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This book is intended as a modern physics text for science majors and engi-
neering students who have already completed an introductory calculus-based
physics course. The contents of this text may be subdivided into two broad cat-
egories: an introduction to the theories of relativity, quantum and statistical
physics (Chapters 1 through 10) and applications of elementary quantum the-
ory to molecular, solid-state, nuclear, and particle physics (Chapters 11
through 16).

OBJECTIVES

Our basic objectives in this book are threefold:

1. To provide simple, clear, and mathematically uncomplicated explana-
tions of physical concepts and theories of modern physics.

2. To clarify and show support for these theories through a broad range of
current applications and examples. In this regard, we have attempted to
answer questions such as: What holds molecules together? How do elec-
trons tunnel through barriers? How do electrons move through solids?
How can currents persist indefinitely in superconductors?

3. To enliven and humanize the text with brief sketches of the historical de-
velopment of 20th century physics, including anecdotes and quotations
from the key figures as well as interesting photographs of noted scientists
and original apparatus.

COVERAGE

Topics. The material covered in this book is concerned with fundamental
topics in modern physics with extensive applications in science and engineer-
ing. Chapters 1 and 2 present an introduction to the special theory of relativ-
ity. Chapter 2 also contains an introduction to general relativity. Chapters 3
through 5 present an historical and conceptual introduction to early develop-
ments in quantum theory, including a discussion of key experiments that show
the quantum aspects of nature. Chapters 6 through 9 are an introduction to
the real “nuts and bolts” of quantum mechanics, covering the Schrödinger
equation, tunneling phenomena, the hydrogen atom, and multielectron
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atoms, while Chapter 10 contains an introduction to statistical physics. The re-
mainder of the book consists mainly of applications of the theory set forth in
earlier chapters to more specialized areas of modern physics. In particular,
Chapter 11 discusses the physics of molecules, while Chapter 12 is an introduc-
tion to the physics of solids and electronic devices. Chapters 13 and 14 cover
nuclear physics, methods of obtaining energy from nuclear reactions,
and medical and other applications of nuclear processes. Chapter 15 treats
elementary particle physics, and Chapter 16 (available online at http://info.
brookscole.com/mp3e) covers cosmology.

CHANGES TO THE THIRD EDITION

The third edition contains two major changes from the second edition: First,
this edition has been extensively rewritten in order to clarify difficult concepts,
aid understanding, and bring the text up to date with rapidly developing tech-
nical applications of quantum physics. Artwork and the order of presentation
of certain topics have been revised to help in this process. (Many new photos
of physicists have been added to the text, and a new collection of color pho-
tographs of modern physics phenomena is also available on the Book Com-
panion Web Site.) Typically, each chapter contains new worked examples and
five new end-of-chapter questions and problems. Finally, the Suggestions for Fur-
ther Reading have been revised as needed.

Second, this edition refers the reader to a new, online (platform indepen-
dent) simulation package, QMTools, developed by one of the authors, Curt
Moyer. We think these simulations clarify, enliven, and complement the analyt-
ical solutions presented in the text. Icons in the text highlight the problems
designed for use with this software, which provides modeling tools to help stu-
dents visualize abstract concepts. All instructions about the general use of the
software as well as specific instructions for each problem are contained on the
Book Companion Web Site, thereby minimizing interruptions to the logical
flow of the text. The Book Companion Web Site at http://info.brookscole.
mp3e also contains appendices and much supplemental information on cur-
rent physics research and applications, allowing interested readers to dig
deeper into many topics.

Specific changes by chapter in this third edition are as follows:

• Chapter 1 in the previous editions, “Relativity,” has been extensively revised
and divided into two chapters. The new Chapter 1, entitled “Relativity I,”
contains the history of relativity, new derivations of the Lorentz coordinate
and velocity transformations, and a new section on spacetime and causality.

• Chapter 2, entitled “Relativity II,” covers relativistic dynamics and energy
and includes new material on general relativity, gravitational radiation,
and the applications GPS (Global Positioning System) and LIGO (the
Laser Interferometer Gravitational-wave Observatory). 

• Chapter 3 has been streamlined with a more concise treatment of the
Rayleigh-Jeans and Planck blackbody laws. Material necessary for a com-
plete derivation of these results has been placed on our Book Companion
Web Site. 

• Chapter 5 contains a new section on the invention and principles of op-
eration of transmission and scanning electron microscopes.
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• Chapter 6, “Quantum Mechanics in One Dimension,” features a new
application on the principles of operation and utility of CCDs (Charge-
Coupled Devices).

• Chapter 8, “Quantum Mechanics in Three Dimensions,” includes a new
discussion on the production and spectroscopic study of anti-hydrogen, a
study which has important consequences for several fundamental physical
questions.

• Chapter 10 presents new material on the connection of wavefunction
symmetry to the Bose-Einstein condensation and the Pauli exclusion prin-
ciple, as well as describing potential applications of Bose-Einstein conden-
sates.

• Chapter 11 contains new material explaining Raman scattering, fluores-
cence, and phosphorescence, as well as giving applications of these
processes to pollution detection and biomedical research. This chapter
has also been streamlined with the discussion of overlap integrals being
moved to the Book Companion Web Site. 

• Chapter 12 has been carefully revised for clarification and features new
material on semiconductor devices, in particular MOSFETs and chips. In
addition, the most important facts about superconductivity have been
summarized, updated, and included in Chapter 12. For those desiring
more material on superconductivity, the entire superconductivity chapter
from previous editions is available at the Book Companion Web Site
along with essays on the history of the laser and solar cells.

• Chapter 13 contains new material on MRI (Magnetic Resonance Imag-
ing) and an interesting history of the determination of the age of the
Earth.

• Chapter 14 presents updated sections on fission reactor safety and waste
disposal, fusion reactor results, and applications of nuclear physics to
tracing, neutron activation analysis, radiation therapy, and other areas.

• Chapter 15 has been extensively rewritten in an attempt to convey the
thrust toward unification in particle physics. By way of achieving this goal,
new discussions of positrons, neutrino mass and oscillation, conservation
laws, and grand unified theories, including supersymmetry and string the-
ory, have been introduced.

• Chapter 16 is a new chapter devoted exclusively to the exciting topic of
the origin and evolution of the universe. Topics covered include the dis-
covery of the expanding universe, primordial radiation, inflation, the fu-
ture evolution of the universe, dark matter, dark energy, and the acceler-
ating expansion of the universe. This cosmology chapter is available on
our Book Companion Web Site. 

FEATURES OF THIS TEXT

QMTools Five chapters contain several new problems requiring the use of
our simulation software, QMTools. QMTools is a sophisticated interactive learn-
ing tool with considerable flexibility and scope. Using QMTools, students can
compose matter-wave packets and study their time evolution, find stationary
state energies and wavefunctions, and determine the probability for particle
transmission and reflection from nearly any potential well or barrier. Access to
QMTools is available online at http://info.brookscole.com/mp3e.
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PREFACE vii

Style. We have attempted to write this book in a style that is clear and suc-
cinct yet somewhat informal, in the hope that readers will find the text appeal-
ing and enjoyable to read. All new terms have been carefully defined, and we
have tried to avoid jargon.

Worked Examples. A large number of worked examples of varying difficulty
are presented as an aid in understanding both concepts and the chain of rea-
soning needed to solve realistic problems. In many cases, these examples will
serve as models for solving some end-of-chapter problems. The examples are
set off with colored bars for ease of location, and most examples are given ti-
tles to describe their content.

Exercises Following Examples. As an added feature, many of the worked
examples are followed immediately by exercises with answers. These exercises
are intended to make the textbook more interactive with the student, and
to test immediately the student’s understanding of key concepts and problem-
solving techniques. The exercises represent extensions of the worked examples
and are numbered in case the instructor wishes to assign them for homework.

Problems and Questions. An extensive set of questions and problems is in-
cluded at the end of each chapter. Most of the problems are listed by section
topic. Answers to all odd-numbered problems are given at the end of the
book. Problems span a range of difficulty and more challenging problems
have colored numbers. Most of the questions serve to test the student’s under-
standing of the concepts presented in a given chapter, and many can be used
to motivate classroom discussions.

Units. The international system of units (SI) is used throughout the text.
Occasionally, where common usage dictates, other units are used (such as the
angstrom, Å, and cm�1, commonly used by spectroscopists), but all such units
are carefully defined in terms of SI units.

Chapter Format. Each chapter begins with a preview, which includes a brief
discussion of chapter objectives and content. Marginal notes set in color are used
to locate important concepts and equations in the text. Important statements are
italicized or highlighted, and important equations are set in a colored box for
added emphasis and ease of review. Each chapter concludes with a summary,
which reviews the important concepts and equations discussed in that chapter.

In addition, many chapters contain special topic sections which are clearly
marked optional. These sections expose the student to slightly more advanced
material either in the form of current interesting discoveries or as fuller devel-
opments of concepts or calculations discussed in that chapter. Many of these
special topic sections will be of particular interest to certain student groups
such as chemistry majors, electrical engineers, and physics majors.

Guest Essays. Another feature of this text is the inclusion of interesting ma-
terial in the form of essays by guest authors. These essays cover a wide range of
topics and are intended to convey an insider’s view of exciting current devel-
opments in modern physics. Furthermore, the essay topics present extensions
and/or applications of the material discussed in specific chapters. Some of the
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essay topics covered are recent developments in general relativity, the scan-
ning tunneling microscope, superconducting devices, the history of the laser,
laser cooling of atoms, solar cells, and how the top quark was detected. The
guest essays are either included in the text or referenced as being on our Web
site at appropriate points in the text.

Mathematical Level. Students using this text should have completed a com-
prehensive one-year calculus course, as calculus is used throughout the text.
However, we have made an attempt to keep physical ideas foremost so as not to
obscure our presentations with overly elegant mathematics. Most steps are shown
when basic equations are developed, but exceptionally long and detailed proofs
which interrupt the flow of physical arguments have been placed in appendices.

Appendices and Endpapers. The appendices in this text serve several pur-
poses. Lengthy derivations of important results needed in physical discussions
have been placed on our Web site to avoid interrupting the main flow of argu-
ments. Other appendices needed for quick reference are located at the end of
the book. These contain physical constants, a table of atomic masses, and a list
of Nobel prize winners. The endpapers inside the front cover of the book con-
tain important physical constants and standard abbreviations of units used in
the book, and conversion factors for quick reference, while a periodic table is
included in the rear cover endpapers.

Ancillaries. The ancillaries available with this text include a Student Solu-
tions Manual, which has solutions to all odd-numbered problems in the book,
an Instructor’s Solutions Manual, consisting of solutions to all problems in the
text, and a Multimedia Manager, a CD-ROM lecture tool that contains digital
versions of all art and selected photographs in the text. 

TEACHING OPTIONS

As noted earlier, the text may be subdivided into two basic parts: Chapters 1
through 10, which contain an introduction to relativity, quantum physics, and
statistical physics, and Chapters 11 through 16, which treat applications to
molecules, the solid state, nuclear physics, elementary particles, and cosmol-
ogy. It is suggested that the first part of the book be covered sequentially. How-
ever, the relativity chapters may actually be covered at any time because E2 �

p2c2 � m2c4 is the only formula from these chapters which is essential for sub-
sequent chapters. Chapters 11 through 16 are independent of one another
and can be covered in any order with one exception: Chapter 14, “Nuclear
Physics Applications,” should follow Chapter 13, “Nuclear Structure.”

A traditional sophomore or junior level modern physics course for science,
mathematics, and engineering students should cover most of Chapters 1
through 10 and several of the remaining chapters, depending on the student
major. For example, an audience consisting mainly of electrical engineering stu-
dents might cover most of Chapters 1 through 10 with particular emphasis on
tunneling and tunneling devices in Chapter 7, the Fermi-Dirac distribution in
Chapter 10, semiconductors in Chapter 12, and radiation detectors in Chapter
14. Chemistry and chemical engineering majors could cover most of Chapters 1
through 10 with special emphasis on atoms in Chapter 9, classical and quantum
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PREFACE ix

statistics in Chapter 10, and molecular bonding and spectroscopy in Chapter 11.
Mathematics and physics majors should pay special attention to the unique de-
velopment of operator methods and the concept of sharp and fuzzy observables
introduced in Chapter 6. The deep connection of sharp observables with classi-
cally conserved quantities and the powerful role of sharp observables in shaping
the form of system wavefunctions is developed more fully in Chapter 8.

Our experience has shown that there is more material contained in this
book than can be covered in a standard one semester three-credit-hour
course. For this reason, one has to “pick-and-choose” from topics in the sec-
ond part of the book as noted earlier. However, the text can also be used in a
two-semester sequence with some supplemental material, such as one of many
monographs on relativity, and/or selected readings in the areas of solid state,
nuclear, and elementary particle physics. Some selected readings are sug-
gested at the end of each chapter.
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Chapter Outline

At the end of the 19th century, scientists believed that they had learned
most of what there was to know about physics. Newton’s laws of motion and
his universal theory of gravitation, Maxwell’s theoretical work in unifying
electricity and magnetism, and the laws of thermodynamics and kinetic the-
ory employed mathematical methods to successfully explain a wide variety of
phenomena.

However, at the turn of the 20th century, a major revolution shook the
world of physics. In 1900 Planck provided the basic ideas that led to the quan-
tum theory, and in 1905 Einstein formulated his special theory of relativity.
The excitement of the times is captured in Einstein’s own words: “It was a mar-
velous time to be alive.” Both ideas were to have a profound effect on our
understanding of nature. Within a few decades, these theories inspired new
developments and theories in the fields of atomic, nuclear, and condensed-
matter physics.

Although modern physics has led to a multitude of important technological
achievements, the story is still incomplete. Discoveries will continue to be
made during our lifetime, many of which will deepen or refine our under-
standing of nature and the world around us. It is still a “marvelous time to
be alive.”
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1.1 SPECIAL RELATIVITY

Light waves and other forms of electromagnetic radiation travel through free
space at the speed c � 3.00 � 108 m/s. As we shall see in this chapter, the
speed of light sets an upper limit for the speeds of particles, waves, and the
transmission of information.

Most of our everyday experiences deal with objects that move at speeds
much less than that of light. Newtonian mechanics and early ideas on space
and time were formulated to describe the motion of such objects, and this
formalism is very successful in describing a wide range of phenomena. Al-
though Newtonian mechanics works very well at low speeds, it fails when ap-
plied to particles whose speeds approach that of light. Experimentally, one
can test the predictions of Newtonian theory at high speeds by accelerating
an electron through a large electric potential difference. For example, it is
possible to accelerate an electron to a speed of 0.99c by using a potential
difference of several million volts. According to Newtonian mechanics, if
the potential difference (as well as the corresponding energy) is increased
by a factor of 4, then the speed of the electron should be doubled to 1.98c.
However, experiments show that the speed of the electron — as well as the
speeds of all other particles in the universe — always remains less than the
speed of light, regardless of the size of the accelerating voltage. In part be-
cause it places no upper limit on the speed that a particle can attain, New-
tonian mechanics is contrary to modern experimental results and is there-
fore clearly a limited theory.

In 1905, at the age of 26, Albert Einstein published his special theory of rela-
tivity. Regarding the theory, Einstein wrote,

The relativity theory arose from necessity, from serious and deep contradictions in
the old theory from which there seemed no escape. The strength of the new theory
lies in the consistency and simplicity with which it solves all these difficulties, using
only a few very convincing assumptions. . . .1

Although Einstein made many important contributions to science, the theory
of relativity alone represents one of the greatest intellectual achievements of
the 20th century. With this theory, one can correctly predict experimental ob-
servations over the range of speeds from rest to speeds approaching the speed
of light. Newtonian mechanics, which was accepted for over 200 years, is in
fact a limiting case of Einstein’s special theory of relativity. This chapter and
the next give an introduction to the special theory of relativity, which deals
with the analysis of physical events from coordinate systems moving with con-
stant speed in straight lines with respect to one another. Chapter 2 also in-
cludes a short introduction to general relativity, which describes physical
events from coordinate systems undergoing general or accelerated motion
with respect to each other.

In this chapter we show that the special theory of relativity follows from two
basic postulates:

1. The laws of physics are the same in all reference systems that move
uniformly with respect to one another. That is, basic laws such as

2 CHAPTER 1 RELATIVITY I

1A. Einstein and L. Infeld, The Evolution of Physics, New York, Simon and Schuster, 1961.
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�F � dp/dt have the same mathematical form for all observers moving
at constant velocity with respect to one another.

2. The speed of light in vacuum is always measured to be 3 � 108 m/s, and
the measured value is independent of the motion of the observer or of
the motion of the source of light. That is, the speed of light is the same
for all observers moving at constant velocities.

Although it is well known that relativity plays an essential role in theoretical
physics, it also has practical applications, for example, in the design of particle
accelerators, global positioning system (GPS) units, and high-voltage TV dis-
plays. Note that these devices simply will not work if designed according to
Newtonian mechanics! We shall have occasion to use the outcomes of relativity
in many subsequent topics in this text.

1.2 THE PRINCIPLE OF RELATIVITY

To describe a physical event, it is necessary to establish a frame of reference,
such as one that is fixed in the laboratory. Recall from your studies in mechan-
ics that Newton’s laws are valid in inertial frames of reference. An inertial frame
is one in which an object subjected to no forces moves in a straight line at constant
speed—thus the name “inertial frame” because an object observed from such a
frame obeys Newton’s first law, the law of inertia.2 Furthermore, any frame or
system moving with constant velocity with respect to an inertial system must
also be an inertial system. Thus there is no single, preferred inertial frame for
applying Newton’s laws.

According to the principle of Newtonian relativity, the laws of mechanics
must be the same in all inertial frames of reference. For example, if you per-
form an experiment while at rest in a laboratory, and an observer in a passing
truck moving with constant velocity performs the same experiment, Newton’s
laws may be applied to both sets of observations. Specifically, in the laboratory
or in the truck a ball thrown up rises and returns to the thrower’s hand. More-
over, both events are measured to take the same time in the truck or in the
laboratory, and Newton’s second law may be used in both frames to compute
this time. Although these experiments look different to different observers
(see Fig. 1.1, in which the Earth observer sees a different path for the ball)
and the observers measure different values of position and velocity for the ball
at the same times, both observers agree on the validity of Newton’s laws and
principles such as conservation of energy and conservation of momentum.
This implies that no experiment involving mechanics can detect any essential
difference between the two inertial frames. The only thing that can be
detected is the relative motion of one frame with respect to the other. That is,
the notion of absolute motion through space is meaningless, as is the notion of
a single, preferred reference frame. Indeed, one of the firm philosophical
principles of modern science is that all observers are equivalent and
that the laws of nature must take the same mathematical form for all
observers. Laws of physics that exhibit the same mathematical form for
observers with different motions at different locations are said to be covariant.
Later in this section we will give specific examples of covariant physical laws.

1.2 THE PRINCIPLE OF RELATIVITY 3

Inertial frame of reference

2An example of a noninertial frame is a frame that accelerates in a straight line or rotates with re-
spect to an inertial frame.
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In order to show the underlying equivalence of measurements made in dif-
ferent reference frames and hence the equivalence of different frames for do-
ing physics, we need a mathematical formula that systematically relates mea-
surements made in one reference frame to those in another. Such a relation
is called a transformation, and the one satisfying Newtonian relativity is the so-
called Galilean transformation, which owes its origin to Galileo. It can be
derived as follows.

Consider two inertial systems or frames S and S�, as in Figure 1.2. The
frame S� moves with a constant velocity v along the xx� axes, where v is mea-
sured relative to the frame S. Clocks in S and S� are synchronized, and the
origins of S and S� coincide at t � t� � 0. We assume that a point event, a phys-
ical phenomenon such as a lightbulb flash, occurs at the point P. An observer
in the system S would describe the event with space–time coordinates (x, y, z,
t), whereas an observer in S� would use (x�, y�, z�, t�) to describe the same
event. As we can see from Figure 1.2, these coordinates are related by
the equations

(1.1)

These equations constitute what is known as a Galilean transformation of
coordinates. Note that the fourth coordinate, time, is assumed to be the
same in both inertial frames. That is, in classical mechanics, all clocks run at the
same rate regardless of their velocity, so that the time at which an event occurs
for an observer in S is the same as the time for the same event in S�. Conse-
quently, the time interval between two successive events should be the same

x� � x � vt

y� � y

z� � z

t� � t

4 CHAPTER 1 RELATIVITY I

(a) (b)

Figure 1.1 The observer in the truck sees the ball move in a vertical path when
thrown upward. (b) The Earth observer views the path of the ball as a parabola.

Galilean transformation of

coordinates

y

0 x

y′

0′ x ′

x

vt x ′

P (event)

v

S ′S

Figure 1.2 An event occurs at
a point P. The event is observed
by two observers in inertial
frames S and S�, in which S�

moves with a velocity v relative
to S.
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for both observers. Although this assumption may seem obvious, it turns out
to be incorrect when treating situations in which v is comparable to the
speed of light. In fact, this point represents one of the most profound
differences between Newtonian concepts and the ideas contained in
Einstein’s theory of relativity.

Exercise 1 Show that although observers in S and S� measure different coordinates
for the ends of a stick at rest in S, they agree on the length of the stick. Assume the stick
has end coordinates x � a and x � a � l in S and use the Galilean transformation.

An immediate and important consequence of the invariance of the distance
between two points under the Galilean transformation is the invariance of

force. For example if gives the electric force between two

charges q,Q located at x1 and x2 on the x-axis in frame S, F �, the force mea-

sured in S�, is given by since x�2 � x�1 � x2 � x1. In fact

any force would be invariant under the Galilean transformation as long as it 
involved only the relative positions of interacting particles.

Now suppose two events are separated by a distance dx and a time interval
dt as measured by an observer in S. It follows from Equation 1.1 that the
corresponding displacement dx� measured by an observer in S� is given by
dx� � dx � v dt, where dx is the displacement measured by an observer in S.
Because dt � dt�, we find that

or

(1.2)

where ux and u�x are the instantaneous velocities of the object relative to S
and S�, respectively. This result, which is called the Galilean addition law for
velocities (or Galilean velocity transformation), is used in everyday observa-
tions and is consistent with our intuitive notions of time and space.

To obtain the relation between the accelerations measured by observers in
S and S�, we take a derivative of Equation 1.2 with respect to time and use the
results that dt � dt� and v is constant:

(1.3)

Thus observers in different inertial frames measure the same acceleration for
an accelerating object. The mathematical terminology is to say that lengths
(�x), time intervals, and accelerations are invariant under a Galilean transfor-
mation. Example 1.1 points up the distinction between invariant and covariant
and shows that transformation equations, in addition to converting mea-
surements made in one inertial frame to those in another, may be used
to show the covariance of physical laws.

du�x

dt�
� a�x � ax

u�x � ux � v

dx�

dt�
�

dx

dt
� v

F � �
kqQ

(x �2 � x �1)2 � F

F �
kqQ

(x2 � x1)2

1.2 THE PRINCIPLE OF RELATIVITY 5

Galilean addition law for

velocities
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Exercise 2 Conservation of Linear Momentum Is Covariant Under the Galilean Transforma-
tion. Assume that two masses m�1 and m�2 are moving in the positive x direction with ve-
locities v�1 and v�2 as measured by an observer in S� before a collision. After the colli-
sion, the two masses stick together and move with a velocity v� in S�. Show that if an
observer in S� finds momentum to be conserved, so does an observer in S.

The Speed of Light

It is natural to ask whether the concept of Newtonian relativity and the
Galilean addition law for velocities in mechanics also apply to electricity, mag-
netism, and optics. Recall that Maxwell in the 1860s showed that the speed of
light in free space was given by c � (�0	0)�1/2 � 3.00 � 108 m/s. Physicists of
the late 1800s were certain that light waves (like familiar sound and water
waves) required a definite medium in which to move, called the ether,3 and
that the speed of light was c only with respect to the ether or a frame fixed in
the ether called the ether frame. In any other frame moving at speed v relative
to the ether frame, the Galilean addition law was expected to hold. Thus, the
speed of light in this other frame was expected to be c � v for light traveling
in the same direction as the frame, c � v for light traveling opposite to the
frame, and in between these two values for light moving in an arbitrary direc-
tion with respect to the moving frame.

Because the existence of the ether and a preferred ether frame would show
that light was similar to other classical waves (in requiring a medium), consid-
erable importance was attached to establishing the existence of the special
ether frame. Because the speed of light is enormous, experiments involving
light traveling in media moving at then attainable laboratory speeds had not
been capable of detecting small changes of the size of c 
 v prior to the late
1800s. Scientists of the period, realizing that the Earth moved rapidly around

6 CHAPTER 1 RELATIVITY I

m� � m to obtain Fx � m�a�x . If we now assume that Fx de-
pends only on the relative positions of m and the particles
interacting with m, that is, Fx � f(x2 � x1, x3 � x1, . . .),
then Fx � F �x , because the �x’s are invariant quantities.
Thus we find F �x � m�a�x and establish the covariance of
Newton’s second law in this simple case.

EXAMPLE 1.1 Fx � max Is Covariant Under a
Galilean Transformation

Assume that Newton’s law Fx � max has been shown to
hold by an observer in an inertial frame S. Show that
Newton’s law also holds for an observer in S� or is covari-
ant under the Galilean transformation, that is, has the
form F �x � m�a�x . Note that inertial mass is an invariant
quantity in Newtonian dynamics.

Solution Starting with the established law Fx � max, we
use the Galilean transformation a�x � ax and the fact that

3It was proposed by Maxwell that light and other electromagnetic waves were waves in a luminifer-
ous ether, which was present everywhere, even in empty space. In addition to an overblown
name, the ether had contradictory properties since it had to have great rigidity to support the
high speed of light waves yet had to be tenuous enough to allow planets and other massive ob-
jects to pass freely through it, without resistance, as observed.
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the Sun at 30 km/s, shrewdly decided to use the Earth itself as the moving
frame in an attempt to improve their chances of detecting these small changes
in light velocity.

From our point of view of observers fixed on Earth, we may say that we are
stationary and that the special ether frame moves past us with speed v. Deter-
mining the speed of light under these circumstances is just like determining
the speed of an aircraft in a moving air current or wind, and consequently we
speak of an “ether wind” blowing through our apparatus fixed to the Earth.
If v is the velocity of the ether relative to the Earth, then the speed of light
should have its maximum value, c � v, when propagating downwind, as
shown in Figure 1.3a. Likewise, the speed of light should have its minimum
value, c � v, when propagating upwind, as in Figure 1.3b, and an intermediate
value, (c2 � v2)1/2, in the direction perpendicular to the ether wind, as in
Figure 1.3c. If the Sun is assumed to be at rest in the ether, then the velocity of the
ether wind would be equal to the orbital velocity of the Earth around the Sun,
which has a magnitude of about 3 � 104 m/s compared to c � 3 � 108 m/s.
Thus, the change in the speed of light would be about 1 part in 104 for mea-
surements in the upwind or downwind directions, and changes of this size
should be detectable. However, as we show in the next section, all attempts to
detect such changes and establish the existence of the ether proved futile!

1.3 THE MICHELSON–MORLEY EXPERIMENT

The famous experiment designed to detect small changes in the speed of light
with motion of an observer through the ether was performed in 1887 by
American physicist Albert A. Michelson (1852–1931) and the American
chemist Edward W. Morley (1838–1923).4 We should state at the outset that
the outcome of the experiment was negative, thus contradicting the ether hy-
pothesis. The highly accurate experimental tool perfected by these pioneers
to measure small changes in light speed was the Michelson interferometer,
shown in Figure 1.4. One of the arms of the interferometer was aligned along
the direction of the motion of the Earth through the ether. The Earth moving
through the ether would be equivalent to the ether flowing past the Earth in
the opposite direction with speed v, as shown in Figure 1.4. This ether wind
blowing in the opposite direction should cause the speed of light measured in
the Earth’s frame of reference to be c � v as it approaches the mirror M2 in
Figure 1.4 and c � v after reflection. The speed v is the speed of the Earth
through space, and hence the speed of the ether wind, and c is the speed of
light in the ether frame. The two beams of light reflected from M1 and M2
would recombine, and an interference pattern consisting of alternating dark
and bright bands, or fringes, would be formed.

During the experiment, the interference pattern was observed while the in-
terferometer was rotated through an angle of 90°. This rotation would change
the speed of the ether wind along the direction of the arms of the interferom-
eter. The effect of this rotation should have been to cause the fringe pattern to
shift slightly but measurably. Measurements failed to show any change in the

1.3 THE MICHELSON–MORLEY EXPERIMENT 7

4A. A. Michelson and E. W. Morley, Am. J. Sci. 134:333, 1887.

v

c + v

c

v

c – v

c

v

c

c 2 – v 2

(a) Downwind

(b) Upwind

(c) Across 

√

Figure 1.3 If the velocity of
the ether wind relative to the
Earth is v, and c is the velocity
of light relative to the ether,
the speed of light relative to
the Earth is (a) c � v in the
downwind direction, (b) c � v
in the upwind direction, and
(c) (c2 � v2)1/2 in the direction
perpendicular to the wind.
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interference pattern! The Michelson–Morley experiment was repeated by
other researchers under various conditions and at different times of the year
when the ether wind was expected to have changed direction and magnitude,
but the results were always the same: No fringe shift of the magnitude required was
ever observed.5

The negative results of the Michelson–Morley experiment not only meant
that the speed of light does not depend on the direction of light propagation
but also contradicted the ether hypothesis. The negative results also meant
that it was impossible to measure the absolute velocity of the Earth with
respect to the ether frame. As we shall see in the next section, Einstein’s
postulates compactly explain these and a host of other perplexing questions,
relegating the idea of the ether to the ash heap of history. Light is now
understood to be a phenomenon that requires no medium for its propagation.
As a result, the idea of an ether in which these waves could travel became
unnecessary.

Details of the Michelson–Morley Experiment

To understand the outcome of the Michelson–Morley experiment, let us as-
sume that the interferometer shown in Figure 1.4 has two arms of equal
length L. First consider the beam traveling parallel to the direction of the
ether wind, which is taken to be horizontal in Figure 1.4. According to New-
tonian mechanics, as the beam moves to the right, its speed is reduced by the
wind and its speed with respect to the Earth is c � v. On its return journey, as
the light beam moves to the left downwind, its speed with respect to the Earth
is c � v. Thus, the time of travel to the right is L/(c � v), and the time of
travel to the left is L/(c � v). The total time of travel for the round-trip along
the horizontal path is

Now consider the light beam traveling perpendicular to the wind,
as shown in Figure 1.4. Because the speed of the beam relative to the
Earth is (c 2 � v 2)1/2 in this case (see Fig. 1.3c), the time of travel for
each half of this trip is L/(c 2 � v 2)1/2, and the total time of travel for the
round-trip is

Thus, the time difference between the light beam traveling horizontally and
the beam traveling vertically is

�t � t1 � t2 �
2L

c ��1 �
v2

c2 �
�1

� �1 �
v2

c2 �
�1/2

�

t2 �
2L

(c2 � v2)1/2 �
2L

c �1 �
v2

c2 �
�1/2

t1 �
L

c � v
�

L

c � v
�

2Lc

c2 � v2 �
2L

c �1 �
v2

c2 �
�1
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Telescope 

Ether wind

M1

M2

M0

v

Arm 1

Arm 2

Source

L

L

Figure 1.4 Diagram of the
Michelson interferometer. Ac-
cording to the ether wind con-
cept, the speed of light should
be c � v as the beam ap-
proaches mirror M2 and c � v
after reflection.

5From an Earth observer’s point of view, changes in the Earth’s speed and direction in the course
of a year are viewed as ether wind shifts. In fact, even if the speed of the Earth with respect to the
ether were zero at some point in the Earth’s orbit, six months later the speed of the Earth would
be 60 km/s with respect to the ether, and one should find a clear fringe shift. None has ever been
observed, however.
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Because v2/c2 �� 1, this expression can be simplified by using the following
binomial expansion after dropping all terms higher than second order:

(1 � x)n � 1 � nx (for x �� 1)

In our case, x � v2/c2, and we find

(1.4)

The two light beams start out in phase and return to form an interference pat-
tern. Let us assume that the interferometer is adjusted for parallel fringes and
that a telescope is focused on one of these fringes. The time difference be-
tween the two light beams gives rise to a phase difference between the beams,
producing the interference fringe pattern when they combine at the position
of the telescope. A difference in the pattern (Fig. 1.6) should be detected
by rotating the interferometer through 90� in a horizontal plane, such that
the two beams exchange roles. This results in a net time difference of twice
that given by Equation 1.4. The path difference corresponding to this time
difference is

The corresponding fringe shift is equal to this path difference divided by the
wavelength of light, , because a change in path of 1 wavelength corresponds
to a shift of 1 fringe.

(1.5)

In the experiments by Michelson and Morley, each light beam was reflected
by mirrors many times to give an increased effective path length L of about
11 m. Using this value, and taking v to be equal to 3 � 104 m/s, the speed of
the Earth about the Sun, gives a path difference of

�d �
2(11 m)(3 � 104 m/s)2

(3 � 108 m/s)2 � 2.2 � 10�7 m

Shift �
2Lv2

c2

�d � c(2�t) �
2Lv2

c2

�t � t1 � t2 �
Lv2

c3
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Figure 1.6 Interference fringe schematic showing (a) fringes before rotation and
(b) expected fringe shift after a rotation of the interferometer by 90�.
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This extra distance of travel should produce a noticeable shift in the fringe
pattern. Specifically, using light of wavelength 500 nm, we find a fringe shift
for rotation through 90� of

The precision instrument designed by Michelson and Morley had the capabil-
ity of detecting a shift in the fringe pattern as small as 0.01 fringe. However,
they detected no shift in the fringe pattern. Since then, the experiment has been
repeated many times by various scientists under various conditions, and no
fringe shift has ever been detected. Thus, it was concluded that one cannot
detect the motion of the Earth with respect to the ether.

Many efforts were made to explain the null results of the Michelson–
Morley experiment and to save the ether concept and the Galilean addition law
for the velocity of light. Because all these proposals have been shown to be
wrong, we consider them no further here and turn instead to an auspicious
proposal made by George F. Fitzgerald and Hendrik A. Lorentz. In the 1890s,
Fitzgerald and Lorentz tried to explain the null results by making the following
ad hoc assumption. They proposed that the length of an object moving at 

speed v would contract along the direction of travel by a factor of .
The net result of this contraction would be a change in length of one of the
arms of the interferometer such that no path difference would occur as the in-
terferometer was rotated.

Never in the history of physics were such valiant efforts devoted to trying
to explain the absence of an expected result as those directed at the
Michelson–Morley experiment. The difficulties raised by this null result
were tremendous, not only implying that light waves were a new kind of wave
propagating without a medium but that the Galilean transformations
were flawed for inertial frames moving at high relative speeds. The stage
was set for Albert Einstein, who solved these problems in 1905 with his special
theory of relativity.

1.4 POSTULATES OF SPECIAL RELATIVITY

In the previous section we noted the impossibility of measuring the speed of
the ether with respect to the Earth and the failure of the Galilean velocity
transformation in the case of light. In 1905, Albert Einstein (Fig. 1.7) pro-
posed a theory that boldly removed these difficulties and at the same time
completely altered our notion of space and time.6 Einstein based his special
theory of relativity on two postulates.

1. The Principle of Relativity: All the laws of physics have the same form
in all inertial reference frames.

2. The Constancy of the Speed of Light: The speed of light in vacuum has
the same value, c � 3.00 � 108 m/s, in all inertial frames, regardless of the
velocity of the observer or the velocity of the source emitting the light.

√1 � v2/c2

Shift �
�d


�

2.2 � 10�7 m
5.0 � 10�7 m

� 0.40

10 CHAPTER 1 RELATIVITY I

6A. Einstein, “On the Electrodynamics of Moving Bodies,” Ann. Physik 17:891, 1905. For an English
translation of this article and other publications by Einstein, see the book by H. Lorentz,
A. Einstein, H. Minkowski, and H. Weyl, The Principle of Relativity, Dover, 1958.

Postulates of special relativity
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1.4 POSTULATES OF SPECIAL RELATIVITY 11

A lbert Einstein, one of the
greatest physicists of all time,
was born in Ulm, Germany.

As a child, Einstein was very un-
happy with the discipline of German
schools and completed his early edu-
cation in Switzerland at age 16. Be-
cause he was unable to obtain an
academic position following gradua-
tion from the Swiss Federal Poly-
technic School in 1901, he accepted
a job at the Swiss Patent Office in
Berne. During his spare time, he
continued his studies in theoretical
physics. In 1905, at the age of 26, he
published four scientific papers that

special theory of relativity. In 1915,
Einstein published his work on the
general theory of relativity, which re-
lates gravity to the structure of space
and time. One of the remarkable
predictions of the theory is that
strong gravitational forces in the
vicinity of very massive objects cause
light beams to deviate from straight-
line paths. This and other predic-
tions of the general theory of rel-
ativity have been experimentally
verified (see the essay on our com-
panion Web site by Clifford Will).

Einstein made many other im-
portant contributions to the devel-
opment of modern physics, includ-
ing the concept of the light
quantum and the idea of stimulated
emission of radiation, which led to
the invention of the laser 40 years
later. However, throughout his life,
he rejected the probabilistic inter-
pretation of quantum mechanics
when describing events on the
atomic scale in favor of a determin-
istic view. He is quoted as saying,
“God does not play dice with the
universe.” This comment is reputed
to have been answered by Niels
Bohr, one of the founders of quan-
tum mechanics, with “Don’t tell God
what to do!”

In 1933, Einstein left Germany
(by then under Nazis control) and
spent his remaining years at the In-
stitute for Advanced Study in Prince-
ton, New Jersey. He devoted most of
his later years to an unsuccessful
search for a unified theory of gravity
and electromagnetism.

B I O G R A P H Y

ALBERT EINSTEIN

(1879–1955)

revolutionized physics. One of these
papers, which won him the Nobel
prize in 1921, dealt with the pho-
toelectric effect. Another was con-
cerned with Brownian motion, the
irregular motion of small particles
suspended in a liquid. The remain-
ing two papers were concerned with
what is now considered his most
important contribution of all, the
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The first postulate asserts that all the laws of physics, those dealing with
electricity and magnetism, optics, thermodynamics, mechanics, and so on, will
have the same mathematical form or be covariant in all coordinate frames
moving with constant velocity relative to one another. This postulate is a
sweeping generalization of Newton’s principle of relativity, which refers only to
the laws of mechanics. From an experimental point of view, Einstein’s princi-
ple of relativity means that no experiment of any type can establish an
absolute rest frame, and that all inertial reference frames are experimentally
indistinguishable.

Note that postulate 2, the principle of the constancy of the speed of
light, is consistent with postulate 1: If the speed of light was not the same in
all inertial frames but was c in only one, it would be possible to distinguish
between inertial frames, and one could identify a preferred, absolute frame
in contradiction to postulate 1. Postulate 2 also does away with the problem
of measuring the speed of the ether by essentially denying the existence of
the ether and boldly asserting that light always moves with speed c with re-
spect to any inertial observer. Postulate 2 was a brilliant theoretical insight
on Einstein’s part in 1905 and has since been directly confirmed experi-
mentally in many ways. Perhaps the most direct demonstration involved
measuring the speed of very high frequency electromagnetic waves (gamma
rays) emitted by unstable particles (neutral pions) traveling at 99.975% of
the speed of light with respect to the laboratory. The measured gamma ray
speed relative to the laboratory agreed in this case to five significant figures
with the speed of light in empty space.

The Michelson–Morley experiment was performed before Einstein pub-
lished his work on relativity, and it is not clear that Einstein was aware of the
details of the experiment. Nonetheless, the null result of the experiment can
be readily understood within the framework of Einstein’s theory. According to
his principle of relativity, the premises of the Michelson–Morley experiment
were incorrect. In the process of trying to explain the expected results, we
stated that when light traveled against the ether wind its speed was c � v, in ac-
cordance with the Galilean addition law for velocities. However, if the state of
motion of the observer or of the source has no influence on the value found
for the speed of light, one will always measure the value to be c. Likewise, the
light makes the return trip after reflection from the mirror at a speed of c, and
not with the speed c � v. Thus, the motion of the Earth should not influence
the fringe pattern observed in the Michelson–Morley experiment, and a null
result should be expected.

Perhaps at this point you have rightly concluded that the Galilean velocity
and coordinate transformations are incorrect; that is, the Galilean transforma-
tions do not keep all the laws of physics in the same form for different inertial
frames. The correct coordinate and time transformations that preserve the co-
variant form of all physical laws in two coordinate systems moving uniformly
with respect to each other are called Lorentz transformations. These are derived
in Section 1.6. Although the Galilean transformation preserves the form of
Newton’s laws in two frames moving uniformly with respect to each other,
Newton’s laws of mechanics are limited laws that are valid only for low speeds.
In general, Newton’s laws must be replaced by Einstein’s relativistic laws of me-
chanics, which hold for all speeds and are invariant, as are all physical laws,
under the Lorentz transformations.

12 CHAPTER 1 RELATIVITY I
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1.5 CONSEQUENCES OF SPECIAL RELATIVITY

Almost everyone who has dabbled even superficially with science is aware of
some of the startling predictions that arise because of Einstein’s approach to
relative motion. As we examine some of the consequences of relativity in this
section, we shall find that they conflict with our basic notions of space and
time. We restrict our discussion to the concepts of length, time, and simultane-
ity, which are quite different in relativistic mechanics and Newtonian mechan-
ics. For example, we will find that the distance between two points and the time in-
terval between two events depend on the frame of reference in which they are measured.
That is, there is no such thing as absolute length or absolute time in relativity. Further-
more, events at different locations that occur simultaneously in one frame are not si-
multaneous in another frame moving uniformly past the first.

Before we discuss the consequences of special relativity, we must first under-
stand how an observer in an inertial reference frame describes an event. We
define an event as an occurrence described by three space coordinates and
one time coordinate. In general, different observers in different inertial
frames would describe the same event with different spacetime coordinates.

The reference frame used to describe an event consists of a coordinate grid
and a set of clocks situated at the grid intersections, as shown in Figure 1.8 in
two dimensions. It is necessary that the clocks be synchronized. This can be ac-
complished in many ways with the help of light signals. For example, suppose
an observer at the origin with a master clock sends out a pulse of light at t � 0.
The light pulse takes a time r/c to reach a second clock, situated a distance r
from the origin. Hence, the second clock will be synchronized with the clock
at the origin if the second clock reads a time r/c at the instant the pulse
reaches it. This procedure of synchronization assumes that the speed of light
has the same value in all directions and in all inertial frames. Furthermore, the
procedure concerns an event recorded by an observer in a specific inertial ref-
erence frame. Clocks in other inertial frames can be synchronized in a similar
manner. An observer in some other inertial frame would assign different
spacetime coordinates to events, using another coordinate grid with another
array of clocks.

1.5 CONSEQUENCES OF SPECIAL RELATIVITY 13

Figure 1.8 In relativity, we use a reference frame consisting of a coordinate grid and
a set of synchronized clocks.
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Simultaneity and the Relativity of Time

A basic premise of Newtonian mechanics is that a universal time scale exists
that is the same for all observers. In fact, Newton wrote that “Absolute, true,
and mathematical time, of itself, and from its own nature, flows equably with-
out relation to anything external.” Thus, Newton and his followers simply took
simultaneity for granted. In his special theory of relativity, Einstein abandoned
this assumption. According to Einstein, a time interval measurement depends on
the reference frame in which the measurement is made.

Einstein devised the following thought experiment to illustrate this point. A
boxcar moves with uniform velocity, and two lightning bolts strike the ends of
the boxcar, as in Figure 1.9a, leaving marks on the boxcar and ground. The
marks left on the boxcar are labeled A� and B�; those on the ground are la-
beled A and B. An observer at O� moving with the boxcar is midway between
A� and B�, and a ground observer at O is midway between A and B. The events
recorded by the observers are the light signals from the lightning bolts.

The two light signals reach the observer at O at the same time, as indicated
in Figure 1.9b. This observer realizes that the light signals have traveled at the
same speed over equal distances. Thus, observer O concludes that the events
at A and B occurred simultaneously. Now consider the same events as viewed
by the observer on the boxcar at O�. By the time the light has reached ob-
server O, observer O� has moved as indicated in Figure 1.9b. Thus, the light
signal from B� has already swept past O�, but the light from A� has not yet
reached O�. According to Einstein, observer O� must find that light travels at the
same speed as that measured by observer O. Therefore, observer O� concludes that
the lightning struck the front of the boxcar before it struck the back. This
thought experiment clearly demonstrates that the two events, which appear to
O to be simultaneous, do not appear to O� to be simultaneous. In other words,

14 CHAPTER 1 RELATIVITY I

Two events that are simultaneous in one frame are in general not
simultaneous in a second frame moving with respect to the first. That
is, simultaneity is not an absolute concept, but one that depends on the
state of motion of the observer.

v

A' B'

OA B

v

A' B'
O'

OA B

(a) (b)

O'

Figure 1.9 Two lightning bolts strike the ends of a moving boxcar. (a) The events
appear to be simultaneous to the stationary observer at O, who is midway between A
and B. (b) The events do not appear to be simultaneous to the observer at O�, who
claims that the front of the train is struck before the rear.
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At this point, you might wonder which observer is right concerning the two
events. The answer is that both are correct, because the principle of relativity
states that there is no preferred inertial frame of reference. Although the two ob-
servers reach different conclusions, both are correct in their own reference
frame because the concept of simultaneity is not absolute. This, in fact, is the
central point of relativity—any uniformly moving frame of reference can be
used to describe events and do physics. However, observers in different inertial
frames will always measure different time intervals with their clocks and differ-
ent distances with their meter sticks. Nevertheless, they will both agree on the
forms of the laws of physics in their respective frames, because these laws must
be the same for all observers in uniform motion. It is the alteration of time
and space that allows the laws of physics (including Maxwell’s equations) to be
the same for all observers in uniform motion.

Time Dilation

The fact that observers in different inertial frames always measure different time
intervals between a pair of events can be illustrated in another way by consider-
ing a vehicle moving to the right with a speed v, as in Figure 1.10a. A mirror is
fixed to the ceiling of the vehicle, and observer O�, at rest in this system, holds a
laser a distance d below the mirror. At some instant the laser emits a pulse of light
directed toward the mirror (event 1), and at some later time, after reflecting
from the mirror, the pulse arrives back at the laser (event 2). Observer O� carries
a clock, C�, which she uses to measure the time interval �t� between these two
events. Because the light pulse has the speed c, the time it takes to travel from O�

to the mirror and back can be found from the definition of speed:

(1.6)

This time interval �t�—measured by O�, who, remember, is at rest in the mov-
ing vehicle—requires only a single clock, C�, in this reference frame.

�t� �
distance traveled

speed of light
�

2d

c
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d

v∆t
2

c∆t
2

(c)

y ′

v

O ′

d

Mirror

x ′

(a)

O ′ O ′ O ′

v

x
O

v∆t

(b)

y ′

Figure 1.10 (a) A mirror is fixed to a moving vehicle, and a light pulse leaves O� at
rest in the vehicle. (b) Relative to a stationary observer on Earth, the mirror and O�

move with a speed v. Note that the distance the pulse travels measured by the station-
ary observer on Earth is greater than 2d. (c) The right triangle for calculating the rela-
tionship between �t and �t�.
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Now consider the same set of events as viewed by observer O in a second frame
(Fig. 1.10b). According to this observer, the mirror and laser are moving to the
right with a speed v, and as a result, the sequence of events appears different to
this observer. By the time the light from the laser reaches the mirror, the mirror
has moved to the right a distance v�t/2, where �t is the time interval required
for the light pulse to travel from O� to the mirror and back as measured by O. In
other words, O concludes that, because of the motion of the vehicle, if the light is
to hit the mirror, it must leave the laser at an angle with respect to the vertical
direction. Comparing Figures 1.10a and 1.10b, we see that the light must travel
farther in (b) than in (a). (Note that neither observer “knows” that he or she is
moving. Each is at rest in his or her own inertial frame.)

According to the second postulate of special relativity, both observers must
measure c for the speed of light. Because the light travels farther according to
O, it follows that the time interval �t measured by O is longer than the time in-
terval �t� measured by O�. To obtain a relationship between �t and �t�, it is
convenient to use the right triangle shown in Figure 1.10c. The Pythagorean
theorem gives

Solving for �t gives

(1.7)

Because �t� � 2d/c, we can express Equation 1.7 as

(1.8)

where � � (1 � v2/c2)�1/2. Because � is always greater than unity, this result
says that the time interval �t measured by the observer moving with respect to
the clock is longer than the time interval �t� measured by the observer at rest
with respect to the clock. This effect is known as time dilation.

The time interval �t � in Equation 1.8 is called the proper time. In general,
proper time, denoted �tp, is defined as the time interval between two
events as measured by an observer who sees the events occur at the
same point in space. In our case, observer O� measures the proper time.
That is, proper time is always the time measured by an observer moving
along with the clock. As an aid in solving problems it is convenient to
express Equation 1.8 in terms of the proper time interval, �tp, as

�t � ��tp (1.9)

Because the time between ticks of a moving clock, �(2d/c), is observed to
be longer than the time between ticks of an identical clock at rest, 2d/c, one
commonly says, “A moving clock runs slower than a clock at rest by a factor of �.”
This is true for ordinary mechanical clocks as well as for the light clock just
described. In fact, we can generalize these results by stating that all physical
processes, including chemical reactions and biological processes, slow
down when observed from a reference frame in which they are moving. For

�t �
�t�

√1 � (v 2/c 2)
� ��t�

�t �
2d

√c2 � v2
�

2d

c√1 � v2/c2

� c�t

2 �
2

� � v�t

2 �
2

� d2
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Time dilation

A moving clock runs slower
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example, the heartbeat of an astronaut moving through space would keep
time with a clock inside the spaceship, but both the astronaut’s clock and
her heartbeat appear slow to an observer, with another clock, in any other
reference frame. The astronaut would not have any sensation of life slowing
down in her frame.

Time dilation is a very real phenomenon that has been verified by various
experiments. For example, muons are unstable elementary particles that
have a charge equal to that of an electron and a mass 207 times that of the
electron. Muons are naturally produced by the collision of cosmic radiation
with atoms at a height of several thousand meters above the surface of the
Earth. Muons have a lifetime of only 2.2 �s when measured in a reference
frame at rest with respect to them. If we take 2.2 �s (proper time) as the
average lifetime of a muon and assume that its speed is close to the speed
of light, we would find that these particles could travel a distance of about
650 m before they decayed. Hence, they could not reach the Earth from
the upper atmosphere where they are produced. However, experiments
show that a large number of muons do reach the Earth. The phenomenon
of time dilation explains this effect (see Fig. 1.11a). Relative to an observer
on Earth, the muons have a lifetime equal to ��, where � � 2.2 �s is the
lifetime in a frame of reference traveling with the muons. For example,
for v � 0.99c, � � 7.1 and �� � 16 �s. Hence, the average distance traveled
as measured by an observer on Earth is �v� � 4700 m, as indicated in
Figure 1.11b.

In 1976, experiments with muons were conducted at the laboratory of the
European Council for Nuclear Research (CERN) in Geneva. Muons were in-
jected into a large storage ring, reaching speeds of about 0.9994c. Electrons
produced by the decaying muons were detected by counters around the ring,
enabling scientists to measure the decay rate, and hence the lifetime, of the
muons. The lifetime of the moving muons was measured to be about 30 times
as long as that of the stationary muon (see Fig. 1.12), in agreement with the
prediction of relativity to within two parts in a thousand.

It is quite interesting that time dilation can be observed directly by com-
paring high-precision atomic clocks, one carried aboard a jet, the other
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Muon’s
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τ = 2.2 µs

(a)
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frame

τ′ = γ τ ≈ 16 µs

Figure 1.11 (a) Muons travel-
ing with a speed of 0.99c travel
only about 650 m as measured
in the muons’ reference frame,
where their lifetime is about
2.2 �s. (b) The muons travel
about 4700 m as measured by
an observer on Earth. Because
of time dilation, the muons’
lifetime is longer as measured
by the Earth observer.
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Figure 1.12 Decay curves for muons traveling at a speed of 0.9994c and for muons
at rest.
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remaining in a laboratory on Earth. The actual experiment involved the use of
very stable cesium beam atomic clocks.7 Time intervals measured with four such
clocks in jet flight were compared with time intervals measured by reference
atomic clocks located at the U.S. Naval Observatory. To compare these results
with the theory, many factors had to be considered, including periods of accel-
eration and deceleration relative to the Earth, variations in direction of travel,
and the weaker gravitational field experienced by the flying clocks compared
with the Earth-based clocks. The results were in good agreement with the pre-
dictions of the special theory of relativity and can be completely explained in
terms of the relative motion between the Earth and the jet aircraft.

18 CHAPTER 1 RELATIVITY I

clock runs slower than a stationary clock by �, Equation
1.8 gives

That is, a moving pendulum slows down or takes longer
to complete one period.

T � (3.2)(3.0 s) � 9.6 s

T � �T � �
1

√1 � (0.95c)2/c2
3.0 s

EXAMPLE 1.2 What Is the Period of the
Pendulum?

The period of a pendulum is measured to be 3.0 s in the
rest frame of the pendulum. What is the period of the
pendulum when measured by an observer moving at a
speed of 0.95c with respect to the pendulum?

Solution In this case, the proper time is equal to
3.0 s. From the point of view of the observer, the pen-
dulum is moving at 0.95c past her. Hence the pendu-
lum is an example of a moving clock. Because a moving

Exercise 3 If the speed of the observer is increased by 5.0%, what is the period of the
pendulum when measured by this observer? 

Answer 43 s. Note that the 5.0% increase in speed causes more than a 300% increase
in the dilated time.

Length Contraction

We have seen that measured time intervals are not absolute, that is, the time
interval between two events depends on the frame of reference in which it
is measured. Likewise, the measured distance between two points depends
on the frame of reference. The proper length of an object is defined as
the length of the object measured by someone who is at rest with re-
spect to the object. You should note that proper length is defined similarly
to proper time, in that proper time is the time between ticks of a clock mea-
sured by an observer who is at rest with respect to the clock. The length of
an object measured by someone in a reference frame that is moving relative
to the object is always less than the proper length. This effect is known as
length contraction.

To understand length contraction quantitatively, consider a spaceship trav-
eling with a speed v from one star to another and two observers, one on Earth

7J. C. Hafele and R. E. Keating, “Around the World Atomic Clocks: Relativistic Time Gains
Observed,” Science, July 14, 1972, p. 168.
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and the other in the spaceship. The observer at rest on Earth (and also as-
sumed to be at rest with respect to the two stars) measures the distance be-
tween the stars to be Lp, where Lp is the proper length. According to this ob-
server, the time it takes the spaceship to complete the voyage is �t � Lp/v.
What does an observer in the moving spaceship measure for the distance be-
tween the stars? Because of time dilation, the space traveler measures a smaller
time of travel: �t� � �t/�. The space traveler claims to be at rest and sees the
destination star as moving toward the spaceship with speed v. Because the
space traveler reaches the star in the shorter time �t�, he or she concludes
that the distance, L, between the stars is shorter than Lp. This distance mea-
sured by the space traveler is given by

Because Lp � v�t, we see that L � Lp/� or

(1.10)

where (1 � v2/c2)1/2 is a factor less than 1. This result may be interpreted as
follows:

L � Lp �1 �
v2

c2 �
1/2

L � v�t� � v
�t

�
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Length contraction

If an object has a proper length Lp when it is measured by an observer at
rest with respect to the object, when it moves with speed v in a direction
parallel to its length, its length L is measured to be shorter 

according to .L � Lp �1 �
v2

c2 �
1/2

Note that the length contraction takes place only along the direction of mo-
tion. For example, suppose a stick moves past a stationary Earth observer with
a speed v, as in Figure 1.13b. The length of the stick as measured by an ob-
server in the frame attached to it is the proper length Lp, as illustrated in Fig-
ure 1.13a. The length of the stick, L, as measured by the Earth observer is
shorter than Lp by the factor (1 � v2/c2)1/2. Note that length contraction is a
symmetric effect: If the stick were at rest on Earth, an observer in a frame mov-
ing past the earth at speed v would also measure its length to be shorter by the
same factor (1 � v2/c2)1/2.

As we mentioned earlier, one of the basic tenets of relativity is that all
inertial frames are equivalent for analyzing an experiment. Let us return to
the example of the decaying muons moving at speeds close to the speed of
light to see an example of this. An observer in the muon’s reference frame
would measure the proper lifetime, whereas an Earth-based observer
measures the proper height of the mountain in Figure 1.11. In the muon’s
reference frame, there is no time dilation, but the distance of travel is
observed to be shorter when measured from this frame. Likewise, in the
Earth observer’s reference frame, there is time dilation, but the distance of
travel is measured to be the proper height of the mountain. Thus, when
calculations on the muon are performed in both frames, one sees the effect
of “offsetting penalties,” and the outcome of the experiment is the same!

Lp

y′

O ′
(a)

x ′

L

y

O
(b)

x

v

Figure 1.13 A stick moves
to the right with a speed v.
(a) The stick as viewed in a
frame attached to it. (b) The
stick as seen by an observer who
sees it move past her at v. Any
inertial observer finds that the
length of a meter stick moving
past her with speed v is less than
the length of a stationary stick
by a factor of (1 � v2/c2)1/2.
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Note that proper length and proper time are measured in different refer-
ence frames.

If an object in the shape of a box passing by could be photographed, its im-
age would show length contraction, but its shape would also be distorted. This
is illustrated in the computer-simulated drawings shown in Figure 1.14 for a
box moving past an observer with a speed v � 0.8c. When the shutter of the
camera is opened, it records the shape of the object at a given instant of time.
Because light from different parts of the object must arrive at the shutter at
the same time (when the photograph is taken), light from more distant parts
of the object must start its journey earlier than light from closer parts. Hence,
the photograph records different parts of the object at different times. This re-
sults in a highly distorted image, which shows horizontal length contraction,
vertical curvature, and image rotation.
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(a)

v = 0

(b)

v = 0.8c

Figure 1.14 Computer-simulated photographs of a box (a) at rest relative to the cam-
era and (b) moving at a speed v � 0.8c relative to the camera.

Solution The proper length here is the Earth– ship
separation as seen by the Earth-based observer, or 435 m.
The moving observer in the ship finds this separation
(the altitude) to be

EXAMPLE 1.5 The Triangular Spaceship

A spaceship in the form of a triangle flies by an observer
at 0.950c. When the ship is measured by an observer at
rest with respect to the ship (Fig. 1.15a), the distances x
and y are found to be 50.0 m and 25.0 m, respectively.
What is the shape of the ship as seen by an observer who
sees the ship in motion along the direction shown in Fig-
ure 1.15b?

Solution The observer sees the horizontal length of
the ship to be contracted to a length of

� 106 m

L � Lp √1 �
v2

c2 � (435 m) √1 �
(0.970c)2

c2

EXAMPLE 1.3 The Contraction of a Spaceship

A spaceship is measured to be 100 m long while it is at
rest with respect to an observer. If this spaceship now flies
by the observer with a speed of 0.99c, what length will the
observer find for the spaceship?

Solution The proper length of the ship is 100 m. From
Equation 1.10, the length measured as the spaceship flies
by is

Exercise 4 If the ship moves past the observer at
0.01000c, what length will the observer measure?

Answer 99.99 m.

EXAMPLE 1.4 How High Is the Spaceship?

An observer on Earth sees a spaceship at an altitude of
435 m moving downward toward the Earth at 0.970c.
What is the altitude of the spaceship as measured by an
observer in the spaceship?

L � Lp √1 �
v2

c2 � (100 m) √1 �
(0.99c)2

c2 � 14 m
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The 25-m vertical height is unchanged because it is per-
pendicular to the direction of relative motion between
the observer and the spaceship. Figure 1.15b represents
the shape of the spaceship as seen by the observer who
sees the ship in motion.

� (50.0 m) √1 �
(0.950c)2

c2 � 15.6 m

L � Lp √1 �
v2

c2

(a)

x

y

(b)

L

y
v

Figure 1.15 (Example 1.5) (a) When the spaceship is
at rest, its shape is as shown. (b) The spaceship appears
to look like this when it moves to the right with a speed v.
Note that only its x dimension is contracted in this case.

O P T I O N A LTHE TWINS PARADOX

If we placed a living organism in a box . . . one could arrange that the organism, after an

arbitrary lengthy flight, could be returned to its original spot in a scarcely altered condition,

while corresponding organisms which had remained in their original positions had long

since given way to new generations. (Einstein’s original statement of the twins
paradox in 1911)

An intriguing consequence of time dilation is the so-called clock or twins para-
dox. Consider an experiment involving a set of identical 20-year-old twins named
Speedo and Goslo. The twins carry with them identical clocks that have been
synchronized. Speedo, the more adventuresome of the two, sets out on an epic jour-
ney to planet X, 10 lightyears from Earth. (Note that 1 lightyear (ly) is the distance
light travels through free space in 1 year.) Furthermore, his spaceship is capable of a
speed of 0.500c relative to the inertial frame of his twin brother. After reaching
planet X, Speedo becomes homesick and impetuously sets out on a return trip to
Earth at the same high speed of the outbound journey. On his return, Speedo is
shocked to discover that many things have changed during his absence. To Speedo,
the most significant change is that his twin brother Goslo has aged more than he and is
now 60 years of age. Speedo, on the other hand, has aged by only 34.6 years.

At this point, it is fair to raise the following question—Which twin is the traveler
and which twin would really be the younger of the two? If motion is relative, the
twins are in a symmetric situation and either’s point of view is equally valid. From
Speedo’s perspective, it is he who is at rest while Goslo is on a high-speed space jour-
ney. To Speedo, it is Goslo and the Earth that have raced away on a 17.3-year jour-
ney and then headed back for another 17.3 years. This leads to the paradox: Which
twin will have developed the signs of excess aging?

To resolve this apparent paradox, recall that special relativity deals with inertial
frames of reference moving with respect to one another at uniform speed. However,
the trip situation is not symmetric. Speedo, the space traveler, must experience
acceleration during his journey. As a result, his state of motion is not always uni-
form, and consequently Speedo is not in an inertial frame. He cannot regard him-
self to always be at rest and Goslo to be in uniform motion. Hence Speedo cannot
apply simple time dilation to Goslo’s motion, because to do so would be an incor-
rect application of special relativity. Therefore there is no paradox and Speedo will
really be the younger twin at the end of the trip.

The conclusion that Speedo is not in a single inertial frame is inescapable. We
may diminish the length of time needed to accelerate and decelerate Speedo’s
spaceship to an insignificant interval by using very large and expensive rockets and
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claim that he spends all but a negligible amount of time coasting to planet X at
0.500c in an inertial frame. However, to return to Earth, Speedo must slow down,
reverse his motion, and return in a different inertial frame, one which is moving
uniformly toward the Earth. At the very best, Speedo is in two different inertial
frames. The important point is that even when we idealize Speedo’s trip, it consists
of motion in two different inertial frames and a very real lurch as he hops from the
outbound ship to the returning Earth shuttle. Only Goslo remains in a single iner-
tial frame, and so only he can correctly apply the simple time dilation formula of
special relativity to Speedo’s trip. Thus, Goslo finds that instead of aging 40 years
(20 ly/0.500c), Speedo actually ages only (40 yr), or 34.6 yr. Clearly,
Speedo spends 17.3 years going to planet X and 17.3 years returning in agreement
with our earlier statement.

The result that Speedo ages 34.6 yr while Goslo ages 40 yr can be confirmed in a
very direct experimental way from Speedo’s frame if we use the special theory of rel-
ativity but take into account the fact that Speedo’s idealized trip takes place in two differ-

ent inertial frames. In yet another flight of fancy, suppose that Goslo celebrates his
birthday each year in a flashy way, sending a powerful laser pulse to inform his twin
that Goslo is another year older and wiser. Because Speedo is in an inertial frame on
the outbound trip in which the Earth appears to be receding at 0.500c, the flashes
occur at a rate of one every

This occurs because moving clocks run slower. Also, because the Earth is receding,
each successive flash must travel an additional distance of (0.500c)(1.15 yr) between
flashes. Consequently, Speedo observes flashes to arrive with a total time between
flashes of 1.15 yr � (0.500c)(1.15 yr)/c � 1.73 yr. The total number of flashes seen
by Speedo on his outbound voyage is therefore (1 flash/1.73 yr)(17.3 yr) �

10 flashes. This means that Speedo views the Earth clocks to run more slowly than
his own on the outbound trip because he observes 17.3 years to have passed for him
while only 10 years have passed on Earth.

On the return voyage, because the Earth is racing toward Speedo with 
speed 0.500c, successive flashes have less distance to travel, and the total 
time Speedo sees between the arrival of flashes is drastically shortened: 
1.15 yr � (0.500)(1.15 yr) � 0.577 yr/flash. Thus, during the return trip, Speedo
sees (1 flash/0.577 yr)(17.3 yr) � 30 flashes in total. In sum, during his 34.6 years of
travel, Speedo receives (10 � 30) flashes, indicating that his twin has aged 40 years.
Notice that there has been no failure of special relativity for Speedo as long as we
take his two inertial frames into account and assume negligible acceleration and de-
celeration times. On both the outbound and inbound trips Speedo correctly judges
the Earth clocks to run slower than his own, but on the return trip his rapid move-
ment toward the light flashes more than compensates for the slower rate of flashing.

The Relativistic Doppler Shift

Another important consequence of time dilation is the shift in frequency
found for light emitted by atoms in motion as opposed to light emitted
by atoms at rest. A similar phenomenon, the mournful drop in pitch of the
sound of a passing train’s whistle, known as the Doppler effect, is quite
familiar to most cowboys (Fig. 1.16). The Doppler shift for sound is usually

1

√1 � (v2/c2)
yr �

1

√1 � [(0.500c)2/c2]
yr � 1.15 yr

(√1 � v2/c2 )

22 CHAPTER 1 RELATIVITY I

Figure 1.16 “I love hearing
that lonesome wail of the train
whistle as the frequency of the
wave changes due to the Dop-
pler effect.”
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studied in introductory physics courses and is especially interesting because
motion of the source with respect to the medium of propagation can
be clearly distinguished from motion of the observer. This means that in
the case of sound we can distinguish the “absolute motion” of frames moving
with respect to the air, which is the medium of propagation for sound.

Light waves must be analyzed differently from sound, because light waves
require no medium of propagation and no method exists of distinguishing the
motion of the light source from the motion of the observer. Thus, we expect
to find a different formula for the Doppler shift of light waves, one that is only
sensitive to the relative motion of source and observer and that holds for rela-
tive speeds of source and observer approaching c.

