick_name is Gandalf. The lines thereafter call the draw method and
then the disappear_alien method with alien_1 as a parameter. The draw method
requires an instance that provides the number_of_eyes attribute as an argument. We
can use alien_1 as the argument because one of its superclasses is Alien; therefore,
it inherits the number_of_eyes attribute. Then, a call to the appear method for
alien1 makes the alien with three eyes appear again:

wizard_1 = AngryCatWizard("Gandalf", 75, "Mr. Gandalf", 10000, 30, 40,
100);
wizard_1.draw(wizard_1.x, wizard_1.y)
wizard_1.disappear_alien(alien_1)
alien_1.appear()

The following code creates an instance of the AngryCatKnight class named
knight_1. Its nick_name is Camelot. The next few lines call the draw method and
then the UnsheathSword method with alien_1 as a parameter. The draw method
requires an instance that provides the number_of_eyes attribute as the argument.
We can use alien_1 as the argument because one of its superclasses is Alien;
therefore, it inherits the number_of_eyes attribute:

knight_1 = AngryCatKnight("Camelot", 35, "Sir Camelot", 5000, 50, 50,
100, 30)
knight_1.draw(knight_1.x, knight_1.y)
knight_1.unsheath_sword(alien_1)

Finally, the following code calls the draw_thought_balloon and draw_speech_
balloon methods for alien_1. We can do this because alien1 is an instance of
AngryCatAlien; this class inherits all the methods from one of its superclasses:
the AngryCat class. These methods were declared as empty methods in the
ComicCharacter class, that is, one of the superclasses of AngryCat. The call to the
draw_speech_balloon method passes knight_1 as the destination argument
because knight_1 is an instance of AngryCatKnight. Thus, we can also use instances
of AngryCatKnight whenever we need an argument that provides either a nick_name
property or attribute:

alien_1.draw_thought_balloon("I must be friendly or I'm dead...")
alien_1.draw_speech_balloon("Pleased to meet you, Sir.", knight_1)

Interfaces, Multiple Inheritance, and Composition

[352]

After you execute all the preceding code snippets, you will see the following lines on
the Python console (see Figure 1):

Brian -> "Hello, my name is Brian"

Brian -> "Merlin, How do you do?"

Merlin ***Who are you? I think.***

Garfield -> "Meow Hello, my name is Garfield"

Brian -> "Garfield, Hello Garfield"

Moving AngryCat Mr. Alien to x: 30, y: 40

I'm Mr. Alien and you can see my 3 eyes.

Drawing AngryCat Mr. Gandalf at x: 30, y: 40

Mr. Gandalf uses his 100 to make the alien with 3 eyes disappear.

I'm Mr. Alien and you can see my 3 eyes.

Drawing AngryCat Sir Camelot at x: 50, y: 50

Sir Camelot unsheaths his sword.

Sword Power: 100 Sword Weight:30

The sword targets an alien with 3 eyes.

Alien thinks: I must be friendly or I'm dead...

Camelot === Alien ---> "Pleased to meet you, Sir."

Figure 1

Chapter 5

[353]

We can use the isinstance function with alien_1. All the following calls to this
function will return True because alien_1 is an instance of the AngryCatAlien
class and inherits from all its superclasses: AngryCat, Knight, ComicCharacter,
and GameCharacter:

isinstance(alien_1, AngryCat)
isinstance(alien_1, ComicCharacter)
isinstance(alien_1, GameCharacter)
isinstance(alien_1, Alien)

Working with abstract base classes
If we want to be stricter and make sure that our classes provide specific methods,
the abc module (abstract base classes) allows you to declare abstract base classes in
Python. For example, we can use all the features included in this module to declare
the ComicCharacter class as an abstract base class in which both draw_speech_
balloon and draw_thought_balloon are abstract methods.

The following lines show the code for a new version of the ComicCharacter class,
which is declared as an abstract base class:

import abc
from abc import ABCMeta
from abc import abstractmethod

class ComicCharacter(metaclass=ABCMeta):
 def __init__(self, nick_name):
 self._nick_name = nick_name

 @abstractmethod
 def draw_speech_balloon(self, message, destination):
 return NotImplemented

 @property
 def nick_name(self):
 return self._nick_name

 @abstractmethod
 def draw_thought_balloon(self, message):
 return NotImplemented

Interfaces, Multiple Inheritance, and Composition

[354]

The class header specifies metaclass=ABCMeta; this is the location in which
we specify the superclass. This way, the abc module registers a class as an
abstract base class and allows you to use specific decorators. Note the usage
of the @absctractmethod decorator in the draw_speech_balloon and
draw_thought_balloon methods to declare them as abstract methods.

As a result of the declaration of the ComicCharacter class with two abstract
methods, Python will raise an error whenever we try to create an instance of
ComicCharacter. For example, we enter the following line in the Python console:

scooby = ComicCharacter("Scooby")

Python will display the TypeError: Can't instantiate abstract class
ComicCharacter with abstract methods draw_speech_balloon, draw_
thought_balloon error message. This way, we can make sure that we just enable
the creation of instances of all the classes that should be instantiated. Without any
additional changes to the subclasses of ComicCharacter, we can make sure that
nobody can create instances of the ComicCharacter abstract base class.

Interfaces and multiple inheritance in C#
You can think of an interface as a special case of an abstract class. An interface defines
properties and methods that a class must implement in order to be considered a
member of a group identified with the interface name.

For example, in C#, the language that supports interfaces, we can create the IAlien
interface that specifies the following elements:

• The NumberOfEyes property
• The parameterless method named Appear
• The parameterless method named Disappear

Once we define an interface, we can use them to specify the required type for an
argument. This way, instead of using classes as types, we can use interfaces as types
and an instance of any class that implements the specific interface as the argument.
For example, if we use IAlien as the required type for an argument, we can pass an
instance of any class that implements IAlien as the argument.

However, you must take into account some limitations of all the interfaces compared
with classes. Interfaces cannot declare constructors, destructors, constants, or fields.
You cannot specify accessibility modifiers in any members of interfaces. You can
declare properties, methods, events, and indexers as members of any interface.

Chapter 5

[355]

Declaring interfaces
Now, it is time to code all the interfaces in C#. The following lines show the
code for the IComicCharacter interface in C#. The public modifier, followed
by the interface keyword and the IComicCharacter interface name composes
the interface declaration. As happens with class declarations, the interface body
is enclosed in curly brackets ({}). By convention, interface names start with an
uppercase I letter:

public interface IComicCharacter
{
 string NickName { get; set; }
 void DrawSpeechBalloon(string message);
 void DrawSpeechBalloon(IComicCharacter destination, string message);
 void DrawThoughtBalloon(string message);
}

The preceding interface declares the NickName string property, the
DrawSpeechBaloon method overloaded twice, and the DrawThoughtBalloon
method. The interface includes only the method declaration because all the classes
that implement the IComicCharacter interface will be responsible for providing the
implementation of the two overloads of the DrawSpeechBalloon method and the
DrawThoughtBalloon method. Note that there is no declaration for any constructor.

The following lines show the code for the IGameCharacter interface in C#:

public interface IGameCharacter
{
 string FullName { get; set; }
 uint Score { get; set; }
 uint X { get; set; }
 uint Y { get; set; }
 void Draw(uint x, uint y);
 void Move(uint x, uint y);
 bool IsIntersectingWith(IGameCharacter otherCharacter);
}

In this case, the interface declaration includes four properties: FullName,
Score, X, and Y. In addition, it also includes three methods: Draw, Move, and
IsIntersectingWith. Note that we don't include access modifiers in either
the four properties or the three methods.

We cannot add access modifiers to different members
of an interface.

Interfaces, Multiple Inheritance, and Composition

[356]

The following lines show the code for the IAlien interface in C#:

public interface IAlien
{
 int NumberOfEyes { get; set; }
 void Appear();
 void Disappear();
}

In this case, the interface declaration includes the NumberOfEyes property and the
Appear method and the Disappear method. Note that we don't include the code
for either the getter or setter methods of the NumberOfEyes property. As happens
with these methods, all the classes that implement the IAlien interface will be
responsible for providing the implementation of the getter and setter methods
for the NumberOfEyes property.

The following lines show the code for the IWizard interface in C#:

public interface IWizard
{
 int SpellPower { get; set; }
 void DisappearAlien(IAlien alien);
}

In this case, the interface declaration includes the SpellPower property and
the DisappearAlien method. As happened in other method declarations
included in previously declared interfaces, we will use an interface name as the
type of an argument in a method declaration. In this case, the alien argument
for the DisappearAlien method is IAlien. Thus, we will be able to call the
DisappearAlien method with any class that implements the IAlien interface.

The following lines show the code for the IKnight interface in C#:

public interface IKnight
{
 int SwordPower { get; set; }
 int SwordWeight { get; set; }
 void UnsheathSword();
 void UnsheathSword(IAlien target);
}

In this case, the interface declaration includes two properties: SwordPower and
SwordWeight and the UnsheathSword method, which is overloaded twice.

Chapter 5

[357]

Declaring classes that implement interfaces
Now, we will declare a class that implements the IComicCharacter interface.
The following lines show the code for the AngryDog class. Instead of specifying
a superclass, the class declaration includes the name of the previously declared
IComicCharacter interface after the AngryDog class name and the colon (:).
We can read the class declaration as, "the AngryDog class implements the
IComicCharacter interface":

public class AngryDog : IComicCharacter
{
 public string NickName { get; set; }

 public AngryDog(string nickName)
 {
 this.NickName = nickName;
 }

 protected void Speak(string message)
 {
 Console.WriteLine("{0} -> \"{1}\"", this.NickName, message);
 }

 protected void Think(string message)
 {
 Console.WriteLine("{0} -> ***{1}***", this.NickName, message);
 }

 public void DrawSpeechBalloon(string message)
 {
 Speak(message);
 }

 public void DrawSpeechBalloon(IComicCharacter destination, string
message)
 {
 Speak(String.Format("{0}, {1}", destination.NickName, message));
 }

 public void DrawThoughtBalloon(string message)
 {
 Think(message);
 }
}

Interfaces, Multiple Inheritance, and Composition

[358]

The AngryDog class declares a constructor that assigns the value of the required
nickName argument to the NickName property. This class uses auto-implemented
properties to declare the NickName property and define both the getter and setter
methods.

The AngryDog class declares the code for the two versions of the DrawSpeechBalloon
method. Both methods call the protected Speak method. This method prints a
message on a console in a specific format that includes the NickName value as the
prefix. In addition, the class declares the code for the DrawThoughtBalloon method
that invokes the protected Think method. This method also prints a message on the
console, which includes the NickName value as the prefix.

The AngryDog class implements the property and all the methods declared in
the IComicCharacter interface. However, this class also declares two protected
members, specifically two protected methods. As long as we implement all the
members declared in the interface or interfaces listed in the class declaration,
we can add any desired additional member to this class.

Now, we will declare another class that implements the same interface that the
AngryDog class implemented, that is, the IComicCharacter interface. The following
lines show the code for the AngryCat class:

public class AngryCat : IComicCharacter
{
 public string NickName { get; set; }
 public int Age { get; set; }

 public AngryCat(string nickName, int age)
 {
 this.NickName = nickName;
 this.Age = age;
 }

 public void DrawSpeechBalloon(string message)
 {
 if (this.Age > 5)
 {
 Console.WriteLine("{0} -> \"Meow {1}\"", this.NickName,
message);
 }
 else
 {
 Console.WriteLine("{0} -> \"Meeeooow Meeeooow {1}\"", this.
NickName, message);
 }

Chapter 5

[359]

 }

 public void DrawSpeechBalloon(IComicCharacter destination, string
message)
 {
 Console.WriteLine("{0} === {1} ---> \"{2}\"", destination.
NickName, this.NickName, message);
 }

 public void DrawThoughtBalloon(string message)
 {
 Console.WriteLine("{0} thinks: {1}", this.NickName, message);
 }
}

The AngryCat class declares a constructor that assigns the value of the required
nickName and age arguments to the properties of NickName and Age. This class
uses auto-implemented properties to declare the properties of NickName and Age
and their getter and setter methods.

The AngryCat class declares the code for the two versions of the DrawSpeechBalloon
method. The version that requires only a message argument uses the value of the
Age property to generate a different message when the Age value is greater than 5.
In addition, this class declares the code for the DrawThoughtBalloon method.

The AngryCat class implements the property and all the methods declared in
the IComicCharacter interface. However, this class also declares an additional
property: Age, which isn't required by the IComicCharacter interface.

If we comment the line that declares the NickName property in the AngryCat class,
the class won't be implementing all the required members of the IComicCharacter
interface:

//public string NickName { get; set; }

If we try to compile the code after commenting the previous line, the IDE will
display the Error 1 ConsoleApplication1.AngryCat' does not implement
interface member 'ConsoleApplication1.IComicCharacter.NickName' error.
Thus, the compiler enforces you to implement all the members of an interface. If we
uncomment the line that declares the NickName property, we will be able to compile
the project again, as shown in the following code:

public string NickName { get; set; }

Interfaces, Multiple Inheritance, and Composition

[360]

Interfaces allow you to make sure that all the classes that
implement them define all the members specified in the
interface. If they don't, the code won't compile.

Working with multiple inheritance
C# doesn't allow you to declare a class with multiple base classes or superclasses;
therefore, there is no support for multiple inheritance of classes. A subclass can
inherit from just one class. However, a class can implement one or more interfaces.
In addition, we can declare classes that inherit from a superclass and implement
one or more interfaces.

We want the AngryCat class to implement the IComicCharacter and
IGameCharacter interfaces. Thus, we want to use any AngryCat instance as the
comic character and the game character. In order to do so, we must change the class
declaration, add the IGameCharacter interface to the list of interfaces implemented
by the AngryCat class, and declare all the members included in this interface in the
AngryCat class.

The following lines show the new class declaration that specifies that the AngryCat
class implements the IComicCharacter interface and the IGameCharacter interface:

public class AngryCat : IComicCharacter, IGameCharacter

If we try to compile a project after changing the class declaration, it won't compile
because we didn't implement all the members required by the IGameCharacter
interface. The IDE will display the following seven errors:

• Error 1: 'ConsoleApplication1.AngryCat' does not implement
interface member 'ConsoleApplication1.IGameCharacter.IsIntersec
tingWith(ConsoleApplication1.IGameCharacter)'

• Error 2: 'ConsoleApplication1.AngryCat' does not implement
interface member 'ConsoleApplication1.IGameCharacter.Move(uint,
uint)'

• Error 3: 'ConsoleApplication1.AngryCat' does not implement
interface member 'ConsoleApplication1.IGameCharacter.Draw(uint,
uint)'

• Error 4: 'ConsoleApplication1.AngryCat' does not implement
interface member 'ConsoleApplication1.IGameCharacter.Y'

• Error 5: 'ConsoleApplication1.AngryCat' does not implement
interface member 'ConsoleApplication1.IGameCharacter.X'

Chapter 5

[361]

• Error 6: 'ConsoleApplication1.AngryCat' does not implement
interface member 'ConsoleApplication1.IGameCharacter.Score'

• Error 7: 'ConsoleApplication1.AngryCat' does not implement
interface member 'ConsoleApplication1.IGameCharacter.FullName'

We have to add the following code to the body of the AngryCat class in order
to implement all the properties specified in the IGameCharacter interface with
auto-implemented properties:

public uint Score { get; set; }
public string FullName { get; set; }
public uint X { get; set; }
public uint Y { get; set; }

We have to add the following code to the body of the AngryCat class to implement
all the methods specified in the IGameCharacter interface:

public void Draw(uint x, uint y)
{
 X = x;
 Y = y;
 Console.WriteLine("Drawing AngryCat {0} at x: {1}, y: {2}", this.
FullName, x, y);
}

public void Move(uint x, uint y)
{
 X = x;
 Y = y;
 Console.WriteLine("Moving AngryCat {0} to x: {1}, y: {2}", this.
FullName, x, y);
}

public bool IsIntersectingWith(IGameCharacter otherCharacter)
{
 return (this.X == otherCharacter.X) && (this.Y == otherCharacter.Y);
}

Now, the AngryCat class declares the code for all the three methods: Draw, Move,
and IsIntersectingWith. These are required to comply with the IGameCharacter
interface. Finally, it is necessary to replace the previous constructor with a new one
that requires additional arguments and sets the initial values of the recently added
properties. The following lines show the code for the new constructor:

public AngryCat(string nickName, int age, string fullName, uint
initialScore, uint x, uint y)

Interfaces, Multiple Inheritance, and Composition

[362]

{
 this.NickName = nickName;
 this.Age = age;
 this.FullName = fullName;
 this.Score = initialScore;
 this.X = x;
 this.Y = y;
}

The new constructor assigns the value of all the additionally required arguments:
fullName, score, x, and y to the FullName, InitialScore, X, and Y properties. Thus,
we will need to specify more arguments whenever we want to create an instance of
the AngryCat class.

The following lines show the code for a new AngryCatAlien class that inherits
from the AngryCat class and implements the IAlien interface. Note that the class
declaration includes the AngryCat superclass and the implemented IAlien interface
separated by a comma after the colon (:):

public class AngryCatAlien : AngryCat, IAlien
{
 public int NumberOfEyes { get; set; }

 public AngryCatAlien(string nickName, int age, string fullName, uint
initialScore, uint x, uint y, int numberOfEyes)
 : base(nickName, age, fullName, initialScore, x, y)
 {
 this.NumberOfEyes = numberOfEyes;
 }

 public void Appear()
 {
 Console.WriteLine("I'm {0} and you can see my {1} eyes.", this.
FullName, this.NumberOfEyes);
 }

 public void Disappear()
 {
 Console.WriteLine("{0} disappears.", this.FullName);
 }
}

Chapter 5

[363]

As a result of the previous code, we have a new class named AngryCatAlien that
implements the following interfaces:

• IComicCharacter: This interface is implemented by the AngryCat superclass
and inherited by AngryCatAlien

• IGameCharacter: This interface is implemented by the AngryCat superclass
and inherited by AngryCatAlien

• IAlien: This interface is implemented by AngryCatAlien

The new constructor adds the numberOfEyes argument to the argument list defined in
the base constructor, that is, the constructor defined in the AngryCat superclass. In this
case, the constructor calls the base constructor. Then, it initializes the NumberOfEyes
property with the value received in the numberOfEyes argument. The AngryCat class
implements the Appear and Disappear methods required by the IAlien interface.

The following lines show the code for the new AngryCatWizard class that inherits
from the AngryCat class and implements the IWizard interface. Note that the
class declaration includes the AngryCat superclass and the implemented IWizard
interface separated by a comma after the colon (:):

public class AngryCatWizard : AngryCat, IWizard
{
 public int SpellPower { get; set; }

 public AngryCatWizard(string nickName, int age, string fullName,
uint initialScore, uint x, uint y, int spellPower)
 : base(nickName, age, fullName, initialScore, x, y)
 {
 this.SpellPower = spellPower;
 }

 public void DisappearAlien(IAlien alien)
 {
 Console.WriteLine(
 "{0} uses his {1} spell power to make the alien with {2} eyes
disappear.",
 this.FullName,
 this.SpellPower,
 alien.NumberOfEyes);
 }
}

Interfaces, Multiple Inheritance, and Composition

[364]

As happened with the AngryCatAlien class, the new AngryCatWizard class
implements three interfaces. Two of these interfaces are implemented by the
AngryCat superclass and inherited by AngryCatWizard: IComicCharacter
and IGameCharacter. The AngryCatWizard class adds the implementation
of the IWizard interface.

The constructor adds a spellPower argument to the argument list defined in the
base constructor, that is, the constructor defined in the AngryCat superclass. The
constructor calls the base constructor and then initializes the SpellPower property
with the value received in the spellPower argument. The AngryCatWizard class
implements the DisappearAlien method required by the IWizard interface.

The DisappearAlien method receives the IAlien interface as the argument. Thus,
any instance of AngryCatAlien would qualify as the argument for this method, that
is, any instance of any class that implements the IAlien interface.

The following lines show the code for the new AngryCatKnight class that inherits
from the AngryCat class and implements the IKnight interface. Note that the
class declaration includes the AngryCat superclass and the implemented IKnight
interface separated by a comma after the colon (:):

public class AngryCatKnight : AngryCat, IKnight
{
 public int SwordPower { get; set; }
 public int SwordWeight { get; set; }

 public AngryCatKnight(
 string nickName, int age, string fullName,
 uint initialScore, uint x, uint y,
 int swordPower, int swordWeight)
 : base(nickName, age, fullName, initialScore, x, y)
 {
 this.SwordPower = swordPower;
 this.SwordWeight = swordWeight;
 }

 private void WriteLinesAboutTheSword()
 {
 Console.WriteLine(
 "{0} unsheaths his sword.",
 this.FullName);
 Console.WriteLine(
 "Sword power: {0}. Sword Weight: {1}.",
 this.SwordPower,
 this.SwordWeight);

Chapter 5

[365]

 }

 public void UnsheathSword()
 {
 this.WriteLinesAboutTheSword();
 }

 public void UnsheathSword(IAlien target)
 {
 this.WriteLinesAboutTheSword();
 Console.WriteLine(
 "The sword targets an alien with {0} eyes.",
 target.NumberOfEyes);
 }
}

As happened with the two previously coded classes that inherited from the AngryCat
class and implemented an interface, the new AngryCatKnight class implements
three interfaces. Two of these interfaces are implemented by the AngryCat superclass
and inherited by AngryCatKnight: IComicCharacter and IGameCharacter. The
AngryCatKnight class adds the implementation of the IKnight interface.

The constructor adds the swordPower and swordWeight arguments to the
argument list defined in the base constructor, that is, the constructor defined in the
AngryCat superclass. This constructor calls the base constructor and then initializes
the SwordPower and SwordWeight properties with the values received in the
swordPower and swordHeight arguments.

The AngryCat class implements the two versions of the UnsheathSword
method required by the IKnight interface. Both methods call the private
WriteLinesAboutTheSword method and the overloaded version that receives
the IAlien interface as the argument. It prints an additional message about the
alien that the sword has a target: the number of eyes.

The following table summarizes all the interfaces implemented by each of the classes
that we have been creating:

Class name Implemented interfaces
AngryDog IComicCharacter

AngryCat IComicCharacter and IGameCharacter
AngryCatAlien IComicCharacter, IGameCharacter, and IAlien
AngryCatWizard IComicCharacter, IGameCharacter, and IWizard
AngryCatKnight IComicCharacter, IGameCharacter, and IKnight

Interfaces, Multiple Inheritance, and Composition

[366]

Working with methods that receive interfaces
as arguments
The following lines show the code for the Main method of a console application that
uses all the previously declared classes:

public static void Main(string[] args)
{
 var angryDog1 = new AngryDog("Brian");
 var angryDog2 = new AngryDog("Merlin");

 angryDog1.DrawSpeechBalloon(String.Format("Hello, my name is {0}",
angryDog1.NickName));
 angryDog1.DrawSpeechBalloon(angryDog2, "How do you do?");
 angryDog2.DrawThoughtBalloon("Who are you? I think.");

 var angryCat1 = new AngryCat("Garfield", 10, "Mr. Garfield", 0, 10,
20);
 angryCat1.DrawSpeechBalloon(String.Format("Hello, my name is {0}",
angryCat1.NickName));
 angryDog1.DrawSpeechBalloon(angryCat1, String.Format("Hello {0}",
angryCat1.NickName));

 var alien1 = new AngryCatAlien("Alien", 120, "Mr. Alien", 0, 10, 20,
3);
 if (alien1.IsIntersectingWith(angryCat1))
 {
 alien1.Move(angryCat1.X + 20, angryCat1.Y + 20);
 }
 alien1.Appear();

 var wizard1 = new AngryCatWizard("Gandalf", 75, "Mr. Gandalf",
10000, 30, 40, 100);
 wizard1.Draw(wizard1.X, wizard1.Y);
 wizard1.DisappearAlien(alien1);

 alien1.Appear();
 var knight1 = new AngryCatKnight("Camelot", 35, "Sir Camelot", 5000,
50, 50, 100, 30);
 knight1.Draw(knight1.X, knight1.Y);
 knight1.UnsheathSword(alien1);

 alien1.DrawThoughtBalloon("I must be friendly or I'm dead...");
 alien1.DrawSpeechBalloon(knight1, "Pleased to meet you, Sir.");
 Console.ReadLine();
}

Chapter 5

[367]

After you execute the previous console application, you will see the following output
on the console output:

Brian -> "Hello, my name is Brian"

Brian -> "Merlin, How do you do?"

Merlin -> ***Who are you? I think.***

Garfield -> "Meow Hello, my name is Garfield"

Brian -> "Garfield, Hello Garfield"

Moving AngryCat Mr. Alien to x: 30, y: 40

I'm Mr. Alien and you can see my 3 eyes.

Drawing AngryCat Mr. Gandalf at x: 30, y: 40

Mr. Gandalf uses his 100 spell power to make the alien with 3 eyes
disappear.

I'm Mr. Alien and you can see my 3 eyes.

Drawing AngryCat Sir Camelot at x: 50, y: 50

Sir Camelot unsheaths his sword.

Sword power: 100. Sword Weight: 30.

The sword targets an alien with 3 eyes.

Alien thinks: I must be friendly or I'm dead...

Camelot === Alien ---> "Pleased to meet you, Sir."

The first two lines create two instances of the AngryDog class: angryDog1 and
angryDog2. Then, the code calls the two versions of the DrawSpeechBalloon
method for angryDog1. The second call to this method passes angryDog2 as the
IComicCharacter argument because angryDog2 is an instance of AngryDog, a
class that implements the IComicCharacter interface:

var angryDog1 = new AngryDog("Brian");
var angryDog2 = new AngryDog("Merlin");
angryDog1.DrawSpeechBalloon(String.Format("Hello, my name is {0}",
angryDog1.NickName));
angryDog1.DrawSpeechBalloon(angryDog2, "How do you do?");
angryDog2.DrawThoughtBalloon("Who are you? I think.");

Bear in mind that when we work with interfaces, we use them to
specify the argument types instead of using class names. Multiple
classes can implement a single interface; therefore, instances of
different classes can qualify as an argument of a specific interface.

Interfaces, Multiple Inheritance, and Composition

[368]

The first line in the following code creates an instance of the AngryCat class called
angryCat1. Its NickName is Garfield. The next line calls the DrawSpeechBalloon
method for the new instance to introduce Garfield as a comic character. Then,
angryDog1 calls the DrawSpeechBalloon method and passes angryCat1 as the
IComicCharacter argument because angryCat1 is an instance of AngryCat, a class
that implements the IComicCharacter interface. Thus, we can also use instances of
AngryCat whenever we need the IComicCharacter argument:

var angryCat1 = new AngryCat("Garfield", 10, "Mr. Garfield", 0, 10,
20);
angryCat1.DrawSpeechBalloon(String.Format("Hello, my name is {0}",
angryCat1.NickName));
angryDog1.DrawSpeechBalloon(angryCat1, String.Format("Hello {0}",
angryCat1.NickName));

The first line in the following code creates an instance of the AngryCatAlien class
named alien1. Its NickName is Alien. The next line checks whether the call to the
IsIntersectingWith method with angryCat1 as a parameter returns true. The
IsIntersectingWith method requires the IComicCharacter argument; therefore,
we can use angryCat1. This method will return true because the X and Y properties
of both instances have the same value. The line in the if block calls the Move method
for alien1. Then, the code calls the Appear method:

var alien1 = new AngryCatAlien("Alien", 120, "Mr. Alien", 0, 10, 20,
3);
if (alien1.IsIntersectingWith(angryCat1))
{
 alien1.Move(angryCat1.X + 20, angryCat1.Y + 20);
}
alien1.Appear();

The first line in the following code creates an instance of the AngryCatWizard
class named wizard1. Its NickName is Gandalf. The next line calls the Draw
method and then the DisappearAlien method with alien1 as the parameter.
The DisappearAlien method requires the IAlien argument; therefore, we can
use alien1, the previously created instance of AngryCatAlien that implements the
IAlien interface. Then, a call to the Appear method for alien1 makes the alien with
three eyes appear again:

var wizard1 = new AngryCatWizard("Gandalf", 75, "Mr. Gandalf", 10000,
30, 40, 100);
wizard1.Draw(wizard1.X, wizard1.Y);
wizard1.DisappearAlien(alien1);
alien1.Appear();

Chapter 5

[369]

The first line in the following code creates an instance of the AngryCatKnight class
named knight1. Its NickName is Camelot. The next few lines call the Draw method
and then the UnsheathSword method with alien1 as the parameter. The method
requires the IAlien argument; therefore, we can use alien1, the previously created
instance of AngryCatAlien that implements the IAlien interface:

var knight1 = new AngryCatKnight("Camelot", 35, "Sir Camelot", 5000,
50, 50, 100, 30);
knight1.Draw(knight1.X, knight1.Y);
knight1.UnsheathSword(alien1);

Finally, the code calls the DrawThoughtBalloon and DrawSpeechBalloon methods
for alien1. We can do this because alien1 is an instance of AngryCatAlien;
this class inherits the implementation of the IComicCharacter interface from its
AngryCat superclass. The call to the DrawSpeechBalloon method passes knight1 as
the IComicCharacter argument because knight1 is an instance of AngryCatKnight,
a class that also inherits the implementation of the IComicCharacter interface
from its AngryCat superclass. Thus, we can also use instances of AngryCatKnight
whenever we need the IComicCharacter argument.

Working with composition in JavaScript
As previously explained, JavaScript doesn't provide support for interfaces or
multiple inheritance. JavaScript allows you to add properties and methods on the
fly; therefore, we might create a function that takes advantage of this possibility
to emulate multiple inheritance and generate an object that combines two existing
objects, a technique known as mix-in.

However, instead of creating functions to create a mix-in, we will create constructor
functions and use compositions to access objects within objects. We want to create an
application by taking advantage of the feature provided by JavaScript.

Declaring base constructor functions for
composition
The following lines show the code for the ComicCharacter constructor function
in JavaScript:

function ComicCharacter(nickName) {
 this.nickName = nickName;
}

Interfaces, Multiple Inheritance, and Composition

[370]

The constructor function receives the nickName argument and uses this value to
initialize the nickName field.

The following lines show the code for the GameCharacter constructor function
in JavaScript:

function GameCharacter(fullName, initialScore, x, y) {
 this.fullName = fullName;
 this.initialScore = initialScore;
 this.x = x;
 this.y = y;
}

The constructor function receives four arguments: fullName, score, x, and y and
uses these values to initialize fields with the same name.

The following lines show the code for the Alien constructor function in JavaScript:

function Alien(numberOfEyes) {
 this.numberOfEyes = numberOfEyes;
}

The constructor function receives the numberOfEyes argument and uses this value to
initialize the numberOfEyes field.

The following lines show the code for the Wizard constructor function in JavaScript:

function Wizard(spellPower) {
 this.spellPower = spellPower;
}

The constructor function receives the spellPower argument and uses this value to
initialize the spellPower field.

The following lines show the code for the Knight constructor function in JavaScript:

function Knight(swordPower, swordHeight) {
 this.swordPower = swordPower;
 this.swordHeight = swordHeight;
}

The constructor function receives two arguments: swordPower and swordHeight.
The function uses these values to initialize fields with the same name.

We declared five constructor functions that receive arguments and initialize fields
with the same name used for all the arguments. We will use these constructor
functions to create instances that we will save within fields of other objects.

Chapter 5

[371]

Declaring constructor functions that use
composition
Now, we will declare a constructor function that saves the ComicCharacter instance
in the comicCharacter field. The following lines show the code for the AngryDog
constructor function:

function AngryDog(nickName) {
 this.comicCharacter = new ComicCharacter(nickName);

 Object.defineProperty(this, "nickName", {
 get: function() {
 return this.comicCharacter.nickName;
 }
 });

 this.drawSpeechBalloon = function(message, destination) {
 var composedMessage = "";
 if (destination) {
 composedMessage = destination.nickName + ", " + message;
 } else {
 composedMessage = message;
 }
 console.log(this.nickName + ' -> "' + composedMessage + '"');
 }

 this.drawThoughtBalloon = function(message) {
 console.log(this.nickName + ' ***' + message + '***')
 }
}

The AngryDog constructor function receives nickName as its argument. The function
uses this argument to call the ComicCharacter constructor function in order to
create an instance and save it in the comicCharacter field.

The preceding code defines a nickName read-only property whose getter function
returns the value of the nickName field of the previously created ComicCharacter
object, which is accessed through this.comicCharacter.nickName. This way,
whenever we create the AngryDog object and retrieve the value of its nickname
property, the instance will use the saved ComicCharacter object to return the
value of its nickName field.

Interfaces, Multiple Inheritance, and Composition

[372]

The AngryDog constructor function declares the drawSpeechBalloon method. This
method composes a message based on the value of the message and destination
parameters and prints a message in a specific format that includes the nickName
value as its prefix. If the destination parameter is specified, the preceding code
uses the value of the nickName field or property.

In addition, the constructor function declares the code for the drawThoughtBalloon
method. This method also prints a message with the nickName value as its
prefix. So, the AngryDog constructor function defines two methods that use the
ComicCharacter object to access its nickName field through the nickName property.

Now, we will declare another constructor function that saves the ComicCharacter
instance in the comicCharacter field. The following lines show the code for the
AngryCat constructor function:

function AngryCat(nickName, age) {
 this.comicCharacter = new ComicCharacter(nickName);
 this.age = age;

 Object.defineProperty(this, "nickName", {
 get: function() {
 return this.comicCharacter.nickName;
 }
 });

 this.drawSpeechBalloon = function(message, destination) {
 var composedMessage = "";
 if (destination) {
 composedMessage = destination.nickName + ' === ' +
 this.nickName + ' ---> "' + message + '"';
 } else {
 composedMessage = this.nickName + ' -> "';
 if (this.age > 5) {
 composedMessage += "Meow";
 } else {
 composedMessage += "Meeeooow Meeeooow";
 }
 composedMessage += ' ' + message + '"';
 }
 console.log(composedMessage);
 }

 this.drawThoughtBalloon = function(message) {
 console.log(this.comicCharacter.nickName + ' ***' + message +
'***');
 }
}

Chapter 5

[373]

The AngryCat constructor function receives two arguments: nickName and age.
This function uses the nickname argument to call the ComicCharacter constructor
function in order to create an instance and save it in the comicCharacter field. The
code initializes the age field with the value received in the age argument.

As happened in the AngryCat constructor function, the preceding code also defines
the nickName read-only property whose getter function returns the value of the
nickName field of the previously created ComicCharacter object, which is accessed
through this.comicCharacter.nickName. This way, whenever we create an
AngryCat object and retrieve the value of its nickname property, the instance will use
the saved ComicCharacter object to return the value of its nickName field.

The AngryDog constructor function declares the drawSpeechBalloon method that
composes a message based on the value of the age attribute and the values of the
message and destination parameters. The drawSpeechBalloon method prints
a message in a specific format that includes the nickName value as its prefix. If the
destination parameter is specified, the code uses the value of the nickName field
or property.

In addition, the constructor function declares the code for the drawThoughtBalloon
method. This method also prints a message including the nickName value as its
prefix. So, as happened with AngryDog, the AngryCat constructor function defines
two methods that use the ComicCharacter object to access its nickName field
through the nickName property.

Working with an object composed of many
objects
We want the previously coded AngryCat constructor function to be able to
work as both the comic and game character. In order to do so, we will add some
arguments to the constructor function and save the GameCharacter instance in the
gameCharacter field (among other changes). Here is the code for the new AngryCat
constructor function:

function AngryCat(nickName, age, fullName, initialScore, x, y) {
 this.comicCharacter = new ComicCharacter(nickName);
 this.gameCharacter = new GameCharacter(fullName, initialScore, x,
y);
 this.age = age;

Interfaces, Multiple Inheritance, and Composition

[374]

We added the necessary arguments: fullName, initialScore, x, and y to create
the GameCharacter object. This way, we have access to the GameCharacter object
through this.gameCharacter. The following code adds the same read-only
nickName property that we defined in the previous version of the constructor
function and four additional properties:

 Object.defineProperty(this, "nickName", {
 get: function() {
 return this.comicCharacter.nickName;
 }
 });

 Object.defineProperty(this, "fullName", {
 get: function() {
 return this.gameCharacter.fullName;
 }
 });

 Object.defineProperty(this, "score", {
 get: function() {
 return this.gameCharacter.score;
 },
 set: function(val) {
 this.gameCharacter.score = val;
 }
 });

 Object.defineProperty(this, "x", {
 get: function() {
 return this.gameCharacter.x;
 },
 set: function(val) {
 this.gameCharacter.x = val;
 }
 });

 Object.defineProperty(this, "y", {
 get: function() {
 return this.gameCharacter.y;
 },
 set: function(val) {
 this.gameCharacter.y = val;
 }
 });

Chapter 5

[375]

The preceding code defines the fullName read-only property whose getter function
returns the value of the fullName field of the previously created GameCharacter
object, which is accessed through this.gameCharacter.fullName. This way,
whenever we create the AngryCat object and retrieve the value of its fullName
property, the instance will use the saved GameCharacter object to return the value
of its fullName field. The other three new properties (score, x, and y) use the same
technique with the difference that they also define setter methods that assign a new
value to the field with the same name defined in the GameCharacter object.

In this case, the GameCharacter object uses fields and doesn't define properties with
a specific code—such as validations—in the setter method. However, imagine a more
complex scenario in which the GameCharacter object requires many validations
and defines properties instead of fields. We would be reusing these validations by
delegating the getter and setter methods to the GameCharacter object just by reading
and writing to its properties.

The following code defines the methods that we defined in the previous version of
the constructor function:

this.drawSpeechBalloon = function(message, destination) {
 var composedMessage = "";
 if (destination) {
 composedMessage = destination.nickName + ' === ' +
 this.nickName + ' ---> "' + message + '"';
 } else {
 composedMessage = this.nickName + ' -> "';
 if (this.age > 5) {
 composedMessage += "Meow";
 } else {
 composedMessage += "Meeeooow Meeeooow";
 }
 composedMessage += ' ' + message + '"';
 }
 console.log(composedMessage);
}

this.drawThoughtBalloon = function(message) {
 console.log(this.nickName + ' ***' + message + '***');
}

Interfaces, Multiple Inheritance, and Composition

[376]

The following code declares three methods: draw, move, and isIntersectingWith.
These methods access the previously defined properties of fullName, x, and y:

this.draw = function(x, y) {
 this.x = x;
 this.y = y;
 console.log("Drawing AngryCat " + this.fullName +
 " at x: " + this.x +
 ", y: " + this.y);
}

this.move = function(x, y) {
 this.x = x;
 this.y = y;
 console.log("Drawing AngryCat " + this.fullName +
 " at x: " + this.x +
 ", y: " + this.y);
}

this.isIntersectingWith = function(otherCharacter) {
 return ((this.x == otherCharacter.x) &&
 (this.y == otherCharacter.y));
}

JavaScript allows you to add attributes, properties, and methods
to any object at any time. We take advantage of this feature to
extend the object created with the AngryCat constructor function
to AngryCat + Alien, AngryCat + Wizard, and AngryCat
+ Knight. We will create and save an instance of the Alien,
Wizard, or Knight objects and add the necessary methods and
properties to extend our AngryCat object on the fly.

The following code declares the createAlien method that receives the
numberOfEyes argument. The method calls the Alien constructor function with
the numberOfEyes value received in the argument and saves the Alien instance in
the alien field. The next few lines add the numberOfEyes property. This works as
a bridge to the this.alien.numberOfEyes attribute. The following code also adds
two methods: appear and disappear:

this.createAlien = function(numberOfEyes) {
 this.alien = new Alien(numberOfEyes);

 Object.defineProperty(this, "numberOfEyes", {
 get: function() {
 return this.alien.numberOfEyes;

Chapter 5

[377]

 },
 set: function(val) {
 this.alien.numberOfEyes = val;
 }
 });

 this.appear = function() {
 console.log("I'm " + this.fullName +
 " and you can see my " + this.numberOfEyes +
 " eyes.");
 }

 this.disappear = function() {
 console.log(this.fullName + " disappears.");
 }
}

The following code declares the createWizard method that receives the
spellPower argument. The method calls the Wizard constructor function with
the spellPower value received in the argument and saves the Wizard instance
in the wizard field. The next few lines add the spellPower property. This works
as a bridge to the this.wizard.spellPower attribute. The following code also
adds the disappearAlien method that receives the alien argument and uses its
numberOfEyes field:

this.createWizard = function(spellPower) {
 this.wizard = new Wizard(spellPower);

 Object.defineProperty(this, "spellPower", {
 get: function() {
 return this.wizard.spellPower;
 },
 set: function(val) {
 this.wizard.spellPower = val;
 }
 });

 this.disappearAlien = function(alien) {
 console.log(this.fullName + " uses his " +
 this.spellPower + " to make the alien with " +
 alien.numberOfEyes + " eyes disappear.");
 }
}

Interfaces, Multiple Inheritance, and Composition

[378]

Finally, the following code declares the createKnight method. This method
receives two arguments: swordPower and swordHeight and calls the Knight
constructor function with the swordPower and swordHeight values received in
all the arguments and saves the Knight instance in the knight field. The next few
lines add the swordPower and swordHeight properties that work as a bridge to
the this.wizard.swordPower and this.wizard.swordHeight attributes. The
following code also adds the unsheathSword method. This method receives the
target argument and uses its numberOfEyes field and calls another new method:
writeLinesAboutTheSword. Note that with the following lines, we finish the code
for the AngryCat constructor function:

 this.createKnight = function(swordPower, swordHeight) {
 this.knight = new Knight(swordPower, swordHeight);

 Object.defineProperty(this, "swordPower", {
 get: function() {
 return this.knight.swordPower;
 },
 set: function(val) {
 this.knight.swordPower = val;
 }
 });

 Object.defineProperty(this, "swordHeight", {
 get: function() {
 return this.knight.swordHeight;
 },
 set: function(val) {
 this.knight.swordHeight = val;
 }
 });

 this.writeLinesAboutTheSword = function() {
 console.log(this.fullName + " unsheaths his sword.");
 console.log("Sword Power: " + this.swordPower +
 ". Sword Weight: " + this.swordWeight);
 };

 this.unsheathSword = function(target) {
 this.writeLinesAboutTheSword();
 if (target) {

Chapter 5

[379]

 console.log("The sword targets an alien with " +
 target.numberOfEyes + " eyes.");
 }
 }
 }
}

Now, we will code three new constructor functions: AngryCatAlien, AngryCatWizard,
and AngryCatKnight. These constructor functions allows you to easily create instances
of AngryCat + Alien, AngryCat + Wizard, and AngryCat + Knight.

The following lines show the code for the AngryCatAlien constructor function, which
receives all the necessary arguments to call the AngryCat constructor function. Then,
it calls the createAlien method for the created object. Finally, the following code
returns the object after the call to createAlien that added properties and methods:

var AngryCatAlien = function(nickName, age, fullName, initialScore, x,
y, numberOfEyes) {
 var alien = new AngryCat(nickName, age, fullName, initialScore, x,
y);
 alien.createAlien(numberOfEyes);
 return alien;
}

The following lines show the code for the AngryCatWizard constructor function, which
receives all the necessary arguments to call the AngryCat constructor function. Then,
it calls the createWizard method for the created object. Finally, the following code
returns the object after the call to createWizard that added properties and methods:

var AngryCatWizard = function(nickName, age, fullName, initialScore,
x, y, spellPower) {
 var wizard = new AngryCat(nickName, age, fullName, initialScore, x,
y);
 wizard.createWizard(spellPower);
 return wizard;
}

Interfaces, Multiple Inheritance, and Composition

[380]

The following lines show the code for the AngryCatKnight constructor function.
This function receives all the necessary arguments to call the AngryCat constructor
function. Then, it calls the createKnight method for the created object. Finally,
the following code returns the object after the call to createKnight that added
properties and methods:

var AngryCatKnight = function(nickName, age, fullName, initialScore,
x, y, swordPower, swordHeight) {
 var knight = new AngryCat(nickName, age, fullName, initialScore, x,
y);
 knight.createKnight(swordPower, swordHeight);
 return knight;
}

The following table summarizes the objects that are included in other objects after we
create instances with all the different constructor functions:

Constructor function Includes instances of
AngryDog ComicCharacter

AngryCat ComicCharacter and GameCharacter
AngryCatAlien AngryCat, ComicCharacter, GameCharacter, and Alien
AngryCatWizard AngryCat, ComicCharacter, GameCharacter, and Wizard
AngryCatKnight AngryCat, ComicCharacter, GameCharacter, and Knight

Working with instances composed of many
objects
Now, we will work with instances created using all the previously declared
constructor functions. In the following code, the first two lines create two
AngryDog objects named angryDog1 and angryDog2. Then, the code calls the
drawSpeechBalloon method for angryDog1 twice with a different number of
arguments. The second call to this method passes angryDog2 as the second argument
because angryDog2 is an AngryDog object and includes the nickName property:

var angryDog1 = new AngryDog("Brian");
var angryDog2 = new AngryDog("Merlin");

angryDog1.drawSpeechBalloon("Hello, my name is " + angryDog1.
nickName);
angryDog1.drawSpeechBalloon("How do you do?", angryDog2);
angryDog2.drawThoughtBalloon("Who are you? I think.");

Chapter 5

[381]

The following code creates the AngryCat object named angryCat1. Its nickName
is Garfield. The next line calls the drawSpeechBalloon method for the new
instance to introduce Garfield in the comic character. Then, angryDog1 calls the
drawSpeechBalloon method and passes angryCat1 as the destination argument
because angryCat1 is the AngryCat object and includes the nickName property.
Thus, we can also use AngryCat objects whenever we need the argument that
provides the nickName property or field:

var angryCat1 = new AngryCat("Garfield", 10, "Mr. Garfield", 0, 10,
20);
angryCat1.drawSpeechBalloon("Hello, my name is " + angryCat1.
nickName);
angryDog1.drawSpeechBalloon("Hello " + angryCat1.NickName, angryCat1);

The following code creates the AngryCatAlien object named alien1. Its nickName
is Alien. The next few lines check whether the call to the isIntersectingWith
method with angryCat1 as its parameter returns true. The method requires an
instance that provides the x and y fields or properties as the argument. We can use
angryCat1 as the argument because one of its included objects is ComicCharacter;
therefore, it provides the x and y attributes. This method will return true because
the x and y properties of both instances have the same value. The line within the
if block calls the move method for alien1. Then, the following code also calls the
appear method:

var alien1 = AngryCatAlien("Alien", 120, "Mr. Alien", 0, 10, 20, 3);
if (alien1.isIntersectingWith(angryCat1)) {
 alien1.move(angryCat1.x + 20, angryCat1.y + 20);
}
alien1.appear();

The first line in the following code creates the AngryCatWizard object named
wizard1. Its nickName is Gandalf. The next lines call the draw method and then the
disappearAlien method with alien1 as the parameter. The method requires an
instance that provides the numberOfEyes field or property as the argument. We can
use alien1 as the argument because one of its included objects is Alien; therefore, it
includes the numberOfEyes field or property. Then, a call to the appear method for
alien1 makes the alien with three eyes appear again:

var wizard1 = new AngryCatWizard("Gandalf", 75, "Mr. Gandalf", 10000,
30, 40, 100);
wizard1.draw(wizard1.x, wizard1.y);
wizard1.disappearAlien(alien1);
alien1.appear();

Interfaces, Multiple Inheritance, and Composition

[382]

The first line in the following code creates the AngryCatKnight object named
knight1. Its nickName is Camelot. The next lines call the draw method and then
the unsheathSword method with alien1 as the parameter. The method requires an
instance that provides the numberOfEyes field or property as the argument. We can
use alien1 as the argument because one of its included objects is Alien; therefore, it
includes the numberOfEyes attribute:

var knight1 = new AngryCatKnight("Camelot", 35, "Sir Camelot", 5000,
50, 50, 100, 30);
knight1.draw(knight1.x, knight1.y);
knight1.unsheathSword(alien1);

Finally, the following code calls the drawThoughtBalloon and drawSpeechBalloon
methods for alien1. We can do this because alien1 is the AngryCatAlien object
and includes the methods defined in the AngryCat constructor function. The call
to the drawSpeechBalloon method passes knight1 as the destination argument
because knight1 is the AngryCatKnight object. Thus, we can also use instances
of AngryCatKnight whenever we need an argument that provides the nickName
property or field:

alien1.drawThoughtBalloon("I must be friendly or I'm dead...");
alien1.drawSpeechBalloon("Pleased to meet you, Sir.", knight1);

After you execute all the preceding code snippets, you will see the following output
on the JavaScript console (see Figure 2):

Brian -> "Hello, my name is Brian"

Brian -> "Merlin, How do you do?"

Merlin ***Who are you? I think.***

Garfield -> "Meow Hello, my name is Garfield"

Brian -> "Garfield, Hello undefined"

Drawing AngryCat Mr. Alien at x: 30, y: 40

I'm Mr. Alien and you can see my 3 eyes.

Drawing AngryCat Mr. Gandalf at x: 30, y: 40

Mr. Gandalf uses his 100 to make the alien with 3 eyes disappear.

I'm Mr. Alien and you can see my 3 eyes.

Drawing AngryCat Sir Camelot at x: 50, y: 50

Sir Camelot unsheaths his sword.

Sword Power: 100. Sword Weight: undefined

Chapter 5

[383]

The sword targets an alien with 3 eyes.

Alien ***I must be friendly or I'm dead...***

Camelot === Alien ---> "Pleased to meet you, Sir."

Figure 2

Interfaces, Multiple Inheritance, and Composition

[384]

Summary
In this chapter, you learned how to declare and combine multiple blueprints to
generate a single instance. We worked with multiple inheritance of classes in Python.
You also learned how to transform a base class to an abstract base class. We declared
interfaces in C#. Then, we implemented them with different classes. We also combined
interfaces with classes to take advantage of multiple inheritance in C#.

We took advantage of the flexibility of JavaScript that allowed us to add properties
and methods to an existing object. We combined constructor functions with
composition to generate all the necessary blueprints for our application without
creating complex functions that emulate multiple inheritance in a language that
wasn't designed with this feature in mind.

Now that we have learned about interfaces, multiple inheritance and composition,
we are ready to work with duck typing and generics, which is the topic of the
next chapter.

[385]

Duck Typing and Generics
In this chapter, we will write code that we will maximize code reuse by
writing code capable of working with objects of different types. We will take
advantage of the different mechanisms to maximize code reuse in each of the
three covered programming languages: Python, JavaScript, and C#. We will
cover the following topics :

• Understanding parametric polymorphism and generics
• Understanding duck typing
• Working with duck typing in Python
• Working with generics in C#
• Declaring classes that work with one and two constrained generic

types in C#
• Working with duck typing in JavaScript

Understanding parametric polymorphism
and duck typing
Let's imagine that we want to organize a party of specific animals. We don't want to
mix cats with dogs because the party would end up with dogs chasing cats. We want
a party, and we don't want intruders. However, at the same time, we want to take
advantage of all the procedures we create to organize the party and replicate them
with frogs in another party, a party of frogs. We want to reuse these procedures and
use them for either dogs or frogs. However, in the future, we will probably want to
use them with parrots, lions, tigers, and horses.

Duck Typing and Generics

[386]

In C#, we can declare an interface to specify all the requirements for an animal and
write generic code that works with any class that implements the interface. Parametric
polymorphism allows you to write generic and reusable code that can work with
values without depending on the type while keeping the full static type safety. We
can take advantage of parametric polymorphism through generics, also known as
generic programming. Once we declare an interface that specifies the requirements for
an animal, we can create a class that can work with any instance that implements this
interface. This way, we can reuse the code that can generate a party of dogs and create
a party of frogs, a party of parrots, or a party of any other animal.

Python's default philosophy is a bit different. Python uses duck typing. Here, the
presence of certain attributes or properties and methods make an object suitable to its
usage as a specific animal. If we require animals to have a name property and provide
sing and dance methods, we can consider any object as an animal as long as it provides
the required name property, the sing method, and the dance method. Any instance
that provides the required property and methods can be used as an animal.

Let's think about a situation where we see a bird. The bird quacks, swims, and walks
like a duck; we can call this bird a duck. Very similar examples related to a bird and
a duck generated the duck typing name. We don't need additional information to
work with this bird as a duck.

We can add code to constrain types in Python. However, we don't want to write code
against Python's most common practices; therefore, we will take advantage of duck
typing in Python. We will also take advantage of duck typing in JavaScript. In fact,
you might notice that we have been working with duck typing in the examples used
in the previous chapters. It is important to note that you can also work with duck
typing in C#. However, it requires some workarounds.

Working with duck typing in Python
We will use the Animal base class to generalize the requirements for animals. First,
we will specialize the base class in two subclasses: Dog and Frog. Then, we will
create a Party class that will be able to work with instances of any Animal subclass
through duck typing. We will work with a party of dogs and a party of frogs.

Then, we will create a HorseDeeJay class and generate a subclass of the Party class
named PartyWithDeeJay. The new subclass will work with instances of any Animal
subclass and any instance that provides the properties and methods declared in the
HorseDeeJay class through duck typing. We will work with the party of dogs with
a DJ.

Chapter 6

[387]

Declaring a base class that defines the
generic behavior
We will create many classes that require the following import statement:

import random

Now, we will declare a base class named Animal:

class Animal:
 dance_characters = ""
 spelled_sound_1 = ""
 spelled_sound_2 = ""
 spelled_sound_3 = ""

 def __init__(self, name):
 self._name = name

 @property
 def name(self):
 return self._name

 def dance(self):
 print('{} dances {}'.format(self._name, type(self).dance_
characters))

 def say(self, message):
 print('{} says: {}'.format(self._name, message))

 def say_goodbye(self, destination):
 print('{} says goodbye to {}: {} {} {} '.format(
 self._name,
 destination.name,
 type(self).spelled_sound_1,
 type(self).spelled_sound_2,
 type(self).spelled_sound_1))

 def say_welcome(self, destination):
 print('{} welcomes {}: {}'.format(
 self._name,
 destination.name,

Duck Typing and Generics

[388]

 type(self).spelled_sound_2))

 def sing(self):
 spelled_sing_sound = type(self).spelled_sound_1 + \
 " "
 print('{} sings: {}. {}. {}. '.format(
 self._name,
 spelled_sing_sound * 3,
 spelled_sing_sound * 2,
 spelled_sing_sound))

The Animal class declares the following four class attributes, all of them initialized
with an empty string. The subclasses of Animal will override these class attributes
with the appropriate strings according to the animal:

• dance_characters

• spelled_sound_1

• spelled_sound_2

• spelled_sound_3

Then, the Animal class declares an __init__ method that assigns the value of the
required name argument to the _name protected attribute. This class declares the name
read-only property that encapsulates the _name protected attribute.

The dance method uses the value retrieved from the dance_characters class attribute
to print a message. This message indicates that the animal is dancing. Note the usage
of type(self) to access the class attribute in a generic way instead of using the actual
class name. The say method prints the message received as an argument.

Both the say_welcome and say_goodbye methods receive a destination argument
that they will use to print the name of the destination of the message. Therefore,
whenever we call a method, the destination argument must be an object that has either
a name attribute or property in order to be considered as an animal. Any instance of
any subclass of Animal qualifies as the destination argument for both methods.

The say_welcome method uses a combination of strings retrieved from the spelled_
sound_1 and spelled_sound_3 class attributes to say welcome to another animal.
The say_goodbye method uses the string retrieved from the spelled_sound_2 class
attribute to say goodbye to another animal.

Chapter 6

[389]

Declaring subclasses for duck typing
Now, we will create a subclass of Animal, a Dog class that overrides the string class
attributes defined in the Animal class to provide all the values that are appropriate
for a dog:

class Dog(Animal):
 dance_characters = "/-\ \-\ /-/"
 spelled_sound_1 = "Woof"
 spelled_sound_2 = "Wooooof"
 spelled_sound_3 = "Grr"

With just a few additional lines of code, we will create another subclass of Animal, a
Frog class that also overrides the string class attributes defined in the Animal class to
provide all the values that are appropriate for a frog:

class Frog(Animal):
 dance_characters = "/|\ \|/ ^ ^ "
 spelled_sound_1 = "Ribbit"
 spelled_sound_2 = "Croak"
 spelled_sound_3 = "Croooaaak"

Declaring a class that works with duck typing
The following code declares the Party class that takes advantage of duck typing to
work with instances of any class that provides either a name attribute or property.
It implements the dance, say, say_goodbye, say_welcome, and sing methods. The
__init__ method receives leader that the code assigns to the _leader protected
attribute. In addition, the following code creates a list with leader as one of its
members and saves it in the _members protected attribute. This way, the leader
argument specifies the first party leader and also the first member of the party, that
is, the first element added to the _members list:

class Party:
 def __init__(self, leader):
 self._leader = leader
 self._members = [leader]

The following code declares the add_member method that receives the member
argument. The code adds the member received as an argument to the _members list
and calls the _leader.say_welcome method with member as the argument to make
the party leader welcome the new member:

 def add_member(self, member):
 self._members.append(member)
 self._leader.say_welcome(member)

Duck Typing and Generics

[390]

The following code declares the remove_member method that receives the member
argument. It checks whether the member to be removed is the party leader. The
remove_member method raises a ValueError exception if the member is the party
leader. If the member isn't the party leader, the code removes this member from the
_members list and calls the say_goodbye method for the removed member. This way,
the member who leaves the party says goodbye to the party leader:

 def remove_member(self, member):
 if member == self._leader:
 raise ValueError(
 "You cannot remove the leader from the party")
 self._members.remove(member)
 member.say_goodbye(self._leader)

The following code declares the dance method that calls the method with the same
name for each member of the _members list:

 def dance(self):
 for member in self._members:
 member.dance()

The following code declares the sing method that calls the method with the same
name for each member of the _members list:

 def sing(self):
 for member in self._members:
 member.sing()

Finally, the following code declares the vote_leader method. This code makes sure
that there are at least two members in the _members list when we call this method; if
we have just one member, the method raises the ValueError exception. If we have at
least two members, the code generates a new random leader (who is different from
the existing leader) for the party. The code calls the say method for the actual leader
to explain to other party members that another leader has been voted for. Finally,
the code calls the dance method for the new leader and sets the new value for the
_leader protected attribute:

 def vote_leader(self):
 if len(self._members) == 1:
 raise ValueError("You need at least two members to vote a
new Leader.")
 new_leader = self._leader
 while new_leader == self._leader:
 random_leader = random.randrange(len(self._members))
 new_leader = self._members[random_leader]

Chapter 6

[391]

 self._leader.say('{} has been voted as our new party
leader.'.format(new_leader.name))
 new_leader.dance()
 self._leader = new_leader

Using a generic class for multiple types
We have two classes that inherit from the Animal class: Dog and Frog. Both classes
have all the required attributes and methods that allow you to work with their
instances as arguments of the methods of the previously coded Party class. We can
start working with instances of the Dog class to create a party of dogs.

The following code creates four instances of the Dog class: jake, duke, lady,
and dakota:

jake = Dog("Jake")
duke = Dog("Duke")
lady = Dog("Lady")
dakota = Dog("Dakota")

The following line of code creates a Party instance named dogsParty and passes
jake as the argument. This way, we create the party of frogs in which Jake is the
party leader:

dogs_party = Party(jake)

The following code adds the previously created three instances of Dog to the dogs'
party by calling the add_member method:

dogs_party.add_member(duke)
dogs_party.add_member(lady)
dogs_party.add_member(dakota)

The following code calls the dance method to make all the dogs dance, removes a
member who isn't the party leader, votes for a new leader, and finally calls the sing
method to make all the dogs sing:

dogs_party.dance()
dogs_party.remove_member(duke)
dogs_party.vote_leader()
dogs_party.sing()

The following lines display the output generated on the Python console after running
the preceding code:

Jake welcomes Duke: Wooooof

Jake welcomes Lady: Wooooof

Duck Typing and Generics

[392]

Jake welcomes Dakota: Wooooof

Jake dances /-\ \-\ /-/

Duke dances /-\ \-\ /-/

Lady dances /-\ \-\ /-/

Dakota dances /-\ \-\ /-/

Duke says goodbye to Jake: Woof Wooooof Grr

Jake says: Dakota has been voted as our new party leader.

Dakota dances /-\ \-\ /-/

Jake sings: Woof Woof Woof . Woof Woof . Woof .

Lady sings: Woof Woof Woof . Woof Woof . Woof .

Dakota sings: Woof Woof Woof . Woof Woof . Woof .

What about the party of frogs? The following code creates four instances of the Frog
class: frog1, frog2, frog3, and frog4:

frog1 = Frog("Frog #1")
frog2 = Frog("Frog #2")
frog3 = Frog("Frog #3")
frog4 = Frog("Frog #4")

The following code creates a Party instance named frogsParty and passes frog1
as the argument. This way, we create the party of dogs in which Frog #1 is the
party leader:

frogs_party = Party(frog1)

The following code adds the previously created three instances of Frog to the frogs'
party by calling the add_member method:

frogs_party.add_member(frog2)
frogs_party.add_member(frog3)
frogs_party.add_member(frog4)

The following code calls the dance method to make all the frogs dance, removes a
member who isn't the party leader, votes for a new leader, and finally calls the sing
method to make all the frogs sing:

frogs_party.dance()
frogs_party.remove_member(frog3)
frogs_party.vote_leader()
frogs_party.sing()

Chapter 6

[393]

The following lines display the output generated in the Python console after running
the preceding code:

Frog #1 welcomes Frog #2: Croak

Frog #1 welcomes Frog #3: Croak

Frog #1 welcomes Frog #4: Croak

Frog #1 dances /|\ \|/ ^ ^

Frog #2 dances /|\ \|/ ^ ^

Frog #3 dances /|\ \|/ ^ ^

Frog #4 dances /|\ \|/ ^ ^

Frog #3 says goodbye to Frog #1: Ribbit Croak Croooaaak

Frog #1 says: Frog #2 has been voted as our new party leader.

Frog #2 dances /|\ \|/ ^ ^

Frog #1 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .

Frog #2 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .

Frog #4 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .

Working with duck typing in mind
Now, we will create a new class that declares properties and methods that we will
call from the subclass of the previously created Party class. As long as we use
instances that provide the required properties and methods, we can use the instances
of any class with the new subclass of Party. Here is the code for the HorseDeeJay
class:

class HorseDeeJay:
 def __init__(self, name):
 self._name = name

 @property
 def name(self):
 return self._name

 def play_music_to_dance(self):
 print("My name is {}. Let's Dance.".format(self.name))

 def play_music_to_sing(self):
 print("Time to sing!")

The HorseDeeJay class declares the __init__ method that assigns the value of the
required name argument to the _name protected field. The class declares the Name
read-only property that encapsulates the related field.

Duck Typing and Generics

[394]

The play_music_to_dance method prints a message that displays the horse DJ
name and invites all its party members to dance. The play_music_to_sing method
prints a message that invites all its party members to sing.

The following code declares the subclass of the previously created Party class. This
class can work with the instance of the HorseDeeJay class for the dee_jay argument
required by the __init__ method. Note that the __init__ method receives two
arguments: leader and deejay. Both these arguments specify the first party leader,
the first member of the party, and the DJ who will make all party members dance
and sing. Note that the method calls the __init__ method defined in the Party
superclass with leader as an argument:

class PartyWithDeeJay(Party):
 def __init__(self, leader, dee_jay):
 super().__init__(leader)
 self._dee_jay = dee_jay

The following code declares the dee_jay read-only property that encapsulates the
previously created _dee_jay attribute:

 @property
 def dee_jay(self):
 return self._dee_jay

The following code declares the dance method that overrides the method with the
same declaration included in the superclass. The code calls the _dee_jay.play_
music_to_dance method. Then, it calls the super().dance method, that is, the
dance method defined in the Party superclass:

 def dance(self):
 self._dee_jay.play_music_to_dance()
 super().dance()

Finally, the following code declares the sing method that overrides the method with
the same declaration included in the superclass. The code calls the _dee_jay.play_
music_to_sing method and then calls the super().sing method, that is, the sing
method defined in the Party superclass:

 def sing(self):
 self._dee_jay.play_music_to_sing()
 super().sing()

Chapter 6

[395]

Here is the code that we can run on a Python console to create a HorseDeeJay
instance named silver. Then, the code creates a PartyWithDeeJay instance named
silverParty and passes jake and silver as arguments. This way, we can create a
party with a dog leader and a horse DJ, where Jake is the party leader and Silver is
the DJ:

silver = HorseDeeJay("Silver")
silverParty = PartyWithDeeJay(jake, silver)

The following code adds the previously created three instances of Dog to the party by
calling the add_member method:

silverParty.add_member(duke)
silverParty.add_member(lady)
silverParty.add_member(dakota)

The following code calls the dance method to make the DJ invite all the dogs to
dance and then make them dance. Then, the code removes a member who isn't the
party leader, votes for a new leader, and finally calls the sing method to make the DJ
invite all the dogs to sing and then make them sing:

silverParty.dance()
silverParty.remove_member(duke)
silverParty.vote_leader()
silverParty.sing()

The following lines display the console output after we run the added code:

My name is Silver. Let's Dance.

Jake dances /-\ \-\ /-/

Duke dances /-\ \-\ /-/

Lady dances /-\ \-\ /-/

Dakota dances /-\ \-\ /-/

Duke says goodbye to Jake: Woof Wooooof Grr

Jake says: Dakota has been voted as our new party leader.

Dakota dances /-\ \-\ /-/

Time to sing!

Jake sings: Woof Woof Woof . Woof Woof . Woof .

Lady sings: Woof Woof Woof . Woof Woof . Woof .

Dakota sings: Woof Woof Woof . Woof Woof . Woof .

Duck Typing and Generics

[396]

Working with generics in C#
We will create an IAnimal interface to specify the requirements that a type must
meet in order to be considered an animal. We will create the Animal abstract base
class that implements this interface. Then, we will specialize this class in two
subclasses: Dog and Frog. Later, we will create the Party class that will be able to
work with instances of any class that implements the IAnimal interface through
generics. We will work with the party of dogs and frogs.

Now, we will create an IDeeJay interface and implement it in a HorseDeeJay class.
We will also create a subclass of the Party class named PartyWithDeeJay that will
use generics to work with instances of any type that implement the IAnimal interface
and instances of any type that implements the IDeeJay interface. Then, we will work
with the party of dogs with a DJ.

Declaring an interface to be used as a
constraint
Now, it is time to code one of the interfaces that will be used as a constraint later
when we define the class that takes advantage of generics. The following lines
show the code for the IAnimal interface in C#. The public modifier, followed by
the interface keyword and the IAnimal interface name composes the interface
declaration. Don't forget that we cannot declare constructors within interfaces:

public interface IAnimal
{
 string Name { get; set; }

 void Dance();
 void Say(string message);
 void SayGoodbye(IAnimal destination);
 void SayWelcome(IAnimal destination);
 void Sing();
}

The IAnimal interface declares a Name string property and five methods: Dance,
Say, SayGoodbye, SayWelcome, and Sing. The interface includes only the method
declaration because the classes that implement the IAnimal interface will be
responsible for providing the implementation of the getter method and the setter
method for the Name property and the other five methods.

Chapter 6

[397]

Declaring an abstract base class that
implements two interfaces
Now, we will declare an abstract class named Animal that implements both the
previously defined IAnimal interface and the IEquatable<IAnimal> interface.
The IEquatable<T> interface defines a generalized Equals method that we must
implement in our class to determine equality of instances. As we are implementing
the IAnimal interface, we have to replace T with IAnimal and implement
IEquatable<IAnimal>. This way, we will be able to determine equality of instances of
classes that implement the IAnimal interface. We can read the class declaration as "the
Animal class implements both the IAnimal and IEquatable<Animal> interfaces":

public abstract class Animal: IAnimal, IEquatable<IAnimal>
{
 protected string _name;

 public string Name
 {
 get { return this._name; }
 set { throw new InvalidOperationException("Name is a read-only
property."); }
 }

 public virtual string DanceCharacters { get { return string.Empty; }
}
 public virtual string SpelledSound1 { get { return string.Empty; } }
 public virtual string SpelledSound2 { get { return string.Empty; } }
 public virtual string SpelledSound3 { get { return string.Empty; } }

 public Animal(string name)
 {
 this._name = name;
 }

 public void Dance()
 {
 Console.WriteLine(
 String.Format(
 "{0} dances {1}",
 this.Name,
 DanceCharacters));
 }

 public bool Equals(IAnimal otherAnimal)

Duck Typing and Generics

[398]

 {
 return (this == otherAnimal);
 }

 public void Say(string message)
 {
 Console.WriteLine(
 String.Format(
 "{0} says: {1}",
 this.Name, message));
 }

 public void SayGoodbye(IAnimal destination)
 {
 Console.WriteLine(
 String.Format(
 "{0} says goodbye to {1}: {2} {3} {4}",
 this.Name,
 destination.Name,
 SpelledSound1,
 SpelledSound3,
 SpelledSound1));
 }

 public void SayWelcome(IAnimal destination)
 {
 Console.WriteLine(
 String.Format(
 "{0} welcomes {1}: {2}",
 this.Name,
 destination.Name,
 SpelledSound2));
 }

 public void Sing()
 {
 var spelledSingSound = SpelledSound1 + " ";
 var sb = new StringBuilder();
 sb.Append(String.Format("{0} sings: ", this.Name));
 sb.Append(String.Concat(Enumerable.Repeat(spelledSingSound, 3)));
 sb.Append(". ");
 sb.Append(String.Concat(Enumerable.Repeat(spelledSingSound, 2)));
 sb.Append(". ");
 sb.Append(spelledSingSound);

Chapter 6

[399]

 sb.Append(". ");
 Console.WriteLine(sb.ToString());
 }
}

The Animal class declares a constructor that assigns the value of the required
name argument to the _name protected field. This class declares the Name read-only
property that encapsulates the _name private field. The interface requires a Name
property; therefore, it is necessary to create both setter and getter public methods.
We cannot use auto-implemented properties with a private setter because the setter
method must be public. Thus, we defined the public setter method that throws an
InvalidOperationException to avoid users of subclasses of this abstract class to
change the value of the Name property.