Consider a source of light waves at rest in frame S, emitting waves of frequency
f and wavelength  as measured in S. We wish to find the frequency f � and wave-
length � of the light as measured by an observer fixed in frame S�, which is mov-
ing with speed v toward S, as shown in Figure 1.17a and b. In general, we expect
f � to be greater than f if S� approaches S because more wave crests are crossed
per unit time, and we expect f � to be less than f if S� recedes from S. In particular,
consider the situation from the point of view of an observer fixed in S �, as shown
in Figure 1.18. This figure shows two successive wavefronts (color) emitted when
the approaching source is at positions 1 and 2, respectively. If the time between
the emission of these wavefronts as measured in S � is T�, during this time front 1
will move a distance cT� from position 1. During this same time, the light source

1.5 CONSEQUENCES OF SPECIAL RELATIVITY 23

xx
O

S

c

c

c

λ

(a)

c

v

x ′x′
O ′

S ′

(b)

λ′

c

Figure 1.17 (a) A light source fixed in S emits wave crests separated in space by 
and moving outward at speed c as seen from S. (b) What wavelength � is measured by
an observer at rest in S�? S� is a frame approaching S at speed v such that the x- and
x�-axes coincide.
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will advance a distance vT � to the left of position 1, and the distance between suc-
cessive wavefronts will be measured in S� to be

� � cT� � vT� (1.11)

Because we wish to obtain a formula for f � (the frequency measured in S�) in
terms of f (the frequency measured in S), we use the expression for � from
Equation 1.11 in f � � c/� to obtain

(1.12)

To eliminate T � in favor of T, note that T is the proper time; that is, T is the
time between two events (the emission of successive wavefronts) that occur at
the same place in S, and consequently,

Substituting for T� in Equation 1.12 and using f � 1/T gives

(1.13)

or

(1.14)

For clarity, this expression is often written

(1.15)

where fobs is the frequency measured by an observer approaching a light
source, and fsource is the frequency as measured in the source’s rest frame.

Equation 1.15 is the relativistic Doppler shift formula, which, unlike the
Doppler formula for sound, depends only on the relative speed v of the source
and observer and holds for relative speeds as large as c. Equation 1.15 agrees

fobs �
√1 � (v/c)

√1 � (v/c)
fsource

f � �
√1 � (v/c)

√1 � (v/c)
f

f � �
√1 � (v2/c2)

1 � (v/c)
f

T � �
T

√1 � (v2/c2)

f � �
c

(c � v)T �
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v

S ′

λ′

O ′

O O O

123

cT ′

vT ′

1

2

Figure 1.18 The view from S�. 1, 2, and 3 (in black) show three successive positions
of O separated in time by T �, the period of the light as measured from S�.
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with physical intuition in predicting fobs to be greater than fsource for an ap-
proaching emitter and receiver. The expression for the case of a receding
source is obtained by replacing v with �v in Equation 1.15.

Although Christian Johann Doppler’s name is most frequently associated
with the effect in sound, he originally developed his ideas in an effort to
understand the shift in frequency or wavelength of the light emitted by mov-
ing atoms and astronomical objects. The most spectacular and dramatic use of
the Doppler effect has occurred in just this area in explaining the famous red
shift of absorption lines (wavelengths) observed for most galaxies. (A galaxy is
a cluster of millions of stars.) The term redshift refers to the shift of known ab-
sorption lines toward longer wavelengths, that is, toward the red end of the vis-
ible spectrum. For example, lines normally found in the extreme violet region
for a galaxy at rest with respect to the Earth are shifted about 100 nm toward
the red end of the spectrum for distant galaxies— indicating that these distant
galaxies are rapidly receding from us. The American astronomer Edwin Hubble
used this technique to confirm that most galaxies are moving away from us
and that the Universe is expanding. (For more about the expanding Universe
see Chapter 16, Cosmology, on our Web site.)
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Substituting fobs � c/obs and fsource � c/source into this
equation gives

Finally, solving for v/c, we find

or

Therefore, Hydra is receding from us at v � 0.185c �

5.54 � 107 m/s.

v

c
�

(475 nm)2 � (394 nm)2

(475 nm)2 � (394 nm)2 � 0.185

v

c
�

2
obs � 2

source

2
obs � 2

source

obs �
√1 � (v/c)

√1 � (v/c)
source

EXAMPLE 1.6 Determining the Speed of
Recession of the Galaxy Hydra

The light emitted by a galaxy contains a continuous distrib-
ution of wavelengths because the galaxy is composed of
millions of stars and other thermal emitters. However,
some narrow gaps occur in the continuous spectrum where
the radiation has been strongly absorbed by cooler gases in
the galaxy. In particular, a cloud of ionized calcium atoms
produces very strong absorption at 394 nm for a galaxy at
rest with respect to the Earth. For the galaxy Hydra, which
is 200 million ly away, this absorption is shifted to 475 nm.
How fast is Hydra moving away from the Earth?

Solution For an approaching source and observer, 
fobs � fsource and obs � source because fobsobs � c �

fsourcesource. In the case of Hydra, obs � source, so Hydra
must be receding and we must use

fobs �
√1 � (v/c)

√1 � (v/c)
fsource

1.6 THE LORENTZ TRANSFORMATION

We have seen that the Galilean transformation is not valid when v approaches
the speed of light. In this section, we shall derive the correct coordinate
and velocity transformation equations that apply for all speeds in the range of
0 � v � c. This transformation, known as the Lorentz transformation, was
laboriously derived by Hendrik A. Lorentz (1853–1928, Dutch physicist) in
1890 as the transformation that made Maxwell’s equations covariant. However,
its real significance in a physical theory transcending electromagnetism was
first recognized by Einstein.
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The Lorentz coordinate transformation is a set of formulas that relates
the space and time coordinates of two inertial observers moving with a rela-
tive speed v. We have already seen two consequences of the Lorentz trans-
formation in the time dilation and length contraction formulas. The
Lorentz velocity transformation is the set of formulas that relate the velocity
components ux, uy, uz of an object moving in frame S to the velocity compo-
nents u�x, u�y, u�z of the same object measured in frame S�, which is moving
with a speed v relative to S. The Lorentz transformation formulas provide a
formal, concise, and almost mechanical method of solution of relativity
problems.

We start our derivation of the Lorentz transformation by noting that a
reasonable guess (based on physical intuition) about the form of the coor-
dinate equations can greatly reduce the algebraic complexity of the deriva-
tion. For simplicity, consider the standard frames, S and S�, with S� moving
at a speed v along the �x direction (see Fig. 1.2). The origins of the two
frames coincide at t� � t � 0. A reasonable guess about the dependence of
x� on x and t is

x� � G(x � vt) (1.16)

where G is a dimensionless factor that does not depend on x or t but is
some function of v/c such that G is 1 in the limit as v/c approaches 0. The
form of Equation 1.16 is suggested by the form of the Galilean transforma-
tion, x� � x � vt, which we know is correct in the limit as v/c approaches
zero. The fact that Equation 1.16 is linear in x and t is also important
because we require a single event in S (specified by x1, t1) to correspond to
a single event in S� (specified by x�1, t�1). Assuming that Equation 1.16 is
correct, we can write the inverse Lorentz coordinate transformation for x in
terms of x� and t� as

x � G(x� � vt�) (1.17)

This follows from Einstein’s first postulate of relativity, which requires the laws
of physics to have the same form in both S and S� and where the sign of v has
been changed to take into account the difference in direction of motion
of the two frames. In fact, we should point out that this important technique
for obtaining the inverse of a Lorentz transformation may be followed as a
general rule:

26 CHAPTER 1 RELATIVITY I

To obtain the inverse Lorentz transformation of any quantity, simply in-
terchange primed and unprimed variables and reverse the sign of the
frame velocity. 

Returning to our derivation of the Lorentz transformations, our argu-
ment will be to take the differentials of x� and t� and form an expression
that relates the measured velocity of an object in S�, u�x � dx�/dt�, to the
measured velocity of that object in S, ux � dx/dt. We then determine G by
requiring that u�x must equal c in the case that ux, the velocity of an object
in frame S, is equal to c, in accord with Einstein’s second postulate of rela-
tivity. Once G has been determined, this simple algebraic argument conve-
niently provides both the Lorentz coordinate and velocity transformations.
Following this plan, we first find
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(1.18)

by substituting Equation 1.16 into 1.17 and solving for t�. Taking differentials
of Equations 1.16 and 1.18 yields

dx� � G(dx � vdt) (1.19)

(1.20)

Forming u�x � dx�/dt� leads, after some simplification, to

(1.21)

where ux � dx/dt.
Postulate 2 requires that the velocity of light be c for any observer, so in the

case ux � c, we must also have u�x � c. Using this condition in Equation 1.21
gives

(1.22)

Equation 1.22 may be solved to give 

The direct coordinate transformation is thus x� � �(x � vt), and the inverse
transformation is x � �(x� � vt�). To get the time transformation (t� as a func-
tion of t and x), substitute G � � into Equation 1.18 to obtain

In summary, the complete coordinate transformations between an event
found to occur at (x, y, z, t) in S and (x�, y�, z�, t�) in S� are

(1.23)

(1.24)

(1.25)

(1.26)

where

If we wish to transform coordinates of an event in the S� frame to coordi-
nates in the S frame, we simply replace v by �v and interchange the primed

� �
1

√1 � (v2/c2)

t� � � �t �
vx

c2 �
z� � z

y� � y

x� � �(x � vt)

t� � � �t �
vx

c2 �

G � � �
1

√1 � (v2/c2)

c �
c � v

1 � (1/G2 � 1)(c/v)

u�x �
dx�

dt�
�

ux � v

1 � (1/G2 � 1)(ux/v)

dt� � G 	dt � (1/G2 � 1)
dx

v 


t� � G 	t � (1/G2 � 1)
x

v 
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Lorentz transformation for

S : S�
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and unprimed coordinates in Equations 1.23 through 1.26. The resulting in-
verse transformation is given by

(1.27)

where

In the Lorentz transformation, note that t depends on both t� and x�. Likewise,
t� depends on both t and x. This is unlike the case of the Galilean transforma-
tion, in which t � t�. When v �� c, the Lorentz transformation should reduce
to the Galilean transformation. To check this, note that as v : 0, v/c � 1 and
v2/c2 �� 1, so that Equations 1.23–1.26 reduce in this limit to the Galilean
coordinate transformation equations, given by

x� � x � vt y� � y z� � z t� � t

� �
1

√1 � v2/c2

x � �(x� � vt�)

y � y�

z � z�

t � ��t� �
vx�

c2 �

28 CHAPTER 1 RELATIVITY I

Inverse Lorentz

transformation for S� : S

Event 1 (light on) Event 2 (light off)

Frame S x0, t1 x0, t2

Frame S� x�1 � �(x0 � vt1) x�2 � �(x0 � vt2)

t�2 � � �t2 �
vx0

c2 �t�1 � � �t1 �
vx0

c2 �

EXAMPLE 1.7 Time Dilation Is Contained in
the Lorentz Transformation

Show that the phenomenon of time dilation is con-
tained in the Lorentz coordinate transformation. A
light located at (x0, y0, z0) is turned abruptly on at t1
and off at t2 in frame S. (a) For what time interval is
the light measured to be on in frame S�? (See Figure
1.2 for a picture of the two standard frames.) (b) What
is the distance between where the light is turned on
and off as measured by S�?

Solution (a) The two events, the light turning on and
the light turning off, are measured to occur in the two
frames as follows:

Note that the y and z coordinates are not affected be-
cause the motion of S� is along x. As measured by S�, the
light is on for a time interval

Because � � 1 and (t2 � t1) is the proper time, it follows
that (t�2 � t�1) � (t2 � t1), and we have recovered our
previous result for time dilation, Equation 1.8.

(b) Although event 1 and event 2 occur at the same
place in S, they are measured to occur at a separation of
x�2 � x�1 in S� where

x�2 � x�1 � (�x0 � �vt2) � (�x0 � �vt1)

� �v(t1 � t2)

This result is reasonable because it reduces to

v(t1 � t2) for v/c �� 1

Can you explain why x�2 � x�1 is negative?

� �(t2 � t1)

t�2 � t �1 � � �t2 �
vx0

c 2 � � � �t1 �
vx0

c 2 �
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Exercise 5 Use the Lorentz transformation to derive the expression for length con-
traction. Note that the length of a moving object is determined by measuring the posi-
tions of both ends simultaneously.

Lorentz Velocity Transformation

The explicit form of the Lorentz velocity transformation follows immediately
upon substitution of G � � � 1/ into Equation 1.21:

(1.28)

where u�x � dx�/dt� is the instantaneous velocity in the x direction measured in
S� and ux � dx/dt is the velocity component ux of the object as measured in S.
Similarly, if the object has velocity components along y and z, the components
in S� are

(1.29)

When ux and v are both much smaller than c (the nonrelativistic case),
we see that the denominator of Equation 1.28 approaches unity, and so 
u�x � ux � v. This corresponds to the Galilean velocity transformation. In the
other extreme, when ux � c, Equation 1.28 becomes

From this result, we see that an object moving with a speed c relative to an
observer in S also has a speed c relative to an observer in S�— independent
of the relative motion of S and S�. Note that this conclusion is consistent
with Einstein’s second postulate, namely, that the speed of light must be c
with respect to all inertial frames of reference. Furthermore, the speed of
an object can never exceed c. That is, the speed of light is the “ultimate”
speed. We return to this point later in Chapter 2 when we consider the energy
of a particle.

To obtain ux in terms of u�x, replace v by �v in Equation 1.28 and inter-
change ux and u�x following the rule stated earlier for obtaining the inverse
transformation. This gives

(1.30)ux �
u�x � v

1 � (u�xv/c2)

u�x �
c � v

1 � (cv/c2)
�

c[1 � (v/c)]
1 � (v/c)

� c

uy� �
dy�

dt�
�

dy

�(dt � vdx/c 2)
�

uy

�[1 � (uxv/c2)]

and uz� �
uz

�[1 � (uxv/c2)]

u�x �
ux � v

1 � (uxv/c2)

√1 � (v2/c2)
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Lorentz velocity

transformation for S : S�

Inverse Lorentz velocity

transformation for S� : S

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



30 CHAPTER 1 RELATIVITY I

S ′ (attached to A)
y

0.750c

BA

x ′O ′

S
y

xO

ux′

Figure 1.19 (Example 1.8) Two spaceships A and B
move in opposite directions. The velocity of B relative to A
is less than c and is obtained by using the relativistic veloc-
ity transformation.

the ball relative to the stationary observer is

Exercise 6 Suppose that the motorcyclist moving with a
speed 0.800c turns on a beam of light that moves away
from him with a speed of c in the same direction as the
moving motorcycle. What would the stationary observer
measure for the speed of the beam of light?

Answer c.

EXAMPLE 1.10 Relativistic Leaders of
the Pack!

Imagine two motorcycle gang leaders racing at relativis-
tic speeds along perpendicular paths from the local
pool hall, as shown in Figure 1.21. How fast does
pack leader Beta recede over Alpha’s right shoulder as
seen by Alpha?

Solution Figure 1.21 shows the situation as seen by a
stationary police officer located in frame S, who observes
the following:

�
0.700c � 0.800c

1 � [(0.700c)(0.800c)/c2]
� 0.9615c

ux �
u�x � v

1 � (u�xv/c2)

EXAMPLE 1.8 Relative Velocity of Spaceships

Two spaceships A and B are moving in opposite directions,
as in Figure 1.19. An observer on Earth measures the
speed of A to be 0.750c and the speed of B to be 0.850c.
Find the velocity of B with respect to A.

0.800c

0.700c

Figure 1.20 (Example 1.9) A motorcyclist moves past a
stationary observer with a speed of 0.800c and throws a
ball in the direction of motion with a speed of 0.700c rel-
ative to himself.

Pack Leader Alpha ux � 0.75c uy � 0

Pack Leader Beta ux � 0 uy � �0.90c

Solution This problem can be solved by taking the S�

frame to be attached to spacecraft A, so that v � 0.750c
relative to an observer on Earth (the S frame). Spacecraft
B can be considered as an object moving to the left with
a velocity ux � �0.850c relative to the Earth observer.
Hence, the velocity of B with respect to A can be ob-
tained using Equation 1.28:

The negative sign for u�x indicates that spaceship B is mov-
ing in the negative x direction as observed by A. Note that
the result is less than c. That is, a body with speed less
than c in one frame of reference must have a speed less
than c in any other frame. If the incorrect Galilean velocity
transformation were used in this example, we would find
that u�x � ux � v � �0.850c � 0.750c � �1.600c, which is
greater than the universal limiting speed c.

EXAMPLE 1.9 The Speeding Motorcycle

Imagine a motorcycle rider moving with a speed of
0.800c past a stationary observer, as shown in Figure 1.20.
If the rider tosses a ball in the forward direction with a
speed of 0.700c with respect to himself, what is the speed
of the ball as seen by the stationary observer?

Solution In this situation, the velocity of the motorcy-
cle with respect to the stationary observer is v � 0.800c.
The velocity of the ball in the frame of reference of the
motorcyclist is u�x � 0.700c. Therefore, the velocity, ux, of

� �0.9771c

u�x �
ux � v

1 �
uxv

c2

�
�0.850c � 0.750c

1 �
(�0.850c)(0.750c)

c2
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1.7 SPACETIME AND CAUSALITY 31

To get Beta’s speed of recession as seen by Alpha, we take
S� to move along with Alpha, as shown in Figure 1.22,
and we calculate u�x and u�y for Beta using Equations 1.28
and 1.29:

u�y �
uy

�[1 � (uxv/c2)]

u�x �
ux � v

1 � (uxv/c2)
�

0 � 0.75c

1 � [(0)(0.75c)/c2]
� �0.75c

"The maximum
speed is c !"

Pack leader Alpha

Pack leader Beta

Policeperson
at rest in S

0.90c

0.75c

Figure 1.21 (Example 1.10) Two motorcycle pack lead-
ers, Alpha and Beta, blaze past a stationary police officer.
They are leading their respective gangs from the pool
hall along perpendicular roads.

"The maximum
speed is c !"

Alpha

Beta

0.750c

S′

u ′uy

u ′ux

Figure 1.22 (Example 1.10) Pack leader Alpha’s view
of things.

The speed of recession of Beta away from Alpha as
observed by Alpha is then found to be less than c as re-
quired by relativity.

Exercise 7 Calculate the classical speed of recession of
Beta from Alpha using the incorrect Galilean transforma-
tion.

Answer 1.2c

u� � √(u�x)2 � (u�y)2 � √(�0.75c)2 � (�0.60c)2 � 0.96c

�
√1 � [(0.75c)2/c2](�0.90c)

1 � [(0)(0.75c)/c2]
� �0.60c

1.7 SPACETIME AND CAUSALITY

The views of space and time which I wish to lay before you have sprung from the soil of experi-
mental physics, and therein lies their strength. They are radical. Henceforth space by itself, and
time by itself, are doomed to fade away into mere shadows, and only a union of the two will
preserve an independent reality. (Hermann Minkowski, 1908, in an address to the As-
sembly of German Natural Scientists and Physicians)

We have seen in relativity that space and time coordinates cannot be treated
separately. This is apparent from both the combination of space and time co-
ordinates required in the Lorentz coordinate transformation and in the varia-
tion of length and time intervals with inertial frame as shown in the time
dilation and length contraction formulas. A convenient way to express the en-
tanglement of space and time is with the concept of four-dimensional spacetime
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and spacetime diagrams introduced by the German mathematician Minkowski.8

While classical mechanics uses vectors with three components, relativistic me-
chanics can be elegantly expressed in terms of four vectors, corresponding to
the directions x, y, z, and t. However for simplicity we will confine our discus-
sion to motion in one dimension along the x-axis.

A Minkowski or spacetime diagram showing the complete history or
world line of a one-dimensional motion in frame S is shown in Figure 1.23.
Note that the quantity ct is plotted on the y-axis and the coordinate x is plot-
ted on the x-axis. The scale of distance is chosen to be the same for both
axes. That is, both vertical and horizontal axis ticks occur every meter, so
that a light signal starting out at x � 0, t � 0 follows a 45� line. Point E
shows a point event described in frame S by the coordinates (x, t). Of
course, other inertial frames (S�) may be used to describe the event or plot
the world line and it is quite interesting that these other frames have
nonorthogonal ct� and x� axes, as shown in Figure 1.23. (See Problem 40 for
proof of this statement.) To find the space and time coordinates of a given
event E in a specific frame, we draw lines parallel to the frame axes and
measure the intercepts with the specific frame axes, as shown in the figure.
Note too, that the velocity ux of a particle is inversely proportional to the
slope of its world line since

(1.31)ux � c
�x

�ct
�

c

slope

32 CHAPTER 1 RELATIVITY I

8Minkowski was one of Einstein’s teachers, who, commenting on Einstein’s work on relativity, re-
putedly said something like, “I never would have expected that student to come up with anything
so clever.”

ct

x � ct

x �

ct �

x

x �

ct

O

E

Event E

World line Light signal

x

ct �

Figure 1.23 A spacetime diagram showing the position of a particle in one dimen-
sion at consecutive times. The path showing the complete history of the particle is
called the world line of the particle. An event E has coordinates (x, t) in frame S and
coordinates (x�, t�) in S�.
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We stated earlier in this section that neither lengths nor time intervals by
themselves have any absolute meaning. Can we find a quantity that is absolute
or invariant and represents the correct union of length and time? Figure 1.24
shows a spacetime graph with two events, E1 and E2 having coordinates (x1, t1)
and (x2,t2) in frame S and coordinates (x�1,t�1) and (x�2,t�2) in frame S�. Let us
define the quantity (�s)2 by

(�s)2 � (c�t)2 � (�x)2 � (c(t2 � t1))2 � (x2 � x1)2 (1.32)

where �s has the dimension of length and is called the spacetime interval be-
tween two events; it is analogous to distance in classical mechanics. If we now
evaluate the quantity

(�s�)2 � (c�t�)2 � (�x�)2 � (c(t�2 � t�1))2 � (x�2 � x�1)2

for the two events E1 and E2 whose coordinates in S and S� are connected by
the Lorentz transforms x�1 � �(x1 � vt1), t�1 � �(t1 � vx1/c2), and so on, we
find after some algebra

(�s�)2 � (c�t)2 � (�x)2 � (�s)2 (1.33)

This important result says that the quantity �s, the spacetime interval be-
tween two events, is an invariant and has the same value for all inertial
observers. We have found the quantity that correctly combines space and
time in an invariant way.

Minkowski diagrams can be used to classify the entire universe of spacetime
and clarify whether or not one event could be the cause of another. Figure
1.25 shows a spacetime diagram for one dimension with axes for two different
inertial frames S and S�, which share a common origin O at x � x� � 0 and
t � t� � 0. The lines x � 
ct are world lines of light pulses passing through
the origin and traveling in the positive or negative x direction. The regions
labeled past and future correspond to negative and positive values of time as

1.7 SPACETIME AND CAUSALITY 33

ct 2

ct 1
E1

x 1 x 2

E2 x � ct

x �

ct �ct

x

Figure 1.24 Two events, E1 and E2, with coordinates (x1,t1) and (x2,t2) in frame S.

The invariant spacetime

interval �s
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judged from the present moment (now), which occurs at the origin. Regions
labeled “elsewhere” cannot be reached by an object whose world line passes
through O since to get to them would require a spacetime slope �1 or speed
greater than c.

The quantity (�s)2 � (c�t)2 � (�x)2 can be used to classify the interval
between two events and determine whether one event could be caused by
the other. To see this, consider the three pairs of events shown in Figure
1.26, where for simplicity the events V, A, and C have been taken to coin-
cide with the origin. For the two events V, W, (�s)2 � 0 since c�t � � �x �.
Event V could be the cause of event W because some signal or influence

34 CHAPTER 1 RELATIVITY I

Figure 1.25 Classification of one-dimensional spacetime into past, future, and else-
where regions. A particle with world line passing through O cannot reach regions
marked elsewhere.

x � ctx � �ct

x �

ct �ct

x

O

World line

PAST

NOW

FUTURE

ELSEWHERE
ELSEWHERE

x � ctx � �ct

ct

x

O

EVENTS
V, A, C

W
c�t

�x

B

D

Figure 1.26 Three pairs of events in spacetime: V,W; A,B; C,D. V could cause W.
A could cause B. C could not cause D.
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could cover the distance �x from V to W with a speed less than c and con-
nect the two events. The interval between V and W is called “timelike” for
reasons we won’t go into here, but it is important to note that since (�s)2 is
an invariant, if V causes W in frame S, it also causes W in any other inertial
frame. Thus, events linked causally in one frame are linked causally in all
other inertial frames.

For the two events A, B, (�s)2 � 0 because c�t � � �x �. In this case the
world line of a light pulse connects point events A and B, and the spacetime
interval �s is said to be “lightlike.”

In the final case of events C, D, (�s)2 � 0 because c�t � � �x �. This means
that even a signal propagating at the speed of light can’t cover the distance
��x � between the events C and D and so C cannot possibly be the cause of D in
any inertial frame whatsoever.

SUMMARY

The two basic postulates of the special theory of relativity are as follows:

• The laws of physics must be the same for all observers moving at constant
velocity with respect to one another.

• The speed of light must be the same for all inertial observers, indepen-
dent of their relative motion.

To satisfy these postulates, the Galilean transformations must be replaced by
the Lorentz transformations given by

(1.23)

(1.24)

(1.25)

(1.26)

where

These equations relate an event with coordinates x, y, z, t measured in S to the
same event with coordinates x�, y�, z�, t� measured in S�, where it is assumed
that the primed system moves with a speed v along the xx�-axes.

The relativistic form of the velocity transformation is

(1.28)

where ux is the speed of an object as measured in the S frame and u�x is its
speed measured in the S� frame.

If the object has velocity components uy and uz along y and z respectively,
the components in S� are

(1.29)u�y �
uy

�[1 � (uxv/c2)]
 and u�z �

uz

�[1 � (uxv/c2)]

u�x �
ux � v

1 � (uxv/c2)

� �
1

√1 � (v2/c2)

t� � � �t �
v

c2 x�
z� � z

y� � y

x� � �(x � vt)

SUMMARY 35
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Some of the consequences of the special theory of relativity are as follows:

• Clocks in motion relative to an observer appear to be slowed down by a
factor �. This is known as time dilation.

• Lengths of objects in motion appear to be contracted in the direction of
motion by a factor of 1/�. This is known as length contraction.

• Events that are simultaneous for one observer are not simultaneous for
another observer in motion relative to the first. This is known as the
relativity of simultaneity.

These three statements can be summarized by saying that duration, length,
and simultaneity are not absolute concepts in relativity.

The relativistic Doppler shift for electromagnetic waves emitted by a mov-
ing source is given by

(1.15)

where fobs is the frequency measured by an observer approaching a light
source with relative speed v, and fsource is the frequency as measured in the
source’s rest frame. The expression for the case of a receding source is
obtained by replacing v with �v in Equation 1.15.

The quantity �s, the spacetime interval between two events, is an invariant
and has the same value for all inertial observers where �s is defined by 
(�s)2 � (c�t)2 � (�x)2.

fobs �
√1 � (v/c)

√1 � (v/c)
fsource
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SUGGESTIONS FOR FURTHER READING

QUESTIONS

1. What two measurements will two observers in relative
motion always agree on?

2. A spaceship in the shape of a sphere moves past an ob-
server on Earth with a speed of 0.5c. What shape will
the observer see as the spaceship moves past?

3. An astronaut moves away from Earth at a speed close to
the speed of light. If an observer on Earth could make
measurements of the astronaut’s size and pulse rate,
what changes (if any) would he or she measure? Would
the astronaut measure any changes?

4. Two identically constructed clocks are synchronized.
One is put in an eastward orbit around Earth while the
other remains on Earth. Which clock runs slower?
When the moving clock returns to Earth, will the two
clocks still be synchronized?

5. Two lasers situated on a moving spacecraft are trig-
gered simultaneously. An observer on the spacecraft
claims to see the pulses of light simultaneously. What
condition is necessary in order that another observer
agrees that the two pulses are emitted simultaneously?
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6. When we say that a moving clock runs slower than a sta-
tionary one, does this imply that there is something
physically unusual about the moving clock?

7. When we speak of time dilation, do we mean that time
passes more slowly in moving systems or that it simply
appears to do so?

8. List some ways our day-to-day lives would change if the
speed of light were only 50 m/s.

9. Give a physical argument to show that it is impossible
to accelerate an object of mass m to the speed of light,
even with a continuous force acting on it.

10. It is said that Einstein, in his teenage years, asked the
question, “What would I see in a mirror if I carried it in
my hands and ran at the speed of light?” How would
you answer this question?

11. Suppose astronauts were paid according to the time
spent traveling in space. After a long voyage at a
speed near that of light, a crew of astronauts returns
and opens their pay envelopes. What will their reac-
tion be?

12. What happens to the density of an object as its speed
increases, as measured by an Earth observer?

PROBLEMS 37

PROBLEMS

1.2 The Principle of Newtonian Relativity and
the Galilean Transformation

1. In a lab frame of reference, an observer finds Newton’s
second law is valid in the form Show that

Newton’s second law is not valid in a reference
frame moving past the laboratory frame of Problem 1
with a constant acceleration a1. Assume that mass is an
invariant quantity and is constant in time.

2. A 2000-kg car moving with a speed of 20 m/s collides
with and sticks to a 1500-kg car at rest at a stop sign.
Show that because momentum is conserved in the rest
frame, momentum is also conserved in a reference
frame moving with a speed of 10 m/s in the direction
of the moving car.

3. A billiard ball of mass 0.3 kg moves with a speed of
5 m/s and collides elastically with a ball of mass 0.2 kg
moving in the opposite direction with a speed of 3 m/s.
Show that because momentum is conserved in the rest
frame, it is also conserved in a frame of reference mov-
ing with a speed of 2 m/s in the direction of the sec-
ond ball.

1.3 The Michelson–Morley Experiment

4. An airplane flying upwind, downwind, and crosswind
shows the main principle of the Michelson–Morley
experiment. A plane capable of flying at speed c in still
air is flying in a wind of speed v. Suppose the plane
flies upwind a distance L and then returns downwind
to its starting point. (a) Find the time needed to make
the round-trip and compare it with the time to fly
crosswind a distance L and return. Before calculating
these times, sketch the two situations. (b) Compute
the time difference for the two trips if L � 100 mi,
c � 500 mi/h, and v � 100 mi/h.

1.5 Consequences of Special Relativity

5. With what speed will a clock have to be moving in order
to run at a rate that is one-half the rate of a clock at rest?

actual
physical
forces

�F � ma.

6. How fast must a meter stick be moving if its length is
observed to shrink to 0.5 m?

7. A clock on a moving spacecraft runs 1 s slower per day
relative to an identical clock on Earth. What is the rela-
tive speed of the spacecraft? (Hint: For v/c �� 1, note
that � � 1 � v2/2c2.)

8. A meter stick moving in a direction parallel to its length
appears to be only 75 cm long to an observer. What is
the speed of the meter stick relative to the observer?

9. A spacecraft moves at a speed of 0.900c. If its length is
L as measured by an observer on the spacecraft, what is
the length measured by a ground observer?

10. The average lifetime of a pi meson in its own frame of
reference is 2.6 � 10�8 s. If the meson moves with a
speed of 0.95c, what is (a) its mean lifetime as mea-
sured by an observer on Earth and (b) the average dis-
tance it travels before decaying, as measured by an ob-
server on Earth?

11. An atomic clock is placed in a jet airplane. The clock
measures a time interval of 3600 s when the jet moves
with a speed of 400 m/s. How much longer or shorter
a time interval does an identical clock held by an
observer on the ground measure? (Hint: For v/c �� 1,
� � 1 � v2/2c2.)

12. An astronaut at rest on Earth has a heartbeat rate of
70 beats/min. What will this rate be when she is trav-
eling in a spaceship at 0.90c as measured (a) by an ob-
server also in the ship and (b) by an observer at rest on
the Earth?

13. The muon is an unstable particle that spontaneously
decays into an electron and two neutrinos. If the
number of muons at t � 0 is N0, the number at time
t is given by N � N0e�t/�, where � is the mean life-
time, equal to 2.2 �s. Suppose the muons move at a
speed of 0.95c and there are 5.0 � 104 muons at 
t � 0. (a) What is the observed lifetime of the
muons? (b) How many muons remain after traveling
a distance of 3.0 km?

14. A rod of length L0 moves with a speed v along the hor-
izontal direction. The rod makes an angle of �0 with
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respect to the x�-axis. (a) Show that the length of
the rod as measured by a stationary observer is given
by L � L0[1 � (v2/c2)cos2 �0]1/2. (b) Show that the
angle that the rod makes with the x-axis is given by the
expression tan � � � tan �0. These results show that
the rod is both contracted and rotated. (Take the lower
end of the rod to be at the origin of the primed coordi-
nate system.)

15. The classical Doppler shift for light. A light source recedes
from an observer with a speed v that is small compared
with c. (a) Show that in this case, Equation 1.15 re-
duces to

(b) Also show that in this case

(Hint: Differentiate f � c to show that �/ � ��f/f )
(c) Spectroscopic measurements of an absorption line
normally found at  � 397 nm reveal a redshift of
20 nm for light coming from a galaxy in Ursa Major.
What is the recessional speed of this galaxy?

16. Calculate, for the judge, how fast you were going in
miles per hour when you ran the red light because it
appeared Doppler-shifted green to you. Take red light
to have a wavelength of 650 nm and green to have a
wavelength of 550 nm.

17. (a) How fast and in what direction must galaxy A be
moving if an absorption line found at 550 nm (green)
for a stationary galaxy is shifted to 450 nm (blue) for
A? (b) How fast and in what direction is galaxy B mov-
ing if it shows the same line shifted to 700 nm (red)?

18. Police radar detects the speed of a car (Fig. P1.18) as
follows: Microwaves of a precisely known frequency are
broadcast toward the car. The moving car reflects the
microwaves with a Doppler shift. The reflected waves
are received and combined with an attenuated version
of the transmitted wave. Beats occur between the two
microwave signals. The beat frequency is measured.
(a) For an electromagnetic wave reflected back to its
source from a mirror approaching at speed v, show
that the reflected wave has frequency 

where fsource is the source frequency. (b) When v is
much less than c, the beat frequency is much smaller
than the transmitted frequency. In this case use the
approximation f � fsource � 2 fsource and show that the
beat frequency can be written as fbeat � 2v/. (c) What
beat frequency is measured for a car speed of 30.0 m/s

f � fsource
c � v

c � v

�


�

v

c

�f

f
� �

v

c

if the microwaves have frequency 10.0 GHz? (d) If the
beat frequency measurement is accurate to 
5 Hz, how
accurate is the velocity measurement?
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1.6 The Lorentz Transformation

19. Two spaceships approach each other, each moving with
the same speed as measured by an observer on the
Earth. If their relative speed is 0.70c, what is the speed of
each spaceship?

20. An electron moves to the right with a speed of 0.90c rela-
tive to the laboratory frame. A proton moves to the right
with a speed of 0.70c relative to the electron. Find the
speed of the proton relative to the laboratory frame.

21. An observer on Earth observes two spacecraft moving
in the same direction toward the Earth. Spacecraft A ap-
pears to have a speed of 0.50c, and spacecraft B appears
to have a speed of 0.80c. What is the speed of spacecraft
A measured by an observer in spacecraft B?

22. Speed of light in a moving medium. The motion of a
medium such as water influences the speed of light.
This effect was first observed by Fizeau in 1851. Con-
sider a light beam passing through a horizontal column
of water moving with a speed v. (a) Show that if the
beam travels in the same direction as the flow of water,
the speed of light measured in the laboratory frame is
given by

u �
c

n � 1 � nv/c

1 � v/nc �
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ADDITIONAL PROBLEMS 39

where n is the index of refraction of the water. (Hint:
Use the inverse Lorentz velocity transformation and
note that the speed of light with respect to the moving
frame is given by c/n.) (b) Show that for v �� c, the
preceding expression is in good agreement with
Fizeau’s experimental result:

This proves that the Lorentz velocity transformation
and not the Galilean velocity transformation is correct
for light.

23. An observer in frame S sees lightning simultaneously
strike two points 100 m apart. The first strike occurs

u �
c

n
� v �

v

n2

31. A physics professor on Earth gives an exam to her stu-
dents who are on a spaceship traveling at speed v relative
to Earth. The moment the ship passes the professor, she
signals the start of the exam. If she wishes her students to
have time T0 (spaceship time) to complete the exam,
show that she should wait a time (Earth time) of

before sending a light signal telling them to stop. (Hint:
Remember that it takes some time for the second light
signal to travel from the professor to the students.)

32. A yet-to-be-built spacecraft starts from Earth moving at
constant speed to the yet-to-be-discovered planet Retah,
which is 20 lighthours away from Earth. It takes 25 h (ac-
cording to an Earth observer) for a spacecraft to reach
this planet. Assuming that the clocks are synchronized at
the beginning of the journey, compare the time elapsed
in the spacecraft’s frame for this one-way journey with the
time elapsed as measured by an Earth-based clock.

33. Suppose our Sun is about to explode. In an effort to es-
cape, we depart in a spaceship at v � 0.80c and head
toward the star Tau Ceti, 12 lightyears away. When we
reach the midpoint of our journey from the Earth, we
see our Sun explode and, unfortunately, at the same in-
stant we see Tau Ceti explode as well. (a) In the space-
ship’s frame of reference, should we conclude that the

T � T0 √ 1 � v/c

1 � v/c

MirrorS

0

v = 0.8c

Figure P1.30

at x1 � y1 � z1 � t1 � 0 and the second at x2 � 100 m,
y2 � z2 � t2 � 0. (a) What are the coordinates of these
two events in a frame S� moving in the standard config-
uration at 0.70c relative to S? (b) How far apart are the
events in S�? (c) Are the events simultaneous in S�? If
not, what is the difference in time between the events,
and which event occurs first?

24. As seen from Earth, two spaceships A and B are
approaching along perpendicular directions. If A is
observed by an Earth observer to have velocity
uy � �0.90c and B to have a velocity ux � �0.90c, find
the speed of ship A as measured by the pilot of B.

ADDITIONAL PROBLEMS

25. In 1962, when Scott Carpenter orbited Earth 22 times,
the press stated that for each orbit he aged 2 millionths
of a second less than if he had remained on Earth.
(a) Assuming that he was 160 km above Earth in an
eastbound circular orbit, determine the time differ-
ence between someone on Earth and the orbiting as-
tronaut for the 22 orbits. (b) Did the press report accu-
rate information? Explain.

26. The proper length of one spaceship is three times that of
another. The two spaceships are traveling in the same di-
rection and, while both are passing overhead, an Earth
observer measures the two spaceships to have the same
length. If the slower spaceship is moving with a speed of
0.35c, determine the speed of the faster spaceship.

27. The pion has an average lifetime of 26.0 ns when at
rest. For it to travel 10.0 m, how fast must it move?

28. If astronauts could travel at v � 0.95c, we on Earth
would say it takes (4.2/0.95) � 4.4 years to reach Alpha
Centauri, 4.2 lightyears away. The astronauts disagree.
(a) How much time passes on the astronauts’ clocks?
(b) What distance to Alpha Centauri do the astronauts
measure?

29. A spaceship moves away from Earth at a speed v and
fires a shuttle craft in the forward direction at a speed
v relative to the ship. The pilot of the shuttle craft
launches a probe at speed v relative to the shuttle craft.
Determine (a) the speed of the shuttle craft relative to
Earth, and (b) the speed of the probe relative to Earth.

30. An observer in a rocket moves toward a mirror at speed
v relative to the reference frame labeled by S in Figure
P1.30. The mirror is stationary with respect to S. A light
pulse emitted by the rocket travels toward the mirror
and is reflected back to the rocket. The front of the
rocket is a distance d from the mirror (as measured by
observers in S) at the moment the light pulse leaves the
rocket. What is the total travel time of the pulse as mea-
sured by observers in (a) the S frame and (b) the front
of the rocket?
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two explosions occurred simultaneously? If not, which
occurred first? (b) In a frame of reference in which the
Sun and Tau Ceti are at rest, did they explode simulta-
neously? If not, which exploded first?

34. Two powerless rockets are on a collision course. The
rockets are moving with speeds of 0.800c and 0.600c
and are initially 2.52 � 1012 m apart as measured by
Liz, an Earth observer, as shown in Figure P1.34. Both
rockets are 50.0 m in length as measured by Liz.
(a) What are their respective proper lengths? (b) What
is the length of each rocket as measured by an observer
in the other rocket? (c) According to Liz, how long be-
fore the rockets collide? (d) According to rocket 1,
how long before they collide? (e) According to rocket
2, how long before they collide? (f) If both rocket
crews are capable of total evacuation within 90 min
(their own time), will there be any casualties?

38. A spacecraft is launched from the surface of the Earth
with a velocity of 0.600c at an angle of 50.0� above the
horizontal, positive x-axis. Another spacecraft is moving
past with a velocity of 0.700c in the negative x direction.
Determine the magnitude and direction of the velocity
of the first spacecraft as measured by the pilot of the
second spacecraft.

39. An Earth satellite used in the Global Positioning Sys-
tem moves in a circular orbit with period 11 h 58 min.
(a) Determine the radius of its orbit. (b) Determine its
speed. (c) The satellite contains an oscillator produc-
ing the principal nonmilitary GPS signal. Its frequency
is 1 575.42 MHz in the reference frame of the satellite.
When it is received on the Earth’s surface, what is the
fractional change in this frequency due to time dila-
tion, as described by special relativity? (d) The gravita-
tional blueshift of the frequency according to general
relativity is a separate effect. The magnitude of that
fractional change is given by

where �Ug/m is the change in gravitational potential en-
ergy per unit mass between the two points at which the
signal is observed. Calculate this fractional change in fre-
quency. (e) What is the overall fractional change in fre-
quency? Superposed on both of these relativistic effects
is a Doppler shift that is generally much larger. It can be
a redshift or a blueshift, depending on the motion of a
particular satellite relative to a GPS receiver (Fig. P1.39).

�f

f
�

�Ug

mc2
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Figure P1.34

Rocket 1 Rocket 2

0.800c –0.600c

2.52 × 1012 m

Liz

35. The identical twins Speedo and Goslo join a migration
from Earth to Planet X. It is 20.0 ly away in a reference
frame in which both planets are at rest. The twins, of
the same age, depart at the same time on different
spaceships. Speedo’s ship travels steadily at 0.950c, and
Goslo’s at 0.750c. Calculate the age difference between
the twins after Goslo’s spaceship reaches Planet X.
Which twin is the older?

36. Suzanne observes two light pulses to be emitted from
the same location, but separated in time by 3.00 �s.
Mark sees the emission of the same two pulses sepa-
rated in time by 9.00 �s. (a) How fast is Mark moving
relative to Suzanne? (b) According to Mark, what is the
separation in space of the two pulses?

37. An observer in reference frame S sees two events as si-
multaneous. Event A occurs at the point (50.0 m, 0, 0)
at the instant 9:00:00 Universal time, 15 January 2001.
Event B occurs at the point (150 m, 0, 0) at the same
moment. A second observer, moving past with a veloc-
ity of 0.800c î, also observes the two events. In her refer-
ence frame S�, which event occurred first and what
time elapsed between the events?

40. Show that the S� axes, x� and ct�, are nonorthogonal in
a spacetime diagram. Assume that the S and S� inertial
frames move as shown in Figure 1.2 and that t � t� � 0
when x � x� � 0. (Hint: First use the fact that the ct�-
axis is the world line of the origin of S� to show that the
ct�-axis is inclined with respect to the ct -axis. Next note
that the world line of a light pulse moving in the �x
direction starting out at x � 0 and ct � 0 is described
by the equation x � �ct in S and x� � ct� in S�).
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2
Relativity II

2.1 Relativistic Momentum and the
Relativistic Form of Newton’s Laws

2.2 Relativistic Energy
2.3 Mass as a Measure of Energy
2.4 Conservation of Relativistic

Momentum and Energy

2.5 General Relativity
Summary
WEB ESSAY The Renaissance of General

Relativity, by Clifford M. Will

Chapter Outline

In this chapter we extend the theory of special relativity to classical mechan-
ics, that is, we give relativistically correct expressions for momentum, Newton’s
second law, and the famous equivalence of mass and energy. The final section,
on general relativity, deals with the physics of accelerating reference frames
and Einstein’s theory of gravitation.

2.1 RELATIVISTIC MOMENTUM AND
THE RELATIVISTIC FORM OF
NEWTON’S LAWS

The conservation of linear momentum states that when two bodies collide, the
total momentum remains constant, assuming the bodies are isolated (that is,
they interact only with each other). Suppose the collision is described in a
reference frame S in which momentum is conserved. If the velocities of the
colliding bodies are calculated in a second inertial frame S� using the Lorentz
transformation, and the classical definition of momentum p � mu applied,
one finds that momentum is not conserved in the second reference frame.
However, because the laws of physics are the same in all inertial frames,
momentum must be conserved in all frames if it is conserved in any one. This
application of the principle of relativity demands that we modify the classical
definition of momentum.

To see how the classical form p � mu fails and to determine the correct 
relativistic definition of p, consider the case of an inelastic collision 
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between two particles of equal mass. Figure 2.1a shows such a collision for 
two identical particles approaching each other at speed v as observed in an 
inertial reference frame S. Using the classical form for momentum, p � mu
(we use the symbol u for particle velocity rather than v, which is reserved 
for the relative velocity of two reference frames), the observer in S finds 
momentum is conserved as shown in Figure 2.1a. Suppose we now view 
things from an inertial frame S� moving to the right with speed v relative to 
S. In S� the new speeds are v�1, v�2 and V � (see Fig. 2.1b). If we use the Lorentz
velocity transformation

to find v�1, v�2 and V �, and the classical form for momentum, p � mu, will
momentum be conserved according to the observer in S�? To answer this ques-
tion we first calculate the velocities of the particles in S� in terms of the given
velocities in S.

Checking for momentum conservation in S�, we have

V � �
V � v

1 � (Vv/c2)
�

0 � v

1 � [(0)v/c2]
� �v

v�2 �
v2 � v

1 � (v2v/c2)
�

�v � v

1 � [(�v)(v)/c2]
�

�2v

1 � (v2/c2)

v�1 �
v1 � v

1 � (v1v/c2)
�

v � v

1 � (v2/c2)
� 0

u�x �
ux � v

1 � (uxv/c2)
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(a)
v

2

mv

1

m

Before After

21

V = 0

(b)
2

mv ′1 = 0

1

m

Before

v ′2

After

21

V ′

Momentum is conserved according to S
p before = mv + m(–v) = 0
p after = 0

Momentum is not conserved according to S′
p′before =

p′after = –2mv

–2mv

1 + v2/c2

Figure 2.1 (a) An inelastic collision between two equal clay lumps as seen by an
observer in frame S. (b) The same collision viewed from a frame S� that is moving to
the right with speed v with respect to S.
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Thus, in the frame S�, the momentum before the collision is not equal to the
momentum after the collision, and momentum is not conserved.

It can be shown (see Example 2.6) that momentum is conserved in both S
and S�, (and indeed in all inertial frames), if we redefine momentum as

(2.1)

where u is the velocity of the particle and m is the proper mass, that is, the
mass measured by an observer at rest with respect to the mass.1 Note that
when u is much less than c, the denominator of Equation 2.1 approaches
unity and p approaches mu. Therefore, the relativistic equation for p
reduces to the classical expression when u is small compared with c.
Because it is a simpler expression, Equation 2.1 is often written p � �mu,

where . Note that this � has the same functional form as
the � in the Lorentz transformation, but here � contains u, the particle
speed, while in the Lorentz transformation, � contains v, the relative speed
of the two frames.

The relativistic form of Newton’s second law is given by the expression

(2.2)

where p is given by Equation 2.1. This expression is reasonable because it
preserves classical mechanics in the limit of low velocities and requires the
momentum of an isolated system (F � 0) to be conserved relativistically
as well as classically. It is left as a problem (Problem 3) to show that the rela-
tivistic acceleration a of a particle decreases under the action of a constant force
applied in the direction of u, as

From this formula we see that as the velocity approaches c, the acceleration
caused by any finite force approaches zero. Hence, it is impossible to acceler-
ate a particle from rest to a speed equal to or greater than c.

a �
F

m
 (1 � u2/c2)3/2

F �
dp

dt
�

d

dt
 (�mu)

� � 1/√1 � (u2/c2)

p �
mu

√1 � (u2/c2)

p �after � 2mV � � �2mv

p �before � mv�1 � mv�2 � m(0) � m � �2v

1 � (v2/c2) � �
�2mv

1 � (v2/c2)
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Definition of relativistic

momentum

1In this book we shall always take m to be constant with respect to speed, and we call m the speed
invariant mass, or proper mass. Some physicists refer to the mass in Equation 2.1 as the rest mass, 

m0, and call the term the relativistic mass. Using this description, the relativistic
mass is imagined to increase with increasing speed. We exclusively use the invariant mass m
because we think it is a clearer concept and that the introduction of relativistic mass leads to no
deeper physical understanding.

m0/√1 � (u2/c2)
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2.2 RELATIVISTIC ENERGY

We have seen that the definition of momentum and the laws of motion required
generalization to make them compatible with the principle of relativity. This
implies that the relativistic form of the kinetic energy must also be modified.

To derive the relativistic form of the work–energy theorem, let us start with
the definition of work done by a force F and make use of the definition of rela-
tivistic force, Equation 2.2. That is,

(2.5)

where we have assumed that the force and motion are along the x-axis.
To perform this integration and find the work done on a particle or the
relativistic kinetic energy as a function of the particle velocity u, we first
evaluate dp/dt:

(2.6)
dp

dt
�

d

dt

mu

√1 � (u2/c2)
�

m � du

dt �
[1 � (u2/c2)]3/2

W � �x2

x1

F dx � �x2

x1

dp

dt
dx
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is given by F � qu � B. If u is perpendicular to B, the
force is radially inward, and the particle moves in a cir-
cle of radius R with �u � constant. From Equation 2.2 we
have

Solution Because the magnetic force is always per-
pendicular to the velocity, it does no work on the parti-
cle, and hence the speed, u, and � are both constant
with time. Thus, the magnitude of the force on the
particle is

(2.3)

Substituting F � quB and �du/dt � � u2/R (the usual defi-
nition of centripetal acceleration) into Equation 2.3, we
can solve for p � �mu. We find

(2.4)

Equation 2.4 shows that the momentum of a relativistic
particle of known charge q may be determined by mea-
suring its radius of curvature R in a known magnetic
field, B. This technique is routinely used to determine
the momentum of subatomic particles from photographs
of their tracks in space.

p � �mu � qBR

F � �m � du

dt �

F �
dp

dt
�

d

dt
(�mu)

EXAMPLE 2.1 Momentum of an Electron

An electron, which has a mass of 9.11 � 10�31 kg, moves
with a speed of 0.750c. Find its relativistic momentum
and compare this with the momentum calculated from
the classical expression.

Solution Using Equation 2.1 with u � 0.750c, we have

The incorrect classical expression would give

Hence, for this case the correct relativistic result is 50%
greater than the classical result!

EXAMPLE 2.2 An Application of the
Relativistic Form of F � dp/dt:
The Measurement of the
Momentum of a High-Speed
Charged Particle

Suppose a particle of mass m and charge q is injected
with a relativistic velocity u into a region containing a
magnetic field B. The magnetic force F on the particle

momentum � mu � 2.05 � 10�22 kg�m/s

� 3.10 � 10�22 kg�m/s

�
(9.11 � 10�31 kg)(0.750 � 3.00 � 108 m/s)

√1 � [(0.750c)2/c2]

p �
mu

√1 � (u2/c2)
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Substituting this expression for dp/dt and dx � u dt into Equation 2.5 gives

where we have assumed that the particle is accelerated from rest to some final
velocity u . Evaluating the integral, we find that

(2.7)

Recall that the work–energy theorem states that the work done by all forces
acting on a particle equals the change in kinetic energy of the particle.
Because the initial kinetic energy is zero, we conclude that the work W in Eq.
2.7 is equal to the relativistic kinetic energy K, that is,

(2.8)

At low speeds, where u/c 		 1, Equation 2.8 should reduce to the classical
expression K � mu2. We can check this by using the binomial expansion
(1 � x2)�1/2 	 1 � x2 � � � �, for x 		 1, where the higher-order powers of x
are ignored in the expansion. In our case, x � u/c, so that

Substituting this into Equation 2.8 gives

which agrees with the classical result. A graph comparing the relativistic and
nonrelativistic expressions for u as a function of K is given in Figure 2.2.
Note that in the relativistic case, the particle speed never exceeds c, regard-

K 	 mc2 �1 �
1
2

u2

c2 � �� �� � mc2 �
1
2

mu2

1

√1 � (u2/c2)
� �1 �

u2

c2 �
�1/2

	 1 �
1
2

u2

c2 � � � �

1
2

1
2

K �
mc2

√1 � (u2/c2)
� mc2

W �
mc2

√1 � (u2/c2)
� mc2

W � �x2

x1

m � du

dt �u dt

[1 � (u2/c2)]3/2 � m �u

0

u du

[1 � (u2/c2)]3/2
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Relativistic kinetic energy

0.5 1.0 1.5 2.0 K/mc2

Relativistic
case0.5c

1.0c

1.5c

2.0c

u

Nonrelativistic
case

u  = √2K/m

u  = c √1 – (K/mc2 + 1)–2

Figure 2.2 A graph comparing the relativistic and nonrelativistic expressions for
speed as a function of kinetic energy. In the relativistic case, u is always less than c.
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less of the kinetic energy, as is routinely confirmed in very high energy par-
ticle accelerator experiments. The two curves are in good agreement when
u 		 c .

It is instructive to write the relativistic kinetic energy in the form

K � �mc2 � mc2 (2.9)

where

The constant term mc2, which is independent of the speed, is called the rest
energy of the particle. The term �mc2, which depends on the particle speed,
is therefore the sum of the kinetic and rest energies. We define �mc2 to be the
total energy E, that is,

(2.10)

The expression E � �mc2 is Einstein’s famous mass–energy equivalence
equation, which shows that mass is a measure of the total energy in all
forms. Although we have been considering single particles for simplicity,
Equation 2.10 applies to macroscopic objects as well. In this case it has the re-
markable implication that any kind of energy added to a “brick” of matter—
electric, magnetic, elastic, thermal, gravitational, chemical—actually increases
the mass! Several end-of-chapter questions and problems explore this idea
more fully. Another implication of Equation 2.10 is that a small mass corre-
sponds to an enormous amount of energy because c2 is a very large number.
This concept has revolutionized the field of nuclear physics and is treated in
detail in the next section.

In many situations, the momentum or energy of a particle is measured
rather than its speed. It is therefore useful to have an expression relating
the total energy E to the relativistic momentum p. This is accomplished using
E � �mc2 and p � �mu. By squaring these equations and subtracting, we can
eliminate u (Problem 7). The result, after some algebra, is

(2.11)

When the particle is at rest, p � 0, and so we see that E � mc2. That is, the to-
tal energy equals the rest energy. For the case of particles that have zero mass,
such as photons (massless, chargeless particles of light), we set m � 0 in Equa-
tion 2.11, and find

(2.12)

This equation is an exact expression relating energy and momentum for pho-
tons, which always travel at the speed of light.

Finally, note that because the mass m of a particle is independent of its mo-
tion, m must have the same value in all reference frames. On the other hand,
the total energy and momentum of a particle depend on the reference frame
in which they are measured, because they both depend on velocity. Because m
is a constant, then according to Equation 2.11 the quantity E2 � p2c2 must

E � pc

E2 � p 2c2 � (mc2)2

E � �mc2 � K � mc2

� �
1

√1 � u2/c2
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Mass–energy equivalence

Energy–momentum relation

Definition of total energy
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have the same value in all reference frames. That is, E2 � p2c2 is invariant
under a Lorentz transformation.

When dealing with electrons or other subatomic particles, it is convenient
to express their energy in electron volts (eV), since the particles are usually
given this energy by acceleration through a potential difference. The conver-
sion factor is

1 eV � 1.60 � 10�19 J

For example, the mass of an electron is 9.11 � 10�31 kg. Hence, the rest en-
ergy of the electron is

mec
2 � (9.11 � 10�31 kg)(3.00 � 108 m/s)2 � 8.20 � 10�14 J

Converting this to electron volts, we have

mec
2 � (8.20 � 10�14 J)(1 eV/1.60 � 10�19 J) � 0.511 MeV

where 1 MeV � 106 eV. Finally, note that because mec
2 � 0.511 MeV, the mass

of the electron may be written me � 0.511 MeV/c2, accounting for the prac-
tice of measuring particle masses in units of MeV/c2.
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Solving for u gives

(c) Determine the kinetic energy of the proton in
electron volts.

Solution

K � E � mpc2 � 3mpc2 � mpc2 � 2mpc2

Because mpc2 � 938 MeV, K � 1876 MeV.
(d) What is the proton’s momentum?

Solution We can use Equation 2.11 to calculate the
momentum with E � 3mpc2:

Note that the unit of momentum is left as MeV/c for
convenience.

p � √8
mpc2

c
� √8

(938 MeV)
c

� 2650
MeV

c

p2c2 � 9(mpc2)2 � (mpc2)2 � 8(mpc2)2

E2 � p2c2 � (mpc2)2 � (3mpc2)2

u �
√8
3

c � 2.83 � 108 m/s

�1 �
u2

c2 � �
1
9
  or  u2

c2 �
8
9

3 �
1

√1 � (u2/c2)

E � 3mpc2 �
mpc2

√1 � (u2/c2)

EXAMPLE 2.3 The Energy of a Speedy Electron

An electron has a speed u � 0.850c. Find its total energy
and kinetic energy in electron volts.

Solution Using the fact that the rest energy of the elec-
tron is 0.511 MeV together with E � �mc2 gives

The kinetic energy is obtained by subtracting the rest
energy from the total energy:

K � E � mec
2 � 0.970 MeV � 0.511 MeV � 0.459 MeV

EXAMPLE 2.4 The Energy of a Speedy Proton

The total energy of a proton is three times its rest 
energy.

(a) Find the proton’s rest energy in electron volts.

Solution

rest energy � mpc2

� (1.67 � 10�27 kg)(3.00 � 108 m/s)2

� (1.50 � 10�10 J)(1 eV/1.60 � 10�19 J)

� 938 MeV

(b) With what speed is the proton moving?

Solution Because the total energy E is three times the
rest energy, E � �mc2 gives

� 1.90(0.511 MeV) � 0.970 MeV

E �
mec

2

√1 � (u2/c2)
�

0.511 MeV

√1 � [(0.85c)2/c2]
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2.3 MASS AS A MEASURE OF ENERGY

The equation E � �mc2 as applied to a particle suggests that even when a parti-
cle is at rest (� � 1) it still possesses enormous energy through its mass. The
clearest experimental proof of the equivalence of mass and energy occurs in
nuclear and elementary particle interactions in which both the conversion of
mass into energy and the conversion of energy into mass take place. Because of
this convertibility from the currency of mass into the currency of energy, we
can no longer accept the separate classical laws of the conservation of mass and
the conservation of energy; we must instead speak of a single unified law, the
conservation of mass–energy. Simply put, this law requires that the sum of
the mass–energy of a system of particles before interaction must equal
the sum of the mass–energy of the system after interaction where the
mass–energy of the ith particle is defined as the total relativistic energy

To understand the conservation of mass–energy and to see how the relativistic
laws possess more symmetry and wider scope than the classical laws of momen-
tum and energy conservation, we consider the simple inelastic collision
treated earlier.

As one can see in Figure 2.1a, classically momentum is conserved but kinetic
energy is not because the total kinetic energy before collision equals mu2 and
the total kinetic energy after is zero (we have replaced the v shown in Figure
2.1 with u). Now consider the same two colliding clay lumps using the relativis-
tic mass–energy conservation law. If the mass of each lump is m, and the mass
of the composite object is M, we must have

or

(2.13)

Because , the composite mass M is greater than the sum
of the two individual masses! What’s more, it is easy to show that the mass
increase of the composite lump, 
M � M � 2m, is equal to the sum of the
incident kinetic energies of the colliding lumps (2K) divided by c2:

(2.14)

Thus, we have an example of the conversion of kinetic energy to mass, and the
satisfying result that in relativistic mechanics, kinetic energy is not lost in an
inelastic collision but shows up as an increase in the mass of the final composite
object. In fact, the deeper symmetry of relativity theory shows that both relativis-
tic mass– energy and momentum are always conserved in a collision, whereas classical
methods show that momentum is conserved but kinetic energy is not unless the


M �
2K

c2 �
2
c2 � mc2

√1 � (u2/c2)
� mc2�

√1 � (u2/c2) 	 1

M �
2m

√1 � (u2/c2)

mc2

√1 � (u2/c2)
�

mc2

√1 � (u2/c2)
� Mc2

Ebefore � Eafter

Ei �
mic

2

√1 � (u2
i /c2)
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Conservation of mass–energy
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collision is perfectly elastic. Indeed, as we show in Example 2.6, relativistic
momentum and energy are inextricably linked because momentum conserva-
tion only holds in all inertial frames if mass–energy conservation also holds.
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Hence, momentum is conserved in S. Note that we have
used M as the mass of the two combined masses after the
collision and allowed for the possibility in relativity that
M is not necessarily equal to 2m.

In frame S�:

After some algebra, we find

and we obtain

To show that momentum is conserved in S�, we use the fact
that M is not simply equal to 2m in relativity. As shown, the
combined mass, M, formed from the collision of two parti-
cles, each of mass m moving toward each other with speed
v, is greater than 2m. This occurs because of the equiva-
lence of mass and energy, that is, the kinetic energy of the
incident particles shows up in relativity theory as a tiny
increase in mass, which can actually be measured as ther-
mal energy. Thus, from Equation 2.13, which results from
imposing the conservation of mass–energy, we have

Substituting this result for M into p�after, we obtain

Hence, momentum is conserved in both S and S�,
provided that we use the correct relativistic definition of
momentum, p � �mu, and assume the conservation of
mass–energy.

�
�2mv

1 � (v2/c2)
� p�before

p�after �
2m

√1 � (v2/c2)

�v

√1 � (v2/c2)

M �
2m

√1 � (v2/c2)

p�after � �MV � �
M(�v)

√1 � [(�v)2/c2]
�

�Mv

√1 � v2/c2

p�before �
m(1 � v2/c2)
(1 � v2/c2) � �2v

1 � v2/c2 � �
�2mv

(1 � v2/c2)

m

{√1 � [2v/1 � (v2/c2)]2}(1/c2)
�

m(1 � v2/c2)
(1 � v2/c2)

�
m

{√1 � [�2v/1 � (v2/c2)]2}(1/c2)
� � �2v

1 � v2/c2 �

p�before � �mv�1 � �mv�2 �
(m)(0)

√1 � (0)2/c2

EXAMPLE 2.5

(a) Calculate the mass increase for a completely inelastic
head-on collision of two 5.0-kg balls each moving toward
the other at 1000 mi/h (the speed of a fast jet plane).
(b) Explain why measurements on macroscopic objects
reinforce the relativistically incorrect beliefs that mass is
conserved (M � 2m) and that kinetic energy is lost in an
inelastic collision.

Solution (a) u � 1000 mi/h � 450 m/s, so

Because u2/c2 		 1, substituting

in Equation 2.14 gives

(b) Because the mass increase of 1.1 � 10�11 kg is an un-
measurably minute fraction of 2m (10 kg), it is quite nat-
ural to believe that the mass remains constant when
macroscopic objects suffer an inelastic collision. On the
other hand, the change in kinetic energy from mu2 to 0
is so large (106 J) that it is readily measured to be lost in
an inelastic collision of macroscopic objects.

Exercise 1 Prove that 
M � 2
K/c2 for a completely
inelastic collision, as stated.

EXAMPLE 2.6

Show that use of the relativistic definition of momentum

leads to momentum conservation in both S and S� for
the inelastic collision shown in Figure 2.1.

Solution In frame S:

p after � �MV � (�M )(0) � 0

pbefore � �mv � �m(�v) � 0

p �
mu

√1 � (u2/c2)

� (5.0 kg)(1.5 � 10�6)2 � 1.1 � 10�11 kg

	 2m �1 �
1
2

u2

c2 � 1� 	
mu2

c2


M � 2m � 1

√1 � (u2/c2)
� 1�

1

√1 � (u2/c2)
	 1 �

1
2

u2

c2

u

c
�

4.5 � 102 m/s
3.0 � 108 m/s

� 1.5 � 10�6
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The absence of observable mass changes in inelastic collisions of macro-
scopic objects impels us to look for other areas to test this law, where par-
ticle velocities are higher, masses are more precisely known, and forces
are stronger than electrical or mechanical forces. This leads us to consider
nuclear reactions, because nuclear masses can be measured very precisely
with a mass spectrometer, nuclear forces are much stronger than electrical
forces, and decay products are often produced with extremely high
velocities.

Perhaps the most direct confirmation of the conservation of mass –
energy occurs in the decay of a heavy radioactive nucleus at rest into several
lighter particles emitted with large kinetic energies. For such a nucleus
of mass M undergoing fission into particles with masses M1, M2, and M3
and having speeds u1, u 2, and u3, conservation of total relativistic energy
requires

(2.15)

Because the square roots are all less than 1, M � M1 � M2 � M3 and the loss
of mass, M � (M1 � M2 � M3), appears as energy of motion of the products.
This disintegration energy released per fission is often denoted by the sym-
bol Q and can be written for our case as

(2.16)Q � [M � (M1 � M2 � M3)]c2 � 
mc2

Mc2 �
M1c2

√1 � (u2
1/c2)

�
M2c2

√1 � (u2
2/c2)

�
M3c2

√1 � (u2
3/c2)
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Fission


m � MU � (MRb � MCs � 3mn) � 236.045563 u

�(89.914811 u � 142.927220 u

� (3)(1.008665) u)

� 0.177537 u � 2.9471 � 10�28 kg

Therefore, the reaction products have a combined mass
that is about 3.0 � 10�28 kg less than the initial uranium
mass.
(c) The energy given off per fission event is just 
mc2.
This is most easily calculated if 
m is first converted to
mass units of MeV/c2. Because 1 u � 931.5 MeV/c2,

(d) To find the energy released by the fission of 1 kg of
uranium we need to calculate the number of nuclei, N,
contained in 1 kg of 236U.

� 165.4 MeV

Q � 
mc2 � 165.4
MeV

c2 c2 � 165.4 MeV

� 165.4 MeV/c2


m � (0.177537 u)(931.5 MeV/c2)

EXAMPLE 2.7 A Fission Reaction

An excited 236
92U nucleus decays at rest into 90

37Rb, 143
55Cs,

and several neutrons, 1
0n. (a) By conserving charge and

the total number of protons and neutrons, write a bal-
anced reaction equation and determine the number of
neutrons produced. (b) Calculate by how much the
combined “offspring” mass is less than the “parent”
mass. (c) Calculate the energy released per fission.
(d) Calculate the energy released in kilowatt hours when
1 kg of uranium undergoes fission in a power plant that
is 40% efficient.