Then, the abstract class declared the following four virtual string properties. All of
them define a getter method that returns an empty string that the subclasses will
override with the appropriate strings according to the animal:

• DanceCharacters

• SpelledSound1

• SpelledSound2

• SpelledSound2

The Dance method uses the value retrieved from the DanceCharacters property to
print a message. This message indicates that the animal is dancing. The Say method
prints the message received as the argument. Both the SayWelcome and SayGoodbye
methods receive IAnimal as the argument that they use to print the name of the
destination of the message. SayWelcome uses a combination of strings retrieved from
SpelledSound1 and SpelledSound3 to say welcome to another animal. SayGoodbye
uses the string retrieved from SpelledSound2 to say goodbye to another animal.

The Equals method receives another IAnimal as the argument and uses the ==
operator between the current instance and the received instance to check whether the
instances are the same or not. In a more complex scenario, you might want to code
this method to compare the values of certain properties to determine equality. In our
case, we want to keep the code as simple as possible to focus on generics. We needed
to implement the Equals method to conform to the IEquatable<IAnimal> interface.

Duck Typing and Generics

[400]

Declaring subclasses of an abstract base
class
We have the abstract Animal class that implements IAnimal and
IEquatable<IAnimal>. Now, we will create a subclass of Animal, a Dog
class that overrides the virtual string properties defined in the Animal class
to provide the appropriate values for a dog, and declare a constructor that
just calls the base constructor:

public class Dog: Animal
{
 public override string SpelledSound1
 {
 get { return "Woof"; }
 }
 public override string SpelledSound2
 {
 get { return "Wooooof"; }
 }

 public override string SpelledSound3
 {
 get { return "Grr"; }
 }

 public override string DanceCharacters
 {
 get { return @"/-\ \-\ /-/"; }
 }

 public Dog(string name): base(name)
 {
 }
}

With just a few additional lines of code, we will create another subclass of Animal, a
Frog class that also overrides all the virtual string properties defined in the Animal
class to provide the appropriate values for a frog, and declare a constructor that just
calls the base constructor:

public class Frog: Animal
{
 public override string SpelledSound1
 {

Chapter 6

[401]

 get { return "Ribbit"; }
 }

 public override string SpelledSound2
 {
 get { return "Croak"; }
 }

 public override string SpelledSound3
 {
 get { return "Croooaaak"; }
 }

 public override string DanceCharacters
 {
 get { return @"/|\ \|/ ^ ^ "; }
 }

 public Frog(string name)
 : base(name)
 {
 }
}

Declaring a class that works with a
constrained generic type
The following line declares a Party class that takes advantage of generics to work
with many types. The class name is followed by a less than sign (<), T that identifies
the generic type parameter, and a greater than sign (>). The where keyword,
followed by T that identifies the type and a colon (:) indicates that the T generic
type parameter has to be a type that implements the specified interface, that is, the
IAnimal interface:

public class Party<T> where T: IAnimal

The following line starts the class body and declares a private List (System.
Generics.Collection.List) of the type specified by T. List, which uses generics
to specify the type of all the elements that will be added to the list:

{
 private List<T> _members;

Duck Typing and Generics

[402]

The following line declares a public Leader property whose type is T:

 public T Leader { get; private set; }

The following code declares the constructor that receives the leader argument
whose type is T. This argument specifies the first party leader and the first member
of the party as well, that is, the first element added to the _members list:

public Party(T leader)
{
 this.Leader = leader;
 this._members = new List<T>();
 this._members.Add(leader);
}

The following code declares the AddMember method that receives the member
argument whose type is T. The code adds the member received as an argument to
the _members List<T> and calls the Leader.SayWelcome method with member as
the argument to make the party leader welcome the new member:

public void AddMember(T member)
{
 this._members.Add(member);
 Leader.SayWelcome(member);
}

The following code declares the RemoveMember method that receives the member
argument whose type is T. The code checks whether the member to be removed is
the party leader. The method throws an exception if the member is the party leader.
The code returns the bool result, calls the remove method of the _members List<T>
with the member received as an argument, and calls the SayGoodbye method for
the successfully removed member. This way, the member that leaves the party says
goodbye to the party leader:

public bool RemoveMember(T member)
{
 if (member.Equals(this.Leader))
 {
 throw new InvalidOperationException("You cannot remove the leader
from the party.");
 }
 var result = this._members.Remove(member);
 if (result)

Chapter 6

[403]

 {
 member.SayGoodbye(this.Leader);
 }
 return result;
}

The following code declares the Dance method that calls the method with the same
name for each member of the _members list. We will use the virtual keyword
because we will override this method in a future subclass:

public virtual void Dance()
{
 foreach (var member in _members)
 {
 member.Dance();
 }
}

The following code declares the Sing method that calls the method with the same
name for each member of the _members list. We will use the virtual keyword
because we will override this method in a future subclass:

public virtual void Sing()
{
 foreach (var member in _members)
 {
 member.Sing();
 }
}

Finally, the following code declares the VoteLeader method. This code makes sure
that there are at least two members in the _members list when we call this method;
if we have just one member, the method throws an InvalidOperationException.
If we have at least two members, the code generates a new random leader (who is
different from the existing leader) for the party. The code calls the Say method for
the actual leader to explain it to all the other party members that another leader has
been voted for. Finally, the code calls the Dance method for the new leader and sets
the new value for the Leader property:

public void VoteLeader()
{
 if (this._members.Count == 1)
 {
 throw new InvalidOperationException("You need at least two members
to vote a new Leader.");

Duck Typing and Generics

[404]

 }

 var newLeader = this.Leader;
 while (newLeader.Equals(this.Leader))
 {
 var randomLeader =
 new Random().Next(this._members.Count);
 newLeader = this._members[randomLeader];
 }

 this.Leader.Say(
 String.Format(
 "{0} has been voted as our new party leader.",
 newLeader.Name));
 newLeader.Dance();
 this.Leader = newLeader;
}
}

Using a generic class for multiple types
We can create instances of the Party<T> class by replacing the T generic type
parameter with any type name that conforms to all the constraints specified in
the declaration of the Party<T> class. So far, we have two concrete classes: Dog
and Frog that implement the IAnimal interface. Thus, we can use Dog to create
an instance of Party<Dog>.

The following code shows the first few lines of the console application that creates
four instances of the Dog class: jake, duke, lady, and dakota. Then, the Main
method creates the Party<Dog> instance named dogsParty and passes jake as the
argument. This way, we create the party of dogs in which Jake is the party leader:

class Program
{
 static void Main(string[] args)
 {
 var jake = new Dog("Jake");
 var duke = new Dog("Duke");
 var lady = new Dog("Lady");
 var dakota = new Dog("Dakota");
 var dogsParty = new Party<Dog>(jake);

Chapter 6

[405]

The dogsParty instance will only accept the Dog instance for all the arguments in
which the class definition used the generic type parameter named T. The following
code adds the previously created three instances of Dog to the dogs' party by calling
the AddMember method:

 dogsParty.AddMember(duke);
 dogsParty.AddMember(lady);
 dogsParty.AddMember(dakota);

The following code calls the Dance method to make all the dogs dance, removes a
member who isn't the party leader, votes for a new leader, and finally calls the Sing
method to make all the dogs sing:

 dogsParty.Dance();
 dogsParty.RemoveMember(duke);
 dogsParty.VoteLeader();
 dogsParty.Sing();

We can use Frog to create an instance of Party<Frog>. The following code creates four
instances of the Frog class: frog1, frog2, frog3, and frog4. Then, the code creates a
Party<Frog> instance named frogsParty and passes frog1 as the argument. This
way, we create the party of frogs in which Frog #1 is the party leader:

 var frog1 = new Frog("Frog #1");
 var frog2 = new Frog("Frog #2");
 var frog3 = new Frog("Frog #3");
 var frog4 = new Frog("Frog #4");
 var frogsParty = new Party<Frog>(frog1);

The frogsParty instance will only accept the Frog instance for all the arguments in
which the class definition used the generic type parameter named T. The following
code adds the previously created three instances of Frog to the frogs' party by calling
the AddMember method:

 frogsParty.AddMember(frog2);
 frogsParty.AddMember(frog3);
 frogsParty.AddMember(frog4);

The following code calls the Dance method to make all the frogs dance, removes a
member who isn't the party leader, votes for a new leader, and finally calls the Sing
method to make all the frogs sing:

 frogsParty.Dance();
 frogsParty.RemoveMember(frog3);
 frogsParty.VoteLeader();

Duck Typing and Generics

[406]

 frogsParty.Sing();
 Console.ReadLine();
 }
}

The following lines show the console output after we run the preceding code
snippets:

Jake welcomes Dakota: Wooooof

Jake dances /-\ \-\ /-/

Duke dances /-\ \-\ /-/

Lady dances /-\ \-\ /-/

Dakota dances /-\ \-\ /-/

Duke says goodbye to Jake: Woof Grr Woof

Jake says: Lady has been voted as our new party leader.

Lady dances /-\ \-\ /-/

Jake sings: Woof Woof Woof . Woof Woof . Woof .

Lady sings: Woof Woof Woof . Woof Woof . Woof .

Dakota sings: Woof Woof Woof . Woof Woof . Woof .

Frog #1 welcomes Frog #2: Croak

Frog #1 welcomes Frog #3: Croak

Frog #1 welcomes Frog #4: Croak

Frog #1 dances /|\ \|/ ^ ^

Frog #2 dances /|\ \|/ ^ ^

Frog #3 dances /|\ \|/ ^ ^

Frog #4 dances /|\ \|/ ^ ^

Frog #3 says goodbye to Frog #1: Ribbit Croooaaak Ribbit

Frog #1 says: Frog #2 has been voted as our new party leader.

Frog #2 dances /|\ \|/ ^ ^

Frog #1 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .

Frog #2 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .

Frog #4 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .

Chapter 6

[407]

Declaring a class that works with two
constrained generic types
Now, it is time to code another interface that will be used as a constraint later when
we define another class that takes advantage of generics with two constrained
generic types. The following lines show the code for the IDeeJay interface in C#. The
public modifier, followed by the interface keyword and the IDeeJay interface
name composes the interface declaration:

public interface IDeeJay
{
 string Name { get; set; }

 void PlayMusicToDance();
 void PlayMusicToSing();
}

The IDeeJay interface declares the Name string property and two methods:
PlayMusicToDance and PlayMusicToSing. This interface includes only the method
declaration because the classes that implement the IDeeJay interface will be
responsible for providing the implementation of the getter and setter methods for the
Name property and the other two methods.

Now, we will declare a class named HorseDeeJay that implements the previously
defined IDeeJay interface. We can read the class declaration as, "the HorseDeeJay
class implements the IDeeJay interface":

public class HorseDeeJay: IDeeJay
{
 protected string _name;

 public string Name
 {
 get { return this._name; }
 set { throw new InvalidOperationException("Name is a read-only
property."); }
 }

 public HorseDeeJay(string name)
 {
 this._name = name;
 }

 public void PlayMusicToDance()

Duck Typing and Generics

[408]

 {
 Console.WriteLine(
 String.Format(
 "My name is {0}. Let's Dance.",
 this.Name));
 }

 public void PlayMusicToSing()
 {
 Console.WriteLine("Time to sing!");
 }
}

The HorseDeeJay class declares a constructor that assigns the value of the required
name argument to the _name protected field. The class declares the Name read-
only property that encapsulates a related field. As happened with the IAnimal
interface, the HorseDeeJay interface requires the Name property; therefore, it is
necessary to create both setter and getter public methods. We cannot use auto-
implemented properties with a private setter method because the setter method
must be public. Thus, we defined the public setter method that throws an
InvalidOperationException to avoid users of subclasses of this abstract class to
change the value of the Name property.

The PlayMusicToDance method prints a message that displays the horse DJ name
and invites all the party members to dance. The PlayMusicToSing method prints a
message that invites all the party members to sing.

The following code declares the subclass of the previously created Party<T> class
that takes advantage of generics to work with two constrained types. The class name
is followed by a less than sign (<), T that identifies the generic type parameter, a
comma (,), K that identifies the second generic type parameter, and a greater than sign
(>). The first where keyword, followed by T that identifies the first type and a colon
(:) indicates that the T generic type parameter has to be a type that implements the
specified interface, that is, the IAnimal interface. The second where keyword, followed
by K that identifies the second type and a colon (:) indicates that the K generic type
parameter has to be a type that implements the specified interface, that is, the IDeeJay
interface. This way, the Party<T> class specifies constraints for the T and K generic
type parameters. Don't forget that we are talking about a subclass of Party<T>:

public class PartyWithDeeJay<T, K>: Party<T> where T: IAnimal
where K: IDeeJay

Chapter 6

[409]

The following line starts the class body and declares the public DeeJay
auto-implemented property of the type specified by K:

{
 public K DeeJay { get; private set; }

The following code declares a constructor that receives two arguments: leader and
deejay, whose types are T and K. These arguments specify the first party leader, the
first member of the party, and the DJ that will make all the party members dance
and sing. Note that the constructor calls the base constructor, that is, the Party<T>
constructor with leader as the argument:

 public PartyWithDeeJay(T leader, K deeJay): base(leader)
 {
 this.DeeJay = deeJay;
 }

The following code declares the Dance method that overrides the method with
the same declaration included in the superclass. The code calls the DeeJay.
PlayMusicToDance method and then calls the base.Dance method, that is, the
Dance method defined in the Party<T> superclass:

 public override void Dance()
 {
 this.DeeJay.PlayMusicToDance();
 base.Dance();
 }

Finally, the following code declares the Sing method that overrides the method
with the same declaration included in the superclass. The code calls the DeeJay.
PlayMusicToSing method and then calls the base.Sing method, that is, the Sing
method defined in the Party<T> superclass:

 public override void Sing()
 {
 this.DeeJay.PlayMusicToSing();
 base.Sing();
 }
}

Duck Typing and Generics

[410]

Using a generic class with two generic type
parameters
We can create instances of the PartyWithDeeJay<T, K> class by replacing both the
T and K generic type parameters with any type names that conform to the constraints
specified in the declaration of the PartyWithDeeJay<T, K> class. We have two
concrete classes that implement the IAnimal interface: Dog and Frog and one class
that implements the IDeeJay interface: HorseDeeJay. Thus, we can use Dog and
HorseDeeJay to create an instance of PartyWithDeeJay<Dog, HorseDeeJay>.

The following is the code that we can add to our previously created console
application to create the HorseDeeJay instance named silver. Then, the code
creates the PartyWithDeeJay<Dog, HorseDeeJay> instance named silverParty
and passes jake and silver as arguments. This way, we can create a party with a
dog leader and a horse DJ, where Jake is the party leader and Silver is the DJ:

var silver = new HorseDeeJay("Silver");
var silverParty = new PartyWithDeeJay<Dog, HorseDeeJay>(jake, silver);

The silverParty instance will only accept the Dog instance for all the arguments in
which the class definition uses the generic type parameter named T. The following
code adds the previously created three instances of Dog to the party by calling the
AddMember method:

silverParty.AddMember(duke);
silverParty.AddMember(lady);
silverParty.AddMember(dakota);

The following code calls the Dance method to make the DJ invite all the dogs to
dance and then make them dance. Then, the code removes a member who isn't the
party leader, votes for a new leader, and finally calls the Sing method to make the DJ
invite all the dogs to sing and then make them sing:

silverParty.Dance();
silverParty.RemoveMember(duke);
silverParty.VoteLeader();
silverParty.Sing();

The following lines display the console output after we run the added code:

My name is Silver. Let's Dance.

Jake dances /-\ \-\ /-/

Duke dances /-\ \-\ /-/

Lady dances /-\ \-\ /-/

Dakota dances /-\ \-\ /-/

Chapter 6

[411]

Duke says goodbye to Jake: Woof Grr Woof

Jake says: Lady has been voted as our new party leader.

Lady dances /-\ \-\ /-/

Time to sing!

Jake sings: Woof Woof Woof . Woof Woof . Woof .

Lady sings: Woof Woof Woof . Woof Woof . Woof .

Dakota sings: Woof Woof Woof . Woof Woof . Woof .

Working with duck typing in JavaScript
We will create an Animal constructor function and customize its prototype to
generalize all the requirements for animals. We will create two constructor functions:
Dog and Frog that will use Animal as its prototype. Then, we will create a Party
constructor function that will be able to work with instances of any object that
includes Animal in its prototype chain through duck typing. We will work with the
party of dogs and the party of frogs.

Then, we will create a HorseDeeJay constructor function and generate a new version
of the Party constructor function that will work with any object that includes Animal
in its prototype and any object that provides the properties and methods declared
in the HorseDeeJay prototype through duck typing. We will work with the party of
dogs with a DJ.

Declaring a constructor function that defines
the generic behavior
Now, we will declare the Animal constructor function. Then, we will add properties
and methods to its prototype:

Animal = function() { };
Animal.prototype.name = "";
Animal.prototype.danceCharacters = "";
Animal.prototype.spelledSound1 = "";
Animal.prototype.spelledSound2 = "";
Animal.prototype.spelledSound3 = "";

Animal.prototype.dance = function() {
 console.log(this.name + " dances " + this.danceCharacters);
}

Animal.prototype.say = function(message) {

Duck Typing and Generics

[412]

 console.log(this.name + " says: " + message);
}

Animal.prototype.sayGoodbye = function(destination) {
 console.log(this.name + " says goodbye to "
 + destination.name + ": "
 + this.spelledSound1 + " "
 + this.spelledSound2 + " "
 + this.spelledSound3 + " ");
}

Animal.prototype.sayWelcome = function(destination) {
 console.log(this.name + " welcomes "
 + destination.name + ": "
 + this.spelledSound2);
}

Animal.prototype.sing = function() {
 var spelledSingSound = this.spelledSound1 + " ";
 var message = this.name + " sings: " + Array(4).
join(spelledSingSound) + ". " + Array(3).join(spelledSingSound) + ". "
+ spelledSingSound + ". ";

 console.log(message);
}

The preceding code declared the following five properties for the prototype (all
of them initialized with an empty string). The constructor functions that will use
Animal as its prototype will override these properties with the appropriate strings
according to the animal. These constructor functions will receive the value to be set
to name as the argument:

• name

• danceCharacters

• spelledSound1

• spelledSound2

• spelledSound3

The dance method uses the value retrieved from the danceCharacters property to
print a message. This message indicates that the animal is dancing. The say method
prints the message received as an argument.

Chapter 6

[413]

Both the sayWelcome and sayGoodbye methods receive the destination argument
that they use to print the name of the destination of the message. Thus, whenever
we call this method, the destination argument must be the object that has the name
property to be considered an animal. Any instance of any constructor function that
has Animal as its prototype qualifies as the destination argument for both methods.

The sayWelcome method uses a combination of strings retrieved from the
spelledSound1 and spelledSound3 properties to say welcome to another animal.
The sayGoodbye method uses the string retrieved from the spelledSound2 property
to say goodbye to another animal.

Working with the prototype chain and duck
typing
Now, we will create a constructor function that will use Animal as its prototype.
The Dog constructor function overrides the string properties defined in the Animal
prototype to provide all the appropriate values for a dog. The constructor function
receives name as the argument and assigns its value to the property with the
same name:

Dog = function(name) {
 this.name = name;
};
Dog.prototype = new Animal();
Dog.prototype.constructor = Dog;
Dog.prototype.danceCharacters = "/-\\ \\-\\ /-/";
Dog.prototype.spelledSound1 = "Woof";
Dog.prototype.spelledSound2 = "Wooooof";
Dog.prototype.spelledSound3 = "Grr";

With just a few additional lines of code, we will create another constructor function
that uses Animal as its prototype. The Frog constructor function also overrides the
string class attributes defined in the Animal constructor function to provide all the
appropriate values for a frog:

Frog = function(name) {
 this.name = name;
};
Frog.prototype = new Animal();
Frog.prototype.constructor = Frog;
Frog.prototype.danceCharacters = "/|\\ \\|/ ^ ^ ";
Frog.prototype.spelledSound1 = "Ribbit";
Frog.prototype.spelledSound2 = "Croak";
Frog.prototype.spelledSound3 = "Croooaaak";

Duck Typing and Generics

[414]

Declaring methods that work with duck typing
The following code declares the Party constructor function that takes advantage
of duck typing to work with instances of any class that provides the name property
and implements the dance, say, sayGoodbye, sayWelcome, and sing methods. This
constructor function receives a leader argument that the code assigns to the leader
property. In addition, the code creates a leader array as one of its members and
saves it in the members property. This way, the leader argument specifies the first
party leader and also the first member of the party, that is, the first element added to
the members array:

Party = function(leader) {
 this.leader = leader;
 this.members = [leader];
}

The following code declares the addMember method that receives the member
argument. The code adds the member received as an argument to the members array
and calls the leader.sayWelcome method with member as the argument to make the
party leader welcome the new member:

Party.prototype.addMember = function(member) {
 this.members.push(member);
 this.leader.sayWelcome(member);
}

The following code declares the removeMember method that receives the member
argument. The code checks whether the member to be removed is the party leader.
The method throws an exception if the member is the party leader. If the member
isn't the party leader, the code removes the member from the members array and calls
the sayGoodbye method for the removed member. This way, the member who leaves
the party says goodbye to the party leader:

Party.prototype.removeMember = function(member) {
 if (member == this.leader) {
 throw "You cannot remove the leader from the party";
 }
 var index = this.members.indexOf(member);
 if (index > -1) {
 this.members.splice(index, 1);
 member.sayGoodbye(this.leader);
 return true;
 }
 else {
 return false;
 }
}

Chapter 6

[415]

The following code declares the dance method that calls the method with the same
name for each member of the members array:

Party.prototype.dance = function() {
 this.members.forEach(function (member) { member.dance(); });
}

The following code declares the sing method that calls the method with the same
name for each member of the members array:

Party.prototype.sing = function() {
 this.members.forEach(function (member) { member.sing(); });
}

Finally, the following code declares the voteLeader method. The code makes sure
that there are at least two members in the members array when we call this method;
if we have just one member, the method throws an exception. If we have at least two
members, the code generates a new pseudo-random leader (who is different from the
existing leader) for the party. The code calls the say method for the actual leader to
make it explain to the other party members that another leader has been voted for.
Finally, the code calls the dance method for the new leader and sets the new value
for the leader property:

Party.prototype.voteLeader = function() {
 if (this.members.length == 1) {
 throw "You need at least two members to vote a new Leader.";
 }
 var newLeader = this.leader;
 while (newLeader == this.leader) {
 var randomLeader = Math.floor(Math.random() * (this.members.length
- 1)) + 1;
 newLeader = this.members[randomLeader];
 }
 this.leader.say(newLeader.name + " has been voted as our new party
leader.");
 newLeader.dance();
 this.leader = newLeader;
}

Duck Typing and Generics

[416]

Using generic methods for multiple objects
We have two constructor functions: Dog and Frog that use the Animal constructor
function as their prototype. Both these constructor functions define all the properties
and methods required that allows you to work with their instances as arguments
of the methods of the previously coded Party prototype methods. We can start
working with Dog objects to create the party of dogs.

The following code creates four Dog objects: jake, duke, lady and dakota:

var jake = new Dog("Jake");
var duke = new Dog("Duke");
var lady = new Dog("Lady");
var dakota = new Dog("Dakota");

The following line creates a Party object named dogsParty and passes jake as the
argument. This way, we create the party of dogs in which Jake is the party leader:

var dogsParty = new Party(jake);

The following code adds the previously created three Dog objects to the dogs' party
by calling the addMember method:

dogsParty.addMember(duke);
dogsParty.addMember(lady);
dogsParty.addMember(dakota);

The following code calls the dance method to make all the dogs dance, removes a
member who isn't the party leader, votes for a new leader, and finally calls the sing
method to make all the dogs sing:

dogsParty.dance();
dogsParty.removeMember(duke);
dogsParty.voteLeader();
dogsParty.sing();

The following lines display the output generated on the JavaScript console after
running the preceding code snippets:

Jake welcomes Duke: Wooooof

Jake welcomes Lady: Wooooof

Jake welcomes Dakota: Wooooof

Jake dances /-\ \-\ /-/

Duke dances /-\ \-\ /-/

Lady dances /-\ \-\ /-/

Dakota dances /-\ \-\ /-/

Chapter 6

[417]

Duke says goodbye to Jake: Woof Wooooof Grr

Jake says: Dakota has been voted as our new party leader.

Dakota dances /-\ \-\ /-/

Jake sings: Woof Woof Woof . Woof Woof . Woof .

Lady sings: Woof Woof Woof . Woof Woof . Woof .

Dakota sings: Woof Woof Woof . Woof Woof . Woof .

Now, what about the party of frogs? The following code creates four Frog objects:
frog1, frog2, frog3, and frog4:

var frog1 = new Frog("Frog #1");
var frog2 = new Frog("Frog #2");
var frog3 = new Frog("Frog #3");
var frog4 = new Frog("Frog #4");

The following line creates a Party object named frogsParty and passes frog1
as the argument. This way, we create the party of dogs in which Frog #1 is the
party leader:

var frogsParty = new Party(frog1);

The following code adds the previously created three Frog objects to the frogs' party
by calling the addMember method:

frogsParty.addMember(frog2);
frogsParty.addMember(frog3);
frogsParty.addMember(frog4);

The following code calls the dance method to make all the frogs dance, removes a
member who isn't the party leader, votes for a new leader, and finally calls the sing
method to make all the frogs sing:

frogsParty.dance();
frogsParty.removeMember(frog3);
frogsParty.voteLeader();
frogsParty.sing();

The following lines display the output generated on the JavaScript console after
running the previous code:

Frog #1 welcomes Frog #2: Croak

Frog #1 welcomes Frog #3: Croak

Frog #1 welcomes Frog #4: Croak

Frog #1 dances /|\ \|/ ^ ^

Frog #2 dances /|\ \|/ ^ ^

Duck Typing and Generics

[418]

Frog #3 dances /|\ \|/ ^ ^

Frog #4 dances /|\ \|/ ^ ^

Frog #3 says goodbye to Frog #1: Ribbit Croak Croooaaak

Frog #1 says: Frog #2 has been voted as our new party leader.

Frog #2 dances /|\ \|/ ^ ^

Frog #1 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .

Frog #2 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .

Frog #4 sings: Ribbit Ribbit Ribbit . Ribbit Ribbit . Ribbit .

Working with duck typing in mind
Now, we will create a new constructor function that declares properties and methods
that we will call from an object that includes Party in its prototype chain. As long
as we use objects that provide all the required properties and methods, we can use
all the objects created by using any constructor function with the new object. The
following lines show the code for the HorseDeeJay constructor function:

HorseDeeJay = function(name) {
 this.name = name;
};
HorseDeeJay.prototype.playMusicToDance = function() {
 console.log("My name is " + this.name + ". Let's Dance.");
}
HorseDeeJay.prototype.playMusicToSing = function() {
 console.log("Time to sing!");
}

The HorseDeeJay constructor function class assigns the value of the name argument
to the name property. The playMusicToDance method prints a message that displays
the horse DJ name and invites all the party members to dance. The playMusicToSing
method prints a message that invites all the party members to sing.

Now, we will make a few changes to the previously created Party constructor function
and its prototype to allow it to work with a HorseDeeJay object. The following code
shows the new version of the constructor function that receives two arguments:
leader and deejay. These arguments specify the first party leader, the first member of
the party, and the DJ that will make all the party members dance and sing:

Party = function(leader, deeJay) {
 this.leader = leader;
 this.deeJay = deeJay;
 this.members = [leader];
}

Chapter 6

[419]

The following code declares the new version of the dance method. The code calls
the deeJay.playMusicToDance method and then calls the dance method for each
member of the party:

Party.prototype.dance = function() {
 this.deeJay.playMusicToDance();
 this.members.forEach(function (member) { member.dance(); });
}

Finally, the following code declares the new version of the sing method. The code
calls the deeJay.playMusicToSing method and then calls the sing method for each
member of the party:

Party.prototype.sing = function() {
 this.deeJay.playMusicToSing();
 this.members.forEach(function (member) { member.sing(); });
}

The other methods defined for the Party prototype are the same that we defined
in the previous version. The following code shows the lines that we can run on the
JavaScript console to create a HorseDeeJay object named silver. Then, the code
creates a PartyWithDeeJay object named silverParty and passes jake and silver
as arguments. This way, we create a party with a dog leader and a horse DJ in which
Jake is the party leader and Silver is the DJ:

var silver = new HorseDeeJay("Silver");
var silverParty = new Party(jake, silver);

The following code adds the previously created three Dog objects to the party by
calling the addMember method:

silverParty.addMember(duke);
silverParty.addMember(lady);
silverParty.addMember(dakota);

The following code calls the dance method to make the DJ invite all the dogs to
dance and then make them dance. Then, the code removes a member who isn't the
party leader, votes for a new leader, and finally calls the sing method to make the DJ
invite all the dogs to sing and then make them sing:

silverParty.dance();
silverParty.removeMember(duke);
silverParty.voteLeader();
silverParty.sing();

Duck Typing and Generics

[420]

The following lines display the JavaScript console output after we run the added code:

My name is Silver. Let's Dance.

Jake dances /-\ \-\ /-/

Duke dances /-\ \-\ /-/

Lady dances /-\ \-\ /-/

Dakota dances /-\ \-\ /-/

Duke says goodbye to Jake: Woof Wooooof Grr

Jake says: Dakota has been voted as our new party leader.

Dakota dances /-\ \-\ /-/

Time to sing!

Jake sings: Woof Woof Woof . Woof Woof . Woof .

Lady sings: Woof Woof Woof . Woof Woof . Woof .

Dakota sings: Woof Woof Woof . Woof Woof . Woof .

Summary
In this chapter, you learned how to maximize code reuse by writing code capable of
working with objects of different types. We took advantage of duck typing in Python
and JavaScript. We worked with interfaces and generics in C#. We created classes
capable of working with one and two constrained generic types.

Now that you learned how to work with duck typing and generics, we are ready to
organize complex object-oriented code in Python, JavaScript, and C#, which is the
topic of the next chapter.

[421]

Organization of
Object-Oriented Code

In this chapter, we will write code for a complex application that requires dozens of
classes, interfaces, and constructor functions according to the programing language
that we use. We will take advantage of the different available features to organize a
large number of pieces of code in each of the three covered programming languages:
Python, JavaScript, and C#. We will:

• Understand the importance of organizing object-oriented code
• Think about the best ways to organize object-oriented code
• Work with source files organized in folders and module hierarchies

in Python
• Work with folders, namespaces, and namespace hierarchies in C#
• Combine objects, nested objects, and constructor functions in JavaScript

Thinking about the best ways to organize
code
When you have just a few classes or constructor functions and their prototypes,
hundreds of lines of object-oriented code are easy to organize and maintain.
However, as the number of object-oriented blueprints start to increase, it is
necessary to follow some rules to organize the code and make it easy to maintain.

A very well written object-oriented code can generate a maintenance headache if
it isn't organized in an effective way. We don't have to forget that a well written
object-oriented code promotes code reuse.

Organization of Object-Oriented Code

[422]

As you learned in the previous six chapters, each programming language provides
different elements and resources to generate object-oriented code. In addition, each
programming language provides its own mechanisms that allow you to organize and
group different object-oriented elements. Thus, it is necessary to define rules for each
of the three programming languages: Python, C# and, JavaScript.

Imagine that we have to create and furnish house floor plans with a drawing
software that allows you to load objects from files. We have a huge amount of objects
to compose our floor plan, such as entry doors, interior doors, square rooms, interior
walls, windows, spiral stairs, straight stairs, and kitchen islands. If we use a single
folder in our file system to save all the object files, it will take us a huge amount of
time to select the desired object each time we have to add an object to our floor plan.

We can organize our objects in the following five folders:

• Build

• Furnish

• Decorate

• Landscape

• Outdoor

Now, whenever we need bathroom furniture, we will explore the Furnish folder.
Whenever we need outdoor structures, we will explore the Outdoor folder.
However, there are still too many objects in each of these folders. For example,
the Build folder includes the following types of objects:

• Rooms

• Walls

• Areas

• Doors

• Windows

• Stairs

• Fireplaces

We can create subfolders within each main category folder to provide a better
organization of our object files. The Build category will have one subfolder for
each of the types of objects indicated in the previous list.

Chapter 7

[423]

The Furnish category will have the following subfolders:

• Living room

• Dining room

• Kitchen

• Bathroom

• Bedroom

• Office

• Laundry and utility

• Other rooms

The Decorate category will have the following subfolders:

• Paint and walls

• Flooring

• Countertops

• Art and decor

• Electronics

• Lighting and fans

The Landscape category will have the following subfolders:

• Areas definition

• Materials

• Trees and plants

Finally, the Outdoor category will have the following subfolders:

• Living

• Accessories

• Structures

This way, the Build/Rooms subfolder will include the following four objects:

• Square room

• L-shaped room

• Small room

• Closet

Organization of Object-Oriented Code

[424]

However, the Furnish/Bedroom subfolder includes too many objects that we can
organize in seven types. So, we will create the following six subfolders:

• Beds

• Kids' beds

• Night tables

• Dressers

• Mirrors

• Nursery

Whenever we need bedroom mirrors, we will go to the Furnish/Bedroom/Mirrors
subfolder. Whenever we need beds, we will go to the Furnish/Bedroom/Beds
subfolder. Our objects are organized in a hierarchical directory tree.

Now, let's go back to object-oriented code. Instead of objects, we will have to
organize classes, interfaces, constructor functions, and prototypes according to
the programming language used. For example, if we have a class that defines the
blueprint for a square room, we can organize it in such a way that we can find it in a
build.rooms container. This way, we will find all the classes related to Build/Rooms
in the build.rooms container. If we need to add another class related to Build/
Rooms, we would add it in the build.rooms container.

Organizing object-oriented code in
Python
Python makes it easy to logically organize object-oriented code with modules. We
will work with a hierarchy of folders to organize the code of an application that
allows you to create and furnish house floor plans. Then, we will use code from
different folders and the source files of Python.

Working with source files organized in folders
We will create the following six folders to organize the code in our house floor plan
layout application. Then, we will add subfolders and the source files of Python to
each of the previously created folders:

• Build

• Decorate

• Furnish

• General

Chapter 7

[425]

• Landscape

• Outdoor

We will include all the base classes in the general folder. The following lines show
the code for the general/floor_plan_element.py Python source file that declares
a FloorPlanElement base class. We will use this class as the superclass for all the
classes that specialize the floor plan element:

class FloorPlanElement:
 category = "Undefined"
 description = "Undefined"

 def __init__(self, x, y, width, height, parent):
 self.x = x
 self.y = y
 self.width = width
 self.height = height
 self.parent = parent

 def move_to(self, x, y):
 self.x = x
 self.y = y

 def print_category(self):
 print(type(self).category)

 def print_description(self):
 print(type(self).description)

 def draw(self):
 self.print_category()
 self.print_description()
 print("X: " + str(self.x) +
 ", Y: " + str(self.y) +
 ". Width: " + str(self.width) +
 ", Height: " + str(self.height) + ".")

The FloorPlanElement class declares two class attributes that the subclasses will
override: category and description. The class declares an __init__ method that
receives five arguments: x, y, width, height, and parent. The __init__ method
initializes attributes with the same name using all the values received as arguments.
This way, each FloorPlanElement instance will have a 2D location specified by x
and y, width and height, and a parent element.

Organization of Object-Oriented Code

[426]

In addition, the FloorPlanElement class declares the following instance methods:

• move_to: This method moves the floor plan element to the new location
specified by the x and y arguments

• print_category: This method prints the value of the category class attribute
• print_description: This method prints the value of the description

class attribute
• draw: This method prints the category, description, 2D location, and width

and height of the floor plan element

The FloorPlanElement class is located in the general/floor_plan_element.
py file. All the classes that specialize floor plan elements will inherit from the
FloorPlanElement class. These classes will be located in other Python source files
that will have to let Python know that they want to use the FloorPlanElement class
that is located in another module, that is, in another Python source file.

Importing modules
We will create the following Python source files in the previously created Build
folder. We won't add code to all the files in order to keep our example simple.
However, we will imagine that we have a more complex project:

• areas.py

• doors.py

• fireplaces.py

• rooms.py

• stairs.py

• walls.py

• windows.py

Here is the code for the build/rooms.py Python source file that declares five classes:
Room, SquareRoom, LShapedRoom, SmallRoom, and Closet:

from general.floor_plan_element import FloorPlanElement

class Room(FloorPlanElement):
 category = "Room"

class SquareRoom(Room):

Chapter 7

[427]

 description = "Square room"

 def __init__(self, x, y, width, parent):
 super().__init__(x, y, width, width, parent)

class LShapedRoom(Room):
 description = "L-Shaped room"

class SmallRoom(Room):
 description = "Small room"

class Closet(Room):
 description = "Closet"

The first line in the preceding code uses the from statement to import a specific class
from a module into the current namespace. To be specific, the code imports the
FloorPlanElement class from the general.floor_plan_element module, that is,
from the general/floor_plan_element.py file, as shown in the following line:

 from general.floor_plan_element import FloorPlanElement

This way, the next few lines declare the Room class as a subclass of the
FloorPlanElement class as if the class were defined in the same Python source
file. This class overrides the value of the category class attribute with the "Room"
value. The SquareRoom class represents a square room; therefore, it isn't necessary
to specify the width and height to create an instance of this type of room. The
__init__ method uses the width value to specify the values for both width and
height in the call to the __init__ method defined in the superclass, that is, the
FloorPlanElement class. Each subclass of the Room class overrides the description
class attribute with an appropriate value.

In this case, the from statement combined with the import statement imported just
one class definition into the current namespace. We can use the following import
statement to import all the items from the general.floor_plan_element module,
that is, from the general/floor_plan_element.py file. However, we must be
careful when we specify * after the import statement because we should import only
the elements that we need from the other module:

from general.floor_plan_element import *

Organization of Object-Oriented Code

[428]

Another option is to execute an import statement in order to import the required
module. However, we would need to make changes to the Room class declaration and
add the modules path as a prefix to FloorPlanElement, that is, we have to replace
FloorPlanElement with general.floor_plan_element.FloorPlanElement, as
shown in the following code:

import general.floor_plan_element

class Room(general.floor_plan_element.FloorPlanElement):
 category = "Room"

Here is the code for the build/doors.py Python source file that declares two classes:
Door and EntryDoor:

from general.floor_plan_element import FloorPlanElement

class Door(FloorPlanElement):
 category = "Door"

class EntryDoor(Door):
 description = "Entry Door"

The first line in the preceding code uses the from statement to import the
FloorPlanElement class from the general.floor_plan_element module, that is,
from the general/floor_plan_element.py file. The next few lines declare the Door
class as a subclass of the FloorPlanElement class as if the class were defined in the
same Python source file. The FloorPlanElement class overrides the value of the
category class attribute with the "Door" value. The EntryDoor class represents an entry
door and just overrides the description class attribute with an appropriate value.

We will create the following Python source files in the previously created
Decorate folder:

• art_and_decor.py

• countertops.py

• electronics.py

• flooring.py

• lighting_and_fans.py

• paint_and_walls.py

Chapter 7

[429]

We will create the following Python source files in the previously created
Furnish folder:

• bathroom.py

• dining_room.py

• kitchen.py

• laundry_and_utility.py

• living_room.py

• office.py

• other_rooms.py

We will create a Bedroom subfolder within the Furnish folder. Then, we will create
the following Python source files within the Furnish/Bedroom subfolder:

• beds.py

• dressers.py

• kids_beds.py

• mirrors.py

• night_tables.py

• nursery.py

The following lines show the code for the Furnish/Bedroom/beds.py Python source
file that declares two classes: Bed and FabricBed:

from general.floor_plan_element import FloorPlanElement

class Bed(FloorPlanElement):
 category = "Bed"
 description = "Generic bed"

class FabricBed(Bed):
 description = "Fabric bed"

Organization of Object-Oriented Code

[430]

The first line in the preceding code uses the from statement to import the
FloorPlanElement class from the general.floor_plan_element module, that
is, from the general/floor_plan_element.py file. The next few lines declare
the Bed class as a subclass of the FloorPlanElement class as if the class were
defined in the same Python source file. The FloorPlanElement class overrides the
value of the category class attribute with the "Bed" value and description with
"Generic Bed". The FabricBed class represents a fabric bed and just overrides the
description class attribute with an appropriate value.

We will create the following Python source files in the previously created
Landscape folder:

• areas_definition.py

• materials.py

• trees_and_plants.py

Finally, we will create the following Python source files in the previously created
Outdoor folder:

• accessories.py

• living.py

• structures.py

Working with module hierarchies
Now, we will create the __main__.py Python source file in the project's root folder,
that is, the same folder that includes the following subfolders: Build, Decorate,
Furnish, General, Landscape, and Outdoor. The following is the code that imports
many of the previously defined modules and works with instances of all the
imported classes:

from build.rooms import *
from build.doors import *
from furnish.bedroom.beds import *

if __name__ == "__main__":
 room1 = SquareRoom(0, 0, 200, None)
 door1 = EntryDoor(100, 1, 50, 5, room1)
 bedroom1 = SquareRoom(100, 200, 180, None)
 bed1 = FabricBed(130, 230, 120, 110, bedroom1)
 room1.draw()
 door1.draw()
 bedroom1.draw()
 bed1.draw()

Chapter 7

[431]

The first line in the preceding code uses the from statement to import all the classes
from the following modules into the current namespace:

• build.rooms: build/rooms.py
• build.doors: build/doors.py
• furnish.bedroom.beds: furnish/bedrooms/beds.py

This way, we can access the SquareRoom, EntryDoor and FabricBed classes as
if they were defined in the __main__.py Python source file. The following is the
output generated with the preceding code:

Room

Square room

X: 0, Y: 0. Width: 200, Height: 200.

Door

Entry Door

X: 100, Y: 1. Width: 50, Height: 5.

Room

Square room

X: 100, Y: 200. Width: 180, Height: 180.

Bed

Fabric bed

X: 130, Y: 230. Width: 120, Height: 110.

In this case, we just need these three classes; therefore, we can use the following from
statements to import just the classes we need:

from build.rooms import SquareRoom
from build.doors import EntryDoor
from furnish.bedroom.beds import FabricBed

Another option is to use the import keyword and add the necessary modules
hierarchy separated by dots (.) to each class defined in modules. The following lines
show the version of the code that uses the import keyword and adds the necessary
prefixes to each class:

import build.doors
import build.rooms
import furnish.bedroom.beds

if __name__ == "__main__":
 room1 = build.SquareRoom(0, 0, 200, None)
 door1 = build.EntryDoor(100, 1, 50, 5, room1)

Organization of Object-Oriented Code

[432]

 bedroom1 = build.SquareRoom(100, 200, 180, None)
 bed1 = furnish.bedroom.beds.FabricBed(130, 230, 120, 110,
bedroom1)
 room1.draw()
 door1.draw()
 bedroom1.draw()
 bed1.draw()

Now, let's imagine that we have to code an application that has to draw the floor
plans for 30 extremely complex houses that will be displayed in a 4K display. We
will have to work with most of the elements defined in all the different modules. We
would like to have all the classes defined in the Python source files included in the
Build folder with just one line. It is possible to do so by adding the __init__.py
Python source file to the Build folder and including the following code to import all
the classes defined in each of the Python source files included in this folder:

from .areas import *
from .doors import *
from .fireplaces import *
from .rooms import SquareRoom, LShapedRoom, SmallRoom, Closet
from .stairs import *
from .walls import *
from .windows import *

This way, if we use the import keyword with the build module, we will be able
to access all the classes defined in each of the Python source files included in the
build module by adding the build. prefix to each class name. In fact, we won't be
able to access all the classes because we excluded the Room class in the from .rooms
import statement and specified only four classes to import from this module. After
we add the __init__.py Python source file to the Build folder, we can change the
__main__.py Python source code with the following code:

import build
from furnish.bedroom.beds import FabricBed

if __name__ == "__main__":
 room1 = build.SquareRoom(0, 0, 200, None)
 door1 = build.EntryDoor(100, 1, 50, 5, room1)
 bedroom1 = build.SquareRoom(100, 200, 180, None)
 bed1 = FabricBed(130, 230, 120, 110, bedroom1)
 room1.draw()
 door1.draw()
 bedroom1.draw()
 bed1.draw()

Chapter 7

[433]

If we don't want to use prefixes and just want to import all the classes defined in the
build module, we can use the following from … import statement:

from build import *

We can add the appropriate code in the __init__.py Python source file for each
folder and then use the appropriate import or from … import statements based
on our needs.

Organizing object-oriented code in C#
C# allows you to use namespaces to declare a scope that contains a set of related
elements. Thus, we can use namespaces to organize interfaces and classes. We will
work with nested namespaces to organize the code of an application. This allows you
to create and furnish house floor plans. Then, we will use interfaces and classes from
different namespaces in diverse pieces of code.

Working with folders
We will create a Windows console application named Chapter7. Visual Studio will
automatically add a Program.cs C# source file in the solution's root folder. We
will create the following six folders to organize the code in our house floor plan
layout application. Then, we will add subfolders and C# source files in each of the
previously created folders. Visual Studio will use these folders and subfolders to
automatically generate the namespaces for each new C# source file:

• Build

• Decorate

• Furnish

• General

• Landscape

• Outdoor

We will use the C# source file for each interface or class. We will add the
IFloorPlanElement interface to a file named IFloorPlanElement.cs in the
General folder. The following is the code for the General\IFloorPlanElement.cs
C# source file that declares the IFloorPlanElement interface:

namespace Chapter7.General
{
 public interface IFloorPlanElement
 {

Organization of Object-Oriented Code

[434]

 string Category { get; set; }
 string Description { get; set; }
 double X { get; set; }
 double Y { get; set; }
 double Width { get; set; }
 double Height { get; set; }
 IFloorPlanElement Parent { get; set; }

 void MoveTo(double x, double y);
 void PrintCategory();
 void PrintDescription();
 void Draw();
 }
}

If we use Visual Studio to create a new interface in the General folder, the IDE will
automatically include a line with the namespace keyword, followed by the Chapter7.
General name. The declaration of the interface will be enclosed in brackets after the
line that declares the namespace. The IDE uses the folder name in which we will add
the interface to automatically generate a default namespace name. In this case, the
generated name is the initial namespace, that is, the Chapter7 solution name, followed
by a dot (.) and the folder that contains the new C# source file, that is, General.

The IFloorPlanElement interface declares the following required members:

• Two string properties: Category and Description
• Four double properties: X, Y, Width, and Height
• The IFloorPlanElement property: Parent
• The MoveTo method that receives two arguments: x and y
• The PrintCategory method
• The PrintDescription method
• The Draw method

Chapter 7

[435]

Now, we will add the FloorPlanElement abstract class that implements
the previously created IFloorPlanElement interface to a file named
FloorPlanElement.cs in the General folder. The following is the code
for the General\FloorPlanElement.cs C# source file that declares the
FloorPlanElement class:

namespace Chapter7.General
{
 using System;

 public abstract class FloorPlanElement: IFloorPlanElement
 {
 public virtual string Category
 {
 get { return "Undefined"; }
 set { throw new InvalidOperationException(); }
 }

 public virtual string Description
 {
 get { return "Undefined"; }
 set { throw new InvalidOperationException(); }
 }

 public double X { get; set; }
 public double Y { get; set; }
 public double Width { get; set; }
 public double Height { get; set; }

 private IFloorPlanElement _parent;
 public IFloorPlanElement Parent
 {
 get { return _parent; }
 set { throw new InvalidOperationException(); }
 }

 public FloorPlanElement(double x, double y, double width, double
height, IFloorPlanElement parent)
 {
 this.X = x;
 this.Y = y;
 this.Width = width;
 this.Height = height;
 this._parent = parent;

Organization of Object-Oriented Code

[436]

 }

 public void MoveTo(double x, double y)
 {
 this.X = x;
 this.Y = y;
 }

 public void PrintCategory()
 {
 Console.WriteLine(this.Category);
 }

 public void PrintDescription()
 {
 Console.WriteLine(this.Description);
 }

 public void Draw()
 {
 this.PrintCategory();
 this.PrintDescription();
 Console.WriteLine(
 "X: {0}, Y: {1}. Width: {2}, Height: {3}.",
 this.X,
 this.Y,
 this.Width,
 this.Height);
 }
 }
}

Note that the abstract class is declared in the same namespace that we used for
the IFloorPlanElement interface; therefore, both the class and the interface are in
the same scope. We can reference the interface name in the class declaration without
any namespace prefix because both the class and the interface are declared in the
same namespace.

The abstract class declares a constructor that receives five arguments: x, y, width,
height, and parent. The preceding code initializes all the properties with the
values received as arguments. This way, each FloorPlanElement instance will
have a 2D location specified by the X and Y properties, a Width and a Height
value, and a Parent element that will be of any class that implements the
IFloorPlanElement interface.

Chapter 7

[437]

The FloorPlanElement abstract class declares two virtual read-only properties
that the subclasses will override: Category and Description. In addition, the
abstract class declares all the other properties required by the IFloorPlanElement
interface: X, Y, Width, Height, and Parent. Note that Parent is a read-only property
that encapsulates the private _parent field.

The abstract class declares the following instance methods:

• MoveTo: This method moves the floor plan element to the new location
specified by the x and y arguments

• PrintCategory: This method prints the value of the Category class attribute
to the console output

• PrintDescription: This method prints the value of the Description class
attribute to the console output

• Draw: This method prints the category, description, 2D location, width, and
height of the floor plan element to the console output

The FloorPlanElement abstract class is located in the General\FloorPlanElement.cs
file. All the classes that specialize floor plan elements will inherit from the
FloorPlanElement class; therefore they will implement the IFloorPlanElement
interface. These classes will be located in other C# source files that will have to use the
using statement to let C# know that they want to use the FloorPlanElement class that
is located in another namespace, that is, in the Chapter7.General namespace.

Using namespaces
We will create the following folders in the previously created Build folder. We won't
add C# source files to all the folders in order to keep our example simple. However,
we will imagine that we have a more complex project:

• Areas

• Doors

• Fireplaces

• Rooms

• Stairs

• Walls

• Windows

Organization of Object-Oriented Code

[438]

Now, we will add the Room abstract class, which inherits from the previously created
FloorPlanElement abstract class, to a file named Room.cs within the Build\Rooms
subfolder. The following lines show the code for the Build\Rooms\Room.cs C#
source file that declares the Room class. The class just overrides the getter and setter
methods for the Category property. The getter method returns the "Room" value. In
addition, the class declares a constructor that just calls the base constructor:

namespace Chapter7.Build.Rooms
{
 using System;
 using General;

 public abstract class Room : FloorPlanElement
 {
 public override string Category
 {
 get { return "Room"; }
 set { throw new InvalidOperationException(); }
 }

 public Room(double x, double y, double width, double height,
IFloorPlanElement parent) : base(x, y, width, height, parent)
 {
 }
 }
}

If we use Visual Studio to create a new interface in the Build\Rooms folder,
the IDE will automatically include a line with the namespace keyword, followed by
the Chapter7.Build.Rooms name. The declaration of the interface will be enclosed
in brackets after the line that declares the namespace. The IDE uses the folder names
in which we will add the interface to automatically generate a default namespace
name. In this case, the generated name is the initial namespace, that is, the solution
name, the folder, and the subfolder, all of them separated by a dot (.), that is,
Chapter7.Build.Rooms.

The new class inherits from the FloorPlanElement class that was declared in another
namespace, that is, in the Chapter7.General namespace. We had to specify the class
name from which the new abstract class inherits; therefore, we added the using
statement, followed by General. This way, we don't need to specify the full qualifier
for the FloorPlanElement class; we can reference it by just using its class name.

Chapter 7

[439]

Bear in mind that the real namespace name is Chapter7.General. However, we are
under the scope of the Chapter7 namespace because we include the using line in
the namespace declaration so that we don't need to include Chapter7. as a prefix.
This way, we can just specify General. If we don't include the using statement,
followed by the General namespace, we should use a full qualifier to reference
the FloorPlanElement class, as shown in the following line that declares the Room
abstract class:

public abstract class Room : General.FloorPlanElement

In addition, it will be necessary to add a full qualifier to reference the
IFloorPlanElement interface in the constructor declaration:

public Room(double x, double y, double width, double height, General.
IFloorPlanElement parent) : base(x, y, width, height, parent)

If we decide to include the using statement before and outside the namespace
declaration, we should use the following line:

using Chapter7.General;

Now, we will add a SquareRoom class, which inherits from the previously created
Room abstract class, to a file named SquareRoom.cs within the Build\Rooms
subfolder. The following is the code for the Build\Rooms\SquareRoom.cs C# source
file that declares the SquareRoom class. The class just overrides the getter and setter
methods for the Description property. The getter method returns the "Square
room" value. The SquareRoom class represents a square room; therefore, it isn't
necessary to specify both the width and height to create an instance of this type of
room. The constructor uses the width value to specify the values for both width and
height in the call to the base constructor:

namespace Chapter7.Build.Rooms
{
 using System;
 using General;

 class SquareRoom : Room
 {
 public override string Description
 {
 get { return "Square room"; }
 set { throw new InvalidOperationException(); }
 }

 public SquareRoom(double x, double y, double width,
IFloorPlanElement parent) : base(x, y, width, width, parent)

Organization of Object-Oriented Code

[440]

 {
 }
 }
}

As occurred in the Room abstract class file, we added the using statement,
followed by General. This way, we don't need to specify the full qualifier for the
IFloorPlanElement interface. The Room class is declared in the same namespace in
which we declare this new class; therefore, the Room class is under scope.

Now, we will add the LShapedRoom class, which also inherits from the Room
abstract class, to a file named LShapedRoom.cs within the Build\Rooms subfolder.
The following code shows the Build\Rooms\LShapedRoom.cs C# source file that
declares the SquareRoom class. The class just overrides the getter and setter methods
for the Description property. The getter method returns the "L-Shaped room"
value. In addition, the class declares a constructor that just calls the base constructor:

namespace Chapter7.Build.Rooms
{
 using System;
 using General;

 public class LShapedRoom: Room
 {
 public override string Description
 {
 get { return "L-Shaped room"; }
 set { throw new InvalidOperationException(); }
 }

 public LShapedRoom(double x, double y, double width, double
height, IFloorPlanElement parent) : base(x, y, width, height, parent)
 {
 }
 }
}

Now, we will add the SmallRoom class that also inherits from the Room abstract class
to a file named SmallRoom.cs within the Build\Rooms subfolder. The following
code shows the Build\Rooms\SmallRoom.cs C# source file that declares the
SmallRoom class. The class just overrides the getter and setter methods for the
Description property. The getter method returns the "Small room" value. In
addition, the class declares a constructor that just calls the base constructor:

namespace Chapter7.Build.Rooms
{

Chapter 7

[441]

 using System;
 using General;

 public class SmallRoom : Room
 {
 public override string Description
 {
 get { return "Small room"; }
 set { throw new InvalidOperationException(); }
 }

 public SmallRoom(double x, double y, double width, double height,
IFloorPlanElement parent)
 : base(x, y, width, height, parent)
 {
 }
 }
}

Now, we will add the Closet class (which also inherits from the Room abstract class)
to a file named Closet.cs within the Build\Rooms subfolder. The following is the
code for the Build\Rooms\Closet.cs C# source file that declares the Closet class.
The class just overrides the getter and setter methods for the Description property.
The getter method returns the "Closet" value. In addition, the class declares a
constructor that just calls the base constructor:

namespace Chapter7.Build.Rooms
{
 using System;
 using General;

 public class Closet : Room
 {
 public override string Description
 {
 get { return "Closet"; }
 set { throw new InvalidOperationException(); }
 }

 public Closet(double x, double y, double width, double height,
IFloorPlanElement parent)
 : base(x, y, width, height, parent)
 {
 }
 }
}

Organization of Object-Oriented Code

[442]

We will add the Door abstract class, which inherits from the previously created
FloorPlanElement abstract class, to a file named Door.cs within the Build\Doors
subfolder. The following is the code for the Build\Doors\Door.cs C# source file
that declares a Door class. This class just overrides the getter and setter methods for
the Category property. The getter method returns the "Door" value. In addition, the
Door class declares a constructor that just calls the base constructor:

namespace Chapter7.Build.Doors
{
 using System;
 using General;

 public abstract class Door : FloorPlanElement
 {
 public override string Category
 {
 get { return "Door"; }
 set { throw new InvalidOperationException(); }
 }

 public Door(double x, double y, double width, double height,
IFloorPlanElement parent)
 : base(x, y, width, height, parent)
 {
 }
 }
}

The Door class is included in the Chapter7.Build.Doors namespace. The new class
inherits from the FloorPlanElement class that was declared in another namespace,
that is, in the Chapter7.General namespace.

Now, we will add the EntryDoor class, which inherits from the Door abstract class,
to a file named EntryDoor.cs within the Build\Doors subfolder. The following
is the code for the Build\Doors\EntryDoor.cs C# source file that declares the
EntryDoor class. This class just overrides the getter and setter methods for the
Description property. The getter method returns the "Entry Door" value. In
addition, the class declares a constructor that just calls the base constructor:

namespace Chapter7.Build.Doors
{
 using System;
 using General;

 public class EntryDoor : Door

Chapter 7

[443]

 {
 public override string Description
 {
 get { return "Entry Door"; }
 set { throw new InvalidOperationException(); }
 }

 public EntryDoor(double x, double y, double width, double height,
IFloorPlanElement parent)
 : base(x, y, width, height, parent)
 {
 }
 }
}

We will create the following subfolders in the previously created Decorate folder.
Each of these subfolders will generate a namespace in the Chapter7.Decorate
namespace and will include the following classes:

• ArtAndDecor

• Countertops

• Electronics

• Flooring

• LightingAndFans

• PaintAndWalls

We will create the following subfolders in the previously created Furnish folder.
Each of these subfolders will generate a namespace in the Chapter7.Furnish
namespace and will include classes. The Bedroom subfolder will include the
additional subfolders:

• Bathroom

• Bedroom

• DiningRoom

• Kitchen

• LaundryAndUtility

• LivingRoom

• Office

• OtherRooms

Organization of Object-Oriented Code

[444]

We will create the following subfolders within the previously created
Furnish\Bedroom subfolder:

• Beds

• Dressers

• KidsBeds

• Mirrors

• NightTables

• Nursery

We will add the Bed class, which inherits from the previously created
FloorPlanElement abstract class, to a file named Bed.cs within the Furnish\
Bedroom\Beds subfolder. The following is the code for the Furnish\Bedroom\Beds\
Bed.cs C# source file that declares the Bed class. The class just overrides the getter
and setter methods for the properties of Category and Description. The getter
method for the Category property returns the "Bed" value and the getter method for
Description returns "Generic Bed". In addition, the class declares a constructor
that just calls the base constructor:

namespace Chapter7.Furnish.Bedroom.Beds
{
 using System;
 using General;

 public class Bed : FloorPlanElement
 {
 public override string Category
 {
 get { return "Bed"; }
 set { throw new InvalidOperationException(); }
 }

 public override string Description
 {
 get { return "Generic Bed"; }
 set { throw new InvalidOperationException(); }
 }

 public Bed(double x, double y, double width, double height,
IFloorPlanElement parent)

Chapter 7

[445]

 : base(x, y, width, height, parent)
 {
 }
 }
}

The Bed class is included in the Chapter7.Furnish.Bedroom.Beds namespace.
The new class inherits from the FloorPlanElement class. This class was declared
in another namespace, that is, in the Chapter7.General namespace.

Now, we will add the FabricBed class to a file named FabricBed.cs within the
Furnish\Bedroom\Beds subfolder. The FabricBed class inherits from the Bed class.
The following is the code for the Furnish\Bedroom\Beds\FabricBed.cs C# source
file that declares the FabricBed class. The class just overrides the getter and setter
methods for the Description property. The getter method returns the "Fabric Bed"
value. In addition, the class declares a constructor that just calls the base constructor:

namespace Chapter7.Furnish.Bedroom.Beds
{
 using System;
 using General;

 public class FabricBed : Bed
 {
 public override string Description
 {
 get { return "Fabric Bed"; }
 set { throw new InvalidOperationException(); }
 }

 public FabricBed(double x, double y, double width, double height,
IFloorPlanElement parent)
 : base(x, y, width, height, parent)
 {
 }
 }
}

Organization of Object-Oriented Code

[446]

We will create the following subfolders in the previously created Landscape folder.
Each of these subfolders will generate a namespace in the Chapter7.Landscape
namespace and will include the following classes:

• AreasDefinition

• Materials

• TreesAndPlants

Finally, we will create the following subfolders in the previously created Outdoor
folder. Each of these subfolders will generate a namespace in the Chapter7.Outdoor
namespace and will include the following classes:

• Accessories

• Living

• Structures

Working with namespace hierarchies in C#
Now, we will change the code for the Program.cs C# source file in the project's root
folder, that is, the same folder that includes the Build, Decorate, Furnish, General,
Landscape, and Outdoor subfolders. The following code uses many using directives
to list all the namespaces to be used frequently. Then, the Main method works with
instances of the classes defined in many different namespaces:

namespace Chapter7
{
 using System;
 using Build.Rooms;
 using Build.Doors;
 using Furnish.Bedroom.Beds;

 class Program
 {
 static void Main(string[] args)
 {
 var room1 = new SquareRoom(0, 0, 200, null);
 var door1 = new EntryDoor(100, 1, 50, 5, room1);
 var bedroom1 = new SquareRoom(100, 200, 180, null);
 var bed1 = new FabricBed(130, 230, 120, 110, bedroom1);
 room1.Draw();
 door1.Draw();
 bedroom1.Draw();
 bed1.Draw();

Chapter 7

[447]

 Console.ReadLine();
 }
 }
}

The first line in the preceding code declares that we are working in the Chapter7
namespace and using many using directives to make it simpler to access the classes
declared in the specified namespaces:

• Build.Rooms: Chapter7.Build.Rooms
• Build.Doors: Chapter7.Build.Doors
• Furnish.Bedroom.Beds: Chapter7.Bedroom.Beds

This way, we can access the SquareRoom, EntryDoor, and FabricBed classes without
any prefixes as if they were defined in the Chapter7 namespace. The following lines
show the output generated with the preceding code:

Room

Square room

X: 0, Y: 0. Width: 200, Height: 200.

Door

Entry Door

X: 100, Y: 1. Width: 50, Height: 5.

Room

Square room

X: 100, Y: 200. Width: 180, Height: 180.

Bed

Fabric Bed

X: 130, Y: 230. Width: 120, Height: 110.

In this case, we just need these three classes. Remember that we have included the
using directives in the Chapter7 namespace declaration. If we want to move the
using directives before and outside the namespace declaration, we should use the
following code that adds Chapter7. as a prefix to each namespace:

using Chapter7.Build.Rooms;
using Chapter7.Build.Doors;
using Chapter7.Furnish.Bedroom.Beds;

Organization of Object-Oriented Code

[448]

Another option is to remove the using directives and use full qualifiers for each of
the required classes, that is, include the complete namespace name and a dot (.) as a
prefix for each class. The following is the version of the code that removes the using
directives and works with full qualifiers for each class:

namespace Chapter7
{
 using System;

 class Program
 {
 static void Main(string[] args)
 {
 var room1 = new Build.Rooms.SquareRoom(0, 0, 200, null);
 var door1 = new Build.Doors.EntryDoor(100, 1, 50, 5, room1);
 var bedroom1 = new Build.Rooms.SquareRoom(100, 200, 180, null);
 var bed1 = new Furnish.Bedroom.Beds.FabricBed(130, 230, 120,
110, bedroom1);
 room1.Draw();
 door1.Draw();
 bedroom1.Draw();
 bed1.Draw();

 Console.ReadLine();
 }
 }
}

Now, let's imagine that we have to code an application that has to draw the floor
plans for 30 extremely complex houses that will be displayed in a 4K display. We
will have to work with most of the elements defined in the different namespaces.
We would like to have all the classes defined in the diverse namespaces accessed
without prefixes. We would require the following using directives in the Chapter7
namespace declaration:

using Build.Areas;
using Build.Doors;
using Build.Fireplaces;
using Build.Rooms;
using Build.Stairs;
using Build.Walls;
using Build.Windows;
using Decorate.ArtAndDecor;
using Decorate.Countertops;
using Decorate.Electronics;

Chapter 7

[449]

using Decorate.Flooring;
using Decorate.LightingAndFans;
using Decorate.PaintAndWalls;
using Furnish.Bathroom;
using Furnish.Bedroom.Beds;
using Furnish.Bedroom.Dressers;
using Furnish.Bedroom.KidsBeds;
using Furnish.Bedroom.Mirrors;
using Furnish.Bedroom.NightTables;
using Furnish.Bedroom.Nursery;
using Furnish.DiningRoom;
using Furnish.Kitchen;
using Furnish.LaundryAndUtility;
using Furnish.LivingRoom;
using Furnish.Office;
using Furnish.OtherRooms;
using Landscape.AreasDefinition;
using Landscape.Materials;
using Landscape.TreesAndPlants;
using Outdoor.Accesories;
using Outdoor.Living;
using Outdoor.Structures;

Organizing object-oriented code in
JavaScript
JavaScript was born as a scripting language that has grown up to become a language
that creates entire apps. The usage of plain JavaScript without additional libraries
doesn't provide a standardized mechanism to organize code in namespaces or modules.

We can easily organize our constructor functions with plain JavaScript, but in some
cases, we can benefit from the usage of specialized libraries, such as Require.js
(http://www.requirejs.org/), that provide a better mechanism to organize
complex code in modules and solve the problem of dependencies and different
ways of loading modules as well. In this case, we will organize our code using
plain JavaScript without additional libraries.

http://www.requirejs.org/

Organization of Object-Oriented Code

[450]

Working with objects to organize code
We will create a base global object named APP to use it to define all the elements of
our house floor plan layout application. Then, we will add the following properties
to the base object to create a hierarchy of objects linked to this base object:

• Build

• Decorate

• Furnish

• General

• Landscape

• Outdoor

We will add the base constructor function in the APP.General object. The following
code creates the APP object if it doesn't exist. It also defines the General property if
it doesn't exist. Then, the code defines the FloorPlanElement constructor function
and its prototype. We will use this constructor functions as the base of the prototype
chain for other objects that will specialize the floor plan element:

var APP = APP || {};
APP.General = APP.General || {};
APP.General.FloorPlanElement = function() { };
APP.General.FloorPlanElement.prototype.category = "Undefined";
APP.General.FloorPlanElement.prototype.description = "Undefined";
APP.General.FloorPlanElement.prototype.x = 0;
APP.General.FloorPlanElement.prototype.y = 0;
APP.General.FloorPlanElement.prototype.width = 0;
APP.General.FloorPlanElement.prototype.height = 0;
APP.General.FloorPlanElement.prototype.parent = null;

APP.General.FloorPlanElement.prototype.initialize = function(x, y,
width, height, parent) {
 this.x = x;
 this.y = y;
 this.width = width;
 this.height = height;
 this.parent = parent;
}

APP.General.FloorPlanElement.prototype.moveTo = function(x, y) {
 this.x = x;

Chapter 7

[451]

 this.y = y;
}

APP.General.FloorPlanElement.prototype.printCategory = function() {
 console.log(this.category);
}

APP.General.FloorPlanElement.prototype.printDescription = function() {
 console.log(this.description);
}

APP.General.FloorPlanElement.prototype.draw = function() {
 this.printCategory();
 this.printDescription();
 console.log("X: " + this.x +
 ", Y: " + this.y +
 ". Width: " + this.width +
 ", Height: " + this.height + ".");
}

The FloorPlanElement prototype declares two properties that the subclasses will
override: category and description. The prototype declares an initialize
method that receives five arguments: x, y, width, height, and parent. The
initialize method initializes the current instance properties with the same name
with all the values received as arguments. This way, each constructor function in
the prototype chain that ends up in the FloorPlanElement prototype will have a
2D location specified by x and y, width and height values, and a parent element.
Each constructor function in the prototype chain will call the initialize method to
initialize the instance.

In addition, the FloorPlanElement prototype declares the following methods:

• moveTo: This method moves the floor plan element to the new location
specified by the x and y arguments

• printCategory: This method prints the value of the category property
• printDescription: This method prints the value of the description

property
• draw: This method prints the category, description, 2D location, and width

and height of the floor plan element

Organization of Object-Oriented Code

[452]

In this case, we will include all the constructor functions in the same JavaScript file.
However, the same code can be moved to different JavaScript source files because
whenever we declare a new group of related constructor functions, we will include
the first few lines of the preceding code that creates the APP object if it doesn't exist
and defines the property we use to generate the hierarchy of related constructor
functions if it doesn't exist. However, if we separate code in different JavaScript
source files, we have to make sure that we load them in the necessary order to avoid
dependency problems. We won't add code to check for the existence of specific
constructor functions, but we can easily define flags for this goal.