Solution (a) In general, an element is represented by
the symbol AZX, where X is the symbol for the element, A
is the number of neutrons plus protons in the nucleus
(mass number), and Z is the number of protons in the
nucleus (atomic number). Conserving charge and num-
ber of nucleons gives

So three neutrons are produced per fission.
(b) The masses of the decay particles are given in 
Appendix B in terms of atomic mass units, u, where 
1 u � 1.660 � 10�27 kg � 931.5 MeV/c2.

92
236U 9:

90
37Rb � 143

55Cs � 31
0n
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2.3 MASS AS A MEASURE OF ENERGY 51

We have considered the simplest case showing the conversion of mass
to energy and the release of this nuclear energy: the decay of a heavy
unstable element into several lighter elements. However, the most common
case is the one in which the mass of a composite particle is less than the
sum of the particle masses composing it. By examining Appendix B, you
can see that the mass of any nucleus is less than the sum of its component
neutrons and protons by an amount 
m . This occurs because the nuclei
are stable, bound systems of neutrons and protons (bound by strong at-
tractive nuclear forces), and in order to disassociate them into separate
nucleons an amount of energy 
mc 2 must be supplied to the nucleus.
This energy or work required to pull a bound system apart, leaving its
component parts free of attractive forces and at rest, is called the
binding energy, BE. Thus, we describe the mass and energy of a bound
system by the equation

(2.17)

where M is the bound system mass, the mi’s are the free component particle
masses, and n is the number of component particles. Two general com-
ments are in order about Equation 2.17. First, it applies quite generally to
any type of system bound by attractive forces, whether gravitational, electri-
cal (chemical), or nuclear. For example, the mass of a water molecule is less
than the combined mass of two free hydrogen atoms and a free oxygen
atom, although the mass difference cannot be directly measured in this
case. (The mass difference can be measured in the nuclear case because the
forces and the binding energy are so much greater.) Second, Equation 2.17
shows the possibility of liberating huge quantities of energy, BE, if one reads
the equation from right to left; that is, one collides nuclear particles with a
small but sufficient amount of kinetic energy to overcome proton repulsion
and fuse the particles into new elements with less mass. Such a process is
called fusion, one example of which is a reaction in which two deuterium
nuclei combine to form a helium nucleus, releasing 23.9 MeV per fusion.
(See Chapter 14 for more on fusion processes.) We can write this reaction
schematically as follows:

2
1H � 2

1H 9:
4
2He � 23.9 MeV

Mc2 � BE � 

n

i�1
mic

2

� 1.68 � 1026 MeV

� (1.68 � 1026 MeV)(4.45 � 10�20 kWh/MeV)

� 7.48 � 106 kWh

Exercise 2 How long will this amount of energy keep a
100-W lightbulb burning?

Answer 	 8500 years.

The total energy produced, E, is

E � (efficiency)NQ

� (0.40)(2.55 � 1024 nuclei)(165 MeV/nucleus)

� 2.55 � 1024 nuclei

N �
(6.02 � 1023 nuclei/mol)

(236 g/mol)
 (1000 g)

Fusion
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2.4 CONSERVATION OF RELATIVISTIC
MOMENTUM AND ENERGY

So far we have considered only cases of the conservation of mass–energy. By
far, however, the most common and strongest confirmation of relativity theory
comes from the daily application of relativistic momentum and energy conser-
vation to elementary particle interactions. Often the measurement of momen-
tum (from the path curvature in a magnetic field— see Example 2.2) and
kinetic energy (from the distance a particle travels in a known substance
before coming to rest) are enough when combined with conservation of
momentum and mass–energy to determine fundamental particle properties
of mass, charge, and mean lifetime.

52 CHAPTER 2 RELATIVITY II

2Neutrino, from the Italian, means “little tiny neutral one.” Following this practice, neutron
should probably be neutrone (pronounced noo-tr n-eh)or “great big neutral one.”o

EXAMPLE 2.9 Measuring the Mass 
of the �� Meson

The �� meson (also called the pion) is a subatomic parti-
cle responsible for the strong nuclear force between pro-
tons and neutrons. It is observed to decay at rest into a
� meson (muon) and a neutrino,2 denoted v. Because
the neutrino has no charge and little mass (talk about
elusive!), it leaves no track in a bubble chamber. (A bub-
ble chamber is a large chamber filled with liquid hydro-
gen that shows the tracks of charged particles as a series
of tiny bubbles.) However, the track of the charged muon

Because the fractional loss of mass per molecule is
the same as the fractional loss per gram of water formed,
1.8 � 10�10 g of mass would be lost for each gram of
water formed. This is much too small a mass to be mea-
sured directly, and this calculation shows that nonconser-
vation of mass does not generally show up as a measur-
able effect in chemical reactions.
(c) The energy released when 1 gram of H2O is formed
is simply the change in mass when 1 gram of water is
formed times c2:

E � 
mc2 � (1.8 � 10�13 kg)(3.0 � 108 m/s)2 	 16 kJ

This energy change, as opposed to the decrease in
mass, is easily measured, providing another case similar
to Example 2.5 in which mass changes are minute but
energy changes, amplified by a factor of c 2, are easily
measured.

EXAMPLE 2.8

(a) How much lighter is a molecule of water than two
hydrogen atoms and an oxygen atom? The binding en-
ergy of water is about 3 eV. (b) Find the fractional loss of
mass per gram of water formed. (c) Find the total energy
released (mainly as heat and light) when 1 gram of water
is formed.

Solution (a) Equation 2.17 may be solved for the mass
difference as follows:

(b) To find the fractional loss of mass per molecule 
we divide 
m by the mass of a water molecule, �

18u � 3.0 � 10�26 kg:


m

MH2O
�

5.3 � 10�36 kg
3.0 � 10�26 kg

� 1.8 � 10�10

MH2O

�
(3.0 eV)(1.6 � 10�19 J/eV)

(3.0 � 108 m/s)2 � 5.3 � 10�36 kg


m � (mH � mH � mO) � MH2O �
BE

c2 �
3 eV

c2

is visible as it loses kinetic energy and comes to rest (Fig.
2.3). If the mass of the muon is known to be 106 MeV/c2,
and the kinetic energy, K , of the muon is measured to be
4.6 MeV from its track length, find the mass of the ��.

Solution The decay equation is ��
: � � v . Con-

serving energy gives

E� � Eu � Ev
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2.5 GENERAL RELATIVITY 53

Because the pion is at rest when it decays, and the neu-
trino has negligible mass,

(2.18)

Conserving momentum in the decay yields p � pv . Sub-
stituting the muon momentum for the neutrino momen-
tum in Equation 2.18 gives the following expression for
the rest energy of the pion in terms of the muon’s mass
and momentum:

(2.19)m�c2 � √(mc2)2 � (p
2 c2) � pc

m�c2 � √(mc2)2 � (p
2c2) � pvc

Before After

π+

+ at rest

+

p +, K +

p , E
ν

ν

µπ µ

µ

ν

Figure 2.3 (Example 2.9) Decay of the pion at rest into
a neutrino and a muon.

2.5 GENERAL RELATIVITY

Up to this point, we have sidestepped a curious puzzle. Mass has two seemingly
different properties: a gravitational attraction for other masses and an inertial
property that represents a resistance to acceleration. To designate these two at-
tributes, we use the subscripts g and i and write

The value for the gravitational constant G was chosen to make the magni-
tudes of mg and mi numerically equal. Regardless of how G is chosen,
however, the strict proportionality of mg and mi has been established ex-
perimentally to an extremely high degree: a few parts in 1012. Thus, it
appears that gravitational mass and inertial mass may indeed be exactly
proportional.

But why? They seem to involve two entirely different concepts: a force of
mutual gravitational attraction between two masses, and the resistance of a sin-
gle mass to being accelerated. This question, which puzzled Newton and many
other physicists over the years, was answered by Einstein in 1916 when he pub-
lished his theory of gravitation, known as the general theory of relativity. Because
it is a mathematically complex theory, we offer merely a hint of its elegance
and insight.

Inertial property:  
F � mia

Gravitational property:  Fg � G
m gm�g

r2

Finally, to obtain p from the measured value of the
muon’s kinetic energy, K, we start with Equation 2.11,
E

2 � p
2c2 � (mc2)2, and solve it for p

2c2:

p
2c2 � E 

2 � (mc2)2 � (K � mc2)2 � (mc2)2

� K
2 � 2Kmc2

Substituting this expression for p
2c2 into Equation 2.19

yields the desired expression for the pion mass in terms
of the muon’s mass and kinetic energy:

(2.20)

Finally, substituting mc2 � 106 MeV and K � 4.6 MeV
into Equation 2.20 gives

m�c2 � 111 MeV � 31 MeV 	 1.4 � 102 MeV

Thus, the mass of the pion is

m� � 140 MeV/c2

This result shows why this particle is called a meson;
it has an intermediate mass (from the Greek word
mesos meaning “middle”) between the light electron
(0.511 MeV/c 2) and the heavy proton (938 MeV/c 2).

� √K 
2 � 2Kmc2

m�c2 � √(m
2 c4 � K 

2 � 2Kmc2
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In Einstein’s view, the dual behavior of mass was evidence of a very intimate
and basic connection between the two behaviors. He pointed out that no
mechanical experiment (such as dropping an object) could distinguish
between the two situations illustrated in Figures 2.4a and 2.4b. In Figure 2.4a,
a person is standing in an elevator on the surface of a planet and feels pressed
into the floor, due to the gravitational force. In Figure 2.4b, the person is in an
elevator in empty space accelerating upward with a � g. The person feels
pressed into the floor with the same force as in Figure 2.4a. In each case,
an object released by the observer undergoes a downward acceleration of
magnitude g relative to the floor. In Figure 2.4a, the person is in an inertial
frame in a gravitational field. In Figure 2.4b, the person is in a noninertial
frame accelerating in gravity-free space. Einstein’s claim is that these two situa-
tions are completely equivalent. Because the two reference frames in relative ac-
celeration can no longer be distinguished from one another, this extends the
idea of complete physical equivalence to reference frames accelerating transla-
tionally with respect to each other. This solved another philosophical issue
raised by Einstein, namely the artificiality of confining the principle of relativ-
ity to nonaccelerating frames.

Einstein carried his idea further and proposed that no experiment, me-
chanical or otherwise, could distinguish between the two cases. This exten-
sion to include all phenomena (not just mechanical ones) has interesting
consequences. For example, suppose that a light pulse is sent horizontally
across an elevator that is accelerating upward in empty space, as in Figure
2.4c. From the point of view of an observer in an inertial frame outside of

54 CHAPTER 2 RELATIVITY II

(b)

F

(a) (c) (d)

F

Figure 2.4 (a) The observer is at rest in a uniform gravitational field g, directed
downward. (b) The observer is in a region where gravity is negligible, but the frame is
accelerated by an external force F that produces an acceleration g directed upward.
According to Einstein, the frames of reference in parts (a) and (b) are equivalent in
every way. No local experiment can distinguish any difference between the two frames.
(c) In the accelerating frame, a ray of light would appear to bend downward due to the
acceleration of the elevator. (d) If parts (a) and (b) are truly equivalent, as Einstein
proposed, then part (c) suggests that a ray of light would bend downward in a gravita-
tional field.
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the elevator, the light travels in a straight line while the floor of the elevator
accelerates upward. According to the observer on the elevator, however, the
trajectory of the light pulse bends downward as the floor of the elevator (and
the observer) accelerates upward. Therefore, based on the equality of parts
(a) and (b) of the figure for all phenomena, Einstein proposed that a beam
of light should also be defelected downward or fall in a gravitational
field, as in Figure 2.4d. Experiments have verified the effect, although the
bending is small. A laser aimed at the horizon falls less than 1 cm after trav-
eling 6000 km.

The two postulates of Einstein’s general theory of relativity are

• The laws of nature have the same form for observers in any frame of ref-
erence, whether accelerated or not.

• In the vicinity of any point, a gravitational field is equivalent to an acceler-
ated frame of reference in the absence of gravitational effects. (This is
the principle of equivalence.)

An interesting effect predicted by the general theory is that time is altered
by gravity. A clock in the presence of gravity runs slower than one located
where gravity is negligible. Consequently, the frequencies of radiation emit-
ted by atoms in the presence of a strong gravitational field are redshifted to
lower frequencies when compared with the same emissions in the presence of
a weak field. This gravitational redshift has been detected in spectral lines
emitted by atoms in massive stars. It has also been verified on the Earth by
comparing the frequencies of gamma rays (a high-energy form of electromag-
netic radiation) emitted from nuclei separated vertically by about 20 m (see
Section 3.7).

The second postulate suggests that a gravitational field may be “trans-
formed away” at any point if we choose an appropriate accelerated frame of
reference—a freely falling one. Einstein developed an ingenious method of
describing the acceleration necessary to make the gravitational field “disap-
pear.” He specified a concept, the curvature of spacetime, that describes the grav-
itational effect at every point. In fact, the curvature of spacetime completely
replaces Newton’s gravitational theory. According to Einstein, there is no such
thing as a gravitational force. Rather, the presence of a mass causes a curvature
of spacetime in the vicinity of the mass, and this curvature dictates the space-
time path that all freely moving objects must follow. In 1979, John Wheeler
(b. 1911, American theoretical physicist) summarized Einstein’s general
theory of relativity in a single sentence: “Space tells matter how to move and
matter tells space how to curve.”

As an example of the effects of curved spacetime, imagine two travelers
moving on parallel paths a few meters apart on the surface of the Earth and
maintaining an exact northward heading along two longitude lines. As they
observe each other near the equator, they will claim that their paths are ex-
actly parallel. As they approach the North Pole, however, they notice that
they are moving closer together, and they will actually meet at the North
Pole. Thus, they will claim that they moved along parallel paths, but moved
toward each other, as if there were an attractive force between them. They will
make this conclusion based on their everyday experience of moving on flat
surfaces. From our perspective, however, we realize that they are walking on
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Postulates of general relativity
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a curved surface, and it is the geometry of the curved surface that causes
them to converge, rather than an attractive force. In a similar way, general
relativity replaces the notion of forces with the movement of objects through
curved spacetime.

An important prediction of the general theory of relativity is that a light ray
passing near the Sun should be deflected in the curved spacetime created by
the Sun’s mass. This prediction was confirmed when astronomers detected the
bending of starlight near the Sun during a total solar eclipse that occurred
shortly after World War I (Fig. 2.5). When this discovery was announced,
Einstein became an international celebrity. (See the web essay by Clifford
Will for other important tests and ramifications of general relativity at
http://info.brookscole.com/mp3e.)

If the concentration of mass becomes very great, as is believed to occur
when a large star exhausts its nuclear fuel and collapses to a very small vol-
ume, a black hole may form. Here, the curvature of spacetime is so extreme
that, within a certain distance from the center of the black hole, all matter and
light become trapped, as discussed in Section 3.7.

Gravitational Radiation, or A Good Wave Is Hard to Find

Gravitational radiation is a subject almost as old as general relativity.
By 1916, Einstein had succeeded in showing that the field equations of gen-
eral relativity admitted wavelike solutions analogous to those of electromag-
netic theory. For example, a dumbbell rotating about an axis passing at
right angles through its handle will emit gravitational waves that travel at
the speed of light. Gravitational waves also carry energy away from the
dumbbell, just as electromagnetic waves carry energy away from a light
source. Also, like electromagnetic (em) waves, gravity waves are believed to
have a dual particle and wave nature. The gravitational particle, the gravi-
ton, is believed to have a mass of zero, to travel at the speed c, and to obey
the relativistic equation E � pc.

In 1968, Joseph Weber initiated a program of gravitational-wave detection
using as detectors massive aluminum bars, suspended in vacuum and isolated
from outside forces. Gravity waves are notoriously more difficult to detect than
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1.75"

Sun
Light from star

(actual direction)

Apparent
direction to star

Deflected path of light
from star

Earth

Figure 2.5 Deflection of starlight passing near the Sun. Because of this effect, the
Sun or some other remote object can act as a gravitational lens. In his general theory of
relativity, Einstein calculated that starlight just grazing the Sun’s surface should be de-
flected by an angle of 1.75 s of arc.

Figure 2.6 Albert Einstein.
Gravity imaging was another tri-
umph for Einstein since he
pointed out that it might occur
in 1936. (Courtesy of AIP/Niels

Bohr Library).
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em waves not only because gravitational forces are much weaker than electric
forces but also because gravitational “charge” or mass only comes in one vari-
ety, positive. Figure 2.8a shows why a dipolar em wave detector is much more
sensitive than a gravitational bar detector shown in Figure 2.8b. Nevertheless,
as shown in Figure 2.9, if the distance between detecting masses is of the same
order of magnitude as the wavelength of the gravity wave, passing gravitational
waves exert a weak net oscillating force that alternately compresses and ex-
tends the bar lengthwise.

Tiny vibrations of the bar are detected by crystals attached to the bar that
convert the vibrations to electrical signals. Currently, a dozen laboratories
around the world are engaged in building and improving the basic “Weber
bar” detector, striving to reduce noise from thermal, electrical, and envi-
ronmental sources in order to detect the very weak oscillations produced by
a gravitational wave. For a bar of 1 meter in length, the challenge is to detect
a variation in length smaller than 10�20 m, or 10�5 of the radius of a pro-
ton. This sensitivity is predicated on a massive nearby catastrophic source of
gravitational waves, such as the gravitational collapse of a star to form a
black hole at the center of our galaxy. Thus, gravity waves are not only hard to
detect but also hard to generate with great intensity. It is interesting that
collapsing star models predict a collapse to take about a millisecond, with
production of gravity waves of frequency around 1 kHz and wavelengths of
several hundred km.
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Figure 2.7 Joseph Weber working on a bar detector at the University of Maryland in the
early 1970’s. The fundamental frequency of the bar was 1660 Hz. Piezoelectric crystals
around the center of the bar convert tiny mechanical vibrations to electrical signals. (Cour-
tesy of AIP Emilio Segre Visual Archives)

Electric field

(a)

Gravity field

(b)

m m

� �

Figure 2.8 Simple models of
em and gravity wave detectors.
The detectors are shown as two
“charges” with a spring sand-
wiched in between, the idea be-
ing that the waves exert forces
on the charges and set the spring
vibrating in proportion to the
wave intensity. The detector will
be particularly sensitive when
the wave frequency matches 
the natural frequency of the
spring–mass system. (a) Equal
and opposite electric charges
move in opposite directions
when subjected to an em wave
and easily excite the spring.
(b) A metal bar gravity wave 
detector can be modeled by 
a spring connecting two equal
masses; however, a wave encoun-
tering both masses in phase will
not cause the spring to vibrate.

Out-of-phase
gravity waves

To distant
star

m m

Figure 2.9 If the gravity wave
detector is of the same size as
the wavelength of the radiation
detected, the waves arrive out-
of-phase at the two masses and
the system starts to vibrate.
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At this time, several “laser-interferometric” gravitational-wave observatories
(LIGO) are in operation or under construction in the United States and Eu-
rope. These reflect laser beams along perpendicular arms to monitor tiny vari-
ations in length between mirrors spaced several kilometers apart in a giant
Michelson–Morley apparatus. (See Figures 2.10a and b.) The variations in
arm length should occur when a gravitational wave passes through the appara-
tus. Two LIGO sites with 4-km arms are currently in operation in the United
States in Livingston, Louisiana and Hanford, Washington. The two sites, sepa-
rated by about 2000 miles, search for signals that appear simultaneously at
both sites. Such coincidences are more likely to be gravity waves from a distant
star rather than local noise signals.

Although gravitational radiation has not been detected directly, we know
that it exists through the observations of a remarkable system known as the
binary pulsar. Discovered in 1974 by radio astronomers Russell Hulse and
Joseph Taylor, it consists of a pulsar (which is a rapidly spinning neutron
star) and a companion star in orbit around each other. Although the com-
panion has not been seen directly, it is also believed to be a neutron star.
The pulsar acts as an extremely stable clock, its pulse period of approxi-
mately 59 milliseconds drifting by only 0.25 ns/year. Figure 2.11 shows the
remarkable regularity of 400 consecutive radio pulses from a pulsar. By mea-
suring the arrival times of radio pulses at Earth, observers were able to de-
termine the motion of the pulsar about its companion with amazing accu-
racy. For example, the accurate value for the orbital period is 27906.980 895
s, and the orbital eccentricity is 0.617�131. Like a rotating dumbbell, an or-
biting binary system should emit gravitational radiation and, in the process,
lose some of its orbital energy. This energy loss will cause the pulsar and its
companion to spiral in toward each other and the orbital period to shorten.
According to general relativity, the predicted decrease in the orbital period
is 75.8 s/year. The observed decrease in orbital period is in agreement
with the prediction to better than 0.5%. This confirms the existence of
gravitational radiation and the general relativistic equations that describe it.
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Figure 2.11 400 consecutive
radio pulses from pulsar PSR
0950�08. Each line of the 400
represents a consecutive time
interval of 0.253 s.

Figure 2.10 (a) Prototype LIGO apparatus with 40 m arms.
  a: Tony Tyson/Lucent Technologies/Bell Labs Innovations;

(a)
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Hulse and Taylor (Figure 2.12) received the Nobel prize in 1993 for this
discovery.

SUMMARY

The relativistic expression for the linear momentum of a particle moving with
a velocity u is

(2.1)

where � is given by

The relativistic expression for the kinetic energy of a particle is

K � �mc2 � mc2 (2.9)

where mc2 is called the rest energy of the particle.

� �
1

√1 � (u2/c2)

p �
mu

√1 � (u2/c2)
� �mu

SUMMARY 59

Figure 2.12 (a) Russell Hulse shown in 1974 operating his computer and teletype
at Arecibo observatory in Puerto Rico. The form records the “fantastic” detection of
PSR 1913�16, with its ever-changing periods scratched out by Hulse in frustration.

 (a: Photo Courtesy of Russell Hulse. © The Nobel Foundation, 1993;

(a)
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The total energy E of a particle is related to the mass through the expression

(2.10)

The total energy of a particle of mass m is related to the momentum
through the equation

E2 � p2c2 � (mc2)2 (2.11)

Finally, the law of the conservation of mass–energy states that the sum of the
mass– energy of a system of particles before interaction must equal the sum of the mass–
energy of the system after interaction where the mass– energy of the ith particle is defined as

Application of the principle of conservation of mass–energy to the specific
cases of (1) the fission of a heavy nucleus at rest and (2) the fusion of several
particles into a composite nucleus with less total mass allows us to define
(1) the energy released per fission, Q , and (2) the binding energy of a com-
posite system, BE.

The two postulates of Einstein’s general theory of relativity are

• The laws of nature have the same form for observers in any frame of ref-
erence, whether accelerated or not.

• In the vicinity of any point, a gravitational field is equivalent to an acceler-
ated frame of reference in the absence of gravitational effects. (This is
the principle of equivalence.)

The field equations of general relativity predict gravitational waves, and a
worldwide search is currently in progress to detect these elusive waves.

Ei �
mic

2

√1 � (u2
i /c2)

E � �mc2 �
mc2

√1 � (u2/c2)

60 CHAPTER 2 RELATIVITY II

(© S. Harris)

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



PROBLEMS 61

8. L. Infeld, Albert Einstein, New York, Scribner’s, 1950.
9. J. Schwinger, Einstein’s Legacy, Scientific American Li-

brary, New York, W. H. Freeman, 1985.
10. R. S. Shankland, “The Michelson-Morley Experiment,”

Sci. Amer., November 1964, p. 107.
11. R. Skinner, Relativity for Scientists and Engineers, New

York, Dover Publications, 1982.
12. N. Mermin, Space and Time in Special Relativity, Prospect

Heights, IL, Waveland Press, 1989.
13. M. Bartusiak, Einstein’s Unfinished Symphony, New York,

Berkley Books, 2000. (A nonmathematical history and
explanation of the search for gravity waves.)

1. E. F. Taylor and J. A. Wheeler, Spacetime Physics, San
Francisco, W. H. Freeman, 1963.

2. R. Resnick, Introduction to Special Relativity, New York,
Wiley, 1968.

3. A. P. French, Special Relativity, New York, Norton, 1968.
4. H. Bondi, Relativity and Common Sense, Science Study Se-

ries, Garden City, NY, Doubleday, 1964.
5. A. Einstein, Out of My Later Years, New York, World Pub-

lishing, 1971.
6. A. Einstein, Ideas and Opinions, New York, Crown, 1954.
7. G. Gamow, Mr. Tompkins in Wonderland, New York, Cam-

bridge University Press, 1939.

SUGGESTIONS FOR FURTHER READING

QUESTIONS

1. A particle is moving at a speed of less than c/2. If the
speed of the particle is doubled, what happens to its
momentum?

2. Give a physical argument showing that it is impossible
to accelerate an object of mass m to the speed of light,
even with a continuous force acting on it.

3. The upper limit of the speed of an electron is the
speed of light, c. Does that mean that the momentum
of the electron has an upper limit?

4. Because mass is a measure of energy, can we conclude
that the mass of a compressed spring is greater than
the mass of the same spring when it is not compressed?

5. Photons of light have zero mass. How is it possible that
they have momentum?

6. “Newtonian mechanics correctly describes objects mov-
ing at ordinary speeds, and relativistic mechanics cor-
rectly describes objects moving very fast.” “Relativistic me-
chanics must make a smooth transition as it reduces to
Newtonian mechanics in a case where the speed of an
object becomes small compared to the speed of light.”
Argue for or against each of these two statements.

7. Two objects are identical except that one is hotter than
the other. Compare how they respond to identical forces.

8. With regard to reference frames, how does general rel-
ativity differ from special relativity?

9. Two identical clocks are in the same house, one up-
stairs in a bedroom, and the other downstairs in the
kitchen. Which clock runs more slowly? Explain.

10. A thought experiment. Imagine ants living on a merry-go-
round, which is their two-dimensional world. From mea-
surements on small circles they are thoroughly familiar
with the number �. When they measure the circumfer-
ence of their world, and divide it by the diameter, they
expect to calculate the number � � 3.14159. . . . We
see the merry-go-round turning at relativistic speed.
From our point of view, the ants’ measuring rods on the
circumference are experiencing Lorentz contraction in
the tangential direction; hence the ants will need some
extra rods to fill that entire distance. The rods measuring
the diameter, however, do not contract, because their
motion is perpendicular to their lengths. As a result, the
computed ratio does not agree with the number �. If you
were an ant, you would say that the rest of the universe is
spinning in circles, and your disk is stationary. What pos-
sible explanation can you then give for the discrepancy,
in view of the general theory of relativity?

PROBLEMS

2.1 Relativistic Momentum and the Relativistic
Form of Newton’s Laws

1. Calculate the momentum of a proton moving with a
speed of (a) 0.010c, (b) 0.50c, (c) 0.90c . (d) Convert
the answers of (a)–(c) to MeV/c .

2. An electron has a momentum that is 90% larger than
its classical momentum. (a) Find the speed of the elec-
tron. (b) How would your result change if the particle
were a proton?

3. Consider the relativistic form of Newton’s second law.
Show that when F is parallel to v,

where m is the mass of an object and v is its speed.
4. A charged particle moves along a straight line in a uni-

form electric field E with a speed v. If the motion and
the electric field are both in the x direction, (a) show

F � m �1 �
v2

c2 �
�3/2 dv

dt
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that the magnitude of the acceleration of the charge q
is given by

(b) Discuss the significance of the dependence of the
acceleration on the speed. (c) If the particle starts from
rest at x � 0 at t � 0, find the speed of the particle and
its position after a time t has elapsed. Comment on the
limiting values of v and x as t : �.

5. Recall that the magnetic force on a charge q moving
with velocity v in a magnetic field B is equal to qv � B.
If a charged particle moves in a circular orbit with a
fixed speed v in the presence of a constant magnetic
field, use the relativistic form of Newton’s second law to
show that the frequency of its orbital motion is

6. Show that the momentum of a particle having charge e
moving in a circle of radius R in a magnetic field B is
given by p � 300BR, where p is in MeV/c, B is in teslas,
and R is in meters.

2.2 Relativistic Energy

7. Show that the energy–momentum relationship given
by E 2 � p2c2 � (mc2)2 follows from the expressions
E � �mc2 and p � �mu.

8. A proton moves at a speed of 0.95c. Calculate its 
(a) rest energy, (b) total energy, and (c) kinetic energy.

9. An electron has a kinetic energy 5 times greater than its
rest energy. Find (a) its total energy and (b) its speed.

10. Find the speed of a particle whose total energy is 50%
greater than its rest energy.

11. A proton in a high-energy accelerator is given a kinetic
energy of 50 GeV. Determine the (a) momentum and
(b) speed of the proton.

12. An electron has a speed of 0.75c. Find the speed of a
proton that has (a) the same kinetic energy as the elec-
tron and (b) the same momentum as the electron.

13. Protons in an accelerator at the Fermi National Lab-
oratory near Chicago are accelerated to an energy
of 400 times their rest energy. (a) What is the
speed of these protons? (b) What is their kinetic en-
ergy in MeV?

14. How long will the Sun shine, Nellie? The Sun radiates
about 4.0 � 1026 J of energy into space each second.
(a) How much mass is released as radiation each sec-
ond? (b) If the mass of the Sun is 2.0 � 1030 kg, how
long can the Sun survive if the energy release contin-
ues at the present rate?

15. Electrons in projection television sets are acceler-
ated through a total potential difference of 50,000 V.
(a) Calculate the speed of the electrons using the

f �
qB

2�m �1 �
v2

c2 �
1/2

a �
dv

dt
�

qE

m �1 �
v2

c2 �
3/2

relativistic form of kinetic energy assuming the elec-
trons start from rest. (b) Calculate the speed of the
electrons using the classical form of kinetic energy. 
(c) Is the difference in speed significant in the design
of this set in your opinion?

16. As noted in Section 2.2, the quantity E � p2c2 is an in-
variant in relativity theory. This means that the quantity
E 2 � p2c2 has the same value in all inertial frames even
though E and p have different values in different
frames. Show this explicitly by considering the follow-
ing case. A particle of mass m is moving in the �x
direction with speed u and has momentum p and en-
ergy E in the frame S. (a) If S� is moving at speed v in
the standard way, find the momentum p� and energy E�

observed in S�. (Hint: Use the Lorentz velocity transfor-
mation to find p� and E�. Does E � E� and p � p�?
(b) Show that E 2 � p2c2 is equal to E�2 � p�2c2.

2.3 Mass as a Measure of Energy

17. A radium isotope decays to a radon isotope, 222Rn, by
emitting an � particle (a helium nucleus) according
to the decay scheme 226Ra :

222Rn � 4He. The masses
of the atoms are 226.0254 (Ra), 222.0175 (Rn), and
4.0026 (He). How much energy is released as the result
of this decay?

18. Consider the decay 55
24Cr :

55
25Mn � e�, where e� is an

electron. The 55Cr nucleus has a mass of 54.9279 u,
and the 55Mn nucleus has a mass of 54.9244 u. (a) Cal-
culate the mass difference in MeV. (b) What is the max-
imum kinetic energy of the emitted electron?

19. Calculate the binding energy in MeV per nucleon in
the isotope 12

6C. Note that the mass of this isotope is ex-
actly 12 u, and the masses of the proton and neutron
are 1.007276 u and 1.008665 u, respectively.

20. The free neutron is known to decay into a proton, an
electron, and an antineutrino (of negligible rest
mass) according to

This is called beta decay and will be discussed further in
Chapter 13. The decay products are measured to have a
total kinetic energy of 0.781 MeV ± 0.005 MeV. Show
that this observation is consistent with the excess energy
predicted by the Einstein mass–energy relationship.

2.4 Conservation of Relativistic Momentum
and Energy

21. An electron having kinetic energy K � 1.000 MeV
makes a head-on collision with a positron at rest. (A
positron is an antimatter particle that has the same
mass as the electron but opposite charge.) In the
collision the two particles annihilate each other and
are replaced by two � rays of equal energy, each trav-
eling at equal angles � with the electron’s direction of
motion. (Gamma rays are massless particles of elec-

n 9: p � e� � v

v
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tromagnetic radiation having energy E � pc .) Find
the energy E, momentum p, and angle of emission �
of the � rays.

22. The K0 meson is an uncharged member of the particle
“zoo” that decays into two charged pions according to
K0

: �� � ��. The pions have opposite charges, as in-
dicated, and the same mass, m� � 140 MeV/c2. Sup-
pose that a K0 at rest decays into two pions in a bubble
chamber in which a magnetic field of 2.0 T is present
(see Fig. P2.22). If the radius of curvature of the pions
is 34.4 cm, find (a) the momenta and speeds of the
pions and (b) the mass of the K0 meson.

23. An unstable particle having a mass of 3.34 � 10� 27 kg
is initially at rest. The particle decays into two frag-
ments that fly off with velocities of 0.987c and � 0.868c.
Find the rest masses of the fragments.

ADDITIONAL PROBLEMS

24. As measured by observers in a reference frame S, a
particle having charge q moves with velocity v in a
magnetic field B and an electric field E. The result-
ing force on the particle is then measured to be 
F � q(E � v � B). Another observer moves along
with the charged particle and measures its charge to
be q also but measures the electric field to be E�. If
both observers are to measure the same force, F,
show that E� � E � v � B.

25. Classical deflection of light by the Sun Estimate the deflec-
tion of starlight grazing the surface of the Sun. Assume
that light consists of particles of mass m traveling with
velocity c and that the deflection is small. (a) Use

to show that the angle of deflection � is

given by where 
px is the total change in

momentum of a light particle grazing the Sun. 
See Figures P2.25a and b. (b) For b � Rs, show that 
� � 4.2 � 10� 6 rad.

26. An object having mass of 900 kg and traveling at a
speed of 0.850c collides with a stationary object having
mass 1400 kg. The two objects stick together. Find (a)
the speed and (b) the mass of the composite object.

27. Imagine that the entire Sun collapses to a sphere of
radius Rg such that the work required to remove a small
mass m from the surface would be equal to its rest
energy mc2. This radius is called the gravitational radius
for the Sun. Find Rg . (It is believed that the ultimate
fate of very massive stars is to collapse beyond their
gravitational radii into black holes.)

28. A rechargeable AA battery with a mass of 25.0 g
can supply a power of 1.20 W for 50.0 min. (a) What is
the difference in mass between a charged and an un-

� �
2GMs

bc2


px � ���
�� Fx dt
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Figure P2.22 A sketch of the tracks made by the �� and
�� in the decay of the K0 meson at rest. The pion motion is
perpendicular to B. (B is directed out of the page.)

Figure P2.25 The classical deflection of starlight grazing
the sun.

charged battery? (b) What fraction of the total mass is
this mass difference?

29. An object disintegrates into two fragments. One of
the fragments has mass 1.00 MeV/c2 and momentum
1.75 MeV/c in the positive x direction. The other
fragment has mass 1.50 MeV/c2 and momentum
2.005 MeV/c in the positive y direction. Find (a) the
mass and (b) the speed of the original object.

30. The creation and study of new elementary particles is
an important part of contemporary physics. Especially
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interesting is the discovery of a very massive particle. To
create a particle of mass M requires an energy Mc2.
With enough energy, an exotic particle can be created
by allowing a fast-moving particle of ordinary matter,
such as a proton, to collide with a similar target par-
ticle. Let us consider a perfectly inelastic collision
between two protons: An incident proton with mass m,
kinetic energy K , and momentum magnitude p joins
with an originally stationary target proton to form a sin-
gle product particle of mass M. You might think that
the creation of a new product particle, 9 times more
massive than in a previous experiment, would require
just 9 times more energy for the incident proton. Un-
fortunately, not all of the kinetic energy of the incom-
ing proton is available to create the product particle,
since conservation of momentum requires that after
the collision the system as a whole still must have some
kinetic energy. Only a fraction of the energy of the inci-
dent particle is thus available to create a new particle.
You will determine how the energy available for parti-
cle creation depends on the energy of the moving pro-
ton. Show that the energy available to create a product
particle is given by 

From this result, when the kinetic energy K of the
incident proton is large compared to its rest energy
mc2, we see that M approaches (2mK)1/2/c . Thus if the
energy of the incoming proton is increased by a factor
of 9, the mass you can create increases only by a factor
of 3. This disappointing result is the main reason that
most modern accelerators, such as those at CERN (in

Mc2 � 2mc2 √1 �
K

2mc2

Europe), at Fermilab (near Chicago), at SLAC (at
Stanford), and at DESY (in Germany), use colliding
beams. Here the total momentum of a pair of interact-
ing particles can be zero. The center of mass can be
at rest after the collision, so in principle all of the
initial kinetic energy can be used for particle creation,
according to

where K is the total kinetic energy of two identical col-
liding particles. Here, if K �� mc2, we have M directly
proportional to K, as we would desire. These machines
are difficult to build and to operate, but they open new
vistas in physics.

31. A particle of mass m moving along the x-axis with a
velocity component �u collides head-on and sticks to a
particle of mass m/3 moving along the x-axis with the
velocity component �u. What is the mass M of the
resulting particle? 

32. Compact high-power lasers can produce a 2.00-J light
pulse of duration 100 fs focused to a spot 1 m in diam-
eter. (See Mourou and Umstader, “Extreme Light,” Sci-
entific American, May 2002, p. 81.) The electric field in
the light accelerates electrons in the target material to
near the speed of light. (a) What is the average power of
the laser during the pulse? (b) How many electrons can
be accelerated to 0.9999c if 0.0100% of the pulse energy
is converted into energy of electron motion?

33. Energy reaches the upper atmosphere of the Earth from
the Sun at the rate of 1.79 � 1017 W. If all of this energy
were absorbed by the Earth and not re-emitted, how
much would the mass of the Earth increase in 1.00 yr?

Mc2 � 2mc2 � K � 2mc2 �1 �
K

2mc2 �
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The Quantum
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3.1 Hertz’s Experiments—Light as an
Electromagnetic Wave

3.2 Blackbody Radiation
Enter Planck
The Quantum of Energy

3.3 The Rayleigh–Jeans Law and
Planck’s Law (Optional)
Rayleigh– Jeans Law
Planck’s Law

3.4 Light Quantization and the
Photoelectric Effect

3.5 The Compton Effect and X-Rays
X-Rays
The Compton Effect

3.6 Particle–Wave Complementarity

3.7 Does Gravity Affect Light?
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Summary

WEB APPENDIX: Calculation of the
Number of Modes of Waves in a Cavity
Planck’s Calculation of E

Chapter Outline

At the beginning of the 20th century, following the lead of Newton and
Maxwell, physicists might have rewritten the biblical story of creation as follows:

In the beginning He created the heavens and the earth—

and He said, “Let there be light”—

Actually, in addition to the twin pillars of mechanics and electromagnetism
erected by the giants Newton and Maxwell, there was a third sturdy support
for physics in 1900—thermodynamics and statistical mechanics. Classical
thermodynamics was the work of many men (Carnot, Mayer, Helmholtz,
Clausius, Lord Kelvin). It is especially notable because it starts with two simple
propositions and gives solid and conclusive results independent of detailed
physical mechanisms. Statistical mechanics, founded by Maxwell, Clausius,

� B �dA � 0  � B �ds � �0I � �0�0
d�E

dt

� E�dA �
Q

�0
  � E�ds � �

d�B

dt

F � G
mm�

r2 � ma
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Boltzmann,1 and Gibbs, uses the methods of probability theory to calculate
averages and fluctuations from the average for systems containing many parti-
cles or modes of vibration. It is interesting that quantum physics started not
with a breakdown of Maxwell’s or Newton’s laws applied to the atom, but with a
problem of classical statistical mechanics—that of calculating the intensity of
radiation at a given wavelength from a heated cavity. The desperate solution to
this radiation problem was found by a thoroughly classical thermodynamicist,
Max Planck, in 1900. Indeed, it is significant that both Planck and Einstein
returned again and again to the simple and general foundation of thermody-
namics and statistical mechanics as the only certain bases for the new quantum
theory. Although we shall not follow the original thermodynamic arguments
completely, we shall see in this chapter how Planck arrived at the correct spec-
tral distribution for cavity radiation by allowing only certain energies for the
radiation-emitting oscillators in the cavity walls. We shall also see how Einstein
extended this quantization of energy to light itself, thereby brilliantly explain-
ing the photoelectric effect. We conclude our brief history of the quantum the-
ory of light with a discussion of the scattering of light by electrons (Compton
effect), which showed conclusively that the light quantum carried momentum
as well as energy. Finally, we describe the pull of gravity on light in Section 3.7.

3.1 HERTZ’S EXPERIMENTS—LIGHT AS AN
ELECTROMAGNETIC WAVE

It is ironic that the same experimentalist who so carefully confirmed that the
“newfangled” waves of Maxwell actually existed and possessed the same prop-
erties as light also undermined the electromagnetic wave theory as the com-
plete explanation of light. To understand this irony, let us briefly review the
theory of electromagnetism developed by the great Scottish physicist James
Clerk Maxwell between 1865 and 1873.

Maxwell was primarily interested in the effects of electric current oscillations
in wires. According to his theory, an alternating current would set up fluctuating
electric and magnetic fields in the region surrounding the original disturbance.
Moreover, these waves were predicted to have a frequency equal to the frequency
of the current oscillations. In addition, and most importantly, Maxwell’s theory pre-
dicted that the radiated waves would behave in every way like light: electromagnetic
waves would be reflected by metal mirrors, would be refracted by dielectrics like
glass, would exhibit polarization and interference, and would travel outward
from the wire through a vacuum with a speed of 3.0 	 108 m/s. Naturally this led
to the unifying and simplifying postulate that light was also a type of Maxwell
wave or electromagnetic disturbance, created by extremely high frequency elec-
tric oscillators in matter. At the end of the 19th century the precise nature of
these charged submicroscopic oscillators was unknown (Planck called them res-
onators), but physicists assumed that somehow they were able to emit light waves
whose frequency was equal to the oscillator’s frequency of motion.

Even at this time, however, it was apparent that this model of light emis-
sion was incapable of direct experimental verification, because the highest
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1On whose tombstone is written S � kB log W, a basic formula of statistical mechanics attributed
to Boltzmann.
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electrical frequencies then attainable were about 109 Hz and visible light was
known to possess a frequency a million times higher. But Heinrich Hertz (Fig.
3.1) did the next best thing. In a series of brilliant and exhaustive experi-
ments, he showed that Maxwell’s theory was correct and that an oscillating
electric current does indeed radiate electromagnetic waves that possess every
characteristic of light except the same wavelength as light. Using a simple
spark gap oscillator consisting of two short stubs terminated in small metal
spheres separated by an air gap of about half an inch, he applied pulses
of high voltage, which caused a spark to jump the gap and produce a high-
frequency electric oscillation of about 5 	 108 Hz. This oscillation, or ring-
ing, occurs while the air gap remains conducting, and charge surges back and
forth between the spheres until electrical equilibrium is established. Using a
simple loop antenna with a small spark gap as the receiver, Hertz very quickly
succeeded in detecting the radiation from his spark gap oscillator, even at dis-
tances of several hundred meters. Moreover, he found the detected radiation
to have a wavelength of about 60 cm, corresponding to the oscillator fre-
quency of 5 	 108 Hz. (Recall that c � 
f, where 
 is the wavelength and f is
the frequency.)

In an exhaustive tour de force, Hertz next proceeded to show that these
electromagnetic waves could be reflected, refracted, focused, polarized,
and made to interfere—in short, he convinced physicists of the period that
Hertzian waves and light waves were one and the same. The classical model for
light emission was an idea whose time had come. It spread like wildfire. The
idea that light was an electromagnetic wave radiated by oscillating submicro-
scopic electric charges (now known to be atomic electrons) was applied in
rapid succession to the transmission of light through solids, to reflection from
metal surfaces, and to the newly discovered Zeeman effect. In 1896, Pieter
Zeeman, a Dutch physicist, discovered that a strong magnetic field changes
the frequency of the light emitted by a glowing gas. In an impressive victory
for Maxwell, it was found that Maxwell’s equations correctly predicted (in
most cases) the change of vibration of the electric oscillators and hence, the
change in frequency of the light emitted. (See Problem 1.) Maxwell, with
Hertz behind the throne, reigned supreme, for he had united the formerly in-
dependent kingdoms of electricity, magnetism, and light! (See Fig. 3.2.)

A terse remark made by Hertz ends our discussion of his confirmation of
the electromagnetic wave nature of light. In describing his spark gap transmit-
ter, he emphasizes that “it is essential that the pole surfaces of the spark gap
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Figure 3.1 Heinrich Hertz
(1857–1894), an extraordinar-
ily gifted German experimental-
ist. (©Bettmann/Corbis)
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Figure 3.2 A light or radio wave far from the source according to Maxwell and Hertz.
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should be frequently repolished” to ensure reliable operation of the spark.2

Apparently this result was initially quite mysterious to Hertz. In an effort to re-
solve the mystery, he later investigated this side effect and concluded that it
was the ultraviolet light from the initial spark acting on a clean metal surface
that caused current to flow more freely between the poles of the spark gap. In
the process of verifying the electromagnetic wave theory of light, Hertz had
discovered the photoelectric effect, a phenomenon that would undermine the
priority of the wave theory of light and establish the particle theory of light on
an equal footing.

3.2 BLACKBODY RADIATION

The tremendous success of Maxwell’s theory of light emission immediately led
to attempts to apply it to a long-standing puzzle about radiation—the so-
called “blackbody” problem. The problem is to predict the radiation intensity
at a given wavelength emitted by a hot glowing solid at a specific temperature.
Instead of launching immediately into Planck’s solution of this problem, let
us develop a feeling for its importance to classical physics by a quick review
of its history.

Thomas Wedgwood, Charles Darwin’s relative and a renowned maker of
china, seems to have been the first to note the universal character of all
heated objects. In 1792, he observed that all the objects in his ovens, regard-
less of their chemical nature, size, or shape, became red at the same tempera-
ture. This crude observation was sharpened considerably by the advancing
state of spectroscopy, so that by the mid-1800s it was known that glowing solids
emit continuous spectra rather than the bands or lines emitted by heated
gases. (See Fig. 3.3.) In 1859, Gustav Kirchhoff proved a theorem as important
as his circuit loop theorem when he showed by arguments based on thermody-
namics that for any body in thermal equilibrium with radiation3 the emitted
power is proportional to the power absorbed. More specifically,

ef � J( f, T )Af (3.1)

where ef is the power emitted per unit area per unit frequency by a particular
heated object, Af is the absorption power (fraction of the incident power ab-
sorbed per unit area per unit frequency by the heated object), and J( f, T ) is a
universal function (the same for all bodies) that depends only on f, the light
frequency, and T, the absolute temperature of the body. A blackbody is defined
as an object that absorbs all the electromagnetic radiation falling on it and
consequently appears black. It has Af � 1 for all frequencies and so Kirch-
hoff’s theorem for a blackbody becomes

ef � J( f, T ) (3.2)
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2H. Hertz, Ann. Physik (Leipzig), 33:983, 1887.
3An example of a body in equilibrium with radiation would be an oven with closed walls at a fixed
temperature and the radiation within the oven cavity. To say that radiation is in thermal equilib-
rium with the oven walls means that the radiation has exchanged energy with the walls many
times and is homogeneous, isotropic, and unpolarized. In fact, thermal equilibrium of radiation
within a cavity can be considered to be quite similar to the thermal equilibrium of a fluid within a
container held at constant temperature—both will cause a thermometer in the center of the cav-
ity to achieve a final stationary temperature equal to that of the container.
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Equation 3.2 shows that the power emitted per unit area per unit frequency by
a blackbody depends only on temperature and light frequency and not on
the physical and chemical makeup of the blackbody, in agreement with
Wedgwood’s early observation.

Because absorption and emission are connected by Kirchhoff’s theorem, we
see that a blackbody or perfect absorber is also an ideal radiator. In practice, a
small opening in any heated cavity, such as a port in an oven, behaves like a
blackbody because such an opening traps all incident radiation (Fig. 3.4). If
the direction of the radiation is reversed in Figure 3.4, the light emitted by a
small opening is in thermal equilibrium with the walls, because it has been
absorbed and re-emitted many times.

The next important development in the quest to understand the universal
character of the radiation emitted by glowing solids came from the Austrian
physicist Josef Stefan (1835–1893) in 1879. He found experimentally that the
total power per unit area emitted at all frequencies by a hot solid, e total, was
proportional to the fourth power of its absolute temperature. Therefore,
Stefan’s law may be written as

(3.3)

where e total is the power per unit area emitted at the surface of the blackbody
at all frequencies, ef is the power per unit area per unit frequency emitted by
the blackbody, T is the absolute temperature of the body, and � is the
Stefan–Boltzmann constant, given by � � 5.67 	 10�8 W � m�2 � K�4. A body
that is not an ideal radiator will obey the same general law but with a coeffi-
cient, a, less than 1:

e total � a�T 4 (3.4)

Only 5 years later another impressive confirmation of Maxwell’s electromag-
netic theory of light occurred when Boltzmann derived Stefan’s law from a
combination of thermodynamics and Maxwell’s equations.

e total � ��

0

ef df � �T 4
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Figure 3.4 The opening to the
cavity inside a body is a good
approximation of a blackbody.
Light entering the small opening
strikes the far wall, where some
of it is absorbed but some is re-
flected at a random angle. The
light continues to be reflected,
and at each reflection a portion
of the light is absorbed by the
cavity walls. After many reflec-
tions essentially all of the inci-
dent energy is absorbed.

Stefan’s law

e total(R s). This comes from the conservation of energy:

e total(R s) � 4R s
2 � e total(R ) � 4R 2

or

Using Equation 3.5, we have

or

� 5800 K

T � � (1400 W/m2)(1.5 	 1011 m)2

(5.6 	 10�8 W/m2 � K4)(7.0 	 108 m)2 �
1/4

T � � e total(R) �R2

�R2
s

�
1/4

e total(R s) � e total(R) �
R2

R2
s

EXAMPLE 3.1 Stefan’s Law Applied to the Sun

Estimate the surface temperature of the Sun from
the following information. The Sun’s radius is given
by R s � 7.0 	 108 m. The average Earth–Sun distance
is R � 1.5 	 1011 m. The power per unit area (at all fre-
quencies) from the Sun is measured at the Earth to be
1400 W/m2. Assume that the Sun is a blackbody.

Solution For a black body, we take a � 1, so Equation
3.4 gives

e total(R s) � �T 4 (3.5)

where the notation e total(R s) stands for the total power
per unit area at the surface of the Sun. Because the prob-
lem gives the total power per unit area at the Earth,
e total(R), we need the connection between e total(R) and
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As can be seen in Figure 3.3, the wavelength marking the maximum power
emission of a blackbody, 
max, shifts toward shorter wavelengths as the black-
body gets hotter. This agrees with Wedgwood’s general observation that
objects in his kiln progressed from dull red to orange to white in color as
the temperature was raised. This simple effect of 
max � T �1 was not
definitely established, however, until about 20 years after Kirchhoff’s
seminal paper had started the search to find the form of the universal
function J( f, T ). In 1893, Wilhelm Wien proposed a general form for
the blackbody distribution law J( f, T ) that gave the correct experimental
behavior of 
max with temperature. This law is called Wien’s displacement law
and may be written


maxT � 2.898 	 10�3 m �K (3.6)

where 
max is the wavelength in meters corresponding to the blackbody’s
maximum intensity and T is the absolute temperature of the surface of
the object emitting the radiation. Assuming that the peak sensitivity of
the human eye (which occurs at about 500 nm — blue-green light) coin-
cides with 
max for the Sun (a blackbody), we can check the consistency
of Wien’s displacement law with Stefan’s law by recalculating the Sun’s
surface temperature:

Thus we have good agreement between measurements made at all wave-
lengths (Example 3.1) and at the maximum-intensity wavelength.

Exercise 1 How convenient that the Sun’s emission peak is at the same wavelength as
our eyes’ sensitivity peak! Can you account for this?

So far, the power radiated per unit area per unit frequency by the black-
body, J( f, T ) has been discussed. However, it is more convenient to consider
the spectral energy density, or energy per unit volume per unit frequency of the radi-
ation within the blackbody cavity, u( f, T ). For light in equilibrium with the walls,
the power emitted per square centimeter of opening is simply proportional to
the energy density of the light in the cavity. Because the cavity radiation is
isotropic and unpolarized, one can average over direction to show that the
constant of proportionality between J( f, T ) and u( f, T ) is c/4, where c is the
speed of light. Therefore,

J( f, T ) � u( f, T )c/4 (3.7)

An important guess as to the form of the universal function u( f, T ) was
made in 1893 by Wien and had the form

u( f, T )�Af 3e��f/T (3.8)

where A and � are constants. This result was known as Wien’s exponential law;
it resembles and was loosely based on Maxwell’s velocity distribution for gas
molecules. Within a year the great German spectroscopist Friedrich Paschen

T �
2.898 	 10�3 m�K

500 	 10�9 m
� 5800 K
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Spectral energy density of a

blackbody
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had confirmed Wien’s guess by working in the then difficult infrared range of
1 to 4 �m and at temperatures of 400 to 1600 K.4

As can be seen in Figure 3.5, Paschen had made most of his measurements
in the maximum energy region of a body heated to 1500 K and had found
good agreement with Wien’s exponential law. In 1900, however, Lummer and
Pringsheim extended the measurements to 18 �m, and Rubens and Kurlbaum
went even farther—to 60 �m. Both teams concluded that Wien’s law failed
in this region (see Fig. 3.5). The experimental setup used by Rubens and
Kurlbaum is shown in Figure 3.6. It is interesting to note that these historic
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4We should point out the great difficulty in making blackbody radiation measurements and the
singular advances made by German spectroscopists in the crucial areas of blackbody sources, sen-
sitive detectors, and techniques for operating far into the infrared region. In fact, it is dubious
whether Planck would have found the correct blackbody law as quickly without his close associa-
tion with the experimentalists at the Physikalisch Technische Reichsanstalt of Berlin (a sort of
German National Bureau of Standards)—Otto Lummer, Ernst Pringsheim, Heinrich Rubens,
and Ferdinand Kurlbaum.
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Figure 3.5 Discrepancy between Wien’s law and experimental data for a blackbody
at 1500 K.

P1

P3
P4

D2

D1
K

E
S

T
MP2

Figure 3.6 Apparatus for measuring blackbody radiation at a single wavelength in
the far infrared region. The experimental technique that disproved Wien’s law and
was so crucial to the discovery of the quantum theory was the method of residual
rays (Restrahlen). In this technique, one isolates a narrow band of far infrared radia-
tion by causing white light to undergo multiple reflections from alkalide halide crys-
tals (P1 –P4). Because each alkali halide has a maximum reflection at a characteristic
wavelength, quite pure bands of far infrared radiation may be obtained with
repeated reflections. These pure bands can then be directed onto a thermopile (T )
to measure intensity. E is a thermocouple used to measure the temperature of the
blackbody oven, K.
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experiments involved the measurement of blackbody radiation intensity at
a fixed wavelength and variable temperature. Typical results measured at

 � 51.2 �m and over the temperature range of �200� to �1500�C are shown
in Figure 3.7, from the paper by Rubens and Kurlbaum.

Enter Planck

On a Sunday evening early in October of 1900, Max Planck discovered the fa-
mous blackbody formula, which truly ushered in the quantum theory. Planck’s
proximity to the Reichsanstalt experimentalists was extremely important for
his discovery—earlier in the day he had heard from Rubens that his latest

72 CHAPTER 3 THE QUANTUM THEORY OF LIGHT

Figure 3.7 Comparison of theoretical and experimental blackbody emission curves at
51.2 �m and over the temperature range of �188� to 1500�C. The title of this modified
figure is “Residual Rays from Rocksalt.” Berechnet nach means “calculated according to,”
and beobachtet means “observed.” The vertical axis is emission intensity in arbitrary
units. (From H. Rubens and S. Kurlbaum, Ann. Physik, 4:649, 1901.)
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Fig III. Reststrahlen von Steinsalz.
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measurements showed that u( f, T ), the spectral energy density, was propor-
tional to T for long wavelengths or low frequency. Planck knew that Wien’s law
agreed well with the data at high frequency and indeed had been working
hard for several years to derive Wien’s exponential law from the principles of
statistical mechanics and Maxwell’s laws. Interpolating between the two limit-
ing forms (Wien’s exponential law and an energy density proportional to tem-
perature), he immediately found a general formula, which he sent to Rubens,
on a postcard, the same evening. His formula was5

(3.9)

where h is Planck’s constant � 6.626 	 10�34 J � s, and kB is Boltzmann’s
constant � 1.380 	 10�23 J/K. We can see that Equation 3.9 has the correct
limiting behavior at high and low frequencies with the help of a few approxi-
mations. At high frequencies, where hf/kBT �� 1,

so that

and we recover Wien’s exponential law, Equation 3.8. At low frequencies,
where hf/kBT �� 1,

and

This result shows that the spectral energy density is proportional to T in the
low-frequency or so-called classical region, as Rubens had found.

We should emphasize that Planck’s work entailed much more than clever
mathematical manipulation. For more than six years Planck (Fig. 3.8) labored to
find a rigorous derivation of the blackbody distribution curve. He was driven, in
his own words, by the fact that the emission problem “represents something
absolute, and since I had always regarded the search for the absolute as the lofti-
est goal of all scientific activity, I eagerly set to work.” This work was to occupy
most of his life as he strove to give his formula an ever deeper physical interpreta-
tion and to reconcile discrete quantum energies with classical theory.

u( f, T ) �
8hf 3

c3 � 1

ehf/kBT � 1 � �
8f 2

c3 kBT

1

ehf/kBT � 1
�

1

1 �
hf

kBT
� � � � � 1

�
kBT

hf

u( f, T ) �
8hf 3

c3 � 1

ehf/kBT � 1 � �
8hf 3

c3 e�hf/kBT

1

ehf/kBT � 1
� e�hf/kBT

u( f, T ) �
8hf 3

c3 � 1

ehf/kBT � 1 �
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5Planck originally published his formula as , where C1 � 8ch and

C2 � hc/kB. He then found best-fit values to the experimental data for C1 and C2 and evaluated
h � 6.55 	 10�34 J � s and kB � NA/R � 1.345 	 10�23 J/K. As R , the universal gas constant, was
fairly well known at the time, this technique also resulted in another method for finding NA,
Avogadro’s number.

u(
, T) �
C1


5 � 1

eC2/
T � 1 �

Figure 3.8 Max Planck (1858–
1947). The work leading to the
“lucky” blackbody radiation for-
mula was described by Planck in
his Nobel prize acceptance
speech (1920): “But even if the
radiation formula proved to be
perfectly correct, it would after
all have been only an interpola-
tion formula found by lucky
guess-work and thus, would have
left us rather unsatisfied. I there-
fore strived from the day of its
discovery, to give it a real physi-
cal interpretation and this led
me to consider the relations be-
tween entropy and probability
according to Boltzmann’s ideas.
After some weeks of the most in-
tense work of my life, light be-
gan to appear to me and unex-
pected views revealed themselves
in the distance.” (AIP Niels Bohr

Library, W. F. Meggers Collection)
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The Quantum of Energy

Planck’s original theoretical justification of Equation 3.9 is rather abstract
because it involves arguments based on entropy, statistical mechanics, and several
theorems proved earlier by Planck concerning matter and radiation in equilib-
rium.6 We shall give arguments that are easier to visualize physically yet attempt
to convey the spirit and revolutionary impact of Planck’s original work.

Planck was convinced that blackbody radiation was produced by vibrating
submicroscopic electric charges, which he called resonators. He assumed that
the walls of a glowing cavity were composed of literally billions of these
resonators (whose exact nature was unknown at the time), all vibrating at
different frequencies. Hence, according to Maxwell, each oscillator should
emit radiation with a frequency corresponding to its vibration frequency. Also
according to classical Maxwellian theory, an oscillator of frequency f
could have any value of energy and could change its amplitude continu-
ously as it radiated any fraction of its energy. This is where Planck made
his revolutionary proposal. To secure agreement with experiment, Planck
had to assume that the total energy of a resonator with mechanical
frequency f could only be an integral multiple of hf or

(3.10)

where h is a fundamental constant of quantum physics, h � 6.626 	 10�34 J � s,
known as Planck’s constant. In addition, he concluded that emission of radiation
of frequency f occurred when a resonator dropped to the next lowest energy
state. Thus the resonator can change its energy only by the difference �E according to

�E � hf (3.11)

That is, it cannot lose just any amount of its total energy, but only a finite amount, hf,
the so-called quantum of energy. Figure 3.9 shows the quantized energy levels and
allowed transitions proposed by Planck.

Eresonator � nhf  n � 1, 2, 3, � � �
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Figure 3.9 Allowed energy levels according to Planck’s original hypothesis for an
oscillator with frequency f. Allowed transitions are indicated by the double-headed arrows.

6M. Planck, Ann. Physik, 4:553, 1901.
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3.2 BLACKBODY RADIATION 75

consequently the energy decrease continuously with time,
as shown in Figure 3.10a. Actually, all systems vibrating
with frequency f are quantized (according to Equation
3.10) and lose energy in discrete packets or quanta, hf.
This would lead to a decrease of the pendulum’s energy
in a stepwise manner, as shown in Figure 3.10b. We shall
show that there is no contradiction between quantum
theory and the observed behavior of laboratory pendu-
lums and springs.

An energy change of one quantum corresponds to

�E � hf

where the pendulum frequency f is

Thus,

�E � (6.63 	 10�34 J � s)(0.50 s�1)

� 3.3 	 10�34 J

� 2.1 	 10�15 eV

f �
1

2

g

�
� 0.50 Hz

EXAMPLE 3.2 A Quantum Oscillator versus a
Classical Oscillator

Consider the implications of Planck’s conjecture that all

oscillating systems of natural frequency f have discrete
allowed energies E � nhf and that the smallest change in
energy of the system is given by �E � hf.

(a) First compare an atomic oscillator sending out
540-nm light (green) to one sending out 700-nm light
(red) by calculating the minimum energy change of
each. For the green quantum,

Actually, the joule is much too large a unit of energy
for describing atomic processes; a more appropriate unit
of energy is the electron volt (eV). The electron volt
takes the charge on the electron as its unit of charge. By
definition, an electron accelerated through a potential
difference of 1 volt has an energy of 1 eV. An electron
volt may be converted to joules by noting that

E � V � q � 1 eV � (1.602 	 10�19 C)(1 J/C)

� 1.602 	 10�19 J

It is also useful to have expressions for h and hc in terms
of electron volts. These are

h � 4.136 	 10�15 eV � s

hc � 1.240 	 10�6 eV � m � 1240 eV � nm

Returning to our example, we see that the minimum
energy change of an atomic oscillator sending out green
light is

For the red quantum the minimum energy change is

Note that the minimum allowed amount or “quantum”
of energy is not uniform under all conditions as is the
quantum of charge—the quantum of energy is propor-
tional to the natural frequency of the oscillator. Note,
too, that the high frequency of atomic oscillators
produces a measurable quantum of energy of several
electron volts.

(b) Now consider a pendulum undergoing small oscil-
lations with length � � 1 m. According to classical the-
ory, if air friction is present, the amplitude of swing and

� 2.84 	 10�19 J � 1.77 eV

�Ered �
hc



�

(6.63 	 10�34 J�s)(3.00 	 108 m/s)

700 	 10�9 m

�Egreen �
3.68 	 10�19 J

1.602 	 10�19 J/eV
� 2.30 eV

� 3.68 	 10�9 J

�
(6.63 	 10�34 J�s)(3.00 	 108 m/s)

540 	 10�9 m

�Egreen � hf �
hc




Energy

E0

Time

(a)

E  =  E0e–α t

Energy

Time

(b)

hf

Figure 3.10 (Example 3.2) (a) Observed classical be-
havior of a pendulum. (b) Predicted quantum behavior
of a pendulum.
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Exercise 2 Calculate the quantum number, n, for this pendulum with E � 1.5 	 10�2 J.

Answer 4.6 	 1031

Exercise 3 An object of mass m on a spring of stiffness k oscillates with an amplitude A
about its equilibrium position. Suppose that m � 300 g, k � 10 N/m, and A � 10 cm. (a)
Find the total energy. (b) Find the mechanical frequency of vibration of the mass. (c) Cal-
culate the change in amplitude when the system loses one quantum of energy.

Answer (a) E total � 0.050 J; (b) f � 0.92 Hz; (c) �Equantum � 6.1 	 10�34 J, so

Until now we have been concentrating on the remarkable quantum proper-
ties of single oscillators of frequency f. Planck explained the continuous spec-
trum of the blackbody by assuming that the heated walls contained resonators
vibrating at many different frequencies, each emitting light at the same fre-
quency as its vibration frequency. By considering the conditions leading to
equilibrium between the wall resonators and the radiation in the blackbody
cavity, he was able to show that the spectral energy density u( f, T ) could be
expressed as the product of the number of oscillators having frequency
between f and f � df, denoted by N( f ) df, and the average energy emitted per
oscillator, . Thus we have the important result

(3.12)

Furthermore, Planck showed that the number of oscillators with frequency
between f and f � df was proportional to f 2 or

(3.13)

(See Appendix 1 on our book Web site at http://info.brookscole.com/mp3e
for details.)

Substituting Equation 3.13 into Equation 3.12 gives

(3.14)u( f, T )df � E
8f 2

c3 df

N( f )df �
8f 2

c3 df

u( f, T )df � E N( f )df

E

�A � �
�E

√2Ek
� �6.1 	 10�34 m
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Because the total energy of a pendulum of mass m and
length � displaced through an angle � is

E � mg�(1 � cos �)

we have for a typical pendulum with m � 100 g, � �

1.0 m, and � � 10�,

E � (0.10 kg)(9.8 m/s2)(1.0 m)(1 � cos 10�) � 0.015 J

Therefore, the fractional change in energy, �E/E, is un-
observably small:

Note that the energy quantization of large vibrating
systems is unobservable because of their low frequencies
compared to the high frequencies of atomic oscillators.
Hence there is no contradiction between Planck’s
quantum postulate and the behavior of macroscopic
oscillators.

�E

E
�

3.3 	 10�34 J

1.5 	 10�2 J
� 2.2 	 10�32
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3.3 THE RAYLEIGH–JEANS LAW AND PLANCK’S LAW 77

This result shows that the spectral energy density is proportional to the
product of the frequency squared and the average oscillator energy. Also,
since u( f, T ) approaches zero at high frequencies (see Fig. 3.5), must tend
to zero at high frequencies faster than 1/f 2. The fact that the mean oscillator
energy must become extremely small when the frequency becomes high
guided Planck in the development of his theory. In the next section we shall
see that the failure of to become small at high frequencies in the classical
Rayleigh–Jeans theory led to the “ultraviolet catastrophe”—the prediction of
an infinite spectral energy density at high frequencies in the ultraviolet region.