Declaring constructor functions within
objects
The following code declares five constructor functions: Room, SquareRoom,
LShapedRoom, SmallRoom, and Closet. The code defines these constructor
functions as properties of the APP.Build.Rooms object:

var APP = APP || {};
APP.Build = APP.Build || {};
APP.Build.Rooms = APP.Build.Rooms || {};
APP.Build.Rooms.Room = function() { };
APP.Build.Rooms.Room.prototype = new APP.General.FloorPlanElement();
APP.Build.Rooms.Room.prototype.constructor = APP.Build.Rooms.Room;
APP.Build.Rooms.Room.prototype.category = "Room";

APP.Build.Rooms.SquareRoom = function(x, y, width, parent) {

 this.initialize(x, y, width, width, parent);
};
APP.Build.Rooms.SquareRoom.prototype = new APP.Build.Rooms.Room();
APP.Build.Rooms.SquareRoom.prototype.constructor = APP.Build.Rooms.
SquareRoom;
APP.Build.Rooms.SquareRoom.prototype.description = "Square room";

APP.Build.Rooms.LShapedRoom = function(x, y, width, height, parent) {
 this.initialize(x, y, width, height, parent);
};
APP.Build.Rooms.LShapedRoom.prototype = new APP.Build.Rooms.Room();
APP.Build.Rooms.LShapedRoom.prototype.constructor = APP.Build.Rooms.
LShapedRoom;
APP.Build.Rooms.LShapedRoom.prototype.description = "L-Shaped room";

APP.Build.Rooms.SmallRoom = function(x, y, width, height, parent) {

Chapter 7

[453]

 this.initialize(x, y, width, height, parent);
};
APP.Build.Rooms.SmallRoom.prototype = new APP.Build.Rooms.Room();
APP.Build.Rooms.SmallRoom.prototype.constructor = APP.Build.Rooms.
SmallRoom;
APP.Build.Rooms.SmallRoom.prototype.description = "Small room";

APP.Build.Rooms.Closet = function(x, y, width, height, parent) {
 this.initialize(x, y, width, height, parent);
};
APP.Build.Rooms.Closet.prototype = new APP.Build.Rooms.Room();
APP.Build.Rooms.Closet.prototype.constructor = APP.Build.Rooms.Closet;
APP.Build.Rooms.Closet.prototype.description = "Closet";

The APP.Build.Rooms.Room constructor function specifies the previously defined
APP.General.FloorPlanElement object as its prototype. The APP.Build.Rooms.
Room prototype overrides the value of the category property with the "Room" value.
The App.Build.Rooms.SquareRoom constructor function generates an object that
represents the square room; therefore, it isn't necessary to specify both the width
and height to create an instance of this type of room. The constructor function uses
the width value to specify the values for both width and height in the call to the
initialize method defined in the APP.General.FloorPlanElement prototype.
Each constructor function that defines APP.Build.Rooms.Room as its prototype
overrides the description property with an appropriate value.

The following code declares two constructor functions: Door and EntryDoor. The
following code defines these constructor functions as properties of the APP.Build.
Doors object:

var APP = APP || {};
APP.Build = APP.Build || {};
APP.Build.Doors = APP.Build.Doors || {};
APP.Build.Doors.Door = function() { };
APP.Build.Doors.Door.prototype = new APP.General.FloorPlanElement();
APP.Build.Doors.Door.prototype.constructor = APP.Build.Doors.Door;
APP.Build.Doors.Door.prototype.category = "Door";

APP.Build.Doors.EntryDoor = function(x, y, width, height, parent) {
 this.initialize(x, y, width, height, parent);
};
APP.Build.Doors.EntryDoor.prototype = new APP.Build.Doors.Door();
APP.Build.Doors.EntryDoor.prototype.constructor = APP.Build.Doors.
EntryDoor;
APP.Build.Doors.EntryDoor.prototype.description = "Entry Door";

Organization of Object-Oriented Code

[454]

The APP.Build.Doors.Door constructor function specifies the previously defined
APP.General.FloorPlanElement object as its prototype. The APP.Build.Doors.
Door prototype overrides the value of the category property with the "Door" value.
The App.Build.Doors.Door constructor function generates an object that represents
an entry door; its prototype overrides the description property with the "Entry
Door" value.

The following code declares two constructor functions: Bed and FabricBed. The code
defines these constructor functions as properties of the APP.Furnish.Bedroom.Beds
object:

var APP = APP || {};
APP.Furnish = APP.Furnish || {};
APP.Furnish.Bedroom = APP.Furnish.Bedroom || {};
APP.Furnish.Bedroom.Beds = APP.Furnish.Bedroom.Beds || {};
APP.Furnish.Bedroom.Beds.Bed = function() { };
APP.Furnish.Bedroom.Beds.Bed.prototype = new APP.General.
FloorPlanElement();
APP.Furnish.Bedroom.Beds.Bed.prototype.constructor = APP.Furnish.
Bedroom.Beds.Bed;
APP.Furnish.Bedroom.Beds.Bed.prototype.category = "Bed";
APP.Furnish.Bedroom.Beds.Bed.prototype.description = "Generic Bed";

APP.Furnish.Bedroom.Beds.FabricBed = function(x, y, width, height,
parent) {
 this.initialize(x, y, width, height, parent);
};
APP.Furnish.Bedroom.Beds.FabricBed.prototype = new APP.Furnish.
Bedroom.Beds.Bed();
APP.Furnish.Bedroom.Beds.FabricBed.prototype.constructor = APP.
Furnish.Bedroom.Beds.FabricBed;
APP.Furnish.Bedroom.Beds.FabricBed.prototype.description = "Fabric
Bed";

The APP.Furnish.Bedroom.Beds.Bed constructor function specifies the previously
defined APP.General.FloorPlanElement object as its prototype. The APP.
Furnish.Bedroom.Beds.Bed prototype overrides the value of both the category
and description properties with the "Bed" and "Generic Bed" values. The APP.
Furnish.Bedroom.Beds.FabricBed constructor function generates an object that
represents a fabric bed; its prototype overrides the description property with the
"Fabric Bed" value.

Chapter 7

[455]

Working with nested objects that organize
code
Now, we will write code that checks whether the previously defined objects that
organized the code are defined. If they are defined, the following code creates objects
with the previously defined constructor functions and calls the draw methods for all
of the created objects:

if (!APP.Build.Rooms) {
 throw "Rooms objects not available.";
}
if (!APP.Build.Doors) {
 throw "Doors objects not available.";
}
if (!APP.Furnish.Bedroom.Beds) {
 throw "Beds objects not available.";
}

var room1 = new APP.Build.Rooms.SquareRoom(0, 0, 200, null);
var door1 = new APP.Build.Doors.EntryDoor(100, 1, 50, 5, room1);
var bedroom1 = new APP.Build.Rooms.SquareRoom(100, 200, 180, null);
var bed1 = new APP.Furnish.Bedroom.Beds.FabricBed(130, 230, 120, 110,
bedroom1);

room1.draw();
door1.draw();
bedroom1.draw();
bed1.draw();

The following lines show the output generated on the JavaScript console:

Room

Square room

X: 0, Y: 0. Width: 200, Height: 200.

Door

Entry Door

X: 100, Y: 1. Width: 50, Height: 5.

Room

Square room

X: 100, Y: 200. Width: 180, Height: 180.

Bed

Fabric Bed

X: 130, Y: 230. Width: 120, Height: 110.

Organization of Object-Oriented Code

[456]

Summary
In this chapter, you learned how to use all the features included in Python, C#, and
JavaScript in order to organize complex object-oriented code. We took advantage
of modules in Python, namespaces in C#, and nested objects in JavaScript. We
organized multiple classes, interfaces, and constructor functions of a house floor plan
layout application. If the basic features included in JavaScript to organize code aren't
enough, we can use specialized libraries (such as the popular RequireJS).

Now that you have learned how to organize object-oriented code, we are ready to
understand how to move forward to take advantage of all the things you learned so
far in this book and use them in our real-world applications in Python, JavaScript,
and C#, which is the topic of the next chapter.

[457]

Taking Full Advantage of
Object-Oriented Programming
In this chapter, you will learn how to refactor existing code to take advantage of
all the object-oriented programming techniques that you have learned so far. We
will take advantage of all the different available features to refactor a piece of code
and prepare it for future requirements in each of the three covered programming
languages: Python, JavaScript, and C#. We will cover the following topics:

• Putting together all the pieces of the object-oriented puzzle
• Understanding the difference between writing object-oriented code from

scratch and refactoring existing code
• Preparing object-oriented code for future requirements
• Refactoring existing code in Python
• Refactoring existing code in C#
• Refactoring existing code in JavaScript

Putting together all the pieces of the
object-oriented puzzle
In Chapter 1, Objects Everywhere, you learned how to recognize objects from real-life
situations. We understood that working with objects makes it easier to write code
that is easier to understand and reuse. However, Python, C#, and JavaScript have
different object-oriented approaches, and each programming language provides
different features that allow you to generate and organize blueprints for objects. If
we have the same goals for an application, we will end up with completely different
object-oriented approaches in Python, C#, and JavaScript. It is not possible to use the
same approach in these three languages.

Taking Full Advantage of Object-Oriented Programming

[458]

In Chapter 2, Classes and Instances, you learned that in Python and C#, classes are
the blueprints or building blocks that we can use to generate instances. Both the
programming languages allow you to customize constructors and destructors.
JavaScript has a different approach. We can easily create objects in JavaScript
without any kind of blueprint. However, we can also take advantage of constructor
functions and prototypes to group properties and methods that we can reuse to
generate multiple objects using the same building blocks.

In Chapter 3, Encapsulation of Data, you learned about the different members of
a class and how its different members are reflected in members of the instances
generated from a class. We understood the possibility of protecting and hiding data
and designed both mutable and immutable classes. Immutable classes are extremely
useful when we work with concurrent code. Each programming language provides
a different mechanism to protect and hide data. However, the three programming
languages allow you to work with property getters and setters.

Python works with prefixes to indicate that we don't have to access specific
members. C# is very strict and works with access modifiers to make it impossible
for us to use members that we aren't supposed to access. In fact, if we try to access
a member that isn't available for us to use, the code won't even compile. However,
everything has a price, and C# adds an important amount of boilerplate code to
provide these features.

In JavaScript, objects are extremely flexible and can easily mutate from the original
form they acquired after we use a constructor function to create a new one. We can
add members—such as methods and properties—on the fly. In fact, we can even
change the prototype that is linked to an object and use all the members added to
a prototype in the objects that we created before our changes. Bear in mind that
JavaScript provides a mechanism that allows you to protect properties from being
removed. We didn't take advantage of this feature in our examples.

In Chapter 4, Inheritance and Specialization, you learned about the different
mechanisms provided by each programming language to specialize a blueprint.
Python and C# work with inheritance; therefore, we work with classes that can
become superclasses or base classes of a subclass or derived class. We worked
with simple inheritance in both programming languages, performed methods and
operators overriding, and took advantage of polymorphism. Also, we understood
the power of overloading operators.

Chapter 8

[459]

JavaScript works with prototype-based inheritance. We created objects that
specialized behavior in this programming language. We also performed method
overriding in JavaScript. We don't have to abuse large prototype chains in JavaScript
because prototype-based inheritance can have a negative performance impact. We
must take this into account, especially when we are used to taking full advantage of
inheritance in other programming languages (Python and C#).

In Chapter 5, Interfaces, Multiple Inheritance, and Composition, you learned that C#
works with interfaces in combination with classes. The only way to have multiple
inheritance in C# is through the usage of interfaces. Interfaces are extremely useful,
but they have a drawback, that is, they require us to write additional code. Luckily,
there are tools included in all the modern IDEs. These IDEs allow you to easily and
automatically generate an interface from a class without having to write all the code.
We understood how we could use interfaces as the types required for arguments and
that any instance of a class that implements the interface can be used as an argument.

Python allows you to work with multiple inheritance of classes; therefore, we can
declare a class with more than one superclass. However, we should use multiple
inheritances carefully to avoid generating a big mess. Python doesn't work with
an interface, but works with a module that allows you to work with abstract base
classes. It makes sense to use abstract base classes only in specific cases in Python.

We can work with composition in JavaScript to generate objects composed of many
objects. This way, we can generate instances composed of objects created with
diverse prototypes.

In Chapter 6, Duck Typing and Generics, you learned that both Python and JavaScript
work with duck typing. We can add the necessary validation code to make sure that
all the arguments have specific properties or belong to a specific type. However, the
most common practice in both languages is to take advantage of duck typing.

C# uses interfaces in combination with generics to work with parametric
polymorphism. We can declare classes that work with one or more constrained
generic types. Generics are very important to maximize code reuse in C#.

Taking Full Advantage of Object-Oriented Programming

[460]

In Chapter 7, Organization of Object-Oriented Code, you learned that Python allows you
to easily organize source files in folders to define module hierarchies. C# works with
namespaces, and we can easily match them with the location of all the source code
files within folders in the project structure. We can declare a constructor function
within objects in JavaScript and nest objects to organize code in JavaScript. However,
if our code is complex and we want to use many files in different folders, we can use
RequireJS, a popular code organization module.

Now, we will take our existing code and refactor it to take advantage of object-
oriented programming.

Refactoring existing code in Python
Sometimes, we are extremely lucky and have the possibility to follow best practices as
we kick off a project. If we start writing object-oriented code from scratch, we can take
advantage of all the features that we have been using in our examples throughout the
book. As the requirements evolve, we may need to further generalize or specialize all
the blueprints. However, as we started our project with an object-oriented approach
and organizing our code, it is easier to make adjustments to the code.

Most of the times, we aren't extremely lucky and have to work on projects that don't
follow best practices. In the name of Agile, we generate pieces of code that perform
similar tasks without a decent organization. Instead of following the same bad
practices that generated error-prone, repetitive, and difficult to maintain code, we
can use all the features provided by all the different IDEs and additional helper tools
to refactor existing code and generate object-oriented code that promotes code reuse
and allows you to reduce maintenance headaches.

Chapter 8

[461]

For example, imagine that we have to develop an application that has to render 3D
models on a 2D screen. The requirements specify that the first set of 3D models that
we will have to render are a sphere and a cube. The application has to allow you to
change parameters of a perspective camera in order to allow you to see a specific
part of the 3D world rendered on the 2D screen (refer to Figure 1 and Figure 2):

• The X, Y, and Z position
• The X, Y, and Z direction
• The X, Y, and Z up vector

Figure 1

• Perspective field of view in degrees: This value determines the angle for the
perspective camera's lens. A low value for this angle narrows the view. Thus,
all the models will appear larger in the lens with a perspective field of a view
of 45 degrees. A high value for this angle widens the view; therefore, all the
models appear smaller in the visible part of the 3D world.

Taking Full Advantage of Object-Oriented Programming

[462]

• The near clipping plane: The 3D region, which is visible on the 2D screen,
is formed by a clipped pyramid called a frustum. This value controls the
position of the plane that slices the top of the pyramid and determines the
nearest part of the 3D world that the camera will render on the 2D screen. As
the value is expressed taking into account the Z axis, it is a good idea to add
code to check whether we are entering a valid value for this parameter.

• The far clipping plane: This value controls the position of the plane that
slices the back of the pyramid and determines the more distant part of the
3D world that the camera will render on the 2D screen. The value is also
expressed taking into account the Z axis; therefore, it is a good idea to add
code to check whether we are entering a valid value for this parameter.

In addition, we can change the color of a directional light, that is, a light that casts
light in a specific direction, which is similar to sunlight.

Let's start with the Python programming language. Here, we will be able to apply
a similar procedure in C# or Java, considering the way we have been working
with these languages in the previous chapters. Imagine that other developers
started working on the project and generated a single Python source file with many
functions that render a cube and a sphere. These functions receive all the necessary
parameters to render each 3D figure, including the X, Y, and Z axes, determine the
3D figure's size, and configure the camera and the directional light:

Figure 2

Chapter 8

[463]

The following code shows an example of the declaration of the function that
renders a sphere named render_sphere and the function that renders a cube
named render_cube:

def render_sphere(x, y, z, radius, camera_x, camera_y, camera_z,
camera_direction_x, camera_direction_y, camera_direction_z, camera_
vector_x, camera_vector_y, camera_vector_z, camera_perspective_
field_of_view, camera_near_clipping_plane, camera_far_clipping_plane,
directional_light_x, directional_light_y, directional_light_z,
directional_light_color):
 pass

def render_cube(x, y, z, edge_length, camera_x, camera_y, camera_z,
camera_direction_x, camera_direction_y, camera_direction_z, camera_
vector_x, camera_vector_y, camera_vector_z, camera_perspective_field_
of_view, camera_near_clipping_plane, camera_far_clipping_plane,
directional_light_x, directional_light_y, directional_light_z,
directional_light_color):
 pass

Each function requires a huge number of parameters. Let's imagine that we have
requirements to add code in order to render additional shapes and add different
types of cameras and lights. The preceding code can easily become a really big mess,
repetitive, and difficult to maintain.

The first thing we can change is to work with a Vector3D class instead of working
with separate X, Y, and Z values. Then, we can create a class for each of the following
elements:

• SceneElement: This class represents a 3D element that is part of a scene and
has a location specified with the Vector3D class. It is the base class for all the
scene elements that require a location in the 3D space.

• Light: This is a subclass of SceneElement and represents a 3D light. It is the
base class for all the lights.

• DirectionalLight: This is a subclass of Light and represents a directional
light. It adds the property of color. The property setter makes sure that we
cannot specify invalid values for the underlying attribute.

• Camera: This is a subclass of SceneElement and represents a 3D camera.
It is the base class for all the cameras.

Taking Full Advantage of Object-Oriented Programming

[464]

• PerspectiveCamera: This is a subclass of Camera and represents a
perspective camera. It adds the Vector3D attributes: direction and vector.
In addition, the class adds the field_of_view, near_clipping_plane, and
far_clipping_plane properties. The property setters make sure that we
cannot specify invalid values for all the underlying attributes.

• Shape: This is a subclass of SceneElement and represents a 3D shape that has
a location specified with a Vector3D instance. It is the base class for all the 3D
shapes and defines an empty Render method that receives a Camera instance.

• Sphere: This is a subclass of Shape that adds a radius property and
overrides the Render method defined in its superclass to render a sphere.

• Cube: This is a subclass of Shape that adds an edge_length property and
overrides the Render method defined in its superclass to render a sphere.

• Scene: This class represents the scene to be rendered.

The Scene class defines an active_camera attribute that holds the Camera instance.
The lights attribute is a list of Light instances, whereas all the shapes attributes is a
list of Shape instances that compose a scene. The add_light method adds Light to the
lights list. The add_shape method adds Shape to the shapes list. Finally, the render
method calls the render method for each of the Shape instances included in the shapes
list and passes the active_camera attribute and the lights list as arguments.

The following code shows the Python code that defines the previously explained
classes. In this case, we will use attributes; we haven't added any validation code to
keep the code as simples as possible. In addition, this code doesn't really render any
shapes because it would require a huge number of lines of code. Also, don't forget to
organize the code as you learned in the previous chapter:

class Vector3D:
 def __init__(self, x, y, z):
 self.x = x
 self.y = y
 self.z = z

class SceneElement:
 def __init__(self, location):
 self.location = location

class Light(SceneElement):
 def __init__(self, location):

Chapter 8

[465]

 self.location = location

class DirectionalLight(Light):
 def __init__(self, location, color):
 super().__init__(location)
 self.color = color

class Camera(SceneElement):
 def __init__(self, location):
 super().__init__(location)

class PerspectiveCamera(Camera):
 def __init__(self, location, direction, vector, field_of_view,
near_clipping_plane, far_clipping_plane):
 super().__init__(location)
 self.direction = direction
 self.vector = vector
 self.field_of_view = field_of_view
 self.near_clipping_plane = near_clipping_plane
 self.far_clipping_plane = far_clipping_plane

class Shape(SceneElement):
 def __init__(self, location):
 super().__init__(location)

 def render(self, camera, lights):
 pass

class Sphere(Shape):
 def __init__(self, location, radius):
 super().__init__(location)
 self.radius = radius

 def render(self, camera, lights):
 print("Rendering a sphere.")

class Cube(Shape):
 def __init__(self, location, edge_length):
 super().__init__(location)

Taking Full Advantage of Object-Oriented Programming

[466]

 self.edge_length = edge_length

 def render(self, camera, lights):
 print("Rendering a cube.")

class Scene:
 def __init__(self, initial_camera):
 self.active_camera = initial_camera
 self.shapes = []
 self.lights = []

 def add_light(self, light):
 self.lights.append(light)

 def add_shape(self, shape):
 self.shapes.append(shape)

 def render(self):
 for shape in self.shapes:
 shape.render(self.active_camera, self.lights)

After we create the previously shown classes, we can enter the following code in the
__main__ method:

if __name__ == '__main__':
 camera = PerspectiveCamera(Vector3D(30, 30, 30), Vector3D(50, 0,
0), Vector3D(4, 5, 2), 90, 20, 40)
 sphere = Sphere(Vector3D(20, 20, 20), 8)
 cube = Cube(Vector3D(10, 10, 10), 5)
 light = DirectionalLight(Vector3D(2, 2, 5), 235)
 scene = Scene(camera)
 scene.add_shape(sphere)
 scene.add_shape(cube)
 scene.add_light(light)
 scene.render()

The preceding code is very easy to understand and read. First, we created
PerspectiveCamera with all the necessary parameters. Then, we created two
shapes: a Sphere and a Cube. Finally, we created DirectionalLight with all the
necessary parameters and Scene with the previously created PerspectiveCamera as
the initial camera. Then, we added all the shapes and the light to the scene and called
the render method to render the scene.

Chapter 8

[467]

Now, compare the previous code with the following main method that calls the
render_sphere and render_cube functions with more than a dozen parameters:

if __name__ == '__main__':
 render_sphere(20, 20, 20, 8, 30, 30, 30, 50, 0, 0, 4, 5, 2, 90,
20, 40, 2, 2, 5, 235)
 render_cube(10, 10, 10, 5, 30, 30, 30, 50, 0, 0, 4, 5, 2, 90, 20,
40, 2, 2, 5, 235)

The object-oriented version makes it easier to add parameters to any scene element.
In addition, we can add the necessary light types, camera types, and shapes by
specializing all the base classes. Whenever we find a behavior that is repeated in
subclasses, we can generalize the code and move it to its base class. This way, we can
reuse code and make future extensions to the application easier to code.

Refactoring existing code in C#
The following code shows an example of the declaration of the method that
renders a sphere named RenderSphere and the method that renders a cube
named RenderCube in C#:

public static void RenderSphere(
 int x, int y, int z, int radius,
 int cameraX, int cameraY, int cameraZ,
 int cameraDirectionX, int cameraDirectionY, int cameraDirectionZ,
 int cameraVectorX, int cameraVectorY, int cameraVvectorZ,
 int cameraPerspectiveFieldOfView,
 int cameraNearClippingPlane,
 int cameraFarClippingPlane,
 int directionalLightX, int directionalLightY, int directionalLightZ,
 int directionalLightColor)
{
}

public static void RenderCube(
 int x, int y, int z, int edgeLength,
 int cameraX, int cameraY, int cameraZ,
 int cameraDirectionX, int cameraDirectionY, int cameraDirectionZ,
 int cameraVectorX, int cameraVectorY, int cameraVvectorZ,
 int cameraPerspectiveFieldOfView,
 int cameraNearClippingPlane,
 int cameraFarClippingPlane,
 int directionalLightX, int directionalLightY, int directionalLightZ,
 int directionalLightColor)
{
}

Taking Full Advantage of Object-Oriented Programming

[468]

Each function requires a huge number of parameters. Let's imagine that we have
requirements to add code in order to render additional shapes and add different
types of cameras and lights. The code can easily become a really big mess, repetitive,
and difficult to maintain.

In Chapter 3, Encapsulation of Data, we worked with both mutable and immutable
versions of the Vector3D class. Then, you learned how to overload operators in C#.
The first thing we can change is to work with the Vector3D class instead of working
with separate X, Y, and Z values. The following code shows a simple Vector3D class
that uses auto-implemented properties. The code doesn't overload operators because
we want to keep the example extremely simple:

public class Vector3D
{
 public int X { get; set; }
 public int Y { get; set; }
 public int Z { get; set; }

 public Vector3D(int x, int y, int z)
 {
 this.X = x;
 this.Y = y;
 this.Z = z;
 }
}

We will create a simple interface named ISceneElement to specify all the
requirements for scene elements:

public interface ISceneElement
{
 Vector3D Location { get; set; }
}

The following code declares an abstract SceneElement class that implements the
previously defined ISceneElement interface. The SceneElement class represents
a 3D element. This element is part of a scene and has a location specified with
Vector3D. It is the base class for all the scene elements that require a location in
the 3D space:

public abstract class SceneElement : ISceneElement
{
 public Vector3D Location { get; set; }

 public SceneElement(Vector3D location)
 {

Chapter 8

[469]

 this.Location = location;
 }
}

The following code declares another abstract class named Light. This is a subclass
of the previously defined SceneElement class. This class represents a 3D light and is
the base class for all the lights:

public abstract class Light : SceneElement
{
 public Light(Vector3D location)
 : base(location)
 {

 }
}

The following code declares a subclass of Light named DirectionalLight. The
class represents a directional light and adds a Color property. In this case, we
don't add validations for all the property setters just to make the example simple.
However, we already know how to do it:

public class DirectionalLight : Light
{
 public int Color { get; set; }

 public DirectionalLight(Vector3D location, int color)
 : base(location)
 {
 this.Color = color;
 }
}

The following code declares an abstract class named Camera that inherits from
SceneElement. The class represents a 3D camera. It is the base class for all the cameras:

public abstract class Camera : SceneElement
{
 public Camera(Vector3D location)
 : base(location)
 {
 }
}

Taking Full Advantage of Object-Oriented Programming

[470]

The following code declares a subclass of Camera named PerspectiveCamera.
The class represents a perspective camera and adds the Direction and Vector
auto-implemented Vector3D properties. In addition, the class adds the FieldOfView,
NearClippingPlane, and FarClippingPlane auto-implemented properties:

public class PerspectiveCamera : Camera
{
 public Vector3D Direction { get; set; }
 public Vector3D Vector { get; set; }
 public int FieldOfView { get; set; }
 public int NearClippingPlane { get; set; }
 public int FarClippingPlane { get; set; }

 public PerspectiveCamera(Vector3D location, Vector3D direction,
Vector3D vector, int fieldOfView, int nearClippingPlane, int
farClippingPlane)
 : base(location)
 {
 this.Direction = direction;
 this.Vector = vector;
 this.FieldOfView = fieldOfView;
 this.NearClippingPlane = nearClippingPlane;
 this.FarClippingPlane = farClippingPlane;
 }
}

The following code declares an abstract class named Shape that inherits from
SceneElement. The class represents a 3D shape and is the base class for all the
3D shapes. The class defines an abstract Render method that receives the Camera
instance and a list of Light instances:

public abstract class Shape: SceneElement
{
 public Shape(Vector3D location)
 : base(location)
 {
 }

 public abstract void Render(Camera camera, List<Light> lights);
}

Chapter 8

[471]

The following code declares a Sphere class, a subclass of Shape that adds a Radius
auto-implemented property and overrides the Render method defined in its abstract
superclass to render a sphere:

public class Sphere : Shape
{
 public int Radius { get; set; }

 public Sphere(Vector3D location, int radius)
 : base(location)
 {
 this.Radius = radius;
 }

 public override void Render(Camera camera, List<Light> lights)
 {
 Console.WriteLine("Rendering a sphere.");
 }
}

The following code declares a Cube class, a subclass of Shape that adds an
EdgeLength auto-implemented property and overrides the Render method
defined in its abstract superclass to render a cube:

public class Cube : Shape
{
 public int EdgeLength { get; set; }

 public Cube(Vector3D location, int edgeLength)
 : base(location)
 {
 this.EdgeLength = edgeLength;
 }

 public override void Render(Camera camera, List<Light> lights)
 {
 Console.WriteLine("Rendering a cube.");
 }
}

Taking Full Advantage of Object-Oriented Programming

[472]

Finally, the following code declares the Scene class that represents the scene to be
rendered. The class defines an _activeCamera protected field that holds the Camera
instance. The _lights protected field is a list of Light instances, and the _shapes
protected field is a list of Shape instances that compose a scene. The AddLight method
adds Light to the _lights list. The AddShape method adds Shape to the _shapes list.
Finally, the render method calls the render method for each of the Shape instances
included in the _shapes list and passes _activeCamera and lights list as arguments:

public class Scene
{
 protected List<Light> _lights;
 protected List<Shape> _shapes;
 protected Camera _activeCamera;

 public Scene(Camera initialCamera)
 {
 this._activeCamera = initialCamera;
 this._shapes = new List<Shape>();
 this._lights = new List<Light>();
 }

 public void AddLight(Light light)
 {
 this._lights.Add(light);
 }

 public void AddShape(Shape shape)
 {
 this._shapes.Add(shape);
 }

 public void Render()
 {
 foreach (var shape in this._shapes)
 {
 shape.Render(this._activeCamera, this._lights);
 }
 }
}

Chapter 8

[473]

After we create the previously shown classes, we can enter the following code in the
Main method of a Windows console application:

var camera = new PerspectiveCamera(
 new Vector3D(30, 30, 30),
 new Vector3D(50, 0, 0),
 new Vector3D(4, 5, 2),
 90, 20, 40);
var sphere = new Sphere(new Vector3D(20, 20, 20), 8);
var cube = new Cube(new Vector3D(10, 10, 10), 5);
var light = new DirectionalLight(new Vector3D(2, 2, 5), 235);
var scene = new Scene(camera);
scene.AddShape(sphere);
scene.AddShape(cube);
scene.AddLight(light);
scene.Render();

Console.ReadLine();

The preceding code is very easy to understand and read. First, we created a
PerspectiveCamera instance with all the necessary parameters. Then we created
two shapes: a Sphere and a Cube. Finally, we created DirectionalLight with all the
necessary parameters and a Scene with the previously created PerspectiveCamera
as the initial camera. Then, we added all the shapes and the light to the scene and
called the Render method in order to render the scene.

Now, compare the previous code with the following code that call the RenderSphere
and RenderCube methods with more than a dozen parameters:

RenderSphere(
 20, 20, 20,
 8, 30, 30,
 30, 50, 0,
 0, 4, 5,
 2, 90, 20,
 40, 2, 2,
 5, 235);
RenderCube(
 10, 10, 10,
 5, 30, 30,
 30, 50, 0,
 0, 4, 5,
 2, 90, 20,
 40, 2, 2,
 5, 235);

Taking Full Advantage of Object-Oriented Programming

[474]

The object-oriented version requires a higher number of lines of code. However, it is
easier to understand and expand based on future requirements. If you need to add a
new type of light, a new shape, or a new type of camera, you know where to add the
pieces of code, which classes to create, and the methods to change.

Refactoring existing code in JavaScript
The following code shows an example of the declaration of the function that
renders a sphere named renderSphere and the function that renders a cube
named renderCube in JavaScript:

function renderSphere(
 x, y, z, radius,
 cameraX, cameraY, cameraZ,
 cameraDirectionX, cameraDirectionY, cameraDirectionZ,
 cameraVectorX, cameraVectorY, cameraVvectorZ,
 cameraPerspectiveFieldOfView,
 cameraNearClippingPlane,
 cameraFarClippingPlane,
 directionalLightX, directionalLightY, directionalLightZ,
 directionalLightColor)
{

}

function renderCube(
 x, y, z, edgeLength,
 cameraX, cameraY, cameraZ,
 cameraDirectionX, cameraDirectionY, cameraDirectionZ,
 cameraVectorX, cameraVectorY, cameraVvectorZ,
 cameraPerspectiveFieldOfView,
 cameraNearClippingPlane,
 cameraFarClippingPlane,
 directionalLightX, directionalLightY, directionalLightZ,
 directionalLightColor)
{

}

Each function requires a huge number of parameters. Let's imagine that we have
requirements to add code in order to render additional shapes and add different
types of cameras and lights. The code can easily become a really big mess, repetitive,
and difficult to maintain.

Chapter 8

[475]

The first thing we can change is to define a Vector3D constructor function that
provides the x, y, and z properties instead of working with separate X, Y, and Z values.
The following code shows a very simple APP.Math.Vector3D constructor function:

var APP = APP || {};
APP.Math = APP.Math || {};
APP.Math.Vector3D = function(x, y, z) {
 this.x = x;
 this.y = y;
 this.z = z;
}

The following code declares an APP.Scene.DirectionalLight constructor function.
This function generates objects that will represent a directional light. The constructor
function defines the properties of location and color. We will use an APP.Math.
Vector3D object for location:

var APP = APP || {};
APP.Scene = APP.Scene || {};
APP.Scene.DirectionalLight = function(location, color) {
 this.location = location;
 this.color = color;
}

The following code declares an APP.Scene.PerspectiveCamera constructor function.
This function generates objects that represent a perspective camera. The constructor
function defines the location, direction, and Vector properties that will hold
the APP.Math.Vector3D object. In addition, this code declares and initializes the
fieldOfView, nearClippingPlane, and farClippingPlane properties:

var APP = APP || {};
APP.Scene = APP.Scene || {};
APP.Scene.PerspectiveCamera = function(location, direction, vector,
fieldOfView, nearClippingPlane, farClippingPlane) {
 this.location = location;
 this.direction = direction;
 this.vector = vector;
 this.fieldOfView = fieldOfView;
 this.nearClippingPlane = nearClippingPlane;
 this.farClippingPlane = farClippingPlane;
}

Taking Full Advantage of Object-Oriented Programming

[476]

The following code declares an APP.Shape.Sphere constructor function that receives
location and radius. The code declares the location and radius properties with
all its values received as arguments. The location property will hold an APP.Math.
Vector3D object. The prototype defines a render method that prints a line, which
simulates that it will render a sphere:

var APP = APP || {};
APP.Shape = APP.Shape || {};
APP.Shape.Sphere = function(location, radius) {
 this.location = location;
 this.radius = radius;
}
APP.Shape.Sphere.prototype.render = function(camera, lights) {
 console.log("Rendering a sphere");
}

The following code declares an APP.Shape.Cube constructor function that receives
location and edgeLength. The code declares the location and edgeLength
properties with all its values received as arguments. The location property will hold
the APP.Math.Vector3D object. The prototype defines the render method that prints
a line simulating that it will render a cube:

var APP = APP || {};
APP.Shape = APP.Shape || {};
APP.Shape.Cube = function(location, edgeLength) {
 this.location = location;
 this.edgeLength = edgeLength;
}
APP.Shape.Cube.prototype.render = function(camera, lights) {
 console.log("Rendering a cube");
}

Finally, the following code declares the APP.Scene.Scene constructor function.
This function generates objects that represent the scene to be rendered. The
constructor function receives an initialCamera argument that the code assigns to
the activeCamera property. The lights property is an array that will hold APP.
Scene.DirectionalLight objects. The shapes property is an array that will hold
APP.Shape.Sphere or APP.Shape.Cube objects that compose a scene. The addLight
method adds an APP.Scene.DirectionalLight object to the lights array. The
addShape method adds either an APP.Shape.Sphere object or an APP.Shape.Cube
object to the shapes array. Finally, the render method calls the render method for
each of the elements in the shape array Shape instances included in the _shapes list
and passes _activeCamera and the lights list as arguments:

var APP = APP || {};

Chapter 8

[477]

APP.Scene = APP.Scene || {};
APP.Scene.Scene = function(initialCamera) {
 this.activeCamera = initialCamera;
 this.shapes = [];
 this.lights = [];
}
APP.Scene.Scene.prototype.addLight = function(light) {
 this.lights.push(light);
}
APP.Scene.Scene.prototype.addShape = function(shape) {
 this.shapes.push(shape);
}
APP.Scene.Scene.prototype.render = function() {
 this.shapes.forEach(function (shape) { shape.render(this.
activeCamera, this.lights); });
}

After we create the previously shown constructor functions and their prototypes, we
can enter the following code on a JavaScript console:

var camera = new APP.Scene.PerspectiveCamera(
 new APP.Math.Vector3D(30, 30, 30),
 new APP.Math.Vector3D(50, 0, 0),
 new APP.Math.Vector3D(4, 5, 2),
 90, 20, 40);
var sphere = new APP.Shape.Sphere(new APP.Math.Vector3D(20, 20, 20),
8);
var cube = new APP.Shape.Cube(new APP.Math.Vector3D(10, 10, 10), 5);
var light = new APP.Scene.DirectionalLight(new APP.Math.Vector3D(2, 2,
5), 235);
var scene = new APP.Scene.Scene(camera);
scene.addShape(sphere);
scene.addShape(cube);
scene.addLight(light);
scene.render();

The preceding code is very easy to understand and read. We created an APP.Scene.
PerspectiveCamera object with all the necessary parameters. Then, we created two
shapes: APP.Shape.Sphere and APP.Shape.Cube. Finally, we created APP.Scene.
DirectionalLight with all the necessary parameters and APP.Scene.Scene with
the previously created APP.Scene.PerspectiveCamera as the initial camera. Then,
we added all the shapes and the light to the scene and called the render method in
order to render a scene.

Taking Full Advantage of Object-Oriented Programming

[478]

Now, compare the previous code with the following code that calls the
renderSphere and renderCube functions with more than a dozen parameters:

renderSphere(
 20, 20, 20,
 8, 30, 30,
 30, 50, 0,
 0, 4, 5,
 2, 90, 20,
 40, 2, 2,
 5, 235);
renderCube(
 10, 10, 10,
 5, 30, 30,
 30, 50, 0,
 0, 4, 5,
 2, 90, 20,
 40, 2, 2,
 5, 235);

The object-oriented version requires a higher number of lines of code. However, it is
easier to understand and expand based on future requirements. We haven't included
any kind of validations in order to keep the sample code as simple as possible
and focus on the refactoring process. However, it is easy to make all the necessary
changes to add the necessary validations as you learned in the previous chapters.

Summary
In this chapter, you learned how to use all the features included in Python, C#, and
JavaScript in order to write simple and complex object-oriented code. We can even
refactor existing code to take advantage of object-oriented programming in order to
prepare the code for future requirements, reduce maintenance costs, and maximize
code reuse.

Once you start working with object-oriented code and follow its best practices,
it is difficult to stop writing code that works with objects. Objects are everywhere
in real-life situations; therefore, it makes sense to code plenty of objects.

Now that you have learned to write object-oriented code, you are ready to use
everything you learned in real-life applications that will not only rock, but also
maximize code reuse and simplify maintenance.

Module 3

Object-Oriented JavaScript - Second Edition

Learn everything you need to know about OOJS in this comprehensive guide

Object-oriented JavaScript
Ever since the early days of the Web, there has been a need for more dynamic and
responsive interfaces. While it's OK to read static HTML pages of text and even
better when they are beautifully presented with the help of CSS, it's much more fun
to engage with applications in our browsers, such as e-mail, calendars, banking,
shopping, drawing, playing games, and text editing. All that is possible thanks to
JavaScript, the programming language of the Web. JavaScript started with simple
one-liners embedded in HTML, but is now used in much more sophisticated ways.
Developers leverage the object-oriented nature of the language to build scalable code
architectures made up of reusable pieces.

If you look at the past and present buzzwords in web development—DHTML,
Ajax, Web 2.0, HTML5—they all essentially mean HTML, CSS, and JavaScript.
HTML for content, CSS for presentation, and JavaScript for behavior. In other words,
JavaScript is the glue that makes everything work together so that we can build
rich web applications.

But that's not all, JavaScript can be used for more than just the Web.

JavaScript programs run inside a host environment. The web browser is the most
common environment, but it's not the only one. Using JavaScript, you can create
all kinds of widgets, application extensions, and other pieces of software, as you'll
see in a bit. Taking the time to learn JavaScript is a smart investment; you learn one
language and can then write all kinds of different applications running on multiple
platforms, including mobile and server-side applications. These days, it's safe to say
that JavaScript is everywhere.

This book starts from zero, and does not assume any prior programming knowledge
other than some basic understanding of HTML. Although there is one chapter
dedicated to the web browser environment, the rest of the book is about JavaScript
in general, so it's applicable to all environments.

Object-oriented JavaScript

[482]

Let's start with the following:

• A brief introduction to the story behind JavaScript
• The basic concepts you'll encounter in discussions on object-oriented

programming

A bit of history
Initially, the Web was not much more than just a number of scientific publications in
the form of static HTML documents connected together with hyperlinks. Believe it
or not, there was a time when there was no way to put an image in a page. But that
soon changed. As the Web grew in popularity and size, the webmasters who were
creating HTML pages felt they needed something more. They wanted to create richer
user interactions, mainly driven by the desire to save server roundtrips for simple
tasks such as form validation. Two options came up: Java applets and LiveScript, a
language conceived by Brendan Eich at Netscape in 1995 and later included in the
Netscape 2.0 browser under the name of JavaScript.

The applets didn't quite catch on, but JavaScript did. The ability to use short code
snippets embedded in HTML documents and alter otherwise static elements of a web
page was embraced by the webmaster community. Soon, the competing browser
vendor Microsoft shipped Internet Explorer (IE) 3.0 with JScript, which was a reverse
engineered version of JavaScript plus some IE-specific features. Eventually, there was
an effort to standardize the various implementations of the language, and this is how
ECMAScript was born. ECMA (European Computer Manufacturers Association)
created the standard called ECMA-262, which describes the core parts of the JavaScript
programming language without browser and web page-specific features.

You can think of JavaScript as a term that encompasses three pieces:

• ECMAScript—the core language—variables, functions, loops, and so on.
This part is independent of the browser and this language can be used in
many other environments.

• Document Object Model (DOM), which provides ways to work with
HTML and XML documents. Initially, JavaScript provided limited access
to what's scriptable on the page, mainly forms, links, and images. Later it was
expanded to make all elements scriptable. This lead to the creation of
the DOM standard by the World Wide Web Consortium (W3C) as a
language-independent (no longer tied to JavaScript) way to manipulate
structured documents.

Chapter 1

[483]

• Browser Object Model (BOM), which is a set of objects related to the
browser environment and was never part of any standard until HTML5
started standardizing some of the common objects that exist across browsers.

While there is one chapter in the book dedicated to the browser, the DOM, and the
BOM, most of the book describes the core language and teaches you skills you can
use in any environment where JavaScript programs run.

Browser wars and renaissance
For better or for worse, JavaScript's instant popularity happened during the period
of the Browser Wars I (approximately 1996 to 2001). Those were the times during
the initial Internet boom when the two major browser vendors—Netscape and
Microsoft—were competing for market share. Both were constantly adding more
bells and whistles to their browsers and their versions of JavaScript, DOM, and
BOM, which naturally led to many inconsistencies. While adding more features,
the browser vendors were falling behind on providing proper development and
debugging tools and adequate documentation. Often, development was a pain;
you would write a script while testing in one browser, and once you're done with
development, you test in the other browser, only to find that your script simply
fails for no apparent reason and the best you can get is a cryptic error message like
"Operation aborted".

Inconsistent implementations, missing documentation, and no appropriate tools
painted JavaScript in such a light that many programmers simply refused to bother
with it.

On the other hand, developers who did try to experiment with JavaScript got a little
carried away adding too many special effects to their pages without much regard
of how usable the end results were. Developers were eager to make use of every
new possibility the browsers provided and ended up "enhancing" their web pages
with things like animations in the status bar, flashing colors, blinking texts, objects
stalking your mouse cursor, and many other "innovations" that actually hurt the
user experience. These various ways to abuse JavaScript are now mostly gone, but
they were one of the reasons why the language got some bad reputation. Many
"serious" programmers dismissed JavaScript as nothing but a toy for designers to
play around with, and dismissed it as a language unsuitable for serious applications.
The JavaScript backlash caused some web projects to completely ban any client-side
programming and trust only their predictable and tightly controlled server. And
really, why would you double the time to deliver a finished product and then spend
additional time debugging problems with the different browsers?

Object-oriented JavaScript

[484]

Everything changed in the years following the end of the Browser Wars I. A number
of events reshaped the web development landscape in a positive way. Some of them
are given as follows:

• Microsoft won the war with the introduction of IE6, the best browser
at the time, and for many years they stopped developing Internet
Explorer. This allowed time for other browsers to catch up and
even surpass IE's capabilities.

• The movement for web standards was embraced by developers and browser
vendors alike. Naturally, developers didn't like having to code everything
two (or more) times to account for browsers' differences; therefore, they liked
the idea of having agreed-upon standards that everyone would follow.

• Developers and technologies matured and more people started caring about
things like usability, progressive enhancement techniques, and accessibility.
Tools such as Firebug made developers much more productive and the
development less of a pain.

In this healthier environment, developers started finding out new and better
ways to use the instruments that were already available. After the public release
of applications such as Gmail and Google Maps, which were rich on client-side
programming, it became clear that JavaScript is a mature, unique in certain
ways, and powerful prototypal object-oriented language. The best example
of its rediscovery was the wide adoption of the functionality provided by the
XMLHttpRequest object, which was once an IE-only innovation, but was then
implemented by most other browsers. XMLHttpRequest allows JavaScript to make
HTTP requests and get fresh content from the server in order to update some parts
of a page without a full page reload. Due to the wide use of XMLHttpRequest, a new
breed of desktop-like web applications, dubbed Ajax applications, was born.

The present
An interesting thing about JavaScript is that it always runs inside a host environment.
The web browser is just one of the available hosts. JavaScript can also run on the
server, on the desktop, and on mobile devices. Today, you can use JavaScript to do
all of the following:

• Create rich and powerful web applications (the kind of applications that run
inside the web browser). Additions to HTML5 such as application cache,
client-side storage, and databases make browser programming more and
more powerful for both online and offline applications.

• Write server-side code using .NET or Node.js, as well as code that can run
using Rhino (a JavaScript engine written in Java).

Chapter 1

[485]

• Make mobile applications; you can create apps for iPhone, Android, and
other phones and tablets entirely in JavaScript using PhoneGap or Titanium.
Additionally, apps for Firefox OS for mobile phones are entirely in JavaScript,
HTML, and CSS.

• Create rich media applications (Flash, Flex) using ActionScript, which is
based on ECMAScript.

• Write command-line tools and scripts that automate administrative tasks on
your desktop using Windows Scripting Host or WebKit's JavaScript Core
available on all Macs.

• Write extensions and plugins for a plethora of desktop applications, such as
Dreamweaver, Photoshop, and most other browsers.

• Create cross operating system desktop applications using Mozilla's
XULRunner or Adobe Air.

• Create desktop widgets using Yahoo! widgets or Mac Dashboard widgets.
Interestingly, Yahoo! widgets can also run on your TV.

This is by no means an exhaustive list. JavaScript started inside web pages, but
today it's safe to say it is practically everywhere. In addition, browser vendors now
use speed as a competitive advantage and are racing to create the fastest JavaScript
engines, which is great for both users and developers and opens doors for even more
powerful uses of JavaScript in new areas such as image, audio, and video processing,
and games development.

The future
We can only speculate what the future will be, but it's quite certain that it will
include JavaScript. For quite some time, JavaScript may have been underestimated
and underused (or maybe overused in the wrong ways), but every day we witness
new applications of the language in much more interesting and creative ways. It
all started with simple one liners, often embedded in HTML tag attributes (such as
onclick). Nowadays, developers ship sophisticated, well designed and architected,
and extensible applications and libraries, often supporting multiple platforms with
a single codebase. JavaScript is indeed taken seriously and developers are starting to
rediscover and enjoy its unique features more and more.

Once listed in the "nice-to-have" sections of job postings, today, the knowledge of
JavaScript is often a deciding factor when it comes to hiring web developers. Common
job interview questions you can hear today include: "Is JavaScript an object-oriented
language? Good. Now how do you implement inheritance in JavaScript?" After
reading this book, you'll be prepared to ace your JavaScript job interview and even
impress your interviewers with some bits that, maybe, they didn't know.

Object-oriented JavaScript

[486]

ECMAScript 5
Revision 3 of ECMAScript is the one you can take for granted to be implemented in
all browsers and environments. Revision 4 was skipped and revision 5 (let's call it
ES5 for short) was officially accepted in December 2009.

ES5 introduces some new objects and properties and also the so-called "strict mode".
Strict mode is a subset of the language that excludes deprecated features. The strict
mode is opt-in and not required, meaning that if you want your code to run in the
strict mode, you declare your intention using (once per function, or once for the
whole program) the following string:

"use strict";

This is just a JavaScript string, and it's OK to have strings floating around unassigned
to any variable. As a result, older browsers that don't "speak" ES5 will simply ignore
it, so this strict mode is backwards compatible and won't break older browsers.

In future versions, strict mode is likely to become the default or the only mode.
For the time being, it's optional.

For backwards compatibility, all the examples in this book work in ES3, but at the
same time, all the code in the book is written so that it will run without warnings
in ES5's strict mode. Additionally, any ES5-specific parts will be clearly marked.
Chapter 11, Built-in Objects, lists the new additions to ES5 in detail.

Object-oriented programming
Here's a quick table summarizing the object oriented programming concepts
discussed in the previous module:

Feature Illustrates concept
Bob is a man (an object). Objects
Bob's date of birth is June 1, 1980, gender: male, and hair: black. Properties

Bob can eat, sleep, drink, dream, talk, and calculate his own age. Methods

Bob is an instance of the Programmer class. Class (in classical
OOP)

Bob is based on another object, called Programmer. Prototype
(in prototypal OOP)

Bob holds data (such as birth_date) and methods that work
with the data (such as calculateAge()).

Encapsulation

Chapter 1

[487]

Feature Illustrates concept
You don't need to know how the calculation method works
internally. The object might have some private data, such as the
number of days in February in a leap year. You don't know, nor
do you want to know.

Information hiding

Bob is part of a WebDevTeam object, together with Jill, a
Designer object, and Jack, a ProjectManager object.

Aggregation and
composition

Designer, ProjectManager, and Programmer are all based
on and extend a Person object.

Inheritance

You can call the methods Bob.talk(), Jill.talk(), and
Jack.talk() and they'll all work fine, albeit producing
different results (Bob will probably talk more about performance,
Jill about beauty, and Jack about deadlines). Each object inherited
the method talk from Person and customized it.

Polymorphism and
method overriding

Setting up your training environment
This book takes a "do-it-yourself" approach when it comes to writing code, because
I firmly believe that the best way to really learn a programming language is by
writing code. There are no cut-and-paste-ready code downloads that you simply
put in your pages. On the contrary, you're expected to type in code, see how
it works, and then tweak it and play around with it. When trying out the code
examples, you're encouraged to enter the code into a JavaScript console. Let's see
how you go about doing this.

As a developer, you most likely already have a number of web browsers installed
on your system such as Firefox, Safari, Chrome, or Internet Explorer. All modern
browsers have a JavaScript console feature, which you'll use throughout the book to
help you learn and experiment with the language. More specifically, this book uses
WebKit's console (available in Safari and Chrome), but the examples should work in
any other console.

Object-oriented JavaScript

[488]

WebKit's Web Inspector
This example shows how you can use the console to type in some code that swaps
the logo on the google.com home page with an image of your choice. As you can
see, you can test your JavaScript code live on any page.

In order to bring up the console in Chrome or Safari, right-click anywhere on a
page and select Inspect Element. The additional window that shows up is the Web
Inspector feature. Select the Console tab and you're ready to go.

Chapter 1

[489]

You type code directly into the console, and when you press Enter, your code is
executed. The return value of the code is printed in the console. The code is executed
in the context of the currently loaded page, so for example, if you type location.
href, it will return the URL of the current page.

The console also has an autocomplete feature. It works similar to the normal
command line prompt in your operating system. If, for example, you type
docu and hit the Tab key or the right arrow key, docu will be autocompleted
to document. Then, if you type . (the dot operator), you can iterate through
all the available properties and methods you can call on the document object.

By using the up and down arrow keys, you can go through the list of already
executed commands and bring them back in the console.

The console gives you only one line to type in, but you can execute several JavaScript
statements by separating them with semicolons. If you need more lines, you can
press Shift + Enter to go to a new line without executing the result just yet.

JavaScriptCore on a Mac
On a Mac, you don't actually need a browser; you can explore JavaScript directly
from your command line Terminal application.

If you've never used Terminal, you can simply search for it in the Spotlight search.
Once you've launched it, type:

alias jsc='/System/Library/Frameworks/JavaScriptCore.framework/Versions/
Current/Resources/jsc'

This command makes an alias to the little jsc application, which stands for
"JavaScriptCore" and is part of the WebKit engine. JavaScriptCore is shipped
together with Mac operating systems.

You can add the alias line shown previously to your ~/.profile file so that jsc is
always there when you need it.

Object-oriented JavaScript

[490]

Now, in order to start the interactive shell, you simply type jsc from any directory.
Then you can type JavaScript expressions, and when you hit Enter, you'll see the
result of the expression.

More consoles
All modern browsers have consoles built in. You have seen the Chrome/Safari
console previously. In any Firefox version, you can install the Firebug extension,
which comes with a console. Additionally, in newer Firefox releases, there's a
console built in and accessible via the Tools/Web Developer/Web Console menu.

Chapter 1

[491]

Internet Explorer, since Version 8, has an F12 Developer Tools feature, which has a
console in its Script tab.

It's also a good idea to familiarize yourself with Node.js, and you can start by trying
out its console. Install Node.js from http://nodejs.org and try the console in your
command prompt (terminal).

Object-oriented JavaScript

[492]

As you can see, you can use the Node.js console to try out quick examples. But, you
can also write longer shell scripts (test.js in the screenshot) and run them with the
scriptname.js node.

Summary
In this chapter, you learned about how JavaScript came to be and where it is today.
You were also introduced to object-oriented programming concepts and have seen
how JavaScript is not a class-based OO language, but a prototype-based one. Finally,
you learned how to use your training environment—the JavaScript console. Now
you're ready to dive into JavaScript and learn how to use its powerful OO features.
But let's start from the beginning.

The next chapter will guide you through the data types in JavaScript (there are just
a few), conditions, loops, and arrays. If you think you know these topics, feel free to
skip the next chapter, but not before you make sure you can complete the few short
exercises at the end of the chapter.

Primitive Data Types, Arrays,
Loops, and Conditions

Before diving into the object-oriented features of JavaScript, let's first take a look at
some of the basics. This chapter walks you through the following:

• The primitive data types in JavaScript, such as strings and numbers
• Arrays
• Common operators, such as +, -, delete, and typeof
• Flow control statements, such as loops and if-else conditions

Variables
Variables are used to store data; they are placeholders for concrete values. When
writing programs, it's convenient to use variables instead of the actual data, as it's
much easier to write pi instead of 3.141592653589793, especially when it happens
several times inside your program. The data stored in a variable can be changed
after it was initially assigned, hence the name "variable". You can also use variables
to store data that is unknown to you while you write the code, such as the result of a
later operation.

Using a variable requires two steps. You need to:

• Declare the variable
• Initialize it, that is, give it a value

Primitive Data Types, Arrays, Loops, and Conditions

[494]

To declare a variable, you use the var statement, like this:

var a;
var thisIsAVariable;
var _and_this_too;
var mix12three;

For the names of the variables, you can use any combination of letters, numbers, the
underscore character, and the dollar sign. However, you can't start with a number,
which means that this is invalid:

var 2three4five;

To initialize a variable means to give it a value for the first (initial) time. You have
two ways to do so:

• Declare the variable first, then initialize it
• Declare and initialize it with a single statement

An example of the latter is:

var a = 1;

Now the variable named a contains the value 1.

You can declare (and optionally initialize) several variables with a single var
statement; just separate the declarations with a comma:

var v1, v2, v3 = 'hello', v4 = 4, v5;

For readability, this is often written using one variable per line:

var v1,
 v2,
 v3 = 'hello',
 v4 = 4,
 v5;

The $ character in variable names
You may see the dollar sign character ($) used in variable names, as in
$myvar or less commonly my$var. This character is allowed to appear
anywhere in a variable name, although previous versions of the ECMA
standard discouraged its use in handwritten programs and suggested
it should only be used in generated code (programs written by other
programs). This suggestion is not well respected by the JavaScript
community, and $ is in fact commonly used in practice as a function name.

Chapter 2

[495]

Variables are case sensitive
Variable names are case sensitive. You can easily verify this statement using your
JavaScript console. Try typing this, pressing Enter after each line:

var case_matters = 'lower';
var CASE_MATTERS = 'upper';
case_matters;
CASE_MATTER;

To save keystrokes, when you enter the third line, you can type case and press
the Tab key (or right-arrow key). The console autocompletes the variable name to
case_matters. Similarly, for the last line, type CASE and press Tab. The end result is
shown in the following figure:

Throughout the rest of this book, only the code for the examples is given instead of a
screenshot, like so:

> var case_matters = 'lower';
> var CASE_MATTERS = 'upper';
> case_matters;
"lower"

> CASE_MATTERS;
"upper"

Primitive Data Types, Arrays, Loops, and Conditions

[496]

The greater-than signs (>) show the code that you type; the rest is the result as
printed in the console. Again, remember that when you see such code examples,
you're strongly encouraged to type in the code yourself. Then, you can experiment
by tweaking it a little here and there to get a better feeling of how exactly it works.

You can see in the screenshot that sometimes what you type in
the console results in the word undefined. You can simply ignore
this, but if you're curious, here's what happens: when evaluating
(executing) what you type, the console prints the returned value.
Some expressions (such as var a = 1;) don't return anything
explicitly, in which case they implicitly return the special value
undefined (more on it in a bit). When an expression returns some
value (for example case_matters in the previous example or
something such as 1 + 1), the resulting value is printed out. Not all
consoles print the undefined value, for example the Firebug console.

Operators
Operators take one or two values (or variables), perform an operation, and
return a value. Let's check out a simple example of using an operator, just
to clarify the terminology:

> 1 + 2;
3

In this code:

• + is the operator
• The operation is addition
• The input values are 1 and 2 (the input values are also called operands)
• The result value is 3
• The whole thing is called an expression

Instead of using the values 1 and 2 directly in the expression, you can use variables.
You can also use a variable to store the result of the operation, as the following
example demonstrates:

> var a = 1;
> var b = 2;
> a + 1;
2

Chapter 2

[497]

> b + 2;
4

> a + b;
3

> var c = a + b;
> c;
3

The following table lists the basic arithmetic operators:

Operator symbol Operation Example
+ Addition > 1 + 2;

3
- Subtraction > 99.99 – 11;

88.99
* Multiplication > 2 * 3;

6
/ Division > 6 / 4;

1.5
% Modulo, the remainder

of a division

> 6 % 3;
0
> 5 % 3;
2

It's sometimes useful to test if a number is
even or odd. Using the modulo operator,
it's easy to do just that. All odd numbers
return 1 when divided by 2, while all
even numbers return 0.
> 4 % 2;
0
> 5 % 2;
1

Primitive Data Types, Arrays, Loops, and Conditions

[498]

Operator symbol Operation Example
++ Increment a value

by 1
Post-increment is when the input value is
incremented after it's returned.

> var a = 123;
> var b = a++;
> b;
123
> a;
124

The opposite is pre-increment. The input
value is incremented by 1 first and then
returned.
> var a = 123;
> var b = ++a;
> b;
124
> a;
124

-- Decrement a value
by 1

Post-decrement:
> var a = 123;
> var b = a--;
> b;
123
> a;
122

Pre-decrement:
> var a = 123;
> var b = --a;
> b;
122
> a;
122

var a = 1; is also an operation; it's the simple assignment operation, and = is the
simple assignment operator.

Chapter 2

[499]

There is also a family of operators that are a combination of an assignment and an
arithmetic operator. These are called compound operators. They can make your
code more compact. Let's see some of them with examples:

> var a = 5;
> a += 3;
8

In this example, a += 3; is just a shorter way of doing a = a + 3;:

> a -= 3;
5

Here, a -= 3; is the same as a = a - 3;.

Similarly:

> a *= 2;
10

> a /= 5;
2

> a %= 2;
0

In addition to the arithmetic and assignment operators discussed previously, there
are other types of operators, as you'll see later in this and the following chapters.

Best practice
Always end your expressions with a semicolon. JavaScript has a
semicolon insertion mechanism where it can add the semicolon if you
forget it at the end of a line. However, this can also be a source of errors,
so it's best to make sure you always explicitly state where you want to
terminate your expressions. In other words, both expressions, > 1 + 1
and > 1 + 1;, will work; but, throughout the book you'll always see the
second type, terminated with a semicolon, just to emphasize this habit.

Primitive Data Types, Arrays, Loops, and Conditions

[500]

Primitive data types
Any value that you use is of a certain type. In JavaScript, there are just a few
primitive data types:

1. Number: This includes floating point numbers as well as integers.
For example, these values are all numbers: 1, 100, 3.14.

2. String: These consist of any number of characters, for example "a", "one",
and "one 2 three".

3. Boolean: This can be either true or false.
4. Undefined: When you try to access a variable that doesn't exist, you get the

special value undefined. The same happens when you declare a variable
without assigning a value to it yet. JavaScript initializes the variable behind
the scenes with the value undefined. The undefined data type can only have
one value – the special value undefined.

5. Null: This is another special data type that can have only one value, namely
the null value. It means no value, an empty value, or nothing. The difference
with undefined is that if a variable has a value null, it's still defined, it just
so happens that its value is nothing. You'll see some examples shortly.

Any value that doesn't belong to one of the five primitive types listed here is an
object. Even null is considered an object, which is a little awkward—having an object
(something) that is actually nothing. We'll learn more on objects in Chapter 4, Objects,
but for the time being, just remember that in JavaScript the data types are either:

• Primitive (the five types listed previously)
• Non-primitive (objects)

Finding out the value type – the typeof
operator
If you want to know the type of a variable or a value, you use the special typeof
operator. This operator returns a string that represents the data type. The return
values of using typeof are one of the following:

• "number"

• "string"

• "boolean"

Chapter 2

[501]

• "undefined"

• "object"

• "function"

In the next few sections, you'll see typeof in action using examples of each of the
five primitive data types.

Numbers
The simplest number is an integer. If you assign 1 to a variable and then use the
typeof operator, it returns the string "number":

> var n = 1;
> typeof n;
"number"

> n = 1234;
> typeof n;
"number"

In the preceding example, you can see that the second time you set a variable's value,
you don't need the var statement.

Numbers can also be floating point (decimals):

> var n2 = 1.23;
> typeof n;
"number"

You can call typeof directly on the value without assigning it to a variable first:

> typeof 123;
"number"

Octal and hexadecimal numbers
When a number starts with a 0, it's considered an octal number. For example, the
octal 0377 is the decimal 255:

> var n3 = 0377;
> typeof n3;
"number"

> n3;
255

Primitive Data Types, Arrays, Loops, and Conditions

[502]

The last line in the preceding example prints the decimal representation of the
octal value.

While you may not be intimately familiar with octal numbers, you've probably used
hexadecimal values to define colors in CSS stylesheets.

In CSS, you have several options to define a color, two of them being:

• Using decimal values to specify the amount of R (red), G (green), and B
(blue) ranging from 0 to 255. For example, rgb(0, 0, 0) is black and
rgb(255, 0, 0) is red (maximum amount of red and no green or blue).

• Using hexadecimals and specifying two characters for each R, G, and B value.
For example, #000000 is black and #ff0000 is red. This is because ff is the
hexadecimal value for 255.

In JavaScript, you put 0x before a hexadecimal value (also called hex for short):

> var n4 = 0x00;
> typeof n4;
"number"

> n4;
0

> var n5 = 0xff;
> typeof n5;
"number"

> n5;
255

Exponent literals
1e1 (also written as 1e+1 or 1E1 or 1E+1) represents the number one with one zero
after it, or in other words, 10. Similarly, 2e+3 means the number 2 with 3 zeros after
it, or 2000:

> 1e1;
10

> 1e+1;
10

> 2e+3;
2000

> typeof 2e+3;
"number"

Chapter 2

[503]

2e+3 means moving the decimal point three digits to the right of the number 2.
There's also 2e-3, meaning you move the decimal point three digits to the left
of the number 2:

2e+3

2e-3

2 .0 .0 .0.

1 2 3

0 .0 .0 .2.

3 2 1

2000

0.002

> 2e-3;
0.002

> 123.456E-3;
0.123456

> typeof 2e-3;
"number"

Infinity
There is a special value in JavaScript called Infinity. It represents a number too big
for JavaScript to handle. Infinity is indeed a number, as typing typeof Infinity
in the console will confirm. You can also quickly check that a number with 308 zeros
is ok, but 309 zeros is too much. To be precise, the biggest number JavaScript can
handle is 1.7976931348623157e+308, while the smallest is 5e-324.

> Infinity;
Infinity

> typeof Infinity;
"number"

> 1e309;
Infinity

> 1e308;
1e+308

Dividing by zero gives you infinity:

> var a = 6 / 0;
> a;
Infinity

Primitive Data Types, Arrays, Loops, and Conditions

[504]

Infinity is the biggest number (or rather a little bigger than the biggest), but how
about the smallest? It's infinity with a minus sign in front of it; minus infinity:

> var i = -Infinity;
> i;
-Infinity

> typeof i;
"number"

Does this mean you can have something that's exactly twice as big as Infinity, from
0 up to infinity and then from 0 down to minus infinity? Well, not really. When you
sum infinity and minus infinity, you don't get 0, but something that is called NaN
(Not a Number):

> Infinity – Infinity;
NaN

> -Infinity + Infinity;
NaN

Any other arithmetic operation with Infinity as one of the operands gives
you Infinity:

> Infinity – 20;
Infinity

> -Infinity * 3;
-Infinity

> Infinity / 2;
Infinity

> Infinity – 99999999999999999;
Infinity

NaN
What was this NaN in the previous example? It turns out that despite its name,
"Not a Number", NaN is a special value that is also a number:

> typeof NaN;
"number"

> var a = NaN;
> a;
NaN

Chapter 2

[505]

You get NaN when you try to perform an operation that assumes numbers, but the
operation fails. For example, if you try to multiply 10 by the character "f", the result
is NaN, because "f" is obviously not a valid operand for a multiplication:

> var a = 10 * "f";
> a;
NaN

NaN is contagious, so if you have even one NaN in your arithmetic operation, the
whole result goes down the drain:

> 1 + 2 + NaN;
NaN

Strings
A string is a sequence of characters used to represent text. In JavaScript, any
value placed between single or double quotes is considered a string. This means
that 1 is a number, but "1" is a string. When used with strings, typeof returns the
string "string":

> var s = "some characters";
> typeof s;
"string"

> var s = 'some characters and numbers 123 5.87';
> typeof s;
"string"

Here's an example of a number used in the string context:

> var s = '1';
> typeof s;
"string"

If you put nothing in quotes, it's still a string (an empty string):

> var s = ""; typeof s;
"string"

As you already know, when you use the plus sign with two numbers, this is the
arithmetic addition operation. However, if you use the plus sign with strings,
this is a string concatenation operation, and it returns the two strings glued together:

> var s1 = "web";
> var s2 = "site";
> var s = s1 + s2;

Primitive Data Types, Arrays, Loops, and Conditions

[506]

> s;
"website"

> typeof s;
"string"

The dual purpose of the + operator is a source of errors. Therefore, if you intend to
concatenate strings, it's always best to make sure that all of the operands are strings.
The same applies for addition; if you intend to add numbers, make sure the operands
are numbers. You'll learn various ways to do so further in the chapter and the book.

String conversions
When you use a number-like string (for example "1") as an operand in an arithmetic
operation, the string is converted to a number behind the scenes. This works for all
arithmetic operations except addition, because of its ambiguity:

> var s = '1';
> s = 3 * s;
> typeof s;
"number"

> s;
3

> var s = '1';
> s++;
> typeof s;
"number"

> s;
2

A lazy way to convert any number-like string to a number is to multiply it by 1
(another way is to use a function called parseInt(), as you'll see in the next chapter):

> var s = "100"; typeof s;
"string"

> s = s * 1;
100

> typeof s;
"number"

Chapter 2

[507]

If the conversion fails, you'll get NaN:

> var movie = '101 dalmatians';
> movie * 1;
NaN

You convert a string to a number by multiplying by 1. The opposite—converting
anything to a string—can be done by concatenating it with an empty string:

> var n = 1;
> typeof n;
"number"

> n = "" + n;
"1"

> typeof n;
"string"

Special strings
There are also strings with special meanings, as listed in the following table:

String Meaning Example
\\

\'

\"

\ is the escape character.
When you want to have quotes inside
your string, you escape them so that
JavaScript doesn't think they mean
the end of the string.
If you want to have an actual
backslash in the string, escape it with
another backslash.

> var s = 'I don't know';

This is an error, because JavaScript
thinks the string is I don and the rest
is invalid code. The following
are valid:

• > var s = 'I don\'t
know';

• > var s = "I don\'t
know";

• > var s = "I don't
know";

• > var s = '"Hello", he
said.';

• > var s = "\"Hello\",
he said.";

Escaping the escape:
> var s = "1\\2"; s;
"1\2"

Primitive Data Types, Arrays, Loops, and Conditions

[508]

String Meaning Example
\n End of line. > var s = '\n1\n2\n3\n';

> s;
"
1
2
3
"

\r Carriage return. Consider the following statements:
• > var s = '1\r2';
• > var s = '1\n\r2';
• > var s = '1\r\n2';

The result of all of these is:
> s;
"1
2"

\t Tab. > var s = "1\t2";
> s;
"1 2"

\u \u followed by a character code
allows you to use Unicode.

Here's my name in Bulgarian written
with Cyrillic characters:
> "\u0421\u0442\u043E\
u044F\u043D";
"Стoян"

There are also additional characters that are rarely used: \b (backspace),
\v (vertical tab), and \f (form feed).

Booleans
There are only two values that belong to the Boolean data type: the values true and
false, used without quotes:

> var b = true;
> typeof b;
"boolean"

> var b = false;
> typeof b;
"boolean"

Chapter 2

[509]

If you quote true or false, they become strings:

> var b = "true";
> typeof b;
"string"

Logical operators
There are three operators, called logical operators, that work with Boolean values.
These are:

• ! – logical NOT (negation)
• && – logical AND
• || – logical OR

You know that when something is not true, it must be false. Here's how this is
expressed using JavaScript and the logical ! operator:

> var b = !true;
> b;
false

If you use the logical NOT twice, you get the original value:

> var b = !!true;
> b;
true

If you use a logical operator on a non-Boolean value, the value is converted to
Boolean behind the scenes:

> var b = "one";
> !b;
false

In the preceding case, the string value "one" is converted to a Boolean, true, and
then negated. The result of negating true is false. In the next example, there's a
double negation, so the result is true:

> var b = "one";
> !!b;
true

Primitive Data Types, Arrays, Loops, and Conditions

[510]

You can convert any value to its Boolean equivalent using a double negation.
Understanding how any value converts to a Boolean is important. Most values
convert to true with the exception of the following, which convert to false:

• The empty string ""
• null

• undefined

• The number 0
• The number NaN
• The Boolean false

These six values are referred to as falsy, while all others are truthy (including, for
example, the strings "0", " ", and "false").