3.3 THE RAYLEIGH–JEANS LAW AND PLANCK’S LAW

Rayleigh–Jeans Law

Both Planck’s law and the Rayleigh–Jeans law (the classical theory of blackbody

radiation formulated by Lord Rayleigh, John William Strutt, 1842–1919, English

physicist, and James Jeans, 1887–1946, English astronomer and physicist) may be

derived using the idea that the blackbody radiation energy per unit volume with fre-

quency between f and f � df can be expressed as the product of the number of oscil-

lators per unit volume in this frequency range and the average energy per oscillator:

(3.12)

It is instructive to perform both the Rayleigh–Jeans and Planck calculations to see

the effect on u( f, T ) of calculating from a continuous distribution of classical

oscillator energies (Rayleigh–Jeans) as opposed to a discrete set of quantum oscilla-

tor energies (Planck). We discuss Lord Rayleigh’s derivation first because it is a

more direct classical calculation.

While Planck concentrated on the thermal equilibrium of cavity radiation with oscillating

electric charges in the cavity walls, Rayleigh concentrated directly on the electromagnetic waves

in the cavity. Rayleigh and Jeans reasoned that the standing electromagnetic waves in

the cavity could be considered to have a temperature T, because they constantly ex-

changed energy with the walls and caused a thermometer within the cavity to reach

the same temperature as the walls. Further, they considered a standing polarized

electromagnetic wave to be equivalent to a one-dimensional oscillator (Fig. 3.11).

Using the same general idea as Planck, they expressed the energy density as a prod-

uct of the number of standing waves (oscillators) and the average energy per oscilla-

tor. They found the average oscillator energy to be independent of frequency and

equal to kBT from the Maxwell-Boltzmann distribution law (see Chapter 10).

According to this distribution law, the probability P of finding an individual system

(such as a molecule or an atomic oscillator) with energy E above some minimum

energy, E0, in a large group of systems at temperature T is

(3.15)

where P0 is the probability that a system has the minimum energy. In the case of a

discrete set of allowed energies, the average energy, , is given by

(3.16)

where division by the sum in the denominator serves to normalize the total

probability to 1. In the classical case considered by Rayleigh, an oscillator could have any

E �
�E �P(E)

�P(E)

E

P(E) � P0e�(E�E 0)/kBT

E

E

u( f, T )df � E N( f )df

E

E

O P T I O N A L
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k1

m ω1

ω2

k2

m

energy E in a continuous range from 0 to �. Thus the sums in Equation 3.16 must

be replaced with integrals, and the expression for becomes

The calculation of N( f ) is a bit more complicated but is of importance here as

well as in the free electron model of metals. Appendix 1 on our Web site gives the

derivation of the density of modes, N( f ) df. One finds

(3.45)

or in terms of wavelength,

(3.46)

The spectral energy density is simply the density of modes multiplied by kBT, or

(3.17)

In terms of wavelength,

(3.18)

However, as one can see from Figure 3.12, this classical expression, known as the

Rayleigh – Jeans law, does not agree with the experimental results in the short

wavelength region. Equation 3.18 diverges as 
 : 0, predicting unlimited energy

emission in the ultraviolet region, which was dubbed the “ultraviolet catastro-

phe.” One is forced to conclude that classical theory fails miserably to explain

blackbody radiation.

u(
, T )d
 �
8


4 kBT d


u( f, T )df �
8f 2

c3 kBT df

N(
)d
 �
8


4 d


N( f )df �
8f 2

c3 df

E �

��

0
Ee�E/kBTdE

��

0
e�E/kBT dE

� kBT

E
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Figure 3.11 A one-dimensional harmonic oscillator is equivalent to a plane-
polarized electromagnetic standing wave.

Density of standing waves in

a cavity

Rayleigh–Jeans blackbody

law
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Planck’s Law

As mentioned earlier, Planck concentrated on the energy states of resonators in the

cavity walls and used the condition that the resonators and cavity radiation were in-

equilibrium to determine the spectral quality of the radiation. By thermodynamic 

reasoning (and apparently unaware of Rayleigh’s derivation), he arrived at the same

expression for N( f ) as Rayleigh. However, Planck arrived at a different form for 

by allowing only discrete values of energy for his resonators. He found, using the

Maxwell-Boltzmann distribution law,

(3.19)

(See the book Web site at http://info.brookscole.com/mp3e for Planck’s derivation

of .)

Multiplying by N( f ) gives the Planck distribution formula:

(3.9)

or in terms of wavelength, 
,

(3.20)

Equation 3.9 shows that the ultraviolet catastrophe is avoided because the term dom-

inates the f 2 term at high frequencies. One can qualitatively understand why tends to

zero at high frequencies by noting that the first allowed oscillator level (hf ) is so large

for large f compared to the average thermal energy available (kBT ) that Boltzmann’s

law predicts almost zero probability that the first excited state is occupied.

In summary, Planck arrived at his blackbody formula by making two startling

assumptions: (1) the energy of a charged oscillator of frequency f is limited to

E

E

u(
, T )d
 �
8hc d



5(ehc/
kBT � 1)

u( f, T )df �
8f 2

c3 � hf

ehf/kBT � 1 � df

E

E

E �
hf

ehf/kBT � 1

E
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Figure 3.12 The failure of the classical Rayleigh–Jeans law (Equation 3.18) to fit
the observed spectrum of a blackbody heated to 1000 K.

Planck blackbody law
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If we make the change of variable x � hc/
kBT, the inte-
gral assumes a form commonly found in tables:

Using

we find

Finally, substituting for kB, c, and h, we have

� 5.67 	 10�8 W�m�2�K�4

� �
(2)(3.141)5(1.381 	 10�23 J/K)4

(15)(2.998 	 108 m/s)2 (6.626 	 10�34 J�s)3

e total �
25kB

4

15c2h3 T 4 � �T 4

��

0

x3

(e x � 1)
dx �

4

15

etotal �
2kB

4T 4

c2h3 ��

0

x 3

(e x � 1)
dx

EXAMPLE 3.3 Derivation of Stefan’s Law from
the Planck Distribution

In this example, we show that the Planck spectral distri-
bution formula leads to the experimentally observed
Stefan law for the total radiation emitted by a blackbody
at all wavelengths,

etotal � 5.67 	 10�8 T 4 W � m�2 � K�4

Solution Since Stefan’s law is an expression for the to-
tal power per unit area radiated at all wavelengths, we
must integrate the expression for u(
, T ) d
 given by
Equation 3.20 over 
 and use Equation 3.7 for the con-
nection between the energy density inside the blackbody
cavity and the power emitted per unit area of blackbody
surface. We find

etotal �
c

4
��

0

u(
, T )d
 � ��

0

2hc 2


5(e hc/
kBT � 1)
d


Exercise 4 Show that

3.4 LIGHT QUANTIZATION AND THE
PHOTOELECTRIC EFFECT

We now turn to the year 1905, in which the next major development in
quantum theory took place. The year 1905 was an incredible one for the
“willing revolutionary” Albert Einstein (Fig. 3.13). In this year Einstein pro-
duced three immortal papers on three different topics, each revolutionary
and each worthy of a Nobel prize. All three papers contained balanced,
symmetric, and unifying new results achieved by spare and clean logic and
simple mathematics. The first work, entitled “A Heuristic7 Point of View

��

0

2hc2


5(ehc/
kBT � 1)
d
 �

2kB
4T 4

h3c2 ��

x�0

x3

(e x � 1)
dx

7A heuristic argument is one that is plausible and enlightening but not rigorously justified.

discrete values nhf and (2) during emission or absorption of light, the change in

energy of an oscillator is hf . But Planck was every bit the “unwilling revolution-

ary.” From most of Planck’s early correspondence one gets the impression that

his concept of energy quantization was really a desperate calculational device,

and moreover a device that applied only in the case of blackbody radiation. It

remained for the great Albert Einstein, the popular icon of physics in the 20th

century, to elevate quantization to the level of a universal phenomenon by show-

ing that light itself was quantized.
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About the Generation and Transformation of Light,” formulated the theory
of light quanta and explained the photoelectric effect.8 The second paper
was entitled “On the Motion of Particles Suspended in Liquids as Required
by the Molecular-Kinetic Theory of Heat.” It explained Brownian motion
and provided strong proof of the reality of atoms.9 The third paper, which
is perhaps his most famous, contained the invention of the theory of special
relativity10 and was entitled “On the Electrodynamics of Moving Bodies.” It
is interesting to note that when Einstein was awarded the Nobel prize in
1922, the Swedish Academy judged his greatest contribution to physics to
have been the theory of the photoelectric effect. No mention was made at
all of his theory of relativity!

Let us turn now to the paper concerning the light quantum, in which
Einstein crossed swords with Maxwell and challenged the unqualified
successes of the classical wave theory of light. Einstein recognized an incon-
sistency between Planck’s quantization of oscillators in the walls of the
blackbody and Planck’s insistence that the cavity radiation consisted of clas-
sical electromagnetic waves. By showing that the change in entropy of black-
body radiation was like the change in entropy of an ideal gas consisting of
independent particles, Einstein reached the conclusion that light itself is
composed of “grains,” irreducible finite amounts, or quanta of energy.11

Furthermore, he asserted that light interacting with matter also consists of
quanta, and he worked out the implications for photoelectric and photo-
chemical processes. His explanation of the photoelectric effect offers such
convincing proof that light consists of energy packets that we shall describe
it in more detail. First, however, we need to consider the main experimental
features of the photoelectric effect and the failure of classical theory to
explain this effect.

As noted earlier, Hertz first established that clean metal surfaces emit
charges when exposed to ultraviolet light. In 1888 Hallwachs discovered that
the emitted charges were negative, and in 1899 J. J. Thomson showed that the
emitted charges were electrons, now called photoelectrons. He did this by
measuring the charge-to-mass ratio of the particles produced by ultraviolet
light and even succeeded in measuring e separately by a cloud chamber
technique (see Chapter 4).

The last crucial discovery before Einstein’s explanation was made in 1902
by Philip Lenard, who was studying the photoelectric effect with intense
carbon arc light sources. He found that electrons are emitted from the metal
with a range of velocities and that the maximum kinetic energy of photoelec-
trons, Kmax, does not depend on the intensity of the exciting light. Although he
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8A. Einstein, Ann. Physik, 17:132, 1905 (March).
9A. Einstein, Ann. Physik, 17:549, 1905 (May).
10A. Einstein, Ann. Physik, 17:891, 1905 ( June).
11Einstein, as Planck before him, fell back on the unquestionable solidity of thermodynamics and

statistical mechanics to derive his revolutionary results. At the time it was well known that the
probability, W, for n independent gas atoms to be in a partial volume V of a larger volume V0 is
(V/V0)n. Einstein showed that light of frequency f and total energy E enclosed in a cavity obeys
an identical law, where in this case W is the probability that all the radiation is in the partial
volume and n � E/hf.
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was unable to establish the precise relationship, Lenard also indicated that
Kmax increases with light frequency. A typical apparatus used to measure the
maximum kinetic energy of photoelectrons is shown in Figure 3.14. Kmax is
easily measured by applying a retarding voltage and gradually increasing it
until the most energetic electrons are stopped and the photocurrent becomes
zero. At this point,

(3.21)

where me is the mass of the electron, vmax is the maximum electron
speed, e is the electronic charge, and Vs is the stopping voltage. A plot
of the type found by Lenard is shown in Figure 3.15a; it illustrates that
K max or Vs is independent of light intensity I. The increase in current
(or number of electrons per second) with increasing light intensity
shown in Figure 3.15a was expected and could be explained classically.
However, the result that K max does not depend on the intensity was completely
unexpected.

Two other experimental results were completely unexpected classically as
well. One was the linear dependence of Kmax on light frequency, shown in Figure
3.15b. Note that Figure 3.15b also shows the existence of a threshold
frequency, f0, below which no photoelectrons are emitted. (Actually, a
threshold energy called the work function, �, is associated with the binding
energy of an electron in a metal and is expected classically. That there is an
energy barrier holding electrons in a solid is evident from the fact that
electrons are not spontaneously emitted from a metal in a vacuum, but
require high temperatures or incident light to provide an energy of �

and cause emission.) The other interesting result impossible to explain
classically is that there is no time lag between the start of illumination and
the start of the photocurrent. Measurements have shown that if there is
a time lag, it is less than 10�9 s. In summary, as shown in detail in the
following example, classical electromagnetic theory has major difficul-
ties explaining the independence of K max and light intensity, the linear
dependence of K max on light frequency, and the instantaneous response
of the photocurrent.

Kmax � 1
2mev2

max � eVs
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0 Applied voltage

(a)

Photocurrent

I2 > I1

I2

I1

–Vs

(b)

Kmax

f0 f

Figure 3.15 (a) A plot of photocurrent versus applied voltage. The graph shows that
Kmax is independent of light intensity I for light of fixed frequency. (b) A graph show-
ing the dependence of Kmax on light frequency.

Figure 3.14 Photoelectric ef-
fect apparatus.
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Einstein’s explanation of the puzzling photoelectric effect was as brilliant
for what it focused on as for what it omitted. For example, he stressed that
Maxwell’s classical theory had been immensely successful in describing the
progress of light through space over long time intervals but that a different
theory might be needed to describe momentary interactions of light and mat-
ter, as in light emission by oscillators or the transformation of light energy
to kinetic energy of the electron in the photoelectric effect. He also focused
only on the energy aspect of the light and avoided models or mechanisms
concerning the conversion of the quantum of light energy to kinetic energy
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(b) According to classical theory, the intensity of a light

wave is proportional to the square of the amplitude of the electric

field, E0
2, and it is this electric field amplitude that

increases with increasing intensity and imparts an in-
creasing acceleration and kinetic energy to an electron.
Replacing I with a quantity proportional to E0

2 in Equa-
tion 3.22 shows that Kmax should not depend at all on
the frequency of the classical light wave, again contradict-
ing the experimental results.

(c) To estimate the time lag between the start of illu-
mination and the emission of electrons, we assume that
an electron must accumulate just enough light energy to
overcome the work function. Setting Kmax � 0 in Equa-
tion 3.22 gives

0 � CIAt � �

or

assuming that I is the actual absorbed intensity. Because
� and I are given, we need A, the cross-sectional area of
an atom, to calculate the time. As an estimate of A we
simply use A � r 2, where r is a typical atomic radius.
Taking r � 1.0 	 10�8 cm, we find A �  	 10�16 cm2.
Finally, substituting this value into the expression for t,
we obtain

Thus we see that the classical calculation of the time lag
for photoemission does not agree with the experimental
result, disagreeing by a factor of 1016!

� 1.2 	 107 s � 130 days

t �
2.28 eV 	 1.60 	 10�16 mJ/eV

(10�7 mJ/s�cm2)( 	 10�16 cm2)

t �
�

CIA
�

�

IA

EXAMPLE 3.4 Maxwell Takes a Licking

For a typical case of photoemission from sodium, show
that classical theory predicts that (a) Kmax depends on the
incident light intensity, I, (b) Kmax does not depend on
the frequency of the incident light, and (c) there is a
long time lag between the start of illumination and the
beginning of the photocurrent. The work function for
sodium is � � 2.28 eV and an absorbed power per unit
area of 1.00 	 10�7 mW/cm2 produces a measurable
photocurrent in sodium.

Solution (a) According to classical theory, the energy in

a light wave is spread out uniformly and continuously over the

wavefront. Assuming that all absorption of light occurs in
the top atomic layer of the metal, that each atom absorbs
an equal amount of energy proportional to its cross-
sectional area, A, and that each atom somehow funnels
this energy into one of its electrons, we find that each
electron absorbs an energy K in time t given by

K � CIAt

where C is a fraction accounting for less than 100% light
absorption. Because the most energetic electrons are
held in the metal by a surface energy barrier or work
function of �, these electrons will be emitted with Kmax

once they have absorbed enough energy to overcome the
barrier �. We can express this as

Kmax � CIAt � � (3.22)

Thus, classical theory predicts that for a fixed absorption
period, t, at low light intensities when CIAt � �, no elec-
trons ought to be emitted. At higher intensities, when
CIAt � �, electrons should be emitted with higher
kinetic energies the higher the light intensity. Therefore,
classical predictions contradict experiment at both very
low and very high light intensities.

Exercise 5 Why do the I–V curves in Figure 3.15a rise gradually between �Vs and 0,
that is, why do they not rise abruptly upward at �Vs? What statistical information about
the conduction electrons inside the metal is contained in the slope of the I–V curve?
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of the electron. In short, he introduced only those ideas necessary to
explain the photoelectric effect. He maintained that the energy of light
is not distributed evenly over the classical wavefront, but is concen-
trated in discrete regions (or in “bundles”), called quanta, each con-
taining energy, hf. A suggestive image, not to be taken too literally, is
shown in Figure 3.16b. Einstein’s picture was that a light quantum was so
localized that it gave all its energy, hf, directly to a single electron in the
metal. Therefore, according to Einstein, the maximum kinetic energy for
emitted electrons is

(3.23)

where � is the work function of the metal, which corresponds to the minimum
energy with which an electron is bound in the metal. Table 3.1 lists values of
work functions measured for different metals.

Equation 3.23 beautifully explained the puzzling independence of Kmax

and intensity found by Lenard. For a fixed light frequency f, an increase in
light intensity means more photons and more photoelectrons per second,
although Kmax remains unchanged according to Equation 3.23. In addition,
Equation 3.23 explained the phenomenon of threshold frequency. Light of
threshold frequency f0, which has just enough energy to knock an electron out
of the metal surface, causes the electron to be released with zero kinetic
energy. Setting Kmax � 0 in Equation 3.23 gives

(3.24)

Thus the variation in threshold frequency for different metals is produced
by the variation in work function. Note that light with f � f0 has insuf-
ficient energy to free an electron. Consequently, the photocurrent is zero
for f � f0.

With any theory, one looks not only for explanations of previously observed
results but also for new predictions. This was indeed the case here, as Equa-
tion 3.23 predicted the result (new in 1905) that Kmax should vary linearly
with f for any material and that the slope of the Kmax versus f plot should yield

f0 �
�

h

Kmax � hf � �
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Figure 3.17 Universal charac-
teristics of all metals undergo-
ing the photoelectric effect.

Figure 3.16 (a) A classical view of a traveling light wave. (b) Einstein’s photon
picture of “a traveling light wave.”
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Table 3.1 Work Functions

of Selected

Metals

Work Function, �,
Metal (in eV)

Na 2.28
Al 4.08
Cu 4.70
Zn 4.31
Ag 4.73
Pt 6.35
Pb 4.14
Fe 4.50

Einstein’s theory of the

photoelectric effect
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the universal constant h (see Fig. 3.17). In 1916, the American physicist Robert
Millikan (1868–1953) reported photoelectric measurement data, from which
he substantiated the linear relation between Kmax and f and determined h with
a precision of about 0.5%.12
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12R. A. Millikan, Phys. Rev., 7:355, 1916. Some of the experimental difficulties in the photoelec-
tric effect were the lack of strong monochromatic uv sources, small photocurrents, and large
effects of rough and impure metal surfaces on f0 and K max. Millikan cleverly circumvented
these difficulties by using alkali metal cathodes, which are sensitive in the visible to about 
600 nm (thus making it possible to use the strong visible lines of the mercury arc), and ma-
chining fresh alkali surfaces while the metal sample was held under high vacuum. Also when
the phototube emitter and collector are composed of different metals, the work function �
determined from plots of VS vs. f is actually that of the collector. See J. Rudnick and D. S.
Tannhauser, AJP 44, 796, 1976.

(b) Assuming that all the photons in the violet region
have an effective wavelength of 250 nm, how many elec-
trons will be emitted per second?
For an efficiency of 100%, one photon of energy, hf, will
produce one electron, so

Number of electrons/s

(c) Calculate the current in the phototube in amperes.

i � (1.6 	 10�19 C)(1.5 	 109 electrons/s)

� 2.4 	 10�10 A

A sensitive electrometer is needed to detect this small
current.

(d) If the cutoff frequency is f0 � 1.1 	 1015 Hz, find
the work function, �, for iron.

From Equation 3.24, we have

� � hf0 � (4.14 	 10�15 eV � s)(1.1 	 1015 s�1)

� 4.5 eV

(e) Find the stopping voltage for iron if photoelec-
trons are produced by light with 
 � 250 nm.
From the photoelectric equation,

Thus the stopping voltage is 0.46 V.

� 0.46 eV

�
(4.14 	 10�15 eV�s)(3.0 	 108 m/s)

250 	 10�9 m
� 4.5 eV

eVs � hf � � �
hc



� �

� 1.5 	 109

�
(250 	 10�9 m)(1.2 	 10�9 J/s)

(6.6 	 10�34 J�s)(3.0 	 108 m/s)

�
1.2 	 10�9 W

hf
�


(1.2 	 10�9)

hc

EXAMPLE 3.5 The Photoelectric Effect in Zinc

Philip Lenard determined that photoelectrons released
from zinc by ultraviolet light were stopped by a voltage of
4.3 V. Find Kmax and vmax for these electrons.

Solution

Kmax � eVs � (1.6 	 10�19 C)(4.3 V) � 6.9 	 10�19 J

To find vmax, we set the work done by the electric field
equal to the change in the electron’s kinetic energy, to
obtain

or

Therefore, a 4.3-eV electron is rather energetic and moves
with a speed of about a million meters per second. Note,
however, that this is still only about 0.4% of the speed of
light, so relativistic effects are negligible in this case.

EXAMPLE 3.6 The Photoelectric Effect for Iron

Suppose that light of total intensity 1.0 �W/cm2 falls on
a clean iron sample 1.0 cm2 in area. Assume that the iron
sample reflects 96% of the light and that only 3.0% of
the absorbed energy lies in the violet region of the spec-
trum above the threshold frequency.

(a) What intensity is actually available for the photo-
electric effect?
Because only 4.0% of the incident energy is absorbed,
and only 3.0% of this energy is able to produce photo-
electrons, the intensity available is

I � (0.030)(0.040)I0 � (0.030)(0.040)(1.0 �W/cm2)

� 1.2nW/cm2

� 1.2 	 106 m/s

vmax � √ 2eVs

me
� √ 2(6.9 	 10�19 J)

9.11 	 10�31 kg

1
2mev2

max � eVs
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3.5 THE COMPTON EFFECT AND X-RAYS

Although Einstein introduced the concept that light consists of pointlike
quanta of energy in 1905, he did not directly treat the momentum carried by
light until 1906. In that year, in a paper treating a molecular gas in thermal
equilibrium with electromagnetic radiation (statistical mechanics again!),
Einstein concluded that a light quantum of energy E travels in a single direc-
tion (unlike a spherical wave) and carries a momentum directed along its line
of motion of E/c, or hf/c. In his own words, “If a bundle of radiation causes a
molecule to emit or absorb an energy packet hf, then momentum of quantity
hf/c is transferred to the molecule, directed along the line of motion of the
bundle for absorption and opposite the bundle for emission.”

After developing the first theoretical justification for photon momentum,
and treating the photoelectric effect much earlier, it is curious that Einstein
carried the treatment of photon momentum no further. The theoretical
treatment of photon–particle collisions had to await the insight of Peter
Debye (1884–1966, Dutch physical chemist), and Arthur Holly Compton
(1892–1962, American physicist). In 1923, both men independently realized
that the scattering of x-ray photons from electrons could be explained by
treating photons as pointlike particles with energy hf and momentum hf/c and
by conserving relativistic energy and momentum of the photon–electron pair
in a collision.13,14 This remarkable development completed the particle
picture of light by showing that photons, in addition to carrying energy, hf,
carry momentum, hf/c, and scatter like particles. Before treating this in detail,
a brief introduction to the important topic of x-rays will be given.

X-Rays

X-rays were discovered in 1895 by the German physicist Wilhelm Roentgen.
He found that a beam of high-speed electrons striking a metal target pro-
duced a new and extremely penetrating type of radiation (Fig. 3.18). Within
months of Roentgen’s discovery the first medical x-ray pictures were taken,
and within several years it became evident that x-rays were electromagnetic
vibrations similar to light but with extremely short wavelengths and great pen-
etrating power (see Fig. 3.19). Rough estimates obtained from the diffraction
of x rays by a narrow slit showed x-ray wavelengths to be about 10�10 m, which
is of the same order of magnitude as the atomic spacing in crystals. Because
the best artificially ruled gratings of the time had spacings of 10�7 m, Max von
Laue in Germany and William Henry Bragg and William Lawrence Bragg (a
father and son team) in England suggested using single crystals such as calcite
as natural three-dimensional gratings, the periodic atomic arrangement in the
crystals constituting the grating rulings.

A particularly simple method of analyzing the scattering of x-rays from
parallel crystal planes was proposed by W. L. Bragg in 1912. Consider two
successive planes of atoms as shown in Figure 3.20. Note that adjacent atoms
in a single plane, A, will scatter constructively if the angle of incidence, �i,
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13P. Debye, Phys. Zeitschr., 24:161, 1923. In this paper, Debye acknowledges Einstein’s pioneering
work on the quantum nature of light.

14A. H. Compton, Phys. Rev., 21:484, 1923.
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equals the angle of reflection, �r. Atoms in successive planes (A and B) will scat-
ter constructively at an angle � if the path length difference for rays (1) and
(2) is a whole number of wavelengths, n
. From the diagram, constructive
interference will occur when

AB � BC � n
 n � 1, 2, 3, � � �

and because AB � BC � d sin �, it follows that

(3.25a)

where n is the order of the intensity maximum, 
 is the x-ray wavelength, d is
the spacing between planes, and � is the angle of the intensity maximum mea-
sured from plane A. Note that there are several maxima at different angles for
a fixed d and 
 corresponding to n � 1, 2, 3, � � � . Equation 3.25a is known as
the Bragg equation; it was used with great success by the Braggs to determine
atomic positions in crystals. A diagram of a Bragg x-ray spectrometer is shown
in Figure 3.21a. The crystal is slowly rotated until a strong reflection is

n
 � 2d sin �  n � 1, 2, 3, � � �
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Figure 3.18 X-rays are produced by bombarding a metal target (copper, tungsten, and
molybdenum are common) with energetic electrons having energies of 50 to 100 keV.

Figure 3.19 One of the first
images made by Roentgen us-
ing x-rays (December 22, 1895).
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Figure 3.20 Bragg scattering of x-rays from successive planes of atoms. Constructive
interference occurs for ABC equal to an integral number of wavelengths.

Bragg equation
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Figure 3.21 (a) A Bragg crystal x-ray spectrometer. The crystal is rotated about an
axis through P. (b) The x-ray spectrum of a metal target consists of a broad, continuous
spectrum plus a number of sharp lines, which are due to the characteristic x-rays.
Those shown were obtained when 35-keV electrons bombarded a molybdenum target.
Note that 1 pm � 10�12 m � 10�3 nm.

observed, which means that Equation 3.25a holds. If 
 is known, d can be
calculated and, from the series of d values found, the crystal structure may be
determined. (See Problem 38.) If measurements are made with a crystal with
known d, the x-ray intensity vs. wavelength may be determined and the x-ray
emission spectrum examined.

The actual x-ray emission spectrum produced by a metal target bombarded
by electrons is interesting in itself and is shown in Figure 3.21b. Although
the broad, continuous spectrum is well explained by classical electromagnetic
theory, a feature of Figure 3.21b, 
min, shows proof of the photon theory. The
broad continuous x-ray spectrum shown in Figure 3.21b results from glancing
or indirect scattering of electrons from metal atoms. In such collisions only
part of the electron’s energy is converted to electromagnetic radiation. This
radiation is called bremsstrahlung (German for braking radiation), which refers
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3.5 THE COMPTON EFFECT AND X-RAYS 89

to the radiation given off by any charged particle when it is decelerated. The
minimum continuous x-ray wavelength, 
min, is found to be independent
of target composition and depends only on the tube voltage, V. It may be
explained by attributing it to the case of a head-on electron–atom collision in
which all of the incident electron’s kinetic energy is converted to electromag-
netic energy in the form of a single x-ray photon. For this case we have

or

(3.26)

where V is the x-ray tube voltage.
Superimposed on the continuous spectrum are sharp x-ray lines labeled

K� and K�, which are like sharp lines emitted in the visible light spectrum.
The sharp lines depend on target composition and provide evidence for
discrete atomic energy levels separated by thousands of electron volts, as
explained in Chapter 9.

The Compton Effect

Let us now turn to the year 1922 and the experimental confirmation by Arthur
Holly Compton that x-ray photons behave like particles with momentum hf/c.
For some time prior to 1922, Compton and his coworkers had been accumu-
lating evidence that showed that classical wave theory failed to explain the
scattering of x-rays from free electrons. In particular, classical theory predicted
that incident radiation of frequency f0 should accelerate an electron in the
direction of propagation of the incident radiation, and that it should
cause forced oscillations of the electron and reradiation at frequency f �, where
f � � f0 (see Fig. 3.22a).15 Also, according to classical theory, the frequency or
wavelength of the scattered radiation should depend on the length of time the
electron was exposed to the incident radiation as well as on the intensity of the
incident radiation.

Imagine the surprise when Compton showed experimentally that the wave-
length shift of x-rays scattered at a given angle is absolutely independent of the
intensity of radiation and the length of exposure, and depends only on the
scattering angle. Figure 3.22b shows the quantum model of the transfer of
momentum and energy between an individual x-ray photon and an electron.
Note that the quantum model easily explains the lower scattered frequency f �,
because the incident photon gives some of its original energy hf to the recoil-
ing electron.

A schematic diagram of the apparatus used by Compton is shown in Figure
3.23a. In the original experiment, Compton measured the dependence
of scattered x-ray intensity on wavelength at three different scattering angles


min �
hc

eV

eV � hf �
hc


min

15This decrease in frequency of the reradiated wave is caused by a double Doppler shift, first
because the electron is receding from the incident radiation, and second because the electron is
a moving radiator as viewed from the fixed lab frame. See D. Bohm, Quantum Theory, Upper Sad-
dle River, NJ, Prentice-Hall, 1961, p. 35.
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of 45�, 90�, and 135�. The wavelength was measured with a rotating crystal
spectrometer, and the intensity was determined by an ionization chamber that
generated a current proportional to the x-ray intensity. Monochromatic x-rays
of wavelength 
0 � 0.71 Å constituted the incident beam. A carbon target with
a low atomic number, Z � 12, was used because atoms with small Z have a
higher percentage of loosely bound electrons. The experimental intensity ver-
sus wavelength plots observed by Compton for scattering angles of 0�, 45�, 90�,
and 135� are shown in Figure 3.23b. They show two peaks, one at 
0 and a
shifted peak at a longer wavelength 
�. The shifted peak at 
� is caused by the
scattering of x-rays from nearly free electrons. Assuming that x-rays behave like
particles, 
� was predicted by Compton to depend on scattering angle as

(3.27)
� � 
0 �
h

mec
(1 � cos�)
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(a) Classical model

Electron

Electron motion

θ

B

E

Recoiling electron

pe

f ′

–

φ

θ
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f ′, λ′

f0, λ0

(b) Quantum model

Figure 3.22 X-ray scattering from an electron: (a) the classical model, (b) the quan-
tum model.

Compton effect
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where me � electron mass; the combination of constants h/mec is called
the Compton wavelength of the electron and has a currently accepted
value of

Compton’s careful measurements completely confirmed the dependence of

� on scattering angle � and determined the Compton wavelength of the
electron to be 0.0242 Å, in excellent agreement with the currently accepted
value. It is fair to say that these results were the first to really convince most
American physicists of the basic validity of the quantum theory!

The unshifted peak at 
0 in Figure 3.23 is caused by x-rays scattered from
electrons tightly bound to carbon atoms. This unshifted peak is actually pre-
dicted by Equation 3.27 if the electron mass is replaced by the mass of a car-
bon atom, which is about 23,000 times the mass of an electron.

Let us now turn to the derivation of Equation 3.27 assuming that the pho-
ton exhibits particle-like behavior and collides elastically like a billiard ball
with a free electron initially at rest. Figure 3.24 shows the photon–electron
collision for which energy and momentum are conserved. Because the elec-
tron typically recoils at high speed, we treat the collision relativistically. The
expression for conservation of energy gives

E � mec
2 � E� � Ee (3.28)

where E is the energy of the incident photon, E� is the energy of the scattered
photon, mec2 is the rest energy of the electron, and Ee is the total relativistic
energy of the electron after the collision. Likewise, from momentum conserva-
tion we have

p � p� cos � � pe cos � (3.29)

h

mec
� 0.0243 Å � 0.00243 nm
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Figure 3.23 (a) Schematic diagram of Compton’s apparatus. The wavelength was
measured with a rotating crystal spectrometer using graphite (carbon) as the target.
The intensity was determined by a movable ionization chamber that generated a cur-
rent proportional to the x-ray intensity. (b) Scattered x-ray intensity versus wavelength
of Compton scattering at � � 0�, 45�, 90�, and 135�.
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p� sin � � pe sin � (3.30)

where p is the momentum of the incident photon, p� is the momentum of the
scattered photon, and pe is the recoil momentum of the electron. Equations
3.29 and 3.30 may be solved simultaneously to eliminate �, the electron scat-
tering angle, to give the following expression for pe

2:

pe
2 � (p�)2 � p2 � 2pp� cos � (3.31)

At this point it is necessary, paradoxically, to use the wave nature of
light to explain the particle-like behavior of photons. We have already
seen that the energy of a photon and the frequency of the associated
light wave are related by E � hf. If we assume that a photon obeys the
relativistic expression E 2 � p2c2 � m2c4 and that a photon has a mass of
zero, we have

(3.32)

Here again we have a paradoxical situation; a particle property, the photon
momentum, is given in terms of a wave property, 
, of an associated light wave.
If the relations E � hf and p � hf/c are substituted into Equations 3.28 and
3.31, these become respectively

Ee � hf � hf � � mec
2 (3.33)

and

(3.34)

Because the Compton measurements do not concern the total energy
and momentum of the electron, we eliminate Ee and pe by substi-
tuting Equations 3.33 and 3.34 into the expression for the electron’s
relativistic energy,

pe
2 � � hf �

c �
2

� � hf

c �
2

�
2h2ff �

c2  cos �

pphoton �
E

c
�

hf

c
�

h
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Recoiling electron
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Scattered photon
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θ

Figure 3.24 Diagram representing Compton scattering of a photon by an
electron. The scattered photon has less energy (or longer wavelength) than the
incident photon.
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E 2
e � pe

2c2 � m2
ec4

After some algebra (see Problem 33), one obtains Compton’s result for the in-
crease in a photon’s wavelength when it is scattered through an angle �:

(3.27)
� � 
0 �
h

mec
(1 � cos �)

3.5 THE COMPTON EFFECT AND X-RAYS 93

Visible light from mercury:

Because both incident and scattered wavelengths are
simultaneously present in the beam, they can be easily
resolved only if �
/
0 is a few percent or if 
0 � 1 Å.

(b) The so-called free electrons in carbon are actually
electrons with a binding energy of about 4 eV. Why
may this binding energy be ignored for x-rays with 
0 �

0.712 Å?

Solution The energy of a photon with this wavelength
is

Therefore, the electron binding energy of 4 eV is negligi-
ble in comparison with the incident x-ray energy.

� 17 400 eVE � hf �
hc



�

12 400 eV�Å

0.712 Å

�



0
�

0.0243 Å

5461 Å
� 4.45 	 10�6

EXAMPLE 3.8 X-ray Photons versus 
Visible Photons

(a) Why are x-ray photons used in the Compton experi-
ment, rather than visible-light photons? To answer this
question, we shall first calculate the Compton shift for
scattering at 90� from graphite for the following cases:
(1) very high energy �-rays from cobalt, 
 � 0.0106 Å;
(2) x-rays from molybdenum, 
 � 0.712 Å; and (3) green
light from a mercury lamp, 
 � 5461 Å.

Solution In all cases, the Compton shift formula gives
�
 � 
� � 
0 � (0.0243 Å)(1 � cos 90�) � 0.0243 Å �

0.00243 nm. That is, regardless of the incident wave-
length, the same small shift is observed. However, the
fractional change in wavelength, �
/
0, is quite different
in each case:

�-rays from cobalt:

X-rays from molybdenum:

�



0
�

0.0243 Å

0.712 Å
� 0.0341

�



0
�

0.0243 Å

0.0106 Å
� 2.29

Hence, the wavelength of the scattered x-ray at this angle is


 � �
 � 
0 � 0.200711 nm

� 7.11 	 10�13 m � 0.00071 nm

�
6.63 	 10�34 J�s

(9.11 	 10�31 kg)(3.00 	 108 m/s)
 (1 � cos 45.0�)

EXAMPLE 3.7 The Compton Shift for Carbon

X-rays of wavelength 
 � 0.200 nm are aimed at a block
of carbon. The scattered x-rays are observed at an angle
of 45.0� to the incident beam. Calculate the increased
wavelength of the scattered x-rays at this angle.

Solution The shift in wavelength of the scattered x-rays
is given by Equation 3.27. Taking � � 45.0�, we find

�
 �
h

mec
(1 � cos �)

Exercise 6 Find the fraction of energy lost by the photon in this collision.

Answer Fraction � �E/E � 0.00355.
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3.6 PARTICLE–WAVE COMPLEMENTARITY

As we have seen, the Compton effect offers ironclad evidence that when light
interacts with matter it behaves as if it were composed of particles with energy
hf and momentum h/
. Yet the very success of Compton’s theory raises many
questions. If the photon is a particle, what can be the meaning of the
“frequency” and “wavelength” of the particle, which determine its energy and
momentum? Is light in some sense simultaneously a wave and a particle?
Although photons have zero mass, is there a simple expression for an effective
gravitational photon mass that determines a photon’s gravitational attraction?
What is the spatial extent of a photon, and how does an electron absorb or
scatter a photon?

Although answers to some of these questions are possible, it is well to be
aware that some demand a view of atomic processes that is too pictorial and
literal. Many of these questions issue from the viewpoint of classical me-
chanics, in which all matter and energy are seen in the context of colliding
billiard balls or water waves breaking on a shore. Quantum theory gives
light a more flexible nature by implying that different experimental condi-
tions elicit either the wave properties or particle properties of light. In fact,
both views are necessary and complementary. Neither model can be used exclu-
sively to describe electromagnetic radiation adequately. A complete under-
standing is obtained only if the two models are combined in a complemen-
tary manner.

The physicist Max Born, an important contributor to the foundations of
quantum theory, had this to say about the particle–wave dilemma:

The ultimate origin of the difficulty lies in the fact (or philosophical principle)
that we are compelled to use the words of common language when we wish to de-
scribe a phenomenon, not by logical or mathematical analysis, but by a picture
appealing to the imagination. Common language has grown by everyday experi-
ence and can never surpass these limits. Classical physics has restricted itself to
the use of concepts of this kind; by analyzing visible motions it has developed two
ways of representing them by elementary processes: moving particles and waves.
There is no other way of giving a pictorial description of motions — we have to
apply it even in the region of atomic processes, where classical physics breaks
down.

Every process can be interpreted either in terms of corpuscles or in terms of
waves, but on the other hand it is beyond our power to produce proof that it is actu-
ally corpuscles or waves with which we are dealing, for we cannot simultaneously de-
termine all the other properties which are distinctive of a corpuscle or of a wave, as
the case may be. We can therefore say that the wave and corpuscular descriptions
are only to be regarded as complementary ways of viewing one and the same objec-
tive process, a process which only in definite limiting cases admits of complete picto-
rial interpretation.16

Thus we are left with an uneasy compromise between wave and particle
concepts and must accept, at this point, that both are necessary to explain the
observed behavior of light. Further considerations of the dual nature of light
and indeed of all matter will be taken up again in Chapters 4 and 5.
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16M. Born, Atomic Physics, fourth edition, New York, Hafner Publishing Co., 1946, p. 92.
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3.7 DOES GRAVITY AFFECT LIGHT?

It is interesting to speculate on how far the particle model of light may be carried.

Encouraged by the successful particle explanation of the photoelectric and Comp-

ton effects, one may ask whether the photon possesses an effective gravitational-

mass, and whether photons will be attracted gravitationally by large masses, such as

those of the Sun or Earth, and experience an observable change in energy.

To investigate these questions, recall that the photon has zero mass, but its effec-

tive inertial mass, mi, may reasonably be taken to be the mass equivalent of the pho-

ton energy, E, or

(3.35)

The same result is obtained if we divide the photon momentum by the photon

speed c:

Recall that the effective inertial mass determines how the photon responds to an

applied force such as that exerted on it during a collision with an electron. The

gravitational mass of an object determines the force of gravitational attraction of that

object to another, such as the Earth. Although it is a remarkable unexplained fact in

Newtonian mechanics that the inertial mass of all material bodies is equal to the

gravitational mass to within one part in 1012, Einstein’s Equivalence Principle of

general relativity requires this result as mentioned in Chapter 2.

Let us assume that the photon, like other objects, also has a gravitational mass

equal to its inertial mass. In this case a photon falling from a height H should

increase in energy by mgH and therefore increase in frequency, although its speed

cannot increase and remains at c. In fact, experiments have been carried out that

show this increase in frequency and confirm that the photon indeed has an effective

gravitational mass of hf/c2. Figure 3.25 shows a schematic representation of the

experiment. An expression for f � in terms of f may be derived by applying conserva-

tion of energy to the photon at points A and B.

KEB � PEB � KEA � PEA

Because the photon’s kinetic energy is E � pc � hf and its potential energy is mgH,

where m � hf/c2, we have

or

(3.36)

The fractional change in frequency, �f/f, is given by

(3.37)

For H � 50 m, we find

�f

f
�

(9.8 m/s2)(50 m)

(3.0 	 108 m/s)2 � 5.4 	 10�15

�f

f
�

f � � f

f
�

gH

c2

f � � f �1 �
gH

c2 �

hf � � 0 � hf � � hf

c2 � gH

m i �
p

c
�

hf

c2

m i �
E

c2 �
hf

c2
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Figure 3.25 Schematic dia-
gram of the falling-photon ex-
periment.
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This incredibly small increase in frequency has actually been measured (with diffi-

culty)!17 The shift amounts to only about 1/250 of the line width of the monochro-

matic �-ray photons used in the falling-photon experiment.

The increase in frequency for a photon falling inward suggests a decrease in fre-

quency for a photon that escapes outward to infinity against the gravitational pull of

a star (see Fig. 3.26). This effect, known as “gravitational redshift,” would cause an

emitted photon to be shifted in frequency toward the red end of the spectrum. An

expression for the redshift may be derived once again by conserving photon energy:

Using hf for the photon’s kinetic energy and �GMm/R for its potential energy, with

m equal to hf/c2 and R s equal to the star’s radius, yields

(3.38)

or

(3.39)

EXAMPLE 3.9 The Gravitational Redshift for a White Dwarf

White dwarf stars are extremely massive, compact stars that have a mass on the

order of the Sun’s mass concentrated in a volume similar to that of the Earth. Calcu-

late the gravitational redshift for 300-nm light emitted from such a star.

Solution We can write Equation 3.39 in the alternate form

Using the values

M � mass of Sun � 1.99 	 1030 kg

f � � f

f
�

�f

f
�

GM

R sc
2

f � � f �1 �
GM

R sc
2 �

hf � � 0 � hf �
GM

R s
� hf

c2 �

[KE � PE]R�� � [KE � PE]R�R s
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Figure 3.26 Gravitational redshift from a high-density star.

17R. V. Pound and G. A. Rebka, Jr., Phys. Rev. Lett., 4:337, 1960.
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we find

Because �f/f � df/f, and df � �(c/
2) d
 (from f � c/
), we find � d
/
.

Therefore, the shift in wavelength is

Note that this is a redshift, so the observed wavelength would be 300.07 nm.

One more observation about Equation 3.39 is irresistible. Is it possible for a

very massive star in the course of its life cycle to become so dense that the term

GM/R sc
2 becomes greater than 1? In that case Equation 3.38 suggests that the

photon cannot escape from the star, because escape requires more energy than

the photon initially possesses. Such a star is called a black hole because it emits no

light and acts like a celestial vacuum cleaner for all nearby matter and radiation.

Even though the black hole itself is not luminous, it may be possible to observe it

indirectly in two ways. One way is through the gravitational attraction the black

hole would exert on a normal luminous star if the two constituted a binary star

system. In this case the normal star would orbit the center of mass of the black

hole/normal star pair, and the orbital motion might be detectable. A second in-

direct technique for “viewing” a black hole would be to search for x-rays pro-

duced by inrushing matter attracted to the black hole. Although the black hole it-

self would not emit x-rays, an x-ray-emitting region of roughly stellar diameter

should be observable, as shown in Figure 3.27. X-rays are produced by the

�
 � (300 nm)(2.31 	 10�4) � 0.0695 nm � 0.7 Å

	 df/f 	

� 2.31 	 10�4

�f

f
�

(6.67 	 10�11 N�m2/kg2)(1.99 	 1030 kg)

(6.37 	 106 m)(3.00 	 108 m/s)2

G � 6.67 	 10�11 N�m2/kg2

R s � radius of Earth � 6.37 	 106 m
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Figure 3.27 The Cygnus X-1 black hole. The stellar wind from HDE 226868 pours
matter onto a huge disk around its black hole companion. The infalling gases are
heated to enormous temperatures as they spiral toward the black hole. The gases
are so hot that they emit vast quantities of x-rays. 

HDE 226868

Black hole

X-rays
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heating of the infalling matter as it circulates, is compressed, and eventually falls
into the black hole. Such an intense nonluminous point source of x-rays has been
detected in the constellation of the Swan. This source, designated Cygnus X-1, is
believed by most astronomers to be a black hole; it possesses a luminosity, or
power output, of 1030 W in the 2- to 10-keV x-ray range.

Recently, even more convincing evidence of a black hole has been obtained from
radio telescope measurements of a dust torus rotating rapidly around a huge central
mass at the center of galaxy NGC 4258. (See Figure 3.28.) These observations pin-
point a mass of 39 million solar masses within a radius of 4.0 � 1015 m, a density
10,000 times greater than any known cluster of stars and almost certainly high
enough to produce a black hole. The central gravitational mass of 39 million solar
masses was calculated from the observed speed of rotation of the dust torus, which
is about 1 million m/s. And we needn’t even go so far away as NGC 4258. Evidence
of a black hole at the center of our own galaxy has been rapidly accumulating, indi-
cating that a black hole of about 3 million solar masses, concealed by dust, is located
in the constellation Sagittarius.18

SUMMARY

The work of Maxwell and Hertz in the late 1800s conclusively showed that
light, heat radiation, and radio waves were all electromagnetic waves differing
only in frequency and wavelength. Thus it astonished scientists to find that the
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18See the interesting book The Black Hole at the Center of our Galaxy, by Fulvio Melia, Princeton
University Press, 2003.
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spectral distribution of radiation from a heated cavity could not be explained
in terms of classical wave theory. Planck was forced to introduce the concept
of the quantum of energy in order to derive the correct blackbody formula.
According to Planck, the atomic oscillators responsible for blackbody radia-
tion can have only discrete, or quantized, energies given by

E � nhf (3.10)

where n is an integer, h is Planck’s constant, and f is the oscillator’s natural
frequency. Using general thermodynamic arguments, Planck was able to show
that u( f, T ), the blackbody radiation energy per unit volume with frequency
between f and f � df, could be expressed as the product of the number of
oscillators per unit volume in this frequency range, N( f ) df, and the average
energy emitted per oscillator, . That is,

(3.12)

If is calculated by allowing a continuous distribution of oscillator energies,
the incorrect Rayleigh–Jeans law is obtained. If is calculated from a discrete
set of oscillator energies (following Planck), the correct blackbody radiation
formula is obtained:

(3.9)

Planck quantized the energy of atomic oscillators, but Einstein extended
the concept of quantization to light itself. In Einstein’s view, light of fre-
quency f consists of a stream of particles, called photons, each with energy 
E � hf . The photoelectric effect, a process in which electrons are ejected
from a metallic surface when light of sufficiently high frequency is incident
on the surface, can be simply explained with the photon theory. According
to this theory, the maximum kinetic energy of the ejected photoelectron,
K max, is given by

Kmax � hf � � (3.23)

where � is the work function of the metal.
Although the idea that light consists of a stream of photons with energy hf

was put forward in 1905, the idea that these photons also carry momentum
was not experimentally confirmed until 1923. In that year it was found that 
x-rays scattered from free electrons suffer a simple shift in wavelength with
scattering angle, known as the Compton shift. When an x-ray of frequency f is
viewed as a particle with energy hf and momentum hf/c, x-ray–electron scattering
can be simply analyzed to yield the Compton shift formula:

(3.27)

Here, me is the mass of the electron and � is the x-ray scattering angle.
The striking success of the photon theory in explaining interactions

between light and electrons contrasts sharply with the success of classical
wave theory in explaining the polarization, reflection, and interference of
light. This leaves us with the dilemma of whether light is a wave or a parti-

�
 �
h

mec
 (1 � cos �)

u( f, T )df �
8f 2

c3 � hf

ehf/kBT � 1 � df

E
E

u( f, T )df � E N( f )df

E

SUMMARY 99
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QUESTIONS

1. What assumptions were made by Planck in dealing with
the problem of blackbody radiation? Discuss the conse-
quences of these assumptions.

2. If the photoelectric effect is observed for one metal,
can you conclude that the effect will also be observed
for another metal under the same conditions? Explain.

3. Suppose the photoelectric effect occurs in a gaseous tar-
get rather than a solid. Will photoelectrons be produced
at all frequencies of the incident photon? Explain.

4. How does the Compton effect differ from the photo-
electric effect?

5. What assumptions were made by Compton in dealing
with the scattering of a photon from an electron?

6. An x-ray photon is scattered by an electron. What hap-
pens to the frequency of the scattered photon relative
to that of the incident photon?

7. Why does the existence of a cutoff frequency in the
photoelectric effect favor a particle theory for light
rather than a wave theory?

8. All objects radiate energy. Why, then, are we not able to
see all objects in a dark room?

9. Which has more energy, a photon of ultraviolet radia-
tion or a photon of yellow light?

10. What effect, if any, would you expect the temperature
of a material to have on the ease with which electrons
can be ejected from it in the photoelectric effect?

11. Some stars are observed to be reddish, and some are
blue. Which stars have the higher surface temperature?
Explain.

12. When wood is stacked on a special elevated grate
(which is commercially available) in a fireplace, a
pocket of burning wood forms beneath the grate
whose temperature is higher than that of the burning
wood at the top of the stack. Explain how this device
provides more heat to the room than a conventional
fire does and thus increases the efficiency of the 
fireplace.

13. What physical process described in this chapter might
reasonably be called “the inverse photoelectric effect”?
Can you account for this process classically or must it
be accounted for by viewing light as a collection of
many little particles each with energy hf ? Explain.

cle. The currently accepted view suggests that light has both wave and parti-
cle characteristics and that these characteristics together constitute a com-
plementary view of light.
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PROBLEMS 101

14. In the photoelectric effect, if the intensity of incident
light is very low, then the number of photons per sec-
ond striking the metal surface will be small and the
probability per second of electron emission per surface

atom will also be small. Account for the observed
instantaneous emission of photoelectrons under these
conditions.

15. Blacker than black, brighter than white. (a) Take a large,
closed, empty cardboard box. Cut a slot a few mil-
limeters wide in one side. Use black pens, markers,
and soot to make some stripes next to the slot, as
shown in Figure Q3.15a. Inspect them with care and
choose which is blackest — the figure does not show
enough contrast to reveal which it is. Explain why it is
blackest. (b) Locate an intricately shaped compact
fluorescent light fixture, as in Figure Q3.15b. Look at
it through dark glasses and describe where it appears
brightest. Explain why it is brightest there. Suggestion:

Gustav Kirchhoff, professor at Heidelberg and master
of the obvious, gave the same answer to part (a) as
you likely will. His answer to part (b) would begin
like this: When electromagnetic radiation falls on its
surface, an object reflects some fraction r of the 
energy and absorbs the rest. Whether the fraction 
reflected is 0.8 or 0.001, the fraction absorbed is 
a � 1 � r. Suppose the object and its surroundings
are at the same temperature. The energy the object
absorbs joins its fund of internal energy, but the sec-
ond law of thermodynamics implies that the absorbed
energy cannot raise the object’s temperature. It does
not produce a temperature increase because the ob-
ject’s energy budget has one more term: energy radi-
ated . . . . You still have to make the observations and
answer questions (a) and (b), but you can incorpo-
rate some of Kirchhoff’s ideas into your answer if you
wish. (Alexandra Héder)

PROBLEMS

3.1 Light as an Electromagnetic Wave

1. Classical Zeeman effect or the triumph of Maxwell’s equations!
As pointed out in Section 3.1, Maxwell’s equations may
be used to predict the change in emission frequency
when gas atoms are placed in a magnetic field. Consider
the situation shown in Figure P3.1. Note that the applica-
tion of a magnetic field perpendicular to the orbital
plane of the electron induces an electric field, which
changes the direction of the velocity vector. (a) Using

show that the magnitude of the electric field is given by

(b) Using F dt � m dv, calculate the change in speed,
�v, of the electron. Show that if r remains constant,

(c) Find the change in angular frequency, ��, of the
electron and calculate the numerical value of �� for B

equal to 1 T. Note that this is also the change in
frequency of the light emitted according to Maxwell’s
equations. Find the fractional change in frequency,
��/�, for an ordinary emission line of 500 nm. (d) Ac-
tually, the original emission line at �0 is split into three
components at �0 —��, �0, and �0 � ��. The line at

�v �
erB

2me

E �
r

2

dB

dt

� E�ds � �
d�B

dt

Initial Final

B

r

e
v v + ∆v

++
r

e

ω0
ω0 + ∆ω

Figure P3.1

�0 � �� is produced by atoms with electrons rotating
as shown in Figure P3.1, whereas the line at �0 � �� is
produced by atoms with electrons rotating in the oppo-
site sense. The line at �0 is produced by atoms with
electronic planes of rotation oriented parallel to B.
Explain.

3.2 Blackbody Radiation

2. The temperature of your skin is approximately 35�C.
What is the wavelength at which the peak occurs in the
radiation emitted from your skin?

3. A 2.0-kg mass is attached to a massless spring of force
constant k � 25 N/m. The spring is stretched 0.40 m
from its equilibrium position and released. (a) Find
the total energy and frequency of oscillation according
to classical calculations. (b) Assume that the energy is
quantized and find the quantum number, n, for the sys-
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tem. (c) How much energy would be carried away in a
1-quantum change?

4. (a) Use Stefan’s law to calculate the total power radi-
ated per unit area by a tungsten filament at a tempera-
ture of 3000 K. (Assume that the filament is an ideal
radiator.) (b) If the tungsten filament of a lightbulb is
rated at 75 W, what is the surface area of the filament?
(Assume that the main energy loss is due to radiation.)

5. Consider the problem of the distribution of black-
body radiation described in Figure 3.3. Note that as
T increases, the wavelength 
max at which u(
, T)
reaches a maximum shifts toward shorter wave-
lengths. (a) Show that there is a general relationship
between temperature and 
max stating that 
T
max � constant (Wien’s displacement law). (b) Ob-
tain a numerical value for this constant. (Hint: Start
with Planck’s radiation law and note that the slope of
u(
, T) is zero when 
 � 
max.)

6. Planck’s fundamental constant, h. Planck ultimately real-
ized the great and fundamental importance of h,
which, much more than a curve-fitting parameter, is ac-
tually the measure of all quantum phenomena. In fact,
Planck suggested using the universal constants h, c (the
velocity of light), and G (Newton’s gravitational con-
stant) to construct “natural” or universal units of
length, time, and mass. He reasoned that the current
units of length, time, and mass were based on the acci-
dental size, motion, and mass of our particular planet,
but that truly universal units should be based on the
quantum theory, the speed of light in a vacuum, and
the law of gravitation—all of which hold anywhere in
the universe and at all times. Show that the expressions

, , and have dimensions of

length, time, and mass and find their numerical values.
These quantities are called, respectively, the Planck
length, the Planck time, and the Planck mass. Would
you care to speculate on the physical meaning of these
quantities?

3.3 Derivation of the Rayleigh–Jeans Law and
Planck’s Law (Optional)

7. Density of modes. The essentials of calculating the num-
ber of modes of vibration of waves confined to a cavity
may be understood by considering a one-dimensional
example. (a) Calculate the number of modes (standing
waves of different wavelength) with wavelengths be-
tween 2.0 cm and 2.1 cm that can exist on a string with
fixed ends that is 2 m long. (Hint: use n(
/2) � L,
where n � 1, 2, 3, 4, 5 . . . . Note that a specific value of
n defines a specific mode or standing wave with differ-
ent wavelength.) (b) Calculate, in analogy to our three-
dimensional calculation, the number of modes per unit

� hc

G �
1/2

� hG

c5 �
1/2

� hG

c3 �
1/2

wavelength per unit length, . (c) Show that in

general the number of modes per unit wavelength per
unit length for a string of length L is given by

Does this expression yield the same numerical answer as
found in (a)? (d) Under what conditions is it justified

to replace with ? Is the expression

n � 2L/
 a continuous function?

3.4 Light Quantization and 
the Photoelectric Effect

8. Calculate the energy of a photon whose frequency is
(a) 5 	 1014 Hz, (b) 10 GHz, (c) 30 MHz. Express your
answers in electron volts.

9. Determine the corresponding wavelengths for the pho-
tons described in Problem 8.

10. An FM radio transmitter has a power output of 100 kW
and operates at a frequency of 94 MHz. How many
photons per second does the transmitter emit?

11. The average power generated by the Sun has the value
3.74 	 1026 W. Assuming the average wavelength of the
Sun’s radiation to be 500 nm, find the number of pho-
tons emitted by the Sun in 1 s.

12. A sodium-vapor lamp has a power output of 10 W. Using
589.3 nm as the average wavelength of the source, calcu-
late the number of photons emitted per second.

13. The photocurrent of a photocell is cut off by a re-
tarding potential of 2.92 V for radiation of wavelength
250 nm. Find the work function for the material.

14. The work function for potassium is 2.24 eV. If potas-
sium metal is illuminated with light of wavelength
350 nm, find (a) the maximum kinetic energy of the
photoelectrons and (b) the cutoff wavelength.

15. Molybdenum has a work function of 4.2 eV. (a) Find
the cutoff wavelength and threshold frequency
for the photoelectric effect. (b) Calculate the stop-
ping potential if the incident light has a wavelength
of 200 nm.

16. When cesium metal is illuminated with light of wave-
length 300 nm, the photoelectrons emitted have a max-
imum kinetic energy of 2.23 eV. Find (a) the work
function of cesium and (b) the stopping potential if
the incident light has a wavelength of 400 nm.

17. Consider the metals lithium, beryllium, and mercury,
which have work functions of 2.3 eV, 3.9 eV, and 
4.5 eV, respectively. If light of wavelength 300 nm is
incident on each of these metals, determine (a) which
metals exhibit the photoelectric effect and (b) the
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90� to the incident beam, find (a) the Compton shift,
�
, and (b) the kinetic energy imparted to the recoil-
ing electron.

25. X-rays with an energy of 300 keV undergo Compton scat-
tering from a target. If the scattered rays are detected at
30� relative to the incident rays, find (a) the Compton
shift at this angle, (b) the energy of the scattered x-ray,
and (c) the energy of the recoiling electron.

26. X-rays with a wavelength of 0.040 nm undergo Comp-
ton scattering. (a) Find the wavelength of photons scat-
tered at angles of 30�, 60�, 90�, 120�, 150�, 180�, and
210�. (b) Find the energy of the scattered electrons cor-
responding to these scattered x-rays. (c) Which one of
the given scattering angles provides the electron with
the greatest energy?

27. Show that a photon cannot transfer all of its energy to
a free electron. (Hint: Note that energy and momen-
tum must be conserved.)

28. In the Compton scattering event illustrated in Figure
3.24, the scattered photon has an energy of 120 keV
and the recoiling electron has an energy of 40 keV.
Find (a) the wavelength of the incident photon,
(b) the angle � at which the photon is scattered, and
(c) the recoil angle � of the electron.

29. Gamma rays (high-energy photons) of energy 1.02 MeV
are scattered from electrons that are initially at rest. If
the scattering is symmetric, that is, if � � � in Figure 3.24,
find (a) the scattering angle � and (b) the energy of the
scattered photons.

30. If the maximum energy given to an electron during
Compton scattering is 30 keV, what is the wavelength of
the incident photon? (Hint: What is the scattering an-
gle for maximum energy transfer?)

31. A photon of initial energy 0.1 MeV undergoes Comp-
ton scattering at an angle of 60�. Find (a) the energy of
the scattered photon, (b) the recoil kinetic energy of
the electron, and (c) the recoil angle of the electron.

32. An excited iron (Fe) nucleus (mass 57 u) decays to
its ground state with the emission of a photon. The
energy available from this transition is 14.4 keV. (a) By
how much is the photon energy reduced from the full
14.4 keV as a result of having to share energy with the
recoiling atom? (b) What is the wavelength of the emit-
ted photon?

33. Show that the Compton formula

results when expressions for the electron energy (Equa-
tion 3.33) and momentum (Equation 3.34) are substi-
tuted into the relativistic energy expression,

Ee
2 � pe

2c2 � me
2c4


� � 
0 �
h

mec
 (1 � cos �)

0 4 6 8 10 12

Vs (volts)

f × 1014 (Hz)

2.0

3.0

1.0

Figure P3.21 Some of Millikan’s original data for sodium.

maximum kinetic energy for the photoelectron in
each case.

18. Light of wavelength 500 nm is incident on a metallic
surface. If the stopping potential for the photoelectric
effect is 0.45 V, find (a) the maximum energy of the
emitted electrons, (b) the work function, and (c) the
cutoff wavelength.

19. The active material in a photocell has a work function
of 2.00 eV. Under reverse-bias conditions (where the
polarity of the battery in Figure 3.14 is reversed), the
cutoff wavelength is found to be 350 nm. What is
the value of the bias voltage?

20. A light source of wavelength 
 illuminates a metal and
ejects photoelectrons with a maximum kinetic energy
of 1.00 eV. A second light source with half the wave-
length of the first ejects photoelectrons with a maxi-
mum kinetic energy of 4.00 eV. What is the work func-
tion of the metal?

21. Figure P3.21 shows the stopping potential versus inci-
dent photon frequency for the photoelectric effect for
sodium. Use these data points to find (a) the work
function, (b) the ratio h/e, and (c) the cutoff wave-
length. (d) Find the percent difference between your
answer to (b) and the accepted value. (Data taken from
R. A. Millikan, Phys. Rev., 7:362, 1916.)

22. Photons of wavelength 450 nm are incident on a metal.
The most energetic electrons ejected from the metal
are bent into a circular arc of radius 20 cm by a mag-
netic field whose strength is equal to 2.0 	 10�5 T.
What is the work function of the metal?

2.5 The Compton Effect and X-Rays

23. Calculate the energy and momentum of a photon of
wavelength 500 nm.

24. X-rays of wavelength 0.200 nm are scattered from a
block of carbon. If the scattered radiation is detected at
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104 CHAPTER 3 THE QUANTUM THEORY OF LIGHT

39. The determination of Avogadro’s number with x-rays. X-rays
from a molybdenum target (0.626 Å) are incident
on an NaCl crystal, which has the atomic arrange-
ment shown in Figure P3.39. If NaCl has a density of
2.17 g/cm3 and the n � 1 diffraction maximum from
planes separated by d is found at � � 6.41�, compute

A

B

d0
A

B

d0

d1

d2

Figure P3.38 Atomic planes in a cubic lattice.

d

d
d

Cl–

Na+

Figure P3.39 The primitive cell of NaCl.

34. Find the energy of an x-ray photon that can impart a
maximum energy of 50 keV to an electron by Compton
collision.

35. Compton used photons of wavelength 0.0711 nm.
(a) What is the energy of these photons? (b) What is
the wavelength of the photons scattered at an angle of
180� (backscattering case)? (c) What is the energy of
the backscattered photons? (d) What is the recoil en-
ergy of the electrons in this case?

36. A photon undergoing Compton scattering has an en-
ergy after scattering of 80 keV, and the electron recoils
with an energy of 25 keV. (a) Find the wavelength of
the incident photon. (b) Find the angle at which the
photon is scattered. (c) Find the angle at which the
electron recoils.

37. X-radiation from a molybdenum target (0.626 Å) is in-
cident on a crystal with adjacent atomic planes spaced
4.00 	 10�10 m apart. Find the three smallest angles at
which intensity maxima occur in the diffracted beam.

38. As a single crystal is rotated in an x-ray spectrometer (Fig.
3.22a), many parallel planes of atoms besides AA and BB
produce strong diffracted beams. Two such planes are
shown in Figure P3.38. (a) Determine geometrically the
interplanar spacings d1 and d2 in terms of d0. (b) Find
the angles (with respect to the surface plane AA) of the
n � 1, 2, and 3 intensity maxima from planes with spac-
ing d1. Let 
 � 0.626 Å and d0 � 4.00 Å. Note that a
given crystal structure (for example, cubic) has interpla-
nar spacings with characteristic ratios, which produce
characteristic diffraction patterns. In this way, measure-
ment of the angular position of diffracted x-rays may be
used to infer the crystal structure.

Avogadro’s number. (Hint: First determine d. Using
Figure P3.39, determine the number of NaCl mole-
cules per primitive cell and set the mass per unit vol-
ume of the primitive cell equal to the density.)

Additional Problems

42. Two light sources are used in a photoelectric experi-
ment to determine the work function for a particular
metal surface. When green light from a mercury lamp
(
 � 546.1 nm) is used, a retarding potential of 1.70 V
reduces the photocurrent to zero. (a) Based on this
measurement, what is the work function for this metal?
(b) What stopping potential would be observed when
using the yellow light from a helium discharge tube
(
 � 587.5 nm)?

43. In a Compton collision with an electron, a photon of
violet light (
 � 4000 Å) is backscattered through an
angle of 180�. (a) How much energy (eV) is transferred
to the electron in this collision? (b) Compare your
result with the energy this electron would acquire in a
photoelectric process with the same photon. (c) Could

3.7 Does Gravity Affect Light? (Optional)

40. In deriving expressions for the change in frequency of
a photon falling or rising in a gravitational field, we
have assumed a small change in frequency and a con-
stant photon mass of hf/c2. Suppose that a star is so
dense that �f is not small. (a) Show that f �, the photon
frequency at �, is related to f, the photon frequency at
the star’s surface, by

(b) Show that this expression reduces to Equation 3.39
for small Ms/R s. (Hint: The decrease in photon energy,
h df, as the photon moves dr away from the star is equal
to the work done against gravity, FG dr.)