Let's see some examples of the other two operators—the logical AND (&&) and the
logical OR (||). When you use &&, the result is true only if all of the operands are
true. When you use ||, the result is true if at least one of the operands is true:

> var b1 = true, b2 = false;
> b1 || b2;
true

> b1 && b2;
false

Here's a list of the possible operations and their results:

Operation Result
true && true true

true && false false

false && true false

false && false false

true || true true

true || false true

false || true true

false || false false

You can use several logical operations one after the other:

> true && true && false && true;
false

Chapter 2

[511]

> false || true || false;
true

You can also mix && and || in the same expression. In such cases, you should use
parentheses to clarify how you intend the operation to work. Consider these:

> false && false || true && true;
true

> false && (false || true) && true;
false

Operator precedence
You might wonder why the previous expression (false && false || true &&
true) returned true. The answer lies in the operator precedence. As you know
from mathematics:

> 1 + 2 * 3;
7

This is because multiplication has higher precedence over addition, so 2 * 3 is
evaluated first, as if you typed:

> 1 + (2 * 3);
7

Similarly for logical operations, ! has the highest precedence and is executed first,
assuming there are no parentheses that demand otherwise. Then, in the order of
precedence, comes && and finally ||. In other words, the following two code snippets
are the same:

> false && false || true && true;
true

and

> (false && false) || (true && true);
true

Best practice
Use parentheses instead of relying on operator precedence.
This makes your code easier to read and understand.

Primitive Data Types, Arrays, Loops, and Conditions

[512]

The ECMAScript standard defines the precedence of operators. While it may be a
good memorization exercise, this book doesn't offer it. First of all, you'll forget it,
and second, even if you manage to remember it, you shouldn't rely on it. The person
reading and maintaining your code will likely be confused.

Lazy evaluation
If you have several logical operations one after the other, but the result becomes clear
at some point before the end, the final operations will not be performed because they
don't affect the end result. Consider this:

> true || false || true || false || true;
true

Since these are all OR operations and have the same precedence, the result will be
true if at least one of the operands is true. After the first operand is evaluated, it
becomes clear that the result will be true, no matter what values follow. So, the
JavaScript engine decides to be lazy (OK, efficient) and avoids unnecessary work by
evaluating code that doesn't affect the end result. You can verify this short-circuiting
behavior by experimenting in the console:

> var b = 5;
> true || (b = 6);
true

> b;
5

> true && (b = 6);
6

> b;
6

This example also shows another interesting behavior: if JavaScript encounters a
non-Boolean expression as an operand in a logical operation, the non-Boolean is
returned as a result:

> true || "something";
true

> true && "something";
"something"

> true && "something" && true;
true

Chapter 2

[513]

This behavior is not something you should rely on because it makes the code harder
to understand. It's common to use this behavior to define variables when you're
not sure whether they were previously defined. In the next example, if the variable
mynumber is defined, its value is kept; otherwise, it's initialized with the value 10:

> var mynumber = mynumber || 10;
> mynumber;
10

This is simple and looks elegant, but be aware that it's not completely foolproof. If
mynumber is defined and initialized to 0 (or to any of the six falsy values), this code
might not behave as you expect:

> var mynumber = 0;
> var mynumber = mynumber || 10;
> mynumber;
10

Comparison
There's another set of operators that all return a Boolean value as a result of the
operation. These are the comparison operators. The following table lists them
together with example uses:

Operator symbol Description Example
== Equality comparison: Returns true when

both operands are equal. The operands are
converted to the same type before being
compared. Also called loose comparison.

> 1 == 1;
true
> 1 == 2;
false
> 1 == '1';
true

=== Equality and type comparison: Returns true
if both operands are equal and of the same
type. It's better and safer to compare this
way because there's no behind-the-scenes
type conversions. It is also called strict
comparison.

> 1 === '1';
false
> 1 === 1;
true

Primitive Data Types, Arrays, Loops, and Conditions

[514]

Operator symbol Description Example
!= Non-equality comparison: Returns true

if the operands are not equal to each other
(after a type conversion).

> 1 != 1;
false
> 1 != '1';
false
> 1 != '2';
true

!== Non-equality comparison without type
conversion: Returns true if the operands are
not equal or if they are of different types.

> 1 !== 1;
false
> 1 !== '1';
true

> Returns true if the left operand is greater
than the right one.

> 1 > 1;
false
> 33 > 22;
true

>= Returns true if the left operand is greater
than or equal to the right one.

> 1 >= 1;
true

< Returns true if the left operand is less than
the right one.

> 1 < 1;
false
> 1 < 2;

true

<= Returns true if the left operand is less than
or equal to the right one.

> 1 <= 1;
true
> 1 <= 2;

true

Note that NaN is not equal to anything, not even itself:

> NaN == NaN;
false

Chapter 2

[515]

Undefined and null
If you try to use a non-existing variable, you'll get an error:

> foo;
ReferenceError: foo is not defined

Using the typeof operator on a non-existing variable is not an error. You get the
string "undefined" back:

> typeof foo;
"undefined"

If you declare a variable without giving it a value, this is, of course, not an error.
But, the typeof still returns "undefined":

> var somevar;
> somevar;
> typeof somevar;
"undefined"

This is because when you declare a variable without initializing it, JavaScript
automatically initializes it with the value undefined:

> var somevar;
> somevar === undefined;
true

The null value, on the other hand, is not assigned by JavaScript behind the scenes;
it's assigned by your code:

> var somevar = null;
null

> somevar;
null

> typeof somevar;
"object"

Although the difference between null and undefined is small, it could be critical at
times. For example, if you attempt an arithmetic operation, you get different results:

> var i = 1 + undefined;
> i;
NaN

> var i = 1 + null;
> i;
1

Primitive Data Types, Arrays, Loops, and Conditions

[516]

This is because of the different ways null and undefined are converted to the other
primitive types. The following examples show the possible conversions:

• Conversion to a number:
> 1 * undefined;
NaN

> 1 * null;
0

• Conversion to a Boolean:
> !!undefined;
false

> !!null;
false

• Conversion to a string:
> "value: " + null;
"value: null"

> "value: " + undefined;
"value: undefined"

Primitive data types recap
Let's quickly summarize some of the main points discussed so far:

• There are five primitive data types in JavaScript:
 ° Number
 ° String
 ° Boolean
 ° Undefined
 ° Null

• Everything that is not a primitive data type is an object
• The primitive number data type can store positive and negative integers

or floats, hexadecimal numbers, octal numbers, exponents, and the special
numbers NaN, Infinity, and –Infinity

• The string data type contains characters in quotes
• The only values of the Boolean data type are true and false
• The only value of the null data type is the value null

Chapter 2

[517]

• The only value of the undefined data type is the value undefined
• All values become true when converted to a Boolean, with the exception of

the six falsy values:
 ° ""

 ° null

 ° undefined

 ° 0

 ° NaN

 ° false

Arrays
Now that you know about the basic primitive data types in JavaScript, it's time to
move to a more powerful data structure—the array.

So, what is an array? It's simply a list (a sequence) of values. Instead of using one
variable to store one value, you can use one array variable to store any number of
values as elements of the array.

To declare a variable that contains an empty array, you use square brackets with
nothing between them:

> var a = [];

To define an array that has three elements, you do this:

> var a = [1, 2, 3];

When you simply type the name of the array in the console, you get the contents of
your array:

> a;
[1, 2, 3]

Now the question is how to access the values stored in these array elements. The
elements contained in an array are indexed with consecutive numbers starting from
zero. The first element has index (or position) 0, the second has index 1, and so on.
Here's the three-element array from the previous example:

Index Value
0 1

1 2

2 3

Primitive Data Types, Arrays, Loops, and Conditions

[518]

To access an array element, you specify the index of that element inside square
brackets. So, a[0] gives you the first element of the array a, a[1] gives you the
second, and so on:

> a[0];
1

> a[1];
2

Adding/updating array elements
Using the index, you can also update the values of the elements of the array.
The next example updates the third element (index 2) and prints the contents
of the new array:

> a[2] = 'three';
"three"

> a;
[1, 2, "three"]

You can add more elements by addressing an index that didn't exist before:

> a[3] = 'four';
"four"

> a;
[1, 2, "three", "four"]

If you add a new element, but leave a gap in the array, those elements in between
don't exist and return the undefined value if accessed. Check out this example:

> var a = [1, 2, 3];
> a[6] = 'new';
"new"

> a;
[1, 2, 3, undefined x 3, "new"]

Chapter 2

[519]

Deleting elements
To delete an element, you use the delete operator. However, after the deletion, the
length of the array does not change. In a sense, you get a hole in the array:

> var a = [1, 2, 3];
> delete a[1];
true

> a;
[1, undefined, 3]

> typeof a[1];
"undefined"

Arrays of arrays
Arrays can contain all types of values, including other arrays:

> var a = [1, "two", false, null, undefined];
> a;
[1, "two", false, null, undefined]

> a[5] = [1, 2, 3];
[1, 2, 3]

> a;
[1, "two", false, null, undefined, Array[3]]

The Array[3] in the result is clickable in the console and it expands the array values.
Let's see an example where you have an array of two elements, both of them being
other arrays:

> var a = [[1, 2, 3], [4, 5, 6]];
> a;
[Array[3], Array[3]]

The first element of the array is a[0], and it's also an array:

> a[0];
[1, 2, 3]

Primitive Data Types, Arrays, Loops, and Conditions

[520]

To access an element in the nested array, you refer to the element index in another
set of square brackets:

> a[0][0];
1

> a[1][2];
6

Note that you can use the array notation to access individual characters inside
a string:

> var s = 'one';
> s[0];
"o"

> s[1];
"n"

> s[2];
"e"

Array access to strings has been supported by many browsers for
a while (not older IEs), but has been officially recognized only as
late as ECMAScript 5.

There are more ways to have fun with arrays (and you'll get to those in Chapter 4,
Objects), but let's stop here for now, remembering that:

• An array is a data store
• An array contains indexed elements
• Indexes start from zero and increment by one for each element in the array
• To access an element of an array, you use its index in square brackets
• An array can contain any type of data, including other arrays

Conditions and loops
Conditions provide a simple but powerful way to control the flow of code execution.
Loops allow you to perform repetitive operations with less code. Let's take a look at:

• if conditions
• switch statements
• while, do-while, for, and for-in loops

Chapter 2

[521]

The examples in the following sections require you to switch to the
multiline Firebug console. Or, if you use the WebKit console, use
Shift + Enter instead of Enter to add a new line.

The if condition
Here's a simple example of an if condition:

var result = '', a = 3;
if (a > 2) {
 result = 'a is greater than 2';
}

The parts of the if condition are:

• The if statement
• A condition in parentheses—"is a greater than 2?"
• A block of code wrapped in {} that executes if the condition is satisfied

The condition (the part in parentheses) always returns a Boolean value, and may also
contain the following:

• A logical operation: !, &&, or ||
• A comparison, such as ===, !=, >, and so on
• Any value or variable that can be converted to a Boolean
• A combination of the above

The else clause
There can also be an optional else part of the if condition. The else statement is
followed by a block of code that runs if the condition evaluates to false:

if (a > 2) {
 result = 'a is greater than 2';
} else {
 result = 'a is NOT greater than 2';
}

Primitive Data Types, Arrays, Loops, and Conditions

[522]

In between the if and the else, there can also be an unlimited number of else if
conditions. Here's an example:

if (a > 2 || a < -2) {
 result = 'a is not between -2 and 2';
} else if (a === 0 && b === 0) {
 result = 'both a and b are zeros';
} else if (a === b) {
 result = 'a and b are equal';
} else {
 result = 'I give up';
}

You can also nest conditions by putting new conditions within any of the blocks:

if (a === 1) {
 if (b === 2) {
 result = 'a is 1 and b is 2';
 } else {
 result = 'a is 1 but b is definitely not 2';
 }
} else {
 result = 'a is not 1, no idea about b';
}

Code blocks
In the preceding examples, you saw the use of code blocks. Let's take a moment to
clarify what a block of code is, because you use blocks extensively when constructing
conditions and loops.

A block of code consists of zero or more expressions enclosed in curly brackets:

{
 var a = 1;
 var b = 3;
}

You can nest blocks within each other indefinitely:

{
 var a = 1;
 var b = 3;
 var c, d;
 {
 c = a + b;

Chapter 2

[523]

 {
 d = a - b;
 }
 }
}

Best practice tips

• Use end-of-line semicolons, as discussed previously in the
chapter. Although the semicolon is optional when you have only
one expression per line, it's good to develop the habit of using
them. For best readability, the individual expressions inside a
block should be placed one per line and separated by semicolons.

• Indent any code placed within curly brackets. Some programmers
like one tab indentation, some use four spaces, and some use two
spaces. It really doesn't matter, as long as you're consistent. In the
preceding example, the outer block is indented with two spaces,
the code in the first nested block is indented with four spaces, and
the innermost block is indented with six spaces.

• Use curly brackets. When a block consists of only one expression,
the curly brackets are optional, but for readability and
maintainability, you should get into the habit of always using
them, even when they're optional.

Checking if a variable exists
Let's apply the new knowledge about conditions for something practical. It's often
necessary to check whether a variable exists. The laziest way to do this is to simply
put the variable in the condition part of the if, for example, if (somevar) {...}.
But, this is not necessarily the best method. Let's take a look at an example that tests
whether a variable called somevar exists, and if so, sets the result variable to yes:

> var result = '';
> if (somevar) {
 result = 'yes';
 }
ReferenceError: somevar is not defined

> result;
""

Primitive Data Types, Arrays, Loops, and Conditions

[524]

This code obviously works because the end result was not "yes". But firstly, the
code generated an error: somevar is not defined, and you don't want your code to
behave like that. Secondly, just because if (somevar) returns false doesn't mean
that somevar is not defined. It could be that somevar is defined and initialized but
contains a falsy value like false or 0.

A better way to check if a variable is defined is to use typeof:

> var result = "";
> if (typeof somevar !== "undefined") {
 result = "yes";
 }
> result;
""

typeof always returns a string, and you can compare this string with the string
"undefined". Note that the variable somevar may have been declared but not
assigned a value yet, and you'll still get the same result. So, when testing with
typeof like this, you're really testing whether the variable has any value other
than the value undefined:

> var somevar;
> if (typeof somevar !== "undefined") {
 result = "yes";
 }
> result;
""

> somevar = undefined;
> if (typeof somevar !== "undefined") {
 result = "yes";
 }
> result;
""

If a variable is defined and initialized with any value other than undefined, its type
returned by typeof is no longer "undefined":

> somevar = 123;
> if (typeof somevar !== "undefined") {
 result = 'yes';
 }
> result;
"yes"

Chapter 2

[525]

Alternative if syntax
When you have a simple condition, you can consider using an alternative if syntax.
Take a look at this:

var a = 1;
var result = '';
if (a === 1) {
 result = "a is one";
} else {
 result = "a is not one";
}

You can also write this as:

> var a = 1;
> var result = (a === 1) ? "a is one" : "a is not one";

You should only use this syntax for simple conditions. Be careful not to abuse it, as it
can easily make your code unreadable. Here's an example.

Let's say you want to make sure a number is within a certain range, say between
50 and 100:

> var a = 123;
> a = a > 100 ? 100 : a < 50 ? 50: a;
> a;
100

It may not be clear how this code works exactly because of the multiple ?. Adding
parentheses makes it a little clearer:

> var a = 123;
> a = (a > 100 ? 100 : a < 50) ? 50 : a;
> a;
50

> var a = 123;
> a = a > 100 ? 100 : (a < 50 ? 50 : a);
> a;
100

?: is called a ternary operator because it takes three operands.

Primitive Data Types, Arrays, Loops, and Conditions

[526]

Switch
If you find yourself using an if condition and having too many else if parts, you
could consider changing the if to a switch:

var a = '1',
 result = '';
switch (a) {
case 1:
 result = 'Number 1';
 break;
case '1':
 result = 'String 1';
 break;
default:
 result = 'I don\'t know';
 break;
}

The result after executing this is "String 1". Let's see what the parts of a switch are:

• The switch statement.
• An expression in parentheses. The expression most often contains a variable,

but can be anything that returns a value.
• A number of case blocks enclosed in curly brackets.
• Each case statement is followed by an expression. The result of the

expression is compared to the expression found after the switch statement. If
the result of the comparison is true, the code that follows the colon after the
case is executed.

• There is an optional break statement to signal the end of the case block.
If this break statement is reached, the switch is all done. Otherwise, if the
break is missing, the program execution enters the next case block.

• There's an optional default case marked with the default statement and
followed by a block of code. The default case is executed if none of the
previous cases evaluated to true.

Chapter 2

[527]

In other words, the step-by-step procedure for executing a switch statement
is as follows:

1. Evaluate the switch expression found in parentheses; remember it.
2. Move to the first case and compare its value with the one from step 1.
3. If the comparison in step 2 returns true, execute the code in the case block.
4. After the case block is executed, if there's a break statement at the end of it,

exit the switch.
5. If there's no break or step 2 returned false, move on to the next case block.
6. Repeat steps 2 to 5.
7. If you are still here (no exit in step 4), execute the code following the

default statement.

Best practice tips

• Indent the code that follows the case lines. You can also
indent case from the switch, but that doesn't give you
much in terms of readability.

• Don't forget to break.
• Sometimes, you may want to omit the break intentionally,

but that's rare. It's called a fall-through and should always
be documented because it may look like an accidental
omission. On the other hand, sometimes you may want to
omit the whole code block following a case and have two
cases sharing the same code. This is fine, but doesn't change
the rule that if there's code that follows a case statement,
this code should end with a break. In terms of indentation,
aligning the break with the case or with the code inside
the case is a personal preference; again, being consistent is
what matters.

• Use the default case. This helps you make sure you always
have a meaningful result after the switch statement, even if
none of the cases matches the value being switched.

Primitive Data Types, Arrays, Loops, and Conditions

[528]

Loops
The if-else and switch statements allow your code to take different paths, as if
you're at a crossroad and decide which way to go depending on a condition. Loops,
on the other hand, allow your code to take a few roundabouts before merging back
into the main road. How many repetitions? That depends on the result of evaluating
a condition before (or after) each iteration.

Let's say you are (your program execution is) traveling from A to B. At some point,
you reach a place where you evaluate a condition, C. The result of evaluating C tells
you if you should go into a loop, L. You make one iteration and arrive at C again.
Then, you evaluate the condition once again to see if another iteration is needed.
Eventually, you move on your way to B.

A B

L

C

An infinite loop is when the condition is always true and your code gets stuck in
the loop "forever". This is, of course, a logical error, and you should look out for
such scenarios.

In JavaScript, there are four types of loops:

• while loops
• do-while loops
• for loops
• for-in loops

While loops
while loops are the simplest type of iteration. They look like this:

var i = 0;
while (i < 10) {
 i++;
}

Chapter 2

[529]

The while statement is followed by a condition in parentheses and a code block in
curly brackets. As long as the condition evaluates to true, the code block is executed
over and over again.

Do-while loops
do-while loops are a slight variation of while loops. An example is shown
as follows:

var i = 0;
do {
 i++;
} while (i < 10);

Here, the do statement is followed by a code block and a condition after the block.
This means that the code block is always executed, at least once, before the condition
is evaluated.

If you initialize i to 11 instead of 0 in the last two examples, the code block in the
first example (the while loop) will not be executed, and i will still be 11 at the end,
while in the second (the do-while loop), the code block will be executed once and i
will become 12.

For loops
for is the most widely used type of loop, and you should make sure you're
comfortable with this one. It requires just a little bit more in terms of syntax.

A B

L

C

++

0

In addition to the condition C and the code block L, you have the following:

• Initialization—code that is executed before you even enter the loop
(marked with 0 in the diagram)

• Increment—code that is executed after every iteration (marked with ++ in
the diagram)

Primitive Data Types, Arrays, Loops, and Conditions

[530]

The most widely used for loop pattern is:

• In the initialization part, you define a variable (or set the initial value of an
existing variable), most often called i

• In the condition part, you compare i to a boundary value, like i < 100
• In the increment part, you increase i by 1, like i++

Here's an example:

var punishment = '';
for (var i = 0; i < 100; i++) {
 punishment += 'I will never do this again, ';
}

All three parts (initialization, condition, and increment) can contain multiple
expressions separated by commas. Say you want to rewrite the example and
define the variable punishment inside the initialization part of the loop:

for (var i = 0, punishment = ''; i < 100; i++) {
 punishment += 'I will never do this again, ';
}

Can you move the body of the loop inside the increment part? Yes, you can, especially
as it's a one-liner. This gives you a loop that looks a little awkward, as it has no body.
Note that this is just an intellectual exercise; it's not recommended that you write
awkward-looking code:

for (
 var i = 0, punishment = '';
 i < 100;
 i++, punishment += 'I will never do this again, ') {

 // nothing here

}

These three parts are all optional. Here's another way of rewriting the same example:

var i = 0, punishment = '';
for (;;) {
 punishment += 'I will never do this again, ';
 if (++i == 100) {
 break;
 }
}

Chapter 2

[531]

Although the last rewrite works exactly the same way as the original, it's longer and
harder to read. It's also possible to achieve the same result by using a while loop.
But, for loops make the code tighter and more robust because the mere syntax of
the for loop makes you think about the three parts (initialization, condition, and
increment), and thus helps you reconfirm your logic and avoid situations such as
being stuck in an infinite loop.

The for loops can be nested within each other. Here's an example of a loop that
is nested inside another loop and assembles a string containing 10 rows and 10
columns of asterisks. Think of i being the row and j being the column of an "image":

var res = '\n';
for (var i = 0; i < 10; i++) {
 for (var j = 0; j < 10; j++) {
 res += '* ';
 }
 res += '\n';
}

The result is a string like the following:

"
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
"

Here's another example that uses nested loops and a modulo operation to draw a
snowflake-like result:

var res = '\n', i, j;
for (i = 1; i <= 7; i++) {
 for (j = 1; j <= 15; j++) {
 res += (i * j) % 8 ? ' ' : '*';
 }
 res += '\n';
}

Primitive Data Types, Arrays, Loops, and Conditions

[532]

The result is:

"
 *
 * * *
 *
 * * * * * * *
 *
 * * *
 *
"

For-in loops
The for-in loop is used to iterate over the elements of an array (or an object, as
you'll see later). This is its only use; it cannot be used as a general-purpose repetition
mechanism that replaces for or while. Let's see an example of using a for-in to
loop through the elements of an array. But, bear in mind that this is for informational
purposes only, as for-in is mostly suitable for objects, and the regular for loop
should be used for arrays.

In this example, you iterate over all of the elements of an array and print out the
index (the key) and the value of each element:

// example for information only
// for-in loops are used for objects
// regular for is better suited for arrays

var a = ['a', 'b', 'c', 'x', 'y', 'z'];

var result = '\n';

for (var i in a) {
 result += 'index: ' + i + ', value: ' + a[i] + '\n';
}

The result is:

"
index: 0, value: a
index: 1, value: b
index: 2, value: c
index: 3, value: x
index: 4, value: y
index: 5, value: z
"

Chapter 2

[533]

Comments
One last thing for this chapter: comments. Inside your JavaScript program, you can
put comments. These are ignored by the JavaScript engine and don't have any effect
on how the program works. But, they can be invaluable when you revisit your code
after a few months, or transfer the code to someone else for maintenance.

Two types of comments are allowed:

• Single line comments start with // and end at the end of the line.
• Multiline comments start with /* and end with */ on the same line or any

subsequent line. Note that any code in between the comment start and the
comment end is ignored.

Some examples are as follows:

// beginning of line

var a = 1; // anywhere on the line

/* multi-line comment on a single line */

/*
 comment that spans several lines
*/

There are even utilities, such as JSDoc and YUIDoc, that can parse your code and
extract meaningful documentation based on your comments.

Summary
In this chapter, you learned a lot about the basic building blocks of a JavaScript
program. Now you know the primitive data types:

• Number
• String
• Boolean
• Undefined
• Null

Primitive Data Types, Arrays, Loops, and Conditions

[534]

You also know quite a few operators:

• Arithmetic operators: +, -, *, /, and %
• Increment operators: ++ and --
• Assignment operators: =, +=, -=, *=, /=, and %=
• Special operators: typeof and delete
• Logical operators: &&, ||, and !
• Comparison operators: ==, ===, !=, !==, <, >, >=, and <=
• The ternary operator ?:

Then, you learned how to use arrays to store and access data, and finally you saw
different ways to control the flow of your program—using conditions (if-else or
switch) and loops (while, do-while, for, and for-in).

This is quite a bit of information; now take a moment to go through the exercises
below, then give yourself a well-deserved pat on the back before diving into the
next chapter. More fun is coming up!

Exercises
1. What is the result of executing each of these lines in the console? Why?

> var a; typeof a;
> var s = '1s'; s++;
> !!"false";
> !!undefined;
> typeof -Infinity;
> 10 % "0";
> undefined == null;
> false === "";
> typeof "2E+2";
> a = 3e+3; a++;

2. What is the value of v after the following?
> var v = v || 10;

Experiment by first setting v to 100, 0, or null.

3. Write a small program that prints out the multiplication table. Hint: use a
loop nested inside another loop.

Functions
Mastering functions is an important skill when you learn any programming language,
and even more so when it comes to JavaScript. This is because JavaScript has many
uses for functions, and much of the language's flexibility and expressiveness comes
from them. Where most programming languages have a special syntax for some
object-oriented features, JavaScript just uses functions. This chapter will cover:

• How to define and use a function
• Passing arguments to a function
• Predefined functions that are available to you "for free"
• The scope of variables in JavaScript
• The concept that functions are just data, albeit a special type of data

Understanding these topics will provide a solid base that will allow you to dive
into the second part of the chapter, which shows some interesting applications
of functions:

• Using anonymous functions
• Callbacks
• Immediate (self-invoking) functions
• Inner functions (functions defined inside other functions)
• Functions that return functions
• Functions that redefine themselves
• Closures

Functions

[536]

What is a function?
Functions allow you to group together some code, give this code a name, and reuse it
later, addressing it by the name you gave it. Let's see an example:

function sum(a, b) {
 var c = a + b;
 return c;
}

The parts that make up a function are shown as follows:

• The function statement.
• The name of the function, in this case sum.
• The function parameters, in this case a and b. A function can take any

number of parameters, separated by commas.
• A code block, also called the body of the function.
• The return statement. A function always returns a value. If it doesn't return

a value explicitly, it implicitly returns the value undefined.

Note that a function can only return a single value. If you need to return more
values, you can simply return an array that contains all of the values you need as
elements of this array.

The preceding syntax is called a function declaration. It's just one of the ways to
create a function in JavaScript, and more ways are coming up.

Calling a function
In order to make use of a function, you need to call it. You call a function simply
by using its name optionally followed by any number of values in parentheses. "To
invoke" a function is another way of saying "to call".

Let's call the function sum(), passing two arguments and assigning the value that the
function returns to the variable result:

> var result = sum(1, 2);
> result;
3

Chapter 3

[537]

Parameters
When defining a function, you can specify what parameters the function expects to
receive when it's called. A function may not require any parameters, but if it does
and you forget to pass them, JavaScript will assign the value undefined to the ones
you skipped. In the next example, the function call returns NaN because it tries to sum
1 and undefined:

> sum(1);
NaN

Technically speaking, there is a difference between parameters and arguments,
although the two are often used interchangeably. Parameters are defined together
with the function, while arguments are passed to the function when it's called.
Consider this:

> function sum(a, b) {
 return a + b;
 }
> sum(1, 2);

Here, a and b are parameters, while 1 and 2 are arguments.

JavaScript is not picky at all when it comes to accepting arguments. If you pass more
than the function expects, the extra ones will be silently ignored:

> sum(1, 2, 3, 4, 5);
3

What's more, you can create functions that are flexible about the number of
parameters they accept. This is possible thanks to the special value arguments that
is created automatically inside each function. Here's a function that simply returns
whatever arguments are passed to it:

> function args() {
 return arguments;
 }
> args();
[]

> args(1, 2, 3, 4, true, 'ninja');
[1, 2, 3, 4, true, "ninja"]

Functions

[538]

By using arguments, you can improve the sum() function to accept any number of
arguments and add them all up:

function sumOnSteroids() {
 var i,
 res = 0,
 number_of_params = arguments.length;
 for (i = 0; i < number_of_params; i++) {
 res += arguments[i];
 }
 return res;
}

If you test this function by calling it with a different number of arguments (or even
none at all), you can verify that it works as expected:

> sumOnSteroids(1, 1, 1);
3

> sumOnSteroids(1, 2, 3, 4);
10

> sumOnSteroids(1, 2, 3, 4, 4, 3, 2, 1);
20

> sumOnSteroids(5);
5

> sumOnSteroids();
0

The expression arguments.length returns the number of arguments passed when
the function was called. Don't worry if the syntax is unfamiliar, we'll examine it in
detail in the next chapter. You'll also see that arguments is not an array (although it
sure looks like one), but an array-like object.

Predefined functions
There are a number of functions that are built into the JavaScript engine and are
available for you to use. Let's take a look at them. While doing so, you'll have a
chance to experiment with functions, their arguments and return values, and become
comfortable working with functions. Following is a list of the built-in functions:

• parseInt()

• parseFloat()

• isNaN()

Chapter 3

[539]

• isFinite()

• encodeURI()

• decodeURI()

• encodeURIComponent()

• decodeURIComponent()

• eval()

The black box function
Often, when you invoke functions, your program doesn't need to
know how these functions work internally. You can think of a function
as a black box: you give it some values (as input arguments) and then
you take the output result it returns. This is true for any function—one
that's built into the JavaScript engine, one that you create, or one that a
co-worker or someone else created.

parseInt()
parseInt() takes any type of input (most often a string) and tries to make an integer
out of it. If it fails, it returns NaN:

> parseInt('123');
123

> parseInt('abc123');
NaN

> parseInt('1abc23');
1

> parseInt('123abc');
123

The function accepts an optional second parameter, which is the radix, telling the
function what type of number to expect—decimal, hexadecimal, binary, and so on.
For example, trying to extract a decimal number out of the string FF makes no sense,
so the result is NaN, but if you try FF as a hexadecimal, then you get 255:

> parseInt('FF', 10);
NaN

> parseInt('FF', 16);
255

Functions

[540]

Another example would be parsing a string with a base 10 (decimal) and
base 8 (octal):

> parseInt('0377', 10);
377

> parseInt('0377', 8);
255

If you omit the second argument when calling parseInt(), the function will
assume 10 (a decimal), with these exceptions:

• If you pass a string beginning with 0x, then the radix is assumed to be 16
(a hexadecimal number is assumed).

• If the string you pass starts with 0, the function assumes radix 8 (an octal
number is assumed). Consider the following examples:
> parseInt('377');
377

> parseInt('0377');
255

> parseInt('0x377');
887

The safest thing to do is to always specify the radix. If you omit the radix, your
code will probably still work in 99 percent of cases (because most often you parse
decimals), but every once in a while it might cause you a bit of hair loss while
debugging some edge cases. For example, imagine you have a form field that
accepts calendar days or months and the user types 06 or 08.

ECMAScript 5 removes the octal literal values and avoids
the confusion with parseInt() and unspecified radix.

parseFloat()
parseFloat() is similar to parseInt(), but it also looks for decimals when trying to
figure out a number from your input. This function takes only one parameter:

> parseFloat('123');
123

> parseFloat('1.23');
1.23

Chapter 3

[541]

> parseFloat('1.23abc.00');
1.23

> parseFloat('a.bc1.23');
NaN

As with parseInt(), parseFloat() gives up at the first occurrence of an
unexpected character, even though the rest of the string might have usable
numbers in it:

> parseFloat('a123.34');
NaN

> parseFloat('12a3.34');
12

parseFloat() understands exponents in the input (unlike parseInt()):

> parseFloat('123e-2');
1.23

> parseFloat('1e10');
10000000000

> parseInt('1e10');
1

isNaN()
Using isNaN(), you can check if an input value is a valid number that can safely
be used in arithmetic operations. This function is also a convenient way to check
whether parseInt() or parseFloat() (or any arithmetic operation) succeeded:

> isNaN(NaN);
true

> isNaN(123);
false

> isNaN(1.23);
false

> isNaN(parseInt('abc123'));
true

Functions

[542]

The function will also try to convert the input to a number:

> isNaN('1.23');
false

> isNaN('a1.23');
true

The isNaN() function is useful because the special value NaN is not equal to anything
including itself. In other words, NaN === NaN is false. So, NaN cannot be used to
check if a value is a valid number.

isFinite()
isFinite() checks whether the input is a number that is neither Infinity nor NaN:

> isFinite(Infinity);
false

> isFinite(-Infinity);
false

> isFinite(12);
true

> isFinite(1e308);
true

> isFinite(1e309);
false

If you are wondering about the results returned by the last two calls,
remember from the previous chapter that the biggest number in JavaScript
is 1.7976931348623157e+308, so 1e309 is effectively infinity.

Encode/decode URIs
In a Uniform Resource Locator (URL) or a Uniform Resource Identifier (URI), some
characters have special meanings. If you want to "escape" those characters, you can
use the functions encodeURI() or encodeURIComponent(). The first one will return
a usable URL, while the second one assumes you're only passing a part of the URL,
such as a query string for example, and will encode all applicable characters:

> var url = 'http://www.packtpub.com/script.php?q=this and that';
> encodeURI(url);
http://www.packtpub.com/script.php?q=this%20and%20that

Chapter 3

[543]

> encodeURIComponent(url);
http%3A%2F%2Fwww.packtpub.com%2Fscript.php%3Fq%3Dthis%20and%20that

The opposites of encodeURI() and encodeURIComponent() are decodeURI() and
decodeURIComponent() respectively.

Sometimes, in legacy code, you might see the functions escape() and unescape()
used to encode and decode URLs, but these functions have been deprecated; they
encode differently and should not be used.

eval()
eval() takes a string input and executes it as a JavaScript code:

> eval('var ii = 2;');
> ii;
2

So, eval('var ii = 2;') is the same as var ii = 2;.

eval() can be useful sometimes, but should be avoided if there are other options.
Most of the time there are alternatives, and in most cases the alternatives are more
elegant and easier to write and maintain. "Eval is evil" is a mantra you can often hear
from seasoned JavaScript programmers. The drawbacks of using eval() are:

• Security – JavaScript is powerful, which also means it can cause damage. If
you don't trust the source of the input you pass to eval(), just don't use it.

• Performance – It's slower to evaluate "live" code than to have the code
directly in the script.

A bonus – the alert() function
Let's take a look at another common function—alert(). It's not part of the core
JavaScript (it's nowhere to be found in the ECMA specification), but it's provided
by the host environment—the browser. It shows a string of text in a message box. It
can also be used as a primitive debugging tool, although the debuggers in modern
browsers are much better suited for this purpose.

Here's a screenshot showing the result of executing the code alert("hello!"):

Functions

[544]

Before using this function, bear in mind that it blocks the browser thread, meaning
that no other code will be executed until the user closes the alert. If you have a busy
Ajax-type application, it's generally not a good idea to use alert().

Scope of variables
It's important to note, especially if you have come to JavaScript from another
language, that variables in JavaScript are not defined in a block scope, but in a
function scope. This means that if a variable is defined inside a function, it's not
visible outside of the function. However, if it's defined inside an if or a for code
block, it's visible outside the block. The term "global variables" describes variables
you define outside of any function (in the global program code), as opposed to "local
variables", which are defined inside a function. The code inside a function has access
to all global variables as well as to its own local ones.

In the next example:

• The f()function has access to the global variable
• Outside the f()function, the local variable doesn't exist

var global = 1;
function f() {
 var local = 2;
 global++;
 return global;
}

Let's test this:

> f();
2

> f();
3

> local;
ReferenceError: local is not defined

Chapter 3

[545]

It's also important to note that if you don't use var to declare a variable, this variable
is automatically assigned a global scope. Let's see an example:

What happened? The function f()contains the variable local. Before calling the
function, the variable doesn't exist. When you call the function for the first time, the
variable local is created with a global scope. Then, if you access local outside the
function, it will be available.

Best practice tips
• Minimize the number of global variables in order to avoid

naming collisions. Imagine two people working on two
different functions in the same script, and they both decide to
use the same name for their global variable. This could easily
lead to unexpected results and hard-to-find bugs.

• Always declare your variables with the var statement.
• Consider a "single var" pattern. Define all variables needed

in your function at the very top of the function so you have
a single place to look for variables and hopefully prevent
accidental globals.

Functions

[546]

Variable hoisting
Here's an interesting example that shows an important aspect of local versus global
scoping:

var a = 123;

function f() {
 alert(a);
 var a = 1;
 alert(a);
}

f();

You might expect that the first alert() will display 123 (the value of the global
variable a) and the second will display 1 (the local variable a). But, this is not the
case. The first alert will show undefined. This is because inside the function the local
scope is more important than the global scope. So, a local variable overwrites any
global variable with the same name. At the time of the first alert(), the variable a
was not yet defined (hence the value undefined), but it still existed in the local space
due to the special behavior called hoisting.

When your JavaScript program execution enters a new function, all the variables
declared anywhere in the function are moved (or elevated, or hoisted) to the top
of the function. This is an important concept to keep in mind. Further, only the
declaration is hoisted, meaning only the presence of the variable is moved to the top.
Any assignments stay where they are. In the preceding example, the declaration of
the local variable a was hoisted to the top. Only the declaration was hoisted, but not
the assignment to 1. It's as if the function was written like this:

var a = 123;

function f() {
 var a; // same as: var a = undefined;
 alert(a); // undefined
 a = 1;
 alert(a); // 1
}

You can also adopt the single var pattern mentioned previously in the best practice
section. In this case, you'll be doing a sort of manual variable hoisting to prevent
confusion with the JavaScript hoisting behavior.

Chapter 3

[547]

Functions are data
Functions in JavaScript are actually data. This is an important concept that we'll need
later on. This means that you can create a function and assign it to a variable:

var f = function () {
 return 1;
};

This way of defining a function is sometimes referred to as function literal notation.

The part function () { return 1; } is a function expression. A function
expression can optionally have a name, in which case it becomes a named function
expression (NFE). So, this is also allowed, although rarely seen in practice (and
causes IE to mistakenly create two variables in the enclosing scope: f and myFunc):

var f = function myFunc() {
 return 1;
};

As you can see, there's no difference between a named function expression and a
function declaration. But they are, in fact, different. The only way to distinguish
between the two is to look at the context in which they are used. Function
declarations may only appear in program code (in a body of another function or in
the main program). You'll see many more examples of functions later on in the book
that will clarify these concepts.

When you use the typeof operator on a variable that holds a function value, it
returns the string "function":

> function define() {
 return 1;
 }

> var express = function () {
 return 1;
 };

> typeof define;
"function"

> typeof express;
"function"

Functions

[548]

So, JavaScript functions are data, but a special kind of data with two
important features:

• They contain code
• They are executable (they can be invoked)

As you have seen before, the way to execute a function is by adding parentheses
after its name. As the next example demonstrates, this works regardless of how the
function was defined. In the example, you can also see how a function is treated as a
regular value: it can be copied to a different variable:

> var sum = function (a, b) {
 return a + b;
 };

> var add = sum;
> typeof add;
function

> add(1, 2);
3

Because functions are data assigned to variables, the same rules for naming functions
apply as for naming variables—a function name cannot start with a number and it
can contain any combination of letters, numbers, the underscore character, and the
dollar sign.

Anonymous functions
As you now know, there exists a function expression syntax where you can have a
function defined like this:

var f = function (a) {
 return a;
};

This is also often called an anonymous function (as it doesn't have a name),
especially when such a function expression is used even without assigning it to a
variable. In this case, there can be two elegant uses for such anonymous functions:

• You can pass an anonymous function as a parameter to another function. The
receiving function can do something useful with the function that you pass.

• You can define an anonymous function and execute it right away.

Let's see these two applications of anonymous functions in more detail.

Chapter 3

[549]

Callback functions
Because a function is just like any other data assigned to a variable, it can be defined,
copied, and also passed as an argument to other functions.

Here's an example of a function that accepts two functions as parameters, executes
them, and returns the sum of what each of them returns:

function invokeAdd(a, b) {
 return a() + b();
}

Now let's define two simple additional functions (using a function declaration
pattern) that only return hardcoded values:

function one() {
 return 1;
}

function two() {
 return 2;
}

Now you can pass those functions to the original function, invokeAdd(),
and get the result:

> invokeAdd(one, two);
3

Another example of passing a function as a parameter is to use anonymous functions
(function expressions). Instead of defining one() and two(), you can simply do the
following:

> invokeAdd(function () {return 1; }, function () {return 2; });
3

Or, you can make it more readable as shown in the following code:

> invokeAdd(
 function () { return 1; },
 function () { return 2; }
);
3

Functions

[550]

Or, you can do the following:

> invokeAdd(
 function () {
 return 1;
 },
 function () {
 return 2;
 }
);
3

When you pass a function, A, to another function, B, and then B executes A, it's often
said that A is a callback function. If A doesn't have a name, then you can say that it's
an anonymous callback function.

When are callback functions useful? Let's see some examples that demonstrate the
benefits of callback functions, namely:

• They let you pass functions without the need to name them (which means
there are fewer variables floating around)

• You can delegate the responsibility of calling a function to another function
(which means there is less code to write)

• They can help with performance

Callback examples
Take a look at this common scenario: you have a function that returns a value,
which you then pass to another function. In our example, the first function,
multiplyByTwo(), accepts three parameters, loops through them, multiplies them
by two, and returns an array containing the result. The second function, addOne(),
takes a value, adds one to it, and returns it:

function multiplyByTwo(a, b, c) {
 var i, ar = [];
 for (i = 0; i < 3; i++) {
 ar[i] = arguments[i] * 2;
 }
 return ar;
}

function addOne(a) {
 return a + 1;
}

Chapter 3

[551]

Let's test these functions:

> multiplyByTwo(1, 2, 3);
[2, 4, 6]

> addOne(100);
101

Now let's say you want to have an array, myarr, that contains three elements, and
each of the elements is to be passed through both functions. First, let's start with a
call to multiplyByTwo():

> var myarr = [];
> myarr = multiplyByTwo(10, 20, 30);
[20, 40, 60]

Now loop through each element, passing it to addOne():

> for (var i = 0; i < 3; i++) {
 myarr[i] = addOne(myarr[i]);
 }
> myarr;
[21, 41, 61]

As you can see, everything works fine, but there's room for improvement. For
example: there were two loops. Loops can be expensive if they go through a lot
of repetitions. You can achieve the same result with only one loop. Here's how to
modify multiplyByTwo() so that it accepts a callback function and invokes that
callback on every iteration:

function multiplyByTwo(a, b, c, callback) {
 var i, ar = [];
 for (i = 0; i < 3; i++) {
 ar[i] = callback(arguments[i] * 2);
 }
 return ar;
}

By using the modified function, all the work is done with just one function call,
which passes the start values and the callback function:

> myarr = multiplyByTwo(1, 2, 3, addOne);
[3, 5, 7]

Functions

[552]

Instead of defining addOne(), you can use an anonymous function, therefore saving
an extra global variable:

> multiplyByTwo(1, 2, 3, function (a) {
 return a + 1;
 });
[3, 5, 7]

Anonymous functions are easy to change should the need arise:

> multiplyByTwo(1, 2, 3, function (a) {
 return a + 2;
 });
[4, 6, 8]

Immediate functions
So far, we have discussed using anonymous functions as callbacks. Let's see another
application of an anonymous function: calling a function immediately after it's
defined. Here's an example:

(
 function () {
 alert('boo');
 }
)();

The syntax may look a little scary at first, but all you do is simply place a function
expression inside parentheses followed by another set of parentheses. The second set
says "execute now" and is also the place to put any arguments that your anonymous
function might accept:

(
 function (name) {
 alert('Hello ' + name + '!');
 }
)('dude');

Alternatively, you can move the closing of the first set of parentheses to the end. Both
of these work:

(function () {
 // ...
}());

Chapter 3

[553]

// vs.

(function () {
 // ...
})();

One good application of immediate (self-invoking) anonymous functions is
when you want to have some work done without creating extra global variables.
A drawback, of course, is that you cannot execute the same function twice. This
makes immediate functions best suited for one-off or initialization tasks.

An immediate function can also optionally return a value if you need one. It's not
uncommon to see code that looks like the following:

var result = (function () {
 // something complex with
 // temporary local variables...
 // ...

 // return something;
}());

In this case, you don't need to wrap the function expression in parentheses, you only
need the parentheses that invoke the function. So, the following also works:

var result = function () {
 // something complex with
 // temporary local variables
 // return something;
}();

This syntax works, but may look slightly confusing: without reading the end of
the function, you don't know if result is a function or the return value of the
immediate function.

Inner (private) functions
Bearing in mind that a function is just like any other value, there's nothing that stops
you from defining a function inside another function:

function outer(param) {
 function inner(theinput) {
 return theinput * 2;
 }
 return 'The result is ' + inner(param);
}

Functions

[554]

Using a function expression, this can also be written as:

var outer = function (param) {
 var inner = function (theinput) {
 return theinput * 2;
 };
 return 'The result is ' + inner(param);
};

When you call the global function outer(), it will internally call the local function
inner(). Since inner() is local, it's not accessible outside outer(), so you can say
it's a private function:

> outer(2);
"The result is 4"

> outer(8);
"The result is 16"

> inner(2);
ReferenceError: inner is not defined

The benefits of using private functions are as follows:

• You keep the global namespace clean (less likely to cause naming collisions)
• Privacy—you expose only the functions you decide to the "outside world",

keeping to yourself functionality that is not meant to be consumed by the rest
of the application

Functions that return functions
As mentioned earlier, a function always returns a value, and if it doesn't do it
explicitly with return, then it does so implicitly by returning undefined. A function
can return only one value, and this value can just as easily be another function:

function a() {
 alert('A!');
 return function () {
 alert('B!');
 };
}

In this example, the function a() does its job (says A!) and returns another function
that does something else (says B!). You can assign the return value to a variable and
then use this variable as a normal function:

> var newFunc = a();
> newFunc();

Chapter 3

[555]

Here, the first line will alert A! and the second will alert B!.

If you want to execute the returned function immediately without assigning it to a
new variable, you can simply use another set of parentheses. The end result will be
the same:

> a()();

Function, rewrite thyself!
Because a function can return a function, you can use the new function to replace the
old one. Continuing with the previous example, you can take the value returned by
the call to a() to overwrite the actual a() function:

> a = a();

The above alerts A!, but the next time you call a() it alerts B!. This is useful when a
function has some initial one-off work to do. The function overwrites itself after the
first call in order to avoid doing unnecessary repetitive work every time it's called.

In the preceding example, the function was redefined from the outside—the returned
value was assigned back to the function. But, the function can actually rewrite itself
from the inside:

function a() {
 alert('A!');
 a = function () {
 alert('B!');
 };
}

If you call this function for the first time, it will:

• Alert A! (consider this as being the one-off preparatory work)
• Redefine the global variable a, assigning a new function to it

Every subsequent time that the function is called, it will alert B!

Here's another example that combines several of the techniques discussed in the last
few sections of this chapter:

var a = (function () {

 function someSetup() {

Functions

[556]

 var setup = 'done';
 }

 function actualWork() {
 alert('Worky-worky');
 }

 someSetup();
 return actualWork;

}());

In this example:

• You have private functions: someSetup() and actualWork().
• You have an immediate function: an anonymous function that calls itself

using the parentheses following its definition.
• The function executes for the first time, calls someSetup(), and then returns

a reference to the variable actualWork, which is a function. Notice that
there are no parentheses in the return statement, because you're returning a
function reference, not the result of invoking this function.

• Because the whole thing starts with var a =, the value returned by the
self-invoked function is assigned to a.

If you want to test your understanding of the topics just discussed, answer the
following questions. What will the preceding code alert when:

• It is initially loaded?
• You call a() afterwards?

These techniques could be really useful when working in the browser environment.
Different browsers can have different ways of achieving the same result. If you
know that the browser features won't change between function calls, you can have a
function determine the best way to do the work in the current browser, then redefine
itself so that the "browser capability detection" is done only once. You'll see concrete
examples of this scenario later in this book.

Chapter 3

[557]

Closures
The rest of the chapter is about closures (what better way to close a chapter?).
Closures can be a little hard to grasp initially, so don't feel discouraged if you don't
"get it" during the first read. You should go through the rest of the chapter and
experiment with the examples on you own, but if you feel you don't fully understand
the concept, you can come back to it later when the topics discussed previously in
this chapter have had a chance to sink in.

Before moving on to closures, let's first review and expand on the concept of scope
in JavaScript.

Scope chain
As you know, in JavaScript, there is no curly braces scope, but there is function
scope. A variable defined in a function is not visible outside the function, but a
variable defined in a code block (for example an if or a for loop) is visible outside
the block:

> var a = 1;
> function f() {
 var b = 1;
 return a;
 }
> f();
1

> b;
ReferenceError: b is not defined

The variable a is in the global space, while b is in the scope of the function f(). So:

• Inside f(), both a and b are visible
• Outside f(), a is visible, but b is not

If you define a function inner() nested inside outer(), inner() will have access to
variables in its own scope, plus the scope of its "parents". This is known as a scope
chain, and the chain can be as long (deep) as you need it to be:

var global = 1;
function outer() {
 var outer_local = 2;
 function inner() {
 var inner_local = 3;
 return inner_local + outer_local + global;

Functions

[558]

 }
 return inner();
}

Let's test that inner() has access to all variables:

> outer();
6

Breaking the chain with a closure
Let's introduce closures with an illustration. Let's look at this code and see what's
happening there:

var a = "global variable";
var F = function () {
 var b = "local variable";
 var N = function () {
 var c = "inner local";
 };
};

First, there is the global scope G. Think of it as the universe, as if it contains everything:

G

a1

a4

a2
a3

You are here

Chapter 3

[559]

It can contain global variables such as a1 and a2 and global functions such as F:

G

F

a

Functions have their own private space and can use it to store other variables such as
b and inner functions such as N (for iNNer). At some point, you end up with a picture
like this:

G

F

a
N

b c

If you're at point a, you're inside the global space. If you're at point b, which is inside
the space of the function F, then you have access to the global space and to the F
space. If you're at point c, which is inside the function N, then you can access the
global space, the F space, and the N space. You cannot reach from a to b, because b
is invisible outside F. But, you can get from c to b if you want, or from N to b. The
interesting part—the closure effect—happens when somehow N breaks out of F and
ends up in the global space:

G

F

a

N
b

c

Functions

[560]

What happens then? N is in the same global space as a. And, as functions remember
the environment in which they were defined, N will still have access to the F space,
and hence can access b. This is interesting, because N is where a is and yet N does
have access to b, but a doesn't.

And how does N break the chain? By making itself global (omitting var) or by having
F deliver (or return) it to the global space. Let's see how this is done in practice.

Closure #1
Take a look at this function, which is the same as before, only F returns N and also N
returns b, to which it has access via the scope chain:

var a = "global variable";
var F = function () {
 var b = "local variable";
 var N = function () {
 var c = "inner local";
 return b;
 };
 return N;
};

The function F contains the variable b, which is local, and therefore inaccessible from
the global space:

> b;
ReferenceError: b is not defined

The function N has access to its private space, to the F() function's space, and to the
global space. So, it can see b. Since F() is callable from the global space (it's a global
function), you can call it and assign the returned value to another global variable.
The result: a new global function that has access to the F() function's private space:

> var inner = F();
> inner();
"local variable"

Closure #2
The final result of the next example will be the same as the previous example, but
the way to achieve it is a little different. F() doesn't return a function, but instead it
creates a new global function, inner(), inside its body.

Chapter 3

[561]

Let's start by declaring a placeholder for the global function-to-be. This is optional,
but it's always good to declare your variables. Then, you can define the function F()
as follows:

var inner; // placeholder
var F = function () {
 var b = "local variable";
 var N = function () {
 return b;
 };
 inner = N;
};

Now what happens if you invoke F()?:

> F();

A new function, N(),is defined inside F() and assigned to the global inner. During
definition time, N() was inside F(), so it had access to the F() function's scope.
inner() will keep its access to the F() function's scope, even though it's part of the
global space:

> inner();
"local variable".

A definition and closure #3
Every function can be considered a closure. This is because every function maintains
a secret link to the environment (the scope) in which it was created. But, most of the
time this scope is destroyed unless something interesting happens (as shown above)
that causes this scope to be maintained.

Based on what you've seen so far, you can say that a closure is created when a
function keeps a link to its parent scope even after the parent has returned. And,
every function is a closure because, at the very least, every function maintains
access to the global scope, which is never destroyed.

Let's see one more example of a closure, this time using the function parameters.
Function parameters behave like local variables to this function, but they are
implicitly created (you don't need to use var for them). You can create a function
that returns another function, which in turn returns its parent's parameter:

function F(param) {
 var N = function () {
 return param;
 };

Functions

[562]

 param++;
 return N;
}

You use the function like this:

> var inner = F(123);
> inner();
124

Notice how param++ was incremented after the function was defined and yet, when
called, inner() returned the updated value. This demonstrates that the function
maintains a reference to the scope where it was defined, not to the variables
and their values found in the scope during the function execution.

Closures in a loop
Let's take a look at a canonical rookie mistake when it comes to closures. It can easily
lead to hard-to-spot bugs, because on the surface, everything looks normal.

Let's loop three times, each time creating a new function that returns the loop
sequence number. The new functions will be added to an array and the array is
returned at the end. Here's the function:

function F() {
 var arr = [], i;
 for (i = 0; i < 3; i++) {
 arr[i] = function () {
 return i;
 };
 }
 return arr;
}

Let's run the function, assigning the result to the array arr:

> var arr = F();

Now you have an array of three functions. Let's invoke them by adding parentheses
after each array element. The expected behavior is to see the loop sequence printed
out: 0, 1, and 2. Let's try:

> arr[0]();
3

> arr[1]();
3

Chapter 3

[563]

> arr[2]();
3

Hmm, not quite as expected. What happened here? All three functions point to the
same local variable i. Why? The functions don't remember values, they only keep a
link (reference) to the environment where they were created. In this case, the variable
i happens to live in the environment where the three functions were defined. So, all
functions, when they need to access the value, reach back to the environment and
find the most current value of i. After the loop, the i variable's value is 3. So, all
three functions point to the same value.

Why three and not two is another good question to think about for better
understanding the for loop.

So, how do you implement the correct behavior? The answer is to use another closure:

function F() {
 var arr = [], i;
 for (i = 0; i < 3; i++) {
 arr[i] = (function (x) {
 return function () {
 return x;
 };
 }(i));
 }
 return arr;
}

This gives you the expected result:

> var arr = F();
> arr[0]();
0

> arr[1]();
1

> arr[2]();
2

Here, instead of just creating a function that returns i, you pass the i variable's
current value to another immediate function. In this function, i becomes the local
value x, and x has a different value every time.

Functions

[564]

Alternatively, you can use a "normal" (as opposed to an immediate) inner function to
achieve the same result. The key is to use the middle function to "localize" the value
of i at every iteration:

function F() {

 function binder(x) {
 return function () {
 return x;
 };
 }

 var arr = [], i;
 for (i = 0; i < 3; i++) {
 arr[i] = binder(i);
 }
 return arr;
}

Getter/setter
Let's see two more examples of using closures. The first one involves the creation
of getter and setter functions. Imagine you have a variable that should contain a
specific type of values or a specific range of values. You don't want to expose this
variable because you don't want just any part of the code to be able to alter its value.
You protect this variable inside a function and provide two additional functions:
one to get the value and one to set it. The one that sets it could contain some logic
to validate a value before assigning it to the protected variable. Let's make the
validation part simple (for the sake of keeping the example short) and only accept
number values.

You place both the getter and the setter functions inside the same function that
contains the secret variable so that they share the same scope:

var getValue, setValue;

(function () {

 var secret = 0;

 getValue = function () {

Chapter 3

[565]

 return secret;
 };

 setValue = function (v) {
 if (typeof v === "number") {
 secret = v;
 }
 };

}());

In this case, the function that contains everything is an immediate function. It defines
setValue() and getValue() as global functions, while the secret variable remains
local and inaccessible directly:

> getValue();
0

> setValue(123);
> getValue();
123

> setValue(false);
> getValue();
123

Iterator
The last closure example (also the last example in the chapter) shows the use of a
closure to accomplish an iterator functionality.

You already know how to loop through a simple array, but there might be cases
where you have a more complicated data structure with different rules as to what
the sequence of values has. You can wrap the complicated "who's next" logic into an
easy-to-use next() function. Then, you simply call next() every time you need the
consecutive value.

For this example, let's just use a simple array and not a complex data structure.
Here's an initialization function that takes an input array and also defines a secret
pointer, i, that will always point to the next element in the array:

function setup(x) {
 var i = 0;
 return function () {
 return x[i++];
 };
}

Functions

[566]

Calling the setup() function with a data array will create the next() function
for you:

> var next = setup(['a', 'b', 'c']);

From there it's easy and fun: calling the same function over and over again gives you
the next element:

> next();
"a"

> next();
"b"

> next();
"c"

Summary
You have now completed the introduction to the fundamental concepts related to
functions in JavaScript. You've been laying the groundwork that will allow you to
quickly grasp the concepts of object-oriented JavaScript and the patterns used in
modern JavaScript programming. So far, we've been avoiding the OO features, but as
you have reached this point in the book, it's only going to get more interesting from
here on in. Let's take a moment and review the topics discussed in this chapter:

• The basics of how to define and invoke (call) a function using either a
function declaration syntax or a function expression

• Function parameters and their flexibility
• Built-in functions—parseInt(), parseFloat(), isNaN(), isFinite(), and

eval()—and the four functions to encode/decode a URL
• The scope of variables in JavaScript—no curly braces scope, variables have

only function scope and the scope chain
• Functions as data—a function is like any other piece of data that you assign

to a variable and a lot of interesting applications follow from this, such as:
 ° Private functions and private variables
 ° Anonymous functions
 ° Callbacks
 ° Immediate functions
 ° Functions overwriting themselves

• Closures

Chapter 3

[567]

Exercises
1. Write a function that converts a hexadecimal color, for example blue

(#0000FF), into its RGB representation rgb(0, 0, 255). Name your
function getRGB() and test it with the following code. Hint: treat the
string as an array of characters:
> var a = getRGB("#00FF00");
> a;
"rgb(0, 255, 0)"

2. What do each of these lines print in the console?
> parseInt(1e1);
> parseInt('1e1');
> parseFloat('1e1');
> isFinite(0/10);
> isFinite(20/0);
> isNaN(parseInt(NaN));

3. What does this following code alert?
var a = 1;

function f() {
 function n() {
 alert(a);
 }
 var a = 2;
 n();
}

f();

4. All these examples alert "Boo!". Can you explain why?
 ° Example 1:

var f = alert;
eval('f("Boo!")');

 ° Example 2:
var e;
var f = alert;
eval('e=f')('Boo!');

 ° Example 3:
(function(){
 return alert;}
)()('Boo!');

Objects
Now that you've mastered JavaScript's primitive data types, arrays, and functions,
it's time to make true to the promise of the book title and talk about objects.

In this chapter, you will learn:

• How to create and use objects
• What are the constructor functions
• What types of built-in JavaScript objects exist and what they can do for you

From arrays to objects
As you already know from Chapter 2, Primitive Data Types, Arrays, Loops,
and Conditions, an array is just a list of values. Each value has an index
(a numeric key) that starts from zero and increments by one for each value.

> var myarr = ['red', 'blue', 'yellow', 'purple'];
> myarr;
 ["red", "blue", "yellow", "purple"].

> myarr[0];
"red"

> myarr[3];
"purple"

Objects

[570]

If you put the indexes in one column and the values in another, you'll end up with a
table of key/value pairs shown as follows:

Key Value
0 red
1 blue
2 yellow
3 purple

An object is similar to an array, but with the difference that you define the keys
yourself. You're not limited to using only numeric indexes and you can use friendlier
keys, such as first_name, age, and so on.

Let's take a look at a simple object and examine its parts:

var hero = {
 breed: 'Turtle',
 occupation: 'Ninja'
};

You can see that:

• The name of the variable that refers to the object is hero
• Instead of [and], which you use to define an array, you use { and }

for objects
• You separate the elements (called properties) contained in the object

with commas
• The key/value pairs are divided by colons, as in key: value

The keys (names of the properties) can optionally be placed in quotation marks.
For example, these are all the same:

var hero = {occupation: 1};
var hero = {"occupation": 1};
var hero = {'occupation': 1};

It's recommended that you don't quote the names of the properties (it's less typing),
but there are cases when you must use quotes:

• If the property name is one of the reserved words in JavaScript (see Chapter 9,
Reserved Words)

Chapter 4

[571]

• If it contains spaces or special characters (anything other than letters,
numbers, and the _ and $ characters)

• If it starts with a number

In other words, if the name you have chosen for a property is not a valid name for a
variable in JavaScript, then you need to wrap it in quotes.

Have a look at this bizarre-looking object:

var o = {
 $omething: 1,
 'yes or no': 'yes',
 '!@#$%^&*': true
};

This is a valid object. The quotes are required for the second and the third properties,
otherwise you'll get an error.

Later in this chapter, you'll see other ways to define objects and arrays in addition
to [] and {}. But first, let's introduce this bit of terminology: defining an array with
[] is called array literal notation, and defining an object using the curly braces {} is
called object literal notation.

Elements, properties, methods, and members
When talking about arrays, you say that they contain elements. When talking about
objects, you say that they contain properties. There isn't any significant difference
in JavaScript; it's just the terminology that people are used to, likely from other
programming languages.

A property of an object can point to a function, because functions are just data.
Properties that point to functions are also called methods. In the following example,
talk is a method:

var dog = {
 name: 'Benji',
 talk: function () {
 alert('Woof, woof!');
 }
};

Objects

[572]

As you have seen in the previous chapter, it's also possible to store functions as array
elements and invoke them, but you'll not see much code like this in practice:

> var a = [];
> a[0] = function (what) { alert(what); };
> a[0]('Boo!');

You can also see people using the word members to refer to properties of an object,
most often when it doesn't matter if the property is a function or not.

Hashes and associative arrays
In some programming languages, there is a distinction between:

• A regular array, also called an indexed or enumerated array
(the keys are numbers)

• An associative array, also called a hash or a dictionary (the keys are strings)

JavaScript uses arrays to represent indexed arrays and objects to represent
associative arrays. If you want a hash in JavaScript, you use an object.

Accessing an object's properties
There are two ways to access a property of an object:

• Using the square bracket notation, for example hero['occupation']
• Using the dot notation, for example hero.occupation

The dot notation is easier to read and write, but it cannot always be used. The same
rules apply as for quoting property names: if the name of the property is not a valid
variable name, you cannot use the dot notation.

Let's take the hero object again:

var hero = {
 breed: 'Turtle',
 occupation: 'Ninja'
};

Accessing a property with the dot notation:

> hero.breed;
"Turtle"

Chapter 4

[573]

Accessing a property with the bracket notation:

> hero['occupation'];
"Ninja"

Accessing a non-existing property returns undefined:

> 'Hair color is ' + hero.hair_color;
"Hair color is undefined"

Objects can contain any data, including other objects:

var book = {
 name: 'Catch-22',
 published: 1961,
 author: {
 firstname: 'Joseph',
 lastname: 'Heller'
 }
};

To get to the firstname property of the object contained in the author property of
the book object, you use:

> book.author.firstname;
"Joseph"

Using the square brackets notation:

> book['author']['lastname'];
"Heller"

It works even if you mix both:

> book.author['lastname'];
"Heller"

> book['author'].lastname;
"Heller"

Another case where you need square brackets is when the name of the property you
need to access is not known beforehand. During runtime, it's dynamically stored in a
variable:

> var key = 'firstname';
> book.author[key];
"Joseph"

Objects

[574]

Calling an object's methods
You know a method is just a property that happens to be a function, so you access
methods the same way as you would access properties: using the dot notation or using
square brackets. Calling (invoking) a method is the same as calling any other function:
you just add parentheses after the method name, which effectively says "Execute!".

> var hero = {
 breed: 'Turtle',
 occupation: 'Ninja',
 say: function () {
 return 'I am ' + hero.occupation;
 }
 };
> hero.say();
"I am Ninja"

If there are any parameters that you want to pass to a method, you proceed as with
normal functions:

> hero.say('a', 'b', 'c');

Because you can use the array-like square brackets to access a property, this means
you can also use brackets to access and invoke methods:

> hero['say']();

This is not a common practice unless the method name is not known at the time of
writing code, but is instead defined at runtime:

var method = 'say';
hero[method]();

Best practice tip: no quotes (unless you have to)
Use the dot notation to access methods and properties and
don't quote properties in your object literals.

Altering properties/methods
JavaScript allows you to alter the properties and methods of existing objects at any
time. This includes adding new properties or deleting them. You can start with a
"blank" object and add properties later. Let's see how you can go about doing this.

An object without properties is shown as follows:

> var hero = {};

Chapter 4

[575]

A "blank" object
In this section, you started with a "blank" object, var hero = {};.
Blank is in quotes because this object is not really empty and useless.
Although at this stage it has no properties of its own, it has already
inherited some. You'll learn more about own versus inherited properties
later. So, an object in ES3 is never really "blank" or "empty". In ES5
though, there is a way to create a completely blank object that doesn't
inherit anything, but let's not get ahead too much.

Accessing a non-existing property is shown as follows:

> typeof hero.breed;
"undefined"

Adding two properties and a method:

> hero.breed = 'turtle';
> hero.name = 'Leonardo';
> hero.sayName = function () {
 return hero.name;
 };

Calling the method:

> hero.sayName();
"Leonardo"

Deleting a property:

> delete hero.name;
true

Calling the method again will no longer find the deleted name property:

> hero.sayName();
"undefined"

Malleable objects
You can always change any object at any time, such as adding
and removing properties and changing their values. But, there are
exceptions to this rule. A few properties of some built-in objects are
not changeable (for example, Math.PI, as you'll see later). Also, ES5
allows you to prevent changes to objects; you'll learn more about it in
Chapter 11, Built-in Objects.

Objects

[576]

Using the this value
In the previous example, the sayName() method used hero.name to access the name
property of the hero object. When you're inside a method though, there is another
way to access the object the method belongs to: by using the special value this.

> var hero = {
 name: 'Rafaelo',
 sayName: function () {
 return this.name;
 }
 };
> hero.sayName();
"Rafaelo"

So, when you say this, you're actually saying "this object" or "the current object".

Constructor functions
There is another way to create objects: by using constructor functions. Let's see
an example:

function Hero() {
 this.occupation = 'Ninja';
}

In order to create an object using this function, you use the new operator, like this:

> var hero = new Hero();
> hero.occupation;
"Ninja"

A benefit of using constructor functions is that they accept parameters, which can
be used when creating new objects. Let's modify the constructor to accept one
parameter and assign it to the name property:

function Hero(name) {
 this.name = name;
 this.occupation = 'Ninja';
 this.whoAreYou = function () {
 return "I'm " +
 this.name +
 " and I'm a " +
 this.occupation;
 };
}

Chapter 4

[577]

Now you can create different objects using the same constructor:

> var h1 = new Hero('Michelangelo');
> var h2 = new Hero('Donatello');
> h1.whoAreYou();
"I'm Michelangelo and I'm a Ninja"

> h2.whoAreYou();
"I'm Donatello and I'm a Ninja"

Best practice
By convention, you should capitalize the first letter of your constructor
functions so that you have a visual clue that this is not intended to be
called as a regular function.

If you call a function that is designed to be a constructor but you omit the new
operator, this is not an error, but it doesn't give you the expected result.

> var h = Hero('Leonardo');
> typeof h;
"undefined"

What happened here? There is no new operator, so a new object was not created. The
function was called like any other function, so h contains the value that the function
returns. The function does not return anything (there's no return), so it actually
returns undefined, which gets assigned to h.

In this case, what does this refer to? It refers to the global object.

The global object
You have already learned a bit about global variables (and how you should avoid
them). You also know that JavaScript programs run inside a host environment
(the browser for example). Now that you know about objects, it's time for the
whole truth: the host environment provides a global object and all global
variables are accessible as properties of the global object.

If your host environment is the web browser, the global object is called window.
Another way to access the global object (and this is also true in most other
environments) is to use this outside a constructor function, for example in the
global program code outside any function.

As an illustration, you can declare a global variable outside any function, such as:

> var a = 1;

Objects

[578]

Then, you can access this global variable in various ways:

• As a variable a
• As a property of the global object, for example window['a'] or window.a
• As a property of the global object referred to as this:

> var a = 1;
> window.a;
1

> this.a;
1

Let's go back to the case where you define a constructor function and call it without
the new operator. In such cases, this refers to the global object and all the properties
set to this become properties of window.

Declaring a constructor function and calling it without new returns "undefined":

> function Hero(name) {
 this.name = name;
 }
> var h = Hero('Leonardo');
> typeof h;
"undefined"

> typeof h.name;
TypeError: Cannot read property 'name' of undefined

Because you had this inside Hero, a global variable (a property of the global object)
called name was created:

> name;
"Leonardo"

> window.name;
"Leonardo"

If you call the same constructor function using new, then a new object is returned and
this refers to it:

> var h2 = new Hero('Michelangelo');
> typeof h2;
"object"

> h2.name;
"Michelangelo"

Chapter 4

[579]

The built-in global functions you have seen in Chapter 3, Functions, can also be invoked
as methods of the window object. So, the following two calls have the same result:

> parseInt('101 dalmatians');
101

> window.parseInt('101 dalmatians');
101

And, when outside a function called as a constructor (with new), also:

> this.parseInt('101 dalmatians');
101

The constructor property
When an object is created, a special property is assigned to it behind the scenes—the
constructor property. It contains a reference to the constructor function used to
create this object.