41. If the Sun were to contract and become a black hole,
(a) what would its approximate radius be and (b) by
what factor would its density increase?

f � � fe�GMs/Rsc
2
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Plot Vs versus f, and from the graph obtain Planck’s
constant, the threshold frequency, and the work func-
tion for calcium.

46. A 0.500-nm x-ray photon is deflected through 134� in a
Compton scattering event. At what angle (with respect
to the incident beam) is the recoiling electron found?

47. An electron initially at rest recoils from a head-on
collision with a photon. Show that the kinetic energy
acquired by the electron is 2hf�/(1 � 2�), where � is
the ratio of the photon’s initial energy to the rest
energy of the electron.

48. In a Compton scattering experiment, an x-ray photon
scatters through an angle of 17.4� from a free electron
that is initially at rest. The electron recoils with a speed
of 2180 km/s. Calculate (a) the wavelength of the inci-
dent photon and (b) the angle through which the elec-
tron scatters.

� (nm) 253.6 313.2 365.0 404.7

Vs (V ) 1.95 0.98 0.50 0.14

violet light eject electrons from a metal by Compton
collision? Explain.

44. Ultraviolet light is incident normally on the surface
of a certain substance. The work function of the
electrons in this substance is 3.44 eV. The incident light
has an intensity of 0.055 W/m2. The electrons are
photoelectrically emitted with a maximum speed of
4.2 	 105 m/s. What is the maximum number of elec-
trons emitted from a square centimeter of the surface
per second? Pretend that none of the photons are re-
flected or heat the surface.

45. The following data are found for photoemission from
calcium:
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4
The Particle Nature
of Matter

4.1 The Atomic Nature of Matter

4.2 The Composition of Atoms
Millikan’s Value of the Elementary

Charge
Rutherford’s Model of the Atom

4.3 The Bohr Atom
Spectral Series
Bohr’s Quantum Model of the Atom

4.4 Bohr’s Correspondence Principle,
or Why Is Angular Momentum
Quantized?

4.5 Direct Confirmation of Atomic
Energy Levels: The Franck–Hertz
Experiment

Summary

Chapter Outline

In Chapter 3 we reviewed the evidence for the wave nature of electromagnetic
radiation and dealt with major experimental puzzles of the first quarter of the
20th century, which required a particle-like behavior of radiation for their so-
lution. In particular, we discussed Planck’s revolutionary idea of energy quanti-
zation of oscillators in the walls of a perfect radiator, Einstein’s extension of
energy quantization to light in the photoelectric effect, and Compton’s fur-
ther confirmation of the existence of the photon as a particle carrying mo-
mentum in x-ray scattering experiments.

In this chapter we shall examine the evidence for the particle nature of
matter. We only mention briefly the early atomists and concentrate instead on
the developments from 1800 onward that dealt with the composition of atoms.
In particular, we review the ingenious and fascinating experiments that led to
the discoveries of the electron, the proton, the nucleus, and the important
Rutherford–Bohr planetary model of the atom.

4.1 THE ATOMIC NATURE OF MATTER

To say that the world is made up of atoms is, today, commonplace. Because
the atomic picture of reality is often accepted without question, students
can miss out on the rich and fascinating story of how atoms were shown to
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4.1 THE ATOMIC NATURE OF MATTER 107

be real. The discovery and proof of the graininess of the world seem
especially fascinating for two reasons. First, because of the size of individual
atoms, measurements of atomic properties are usually indirect and
necessarily involve clever manipulations of large-scale measurements to
infer properties of microscopic particles. Second, the historical evolution
of ideas about atomicity shows clearly the real way in which science
progresses. This progression is often nonlinear and involves an interdepen-
dence of physics, chemistry, and mathematics, and the convergence of many
different lines of investigation.

There is also an exalted romance in honoring the great atomists who were
able to pick out organizing principles from the confusing barrage of market-
place ideas of their time: Democritus and Leucippus, who speculated that the
unchanging substratum of the world was atoms in motion; the debonair
French chemist Lavoisier and his wife (see Fig. 4.1), who established the
conservation of matter in many careful chemical experiments; Dalton, who
perceived the atomicity of nature in the law of multiple proportions of
compounds; Avogadro, who in a most obscure and little-appreciated paper,
postulated that all pure gases at the same temperature and pressure have the
same number of molecules per unit volume; and Maxwell,1 who showed with
his molecular-kinetic theory of gases how macroscopic quantities, such as
pressure and temperature, could be derived from averages over distributions

1Maxwell was a genius twice over. Either his theory of electricity and magnetism or his kinetic
theory of gases would qualify him for that rank.

Figure 4.1 Antoine Lavoisier (French chemist, 1743–1794) and Madame Lavoisier
who together established the principle of conservation of mass in chemical reactions.
In this painting they appear to have matters other than chemistry on the mind.
(© Bettmann/CORBIS)
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of molecular properties. The list could run on and on. We abbreviate it by
naming Jean Perrin and the ubiquitous Albert Einstein,2 who carried on very
important theoretical and experimental work concerning Brownian motion,
the zigzag movement of small suspended particles caused by molecular im-
pacts. Their work produced additional confirmation of the atomic-molecular
hypothesis and resulted in improved values of Avogadro’s number as late
as the early 1900s.

4.2 THE COMPOSITION OF ATOMS

We now turn our attention to answering the rather dangerous question, “If
matter is primarily composed of atoms, what are atoms composed of ?” Again,
we can point to some primary discoveries that showed that atoms are com-
posed of light, negatively charged particles orbiting a heavy, positively charged
nucleus. These were

• The discovery of the law of electrolysis in 1833 by Michael Faraday. Through
careful experimental work on electrolysis, Faraday showed that the mass
of an element liberated at an electrode is directly proportional to the
charge transferred and to the atomic weight of the liberated material but
is inversely proportional to the valence of the freed material.

• The identification of cathode rays as electrons and the measurement of the charge-to-
mass ratio (e/me) of these particles by Joseph John ( J. J.) Thomson in 1897. Thom-
son measured the properties of negative particles emitted from different
metals and found that the value of e/me was always the same. He thus came
to the conclusion that the electron is a constituent of all matter!

• The precise measurement of the electronic charge (e) by Robert Millikan in 1909.
By combining his result for (e) with Thomson’s e/me value, Millikan
showed unequivocally that particles about 1000 times less massive than
the hydrogen atom exist.

• The establishment of the nuclear model of the atom by Ernest Rutherford and
coworkers Hans Geiger and Ernest Marsden in 1913. By scattering fast-moving
� particles (charged nuclei of helium atoms emitted spontaneously in
radioactive decay processes) from metal foil targets, Rutherford estab-
lished that atoms consist of a compact positively charged nucleus (diame-
ter � 10�14 m) surrounded by a swarm of orbiting electrons (electron
cloud diameter � 10�10 m).

Let us describe these developments in more detail. We start with a brief
example of Faraday’s experiments, in particular the electrolysis of molten
common salt (NaCl). Faraday found that if 96,500 C of charge (1 faraday)
is passed through such a molten solution, 23.0 g of Na will deposit on the
cathode and 35.5 g of chlorine gas will bubble off the anode (Fig. 4.2).
In this case, exactly 1 gram atomic weight or mole of each element is released
because both are monovalent. For divalent and trivalent elements, exactly 
and of a mole, respectively, would be released. As expected, doubling the1

3

1
2
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2Much of Einstein’s earliest work was concerned with the molecular analysis of solutions and
determinations of molecular radii and Avogadro’s number. See A. Pais, “Subtle is the Lord . . .”
The Science and the Life of Albert Einstein, New York, Oxford University Press, 1982, Chapter 5.
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4.2 THE COMPOSITION OF ATOMS 109

quantity of charge passed doubles the mass of the neutral element liberated.
Faraday’s results may be given in equation form as

(4.1)

where m is the mass of the liberated substance in grams, q is the total charge
passed in coulombs, the molar mass is in grams, and the valence is dimensionless.

m �
(q)(molar mass)

(96,500 C)(valence)

Figure 4.2 Electrolysis of molten NaCl.

A
+ –

CathodeAnode

Molten NaCl

E

Na+
Cl –

e –

Na+Cl –

e –

e –

e –

mC1 �
(10.0 C/s)(3600 s)(35.5 g)

(96,500 C)(1)
� 13.2 g

�
(10.0 C/s)(3600 s)(137 g)

(96,500 C)(2)
� 25.6 g

mBa �
(q)(molar mass)

(96,500 C)(valence)

EXAMPLE 4.1 The Electrolysis of BaCl2

How many grams of barium and chlorine (cough!) will
you get if you pass a current of 10.0 A through molten
BaCl2 for 1 h? Barium has a molar weight of 137 g and a
valence of 2. Chlorine has a molar weight of 35.5 g and a
valence of 1.

Solution Using Equation 4.1 and q � It, where I is the
current and t is the time, we have

Faraday’s law of electrolysis

Faraday’s law of electrolysis is explained in terms of an atomic picture
shown in Figure 4.2. Charge passes through the molten solution in the form of
ions, which possess an excess or deficiency of one or more electrons. Under
the influence of the electric field produced by the battery, these ions move to
the anode or cathode, where they respectively lose or gain electrons and are
liberated as neutral atoms.

Although it was far from clear in 1833, Faraday’s law of electrolysis
confirmed three important parts of the atomic picture. First, it offered proof
that matter consists of molecules and that molecules consist of atoms. Second,
it showed that charge is quantized, because only integral numbers of charges
are transferred at the electrodes. Third, it showed that the subatomic parts of
atoms are positive and negative charges, although the mass and the size of the
charge of these subatomic particles remained unknown.
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The next major step explaining the composition of atoms was taken by
Joseph John ( J. J.) Thomson (see Figure 4.3). His discovery in 18973 that
the “rays” seen in low-pressure gas discharges were actually caused by nega-
tive particles (electrons) ended a debate dating back nearly 30 years: Were
cathode rays material particles or waves? Contrary to our rather blasé
present acceptance of the electron, many of Thomson’s distinguished con-
temporaries responded with utter disbelief to the idea that electrons were a
constituent of all matter. Much of the opposition to Thomson’s discovery
stemmed from the fact that it required the abandonment of the recently
established concept of the atom as an indivisible entity. Thomson’s discov-
ery of the electron disturbed this newly established order in atomic theory
and provoked startling new developments — Rutherford’s nuclear model
and the first satisfactory theory of the emission of light by atomic systems,
the Bohr model of the atom.

Figure 4.4 shows the original vacuum tube used by Thomson in his e/m e

experiments. Figure 4.5 shows the various parts of the Thomson apparatus
for easy reference. Electrons are accelerated from the cathode to the
anode, collimated by slits in the anodes, and then allowed to drift into a
region of crossed (perpendicular) electric and magnetic fields. The simul-
taneously applied E and B fields are first adjusted to produce an
undeflected beam. If the B field is then turned off, the E field alone
produces a measurable beam deflection on the phosphorescent screen.
From the size of the deflection and the measured values of E and B, the
charge-to-mass ratio, e/me, may be determined. The truly ingenious feature
of this experiment is the manner in which Thomson measured vx , the
horizontal velocity component of the beam. He did this by balancing the
magnetic and electric forces. In effect, he created a velocity selector, which
could select out of the beam those particles having a velocity within a
narrow range of values. This device was extensively used in the first quarter

110 CHAPTER 4 THE PARTICLE NATURE OF MATTER

3J. J. Thomson, Phil. Mag. 44:269, 1897.

Figure 4.3 J. J. Thomson. (AIP

Emilio Segrè Visual Archives/W. F.

Meggers Collection)

Figure 4.4 The original e/me tube used by J. J. Thomson. (After Figure 1.3, p. 7, R. L.

Sproull and W. A. Phillips, Modern Physics, 3rd ed., New York, John Wiley & Sons, 1980 ).
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4.2 THE COMPOSITION OF ATOMS 111

of the 20th century in charge-to-mass measurements (q/m) on many parti-
cles and in early mass spectrometers.

To gain a clearer picture of the Thomson experiment, let us analyze the
electron’s motion in his apparatus. Figure 4.6 shows the trajectory of a
beam of negative particles entering the E and B field regions with horizon-
tal velocity vx . Consider first only an E field between the plates. For this
case, vx remains constant throughout the motion because there is no force
acting in the x direction. The y component of velocity, v y , is constant every-
where except between the plates, where the electron experiences a constant
upward acceleration due to the electric force and follows a parabolic path.
To solve for the deflection angle, �, we must solve for vx and v y. Because vy

C A1 A2

C = Cathode
A1, A2 = Collimating anodes
S = Phosphorescent screen

V

�

S

D

F

E

B
+

+ +

d

Figure 4.5 A diagram of Thomson’s e/me tube (patterned after J. J. Thomson, Philo-

sophical Magazine (5)44:293, 1897). Electrons subjected to an electric field alone land at
D, while those subjected to a magnetic field alone land at E. When both electric and
magnetic fields are present and properly adjusted, the electrons experience no net de-
flection and land at F.

�
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Figure 4.6 Deflection of negative particles by an electric field.
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initially is zero, the electron leaves the plates with a y component of velocity
given by

vy � ayt (4.2)

Because ay � F/me � Ee/me � Ve/med, and t � �/vx, where d and � are the
dimensions of the region between the plates and V is the applied potential,
we obtain

(4.3)

From Figure 4.6, tan � � vy/vx , so using Equation 4.3 we obtain

(4.4)

Assuming small deflections, tan � � �, so we have

(4.5)

Note that �, the beam deflection, V, the voltage applied to the horizontal
deflecting plates, and d and �, the spacing and length, respectively, of
the horizontal deflecting plates can all be measured. Hence, one only
needs to measure vx to determine e/me. Thomson determined vx by apply-
ing a B field and adjusting its magnitude to just balance the deflection
of the still present E field. Equating the magnitudes of the electric and mag-
netic forces gives

qE � qvxB

or

(4.6)

Substituting Equation 4.6 into Equation 4.5 immediately yields a formula for
e/me entirely in terms of measurable quantities:

(4.7)

The currently accepted value of e/me is 1.758803 � 1011 C/kg. Although
Thomson’s original value was only about 1.0 � 1011 C/kg, prior experi-
ments on the electrolysis of hydrogen ions had given q/m values for hydro-
gen of about 108 C/kg. It was clear that Thomson had discovered a particle
with a mass about 1000 times smaller than the smallest atom! In his observa-
tions, Thomson noted that the e/me ratio was independent of the discharge
gas and the cathode metal. Furthermore, the particles emitted when electri-
cal discharges were passed through different gases were found to be the
same as those observed in the photoelectric effect. Based on these observa-
tions, Thomson concluded that these particles must be a universal
constituent of all matter. Humanity had achieved its first glimpse into the
subatomic world!

e

me
�

V�

B2�d

vx �
E

B
�

V

Bd

� �
V�

vx
2d � e

me
�

tan � �
V�

vx
2d � e

me
�

vy �
V�e

mevxd
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4.2 THE COMPOSITION OF ATOMS 113

Exercise 1 Find the horizontal speed vx for this case.

Answer 2.4 � 107 m/s � 0.080c, where c is the speed of light.

Millikan’s Value of the Elementary Charge

In 1897, Thomson had been unable to determine e or me separately. However,
about two years later this great British experimentalist had bracketed the ac-
cepted value of e (1.602 � 10�19 C) with values of 2.3 � 10�19 C for charges
emitted from zinc illuminated by ultraviolet light and 1.1 � 10�19 C for
charges produced by ionizing x rays and radium emissions. He was also able to
conclude that “e is the same in magnitude as the charge carried by the hydro-
gen atom in the electrolysis of solutions.” The technique used by Thomson
and his students to measure e is especially interesting because it represents the
first use of the cloud chamber technique in physics and also formed the start-
ing point for the famous Millikan oil-drop experiment. Charles Wilson, one of
Thomson’s students, had discovered that ions act as condensation centers for
water droplets when damp air is cooled by a rapid expansion. Thomson used
this idea to form charged clouds by using the apparatus shown in Figure 4.7a.
Here Q is the measured total charge of the cloud, W is the measured weight of
the cloud, and v is the rate of fall or terminal speed. Thomson assumed that
the cloud was composed of spherical droplets having a constant mass (no
evaporation) and that the magnitude of the drag force D on a single falling
droplet was given by Stokes’s law,

D � 6�a�v (4.8)

where a is the droplet radius, � is the viscosity of air, and v is the terminal
speed of the droplet. The following procedure was used to find a and w, the
weight of a single drop. Because v is constant, the droplet is in equilibrium un-
der the combined action of its weight, w, and the drag force, D, as shown in
Figure 4.7b. Hence, we require that w � D, or

w � 4
3�a3�g � D � 6�a�v

so

As the Earth’s magnetic field has a magnitude of about
0.5 � 10�4 T, we require a field 11 times as strong as the
Earth’s field.

� 5.5 � 10�4 N/(m/s)	C � 5.5 � 10�4 T

� [3.03 � 10�7 N2/(m/s)2 C2]1/2

� [3.03 � 10�7 V	kg/m2 C]1/2

B � � (200 V)(0.20 rad)

(0.050 m)(0.015 m)(1.76 � 1011 C/kg) �
1/2

EXAMPLE 4.2 Deflection of an Electron Beam
by E and B Fields

Using the accepted e/me value, calculate the magnetic
field required to produce a deflection of 0.20 rad in
Thomson’s experiment, assuming the values V � 200 V,
� � 5.0 cm, and d � 1.5 cm (the approximate values
used by Thomson). Compare this value of B to the
Earth’s magnetic field.

Solution Because e/me � V�/B2�d, solving for B gives

B � √ V�

�d(e/me)
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so

(4.9)

where � is the mass density of the droplet and g is the free-fall acceleration.
From the droplet radius and the known density we can find w , the weight.
Once w is obtained, the number of drops n (or number of ions) is given by
W/w and the electronic charge e is equal to Q/n, assuming that each droplet
carries only one electronic charge. Although ingenious, this method is inaccu-
rate because the theory applies only to a single particle and the particles are
all assumed to be identical in order to compare the theory to experiments per-
formed on a cloud.

The tremendous advance of Millikan was made possible by his clever idea of
making the experiment “fit” the theory. By observing single droplets he elimi-
nated the problems of assuming all particles to be identical and of making uncer-
tain measurements on a cloud. Millikan’s basic idea was to measure the rate of
fall of a single drop acted on by gravity and drag forces, apply Stokes’s law to de-
termine the drop radius and mass, then to measure its upward velocity in an op-
posing electric field, and hence determine the total charge on an individual
drop.4 A schematic of the Millikan apparatus is shown in Figure 4.8. Oil droplets
charged by an atomizer are allowed to pass through a small hole in the upper
plate of a parallel-plate capacitor. If these droplets are illuminated from the side,
they appear as brilliant stars against a dark background, and the rate of fall of

a � √ 9�v

2�g

114 CHAPTER 4 THE PARTICLE NATURE OF MATTER

4Actually, the idea of allowing charges to “fall” under a combined gravitational and electric field was
first applied to charged clouds of water vapor by H. A. Wilson in 1903. Millikan switched from water
to oil to avoid the problems of a changing droplet mass and radius caused by water evaporation.

Figure 4.7 (a) A diagram of Thomson’s apparatus for determining e. (b) A single
droplet in the cloud.

Radioactive source

Total charge

+ +
+

++ +

++
Damp air

Moveable
piston

D

a

+

(a) (b)

w

v
w

Q

v

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



4.2 THE COMPOSITION OF ATOMS 115

individual drops may be determined.5 If an electrostatic field of several thousand
volts per meter is applied to the capacitor plates, the drop may move slowly
upward, typically at rates of hundredths of a centimeter per second. Because the
rate of fall is comparable, a single droplet with constant mass and radius may be
followed for hours, alternately rising and falling, by simply turning the electric
field on and off. The atomicity of charge is shown directly by the observation that
after a long series of measurements of constant upward velocities one observes a
discontinuous change or jump to a different upward velocity (higher or lower).
This discontinuous change is caused by the attraction of an ion to the charged
droplet and a consequent change in droplet charge. Such changes become more
frequent when a source of ionizing radiation is placed between the plates.

The quantitative analysis of the Millikan experiment starts with Newton’s sec-
ond law applied to the oil drop, �Fy � may. Because the drag force D is large, a
constant velocity of fall is quickly achieved, and all measurements are made for
the case ay � 0, or �Fy � 0. If we assume that the magnitude of the drag force is
proportional to the speed (D � Cv), and refer to Figure 4.9, we find

Cv � mg � 0 (field off )

q1E � mg � C v
1 � 0 (field on)

Eliminating C from these expressions gives

(4.10)q1 �
mg

E � v � v 
1

v �

Millikan’s determination of

the electronic charge

5Perhaps the reason for the failure of “Millikan’s Shining Stars” as a poetic and romantic image
has something to do with the generations of physics students who have experienced hallucina-
tions, near blindness, migraine attacks, etc. while repeating his experiment!
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d
– 3e

v

+ –

View through
eyepiece

Battery

Figure 4.8 A schematic view of the Millikan oil-drop apparatus.
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When the droplet undergoes a discontinuous change in its upward speed from
v
1 to v
2 (m, g, E, and v remaining constant), its new charge q2 is given by

(4.11)

Dividing Equation 4.10 by Equation 4.11 gives

(4.12)
q1

q2
�

v � v 
1

v � v 
2

q2 �
mg

E � v � v 
2

v �

q1E

mg

E

C v1′

v1′

(b) Field on

v

w = mg

q1

D = C v

(a) Field off

Figure 4.9 The forces on a charged oil droplet in the Millikan experiment.

Robert Millikan (1868–1953). Although Millikan (left) studied Greek as an undergrad-
uate at Oberlin College, he fell in love with physics during his graduate training after
teaching school for a few years. He was the first student to receive a Ph.D. in physics
from Columbia University in 1895. Following postdoctoral work in Germany under
Planck and Nernst, Millikan obtained an academic appointment at the University of
Chicago in 1910, where he worked with Michelson. He received the Nobel prize in
1923 for his famous experimental determination of the electronic charge. He is also re-
membered for his careful experimental work to verify the theory of the photoelectric
effect deduced by Einstein. Following World War I, he transferred to the California In-
stitute of Technology, where he worked in atmospheric physics and remained until his
retirement. (Courtesy AIP Emìlio Segrè Visual Archives)
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4.2 THE COMPOSITION OF ATOMS 117

Equation 4.12 constitutes a remarkably direct and powerful proof of the quan-
tization of charge, because if successive speed ratios are ratios of whole num-
bers, successive charges on the drop must be multiples of the same elementary
charge! Millikan’s experimental measurements of speed ratios beautifully con-
firmed this quantization of charge to within about 1% accuracy.6

Up to this point our arguments have been quite general and have assumed
only that the drag force on the droplet is proportional to its velocity. To deter-
mine the actual value of the electronic charge, e, the mass of the drop must be
determined, as can be seen from Equation 4.10. As noted earlier, the droplet
radius a may be determined from the application of Stokes’s law. This value of
a, in turn, can be used to find m from the oil density, �. In this procedure, a is

(4.9)

and the mass of the droplet can be expressed as

(4.13)

An example of this technique for determining e using Stokes’s law is given in
Example 4.3.

m � � 	volume � � 4
3 �a3

a � √ 9�v

2�g

so

(b) If the oil density is 858 kg/m3 and the viscosity of
air is 1.83 � 10�5 kg/m 	 s, find the radius, volume, and
mass of the drop used in this experiment.

Solution The radius of the drop is

a � √ 9�v

2�g

� 0.713 � 8/11 or 7/10

q5

q6
�

v � v 
5

v � v 
6
�

0.0286 � 0.0132

0.0286 � 0.0300

q4

q5
�

v � v 
4

v � v 
5
�

0.0286 � 0.0465

0.0286 � 0.0132
� 1.80 �

9

5

q3

q4
�

v � v 
3

v � v 
4
�

0.0286 � 0.0214

0.0286 � 0.0465
� 0.666 �

2

3

q2

q3
�

v � v 
2

v � v 
3
�

0.0286 � 0.0387

0.0286 � 0.0214
� 1.35 �

4

3

q1

q2
�

v � v 
1

v � v 
2
�

0.0286 � 0.0130

0.0286 � 0.0387
� 0.618 �

3

5

EXAMPLE 4.3 Experimental Determination of e

In a Millikan experiment the distance of rise or fall of a
droplet is 0.600 cm and the average time of fall (field off)
is 21.0 s. The observed successive rise times are 46.0,
15.5, 28.1, 12.9, 45.3, and 20.0 s.

(a) Prove that charge is quantized.

Solution Charge is quantized if q1/q2, q2/q3, q3/q4, and
so on are ratios of small whole numbers. Because

we must find the speeds. Thus,

v 
6 � 0.600/20.0 � 0.0300 cm/s

v 
5 � 0.600/45.3 � 0.0132 cm/s

v 
4 � 0.600/12.9 � 0.0465 cm/s

v 
3 � 0.600/28.1 � 0.0214 cm/s

v 
2 � 0.600/15.5 � 0.0387 cm/s

v 
1 �
�y

�t
�

0.600 cm

46.0 s
� 0.0130 cm/s

v �
�y

�t
�

0.600 cm

21.0 s
� 0.0286 cm/s

q1

q2
�

v � v 
1

v � v 
2
, 

q2

q3
�

v � v
2

v � v
3
, etc.

6R. A. Millikan, Phys. Rev. 1911, p. 349.
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118 CHAPTER 4 THE PARTICLE NATURE OF MATTER

Stokes’s law, as Millikan was aware, is only approximately correct for tiny
spheres moving through a gas. The expression D � 6�a�v holds quite accu-
rately for a 0.1-cm radius sphere moving through a liquid or for any case
where the moving-object radius, a, is large compared with the mean free path,
L, of the surrounding molecules. (The mean free path is essentially the aver-
age distance between molecules.) In the Millikan experiment, however, a is of
the same order of magnitude as the mean free path of air at STP. Conse-
quently, Stokes’s law overestimates the drag force, because the droplet actually
moves for appreciable times through a frictionless “vacuum.” Millikan cor-
rected Stokes’s law by using a drag force whose magnitude is

(4.14)

and found that � � 0.81 gave the most consistent values of e for drops of dif-
ferent radii. Further corrections to Stokes’s law were made by Perrin and
Roux, and corrections to Stokes’s law and the correct value of e remained a
controversial issue for more than 20 years. The currently accepted value of the
magnitude of the electronic charge is

D �
6�a�v

1 � �(L/a)

Likewise, q2 � 13.6 � 10�19 C, q3 � 10.1 � 10�19 C, q4 �

15.2 � 10�19 C, q5 � 8.43 � 10�19 C, and q6 � 11.8 �

10�19 C.
To find the average value of e, we shall use the fact

that at the time of Millikan’s work e was known to be
between 1.5 � 10�19 C and 2.0 � 10�19 C. Dividing q1

through q6 by these values gives the range of integral
charges on each drop. Thus, the range of q1 is 8.39/1.5
� 5.6 electronic charges to 8.39/2.0 � 4.2 electronic
charges. Similarly, q2 has 9.1 to 5.8 charges, q3 has 6.7 to
5.1 charges, q4 has 10.1 to 7.6 charges, q5 has 5.6 to 4.2
charges, and q6 has 7.9 to 5.9 charges. Because there
must be an integral number of charges on each drop, we
pick an integer in the middle of the allowed range.
Therefore, in terms of the electronic charge e, we con-
clude that q1 � 5e, q2 � 8e, q3 � 6e, q4 � 9e, q5 � 5e, and
q6 � 7e . Using the preceding values, we find

e1 � q/5 � 1.68 � 10�19 C

e2 � q1/8 � 1.70 � 10�19 C

e3 � q2/6 � 1.68 � 10�19 C

e4 � q3/9 � 1.69 � 10�19 C

e5 � q4/5 � 1.69 � 10�19 C

e6 � q5/7 � 1.69 � 10�19 C

Taking the average of these values, we find the value of
the electronic charge to be e � 1.688 � 10�19 C for this
data set.

The volume is

The mass is

m � �V � (858 kg/m3)(1.95 � 10�17 m3)

� 1.67 � 10�14 kg

(c) Calculate the successive charges on the drop, and
from these results determine the electronic charge. As-
sume a plate separation of 1.60 cm and a potential differ-
ence of 4550 V for the parallel-plate capacitor.

Solution To calculate the charge on each drop using
Equation 4.10, we must first calculate the magnitude of
the electric field, E . Thus,

Now we can find the charges on the drop:

� 8.39 � 10�19 C

�
(1.67 � 10�14 kg)(9.81 m/s2)

(2.84 � 105 V/m) � 0.0286 � 0.0130

0.0286 �

q1 � � mg

E �� v � v 
1

v �

E �
V

d
�

4550 V

0.0160 m
� 2.84 � 105 V/m

V � 4
3 �a3 � 1.95 � 10�17 m3

� 1.67 � 10�6 m or 1.67 m

� [2.80 � 10�12 m2]1/2

� � 9(1.83 � 10�5 kg/m	s)(0.0286 � 10�2 m/s)

2(858 kg/m3)(9.81 m/s2) �
1/2
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4.2 THE COMPOSITION OF ATOMS 119

Rutherford’s Model of the Atom

The early years of the 20th century were generally a period of incredible
ferment and change in physics, including the advent of relativity, quantum
theory, and atomic and subatomic physics. Hardly had the reality of pristine,
indivisible atoms been established (“They are the only material things which
still remain in the precise condition in which they first began to exist” wrote
Maxwell in 1872), when Thomson announced their divisibility in 1899: “Elec-
trification essentially involves the splitting of the atom, a part of the mass of
the atom getting free and becoming detached from the original atom.” Fur-
ther daring assaults on the indivisibility of the chemical atom came from the
experimental work on radioactivity by Marie Curie (1867–1934, a Polish physi-
cist–chemist), and by Ernest Rutherford (1871–1937, New Zealand physicist),
and Frederick Soddy, a British physicist, who explained radioactive transforma-
tions of elements in terms of the emission of subatomic particles. The porosity
of atoms was also known before 1910 from Lenard’s experiments, which
showed that electrons are easily transmitted through thin metal and mica foils.
All these discoveries, plus the suspicion that the intricate atomic spectral lines
(light emitted at a discrete set of frequencies characteristic of each element)
must be produced by charge rattling around inside the atom, led to various
proposals concerning the internal structure of atoms. The most famous of
these early atomic models was the Thomson “plum-pudding” model (1898).
This proposal viewed the atom as a homogeneous sphere of uniformly distrib-
uted mass and positive charge in which were embedded, like raisins in a plum
pudding, negatively charged electrons, which just balanced the positive charge
to produce electrically neutral atoms. Although such models possessed electri-
cal stability against collapse or explosion of the atom, they failed to explain
the rich line spectra of even the simplest atom, hydrogen.

The key to understanding the mysterious line spectra and the correct
model of the atom were both furnished by Ernest Rutherford and his stu-
dents Hans Geiger (1882–1945, German physicist) and Ernest Marsden
(1899–1970, British physicist) through a series of experiments conducted
from 1909 to 1914. Noticing that a beam of collimated � particles broadened
on passing through a metal foil yet easily penetrated the thin film of metal,
they embarked on experiments to probe the distribution of mass within the
atom by observing in detail the scattering of � particles from foils. These
experiments ultimately led Rutherford to the discovery that most of the
atomic mass and all of the positive charge lie in a minute central nucleus of
the atom. The accidental chain of events and the clever capitalization on the
accidental discoveries leading up to Rutherford’s monumental nuclear theory
of the atom are nowhere better described than in Rutherford’s own essay
summarizing the development of the theory of atomic structure:

. . . I would like to use this example to show how you often stumble upon facts by
accident. In the early days I had observed the scattering of �-particles, and
Dr. Geiger in my laboratory had examined it in detail. He found, in thin pieces of
heavy metal, that the scattering was usually small, of the order of one degree. One

e � 1.60217733 � 10�19 C Electronic charge

Rutherford’s nuclear model
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day Geiger came to me and said, “Don’t you think that young Marsden, whom I am
training in radioactive methods, ought to begin a small research?” Now I had
thought that, too, so I said, “Why not let him see if any �-particles can be scattered
through a large angle?” I may tell you in confidence that I did not believe that they
would be, since we knew that the �-particle was a very fast, massive particle, with a
great deal of energy, and you could show that if the scattering was due to the accu-
mulated effect of a number of small scatterings the chance of an �-particle’s being
scattered backwards was very small. Then I remember two or three days later Geiger
coming to me in great excitement and saying, “We have been able to get some of
the �-particles coming backwards. . . .” It was quite the most incredible event that
has ever happened to me in my life. It was almost as incredible as if you fired a 15-
inch shell at a piece of tissue paper and it came back and hit you. On consideration,
I realized that this scattering backwards must be the result of a single collision, and
when I made calculations I saw that it was impossible to get anything of that order of
magnitude unless you took a system in which the greater part of the mass of the
atom was concentrated in a minute nucleus. It was then that I had the idea of an
atom with a minute massive center carrying a charge. I worked out mathematically
what laws the scattering should obey, and I found that the number of particles scat-
tered through a given angle should be proportional to the thickness of the scatter-
ing foil, the square of the nuclear charge, and inversely proportional to the fourth
power of the velocity. These deductions were later verified by Geiger and Marsden
in a series of beautiful experiments.7

The essential experimental features of Rutherford’s apparatus are shown in
Figure 4.10. A finely collimated beam of � particles emitted with speeds of
about 2 � 107 m/s struck a thin gold foil several thousand atomic layers thick.
Most of the �’s passed straight through the foil along the line DD
 (again
showing the porosity of the atom), but some were scattered at an angle �. The
number of scattered �’s at each angle per unit detector area and per unit time

120 CHAPTER 4 THE PARTICLE NATURE OF MATTER

7An essay on “The Development of the Theory of Atomic Structure,” 1936, Lord Rutherford, pub-
lished in Background to Modern Science, New York, Macmillan Company, 1940.
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Figure 4.10 A schematic view of Rutherford’s � scattering apparatus.
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4.2 THE COMPOSITION OF ATOMS 121

was measured by counting the scintillations produced by scattered �’s on the
ZnS screen. These scintillations were counted with the aid of the microscope.
The distance from the point where � particles strike the foil to the zinc sulfide
screen is denoted R in Figure 4.10.

Rutherford’s basic insight was that because the mass and kinetic energy of
the �’s are large, even a nearly head-on collision with a particle with the mass
of a hydrogen atom would deflect the � particle only slightly and knock the
hydrogen atom straight ahead. Multiple scattering of the � particles in the
foil accounted for the small broadening (about 1�) originally observed by
Rutherford, but it could not account for the occasional large-scale deflections.
On the other hand,8 if all of the positive charge in an atom is assumed to be
concentrated at a single central point and not spread out throughout the
atom, the electric repulsion experienced by an incident � particle in a head-
on collision becomes much greater. Because the charge and mass of the gold
atom are concentrated at the nucleus, large deflections of the � particle could
be experienced in a single collision with the massive nucleus. This situation is
shown in Figure 4.11.
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and

(b) Calculate the percent change in velocity for an �
particle colliding with a proton.

v 
� � � m� � mp

m� � mp
� v�

EXAMPLE 4.4 Collision of an � Particle
with a Proton

(a) An � particle of mass m� and speed v� strikes a sta-
tionary proton with mass mp. If the collision is elastic and
head-on, show that the speed of the proton after the col-
lision, vp, and the speed of the � particle after the colli-
sion, v
�, are given by

vp � � 2m�

m� � mp
� v�

8A dangerous expression that never fails to bring to mind President Truman’s infamous request:
“If you know of any one-handed economists, bring them to me.”

Figure 4.11 Scattering of � particles by a dense, positively charged nucleus.
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Exercise 2 An � particle with initial velocity v� undergoes an elastic, head-on colli-
sion with an electron initially at rest. Using the fact that an electron’s mass is about
1/2000 of the proton mass, calculate the final velocities of the electron and � particle
and the percent change in velocity of the � particle.

Answers ve � 1.998v�, v 
� � 0.9998v�, and the percent change in v� � �0.02%.

In his analysis, Rutherford assumed that large-angle scattering is produced
by a single nuclear collision and that the repulsive force between an � particle
and a nucleus separated by a distance r is given by Coulomb’s law,

(4.15)

where �2e is the charge on the �, �Ze is the nuclear charge, and k is the
Coulomb constant. With this assumption, Rutherford was able to show that
the number of � particles entering the detector per unit time, �n, at an angle
� is given by

(4.16)

Here R and � are defined in Figure 4.10, N is the number of nuclei per unit
area of the foil (and is thus proportional to the foil thickness), n is the total
number of � particles incident on the target per unit time, and A is the area of
the detector. The dependence of scattering on foil thickness, � particle speed,
and scattering angle was confirmed experimentally by Geiger and Marsden.9

�n �
k2Z2e4NnA

4R2(1
2 m�v�

2)2sin4(�/2)

F � k
(2e)(Ze)

r 2
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9H. Geiger and E. Marsden, “Deflection of �-Particles through Large Angles,” Phil. Mag. (6)25:605,
1913.

and

(4)

Because the proton must move when struck by the heavy
� particle, Equation 4 is the only physically reasonable so-
lution for vp. The solution for v 
� follows immediately
from the substitution of Equation 4 into Equation 2.

Solution (b) Because an � particle consists of two pro-
tons and two neutrons, m� � 4mp. Thus,

The percent change in velocity of the � particle is

% change in v� � � v 
� � v�

v�
� � 100% � �40%

v
� � � m� � mp

m� � mp
� v� � � 3mp

5mp
� v� � 0.60v�

vp � � 2m�

m� � mp
� v� � � 8mp

5mp
� v� � 1.60v�

vp � � 2m�

m� � mp
� v�

Solution (a) Because the collision is elastic, the total
kinetic energy is conserved; therefore,

(1)

Conservation of momentum for this one-dimensional
collision yields

m�v� � mpvp � m�v
� (2)

Solving Equation 1 for (m�v 
�)2 yields

(m�v 
�)2 � m�(m�v�
2 � mpvp

2) (3)

Solving Equation 2 for (m�v 
�)2 and equating this to
Equation 3 gives

(m�v�)2 � (mpvp)2 � 2m�mpv�vp � (m�v�)2 � m�mpvp
2

or

(mpvp)(mpvp � 2m�v� � m�vp) � 0

The solutions to this equation are

vp � 0

1
2 m�v�

2 � 1
2 m�v
�

2 � 1
2 mpvp

2
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4.2 THE COMPOSITION OF ATOMS 123

Because the values of atomic number (Z ) were uncertain at the time, the
scattering dependence on Z could not be directly checked. Turning the argu-
ment around, however, and assuming the correctness of Equation 4.16, one
could find the value of Z that gave the best fit of this equation to the experi-
mental data points. An illustration of this sensitive technique for determining
Z for a silver foil is shown in Figure 4.12. Note that changing Z produces only a
vertical shift in the graph and not a change in shape.

Much of the remarkable experimental work of the ingenious Lord
Rutherford can be credited to an ability to use his current discoveries to probe
even deeper into nature’s mysteries. For example, he turned his studies of the
transmission of radioactive particles through matter into a sensitive and deli-
cate technique for probing the atom. Another example was his clever tech-
nique for measuring the size of the nucleus. Realizing that Equation 4.15
would hold only if the � particle did not have enough energy to deform or
penetrate the scattering nucleus, he systematically looked for the threshold �
energy at which departures from his scattering equation occurred, the idea
being that at this threshold energy the � should be just penetrating the
nuclear radius at its distance of closest approach. Following Rutherford, we set
the kinetic energy of the � at infinity equal to the potential energy of the sys-
tem (� � target nucleus) at the distance of closest approach, dmin, or

(4.17)

Equation 4.17 may then be solved for d min to determine the distance of closest
approach. In the case when the kinetic energy of the � is so high that Equa-
tion 4.16 begins to fail, this distance of closest approach is approximately
equal to the nuclear radius.

Rutherford was confronted with the experimental dilemma that no fail-
ures of Equations 4.15 or 4.16 were found for heavy metal foils with the most

1
2 m�v�

2 � k
(Ze)(2e)

dmin

7

6

5

4

3

2

1
0 −

2
ππ φ

=  theory for Z  =  47

=  theory for Z  =  60

=  experimental points
for silver

Z  =  60

Z  =  47

log10 ∆n

Figure 4.12 Comparison of theory and experiment for � particle scattering from a
silver foil. (From E. Rutherford, J. Chadwick, and J. Ellis, Radiations from Radioactive Sub-
stances, Cambridge, Cambridge University Press, 1951.)
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energetic naturally occurring � particles available to him (� 8 MeV). Showing
characteristic economy, instead of embarking on a particle accelerator pro-
gram, he made use of metals like aluminum with lower Z ’s and hence lower
Coulomb barriers to � penetration.10 Thus, in 1919, he was able to determine
the nuclear radius of aluminum to be about 5 � 10�15 m.

124 CHAPTER 4 THE PARTICLE NATURE OF MATTER

which we may take to be the radius of the aluminum nu-
cleus. At this point, the kinetic energy of the system is
zero and the total energy is just the potential energy of
the system. Applying conservation of energy gives

or

� 4.9 � 10�15 m

�
2(13)(1.60 � 10�19 C)2 (8.99 � 109 N	m2/C2)

(7.7 � 106 eV)(1.60 � 10�19 J/eV)

dmin � k
2Ze2

K�

K� � potential energy at closest approach �
k(Ze)(2e)

dmin

EXAMPLE 4.5 Estimate of the Radius of the
Aluminum Nucleus

In 1919, Rutherford was able to show a breakdown in
Equation 4.16 for 7.7-MeV � particles scattered at large
angles from aluminum nuclei (Z � 13). Estimate the
radius of the aluminum nucleus from these facts.

Solution Rutherford’s scattering formula is no longer
valid when � particles begin to penetrate or touch the
nucleus. When the � particle is very far from the alu-
minum nucleus, its kinetic energy is 7.7 MeV. This is also
the total energy of the system (� particle plus aluminum
nucleus), because the aluminum nucleus is at rest and
the potential energy is zero for an infinite separation of
particles. When the � particle is at the point of closest
approach to the aluminum nucleus in a head-on colli-
sion, its kinetic energy is zero and it is at a distance dmin,

10Rutherford was famous for the remark to his graduate students, “There is no money for appara-
tus—we shall have to use our heads” (A. Keller, Infancy of Atomic Physics: Hercules in His Cradle,
Oxford, Clarendon Press, 1983, p. 215).

The overall success of the Rutherford nuclear model was striking.
Rutherford and his students had shown that all the mass and positive charge
Ze were concentrated in a minute nucleus of the atom of diameter 10�14 m
and that Z electrons must circle the nucleus in some way. As with all great
discoveries, however, the idea of the nuclear atom raised a swarm of questions
at the next deeper level: (1) If there are only Z protons in the nucleus,
what composes the other half of the nuclear mass? (2) What provides the
cohesive force to keep many protons confined in the incredibly small distance
of 10�14 m? (3) How do the electrons move around the nucleus to form a sta-
ble atom, and how does their motion account for the observed spectral lines?

Rutherford had no precise answer to the first question. He speculated that
the difference between the mass of Z protons and the total nuclear mass could
be accounted for by additional groupings of neutral particles, each consisting
of a bound electron–proton pair. This conjecture seemed especially satisfying
because it built the atom out of the most fundamental particles then known to
exist.

In answer to the second question, Rutherford cautiously held that electrical
forces provided the cement to hold the nucleus together. He wrote, “The
nucleus, though of minute dimensions, is in itself a very complex system
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4.3 THE BOHR ATOM 125

consisting of positively and negatively charged bodies bound closely together
by intense electrical forces.” In fact, it was not until 1921 that it was clearly rec-
ognized that the Coulomb force did not hold the nucleus together and that a
completely new and very strong type of force binds protons together. Interest-
ingly it was James Chadwick, the discoverer of the neutron, who first recog-
nized that a new force of much more than electric intensity was at work in the
nucleus.11 Perhaps Rutherford’s magnificent achievement of explaining �

scattering with the Coulomb law blinded him to the possibility that this was
not the ultimate law at work within the nucleus.

The answer to the third question was not to be given by Rutherford. That
was to be the masterwork of Niels Bohr (Fig. 4.13). Even so, with characteristic
insight, Rutherford mentioned a planetary model of the atom or, more
precisely, that negative charges revolved around the dense positive core as the
planets revolved around the Sun.12

4.3 THE BOHR ATOM

Bohr’s original quantum theory of spectra was one of the most revolutionary, I sup-
pose, that was ever given to science, and I do not know of any theory that has been
more successful . . . . I consider the work of Bohr one of the greatest triumphs of
the human mind. (Lord Rutherford)

Then it is one of the greatest discoveries. (Albert Einstein, on hearing of Bohr’s theo-
retical calculation of the Rydberg constants for hydrogen and singly ionized helium)

11J. Chadwick and E. S. Biele, Phil. Mag. 42:923, 1921.
12Thomson and Hantaro Nagaoka, a Japanese physicist, had worked even earlier with planetary

atomic models in 1904.

Figure 4.13 Bohr (on the right) and Rutherford (on the left) were literal as well as
intellectual supports for each other. This photograph of Bohr and Rutherford sitting
back to back was taken at a rowing regatta in June, 1923 at Cambridge University. (AIP

Niels Bohr Library, and Physics Today October 1985, an issue devoted to Bohr.)
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Spectral Series

Before looking in detail at the first successful theory of atomic dynamics,
we review the experimental work on line spectra that served as the impetus
for and the clear confirmation of the first quantum theory of the atom. As
already pointed out in Chapter 3, glowing solids and liquids (and even gases
at the high densities found in stars) emit a continuous distribution of
wavelengths. This distribution exhibits a common shape for the intensity-
versus-wavelength curve, and the peak in this curve shifts toward shorter
wavelengths with increasing temperature. This universal “blackbody” curve is
shown in Figure 4.14.

In sharp contrast to this continuous spectrum is the discrete line spectrum
emitted by a low-pressure gas subject to an electric discharge. When the light
from such a low-pressure gas discharge is examined with a spectroscope, it is
found to consist of a few bright lines of pure color on a dark background. This
contrasts sharply with the continuous rainbow of colors seen when a glowing
solid is viewed through a spectroscope. Furthermore, as can be seen from
Figure 4.15, the wavelengths contained in a given line spectrum are character-
istic of the particular element emitting the light. (Also see the inside front
cover.) The simplest line spectrum is observed for atomic hydrogen, and we
shall describe this spectrum in detail. Other atoms, such as mercury, helium,
and neon, give completely different line spectra. Because no two elements
emit the same line spectrum, this phenomenon represents a practical and
sensitive technique for identifying the elements present in unknown samples.
In fact, by 1860 spectroscopy had advanced so far in the hands of Gustav
Robert Kirchhoff (Fig. 4.16) and Robert Wilhelm von Bunsen (Fig. 4.17) at
the University of Heidelberg that they were able to discover two new elements,
rubidium and cesium, by observing new sequences of spectral lines in mineral
samples. Improvements in instruments and techniques resulted in an
enormous growth in spectral analysis in Europe from 1860 to 1900. Even the
European public imagination was captured by spectroscopy when spectro-
scopic techniques showed that “celestial” meteorites consisted only of known
Earth elements after all.

126 CHAPTER 4 THE PARTICLE NATURE OF MATTER
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Figure 4.14 Intensity versus wavelength for a body heated to 6000 K.
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4.3 THE BOHR ATOM 127

Kirchhoff’s immense contribution to spectroscopy is also shown by another
advance he made in 1859—the foundation of absorption spectroscopy and
the explanation of Fraunhofer’s dark D-lines in the solar spectrum.13 In 1814,
Joseph Fraunhofer had passed the continuous spectrum from the Sun
through a narrow slit and then through a prism. He observed the surprising
result of nearly 1000 fine dark lines, or gaps, in the continuous rainbow
spectrum of the Sun, and he assigned the letters A, B, C, D . . . to the most

Hydrogen

Helium

Mercury

Visible

400500600700

Wavelength (nm)

Figure 4.15 Emission line spectra of a few representative elements.

Figure 4.16 Gustav Robert
Kirchhoff (1824–1887). Yes,
this is the same fellow who
brought us the circuit loop the-
orem and established the con-
nection between the absorption
and emission of an object (see
Section 3.2). (AIP Emilio Segrè

Visual Archives, W. F. Meggers 

Collection)

Figure 4.17 Robert Wilhelm von Bunsen (1811–1899). Bunsen is pictured with 
his most famous invention, the gas laboratory burner named for him. The great-
est achievement of this fine chemist, however, was the development, with Kirchhoff, of
the powerful analytical method of spectral analysis. (AIP Emilio Segrè Visual Archives, 

E. Scott Barr Collection)

13G. Kirchhoff, Monatsber., Berlin, 1859, p. 662.
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prominent dark lines. These lines and many more are shown in Figure 4.18.
Kirchhoff correctly deduced that the mysterious dark lines are produced by a
cloud of vaporized atoms in the Sun’s outer, cooler layers, which absorb at dis-
crete frequencies the intense continuous radiation from the center of the Sun.
Further, he showed that the Fraunhofer D-lines were produced by vaporized
sodium and that they had the same wavelengths as the strong yellow lines in
the emission spectrum of sodium. Kirchhoff also correctly deduced that all of
Fraunhofer’s dark lines should be attributable to absorption by different ele-
ments present in the Sun. In a single stroke he opened the way to determining
the elemental composition of stars trillions of miles from the Earth. His ele-
gant yet simple method for demonstrating the presence of sodium vapor in
the solar atmosphere is shown in schematic form in Figure 4.19.

Today, absorption spectroscopy is certainly as important as emission spec-
troscopy for qualitative and quantitative analyses of elements and molecular
groups. In general, one obtains an absorption spectrum by passing light from
a continuous source [whether in the ultraviolet (uv), visible (vis), or infrared
(IR) regions] through a gas of the element being analyzed. The absorption
spectrum consists of a series of dark lines superimposed on the otherwise con-
tinuous spectrum emitted by the source. Each line in the absorption spectrum
of an element coincides with a line in the emission spectrum of that same
element; however, not all of the emission lines are present in an absorption
spectrum. The differences between emission and absorption spectra are com-
plicated in general and depend on the temperature of the absorbing vapor.

128 CHAPTER 4 THE PARTICLE NATURE OF MATTER
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4.3 THE BOHR ATOM 129

An interesting use of the coincidence of absorption and emission lines is
made in the atomic absorption spectrometer. This device is routinely used to
measure parts per million (ppm) of metals in unknowns. For example, if sodium
is to be measured, a sodium lamp emitting a line spectrum is chosen as the light
source. The unknown is heated in a hot flame (usually oxyacetylene) to vaporize
the sample, to break the chemical bonds of sodium to other elements, and to
produce a gas of elemental sodium. The spectrometer is then tuned to a wave-
length for which both absorption and emission lines exist (say, one of the D-lines
at 588.99 or 589.59 nm), and the amount of darkening or decrease in intensity is
measured with a sensitive photomultiplier. The decrease in intensity is a measure
of the sodium concentration. With proper calibration, concentrations of 0.1 ppm
can be measured with this extremely selective technique. Atomic absorption
spectroscopy has been a useful technique in analyzing heavy-metal contamina-
tion of the food chain. For example, the first determinations of high levels of
mercury in tuna fish were made with atomic absorption.

From 1860 to 1885 spectroscopic measurements accumulated voluminously,
burying frenzied theoreticians under a mountain of data. Accurate measure-
ments of four visible emission lines of hydrogen had recently been made by
Anders Ångström, a Swedish physicist, when in 1885 a Swiss schoolteacher,
Johann Jakob Balmer, published a paper with the unpretentious title “Notice
Concerning the Spectral Lines of Hydrogen.” By trial and error Balmer had
found a formula that correctly predicted the wavelengths of Ångström’s four
visible lines: H� (red), H� (green), H� (blue), and H� (violet). Figure 4.20
shows these and other lines in the emission spectrum of hydrogen. Balmer
gave his formula in the form

(4.18)

where � is the wavelength emitted in cm and C 2 � 3645.6 � 10�8 cm, a
constant called the convergence limit because it gave the wavelength of

�(cm) � C2 � n2

n2 � 22 �  n � 3, 4, 5, 	 	 	

Figure 4.20 The Balmer se-
ries of spectral lines for hydro-
gen (emission spectrum).

Figure 4.19 Kirchhoff’s experiment explaining the Fraunhofer D-lines. The D-lines
darken noticeably when sodium vapor is introduced between the slit and the prism.
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the line with the largest n value (n � �). Also, note that n � 3, 4, 5, . . . ,
where H� has n � 3, H� has n � 4, and so forth. Although only four lines
were known to Balmer when he started his paper, by the time he had fin-
ished, ten more lines in the violet and ultraviolet had been measured. Much
to his delight and satisfaction, these lines agreed with his empirical formula
to within 0.1%! Encouraged by his success and because he was a bit of a
numerologist, Balmer suggested that other hydrogen series might exist
of the form

(4.19)

(4.20)

As we now know, his speculations were correct, and these series do indeed
exist. In today’s notation, all of these series are given by a single formula:

(4.21)

where n f and n i are integers. The Rydberg constant, R , is the same for all series
and has the value

R � 1.0973732 � 107 m�1 (4.22)

Note that for a given series, n f has a constant value. Furthermore, for a given
series n i � n f � 1, n f � 2, . . . . Table 4.1 lists the name of each series (named
after their discoverers) and the integers that define the series.

Bohr’s Quantum Model of the Atom

In April of 1913, a young Danish physicist, Niels Bohr (who had recently been
working with both Thomson and Rutherford), published a three-part paper
that shook the world of physics to its foundations.14 Not only did this young
rebel give the first successful theory of atomic line spectra but in the process
he overthrew some of the most cherished principles of the reigning king of
electromagnetism, James Clerk Maxwell.

1

�
� R � 1

n2
f

�
1

n2
i
�

� � C4 � n2

n2 � 42 �  n � 5, 6, 7, 	 	 	

� � C3 � n2

n2 � 32 �  n � 4, 5, 6, 	 	 	
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Table 4.1 Some Spectral Series for the

Hydrogen Atom

Lyman Series (uv) n f � 1 n i � 2, 3, 4, . . .
Balmer Series (vis–uv) n f � 2 n i � 3, 4, 5, . . .
Paschen Series (IR) n f � 3 n i � 4, 5, 6, . . .
Brackett Series IR) n f � 4 n i � 5, 6, 7, . . .
Pfund Series (IR) n f � 5 n i � 6, 7, 8, . . .

14N. Bohr, “On the Constitution of Atoms and Molecules,” Phil. Mag. 26:1, 1913. Also, N. Bohr,
Nature 92:231, 1913.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



4.3 THE BOHR ATOM 131

From our point of view, Bohr’s model may seem only a reasonable next
step, but it appeared astounding, confounding, and incredibly bold to
his contemporaries. As mentioned earlier, both Thomson and Rutherford
realized that the electrons must revolve about the nucleus in order to avoid
falling into it. They, along with Bohr, realized that according to Maxwell’s
theory, accelerated charges revolving with orbital frequency f should radiate
light waves of frequency f. Unfortunately, pushed to its logical conclusion,
this classical model leads to disaster. As the electron radiates energy, its
orbit radius steadily decreases and its frequency of revolution increases.
This leads to an ever-increasing frequency of emitted radiation and an
ultimate catastrophic collapse of the atom as the electron plunges into
the nucleus (Fig. 4.21).

These deductions of electrons falling into the nucleus and a continuous
emission spectrum from elements were boldly circumvented by Bohr. He sim-
ply postulated that classical radiation theory, which had been confirmed by
Hertz’s detection of radio waves using large circuits, did not hold for atomic-
sized systems. Moreover, he drew on the work of Planck and Einstein as
sources of the correct theory of atomic systems. He overcame the problem of a
classical electron that continually lost energy by applying Planck’s ideas of
quantized energy levels to orbiting atomic electrons. Thus he postulated that
electrons in atoms are generally confined to certain stable, nonradiating
energy levels and orbits known as stationary states.15 He applied Einstein’s
concept of the photon to arrive at an expression for the frequency of the light
emitted when the electron jumps from one stationary state to another. Thus, if
�E is the separation of two possible electronic stationary states, then �E � hf,
where h is Planck’s constant and f is the frequency of the emitted light regard-
less of the frequency of the electron’s orbital motion. In this way, by combin-
ing certain principles of classical mechanics with new quantum principles of
light emission, Bohr arrived at a theory of the atom that agreed remarkably
with experiment.

15Stationary state was a term used by Bohr to mean a state of an atom that was stable, nonradiating,
and had an energy constant with time. It does not mean “fixed in position” or “without motion,”
since electrons in stationary orbits move with high speed. 

“plop”

e –

+ Ze

f  cycles/s

Radiated light of
ever shorter λ

Figure 4.21 The classical model of the nuclear atom.

Stationary states
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Now that we have looked at the general principles of Bohr’s model of hy-
drogen and at the detailed experimental spectra already discovered by 1913,
let us examine Bohr’s quantum theory in detail. The basic ideas of the Bohr
theory as it applies to an atom of hydrogen are as follows:

• The electron moves in circular orbits about the proton under the
influence of the Coulomb force of attraction, as in Figure 4.22. So far
nothing new!

• Only certain orbits are stable. These stable orbits are ones in which the
electron does not radiate. Hence the energy is fixed or stationary in time,
and ordinary classical mechanics may be used to describe the electron’s
motion in these stable orbits.

• Radiation is emitted by the atom when the electron “jumps” from a more
energetic initial stationary state to a less energetic lower state. This
“jump” cannot be visualized or treated classically. In particular, the fre-
quency f of the photon emitted in the jump is independent of the
frequency of the electron’s orbital motion. Instead, the frequency of
the light emitted is related to the change in the atom’s energy and is
given by the Planck–Einstein formula

(4.23)

where E i is the energy of the initial state, E f is the energy of the final
state, and E i � E f .

• The size of the allowed electron orbits is determined by an addi-
tional quantum condition imposed on the electron’s orbital angular
momentum. Namely, the allowed orbits are those for which the electron’s
orbital angular momentum about the nucleus is an integral multiple
of ,

n � 1, 2, 3, . . . (4.24)

Using these four assumptions, we can now calculate the allowed energy
levels and emission wavelengths of the hydrogen atom. Recall that the elec-
trical potential energy of the system shown in Figure 4.22 is given by
U � qV � �ke 2/r, where k (the Coulomb constant) has the value 1/4��0.
Thus, the total energy of the atom, which contains both kinetic and poten-
tial energy terms, is

(4.25)

Applying Newton’s second law to this system, we see that the Coulomb attrac-
tive force on the electron, ke2/r 2, must equal the mass times the centripetal
acceleration of the electron, or

From this expression, we immediately find the kinetic energy to be

(4.26)K �
mev2

2
�

ke2

2r

ke 2

r 2 �
mev2

r

E � K � U � 1
2 mev2 � k

e2

r

mevr � n�

� � h/2�

E i � E f � hf
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Figure 4.22 Diagram repre-
senting Bohr’s model of the hy-
drogen atom.
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4.3 THE BOHR ATOM 133

Substituting this value of K into Equation 4.25 gives the total energy of the
atom as

(4.27)

Note that the total energy is negative, indicating a bound electron–proton
system. This means that energy in the amount of ke2/2r must be added to the
atom to remove the electron to infinity and leave it motionless. An expression
for r, the radius of the electron orbit, may be obtained by eliminating v
between Equations 4.24 and 4.26:

n � 1, 2, 3, . . . (4.28)

Equation 4.28 shows that only certain orbits are allowed and that these
preferred orbits follow from the nonclassical step of requiring the electron’s
angular momentum to be an integral multiple of . The smallest radius occurs
for n � 1, is called the Bohr radius, and is denoted a0. The value for the
Bohr radius is

(4.29)

The fact that Bohr’s theory gave a value for a0 in good agreement with the
experimental size of hydrogen without any empirical calibration of orbit size
was considered a striking triumph for this theory. The first three Bohr orbits
are shown to scale in Figure 4.23.

The quantization of the orbit radii immediately leads to energy quantiza-
tion. This can be seen by substituting rn � n2a0 into Equation 4.27, giving for
the allowed energy levels

n � 1, 2, 3, . . . (4.30)

Inserting numerical values into Equation 4.30 gives

(4.31)

The integers n corresponding to the discrete, or quantized, values of
the atom’s energy have the special name quantum numbers. Quantum
numbers are central to quantum theory and in general refer to the set of
integers that label the discrete values of important atomic quantities,
such as energy and angular momentum. The lowest stationary, or nonradiat-
ing, state is called the ground state, has n � 1, and has an energy
E1 � �13.6 eV. The next state, or first excited state, has n � 2 and an en-
ergy E2 � E 1/22 � �3.4 eV. An energy-level diagram showing the energies
of these discrete energy states and the corresponding quantum numbers
is shown in Figure 4.24. The uppermost level, corresponding to n � � (or
r � �) and E � 0, represents the state for which the electron is removed
from the atom and is motionless. The minimum energy required to ionize

En � �
13.6

n2  eV  n � 1, 2, 3, 	 	 	

En � �
ke2

2a0
� 1

n2 �

a0 �
�2

meke2 � 0.529 Å � 0.0529 nm

�

rn �
n2�2

meke2

E � �
ke 2

2r

9a0

4a0

– e

a0
+ e

rn  = n2a0 n  =  1, 2, 3,...

Figure 4.23 The first three
Bohr orbits for hydrogen.

Radii of Bohr orbits in
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Energy levels of hydrogen

Quantum numbers
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the atom (that is, to completely remove an electron in the ground state
from the proton’s influence) is called the ionization energy. As can be
seen from Figure 4.24, the ionization energy for hydrogen based on Bohr’s
calculation is 13.6 eV. This constituted another major achievement for the
Bohr theory, because the ionization energy for hydrogen had already been
measured to be precisely 13.6 eV.

Equation 4.30 together with Bohr’s third postulate can be used to calculate
the frequency of the photon emitted when the electron jumps from an outer
orbit to an inner orbit:

(4.32)

Because the quantity actually measured is wavelength, it is convenient to con-
vert frequency to wavelength using c � f � to get

(4.33)

The remarkable fact is that the theoretical expression, Equation 4.33, is identi-
cal to Balmer’s empirical relation

(4.34)

provided that the combination of constants ke2/2a0hc is equal to the experi-
mentally determined Rydberg constant, R � 1.0973732 � 107 m�1. When
Bohr demonstrated the agreement of these two quantities to a precision of
about 1% late in 1913, it was recognized as the crowning achievement of his
quantum theory of hydrogen. Furthermore, Bohr showed that all of the
observed spectral series for hydrogen mentioned previously in this section
have a natural interpretation in his theory. These spectral series are shown as
transitions between energy levels in Figure 4.24.

Bohr immediately extended his model for hydrogen to other elements in
which all but one electron had been removed. Ionized elements such as He�,
Li2�, and Be3� were suspected to exist in hot stellar atmospheres, where fre-
quent atomic collisions occurred with enough energy to completely remove
one or more atomic electrons. Bohr showed that several mysterious lines
observed in the Sun and stars could not be due to hydrogen, but were
correctly predicted by his theory if attributed to singly ionized helium. In
general, to describe a single electron orbiting a fixed nucleus of charge �Ze,
Bohr’s theory gives

(4.35)

and

(4.36)En � �
ke2

2a0
� Z2

n2 �  n � 1, 2, 3, 	 	 	

rn � (n2)
a0

Z

1

�
� R � 1

n f
2 �

1

n i
2 �

1

�
�

f

c
�

ke2

2a0hc � 1

n f
2 �

1

n i
2 �

f �
E i � E f

h
�

ke2

2a0h � 1

n f
2 �

1

n i
2 �
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Figure 4.24 An energy-level
diagram for hydrogen. In such
diagrams the allowed energies
are plotted on the vertical axis.
Nothing is plotted on the hori-
zontal axis, but the horizontal ex-
tent of the diagram is made large
enough to show allowed transi-
tions. Note that the quantum
numbers are given on the left.
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4.3 THE BOHR ATOM 135

E � hf

� (4.136 � 10�15 eV 	 s)(2.47 � 1015 Hz) � 10.2 eV

(b) The calculation of part (a) assumes that all of
the n � 2 to n � 1 transition energy is carried off by the
photon; however, this is technically incorrect because
some of this energy must go into the recoil motion of the
atom. Using conservation of momentum as it applies to
the system (atom � photon), and assuming that the re-
coil energy of the atom is small compared with the n � 2
to n � 1 energy-level separation, find the momentum
and energy of the recoiling hydrogen atom.

Solution Because momentum is conserved, and the to-
tal momentum before emission is zero, the total momen-
tum after emission must also be zero. The photon and
atom therefore move off in opposite directions, with

where m and v are the mass and recoil speed of the hy-
drogen atom, Ephoton is the actual energy of the photon
(less than 10.2 eV), and c is the speed of light. Because
the energy difference between the n � 2 and n � 1 lev-
els, E, is the source of both the photon energy and the
recoil kinetic energy of the atom, we can write

Because the atom is massive, we can assume that its recoil
speed v and kinetic energy are so small that E � Ephoton.
Substituting Ephoton � 10.2 eV into the expression for mv

yields

mv � 10.2 eV/c

The (approximate) recoil kinetic energy of the hydrogen
atom can now be calculated:

Thus the fraction of the energy difference between
the n � 2 and n � 1 levels that goes into atomic recoil en-
ergy is very small, approximately 5 parts per billion:

Evidently the process of simply equating the photon’s
energy to the atomic energy-level separation yields accu-
rate answers because little energy is needed to conserve
momentum.

K

E
�

5.56 � 10�8 eV

10.2 eV
� 5.4 � 10�9

�
(0.5)(10.2 eV)2

938.8 � 106 eV
� 5.56 � 10�8 eV

K �
1

2
mv2 �

1

2

(mv)2

m
� (0.5)

(10.2 eV)2

mc2

E � Ephoton � 1
2 mv2

mv �
Ephoton

c

EXAMPLE 4.6 Spectral Lines from
the Star �-Puppis

The mysterious lines observed by the American as-
tronomer Edward Charles Pickering in 1896 in the spec-
trum of the star �-Puppis fit the empirical formula

where R is, again, the Rydberg constant. Show that these
lines can be explained by the Bohr theory as originating
from He�.

Solution He� has Z � 2. Thus, the allowed energy
levels are given by Equation 4.36 as

Using hf � E i � E f we find

or

This is the desired solution, because R � ke2/2a0hc.

EXAMPLE 4.7 An Electronic Transition
in Hydrogen

The electron in a hydrogen atom at rest makes a transition
from the n � 2 energy state to the n � 1 ground state.

(a) Find the wavelength, frequency, and energy (eV)
of the emitted photon.