Continuing from the previous example:

> h2.constructor;
function Hero(name) {
 this.name = name;
}

Because the constructor property contains a reference to a function, you might as
well call this function to produce a new object. The following code is like saying, "I
don't care how object h2 was created, but I want another one just like it":

> var h3 = new h2.constructor('Rafaello');
> h3.name;
"Rafaello"

If an object was created using the object literal notation, its constructor is the built-in
Object() constructor function (there is more about this later in this chapter):

> var o = {};
> o.constructor;
function Object() { [native code] }

> typeof o.constructor;
"function"

Objects

[580]

The instanceof operator
With the instanceof operator, you can test if an object was created with a specific
constructor function:

> function Hero() {}
> var h = new Hero();
> var o = {};
> h instanceof Hero;
true

> h instanceof Object;
true

> o instanceof Object;
true

Note that you don't put parentheses after the function name (you don't use h
instanceof Hero()). This is because you're not invoking this function, but just
referring to it by name, as with any other variable.

Functions that return objects
In addition to using constructor functions and the new operator to create objects, you
can also use a normal function to create objects without new. You can have a function
that does a bit of preparatory work and has an object as a return value.

For example, here's a simple factory() function that produces objects:

function factory(name) {
 return {
 name: name
 };
}

Using the factory() function:

> var o = factory('one');
> o.name;
"one"

> o.constructor;
function Object() { [native code] }

In fact, you can also use constructor functions and return objects different
from this. This means you can modify the default behavior of the constructor
function. Let's see how.

Chapter 4

[581]

Here's the normal constructor scenario:

> function C() {
 this.a = 1;
 }
> var c = new C();
> c.a;
1

But now look at this scenario:

> function C2() {
 this.a = 1;
 return {b: 2};
 }
> var c2 = new C2();
> typeof c2.a;
"undefined"

> c2.b;
2

What happened here? Instead of returning the object this, which contains the
property a, the constructor returned another object that contains the property b.
This is possible only if the return value is an object. Otherwise, if you try to return
anything that is not an object, the constructor will proceed with its usual behavior
and return this.

If you think about how objects are created inside constructor functions, you can
imagine that a variable called this is defined at the top of the function and then
returned at the end. It's as if something like this happens:

function C() {
 // var this = {}; // pseudo code, you can't do this
 this.a = 1;
 // return this;
}

Passing objects
When you assign an object to a different variable or pass it to a function, you only
pass a reference to that object. Consequently, if you make a change to the reference,
you're actually modifying the original object.

Objects

[582]

Here's an example of how you can assign an object to another variable and then
make a change to the copy. As a result, the original object is also changed:

> var original = {howmany: 1};
> var mycopy = original;
> mycopy.howmany;
1

> mycopy.howmany = 100;
100

> original.howmany;
100

The same thing applies when passing objects to functions:

> var original = {howmany: 100};
> var nullify = function (o) { o.howmany = 0; };
> nullify(original);
> original.howmany;
0

Comparing objects
When you compare objects, you'll get true only if you compare two references to
the same object. Comparing two distinct objects that happen to have the exact same
methods and properties returns false.

Let's create two objects that look the same:

> var fido = {breed: 'dog'};
> var benji = {breed: 'dog'};

Comparing them returns false:

> benji === fido;
false

> benji == fido;
false

You can create a new variable, mydog, and assign one of the objects to it. This way,
mydog actually points to the same object:

> var mydog = benji;

Chapter 4

[583]

In this case, benji is mydog because they are the same object (changing the mydog
variable's properties will change the benji variable's properties). The comparison
returns true:

> mydog === benji;
true

And, because fido is a different object, it does not compare to mydog:

> mydog === fido;
false

Objects in the WebKit console
Before diving into the built-in objects in JavaScript, let's quickly say a few words
about working with objects in the WebKit console.

After playing around with the examples in this chapter, you might have already
noticed how objects are displayed in the console. If you create an object and type its
name, you'll get an arrow pointing to the word Object.

The object is clickable and expands to show you a list of all of the properties of
the object. If a property is also an object, there is an arrow next to it too, so you can
expand this as well. This is handy as it gives you an insight into exactly what this
object contains.

You can ignore __proto__ for now; there's more about it in the next chapter.

Objects

[584]

console.log
The console also offers you an object called console and a few methods, such as
console.log() and console.error(), which you can use to display any value you
want in the console.

console.log() is convenient when you want to quickly test something, as well as in
your real scripts when you want to dump some intermediate debugging information.
Here's how you can experiment with loops for example:

> for (var i = 0; i < 5; i++) {
 console.log(i);
 }
0
1
2
3
4

Built-in objects
Earlier in this chapter, you came across the Object() constructor function. It's
returned when you create objects with the object literal notation and access their
constructor property. Object() is one of the built-in constructors; there are a few
others, and in the rest of this chapter you'll see all of them.

Chapter 4

[585]

The built-in objects can be divided into three groups:

• Data wrapper objects: These are Object, Array, Function, Boolean,
Number, and String. These objects correspond to the different data types in
JavaScript. There is a data wrapper object for every different value returned
by typeof (discussed in Chapter 2, Primitive Data Types, Arrays, Loops, and
Conditions), with the exception of "undefined" and "null".

• Utility objects: These are Math, Date, and RegExp, and can come in handy.
• Error objects: These include the generic Error object as well as other more

specific objects that can help your program recover its working state when
something unexpected happens.

Only a handful of methods of the built-in objects will be discussed in this chapter.
For a full reference, see Chapter 11, Built-in Objects.

If you're confused about what a built-in object is and what a built-in constructor is,
well, they are the same thing. In a moment, you'll see how functions, and therefore
constructor functions, are also objects.

Object
Object is the parent of all JavaScript objects, which means that every object you
create inherits from it. To create a new "empty" object, you can use the literal notation
or the Object() constructor function. The following two lines are equivalent:

> var o = {};
> var o = new Object();

As mentioned before, an "empty" (or "blank") object is not completely useless
because it already contains several inherited methods and properties. In this book,
"empty" means an object like {} that has no properties of its own other than the
ones it automatically gets. Let's see a few of the properties that even "blank" objects
already have:

• The o.constructor property returns a reference to the constructor function
• o.toString() is a method that returns a string representation of the object
• o.valueOf() returns a single-value representation of the object; often this is

the object itself

Let's see these methods in action. First, create an object:

> var o = new Object();

Objects

[586]

Calling toString() returns a string representation of the object:

> o.toString();
"[object Object]"

toString() will be called internally by JavaScript when an object is used in a string
context. For example, alert() works only with strings, so if you call the alert()
function passing an object, the toString()method will be called behind the scenes.
These two lines produce the same result:

> alert(o);
> alert(o.toString());

Another type of string context is the string concatenation. If you try to concatenate an
object with a string, the object's toString() method is called first:

> "An object: " + o;
"An object: [object Object]"

valueOf() is another method that all objects provide. For the simple objects (whose
constructor is Object()), the valueOf() method returns the object itself:

> o.valueOf() === o;
true

To summarize:

• You can create objects either with var o = {}; (object literal notation, the
preferred method) or with var o = new Object();

• Any object, no matter how complex, inherits from the Object object,
and therefore offers methods such as toString() and properties
such as constructor

Array
Array() is a built-in function that you can use as a constructor to create arrays:

> var a = new Array();

This is equivalent to the array literal notation:

> var a = [];

Chapter 4

[587]

No matter how the array is created, you can add elements to it as usual:

> a[0] = 1;
> a[1] = 2;
> a;
[1, 2]

When using the Array() constructor, you can also pass values that will be assigned
to the new array's elements:

> var a = new Array(1, 2, 3, 'four');
> a;
 [1, 2, 3, "four"]

An exception to this is when you pass a single number to the constructor. In this
case, the number is considered to be the length of the array:

> var a2 = new Array(5);
> a2;
 [undefined x 5]

Because arrays are created with a constructor, does this mean that arrays are in fact
objects? Yes, and you can verify this by using the typeof operator:

> typeof [1, 2, 3];
"object"

Because arrays are objects, this means that they inherit the properties and methods of
the parent Object:

> var a = [1, 2, 3, 'four'];
> a.toString();
"1,2,3,four"

> a.valueOf();
[1, 2, 3, "four"]

> a.constructor;
function Array() { [native code] }

Arrays are objects, but of a special type because:

• The names of their properties are automatically assigned using numbers
starting from 0

• They have a length property that contains the number of elements in
the array

• They have more built-in methods in addition to those inherited from the
parent Object

Objects

[588]

Let's examine the differences between an array and an object, starting by creating the
empty array a and the empty object o:

> var a = [], o = {};

Array objects have a length property automatically defined for them, while normal
objects do not:

> a.length;
0

> typeof o.length;
"undefined"

It's OK to add both numeric and non-numeric properties to both arrays and objects:

> a[0] = 1;
> o[0] = 1;
> a.prop = 2;
> o.prop = 2;

The length property is always up-to-date with the number of numeric properties,
while it ignores the non-numeric ones:

> a.length;
1

The length property can also be set by you. Setting it to a greater value than the
current number of items in the array makes room for additional elements. If you try
to access these non-existing elements, you'll get the value undefined:

> a.length = 5;
5

> a;
[1, undefined x 4]

Setting the length property to a lower value removes the trailing elements:

> a.length = 2;
2

> a;
[1, undefined x 1]

Chapter 4

[589]

A few array methods
In addition to the methods inherited from the parent Object, array objects also have
specialized methods for working with arrays, such as sort(), join(), and slice(),
among others (see Chapter 11, Built-in Objects, for the full list).

Let's take an array and experiment with some of these methods:

> var a = [3, 5, 1, 7, 'test'];

The push() method appends a new element to the end of the array. The pop()
method removes the last element. a.push('new') works like a[a.length] = 'new'
and a.pop() is like a.length--.

push() returns the length of the changed array, whereas pop() returns the
removed element:

> a.push('new');
6

> a;
 [3, 5, 1, 7, "test", "new"]

> a.pop();
"new"

> a;
 [3, 5, 1, 7, "test"]

The sort() method sorts the array and returns it. In the next example, after the sort,
both a and b point to the same array:

> var b = a.sort();
> b;
[1, 3, 5, 7, "test"]

> a === b;
true

The join() method returns a string containing the values of all the elements in the
array glued together using the string parameter passed to join():

> a.join(' is not ');
"1 is not 3 is not 5 is not 7 is not test"

Objects

[590]

The slice() method returns a piece of the array without modifying the source
array. The first parameter to slice() is the start index (zero-based) and the
second is the end index (both indices are zero-based):

> b = a.slice(1, 3);
[3, 5]

> b = a.slice(0, 1);
[1]

> b = a.slice(0, 2);
[1, 3]

After all the slicing, the source array is still the same:

> a;
[1, 3, 5, 7, "test"]

The splice() method modifies the source array. It removes a slice, returns it, and
optionally fills the gap with new elements. The first two parameters define the
start index and length (number of elements) of the slice to be removed; the other
parameters pass the new values:

> b = a.splice(1, 2, 100, 101, 102);
[3, 5]

> a;
[1, 100, 101, 102, 7, "test"]

Filling the gap with new elements is optional and you can skip it:

> a.splice(1, 3);
[100, 101, 102]

> a;
[1, 7, "test"]

Function
You already know that functions are a special data type. But, it turns out that there's
more to it than that: functions are actually objects. There is a built-in constructor
function called Function() that allows for an alternative (but not necessarily
recommended) way to create a function.

The following example shows three ways to define a function:

> function sum(a, b) { // function declaration
 return a + b;
 }

Chapter 4

[591]

> sum(1, 2);
3

> var sum = function (a, b) { // function expression
 return a + b;
 };
> sum(1, 2)
3

> var sum = new Function('a', 'b', 'return a + b;');
> sum(1, 2)
3

When using the Function() constructor, you pass the parameter names first (as
strings) and then the source code for the body of the function (again as a string). The
JavaScript engine needs to evaluate the source code you pass and create the new
function for you. This source code evaluation suffers from the same drawbacks as the
eval() function, so defining functions using the Function() constructor should be
avoided when possible.

If you use the Function() constructor to create functions that have lots of
parameters, bear in mind that the parameters can be passed as a single comma-
delimited list; so, for example, these are the same:

> var first = new Function(
 'a, b, c, d',
 'return arguments;'
);
> first(1, 2, 3, 4);
 [1, 2, 3, 4]

> var second = new Function(
 'a, b, c',
 'd',
 'return arguments;'
);
> second(1, 2, 3, 4);
 [1, 2, 3, 4]

> var third = new Function(
 'a',
 'b',
 'c',
 'd',
 'return arguments;'
);
> third(1, 2, 3, 4);
 [1, 2, 3, 4]

Objects

[592]

Best practice
Do not use the Function() constructor. As with eval() and
setTimeout() (discussed later in the book), always try to stay
away from passing JavaScript code as a string.

Properties of function objects
Like any other object, functions have a constructor property that contains a
reference to the Function() constructor function. This is true no matter which
syntax you used to create the function.

> function myfunc(a) {
 return a;
 }
> myfunc.constructor;
function Function() { [native code] }

Functions also have a length property, which contains the number of formal
parameters the function expects.

> function myfunc(a, b, c) {
 return true;
 }
> myfunc.length;
 3

Prototype
One of the most widely used properties of function objects is the prototype
property. You'll see this property discussed in detail in the next chapter,
but for now, let's just say:

• The prototype property of a function object points to another object
• Its benefits shine only when you use this function as a constructor
• All objects created with this function keep a reference to the prototype

property and can use its properties as their own

Let's see a quick example to demonstrate the prototype property. Take a simple
object that has a property name and a method say().

var ninja = {
 name: 'Ninja',
 say: function () {
 return 'I am a ' + this.name;
 }
};

Chapter 4

[593]

When you create a function (even one without a body), you can verify that it
automatically has a prototype property that points to a new object.

> function F() {}
> typeof F.prototype;
"object"

It gets interesting when you modify the prototype property. You can add properties
to it or you can replace the default object with any other object. Let's assign ninja to
the prototype.

> F.prototype = ninja;

Now, and here's where the magic happens, using the function F() as a constructor
function, you can create a new object, baby_ninja, which will have access to the
properties of F.prototype (which points to ninja) as if it were its own.

> var baby_ninja = new F();
> baby_ninja.name;
"Ninja"

> baby_ninja.say();
"I am a Ninja"

There will be much more on this topic later. In fact, the whole next chapter is about
the prototype property.

Methods of function objects
Function objects, being a descendant of the top parent Object, get the default
methods such as toString(). When invoked on a function, the toString()
method returns the source code of the function.

> function myfunc(a, b, c) {
 return a + b + c;
 }
> myfunc.toString();
"function myfunc(a, b, c) {
 return a + b + c;
}"

If you try to peek into the source code of the built-in functions, you'll get the string
[native code] instead of the body of the function.

> parseInt.toString();
"function parseInt() { [native code] }"

Objects

[594]

As you can see, you can use toString() to differentiate between native methods
and developer-defined ones.

The behavior of the function's toString() is
environment-dependent, and it does differ among
browsers in terms of spacing and new lines.

Call and apply
Function objects have call() and apply() methods. You can use them to invoke a
function and pass any arguments to it.

These methods also allow your objects to "borrow" methods from other objects and
invoke them as their own. This is an easy and powerful way to reuse code.

Let's say you have a some_obj object, which contains the method say().

var some_obj = {
 name: 'Ninja',
 say: function (who) {
 return 'Haya ' + who + ', I am a ' + this.name;
 }
};

You can call the say() method, which internally uses this.name to gain access to its
own name property.

> some_obj.say('Dude');
"Haya Dude, I am a Ninja"

Now let's create a simple object, my_obj, which only has a name property.

> var my_obj = {name: 'Scripting guru'};

my_obj likes the some_obj object's say() method so much that it wants to invoke it
as its own. This is possible using the call() method of the say() function object.

> some_obj.say.call(my_obj, 'Dude');
"Haya Dude, I am a Scripting guru"

It worked! But what happened here? You invoked the call() method of the say()
function object passing two parameters: the object my_obj and the string 'Dude'.
The result is that when say() is invoked, the references to the this value that it
contains point to my_obj. This way, this.name doesn't return Ninja, but
Scripting guru instead.

Chapter 4

[595]

If you have more parameters to pass when invoking the call() method, you just
keep adding them.

some_obj.someMethod.call(my_obj, 'a', 'b', 'c');

If you don't pass an object as a first parameter to call() or you pass null, the global
object is assumed.

The method apply() works the same way as call(), but with the difference that all
parameters you want to pass to the method of the other object are passed as an array.
The following two lines are equivalent:

some_obj.someMethod.apply(my_obj, ['a', 'b', 'c']);
some_obj.someMethod.call(my_obj, 'a', 'b', 'c');

Continuing the previous example, you can use:

> some_obj.say.apply(my_obj, ['Dude']);
"Haya Dude, I am a Scripting guru"

The arguments object revisited
In the previous chapter, you have seen how, from inside a function, you have access
to something called arguments, which contains the values of all the parameters
passed to the function:

> function f() {
 return arguments;
 }
> f(1, 2, 3);
[1, 2, 3]

arguments looks like an array, but it is actually an array-like object. It resembles an
array because it contains indexed elements and a length property. However, the
similarity ends there, as arguments doesn't provide any of the array methods,
such as sort() or slice().

However, you can convert arguments to an array and benefit from all the array
goodies. Here's what you can do, practicing your newly-learned call() method:

> function f() {
 var args = [].slice.call(arguments);
 return args.reverse();
 }

> f(1, 2, 3, 4);
[4, 3, 2, 1]

Objects

[596]

As you can see, you can borrow slice() using [].slice or the more verbose
Array.prototype.slice.

Inferring object types
You can see that you have this array-like arguments object looking so much like an
array object. How can you reliably tell the difference between the two? Additionally,
typeof returns object when used with arrays. Therefore, how can you tell the
difference between an object and an array?

The silver bullet is the Object object's toString() method. It gives you the internal
class name used to create a given object.

> Object.prototype.toString.call({});
"[object Object]"

> Object.prototype.toString.call([]);
"[object Array]"

You have to call the original toString() method as defined in the prototype of the
Object constructor. Otherwise, if you call the Array function's toString(), it will
give you a different result, as it's been overridden for the specific purposes of the
array objects:

> [1, 2, 3].toString();
"1,2,3"

This is the same as:

> Array.prototype.toString.call([1, 2, 3]);
"1,2,3"

Let's have some more fun with toString(). Make a handy reference to save typing:

> var toStr = Object.prototype.toString;

Differentiate between an array and the array-like object arguments:

> (function () {
 return toStr.call(arguments);
 }());
"[object Arguments]"

You can even inspect DOM elements:

> toStr.call(document.body);
"[object HTMLBodyElement]"

Chapter 4

[597]

Boolean
Your journey through the built-in objects in JavaScript continues, and the next three
are fairly straightforward; they merely wrap the primitive data types Boolean,
number, and string.

You already know a lot about Booleans from Chapter 2, Primitive Data Types, Arrays,
Loops, and Conditions. Now, let's meet the Boolean() constructor:

> var b = new Boolean();

It's important to note that this creates a new object, b, and not a primitive Boolean
value. To get the primitive value, you can call the valueOf() method (inherited
from Object and customized):

> var b = new Boolean();
> typeof b;
"object"

> typeof b.valueOf();
"boolean"

> b.valueOf();
false

Overall, objects created with the Boolean() constructor are not too useful, as they
don't provide any methods or properties other than the inherited ones.

The Boolean() function, when called as a normal function without new, converts
non-Booleans to Booleans (which is like using a double negation !!value):

> Boolean("test");
true

> Boolean("");
false

> Boolean({});
true

Apart from the six falsy values, everything else is true in JavaScript, including all
objects. This also means that all Boolean objects created with new Boolean() are also
true, as they are objects:

> Boolean(new Boolean(false));
true

Objects

[598]

This can be confusing, and since Boolean objects don't offer any special methods, it's
best to just stick with regular primitive Boolean values.

Number
Similarly to Boolean(), the Number() function can be used as:

• A constructor function (with new) to create objects.
• A normal function in order to try to convert any value to a number. This is

similar to the use of parseInt() or parseFloat().
> var n = Number('12.12');
> n;
12.12

> typeof n;
"number"

> var n = new Number('12.12');
> typeof n;
"object"

Because functions are objects, they can also have properties. The Number() function
has constant built-in properties that you cannot modify:

> Number.MAX_VALUE;
1.7976931348623157e+308

> Number.MIN_VALUE;
5e-324

> Number.POSITIVE_INFINITY;
Infinity

> Number.NEGATIVE_INFINITY;
-Infinity

> Number.NaN;
NaN

The number objects provide three methods: toFixed(), toPrecision(), and
toExponential() (see Chapter 11, Built-in Objects, for more details):

> var n = new Number(123.456);
> n.toFixed(1);
"123.5"

Chapter 4

[599]

Note that you can use these methods without explicitly creating a number object
first. In such cases, the number object is created (and destroyed) for you behind
the scenes:

> (12345).toExponential();
"1.2345e+4"

Like all objects, number objects also provide the toString() method. When
used with number objects, this method accepts an optional radix parameter
(10 being the default):

> var n = new Number(255);
> n.toString();
"255"

> n.toString(10);
"255"

> n.toString(16);
"ff"

> (3).toString(2);
"11"

> (3).toString(10);
"3"

String
You can use the String() constructor function to create string objects. String objects
provide convenient methods for text manipulation.

Here's an example that shows the difference between a string object and a primitive
string data type:

> var primitive = 'Hello';
> typeof primitive;
"string"

> var obj = new String('world');
> typeof obj;
"object"

Objects

[600]

A string object is similar to an array of characters. String objects have an indexed
property for each character (introduced in ES5, but long supported in many
browsers except old IEs) and they also have a length property.

> obj[0];
"w"

> obj[4];
"d"

> obj.length;
5

To extract the primitive value from the string object, you can use the valueOf()
or toString() methods inherited from Object. You'll probably never need to do
this, as toString() is called behind the scenes if you use an object in a primitive
string context.

> obj.valueOf();
"world"

> obj.toString();
"world"

> obj + "";
"world"

Primitive strings are not objects, so they don't have any methods or properties. But,
JavaScript also offers you the syntax to treat primitive strings as objects (just like you
saw already with primitive numbers).

In the following example, string objects are being created (and then destroyed)
behind the scenes every time you treat a primitive string as if it were an object:

> "potato".length;
6

> "tomato"[0];
"t"

> "potatoes"["potatoes".length - 1];
"s"

Chapter 4

[601]

One final example to illustrate the difference between a string primitive and a string
object: let's convert them to Boolean. The empty string is a falsy value, but any string
object is truthy (because all objects are truthy):

> Boolean("");
false

> Boolean(new String(""));
true

Similarly to Number() and Boolean(), if you use the String() function without new,
it converts the parameter to a primitive:

> String(1);
"1"

If you pass an object to String(), this object's toString() method will be called first:

> String({p: 1});
 "[object Object]"

> String([1, 2, 3]);
 "1,2,3"

> String([1, 2, 3]) === [1, 2, 3].toString();
 true

A few methods of string objects
Let's experiment with a few of the methods you can call on string objects
(see Chapter 11, Built-in Objects, for the full list).

Start off by creating a string object:

> var s = new String("Couch potato");

toUpperCase() and toLowerCase() transforms the capitalization of the string:

> s.toUpperCase();
"COUCH POTATO"

> s.toLowerCase();
"couch potato"

Objects

[602]

charAt() tells you the character found at the position you specify, which is the same
as using square brackets (treating a string as an array of characters):

> s.charAt(0);
"C"

> s[0];
"C"

If you pass a non-existing position to charAt(), you get an empty string:

> s.charAt(101);
""

indexOf() allows you to search within a string. If there is a match, the method
returns the position at which the first match is found. The position count starts at 0,
so the second character in "Couch" is "o" at position 1:

> s.indexOf('o');
1

You can optionally specify where (at what position) to start the search. The following
finds the second "o", because indexOf() is instructed to start the search at position 2:

> s.indexOf('o', 2);
7

lastIndexOf() starts the search from the end of the string (but the position of the
match is still counted from the beginning):

> s.lastIndexOf('o');
11

You can also search for strings, not only characters, and the search is case sensitive:

> s.indexOf('Couch');
0

If there is no match, the function returns position -1:

> s.indexOf('couch');
-1

For a case-insensitive search, you can transform the string to lowercase first and
then search:

> s.toLowerCase().indexOf('couch');
0

Chapter 4

[603]

When you get 0, this means that the matching part of the string starts at position 0.
This can cause confusion when you check with if, because if converts the position 0
to a Boolean false. So, while this is syntactically correct, it is logically wrong:

if (s.indexOf('Couch')) {...}

The proper way to check if a string contains another string is to compare the result of
indexOf() to the number -1:

if (s.indexOf('Couch') !== -1) {...}

slice() and substring() return a piece of the string when you specify start and
end positions:

> s.slice(1, 5);
"ouch"

> s.substring(1, 5);
"ouch"

Note that the second parameter you pass is the end position, not the length of
the piece. The difference between these two methods is how they treat negative
arguments. substring() treats them as zeros, while slice() adds them to the
length of the string. So, if you pass parameters (1, -1) to both methods, it's the
same as substring(1, 0) and slice(1, s.length - 1):

> s.slice(1, -1);
"ouch potat"

> s.substring(1, -1);
"C"

There's also the non-standard method substr(), but you should try to avoid it in
favor of substring().

The split() method creates an array from the string using another string that you
pass as a separator:

> s.split(" ");
 ["Couch", "potato"]

split() is the opposite of join(), which creates a string from an array:

> s.split(' ').join(' ');
"Couch potato"

concat() glues strings together, the way the + operator does for primitive strings:

> s.concat("es");
"Couch potatoes"

Objects

[604]

Note that while some of the preceding methods discussed return new primitive
strings, none of them modify the source string. After all the method calls listed
previously, the initial string is still the same:

> s.valueOf();
"Couch potato"

You have seen how to use indexOf() and lastIndexOf() to search within strings,
but there are more powerful methods (search(), match(), and replace()) that
take regular expressions as parameters. You'll see these later in the RegExp()
constructor function.

At this point, you're done with all of the data wrapper objects, so let's move on to the
utility objects Math, Date, and RegExp.

Math
Math is a little different from the other built-in global objects you have seen
previously. It's not a function, and therefore cannot be used with new to create
objects. Math is a built-in global object that provides a number of methods
and properties for mathematical operations.

The Math object's properties are constants, so you can't change their values. Their
names are all in uppercase to emphasize the difference between them and a normal
property (similar to the constant properties of the Number() constructor). Let's see a
few of these constant properties:

• The constant π:
> Math.PI;
 3.141592653589793

• Square root of 2:
> Math.SQRT2;
 1.4142135623730951

• Euler's constant:
> Math.E;
 2.718281828459045

• Natural logarithm of 2:
> Math.LN2;
 0.6931471805599453

Chapter 4

[605]

• Natural logarithm of 10:
> Math.LN10;
 2.302585092994046

Now you know how to impress your friends the next time they (for whatever reason)
start wondering, "What was the value of e? I can't remember." Just type Math.E in the
console and you have the answer.

Let's take a look at some of the methods the Math object provides (the full list is in
Chapter 11, Built-in Objects).

Generating random numbers:

> Math.random();
0.3649461670235814

The random() function returns a number between 0 and 1, so if you want a number
between, let's say, 0 and 100, you can do the following:

> 100 * Math.random();

For numbers between any two values, use the formula ((max - min) * Math.
random()) + min. For example, a random number between 2 and 10 would be:

> 8 * Math.random() + 2;
9.175650496668485

If you only need an integer, you can use one of the following rounding methods:

• floor() to round down
• ceil() to round up
• round() to round to the nearest

For example, to get either 0 or 1:

> Math.round(Math.random());

If you need the lowest or the highest among a set of numbers, you have the min()
and max() methods. So, if you have a form on a page that asks for a valid month,
you can make sure that you always work with sane data (a value between 1 and 12):

> Math.min(Math.max(1, input), 12);

The Math object also provides the ability to perform mathematical operations
for which you don't have a designated operator. This means that you can raise
to a power using pow(), find the square root using sqrt(), and perform all the
trigonometric operations—sin(), cos(), atan(), and so on.

Objects

[606]

For example, to calculate 2 to the power of 8:

> Math.pow(2, 8);
256

And to calculate the square root of 9:

> Math.sqrt(9);
3

Date
Date() is a constructor function that creates date objects. You can create a new object
by passing:

• Nothing (defaults to today's date)
• A date-like string
• Separate values for day, month, time, and so on
• A timestamp

Following is an object instantiated with today's date/time:

> new Date();
Wed Feb 27 2013 23:49:28 GMT-0800 (PST)

The console displays the result of the toString() method called on the date
object, so you get this long string Wed Feb 27 2013 23:49:28 GMT-0800 (PST)
as a representation of the date object.

Here are a few examples of using strings to initialize a date object. Note how many
different formats you can use to specify the date:

> new Date('2015 11 12');
Thu Nov 12 2015 00:00:00 GMT-0800 (PST)

> new Date('1 1 2016');
Fri Jan 01 2016 00:00:00 GMT-0800 (PST)

> new Date('1 mar 2016 5:30');
Tue Mar 01 2016 05:30:00 GMT-0800 (PST)

The Date constructor can figure out a date from different strings, but this is not
really a reliable way of defining a precise date, for example when passing user
input to the constructor. The better way is to pass numeric values to the Date()
constructor representing:

• Year

Chapter 4

[607]

• Month: 0 (January) to 11 (December)
• Day: 1 to 31
• Hour: 0 to 23
• Minutes: 0 to 59
• Seconds: 0 to 59
• Milliseconds: 0 to 999

Let's see some examples.

Passing all the parameters:

> new Date(2015, 0, 1, 17, 05, 03, 120);
Tue Jan 01 2015 17:05:03 GMT-0800 (PST)

Passing date and hour:

> new Date(2015, 0, 1, 17);
Tue Jan 01 2015 17:00:00 GMT-0800 (PST)

Watch out for the fact that the month starts from 0, so 1 is February:

> new Date(2016, 1, 28);
Sun Feb 28 2016 00:00:00 GMT-0800 (PST)

If you pass a greater than allowed value, your date "overflows" forward. Because
there's no February 30 in 2016, this means it has to be March 1st (2016 is a leap year):

> new Date(2016, 1, 29);
Mon Feb 29 2016 00:00:00 GMT-0800 (PST)

> new Date(2016, 1, 30);
Tue Mar 01 2016 00:00:00 GMT-0800 (PST)

Similarly, December 32nd becomes January 1st of the next year:

> new Date(2012, 11, 31);
Mon Dec 31 2012 00:00:00 GMT-0800 (PST)

> new Date(2012, 11, 32);
Tue Jan 01 2013 00:00:00 GMT-0800 (PST)

Finally, a date object can be initialized with a timestamp (the number of milliseconds
since the UNIX epoch, where 0 milliseconds is January 1, 1970):

> new Date(1357027200000);
Tue Jan 01 2013 00:00:00 GMT-0800 (PST)

Objects

[608]

If you call Date() without new, you get a string representing the current date,
whether or not you pass any parameters. The following example gives the
current time (current when this example was run):

> Date();
Wed Feb 27 2013 23:51:46 GMT-0800 (PST)

> Date(1, 2, 3, "it doesn't matter");
Wed Feb 27 2013 23:51:52 GMT-0800 (PST)

> typeof Date();
"string"

> typeof new Date();
"object"

Methods to work with date objects
Once you've created a date object, there are lots of methods you can call on that
object. Most of the methods can be divided into set*() and get*() methods, for
example, getMonth(), setMonth(), getHours(), setHours(), and so on. Let's see
some examples.

Creating a date object:

> var d = new Date(2015, 1, 1);
> d.toString();
Sun Feb 01 2015 00:00:00 GMT-0800 (PST)

Setting the month to March (months start from 0):

> d.setMonth(2);
1425196800000

> d.toString();
Sun Mar 01 2015 00:00:00 GMT-0800 (PST)

Getting the month:

> d.getMonth();
2

In addition to all the methods of date objects, there are also two methods (plus one
more added in ES5) that are properties of the Date() function/object. These do
not need a date object; they work just like the Math object's methods. In class-based
languages, such methods would be called static because they don't require an instance.

Chapter 4

[609]

Date.parse() takes a string and returns a timestamp:

> Date.parse('Jan 11, 2018');
1515657600000

Date.UTC() takes all the parameters for year, month, day, and so on, and produces a
timestamp in Universal Time:

> Date.UTC(2018, 0, 11);
1515628800000

Because the new Date() constructor can accept timestamps, you can pass the result
of Date.UTC() to it. Using the following example, you can see how UTC() works
with Universal Time, while new Date() works with local time:

> new Date(Date.UTC(2018, 0, 11));
Wed Jan 10 2018 16:00:00 GMT-0800 (PST)

> new Date(2018, 0, 11);
Thu Jan 11 2018 00:00:00 GMT-0800 (PST)

The ES5 addition to the Date constructor is the method now(), which returns the
current timestamp. It provides a more convenient way to get the timestamp instead
of using the getTime() method on a date object as you would in ES3:

> Date.now();
1362038353044

> Date.now() === new Date().getTime();
true

You can think of the internal representation of the date being an integer timestamp
and all other methods being "sugar" on top of it. So, it makes sense that the
valueOf() is a timestamp:

> new Date().valueOf();
1362418306432

Also dates cast to integers with the + operator:

> +new Date();
1362418318311

Objects

[610]

Calculating birthdays
Let's see one final example of working with Date objects. I was curious about which
day my birthday falls on in 2016:

> var d = new Date(2016, 5, 20);
> d.getDay();
1

Starting the count from 0 (Sunday), 1 means Monday. Is that so?

> d.toDateString();
"Mon Jun 20 2016"

OK, good to know, but Monday is not necessarily the best day for a party. So, how
about a loop that shows how many times June 20th is a Friday from year 2016 to year
3016, or better yet, let's see the distribution of all the days of the week. After all, with
all the progress in DNA hacking, we're all going to be alive and kicking in 3016.

First, let's initialize an array with seven elements, one for each day of the week. These
will be used as counters. Then, as a loop goes up to 3016, let's increment the counters:

var stats = [0, 0, 0, 0, 0, 0, 0];

The loop:

for (var i = 2016; i < 3016; i++) {
 stats[new Date(i, 5, 20).getDay()]++;
}

And the result:

> stats;
[140, 146, 140, 145, 142, 142, 145]

142 Fridays and 145 Saturdays. Woo-hoo!

RegExp
Regular expressions provide a powerful way to search and manipulate text. Different
languages have different implementations (think "dialects") of the regular expressions
syntax. JavaScript uses the Perl 5 syntax.

Instead of saying "regular expression", people often shorten it to "regex" or "regexp".

Chapter 4

[611]

A regular expression consists of:

• A pattern you use to match text
• Zero or more modifiers (also called flags) that provide more instructions on

how the pattern should be used

The pattern can be as simple as literal text to be matched verbatim, but that's rare,
and in such cases you're better off using indexOf(). Most of the time, the pattern is
more complex and could be difficult to understand. Mastering regular expression's
patterns is a large topic, which won't be discussed in full detail here; instead, you'll
see what JavaScript provides in terms of syntax, objects, and methods in order to
support the use of regular expressions. You can also refer to Chapter 12, Regular
Expressions, to help you when you're writing patterns.

JavaScript provides the RegExp() constructor, which allows you to create regular
expression objects:

> var re = new RegExp("j.*t");

There is also the more convenient regexp literal notation:

> var re = /j.*t/;

In the preceding example, j.*t is the regular expression pattern. It means "match any
string that starts with j, ends with t, and has zero or more characters in between". The
asterisk (*) means "zero or more of the preceding"; the dot (.) means "any character".
The pattern needs to be quoted when passed to a RegExp() constructor.

Properties of RegExp objects
Regular expression objects have the following properties:

• global: If this property is false, which is the default, the search stops when
the first match is found. Set this to true if you want all matches.

• ignoreCase: When the match is case insensitive, the defaults to false
(meaning the default is a case sensitive match).

• multiline: Search matches that may span over more than one line default
to false.

• lastIndex: The position at which to start the search; this defaults to 0.
• source: Contains the regexp pattern.

None of these properties, except for lastIndex, can be changed once the object has
been created.

Objects

[612]

The first three items in the preceding list represent the regex modifiers. If you create
a regex object using the constructor, you can pass any combination of the following
characters as a second parameter:

• g for global
• i for ignoreCase
• m for multiline

These letters can be in any order. If a letter is passed, the corresponding modifier
property is set to true. In the following example, all modifiers are set to true:

> var re = new RegExp('j.*t', 'gmi');

Let's verify:

> re.global;
true

Once set, the modifier cannot be changed:

> re.global = false;
> re.global;
true

To set any modifiers using the regex literal, you add them after the closing slash:

> var re = /j.*t/ig;
> re.global;
true

Methods of RegExp objects
Regex objects provide two methods you can use to find matches: test() and
exec(). They both accept a string parameter. test() returns a Boolean (true when
there's a match, false otherwise), while exec() returns an array of matched strings.
Obviously, exec() is doing more work, so use test() unless you really need to do
something with the matches. People often use regular expressions to validate data, in
this case, test() should be enough.

In the following example, there is no match because of the capital J:

> /j.*t/.test("Javascript");
false

A case insensitive test gives a positive result:

> /j.*t/i.test("Javascript");
true

Chapter 4

[613]

The same test using exec() returns an array, and you can access the first element as
shown below:

> /j.*t/i.exec("Javascript")[0];
"Javascript"

String methods that accept regular expressions as
arguments
Previously in this chapter, you learned about string objects and how you can use the
indexOf() and lastIndexOf()methods to search within text. Using these methods,
you can only specify literal string patterns to search. A more powerful solution
would be to use regular expressions to find text. String objects offer you this ability.

String objects provide the following methods that accept regular expression objects
as parameters:

• match() returns an array of matches
• search() returns the position of the first match
• replace() allows you to substitute matched text with another string
• split() also accepts a regexp when splitting a string into array elements

search() and match()
Let's see some examples of using the search() and match() methods. First, you
create a string object:

> var s = new String('HelloJavaScriptWorld');

Using match(), you get an array containing only the first match:

> s.match(/a/);
["a"]

Using the g modifier, you perform a global search, so the result array contains
two elements:

> s.match(/a/g);
["a", "a"]

A case insensitive match is as follows:

> s.match(/j.*a/i);
["Java"]

Objects

[614]

The search() method gives you the position of the matching string:

> s.search(/j.*a/i);
5

replace()
replace() allows you to replace the matched text with some other string. The
following example removes all capital letters (it replaces them with blank strings):

> s.replace(/[A-Z]/g, '');
"elloavacriptorld"

If you omit the g modifier, you're only going to replace the first match:

> s.replace(/[A-Z]/, '');
"elloJavaScriptWorld"

When a match is found, if you want to include the matched text in the replacement
string, you can access it using $&. Here's how to add an underscore before the match
while keeping the match:

> s.replace(/[A-Z]/g, "_$&");
"_Hello_Java_Script_World"

When the regular expression contains groups (denoted by parentheses), the matches
of each group are available as $1 for the first group, $2 the second, and so on.

> s.replace(/([A-Z])/g, "_$1");
"_Hello_Java_Script_World"

Imagine you have a registration form on your web page that asks for an e-mail
address, username, and password. The user enters their e-mail, and then your
JavaScript kicks in and suggests the username, taking it from the e-mail address:

> var email = "stoyan@phpied.com";
> var username = email.replace(/(.*)@.*/, "$1");
> username;
"stoyan"

Replace callbacks
When specifying the replacement, you can also pass a function that returns a string.
This gives you the ability to implement any special logic you may need before
specifying the replacements:

> function replaceCallback(match) {
 return "_" + match.toLowerCase();

Chapter 4

[615]

 }

> s.replace(/[A-Z]/g, replaceCallback);
"_hello_java_script_world"

The callback function receives a number of parameters (the previous example
ignores all but the first one):

• The first parameter is the match
• The last is the string being searched
• The one before last is the position of the match
• The rest of the parameters contain any strings matched by any groups in

your regex pattern

Let's test this. First, let's create a variable to store the entire arguments array passed
to the callback function:

> var glob;

Next, define a regular expression that has three groups and matches e-mail addresses
in the format something@something.something:

> var re = /(.*)@(.*)\.(.*)/;

Finally, let's define a callback function that stores the arguments in glob and then
returns the replacement:

var callback = function () {
 glob = arguments;
 return arguments[1] + ' at ' +
 arguments[2] + ' dot ' +
 arguments[3];
};

Now perform a test:

> "stoyan@phpied.com".replace(re, callback);
"stoyan at phpied dot com"

Here's what the callback function received as arguments:

> glob;
["stoyan@phpied.com", "stoyan", "phpied", "com", 0,
"stoyan@phpied.com"]

Objects

[616]

split()
You already know about the split() method, which creates an array from an
input string and a delimiter string. Let's take a string of comma-separated values
and split it:

> var csv = 'one, two,three ,four';
> csv.split(',');
["one", " two", "three ", "four"]

Because the input string happens to have random inconsistent spaces before and
after the commas, the array result has spaces too. With a regular expression, you can
fix this using \s*, which means "zero or more spaces":

> csv.split(/\s*,\s*/);
["one", "two", "three", "four"]

Passing a string when a RegExp is expected
One last thing to note is that the four methods that you have just seen (split(),
match(), search(), and replace()) can also take strings as opposed to regular
expressions. In this case, the string argument is used to produce a new regex as if it
was passed to new RegExp().

An example of passing a string to replace is shown as follows:

> "test".replace('t', 'r');
"rest"

The above is the same as:

> "test".replace(new RegExp('t'), 'r');
"rest"

When you pass a string, you cannot set modifiers the way you do with a normal
constructor or regex literal. There's a common source of errors when using a string
instead of a regular expression object for string replacements, and it's due to the fact
that the g modifier is false by default. The outcome is that only the first string is
replaced, which is inconsistent with most other languages and a little confusing.
For example:

> "pool".replace('o', '*');
"p*ol"

Most likely, you want to replace all occurrences:

> "pool".replace(/o/g, '*');
"p**l"

Chapter 4

[617]

Error objects
Errors happen, and it's good to have the mechanisms in place so that your code
can realize that there has been an error condition and can recover from it in a
graceful manner. JavaScript provides the statements try, catch, and finally to
help you deal with errors. If an error occurs, an error object is thrown. Error objects
are created by using one of these built-in constructors: EvalError, RangeError,
ReferenceError, SyntaxError, TypeError, and URIError. All of these constructors
inherit from Error.

Let's just cause an error and see what happens. What's a simple way to cause an
error? Just call a function that doesn't exist. Type this into the console:

> iDontExist();

You'll get something like this:

The display of errors can vary greatly between browsers and other host
environments. In fact, most recent browsers tend to hide the errors from the users.
However, you cannot assume that all of your users have disabled the display of
errors, and it is your responsibility to ensure an error-free experience for them. The
previous error propagated to the user because the code didn't try to trap (catch)
this error. The code didn't expect the error and was not prepared to handle it.
Fortunately, it's trivial to trap the error. All you need is the try statement followed
by a catch statement.

This code hides the error from the user:

try {
 iDontExist();
} catch (e) {
 // do nothing
}

Objects

[618]

Here you have:

• The try statement followed by a block of code
• The catch statement followed by a variable name in parentheses and another

block of code

There can be an optional finally statement (not used in this example) followed by a
block of code, which is executed regardless of whether there was an error or not.

In the previous example, the code block that follows the catch statement didn't do
anything, but this is the place where you put the code that can help recover from the
error, or at least give feedback to the user that your application is aware that there
was a special condition.

The variable e in the parentheses after the catch statement contains an error object.
Like any other object, it contains properties and methods. Unfortunately, different
browsers implement these methods and properties differently, but there are two
properties that are consistently implemented—e.name and e.message.

Let's try this code now:

try {
 iDontExist();
} catch (e) {
 alert(e.name + ': ' + e.message);
} finally {
 alert('Finally!');
}

This will present an alert() showing e.name and e.message and then another
alert() saying Finally!.

In Firefox and Chrome, the first alert will say ReferenceError: iDontExist is not
defined. In Internet Explorer, it will be TypeError: Object expected. This tells us
two things:

• e.name contains the name of the constructor that was used to create the
error object

• Because the error objects are not consistent across host environments
(browsers), it would be somewhat tricky to have your code act differently
depending on the type of error (the value of e.name)

You can also create error objects yourself using new Error() or any of the other
error constructors, and then let the JavaScript engine know that there's an erroneous
condition using the throw statement.

Chapter 4

[619]

For example, imagine a scenario where you call the maybeExists() function
and after that make calculations. You want to trap all errors in a consistent way,
no matter whether the error is that maybeExists() doesn't exist or that your
calculations found a problem. Consider this code:

try {
 var total = maybeExists();
 if (total === 0) {
 throw new Error('Division by zero!');
 } else {
 alert(50 / total);
 }
} catch (e) {
 alert(e.name + ': ' + e.message);
} finally {
 alert('Finally!');
}

This code will alert() different messages depending on whether or not
maybeExists() is defined and the values it returns:

• If maybeExists() doesn't exist, you get ReferenceError: maybeExists() is
not defined in Firefox and TypeError: Object expected in IE

• If maybeExists() returns 0, you'll get Error: Division by zero!
• If maybeExists() returns 2, you'll get an alert that says 25

In all cases, there will be a second alert that says Finally!.

Instead of throwing a generic error, throw new Error('Division by zero!'),
you can be more specific if you choose to, for example, throw throw new
RangeError('Division by zero!'). Alternatively, you don't need a constructor,
you can simply throw a normal object:

throw {
 name: "MyError",
 message: "OMG! Something terrible has happened"
}

This gives you cross-browser control over the error name.

Objects

[620]

Summary
In Chapter 2, Primitive Data Types, Arrays, Loops, and Conditions, you saw that there are
five primitive data types (number, string, Boolean, null, and undefined) and we also
said that everything that is not a primitive piece of data is an object. Now you also
know that:

• Objects are like arrays, but you specify the keys.
• Objects contain properties.
• Properties can be functions (functions are data; remember var f =

function () {};). Properties that are functions are also called methods.
• Arrays are actually objects with predefined numeric properties and an

auto-incrementing length property.
• Array objects have a number of convenient methods (such as sort()

or slice()).
• Functions are also objects and they have properties (such as length and

prototype) and methods (such as call() and apply()).

Regarding the five primitive data types, apart from undefined and null, the
other three have the corresponding constructor functions: Number(), String(),
and Boolean(). Using these, you can create objects, called wrapper objects, which
contain methods for working with primitive data elements.

Number(), String(), and Boolean() can be invoked:

• With the new operator—to create new objects
• Without the new operator—to convert any value to the corresponding

primitive data type

Other built-in constructor functions you're now familiar with include: Object(),
Array(), Function(), Date(), RegExp(), and Error(). You're also familiar with
Math: a global object that is not a constructor.

Now you can see how objects have a central role in JavaScript programming, as
pretty much everything is an object or can be wrapped by an object.

Finally, let's wrap up the literal notations you're now familiar with:

Name Literal Constructor Example
Object {} new Object() {prop: 1}

Array [] new Array() [1,2,3,'test']

Regular
expression

/pattern/
modifiers

new RegExp('pattern',
'modifiers')

/java.*/img

Chapter 4

[621]

Exercises
1. Look at this code:

function F() {
 function C() {
 return this;
 }
 return C();
}
var o = new F();

Does the value of this refer to the global object or the object o?

2. What's the result of executing this piece of code?
function C(){
 this.a = 1;
 return false;
}
console.log(typeof new C());

3. What's the result of executing the following piece of code?
> c = [1, 2, [1, 2]];
> c.sort();
> c.join('--');
> console.log(c);

4. Imagine the String() constructor didn't exist. Create a constructor function,
MyString(), that acts like String() as closely as possible. You're not
allowed to use any built-in string methods or properties, and remember
that String() doesn't exist. You can use this code to test your constructor:
> var s = new MyString('hello');
> s.length;
 5

> s[0];
 "h"

> s.toString();
 "hello"

> s.valueOf();
 "hello"

> s.charAt(1);
 "e"

Objects

[622]

> s.charAt('2');
 "l"

> s.charAt('e');
 "h"

> s.concat(' world!');
 "hello world!"

> s.slice(1, 3);
 "el"

> s.slice(0, -1);
 "hell"

> s.split('e');
 ["h", "llo"]

> s.split('l');
 ["he", "", "o"]

You can use a for loop to loop through the input
string, treating it as an array.

5. Update your MyString() constructor to include a reverse() method.

Try to leverage the fact that arrays have a
reverse() method.

6. Imagine Array() doesn't exist and the array literal notation doesn't exist
either. Create a constructor called MyArray() that behaves as close to
Array() as possible. Test it with the following code:
> var a = new MyArray(1, 2, 3, "test");
> a.toString();
 "1,2,3,test"

> a.length;
 4

> a[a.length - 1];
 "test"

> a.push('boo');
 5

> a.toString();
 "1,2,3,test,boo"

Chapter 4

[623]

> a.pop();
 "boo"

> a.toString();
 "1,2,3,test"

> a.join(',');
 "1,2,3,test"

> a.join(' isn\'t ');
 "1 isn't 2 isn't 3 isn't test"

If you found this exercise amusing, don't stop with the join() method; go on
with as many methods as possible.

7. Imagine Math didn't exist. Create a MyMath object that also provides
additional methods:

 ° MyMath.rand(min, max, inclusive)—generates a random number
between min and max, inclusive if inclusive is true (default)

 ° MyMath.min(array)—returns the smallest number in a given array
 ° MyMath.max(array)—returns the largest number in a given array

Prototype
In this chapter, you'll learn about the prototype property of the function objects.
Understanding how the prototype works is an important part of learning the
JavaScript language. After all, JavaScript is often classified as having a prototype-
based object model. There's nothing particularly difficult about the prototype, but it's
a new concept, and as such may sometimes take a bit of time to sink in. Like closures
(see Chapter 3, Functions), the prototype is one of those things in JavaScript, which
once you "get", they seem so obvious and make perfect sense. As with the rest of the
book, you're strongly encouraged to type in and play around with the examples—
this makes it much easier to learn and remember the concepts.

The following topics are discussed in this chapter:

• Every function has a prototype property and it contains an object
• Adding properties to the prototype object
• Using the properties added to the prototype
• The difference between own properties and properties of the prototype
• __proto__, the secret link every object keeps to its prototype
• Methods such as isPrototypeOf(), hasOwnProperty(), and

propertyIsEnumerable()

• Enhancing built-in objects, such as arrays or strings (and why that can
be a bad idea)

Prototype

[626]

The prototype property
The functions in JavaScript are objects, and they contain methods and properties.
Some of the methods that you're already familiar with are apply() and call(), and
some of the other properties are length and constructor. Another property of the
function objects is prototype.

If you define a simple function, foo(), you can access its properties as you would do
with any other object.

> function foo(a, b) {
 return a * b;
 }
> foo.length;
2

> foo.constructor;
function Function() { [native code] }

The prototype property is a property that is available to you as soon as you define
the function. Its initial value is an "empty" object.

> typeof foo.prototype;
"object"

It's as if you added this property yourself as follows:

> foo.prototype = {};

You can augment this empty object with properties and methods. They won't
have any effect on the foo() function itself; they'll only be used if you call foo()
as a constructor.

Adding methods and properties using the
prototype
In the previous chapter, you learned how to define constructor functions that you
can use to create (construct) new objects. The main idea is that inside a function
invoked with new, you have access to the value this, which refers to the object to be
returned by the constructor. Augmenting (adding methods and properties to) this is
how you add functionality to the object being constructed.

Chapter 5

[627]

Let's take a look at the constructor function Gadget(), which uses this to add two
properties and one method to the objects it creates.

function Gadget(name, color) {
 this.name = name;
 this.color = color;
 this.whatAreYou = function () {
 return 'I am a ' + this.color + ' ' + this.name;
 };
}

Adding methods and properties to the prototype property of the constructor
function is another way to add functionality to the objects this constructor produces.
Let's add two more properties, price and rating, as well as a getInfo() method.
Since prototype already points to an object, you can just keep adding properties and
methods to it as follows:

Gadget.prototype.price = 100;
Gadget.prototype.rating = 3;
Gadget.prototype.getInfo = function () {
 return 'Rating: ' + this.rating +
 ', price: ' + this.price;
};

Alternatively, instead of adding properties to the prototype object one by one, you
can overwrite the prototype completely, replacing it with an object of your choice.

Gadget.prototype = {
 price: 100,
 rating: ... /* and so on... */
};

Using the prototype's methods and
properties
All the methods and properties you have added to the prototype are available as
soon as you create a new object using the constructor. If you create a newtoy object
using the Gadget() constructor, you can access all the methods and properties
already defined.

> var newtoy = new Gadget('webcam', 'black');
> newtoy.name;
"webcam"

Prototype

[628]

> newtoy.color;
"black"

> newtoy.whatAreYou();
"I am a black webcam"

> newtoy.price;
100

> newtoy.rating;
3

> newtoy.getInfo();
"Rating: 3, price: 100"

It's important to note that the prototype is "live". Objects are passed by reference in
JavaScript, and therefore, the prototype is not copied with every new object instance.
What does this mean in practice? It means that you can modify the prototype at
any time and all the objects (even those created before the modification) will "see"
the changes.

Let's continue the example by adding a new method to the prototype:

Gadget.prototype.get = function (what) {
 return this[what];
};

Even though newtoy was created before the get() method was defined, newtoy still
has access to the new method:

> newtoy.get('price');
100

> newtoy.get('color');
"black"

Own properties versus prototype properties
In the preceding example, getInfo() was used internally to access the properties of
the object. It could've also used Gadget.prototype to achieve the same output.

Gadget.prototype.getInfo = function () {
 return 'Rating: ' + Gadget.prototype.rating +
 ', price: ' + Gadget.prototype.price;
};

What's the difference? To answer this question, let's examine how the prototype
works in more detail.

Chapter 5

[629]

Let's take the newtoy object again.

var newtoy = new Gadget('webcam', 'black');

When you try to access a property of newtoy, say, newtoy.name, the JavaScript
engine looks through all of the properties of the object searching for one called
name, and if it finds it, it returns its value.

> newtoy.name;
"webcam"

What if you try to access the rating property? The JavaScript engine examines all
of the properties of newtoy and doesn't find the one called rating. Then, the script
engine identifies the prototype of the constructor function used to create this object
(the same as if you do newtoy.constructor.prototype). If the property is found in
the prototype object, the following property is used:

> newtoy.rating;
3

You can do the same and access the prototype directly. Every object has a constructor
property, which is a reference to the function that created the object, so in this case:

> newtoy.constructor === Gadget;
true

> newtoy.constructor.prototype.rating;
3

Now, let's take this lookup one step further. Every object has a constructor. The
prototype is an object, so it must have a constructor too, which, in turn, has a
prototype. You can go up the prototype chain and you will eventually end up with the
built-in Object() object, which is the highest-level parent. In practice, this means that
if you try newtoy.toString() and newtoy doesn't have its own toString() method
and its prototype doesn't either, in the end you'll get the object's toString() method:

> newtoy.toString();
"[object Object]"

Overwriting a prototype's property with an
own property
As the above discussion demonstrates, if one of your objects doesn't have a certain
property of its own, it can use one (if it exists) somewhere up the prototype chain.
What if the object does have its own property and the prototype also has one with
the same name? Then, the own property takes precedence over the prototype's.

Prototype

[630]

Consider a scenario where a property name exists as both an own property and a
property of the prototype object.

> function Gadget(name) {
 this.name = name;
 }
> Gadget.prototype.name = 'mirror';

Creating a new object and accessing its name property gives you the object's own
name property.

> var toy = new Gadget('camera');
> toy.name;
"camera"

You can tell where the property was defined by using hasOwnProperty().

> toy.hasOwnProperty('name');
true

If you delete the toy object's own name property, the prototype's property with the
same name "shines through".

> delete toy.name;
true

> toy.name;
"mirror"

> toy.hasOwnProperty('name');
false

Of course, you can always recreate the object's own property.

> toy.name = 'camera';
> toy.name;
"camera"

You can play around with the method hasOwnProperty() to find out the origins of
a particular property you're curious about. The method toString() was mentioned
earlier. Where is it coming from?

> toy.toString();
"[object Object]"

> toy.hasOwnProperty('toString');
false

Chapter 5

[631]

> toy.constructor.hasOwnProperty('toString');
false

> toy.constructor.prototype.hasOwnProperty('toString');
false

> Object.hasOwnProperty('toString');
false

> Object.prototype.hasOwnProperty('toString');
true

Ahaa!

Enumerating properties
If you want to list all the properties of an object, you can use a for-in loop.
In Chapter 2, Primitive Data Types, Arrays, Loops, and Conditions, you saw that you can
also loop through all the elements of an array with for-in, but as mentioned there,
for is better suited for arrays and for-in is for objects. Let's take an example of
constructing a query string for a URL from an object:

var params = {
 productid: 666,
 section: 'products'
};

var url = 'http://example.org/page.php?',
 i,
 query = [];

for (i in params) {
 query.push(i + '=' + params[i]);
}

url += query.join('&');

This produces the url string as follows:

"http://example.org/page.php?productid=666§ion=products"

Prototype

[632]

There are a few details to be aware of:

• Not all properties show up in a for-in loop. For example, the length (for
arrays) and constructor properties don't show up. The properties that do
show up are called enumerable. You can check which ones are enumerable
with the help of the propertyIsEnumerable() method that every object
provides. In ES5, you can specify which properties are enumerable, while in
ES3 you don't have that control.

• Prototypes that come through the prototype chain also show up, provided
they are enumerable. You can check if a property is an object's own property
or a prototype's property using the hasOwnProperty() method.

• propertyIsEnumerable() returns false for all of the prototype's properties,
even those that are enumerable and show up in the for-in loop.

Let's see these methods in action. Take this simplified version of Gadget():

function Gadget(name, color) {
 this.name = name;
 this.color = color;
 this.getName = function () {
 return this.name;
 };
}
Gadget.prototype.price = 100;
Gadget.prototype.rating = 3;

Create a new object as follows:

var newtoy = new Gadget('webcam', 'black');

Now, if you loop using a for-in loop, you see all of the object's properties, including
those that come from the prototype:

for (var prop in newtoy) {
 console.log(prop + ' = ' + newtoy[prop]);
}

The result also contains the object's methods (since methods are just properties that
happen to be functions):

name = webcam
color = black
getName = function () {
 return this.name;
}
price = 100
rating = 3

Chapter 5

[633]

If you want to distinguish between the object's own properties and the prototype's
properties, use hasOwnProperty(). Try the following first:

> newtoy.hasOwnProperty('name');
true

> newtoy.hasOwnProperty('price');
false

Let's loop again, but this time showing only the object's own properties.

for (var prop in newtoy) {
 if (newtoy.hasOwnProperty(prop)) {
 console.log(prop + '=' + newtoy[prop]);
 }
}

The result is as follows:

name=webcam
color=black
getName = function () {
 return this.name;
}

Now let's try propertyIsEnumerable(). This method returns true for the object's
own properties that are not built-in.

> newtoy.propertyIsEnumerable('name');
true

Most built-in properties and methods are not enumerable.

> newtoy.propertyIsEnumerable('constructor');
false

Any properties coming down the prototype chain are not enumerable.

> newtoy.propertyIsEnumerable('price');
false

Note, however, that such properties are enumerable if you reach the object contained
in the prototype and invoke its propertyIsEnumerable() method.

> newtoy.constructor.prototype.propertyIsEnumerable('price');
true

Prototype

[634]

isPrototypeOf()
Objects also have the isPrototypeOf() method. This method tells you whether that
specific object is used as a prototype of another object.

Let's take a simple object named monkey.

var monkey = {
 hair: true,
 feeds: 'bananas',
 breathes: 'air'
};

Now let's create a Human() constructor function and set its prototype property to
point to monkey.

function Human(name) {
 this.name = name;
}
Human.prototype = monkey;

Now if you create a new Human object called george and ask "is monkey the prototype
of george?", you'll get true.

> var george = new Human('George');
> monkey.isPrototypeOf(george);
true

Note that you have to know, or suspect, who the prototype is and then ask "is it true
that your prototype is monkey?" in order to confirm your suspicion. But what if
you don't suspect anything and you have no idea? Can you just ask the object to tell
you its prototype? The answer is you can't in all browsers, but you can in most of
them. Most recent browsers have implemented the addition to ES5 called Object.
getPrototypeOf().

> Object.getPrototypeOf(george).feeds;
"bananas"

> Object.getPrototypeOf(george) === monkey;
true

For some of the pre-ES5 environments that don't have getPrototypeOf(), you can
use the special property __proto__.

Chapter 5

[635]

The secret __proto__ link
As you already know, the prototype property is consulted when you try to access a
property that does not exist in the current object.

Consider another object called monkey and use it as a prototype when creating
objects with the Human() constructor.

> var monkey = {
 feeds: 'bananas',
 breathes: 'air'
 };
> function Human() {}
> Human.prototype = monkey;

Now, let's create a developer object and give it some properties.

> var developer = new Human();
> developer.feeds = 'pizza';
> developer.hacks = 'JavaScript';

Now let's access these properties. For example, hacks is a property of the
developer object.

> developer.hacks;
"JavaScript"

feeds could also be found in the object.

> developer.feeds;
"pizza"

breathes doesn't exist as a property of the developer object, so the prototype
is looked up, as if there is a secret link, or a secret passageway, that leads to the
prototype object.

> developer.breathes;
"air"

The secret link is exposed in most modern JavaScript environments as the __proto__
property (the word "proto" with two underscores before and two after).

> developer.__proto__ === monkey;
true

Prototype

[636]

You can use this secret property for learning purposes, but it's not a good idea to
use it in your real scripts because it does not exist in all browsers (notably Internet
Explorer), so your scripts won't be portable.

Be aware that __proto__ is not the same as prototype, since __proto__ is
a property of the instances (objects), whereas prototype is a property of the
constructor functions used to create those objects.

> typeof developer.__proto__;
"object"

> typeof developer.prototype;
"undefined"

> typeof developer.constructor.prototype;
"object"

Once again, you should use __proto__ only for learning or debugging purposes.
Or, if you're lucky enough and your code only needs to work in ES5-compliant
environments, you can use Object.getPrototypeOf().

Augmenting built-in objects
The objects created by the built-in constructor functions such as Array, String, and
even Object and Function can be augmented (or enhanced) through the use of
prototypes. This means that you can, for example, add new methods to the Array
prototype, and in this way you can make them available to all arrays. Let's see how
to do this.

In PHP, there is a function called in_array(), which tells you if a value exists in
an array. In JavaScript, there is no inArray() method (although in ES5 there's
indexOf(), which you can use for the same purpose). So, let's implement it and add
it to Array.prototype.

Array.prototype.inArray = function (needle) {
 for (var i = 0, len = this.length; i < len; i++) {
 if (this[i] === needle) {
 return true;
 }
 }
 return false;
};

Chapter 5

[637]

Now all arrays have access to the new method. Let's test this.

> var colors = ['red', 'green', 'blue'];
> colors.inArray('red');
true

> colors.inArray('yellow');
false

That was nice and easy! Let's do it again. Imagine your application often needs to
spell words backwards and you feel there should be a built-in reverse() method
for string objects. After all, arrays have reverse(). You can easily add a reverse()
method to the String prototype by borrowing Array.prototype.reverse() (there
was a similar exercise at the end of Chapter 4, Objects).

String.prototype.reverse = function () {
 return Array.prototype.reverse.
 apply(this.split('')).join('');
};

This code uses split() to create an array from a string, then calls the reverse()
method on this array, which produces a reversed array. The resulting array is then
turned back into a string using join(). Let's test the new method.

> "bumblebee".reverse();
"eebelbmub"

That is a nice name for a big and scary (and potentially hairy) mythical creature,
isn't it?

Augmenting built-in objects – discussion
Augmenting built-in objects through the prototype is a powerful technique, and you
can use it to shape JavaScript in any way you like. Because of its power, though, you
should always thoroughly consider your options before using this approach.

The reason is that once you know JavaScript, you're expecting it to work the
same way, no matter which third-party library or widget you're using. Modifying
core objects could confuse the users and maintainers of your code and create
unexpected errors.

Prototype

[638]

JavaScript evolves and browser's vendors continuously support more features.
What you consider a missing method today and decide to add to a core prototype
could be a built-in method tomorrow. In this case, your method is no longer needed.
Additionally, what if you have already written a lot of code that uses the method and
your method is slightly different from the new built-in implementation?

The most common and acceptable use case for augmenting built-in prototypes is to
add support for new features (ones that are already standardized by the ECMAScript
committee and implemented in new browsers) to old browsers. One example would
be adding an ES5 method to old versions of IE. These extensions are known as shims
or polyfills.

When augmenting prototypes, you first check if the method exists before
implementing it yourself. This way, you use the native implementation in the
browser if one exists. For example, let's add the trim() method for strings, which is
a method that exists in ES5 but is missing in older browsers.

if (typeof String.prototype.trim !== 'function') {
 String.prototype.trim = function () {
 return this.replace(/^\s+|\s+$/g,'');
 };
}

> " hello ".trim();
"hello"

Best practice
If you decide to augment a built-in object or its prototype with a
new property, do check for the existence of the new property first.

Prototype gotchas
There are two important behaviors to consider when dealing with prototypes:

• The prototype chain is live except when you completely replace the
prototype object

• prototype.constructor is not reliable

Let's create a simple constructor function and two objects.

> function Dog() {
 this.tail = true;
 }
> var benji = new Dog();
> var rusty = new Dog();

Chapter 5

[639]

Even after you've created the objects benji and rusty, you can still add properties
to the prototype of Dog() and the existing objects will have access to the new
properties. Let's throw in the method say().

> Dog.prototype.say = function () {
 return 'Woof!';
 };

Both objects have access to the new method.

> benji.say();
"Woof!"

 rusty.say();
"Woof!"

Up to this point, if you consult your objects asking which constructor function was
used to create them, they'll report it correctly.

> benji.constructor === Dog;
true

> rusty.constructor === Dog;
true

Now, let's completely overwrite the prototype object with a brand new object.

> Dog.prototype = {
 paws: 4,
 hair: true
 };

It turns out that the old objects do not get access to the new prototype's properties;
they still keep the secret link pointing to the old prototype object.

> typeof benji.paws;
"undefined"

> benji.say();
"Woof!"

> typeof benji.__proto__.say;
"function"

> typeof benji.__proto__.paws;
"undefined"

Prototype

[640]

Any new objects you create from now on will use the updated prototype.

> var lucy = new Dog();
> lucy.say();
TypeError: lucy.say is not a function

> lucy.paws;
4

The secret __proto__ link points to the new prototype object.

> typeof lucy.__proto__.say;
"undefined"

> typeof lucy.__proto__.paws;
"number"

Now the constructor property of the new object no longer reports correctly. You
would expect it to point to Dog(), but instead it points to Object().

> lucy.constructor;
function Object() { [native code] }

> benji.constructor;
function Dog() {
 this.tail = true;
}

You can easily prevent this confusion by resetting the constructor property after
you overwrite the prototype completely.

> function Dog() {}
> Dog.prototype = {};
> new Dog().constructor === Dog;
false

> Dog.prototype.constructor = Dog;
> new Dog().constructor === Dog;
true

Best practice
When you overwrite the prototype, remember to reset the
constructor property.

Chapter 5

[641]

Summary
Let's summarize the most important topics you have learned in this chapter:

• All functions have a property called prototype. Initially it contains an
"empty" object (an object without any own properties).

• You can add properties and methods to the prototype object. You can even
replace it completely with an object of your choice.

• When you create an object using a function as a constructor (with new), the
object gets a secret link pointing to the prototype of the constructor, and can
access the prototype's properties.

• An object's own properties take precedence over a prototype's properties
with the same name.

• Use the method hasOwnProperty() to differentiate between an object's own
properties and prototype properties.

• There is a prototype chain. When you execute foo.bar, and if your object
foo doesn't have a property called bar, the JavaScript interpreter looks for
a bar property in the prototype. If none is found, it keeps searching in the
prototype's prototype, then the prototype of the prototype's prototype,
and it will keep going all the way up to Object.prototype.

• You can augment the prototypes of built-in constructor functions and all
objects will see your additions. Assign a function to Array.prototype.flip
and all arrays will immediately get a flip() method, as in [1,2,3].flip().
But do check if the method/property you want to add already exists, so you
can future-proof your scripts.

Exercises
1. Create an object called shape that has the type property and a

getType() method.
2. Define a Triangle() constructor function whose prototype is shape. Objects

created with Triangle() should have three own properties—a, b, and c,
representing the lengths of the sides of a triangle.

3. Add a new method to the prototype called getPerimeter().

Prototype

[642]

4. Test your implementation with the following code:
> var t = new Triangle(1, 2, 3);
> t.constructor === Triangle;
 true

> shape.isPrototypeOf(t);
 true

> t.getPerimeter();
 6

> t.getType();
 "triangle"

5. Loop over t showing only own properties and methods (none of
the prototype's).

6. Make the following code work:
> [1, 2, 3, 4, 5, 6, 7, 8, 9].shuffle();
 [2, 4, 1, 8, 9, 6, 5, 3, 7]

Inheritance
In this chapter, let's focus on the inheritance part. This is one of the most interesting
features, as it allows you to reuse existing code, thus promoting laziness, which is
likely to be what brought human species to computer programming in the first place.

JavaScript is a dynamic language and there is usually more than one way to achieve
any given task. Inheritance is not an exception. In this chapter, you'll see some
common patterns for implementing inheritance. Having a good understanding of
these patterns will help you pick the right one, or the right mix, depending on your
task, project or your style.

Prototype chaining
Let's start with the default way of implementing inheritance—inheritance chaining
through the prototype.

As you already know, every function has a prototype property, which points to an
object. When a function is invoked using the new operator, an object is created and
returned. This new object has a secret link to the prototype object. The secret link
(called __proto__ in some environments) allows methods and properties of the
prototype object to be used as if they belonged to the newly-created object.

Inheritance

[644]

The prototype object is just a regular object and, therefore, it also has the secret link
to its prototype. And so a chain is created, called a prototype chain:

In this illustration, an object A contains a number of properties. One of the
properties is the hidden __proto__ property, which points to another object, B.
B's __proto__ property points to C. This chain ends with the Object.prototype
object—the grandparent, and every object inherits from it.

This is all good to know, but how does it help you? The practical side is that when
object A lacks a property but B has it, A can still access this property as its own. The
same applies if B also doesn't have the required property, but C does. This is how
inheritance takes place: an object can access any property found somewhere down
the inheritance chain.

Throughout the rest of this chapter, you'll see different examples that use the
following hierarchy: a generic Shape parent is inherited by a 2D shape, which in turn
is inherited by any number of specific two-dimensional shapes such as a Triangle,
Rectangle, and so on.

Prototype chaining example
Prototype chaining is the default way to implement inheritance. In order to
implement the hierarchy, let's define three constructor functions.

function Shape(){
this.name = 'Shape';
this.toString = function () {
return this.name;
};
}

function TwoDShape(){
this.name = '2D shape';

Chapter 6

[645]

}

function Triangle(side, height){
this.name = 'Triangle';
this.side = side;
this.height = height;
this.getArea = function () {
return this.side * this.height / 2;
};
}

The code that performs the inheritance magic is as follows:

TwoDShape.prototype = new Shape();
Triangle.prototype = new TwoDShape();

What's happening here? You take the object contained in the prototype property of
TwoDShape and instead of augmenting it with individual properties, you completely
overwrite it with another object, created by invoking the Shape() constructor with
new. The same for Triangle: its prototype is replaced with an object created by
new TwoDShape(). It's important to remember that JavaScript works with objects,
not classes. You need to create an instance using the new Shape() constructor and
after that you can inherit its properties; you don't inherit from Shape() directly.
Additionally, after inheriting, you can modify the Shape() constructor, overwrite it,
or even delete it, and this will have no effect on TwoDShape, because all you needed
is one instance to inherit from.

As you know from the previous chapter, overwriting the prototype (as opposed to
just adding properties to it), has side effects on the constructor property. Therefore,
it's a good idea to reset the constructor after inheriting:

TwoDShape.prototype.constructor = TwoDShape;
Triangle.prototype.constructor = Triangle;

Now, let's test what has happened so far. Creating a Triangle object and calling its
own getArea() method works as expected:

>var my = new Triangle(5, 10);
>my.getArea();
25

Although the my object doesn't have its own toString() method, it inherited one
and you can call it. Note, how the inherited method toString() binds the this
object to my.

>my.toString();
"Triangle"

Inheritance

[646]

It's fascinating to consider what the JavaScript engine does when you call
my.toString():

• It loops through all of the properties of my and doesn't find a method called
toString().

• It looks at the object that my.__proto__ points to; this object is the instance
new TwoDShape() created during the inheritance process.

• Now, the JavaScript engine loops through the instance of TwoDShape and
doesn't find a toString() method. It then checks the __proto__ of that
object. This time __proto__ points to the instance created by new Shape().

• The instance of new Shape() is examined and toString() is finally found.
• This method is invoked in the context of my, meaning that this points to my.

If you ask my, "who's your constructor?" it reports it correctly because of the reset of
the constructor property after the inheritance:

>my.constructor === Triangle;
true

Using the instanceof operator you can validate that my is an instance of all three
constructors.

> my instanceof Shape;
true

> my instanceofTwoDShape;
true

> my instanceof Triangle;
true

> my instanceof Array;
false

The same happens when you call isPrototypeOf() on the constructors passing my:

>Shape.prototype.isPrototypeOf(my);
true

>TwoDShape.prototype.isPrototypeOf(my);
true

>Triangle.prototype.isPrototypeOf(my);
true

>String.prototype.isPrototypeOf(my);
false

Chapter 6

[647]

You can also create objects using the other two constructors. Objects created with new
TwoDShape() also get the method toString(), inherited from Shape().

>var td = new TwoDShape();
>td.constructor === TwoDShape;
true

>td.toString();
"2D shape"

>var s = new Shape();
>s.constructor === Shape;
true

Moving shared properties to the prototype
When you create objects using a constructor function, own properties are added
using this. This could be inefficient in cases where properties don't change across
instances. In the previous example, Shape() was defined like so:

function Shape(){
this.name = 'Shape';
}

This means that every time you create a new object using new Shape() a new name
property is created and stored somewhere in the memory. The other option is to
have the name property added to the prototype and shared among all the instances:

function Shape() {}
Shape.prototype.name = 'Shape';

Now, every time you create an object using new Shape(), this object doesn't get its
own property name, but uses the one added to the prototype. This is more efficient,
but you should only use it for properties that don't change from one instance to
another. Methods are ideal for this type of sharing.

Let's improve on the preceding example by adding all methods and suitable
properties to the prototype. In the case of Shape() and TwoDShape() everything is
meant to be shared:

// constructor
function Shape() {}

// augment prototype
Shape.prototype.name = 'Shape';

Inheritance

[648]

Shape.prototype.toString = function () {
return this.name;
};

// another constructor
function TwoDShape() {}

// take care of inheritance
TwoDShape.prototype = new Shape();
TwoDShape.prototype.constructor = TwoDShape;

// augment prototype
TwoDShape.prototype.name = '2D shape';

As you can see, you have to take care of inheritance first before augmenting the
prototype. Otherwise anything you add to TwoDShape.prototype gets wiped out
when you inherit.

The Triangle constructor is a little different, because every object it creates is a new
triangle, which is likely to have different dimensions. So it's good to keep side and
height as own properties and share the rest. The method getArea(), for example,
is the same regardless of the actual dimensions of each triangle. Again, you do the
inheritance bit first and then augment the prototype.

function Triangle(side, height) {
this.side = side;
this.height = height;
}
// take care of inheritance
Triangle.prototype = new TwoDShape();
Triangle.prototype.constructor = Triangle;

// augment prototype
Triangle.prototype.name = 'Triangle';
Triangle.prototype.getArea = function () {
return this.side * this.height / 2;
};

All the preceding test code work exactly the same, for example:

>var my = new Triangle(5, 10);
>my.getArea();
25

>my.toString();
"Triangle"

Chapter 6

[649]

There is only a slight behind-the-scenes difference when calling my.toString(). The
difference is that there is one more lookup to be done before the method is found in
the Shape.prototype, as opposed to in the new Shape() instance like it was in the
previous example.

You can also play with hasOwnProperty() to see the difference between the own
property versus a property coming down the prototype chain.

>my.hasOwnProperty('side');
true

>my.hasOwnProperty('name');
false

The calls to isPrototypeOf() and the instanceof operator from the previous
example work exactly the same:

>TwoDShape.prototype.isPrototypeOf(my);
true

> my instanceof Shape;
true

Inheriting the prototype only
As explained previously, for reasons of efficiency you should add the reusable
properties and methods to the prototype. If you do so, then it's a good idea to inherit
only the prototype, because all the reusable code is there. This means that inheriting
the Shape.prototype object is better than inheriting the object created with new
Shape(). After all, new Shape() only gives you own shape properties that are not
meant to be reused (otherwise they would be in the prototype). You gain a little more
efficiency by:

• Not creating a new object for the sake of inheritance alone
• Having less lookups during runtime (when it comes to searching for

toString() for example)

Here's the updated code; the changes are highlighted:

function Shape() {}
// augment prototype
Shape.prototype.name = 'Shape';
Shape.prototype.toString = function () {

Inheritance

[650]

return this.name;
};

function TwoDShape() {}
// take care of inheritance
TwoDShape.prototype = Shape.prototype;
TwoDShape.prototype.constructor = TwoDShape;
// augment prototype
TwoDShape.prototype.name = '2D shape';

function Triangle(side, height) {
this.side = side;
this.height = height;
}

// take care of inheritance
Triangle.prototype = TwoDShape.prototype;
Triangle.prototype.constructor = Triangle;
// augment prototype
Triangle.prototype.name = 'Triangle';
Triangle.prototype.getArea = function () {
return this.side * this.height / 2;
};

The test code gives you the same result:

>var my = new Triangle(5, 10);
>my.getArea();
25

>my.toString();
"Triangle"

What's the difference in the lookups when calling my.toString()? First, as usual,
the JavaScript engine looks for a method toString() of the my object itself. The
engine doesn't find such a method, so it inspects the prototype. The prototype turns
out to be pointing to the same object that the prototype of TwoDShape points to and
also the same object that Shape.prototype points to. Remember, that objects are not
copied by value, but only by reference. So the lookup is only a two-step process as
opposed to four (in the previous example) or three (in the first example).

Simply copying the prototype is more efficient but it has a side effect: because all
the prototypes of the children and parents point to the same object, when a child
modifies the prototype, the parents get the changes, and so do the siblings.

Chapter 6

[651]

Look at this line:

Triangle.prototype.name = 'Triangle';

It changes the name property, so it effectively changes Shape.prototype.name too. If
you create an instance using new Shape(), its name property says "Triangle":

>var s = new Shape();
>s.name;
"Triangle"

This method is more efficient but may not suit all your use cases.

A temporary constructor – new F()
A solution to the previously outlined problem, where all prototypes point to the
same object and the parents get children's properties, is to use an intermediary to
break the chain. The intermediary is in the form of a temporary constructor function.
Creating an empty function F() and setting its prototype to the prototype of the
parent constructor, allows you to call new F() and create objects that have no
properties of their own, but inherit everything from the parent's prototype.

Let's take a look at the modified code:

function Shape() {}
// augment prototype
Shape.prototype.name = 'Shape';
Shape.prototype.toString = function () {
return this.name;
};

function TwoDShape() {}
// take care of inheritance
var F = function () {};
F.prototype = Shape.prototype;
TwoDShape.prototype = new F();
TwoDShape.prototype.constructor = TwoDShape;
// augment prototype
TwoDShape.prototype.name = '2D shape';

function Triangle(side, height) {
this.side = side;
this.height = height;
}

// take care of inheritance

Inheritance

[652]

var F = function () {};
F.prototype = TwoDShape.prototype;
Triangle.prototype = new F();
Triangle.prototype.constructor = Triangle;
// augment prototype
Triangle.prototype.name = 'Triangle';
Triangle.prototype.getArea = function () {
return this.side * this.height / 2;
};

Creating my triangle and testing the methods:

>var my = new Triangle(5, 10);
>my.getArea();
25

>my.toString();
"Triangle"

Using this approach, the prototype chain stays in place:

>my.__proto__ === Triangle.prototype;
true

>my.__proto__.constructor === Triangle;
true

>my.__proto__.__proto__ === TwoDShape.prototype;
true

>my.__proto__.__proto__.__proto__.constructor === Shape;
true

And also the parents' properties are not overwritten by the children:

>var s = new Shape();
>s.name;
"Shape"

>"I am a " + new TwoDShape(); // calling toString()
"I am a 2D shape"

At the same time, this approach supports the idea that only properties and methods
added to the prototype should be inherited, and own properties should not. The
rationale behind this is that own properties are likely to be too specific to be reusable.

Chapter 6

[653]

Uber – access to the parent from a child
object
Classical OO languages usually have a special syntax that gives you access to
the parent class, also referred to as superclass. This could be convenient when a
child wants to have a method that does everything the parent's method does plus
something in addition. In such cases, the child calls the parent's method with the
same name and works with the result.

In JavaScript, there is no such special syntax, but it's trivial to achieve the same
functionality. Let's rewrite the last example and, while taking care of inheritance,
also create an uber property that points to the parent's prototype object.

function Shape() {}
// augment prototype
Shape.prototype.toString = function()
{
 var constr = this.constructor;
 return constr.uber
 ? constr.uber.toString() + ', ' + this.name
 :this.name;
};

function TwoDShape() {}
// take care of inheritance
var F = function () {};
F.prototype = Shape.prototype;
TwoDShape.prototype = new F();
TwoDShape.prototype.constructor = TwoDShape;
TwoDShape.uber = Shape.prototype;
// augment prototype
TwoDShape.prototype.name = '2D shape';

function Triangle(side, height) {
this.side = side;
this.height = height;
}

// take care of inheritance
var F = function () {};
F.prototype = TwoDShape.prototype;
Triangle.prototype = new F();
Triangle.prototype.constructor = Triangle;
Triangle.uber = TwoDShape.prototype;

Inheritance

[654]

// augment prototype
Triangle.prototype.name = 'Triangle';
Triangle.prototype.getArea = function () {
return this.side * this.height / 2;
};

The new things here are:

• A newuber property points to the parent's prototype
• The updated toString()method

Previously, toString() only returned this.name. Now, in addition to that, there
is a check to see whether this.constructor.uber exists and, if it does, call its
toString() first. this.constructor is the function itself, and this.constructor.
uber points to the parent's prototype. The result is that when you call toString()
for a Triangle instance, all toString() methods up the prototype chain are called:

>var my = new Triangle(5, 10);
>my.toString();
"Shape, 2D shape, Triangle"

The name of the property uber could've been "superclass" but this would suggest
that JavaScript has classes. Ideally it could've been "super" (as in Java), but "super"
is a reserved word in JavaScript. The German word "über" suggested by Douglass
Crockford, means more or less the same as "super" and, you have to admit, it
sounds uber-cool.

Isolating the inheritance part into a
function
Let's move the code that takes care of all of the inheritance details from the last
example into a reusable extend() function:

function extend(Child, Parent) {
var F = function () {};
F.prototype = Parent.prototype;
Child.prototype = new F();
Child.prototype.constructor = Child;
Child.uber = Parent.prototype;
}

Chapter 6

[655]

Using this function (or your own custom version of it) helps you keep your code
clean with regard to the repetitive inheritance-related tasks. This way you can inherit
by simply using:

extend(TwoDShape, Shape);

and

extend(Triangle, TwoDShape);

Let's see a complete example:

// inheritance helper
function extend(Child, Parent) {
var F = function () {};
F.prototype = Parent.prototype;
Child.prototype = new F();
Child.prototype.constructor = Child;
Child.uber = Parent.prototype;
}

// define -> augment
function Shape() {}
Shape.prototype.name = 'Shape';
Shape.prototype.toString = function () {
 return this.constructor.uber
 ? this.constructor.uber.toString() + ', ' + this.name
 : this.name;
};

// define -> inherit -> augment
function TwoDShape() {}
extend(TwoDShape, Shape);
TwoDShape.prototype.name = '2D shape';

// define
function Triangle(side, height) {
this.side = side;
this.height = height;
}
// inherit
extend(Triangle, TwoDShape);
// augment
Triangle.prototype.name = 'Triangle';
Triangle.prototype.getArea = function () {
 return this.side * this.height / 2;
};

Inheritance

[656]

Testing:

> new Triangle().toString();
"Shape, 2D shape, Triangle"

Copying properties
Now, let's try a slightly different approach. Since inheritance is all about reusing
code, can you simply copy the properties you like from one object to another? Or
from a parent to a child? Keeping the same interface as the preceding extend()
function, you can create a function extend2() which takes two constructor functions
and copies all of the properties from the parent's prototype to the child's prototype.
This will, of course, carry over methods too, as methods are just properties that
happen to be functions.

function extend2(Child, Parent) {
var p = Parent.prototype;
var c = Child.prototype;
for (vari in p) {
c[i] = p[i];
}
c.uber = p;
}

As you can see, a simple loop through the properties is all it takes. As with the
previous example, you can set an uber property if you want to have handy access
to parent's methods from the child. Unlike the previous example though, it's not
necessary to reset the Child.prototype.constructor because here the child
prototype is augmented, not overwritten completely, so the constructor property
points to the initial value.

This method is a little inefficient compared to the previous method because
properties of the child prototype are being duplicated instead of simply being looked
up via the prototype chain during execution. Bear in mind that this is only true for
properties containing primitive types. All objects (including functions and arrays)
are not duplicated, because these are passed by reference only.

Let's see an example of using two constructor functions, Shape() and TwoDShape().
The Shape() function's prototype object contains a primitive property, name, and a
non-primitive one—the toString()method:

var Shape = function () {};
var TwoDShape = function () {};
Shape.prototype.name = 'Shape';
Shape.prototype.toString = function () {

Chapter 6

[657]

 return this.uber
 ? this.uber.toString() + ', ' + this.name
 : this.name;
};

If you inherit with extend(), neither the objects created with TwoDShape() nor its
prototype get an own name property, but they have access to the one they inherit.

> extend(TwoDShape, Shape);
>var td = new TwoDShape();
>td.name;
"Shape"

>TwoDShape.prototype.name;
"Shape"

>td.__proto__.name;
"Shape"

>td.hasOwnProperty('name');
false

> td.__proto__.hasOwnProperty('name');
false

But if you inherit with extend2(), the prototype of TwoDShape()gets its own copy of
the name property. It also gets its own copy of toString(), but it's a reference only,
so the function will not be recreated a second time.

>extend2(TwoDShape, Shape);
>var td = new TwoDShape();
> td.__proto__.hasOwnProperty('name');
true

> td.__proto__.hasOwnProperty('toString');
true

> td.__proto__.toString === Shape.prototype.toString;
true

As you can see, the two toString() methods are the same function object. This is
good because it means that no unnecessary duplicates of the methods are created.

So, you can say that extend2() is less efficient than extend() because it recreates
the properties of the prototype. But, this is not so bad because only the primitive
data types are duplicated. Additionally, this is beneficial during the prototype chain
lookups as there are fewer chain links to follow before finding the property.

Inheritance

[658]

Take a look at the uber property again. This time, for a change, it's set on the Parent
object's prototype p, not on the Parent constructor. This is why toString() uses it as
this.uber, as opposed to this.constructor.uber. This is just an illustration that
you can shape your favorite inheritance pattern in any way you see fit. Let's test it out:

>td.toString();
"Shape, Shape"

TwoDShape didn't redefine the name property, hence the repetition. It can do that at
any time and (the prototype chain being live) all the instances "see" the update:

>TwoDShape.prototype.name = "2D shape";
>td.toString();
"Shape, 2D shape"

Heads-up when copying by reference
The fact that objects (including functions and arrays) are copied by reference could
sometimes lead to results you don't expect.

Let's create two constructor functions and add properties to the prototype of the
first one:

> function Papa() {}
>function Wee() {}
>Papa.prototype.name = 'Bear';
>Papa.prototype.owns = ["porridge", "chair", "bed"];

Now, let's have Wee inherit from Papa (either extend() or extend2() will do):

>extend2(Wee, Papa);

Using extend2(), the Wee function's prototype inherited the properties of Papa.
prototype as its own.

>Wee.prototype.hasOwnProperty('name');
true

>Wee.prototype.hasOwnProperty('owns');
true

The name property is primitive so a new copy of it is created. The property owns is an
array object so it's copied by reference:

>Wee.prototype.owns;
["porridge", "chair", "bed"]

Chapter 6

[659]

>Wee.prototype.owns=== Papa.prototype.owns;
true

Changing the Wee function's copy of name doesn't affect Papa:

>Wee.prototype.name += ', Little Bear';
"Bear, Little Bear"

>Papa.prototype.name;
"Bear"

Changing the Wee function's owns property, however, affects Papa, because both
properties point to the same array in memory.

>Wee.prototype.owns.pop();
"bed"

>Papa.prototype.owns;
["porridge", "chair"]

It's a different story when you completely overwrite the Wee function's copy of
owns with another object (as opposed to modifying the existing one). In this case
Papa.owns keeps pointing to the old object, while Wee.owns points to a new one.

>Wee.prototype.owns= ["empty bowl", "broken chair"];
>Papa.prototype.owns.push('bed');
>Papa.prototype.owns;
["porridge", "chair", "bed"]

Think of an object as something that is created and stored in a physical location in
memory. Variables and properties merely point to this location, so when you assign
a brand new object to Wee.prototype.owns you essentially say, "Hey, forget about
this other old object, move your pointer to this new one instead".

The following diagram illustrates what happens if you imagine the memory being a
heap of objects (like a wall of bricks) and you point to (refer to) some of these objects.

• A new object is created and A points to it.
• A new variable B is created and made equal to A, meaning it now points to

the same place where A is pointing to.
• A property color is changed using the B handle (pointer). The brick is now

white. A check for A.color === "white" would be true.

Inheritance

[660]

• A new object is created and the B variable/pointer is recycled to point to
that new object. A and B are now pointing to different parts of the memory
pile, they have nothing in common and changes to one of them don't affect
the other:

A={};A

B=A;

B .code=”white”;

B={};

A

A

A

B

B

B

If you want to address the problem that objects are copied by reference, consider a
deep copy, described further.

Objects inherit from objects
All of the examples so far in this chapter assume that you create your objects with
constructor functions and you want objects created with one constructor to inherit
properties that come from another constructor. However, you can also create objects
without the help of a constructor function, just by using the object literal and this is,
in fact, less typing. So how about inheriting those?

Chapter 6

[661]

In Java or PHP, you define classes and have them inherit from other classes. That's
why you'll see the term classical, because the OO functionality comes from the use of
classes. In JavaScript, there are no classes, so programmers that come from a classical
background resort to constructor functions because constructors are the closest to
what they are used to. In addition, JavaScript provides the new operator, which can
further suggest that JavaScript is like Java. The truth is that, in the end, it all comes
down to objects. The first example in this chapter used this syntax:

Child.prototype = new Parent();

Here, the Child constructor (or class, if you will) inherits from Parent. But this
is done through creating an object using new Parent() and inheriting from it.
That's why this is also referred to as a pseudo-classical inheritance pattern, because it
resembles classical inheritance, although it isn't (no classes are involved).

So why not get rid of the middleman (the constructor/class) and just have objects
inherit from objects? In extend2() the properties of the parent prototype object were
copied as properties of the child prototype object. The two prototypes are in essence
just objects. Forgetting about prototypes and constructor functions, you can simply
take an object and copy all of its properties into another object.

You already know that objects can start as a "blank canvas" without any own
properties by using var o = {}; and then get properties later. But, instead of starting
fresh, you can start by copying all of the properties of an existing object. Here's a
function that does exactly that: it takes an object and returns a new copy of it.

function extendCopy(p) {
var c = {};
for (vari in p) {
c[i] = p[i];
}
c.uber = p;
return c;
}

Simply copying all of the properties is a straightforward pattern, and it's widely
used. Let's see this function in action. You start by having a base object:

var shape = {
name: 'Shape',
toString: function () {
return this.name;
}
};

Inheritance

[662]

In order to create a new object that builds upon the old one, you can call the function
extendCopy() which returns a new object. Then, you can augment the new object
with additional functionality.

vartwoDee = extendCopy(shape);
twoDee.name = '2D shape';
twoDee.toString = function () {
return this.uber.toString() + ', ' + this.name;
};

A triangle object that inherits the 2D shape object:

var triangle = extendCopy(twoDee);
triangle.name = 'Triangle';
triangle.getArea = function () {
return this.side * this.height / 2;
};

Using the triangle:

>triangle.side = 5;
>triangle.height = 10;
>triangle.getArea();
25

>triangle.toString();
"Shape, 2D shape, Triangle"

A possible drawback of this method is the somewhat verbose way of initializing
the new triangle object, where you manually set values for side and height,
as opposed to passing them as values to a constructor. But, this is easily resolved
by having a function, for example, called init() (or __construct() if you come
from PHP) that acts as a constructor and accepts initialization parameters. Or, have
extendCopy() accept two parameters: an object to inherit from and another object
literal of properties to add to the copy before it's returned, in other words just merge
two objects.

Deep copy
The function extendCopy(), discussed previously, creates what is called a shallow
copy of an object, just like extend2() before that. The opposite of a shallow copy
would be, naturally, a deep copy. As discussed previously (in the Heads-up when
copying by reference section), when you copy objects you only copy pointers to the
location in memory where the object is stored. This is what happens in a shallow
copy. If you modify an object in the copy, you also modify the original. The deep
copy avoids this problem.

Chapter 6

[663]

The deep copy is implemented in the same way as the shallow copy: you loop
through the properties and copy them one by one. But, when you encounter a
property that points to an object, you call the deep copy function again:

function deepCopy(p, c) {
 c = c || {};
 for (vari in p) {
 if (p.hasOwnProperty(i)) {
 if (typeof p[i] === 'object') {
 c[i] = Array.isArray(p[i]) ? [] : {};
deepCopy(p[i], c[i]);
 } else {
 c[i] = p[i];
 }
 }
 }
 return c;
}

Let's create an object that has arrays and a sub-object as properties.

var parent = {
numbers: [1, 2, 3],
letters: ['a', 'b', 'c'],
obj: {
prop: 1
},
bool: true
};

Let's test this by creating a deep copy and a shallow copy. Unlike the shallow copy,
when you update the numbers property of a deep copy, the original is not affected.

>varmydeep = deepCopy(parent);
>varmyshallow = extendCopy(parent);
>mydeep.numbers.push(4,5,6);
6

>mydeep.numbers;
[1, 2, 3, 4, 5, 6]

>parent.numbers;
[1, 2, 3]

>myshallow.numbers.push(10);
4

Inheritance

[664]

>myshallow.numbers;
[1, 2, 3, 10]

>parent.numbers;
[1, 2, 3, 10]

>mydeep.numbers;
[1, 2, 3, 4, 5, 6]

Two side notes about the deepCopy() function:

• Filtering out non-own properties with hasOwnProperty() is always a good
idea to make sure you don't carry over someone's additions to the core
prototypes.

• Array.isArray() exists since ES5 because it's surprisingly hard otherwise to
tell real arrays from objects. The best cross-browser solution (if you need to
define isArray() in ES3 browsers) looks a little hacky, but it works:
if (Array.isArray !== "function") {
Array.isArray = function (candidate) {
 return
Object.prototype.toString.call(candidate) ===
'[object Array]';
};
}

object()
Based on the idea that objects inherit from objects, Douglas Crockford advocates the
use of an object() function that accepts an object and returns a new one that has the
parent as a prototype.

function object(o) {
function F() {}
F.prototype = o;
return new F();
}

If you need access to an uber property, you can modify the object() function
like so:

function object(o) {
var n;
function F() {}
F.prototype = o;
n = new F();

Chapter 6

[665]

n.uber = o;
return n;
}

Using this function is the same as using the extendCopy(): you take an object such as
twoDee, create a new object from it and then proceed to augmenting the new object.

var triangle = object(twoDee);
triangle.name = 'Triangle';
triangle.getArea = function () {
return this.side * this.height / 2;
};

The new triangle still behaves the same way:

>triangle.toString();
"Shape, 2D shape, Triangle"

This pattern is also referred to as prototypal inheritance, because you use a parent
object as the prototype of a child object. It's also adopted and built upon in ES5 and
called Object.create(). For example:

>var square = Object.create(triangle);

Using a mix of prototypal inheritance and
copying properties
When you use inheritance, you will most likely want to take already existing
functionality and then build upon it. This means creating a new object by inheriting from
an existing object and then adding additional methods and properties. You can do this
with one function call, using a combination of the last two approaches just discussed.

You can:

• Use prototypal inheritance to use an existing object as a prototype of a new one
• Copy all of the properties of another object into the newly created one

function objectPlus(o, stuff) {
var n;
function F() {}
F.prototype = o;
n = new F();
n.uber = o;

for (vari in stuff) {

Inheritance

[666]

n[i] = stuff[i];
}
return n;
}

This function takes an object o to inherit from and another object stuff that has the
additional methods and properties that are to be copied. Let's see this in action.

Start with the base shape object:

var shape = {
name: 'Shape',
toString: function () {
return this.name;
}
};

Create a 2D object by inheriting shape and adding more properties. The additional
properties are simply created with an object literal.

vartwoDee = objectPlus(shape, {
name: '2D shape',
toString: function () {
return this.uber.toString() + ', ' + this.name;
}
});

Now, let's create a triangle object that inherits from 2D and adds more properties.

var triangle = objectPlus(twoDee, {
name: 'Triangle',
getArea: function () {
return this.side * this.height / 2;
},
side: 0,
height: 0
});

Testing how it all works by creating a concrete triangle my with defined side
and height:

var my = objectPlus(triangle, {
side: 4, height: 4
});
>my.getArea();
8

Chapter 6

[667]

>my.toString();
"Shape, 2D shape, Triangle, Triangle"

The difference here, when executing toString(), is that the Triangle name is
repeated twice. That's because the concrete instance was created by inheriting
triangle, so there was one more level of inheritance. You could give the new
instance a name:

>objectPlus(triangle, {
side: 4,
height: 4,
 name: 'My 4x4'
}).toString();
"Shape, 2D shape, Triangle, My 4x4"

This objectPlus() is even closer to ES5's Object.create() only the ES5 one takes
the additional properties (the second argument) using something called property
descriptors (discussed in Chapter 11, Built-in Objects).

Multiple inheritance
Multiple inheritance is where a child inherits from more than one parent. Some OO
languages support multiple inheritance out of the box, and some don't. You can
argue both ways: that multiple inheritance is convenient, or that it's unnecessary,
complicates application design, and it's better to use an inheritance chain instead.
Leaving the discussion of multiple inheritance's pros and cons for the long, cold
winter nights, let's see how you can do it in practice in JavaScript.

The implementation can be as simple as taking the idea of inheritance by copying
properties, and expanding it so that it takes an unlimited number of input objects to
inherit from.

Let's create a multi() function that accepts any number of input objects. You can
wrap the loop that copies properties in another loop that goes through all the objects
passed as arguments to the function.

function multi() {
var n = {}, stuff, j = 0, len = arguments.length;
for (j = 0; j <len; j++) {
stuff = arguments[j];
for (vari in stuff) {
 if (stuff.hasOwnProperty(i)) {
n[i] = stuff[i];
 }
}

Inheritance

[668]

}
return n;
}

Let's test this by creating three objects: shape, twoDee, and a third, unnamed object.
Then, creating a triangle object means calling multi() and passing all three objects.

var shape = {
name: 'Shape',
toString: function () {
return this.name;
}
};

vartwoDee = {
name: '2D shape',
dimensions: 2
};

var triangle = multi(shape, twoDee, {
name: 'Triangle',
getArea: function () {
return this.side * this.height / 2;
},
side: 5,
height: 10
});

Does this work? Let's see. The method getArea() should be an own property,
dimensions should come from twoDee and toString() from shape.

>triangle.getArea();
25

>triangle.dimensions;
2

>triangle.toString();
"Triangle"

Bear in mind that multi() loops through the input objects in the order they appear
and if it happens that two of them have the same property, the last one wins.

Chapter 6

[669]

Mixins
You might come across the term mixin. Think of a mixin as an object that
provides some useful functionality but is not meant to be inherited and extended
by sub-objects. The approach to multiple inheritance outlined previously can be
considered an implementation of the mixins idea. When you create a new object
you can pick and choose any other objects to mix into your new object. By passing
them all to multi() you get all their functionality without making them part of the
inheritance tree.

Parasitic inheritance
If you like the fact that you can have all kinds of different ways to implement
inheritance in JavaScript, and you're hungry for more, here's another one. This
pattern, courtesy of Douglas Crockford, is called parasitic inheritance. It's about a
function that creates objects by taking all of the functionality from another object
into a new one, augmenting the new object, and returning it, "pretending that it
has done all the work".

Here's an ordinary object, defined with an object literal, and unaware of the fact that
it's soon going to fall victim to parasitism:

vartwoD = {
name: '2D shape',
dimensions: 2
};

A function that creates triangle objects could:

• Use twoD object as a prototype of an object called that (similar to this for
convenience). This can be done in any way you saw previously, for example
using the object() function or copying all the properties.

• Augment that with more properties.
• Return that.

function triangle(s, h) {
var that = object(twoD);
that.name ='Triangle';
that.getArea = function () {
return this.side * this.height / 2;
};
that.side = s;
that.height = h;
return that;
}

Inheritance

[670]

Because triangle() is a normal function, not a constructor, it doesn't require the new
operator. But because it returns an object, calling it with new by mistake works too.

>var t = triangle(5, 10);
>t.dimensions;
2

>vart2 = new triangle(5,5);
>t2.getArea();
12.5

Note, that that is just a name; it doesn't have a special meaning, the way this does.

Borrowing a constructor
One more way of implementing inheritance (the last one in the chapter, I promise)
has to do again with constructor functions, and not the objects directly. In this
pattern the constructor of the child calls the constructor of the parent using either
call() or apply() methods. This can be called stealing a constructor, or inheritance by
borrowing a constructor if you want to be more subtle about it.

call() and apply() were discussed in Chapter 4, Objects but here's a refresher:
they allow you to call a function and pass an object that the function should bind to
its this value. So for inheritance purposes, the child constructor calls the parent's
constructor and binds the child's newly-created this object as the parent's this.

Let's have this parent constructor Shape():

function Shape(id) {
this.id = id;
}
Shape.prototype.name = 'Shape';
Shape.prototype.toString = function () {
return this.name;
};

Now, let's define Triangle() which uses apply() to call the Shape()
constructor, passing this (an instance created with new Triangle())
and any additional arguments.

function Triangle() {
Shape.apply(this, arguments);
}
Triangle.prototype.name = 'Triangle';

Note, that both Triangle() and Shape()have added some extra properties to
their prototypes.

Chapter 6

[671]

Now, let's test this by creating a new triangle object:

>var t = new Triangle(101);
>t.name;
"Triangle"

The new triangle object inherits the id property from the parent, but it doesn't inherit
anything added to the parent's prototype:

>t.id;
101

>t.toString();
"[object Object]"

The triangle failed to get the Shape function's prototype properties because there
was never a new Shape() instance created, so the prototype was never used. But,
you saw how to do this at the beginning of this chapter. You can redefine Triangle
like this:

function Triangle() {
Shape.apply(this, arguments);
}
Triangle.prototype = new Shape();
Triangle.prototype.name = 'Triangle';

In this inheritance pattern, the parent's own properties are recreated as the child's
own properties. If a child inherits an array or other object, it's a completely new
value (not a reference) and modifying it won't affect the parent.

The drawback is that the parent's constructor gets called twice: once with apply()
to inherit own properties and once with new to inherit the prototype. In fact the own
properties of the parent are inherited twice. Let's take this simplified scenario:

function Shape(id) {
this.id = id;
}
function Triangle() {
Shape.apply(this, arguments);
}
Triangle.prototype = new Shape(101);

Creating a new instance:

>var t = new Triangle(202);
>t.id;
202

Inheritance

[672]

There's an own property id, but there's also one that comes down the prototype
chain, ready to shine through:

>t.__proto__.id;
101

> delete t.id;
true

>t.id;
101

Borrow a constructor and copy its prototype
The problem of the double work performed by calling the constructor twice can
easily be corrected. You can call apply() on the parent constructor to get all own
properties and then copy the prototype's properties using a simple iteration (or
extend2() as discussed previously).

function Shape(id) {
this.id = id;
}
Shape.prototype.name = 'Shape';
Shape.prototype.toString = function () {
return this.name;
};

function Triangle() {
Shape.apply(this, arguments);
}
extend2(Triangle, Shape);
Triangle.prototype.name = 'Triangle';

Testing:

>var t = new Triangle(101);
>t.toString();
"Triangle"
>t.id;
101

No double inheritance:

>typeoft.__proto__.id;
"undefined"

Chapter 6

[673]

extend2() also gives access to uber if needed:

>t.uber.name;
"Shape"

Summary
In this chapter you learned quite a few ways (patterns) for implementing inheritance
and the following table summarizes them. The different types can roughly be
divided into:

• Patterns that work with constructors
• Patterns that work with objects

You can also classify the patterns based on whether they:

• Use the prototype
• Copy properties
• Do both (copy properties of the prototype)

Name Example Classification Notes
1 Prototype

chaining
(pseudo-
classical)

Child.prototype =
new Parent();

• Works with
constructors

• Uses the
prototype
chain

• The default
mechanism.

• Tip: move all
properties/
methods that
are meant to be
reused to the
prototype, add
the non-reusable
as own properties.

Inheritance

[674]

Name Example Classification Notes
2 Inherit only

the prototype
Child.prototype =
Parent.prototype;

• Works with
constructors

• Copies the
prototype
(no
prototype
chain,
all share
the same
prototype
object)

• More efficient,
no new instances
are created just
for the sake of
inheritance.

• Prototype chain
lookup during
runtime- is fast,
since there's no
chain.

• Drawback:
children can
modify parents'
functionality.

3 Temporary
constructor

function
extend(Child,
Parent) {
 var F =
function(){};
 F.prototype =
Parent.prototype;
 Child.prototype
= new F();
 Child.prototype.
constructor =
Child;
 Child.uber =
Parent.prototype;
}

• Works with
constructors

• Uses the
prototype
chain

• Unlike #1, it only
inherits properties
of the prototype.
Own properties
(created with
this inside the
constructor) are
not inherited.

• Provides
convenient access
to the parent
(through uber).

4 Copying the
prototype
properties

function
extend2(Child,
Parent) {
var p = Parent.
prototype;
var c = Child.
prototype;
 for (vari in p) {
 c[i] = p[i];
 }
c.uber = p;
}

• Works with
constructors

• Copies
properties

• Uses the
prototype
chain

• All properties
of the parent
prototype become
properties of the
child prototype

• No need to create
a new object only
for inheritance
purposes

• Shorter prototype
chains

Chapter 6

[675]

Name Example Classification Notes
5 Copy all

properties
(shallow
copy)

function
extendCopy(p) {
var c = {};
 for (vari in p) {
 c[i] = p[i];
 }
c.uber = p;
 return c;
}

• Works with
objects

• Copies
properties

• Simple
• Doesn't use

prototypes

6 Deep copy Same as above, but
recurse into objects

• Works with
objects

• Copies
properties

Same as #5 but clones
objects and arrays

7 Prototypal
inheritance

function object(o)
{
 function F() {}
F.prototype = o;
 return new F();
}

• Works with
objects

• Uses the
prototype
chain

• No pseudo-
classes, objects
inherit from
objects

• Leverages the
benefits of the
prototype

8 Extend and
augment

function
objectPlus(o,
stuff) {
var n;
 function F() {}
F.prototype = o;
 n = new F();
n.uber = o;
 for (vari in
stuff) {
 n[i] = stuff[i];
 }
 return n;
}

• Works with
objects

• Uses the
prototype
chain

• Copies
properties

• Mix of prototypal
inheritance (#7)
and copying
properties (#5)

• One function call
to inherit and
extend at the
same time

Inheritance

[676]

Name Example Classification Notes
9 Multiple

inheritance
function multi() {
var n = {}, stuff,
j = 0,
len = arguments.
length;
 for (j = 0; j
<len; j++) {
 stuff =
arguments[j];
 for (vari in
stuff) {
 n[i] = stuff[i];
 }
 }
 return n;
}

• Works with
objects

• Copies
properties

• A mixin-style
implementation

• Copies all the
properties of all
the parent objects
in the order of
appearance

10 Parasitic
inheritance

function
parasite(victim) {
var that =
object(victim);
that.more = 1;
 return that;
}

• Works with
objects

• Uses the
prototype
chain

• Constructor-like
function creates
objects

• Copies an object,
augments and
returns the copy

11 Borrowing
constructors

function Child() {
Parent.apply(this,
arguments);
}

Works with
constructors

• Inherits only own
properties

• Can be combined
with #1 to inherit
the prototype too

• Convenient way
to deal with the
issues when a
child inherits a
property that is
an object (and
therefore passed
by reference)

12 Borrow a
constructor
and copy the
prototype

function Child() {
Parent.apply(this,
arguments);
}

extend2(Child,
Parent);

• Works with
constructors

• Uses the
prototype
chain

• Copies
properties

• Combination of
#11 and #4

• Allows you to
inherit both
own properties
and prototype
properties
without calling
the parent
constructor twice

Chapter 6

[677]

Given so many options, you must be wondering: which is the right one? That
depends on your style and preferences, your project, task, and team. Are you more
comfortable thinking in terms of classes? Then pick one of the methods that work
with constructors. Are you going to need just one or a few instances of your "class"?
Then choose an object-based pattern.

Are these the only ways of implementing inheritance? No. You can chose a pattern
from the preceding table or you can mix them, or you can think of your own. The
important thing is to understand and be comfortable with objects, prototypes, and
constructors; the rest is just pure joy.

Case study – drawing shapes
Let's finish off this chapter with a more practical example of using inheritance. The
task is to be able to calculate the area and the perimeter of different shapes, as well as
to draw them, while reusing as much code as possible.

Analysis
Let's have one Shape constructor that contains all of the common parts. From there,
let's have Triangle, Rectangle, and Square constructors, all inheriting from Shape.
A square is really a rectangle with the same-length sides, so let's reuse Rectangle
when building the Square.

In order to define a shape, you'll need points with x and y coordinates. A generic
shape can have any number of points. A triangle is defined with three points, a
rectangle (to keep it simpler)—with one point and the lengths of the sides. The
perimeter of any shape is the sum of its sides' lengths. Calculating the area is
shape-specific and will be implemented by each shape.

The common functionality in Shape would be:

• A draw() method that can draw any shape given the points
• A getParameter() method
• A property that contains an array of points
• Other methods and properties as needed

For the drawing part let's use a <canvas> tag. It's not supported in early IEs, but hey,
this is just an exercise.

Let's have two other helper constructors—Point and Line. Point will help when
defining shapes; Line will make calculations easier, as it can give the length of the
line connecting any two given points.

Inheritance

[678]

You can play with a working example here: http://www.phpied.com/files/canvas/.
Just open your console and start creating new shapes as you'll see in a moment.

Implementation
Let's start by adding a canvas tag to a blank HTML page:

<canvas height="600" width="800" id="canvas" />

Then, put the JavaScript code inside <script> tags:

<script>
// ... code goes here
</script>

Now, let's take a look at what's in the JavaScript part. First, the helper Point
constructor. It just can't get any more trivial than this:

function Point(x, y) {
this.x = x;
this.y = y;
}

Bear in mind that the coordinates of the points on the canvas start from x=0, y=0,
which is the top left. The bottom right will be x = 800, y = 600:

x = 800
y = 600

0

y

x

Next, the Line constructor. It takes two points and calculates the length of the line
between them, using the Pythagorean Theorem a2 + b2 = c2 (imagine a right-angled
triangle where the hypotenuse connects the two given points).

function Line(p1, p2) {
this.p1 = p1;
this.p2 = p2;
this.length = Math.sqrt(
Math.pow(p1.x - p2.x, 2) +
Math.pow(p1.y - p2.y, 2)
);
}

Chapter 6

[679]

Next, comes the Shape constructor. The shapes will have their points (and the lines
that connect them) as own properties. The constructor also invokes an initialization
method, init(), that will be defined in the prototype.

function Shape() {
this.points = [];
this.lines= [];
this.init();
}

Now the big part: the methods of Shape.prototype. Let's define all of these methods
using the object literal notation. Refer to the comments for guidelines as to what each
method does.

Shape.prototype = {
 // reset pointer to constructor
 constructor: Shape,

 // initialization, sets this.context to point
 // to the context if the canvas object
init: function () {
 if (this.context === undefined) {
var canvas = document.getElementById('canvas');
Shape.prototype.context = canvas.getContext('2d');
 }
 },

 // method that draws a shape by looping through this.points
 draw: function () {
vari, ctx = this.context;
ctx.strokeStyle = this.getColor();
ctx.beginPath();
ctx.moveTo(this.points[0].x, this.points[0].y);
 for (i = 1; i<this.points.length; i++) {
ctx.lineTo(this.points[i].x, this.points[i].y);
 }
ctx.closePath();
ctx.stroke();
 },

 // method that generates a random color
getColor: function () {
vari, rgb = [];
 for (i = 0; i< 3; i++) {
rgb[i] = Math.round(255 * Math.random());

Inheritance

[680]

 }
 return 'rgb(' + rgb.join(',') + ')';
 },

 // method that loops through the points array,
 // creates Line instances and adds them to this.lines
getLines: function () {
 if (this.lines.length> 0) {
 return this.lines;
 }
vari, lines = [];
 for (i = 0; i<this.points.length; i++) {
 lines[i] = new Line(this.points[i],
this.points[i + 1] || this.points[0]);
 }
this.lines = lines;
 return lines;
 },

 // shell method, to be implemented by children
getArea: function () {},

 // sums the lengths of all lines
getPerimeter: function () {
vari, perim = 0, lines = this.getLines();
 for (i = 0; i<lines.length; i++) {
perim += lines[i].length;
 }
 return perim;
 }
};

Now, the children constructor functions. Triangle first:

function Triangle(a, b, c) {
this.points = [a, b, c];

this.getArea = function () {
var p = this.getPerimeter(),
 s = p / 2;
 return Math.sqrt(
 s
 * (s - this.lines[0].length)
 * (s - this.lines[1].length)
 * (s - this.lines[2].length));
 };
}

Chapter 6

[681]

The Triangle constructor takes three point objects and assigns them to this.points
(its own collection of points). Then it implements the getArea() method, using
Heron's formula:

Area = s(s-a)(s-b)(s-c)

s is the semi-perimeter (perimeter divided by two).

Next, comes the Rectangle constructor. It receives one point (the upper-left point)
and the lengths of the two sides. Then, it populates its points array starting from
that one point.

function Rectangle(p, side_a, side_b){
this.points = [
p,
new Point(p.x + side_a, p.y),// top right
new Point(p.x + side_a, p.y + side_b), // bottom right
new Point(p.x, p.y + side_b)// bottom left
];
this.getArea = function () {
return side_a * side_b;
};
}

The last child constructor is Square. A square is a special case of a rectangle, so
it makes sense to reuse Rectangle. The easiest thing to do here is to borrow the
constructor.

function Square(p, side){
Rectangle.call(this, p, side, side);
}

Now that all constructors are done, let's take care of inheritance. Any pseudo-
classical pattern (one that works with constructors as opposed to objects) will do.
Let's try using a modified and simplified version of the prototype-chaining pattern
(the first method described in this chapter). This pattern calls for creating a new
instance of the parent and setting it as the child's prototype. In this case, it's not
necessary to have a new instance for each child—they can all share it.

(function () {
var s = new Shape();
Triangle.prototype = s;
Rectangle.prototype = s;
Square.prototype = s;
})();

Inheritance

[682]

Testing
Let's test this by drawing shapes. First, define three points for a triangle:

>varp1 = new Point(100, 100);
>varp2 = new Point(300, 100);
>varp3 = new Point(200, 0);

Now, you can create a triangle by passing the three points to the Triangle constructor:

>var t = new Triangle(p1, p2, p3);

You can call the methods to draw the triangle on the canvas and get its area and
perimeter:

>t.draw();
>t.getPerimeter();
482.842712474619

>t.getArea();
10000.000000000002

Now, let's play with a rectangle instance:

>var r = new Rectangle(new Point(200, 200), 50, 100);
>r.draw();
>r.getArea();
5000

>r.getPerimeter();
300

And finally, a square:

>var s = new Square(new Point(130, 130), 50);
>s.draw();
>s.getArea();
2500

>s.getPerimeter();
200

Chapter 6

[683]

It's fun to draw these shapes. You can also be as lazy as the following example,
which draws another square, reusing a triangle's point:

> new Square(p1, 200).draw();

The result of the tests will be something like this:

Exercises
1. Implement multiple inheritance but with a prototypal inheritance pattern,

not property copying. For example:
var my = objectMulti(obj, another_obj, a_third, {
additional: "properties"
});

The property additional should be an own property, all the rest should be
mixed into the prototype.

Inheritance

[684]

2. Use the canvas example to practice. Try out different things, for example:

 ° Draw a few triangles, squares, and rectangles.
 ° Add constructors for more shapes, such as Trapezoid, Rhombus,

Kite, and Pentagon. If you want to learn more about the canvas tag,
create a Circle constructor too. It will need to overwrite the draw()
method of the parent.

 ° Can you think of another way to approach the problem and use
another type of inheritance?

 ° Pick one of the methods that uses uber as a way for a child to access
its parent. Add functionality where the parents can keep track of
who their children are. Perhaps by using a property that contains a
children array?

The Browser Environment
You know that JavaScript programs need a host environment. Most of what you
learned so far in this book was related to core ECMAScript/JavaScript and can be
used in many different host environments. Now, let's shift the focus to the browser,
since this is the most popular and natural host environment for JavaScript programs.
In this chapter, you will learn about the following elements:

• The Browser Object Model (BOM)
• The Document Object Model (DOM)
• Browser events
• The XMLHttpRequest object

Including JavaScript in an HTML page
To include JavaScript in an HTML page, you need to use the <script> tag as follows:

<!DOCTYPE>
<html>
 <head>
 <title>JS test</title>
 <script src="somefile.js"></script>
 </head>
 <body>
 <script>
 var a = 1;
 a++;
 </script>
 </body>
</html>

The Browser Environment

[686]

In this example, the first <script> tag includes an external file, somefile.js, which
contains JavaScript code. The second <script> tag includes the JavaScript code
directly in the HTML code of the page. The browser executes the JavaScript code in
the sequence it finds it on the page and all the code in all tags share the same global
namespace. This means that when you define a variable in somefile.js, it also
exists in the second <script> block.

BOM and DOM – an overview
The JavaScript code in a page has access to a number of objects. These objects can be
divided into the following types:

• Core ECMAScript objects: All the objects mentioned in the previous chapters
• DOM: Objects that have to do with the currently loaded page (the page is

also called the document)
• BOM: Objects that deal with everything outside the page (the browser

window and the desktop screen)

DOM stands for Document Object Model and BOM for Browser Object Model.

The DOM is a standard, governed by the World Wide Web Consortium (W3C) and
has different versions, called levels, such as DOM Level 1, DOM Level 2, and so
on. Browsers in use today have different degrees of compliance with the standard
but in general, they almost all completely implement DOM Level 1. The DOM was
standardized post-factum, after the browser vendors had each implemented their
own ways to access the document. The legacy part (from before the W3C took over)
is still around and is referred to as DOM 0, although no real DOM Level 0 standard
exists. Some parts of DOM 0 have become de-facto standards as all major browsers
support them. Some of these were added to the DOM Level 1 standard. The rest
of DOM 0 that didn't find its way to DOM 1 is too browser-specific and won't be
discussed here.

BOM historically has not been a part of any standard. Similar to DOM 0, it has a
subset of objects that is supported by all major browsers, and another subset that is
browser-specific. The HTML5 standard codifies common behavior among browsers,
and it includes common BOM objects. Additionally, mobile devices come with their
specific objects (and HTML5 aims to standardize those as well) which traditionally
have not been necessary for desktop computers, but make sense in a mobile world,
for example, geolocation, camera access, vibration, touch events, telephony,
and SMS.

Chapter 7

[687]

This chapter discusses only cross-browser subsets of BOM and DOM Level 1
(unless noted otherwise in the text). Even these safe subsets constitute a large topic,
and a full reference is beyond the scope of this book. You can also consult the
following references:

• Mozilla DOM reference (http://developer.mozilla.org/en/docs/
Gecko_DOM_Reference)

• Mozilla's HTML5 wiki (https://developer.mozilla.org/en-US/docs/
HTML/HTML5)

• Microsoft's documentation for Internet Explorer (http://msdn2.microsoft.
com/en-us/library/ms533050(vs.85).aspx)

• W3C's DOM specifications (http://www.w3.org/DOM/DOMTR)

BOM
The Browser Object Model (BOM) is a collection of objects that give you access to
the browser and the computer screen. These objects are accessible through the global
object window.

The window object revisited
As you know already, in JavaScript there's a global object provided by the host
environment. In the browser environment, this global object is accessible using window.
All global variables are also accessible as properties of the window object as follows:

> window.somevar = 1;
 1

> somevar;
 1

Also, all of the core JavaScript functions (discussed in Chapter 2, Primitive Data Types,
Arrays, Loops, and Conditions) are methods of the global object. Have a look at the
following code snippet:

> parseInt('123a456');
 123

> window.parseInt('123a456');
 123

In addition to being a reference to the global object, the window object also serves a
second purpose providing information about the browser environment. There's a
window object for every frame, iframe, pop up, or browser tab.

The Browser Environment

[688]

Let's see some of the browser-related properties of the window object. Again, these
can vary from one browser to another, so let's only consider the properties that are
implemented consistently and reliably across all major browsers.

window.navigator
The navigator is an object that has some information about the browser and its
capabilities. One property is navigator.userAgent, which is a long string of
browser identification. In Firefox, you'll get the following output:

> window.navigator.userAgent;
 "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_3) AppleWebKit/536.28.10 (KHTML, like
Gecko) Version/6.0.3 Safari/536.28.10"

The userAgent string in Microsoft Internet Explorer would be something like
the following:

 "Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0)"

Because the browsers have different capabilities, developers have been using the
userAgent string to identify the browser and provide different versions of the code.
For example, the following code searches for the presence of the string MSIE to
identify Internet Explorer:

if (navigator.userAgent.indexOf('MSIE') !== -1) {
 // this is IE
} else {
 // not IE
}

It's better not to rely on the user agent string, but to use feature sniffing (also called
capability detection) instead. The reason for this is that it's hard to keep track of all
browsers and their different versions. It's much easier to simply check if the feature
you intend to use is indeed available in the user's browser. For example have a look
at the following code:

if (typeof window.addEventListener === 'function') {
 // feature is supported, let's use it
} else {
 // hmm, this feature is not supported, will have to
 // think of another way
}

Another reason to avoid user agent sniffing is that some browsers allow users to
modify the string and pretend they are using a different browser.

Chapter 7

[689]

Your console is a cheat sheet
The console lets you inspect what's in an object and this includes all the BOM and
DOM properties. Just type the following code:

> navigator;

Then click on the result. The result is a list of properties and their values, as shown in
the following screenshot:

window.location
The location property points to an object that contains information about the URL
of the currently loaded page. For example, location.href is the full URL and
location.hostname is only the domain. With a simple loop, you can see the full list
of properties of the location object.

Imagine you're on a page with a URL http://search.phpied.com:8080/search?q
=java&what=script#results.

for (var i in location) {
 if (typeof location[i] === "string") {
 console.log(i + ' = "' + location[i] + '"');
 }

The Browser Environment

[690]

}
 href = "http://search.phpied.com:8080/search?q=java&what=script#results"
 hash = "#results"
 host = "search.phpied.com:8080"
 hostname = "search.phpied.com"
 pathname = "/search"
 port = «8080»
 protocol = «http:»
 search = "?q=java&what=script"

There are also three methods that location provides, namely reload(), assign(),
and replace().

It's curious how many different ways exist for you to navigate to another page.
Following are a few ways:

> window.location.href = 'http://www.packtpub.com';
> location.href = 'http://www.packtpub.com';
> location = 'http://www.packtpub.com';
> location.assign('http://www.packtpub.com');

replace() is almost the same as assign(). The difference is that it doesn't create an
entry in the browser's history list as follows:

> location.replace('http://www.yahoo.com');

To reload a page you can use the following code:

> location.reload();

Alternatively, you can use location.href to point it to itself as follows:

> window.location.href = window.location.href;

Or, simply use the following code:

> location = location;

window.history
window.history allows limited access to the previously visited pages in the same
browser session. For example, you can see how many pages the user has visited
before coming to your page as follows:

> window.history.length;
 5

Chapter 7

[691]

You cannot see the actual URLs though. For privacy reasons this doesn't work. See
the following code:

> window.history[0];

You can, however, navigate back and forth through the user's session as if the user
had clicked on the Back/Forward browser buttons as follows:

> history.forward();
> history.back();

You can also skip pages back and forth with history.go(). This is the same as
calling history.back(). Code for history go() is as follows:

> history.go(-1);

For going two pages back use the following code:

> history.go(-2);

Reload the current page using the following code:

> history.go(0);

More recent browsers also support HTML5 History API, which lets you change
the URL without reloading the page. This is perfect for dynamic pages because
they can allow users to bookmark a specific URL, which represents the state of the
application, and when they come back (or share with their friends) the page can
restore the application state based on the URL. To get a sense of the history API, go
to any page and write the following code in the console:

> history.pushState({a: 1}, "", "hello");

> history.pushState({b: 2}, "", "hello-you-too");

> history.state;

Notice how the URL changes, but the page is the same. Now, experiment with Back
and Forward buttons in the browser and inspect the history.state again.

window.frames
window.frames is a collection of all of the frames in the current page. It doesn't
distinguish between frames and iframes (inline frames). Regardless of whether
there are frames on the page or not, window.frames always exists and points to
window as follows:

> window.frames === window;
 true

The Browser Environment

[692]

Let's consider an example where you have a page with one iframe as follows:

<iframe name="myframe" src="hello.html" />

In order to tell if there are any frames on the page, you can check the length
property. In case of one iframe, you'll see the following output:

> frames.length
 1

Each frame contains another page, which has its own global window object.

To get access to the iframe's window, you can do any of the following:

> window.frames[0];
> window.frames[0].window;
> window.frames[0].window.frames;
> frames[0].window;
> frames[0];

From the parent page, you can access properties of the child frame also. For example,
you can reload the frame as follows:

> frames[0].window.location.reload();

From inside the child you can access the parent as follows:

> frames[0].parent === window;
 true

Using a property called top, you can access the top-most page (the one that contains
all the other frames) from within any frame as follows:

> window.frames[0].window.top === window;
 true

> window.frames[0].window.top === window.top;
 true

> window.frames[0].window.top === top;
 true

In addition, self is the same as window as follows:

> self === window;
 true

> frames[0].self == frames[0].window;
 true

Chapter 7

[693]

If a frame has a name attribute, you can not only access the frame by name, but also
by index as follows:

> window.frames['myframe'] === window.frames[0];
 true

Or, alternatively you can use the following code:

> frames.myframe === window.frames[0];
 true

window.screen
screen provides information about the environment outside the browser. For
example, the property screen.colorDepth contains the color bit-depth (the color
quality) of the monitor. This is mostly used for statistical purposes. Have a look at
the following code:

> window.screen.colorDepth;
 32

You can also check the available screen real estate (the resolution):

> screen.width;
 1440

> screen.availWidth;
 1440

> screen.height;
 900

> screen.availHeight;
 847

The difference between height and availHeight is that the height is the whole
screen, while availHeight subtracts any operating system menus such as the
Windows task bar. The same is the case for width and availWidth.

Somewhat related is the property mentioned in the following code:

> window.devicePixelRatio;
 1

It tells you the difference (ratio) between physical pixels and device pixels in the
retina displays in mobile devices (for example, value 2 in iPhone).

The Browser Environment

[694]

window.open()/close()
Having explored some of the most common cross-browser properties of the window
object, let's move to some of the methods. One such method is open(), which allows
you to open new browser windows (pop ups). Various browser policies and user
settings may prevent you from opening a pop up (due to abuse of the technique for
marketing purposes), but generally you should be able to open a new window if it
was initiated by the user. Otherwise, if you try to open a pop up as the page loads, it
will most likely be blocked, because the user didn't initiate it explicitly.

window.open() accepts the following parameters:

• URL to load in the new window
• Name of the new window, which can be used as the value of a form's

target attribute
• Comma-separated list of features. They are as follows:

 ° resizable: Should the user be able to resize the new window
 ° width, height: Width and height of the pop up
 ° status: Should the status bar be visible

window.open() returns a reference to the window object of the newly created
browser instance. Following is an example:

var win = window.open('http://www.packtpub.com', 'packt',
 'width=300,height=300,resizable=yes');

win points to the window object of the pop up. You can check if win has a falsy value,
which means that the pop up was blocked.

win.close() closes the new window.

It's best to stay away from opening new windows for accessibility and usability
reasons. If you don't like sites popping up windows to you, why do it to your users?
There are legitimate purposes, such as providing help information while filling out a
form, but often the same can be achieved with alternative solutions, such as using a
floating <div> inside the page.

window.moveTo() and window.resizeTo()
Continuing with the shady practices from the past, following are more methods to
irritate your users, provided their browser and personal settings allow you to.

• window.moveTo(100, 100) moves the browser window to screen location x
= 100 and y = 100 (counted from the top-left corner)

Chapter 7

[695]

• window.moveBy(10, -10) moves the window 10 pixels to the right and 10
pixels up from its current location

• window.resizeTo(x, y) and window.resizeBy(x, y) accept the same
parameters as the move methods but they resize the window as opposed to
moving it

Again, try to solve the problem you're facing without resorting to these methods.

window.alert(), window.prompt(), and
window.confirm()
Chapter 2, Primitive Data Types, Arrays, Loops, and Conditions, talked about the
function alert(). Now you know that global functions are accessible as methods of
the global object so alert('Watch out!') and window.alert('Watch out!') are
exactly the same.

alert() is not an ECMAScript function, but a BOM method. In addition to it, two
other BOM methods allow you to interact with the user through system messages.
Following are the methods:

• confirm() gives the user two options, OK and Cancel
• prompt() collects textual input

See how this works as follows:

> var answer = confirm('Are you cool?');
> answer;

It presents you with a window similar to the following screenshot (the exact look
depends on the browser and the operating system):

The Browser Environment

[696]

You'll notice the following things:

• Nothing gets written to the console until you close this message, this means
that any JavaScript code execution freezes, waiting for the user's answer

• Clicking on OK returns true, clicking on Cancel or closing the message using
the X icon (or the ESC key) returns false

This is handy for confirming user actions as follows:

if (confirm('Sure you want to delete this?')) {
 // delete
} else {
 // abort
}

Make sure you provide an alternative way to confirm user actions for people who
have disabled JavaScript (or for search engine spiders).

window.prompt() presents the user with a dialog to enter text as follows:

> var answer = prompt('And your name was?');
> answer;

This results in the following dialog box (Chrome, MacOS):

The value of answer is one of the following:

• null if you click on Cancel or the X icon, or press ESC
• "" (empty string) if you click on OK or press Enter without typing anything
• A text string if you type something and then click on OK (or press Enter)

The function also takes a string as a second parameter and displays it as a default
value prefilled into the input field.

Chapter 7

[697]

window.setTimeout() and window.setInterval()
setTimeout() and setInterval() allow for scheduling the execution of a piece
of code. setTimeout() attempts to execute the given code once after a specified
number of milliseconds. setInterval() attempts to execute it repeatedly after a
specified number of milliseconds has passed.

This shows an alert after approximately 2 seconds (2000 milliseconds):

> function boo() { alert('Boo!'); }
> setTimeout(boo, 2000);
 4

As you can see the function returned an integer (in this case 4) representing the ID of
the timeout. You can use this ID to cancel the timeout using clearTimeout(). In the
following example, if you're quick enough, and clear the timeout before 2 seconds
have passed, the alert will never be shown as you can see in the following code:

> var id = setTimeout(boo, 2000);
> clearTimeout(id);

Let's change boo() to something less intrusive as follows:

> function boo() { console.log('boo'); }

Now, using setInterval() you can schedule boo() to execute every 2 seconds,
until you cancel the scheduled execution with clearInterval():

> var id = setInterval(boo, 2000);
 boo
 boo
 boo
 boo
 boo
 boo
> clearInterval(id);

Note, that both functions accept a pointer to a callback function as a first parameter.
They can also accept a string which is evaluated with eval() but as you know,
eval() is evil, so it should be avoided. And what if you want to pass arguments to the
function? In such cases, you can just wrap the function call inside another function.

The following code is valid, but not recommended:

// bad idea
var id = setInterval("alert('boo, boo')", 2000);

The Browser Environment

[698]

This alternative is preferred:

var id = setInterval(
 function () {
 alert('boo, boo');
 },
 2000
);

Be aware that scheduling a function in some amount of milliseconds is not a guarantee
that it will execute exactly at that time. One reason is that most browsers don't have
millisecond resolution time. If you schedule something in 3 milliseconds, it will
execute after a minimum of 15 in older IEs and sooner in more modern browsers, but
most likely not in 1 millisecond. The other reason is that browsers maintain a queue
of what you request them to do. 100 milliseconds timeout means add to the queue
after 100 milliseconds. But if the queue is delayed by something slow happening, your
function will have to wait and execute after, say, 120 milliseconds.

More recent browsers implement the requestAnimationFrame() function. It's
preferable to the timeout functions because you're asking the browser to call
your function whenever it has available resources, not after a predefined time in
milliseconds. Try the following in your console:

function animateMe() {
 webkitRequestAnimationFrame(function(){
 console.log(new Date());
 animateMe();
 });
}

animateMe();

window.document
window.document is a BOM object that refers to the currently loaded document
(page). Its methods and properties fall into the DOM category of objects. Take a deep
breath (and maybe first look at the BOM exercises at the end of the chapter) and let's
dive into the DOM.

Chapter 7

[699]

DOM
The Document Object Model (DOM) represents an XML or an HTML document as
a tree of nodes. Using DOM methods and properties, you can access any element
on the page, modify or remove elements, or add new ones. The DOM is a language-
independent API (Application Programming Interface) and can be implemented not
only in JavaScript, but also in any other language. For example, you can generate
pages on the server-side with PHP's DOM implementation (http://php.net/dom).

Take a look at this example HTML page:

<!DOCTYPE html>
<html>
 <head>
 <title>My page</title>
 </head>
 <body>
 <p class="opener">first paragraph</p>
 <p>second paragraph</p>
 <p id="closer">final</p>
 <!-- and that's about it -->
 </body>
</html>

Consider the second paragraph (<p>second paragraph</p>). You see
that it's a <p> tag and it's contained in the <body> tag. If you think in terms of family
relationships, you can say that <body> is the parent of <p> and <p> is the child. The
first and the third paragraphs would also be children of the <body>, and at the same
time siblings of the second paragraph. The tag is a child of the second <p>, so
<p> is its parent. The parent-child relationships can be represented graphically in an
ancestry tree, called the DOM tree:

The Browser Environment

[700]

The previous screenshot shows what you'll see in the webkit console's Elements tab
after you expand each node.

You can see how all of the tags are shown as expandable nodes on the tree. Although
not shown, there exists the so-called text nodes, for example, the text inside the
 (the word second) is a text node. Whitespace is also considered a text node.
Comments inside the HTML code are also nodes in the tree, the <!-- and that's
about it --> comment in the HTML source is a comment node in the tree.

Every node in the DOM tree is an object and the Properties section on the right lists
all of the properties and methods you can use to work with these objects, following
the inheritance chain of how this object was created:

You can also see the constructor function that was used behind the scenes to
create each of these objects. Although this is not too practical for day-to-day
tasks, it may be interesting to know that, for example, <p> is created by the
HTMLParagraphElement() constructor, the object that represents the head tag is
created by HTMLHeadElement(), and so on. You cannot create objects using these
constructors directly, though.

Chapter 7

[701]

Core DOM and HTML DOM
One last diversion before moving on to more practical examples. As you now know,
the DOM represents both XML documents and HTML documents. In fact, HTML
documents are XML documents, but a little more specific. Therefore, as part of DOM
Level 1, there is a Core DOM specification that is applicable to all XML documents,
and there is also an HTML DOM specification, which extends and builds upon the
core DOM. Of course, the HTML DOM doesn't apply to all XML documents, but
only to HTML documents. Let's see some examples of Core DOM and HTML
DOM constructors:

Constructor Inherits from Core or
HTML

Comment

Node Core Any node on the tree.
Document Node Core The document object, the main

entry point to any XML document.
HTMLDocument Document HTML This is window.document or

simply document, the HTML-
specific version of the previous
object, which you'll use extensively.

Element Node Core Every tag in the source is
represented by an element. That's
why you say "the P element"
meaning "the <p></p> tag".

HTMLElement Element HTML General-purpose constructor, all
constructors for HTML elements
inherit from it.

HTMLBodyElement HTMLElement HTML Element representing the <body>
tag.

HTMLLinkElement HTMLElement HTML An A element (an tag).

and other such
constructors.

HTMLElement HTML All the rest of the HTML elements.

CharacterData Node Core General-purpose constructor for
dealing with texts.

Text CharacterData Core Text node inside a tag. In
second you have the
element node EM and the text node
with value second.

Comment CharacterData Core <!-- any comment -->

The Browser Environment

[702]

Constructor Inherits from Core or
HTML

Comment

Attr Node Core Represents an attribute of a tag,
in <p id="closer"> the id
attribute is a DOM object created
by the Attr() constructor.

NodeList Core A list of nodes, an array-like object
that has a length property.

NamedNodeMap Core Same as NodeList but the nodes
can be accessed by name, not only
by numeric index.

HTMLCollection HTML Similar to NamedNodeMap but
specific for HTML.

These are by no means all of the Core DOM and HTML DOM objects. For the full list
consult http://www.w3.org/TR/DOM-Level-1/.

Now that this bit of DOM theory is behind you, let's focus on the practical side
of working with the DOM. In the following sections, you'll learn how to do the
following things:

• Access DOM nodes
• Modify nodes
• Create new nodes
• Remove nodes

Accessing DOM nodes
Before you can validate the user input in a form on a page or swap an image, you
need to get access to the element you want to inspect or modify. Luckily, there are
many ways to get to any element, either by navigating around traversing the DOM
tree or by using a shortcut.

It's best if you start experimenting with all of the new objects and methods. The
examples you'll see use the same simple document that you saw at the beginning of
the DOM section, and which you can access at http://www.phpied.com/files/
jsoop/ch7.html. Open your console, and let's get started.

Chapter 7

[703]

The document node
document gives you access to the current document. To explore this object, you
can use your console as a cheat sheet. Type console.dir(document) and click
on the result:

Alternatively, you can browse all of the properties and methods of the document
object DOM properties in the Elements panel:

The Browser Environment

[704]

All nodes (this also includes the document node, text nodes, element nodes, and
attribute nodes) have nodeType, nodeName, and nodeValue properties:

> document.nodeType;
 9

There are 12 node types, represented by integers. As you can see, the document node
type is 9. The most commonly used are 1 (element), 2 (attribute), and 3 (text).