Solution We can use Equation 4.34 directly to obtain �,
with n i � 2 and n f � 1:

This wavelength lies in the ultraviolet region.
Because c � f �, the frequency of the photon is

The energy of the photon is given by E � hf, so

f �
c

�
�

3.00 � 108 m/s

1.215 � 10�7 m
� 2.47 � 1015 Hz

� 1.215 � 10�7 m � 121.5 nm

� �
4

3R
�

4

3(1.097 � 107 m�1)

1

�
� R � 1

n f
2 �

1

n i
2 � � R � 1

12 �
1

22 � �
3R

4

1

�
�

f

c
�

ke2

2a0hc � 1

(n f/2)2 �
1

(n i/2)2 �

�
ke2

2a0h � 1

(n f/2)2 �
1

(n i/2)2 �

f �
E i � E f

h
�

ke2

2a0h � 4

n f
2 �

4

n i
2 �

En �
ke2

2a0
� 4

n2 �

1

�
� R � 1

(n f/2)2 �
1

(n i/2)2 �
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Exercise 5 Find the energy of the shortest-wavelength photon emitted in the Balmer
series for hydrogen.

Answer 3.40 eV.

Although the theoretical derivation of the line spectrum was a remarkable feat
in itself, the scope and impact of Bohr’s monumental achievement is truly seen
only when it is realized what else he treated in his three-part paper of 1913:

• He explained why fewer lines are seen in the absorption spectrum of
hydrogen than in the emission spectrum.

• He explained the emission of x rays from atoms.
• He explained the nuclear origin of � particles.

136 CHAPTER 4 THE PARTICLE NATURE OF MATTER

We could also obtain the energy of the photon by using the
expression hf � E3 � E2, where E2 and E3 are the energy
levels of the hydrogen atom, which can be calculated from
Equation 4.31. Note that this is the lowest-energy photon in
this series because it involves the smallest energy change.

(b) Find the shortest-wavelength photon emitted in
the Balmer series.

Solution The shortest-wavelength (most-energetic) pho-
ton in the Balmer series is emitted when the electron
makes a transition from n � � to n � 2. Therefore,

This wavelength is in the ultraviolet region and corre-
sponds to the series limit.

�min �
4

R
�

4

1.097 � 107 m�1 � 364.6 nm

1

�min
� R � 1

22 �
1

� � �
R

4

� 3.03 � 10�19 J � 1.89 eV

�
(6.626 � 10�34 J	s)(3.00 � 108 m/s)

656.3 � 10�9 m

EXAMPLE 4.8 The Balmer Series for Hydrogen

The Balmer series for the hydrogen atom corresponds to
electronic transitions that terminate in the state of quan-
tum number n � 2, as shown in Figure 4.24.

(a) Find the longest-wavelength photon emitted and
determine its energy.

Solution The longest-wavelength (least-energetic) pho-
ton in the Balmer series results from the transition from
n � 3 to n � 2. Using Equation 4.34 gives

This wavelength is in the red region of the visible spec-
trum.

The energy of this photon is

Ephoton � hf �
hc

�max

�max �
36

5R
�

36

5(1.097 � 107 m�1)
� 656.3 nm

1

�max
� R � 1

22 �
1

32 � �
5

36
R

1

�
� R � 1

n f
2 �

1

n i
2 �

Exercise 3 Check the approximation that E � Ephoton made in Example 4.7 by
directly calculating the recoil kinetic energy of the hydrogen atom, 1/2mv2. (Hint:

Solve mv � Ephoton/c and E � Ephoton � 1/2mv2 simultaneously to show v � E/mc,
calculate the numerical value of 1/2mv2, and compare this answer to the result given
in Example 4.7.)

Exercise 4 What is the wavelength of the photon emitted by hydrogen when the elec-
tron makes a transition from the n � 3 state to the n � 1 state?

Answer .
9

8R
� 102.6 nm
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4.3 THE BOHR ATOM 137

• He explained the chemical properties of atoms in terms of the electron
shell model.

• He explained how atoms associate to form molecules.

Two of these topics, the comparison of absorption and emission in hydrogen
and the shell structure of atoms, are of such general importance that they
deserve more explanation.

We have already pointed out that a gas will absorb at wavelengths that corre-
spond exactly to some emission lines, but not every line present in emission is
seen as a dark absorption line. Bohr explained absorption as the reverse of
emission; that is, an electron in a given energy state can only absorb a photon
of the exact frequency required to produce a “jump” from a lower energy state
to a higher energy state. Ordinarily, hydrogen atoms are in the ground state
(n � 1) and so only the high-energy Lyman series corresponding to transi-
tions from the ground state to higher energy states is seen in absorption. The
longer-wavelength Balmer series corresponding to transitions originating in
the first excited state (n � 2) is not seen because the average thermal energy
of each atom is insufficient to raise the electron to the first excited state. That
is, the number of electrons in the first excited state is insufficient at ordinary
temperatures to produce measurable absorption.

follows that the ratio of the number of atoms in two
different energy levels in thermal equilibrium at temper-
ature T is

where N2 is the number in the upper level, N1 is the
number in the lower level, and �E is the energy separa-
tion of the two levels. Let us use this equation to deter-
mine the temperature at which approximately 10% of
the hydrogen atoms are in the n � 2 state.

or

Solving for T gives

Thus the two estimates agree in order of magnitude
and show that the Balmer series will only be seen in
absorption if the absorbing gas is quite hot, as in a stellar
atmosphere.

� 51,000 K

T � �
10.2 eV

kB ln(0.10)
� �

10.2 eV

(8.62 � 10�5 eV/K)ln(0.10)

ln(0.10) � �
10.2 eV

kBT

N2

N1
� 0.10 � e�(10.2 eV)/kBT

N2

N1
�

P(E2)

P(E1)
� e�(E2�E1)/kBT

EXAMPLE 4.9 Hydrogen in Its First
Excited State

Calculate the temperature at which many hydrogen
atoms will be in the first excited state (n � 2). What
series should be prominent in absorption at this temper-
ature? (Calculate both from N2/N1 � exp(��E/k BT )
and from kBT � average thermal energy.)

Solution At room temperature almost all hydrogen
atoms are in the ground state with an energy of
�13.6 eV. The first excited state (n � 2) has an energy
equal to E2 � �3.4 eV. Therefore, each hydrogen atom
must gain an energy of 10.2 eV to reach the first excited
state. If the atoms are to obtain this energy from heat, we
must have

or

Let us check this result by using the Boltzmann distri-
bution. In Section 3.3 we saw that the probability of find-
ing an atom with energy E at temperature T is

where P0 is the probability of finding the atom in the
ground state of energy, E0. From this expression, it

P(E) � P0e�(E�E 0)/kBT

� 79,000 K

T �
10.2 eV

(3/2)kB
�

10.2 eV

(1.5)(8.62 � 10�5 eV/K)

3
2 kBT �

average thermal energy

atom
� 10.2 eV

3
2
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The final comment on Bohr’s work concerns his development of electronic
shell theory to treat multielectron atoms. In part II of his paper he attempted to
find stable electronic arrangements subject to the conditions that the total angu-
lar momentum of all the electrons is quantized and, simultaneously, that the total
energy is a minimum. This is a difficult problem, and one that becomes more dif-
ficult as more electrons are introduced into a system. Nevertheless, Bohr had
considerable success in explaining the chemical activity of multielectron atoms.
For example, he was able to show that neutral hydrogen could add another elec-
tron to become H�, and that neutral helium was particularly stable with a closed
innermost shell of two electrons and a high ionization potential. He also pro-
posed that lithium (Z � 3) had an electronic arrangement consisting of two elec-
trons in one orbit near the nucleus and the third in a large, loosely bound outer
orbit. This explains the tendency of lithium atoms to lose an electron and “take a
positive charge in chemical combinations with other elements.” Although we
cannot afford the luxury of looking in detail at all of Bohr’s predictions about
multielectron atoms, his basic ideas of shell structure are as follows:

• Electrons of elements with higher atomic number form stable concentric
rings, with definite numbers of electrons allowed for each ring or shell.

• The number of electrons in the outermost ring determines the valency.16
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LithiumHelium
10 – 8 cm
Hydrogen

SodiumNeonCarbon

Argon

Figure 4.25 Bohr’s sketches of electronic orbits.

16G. N. Lewis, an American chemist, contributed much to our understanding of shell structure in
1916, building on Bohr’s remarkable foundation.
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4.4 BOHR’S CORRESPONDENCE PRINCIPLE, OR WHY IS ANGULAR MOMENTUM QUANTIZED? 139

With almost magical insight, Bohr ended part II of his classic paper
with the explanation of the similar chemical properties of the iron group
(Fe, Co, Ni) and the rare earths, which have atomic numbers that pro-
gressively increase by 1 and would not normally be expected to be chemi-
cally alike. The answer, according to Bohr, is that the configuration of
electrons in the outermost ring of these elements is identical and that it
is energetically more favorable to add electrons to inner rings. At the risk
of encouraging some to take the idea of electronic orbits too seriously,
Figure 4.25 shows some sketches of electronic orbits as drawn by Bohr
in the early 1900s.

4.4 BOHR’S CORRESPONDENCE PRINCIPLE, OR
WHY IS ANGULAR MOMENTUM QUANTIZED?

Where others might have left a wild and lawless gap between the revolutionary
new laws that apply to atomic systems and those that hold for classical systems,
Bohr provided a gentle and refined continuum in the form of the correspon-
dence principle. This principle states that predictions of quantum theory
must correspond to the predictions of classical physics in the region of
sizes where classical theory is known to hold. These classical sizes for
length, mass, and time are on the order of centimeters, grams, and seconds
and typically involve very large quantum numbers, as can be seen by calculat-
ing n for a hydrogen atom with a radius of 1 cm. If the quantum number
becomes large because of increased size or mass, we may state the correspon-
dence principle symbolically as

lim
n : �

[quantum physics] � [classical physics]

where n is a typical quantum number of the system such as the quantum
number for hydrogen. In the hands of Bohr, the correspondence principle
became a masterful tool to test new quantum results as well as a source of
fundamental postulates about atomic systems. In fact, Bohr used reasoning
of this type to arrive at the concept of the quantization of the electron’s
orbital angular momentum. Both Bohr’s idea of discrete, nonradiating
energy states and the emission postulate for atoms were foreshadowed
by Planck’s quantization of the energy of blackbody oscillators and by
Einstein’s treatment of the photoelectric effect. However, the concept of
angular momentum quantization seems to have sprung full blown from
Bohr’s Gedankenkuche (thought kitchen), as so aptly expressed by Einstein.
Indeed, in some of his later writings Bohr emphasized the point of view that
the quantization of angular momentum was a postulate, underivable from
any deeper law, and that its validity depended simply on the agreement of
his model with experimental spectra.

What is most interesting is that in his 1913 paper Bohr ingeniously
showed that the quantization of angular momentum is a consequence of
the smooth and gradual emergence of classical results from quantum the-
ory in the limit of large quantum number. In particular, Bohr argued that
according to his correspondence principle, the quantum condition for
emission (�E � hf ) and Maxwell’s classical radiation theory (electronic
charges with orbital frequency f radiate light waves of frequency f ) must
simultaneously hold for the case of extremely large electronic orbits. This case is

Correspondence principle
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shown in Figure 4.26. In this figure, r 1 and r 2 are the radii of two large
adjacent orbits that are separated in energy by an amount dE and � is the
orbital angular frequency of the electron, where � is approximately
constant in a transition between large orbits. (The algebra is simpler if
we use angular frequency instead of frequency. Recall that the connection is
� � 2�f .) Because we want to determine the allowed values of the angu-
lar momentum from the known change in the atom’s energy when light
is emitted, we need the relation between the total energy of the atom, 
E � �ke 2/2r (Equation 4.27) and the magnitude of the total angular
momentum of the atom, L � m evr � m e�r 2. Using the fact that the
electron is kept in orbit by the Coulomb force, it is not difficult to show that
1/r � m eke 2/L2 (see Problem 30), so Equation 4.27 becomes

(4.37)

Taking a derivative of Equation 4.37 gives the desired connection between the
change in energy and the change in angular momentum for the Bohr atom.

(4.38)

Finally, we obtain dE/dL in terms of �, the electron orbital angular frequency,
by using L3 � mek2e4/� (see Problem 30). Thus,

(4.39)

Now consider the emission of a photon of energy when the electron
makes a transition from r1 to r 2. Equation 4.39 becomes

or

(4.40)

where �
 is the photon angular frequency and � is the electron orbital angular
frequency. Ordinarily, �
 and � are not simply related. However, because we
are dealing with large orbits in this situation, the correspondence principle
tells us that the quantum theory must predict the same frequency for the emit-
ted light as Maxwell’s law of radiation. Because Maxwell’s classical theory
requires the electron to radiate light of the same frequency as its orbital mo-
tion frequency, �
 � �, and Equation 4.40 becomes

or

(4.41)

Equation 4.41 shows that the change in electronic angular momentum for a
transition between adjacent, large electronic orbits is always . This means that
the magnitude of total angular momentum of the electron in a specific orbit
may be taken to have a value equal to an integral multiple of , or

(4.42)

for n � large integers.

L � mevr � n�

�

�

dL � �

�� � � dL

��
 � � dL

dE � � dL

dE � ��


dE

dL
�

mek2e4

(mek2e4/�)
� �

dE

dL
�

mek2e4

L3

E � �
1

2

mek2e4

L2
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Figure 4.26 The classical limit
of the Bohr atom. Note that r1

and r 2 are the radii of the two
adjacent quantum orbits, in
which the electron has orbital
angular frequencies of �1 and
�2. We assume r 1 � r 2 � r and
�1 � �2 � �; �
 is the angular
frequency of a photon emitted in
a transition from r1 to r2.
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4.5 DIRECT CONFIRMATION OF ATOMIC ENERGY LEVELS: THE FRANCK–HERTZ EXPERIMENT 141

Bohr realized that although Equation 4.42 was derived for the case
of large electron orbits, it was a universal quantum principle applicable to
all systems and of wider applicability than Maxwell’s law of radiation. Such
a bold and far-seeing vision was characteristic of the man so aptly described
by Einstein in the following quote: “That this insecure and contradic-
tory foundation [physics from 1910 to 1920] was sufficient to enable a
man of Bohr’s unique instinct and tact to discover the major laws of
the spectral lines and of the electron shells of the atoms together with their
significance for chemistry appeared to me like a miracle — and appears
to me as a miracle even today. This is the highest form of musicality in
the sphere of thought.”

4.5 DIRECT CONFIRMATION OF ATOMIC ENERGY
LEVELS: THE FRANCK–HERTZ EXPERIMENT

In the preceding sections we have shown the involved trail of reasoning
indirectly proving the existence of quantized energy levels in atoms from
observations of the optical line spectra emitted by different elements.
Now we turn to a simpler and more direct experimental proof of the
existence of discrete energy levels in atoms involving their excitation by
collision with low-energy electrons. The first experiment of this type was
performed by German physicists James Franck and Gustav Hertz (a nephew
of Heinrich Hertz) in 1914 on mercury (Hg) atoms. It provided clear exper-
imental proof of the existence of quantized energy levels in atoms and
showed that the levels deduced from electron bombardment agreed with
those deduced from optical line spectra. Furthermore, it confirmed the
universality of energy quantization in atoms, because the quite different
physical processes of photon emission and electron bombardment yielded
the same energy levels.

Figure 4.27 shows a schematic of a typical college laboratory device similar
to the Franck–Hertz apparatus. Electrons emitted by the filament are acceler-
ated over a relatively long region (� 1 cm) by the positive potential on the

Hg

Filament Accelerating grid
Collector

Electrometer

1.5 V
Retarding

voltage

0 – 40 V
Accelerating

voltage

6 V
Filament

supply

+ – I

V

– ++ –

e –

Hg

Figure 4.27 Franck–Hertz apparatus. A drop of pure mercury is sealed into an evac-
uated tube. The tube is heated to 185°C during measurements to provide a high-
enough density of mercury to ensure many electron–atom collisions.
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grid, V . The electrons can reach the collector and be registered on the elec-
trometer (a sensitive ammeter) if they have sufficient energy to overcome the
retarding potential of about 1.5 V set up over the short distance (� 1 mm)
between grid and collector. At low electron energies or accelerating voltages,
perfectly elastic collisions occur between the electrons and Hg atoms in which
the sum of the kinetic energies of both electron and atom are conserved.
Because the Hg atom is much more massive than the electron, the electron
transfers very little kinetic energy to the atom in a collision (see Problem 38).
Even after multiple collisions the electron reaches the grid with a kinetic
energy of approximately e times V and will be collected if the accelerating
voltage V is greater than 1.5 V. When V is modestly increased, more electrons
reach the collector and the current, I, rises.

As the accelerating voltage is increased further, a threshold voltage is
reached at which inelastic collisions occur at the grid, where the electrons
reach an energy of e times V. In these inelastic collisions, electrons can
transfer almost all of their kinetic energy to the atom, raising it to its first
excited state (see Problem 39 and Question 9). Electrons that have collided
inelastically are unable to overcome the retarding potential and conse-
quently I decreases for this threshold voltage. Figure 4.28 shows a typical
plot of current versus accelerating voltage, with the first weak current dip
(A) occurring at a threshold voltage of slightly more than 7 V. When the
voltage is increased once again, the inelastic collision region moves closer
to the filament and the electrons that were stopped by an inelastic collision
are reaccelerated, reaching the collector and causing another rise in
current (B). Another dip (C ) occurs when V is increased enough for an
electron to have two successive inelastic collisions: An electron excites an
atom halfway between filament and grid, loses all its energy, and is then
reaccelerated to excite another atom at the grid, finally ending up with
insufficient energy to be collected. This process takes place periodically
with increasing grid voltage, giving rise to equally spaced maxima and
minima in the I – V curve, as shown in Figure 4.28.
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Figure 4.28 Current as a function of voltage in the Franck–Hertz experiment. To
obtain these data, the filament voltage was set at 6.0 V and the tube heated to 185�C.
(Data taken by Bob Rodick, Utica College, class of 1992)
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SUMMARY 143

If the adjacent maxima and minima separations of Figure 4.28 are carefully
averaged, one finds an average of 4.9 � 0.1 V, or a ground to first excited state
separation of 4.9 � 0.1 eV. Note, however, that the first minimum does not
occur at 4.9 V but at about 7.1 V. The extra energy (7.1 � 4.9 � 2.2 eV) is
required because the filament and collector are made of different metals with
different work functions. (Recall that the work function is the energy needed
to pull an electron out of a metal—see Chapter 3.) Although the filament,
like all good emitters, has a low work function, the collector has a high work
function, and this work function energy must be supplied to extract an elec-
tron from the collector so a current can flow in the circuit.

As we have seen Franck and Hertz used simple ammeter and voltmeter
measurements to show that atoms can only accept discrete amounts of energy
from an electron beam. In addition, they showed that the energy levels
obtained from electron bombardment agreed with the spectroscopic results.
Reasoning that an Hg atom actually excited to an energy level 4.9 eV above
its ground state could return to its ground state by emitting a single
photon (as Bohr had just postulated), they calculated the wavelength of such a
photon to be

or

(4.43)

Because glass is not transparent to such ultraviolet radiation, they constructed
a quartz apparatus and carefully measured the radiation emitted, finding radi-
ation of wavelength 254 nm to be emitted as soon as the accelerating voltage
exceeded 4.9 V. For this direct experimental confirmation of Bohr’s basic
ideas of discrete energy levels in atoms and the process of photon emission,
Franck and Hertz were awarded the Nobel prize in 1925.

SUMMARY

The determination of the composition of atoms relies heavily on four classic
experiments:

• Faraday’s law of electrolysis, which may be stated as

(4.1)

where m is the mass liberated at an electrode and q is the total charge
passed through the solution. Faraday’s law shows that atoms are com-
posed of positive and negative charges and that atomic charges always
consist of multiples of some unit charge.

• J. J. Thomson’s determination of e/me and that the electron is a part of
all atoms. Thomson measured e/me of electrons from a variety of ele-
ments by measuring the deflection of an electron beam by an electric
field. He then applied a magnetic field to just cancel the electric deflec-

m �
(q)(molar mass)

(96,500 C)(valence)

� �
hc

�E
�

1240 eV	nm

4.9 eV
� 253 nm

�E � hf �
hc

�
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tion in order to determine the electron velocity. The charge-to-mass ratio
of the electron in the Thomson experiment is

(4.7)

where V/d is the magnitude of the applied electric field, � is the length of
the vertical deflecting plates, � is the deflection produced by the electric
field, and B is the applied magnetic field.

• Millikan’s determination of the fundamental charge, e. By balancing
the electric and gravitational force on individual oil drops, Millikan was
able to determine the fundamental electric charge and to show that
charges always occur in multiples of e. The quantum of charge may be
determined from the relation

(4.11)

where n is an integer, m is the mass of the drop, E is the magnitude of the
electric field, v is the terminal speed of the drop with field off (falling),
and v
1 is the terminal speed of the drop with field on (rising).

• Rutherford’s scattering of � particles from gold atoms, which estab-
lished the nuclear model of the atom. By measuring the rate of scattering of
� particles into an angle �, Rutherford was able to establish that most of the
mass and all of the positive charge of an atom, �Ze, are concentrated in a
minute volume of the atom with a diameter of about 10�14 m.

The explanation of the motion of electrons within the atom and of the rich
and elaborate series of spectral lines emitted by the atom was given by Bohr.
Bohr’s theory was based partly on classical mechanics and partly on some star-
tling new quantum ideas. Bohr’s postulates were

• Electrons move about the nucleus in circular orbits determined by
Coulomb’s and Newton’s laws. 

• Only certain orbits are stable. The electron does not radiate electromag-
netic energy in these special orbits, and because the energy is constant
with time these are called stationary states.

• A spectral line of frequency f is emitted when an electron jumps from an
initial orbit of energy E i to a final orbit of energy E f, where

hf � E i � E f (4.23)

• The sizes of the stable electron orbits are determined by requiring the
electron’s angular momentum to be an integral multiple of :

(4.24)

These postulates lead to quantized orbits and quantized energies for a single
electron orbiting a nucleus with charge �Ze, given by

(4.35)

and

(4.36)En � �
ke2

2a0

Z2

n2 � �
13.6 Z2

n2  eV

rn �
n2a0

Z

mevr � n�  n � 1, 2, 3, 	 	 	

�

ne � � mg

E �� v � v1


v �

e

me
�

V�

B2�d
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QUESTIONS

1. The Bohr theory of the hydrogen atom is based on sev-
eral assumptions. Discuss these assumptions and their
significance. Do any of these assumptions contradict
classical physics?

2. Suppose that the electron in the hydrogen atom obeyed
classical mechanics rather than quantum mechanics.
Why should such a hypothetical atom emit a continuous
spectrum rather than the observed line spectrum?

3. Can the electron in the ground state of the hydrogen
atom absorb a photon of energy (a) less than 13.6 eV
and (b) greater than 13.6 eV?

4. Explain the concept of an atomic stationary state. Why
is this idea of central importance in explaining the sta-
bility of the Bohr atom?

5. Does Bohr’s correspondence principle apply only to
quantum theory? Can you give an example of the appli-
cation of this principle to relativity theory?

6. On the basis of Bohr’s ideas, explain why all emission
lines are not seen in absorption.

7. The results of classical measurements and calculations
are sometimes called classical numbers. Contrast and
explain the differences between quantum numbers and
classical numbers.

8. What factor causes the finite width of the peaks in the
I–V curve of the Franck–Hertz experiment?

9. An electron with a kinetic energy of 4.9 eV (mass �

5.49 � 10�4 u) collides inelastically with a stationary
mercury atom (mass � 201 u). Explain qualitatively
why almost 100% of the electron’s energy can go into
raising the atom to its first excited state.

10. Why don’t other current dips corresponding to exci-
tation of the mercury atom’s second excited state,
third excited state, and so forth show up in the
Franck–Hertz experiment? (Hint: At the high density
of mercury vapor used in the experiment, the probabil-
ity of a 4.9-eV electron experiencing an inelastic colli-
sion is approximately 1.)

11. Four possible transitions for a hydrogen atom are listed
here.

(A) n i � 2; n f � 5

(B) n i � 5; n f � 3

(C) n i � 7; n f � 4

(D) n i � 4; n f � 7

(a) Which transition emits the photons having the
shortest wavelength? (b) For which transition does the
atom gain the most energy? (c) For which transition(s)
does the atom lose energy?

offers a fascinating account by Thomson’s son of the
e/m experiment and other works.

4. R. A. Millikan, Electrons (� and �), Protons, Neutrons,

Mesotrons, and Cosmic Rays, Chicago, University of
Chicago Press, 1947. This book gives detailed accounts
of the determination of e.

5. Physics Today, October 1985, Special Issue: Niels Bohr
Centennial. This magazine contains three articles
dealing with Bohr’s scientific, social, and cultural contri-
butions to the physics community. Many interesting pho-
tos of the key players are included.

1. G. Holton, Introduction to Concepts and Theories in Physical

Science, Reading, MA, Addison-Wesley, 1952. This is an
accurate, humane, and eminently readable overview of
the history and progression of scientific concepts from
the Greeks to quantum theory.

2. J. Perrin, Atoms, translated by D. L. Hammick, New York,
D. Van Nostrand Co., 1923. This is a superb account at
first hand of the evidence for atoms at the beginning of
the 20th century.

3. G. Thomson, J. J. Thomson and the Cavendish Laboratory in

His Day, New York, Doubleday and Co., 1965. This book
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where n is an integer and a0 � ( /meke2 � 0.529 Å � 0.0529 nm is the Bohr
radius.

As a bridge between the familiar domain of classical physics and the more
uncertain domain of atomic systems and quantum theory, Bohr provided the
correspondence principle. This principle states that predictions of quantum
theory must correspond to the predictions of classical physics in the region of
sizes where classical theory is known to hold.

Direct experimental evidence of the quantized energy of atoms is provided by
the Franck–Hertz experiment. This experiment shows that mercury atoms can
only accept discrete amounts of energy from a bombarding electron beam.

�2
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PROBLEMS

4.2 The Composition of Atoms

1. Using the Faraday (96,500 C) and Avogadro’s number,
determine the electronic charge. Explain your reasoning.

2. Weighing a copper atom in an electrolysis experiment. A stan-
dard experiment involves passing a current of several
amperes through a copper sulfate solution (CuSO4) for
a period of time and determining the mass of copper
plated onto the cathode. If it is found that a current of
1.00 A flowing for 3600 s deposits 1.185 g of copper,
find (a) the number of copper atoms deposited,
(b) the weight of a copper atom, and (c) the molar
mass of copper.

3. A mystery particle enters the region between the plates
of a Thomson apparatus as shown in Figure 4.6. The de-
flection angle � is measured to be 0.20 radians (down-
wards) for this particle when V � 2000 V, � � 10.0 cm,
and d � 2.00 cm. If a perpendicular magnetic field of
magnitude 4.57 � 10�2 T is applied simultaneously
with the electric field, the particle passes through the
plates without deflection. (a) Find q/m for this particle.
(b) Identify the particle. (c) Find the horizontal speed
with which the particle entered the plates. (d) Must we
use relativistic mechanics for this particle?

4. Figure P4.4 shows a cathode ray tube for determining
e/me without applying a magnetic field. In this case vx

may be found by measuring the rise in temperature
when a known amount of charge is stopped in a target.
If V, �, d, D, and y are measured, e/me may be found.
Show that

e

me
�

yvx
2 d

V�[(�/2) � D]

the magnetic field B is arranged to act on the electron
over its entire trajectory from source to detector. The
combined electric and magnetic fields act as a velocity

selector, only passing electrons with speed v, where
v � V/Bd (Equation 4.6), while in the region where
there is only a magnetic field the electron moves in a
circle of radius r, with r given by p � Bre . This latter
region (E � 0, B � constant) acts as a momentum selector

because electrons with larger momenta have paths with
larger radii. (a) Show that the radius of the circle
described by the electron is given by r � (l 2 � y2)/2y .
(b) Typical values for the Neumann experiment were
d � 2.51 � 10�4 m, B � 0.0177 T, and l � 0.0247 m. For
V � 1060 V, y, the most critical value, was measured to be
0.0024 � 0.0005 m. Show that these values disagree with
the y value calculated from p � mv but agree with the y
value calculated from p � �mv within experimental
error. (Hint: Find v from Equation 4.6, use mv � Bre or
�mv � Bre to find r, and use r to find y.)

6. In a Millikan oil-drop experiment, the condenser plates
are spaced 2.00 cm apart, the potential across the
plates is 4000 V, the rise or fall distance is 4.00 mm, the
density of the oil droplets is 0.800 g/cm3, and the vis-
cosity of the air is 1.81 � 10�5 kg 	 m�1s�1. The average
time of fall in the absence of an electric field is 15.9 s.
The following different rise times in seconds are ob-
served when the field is turned on: 36.0, 17.3, 24.0,
11.4, 7.54. (a) Find the radius and mass of the drop
used in this experiment. (b) Calculate the charge on
each drop, and show that charge is quantized by
considering both the size of each charge and the
amount of charge gained (lost) when the rise time
changes. (c) Determine the electronic charge from
these data. You may assume that e lies between 1.5 and
2.0 � 10�19 C.

7. Actual data from one of Millikan’s early experiments
are as follows:

Figure P4.5 The Neumann apparatus.

5. A Thomson-type experiment with relativistic electrons. One of
the earliest experiments to show that p � �mv (rather
than p � mv) was that of Neumann. [G. Neumann, Ann.

Physik 45:529 (1914)]. The apparatus shown in Figure
P4.5 is identical to Thomson’s except that the source of
high-speed electrons is a radioactive radium source and
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Figure P4.4 Deflection of a charged particle by an elec-
tric field.
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a � 0.000276 cm
� � 0.9561 g/cm3

Average time of fall � 11.894 s
Rise or fall distance � 10.21 nm
Plate separation � 16.00 mm
Average potential difference between plates � 5085 V
Sequential rise times in seconds: 80.708, 22.336, 22.390,
22.368, 140.566, 79.600, 34.748, 34.762, 29.286, 29.236

Find the average value of e by requiring that the differ-
ence in charge for drops with different rise times be
equal to an integral number of elementary charges.

8. A parallel beam of � particles with fixed kinetic energy
is normally incident on a piece of gold foil. (a) If 100 �
particles per minute are detected at 20�, how many will
be counted at 40�, 60�, 80�, and 100�? (b) If the kinetic
energy of the incident � particles is doubled, how many
scattered � particles will be observed at 20�? (c) If the
original � particles were incident on a copper foil of
the same thickness, how many scattered � particles
would be detected at 20�? Note that �Cu � 8.9 g/cm3

and �Au � 19.3 g/cm3.
9. It is observed that � particles with kinetic energies of

13.9 MeV and higher, incident on Cu foils, do not obey
Rutherford’s (sin �/2)�4 law. Estimate the nuclear size
of copper from this observation, assuming that the Cu
nucleus remains fixed in a head-on collision with an �
particle.

10. A typical Rutherford scattering apparatus consists
of an evacuated tube containing a polonium-210 �

source (5.2-MeV �’s), collimators, a gold foil target,
and a special alpha-detecting film. The detecting film
simultaneously measures all the alphas scattered over
a range from � � 2.5� to 12.5�. (See Fig. P4.10.) The
total number of counts measured over a week’s time
falling in a specific ring (denoted by its average
scattering angle) and the corresponding ring area
are given in Table 4.2. (a) Find the counts per area at
each angle and correct these values for the angle-
independent background. The background correc-
tion may be found from a seven-day count taken with
the beam blocked with a metal shutter in which
72 counts were measured evenly distributed over the
total detector area of 8.50 cm2. (b) Show that the
corrected counts per unit area are proportional to
sin�4(�/2) or, in terms of the Rutherford formula,
Equation 4.16,

Notes: If a plot of (�n/A) versus � will not fit on a sin-
gle sheet of graph paper, try plotting log(�n/A) versus
log[1/(sin �/2)4]. This plot should yield a straight line
with a slope of 1 and an intercept that gives C. Explain
why this technique works.

�n

A
�

C

sin4(�/2)

4.3 The Bohr Atom

11. Calculate the wavelengths of the first three lines in the
Balmer series for hydrogen.

Table 4.2 Data to Be Used in Problem 10

Angle Ring Area
(degrees) Counts/Ring (cm2) Counts/Area

2.5 605 0.257
3.5 631 0.360
4.5 520 0.463
5.5 405 0.566
6.5 301 0.669
7.5 201 0.772
8.5 122 0.875
9.5 78 0.987

10.5 65 1.08
11.5 66 1.18
12.5 44 1.29

Po-210
α source

Gold foil

Evacuated tube Film detector 
end cap

Undeflected
beam

14 cm

φ

α

(a)

   =2° 3° 4° 5° 6° 7° 8° 13°

Undeflected

beam

φ

(b)

Figure P4.10 (a) Side view of Rutherford’s scattering
apparatus: � is the scattering angle. (b) End view of the
Rutherford apparatus showing the film detector end cap
with grid marking the angle �. The � particles damage the
film emulsion and after development show up as dots
within the rings.
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12. Calculate the wavelengths of the first three lines in the
Lyman series for hydrogen.

13. (a) What value of n is associated with the Lyman series
line in hydrogen whose wavelength is 102.6 nm?
(b) Could this wavelength be associated with the
Paschen or Brackett series?

14. (a) Use Equation 4.35 to calculate the radii of the first,
second, and third Bohr orbits of hydrogen. (b) Find
the electron’s speed in the same three orbits. (c) Is a
relativistic correction necessary? Explain.

15. (a) Construct an energy-level diagram for the He�

ion, for which Z � 2. (b) What is the ionization energy
for He�?

16. Construct an energy level diagram for the Li2� ion, for
which Z � 3.

17. What is the radius of the first Bohr orbit in (a) He�,
(b) Li2�, and (c) Be3�?

18. A hydrogen atom initially in its ground state (n � 1)
absorbs a photon and ends up in the state for which
n � 3. (a) What is the energy of the absorbed photon?
(b) If the atom returns to the ground state, what pho-
ton energies could the atom emit?

19. A photon is emitted from a hydrogen atom that under-
goes an electronic transition from the state n � 3 to
the state n � 2. Calculate (a) the energy, (b) the wave-
length, and (c) the frequency of the emitted photon.

20. What is the energy of the photon that could cause
(a) an electronic transition from the n � 4 state to the
n � 5 state of hydrogen and (b) an electronic transi-
tion from the n � 5 state to the n � 6 state?

21. (a) Calculate the longest and shortest wavelengths for
the Paschen series. (b) Determine the photon energies
corresponding to these wavelengths.

22. Find the potential energy and kinetic energy of an elec-
tron in the ground state of the hydrogen atom.

23. A hydrogen atom is in its ground state (n � 1). Using
the Bohr theory of the atom, calculate (a) the radius of
the orbit, (b) the linear momentum of the electron,
(c) the angular momentum of the electron, (d) the
kinetic energy, (e) the potential energy, and (f ) the total
energy.

24. A hydrogen atom initially at rest in the n � 3 state
decays to the ground state with the emission of a pho-
ton. (a) Calculate the wavelength of the emitted pho-
ton. (b) Estimate the recoil momentum of the atom
and the kinetic energy of the recoiling atom. Where
does this energy come from?

25. Calculate the frequency of the photon emitted by a hy-
drogen atom making a transition from the n � 4 to the
n � 3 state. Compare your result with the frequency of
revolution for the electron in these two Bohr orbits.

26. Calculate the longest and shortest wavelengths in the Ly-
man series for hydrogen, indicating the underlying elec-
tronic transition that gives rise to each. Are any of the Ly-
man spectral lines in the visible spectrum? Explain.

27. Show that Balmer’s formula, ,

reduces to the Rydberg formula, ,

provided that (22/C2) � R . Check that (22/C2) has the
same numerical value as R .

28. The Auger process. An electron in chromium makes a
transition from the n � 2 state to the n � 1 state with-
out emitting a photon. Instead, the excess energy is
transferred to an outer electron (in the n � 4 state),
which is ejected by the atom. (This is called an Auger

process, and the ejected electron is referred to as an
Auger electron.) Use the Bohr theory to find the kinetic
energy of the Auger electron.

29. An electron initially in the n � 3 state of a one-electron
atom of mass M at rest undergoes a transition to the
n � 1 ground state. (a) Show that the recoil speed of
the atom from emission of a photon is given approxi-
mately by

(b) Calculate the percent of the 3 : 1 transition en-
ergy that is carried off by the recoiling atom if the atom
is deuterium.

30. Apply classical mechanics to an electron in a stationary
state of hydrogen to show that L2 � meke 2r and
L3 � mek

2e 4/�. Here k is the Coulomb constant, L is the
magnitude of the orbital angular momentum of the
electron, and me, e, r, and � are the mass, charge, orbit
radius, and orbital angular frequency of the electron,
respectively.

31. (a) Find the frequency of the electron’s orbital motion,
fe , around a fixed nucleus of charge �Ze by using Equa-
tion 4.24 and fe � (v/2�r) to obtain

(b) Show that the frequency of the photon emitted
when an electron jumps from an outer to an inner or-
bit can be written

For an electronic transition between adjacent orbits,
ni � nf � 1 and

Now examine the factor

fphoton �
mek2Z 2e4

2��3 � n i � n f

2n i
2n f

2 �

�
mek2e4Z 2

2��3 � n i � n f

2n i
2n f

2 � (n i � n f)

fphoton �
kZ 2e2

2a0h � 1

n f
2 �

1

n i
2 �

fe �
mek2Z2e4

2��3 � 1

n3 �

v �
8hR

9M

1

�
� R � 1

22 �
1

n2 �
� � C2 � n2

n2 � 22 �
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and use ni � nf to argue that 

(c) What do you conclude about the frequency of emit-
ted radiation compared with the frequencies of orbital
revolution in the initial and final states? What happens
as n i : �?

32. Wavelengths of spectral lines depend to some extent
on the nuclear mass. This occurs because the nucleus is
not an infinitely heavy stationary mass and both the
electron and nucleus actually revolve around their
common center of mass. It can be shown that a system
of this type is entirely equivalent to a single particle of
reduced mass  that revolves around the position of
the heavier particle at a distance equal to the
electron–nucleus separation. See Figure P4.32. Here,
 � meM/(me � M), where me is the electron mass
and M is the nuclear mass. To take the moving nucleus
into account in the Bohr theory we replace me with .
Thus Equation 4.30 becomes

and Equation 4.33 becomes

Determine the corrected values of wavelength for the
first Balmer line (n � 3 to n � 2 transition) taking
nuclear motion into account for (a) hydrogen, 1H,
(b) deuterium, 2H, and (c) tritium, 3H. (Deuterium,
was actually discovered in 1932 by Harold Urey, who
measured the small wavelength difference between 1H
and 2H.)

1

�
�

ke2

2mea0hc � 1

n f
2 �

1

n i
2 � � � 

me
�R � 1

n f
2 �

1

n i
2 �

En �
�ke2

2mea0
� 1

n2 �

1

n i
3 �

n i � n f

2n i
2n f

2 �
1

n f
3

� n i � n f

2n i
2n f

2 � 33. A muon is a particle with a charge equal to that of an
electron and a mass equal to 207 times the mass of an
electron. Muonic lead is formed when 208Pb captures a
muon to replace an electron. Assume that the muon
moves in such a small orbit that it “sees” a nuclear
charge of Z � 82. According to the Bohr theory, what
are the radius and energy of the ground state of
muonic lead? Use the concept of reduced mass intro-
duced in Problem 32.

34. A muon (Problem 33) is captured by a deuteron (an
2H nucleus) to form a muonic atom. (a) Find the
energy of the ground state and the first excited state.
(b) What is the wavelength of the photon emitted
when the atom makes a transition from the first excited
state to the ground state? Use the concept of reduced
mass introduced in Problem 32.

35. Positronium is a hydrogen-like atom consisting of a
positron (a positively charged electron) and an elec-
tron revolving around each other. Using the Bohr
model, find the allowed radii (relative to the center of
mass of the two particles) and the allowed energies of
the system. Use the concept of reduced mass intro-
duced in Problem 32.

4.4 The Correspondence Principle

36. (a) Calculate the frequency of revolution and the orbit
radius of the electron in the Bohr model of hydrogen
for n � 100, 1000, and 10,000. (b) Calculate the pho-
ton frequency for transitions from the n to n � 1 states
for the same values of n as in part (a) and compare
with the revolution frequencies found in part (a).
(c) Explain how your results verify the correspondence
principle.

37. Use Bohr’s model of the hydrogen atom to show that
when the atom makes a transition from the state n to the
state n � 1, the frequency of the emitted light is given by

Show that as n : �, the preceding expression varies as
1/n3 and reduces to the classical frequency one would
expect the atom to emit. (Hint: To calculate the classi-
cal frequency, note that the frequency of revolution is
v/2�r, where r is given by Equation 4.28.) This is an
example of the correspondence principle, which
requires that the classical and quantum models agree
for large values of n.

4.5 The Franck–Hertz Experiment

38. An electron with kinetic energy less than 100 eV col-
lides head-on in an elastic collision with a massive mer-
cury atom at rest. (a) If the electron reverses direction
in the collision (like a ball hitting a wall), show that the
electron loses only a tiny fraction of its initial kinetic
energy, given by

f �
2�2mek2e4

h3 � 2n � 1

(n � 1)2n2 �

Figure P4.32 (a) Both the electron and the nucleus actu-
ally revolve around the center of mass. (b) To calculate the
effect of nuclear motion, the nucleus can be considered to
be at rest and me is replaced by the reduced mass .

Nucleus
M

CM

electron, me

ω

ω r Nucleus
(at rest)

ω

Moving particle 
of reduced mass µ

(b)(a)

+r

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



150 CHAPTER 4 THE PARTICLE NATURE OF MATTER

where me is the electron mass and M is the mercury
atom mass. (b) Using the accepted values for me and
M, show that

�K

K
�

4M

me(1 � M/me)2

wavelength of 121.6 nm (n � 2 to n � 1 transition). At
what speed were the atoms moving before the collision?

43 Steven Chu, Claude Cohen-Tannoudji, and William
Phillips received the 1997 Nobel prize in physics for “the
development of methods to cool and trap atoms with
laser light.” One part of their work was with a beam of
atoms (mass �10�25 kg) that move at a speed on the or-
der of 1 km/s, similar to the speed of molecules in air at
room temperature. An intense laser light beam tuned to
a visible atomic transition (assume 500 nm) is directed
straight into the atomic beam. That is, the atomic beam
and light beam are traveling in opposite directions. An
atom in the ground state immediately absorbs a photon.
Total system momentum is conserved in the absorption
process. After a lifetime on the order of 10�8 s, the
excited atom radiates by spontaneous emission. It has an
equal probability of emitting a photon in any direction.
Thus, the average “recoil” of the atom is zero over many
absorption and emission cycles. (a) Estimate the average
deceleration of the atomic beam. (b) What is the order
of magnitude of the distance over which the atoms in the
beam will be brought to a halt?

44. In a hot star, a multiply ionized atom with a single
remaining electron produces a series of spectral lines
as described by the Bohr model. The series cor-
responds to electronic transitions that terminate in
the same final state. The longest and shortest wave-
lengths of the series are 63.3 nm and 22.8 nm,
respectively. (a) What is the ion? (b) Find the wave-
lengths of the next three spectral lines nearest to the
line of longest wavelength.

and calculate the numerical value of �K/K.

�K

K
�

4me

M

ADDITIONAL PROBLEMS

39. An electron collides inelastically and head-on with a mer-
cury atom at rest. (a) If the separation of the first excited
state and the ground state of the atom is exactly 4.9 eV,
what is the minimum initial electron kinetic energy
needed to raise the atom to its first excited state and also
conserve momentum? Assume that the collision is com-
pletely inelastic. (b) What is the initial speed of the elec-
tron in this case? (c) What is the speed of the electron
and atom after the collision? (d) What is the kinetic
energy (in electron volts) of the electron after collision?
Is the approximation that the electron loses all of its
kinetic energy in an inelastic collision justified?

40. If the Franck–Hertz experiment could be performed
with high-density monatomic hydrogen, at what voltage
separations would the current dips appear? Take the
separation between ground state and first excited state
to be exactly 10.2 eV and be sure to consider momen-
tum as well as energy in arriving at your answer.

41. Liquid oxygen has a bluish color, meaning that it pref-
erentially absorbs light toward the red end of the
visible spectrum. Although the oxygen molecule (O2)
does not strongly absorb visible radiation, it does
absorb strongly at 1269 nm, which is in the infrared
region of the spectrum. Research has shown that it is
possible for two colliding O2 molecules to absorb a sin-
gle photon, sharing its energy equally. The transition
that both molecules undergo is the same transition that
results when they absorb 1269-nm radiation. What is
the wavelength of the single photon that causes this
double transition? What is the color of this radiation?

42. Two hydrogen atoms collide head-on and end up with
zero kinetic energy. Each then emits a photon with a
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5
Matter Waves

5.1 The Pilot Waves of de Broglie
De Broglie’s Explanation of

Quantization in the
Bohr Model

5.2 The Davisson–Germer Experiment
The Electron Microscope

5.3 Wave Groups and Dispersion
Matter Wave Packets

5.4 Fourier Integrals (Optional)
Constructing Moving Wave Packets

5.5 The Heisenberg Uncertainty
Principle
A Different View of the Uncertainty

Principle

5.6 If Electrons Are Waves, 
What’s Waving?

5.7 The Wave–Particle Duality
The Description of Electron Diffraction

in Terms of �
A Thought Experiment: Measuring

Through Which Slit the Electron
Passes

5.8 A Final Note

Summary

Chapter Outline

In the previous chapter we discussed some important discoveries and theo-
retical concepts concerning the particle nature of matter. We now point out
some of the shortcomings of these theories and introduce the fascinating
and bizarre wave properties of particles. Especially notable are Count Louis de
Broglie’s remarkable ideas about how to represent electrons (and other
particles) as waves and the experimental confirmation of de Broglie’s
hypothesis by the electron diffraction experiments of Davisson and Germer.
We shall also see how the notion of representing a particle as a localized
wave or wave group leads naturally to limitations on simultaneously mea-
suring position and momentum of the particle. Finally, we discuss the
passage of electrons through a double slit as a way of “understanding” the
wave – particle duality of matter.
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5.1 THE PILOT WAVES OF DE BROGLIE

By the early 1920s scientists recognized that the Bohr theory contained many
inadequacies:

• It failed to predict the observed intensities of spectral lines.
• It had only limited success in predicting emission and absorption wave-

lengths for multielectron atoms.
• It failed to provide an equation of motion governing the time develop-

ment of atomic systems starting from some initial state.
• It overemphasized the particle nature of matter and could not explain

the newly discovered wave–particle duality of light.
• It did not supply a general scheme for “quantizing” other systems, espe-

cially those without periodic motion.

The first bold step toward a new mechanics of atomic systems was taken by
Louis Victor de Broglie in 1923 (Fig. 5.1). In his doctoral dissertation he pos-
tulated that because photons have wave and particle characteristics, perhaps all forms
of matter have wave as well as particle properties. This was a radical idea with no
experimental confirmation at that time. According to de Broglie, electrons
had a dual particle–wave nature. Accompanying every electron was a wave
(not an electromagnetic wave!), which guided, or “piloted,” the electron
through space. He explained the source of this assertion in his 1929 Nobel
prize acceptance speech:

On the one hand the quantum theory of light cannot be considered satisfactory
since it defines the energy of a light corpuscle by the equation E � hf containing the
frequency f. Now a purely corpuscular theory contains nothing that enables us to
define a frequency; for this reason alone, therefore, we are compelled, in the case of
light, to introduce the idea of a corpuscle and that of periodicity simultaneously. On
the other hand, determination of the stable motion of electrons in the atom intro-
duces integers, and up to this point the only phenomena involving integers in
physics were those of interference and of normal modes of vibration. This fact sug-
gested to me the idea that electrons too could not be considered simply as corpus-
cles, but that periodicity must be assigned to them also.

Let us look at de Broglie’s ideas in more detail. He concluded that the
wavelength and frequency of a matter wave associated with any moving object
were given by

(5.1)

and

(5.2)

where h is Planck’s constant, p is the relativistic momentum, and E is the total rel-
ativistic energy of the object. Recall from Chapter 2 that p and E can be written as

(5.3)

and

(5.4)E2 � p2c2 � m2c4 � �2m2c4

p � �mv

f �
E

h

� �
h

p
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Figure 5.1 Louis de Broglie
was a member of an aristocratic
French family that produced
marshals, ambassadors, foreign
ministers, and at least one duke,
his older brother Maurice de
Broglie. Louis de Broglie came
rather late to theoretical physics,
as he first studied history. Only
after serving as a radio operator
in World War I did he follow the
lead of his older brother and
begin his studies of physics.
Maurice de Broglie was an out-
standing experimental physicist
in his own right and conducted
experiments in the palatial fam-
ily mansion in Paris. (AIP Meggers

Gallery of Nobel Laureates)

De Broglie wavelength
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where � � (1 � v2/c2)�1/2 and v is the object’s speed. Equations 5.1 and 5.2
immediately suggest that it should be easy to calculate the speed of a de
Broglie wave from the product �f . However, as we will show later, this is not
the speed of the particle. Since the correct calculation is a bit complicated, we
postpone it to Section 5.3. Before taking up the question of the speed of
matter waves, we prefer first to give some introductory examples of the use of
� � h/p and a brief description of how de Broglie waves provide a physical
picture of the Bohr theory of atoms.

De Broglie’s Explanation of Quantization
in the Bohr Model

Bohr’s model of the atom had many shortcomings and problems. For exam-
ple, as the electrons revolve around the nucleus, how can one understand
the fact that only certain electronic energies are allowed? Why do all atoms
of a given element have precisely the same physical properties regardless of
the infinite variety of starting velocities and positions of the electrons in
each atom?

De Broglie’s great insight was to recognize that although these are deep
problems for particle theories, wave theories of matter handle these problems
neatly by means of interference. For example, a plucked guitar string,
although initially subjected to a wide range of wavelengths, supports only
standing wave patterns that have nodes at each end. Thus only a discrete set
of wavelengths is allowed for standing waves, while other wavelengths not
included in this discrete set rapidly vanish by destructive interference. This
same reasoning can be applied to electron matter waves bent into a circle
around the nucleus. Although initially a continuous distribution of wave-
lengths may be present, corresponding to a distribution of initial electron
velocities, most wavelengths and velocities rapidly die off. The residual stand-
ing wave patterns thus account for the identical nature of all atoms of a given
element and show that atoms are more like vibrating drum heads with discrete
modes of vibration than like miniature solar systems. This point of view is
emphasized in Figure 5.2, which shows the standing wave pattern of the
electron in the hydrogen atom corresponding to the n � 3 state of the Bohr
theory.

Another aspect of the Bohr theory that is also easier to visualize physically
by using de Broglie’s hypothesis is the quantization of angular momentum.
One simply assumes that the allowed Bohr orbits arise because the elec-
tron matter waves interfere constructively when an integral number of
wavelengths exactly fits into the circumference of a circular orbit. Thus

n� � 2�r (5.5)

where r is the radius of the orbit. From Equation 5.1, we see that � � h/mev.
Substituting this into Equation 5.5, and solving for mevr, the angular momen-
tum of the electron, gives

(5.6)

Note that this is precisely the Bohr condition for the quantization of angular
momentum.

mevr � n�
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r

λ

Figure 5.2 Standing waves fit
to a circular Bohr orbit. In this
particular diagram, three wave-
lengths are fit to the orbit, cor-
responding to the n � 3 energy
state of the Bohr theory.
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(b) Calculate � if the particle is an electron and
V � 50 V.

Solution The de Broglie wavelength of an electron
accelerated through 50 V is

This wavelength is of the order of atomic dimensions and
the spacing between atoms in a solid. Such low-energy
electrons are routinely used in electron diffraction exper-
iments to determine atomic positions on a surface.

Exercise 1 (a) Show that the de Broglie wavelength for
an electron accelerated from rest through a large poten-
tial difference, V, is

(5.7)

where � is in angstroms (Å) and V is in volts. (b) Calcu-
late the percent error introduced when � � 12.27/V 1/2

is used instead of the correct relativistic expression for
10 MeV electrons.

Answer (b) 230%.

� �
12.27

V 1/2 � Ve

2mec2 � 1�
�1/2

� 1.7 	 10�10 m � 1.7 Å

�
6.63 	 10�34 J
s

√2(9.11 	 10�31 kg)(1.6 	 10�19 C)(50 V)

� �
h

√2meqV

� �
h

p
�

h

√2mqV

EXAMPLE 5.1 Why Don’t We See the Wave
Properties of a Baseball?

An object will appear “wavelike” if it exhibits interference
or diffraction, both of which require scattering objects or
apertures of about the same size as the wavelength. A
baseball of mass 140 g traveling at a speed of 60 mi/h
(27 m/s) has a de Broglie wavelength given by

Even a nucleus (whose size is � 10�15 m) is much too
large to diffract this incredibly small wavelength! This
explains why all macroscopic objects appear particle-like.

EXAMPLE 5.2 What Size “Particles” Do 
Exhibit Diffraction?

A particle of charge q and mass m is accelerated from
rest through a small potential difference V. (a) Find its
de Broglie wavelength, assuming that the particle is non-
relativistic.

Solution When a charge is accelerated from rest through
a potential difference V, its gain in kinetic energy, mv2,
must equal the loss in potential energy qV. That is,

Because p � mv, we can express this in the form

Substituting this expression for p into the de Broglie rela-
tion � � h/p gives

p2

2m
� qV  or  p � √2mqV

1
2 mv2 � qV

1
2

� �
h

p
�

6.63 	 10�34 J
s

(0.14 kg)(27 m/s)
� 1.7 	 10�34 m

5.2 THE DAVISSON–GERMER EXPERIMENT

Direct experimental proof that electrons possess a wavelength � � h/p was
furnished by the diffraction experiments of American physicists Clinton J.
Davisson (1881–1958) and Lester H. Germer (1896–1971) at the Bell Labora-
tories in New York City in 1927 (Fig. 5.3).1 In fact, de Broglie had already sug-
gested in 1924 that a stream of electrons traversing a small aperture should
exhibit diffraction phenomena. In 1925, Einstein was led to the necessity of
postulating matter waves from an analysis of fluctuations of a molecular gas. In
addition, he noted that a molecular beam should show small but measurable
diffraction effects. In the same year, Walter Elsasser pointed out that the slow

1C. J. Davisson and L. H. Germer, Phys. Rev. 30:705, 1927.
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electron scattering experiments of C. J. Davisson and C. H. Kunsman at the
Bell Labs could be explained by electron diffraction.

Clear-cut proof of the wave nature of electrons was obtained in 1927 by the
work of Davisson and Germer in the United States and George P. Thomson
(British physicist, 1892–1975, the son of J. J. Thomson) in England. Both
cases are intriguing not only for their physics but also for their human inter-
est. The first case was an accidental discovery, and the second involved the
discovery of the particle properties of the electron by the father and the wave
properties by the son.

The crucial experiment of Davisson and Germer was an offshoot of an at-
tempt to understand the arrangement of atoms on the surface of a nickel sam-
ple by elastically scattering a beam of low-speed electrons from a polycrys-
talline nickel target. A schematic drawing of their apparatus is shown in Figure
5.4. Their device allowed for the variation of three experimental parameters—
electron energy; nickel target orientation, �; and scattering angle, �. Before a
fortunate accident occurred, the results seemed quite pedestrian. For constant
electron energies of about 100 eV, the scattered intensity rapidly decreased as
� increased. But then someone dropped a flask of liquid air on the glass vac-
uum system, rupturing the vacuum and oxidizing the nickel target, which had
been at high temperature. To remove the oxide, the sample was reduced by
heating it cautiously2 in a flowing stream of hydrogen. When the apparatus
was reassembled, quite different results were found: Strong variations in the
intensity of scattered electrons with angle were observed, as shown in Figure
5.5. The prolonged heating had evidently annealed the nickel target, causing
large single-crystal regions to develop in the polycrystalline sample. These crys-
talline regions furnished the extended regular lattice needed to observe elec-
tron diffraction. Once Davisson and Germer realized that it was the elastic
scattering from single crystals that produced such unusual results (1925), they
initiated a thorough investigation of elastic scattering from large single crystals
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Figure 5.3 Clinton J. Davisson (left) and Lester H. Germer (center) at Bell Laborato-
ries in New York City. (Bell Laboratories, courtesy AIP Emilio Segrè Visual Archives)

2At present this can be done without the slightest fear of “stinks or bangs,” because 5% hydro-
gen–95% argon safety mixtures are commercially available.
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with predetermined crystallographic orientation. Even these experiments were
not conducted at first as a test of de Broglie’s wave theory, however. Following
discussions with Richardson, Born, and Franck, the experiments and their
analysis finally culminated in 1927 in the proof that electrons experience dif-
fraction with an electron wavelength that is given by � � h/p.
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Figure 5.5 A polar plot of scattered intensity versus scattering angle for 54-eV elec-
trons, based on the original work of Davisson and Germer. The scattered intensity is
proportional to the distance of the point from the origin in this plot.
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Figure 5.4 A schematic diagram of the Davisson–Germer apparatus.
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The idea that electrons behave like waves when interacting with the atoms
of a crystal is so striking that Davisson and Germer’s proof deserves closer
scrutiny. In effect, they calculated the wavelength of electrons from a
simple diffraction formula and compared this result with de Broglie’s formula
� � h/p. Although they tested this result over a wide range of target orienta-
tions and electron energies, we consider in detail only the simple case shown
in Figures 5.4 and 5.5 with � � 90.0, V � 54.0 V, and � � 50.0, correspond-
ing to the n � 1 diffraction maximum. In order to calculate the de Broglie
wavelength for this case, we first obtain the velocity of a nonrelativistic elec-
tron accelerated through a potential difference V from the energy relation

Substituting into the de Broglie relation gives

(5.8)

Thus the wavelength of 54.0-V electrons is

The experimental wavelength may be obtained by considering the nickel
atoms to be a reflection diffraction grating, as shown in Figure 5.6. Only the
surface layer of atoms is considered because low-energy electrons, unlike 
x-rays, do not penetrate deeply into the crystal. Constructive interference oc-
curs when the path length difference between two adjacent rays is an integral
number of wavelengths or

d sin � � n� (5.9)

As d was known to be 2.15 Å from x-ray diffraction measurements, Davisson
and Germer calculated � to be

� � (2.15 Å)(sin 50.0) � 1.65 Å

in excellent agreement with the de Broglie formula.

� 1.67 	 10�10 m � 1.67 Å

� �
6.63 	 10�34 J
s

√2(54.0 V)(1.60 	 10�19 C)(9.11 	 10�31 kg)

� �
h

mev
�

h

√2Veme

v � √2Ve/me

1
2 mev

2 � eV
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Figure 5.6 Constructive interference of electron matter waves scattered from a single
layer of atoms at an angle �.

φ
φ

B
A

d

AB =  d sin     = nλφ

Figure 5.7 Diffraction of 50-kV
electrons from a film of
Cu3Au. The alloy film was
400 Å thick. (Courtesy of the late

Dr. L. H. Germer)
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It is interesting to note that while the diffraction lines from low-energy
reflected electrons are quite broad (see Fig. 5.5), the lines from high-
energy electrons transmitted through metal foils are quite sharp (see Fig.
5.7). This effect occurs because hundreds of atomic planes are penetrated
by high-energy electrons, and consequently Equation 5.9, which treats
diffraction from a surface layer, no longer holds. Instead, the Bragg law,
2d sin � � n�, applies to high-energy electron diffraction. The maxima are
extremely sharp in this case because if 2d sin � is not exactly equal to n�,
there will be no diffracted wave. This occurs because there are scattering
contributions from so many atomic planes that eventually the path length
difference between the wave from the first plane and some deeply buried
plane will be an odd multiple of �/2, resulting in complete cancellation of
these waves (see Problem 13).

If de Broglie’s postulate is true for all matter, then any object of mass m has
wavelike properties and a wavelength � � h/p. In the years following Davisson
and Germer’s discovery, experimentalists tested the universal character of
de Broglie’s postulate by searching for diffraction of other “particle” beams.
In subsequent experiments, diffraction was observed for helium atoms
(Estermann and Stern in Germany) and hydrogen atoms ( Johnson in the
United States). Following the discovery of the neutron in 1932, it was shown
that neutron beams of the appropriate energy also exhibit diffraction when
incident on a crystalline target (Fig. 5.8).
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ticle in thermal equilibrium is for each indepen-
dent direction of motion, neutrons at room temperature
(300 K) possess a kinetic energy of

Thus “thermal neutrons,” or neutrons in thermal equilib-
rium with matter at room temperature, possess energies of
the right order of magnitude to diffract appreciably from
single crystals. Neutrons produced in a nuclear reactor are
far too energetic to produce diffraction from crystals and
must be slowed down in a graphite column as they leave
the reactor. In the graphite moderator, repeated collisions
with carbon atoms ultimately reduce the average neutron
energies to the average thermal energy of the carbon
atoms. When this occurs, these so-called thermalized neu-
trons possess a distribution of velocities and a correspond-
ing distribution of de Broglie wavelengths with average
wavelengths comparable to crystal spacings.

� 0.0388 eV

K � 3
2 kBT � (1.50)(8.62 	 10�5 eV/K)(300 K)

1
2 kBT

EXAMPLE 5.3 Thermal Neutrons

What kinetic energy (in electron volts) should neutrons
have if they are to be diffracted from crystals?

Solution Appreciable diffraction will occur if the de
Broglie wavelength of the neutron is of the same order of
magnitude as the interatomic distance. Taking � � 1.00 Å,
we find

The kinetic energy is given by

Note that these neutrons are nonrelativistic because K is
much less than the neutron rest energy of 940 MeV,
and so our use of the classical expression K � p2/2mn

is justified. Because the average thermal energy of a par-

� 1.32 	 10�20 J � 0.0825 eV

K �
p2

2mn
�

(6.63 	 10�24 J
s)2

2(1.66 	 10�27 kg)

p �
h

�
�

6.63 	 10�34 J
s

1.00 	 10�10 m
� 6.63 	 10�24 kg
m/s
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The Electron Microscope

The idea that electrons have a controllable wavelength that can be made much
shorter than visible light wavelengths and, accordingly, possess a much better
ability to resolve fine details was only one of the factors that led to the develop-
ment of the electron microscope. In fact, ideas of such a device were tossed
about in the cafés and bars of Paris and Berlin as early as 1928. What really made
the difference was the coming together of several lines of development—elec-
tron tubes and circuits, vacuum technology, and electron beam control—all pio-
neered in the development of the cathode ray tube (CRT). These factors led to
the construction of the first transmission electron microscope (TEM) with mag-
netic lenses by electrical engineers Max Knoll and Ernst Ruska in Berlin in 1931.
The testament to the fortitude and brilliance of Knoll and Ruska in overcoming
the “cussedness of objects” and building and getting such a complicated experi-
mental device to work for the first time is shown in Figure 5.10. It is remarkable
that although the overall performance of the TEM has been improved thousands
of times since its invention, it is basically the same in principle as that first de-
signed by Knoll and Ruska: a device that focuses electron beams with magnetic
lenses and creates a flat-looking two-dimensional shadow pattern on its screen,
the result of varying degrees of electron transmission through the object. Figure
5.11a is a diagram showing this basic design and Figure 5.11b shows, for compari-
son, an optical projection microscope. The best optical microscopes using ultravi-
olet light have a magnification of about 2000 and can resolve two objects sepa-
rated by 100 nm, but a TEM using electrons accelerated through 100 kV has a
magnification of as much as 1,000,000 and a maximum resolution of 0.2 nm. In
practice, magnifications of 10,000 to 100,000 are easier to use. Figure 5.12 shows
typical TEM micrographs of microbes, Figure 5.12b showing a microbe and its
DNA strands magnified 40,000 times. Although it would seem that increasing
electron energy should lead to shorter electron wavelength and increased resolu-
tion, imperfections or aberrations in the magnetic lenses actually set the limit of
resolution at about 0.2 nm. Increasing electron energy above 100 keV does not
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Neutrons with a
range of velocities

Disk A

0.5 m

Disk B

ω

Figure 5.9 A neutron velocity selector. The slot in disk
B lags the slot in disk A by 10.

Exercise 2 Monochromatic Neutrons. A beam of neutrons
with a single wavelength may be produced by means of a
mechanical velocity selector of the type shown in Figure
5.9. (a) Calculate the speed of neutrons with a wave-
length of 1.00 Å. (b) What rotational speed (in rpm)
should the shaft have in order to pass neutrons with
wavelength of 1.00 Å?

Answers (a) 3.99 	 103 m/s. (b) 13,300 rev/min.

Ernst Ruska played a major role
in the invention of the TEM. He
was awarded the Nobel prize in
physics for this work in 1986.
(AIP Emilio Segre Visual Archives,

W. F. Meggers Gallery of Nobel

Laureates)
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Figure 5.11 (a) Schematic drawing of a transmission electron microscope with mag-
netic lenses. (b) Schematic of a light-projection microscope.
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5.2 THE DAVISSON–GERMER EXPERIMENT 161

improve resolution—it only permits electrons to sample regions deeper inside
an object. Figures 5.13a and 5.13b show, respectively, a diagram of a modern
TEM and a photo of the same instrument.

A second type of electron microscope with less resolution and magnifica-
tion than the TEM, but capable of producing striking three-dimensional
images, is the scanning electron microscope (SEM). Figure 5.14 shows dra-
matic three-dimensional SEM micrographs made possible by the large
range of focus (depth of field) of the SEM, which is several hundred times
better than that of a light microscope. The SEM was the brainchild of the
same Max Knoll who helped invent the TEM. Knoll had recently moved to
the television department at Telefunken when he conceived of the idea in
1935. The SEM produces a sort of giant television image by collecting elec-
trons scattered from an object, rather than light. The first operating scan-
ning microscope was built by M. von Ardenne in 1937, and it was extensively
developed and perfected by Vladimir Zworykin and collaborators at RCA
Camden in the early 1940s.

Figure 5.15 shows how a typical SEM works. Such a device might be oper-
ated with 20-keV electrons and have a resolution of about 10 nm and a magni-
fication ranging from 10 to 100,000. As shown in Figure 5.15, an electron
beam is sharply focused on a specimen by magnetic lenses and then scanned
(rastered) across a tiny region on the surface of the specimen. The high-
energy primary beam scatters lower-energy secondary electrons out of the
object depending on specimen composition and surface topography. These
secondary electrons are detected by a plastic scintillator coupled to a photo-
multiplier, amplified, and used to modulate the brightness of a simultaneously

(a) (b)

Figure 5.12 (a) A false-color TEM micrograph of tuberculosis bacteria. (b) A TEM
micrograph of a microbe leaking DNA (	40,000). (CNRI/Photo Researchers, Inc., Dr.