Nodes also have names. For HTML tags the node name is the tag name (tagName
property). For text nodes, it's #text, and for document nodes the name is as follows:

> document.nodeName;
 "#document"

Nodes can also have node values. For example, for text nodes the value is the actual
text. The document node doesn't have a value which can be seen as follows:

> document.nodeValue;
 null

documentElement
Now, let's move around the tree. XML documents always have one root node that
wraps the rest of the document. For HTML documents, the root is the <html> tag. To
access the root, you use the documentElement property of the document object:

> document.documentElement;
 <html>…</html>

nodeType is 1 (an element node) which can be seen as follows:

> document.documentElement.nodeType;
 1

For element nodes, both nodeName and tagName properties contain the name of the
tag, as seen in the following output:

> document.documentElement.nodeName;
 "HTML"

> document.documentElement.tagName;
 "HTML"

Chapter 7

[705]

Child nodes
In order to tell if a node has any children you use hasChildNodes() as follows:

> document.documentElement.hasChildNodes();
 true

The HTML element has three children, the head and the body elements and the
whitespace between them (whitespace is counted in most, but not all browsers). You
can access them using the childNodes array-like collection as follows:

> document.documentElement.childNodes.length;
 3

> document.documentElement.childNodes[0];
 <head>…</head>

> document.documentElement.childNodes[1];
 #text

> document.documentElement.childNodes[2];
 <body>…</body>

Any child has access to its parent through the parentNode property, as seen in the
following code:

> document.documentElement.childNodes[1].parentNode;
 <html>…</html>

Let's assign a reference to body to a variable as follows:

> var bd = document.documentElement.childNodes[2];

How many children does the body element have?

> bd.childNodes.length;
 9

As a refresher, here again is the body of the document:

 <body>
 <p class="opener">first paragraph</p>
 <p>second paragraph</p>
 <p id="closer">final</p>
 <!-- and that's about it -->
 </body>

The Browser Environment

[706]

How come body has 9 children? Well, three paragraphs plus one comment makes
four nodes. The whitespace between these four nodes makes three more text nodes.
This makes a total of seven so far. The whitespace between <body> and the first <p>
is the eighth node. The whitespace between the comment and the closing </body> is
another text node. This makes a total of nine child nodes. Just type bd.childNodes
in the console to inspect them all.

Attributes
Because the first child of the body is a whitespace, the second child (index 1) is the
first paragraph. Refer to the following piece of code:

> bd.childNodes[1];
 <p class="opener">first paragraph</p>

You can check whether an element has attributes using hasAttributes() as follows:

> bd.childNodes[1].hasAttributes();
 true

How many attributes? In this example, one is the class attribute which can be seen
as follows:

> bd.childNodes[1].attributes.length;
 1

You can access the attributes by index and by name. You can also get the value using
the getAttribute() method as follows:

> bd.childNodes[1].attributes[0].nodeName;
 "class"

> bd.childNodes[1].attributes[0].nodeValue;
 "opener"

> bd.childNodes[1].attributes['class'].nodeValue;
 "opener"

> bd.childNodes[1].getAttribute('class');
 "opener"

Accessing the content inside a tag
Let's take a look at the first paragraph:

> bd.childNodes[1].nodeName;
 "P"

Chapter 7

[707]

You can get the text contained in the paragraph by using the textContent property.
textContent doesn't exist in older IEs, but another property called innerText
returns the same value, as seen in the following output:

> bd.childNodes[1].textContent;
 "first paragraph"

There is also the innerHTML property. It's a relatively new addition to the DOM
standard despite the fact that it previously existed in all major browsers. It returns
(or sets) HTML code contained in a node. You can see how this is a little inconsistent
as DOM treats the document as a tree of nodes, not as a string of tags. But innerHTML
is so convenient to use that you'll see it everywhere. Refer to the following code:

> bd.childNodes[1].innerHTML;
 "first paragraph"

The first paragraph contains only text, so innerHTML is the same as textContent (or
innerText in IE). However, the second paragraph does contain an em node, so you
can see the difference as follows:

> bd.childNodes[3].innerHTML;
 "second paragraph"

> bd.childNodes[3].textContent;
 "second paragraph"

Another way to get the text contained in the first paragraph is by using the
nodeValue of the text node contained inside the p node as follows:

> bd.childNodes[1].childNodes.length;
 1

> bd.childNodes[1].childNodes[0].nodeName;
 "#text"

> bd.childNodes[1].childNodes[0].nodeValue;
 "first paragraph"

DOM access shortcuts
By using childNodes, parentNode, nodeName, nodeValue, and attributes you
can navigate up and down the tree and do anything with the document. But the
fact that whitespace is a text node makes this a fragile way of working with the
DOM. If the page changes, your script may no longer work correctly. Also, if you
want to get to a node deeper in the tree, it could take a bit of code before you get
there. That's why you have shortcut methods, namely, getElementsByTagName(),
getElementsByName(), and getElementById().

The Browser Environment

[708]

getElementsByTagName() takes a tag name (the name of an element node) and
returns an HTML collection (array-like object) of nodes with the matching tag name.
For example, the following example asks "give me a count of all paragraphs" which
is given as follows:

> document.getElementsByTagName('p').length;
 3

You can access an item in the list by using the brackets notation, or the method
item(), and passing the index (0 for the first element). Using item() is discouraged
as array brackets are more consistent and also shorter to type. Refer to the following
piece of code:

> document.getElementsByTagName('p')[0];
 <p class="opener">first paragraph</p>

> document.getElementsByTagName('p').item(0);
 <p class="opener">first paragraph</p>

Getting the contents of the first p can be done as follows:

> document.getElementsByTagName('p')[0].innerHTML;
 "first paragraph"

Accessing the last p can be done as follows:

> document.getElementsByTagName('p')[2];
 <p id="closer">final</p>

To access the attributes of an element, you can use the attributes collection or
getAttribute() as shown previously. But a shorter way is to use the attribute
name as a property of the element you're working with. So to get the value of the id
attribute, you just use id as a property as follows:

> document.getElementsByTagName('p')[2].id;
 "closer"

Getting the class attribute of the first paragraph won't work though. It's an
exception, because it just happens so that class is a reserved word in ECMAScript.
You can use className instead as follows:

> document.getElementsByTagName('p')[0].className;
 "opener"

Chapter 7

[709]

Using getElementsByTagName() you can get all of the elements on the page
as follows:

> document.getElementsByTagName('*').length;
 8

In earlier versions of IE before IE7, * is not acceptable as a tag name. To get all
elements you can use IE's proprietary document.all collection, although selecting
every element is rarely needed.

The other shortcut mentioned is getElementById(). This is probably the most
common way of accessing an element. You just assign IDs to the elements you plan
to play with and they'll be easy to access later on, as seen in the following code:

> document.getElementById('closer');
<p id="closer">final</p>

Additional shortcut methods in more recent browsers include the following:

• getElementByClassName(): This method finds elements using their
class attribute

• querySelector(): This method finds an element using a CSS selector string
• querySelectorAll(): This method is the same as the previous one but

returns all matching elements not just the first

Siblings, body, first, and last child
nextSibling and previousSibling are two other convenient properties to navigate
the DOM tree, once you have a reference to one element:

> var para = document.getElementById('closer');
> para.nextSibling;
 #text

> para.previousSibling;
 #text

> para.previousSibling.previousSibling;
 <p>…</p>

> para.previousSibling.previousSibling.previousSibling;
 #text

> para.previousSibling.previousSibling.nextSibling.nextSibling;
 <p id="closer">final</p>

The Browser Environment

[710]

The body element is used so often that it has its own shortcut:

> document.body;
 <body>…</body>

> document.body.nextSibling;
 null

> document.body.previousSibling.previousSibling;
 <head>…</head>

firstChild and lastChild are also convenient. firstChild is the same as
childNodes[0] and lastChild is the same as childNodes[childNodes.length - 1]:

> document.body.firstChild;
 #text

> document.body.lastChild;
 #text

> document.body.lastChild.previousSibling;
 <!-- and that's about it -->

> document.body.lastChild.previousSibling.nodeValue;
 " and that's about it "

The following screenshot shows the family relationships between the body and
three paragraphs in it. For simplicity, all the whitespace text nodes are removed
from the screenshot:

Chapter 7

[711]

Walk the DOM
To wrap up, here's a function that takes any node and walks through the DOM tree
recursively, starting from the given node:

function walkDOM(n) {
 do {
 console.log(n);
 if (n.hasChildNodes()) {
 walkDOM(n.firstChild);
 }
 } while (n = n.nextSibling);
}

You can test the function as follows:

> walkDOM(document.documentElement);
> walkDOM(document.body);

Modifying DOM nodes
Now that you know a whole lot of methods for accessing any node of the DOM tree
and its properties, let's see how you can modify these nodes.

Let's assign a pointer to the last paragraph to the variable my as follows:

> var my = document.getElementById('closer');

Now, changing the text of the paragraph can be as easy as changing the
innerHTML value:

> my.innerHTML = 'final!!!';
 "final!!!"

Because innerHTML accepts a string of HTML source code, you can also create a new
em node in the DOM tree as follows:

> my.innerHTML = 'my final';
 "my final"

The new em node becomes a part of the tree:

> my.firstChild;
 my

> my.firstChild.firstChild;
 "my"

The Browser Environment

[712]

Another way to change text is to get the actual text node and change its nodeValue
as follows:

> my.firstChild.firstChild.nodeValue = 'your';
 "your"

Modifying styles
Often you don't change the content of a node but its presentation. The elements have
a style property, which in turn has a property mapped to each CSS property. For
example, changing the style of the paragraph to add a red border:

> my.style.border = "1px solid red";
 "1px solid red"

CSS properties often have dashes, but dashes are not acceptable in JavaScript
identifiers. In such cases, you skip the dash and uppercase the next letter. So
padding-top becomes paddingTop, margin-left becomes marginLeft, and so on.
Have a look at the following code:

> my.style.fontWeight = 'bold';
 "bold"

You also have access to cssText property of style, which lets you work with styles
as strings:

> my.style.cssText;
 "border: 1px solid red; font-weight: bold;"

And modifying styles is a string manipulation:

> my.style.cssText += " border-style: dashed;"
"border: 1px dashed red; font-weight: bold; border-style: dashed;"

Fun with forms
As mentioned earlier, JavaScript is great for client-side input validation and can save
a few round-trips to the server. Let's practice form manipulations and play a little bit
with a form located on a popular page www.google.com:

Chapter 7

[713]

Finding the first text input using the querySelector() method and a CSS selector
string is as follows:

> var input = document.querySelector('input[type=text]');

Accessing the search box:

> input.name;
 "q"

Changing the search query by setting the text contained in the value attribute is
done as follows:

> input.value = 'my query';
 "my query"

Now, let's have some fun. Changing the word Lucky with Tricky in the button:

> var feeling = document.querySelectorAll("button")[2];
> feeling.textContent = feelingtextContent.replace(/Lu/, 'Tri');
 "I'm Feeling Tricky"

Now, let's implement the tricky part and make that button show and hide for one
second. You can do this with a simple function. Let's call it toggle(). Every time
you call the function, it checks the value of the CSS property visibility and sets it
to visible if it's hidden and vice versa using following code:

function toggle() {
 var st = document.querySelectorAll('button')[2].style;
 st.visibility = (st.visibility === 'hidden')
 ? 'visible'
 : 'hidden';
}

Instead of calling the function manually, let's set an interval and call it every second:

> var myint = setInterval(toggle, 1000);

The Browser Environment

[714]

The result? The button starts blinking (making it trickier to click). When you're tired
of chasing it, just remove the timeout interval:

> clearInterval(myint);

Creating new nodes
To create new nodes, you can use the methods createElement() and
createTextNode(). Once you have the new nodes, you add them to the DOM
tree using appendChild() (or insertBefore(), or replaceChild()).

Reload http://www.phpied.com/files/jsoop/ch7.html and let's play.

Creating a new p element and set its innerHTML, as shown in the following code:

> var myp = document.createElement('p');
> myp.innerHTML = 'yet another';
 "yet another"

The new element automatically gets all the default properties, such as style, which
you can modify:

> myp.style;
 CSSStyleDeclaration

> myp.style.border = '2px dotted blue';
 "2px dotted blue"

Using appendChild() you can add the new node to the DOM tree. Calling this
method on the document.body node means creating one more child node right after
the last child:

> document.body.appendChild(myp);
 <p style="border: 2px dotted blue;">yet another</p>

Here's an illustration of how the page looks like after the new node is appended:

Chapter 7

[715]

DOM-only method
innerHTML gets things done a little more quickly than using pure DOM. In pure
DOM you need to perform the following steps:

1. Create a new text node containing yet another text
2. Create a new paragraph node
3. Append the text node as a child to the paragraph
4. Append the paragraph as a child to the body

This way you can create any number of text nodes and elements and nest them
however you like. Let's say you want to add the following HTML to the end of
the body:

<p>one more paragraphbold</p>

Presenting this as a hierarchy would be something like the following:

P element
 text node with value "one more paragraph"
 STRONG element
 text node with value "bold"

The code that accomplishes this is as follows:

// create P
var myp = document.createElement('p');
// create text node and append to P
var myt = document.createTextNode('one more paragraph');
myp.appendChild(myt);
// create STRONG and append another text node to it
var str = document.createElement('strong');
str.appendChild(document.createTextNode('bold'));
// append STRONG to P
myp.appendChild(str);
// append P to BODY
document.body.appendChild(myp);

cloneNode()
Another way to create nodes is by copying (or cloning) existing ones. The method
cloneNode() does this and accepts a boolean parameter (true = deep copy with all
the children, false = shallow copy, only this node). Let's test the method.

The Browser Environment

[716]

Getting a reference to the element you want to clone can be done as follows:

> var el = document.getElementsByTagName('p')[1];

Now, el refers to the second paragraph on the page that looks like the
following code:

<p>second paragraph</p>

Let's create a shallow clone of el and append it to the body:

> document.body.appendChild(el.cloneNode(false));

You won't see a difference on the page, because the shallow copy only copied the P
node, without any children. This means that the text inside the paragraph (which is a
text node child) was not cloned. The line above would be equivalent to the following:

> document.body.appendChild(document.createElement('p'));

But if you create a deep copy, the whole DOM subtree starting from P is copied,
and this includes text nodes and the EM element. This line copies (visually too) the
second paragraph to the end of the document:

> document.body.appendChild(el.cloneNode(true));

You can also copy only the EM if you want as follows:

> document.body.appendChild(el.firstChild.cloneNode(true));
 second

Or, only the text node with value second:

> document.body.appendChild(
 el.firstChild.firstChild.cloneNode(false));
 "second"

insertBefore()
Using appendChild(), you can only add new children at the end of the selected
element. For more control over the exact location there is insertBefore(). This is
the same as appendChild(), but accepts an extra parameter specifying where (before
which element) to insert the new node. For example, the following code inserts a text
node at the end of the body:

> document.body.appendChild(document.createTextNode('boo!'));

Chapter 7

[717]

And this creates another text node and adds it as the first child of the body:

document.body.insertBefore(
 document.createTextNode('first boo!'),
 document.body.firstChild
);

Removing nodes
To remove nodes from the DOM tree, you can use the method removeChild().
Again, let's start fresh with the same page with the body:

 <body>
 <p class="opener">first paragraph</p>
 <p>second paragraph</p>
 <p id="closer">final</p>
 <!-- and that's about it -->
 </body>

Here's how you can remove the second paragraph:

> var myp = document.getElementsByTagName('p')[1];
> var removed = document.body.removeChild(myp);

The method returns the removed node if you want to use it later. You can still use all
the DOM methods even though the element is no longer in the tree:

> removed;
 <p>…</p>

> removed.firstChild;
 second

There's also the replaceChild() method that removes a node and puts another one
in its place.

After removing the node, the tree looks like the following:

 <body>
 <p class="opener">first paragraph</p>
 <p id="closer">final</p>
 <!-- and that's about it -->
 </body>

The Browser Environment

[718]

Now, the second paragraph is the one with the ID "closer":

> var p = document.getElementsByTagName('p')[1];
> p;
 <p id="closer">final</p>

Let's replace this paragraph with the one in the removed variable:

> var replaced = document.body.replaceChild(removed, p);

Just like removeChild(), replaceChild() returns a reference to the node that is
now out of the tree:

> replaced;
 <p id="closer">final</p>

Now, the body looks like the following:

 <body>
 <p class="opener">first paragraph</p>
 <p>second paragraph</p>
 <!-- and that's about it -->
 </body>

A quick way to wipe out all of the content of a subtree is to set the innerHTML to a
blank string. This removes all of the children of the BODY:

> document.body.innerHTML = '';
 ""

Testing is done as follows:

> document.body.firstChild;
 null

Removing with innerHTML is fast and easy. The DOM-only way would be to go over
all of the child nodes and remove each one individually. Here's a little function that
removes all nodes from a given start node:

function removeAll(n) {
 while (n.firstChild) {
 n.removeChild(n.firstChild);
 }
}

If you want to delete all BODY children and leave the page with an empty <body></
body> use the following code:

> removeAll(document.body);

Chapter 7

[719]

HTML-only DOM objects
As you know already, the Document Object Model applies to both XML and HTML
documents. What you've learned above about traversing the tree and then adding,
removing, or modifying nodes applies to any XML document. There are, however,
some HTML-only objects and properties.

document.body is one such HTML-only object. It's so common to have a
<body> tag in HTML documents and it's accessed so often, that it makes sense
to have an object that's shorter and friendlier than the equivalent document.
getElementsByTagName('body')[0].

document.body is one example of a legacy object inherited from the prehistoric
DOM Level 0 and moved to the HTML extension of the DOM specification. There
are other objects similar to document.body. For some of them there is no core DOM
equivalent, for others there is an equivalent, but the DOM0 original was ported
anyway for simplicity and legacy purposes. Let's see some of those objects.

Primitive ways to access the document
Unlike the DOM, which gives you access to any element (and even comments and
whitespace), initially JavaScript had only limited access to the elements of an HTML
document. This was done mainly through a number of collections:

• document.images: This is a collection of all of the images on the page. The
Core DOM equivalent is document.getElementsByTagName('img')

• document.applets: This is the same as document.
getElementsByTagName('applet')

• document.links

• document.anchors

• document.forms

document.links contains a list of all tags on the page,
meaning the <a> tags that have an href attribute. document.anchors contain
all links with a name attribute ().

One of the most widely used collections is document.forms, which contains a list of
<form> elements.

Let's play with a page that contains a form and an input, http://www.phpied.com/
files/jsoop/ch7-form.html. The following gives you access to the first form on
the page:

> document.forms[0];

The Browser Environment

[720]

It's the same as the following:

> document.getElementsByTagName('forms')[0];

The document.forms collection contains collections of input fields and buttons,
accessible through the elements property. Here's how to access the first input of the
first form on the page:

> document.forms[0].elements[0];

Once you have access to an element, you can access its attributes as object properties.
The first field of the first form in the test page is this:

<input name="search" id="search" type="text" size="50"
 maxlength="255" value="Enter email..." />

You can change the text in the field (the value of the value attribute) by using the
following code:

> document.forms[0].elements[0].value = 'me@example.org';
 "me@example.org"

If you want to disable the field dynamically use the following code:

> document.forms[0].elements[0].disabled = true;

When forms or form elements have a name attribute, you can access them by name
too as in the following code:

> document.forms[0].elements['search']; // array notation
> document.forms[0].elements.search; // object property

document.write()
The method document.write() allows you to insert HTML into the page while the
page is being loaded. You can have something like the following code:

<p>It is now
 <script>
 document.write("" + new Date() + "");
 </script>
</p>

This is the same as if you had the date directly in the source of the HTML document
as follows:

<p>It is now
 Fri Apr 26 2013 16:55:16 GMT-0700 (PDT)
</p>

Chapter 7

[721]

Note, that you can only use document.write() while the page is being loaded. If
you try it after page load, it will replace the content of the whole page.

It's rare that you would need document.write(), and if you think you do, try an
alternative approach. The ways to modify the contents of the page provided by DOM
Level 1 are preferred and are much more flexible.

Cookies, title, referrer, domain
The four additional properties of document you'll see in this section are also ported
from DOM Level 0 to the HTML extension of DOM Level 1. Unlike the previous
ones, for these properties there are no core DOM equivalents.

document.cookie is a property that contains a string. This string is the content of the
cookies exchanged between the server and the client. When the server sends a page
to the browser, it may include the Set-Cookie HTTP header. When the client sends
a request to the server, it sends the cookie information back with the Cookie header.
Using document.cookie you can alter the cookies the browser sends to the server.
For example, visiting cnn.com and typing document.cookie in the console gives you
the following output:

> document.cookie;
 "mbox=check#true#1356053765|session#1356053704195-121286#1356055565;...

document.title allows you to change the title of the page displayed in the browser
window. For example, see the following code:

> document.title = 'My title';
 "My title"

Note, that this doesn't change the value of the <title> element, but only
the display in the browser window, so it's not equivalent to document.
querySelector('title').

document.referrer tells you the URL of the previously-visited page. This is the
same value the browser sends in the Referer HTTP header when requesting the
page. (Note, that Referer is misspelled in the HTTP headers, but is correct in
JavaScript's document.referrer). If you've visited the CNN page by searching on
Yahoo first, you can see something like the following:

> document.referrer;
 "http://search.yahoo.com/search?p=cnn&ei=UTF-8&fr=moz2"

The Browser Environment

[722]

document.domain gives you access to the domain name of the currently loaded
page. This is commonly used when you need to perform so-called domain relaxation.
Imagine your page is www.yahoo.com and inside it you have an iframe hosted on
music.yahoo.com subdomain. These are two separate domains so the browser's
security restrictions won't allow the page and the iframe to communicate. To resolve
this you can set document.domain on both pages to yahoo.com and they'll be able to
talk to each other.

Note, that you can only set the domain to a less-specific one, for example, you
can change www.yahoo.com to yahoo.com, but you cannot change yahoo.com
to www.yahoo.com or any other non-yahoo domain.

> document.domain;
 "www.yahoo.com"

> document.domain = 'yahoo.com';
 "yahoo.com"

> document.domain = 'www.yahoo.com';
 Error: SecurityError: DOM Exception 18

> document.domain = 'www.example.org';
 Error: SecurityError: DOM Exception 18

Previously in this chapter, you saw the window.location object. Well, the same
functionality is also available as document.location:

> window.location === document.location;
 true

Events
Imagine you are listening to a radio program and they announce, "Big event! Huge!
Aliens have landed on Earth!" You might think "Yeah, whatever", some other listeners
might think "They come in peace" and some "We're all gonna die!". Similarly, the
browser broadcasts events and your code could be notified should it decide to tune in
and listen to the events as they happen. Some example events include:

• The user clicks a button
• The user types a character in a form field
• The page finishes loading

Chapter 7

[723]

You can attach a JavaScript function (called an event listener or event handler) to a
specific event and the browser will invoke your function as soon the event occurs.
Let's see how this is done.

Inline HTML attributes
Adding specific attributes to a tag is the laziest (but the least maintainable) way,
for example:

<div onclick="alert('Ouch!')">click</div>

In this case when the user clicks on the <div>, the click event fires and the string of
JavaScript code contained in the onclick attribute is executed. There's no explicit
function that listens to the click event, but behind the scenes a function is still created
and it contains the code you specified as a value of the onclick attribute.

Element Properties
Another way to have some code executed when a click event fires is to assign a
function to the onclick property of a DOM node element. For example:

<div id="my-div">click</div>
<script>
 var myelement = document.getElementById('my-div');
 myelement.onclick = function () {
 alert('Ouch!');
 alert('And double ouch!');
 };
</script>

This way is better because it helps you keep your <div> clean of any JavaScript code.
Always keep in mind that HTML is for content, JavaScript for behavior, and CSS for
formatting, and you should keep these three separate as much as possible.

This method has the drawback that you can attach only one function to the event, as
if the radio program has only one listener. It's true that you can have a lot happening
inside the same function, but this is not always convenient, as if all the radio listeners
are in the same room.

The Browser Environment

[724]

DOM event listeners
The best way to work with browser events is to use the event listener approach
outlined in DOM Level 2, where you can have many functions listening to an event.
When the event fires, all functions are executed. All of the listeners don't need to
know about each other and can work independently. They can tune in and out at any
time without affecting the other listeners.

Let's use the same simple markup from the previous section (available for you to
play with at http://www.phpied.com/files/jsoop/ch7.html). It has this piece of
markup as follows:

<p id="closer">final</p>

Your JavaScript code can assign listeners to the click event using the
addEventListener() method. Let's attach two listeners as follows:

var mypara = document.getElementById('closer');
mypara.addEventListener('click', function () {
 alert('Boo!');
}, false);
mypara.addEventListener(
 'click', console.log.bind(console), false);

As you can see, addEventListeners() is a method called on the node object and
accepts the type of event as its first parameter and a function pointer as its second.
You can use anonymous functions such as function () { alert('Boo!'); } or
existing functions such as console.log. The listener functions you specify are called
when the event happens and an argument is passed to them. This argument is an
event object. If you run the preceding code and click on the last paragraph, you can
see event objects being logged to the console. Clicking on an event object allows you
to see its properties:

Chapter 7

[725]

Capturing and bubbling
In the calls to addEventListener(), there was a third parameter, false. Let's see
what is it for.

Say you have a link inside an unordered list as follows:

<body>

 my blog

</body>

The Browser Environment

[726]

When you click on the link, you're actually also clicking on the list item , the
list , the <body>, and eventually the document as a whole. This is called event
propagation. A click on a link can also be seen as click on the document. The process
of propagating an event can be implemented in two ways:

• Event capturing: The click happens on the document first, then it propagates
down to the body, the list, the list item, and finally to the link

• Event bubbling: The click happens on the link and then bubbles up to
the document

DOM Level 2 events specification suggests that the events propagate in three phases,
namely, capturing, at target, and bubbling. This means that the event propagates
from the document to the link (target) and then bubbles back up to the document.
The event objects have an eventPhase property, which reflects the current phase:

DOCUMENT

HTML

BODY

UL

LI

A

PHASE II :

AT TARGET

P
H

A
S

E
I
:

C
A
P
T
U

R
IN

G B
U

B
B

L
IN

G

P
H

A
S

E
III

:

CLICK !

Historically, IE and Netscape (working on their own and without a standard to
follow) implemented the exact opposites. IE implemented only bubbling, Netscape
only capturing. Today, long after the DOM specification, modern browsers
implement all three phases.

Chapter 7

[727]

The practical implications related to the event propagation are as follows:

• The third parameter to addEventListener() specifies whether or
not capturing should be used. In order to have your code more portable
across browsers, it's better to always set this parameter to false and use
bubbling only.

• You can stop the propagation of the event in your listeners so that it stops
bubbling up and never reaches the document. To do this you can call the
stopPropagation() method of the event object (there is an example in the
next section).

• You can also use event delegation. If you have ten buttons inside a <div>,
you can always attach ten event listeners, one for each button. But a smarter
thing to do is to attach only one listener to the wrapping <div> and once the
event happens, check which button was the target of the click.

As a side note, there is a way to use event capturing in old IEs too (using
setCapture() and releaseCapture() methods) but only for mouse events.
Capturing any other events (keystroke events for example) is not supported.

Stop propagation
Let's see an example of how you can stop the event from bubbling up. Going back to
the test document, there is this piece of code:

<p id="closer">final</p>

Let's define a function that handles clicks on the paragraph:

function paraHandler() {
 alert('clicked paragraph');
}

Now, let's attach this function as a listener to the click event:

var para = document.getElementById('closer');
para.addEventListener('click', paraHandler, false);

Let's also attach listeners to the click event on the body, the document, and the
browser window:

document.body.addEventListener('click', function () {
 alert('clicked body');
}, false);
document.addEventListener('click', function () {
 alert('clicked doc');

The Browser Environment

[728]

}, false);
window.addEventListener('click', function () {
 alert('clicked window');
}, false);

Note, that the DOM specifications don't say anything about events on the window.
And why would they, since DOM deals with the document and not the browser. So
browsers implement window events inconsistently.

Now, if you click on the paragraph, you'll see four alerts saying:

• clicked paragraph
• clicked body
• clicked doc
• clicked window

This illustrates how the same single click event propagates (bubbles up) from the
target all the way up to the window.

The opposite of addEventLister() is removeEventListener() and it accepts
exactly the same parameters. Let's remove the listener attached to the paragraph.

> para.removeEventListener('click', paraHandler, false);

If you try now, you'll see alerts only for the click event on the body, document, and
window, but not on the paragraph.

Now, let's stop the propagation of the event. The function you add as a listener
receives the event object as a parameter and you can call the stopPropagation()
method of that event object as follows:

function paraHandler(e) {
 alert('clicked paragraph');
 e.stopPropagation();
}

Adding the modified listener is done as follows:

para.addEventListener('click', paraHandler, false);

Now, when you click on the paragraph you see only one alert because the event
doesn't bubble up to the body, the document, or the window.

Chapter 7

[729]

Note, that when you remove a listener, you have to pass a pointer to the same
function you previously attached. Otherwise doing the following does not work
because the second argument is a new function, not the same you passed when
adding the event listener, even if the body is exactly the same:

document.body.removeEventListener('click',
 function () {
 alert('clicked body');
 },
false); // does NOT remove the handler

Prevent default behavior
Some browser events have a predefined behavior. For example, clicking a link
causes the browser to navigate to another page. You can attach listeners to clicks
on a link and you can also disable the default behavior by calling the method
preventDefault() on the event object.

Let's see how you can annoy your visitors by asking "Are you sure you want to
follow this link?" every time they click a link. If the user clicks on Cancel (causing
confirm() to return false), the preventDefault() method is called as follows:

// all links
var all_links = document.getElementsByTagName('a');
for (var i = 0; i < all_links.length; i++) { // loop all links
 all_links[i].addEventListener(
 'click', // event type
 function (e) { // handler
 if (!confirm('Sure you want to follow this link?')) {
 e.preventDefault();
 }
 },
 false // don't use capturing
);
}

Note, that not all events allow you to prevent the default behavior. Most do, but if
you want to be sure, you can check the cancellable property of the event object.

The Browser Environment

[730]

Cross-browser event listeners
As you already know, most modern browsers almost fully implement the DOM
Level 1 specification. However, the events were not standardized until DOM 2. As a
result, there are quite a few differences in how IE before version 9 implements this
functionality compared to modern browsers.

Check out an example that causes the nodeName of a clicked element (the target
element) to be written to the console:

document.addEventListener('click', function (e) {
 console.log(e.target.nodeName);
}, false);

Now, let's take a look at how IE is different:

• In IE there's no addEventListener() method, although since IE Version 5
there is an equivalent attachEvent(). For earlier versions, your only choice
is accessing the property (such as onclick) directly.

• click event becomes onclick when using attachEvent().
• If you listen to events the old-fashioned way (for example, by setting a function

value to the onclick property), when the callback function is invoked, it
doesn't get an event object passed as a parameter. But, regardless of how you
attach the listener in IE, there is always a global object window.event that
points to the latest event.

• In IE the event object doesn't get a target attribute telling you the element
on which the event fired, but it does have an equivalent property called
srcElement.

• As mentioned before, event capturing doesn't apply to all events, so only
bubbling should be used.

• There's no stopPropagation() method, but you can set the IE-only
cancelBubble property to true.

• There's no preventDefault() method, but you can set the IE-only
returnValue property to false.

• To stop listening to an event, instead of removeEventListener() in IE you'll
need detachEvent().

So, here's the revised version of the previous code that works across browsers:

function callback(evt) {
 // prep work
 evt = evt || window.event;

Chapter 7

[731]

 var target = evt.target || evt.srcElement;

 // actual callback work
 console.log(target.nodeName);
}

// start listening for click events
if (document.addEventListener) { // Modern browsers
 document.addEventListener('click', callback, false);
} else if (document.attachEvent) { // old IE
 document.attachEvent('onclick', callback);
} else {
 document.onclick = callback; // ancient
}

Types of events
Now you know how to handle cross-browser events. But all of the examples
above used only click events. What other events are happening out there? As
you can probably guess, different browsers provide different events. There is a
subset of cross-browser events and some browser-specific ones. For a full list of
events, you should consult the browser's documentation, but here's a selection of
cross-browser events:

• Mouse events
 ° mouseup, mousedown, click (the sequence is mousedown-up-click),

dblclick
 ° mouseover (mouse is over an element), mouseout (mouse was over

an element but left it), mousemove

• Keyboard events
 ° keydown, keypress, keyup (occur in this sequence)

• Loading/window events
 ° load (an image or a page and all of its components are done loading),

unload (user leaves the page), beforeunload (the script can provide
the user with an option to stop the unload)

 ° abort (user stops loading the page or an image in IE), error (a
JavaScript error, also when an image cannot be loaded in IE)

 ° resize (the browser window is resized), scroll (the page is scrolled),
contextmenu (the right-click menu appears)

The Browser Environment

[732]

• Form events
 ° focus (enter a form field), blur (leave the form field)
 ° change (leave a field after the value has changed), select (select text in

a text field)
 ° reset (wipe out all user input), submit (send the form)

Additionally, modern browsers provide drag events (dragstart, dragend, drop, and
others) and touch devices provide touchstart, touchmove, and touchend.

This concludes the discussion of events. Refer to the exercise section at the end
of this chapter for a little challenge of creating your own event utility to handle
cross-browser events.

XMLHttpRequest
XMLHttpRequest() is an object (a constructor function) that allows you to send
HTTP requests from JavaScript. Historically, XMLHttpRequest (or XHR for short)
was introduced in IE and was implemented as an ActiveX object. Starting with IE7
it's a native browser object, the same way as it's in the other browsers. The common
implementation of this object across browsers gave birth to the so-called Ajax
applications, where it's no longer necessary to refresh the whole page every time you
need new content. With JavaScript, you can make an HTTP request to the server, get
the response, and update only a part of the page. This way you can build much more
responsive and desktop-like web pages.

Ajax stands for Asynchronous JavaScript and XML.

• Asynchronous because after sending an HTTP request your code doesn't
need to wait for the response, but it can do other stuff and be notified
(through an event) when the response arrives.

• JavaScript because it's obvious that XHR objects are created with JavaScript.
• XML because initially developers were making HTTP requests for XML

documents and were using the data contained in them to update the page.
This is no longer a common practice, though, as you can request data in plain
text, in the much more convenient JSON format, or simply as HTML ready to
be inserted into the page.

Chapter 7

[733]

There are two steps to using the XMLHttpRequest:

• Send the request: This includes creating an XMLHttpRequest object and
attaching an event listener

• Process the response: Your event listener gets notified that the response has
arrived and your code gets busy doing something amazing with the response

Sending the request
In order to create an object you simply use the following code (let's deal with
browser inconsistencies in just a bit):

var xhr = new XMLHttpRequest();

The next thing is to attach an event listener to the readystatechange event fired by
the object:

xhr.onreadystatechange = myCallback;

Then, you need to call the open() method, as follows:

xhr.open('GET', 'somefile.txt', true);

The first parameter specifies the type of HTTP request (GET, POST, HEAD, and so on).
GET and POST are the most common. Use GET when you don't need to send much
data with the request and your request doesn't modify (write) data on the server,
otherwise use POST. The second parameter is the URL you are requesting. In this
example, it's the text file somefile.txt located in the same directory as the page.
The last parameter is a boolean specifying whether the request is asynchronous
(true, always prefer this) or not (false, blocks all the JavaScript execution and
waits until the response arrives).

The last step is to fire off the request which is done as follows:

xhr.send('');

The method send() accepts any data you want to send with the request. For GET
requests, this is an empty string, because the data is in the URL. For POST request,
it's a query string in the form key=value&key2=value2.

At this point, the request is sent and your code (and the user) can move on to other
tasks. The callback function myCallback will be invoked when the response comes
back from the server.

The Browser Environment

[734]

Processing the response
A listener is attached to the readystatechange event. So what exactly is the ready
state and how does it change?

There is a property of the XHR object called readyState. Every time it changes, the
readystatechange event fires. The possible values of the readyState property are
as follows:

• 0-uninitialized
• 1-loading
• 2-loaded
• 3-interactive
• 4-complete

When readyState gets the value of 4, it means the response is back and ready
to be processed. In myCallback after you make sure readyState is 4, the other
thing to check is the status code of the HTTP request. You might have requested
a non-existing URL for example and get a 404 (File not found) status code. The
interesting code is the 200 (OK) code, so myCallback should check for this value.
The status code is available in the status property of the XHR object.

Once xhr.readyState is 4 and xhr.status is 200, you can access the contents of the
requested URL using the xhr.responseText property. Let's see how myCallback
could be implemented to simply alert() the contents of the requested URL:

function myCallback() {

 if (xhr.readyState < 4) {
 return; // not ready yet
 }

 if (xhr.status !== 200) {
 alert('Error!'); // the HTTP status code is not OK
 return;
 }

 // all is fine, do the work
 alert(xhr.responseText);
}

Once you've received the new content you requested, you can add it to the page, or
use it for some calculations, or for any other purpose you find suitable.

Chapter 7

[735]

Overall, this two-step process (send request and process response) is the core
of the whole XHR/Ajax functionality. Now that you know the basics, you can
move on to building the next Gmail. Oh yes, let's have a look at some minor
browser inconsistencies.

Creating XMLHttpRequest objects in IE prior
to Version 7
In Internet Explorer prior to version 7, the XMLHttpRequest object was an ActiveX
object, so creating an XHR instance is a little different. It goes like the following:

var xhr = new ActiveXObject('MSXML2.XMLHTTP.3.0');

MSXML2.XMLHTTP.3.0 is the identifier of the object you want to create. There are
several versions of the XMLHttpRequest object and if your page visitor doesn't have
the latest one installed, you can try two older ones, before you give up.

For a fully-cross-browser solution, you should first test to see if the user's browser
supports XMLHttpRequest as a native object, and if not, try the IE way. Therefore, the
whole process of creating an XHR instance could be like this:

var ids = ['MSXML2.XMLHTTP.3.0',
 'MSXML2.XMLHTTP',
 'Microsoft.XMLHTTP'];

var xhr;
if (XMLHttpRequest) {
 xhr = new XMLHttpRequest();
} else {
 // IE: try to find an ActiveX object to use
 for (var i = 0; i < ids.length; i++) {
 try {
 xhr = new ActiveXObject(ids[i]);
 break;
 } catch (e) {}
 }
}

What is this doing? The array ids contains a list of ActiveX program IDs to
try. The variable xhr points to the new XHR object. The code first checks to
see if XMLHttpRequest exists. If so, this means that the browser supports
XMLHttpRequest() natively (so the browser is relatively modern). If it is not, the code
loops through ids trying to create an object. catch(e) quietly ignores failures and the
loop continues. As soon as an xhr object is created, you break out of the loop.

The Browser Environment

[736]

As you can see, this is quite a bit of code so it's best to abstract it into a function.
Actually, one of the exercises at the end of the chapter prompts you to create your
own Ajax utility.

A is for Asynchronous
Now you know how to create an XHR object, give it a URL and handle the response
to the request. What happens when you send two requests asynchronously? What if
the response to the second request comes before the first?

In the example above, the XHR object was global and myCallback was relying on
the presence of this global object in order to access its readyState, status, and
responseText properties. Another way, which prevents you from relying on global
variables, is to wrap the callback in a closure. Let's see how:

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = (function (myxhr) {
 return function () {
 myCallback(myxhr);
 };
}(xhr));

xhr.open('GET', 'somefile.txt', true);
xhr.send('');

In this case myCallback() receives the XHR object as a parameter and is not going
to look for it in the global space. This also means that at the time the response is
received, the original xhr might have been reused for a second request. The closure
keeps pointing to the original object.

X is for XML
Although these days JSON (discussed in the next chapter) is preferred over XML
as a data transfer format, XML is still an option. In addition to the responseText
property, the XHR objects also have another property called responseXML.
When you send an HTTP request for an XML document, responseXML points
to an XML DOM document object. To work with this document, you can use
all of the core DOM methods discussed previously in this chapter, such as
getElementsByTagName(), getElementById(), and so on.

Chapter 7

[737]

An example
Let's wrap up the different XHR topics with an example. You can visit the page
located at http://www.phpied.com/files/jsoop/xhr.html to work on the
example yourself:

The main page, xhr.html, is a simple static page that contains nothing but three
<div> tags.

<div id="text">Text will be here</div>
<div id="html">HTML will be here</div>
<div id="xml">XML will be here</div>

Using the console, you can write code that requests three files and loads their
respective contents into each <div>.

The three files to load are:

• content.txt: a simple text file containing the text "I am a text file"
• content.html: a file containing HTML code "I am formatted</

strong> HTML"

• content.xml: an XML file, containing the following code:
<?xml version="1.0" ?>
<root>
 I'm XML data.
</root>

All of the files are stored in the same directory as xhr.html.

For security reasons you can only use the original XMLHttpRequest
to request files that are on the same domain. However, modern
browsers support XHR2 which lets you make cross-domain requests,
provided that the appropriate Access-Control-Allow-Origin HTTP
header is in place.

First, let's create a function to abstract the request/response part:

function request(url, callback) {
 var xhr = new XMLHttpRequest();
 xhr.onreadystatechange = (function (myxhr) {
 return function () {
 if (myxhr.readyState === 4 && myxhr.status === 200) {
 callback(myxhr);
 }
 };

The Browser Environment

[738]

 }(xhr));
 xhr.open('GET', url, true);
 xhr.send('');
}

This function accepts a URL to request and a callback function to call once the
response arrives. Let's call the function three times, once for each file, as follows:

request(
 'http://www.phpied.com/files/jsoop/content.txt',
 function (o) {
 document.getElementById('text').innerHTML =
 o.responseText;
 }
);
request(
 'http://www.phpied.com/files/jsoop/content.html',
 function (o) {
 document.getElementById('html').innerHTML =
 o.responseText;
 }
);
request(
 'http://www.phpied.com/files/jsoop/content.xml',
 function (o) {
 document.getElementById('xml').innerHTML =
 o.responseXML
 .getElementsByTagName('root')[0]
 .firstChild
 .nodeValue;
 }
);

The callback functions are defined inline. The first two are identical. They just replace
the HTML of the corresponding <div> with the contents of the requested file. The
third one is a little different as it deals with the XML document. First, you access the
XML DOM object as o.responseXML. Then, using getElementsByTagName() you
get a list of all <root> tags (there is only one). The firstChild of <root> is a text
node and nodeValue is the text contained in it ("I'm XML data"). Then just replace
the HTML of <div id="xml"> with the new content. The result is shown on the
following screenshot:

Chapter 7

[739]

When working with the XML document, you can also use o.responseXML.
documentElement to get to the <root> element, instead of o.responseXML.
getElementsByTagName('root')[0]. Remember that documentElement gives
you the root node of an XML document. The root in HTML documents is always
the <html> tag.

Summary
You learned quite a bit in this chapter. You have learned some cross-browser BOM
(Browser Object Model) objects:

• Properties of the global window object such as navigator, location,
history, frames, screen

• Methods such as setInterval() and setTimeout(); alert(), confirm()
and prompt(); moveTo/By() and resizeTo/By()

Then you learned about the DOM (Document Object Model), an API to represent an
HTML (or XML) document as a tree structure where each tag or text is a node on the
tree. You also learned how to do the following actions:

• Access nodes
 ° Using parent/child relationship properties parentNode, childNodes,

firstChild, lastChild, nextSibling, and previousSibling
 ° Using getElementsById(), getElementsByTagName(),

getElementsByName(), and querySelectorAll()

• Modify nodes:
 ° Using innerHTML or innerText/textContent
 ° Using nodeValue or setAttribute() or just using attributes as

object properties

The Browser Environment

[740]

• Remove nodes with removeChild() or replaceChild()
• And add new ones with appendChild(), cloneNode(), and

insertBefore()

You also learned some DOM0 (prestandardization) properties, ported to DOM
Level 1:

• Collections such as document.forms, images, links, anchors, applets.
Using these are discouraged as DOM1 has the much more flexible method
getElementsByTagName().

• document.body which gives you convenient access to <body>.
• document.title, cookie, referrer, and domain.

Next, you learned about how the browser broadcasts events that you can listen to.
It's not straightforward to do this in a cross-browser manner, but it's possible. Events
bubble up, so you can use event delegation to listen to events more globally. You can
also stop the propagation of events and interfere with the default browser behavior.

Finally, you learned about the XMLHttpRequest object that allows you to build
responsive web pages that do the following tasks:

• Make HTTP requests to the server to get pieces of data
• Process the response to update portions of the page

Exercises
In the previous chapters, the solutions to the exercises could be found in the text of
the chapter. This time, some of the exercises require you to do some more reading (or
experimentation) outside this book.

1. BOM: As a BOM exercise, try coding something wrong, obtrusive,
user-unfriendly, and all in all, very Web 1.0, the shaking browser
window. Try implementing code that opens a 200 x 200 pop up window
and then resizes it slowly and gradually to 400 x 400. Next, move the
window around as if there's an earthquake. All you'll need is one of the
move*() functions, one or more calls to setInterval(), and maybe one
to setTimeout()/clearInterval() to stop the whole thing. Or here's an
easier one, print the current date/time in the document.title and update
it every second, like a clock.

2. DOM:
 ° Implement walkDOM() differently. Also make it accept a callback

function instead of hard coding console.log()

Chapter 7

[741]

 ° Removing content with innerHTML is easy (document.body.
innerHTML = ''), but not always best. The problem will be when
there are event listeners attached to the removed elements, they
won't be removed in IE causing the browser to leak memory, because
it stores references to something that doesn't exist. Implement a
general-purpose function that deletes DOM nodes, but removes any
event listeners first. You can loop through the attributes of a node
and check if the value is a function. If it is, it's most likely an attribute
like onclick. You need to set it to null before removing the element
from the tree.

 ° Create a function called include() that includes external scripts
on demand. This means you need to create a new <script> tag
dynamically, set its src attribute and append to the document's
<head>. Test by using the following code:
 > include('somescript.js');

3. Events:
Create an event utility (object) called myevent which has the following
methods working cross-browser:

 ° addListener(element, event_name, callback) where element
could also be an array of elements

 ° removeListener(element, event_name, callback)

 ° getEvent(event) just to check for a window.event for older
versions of IE

 ° getTarget(event)

 ° stopPropagation(event)

 ° preventDefault(event)

Usage example:
function myCallback(e) {
 e = myevent.getEvent(e);
 alert(myevent.getTarget(e).href);
 myevent.stopPropagation(e);
 myevent.preventDefault(e);
}
myevent.addListener(document.links, 'click', myCallback);

The result of the example code should be that all of the links in the document
lead nowhere but only alert the href attribute.

The Browser Environment

[742]

Create an absolutely positioned <div>, say at x = 100px, y = 100px. Write
the code to be able to move the div around the page using the arrow keys or
the keys J (left), K (right), M (down), and I (up). Reuse your own event utility
from 3.1.

4. XMLHttpRequest
Create your own XHR utility (object) called ajax. For example, have a look at
the following code:
function myCallback(xhr) {
 alert(xhr.responseText);
}
ajax.request('somefile.txt', 'get', myCallback);
ajax.request('script.php', 'post', myCallback,
 'first=John&last=Smith');

Coding and Design Patterns
Now that you know all about the objects in JavaScript, you've mastered
prototypes and inheritance, and you have seen some practical examples of using
browser-specific objects, let's move forward, or rather move a level up. Let's have a
look at some common JavaScript patterns.

But first, what's pattern? In short, a pattern is a good solution to a common problem.

Sometimes when you're facing a new programming problem, you may recognize
right away that you've previously solved another, suspiciously similar problem. In
such cases, it's worth isolating this class of problems and searching for a common
solution. A pattern is a proven and reusable solution (or an approach to a solution)
to a class of problems.

There are cases where a pattern is nothing more than an idea or a name. Sometimes
just using a name helps you think more clearly about a problem. Also, when working
with other developers in a team, it's much easier to communicate when everybody
uses the same terminology to discuss a problem or a solution.

Other times you may come across a unique problem that doesn't look like anything
you've seen before and doesn't readily fit into a known pattern. Blindly applying a
pattern just for the sake of using a pattern is not a good idea. It's preferable to not use
any known pattern than to try to tweak your problem so that it fits an existing solution.

This chapter talks about two types of patterns:

• Coding patterns: These are mostly JavaScript-specific best practices
• Design patterns: These are language-independent patterns, popularized by

the famous "Gang of Four" book

Coding and Design Patterns

[744]

Coding patterns
Let's start with some patterns that reflect JavaScript's unique features. Some patterns
aim to help you organize your code (for example, namespacing), others are related to
improving performance (such as lazy definitions and init-time branching), and some
make up for missing features such as private properties. The patterns discussed in
this section include:

• Separating behavior
• Namespaces
• Init-time branching
• Lazy definition
• Configuration objects
• Private variables and methods
• Privileged methods
• Private functions as public methods
• Immediate functions
• Chaining
• JSON

Separating behavior
As discussed previously, the three building blocks of a web page are as follows:

• Content (HTML)
• Presentation (CSS)
• Behavior (JavaScript)

Content
HTML is the content of the web page, the actual text. Ideally, the content should
be marked up using the least amount of HTML tags that sufficiently describe the
semantic meaning of that content. For example, if you're working on a navigation
menu it's a good idea to use and since a navigation menu is in essence just
a list of links.

Chapter 8

[745]

Your content (HTML) should be free from any formatting elements. Visual
formatting belongs to the presentation layer and should be achieved through
the use of Cascading Style Sheets (CSS). This means the following:

• The style attribute of HTML tags should not be used, if possible.
• Presentational HTML tags such as should not be used at all.
• Tags should be used for their semantic meaning, not because of how

browsers render them by default. For instance, developers sometimes use a
<div> tag where a <p> would be more appropriate. It's also favorable to use
 and instead of and <i> as the latter describe the visual
presentation rather than the meaning.

Presentation
A good approach to keep presentation out of the content is to reset, or nullify all
browser defaults. For example, using reset.css from the Yahoo! UI library. This
way the browser's default rendering won't distract you from consciously thinking
about the proper semantic tags to use.

Behavior
The third component of a web page is the behavior. Behavior should be kept separate
from both the content and the presentation. Behavior is usually added by using
JavaScript that is isolated to <script> tags, and preferably contained in external
files. This means not using any inline attributes such as onclick, onmouseover, and
so on. Instead, you can use the addEventListener/attachEvent methods from the
previous chapter.

The best strategy for separating behavior from content is as follows:

• Minimize the number of <script> tags
• Avoid inline event handlers
• Do not use CSS expressions
• Dynamically add markup that has no purpose if JavaScript is disabled

by the user
• Towards the end of your content when you are ready to close the <body> tag,

insert a single external.js file

Coding and Design Patterns

[746]

Example of separating behavior
Let's say you have a search form on a page and you want to validate the form with
JavaScript. So, you go ahead and keep the form tags free from any JavaScript, and
then immediately before the closing the </body> tag you insert a <script> tag
which links to an external file as follows:

<body>
 <form id="myform" method="post" action="server.php">
 <fieldset>
 <legend>Search</legend>
 <input
 name="search"
 id="search"
 type="text"
 />
 <input type="submit" />
 </fieldset>
 </form>
 <script src="behaviors.js"></script>
</body>

In behaviors.js you attach an event listener to the submit event. In your listener,
you check to see if the text input field was left blank and if so, stop the form from
being submitted. This way you save a round trip between the server and the client
and make the application immediately responsive.

The content of behaviors.js is given in the following code. It assumes that you've
created your myevent utility from the exercise at the end of the previous chapter:

// init
myevent.addListener('myform', 'submit', function (e) {
 // no need to propagate further
 e = myevent.getEvent(e);
 myevent.stopPropagation(e);
 // validate
 var el = document.getElementById('search');
 if (!el.value) { // too bad, field is empty
 myevent.preventDefault(e); // prevent the form submission
 alert('Please enter a search string');
 }
});

Chapter 8

[747]

Asynchronous JavaScript loading
You noticed how the script was loaded at the end of the HTML right before closing
the body. The reason is that JavaScript blocks the DOM construction of the page
and in some browsers even the downloads of the other components that follow. By
moving the scripts to the bottom of the page you ensure the script is out of the way
and when it arrives, it simply enhances the already usable page.

Another way to prevent external JavaScript files from blocking the page is to load
them asynchronously. This way you can start loading them earlier. HTML5 has the
defer attribute for this purpose:

 <script defer src="behaviors.js"></script>

Unfortunately, the defer attribute is not supported by older browsers, but luckily,
there is a solution that works across browsers, old and new. The solution is to create
a script node dynamically and append it to the DOM. In other words you use a bit of
inline JavaScript to load the external JavaScript file. You can have this script loader
snippet at the top of your document so that the download has an early start:

...
<head>
(function () {
 var s = document.createElement('script');
 s.src = 'behaviors.js';
 document.getElementsByTagName('head')[0].appendChild(s);
}());
</head>
...

Namespaces
Global variables should be avoided in order to reduce the possibility of variable
naming collisions. You can minimize the number of globals by namespacing your
variables and functions. The idea is simple, you create only one global object and all
your other variables and functions become properties of that object.

An Object as a namespace
Let's create a global object called MYAPP:

// global namespace
var MYAPP = MYAPP || {};

Coding and Design Patterns

[748]

Now, instead of having a global myevent utility (from the previous chapter), you can
have it as an event property of the MYAPP object as follows:

// sub-object
MYAPP.event = {};

Adding the methods to the event utility is still the same:

// object together with the method declarations
MYAPP.event = {
 addListener: function (el, type, fn) {
 // .. do the thing
 },
 removeListener: function (el, type, fn) {
 // ...
 },
 getEvent: function (e) {
 // ...
 }
 // ... other methods or properties
};

Namespaced constructors
Using a namespace doesn't prevent you from creating constructor functions. Here is
how you can have a DOM utility that has an Element constructor, which allows you
to create DOM elements easier:

MYAPP.dom = {};
MYAPP.dom.Element = function (type, properties) {
 var tmp = document.createElement(type);
 for (var i in properties) {
 if (properties.hasOwnProperty(i)) {
 tmp.setAttribute(i, properties[i]);
 }
 }
 return tmp;
};

Similarly, you can have a Text constructor to create text nodes:

MYAPP.dom.Text = function (txt) {
 return document.createTextNode(txt);
};

Chapter 8

[749]

Using the constructors to create a link at the bottom of a page can be done as follows:

var link = new MYAPP.dom.Element('a',
 {href: 'http://phpied.com', target: '_blank'});
var text = new MYAPP.dom.Text('click me');
link.appendChild(text);
document.body.appendChild(link);

A namespace() method
You can create a namespace utility that makes your life easier so that you can use
more convenient syntax:

MYAPP.namespace('dom.style');

Instead of the more verbose syntax as follows:

MYAPP.dom = {};
MYAPP.dom.style = {};

Here's how you can create such a namespace() method. First, you create an array by
splitting the input string using the period (.) as a separator. Then, for every element
in the new array, you add a property to your global object, if one doesn't already
exist as follows:

var MYAPP = {};
MYAPP.namespace = function (name) {
 var parts = name.split('.');
 var current = MYAPP;
 for (var i = 0; i < parts.length; i++) {
 if (!current[parts[i]]) {
 current[parts[i]] = {};
 }
 current = current[parts[i]];
 }
};

Testing the new method is done as follows:

MYAPP.namespace('event');
MYAPP.namespace('dom.style');

Coding and Design Patterns

[750]

The result of the preceding code is the same as if you did the following:

var MYAPP = {
 event: {},
 dom: {
 style: {}
 }
};

Init-time branching
In the previous chapter you noticed that sometimes different browsers have different
implementations for the same or similar functionalities. In such cases, you need
to branch your code depending on what's supported by the browser currently
executing your script. Depending on your program this branching can happen far
too often and, as a result, may slow down the script execution.

You can mitigate this problem by branching some parts of the code during
initialization, when the script loads, rather than during runtime. Building upon
the ability to define functions dynamically, you can branch and define the same
function with a different body depending on the browser. Let's see how.

First, let's define a namespace and placeholder method for the event utility:

var MYAPP = {};
MYAPP.event = {
 addListener: null,
 removeListener: null
};

At this point, the methods to add or remove a listener are not implemented. Based on
the results from feature sniffing, these methods can be defined differently as follows:

if (window.addEventListener) {
 MYAPP.event.addListener = function (el, type, fn) {
 el.addEventListener(type, fn, false);
 };
 MYAPP.event.removeListener = function (el, type, fn) {
 el.removeEventListener(type, fn, false);
 };
} else if (document.attachEvent) { // IE
 MYAPP.event.addListener = function (el, type, fn) {
 el.attachEvent('on' + type, fn);
 };
 MYAPP.event.removeListener = function (el, type, fn) {

Chapter 8

[751]

 el.detachEvent('on' + type, fn);
 };
} else { // older browsers
 MYAPP.event.addListener = function (el, type, fn) {
 el['on' + type] = fn;
 };
 MYAPP.event.removeListener = function (el, type) {
 el['on' + type] = null;
 };
}

After this script executes, you have the addListener() and removeListener()
methods defined in a browser-dependent way. Now, every time you invoke one
of these methods there's no more feature-sniffing and it results in less work and
faster execution.

One thing to watch out for when sniffing features is not to assume too much after
checking for one feature. In the previous example this rule is broken because the code
only checks for addEventListener support but then defines both addListener()
and removeListener(). In this case it's probably safe to assume that if a browser
implements addEventListener() it also implements removeEventListener().
But, imagine what happens if a browser implements stopPropagation() but not
preventDefault() and you haven't checked for these individually. You have
assumed that because addEventListener() is not defined, the browser must be an
old IE and write your code using your knowledge and assumptions of how IE works.
Remember that all of your knowledge is based on the way a certain browser works
today, but not necessarily the way it will work tomorrow. So to avoid many rewrites
of your code as new browser versions are shipped, it's best to individually check for
features you intend to use and don't generalize on what a certain browser supports.

Lazy definition
The lazy definition pattern is similar to the previous init-time branching pattern. The
difference is that the branching happens only when the function is called for the first
time. When the function is called, it redefines itself with the best implementation.
Unlike the init-time branching where the if happens once, during loading, here it
may not happen at all in cases when the function is never called. The lazy definition
also makes the initialization process lighter as there's no init-time branching work to
be done.

Coding and Design Patterns

[752]

Let's see an example that illustrates this via the definition of an addListener()
function. The function is first defined with a generic body. It checks which
functionality is supported by the browser when it's called for the first time and then
redefines itself using the most suitable implementation. At the end of the first call,
the function calls itself so that the actual event attaching is performed. The next time
you call the same function it will be defined with its new body and be ready for use,
so no further branching is necessary. Following is the code snippet:

var MYAPP = {};
MYAPP.myevent = {
 addListener: function (el, type, fn) {
 if (el.addEventListener) {
 MYAPP.myevent.addListener = function (el, type, fn) {
 el.addEventListener(type, fn, false);
 };
 } else if (el.attachEvent) {
 MYAPP.myevent.addListener = function (el, type, fn) {
 el.attachEvent('on' + type, fn);
 };
 } else {
 MYAPP.myevent.addListener = function (el, type, fn) {
 el['on' + type] = fn;
 };
 }
 MYAPP.myevent.addListener(el, type, fn);
 }
};

Configuration object
This pattern is convenient when you have a function or method that accepts a lot
of optional parameters. It's up to you to decide how many constitutes a lot. But
generally, a function with more than three parameters is not convenient to call
because you have to remember the order of the parameters, and it is even more
inconvenient when some of the parameters are optional.

Instead of having many parameters, you can use one parameter and make it an
object. The properties of the object are the actual parameters. This is suitable for
passing configuration options because these tend to be numerous and optional
(with smart defaults). The beauty of using a single object as opposed to multiple
parameters is described as follows:

• The order doesn't matter
• You can easily skip parameters that you don't want to set

Chapter 8

[753]

• It's easy to add more optional configuration attributes
• It makes the code more readable because the configuration object's properties

are present in the calling code along with their names

Imagine you have some sort of UI widget constructor you use to create fancy
buttons. It accepts the text to put inside the button (the value attribute of the
<input> tag) and an optional parameter of the type of button. For simplicity
let's say the fancy button takes the same configuration as a regular button.
Have a look at the following code:

// a constructor that creates buttons
MYAPP.dom.FancyButton = function (text, type) {
 var b = document.createElement('input');
 b.type = type || 'submit';
 b.value = text;
 return b;
};

Using the constructor is simple; you just give it a string. Then you can add the new
button to the body of the document:

document.body.appendChild(
 new MYAPP.dom.FancyButton('puuush')
);

This is all well and works fine, but then you decide you also want to be able to set
some of the style properties of the button such as colors and fonts. You can end up
with a definition like the following:

MYAPP.dom.FancyButton =
 function (text, type, color, border, font) {
 // ...
};

Now, using the constructor can become a little inconvenient, especially when you
want to set the third and fifth parameter, but not the second or the fourth:

new MYAPP.dom.FancyButton(
 'puuush', null, 'white', null, 'Arial');

A better approach is to use one config object parameter for all the settings. The
function definition can become something like the following:

MYAPP.dom.FancyButton = function (text, conf) {
 var type = conf.type || 'submit';
 var font = conf.font || 'Verdana';
 // ...
};

Coding and Design Patterns

[754]

Using the constructor is given as follows:

var config = {
 font: 'Arial, Verdana, sans-serif',
 color: 'white'
};
new MYAPP.dom.FancyButton('puuush', config);

Another usage example is as follows:

document.body.appendChild(
 new MYAPP.dom.FancyButton('dude', {color: 'red'})
);

As you can see, it's easy to set only some of the parameters and to switch around
their order. In addition, the code is friendlier and easier to understand when you see
the names of the parameters at the same place where you call the method.

A drawback of this pattern is the same as its strength. It's trivial to keep adding more
parameters, which means trivial to abuse the technique. Once you have an excuse
to add to this free-for-all bag of properties, you will find it tempting to keep adding
some that are not entirely optional or some that are dependent on other properties.

As a rule of thumb, all these properties should be independent and optional. If you
have to check all possible combinations inside your function ("oh, A is set, but A is only
used if B is also set") this is a recipe for a large function body, which quickly becomes
confusing and difficult, if not impossible, to test, because of all the combinations.

Private properties and methods
JavaScript doesn't have the notion of access modifiers, which set the privileges of the
properties in an object. Other languages often have access modifiers such as:

• Public—all users of an object can access these properties (or methods)
• Private—only the object itself can access these properties
• Protected—only objects inheriting the object in question can access

these properties

JavaScript doesn't have a special syntax to denote private properties or methods, but
as discussed in Chapter 3, Functions, you can use local variables and methods inside a
function and achieve the same level of protection.

Chapter 8

[755]

Continuing with the example of the FancyButton constructor, you can have a local
variable styles which contains all the defaults, and a local setStyle() function.
These are invisible to the code outside of the constructor. Here's how FancyButton
can make use of the local private properties:

var MYAPP = {};
MYAPP.dom = {};
MYAPP.dom.FancyButton = function (text, conf) {
 var styles = {
 font: 'Verdana',
 border: '1px solid black',
 color: 'black',
 background: 'grey'
 };
 function setStyles(b) {
 var i;
 for (i in styles) {
 if (styles.hasOwnProperty(i)) {
 b.style[i] = conf[i] || styles[i];
 }
 }
 }
 conf = conf || {};
 var b = document.createElement('input');
 b.type = conf.type || 'submit';
 b.value = text;
 setStyles(b);
 return b;
};

In this implementation, styles is a private property and setStyle() is a private
method. The constructor uses them internally (and they can access anything inside
the constructor), but they are not available to code outside of the function.

Privileged methods
Privileged methods (this term was coined by Douglas Crockford) are normal public
methods that can access private methods or properties. They can act like a bridge
in making some of the private functionality accessible but in a controlled manner,
wrapped in a privileged method.

Coding and Design Patterns

[756]

Private functions as public methods
Let us say you've defined a function that you absolutely need to keep intact, so you
make it private. But, you also want to provide access to the same function so that
outside code can also benefit from it. In this case, you can assign the private function
to a publicly available property.

Let's define _setStyle() and _getStyle() as private functions, but then assign
them to the public setStyle() and getStyle():

var MYAPP = {};
MYAPP.dom = (function () {
 var _setStyle = function (el, prop, value) {
 console.log('setStyle');
 };
 var _getStyle = function (el, prop) {
 console.log('getStyle');
 };
 return {
 setStyle: _setStyle,
 getStyle: _getStyle,
 yetAnother: _setStyle
 };
}());

Now, when you call MYAPP.dom.setStyle(), it invokes the private _setStyle()
function. You can also overwrite setStyle() from the outside:

MYAPP.dom.setStyle = function () {alert('b');};

Now, the result is as follows:

• MYAPP.dom.setStyle points to the new function
• MYAPP.dom.yetAnother still points to _setStyle()
• _setStyle() is always available when any other internal code relies on it to

be working as intended, regardless of the outside code

When you expose something private, keep in mind that objects (and functions and
arrays are objects too) are passed by reference and, therefore, can be modified from
the outside.

Chapter 8

[757]

Immediate functions
Another pattern that helps you keep the global namespace clean is to wrap your
code in an anonymous function and execute that function immediately. This way any
variables inside the function are local (as long as you use the var statement) and are
destroyed when the function returns, if they aren't part of a closure. This pattern was
discussed in more detail in Chapter 3, Functions. Have a look at the following code:

(function () {
 // code goes here...
}());

This pattern is especially suitable for on-off initialization tasks performed when the
script loads.

The immediate (self-executing) function pattern can be extended to create and
return objects. If the creation of these objects is more complicated and involves
some initialization work, then you can do this in the first part of the self-executable
function and return a single object, which can access and benefit from any private
properties in the top portion as follows:

var MYAPP = {};
MYAPP.dom = (function () {
 // initialization code...
 function _private() {
 // ...
 }
 return {
 getStyle: function (el, prop) {
 console.log('getStyle');
 _private();
 },
 setStyle: function (el, prop, value) {
 console.log('setStyle');
 }
 };
}());

Coding and Design Patterns

[758]

Modules
Combining several of the previous patterns, gives you a new pattern, commonly
referred to as a module pattern. The concept of modules in programming is
convenient as it allows you to code separate pieces or libraries and combine
them as needed just like pieces of a puzzle.

Two notable facts beyond the scope of this chapter
JavaScript doesn't have a built-in concept of modules, although this
is planned for the future via export and import declarations. There
is also the module specification from http://www.commonjs.org,
which defines a require() function and an exports object.

The module pattern includes:

• Namespaces to reduce naming conflicts among modules
• An immediate function to provide a private scope and initialization
• Private properties and methods
• Returning an object that has the public API of the module as follows:

namespace('MYAPP.module.amazing');

MYAPP.module.amazing = (function () {

 // short names for dependencies
 var another = MYAPP.module.another;

 // local/private variables
 var i, j;

 // private functions
 function hidden() {}

 // public API
 return {
 hi: function () {
 return "hello";
 }
 };
}());

And using the following module:
MYAPP.module.amazing.hi(); // "hello"

Chapter 8

[759]

Chaining
Chaining is a pattern that allows you to invoke multiple methods on one line as if
the methods are the links in a chain. This is convenient when calling several related
methods. You invoke the next method on the result of the previous without the use
of an intermediate variable.

Say you've created a constructor that helps you work with DOM elements.
The code to create a new and add it to the <body> could look something
like the following:

var obj = new MYAPP.dom.Element('span');
obj.setText('hello');
obj.setStyle('color', 'red');
obj.setStyle('font', 'Verdana');
document.body.appendChild(obj);

As you know, constructors return the object referred to as this that they create. You
can make your methods such as setText() and setStyle() also return this, which
allows you to call the next method on the instance returned by the previous one. This
way you can chain method calls:

var obj = new MYAPP.dom.Element('span');
obj.setText('hello')
 .setStyle('color', 'red')
 .setStyle('font', 'Verdana');
document.body.appendChild(obj);

You don't even need the obj variable if you don't plan on using it after the new
element has been added to the tree, so the code looks like the following:

document.body.appendChild(
 new MYAPP.dom.Element('span')
 .setText('hello')
 .setStyle('color', 'red')
 .setStyle('font', 'Verdana')
);

A drawback of this pattern is that it makes it a little harder to debug when an error
occurs somewhere in a long chain and you don't know which link is to blame
because they are all on the same line.

Coding and Design Patterns

[760]

JSON
Let's wrap up the coding patterns section of this chapter with a few words about
JSON. JSON is not technically a coding pattern, but you can say that using JSON is a
good pattern.

JSON is a popular lightweight format for exchanging data. It's often preferred over
XML when using XMLHttpRequest() to retrieve data from the server. JSON stands
for JavaScript Object Notation and there's nothing specifically interesting about it
other than the fact that it's extremely convenient. The JSON format consists of data
defined using object, and array literals. Here is an example of a JSON string that your
server could respond with after an XHR request:

{
 'name': 'Stoyan',
 'family': 'Stefanov',
 'books': ['OOJS', 'JSPatterns', 'JS4PHP']
}

An XML equivalent of this would be something like the following:

<?xml version="1.1" encoding="iso-8859-1"?>
<response>
 <name>Stoyan</name>
 <family>Stefanov</family>
 <books>
 <book>OOJS</book>
 <book>JSPatterns</book>
 <book>JS4PHP</book>
 </books>
</response>

First, you can see how JSON is lighter in terms of the number of bytes. But, the main
benefit is not the smaller byte size but the fact that it's trivial to work with JSON in
JavaScript. Let's say you've made an XHR request and have received a JSON string
in the responseText property of the XHR object. You can convert this string of data
into a working JavaScript object by simply using eval():

// warning: counter-example
var response = eval('(' + xhr.responseText + ')');

Chapter 8

[761]

Now, you can access the data in obj as object properties:

console.log(response.name); // "Stoyan"
console.log(response.books[2]); // "JS4PHP"

The problem is that eval() is insecure, so it's best if you use the JSON object to parse
the JSON data (a fallback for older browsers is available from http://json.org/).
Creating an object from a JSON string is still trivial:

var response = JSON.parse(xhr.responseText);

To do the opposite, that is, to convert an object to a JSON string, you use the method
stringify():

var str = JSON.stringify({hello: "you"});

Due to its simplicity, JSON has quickly become popular as a language-independent
format for exchanging data and you can easily produce JSON on the server side
using your preferred language. In PHP, for example, there are the functions
json_encode() and json_decode() that let you serialize a PHP array or
object into a JSON string and vice versa.

Design patterns
The second part of this chapter presents a JavaScript approach to a subset of the
design patterns introduced by the book called Design Patterns: Elements of Reusable
Object-Oriented Software, an influential book most commonly referred to as the Book of
Four or the Gang of Four, or GoF (after its four authors). The patterns discussed in the
GoF book are divided into three groups:

• Creational patterns that deal with how objects are created (instantiated)
• Structural patterns that describe how different objects can be composed in

order to provide new functionality
• Behavioral patterns that describe ways for objects to communicate with

each other

There are 23 patterns in the Book of Four and more patterns have been identified since
the book's publication. It's way beyond the scope of this book to discuss all of them,
so the remainder of the chapter demonstrates only four, along with examples of their
implementation in JavaScript. Remember that the patterns are more about interfaces
and relationships rather than implementation. Once you have an understanding
of a design pattern, it's often not difficult to implement it, especially in a dynamic
language such as JavaScript.

Coding and Design Patterns

[762]

The patterns discussed through the rest of the chapter are:

• Singleton
• Factory
• Decorator
• Observer

Singleton
Singleton is a creational design pattern meaning that its focus is on creating objects. It
helps when you want to make sure there is only one object of a given kind (or class).
In a classical language this would mean that an instance of a class is only created
once and any subsequent attempts to create new objects of the same class would
return the original instance.

In JavaScript, because there are no classes, a singleton is the default and most natural
pattern. Every object is a singleton object.

The most basic implementation of the singleton in JavaScript is the object literal:

var single = {};

That was easy, right?

Singleton 2
If you want to use class-like syntax and still implement the singleton pattern, things
become a bit more interesting. Let's say you have a constructor called Logger() and
you want to be able to do something like the following:

var my_log = new Logger();
my_log.log('some event');

// ... 1000 lines of code later in a different scope ...

var other_log = new Logger();
other_log.log('some new event');
console.log(other_log === my_log); // true

The idea is that although you use new, only one instance needs to be created, and this
instance is then returned in consecutive calls.

Chapter 8

[763]

Global variable
One approach would be to use a global variable to store the single instance. Your
constructor could look like this:

function Logger() {
 if (typeof global_log === "undefined") {
 global_log = this;
 }
 return global_log;
}

Using this constructor gives the expected result:

var a = new Logger();
var b = new Logger();
console.log(a === b); // true

The drawback is, obviously, the use of a global variable. It can be overwritten at any
time, even accidentally, and you lose the instance. The opposite, your global variable
overwriting someone else's is also possible.

Property of the Constructor
As you know, functions are objects and they have properties. You can assign the
single instance to a property of the constructor function as follows:

function Logger() {
 if (!Logger.single_instance) {
 Logger.single_instance = this;
 }
 return Logger.single_instance;
}

If you write var a = new Logger(), a points to the newly created Logger.single_
instance property. A subsequent call var b = new Logger() results in b pointing
to the same Logger.single_instance property, which is exactly what you want.

This approach certainly solves the global namespace issue because no global
variables are created. The only drawback is that the property of the Logger
constructor is publicly visible, so it can be overwritten at any time. In such cases,
the single instance can be lost or modified. Of course, you can only provide so much
protection against fellow programmers shooting themselves in the foot. After all, if
someone can mess with the single instance property, they can mess up the Logger
constructor directly, as well.

Coding and Design Patterns

[764]

In a private property
The solution to the problem of overwriting the publicly visible property is not to use
a public property but a private one. You already know how to protect variables with
a closure, so as an exercise you can implement this approach to the singleton pattern.

Factory
The factory is another creational design pattern as it deals with creating objects.
The factory can help when you have similar types of objects and you don't know in
advance which one you want to use. Based on user input or other criteria, your code
determines the type of object it needs on the fly.

Let's say you have three different constructors, which implement similar functionality.
All the objects they create take a URL but do different things with it. One creates a text
DOM node, the second creates a link, and the third an image as follows:

var MYAPP = {};
MYAPP.dom = {};
MYAPP.dom.Text = function (url) {
 this.url = url;
 this.insert = function (where) {
 var txt = document.createTextNode(this.url);
 where.appendChild(txt);
 };
};
MYAPP.dom.Link = function (url) {
 this.url = url;
 this.insert = function (where) {
 var link = document.createElement('a');
 link.href = this.url;
 link.appendChild(document.createTextNode(this.url));
 where.appendChild(link);
 };
};
MYAPP.dom.Image = function (url) {
 this.url = url;
 this.insert = function (where) {
 var im = document.createElement('img');
 im.src = this.url;
 where.appendChild(im);
 };
};

Chapter 8

[765]

Using the three different constructors is exactly the same, pass the url and call the
insert() method:

var url = 'http://www.phpied.com/images/covers/oojs.jpg';

var o = new MYAPP.dom.Image(url);
o.insert(document.body);

var o = new MYAPP.dom.Text(url);
o.insert(document.body);

var o = new MYAPP.dom.Link(url);
o.insert(document.body);

Imagine your program doesn't know in advance which type of object is required. The
user decides, during runtime, by clicking on a button for example. If type contains
the required type of object, you'll need to use an if or a switch, and do something
like this:

var o;
if (type === 'Image') {
 o = new MYAPP.dom.Image(url);
}
if (type === 'Link') {
 o = new MYAPP.dom.Link(url);
}
if (type === 'Text') {
 o = new MYAPP.dom.Text(url);
}
o.url = 'http://...';
o.insert();

This works fine, but if you have a lot of constructors, the code becomes too lengthy
and hard to maintain. Also, if you are creating a library or a framework that allows
extensions or plugins, you don't even know the exact names of all the constructor
functions in advance. In such cases, it's convenient to have a factory function that
takes care of creating an object of the dynamically determined type:

Let's add a factory method to the MYAPP.dom utility:

MYAPP.dom.factory = function (type, url) {
 return new MYAPP.dom[type](url);
};

Coding and Design Patterns

[766]

Now, you can replace the three if functions with the simpler code as follows:

var image = MYAPP.dom.factory("Image", url);
image.insert(document.body);

The example factory() method in the previous code was simple, but in a real life
scenario you'd want to do some validation against the type value (for example,
check if MYAPP.dom[type] exists) and optionally do some setup work common to all
object types (for example, setup the URL all constructors use).

Decorator
The Decorator design pattern is a structural pattern; it doesn't have much to do with
how objects are created but rather how their functionality is extended. Instead of
using inheritance where you extend in a linear way (parent-child-grandchild), you
can have one base object and a pool of different decorator objects that provide extra
functionality. Your program can pick and choose which decorators it wants and in
which order. For a different program or code path, you might have a different set of
requirements and pick different decorators out of the same pool. Take a look at how
the usage part of the decorator pattern could be implemented:

var obj = {
 doSomething: function () {
 console.log('sure, asap');
 }
 // ...
};
obj = obj.getDecorator('deco1');
obj = obj.getDecorator('deco13');
obj = obj.getDecorator('deco5');
obj.doSomething();

You can see how you can start with a simple object that has a doSomething()
method. Then you can pick one of the decorator objects you have lying around
and can be identified by name. All decorators provide a doSomething() method
which first calls the same method of the previous decorator and then proceeds with
its own code. Every time you add a decorator, you overwrite the base obj with an
improved version of it. At the end, when you are finished adding decorators, you call
doSomething(). As a result all of the doSomething() methods of all the decorators
are executed in sequence. Let's see an example.

Chapter 8

[767]

Decorating a Christmas tree
Let's illustrate the decorator pattern with an example of decorating a Christmas tree.
You start with the decorate() method as follows:

var tree = {};
tree.decorate = function () {
 alert('Make sure the tree won\'t fall');
};

Now, let's implement a getDecorator() method which adds extra decorators. The
decorators will be implemented as constructor functions, and they'll all inherit from
the base tree object:

tree.getDecorator = function (deco) {
 tree[deco].prototype = this;
 return new tree[deco];
};

Now, let's create the first decorator, RedBalls(), as a property of tree (in order to
keep the global namespace cleaner). The red ball objects also provide a decorate()
method, but they make sure they call their parent's decorate() first:

tree.RedBalls = function () {
 this.decorate = function () {
 this.RedBalls.prototype.decorate();
 alert('Put on some red balls');
 };
};

Similarly, implementing BlueBalls() and Angel() decorators:

tree.BlueBalls = function () {
 this.decorate = function () {
 this.BlueBalls.prototype.decorate();
 alert('Add blue balls');
 };
};
tree.Angel = function () {
 this.decorate = function () {
 this.Angel.prototype.decorate();
 alert('An angel on the top');
 };
};

Coding and Design Patterns

[768]

Now, let's add all of the decorators to the base object:

tree = tree.getDecorator('BlueBalls');
tree = tree.getDecorator('Angel');
tree = tree.getDecorator('RedBalls');

Finally, running the decorate() method:

tree.decorate();

This single call results in the following alerts (in this order):

• Make sure the tree won't fall
• Add blue balls
• An angel on the top
• Add some red balls

As you see, this functionality allows you to have as many decorators as you like, and
to choose and combine them in any way you like.

Observer
The observer pattern (also known as the subscriber-publisher pattern) is a
behavioral pattern, which means that it deals with how different objects interact and
communicate with each other. When implementing the observer pattern you have
the following objects:

• One or more publisher objects that announce when they do
something important.

• One or more subscribers tuned in to one or more publishers. They listen to
what the publishers announce and then act appropriately.

The observer pattern may look familiar to you. It sounds similar to the browser
events discussed in the previous chapter, and rightly so, because the browser
events are one example application of this pattern. The browser is the publisher, it
announces the fact that an event (such as a click) has happened. Your event listener
functions that are subscribed to (listen to) this type of event will be notified when the
event happens. The browser-publisher sends an event object to all of the subscribers.
In your custom implementations you can send any type of data you find appropriate.

There are two subtypes of the observer pattern, push and pull. Push is where the
publishers are responsible for notifying each subscriber, and pull is where the
subscribers monitor for changes in a publisher's state.

Chapter 8

[769]

Let's take a look at an example implementation of the push model. Let's keep the
observer-related code into a separate object and then use this object as a mix-in,
adding its functionality to any other object that decides to be a publisher. In this way
any object can become a publisher and any function can become a subscriber. The
observer object will have the following properties and methods:

• An array of subscribers that are just callback functions
• addSubscriber() and removeSubscriber() methods that add to, and

remove from, the subscribers collection
• A publish() method that takes data and calls all subscribers, passing the

data to them
• A make() method that takes any object and turns it into a publisher by

adding all of the methods mentioned previously to it

Here's the observer mix-in object, which contains all the subscription-related
methods and can be used to turn any object into a publisher:

var observer = {
 addSubscriber: function (callback) {
 if (typeof callback === "function") {
 this.subscribers[this.subscribers.length] = callback;
 }
 },
 removeSubscriber: function (callback) {
 for (var i = 0; i < this.subscribers.length; i++) {
 if (this.subscribers[i] === callback) {
 delete this.subscribers[i];
 }
 }
 },
 publish: function (what) {
 for (var i = 0; i < this.subscribers.length; i++) {
 if (typeof this.subscribers[i] === 'function') {
 this.subscribers[i](what);
 }
 }
 },
 make: function (o) { // turns an object into a publisher
 for (var i in this) {
 if (this.hasOwnProperty(i)) {
 o[i] = this[i];
 o.subscribers = [];
 }
 }
 }
};

Coding and Design Patterns

[770]

Now, let's create some publishers. A publisher can be any object and its only duty
is to call the publish() method whenever something important occurs. Here's a
blogger object which calls publish() every time a new blog posting is ready:

var blogger = {
 writeBlogPost: function() {
 var content = 'Today is ' + new Date();
 this.publish(content);
 }
};

Another object could be the LA Times newspaper which calls publish() when a
new newspaper issue is out:

var la_times = {
 newIssue: function() {
 var paper = 'Martians have landed on Earth!';
 this.publish(paper);
 }
};

Turning these objects into publishers:

observer.make(blogger);
observer.make(la_times);

Now, let's have two simple objects jack and jill:

var jack = {
 read: function(what) {
 console.log("I just read that " + what)
 }
};
var jill = {
 gossip: function(what) {
 console.log("You didn't hear it from me, but " + what)
 }
};

jack and jill can subscribe to the blogger object by providing the callback
methods they want to be called when something is published:

blogger.addSubscriber(jack.read);
blogger.addSubscriber(jill.gossip);

Chapter 8

[771]

What happens now when the blogger writes a new post? The result is that jack and
jill get notified:

> blogger.writeBlogPost();
 I just read that Today is Fri Jan 04 2013 19:02:12 GMT-0800 (PST)
 You didn't hear it from me, but Today is Fri Jan 04 2013 19:02:12 GMT-0800 (PST)

At any time, jill may decide to cancel her subscription. Then, when writing another
blog post, the unsubscribed object is no longer notified:

> blogger.removeSubscriber(jill.gossip);
> blogger.writeBlogPost();
 I just read that Today is Fri Jan 04 2013 19:03:29 GMT-0800 (PST)

jill may decide to subscribe to LA Times as an object can be a subscriber to
many publishers:

> la_times.addSubscriber(jill.gossip);

Then, when LA Times publishes a new issue, jill gets notified and jill.gossip()
is executed:

> la_times.newIssue();
 You didn't hear it from me, but Martians have landed on Earth!

Summary
In this chapter, you learned about common JavaScript coding patterns and learned
how to make your programs cleaner, faster, and better at working with other
programs and libraries. Then you saw a discussion and sample implementations of
a handful of the design patterns from the Book of Four. You can see how JavaScript
is a fully featured dynamic programming language and that implementing classical
patterns in a dynamic loosely typed language is pretty easy. The patterns are, in
general, a large topic and you can join the author of this book in a further discussion
of the JavaScript patterns at the website JSPatterns.com or take a look at the book
appropriately named "JavaScript Patterns".

Reserved Words
This appendix provides two lists of reserved keywords as defined in ECMAScript
5 (ES5). The first one is the current list of words, and the second is the list of words
reserved for future implementations.

There's also a list of words that are no longer reserved, although they used to
be in ES3.

You cannot use reserved words as variable names:

var break = 1; // syntax error

If you use these words as object properties, you have to quote them:

var o = {break: 1}; // OK in many browsers, error in IE
var o = {"break": 1}; // Always OK
alert(o.break); // error in IE
alert(o["break"]); // OK

Keywords
The list of words currently reserved in ES5 is as follows:

break

case

catch

continue

debugger

default

delete

Reserved Words

[774]

do

else

finally

for

function

if

in

instanceof

new

return

switch

this

throw

try

typeof

var

void

while

with

Future reserved words
These keywords are not currently used, but are reserved for future versions of
the language.

• class

• const

• enum

• export

• extends

• implements

Chapter 9

[775]

• import

• interface

• let

• package

• private

• protected

• public

• static

• super

• yield

Previously reserved words
These words are no longer reserved starting with ES5, but best to stay away for the
sake of older browsers.

• abstract

• boolean

• byte

• char

• double

• final

• float

• goto

• int

• long

• native

• short

• synchronized

• throws

• transient

• volatile

Built-in Functions
This appendix contains a list of the built-in functions (methods of the global object),
discussed in Chapter 3, Functions.

Function Description
parseInt() Takes two parameters: an input object and radix; then tries to

return an integer representation of the input. Doesn't handle
exponents in the input. The default radix is 10 (a decimal
number). Returns NaN on failure. Omitting the radix may lead
to unexpected results (for example for inputs such as 08), so it's
best to always specify it.
> parseInt('10e+3');
10
> parseInt('FF');
NaN
> parseInt('FF', 16);
255

parseFloat() Takes a parameter and tries to return a floating-point
number representation of it. Understands exponents in
the input.

> parseFloat('10e+3');
10000
> parseFloat('123.456test');
123.456

Built-in Functions

[778]

Function Description
isNaN() Abbreviated from "Is Not a Number". Accepts a

parameter and returns true if the parameter is not a valid
number, false otherwise. Attempts to convert the input
to a number first.

> isNaN(NaN);
true
> isNaN(123);
false
> isNaN(parseInt('FF'));
true
> isNaN(parseInt('FF', 16));
false

isFinite() Returns true if the input is a number (or can be
converted to a number), but is not the number Infinity
or -Infinity. Returns false for infinity or non-numeric
values.

> isFinite(1e+1000);
false
> isFinite(-Infinity);
false
> isFinite("123");
true

encodeURIComponent() Converts the input into a URL-encoded string. For
more details on how URL encoding works, refer to the
Wikipedia article at http://en.wikipedia.org/wiki/
Url_encode.

> encodeURIComponent
 ('http://phpied.com/');
"http%3A%2F%2Fphpied.com%2F"
> encodeURIComponent
 ('some script?key=v@lue');
"some%20script%3Fkey%3Dv%40lue"

decodeURIComponent() Takes a URL-encoded string and decodes it.

> decodeURIComponent('%20%40%20');
" @ "

Chapter 10

[779]

Function Description
encodeURI() URL-encodes the input, but assumes a full URL is given,

so returns a valid URL by not encoding the protocol (for
example, http://) and hostname (for example, www.
phpied.com).

> encodeURI('http://phpied.com/');
"http://phpied.com/"
> encodeURI('some script?key=v@lue');
"some%20script?key=v@lue"

decodeURI() Opposite of encodeURI().

> decodeURI("some%20script?key=v@lue");
"some script?key=v@lue"

eval() Accepts a string of JavaScript code and executes it.
Returns the result of the last expression in the input
string.

To be avoided where possible.

> eval('1 + 2');
3
> eval('parseInt("123")');
123
> eval('new Array(1, 2, 3)');
[1, 2, 3]
> eval('new Array(1, 2, 3); 1 + 2;');
3

Built-in Objects
This Appendix lists the built-in constructor functions outlined in the ECMAScript
(ES) standard, together with the properties and methods of the objects created by
these constructors. ES5-specific APIs are listed separately.

Object
Object() is a constructor that creates objects, for example:

> var o = new Object();

This is the same as using the object literal:

> var o = {}; // recommended

You can pass anything to the constructor and it will try to guess what it is and use a
more appropriate constructor. For example, passing a string to new Object() will be
the same as using the new String() constructor. This is not a recommended practice
(it's better to be explicit than let guesses creep in), but still possible.

> var o = new Object('something');
> o.constructor;
function String() { [native code] }

> var o = new Object(123);
> o.constructor;
function Number() { [native code] }

All other objects, built-in or custom, inherit from Object. So, the properties and
methods listed in the following sections apply to all types of objects.

Built-in Objects

[782]

Members of the Object constructor
Have a look at the following table:

Property/method Description
Object.prototype The prototype of all objects (also an object itself). Anything

you add to this prototype will be inherited by all other
objects, so be careful.

> var s = new String('noodles');
> Object.prototype.custom = 1;
1
> s.custom;
1

The Object.prototype members
Have a look at the following table:

Property/method Description
constructor Points back to the constructor function used to create

the object, in this case, Object.
> Object.prototype.constructor ===
Object;
true
> var o = new Object();
> o.constructor === Object;
true

toString(radix) Returns a string representation of the object. If the
object happens to be a Number object, the radix
parameter defines the base of the returned number.
The default radix is 10.

> var o = {prop: 1};
> o.toString();
"[object Object]"
> var n = new Number(255);
> n.toString();
"255"
> n.toString(16);
"ff"

Chapter 11

[783]

Property/method Description
toLocaleString() The same as toString(), but matching the

current locale. Meant to be customized by objects,
such as Date(), Number(), and Array() and
provide locale-specific values, such as different date
formatting. In the case of Object() instances as
with most other cases, it just calls toString().
In browsers, you can figure out the language using
the property language (or userLanguage in IE) of
the navigator BOM object:

> navigator.language;
"en-US"

valueOf() Returns a primitive representation of this, if
applicable. For example, Number objects return
a primitive number and Date objects return a
timestamp. If no suitable primitive makes sense, it
simply returns this.

> var o = {};
> typeof o.valueOf();
"object"
> o.valueOf() === o;
true
> var n = new Number(101);
> typeof n.valueOf();
"number"
> n.valueOf() === n;
false
> var d = new Date();
> typeof d.valueOf();
"number"
> d.valueOf();
1357840170137

Built-in Objects

[784]

Property/method Description
hasOwnProperty(prop) Returns true if a property is an own property of

the object, or false if it was inherited from the
prototype chain. Also returns false if the property
doesn't exist.

> var o = {prop: 1};
> o.hasOwnProperty('prop');
true
> o.hasOwnProperty('toString');
false
> o.hasOwnProperty('fromString');
false

isPrototypeOf(obj) Returns true if an object is used as a prototype of
another object. Any object from the prototype chain
can be tested, not only the direct creator.

> var s = new String('');
> Object.prototype.isPrototypeOf(s);
true
> String.prototype.isPrototypeOf(s);
true
> Array.prototype.isPrototypeOf(s);
false

propertyIsEnumerable(prop) Returns true if a property shows up in a for-in
loop.

> var a = [1, 2, 3];
> a.propertyIsEnumerable('length');
false
> a.propertyIsEnumerable(0);
true

ECMAScript 5 additions to Object
In ECMAScript 3 all object properties can be changed, added, or deleted at any time,
except for a few built-in properties (for example, Math.PI). In ES5 you have the
ability to define properties that cannot be changed or deleted—a privilege previously
reserved for built-ins. ES5 introduces the concept of property descriptors that give
you tighter control over the properties you define.

Chapter 11

[785]

Think of a property descriptor as an object that specifies the features of a property.
The syntax to describe these features is a regular object literal, so property
descriptors have properties and methods of their own, but let's call them
attributes to avoid confusion. The attributes are:

• value – what you get when you access the property
• writable – can you change this property
• enumerable – should it appear in for-in loops
• configurable – can you delete it
• set() – a function called any time you update the value
• get() – called when you access the value of the property

Further, there's a distinction between data descriptors (you define the properties
enumerable, configurable, value, and writable) and accessor descriptors (you
define enumerable, configurable, set(), and get()). If you define set() or get(),
the descriptor is considered an accessor and attempting to define value or writable
will raise an error.

Defining a regular old school ES3-style property:

var person = {};
person.legs = 2;

The same using an ES5 data descriptor:

var person = {};
Object.defineProperty(person, "legs", {
 value: 2,
 writable: true,
 configurable: true,
 enumerable: true
});

The value of value if set to undefined by default, all others are false. So, you need
to set them to true explicitly if you want to be able to change this property later.

Or, the same property using an ES5 accessor descriptor:

var person = {};
Object.defineProperty(person, "legs", {
 set: function (v) {this.value = v;},
 get: function (v) {return this.value;},
 configurable: true,
 enumerable: true
});
person.legs = 2;

Built-in Objects

[786]

As you can see property descriptors are a lot more code, so you only use them if you
really want to prevent someone from mangling your property, and also you forget
about backwards compatibility with ES3 browsers because, unlike additions to
Array.prototype for example, you cannot "shim" this feature in old browsers.

And the power of the descriptors in action (defining a nonmalleable property):

> var person = {};
> Object.defineProperty(person, 'heads', {value: 1});
> person.heads = 0;
0

> person.heads;
1

> delete person.heads;
false

> person.heads;
1

The following is a list of all ES5 additions to Object:

Property/method Description
Object.getPrototypeOf(obj) While in ES3 you have to guess what is the

prototype of a given object using the method
Object.prototype.isPrototypeOf(),
in ES5 you can directly ask "Who is your
prototype?"

> Object.getPrototypeOf([]) ===
 Array.prototype;
true

Chapter 11

[787]

Property/method Description
Object.create(obj, descr) Discussed in Chapter 6, Inheritance. Creates

a new object, sets its prototype and defines
properties of that object using property
descriptors (discussed earlier).

> var parent = {hi: 'Hello'};
> var o = Object.create(parent, {
 prop: {
 value: 1
 }
 });
> o.hi;
"Hello"

It even lets you create a completely blank
object, something you cannot do in ES3.

> var o = Object.create(null);
> typeof o.toString;
"undefined"

Object.
getOwnPropertyDescriptor(obj,
property)

Allows you to inspect how a property was
defined. You can even peek into the built-ins
and see all these previously hidden attributes.

> Object.getOwnPropertyDescriptor(
 Object.prototype, 'toString');
Object
configurable: true
enumerable: false
value: function toString() { [native code] }
writable: true

Object.
getOwnPropertyNames(obj)

Returns an array of all own property names
(as strings), enumerable or not. Use Object.
keys() to get only enumerable ones.

> Object.getOwnPropertyNames(
 Object.prototype);
["constructor", "toString", "toLocaleString",
"valueOf",...

Object.defineProperty(obj,
descriptor)

Defines a property of an object using a
property descriptor. See the discussion
preceding this table.

Built-in Objects

[788]

Property/method Description
Object.defineProperties(obj,
descriptors)

The same as defineProperty(), but lets you
define multiple properties at once.

> var glass =
 Object.defineProperties({}, {
 "color": {
 value: "transparent",
 writable: true
 },
 "fullness": {
 value: "half",
 writable: false
 }
 });

> glass.fullness;
"half"

Object.preventExtensions(obj)

Object.isExtensible(obj)

preventExtensions() disallows
adding further properties to an object and
isExtensible() checks whether you can
add properties.

> var deadline = {};
> Object.isExtensible(deadline);
true
> deadline.date = "yesterday";
"yesterday"
> Object.
preventExtensions(deadline);
> Object.isExtensible(deadline);
false
> deadline.date = "today";
"today"
> deadline.date;
"today"

Attempting to add properties to a non-
extensible object is not an error, but simply
doesn't work:

> deadline.report = true;
> deadline.report;
undefined

Chapter 11

[789]

Property/method Description
Object.seal(obj)

Object.isSealed(obj)

seal() does the same as
preventExtensions () and additionally
makes all existing properties non-configurable.
This means you can change the value of an
existing property, but you cannot delete it or
reconfigure it (using defineProperty()
won't work). So you cannot, for example, make
an enumerable property non-enumerable.

Object.freeze(obj)

Object.isFrozen(obj)

Everything that seal() does plus prevents
changing the values of properties.

> var deadline = Object.freeze(
 {date: "yesterday"});
> deadline.date = "tomorrow";
> deadline.excuse = "lame";
> deadline.date;
"yesterday"
> deadline.excuse;
undefined
> Object.isSealed(deadline);
true

Object.keys(obj) An alternative to a for-in loop. Returns
only own properties (unlike for-in).
The properties need to be enumerable
in order to show up (unlike Object.
getOwnPropertyNames()). The return value
is an array of strings.

> Object.prototype.customProto =
101;
> Object.getOwnPropertyNames(
 Object.prototype);
["constructor", "toString", ..., "customProto"]
> Object.keys(Object.prototype);
["customProto"]
> var o = {own: 202};
> o.customProto;
101
> Object.keys(o);
["own"]

Built-in Objects

[790]

Array
The Array constructor creates array objects:

> var a = new Array(1, 2, 3);

This is the same as the array literal:

> var a = [1, 2, 3]; //recommended

When you pass only one numeric value to the Array constructor, it's assumed to be
the array length.

> var un = new Array(3);
> un.length;
3

You get an array with the desired length and if you ask for the value of each of the
array elements, you get undefined.

> un;
[undefined, undefined, undefined]

There is a subtle difference between an array full of elements and an array with no
elements, but just length:

> '0' in a;
true

> '0' in un;
false

This difference in the Array() constructor's behavior when you specify one versus
more parameters can lead to unexpected behavior. For example, the following use of
the array literal is valid:

> var a = [3.14];
> a;
[3.14]

However, passing the floating-point number to the Array constructor is an error:

> var a = new Array(3.14);
Range Error: invalid array length

Chapter 11

[791]

The Array.prototype members
Property/method Description
length The number of elements in the array.

> [1, 2, 3, 4].length;
4

concat(i1, i2,
i3,...)

Merges arrays together.
> [1, 2].concat([3, 5], [7, 11]);
[1, 2, 3, 5, 7, 11]

join(separator) Turns an array into a string. The separator parameter is a string
with comma as the default value.
> [1, 2, 3].join();
"1,2,3"
> [1, 2, 3].join('|');
"1|2|3"
> [1, 2, 3].join(' is less than ');
"1 is less than 2 is less than 3"

pop() Removes the last element of the array and returns it.
> var a = ['une', 'deux', 'trois'];
> a.pop();
"trois"
> a;
["une", "deux"]

push(i1, i2,
i3,...)

Appends elements to the end of the array and returns the length of
the modified array.
> var a = [];
> a.push('zig', 'zag', 'zebra','zoo');
4

reverse() Reverses the elements of the array and returns the modified array.
> var a = [1, 2, 3];
> a.reverse();
[3, 2, 1]
> a;
[3, 2, 1]

Built-in Objects

[792]

Property/method Description
shift() Like pop() but removes the first element, not the last.

> var a = [1, 2, 3];
> a.shift();
1
> a;
[2, 3]

slice(start_
index, end_
index)

Extracts a piece of the array and returns it as a new array, without
modifying the source array.
> var a = ['apple', 'banana',
 'js', 'css', 'orange'];
> a.slice(2,4);
["js", "css"]
> a;
["apple", "banana", "js", "css", "orange"]

sort(callback) Sorts an array. Optionally accepts a callback function for custom
sorting. The callback function receives two array elements as
arguments and should return 0 if they are equal, a positive
number if the first is greater and a negative number if the second
is greater.
An example of a custom sorting function that does a proper
numeric sort (since the default is character sorting):
function customSort(a, b) {
 if (a > b) return 1;
 if (a < b) return -1;
 return 0;
}
Example use of sort():
> var a = [101, 99, 1, 5];
> a.sort();
 [1, 101, 5, 99]
> a.sort(customSort);
[1, 5, 99, 101]
> [7, 6, 5, 9].sort(customSort);
[5, 6, 7, 9]

Chapter 11

[793]

Property/method Description
splice(start,
delete_count,
i1, i2, i3,...)

Removes and adds elements at the same time. The first parameter
is where to start removing, the second is how many items to
remove and the rest of the parameters are new elements to be
inserted in the place of the removed ones.
> var a = ['apple', 'banana',
 'js', 'css', 'orange'];
> a.splice(2, 2, 'pear', 'pineapple');
["js", "css"]
> a;
["apple", "banana", "pear", "pineapple", "orange"]

unshift(i1, i2,
i3,...)

Like push() but adds the elements at the beginning of the array
as opposed to the end. Returns the length of the modified array.
> var a = [1, 2, 3];
> a.unshift('one', 'two');
5
> a;
["one", "two", 1, 2, 3]

Built-in Objects

[794]

ECMAScript 5 additions to Array
Property/method Description
Array.isArray(obj) Tells if an object is an array because typeof is not good

enough:
> var arraylike = {0: 101, length: 1};
> typeof arraylike;
"object"
> typeof [];
"object"

Neither is duck-typing (if it walks like a duck and quacks
like a duck, it must be a duck):

typeof arraylike.length;
"number"

In ES3 you need the verbose:
> Object.prototype.toString.call([]) ===
 "[object Array]";
true
> Object.prototype.toString.call
 (arraylike) === "[object Array]";
false

In ES5 you get the shorter:
Array.isArray([]);
true
Array.isArray(arraylike);
false

Array.prototype.
indexOf(needle, idx)

Searches the array and returns the index of the first match.
Returns -1 if there's no match. Optionally can search
starting from a specified index.
> var ar = ['one', 'two', 'one', 'two'];
> ar.indexOf('two');
1
> ar.indexOf('two', 2);
3
> ar.indexOf('toot');
-1

Chapter 11

[795]

Property/method Description
Array.prototype.
lastIndexOf(needle,
idx)

Like indexOf() only searches from the end.
> var ar = ['one', 'two', 'one', 'two'];
> ar.lastIndexOf('two');
3
> ar.lastIndexOf('two', 2);
1
> ar.indexOf('toot');
-1

Array.prototype.
forEach(callback,
this_obj)

An alternative to a for loop. You specify a callback
function that will be called for each element of the array.
The callback function gets the arguments: the element, its
index and the whole array.
> var log = console.log.bind(console);
> var ar = ['itsy', 'bitsy', 'spider'];
> ar.forEach(log);
itsy 0 ["itsy", "bitsy", "spider"]
bitsy 1 ["itsy", "bitsy", "spider"]
spider 2 ["itsy", "bitsy", "spider"]

Optionally, you can specify a second parameter: the object
to be bound to this inside the callback function. So this
works too:

> ar.forEach(console.log, console);

Built-in Objects

[796]

Property/method Description
Array.prototype.
every(callback, this_
obj)

You provide a callback function that tests each element of
the array. Your callback is given the same arguments as
forEach() and it must return true or false depending
on whether the given element satisfies your test.
If all elements satisfy your test, every() returns true. If at
least one doesn't, every() returns false.
> function hasEye(el, idx, ar) {
 return el.indexOf('i') !== -1;
 }

> ['itsy', 'bitsy', 'spider'].
 every(hasEye);
true
> ['eency', 'weency', 'spider'].
 every(hasEye);
false

If at some point during the loop it becomes clear that the
result will be false, the loop stops and returns false.

> [1,2,3].every(function (e) {
 console.log(e);
 return false;
 });
1
false

Array.prototype.
some(callback, this_
obj)

Like every() only it returns true if at least one element
satisfies your test:
> ['itsy', 'bitsy', 'spider'].
 some(hasEye);
true
> ['eency', 'weency', 'spider'].
 some(hasEye);
true

Array.prototype.
filter(callback,
this_obj)

Similar to some() and every() but it returns a new array of
all elements that satisfy your test:
> ['itsy', 'bitsy', 'spider'].
 filter(hasEye);
["itsy", "bitsy", "spider"]
> ['eency', 'weency', 'spider'].
 filter(hasEye);
["spider"]

Chapter 11

[797]

Property/method Description
Array.prototype.
map(callback, this_
obj)

Similar to forEach() because it executes a callback for
each element, but additionally it constructs a new array
with the returned values of your callback and returns it.
Let's capitalize all strings in an array:
> function uc(element, index, array) {
 return element.toUpperCase();
 }
> ['eency', 'weency', 'spider'].map(uc);
["EENCY", "WEENCY", "SPIDER"]

Array.prototype.
reduce(callback,
start)

Executes your callback for each element of the array. Your
callback returns a value. This value is passed back to
your callback with the next iteration. The whole array is
eventually reduced to a single value.
> function sum(res, element, idx, arr) {
 return res + element;
 }
> [1, 2, 3].reduce(sum);
6

Optionally, you can pass a start value which will be used
by the first callback call:

> [1, 2, 3].reduce(sum, 100);
106

Array.prototype.
reduceRight(callback,
start)

Like reduce() but loops from the end of the array.
> function concat(result_so_far, el) {
 return "" + result_so_far + el;
 }

> [1, 2, 3].reduce(concat);
"123"
> [1, 2, 3].reduceRight(concat);
"321"

Function
JavaScript functions are objects. They can be defined using the Function constructor,
like so:

var sum = new Function('a', 'b', 'return a + b;');

Built-in Objects

[798]

This is a (generally not recommended) alternative to the function literal (also known
as function expression):

var sum = function (a, b) {
 return a + b;
};

Or, the more common function definition:

function sum(a, b) {
 return a + b;
}

The Function.prototype members
Property/Method Description
apply(this_
obj, params_
array)

Allows you to call another function while overwriting the other
function's this value. The first parameter that apply() accepts is the
object to be bound to this inside the function and the second is an
array of arguments to be send to the function being called.

function whatIsIt(){
 return this.toString();
}
> var myObj = {};
> whatIsIt.apply(myObj);
"[object Object]"
> whatIsIt.apply(window);
"[object Window]"

call(this_obj,
p1, p2, p3,
...)

The same as apply() but accepts arguments one by one, as opposed
to as one array.

length The number of parameters the function expects.
> parseInt.length;
2

If you forget the difference between call() and apply():
> Function.prototype.call.length;
1
> Function.prototype.apply.length;
2

The call() property's length is 1 because all arguments except the first
one are optional.

Chapter 11

[799]

ECMAScript 5 additions to a function
Property/method Description
Function.
prototype.
bind()

When you want to call a function that uses this internally and you
want to define what this is. The methods call() and apply()
invoke the function while bind() returns a new function. Useful
when you provide a method as a callback to a method of another
object and and you want this to be an object of your choice.

> whatIsIt.apply(window);
"[object Window]"

Boolean
The Boolean constructor creates Boolean objects (not to be confused with Boolean
primitives). The Boolean objects are not that useful and are listed here for the sake
of completeness.

> var b = new Boolean();
> b.valueOf();
false

> b.toString();
"false"

A Boolean object is not the same as a Boolean primitive value. As you know, all
objects are truthy:

> b === false;
false

> typeof b;
"object"

Boolean objects don't have any properties other than the ones inherited from Object.

Number
This creates number objects:

> var n = new Number(101);
> typeof n;
"object"

> n.valueOf();
101

Built-in Objects

[800]

The Number objects are not primitive objects, but if you use any Number.prototype
method on a primitive number, the primitive will be converted to a Number object
behind the scenes and the code will work.

> var n = 123;
> typeof n;
"number"

> n.toString();
"123"

Used without new, the Number constructor returns a primitive number.

> Number("101");
101

> typeof Number("101");
"number"

> typeof new Number("101");
"object"

Members of the Number constructor
Property/method Description
Number.MAX_VALUE A constant property (cannot be changed) that contains

the maximum allowed number.
> Number.MAX_VALUE;
1.7976931348623157e+308

Number.MIN_VALUE The smallest number you can work with in JavaScript.
> Number.MIN_VALUE;
5e-324

Number.NaN Contains the Not A Number number. The same as the
global NaN.

> Number.NaN;
NaN

NaN is not equal to anything including itself.
> Number.NaN === Number.NaN;
false

Number.POSITIVE_INFINITY The same as the global Infinity number.
Number.NEGATIVE_INFINITY The same as -Infinity.

Chapter 11

[801]

The Number.prototype members
Property/method Description
toFixed(fractionDigits) Returns a string with the fixed-point representation of

the number. Rounds the returned value.
> var n = new Number(Math.PI);
> n.valueOf();
3.141592653589793
> n.toFixed(3);
"3.142"

toExponential
(fractionDigits)

Returns a string with exponential notation representation
of the number object. Rounds the returned value.
> var n = new Number(56789);
> n.toExponential(2);
"5.68e+4"

toPrecision(precision) String representation of a number object, either
exponential or fixed-point, depending on the number
object.
> var n = new Number(56789);
> n.toPrecision(2);
"5.7e+4"
> n.toPrecision(5);
"56789"
> n.toPrecision(4);
"5.679e+4"
> var n = new Number(Math.PI);
> n.toPrecision(4);
"3.142"

String
The String() constructor creates string objects. Primitive strings are turned into
objects behind the scenes if you call a method on them as if they were objects.
Omitting new gives you primitive strings.

Creating a string object and a string primitive:

> var s_obj = new String('potatoes');
> var s_prim = 'potatoes';
> typeof s_obj;
"object"

Built-in Objects

[802]

> typeof s_prim;
"string"

The object and the primitive are not equal when compared by type with ===, but
they are when compared with == which does type coercion:

> s_obj === s_prim;
false

> s_obj == s_prim;
true

length is a property of the string objects:

> s_obj.length;
8

If you access length on a primitive string, the primitive is converted to an object
behind the scenes and the operation is successful:

> s_prim.length;
8

String literals work fine too:

> "giraffe".length;
7

Members of the String constructor
Property/method Description
String.fromCharCode
(code1, code2,
code3, ...)

Returns a string created using the Unicode values of the
input:

> String.fromCharCode(115, 99, 114,
 105, 112, 116);
"script"

Chapter 11

[803]

The String.prototype members
Property/method Description
length The number of characters in the string.

> new String('four').length;
4

charAt(position) Returns the character at the specified position.
Positions start at 0.
> "script".charAt(0);
"s"

Since ES5, it's also possible to use array notation for the same
purpose. (This feature has been long supported in many
browsers before ES5, but not IE)

> "script"[0];
"s"

charCodeAt(position) Returns the numeric code (Unicode) of the character at the
specified position.
> "script".charCodeAt(0);
115

concat(str1, str2,
....)

Return a new string glued from the input pieces.
> "".concat('zig', '-', 'zag');
"zig-zag"

indexOf(needle,
start)

If the needle matches a part of the string, the position of the
match is returned. The optional second parameter defines
where the search should start from. Returns -1 if no match
is found.
> "javascript".indexOf('scr');
4
> "javascript".indexOf('scr', 5);
-1

lastIndexOf(needle,
start)

Same as indexOf() but starts the search from the end of
the string. The last occurrence of a:
> "javascript".lastIndexOf('a');
3

Built-in Objects

[804]

Property/method Description
localeCompare
(needle)

Compares two strings in the current locale. Returns 0 if the
two strings are equal, 1 if the needle gets sorted before the
string object, -1 otherwise.
> "script".localeCompare('crypt');
1
> "script".localeCompare('sscript');
-1
> "script".localeCompare('script');
0

match(regexp) Accepts a regular expression object and returns an array of
matches.
> "R2-D2 and C-3PO".match(/[0-9]/g);
["2", "2", "3"]

replace(needle,
replacement)

Allows you to replace the matching results of a regexp
pattern. The replacement can also be a callback function.
Capturing groups are available as $1, $2,...$9.
> "R2-D2".replace(/2/g, '-two');
"R-two-D-two"
> "R2-D2".replace(/(2)/g, '$1$1');
"R22-D22"

search(regexp) Returns the position of the first regular expression match.
> "C-3PO".search(/[0-9]/);
2

slice(start, end) Returns the part of a string identified by the start and end
positions. If start is negative, the start position is length
+ start, similarly if the end parameter is negative, the end
position is length + end.
> "R2-D2 and C-3PO".slice(4, 13);
"2 and C-3"
> "R2-D2 and C-3PO".slice(4, -1);
"2 and C-3P"

split(separator,
limit)

Turns a string into an array. The second parameter, limit, is
optional. As with replace(), search(), and match(),
the separator is a regular expression but can also be a string.
> "1,2,3,4".split(/,/);
["1", "2", "3", "4"]
> "1,2,3,4".split(',', 2);
["1", "2"]

Chapter 11

[805]

Property/method Description
substring(start,
end)

Similar to slice(). When start or end are negative or
invalid, they are considered 0. If they are greater than the
string length, they are considered to be the length. If end is
greater than start, their values are swapped.
> "R2-D2 and C-3PO".substring(4, 13);

"2 and C-3"
> "R2-D2 and C-3PO".substring(13, 4);

"2 and C-3"
toLowerCase()

toLocaleLowerCase()

Transforms the string to lowercase.
> "Java".toLowerCase();
"java"

toUpperCase()

toLocaleUpperCase()

Transforms the string to uppercase.
> "Script".toUpperCase();
"SCRIPT"

ECMAScript 5 additions to String
Property/method Description
String.prototype.
trim()

Instead of using a regular expression to remove whitespace
before and after a string (as in ES3), you have a trim()
method in ES5.

> " \t beard \n".trim();
"beard"
Or in ES3:
> " \t beard \n".replace(/\s/g, "");
"beard"

Date
The Date constructor can be used with several types of input:

You can pass values for year, month, date of the month, hour, minute, second, and
millisecond, like so:

> new Date(2015, 0, 1, 13, 30, 35, 505);
Thu Jan 01 2015 13:30:35 GMT-0800 (PST)

• You can skip any of the input parameters, in which case they are assumed to
be 0. Note that month values are from 0 (January) to 11 (December), hours
are from 0 to 23, minutes and seconds 0 to 59, and milliseconds 0 to 999.

Built-in Objects

[806]

• You can pass a timestamp:
> new Date(1420147835505);
Thu Jan 01 2015 13:30:35 GMT-0800 (PST)

• If you don't pass anything, the current date/time is assumed:
> new Date();
Fri Jan 11 2013 12:20:45 GMT-0800 (PST)

• If you pass a string, it's parsed in an attempt to extract a possible date value:
> new Date('May 4, 2015');
Mon May 04 2015 00:00:00 GMT-0700 (PDT)

Omitting new gives you a string version of the current date:

> Date() === new Date().toString();
true

Members of the Date constructor
Property/method Description
Date.parse(string) Similar to passing a string to new Date()

constructor, this method parses the input string in
an attempt to extract a valid date value. Returns a
timestamp on success, NaN on failure:

> Date.parse('May 5, 2015');
1430809200000
> Date.parse('4th');
NaN

Date.UTC(year, month, date,
hours, minutes, seconds, ms)

Returns a timestamp but in UTC (Coordinated
Universal Time), not in local time.

> Date.UTC
 (2015, 0, 1, 13, 30, 35, 505);
1420119035505

Chapter 11

[807]

The Date.prototype members
Property/method Description/example
toUTCString() Same as toString() but in universal time. Here's

how Pacific Standard (PST) local time differs from
UTC:

> var d = new Date(2015, 0, 1);
> d.toString();
"Thu Jan 01 2015 00:00:00 GMT-0800 (PST)"
> d.toUTCString();
"Thu, 01 Jan 2015 08:00:00 GMT"

toDateString() Returns only the date portion of toString():
> new Date(2015, 0, 1).toDateString();
"Thu Jan 01 2010"

toTimeString() Returns only the time portion of toString():
> new Date(2015, 0, 1).toTimeString();
"00:00:00 GMT-0800 (PST)"

toLocaleString()

toLocaleDateString()

toLocaleTimeString()

Equivalent to toString(), toDateString(), and
toTimeString() respectively, but in a friendlier
format, according to the current user's locale.

> new Date(2015, 0, 1).toString();
"Thu Jan 01 2015 00:00:00 GMT-0800 (PST)"
> new Date(2015, 0, 1).toLocaleString();
"1/1/2015 12:00:00 AM"

getTime()

setTime(time)

Get or set the time (using a timestamp) of a date
object. The following example creates a date and
moves it one day forward:

> var d = new Date(2015, 0, 1);
> d.getTime();
1420099200000
> d.setTime(d.getTime()
 + 1000 * 60 * 60 * 24);
1420185600000
> d.toLocaleString();
"Fri Jan 02 2015 00:00:00 GMT-0800 (PST)"

Built-in Objects

[808]

Property/method Description/example
getFullYear()

getUTCFullYear()

setFullYear(year, month,
date)

setUTCFullYear(year,
month, date)

Get or set a full year using local or UTC time. There
is also getYear() but it is not Y2K compliant, so use
getFullYear() instead.

> var d = new Date(2015, 0, 1);
> d.getYear();
115
> d.getFullYear();
2015
> d.setFullYear(2020);
1577865600000
> d;
Wed Jan 01 2020 00:00:00 GMT-0800 (PST)

getMonth()

getUTCMonth()

setMonth(month, date)

setUTCMonth(month, date)

Get or set the month, starting from 0 (January):
> var d = new Date(2015, 0, 1);
> d.getMonth();
0
> d.setMonth(11);
1448956800000
> d.toLocaleDateString();
"12/1/2015"

getDate()

getUTCDate()

setDate(date)

setUTCDate(date)

Get or set the date of the month.
> var d = new Date(2015, 0, 1);
> d.toLocaleDateString();
"1/1/2015"
> d.getDate();
1
> d.setDate(31);
1422691200000
> d.toLocaleDateString();
"1/31/2015"

Chapter 11

[809]

Property/method Description/example
getHours()

getUTCHours()

setHours(hour, min, sec,
ms)

setUTCHours(hour, min,
sec, ms)

getMinutes()

getUTCMinutes()

setMinutes(min, sec, ms)

setUTCMinutes(min, sec,
ms)

getSeconds()

getUTCSeconds()

setSeconds(sec, ms)

setUTCSeconds(sec, ms)

getMilliseconds()

getUTCMilliseconds()

setMilliseconds(ms)

setUTCMilliseconds(ms)

Get or set the hour, minutes, seconds, milliseconds, all
starting from 0.

> var d = new Date(2015, 0, 1);
> d.getHours() + ':' + d.getMinutes();
"0:0"
> d.setMinutes(59);
1420102740000
> d.getHours() + ':' + d.getMinutes();
"0:59"

getTimezoneOffset() Returns the difference between local and universal
(UTC) time, measured in minutes. For example, the
difference between PST (Pacific Standard Time) and
UTC:

> new Date().getTimezoneOffset();
480
> 420 / 60; // hours
8

Built-in Objects

[810]

Property/method Description/example
getDay()

getUTCDay()

Returns the day of the week, starting from 0 (Sunday):
> var d = new Date(2015, 0, 1);
> d.toDateString();
"Thu Jan 01 2015"
> d.getDay();
4
> var d = new Date(2015, 0, 4);
> d.toDateString();
"Sat Jan 04 2015"
> d.getDay();
0

ECMAScript 5 additions to Date
Property/method Description
Date.now() A convenient way to get the current timestamp:

> Date.now() === new Date().getTime();
true

Date.prototype.
toISOString()

Yet another toString().
> var d = new Date(2015, 0, 1);
> d.toString();
"Thu Jan 01 2015 00:00:00 GMT-0800 (PST)"
> d.toUTCString();
"Thu, 01 Jan 2015 08:00:00 GMT"
> d.toISOString();
"2015-01-01T00:00:00.000Z"

Date.prototype.
toJSON()

Used by JSON.stringify() (refer to the end of this appendix)
and returns the same as toISOString().

> var d = new Date();
> d.toJSON() === d.toISOString();
true

Chapter 11

[811]

Math
Math is different from the other built-in objects because it cannot be used as a
constructor to create objects. It's just a collection of static functions and constants.
Some examples to illustrate the differences are as follows:

> typeof Date.prototype;
"object"

> typeof Math.prototype;
"undefined"

> typeof String;
"function"

> typeof Math;
"object"

Members of the Math object
Property/method Description
Math.E

Math.LN10

Math.LN2

Math.LOG2E

Math.LOG10E

Math.PI

Math.SQRT1_2

Math.SQRT2

These are some useful math constants, all read-only. Here are
their values:

> Math.E;
2.718281828459045
> Math.LN10;
2.302585092994046
> Math.LN2;
0.6931471805599453
> Math.LOG2E;
1.4426950408889634
> Math.LOG10E;
0.4342944819032518
> Math.PI;
3.141592653589793
> Math.SQRT1_2;
0.7071067811865476
> Math.SQRT2;
1.4142135623730951

Built-in Objects

[812]

Property/method Description
Math.acos(x)

Math.asin(x)

Math.atan(x)

Math.atan2(y, x)

Math.cos(x)

Math.sin(x)

Math.tan(x)

Trigonometric functions

Math.round(x)

Math.floor(x)

Math.ceil(x)

round() gives you the nearest integer, ceil() rounds up,
and floor() rounds down:

> Math.round(5.5);
6
> Math.floor(5.5);
5
> Math.ceil(5.1);
6

Math.max(num1,
num2, num3, ...)

Math.min(num1,
num2, num3, ...)

max() returns the largest and min() returns the smallest of
the numbers passed to them as arguments. If at least one of the
input parameters is NaN, the result is also NaN.

> Math.max(4.5, 101, Math.PI);
101
> Math.min(4.5, 101, Math.PI);
3.141592653589793

Math.abs(x) Absolute value.
> Math.abs(-101);
101
> Math.abs(101);
101

Math.exp(x) Exponential function: Math.E to the power of x.
> Math.exp(1) === Math.E;
true

Math.log(x) Natural logarithm of x.
> Math.log(10) === Math.LN10;
true

Chapter 11

[813]

Property/method Description
Math.sqrt(x) Square root of x.

> Math.sqrt(9);
3
> Math.sqrt(2) === Math.SQRT2;
true

Math.pow(x, y) x to the power of y.
> Math.pow(3, 2);
9

Math.random() Random number between 0 and 1 (including 0).
> Math.random();
0.8279076443185321
For an random integer in a range, say between
10 and 100:
> Math.round(Math.random() * 90 + 10);
79

RegExp
You can create a regular expression object using the RegExp() constructor. You pass
the expression pattern as the first parameter and the pattern modifiers as the second.

> var re = new RegExp('[dn]o+dle', 'gmi');

This matches "noodle", "doodle", "doooodle", and so on. It's equivalent to using the
regular expression literal:

> var re = ('/[dn]o+dle/gmi'); // recommended

Chapter 4, Objects and Chapter 12, Regular Expressions contains more information on
regular expressions and patterns.

The RegExp.prototype members
Property/method Description
global Read-only. true if the g modifier was set when creating the regexp

object.
ignoreCase Read-only. true if the i modifier was set when creating the regexp

object.
multiline Read-only. true if the m modifier was set when creating the regexp

object

Built-in Objects

[814]

Property/method Description
lastIndex Contains the position in the string where the next match should start.

test() and exec() set this position after a successful match. Only
relevant when the g (global) modifier was used.
> var re = /[dn]o+dle/g;
> re.lastIndex;
0
> re.exec("noodle doodle");
["noodle"]
> re.lastIndex;
6
> re.exec("noodle doodle");
["doodle"]
> re.lastIndex;
13
> re.exec("noodle doodle");
null
> re.lastIndex;
0

source Read-only. Returns the regular expression pattern (without the
modifiers).
> var re = /[nd]o+dle/gmi;
> re.source;
"[nd]o+dle"

exec(string) Matches the input string with the regular expression. A successful match
returns an array containing the match and any capturing groups. With
the g modifier, it matches the first occurrence and sets the lastIndex
property. Returns null when there's no match.
> var re = /([dn])(o+)dle/g;
> re.exec("noodle doodle");
["noodle", "n", "oo"]
> re.exec("noodle doodle");
["doodle", "d", "oo"]

The arrays returned by exec() have two additional properties: index (of
the match) and input (the input string being searched).

test(string) Same as exec() but only returns true or false.
> /noo/.test('Noodle');
false
> /noo/i.test('Noodle');
true

Chapter 11

[815]

Error objects
Error objects are created either by the environment (the browser) or by your code.

> var e = new Error('jaavcsritp is _not_ how you spell it');
> typeof e;
"object"

Other than the Error constructor, six additional ones exist and they all inherit Error:

• EvalError

• RangeError

• ReferenceError

• SyntaxError

• TypeError

• URIError

The Error.prototype members
Property Description
name The name of the error constructor used to create the object:

> var e = new EvalError('Oops');
> e.name;
"EvalError"

message Additional error information:
> var e = new Error('Oops... again');
> e.message;
"Oops... again"

JSON
The JSON object is new to ES5. It's not a constructor (similarly to Math) and has only
two methods: parse() and stringify(). For ES3 browsers that don't support JSON
natively, you can use the "shim" from http://json.org.

JSON stands for JavaScript Object Notation. It's a lightweight data interchange
format. It's a subset of JavaScript that only supports primitives, object literals, and
array literals.

Built-in Objects

[816]

Members of the JSON object
Method Description
parse(text,
callback)

Takes a JSON-encoded string and returns an object:
> var data = '{"hello": 1, "hi": [1, 2, 3]}';
> var o = JSON.parse(data);
> o.hello;
1
> o.hi;
[1, 2, 3]

The optional callback lets you provide your own function that can
inspect and modify the result. The callback takes key and value
arguments and can modify the value or delete it (by returning
undefined).

> function callback(key, value) {
 console.log(key, value);
 if (key === 'hello') {
 return 'bonjour';
 }
 if (key === 'hi') {
 return undefined;
 }
 return value;
 }

> var o = JSON.parse(data, callback);
hello 1
0 1
1 2
2 3
hi [1, 2, 3]
Object {hello: "bonjour"}
> o.hello;
"bonjour"
> 'hi' in o;
false

Chapter 11

[817]

Method Description
stringify
(value,
callback,
white)

Takes any value (most commonly an object or an array) and encodes it
to a JSON string.

> var o = {
 hello: 1,
 hi: 2,
 when: new Date(2015, 0, 1)
 };

> JSON.stringify(o);
"{"hello":1,"hi":2,"when":"2015-01-01T08:00:00.000Z"}"

The second parameter lets you provide a callback (or a whitelist array)
to customize the return value. The whitelist contains the keys you're
interested in:

JSON.stringify(o, ['hello', 'hi']);
"{"hello":1,"hi":2}"

The last parameter helps you get a human-readable version. You
specify the number of spaces as a string or a number.

> JSON.stringify(o, null, 4);
"{
"hello": 1,
"hi": 2,
"when": "2015-01-01T08:00:00.000Z"
}"

Regular Expressions
When you use regular expressions (discussed in Chapter 4, Objects), you can match
literal strings, for example:

> "some text".match(/me/);
["me"]

But, the true power of regular expressions comes from matching patterns, not
literal strings. The following table describes the different syntax you can use in your
patterns, and provides some examples of their use:

Pattern Description
[abc] Matches a class of characters.

> "some text".match(/[otx]/g);
["o", "t", "x", "t"]

[a-z] A class of characters defined as a range. For example, [a-d] is the same as
[abcd], [a-z] matches all lowercase characters, [a-zA-Z0-9_] matches all
characters, numbers, and the underscore character.
> "Some Text".match(/[a-z]/g);
["o", "m", "e", "e", "x", "t"]
> "Some Text".match(/[a-zA-Z]/g);
["S", "o", "m", "e", "T", "e", "x", "t"]

[^abc] Matches everything that is not matched by the class of characters.
> "Some Text".match(/[^a-z]/g);
["S", " ", "T"]

Regular Expressions

[820]

Pattern Description
a|b Matches a or b. The pipe character means OR, and it can be used more

than once.
> "Some Text".match(/t|T/g);
["T", "t"]
> "Some Text".match(/t|T|Some/g);
["Some", "T", "t"]

a(?=b) Matches a only if followed by b.
> "Some Text".match(/Some(?=Tex)/g);
null
> "Some Text".match(/Some(?= Tex)/g);
["Some"]

a(?!b) Matches a only when not followed by b.
> "Some Text".match(/Some(?! Tex)/g);
null
> "Some Text".match(/Some(?!Tex)/g);
["Some"]

\ Escape character used to help you match the special characters used in
patterns as literals.
> "R2-D2".match(/[2-3]/g);

["2", "2"]
> "R2-D2".match(/[2\-3]/g);

["2", "-", "2"]
\n

\r

\f

\t

\v

New line
Carriage return
Form feed
Tab
Vertical tab

\s White space, or any of the previous five escape sequences.
> "R2\n D2".match(/\s/g);
["\n", " "]

\S Opposite of the above; matches everything but white space. Same as [^\s]:
> "R2\n D2".match(/\S/g);
["R", "2", "D", "2"]

\w Any letter, number, or underscore. Same as [A-Za-z0-9_].
> "S0m3 text!".match(/\w/g);
["S", "0", "m", "3", "t", "e", "x", "t"]

Chapter 12

[821]

Pattern Description
\W Opposite of \w.

> "S0m3 text!".match(/\W/g);
[" ", "!"]

\d Matches a number, same as [0-9].
> "R2-D2 and C-3PO".match(/\d/g);

["2", "2", "3"]
\D Opposite of \d; matches non-numbers, same as [^0-9] or [^\d].

> "R2-D2 and C-3PO".match(/\D/g);
["R", "-", "D", " ", "a", "n", "d", " ", "C", "-", "P", "O"]

\b Matches a word boundary such as space or punctuation.
Matching R or D followed by 2:
> "R2D2 and C-3PO".match(/[RD]2/g);
["R2", "D2"]

Same as above but only at the end of a word:
> "R2D2 and C-3PO".match(/[RD]2\b/g);
["D2"]

Same pattern but the input has a dash, which is also an end of a word:
> "R2-D2 and C-3PO".match(/[RD]2\b/g);
["R2", "D2"]

\B The opposite of \b.
> "R2-D2 and C-3PO".match(/[RD]2\B/g);
null
> "R2D2 and C-3PO".match(/[RD]2\B/g);
["R2"]

[\b] Matches the backspace character.
\0 The null character.
\u0000 Matches a Unicode character, represented by a four-digit hexadecimal

number.
> "стоян".match(/\u0441\u0442\u043E/);
["сто"]

\x00 Matches a character code represented by a two-digit hexadecimal number.
> "\x64";
"d"

> "dude".match(/\x64/g);
["d", "d"]

Regular Expressions

[822]

Pattern Description
^ The beginning of the string to be matched. If you set the m modifier

(multi-line), it matches the beginning of each line.
> "regular\nregular\nexpression".match(/r/g);
["r", "r", "r", "r", "r"]
> "regular\nregular\nexpression".match(/^r/g);
["r"]
> "regular\nregular\nexpression".match(/^r/mg);
["r", "r"]

$ Matches the end of the input or, when using the multiline modifier, the
end of each line.
> "regular\nregular\nexpression".match(/r$/g);
null
> "regular\nregular\nexpression".match(/r$/mg);
["r", "r"]

. Matches any single character except for the new line and the line feed.
> "regular".match(/r./g);
["re"]
> "regular".match(/r.../g);
["regu"]

* Matches the preceding pattern if it occurs zero or more times. For
example, /.*/ will match anything including nothing (an empty input).
> "".match(/.*/);
[""]
> "anything".match(/.*/);
["anything"]
> "anything".match(/n.*h/);
["nyth"]

Keep in mind that the pattern is "greedy", meaning it will match as much
as possible:

> "anything within".match(/n.*h/g);
["nything with"]

? Matches the preceding pattern if it occurs zero or one times.
> "anything".match(/ny?/g);
["ny", "n"]

Chapter 12

[823]

Pattern Description
+ Matches the preceding pattern if it occurs at least once (or more times).

> "anything".match(/ny+/g);
["ny"]
> "R2-D2 and C-3PO".match(/[a-z]/gi);
["R", "D", "a", "n", "d", "C", "P", "O"]
> "R2-D2 and C-3PO".match(/[a-z]+/gi);
["R", "D", "and", "C", "PO"]

{n} Matches the preceding pattern if it occurs exactly n times.
> "regular expression".match(/s/g);
["s", "s"]
> "regular expression".match(/s{2}/g);
["ss"]
> "regular expression".match(/\b\w{3}/g);
["reg", "exp"]

{min,max} Matches the preceding pattern if it occurs between a min and max number
of times. You can omit max, which will mean no maximum, but only a
minimum. You cannot omit min.
An example where the input is "doodle" with the "o" repeated 10 times:
> "doooooooooodle".match(/o/g);
["o", "o", "o", "o", "o", "o", "o", "o", "o", "o"]
> "doooooooooodle".match(/o/g).length;
10
> "doooooooooodle".match(/o{2}/g);
["oo", "oo", "oo", "oo", "oo"]
> "doooooooooodle".match(/o{2,}/g);
["oooooooooo"]
> "doooooooooodle".match(/o{2,6}/g);
["oooooo", "oooo"]

(pattern) When the pattern is in parentheses, it is remembered so that it can be used
for replacements. These are also known as capturing patterns.
The captured matches are available as $1, $2,... $9
Matching all "r" occurrences and repeating them:
> "regular expression".replace(/(r)/g, '$1$1');
"rregularr exprression"

Matching "re" and turning it to "er":
> "regular expression".replace(/(r)(e)/g, '$2$1');
"ergular experssion"

Regular Expressions

[824]

Pattern Description
(?:pattern) Non-capturing pattern, not remembered and not available in $1, $2...

Here's an example of how "re" is matched, but the "r" is not remembered
and the second pattern becomes $1:
> "regular expression".replace(/(?:r)(e)/g, '$1$1');
"eegular expeession"

Make sure you pay attention when a special character can have two meanings, as is
the case with ^, ?, and \b.

[825]

Biblography
This course is a blend of text and quizzes, all packaged up keeping your journey in
mind. It includes content from the following Packt products:

• Mastering Javascript, Ved Antani
• Learning Object-Oriented Programming, Gastón C. Hillar
• Object-Oriented JavaScript - Second Edition , Stoyan Stefanov & Kumar

Chetan Sharma

Thank you for buying
Javascript: Object Oriented Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Preface
	Mastering JavaScript
	JavaScript Primer
	A little bit of history
	How to use this book
	Hello World
	Summary

	Functions, Closures,
and Modules
	A function literal
	Functions as data
	Scoping
	Function declarations versus function expressions
	The arguments parameter
	Anonymous functions
	Closures
	Timers and callbacks
	Private variables
	Loops and closures
	Modules
	Summary

	Data Structures and Manipulation
	Regular expressions
	Exact match
	Match from a class of characters
	Repeated occurrences
	Beginning and end
	Backreferences
	Greedy and lazy quantifiers
	Arrays
	Maps
	Sets
	A matter of style
	Summary

	Object-Oriented JavaScript
	Understanding objects
	Instance properties versus prototype properties
	Inheritance
	Getters and setters
	Summary

	JavaScript Patterns
	Design patterns
	The namespace pattern
	The module pattern
	The factory pattern
	The mixin pattern
	The decorator pattern
	The observer pattern
	JavaScript Model-View-* patterns
	The Model-View-Presenter pattern
	Model-View-ViewModel
	Summary

	Testing and Debugging
	Unit testing
	JavaScript debugging
	Summary

	ECMAScript 6
	Shims or polyfills
	Transpilers
	ES6 syntax changes
	Summary

	DOM Manipulation
and Events
	DOM
	Chaining
	Traversal and manipulation
	Working with browser events
	Propagation
	jQuery event handling and propagation
	Event delegation
	The event object
	Summary

	Server-Side JavaScript
	An asynchronous evented-model in a browser
	Callbacks
	Timers
	EventEmitters
	Modules
	npm
	JavaScript performance
	Summary

	Objects Everywhere
	Recognizing objects from nouns
	Generating blueprints for objects
	Recognizing attributes/fields
	Recognizing actions from
verbs – methods
	Organizing the blueprints – classes
	Object-oriented approaches in Python, JavaScript, and C#
	Summary

	Classes and Instances
	Understanding classes and instances
	Understanding constructors and destructors
	Declaring classes in Python
	Customizing constructors in Python
	Customizing destructors in Python
	Creating instances of classes in Python
	Declaring classes in C#
	Customizing constructors in C#
	Customizing destructors in C#
	Creating instances of classes in C#
	Understanding that functions are objects in JavaScript
	Working with constructor functions in JavaScript
	Creating instances in JavaScript
	Summary

	Encapsulation of Data
	Understanding the different members of a class
	Protecting and hiding data
	Working with properties
	Understanding the difference between mutability and immutability
	Encapsulating data in Python
	Encapsulating data in C#
	Encapsulating data in JavaScript
	Summary

	Inheritance and Specialization
	Using classes to abstract behavior
	Understanding inheritance
	Understanding method overloading and overriding
	Understanding operator overloading
	Taking advantage of polymorphism
	Working with simple inheritance in Python
	Working with simple inheritance in C#
	Working with the prototype-based inheritance in JavaScript
	Summary

	Interfaces, Multiple Inheritance, and Composition
	Understanding the requirement to work with multiple base classes
	Working with multiple inheritance in Python
	Interfaces and multiple inheritance in C#
	Working with composition in JavaScript
	Summary

	Duck Typing and Generics
	Understanding parametric polymorphism and duck typing
	Working with duck typing in Python
	Working with generics in C#
	Working with duck typing in JavaScript
	Summary

	Organization of
Object-Oriented Code
	Thinking about the best ways to organize code
	Organizing object-oriented code in Python
	Organizing object-oriented code in C#
	Organizing object-oriented code in JavaScript
	Summary

	Taking Full Advantage of Object-Oriented Programming
	Putting together all the pieces of the object-oriented puzzle
	Refactoring existing code in Python
	Refactoring existing code in C#
	Refactoring existing code in JavaScript
	Summary

	Object-oriented JavaScript
	A bit of history
	ECMAScript 5
	Object-oriented programming
	Setting up your training environment
	Summary

	Primitive Data Types, Arrays, Loops, and Conditions
	Variables
	Operators
	Primitive data types
	Strings
	Booleans
	Logical operators
	Comparison
	Primitive data types recap
	Arrays
	Conditions and loops
	Code blocks
	Switch
	Loops
	Comments
	Summary
	Exercises

	Functions
	What is a function?
	Scope of variables
	Functions are data
	Closures
	Summary
	Exercises

	Objects
	From arrays to objects
	Built-in objects
	Summary
	Exercises

	Prototype
	The prototype property
	Using the prototype's methods and properties
	Augmenting built-in objects
	Summary
	Exercises

	Inheritance
	Prototype chaining
	Inheriting the prototype only
	Uber – access to the parent from a child object
	Isolating the inheritance part into a function
	Copying properties
	Heads-up when copying by reference
	Objects inherit from objects
	Deep copy
	object()
	Using a mix of prototypal inheritance and copying properties
	Multiple inheritance
	Parasitic inheritance
	Borrowing a constructor
	Summary
	Case study – drawing shapes
	Exercises

	The Browser Environment
	Including JavaScript in an HTML page
	BOM and DOM – an overview
	BOM
	DOM
	Events
	XMLHttpRequest
	Summary
	Exercises

	Coding and Design Patterns
	Coding patterns
	Design patterns
	Summary

	Reserved Words
	Keywords
	Future reserved words
	Previously reserved words

	Built-in Functions
	Built-in Objects
	Object
	Array
	Function
	Boolean
	Number
	String
	Date
	Math
	RegExp
	Error objects
	JSON

	Regular Expressions
	Biblography