Gopal Murti/Photo Researchers, Inc.)
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(a) (b)

Figure 5.14 (a) A SEM micrograph showing blood cells in a tiny artery. (b) A SEM
micrograph of a single neuron (	4000). (P. Motta & S. Correr/Photo Researchers, Inc.,

David McCarthy/Photo Researchers, Inc.)

Figure 5.13 (a) Diagram of a transmission electron microscope. (b) A photo of the
same TEM. (W. Ormerod/Visuals Unlimited)

(a) (b)
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rastered display CRT. The ratio of the display raster size to the microscope
electron beam raster size determines the magnification. Modern SEM’s can
also collect x-rays and high-energy electrons from the specimen to detect
chemical elements at certain locations on the specimen’s surface, thus answer-
ing the bonus question, “Is the bitty bump on the bilayer boron or bismuth?”
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The newer, higher-resolution scanning tunneling microscope (STM)
and atomic force microscope (AFM), which can image individual
atoms and molecules, are discussed in Chapter 7. These instruments are excit-
ing not only for their superb pictures of surface topography and indi-
vidual atoms (see Figure 5.16 for an AFM picture) but also for their potential
as microscopic machines capable of detecting and moving a few atoms at a
time in proposed microchip terabit memories and mass spectrometers.

Figure 5.15 The working parts of a scanning electron microscope.
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Figure 5.16 World’s smallest electrical wire. An AFM image of a carbon nanotube
wire on platinum electrodes. The wire is 1.5 nm wide, a mere 10 atoms. The magnifica-
tion is 120,000. (Delft University of Technology/Photo Researchers, Inc.)
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5.3 WAVE GROUPS AND DISPERSION

The matter wave representing a moving particle must reflect the fact that
the particle has a large probability of being found in a small region of space
only at a specific time. This means that a traveling sinusoidal matter wave
of infinite extent and constant amplitude cannot properly represent a
localized moving particle. What is needed is a pulse, or “wave group,” of
limited spatial extent. Such a pulse can be formed by adding sinusoidal
waves with different wavelengths. The resulting wave group can then
be shown to move with a speed vg (the group speed) identical to the classi-
cal particle speed. This argument is shown schematically in Figure 5.17
and will be treated in detail after the introduction of some general ideas
about wave groups.

Actually, all observed waves are limited to definite regions of space and
are called pulses, wave groups, or wave packets in the case of matter waves. The
plane wave with an exact wavelength and infinite extension is an abstrac-
tion. Water waves from a stone dropped into a pond, light waves emerging
from a briefly opened shutter, a wave generated on a taut rope by a single
flip of one end, and a sound wave emitted by a discharging capacitor must
all be modeled by wave groups. A wave group consists of a superposition of
waves with different wavelengths, with the amplitude and phase of each com-
ponent wave adjusted so that the waves interfere constructively over a small
region of space. Outside of this region the combination of waves produces a
net amplitude that approaches zero rapidly as a result of destructive inter-
ference. Perhaps the most familiar physical example in which wave groups
arise is the phenomenon of beats. Beats occur when two sound waves of
slightly different wavelength (and hence different frequency) are com-
bined. The resultant sound wave has a frequency equal to the average of the
two combining waves and an amplitude that fluctuates, or “beats,” at a rate
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(b)

vg  = vo

(a)

m

x
v0

Figure 5.17 Representing a particle with matter waves: (a) particle of mass m and
speed v0; (b) superposition of many matter waves with a spread of wavelengths cen-
tered on �0 � h/mv0 correctly represents a particle.
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given by the difference of the two original frequencies. This case is illus-
trated in Figure 5.18.

Let us examine this situation mathematically. Consider a one-dimensional
wave propagating in the positive x direction with a phase speed vp. Note that vp

is the speed of a point of constant phase on the wave, such as a wave crest or
trough. This traveling wave with wavelength �, frequency f, and amplitude A
may be described by

(5.10)

where � and f are related by

vp � �f (5.11)

A more compact form for Equation 5.10 results if we take � � 2�f (where � is
the angular frequency) and k � 2�/� (where k is the wavenumber). With these
substitutions the infinite wave becomes

y � A cos(kx � �t) (5.12)

with

(5.13)

Let us now form the superposition of two waves of equal amplitude both trav-
eling in the positive x direction but with slightly different wavelengths, fre-
quencies, and phase velocities. The resultant amplitude y is given by

y � y1 � y2 � A cos(k1x � �1t) � A cos(k2x � �2t)

Using the trigonometric identity

cos a � cos b � 2 cos 12 (a � b) 
 cos 1
2 (a � b)

vp �
�

k

y � A cos � 2�x

�
� 2�ft�
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y

(a)

(b)

y

t

t

Individual waves 180° out
of phase In phase

Figure 5.18 Beats are formed by the combination of two waves of slightly different
frequency traveling in the same direction. (a) The individual waves. (b) The combined
wave has an amplitude (broken line) that oscillates in time.

Phase velocity
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we find

(5.14)

For the case of two waves with slightly different values of k and �, we see that
�k � k2 � k1 and �� � �2 � �1 are small, but (k1 � k2) and (�1 � �2) are
large. Thus, Equation 5.14 may be interpreted as a broad sinusoidal envelope

limiting or modulating a high-frequency wave within the envelope

This superposition of two waves is shown in Figure 5.19.
Although our model is primitive and does not represent a pulse limited to a

small region of space, it shows several interesting features common to more
complicated models. For example, the envelope and the wave within the
envelope move at different speeds. The speed of either the high-frequency
wave or the envelope is given by dividing the coefficient of the t term by the
coefficient of the x term as was done in Equations 5.12 and 5.13. For the wave
within the envelope,

Thus, the high-frequency wave moves at the phase velocity v1 of one of
the waves or at v2 because v1 � v2. The envelope or group described by
2A cos[(�k/2)x � (��/2)t] moves with a different velocity however, the
group velocity given by

(5.15)vg �
(�2 � �1)/2

(k2 � k1)/2
�

��

�k

vp �
(�1 � �2)/2

(k1 � k2)/2
�

�1

k1
� v1

cos[ 1
2 (k1 � k2)x � 1

2 (�1 � �2)t]

2A cos � �k

2
x �

��

2
t�

y � 2A cos 12 {(k2 � k1)x � (�2 � �1)t } 
 cos 1
2 {(k1 � k2)x � (�1 � �2)t }
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y

x

∆x

High-frequency wave

cos

Broad
envelope

k1 + k2––––––
2

∆k–––
2x 2A cos x( ) ( )

Figure 5.19 Superposition of two waves of slightly different wavelengths resulting in
primitive wave groups; t has been set equal to zero in Equation 5.14.
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Another general characteristic of wave groups for waves of any type is both
a limited duration in time, �t, and a limited extent in space, �x. It is found
that the smaller the spatial width of the pulse, �x, the larger the range of wave-
lengths or wavenumbers, �k, needed to form the pulse. This may be stated
mathematically as

(5.16)

Likewise, if the time duration, �t, of the pulse is small, we require a wide
spread of frequencies, ��, to form the group. That is,

(5.17)

In pulse electronics, this condition is known as the “response time–bandwidth
formula.”3 In this situation Equation 5.17 shows that in order to amplify a volt-
age pulse of time width �t without distortion, a pulse amplifier must equally
amplify all frequencies in a frequency band of width ��.

Equations 5.16 and 5.17 are important because they constitute “uncertainty
relations,” or “reciprocity relations,” for pulses of any kind—electromagnetic,
sound, or even matter waves. In particular, Equation 5.16 shows that �x, the
uncertainty in spatial extent of a pulse, is inversely proportional to �k, the
range of wavenumbers making up the pulse: both �x and �k cannot become
arbitrarily small, but as one decreases the other must increase.

It is interesting that our simple two-wave model also shows the general prin-
ciples given by Equations 5.16 and 5.17. If we call (rather artificially) the spa-
tial extent of our group the distance between adjacent minima (labeled �x in
Figure 5.12), we find from the envelope term the condition

or

(5.18)

Here, �k � k2 � k1 is the range of wavenumbers present. Likewise, if x is
held constant and t is allowed to vary in the envelope portion of Equation
5.14, the result is (�2 � �1) �t � �, or

�� �t � 2� (5.19)

Therefore, Equations 5.18 and 5.19 agree with the general principles, respec-
tively, of �k �x � 1 and �� �t � 1.

The addition of only two waves with discrete frequencies is instructive but
produces an infinite wave instead of a true pulse. In the general case, many
waves having a continuous distribution of wavelengths must be added to form
a packet that is finite over a limited range and really zero everywhere else. In
this case Equation 5.15 for the group velocity, vg becomes

(5.20)vg �
d�

dk �
k 0

1
2

�k �x � 2�

1
2 �k �x � �

2A cos(1
2 �kx)

�t �� � 1

�x �k � 1
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3It should be emphasized that Equations 5.16 and 5.17 are true in general and that the quantities
�x, �k, �t, and �� represent the spread in values present in an arbitrary pulse formed from the
superposition of two or more waves.

Group velocity
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where the derivative is to be evaluated at k0, the central wavenumber of the
many waves present. The connection between the group velocity and the phase
velocity of the composite waves is easily obtained. Because � � kvp, we find

(5.21)

where vp is the phase velocity and is, in general, a function of k or �. Materi-
als in which the phase velocity varies with wavelength are said to exhibit
dispersion. An example of a dispersive medium is glass, in which the index
of refraction varies with wavelength and different colors of light travel at
different speeds. Media in which the phase velocity does not vary with
wavelength (such as vacuum for electromagnetic waves) are termed nondis-
persive. The term dispersion arises from the fact that the individual har-
monic waves that form a pulse travel at different phase velocities and cause
an originally sharp pulse to change shape and become spread out, or
dispersed. As an example, dispersion of a laser pulse after traveling 1 km
along an optical fiber is shown in Figure 5.20. In a nondispersive medium
where all waves have the same velocity, the group velocity is equal to
the phase velocity. In a dispersive medium the group velocity can be less
than or greater than the phase velocity, depending on the sign of dvp/dk, as
shown by Equation 5.21.

vg �
d�

dk �
k0

� vp �
k0

� k
dvp

dk �
k0
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Figure 5.20 Dispersion in a
1-ns laser pulse. A pulse that
starts with the width shown by
the vertical lines has a time width
of approximately 30 ns after trav-
eling 1 km along an optical fiber.

where g is the acceleration of gravity and where the
minor contribution of surface tension has been ignored.
Show that in this case the velocity of a group of these
waves is one-half of the phase velocity of the central wave-
length.

Solution Because k � 2�/�, we can write vp as

Therefore, we find

� 1
2� g

k0
�

1/2

� 1
2 vp �

k 0

vg � vp �
k 0

� k
dvp

dk �
k 0

� � g

k0
�

1/2

� 1
2� g

k0
�

1/2

vp � � g

k �
1/2

vp � √ g�

2�

EXAMPLE 5.4 Group Velocity in a
Dispersive Medium

In a particular substance the phase velocity of waves
doubles when the wavelength is halved. Show that
wave groups in this system move at twice the central phase
velocity.

Solution From the given information, the dependence
of phase velocity on wavelength must be

for some constants A� and A. From Equation 5.21 we ob-
tain

Thus,

EXAMPLE 5.5 Group Velocity in Deep
Water Waves

Newton showed that the phase velocity of deep water
waves having wavelength � is given by

vg � 2vp �
k0

� Ak0 � Ak0 � 2Ak0vg � vp �
k0

� k
dvp

dk �
k0

vp �
A�

�
� Ak
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Matter Wave Packets

We are now in a position to apply our general theory of wave groups to
electrons. We shall show both the dispersion of de Broglie waves and the satis-
fying result that the wave packet and the particle move at the same velocity.
According to de Broglie, individual matter waves have a frequency f and a
wavelength � given by

where E and p are the relativistic energy and momentum of the particle,
respectively. The phase speed of these matter waves is given by

(5.22)

The phase speed can be expressed as a function of p or k alone by substituting
E � (p2c2 � m2c4)1/2 into Equation 5.22:

(5.23)

The dispersion relation for de Broglie waves can be obtained as a function of k
by substituting p � h/� � �k into Equation 5.23. This gives

(5.24)

Equation 5.24 shows that individual de Broglie waves representing a particle of
mass m show dispersion even in empty space and always travel at a speed that is
greater than or at least equal to c. Because these component waves travel at
different speeds, the width of the wave packet, �x, spreads or disperses as
time progresses, as will be seen in detail in Chapter 6. To obtain the group
speed, we use

and Equation 5.24. After some algebra, we find

(5.25)

Solving for the phase speed from Equation 5.22, we find

where v is the particle’s speed. Finally, substituting vp � c 2/v into Equation
5.25 for vg shows that the group velocity of the matter wave packet is the same
as the particle speed. This agrees with our intuition that the matter wave enve-
lope should move at the same speed as the particle.

vp �
E

p
�

�mc2

�mv
�

c2

v

vg �
c

�1 � � mc

�k0
�

2

�
1/2

�
c2

vp �
k0

vg � �vp � k
dvp

dk �
k0

vp � c √1 � � mc

�k �
2

vp � c √1 � � mc

p �
2

vp � f� �
E

p

f �
E

h
  and  � �

h

p

Phase velocity of matter

waves
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5.4 FOURIER INTEGRALS

In this section we show in detail how to construct wave groups, or pulses, that are

truly localized in space or time and also show that very general reciprocity relations

of the type �k�x � 1 and ���t � 1 hold for these pulses.

To form a true pulse that is zero everywhere outside of a finite spatial range �x

requires adding together an infinite number of harmonic waves with continuously

varying wavelengths and amplitudes. This addition can be done with a Fourier inte-

gral, which is defined as follows:

(5.26)

Here f(x) is a spatially localized wave group, a(k) gives the amount or amplitude of

the wave with wavenumber k � (2�/�) to be added, and e ikx � cos kx � i sin kx is

Euler’s compact expression for a harmonic wave. The amplitude distribution func-

tion a(k) can be obtained if f (x) is known by using the symmetric formula

(5.27)

Equations 5.26 and 5.27 apply to the case of a spatial pulse at fixed time, but it is

important to note that they are mathematically identical to the case of a time pulse

passing a fixed position. This case is common in electrical engineering and involves

adding together a continuously varying set of frequencies:

(5.28)

(5.29)

where V(t) is the strength of a signal as a function of time, and g(�) is the spectral

content of the signal and gives the amount of the harmonic wave with frequency �

that is present.

Let us now consider several examples of how to use Equations 5.26 through

5.29 and how they lead to uncertainty relationships of the type �� �t � 1

and �k �x � 1.

EXAMPLE 5.6

This example compares the spectral contents of infinite and truncated sinusoidal

waves. A truncated sinusoidal wave is a wave cut off or truncated by a shutter,

as shown in Figure 5.21. (a) What is the spectral content of an infinite sinusoidal

wave ? (b) Find and sketch the spectral content of a truncated sinusoidal wave

given by

(c) Show that for this truncated sinusoid �t �� � �, where �t and �� are the half-

widths of v(t) and g(�), respectively.

Solution (a) The spectral content consists of a single strong contribution at the

frequency �0.

V(t) � 0  otherwise

V(t) � ei�0t  �T � t � �T

ei�0t

g(�) �
1

√2�
���

��

V(t)e�i�tdt

V(t) �
1

√2�
���

��

g(�)ei�td�

a(k) �
1

√2�
���

��
f(x)e�ikxdk

f(x) �
1

√2�
���

��
a(k)eikxdk
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(b)

Because the sine term is an odd function and the cosine is even, the integral

reduces to

A sketch of g(�) (Figure 5.22) shows a typical sin Z/Z profile centered on �0. Note

that both positive and negative amounts of different frequencies must be added to

produce the truncated sinusoid. Furthermore, the strongest frequency contribution

comes from the frequency region near � � �0, as expected.

(c) �t clearly equals T and �� may be taken to be half the width of the main lobe of

g(�), �� � �/T. Thus, we get

�� �t �
�

T
	 T � �

g(�) �
2

√2�
�T

0
cos(�0 � �)t dt � √ 2

�

sin(�0 � �)T

(�0 � �)
� √ 2

�
(T )

sin(�0 � �)T

(�0 � �)T

�
1

√2�
��T

�T
[cos(�0 � �)t � i sin(�0 � �)t] dt

g(�) �
1

√2�
���

��

V(t)e�i�tdt �
1

√2�
��T

�T
ei(�0��)t dt
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Figure 5.21 (Example 5.6) The real part of a truncated sinusoidal wave.
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Figure 5.22 (Example 5.6) The Fourier transform of a truncated sinusoidal wave.
The curve shows the amount of a given frequency that must be added to produce
the truncated wave.
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We see that the product of the spread in frequency, ��, and the spread in time, �t,

is a constant independent of T.

EXAMPLE 5.7 A Matter Wave Packet

(a) Show that the matter wave packet whose amplitude distribution a(k) is a rec-

tangular pulse of height unity, width �k , and centered at k 0 (Fig. 5.23) has the

form

Solution

(b) Observe that this wave packet is a complex function. Later in this chapter we

shall see how the definition of probability density results in a real function, but for

the time being consider only the real part of f (x) and make a sketch of its behavior,

showing its envelope and the cosine function within. Determine �x, and show that

an uncertainty relation of the form �x �k � 1 holds.

Solution The real part of the wave packet is shown in Figure 5.24 where the

full width of the main lobe is �x � 4�/�k. This immediately gives the uncertainty

relation �x �k � 4�. Note that the constant on the right-hand side of the uncer-

tainty relation depends on the shape chosen for a(k) and the precise definition of

�x and �k.

Exercise 3 Assume that a narrow triangular voltage pulse V(t ) arises in some type

of radar system (see Fig. 5.25). (a) Find and sketch the spectral content g(�).

(b) Show that a relation of the type �� �t � 1 holds. (c) If the width of the pulse is

�
�k

√2�

sin(�k 
x/2)

(�k 
x/2)
eik0x

f (x) �
1

√2�
���

��
a(k)eikx dk �

1

√2�
�k0�(�k/2)

k0�(�k/2) eikx dk �
1

√2�

eik0x

x
 2 sin(�k 
x/2)

f (x) �
�k

√2�

sin(�k 
 x/2)

(�k 
 x/2)
eik0x
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Figure 5.23 (Example 5.7) A simple amplitude distribution specifying a uniform
contribution of all wavenumbers from k0 � �k/2 to k0 � �k/2. Although we have
used only positive k’s here, both positive and negative k values are allowed, in gen-
eral corresponding to waves traveling to the right (k � 0) or left (k � 0).
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2� � 10�9 s, what range of frequencies must this system pass if the pulse is to be

undistorted? Take �t � � and define �� similarly.

Answer (a) (b) �� �t � 2�. (c) 2�f �

4.00 	 109 Hz.

Constructing Moving Wave Packets

Figure 5.24 represents a snapshot of the wave packet at t � 0. To construct a moving

wave packet representing a moving particle, we replace kx in Equation 5.26 with

(kx � �t). Thus, the representation of the moving wave packet becomes

(5.30)

It is important to realize that here � � �(k), that is, � is a function of k and therefore

depends on the type of wave and the medium traversed. In general, it is difficult to

solve this integral analytically. For matter waves, the QMTools software available from

our companion Web site (http://info.brookscole.com/mp3e) produces the same re-

sult by solving numerically a certain differential equation that governs the behavior of

such waves. This approach will be explored further in the next chapter.

5.5 THE HEISENBERG UNCERTAINTY PRINCIPLE

In the period 1924–25, Werner Heisenberg, the son of a professor of Greek
and Latin at the University of Munich, invented a complete theory of
quantum mechanics called matrix mechanics. This theory overcame some of
the problems with the Bohr theory of the atom, such as the postulate of “un-
observable” electron orbits. Heisenberg’s formulation was based primarily on
measurable quantities such as the transition probabilities for electronic jumps
between quantum states. Because transition probabilities depend on the initial
and final states, Heisenberg’s mechanics used variables labeled by two sub-
scripts. Although at first Heisenberg presented his theory in the form of non-
commuting algebra, Max Born quickly realized that this theory could be more

f(x, t) �
1

√2�
���

��
a(k)ei(kx��t) dk

g(�) � (√2/�)(1/�2�)(1 � cos ��).
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Figure 5.24 (Example 5.7) The real part of the wave packet formed by the
uniform amplitude distribution shown in Figure 5.23.
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0 t+–τ τ

Figure 5.25 (Exercise 3).
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elegantly described by matrices. Consequently, Born, Heisenberg, and Pascual
Jordan soon worked out a comprehensive theory of matrix mechanics. Al-
though the matrix formulation was quite elegant, it attracted little attention
outside of a small group of gifted physicists because it was difficult to apply in
specific cases, involved mathematics unfamiliar to most physicists, and was
based on rather vague physical concepts.

Although we will investigate this remarkable form of quantum mechanics
no further, we shall discuss another of Heisenberg’s discoveries, the uncer-
tainty principle, elucidated in a famous paper in 1927. In this paper Heisen-
berg introduced the notion that it is impossible to determine simultane-
ously with unlimited precision the position and momentum of a particle.
In words we may state the uncertainty principle as follows:

174 CHAPTER 5 MATTER WAVES

Momentum–position

uncertainty principle

If a measurement of position is made with precision �x and a simultane-
ous measurement of momentum in the x direction is made with preci-
sion �px, then the product of the two uncertainties can never be smaller
than ��2. That is,

(5.31)�px �x �
�

2

In his paper of 1927, Heisenberg was careful to point out that the
inescapable uncertainties �px and �x do not arise from imperfections in
practical measuring instruments. Rather, they arise from the need to use
a large range of wavenumbers, �k, to represent a matter wave packet local-
ized in a small region, �x. The uncertainty principle represents a sharp
break with the ideas of classical physics, in which it is assumed that,
with enough skill and ingenuity, it is possible to simultaneously measure a
particle’s position and momentum to any desired degree of precision. As
shown in Example 5.8, however, there is no contradiction between the
uncertainty principle and classical laws for macroscopic systems because of
the small value of �.

One can show that �px �x � �/2 comes from the uncertainty relation
governing any type of wave pulse formed by the superposition of waves with
different wavelengths. In Section 5.3 we found that to construct a wave group
localized in a small region �x, we had to add up a large range of wavenumbers
�k, where �k �x � 1 (Eq. 5.16). The precise value of the number on the right-
hand side of Equation 5.16 depends on the functional form f (x) of the wave
group as well as on the specific definition of �x and �k. A different choice of
f(x) or a different rule for defining �x and �k (or both) will give a slightly dif-
ferent number. With �x and �k defined as standard deviations, it can be
shown that the smallest number, , is obtained for a Gaussian wavefunction.4

In this minimum uncertainty case we have

�x�k � 1
2

1
2

4See Section 6.7 for a definition of the standard deviation and Problem 6.34 for a complete math-
ematical proof of this statement.
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For any other choice of f (x),

(5.32)

and using �px � ��k, immediately becomes

(5.33)

The basic meaning of �p �x � �/2 is that as one uncertainty increases the
other decreases. In the extreme case as one uncertainty approaches �,
the other must approach zero. This extreme case is illustrated by a plane wave

that has a precise momentum �k0 and an infinite extent—that is, the
wavefunction is not concentrated in any segment of the x axis.

Another important uncertainty relation involves the uncertainty in energy
of a wave packet, �E, and the time, �t, taken to measure that energy. Starting
with as the minimum form of the time–frequency uncertainty prin-
ciple, and using the de Broglie relation for the connection between the matter
wave energy and frequency, E � ��, we immediately find the energy–time
uncertainty principle

(5.34)

Equation 5.34 states that the precision with which we can know the energy of
some system is limited by the time available for measuring the energy. A common
application of the energy–time uncertainty is in calculating the lifetimes of very
short-lived subatomic particles whose lifetimes cannot be measured directly, but
whose uncertainty in energy or mass can be measured. (See Problem 26.)

A Different View of the Uncertainty Principle

Although we have indicated that �px �x � �/2 arises from the theory of forming
pulses or wave groups, there is a more physical way to view the origin of the un-

�E �t �
�

2

�� �t � 1
2

eik0x

�px �x �
�

2

�x �k � 1
2

�x �k � 1
2
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Energy–time uncertainty

principle

T
his photograph of Werner
Heisenberg was taken around
1924. Heisenberg obtained his

Ph.D. in 1923 at the University of Mu-
nich where he studied under Arnold
Sommerfeld and became an enthusi-
astic mountain climber and skier.
Later, he worked as an assistant to
Max Born at Göttingen and Niels
Bohr in Copenhagen. While physi-
cists such as de Broglie and
Schrödinger tried to develop visualiz-
able models of the atom, Heisenberg,
with the help of Born and Pascual Jor-
dan, developed an abstract mathe-
matical model called matrix mechan-
ics to explain the wavelengths of
spectral lines. The more successful
wave mechanics of Schrödinger an-

nounced a few months later was
shown to be equivalent to Heisen-
berg’s approach. Heisenberg made
many other significant contributions
to physics, including his famous un-
certainty principle, for which he re-
ceived the Nobel prize in 1932, the
prediction of two forms of molecular
hydrogen, and theoretical models of
the nucleus. During World War II he
was director of the Max Planck Insti-
tute at Berlin where he was in charge
of German research on atomic
weapons. Following the war, he
moved to West Germany and became
director of the Max Planck Institute
for Physics at Göttingen.WERNER HEISENBERG

(1901–1976)
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certainty principle. We consider certain idealized experiments (called thought ex-
periments) and show that it is impossible to carry out an experiment that allows
the position and momentum of a particle to be simultaneously measured with an
accuracy that violates the uncertainty principle. The most famous thought experi-
ment along these lines was introduced by Heisenberg himself and involves the
measurement of an electron’s position by means of a microscope (Fig. 5.26),
which forms an image of the electron on a screen or the retina of the eye.

Because light can scatter from and perturb the electron, let us minimize
this effect by considering the scattering of only a single light quantum from an
electron initially at rest (Fig. 5.27). To be collected by the lens, the
photon must be scattered through an angle ranging from �� to ��, which
consequently imparts to the electron an x momentum value ranging from
�(h sin �)/� to �(h sin�)/�. Thus the uncertainty in the electron’s momen-
tum is �px � (2h sin�)/�. After passing through the lens, the photon lands
somewhere on the screen, but the image and consequently the position of the
electron is “fuzzy” because the photon is diffracted on passing through the
lens aperture. According to physical optics, the resolution of a microscope or
the uncertainty in the image of the electron, �x, is given by �x � �/(2 sin �).
Here 2� is the angle subtended by the objective lens, as shown in Figure 5.27.5

Multiplying the expressions for �px and �x, we find for the electron
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Figure 5.27 The Heisenberg microscope.

Figure 5.26 A thought experi-
ment for viewing an electron
with a powerful microscope.
(a) The electron is shown be-
fore colliding with the photon.
(b) The electron recoils (is dis-
turbed) as a result of the colli-
sion with the photon.

5The resolving power of the microscope is treated clearly in F. A. Jenkins and H. E. White, Funda-
mentals of Optics, 4th ed., New York, McGraw-Hill Book Co., 1976, pp. 332–334.
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in agreement with the uncertainty relation. Note also that this principle is in-
escapable and relentless! If �x is reduced by increasing � or the lens size, there
is an equivalent increase in the uncertainty of the electron’s momentum.

Examination of this simple experiment shows several key physical proper-
ties that lead to the uncertainty principle:

• The indivisible nature of light particles or quanta (nothing less than a sin-
gle photon can be used!).

• The wave property of light as shown in diffraction.
• The impossibility of predicting or measuring the precise classical path of

a single scattered photon and hence of knowing the precise momentum
transferred to the electron.6

We conclude this section with some examples of the types of calculations
that can be done with the uncertainty principle. In the spirit of Fermi or
Heisenberg, these “back-of-the-envelope calculations” are surprising for their
simplicity and essential description of quantum systems of which the details
are unknown.

�px�x � � 2h

�
  sin ��� �

2 sin � � � h
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6Attempts to measure the photon’s position by scattering electrons from it in a Compton process
only serve to make its path to the lens more uncertain.

(b) If the ball were to suddenly move along the y axis
perpendicular to its well-defined classical trajectory along
x, how far would it move in 1 s? Assume that the ball
moves in the y direction with the top speed in the spread
�vy produced by the uncertainty principle.

Solution It is important to realize that uncertainty rela-
tions hold in the y and z directions as well as in the x

direction. This means that �px �x � �/2, �py �y � �/2,
and �pz �z � �/2 and because all the position uncertain-
ties are equal, all of the velocity spreads are equal. Conse-
quently, we have �vy � 3.5 	 10�35 m/s and the ball
moves 3.5 	 10�35 m in the y direction in 1 s. This dis-
tance is again an immeasurably small quantity, being
10�20 times the size of a nucleus!

Exercise 4 How long would it take the ball to
move 50 cm in the y direction? (The age of the
universe is thought to be 15 billion years, give or take a
few billion).

EXAMPLE 5.8 The Uncertainty Principle
Changes Nothing for
Macroscopic Objects

(a) Show that the spread of velocities caused by the un-
certainty principle does not have measurable conse-
quences for macroscopic objects (objects that are large
compared with atoms) by considering a 100-g racquetball
confined to a room 15 m on a side. Assume the ball is
moving at 2.0 m/s along the x axis.

Solution

Thus the minimum spread in velocity is given by

This gives a relative uncertainty of

which is certainly not measurable.

�vx

v x
�

3.5 	 10�35

2.0
� 1.8 	 10�35

�vx �
�px

m
�

3.05 	 10�36 kg
m/s

0.100 kg
� 3.5 	 10�35 m/s

�px �
�

2 �x
�

1.05 	 10�34 J
s

2 	 15 m
� 3.5 	 10�36 kg
m/s

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



178 CHAPTER 5 MATTER WAVES

a particular excited state. (a) If � � 1.0 	 10�8 s (a
typical value), use the uncertainty principle to compute
the line width �f of light emitted by the decay of this
excited state.

Solution We use �E �t � �/2, where �E is the uncer-
tainty in energy of the excited state, and �t � 1.0 	 10�8 s
is the average time available to measure the excited state.
Thus,

�E � ��2 �t � ��(2.0 	 10�8 s)

Since �E is also the uncertainty in energy of a photon
emitted when the excited state decays, and �E � h�f for
a photon,

h �f � ��(2.0 	 10�8 s)

or

(b) If the wavelength of the spectral line involved in this
process is 500 nm, find the fractional broadening �f/f .

Solution First, we find the center frequency of this line
as follows:

Hence,

This narrow natural line width can be seen with a sen-
sitive interferometer. Usually, however, temperature
and pressure effects overshadow the natural line width
and broaden the line through mechanisms associated
with the Doppler effect and atomic collisions.

Exercise 5 Using the nonrelativistic Doppler formula,
calculate the Doppler broadening of a 500-nm line emit-
ted by a hydrogen atom at 1000 K. Do this by considering
the atom to be moving either directly toward or away
from an observer with an energy of kBT.

Answer 0.0083 nm, or 0.083 Å.

3
2

�f

f0
�

8.0 	 106 Hz

6.0 	 1014 Hz
� 1.3 	 10�8

f0 �
c

�
�

3.0 	 108 m/s

500 	 10�9 m
� 6.0 	 1014 Hz

�f �
1

4� 	 10�8 s
� 8.0 	 106 Hz

EXAMPLE 5.9 Do Electrons Exist Within
the Nucleus?

Estimate the kinetic energy of an electron confined
within a nucleus of size 1.0 	 10�14 m by using the un-
certainty principle.

Solution Taking �x to be the half-width of the confine-

ment length in the equation , we have

or

This means that measurements of the component of
momentum of electrons trapped inside a nucleus
would range from less than �20 MeV/c to greater than
�20 MeV/c and that some electrons would have momen-
tum at least as large as 20 MeV/c . Because this appears to
be a large momentum, to be safe we calculate the elec-
tron’s energy relativistically.

E2 � p2c2 � (mec2)2

� (20 MeV/c)2c2 � (0.511 MeV)2

� 400(MeV)2

or

E � 20 MeV

Finally, the kinetic energy of an intranuclear electron is

K � E � mec2 � 19.5 MeV

Since electrons emitted in radioactive decay of the nucleus
(beta decay) have energies much less than 19.5 MeV
(about 1 MeV or less) and it is known that no other mech-
anism could carry off an intranuclear electron’s energy
during the decay process, we conclude that electrons ob-
served in beta decay do not come from within the nucleus
but are actually created at the instant of decay.

EXAMPLE 5.10 The Width of Spectral Lines

Although an excited atom can radiate at any time from
t � 0 to t � �, the average time after excitation at which
a group of atoms radiates is called the lifetime, �, of

�px � 2.0 	 107 eV

c

�px �
6.58 	 10�16 eV
s

1.0 	 10�14 m
	

3.00 	 108 m/s

c

�px �
�

2 �x

5.6 IF ELECTRONS ARE WAVES, WHAT’S WAVING?

Although we have discussed in some detail the notion of de Broglie matter waves,
we have not discussed the precise nature of the field �(x, y, z , t) or wavefunc-
tion that represents the matter waves. We have delayed this discussion because �
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(Greek letter psi) is rather abstract. � is definitely not a measurable disturbance
requiring a medium for propagation like a water wave or a sound wave. Instead,
the stuff that is waving requires no medium. Furthermore, � is in general repre-
sented by a complex number and is used to calculate the probability of finding
the particle at a given time in a small volume of space. If any of this seems confus-
ing, you should not lose heart, as the nature of the wavefunction has been con-
fusing people since its invention. It even confused its inventor, Erwin
Schrödinger, who incorrectly interpreted �*� as the electric charge density.7

The great philosopher of the quantum theory, Bohr, immediately objected to this
interpretation. Subsequently, Max Born offered the currently accepted statistical
view of �*� in late 1926. The confused state of affairs surrounding � at that
time was nicely described in a poem by Walter Huckel:

Erwin with his psi can do
Calculations quite a few.
But one thing has not been seen
Just what does psi really mean?
(English translation by Felix Bloch)

The currently held view is that a particle is described by a function
�(x, y, z, t) called the wavefunction. The quantity �*� � �� �2 represents the
probability per unit volume of finding the particle at a time t in a small volume
of space centered on (x, y, z). We will treat methods of finding � in much
more detail in Chapter 6, but for now all we require is the idea that the
probability of finding a particle is directly proportional to �� �2.

5.7 THE WAVE–PARTICLE DUALITY

The Description of Electron Diffraction in Terms of �

In this chapter and previous chapters we have seen evidence for both the wave
properties and the particle properties of electrons. Historically, the particle prop-
erties were first known and connected with a definite mass, a discrete charge,
and detection or localization of the electron in a small region of space. Following
these discoveries came the confirmation of the wave nature of electrons in scat-
tering at low energy from metal crystals. In view of these results and because of
the everyday experience of seeing the world in terms of either grains of sand or dif-
fuse water waves, it is no wonder that we are tempted to simplify the issue and
ask, “Well, is the electron a wave or a particle?” The answer is that electrons are
very delicate and rather plastic—they behave like either particles or
waves, depending on the kind of experiment performed on them. In any
case, it is impossible to measure both the wave and particle properties
simultaneously.8 The view of Bohr was expressed in an idea known as comple-
mentarity. As different as they are, both wave and particle views are needed and
they complement each other to fully describe the electron. The view of
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7�* represents the complex conjugate of �. Thus, if � � a � ib, then �* � a � ib. In exponential
form, if � � Ae i�, then �* � Ae�i�. Note that �*� � ���2; a, b, A, and � are all real quantities.

8Many feel that the elder Bragg’s remark, originally made about light, is a more satisfying answer:
Electrons behave like waves on Mondays, Wednesdays, and Fridays, like particles on Tuesdays,
Thursdays, and Saturdays, and like nothing at all on Sundays.

Complementarity
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Feynman9 was that both electrons and photons behave in their own inimitable
way. This is like nothing we have seen before, because we do not live at the very
tiny scale of atoms, electrons, and photons.

Perhaps the best way to crystallize our ideas about the wave – particle du-
ality is to consider a “simple” double-slit electron diffraction experiment.
This experiment highlights much of the mystery of the wave – particle para-
dox, shows the impossibility of measuring simultaneously both wave and par-
ticle properties, and illustrates the use of the wavefunction, �, in determin-
ing interference effects. A schematic of the experiment with monoenergetic
(single-wavelength) electrons is shown in Figure 5.28. A parallel beam of
electrons falls on a double slit, which has individual openings much smaller
than D so that single-slit diffraction effects are negligible. At a distance from
the slits much greater than D is an electron detector capable of detecting
individual electrons. It is important to note that the detector always regis-
ters discrete particles localized in space and time. In a real experiment this
can be achieved if the electron source is weak enough (see Fig. 5.29): In all
cases if the detector collects electrons at different positions for a long
enough time, a typical wave interference pattern for the counts per
minute or probability of arrival of electrons is found (see Fig. 5.28). If
one imagines a single electron to produce in-phase “wavelets” at the slits,
standard wave theory can be used to find the angular separation, �, of the
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9R. Feynman, The Character of Physical Law, Cambridge, MA, MIT Press, 1982.

D
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B

θ

Electrons
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y

Electron
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counts
min

Figure 5.28 Electron diffraction. D is much greater than the individual slit widths
and much less than the distance between the slits and the detector.
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central probability maximum from its neighboring minimum. The mini-
mum occurs when the path length difference between A and B in Figure
5.28 is half a wavelength, or

D sin � � �/2

As the electron’s wavelength is given by � � h/px, we see that

(5.35)

for small �. Thus we can see that the dual nature of the electron is clearly
shown in this experiment: although the electrons are detected as particles
at a localized spot at some instant of time, the probability of arrival
at that spot is determined by finding the intensity of two interfering
matter waves.

But there is more. What happens if one slit is covered during the experi-
ment? In this case one obtains a symmetric curve peaked around the center
of the open slit, much like the pattern formed by bullets shot through a
hole in armor plate. Plots of the counts per minute or probability of arrival
of electrons with the lower or upper slit closed are shown in Figure 5.30.
These are expressed as the appropriate square of the absolute value of some
wavefunction, ��1 �2 � �1*�1 or ��2 �2 � �2*�2, where �1 and �2 repre-
sent the cases of the electron passing through slit 1 and slit 2, respectively.
If an experiment is now performed with slit 1 open and slit 2 blocked for
time T and then slit 1 blocked and slit 2 open for time T, the accumulated
pattern of counts per minute is completely different from the case with

sin� � � �
h

2px D
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both slits open. Note in Figure 5.31 that there is no longer a maximum
probability of arrival of an electron at � � 0. In fact, the interference
pattern has been lost and the accumulated result is simply the sum of
the individual results. The results shown by the black curves in Figure
5.31 are easier to understand and more reasonable than the interference ef-
fects seen with both slits open (blue curve). When only one slit is open at a
time, we know the electron has the same localizability and indivisibility at
the slits as we measure at the detector, because the electron clearly goes
through slit 1 or slit 2. Thus, the total must be analyzed as the sum of those
electrons that come through slit 1, ��1 �2, and those that come through slit
2, ��2 �2. When both slits are open, it is tempting to assume that the electron
goes through either slit 1 or slit 2 and that the counts per minute are again
given by ��1 �2 � ��2 �2. We know, however, that the experimental results
contradict this. Thus, our assumption that the electron is localized and goes
through only one slit when both slits are open must be wrong (a painful
conclusion!). Somehow the electron must be simultaneously present at both
slits in order to exhibit interference.

To find the probability of detecting the electron at a particular point on the
screen with both slits open, we may say that the electron is in a superposition
state given by

� � �1 � �2
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2

1

2

1

counts/min

  22Ψ

  12Ψ

Figure 5.30 The probability of finding electrons at the screen with either the lower
or upper slit closed.
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Thus, the probability of detecting the electron at the screen is equal to the
quantity ��1 � �2 �2 and not ��1 �2 � ��2 �2. Because matter waves that start
out in phase at the slits in general travel different distances to the screen
(see Fig. 5.28), �1 and �2 will possess a relative phase difference � at the
screen. Using a phasor diagram (Fig. 5.32) to find ��1 � �2 �2 immediately
yields

�� �2 � ��1 � �2 �2 � ��1 �2 � ��2 �2 � 2��1 ���2 � cos�

Note that the term 2 ��1 ���2 � cos � is an interference term that predicts the
interference pattern actually observed in this case. For ease of comparison, a
summary of the results found in both cases is given in Table 5.1.
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Ψ Ψ

Figure 5.31 Accumulated results from the two-slit electron diffraction experiment
with each slit closed half the time. For comparison, the results with both slits open are
shown in color.

Ψ1 + Ψ2

Ψ1

Ψ2

φ

Figure 5.32 Phasor diagram to represent the addition of two complex wavefunctions,
�1 and �2, differing in phase by �.
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A Thought Experiment: Measuring Through
Which Slit the Electron Passes

Another way to view the electron double-slit experiment is to say that the elec-
tron passes through the upper or lower slit only when one measures the elec-
tron to do so. Once one measures unambiguously which slit the electron
passes through (yes, you guessed it . . . here comes the uncertainty principle
again . . .), the act of measurement disturbs the electron’s path enough to
destroy the delicate interference pattern.

Let us look again at our two-slit experiment to see in detail how the inter-
ference pattern is destroyed.10 To determine which slit the electron goes
through, imagine that a group of particles is placed right behind the slits, as
shown in Figure 5.33. If we use the recoil of a small particle to determine
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10Although we shall use the uncertainty principle in its standard form, it is worth noting that an al-
ternative statement of the uncertainty principle involves this pivotal double-slit experiment: It is
impossible to design any device to determine through which slit the electron passes that will not at the same
time disturb the electron and destroy the interference pattern.

Figure 5.33 A thought experiment to determine through which slit the electron passes.

D

Detecting
particles

Scattered
electron

Unscattered
electron

px

py

θ

∆py

∆py

Screen

Table 5.1

Case Wavefunction Counts/Minute at Screen

Electron is measured to pass �1 or �2 ��1 �2 � ��2 �2

through slit 1 or slit 2
No measurements made on �1 � �2 ��1 �2 � ��2 �2 � 2��1 ���2 � cos �

electron at slits
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which slit the electron goes through, we must have the uncertainty in the de-
tecting particle’s position, �y � D. Also, during the collision the detecting
particle suffers a change in momentum, �py, equal and opposite to the change
in momentum experienced by the electron, as shown in Figure 5.33. An
undeviated electron landing at the first minimum and producing an interference
pattern has

from Equation 5.35. Thus, we require that an electron scattered by a detecting
particle have

or

if the interference pattern is not to be distorted. Because the change in mo-
mentum of the scattered electron is equal to the change in momentum of
the detecting particle, �py � h/ 2D also applies to the detecting particle.
Thus, we have for the detecting particle

or

This is a clear violation of the uncertainty principle. Hence we see that
the small uncertainties needed, both to observe interference and to
know which slit the electron goes through, are impossible, because they
violate the uncertainty principle. If �y is small enough to determine which
slit the electron goes through, �py is so large that electrons heading for the
first minimum are scattered into adjacent maxima and the interference
pattern is destroyed.

Exercise 6 In a real experiment it is likely that some electrons would miss the detect-
ing particles. Thus, we would really have two categories of electrons arriving at the de-
tector: those measured to pass through a definite slit and those not observed, or just
missed, at the slits. In this case what kind of pattern of counts per minute would be ac-
cumulated by the detector?

Answer A mixture of an interference pattern ��1 � �2 �2 (those not measured) and
��1 �2 � ��2 �2 (those measured) would result.

�py �y �
h

2

�py �y �
h

2D

 D

�py �
h

2D

�py

px
� � �

h

2pxD

tan� � � �
py

px
�

h

2pxD
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5.8 A FINAL NOTE

Scientists once viewed the world as being made up of distinct and unchanging
parts that interact according to strictly deterministic laws of cause and effect. In
the classical limit this is fundamentally correct because classical processes in-
volve so many quanta that deviations from the average are imperceptible. At the
atomic level, however, we have seen that a given piece of matter (an electron,
say) is not a distinct and unchanging part of the universe obeying completely
deterministic laws. Such a particle exhibits wave properties when it interacts with
a metal crystal and particle properties a short while later when it registers on a
Geiger counter. Thus, rather than viewing the electron as a distinct and separate
part of the universe with an intrinsic particle nature, we are led to the view that
the electron and indeed all particles are amorphous entities possessing the
potential to cycle endlessly between wave and particle behavior. We also find
that it is much more difficult to separate the object measured from the measur-
ing instrument at the atomic level, because the type of measuring instrument
determines whether wave properties or particle properties are observed.

SUMMARY

Every lump of matter of mass m and momentum p has wavelike properties with
wavelength given by the de Broglie relation

(5.1)

By applying this wave theory of matter to electrons in atoms, de Broglie was
able to explain the appearance of integers in certain Bohr orbits as a natural
consequence of electron wave interference. In 1927, Davisson and Germer
demonstrated directly the wave nature of electrons by showing that low-energy
electrons were diffracted by single crystals of nickel. In addition, they con-
firmed Equation 5.1.

Although the wavelength of matter waves can be experimentally deter-
mined, it is important to understand that they are not just like other waves be-
cause their frequency and phase velocity cannot be directly measured. In par-
ticular, the phase velocity of an individual matter wave is greater than the
velocity of light and varies with wavelength or wavenumber as

(5.24)

To represent a particle properly, a superposition of matter waves with different
wavelengths, amplitudes, and phases must be chosen to interfere construc-
tively over a limited region of space. The resulting wave packet or group can
then be shown to travel with the same speed as the classical particle. In addi-
tion, a wave packet localized in a region �x contains a range of wavenumbers
�k, where �x �k � . Because px � �k, this implies that there is an uncertainty
principle for position and momentum:

(5.31)�px �x �
�

2

1
2

vp � f � � � E

h ��
h

p � � c �1 � � mc

�k �
2

�
1/2

� �
h

p
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In a similar fashion one can show that an energy– time uncertainty relation
exists, given by

(5.34)

In quantum mechanics matter waves are represented by a wavefunction
�(x, y, z, t). The probability of finding a particle represented by � in a
small volume centered at (x, y, z) at time t is proportional to&�&

2. The
wave–particle duality of electrons may be seen by considering the passage of
electrons through two narrow slits and their arrival at a viewing screen. We
find that although the electrons are detected as particles at a localized spot on
the screen, the probability of arrival at that spot is determined by finding the
intensity of two interfering matter waves.

Although we have seen the importance of matter waves or wavefunctions in
this chapter, we have provided no method of finding � for a given physical sys-
tem. In the next chapter we introduce the Schrödinger wave equation. The so-
lutions to this important differential equation will provide us with the wave-
functions for a given system.

�E�t �
�

2
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an incredibly lively and readable treatment of the 
double-slit experiment presented in Feynman’s inim-
itable fashion.

3. B. Hoffman, The Strange Story of the Quantum, New York,
Dover Publications, 1959. This short book presents a
beautifully written nonmathematical discussion of the
history of quantum mechanics.

1. D. Bohm, Quantum Theory, Englewood Cliffs, NJ,
Prentice-Hall, 1951. Chapters 3 and 6 in this book give
an excellent account of wave packets and the
wave – particle duality of matter at a more advanced
level.

2. R. Feynman, The Character of Physical Law, Cambridge,
MA, The MIT Press, 1982, Chapter 6. This monograph is

SUGGESTIONS FOR FURTHER READING

QUESTIONS

1. Is light a wave or a particle? Support your answer by cit-
ing specific experimental evidence.

2. Is an electron a particle or a wave? Support your answer
by citing some experimental results.

3. An electron and a proton are accelerated from rest
through the same potential difference. Which particle
has the longer wavelength?

4. If matter has a wave nature, why is this wavelike charac-
ter not observable in our daily experiences?

5. In what ways does Bohr’s model of the hydrogen atom
violate the uncertainty principle?

6. Why is it impossible to measure the position and speed
of a particle simultaneously with infinite precision?

7. Suppose that a beam of electrons is incident on three
or more slits. How would this influence the interfer-
ence pattern? Would the state of an electron depend
on the number of slits? Explain.

8. In describing the passage of electrons through a slit
and arriving at a screen, Feynman said that “electrons
arrive in lumps, like particles, but the probability of ar-
rival of these lumps is determined as the intensity of
the waves would be. It is in this sense that the electron
behaves sometimes like a particle and sometimes like a
wave.” Elaborate on this point in your own words. (For
a further discussion of this point, see R. Feynman, The

Character of Physical Law, Cambridge, MA, MIT Press,
1982, Chapter 6.)

9. Do you think that most major experimental discoveries
are made by careful planning or by accident? Cite
examples.

10. In the case of accidental discoveries, what traits must
the experimenter possess to capitalize on the discovery?

11. Are particles even things? An extreme view of the plastic-
ity of electrons and other particles is expressed in this fa-
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mous quote of Heisenberg: “The invisible elementary
particle of modern physics does not have the property of
occupying space any more than it has properties like
color or solidity. Fundamentally, it is not a material struc-
ture in space and time but only a symbol that allows the
laws of nature to be expressed in especially simple form.”

Are you satisfied with viewing science as a set of
predictive rules or do you prefer to see science as a de-
scription of an objective world of things—in the case
of particle physics, tiny, scaled-down things? What prob-
lems are associated with each point of view?

PROBLEMS

5.1 The Pilot Waves of de Broglie

1. Calculate the de Broglie wavelength for a proton mov-
ing with a speed of 106 m/s.

2. Calculate the de Broglie wavelength for an electron
with kinetic energy (a) 50 eV and (b) 50 keV.

3. Calculate the de Broglie wavelength of a 74-kg person
who is running at a speed of 5.0 m/s.

4. The “seeing” ability, or resolution, of radiation is deter-
mined by its wavelength. If the size of an atom is of the
order of 0.1 nm, how fast must an electron travel to
have a wavelength small enough to “see” an atom?

5. To “observe” small objects, one measures the diffrac-
tion of particles whose de Broglie wavelength is approx-
imately equal to the object’s size. Find the kinetic en-
ergy (in electron volts) required for electrons to
resolve (a) a large organic molecule of size 10 nm,
(b) atomic features of size 0.10 nm, and (c) a nucleus
of size 10 fm. Repeat these calculations using alpha
particles in place of electrons.

6. An electron and a photon each have kinetic energy
equal to 50 keV. What are their de Broglie wavelengths?

7. Calculate the de Broglie wavelength of a proton that is
accelerated through a potential difference of 10 MV.

8. Show that the de Broglie wavelength of an electron ac-
celerated from rest through a small potential differ-
ence V is given by , where � is in
nanometers and V is in volts.

9. Find the de Broglie wavelength of a ball of mass 0.20 kg
just before it strikes the Earth after being dropped
from a building 50 m tall.

10. An electron has a de Broglie wavelength equal to the
diameter of the hydrogen atom. What is the kinetic en-
ergy of the electron? How does this energy compare
with the ground-state energy of the hydrogen atom?

11. For an electron to be confined to a nucleus, its de
Broglie wavelength would have to be less than 10�14 m.
(a) What would be the kinetic energy of an electron con-
fined to this region? (b) On the basis of this result, would
you expect to find an electron in a nucleus? Explain.

12. Through what potential difference would an electron
have to be accelerated to give it a de Broglie wave-
length of 1.00 	 10�10 m?

� � 1.226/√V

5.2 The Davisson–Germer Experiment

13. Figure P5.13 shows the top three planes of a crystal
with planar spacing d. If 2d sin � � 1.01� for the two
waves shown, and high-energy electrons of wavelength
� penetrate many planes deep into the crystal, which
atomic plane produces a wave that cancels the sur-
face reflection? This is an example of how extremely
narrow maxima in high-energy electron diffraction are
formed—that is, there are no diffracted beams unless
2d sin � is equal to an integral number of wavelengths.

d

d

0.505λ

θ θ

Figure P5.13

14. (a) Show that the formula for low-energy electron dif-
fraction (LEED), when electrons are incident perpen-
dicular to a crystal surface, may be written as

where n is the order of the maximum, d is the atomic
spacing, me is the electron mass, K is the electron’s ki-
netic energy, and � is the angle between the incident
and diffracted beams. (b) Calculate the atomic spacing

sin � �
nhc

d(2mec2K)1/2
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PROBLEMS 189

in a crystal that has consecutive diffraction maxima at
� � 24.1° and � � 54.9° for 100-eV electrons.

5.3 Wave Groups and Dispersion

15. Show that the group velocity for a nonrelativistic free
electron is also given by vg � p/me � v0, where v0 is
the electron’s velocity.

16. When a pebble is tossed into a pond, a circular wave
pulse propagates outward from the disturbance. If you
are alert (and it’s not a sleepy afternoon in late August),
you will see a fine structure in the pulse consisting of
surface ripples moving inward through the circular
disturbance. Explain this effect in terms of group
and phase velocity if the phase velocity of ripples is given

by where S is the surface tension and �

is the density of the liquid.
17. The dispersion relation for free relativistic electron

waves is

Obtain expressions for the phase velocity vp and group
velocity vg of these waves and show that their product is
a constant, independent of k. From your result, what
can you conclude about vg if vp � c?

5.5 The Heisenberg Uncertainty Principle

18. A ball of mass 50 g moves with a speed of 30 m/s. If its
speed is measured to an accuracy of 0.1%, what is the
minimum uncertainty in its position?

19. A proton has a kinetic energy of 1.0 MeV. If its momen-
tum is measured with an uncertainty of 5.0%, what is
the minimum uncertainty in its position?

20. We wish to measure simultaneously the wavelength and
position of a photon. Assume that the wavelength mea-
surement gives � � 6000 Å with an accuracy of one
part in a million, that is, ��/� � 10�6. What is the
minimum uncertainty in the position of the photon?

21. A woman on a ladder drops small pellets toward a spot
on the floor. (a) Show that, according to the uncer-
tainty principle, the miss distance must be at least

where H is the initial height of each pellet above the
floor and m is the mass of each pellet. (b) If H � 2.0 m
and m � 0.50 g, what is �x?

22. A beam of electrons is incident on a slit of variable
width. If it is possible to resolve a 1% difference in mo-
mentum, what slit width would be necessary to
resolve the interference pattern of the electrons if their
kinetic energy is (a) 0.010 MeV, (b) 1.0 MeV, and
(c) 100 MeV?

23. Suppose Fuzzy, a quantum-mechanical duck, lives in a
world in which h � 2� J 
 s. Fuzzy has a mass of 2.0 kg
and is initially known to be within a region 1.0 m wide.

�x � � �

2m �
1/2

� H

2g �
1/4

�(k) � √c2k2 � (mec2/�)2

vp � √2�S/��,

(a) What is the minimum uncertainty in his speed?
(b) Assuming this uncertainty in speed to prevail for
5.0 s, determine the uncertainty in position after this
time.

24. An electron of momentum p is at a distance r from a
stationary proton. The system has a kinetic energy
K � p2/2me and potential energy U � �ke2/r. Its total
energy is E � K � U. If the electron is bound to the
proton to form a hydrogen atom, its average position is
at the proton but the uncertainty in its position is ap-
proximately equal to the radius, r, of its orbit. The elec-
tron’s average momentum will be zero, but the uncer-
tainty in its momentum will be given by the uncertainty
principle. Treat the atom as a one-dimensional system
in the following: (a) Estimate the uncertainty in the
electron’s momentum in terms of r. (b) Estimate the
electron’s kinetic, potential, and total energies in terms
of r. (c) The actual value of r is the one that minimizes
the total energy, resulting in a stable atom. Find that
value of r and the resulting total energy. Compare your
answer with the predictions of the Bohr theory.

25. An excited nucleus with a lifetime of 0.100 ns emits a
� ray of energy 2.00 MeV. Can the energy width (uncer-
tainty in energy, �E ) of this 2.00-MeV � emission line
be directly measured if the best gamma detectors can
measure energies to �5 eV?

26. Typical measurements of the mass of a subatomic delta
particle (m � 1230 MeV/c2) are shown in Figure P5.26.
Although the lifetime of the delta is much too short to
measure directly, it can be calculated from the
energy– time uncertainty principle. Estimate the life-
time from the full width at half-maximum of the mass
measurement distribution shown.

5.7 The Wave–Particle Duality

27. A monoenergetic beam of electrons is incident on a
single slit of width 0.50 nm. A diffraction pattern is
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Figure P5.26 Histogram of mass measurements of the
delta particle.
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formed on a screen 20 cm from the slit. If the distance
between successive minima of the diffraction pattern is
2.1 cm, what is the energy of the incident electrons?

28. A neutron beam with a selected speed of 0.40 m/s is di-
rected through a double slit with a 1.0-mm separation.
An array of detectors is placed 10 m from the slit.
(a) What is the de Broglie wavelength of the neutrons?
(b) How far off axis is the first zero-intensity point on
the detector array? (c) Can we say which slit any partic-
ular neutron passed through? Explain.

29. A two-slit electron diffraction experiment is done with
slits of unequal widths. When only slit 1 is open, the
number of electrons reaching the screen per second is
25 times the number of electrons reaching the screen
per second when only slit 2 is open. When both slits are
open, an interference pattern results in which the de-
structive interference is not complete. Find the ratio of
the probability of an electron arriving at an interfer-
ence maximum to the probability of an electron arriv-
ing at an adjacent interference minimum. (Hint: Use
the superposition principle).

Additional Problems

30. Robert Hofstadter won the 1961 Nobel prize in physics
for his pioneering work in scattering 20-GeV electrons
from nuclei. (a) What is the � factor for a 20-GeV elec-
tron, where � � (1 � v2/c2)�1/2? What is the momen-
tum of the electron in kg 
 m/s? (b) What is the wave-
length of a 20-GeV electron and how does it compare
with the size of a nucleus?

31. An air rifle is used to shoot 1.0-g particles at 100 m/s
through a hole of diameter 2.0 mm. How far from
the rifle must an observer be to see the beam spread
by 1.0 cm because of the uncertainty principle? Com-
pare this answer with the diameter of the Universe 
(2 	 1026 m).

32. An atom in an excited state 1.8 eV above the ground
state remains in that excited state 2.0 �s before moving
to the ground state. Find (a) the frequency of the emit-
ted photon, (b) its wavelength, and (c) its approximate
uncertainty in energy.

33. A �0 meson is an unstable particle produced in high-
energy particle collisions. It has a mass–energy equiva-
lent of about 135 MeV, and it exists for an average life-
time of only 8.7 	 10�17 s before decaying into two
� rays. Using the uncertainty principle, estimate the
fractional uncertainty �m/m in its mass determination.

34. (a) Find and sketch the spectral content of the rec-
tangular pulse of width 2� shown in Figure P5.34.
(b) Show that a reciprocity relation �� �t � � holds

190 CHAPTER 5 MATTER WAVES

Figure P5.34

V(t )

V0

t+–τ τ

in this case. Take �t � � and define �� similarly.
(c) What range of frequencies is required to
compose a pulse of width 2� � 1 �s? A pulse of width
2� � 1 ns?

35. A matter wave packet. (a) Find and sketch the real part of
the matter wave pulse shape f (x) for a Gaussian ampli-
tude distribution a(k), where

Note that a(k) is peaked at k0 and has a width that
decreases with increasing �. (Hint: In order to put

a(k)e ikx dk into the standard

form , complete the square in k.) (b) By 

comparing the result for the real part of f (x) to the
standard form of a Gaussian function with width �x,

, show that the width of the matter
wave pulse is �x � �. (c) Find the width �k of a(k) by
writing a(k) in standard Gaussian form and show that
�x �k � , independent of �.

36. Consider a freely moving quantum particle with mass m
and speed v. Its energy is E � K � U � mv2 � 0. De-
termine the phase speed of the quantum wave repre-
senting the particle and show that it is different from
the speed at which the particle transports mass and
energy.

37. In a vacuum tube, electrons are boiled out of a hot
cathode at a slow, steady rate and accelerated from rest
through a potential difference of 45.0 V. Then they
travel altogether 28.0 cm as they go through an array of
slits and fall on a screen to produce an interference
pattern. Only one electron at a time will be in flight in
the tube, provided the beam current is below what
value? In this situation the interference pattern still ap-
pears, showing that each individual electron can inter-
fere with itself.

1
2

1
2

f(x)� Ae�(x/2�x)2

���

��

e�az2

dz

f(x) � (2�)�1/2���

��

a(k) � Ae��2(k--k 0)2
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6
Quantum Mechanics
in One Dimension

6.1 The Born Interpretation

6.2 Wavefunction for a 
Free Particle

6.3 Wavefunctions in the 
Presence of Forces

6.4 The Particle in a Box
Charge-Coupled Devices (CCDs)

6.5 The Finite Square Well (Optional)

6.6 The Quantum Oscillator

6.7 Expectation Values

6.8 Observables and Operators
Quantum Uncertainty and the

Eigenvalue Property (Optional)

Summary

Chapter Outline

We have seen that associated with any particle is a matter wave called the
wavefunction. How this wavefunction affects our description of a particle and
its behavior is the subject of quantum mechanics, or wave mechanics. This
scheme, developed from 1925 to 1926 by Schrödinger, Heisenberg, and oth-
ers, makes it possible to understand a host of phenomena involving elemen-
tary particles, atoms, molecules, and solids. In this and subsequent chapters,
we shall describe the basic features of wave mechanics and its application to
simple systems. The relevant concepts for particles confined to motion along a
straight line (the x-axis) are developed in the present chapter.

6.1 THE BORN INTERPRETATION

The wavefunction � contains within it all the information that can be known
about the particle. That basic premise forms the cornerstone of our investiga-
tion: One of our objectives will be to discover how information may be ex-
tracted from the wavefunction; the other, to learn how to obtain this wavefunc-
tion for a given system.

The currently held view connects the wavefunction � with probabilities in
the manner first proposed by Max Born in 1925:
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192 CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION

M
ax Born was a German theo-
retical physicist who made
major contributions in

many areas of physics, including rela-
tivity, atomic and solid-state physics,
matrix mechanics, the quantum me-
chanical treatment of particle scatter-
ing (“Born approximation”), the
foundations of quantum mechanics
(Born interpretation of �), optics,
and the kinetic theory of liquids.
Born received the doctorate in
physics from the University of Göttin-
gen in 1907, and he acquired an ex-
tensive knowledge of mathematics as
the private assistant to the great
German mathematician David Hil-
bert. This strong mathematical back-
ground proved a great asset when he
was quickly able to reformulate
Heisenberg’s quantum theory in a
more consistent way with matrices.

In 1921, Born was offered a post at
the University of Göttingen, where he
helped build one of the strongest
physics centers of the 20th century.
This group consisted, at one time

among others. In 1926, shortly
after Schrödinger’s publication of
wave mechanics, Born applied
Schrödinger’s methods to atomic
scattering and developed the Born
approximation method for carrying
out calculations of the probability of
scattering of a particle into a given
solid angle. This work furnished the
basis for Born’s startling (in 1926) in-
terpretation of ���2 as the probability
density. For this so-called statistical in-
terpretation of ���2 he was awarded
the Nobel prize in 1954.

Fired by the Nazis, Born left
Germany in 1933 for Cambridge
and eventually the University of
Edinburgh, where he again became
the leader of a large group investi-
gating the statistical mechanics of
condensed matter. In his later years,
Born campaigned against atomic
weapons, wrote an autobiography,
and translated German humorists
into English.

MAX BORN

(1882–1970)

or another, of the mathematicians
Hilbert, Courant, Klein, and Runge
and the physicists Born, Jordan,
Heisenberg, Franck, Pohl, Heitler,
Herzberg, Nordheim, and Wigner,

(6.1)

Therefore, although it is not possible to specify with certainty the location
of a particle, it is possible to assign probabilities for observing it at any given
position. The quantity �� �2, the square of the absolute value of �, repre-
sents the intensity of the matter wave and is computed as the product of �
with its complex conjugate, that is, �� �2 � �*�. Notice that � itself is not a
measurable quantity; however, �� �2 is measurable and is just the probability
per unit length, or probability density P(x), for finding the particle at the
point x at time t. For example, the intensity distribution in a light diffrac-
tion pattern is a measure of the probability that a photon will strike a given
point within the pattern. Because of its relation to probabilities, we insist
that �(x, t) be a single-valued and continuous function of x and t so that no am-
biguities can arise concerning the predictions of the theory. The wavefunc-
tion � also should be smooth, a condition that will be elaborated later as it is
needed.

P(x)dx � � �(x,t) �2 dx

The probability that a particle will be found in the infinitesimal interval
dx about the point x, denoted by P(x) dx, isBorn interpretation of �
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Because the particle must be somewhere along the x-axis, the probabilities
summed over all values of x must add to 1:

(6.2)

Any wavefunction satisfying Equation 6.2 is said to be normalized. Nor-
malization is simply a statement that the particle can be found somewhere
with certainty. The probability of finding the particle in any finite interval
a � x � b is

(6.3)

That is, the probability is just the area included under the curve of probability
density between the points x � a and x � b (Fig. 6.1).

P � �b

a
� �(x, t)� 2 dx

��

��

� �(x, t) �2 dx � 1
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EXAMPLE 6.1 Normalizing the Wavefunction

The initial wavefunction of a particle is given as �(x, 0) �

C exp(��x �/x0), where C and x0 are constants. Sketch this
function. Find C in terms of x0 such that �(x, 0) is nor-
malized.

Solution The given wavefunction is symmetric, decay-
ing exponentially from the origin in either direction, as
shown in Figure 6.2. The decay length x0 represents the

C

(x , 0)Ψ

–x0–2x0–3x0 x0  2x0  3x0

x

  2

x ba

Ψ

Figure 6.1 The probability for
a particle to be in the interval
a � x � b is the area under the
curve from a to b of the probabil-
ity density function ��(x, t)�2.

Figure 6.2 (Example 6.1) The symmetric wavefunction
�(x, 0) � C exp(��x �/x0). At x � �x0 the wave amplitude
is down by the factor 1/e from its peak value �(0, 0) � C.
C is a normalizing constant whose proper value is

.C � 1/√x0

EXAMPLE 6.2 Calculating Probabilities

Calculate the probability that the particle in the preced-
ing example will be found in the interval �x0 � x � x0.

Solution The probability is the area under the curve of
��(x, 0)�2 from �x0 to �x0 and is obtained by integrating
the probability density over the specified interval:

where the second step follows because the integrand is
an even function, as discussed in Example 6.1. Thus,

Substituting into this expression gives for the
probability P � 1 � e�2 � 0.8647, or about 86.5%, inde-
pendent of x0.

C � 1/√x0

P � 2C 2 �x0

0
e�2x/x0 dx � 2C 2(x0/2)(1 � e�2)

P � �x0

�x 0

� �(x, 0) �2 dx � 2 �x0

0
� �(x, 0) �2 dx

distance over which the wave amplitude is diminished by
the factor 1/e from its maximum value �(0, 0) � C.

The normalization requirement is

Because the integrand is unchanged when x changes sign
(it is an even function), we may evaluate the integral over
the whole axis as twice that over the half-axis x � 0,
where �x � � x. Then,

Thus, we must take for normalization.C � 1/√x0

1 � 2C 2 ��

0
e�2x/x0 dx � 2C 2 � x0

2 � � C 2x0

1 � ��

��
� �(x, 0) �2 dx � C 2 ��

��
e�2 �x �/x0 dx
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194 CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION

The fundamental problem of quantum mechanics is this: Given the
wavefunction at some initial instant, say t � 0, find the wavefunction at
any subsequent time t. The wavefunction �(x, 0) represents the initial infor-
mation that must be specified; once this is known, however, the wave propa-
gates according to prescribed laws of nature.

Because it describes how a given system evolves, quantum mechanics is a dy-
namical theory much like Newtonian mechanics. There are, of course, impor-
tant differences. In Newton’s mechanics, the state of a particle at t � 0 is speci-
fied by giving its initial position x(0) and velocity v(0)—just two numbers;
quantum mechanics demands an entire wavefunction �(x, 0)—an infinite set
of numbers corresponding to the wavefunction value at every point x. But
both theories describe how this state changes with time when the forces acting
on the particle are known. In Newton’s mechanics x(t) and v(t) are calculated
from Newton’s second law; in quantum mechanics �(x, t) must be calculated
from another law—Schrödinger’s equation.

6.2 WAVEFUNCTION FOR A FREE PARTICLE

A free particle is one subject to no force. This special case can be studied us-
ing prior assumptions without recourse to the Schrödinger equation. The de-
velopment underscores the role of the initial conditions in quantum physics.

The wavenumber k and frequency 	 of free particle matter waves are given
by the de Broglie relations

(6.4)

For nonrelativistic particles 	 is related to k as

(6.5)

which follows from the classical connection E � p2/2m between the energy E
and momentum p for a free particle.1

For the wavefunction itself, we should take

(6.6)

where is the imaginary unit. This is an oscillation with wavenumber k,
frequency 	, and amplitude A. Because the variables x and t occur only in the
combination kx � 	t, the oscillation is a traveling wave, as befits a free particle
in motion. Further, the particular combination expressed by Equation 6.6 is
that of a plane wave,2 for which the probability density �� �2 (� A2) is uniform.
That is, the probability of finding this particle in any interval of the x-axis is
the same as that for any other interval of equal length and does not change
with time. The plane wave is the simplest traveling waveform with this prop-

i � √�1

�k(x, t) � Aei(kx�	t) � A{cos(kx � 	t) � i  sin(kx � 	t)}

	(k) �

k2

2m

k �
p



  and  	 �

E




1The functional form for 	(k) was discussed in Section 5.3 for relativistic particles, where
. In the nonrelativistic case (v �� c), this reduces to E � p2/2m � mc2. The

rest energy E0 � mc2 can be disregarded in this case if we agree to make E0 our energy reference.
By measuring all energies from this level, we are in effect setting E0 equal to zero.

2For a plane wave, the wave fronts (points of constant phase) constitute planes perpendicular to
the direction of wave propagation. In the present case the constant phase requirement kx � 	t �
constant demands only that x be fixed, so the wave fronts occupy the y– z planes.

E � √(cp)2 � (mc2)2

Plane wave representation

for a free particle
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erty—it expresses the reasonable notion that there are no special places for a
free particle to be found. The particle’s location is completely unknown at 
t � 0 and remains so for all time; however, its momentum and energy are
known precisely as p � 
k and E � 
	, respectively.

But not all free particles are described by Equation 6.6. For instance, we may
establish (by measurement) that our particle initially is in some range �x about
x0. In that case, �(x, 0) must be a wave packet concentrated in this interval, as
shown in Figure 6.3a. The plane wave description is inappropriate now because
the initial wave shape is not given correctly by �k(x, 0) � eikx. Instead, a sum of
plane waves with different wavenumbers must be used to represent the packet.
Because k is unrestricted, the sum actually is an integral here and we write

(6.7)

The coefficients a(k) specify the amplitude of the plane wave with wavenumber
k in the mixture and are chosen to reproduce the initial wave shape. For a
given �(x, 0), the required a(k) can be found from the theory of Fourier inte-
grals. We shall not be concerned with the details of this analysis here; the essen-
tial point is that it can be done for a packet of any shape (see optional Section
5.4). If each plane wave constituting the packet is assumed to propagate inde-
pendently of the others according to Equation 6.6, the packet at any time t is

(6.8)

Notice that the initial data are used only to establish the amplitudes a(k); subse-
quently, the packet develops according to the evolution of its plane wave con-
stituents. Because each of these constituents moves with a different velocity 
vp � 	/k (the phase velocity), the wave packet undergoes dispersion (see Sec-
tion 5.3) and the packet changes its shape as it propagates (Fig. 6.3b). The
speed of propagation of the wave packet as a whole is given by the group velocity
d	/dk of the plane waves forming the packet. Equation 6.8 no longer describes a

�(x, t) � ��

��
a(k)ei {kx�	(k)t } dk

�(x, 0) � ��

��
a(k)eikx dk
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Representing a particle with

a wave group

Figure 6.3 (a) A wave packet �(x, 0) formed from a superposition of plane waves. 
(b) The same wave packet some time t later (real part only). Because vp � 	/k �


k/2m, the plane waves with smaller wavenumber move at slower speeds, and the
packet becomes distorted. The body of the packet propagates with the group speed
d	/dk of the plane waves. (c) The amplitude distribution function a(k) for this packet,
indicating the amplitude of each plane wave in the superposition. A narrow wave
packet requires a broad spectral content, and vice versa. That is, the widths �x and �k

are inversely related as �x�k � 1.

(a) (b) (c)

x x

k

a(k)

∆k
∆x

x0

(x, 0) (x, t )

x0 + ( )td—-
dk

ΨΨ

ω
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196 CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION

This function �(x, 0), called a Gaussian function, has
a single maximum at x � 0 and decays smoothly to zero
on either side of this point (Fig. 6.4a). The width of this
Gaussian packet becomes larger with increasing . Ac-
cordingly, it is reasonable to identify  with �x, the initial
degree of localization. By the same token, a(k) also is a
Gaussian function, but with amplitude and width
1/2 (since 2k2 � (k/2[1/2])2). Thus, �k � 1/2 and
�x�k � 1/2, independent of . The multiplier C is a scale
factor chosen to normalize �.

Because our Gaussian packet is made up of many indi-
vidual waves all moving with different speeds, the shape
of the packet changes over time. In Problem 4 it is shown
that the packet disperses, its width growing ever larger
with the passage of time as

Similarly, the peak amplitude diminishes steadily in order
to keep the waveform normalized for all times (Fig.
6.4b). The wave as a whole does not propagate, because
for every wavenumber k present in the wave group there
is an equal admixture of the plane wave with the oppos-
ing wavenumber �k.

�x(t) � √[�x(0)]2 � � 
t

2m�x(0) �
2

C/√�

EXAMPLE 6.3 Constructing a Wave Packet

Find the wavefunction �(x, 0) that results from taking
the function , where C and
 are constants. Estimate the product �x �k for this case.

Solution The function �(x, 0) is given by the integral
of Equation 6.7 or

To evaluate the integral, we first complete the square in
the exponent as

The second term on the right is constant for the integra-
tion over k; to integrate the first term we change variables
with the substitution z � k � ix/2, obtaining

The integral now is a standard one whose value is known
to be . Then,

�(x, 0) � Ce�x2/42
� Ce�(x/2)2

√�

�(x, 0) �
C

√�
e�x2/42 ��

��
e�z2

dz

ikx � 2k2 � ��k �
ix

2 �
2

�
x2

42

�(x, 0) � ��

��
a(k)eikx dk �

C

√�
��

��
e(ikx�2k2) dk

a(k) � (C/√�)exp(�2k2)

particle with precise values of momentum and energy. To construct a wave packet
(that is, localize the particle), a mixture of wavenumbers (hence, particle mo-
menta) is necessary, as indicated by the different a(k). The amplitudes a(k) fur-
nish the so-called spectral content of the packet, which might look like that
sketched in Figure 6.3c. The narrower the desired packet �(x, 0), the broader is
the function a(k) representing that packet. If �x denotes the packet width and
�k the extent of the corresponding a(k), one finds that the product always is a
number of order unity, that is, �x �k � 1. Together with p � 
k, this implies an
uncertainty principle:

�x �p � 
 (6.9)

Figure 6.4 (Example 6.3) (a) The Gaussian wavefunction �(x, 0) �

C exp{�(x/2)2}, representing a particle initially localized around x � 0. C is
the amplitude. At x � �2, the amplitude is down from its maximum value by
the factor 1/e ; accordingly,  is identified as the width of the Gaussian,  � �x.
(b) The Gaussian wavefunction of Figure 6.4a at time t (apart from a phase fac-

tor). The width has increased to and the amplitude

is reduced by the factor .√/�x(t)

�x(t) � √2 � (
t/2m)2

0

(a)

(x, 0)

(0, 0) = C

C/e

– 2 + 2

4

Ψ

Ψ

x
0

(b)

(x, t )

(0, t ) = C

4∆x(t )

Ψ

Ψ

x

(0, t )/eΨ

   /∆x(t )√

α α
α

α
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In closing this section, we note that in principle Equations 6.7 and
6.8 solve the fundamental problem of quantum mechanics for free particles
subject to any initial condition �(x, 0). Because of its mathematical simplic-
ity, the Gaussian wave packet is commonly used to represent the initial sys-
tem state, as in the previous examples. However, the Gaussian form is often
only an approximation to reality. Yet even in this simplest of cases, the
mathematical challenge of obtaining �(x, t) from �(x, 0) tends to obscure
the important results. Numerical simulation affords a convenient alternative
to analytical calculation that also aids in visualizing the important phe-
nomena of wave packet propagation and dispersion. To “see” quantum
waveforms in action and further explore their time evolution, go to our
companion Web site http://info.brookscole.com/mp3e, select QMTools
Simulations : Evolution of Free Particle Wave Packets (Tutorial), and fol-
low the on-site instructions.

6.3 WAVEFUNCTIONS IN THE PRESENCE OF FORCES

For a particle acted on by a force F, �(x, t) must be found from
Schrödinger’s equation:

(6.10)

Again, we assume knowledge of the initial wavefunction �(x, 0). In this
expression, U(x) is the potential energy function for the force F; that is,

�

2

2m

�2�

�x2 � U(x)� � i

��

�t
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The same calculation for a 1.0-g marble localized to
0.10 mm � 10�4 m gives

or about 6.0 � 1016 years! This is nearly 10 million 
times the currently accepted value for the age of the
Universe. With its much larger mass, the marble does not
show the quantum effects of dispersion on any measur-
able time scale and will, for all practical purposes, remain
localized “forever.” By contrast, the localization of an
atomic electron is destroyed in a time that is very short,
on a par with the time it takes the electron to complete
one Bohr orbit.

� 1.9 � 1024 s

t � √99 	 (2)(10�3 kg)

1.055 � 10�34 J�s 
 (10�4 m)2

� 1.7 � 10�15 s

t � √99 	 (2)(9.11 � 10�31 kg)

1.055 � 10�34 J�s 
 (1.00 � 10�10 m)2

EXAMPLE 6.4 Dispersion of Matter Waves

An atomic electron initially is localized to a region of
space 0.10 nm wide (atomic size). How much time
elapses before this localization is destroyed by disper-
sion? Repeat the calculation for a 1.0-g marble initially lo-
calized to 0.10 mm.

Solution Taking for the initial state a Gaussian wave
shape, we may use the results of the previous example. In
particular, the extent of the matter wave after a time t has
elapsed is

where �x(0) is its initial width. The packet has effectively
dispersed when �x(t) becomes appreciable compared 
to �x(0), say, �x(t) � 10 �x(0). This happens when

, or .
The electron is initially localized to 0.10 nm 

(� 10�10 m), and its mass is me � 9.11 � 10�31 kg. Thus,
the electron wave packet disperses after a time

t � √99 (2m/
)[�x(0)]2
t/2m � √99 [�x(0)]2

�x(t) � √[�x(0)]2 � � 
t

2m�x(0) �
2

The Schrödinger wave

equation
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198 CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION

E
rwin Schrödinger was an Aus-
trian theoretical physicist best
known as the creator of wave

mechanics. As a young man he was a
good student who liked mathematics
and physics, but also Latin and Greek
for their logical grammar. He re-
ceived a doctorate in physics from the
University of Vienna. Although his
work in physics was interrupted by
World War I, Schrödinger had by
1920 produced important papers on
statistical mechanics, color vision, and
general relativity, which he at first
found quite difficult to understand.
Expressing his feelings about a scien-
tific theory in the remarkably open
and outspoken way he maintained
throughout his life, Schrödinger
found general relativity initially “de-
pressing” and “unnecessarily compli-
cated.” Other Schrödinger remarks in
this vein, with which some readers
will enthusiastically agree, are as fol-
lows: The Bohr–Sommerfeld quan-
tum theory was “unsatisfactory, even
disagreeable.” “I . . . feel intimidated,
not to say repelled, by what seem to
me the very difficult methods [of ma-
trix mechanics] and by the lack of
clarity.”

Shortly after de Broglie intro-
duced the concept of matter waves
in 1924, Schrödinger began to de-
velop a new relativistic atomic the-
ory based on de Broglie’s ideas, but
his failure to include electron spin
led to the failure of this theory for
hydrogen. By January of 1926, how-
ever, by treating the electron as a
nonrelativistic particle, Schrödinger
had introduced his famous wave
equation and successfully obtained
the energy values and wavefunctions
for hydrogen. As Schrödinger him-
self pointed out, an outstanding fea-

ture of his approach was that the dis-
crete energy values emerged from
his wave equation in a natural way
(as in the case of standing waves on
a string), and in a way superior to
the artificial postulate approach of
Bohr. Another outstanding feature
of Schrödinger’s wave mechanics was
that it was easier to apply to physical
problems than Heisenberg’s matrix
mechanics, because it involved a
partial differential equation very
similar to the classical wave equa-
tion. Intrigued by the remarkable
differences in conception and math-
ematical method of wave and matrix
mechanics, Schrödinger did much
to hasten the universal acceptance
of all of quantum theory by demon-
strating the mathematical equiva-
lence of the two theories in 1926.

Although Schrödinger’s wave the-
ory was generally based on clear

physical ideas, one of its major
problems in 1926 was the physical
interpretation of the wavefunction
�. Schrödinger felt that the electron
was ultimately a wave, � was the vi-
bration amplitude of this wave, and
�*� was the electric charge density.
As mentioned in Chapter 4, Born,
Bohr, Heisenberg, and others
pointed out the problems with this
interpretation and presented the
currently accepted view that �*� is
a probability and that the electron is
ultimately no more a wave than
a particle. Schrödinger never ac-
cepted this view, but registered his
“concern and disappointment” that
this “transcendental, almost psychi-
cal interpretation” had become “uni-
versally accepted dogma.”

In 1927, Schrödinger, at the invita-
tion of Max Planck, accepted the
chair of theoretical physics at
the University of Berlin, where he
formed a close friendship with Planck
and experienced six stable and pro-
ductive years. In 1933, disgusted with
the Nazis like so many of his col-
leagues, he left Germany. After sev-
eral moves reflecting the political in-
stability of Europe, he eventually
settled at the Dublin Institute for Ad-
vanced Studies. Here he spent 17
happy, creative years working on
problems in general relativity, cos-
mology, and the application of quan-
tum physics to biology. This last effort
resulted in a fascinating short book,
What is Life?, which induced many
young physicists to investigate biologi-
cal processes with chemical and phys-
ical methods. In 1956, he returned
home to his beloved Tyrolean moun-
tains. He died there in 1961.

ERWIN SCHRÖDINGER

(1887–1961)

F � �dU/dx. Schrödinger’s equation is not derivable from any more basic
principle, but is one of the laws of quantum physics. As with any law, its
“truth” must be gauged ultimately by its ability to make predictions that agree
with experiment.
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The Schrödinger equation propagates the initial wave forward in time. To
see how this works, suppose �(x, 0) has been given. Then the left-hand side
(LHS) of Schrödinger’s equation can be evaluated and Equation 6.10 gives
��/�t at t � 0, the initial rate of change of the wavefunction. From this we
compute the wavefunction a short time, �t, later as �(x, �t) � �(x, 0) �

[��/�t]0�t. This allows the LHS to be re-evaluated, now at t � �t. With each
such repetition, � is advanced another step �t into the future. Continuing the
process generates � at any later time t. Such repetitious calculations are
ideally suited to computers, and the method just outlined may be used to solve
the Schrödinger equation numerically.3

But how can we obtain an explicit mathematical expression for �(x, t)?
Returning to the free particle case, we see that the plane waves �k(x, t) of
Equation 6.6 serve a dual purpose: On the one hand, they represent parti-
cles whose momentum (hence, energy) is known precisely; on the other,
they become the building blocks for constructing wavefunctions satisfying
any initial condition. From this perspective, the question naturally arises:
Do analogous functions exist when forces are present? The answer is yes! To
obtain them we look for solutions to the Schrödinger equation having the
separable form4

(6.11)

where �(x) is a function of x only and �(t) is a function of t only. (Note
that the plane waves have just this form, with �(x) � e ikx and �(t) � e�i	t.)
Substituting Equation 6.11 into Equation 6.10 and dividing through by
�(x)�(t) gives

where primes denote differentiation with respect to the arguments. Now
the LHS of this equation is a function of x only,5 and the RHS is a function
of t only. Since we can assign any value of x independently of t, the two sides
of the equation can be equal only if each is equal to the same
constant, which we call E .6 This yields two equations determining the
unknown functions �(x) and �(t). The resulting equation for the time-

�

2

2m

� �(x)

�(x)
� U(x) � i


��(t)

�(t)

�(x, t) � �(x)�(t)
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3This straightforward approach suffers from numerical instabilities and does not, for example,
conserve probability. In practice, a more sophisticated discretization scheme is usually employed,
such as that provided by the Crank–Nicholson method. See, for example, section 17.2 of Numeri-
cal Recipes by W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Cambridge, U.K.,
Cambridge University Press, 1986.

4Obtaining solutions to partial differential equations in separable form is called separation of vari-
ables. On separating variables, a partial differential equation in, say, N variables is reduced to N
ordinary differential equations, each involving only a single variable. The technique is a general
one which may be applied to many (but not all!) of the partial differential equations encoun-
tered in science and engineering applications.

5Implicitly we have assumed that the potential energy U(x) is a function of x only. For potentials
that also depend on t (for example, those arising from a time-varying electric field), solutions to
the Schrödinger equation in separable form generally do not exist.

6More explicitly, changing t cannot affect the LHS because this depends only on x. Since the two
sides of the equation are equal, we conclude that changing t cannot affect the RHS either. It fol-
lows that the RHS must reduce to a constant. The same argument with x replacing t shows the
LHS also must reduce to this same constant.
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dependent function �(t) is

(6.12)

This can be integrated immediately to give �(t) � e�i	t with 	 � E/
. Thus,
the time dependence is the same as that obtained for free particles! The equa-
tion for the space function �(x) is

(6.13)

Equation 6.13 is called the time-independent Schrödinger equation. Ex-
plicit solutions to this equation cannot be written for an arbitrary potential en-
ergy function U(x). But whatever its form, �(x) must be well behaved because
of its connection with probabilities. In particular, �(x) must be everywhere fi-
nite, single-valued, and continuous. Furthermore, �(x) must be “smooth,” that
is, the slope of the wave d�/dx also must be continuous wherever U(x) has a fi-
nite value.7

For free particles we take U(x) � 0 in Equation 6.13 (to give F � �dU/dx �

0) and find that �(x) � e ikx is a solution with E � 
2k2/2m. Thus, for free par-
ticles the separation constant E becomes the total particle energy; this identifi-
cation continues to be valid when forces are present. The wavefunction �(x)
will change, however, with the introduction of forces, because particle momen-
tum (hence, k) is no longer constant.

The separable solutions to Schrödinger’s equation describe conditions of
particular physical interest. One feature shared by all such wavefunctions is es-
pecially noteworthy: Because �e�i	t �2 � e�i	te�i	t � e0 � 1, we have

��(x, t)�2 � ��(x)�2 (6.14)

This equality expresses the time independence of all probabilities calculated
from �(x, t). For this reason, solutions in separable form are called station-
ary states. Thus, for stationary states all probabilities are static and can
be calculated from the time-independent wavefunction �(x).

6.4 THE PARTICLE IN A BOX

Of the problems involving forces, the simplest is that of particle confine-
ment. Consider a particle moving along the x-axis between the points x � 0
and x � L, where L is the length of the “box.” Inside the box the particle is
free; at the endpoints, however, it experiences strong forces that serve to

�

2

2m

d2�

dx2 � U(x)�(x) � E�(x)

i

d�

dt
� E�(t)
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7On rearrangement, the Schrödinger equation specifies the second derivative of the wavefunction
d 2�/dx2 at any point as

It follows that if U(x) is finite at x, the second derivative also is finite here and the slope d�/dx
will be continuous.

d2�

dx2 �
2m


2 [U(x) � E]�(x)

Wave equation for matter

waves in separable form
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6.4 THE PARTICLE IN A BOX 201

contain it. A simple example is a ball bouncing elastically between two im-
penetrable walls (Fig. 6.5). A more sophisticated one is a charged particle
moving along the axis of aligned metallic tubes held at different potentials,
as shown in Figure 6.6a. The central tube is grounded, so a test charge in-
side this tube has zero electric potential energy and experiences no electric
force. When both outer tubes are held at a high electric potential V, there
are no electric fields within them, but strong repulsive fields arise in the
gaps at 0 and L. The potential energy U(x) for this situation is sketched in
Figure 6.6b. As V is increased without limit and the gaps are simultaneously
reduced to zero, we approach the idealization known as the infinite square
well, or “box” potential (Fig. 6.6c).

From a classical viewpoint, our particle simply bounces back and forth be-
tween the confining walls of the box. Its speed remains constant, as does its ki-
netic energy. Furthermore, classical physics places no restrictions on the values
of its momentum and energy. The quantum description is quite different and
leads to the interesting phenomenon of energy quantization.

We are interested in the time-independent wavefunction �(x) of our parti-
cle. Because it is confined to the box, the particle can never be found outside,
which requires � to be zero in the exterior regions x � 0 and x � L. Inside the
box, U(x) � 0 and Equation 6.13 for �(x) becomes, after rearrangement,

Independent solutions to this equation are sin kx and cos kx, indicating that
k is the wavenumber of oscillation. The most general solution is a linear

d2�

dx2 � �k2�(x)  with  k2 �
2mE


2

(a)

q

V V

+  +  +  +  +  +  +  +

+  +  +  +  +  +  +  +

+  +  +  +  +  +  +  +

+  +  +  +  +  +  +  +

(b)

0

x

L

E
U = qV

(c)

x

L

U

0

∞ ∞

m
v

x

Figure 6.5 A particle of mass
m and speed v bouncing elasti-
cally between two impenetrable
walls.

Figure 6.6 (a) Aligned metallic cylinders serve to confine a charged particle. The in-
ner cylinder is grounded, while the outer ones are held at some high electric potential
V. A charge q moves freely within the cylinders, but encounters electric forces in the
gaps separating them. (b) The electric potential energy seen by this charge. A charge
whose total energy is less than qV is confined to the central cylinder by the strong re-
pulsive forces in the gaps at x � 0 and x � L. (c) As V is increased and the gaps be-
tween cylinders are narrowed, the potential energy approaches that of the infinite
square well.
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202 CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION

Because the energy is all kinetic, E1 � mv1
2/2 and the

minimum speed v1 of the particle is

This speed is immeasurably small, so that for practical
purposes the object can be considered to be at rest.
Indeed, the time required for an object with this speed
to move the 1.00 cm separating the walls is about

� 3.31 � 10�26 m/s

v1 � √2(5.49 � 10�58 J)/(1.00 � 10�6 kg)

E1 �
(6.626 � 10�34 J�s)2

8.00 � 10�10 kg�m2 � 5.49 � 10�58 J

EXAMPLE 6.5 Energy Quantization for a
Macroscopic Object

A small object of mass 1.00 mg is confined to move be-
tween two rigid walls separated by 1.00 cm. (a) Calculate
the minimum speed of the object. (b) If the speed of the
object is 3.00 cm/s, find the corresponding value of n.

Solution Treating this as a particle in a box, the energy
of the particle can only be one of the values given by
Equation 6.17, or

The minimum energy results from taking n � 1. For
m � 1.00 mg and L � 1.00 cm, we calculate

En �
n2�2
2

2mL2 �
n2h2

8mL2

combination of these two,

�(x) � A sinkx � B coskx for 0 � x � L (6.15)

This interior wave must match the exterior wave at the walls of the box for
�(x) to be continuous everywhere.8 Thus, we require the interior wave to van-
ish at x � 0 and x � L:

�(0) � B � 0 (continuity at x � 0)

�(L) � A sin kL � 0 (continuity at x � L)
(6.16)

The last condition requires that kL � n�, where n is any positive integer.9

Because k � 2�/�, this is equivalent to fitting an integral number of half-
wavelengths into the box (see Fig. 6.9a). Using k � n�/L, we find that the par-
ticle energies are quantized, being restricted to the values

n � 1, 2, . . . (6.17)

The lowest allowed energy is given by n � 1 and is E1 � �2
2/2mL2. This is
the ground state. Because En � n2E1, the excited states for which n � 2, 3,
4, . . . have energies 4E1, 9E1, 16E1, . . . An energy-level diagram is given in
Figure 6.7. Notice that E � 0 is not allowed; that is, the particle can never be at
rest. The least energy the particle can have, E1, is called the zero-point energy.
This result clearly contradicts the classical prediction, for which E � 0 is an ac-
ceptable energy, as are all positive values of E. The following example illus-
trates how this contradiction is reconciled with our everyday experience.

En �

2k2

2m
�

n2�2 
2

2mL2

4

1

2

3

E
n

er
g

y

E4 = 16E1

E3 = 9E1

E2 = 4E1

E1
E = 0

Zero-point energy > 0

n

Figure 6.7 Energy-level dia-
gram for a particle confined to
a one-dimensional box of width
L. The lowest allowed energy is
E1, with value �2
2/2mL2.

8Although �(x) must be continuous everywhere, the slope of d�/dx is not continuous at the walls
of the box, where U(x) becomes infinite (cf. footnote 7).

9For n � 0 (E � 0), Schrödinger’s equation requires d2�/dx2 � 0, whose solution is given by 
�(x) � Ax � B for some choice of constants A and B. For this wavefunction to vanish at 
x � 0 and x � L, both A and B must be zero, leaving �(x) � 0 everywhere. In such a case the par-
ticle is nowhere to be found; that is, no description is possible when E � 0. Also, the inclusion of
negative integers n � 0 produces no new states, because changing the sign of n merely changes
the sign of the wavefunction, leading to the same probabilities as for positive integers.

Allowed energies for a

particle in a box
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6.4 THE PARTICLE IN A BOX 203

EXAMPLE 6.6 Model of an Atom

An atom can be viewed as a number of electrons moving
around a positively charged nucleus, where the electrons
are subject mainly to the Coulombic attraction of the nu-
cleus (which actually is partially “screened” by the inter-
vening electrons). The potential well that each electron
“sees” is sketched in Figure 6.8. Use the model of a parti-
cle in a box to estimate the energy (in eV) required to
raise an atomic electron from the state n � 1 to the state
n � 2, assuming the atom has a radius of 0.100 nm.

Solution Taking the length L of the box to be 0.200 nm
(the diameter of the atom), me � 511 keV/c2, and 
c �

197.3 eV � nm for the electron, we calculate

U(r )

0
r

En

E3

E2

E1

Figure 6.8 (Example 6.6) Model of the potential en-
ergy versus r for the one-electron atom.

3 � 1023 s, or about 1 million times the present age of
the Universe! It is reassuring to verify that quantum me-
chanics applied to macroscopic objects does not contra-
dict our everyday experiences.

If, instead, the speed of the particle is v � 3.00 cm/s,
then its energy is

This, too, must be one of the special values En. To find
which one, we solve for the quantum number n, obtaining

Notice that the quantum number representing a typical
speed for this ordinary-size object is enormous. In fact,
the value of n is so large that we would never be able to
distinguish the quantized nature of the energy levels.
That is, the difference in energy between two consecutive
states with quantum numbers n1 � 9.05 � 1023 and n2 �

9.05 � 1023 � 1 is only about 10�33 J, much too small to
be detected experimentally. This is another example that
illustrates the working of Bohr’s correspondence princi-
ple, which asserts that quantum predictions must agree
with classical results for large masses and lengths.

� 9.05 � 1023

�
√(8.00 � 10�10 kg�m2)(4.50 � 10�10 J)

6.626 � 10�34 J�s

n �
√8mL2E

h

� 4.50 � 10�10 J

E �
mv2

2
�

(1.00 � 10�6 kg)(3.00 � 10�2 m/s)2

2

and

E2 � (2)2E1 � 4(9.40 eV) � 37.6 eV

Therefore, the energy that must be supplied to the elec-
tron is

�E � E2 � E1 � 37.6 eV � 9.40 eV � 28.2 eV

We could also calculate the wavelength of the photon
that would cause this transition by identifying �E with the
photon energy hc/�, or

� � hc/�E � (1.24 � 103 eV � nm)/(28.2 eV) � 44.0 nm

This wavelength is in the far ultraviolet region, and it is
interesting to note that the result is roughly correct. Al-
though this oversimplified model gives a good estimate
for transitions between lowest-lying levels of the atom,
the estimate gets progressively worse for higher-energy
transitions.

� 9.40 eV

�
�2(197.3 eV�nm/c)2

2(511 � 103 eV/c2)(0.200 nm)2

E1 �
�2
2

2meL2

Exercise 1 Calculate the minimum speed of an atomic electron modeled as a particle
in a box with walls that are 0.200 nm apart.

Answer 1.82 � 106 m/s.
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Returning to the wavefunctions, we have from Equation 6.15 (with
k � n�/L and B � 0)

for 0 � x � L and n � 1, 2, . . . (6.18)

For each value of the quantum number n there is a specific wavefunc-
tion �n(x) describing the state of the particle with energy En. Figure 6.9
shows plots of �n versus x and of the probability density ��n �2 versus x for
n � 1, 2, and 3, corresponding to the three lowest allowed energies for the
particle. For n � 1, the probability of finding the particle is largest at 
x � L/2—this is the most probable position for a particle in this state. For n � 2,
�� �2 is a maximum at x � L/4 and again at x � 3L/4: Both points are equally
likely places for a particle in this state to be found.

There are also points within the box where it is impossible to find the parti-
cle. Again for n � 2, �� �2 is zero at the midpoint, x � L/2; for n � 3, �� �2 is
zero at x � L/3 and at x � 2L/3, and so on. But this raises an interesting ques-
tion: How does our particle get from one place to another when there is no
probability for its ever being at points in between? It is as if there were no path
at all, and not just that the probabilities �� �2 express our ignorance about a
world somehow hidden from view. Indeed, what is at stake here is the very
essence of a particle as something that gets from one place to another by occu-
pying all intervening positions. The objects of quantum mechanics are not par-
ticles, but more complicated things having both particle and wave attributes.

Actual probabilities can be computed only after �n is normalized, that is, we
must be sure that all probabilities sum to unity:

1 � ��

��
� �n(x) �2 dx � A2 �L

0
 sin2 � n�x

L � dx

�n(x) � A sin � n�x

L �
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∞ ∞

� �2�

(a)

x

0 L

∞ ∞

(b)

x

0 L

n = 3

n = 2

n = 1

Figure 6.9 The first three allowed stationary states for a particle confined to a one-
dimensional box. (a) The wavefunctions for n � 1, 2, and 3. (b) The probability distri-
butions for n � 1, 2, and 3.

Stationary states for a

particle in a box
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The integral is evaluated with the help of the trigonometric identity 2 sin2� �

1 � cos 2�:

Only the first term contributes to the integral, because the cosine integrates to
sin(2n�x/L), which vanishes at the limits 0 and L. Thus, normalization re-
quires 1 � A2L/2, or

(6.19)A � √ 2

L

�L

0
sin2 � n�x

L � dx �
1

2
�L

0
 [1 � cos(2n�x/L)] dx
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Notice that this is considerably larger than , which
would be expected for a classical particle that spends
equal time in all parts of the well.

1
2

�
1

2
� � 1

2� � [�1 � 1] � 0.818

� � 1

L �� L

2
� � L

2� � sin(2�x/L) �3L/4

L/4
�

EXAMPLE 6.7 Probabilities for a Particle
in a Box

A particle is known to be in the ground state of an infi-
nite square well with length L. Calculate the probability
that this particle will be found in the middle half of the
well, that is, between x � L/4 and x � 3L/4.

Solution The probability density is given by ��n �2 with
n � 1 for the ground state. Thus, the probability is

� � 1

L � �3L/4

L/4
 [1 � cos(2�x/L)] dx

P � �3L/4

L/4
� �1 �2 dx � � 2

L � �3L/4

L/4
 sin2(�x/L) dx

Exercise 2 Repeat the calculation of Example 6.7 for a particle in the nth state of the
infinite square well, and show that the result approaches the classical value in the
limit n : �.

Charge-Coupled Devices (CCDs)

Potential wells are essential to the operation of many modern electronic de-
vices, though rarely is the well shape so simple that it can be accurately mod-
eled by the infinite square well discussed in this section. The charge-coupled
device, or CCD, uses potential wells to trap electrons and create a faithful elec-
tronic reproduction of light intensity across the active surface.

For more than two decades now, CCDs have been helping astronomers see
amazing detail in distant galaxies using much shorter exposure times than
with traditional photographic emulsions (Fig. 6.10). These devices consist of a
two-dimensional array of moveable electron boxes (or wells) created beneath
a set of electrodes formed on the surface of a thin silicon chip (Fig. 6.11). The
silicon serves the dual purpose of emitting an electron when struck by a pho-
ton and acting as a local trap for electrons. The potential energy seen by an
electron in this environment is shown by the curve on the right in Figure 6.11,
with the depth coordinate increasing downward. Though far removed from a

1
2
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“box” potential, the well shape nevertheless serves to confine the emitted elec-
trons in the depth dimension. [Each well or picture element (pixel) in the ar-
ray also is isolated electrically from its neighbors, in effect confining the elec-
trons in the remaining two dimensions perpendicular to the figure.] The
number of electrons in a given well, and consequently the number of photons
striking a particular point on the chip, may be read out electronically and the
signal processed by computer to enhance the image. The name “charge-
coupled device” was coined to describe the way the signals are read from the
individual wells. A row of wells containing trapped electrons is moved verti-
cally one step at a time by changing the voltage on the vertical electrodes in a
progressive manner. When a row reaches the output register, the pixels are
moved horizontally by systematically changing the voltage on the horizontal
electrodes. In this way an entire row is read out in serial fashion by an ampli-
fier at the end of the output register. Figure 6.12 illustrates the operating prin-
ciple. CCD development has been impressive over the past two decades, and
currently square arrays of over 4 million pixels (2048 pixels on a side) packed
into a chip of several square centimeters are available. An entire CCD sensor is
shown in Figure 6.13a; Figure 6.13b shows the cross section of a single pixel in
a CCD image sensor, enlarged 5000 times.

CCD imagers possess several advantages over other light detectors. Because
CCDs detect as many as 90% of the photons hitting their surface, they are far
more sensitive than the best photographic emulsions, which can detect only
2–3% of those bone-weary photons that have traveled millions of lightyears
from distant galaxies. In addition, CCDs can accurately measure the exact
brightness of an object, since their voltage output is directly proportional to
light input over a very wide brightness range. Another great feature of CCDs is
their ability to measure accurately both faint and bright objects in the same
frame. This is not true for photographic emulsions, where bright objects wash
out faint details. Faint objects are recorded by cooling the CCD with liquid
nitrogen to keep competing thermally generated electrons (noise) to a mini-
mum. The simultaneous measurement of bright images is limited only by the
filling of potential wells with electrons. State-of-the-art CCDs can hold as many
as 100,000 electrons in a single well and are about 100 times better than pho-
tographic plates at simultaneously recording bright and faint objects. The abil-
ity to record where an incident photon strikes also is important for locating
the exact position of a faint star. CCDs afford exceptional geometric accuracy
because each pixel position is defined by the rigid physical structure of the
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n-type Silicon
C

V(x)

VG

x

p-type Silicon

Polysilicon gate

Silicon oxide
Silicon nitride

Figure 6.11 Structure of a single picture element (pixel)
in a CCD array. The sketch on the right shows how the
potential energy of an electron varies with depth in the
device.

Figure 6.10 Researchers at
Arizona State University, using
NASA’s Hubble Space Tele-
scope, believe they are seeing
the conclusion of the cosmic
epoch where the young galaxies
started to shine in significant
numbers, about 13 billion years
ago. The image shows some of
the objects that the team discov-
ered using Hubble’s new Ad-
vanced Camera for Surveys
(ACS), based on CCD technol-
ogy. Astronomers believe that
these numerous objects are
faint young star-forming galax-
ies seen when the universe was
seven times smaller than it is 
today (at redshifts of about 6)
and less than a billion years old.
(H-J. Yan, R. Windhorst and 

S. Cohen, Arizona State University

and NASA).
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Figure 6.14 The “clover leaf,” the quadruply lensed quasar H1413�117. The four im-
ages of comparable brightness are only 1 arcsec apart. The spectra of two of the images
are identical, except for some absorption lines in one that presumably come from differ-
ent gas clouds that are in the other’s line of sight. The redshift is 2.55. The rare configu-
ration and identical spectra show that we are seeing gravitational lensing rather than a
cluster of quasars.

(b) A Hubble Space Telescope view, in which the lensing galaxy is revealed. (NASA/ESA)

(b)

chip. (Because of their high resolution and geometric accuracy, CCDs also
are used to record the paths of energetic elementary particles by collecting
the electrons generated along their tracks.) Finally, overall noise and signal

Images not available due to copyright restrictions

Image not available due to copyright restrictions
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degradation have decreased so markedly in CCDs that as many as 99.9999% of
the electrons are transferred in each well shift. This is crucial since image
readout involves thousands of such transfers.

Figure 6.14a shows a remarkable quadruply lensed quasar. The multiple
images result when light from a single quasar is deflected by gravita-
tional forces as it passes near an intervening galaxy on its journey to Earth.
Figure 16.14b shows the lensing galaxy, beautifully resolved by the CCD
imager on board the Hubble Space Telescope. These, and similar images of-
fer conclusive proof of the superior ability of CCDs to make extremely
accurate position measurements of faint objects in the presence of much
brighter ones.

6.5 THE FINITE SQUARE WELL

The “box” potential is an oversimplification that is never realized in practice. Given

sufficient energy, a particle can escape the confines of any well. The potential en-

ergy for a more realistic situation—the finite square well—is shown in Figure 6.15,

and essentially is that depicted in Figure 6.6b before taking the limit V : � . A clas-

sical particle with energy E greater than the well height U can penetrate the gaps at

x � 0 and x � L to enter the outer region. Here it moves freely, but with reduced

speed corresponding to a diminished kinetic energy E � U.

A classical particle with energy E less than U is permanently bound to the region

0 � x � L. Quantum mechanics asserts, however, that there is some probability that

the particle can be found outside this region! That is, the wavefunction generally is

nonzero outside the well, and so the probability of finding the particle here also is

nonzero. For stationary states, the wavefunction �(x) is found from the time-

independent Schrödinger equation. Outside the well where U(x) � U, this is

with 2 � 2m(U � E )/
2 a constant. Because U � E, 2 necessarily is positive

and the independent solutions to this equation are the real exponentials e�x and

e�x. The positive exponential must be rejected in region III where x � L to keep

�(x) finite as x : �; likewise, the negative exponential must be rejected in re-

gion I where x � 0 to keep �(x) finite as x : ��. Thus, the exterior wave takes

the form

�(x) � Ae�x for x � 0

�(x) � Be�x for x � L

(6.20)

The coefficients A and B are determined by matching this wave smoothly onto

the wavefunction in the well interior. Specifically, we require �(x) and its first deriva-

tive d�/dx to be continuous at x � 0 and again at x � L. This can be done only for

certain values of E, corresponding to the allowed energies for the bound particle.

For these energies, the matching conditions specify the entire wavefunction except

for a multiplicative constant, which then is determined by normalization. Figure

6.16 shows the wavefunctions and probability densities that result for the three low-

est allowed particle energies. Note that in each case the waveforms join smoothly at

the boundaries of the potential well.

The fact that � is nonzero at the walls increases the de Broglie wavelength in the

well (compared with that in the infinite well), and this in turn lowers the energy and

momentum of the particle. This observation can be used to approximate the 

d2�

dx2 � 2�(x)  x � 0 and x � L

I

E

L

U

II III

0

x

Figure 6.15 Potential-energy
diagram for a well of finite
height U and width L . The 
energy E of the particle is less
than U.

O P T I O N A L
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allowed energies for the bound particle.10 The wavefunction penetrates the exterior

region on a scale of length set by the penetration depth �, given by

(6.21)

Specifically, at a distance � beyond the well edge, the wave amplitude has fallen to

1/e of its value at the edge and approaches zero exponentially in the exterior re-

gion. That is, the exterior wave is essentially zero beyond a distance � on either side

of the potential well. If it were truly zero beyond this distance, the allowed energies

would be those for an infinite well of length L � 2� (compare Equation 6.17), or

n � 1, 2, . . . (6.22)

The allowed energies for a particle bound to the finite well are given approximately

by Equation 6.22 so long as � is small compared with L. But � itself is energy depen-

dent according to Equation 6.21. Thus, Equation 6.22 becomes an implicit relation

for E that must be solved numerically for a given value of n. The approximation is

best for the lowest-lying states and breaks down completely as E approaches U,

where � becomes infinite. From this we infer (correctly) that the number of bound

states is limited by the height U of our potential well. Particles with energies E ex-

ceeding U are not bound to the well, that is, they may be found with comparable

probability in the exterior regions. The case of unbound states will be taken up in

the following chapter.

En �
n2�2
2

2m(L � 2�)2

� �
1


�




√2m(U � E)
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Approximate energies for a

particle in a well of finite

height

Penetration depth

IIIIII

�12�

�22�

�32�

IIIIII

�1�

�2�

�3�

(a) (b)

Figure 6.16 (a) Wavefunctions for the lowest three energy states for a particle in a
potential well of finite height. (b) Probability densities for the lowest three energy
states for a particle in a potential well of finite height.

10This specific approximation method was reported by S. Garrett in the Am. J. Phys.
47:195–196, 1979.
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EXAMPLE 6.8 A Bound Electron

Estimate the ground-state energy for an electron confined to a potential well of

width 0.200 nm and height 100 eV.

Solution We solve Equations 6.21 and 6.22 together, using an iterative procedure.

Because we expect E �� U(� 100 eV), we estimate the decay length � by first ne-

glecting E to get

Thus, the effective width of the (infinite) well is L � 2� � 0.239 nm, for which we

calculate the ground-state energy:

From this E we calculate U � E � 93.42 eV and a new decay length

This, in turn, increases the effective well width to 0.240 nm and lowers the ground-

state energy to E � 6.53 eV. The iterative process is repeated until the desired

accuracy is achieved. Another iteration gives the same result to the accuracy reported.

This is in excellent agreement with the exact value, about 6.52 eV for this case.

� �
(197.3 eV�nm/c)

√2(511 � 103 eV/c2)(93.42 eV)
� 0.0202 nm

E �
�2(197.3 eV�nm/c)2

2(511 � 103 eV/c2)(0.239 nm)2 � 6.58 eV

� 0.0195 nm

� �



√2mU
�

(197.3 eV�nm/c)

√2(511 � 103 eV/c2)(100 eV)

Exercise 3 Bound-state waveforms and allowed energies for the finite

square well also can be found using purely numerical methods. Go to our compan-

ion Web site (http://info.brookscole.com/mp3e) and select QMTools Simulations

: Exercise 6.3. The applet shows the potential energy for an electron confined to a

finite well of width 0.200 nm and height 100 eV. Follow the on-site instructions to

add a stationary wave and determine the energy of the ground state. Repeat the pro-

cedure for the first excited state. Compare the symmetry and the number of nodes

for these two wavefunctions. Find the highest-lying bound state for this finite well.

Count nodes to determine which excited state this is, and thus deduce the total

number of bound states this well supports.

EXAMPLE 6.9 Energy of a Finite Well: Exact Treatment

Impose matching conditions on the interior and exterior wavefunctions and show

how these lead to energy quantization for the finite square well.

Solution The exterior wavefunctions are the decaying exponential functions

given by Equation 6.20 with decay constant  � [2m(U � E )/
2]1/2. The interior

wave is an oscillation with wavenumber k � (2mE/
2)1/2 having the same form as

that for the infinite well, Equation 6.15; here we write it as

�(x) � C sinkx � D coskx for 0 � x � L

To join this smoothly onto the exterior wave, we insist that the wavefunction and its

slope be continuous at the well edges x � 0 and x � L. At x � 0 the conditions for

smooth joining require
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6.6 THE QUANTUM OSCILLATOR

As a final example of a potential well for which exact results can be obtained,
let us examine the problem of a particle subject to a linear restoring force
F � �Kx. Here x is the displacement of the particle from equilibrium (x � 0)
and K is the force constant. The corresponding potential energy is given by
U(x) � Kx2. The prototype physical system fitting this description is a mass
on a spring, but the mathematical description actually applies to any object
limited to small excursions about a point of stable equilibrium.

Consider the general potential function sketched in Figure 6.17. The posi-
tions a, b, and c all label equilibrium points where the force F � �dU/dx is
zero. Further, positions a and c are examples of stable equilibria, but b is unsta-
ble. The stability of equilibrium is decided by examining the forces in the
immediate neighborhood of the equilibrium point. Just to the left of a, for ex-
ample, F � �dU/dx is positive, that is, the force is directed to the right; con-
versely, to the right of a the force is directed to the left. Therefore, a particle
displaced slightly from equilibrium at a encounters a force driving it back to
the equilibrium point (restoring force). Similar arguments show that the equi-
librium at c also is stable. On the other hand, a particle displaced in either di-
rection from point b experiences a force that drives it further away from
equilibrium—an unstable condition. In general, stable and unstable equilib-
ria are marked by potential curves that are concave or convex, respectively, at

1
2
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A � D (continuity of �)

Dividing the second equation by the first eliminates A, leaving

In the same way, smooth joining at x � L requires

C sinkL � D coskL � Be�L (continuity of �)

kC coskL � kD sinkL � �Be�L

Again dividing the second equation by the first eliminates B. Then replacing C/D

with /k gives

For a specified well height U and width L, this last relation can only be satisfied for

special values of E (E is contained in both k and ). For any other energies, the

waveform will not match smoothly at the well edges, leaving a wavefunction that is

physically inadmissable. (Note that the equation cannot be solved explicitly for E;

rather, solutions must be obtained using numerical or graphical methods.)

(/k)coskL � sinkL

(/k)sinkL � coskL
� �



k

�continuity of 
d�

dx �

C

D
�



k

A � kC  �continuity of 
d�

dx �

Exercise 4 Use the result of Example 6.9 to verify that the ground-state energy for

an electron confined to a square well of width 0.200 nm and height 100 eV is about

6.52 eV.

Stable StableUnstable

a b

c

U(x)

x

Figure 6.17 A general poten-
tial function U(x). The points
labeled a and c are positions of
stable equilibrium, for which
dU/dx � 0 and d2U/dx2 � 0.
Point b is a position of unsta-
ble equilibrium, for which
dU/dx � 0 and d2U/dx2 � 0.
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the equilibrium point. To put it another way, the curvature of U(x) is
positive (d2U/dx2

� 0) at a point of stable equilibrium, and negative
(d2U/dx2

� 0) at a point of unstable equilibrium.
Near a point of stable equilibrium such as a (or c), U(x) can be fit quite well

by a parabola:

(6.23)

Of course, the curvature of this parabola (� K ) must match that of U(x) at
the equilibrium point x � a:

(6.24)

Further, U(a), the potential energy at equilibrium, may be taken as zero if we
agree to make this our energy reference, that is, if we subsequently measure all
energies from this level. In the same spirit, the coordinate origin may be placed
at x � a, in effect allowing us to set a � 0. With U(a) � 0 and a � 0, Equation
6.23 becomes the spring potential once again; in other words, a particle lim-
ited to small excursions about any stable equilibrium point behaves as if
it were attached to a spring with a force constant K prescribed by the cur-
vature of the true potential at equilibrium. In this way the oscillator becomes
a first approximation to the vibrations occurring in many real systems.

The motion of a classical oscillator with mass m is simple harmonic vibra-
tion at the angular frequency . If the particle is removed from equi-
librium a distance A and released, it oscillates between the points x � �A and
x � �A (A is the amplitude of vibration), with total energy E � KA2. By
changing the initial point of release A, the classical particle can in principle be
given any (nonnegative) energy whatsoever, including zero.

The quantum oscillator is described by the potential energy U(x) � Kx2 �

m	2x2 in the Schrödinger equation. After a little rearrangement we get

(6.25)

as the equation for the stationary states of the oscillator. The mathematical
technique for solving this equation is beyond the level of this text. (The expo-
nential and trigonometric forms for � employed previously will not work here
because of the presence of x2 in the potential.) It is instructive, however, to
make some intelligent guesses and verify their accuracy by direct substitution.
The ground-state wavefunction should possess the following attributes:

1. � should be symmetric about the midpoint of the potential well x � 0.
2. � should be nodeless, but approaching zero for �x � large.

Both expectations are derived from our experience with the lowest energy
states of the infinite and finite square wells, which you might want to review at
this time. The symmetry condition (1) requires � to be some function of x2;
further, the function must have no zeros (other than at infinity) to meet the
nodeless requirement (2). The simplest choice fulfilling both demands is the
Gaussian form

(6.26)�(x) � C0e�x2

d2�

dx2 �
2m


2 � 1

2
m	2x2 � E� �(x)

1
2

1
2

1
2

	 � √K/m

K �
d2U

dx2 �
a

U(x) � U(a) � 1
2K(x � a)2
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Harmonic approximation to

vibrations occurring in real

systems
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for some as-yet-unknown constants C0 and . Taking the second derivative of
�(x) in Equation 6.26 gives (as you should verify)

which has the same structure as Equation 6.25. Comparing like terms between
them, we see that we have a solution provided that both

(6.27)

and

(6.28)

In this way we discover that the oscillator ground state is described by
the wavefunction �0(x) � C0exp(�m	x2/2
) and that the energy of this state
is E0 � 
	. The constant C0 is reserved for normalization (see Example 6.10).
The ground-state wave �0 and associated probability density ��0 �2 are
illustrated in Figure 6.18. The dashed vertical lines mark the limits of vibration
for a classical oscillator with the same energy. Note the considerable penetra-
tion of the wave into the classically forbidden regions x � A and x � �A. A
detailed analysis shows that the particle can be found in these nonclassical
regions about 16% of the time (see Example 6.12).

1
2

2mE


2 � 2 �
m	



  or  E � 1

2 
	

42 �
2m


2

1

2
m	2  or   �

m	

2


d2�

dx2 � {42x2 � 2}C0e�x2
� {42x2 � 2}�(x)
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EXAMPLE 6.11 Limits of Vibration for a
Classical Oscillator

Obtain the limits of vibration for a classical oscillator hav-
ing the same total energy as the quantum oscillator in its
ground state.

Solution The ground-state energy of the quantum oscil-
lator is E0 � 
	. At its limits of vibration x � �A, the clas-
sical oscillator has transformed all this energy into elastic
potential energy of the spring, given by KA2 � m	2A2.
Therefore,

The classical oscillator vibrates in the interval given by
�A � x � A, having insufficient energy to exceed these
limits.

EXAMPLE 6.12 The Quantum Oscillator in the
Nonclassical Region

Calculate the probability that a quantum oscillator in its
ground state will be found outside the range permitted
for a classical oscillator with the same energy.

1
2
	 � 1

2m	2A2  or  A � √ 


m	

1
2

1
2

1
2

EXAMPLE 6.10 Normalizing the Oscillator
Ground State Wavefunction

Normalize the oscillator ground-state wavefunction found
in the preceding paragraph.

Solution With , the integrated
probability is

Evaluation of the integral requires advanced techniques.
We shall be content here simply to quote the formula

In our case we identify a with m	/
 and obtain

Normalization requires this integrated probability to be
1, leading to

C0 � � m	

� 
 �
1/4

��

��
� �0(x) �2 dx � C 0

2 √ � 


m	

��

��
e�ax2

dx � √ �

a
  a � 0

��

��
� �0(x) �2 dx � C 0

2 ��

��
e�m	x2/
 dx

�0(x) � C0e�m	x2/2


Figure 6.18 (a) Wavefunction
for the ground state of a parti-
cle in the oscillator potential
well. (b) The probability density
for the ground state of a parti-
cle in the oscillator potential
well. The dashed vertical lines
mark the limits of vibration for
a classical particle with the same
energy, .x � �A � �√
/m	

0

�0(x)2�

x

(b)

0

�0(x)�

x

(a)
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11The method of power series expansion as applied to the problem of the quantum oscillator is
developed in any more advanced quantum mechanics text. See, for example, E. E. Anderson,
Modern Physics and Quantum Mechanics, Philadelphia, W. B. Saunders Company, 1971.

Changing variables from x to x and using

(corresponding to z � 1) leads to

Expressions of this sort are encountered frequently in
probability studies. With the lower limit of integration
changed to a variable—say, y—the result for P defines
the complementary error function erfc(y). Values of the error
function may be found in tables. In this way we obtain
P � erfc(1) � 0.157, or about 16%.

P �
2

√�
��

1
e�z2

dz

A � √
/m	

z � √m	/


P � 2 � m	

� 
 �
1/2 ��

A
e�m	x2/
 dx

Solution Because the classical oscillator is confined to
the interval �A � x � A, where A is its amplitude of vibra-
tion, the question is one of finding the quantum oscillator
outside this interval. From the previous example we have

for a classical oscillator with energy 
	. The
quantum oscillator with this energy is described by
the wavefunction �0(x) � C0exp(�m	x2/2
), with C0 �

(m	/�
)1/4 from Example 6.10. The probability in ques-
tion is found by integrating the probability density ��0�2 in
the region beyond the classical limits of vibration, or

From the symmetry of �0, the two integrals contribute
equally to P, so

P � ��A

��
� �0 �2 dx � ��

A
� �0 �2 dx

1
2A � √
/m	

Energy levels for the

harmonic oscillator

Figure 6.19 Energy-level dia-
gram for the quantum oscilla-
tor. Note that the levels are
equally spaced, with a separa-
tion equal to 
	. The ground
state energy is E0.

U(x)

0
x

∆E = 

E5 = – 11
2

E4 = – 9
2

E3 = – 7
2

E2 = – 5
2

E1 = – 3
2

E0 = – 1
2

hω

hω

hω

hω

hω

hω

hω

To obtain excited states of the oscillator, a procedure can be followed simi-
lar to that for the ground state. The first excited state should be antisymmetric
about the midpoint of the oscillator well (x � 0) and display exactly one node.
By virtue of the antisymmetry, this node must occur at the origin, so that a suit-
able trial solution would be �(x) � x exp(�x2). Substituting this form into
Equation 6.25 yields the same  as before, along with the first excited-state
energy E1 � 
	.

Continuing in this manner, we could generate ever-higher-lying oscillator
states with their respective energies, but the procedure rapidly becomes too la-
borious to be practical. What is needed is a systematic approach, such as that
provided by the method of power series expansion.11 Pursuing this method
would take us too far afield, but the result for the allowed oscillator energies is
quite simple and sufficiently important that it be included here:

n � 0, 1, 2, . . . (6.29)

The energy-level diagram following from Equation 6.29 is given in Figure
6.19. Note the uniform spacing of levels, widely recognized as the hallmark of
the harmonic oscillator spectrum. The energy difference between adjacent
levels is just �E � 
	. In these results we find the quantum justification for
Planck’s revolutionary hypothesis concerning his cavity resonators (see Section
3.2). In deriving his blackbody radiation formula, Planck assumed that these
resonators (oscillators), which made up the cavity walls, could possess only
those energies that were multiples of hf � 
	. Although Planck could not have
foreseen the zero-point energy 
	/2, it would make no difference: His res-
onators still would emit or absorb light energy in the bundles �E � hf neces-
sary to reproduce the blackbody spectrum.

En � (n � 1
2)
	

3
2
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n = 0

– 5 – 4 – 3 – 2 – 1 0 1 2 3 4 5
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n = 1
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n = 3

n = 10

n
2�

Figure 6.20 Probability densities for a few states of the quantum oscillator. The
dashed curves represent the classical probabilities corresponding to the same energies.

The probability densities for some of the oscillator states are plotted in Fig-
ure 6.20. The dashed lines, representing the classical probability densities for
the same energy, are provided for comparison (see Problem 28 for the calcula-
tion of classical probabilities). Note that as n increases, agreement between
the classical and quantum probabilities improves, as expected from the corre-
spondence principle.
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6.7 EXPECTATION VALUES

It should be evident by now that two distinct types of measurable quantities
are associated with a given wavefunction �(x, t). One type—like the energy E
for the stationary states—is fixed by the quantum number labeling the wave.
Therefore, every measurement of this quantity performed on the system de-
scribed by � yields the same value. Quantities such as E we call sharp to distin-
guish them from others—like the position x—for which the wavefunction �
furnishes only probabilities. We say x is an example of a dynamic quantity that
is fuzzy. In the following paragraphs we discuss what more can be learned
about these “fuzzy” quantities.

A particle described by the wavefunction � may occupy various places x with
probability given by the wave intensity there, ��(x)�2. Predictions made this way
from � can be tested by making repeated measurements of the particle position.
Table 6.1 shows results that might be obtained in a hypothetical experiment of
this sort. The table consists of 18 entries, each one representing the actual posi-
tion of the particle recorded in that particular measurement. We see that the
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Such small energies are far below present limits of detec-
tion.

At the atomic level, however, much higher frequencies
are commonplace. Consider the vibrational frequency of
the hydrogen molecule. This behaves as an oscillator with
K � 510.5 N/m and reduced mass � � 8.37 � 10�28 kg.
The angular frequency of oscillation is therefore

At such frequencies, the quantum of energy 
	 is
0.513 eV, which can be measured easily!

� 7.81 � 1014 rad/s

	 � √ K

�
� √ 510.5 N/m

8.37 � 10�28 kg

EXAMPLE 6.13 Quantization of 
Vibrational Energy

The energy of a quantum oscillator is restricted to be one
of the values (n � )
	. How can this quantization apply
to the motion of a mass on a spring, which seemingly can
vibrate with any amplitude (energy) whatever?

Solution The discrete values for the allowed energies
of the oscillator would go unnoticed if the spacing
between adjacent levels were too small to be detected.
At the macroscopic level, a laboratory mass m

of, say, 0.0100 kg on a spring having force constant
K � 0.100 N/m (a typical value) would oscillate with an-
gular frequency . The corre-
sponding period of vibration is T � 2�/	 � 1.99 s. In
this case the quantum level spacing is only

� 2.08 � 10�15 eV

�E � 
	 � (6.582 � 10�16 eV�s)(3.16 rad/s)

	 � √K/m � 3.16 rad/s

1
2

Sharp and fuzzy variables

Table 6.1 Hypothetical Data Set for Position of a Particle 

as Recorded in Repeated Trials

Position Position Position
Trial (arbitrary units) Trial (arbitrary units) Trial (arbitrary units)

1 x1 � 2.5 7 x7 � 8.0 13 x13 � 4.2
2 x2 � 3.7 8 x8 � 6.4 14 x14 � 8.8
3 x3 � 1.4 9 x9 � 4.1 15 x15 � 6.2
4 x4 � 7.9 10 x10 � 5.4 16 x16 � 7.1
5 x5 � 6.2 11 x11 � 7.0 17 x17 � 5.4
6 x6 � 5.4 12 x12 � 3.3 18 x18 � 5.3
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218 CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION

entry 5.4 occurs most often (in 3 of the 18 trials); it represents the most probable
position based on the data available. The probability associated with this position,
again based on the available data, is 3/18 � 0.167. These numbers will fluctuate
as additional measurements are taken, but they should approach limiting values.
The theoretical predictions refer to these limiting values. A good test of the the-
ory would require much more data than we have shown in this illustration.

The information in Table 6.1 also can be used to find the average position
of the particle:

This same number can be found in a different way. First, order the table
entries by value, starting with the smallest: 1.4, 2.5, 3.3, . . . , 5.4, 6.2, . . . ,
8.0, 8.8. Now take each value, multiply by its frequency of occurrence, and
sum the results:

The two procedures are equivalent, but the latter involves a sum over ordered
values rather than individual table entries. We may generalize this last expres-
sion to include other values for the position of the particle, provided we
weight each one by its observed frequency of occurrence (in this case, zero).
This allows us to write a general prescription to calculate the average particle
position from any data set:

(6.30)

The sum now includes all values of x, each weighted by its frequency or proba-
bility of occurrence Px. Because the possible values of x are distributed contin-
uously over the entire range of real numbers, the sum in Equation 6.30 really
should be an integral and Px should refer to the probability of finding the par-
ticle in the infinitesimal interval dx about the point x; that is, the probability
Px : P(x)dx, where P(x) is the probability density. In quantum mechanics,
P(x) � �� �2 and the average value of x, written in quantum mechanics as �x�,
is called the expectation value. Then,

(6.31)

Notice that �x� may be a function of time. For a stationary state, however, �� �2

is static and, as a consequence, �x� is independent of t.
In similar fashion we find that the average or expectation value for any

function of x, say f (x), is

(6.32)

With f (x) � U(x), Equation 6.32 becomes �U �, the average potential energy of
the particle. With f (x) � x2, the quantum uncertainty in particle position may

� f � � ��

��

f (x)� � �2 dx

�x � � ��

��

x � �(x, t) �2 dx

x � �xPx

� 6.2 � 2

18 � � � � � � 8.8 � 1

18 � � 5.46

1.4 � 1

18 � � 2.5 � 1

18 � � � � � � 5.4 � 3

18 �

x �
(2.5 � 3.7 � 1.4 � � � � � 5.4 � 5.3)

18
� 5.46

Average position of a particle
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be found. To see how this is done, we return to Table 6.1 and notice that the
entries scatter about the average value. The amount of scatter is measured by
the standard deviation, �, of the data, defined as

(6.33)

where N is the number of data points—in this case, 18. Writing out the square
under the radical gives

and so

From Equation 6.33 we see that if the standard deviation were zero, all data
entries would be identical and equal to the average. In that case the distribu-
tion is sharp; otherwise, the data exhibit some spread (as in Table 6.1) and the
standard deviation is greater than zero. In quantum mechanics the standard
deviation, written �x, is often called the uncertainty in position. The preceding
development implies that the quantum uncertainty in position can be calcu-
lated from expectation values as

(6.34)

The degree to which particle position is fuzzy is given by the magnitude of �x;
note that the position is sharp only if �x � 0.

�x � √�x2� � �x�2

� � √(x2) � (x)2

� (x2) � (x)2

(x i)
2

N
� 2(x)

(x i)

N
� (x)2  � 1

N � � (x2) � 2(x)(x) � (x)2

� � √ (x i � x)2

N
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Making the change of variable � � �x/L (so that d� �

�dx/L) gives

The integral is evaluated with the help of the trigonomet-
ric identity 2 sin2 � � 1 � cos 2�, giving

An integration by parts shows that the second integral
vanishes, whereas the first integrates to �2/2. Thus,
the average particle position is the midpoint �x� � L/2 as
expected, because there is equal probability of finding
the particle in the left half or the right half of the box.

�x2� is computed in much the same way, but with an
extra factor of x in the integrand. After changing vari-
ables to � � �x/L , we get

�x2� �
L2

�3 ���

0
�2 d� � ��

0
�2 cos 2� d��

�x � �
L

�2 ���

0
� d� � ��

0
� cos 2� d��

�x � �
2L

�2 ��

0
� sin2 � d�

�x � � ��

��
x � � �2 dx � � 2

L � �L

0
x sin2 � �x

L � dx
EXAMPLE 6.14 Standard Deviation 

from Averages

Compute and the standard deviation for the data
given in Table 6.1.

Solution Squaring the data entries of Table 6.1
and adding the results gives (x i)

2 � 603.91. Dividing
this by the number of data points, N � 18, we find

� 603.91/18 � 33.55. Then,

for this case.

EXAMPLE 6.15 Location of a Particle in a Box

Compute the average position �x� and the quantum un-
certainty in this value, �x, for the particle in a box, as-
suming it is in the ground state.

Solution The possible particle positions within the
box are weighted according to the probability
density given by �� �2 � (2/L)sin2(n�x/L), with n � 1
for the ground state. The average position is calculated
as

� � √33.55 � (5.46)2 � 1.93

(x2)

(x2)

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



We have learned how to predict the average position of a particle, �x�;
the uncertainty in this position, �x; the average potential energy of the
particle, �U �; and so on. But what about the average momentum �p� of the par-
ticle or its average kinetic energy �K�? These could be calculated if p(x), the
momentum as a function of x, were known. In classical mechanics, p(x) may
be obtained from the equation for the classical path taken by the particle, x(t).
Differentiating this function once gives the velocity v(t). Then inverting x(t) to
get t as a function of x, and substituting this result into v(t), gives v(x) and the
desired relation p(x) � mv(x). In quantum mechanics, however, x and t are in-
dependent variables—there is no path, nor any function connecting p with x! If
there were, then p could be found from x using p(x) and both x and p would
be known precisely, in violation of the uncertainty principle.

To obtain �p� we must try a different approach: We identify the time deriva-
tive of the average particle position with the average velocity of the particle.
After multiplication by m, this gives the average momentum �p�:

(6.35)

Equation 6.35 cannot be derived from anything we have said previously. When
applied to macroscopic objects where the quantum uncertainties in position
and momentum are small, the averages �x� and �p� become indistinguishable
from “the” position and “the” momentum of the object, and Equation 6.35 re-
duces to the classical definition of momentum.

An equivalent expression for �p� follows from Equation 6.35 by substituting
�x� from Equation 6.31 and differentiating under the integral sign. Using
Schrödinger’s equation to eliminate time derivatives of � and its conjugate �*
gives (after much manipulation!)

(6.36)

Exercise 5 Show that �p� � 0 for any state of a particle in a box.

�p� � ��

��
�* � 


i �
��

�x
dx

�p� � m
d�x�
dt
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This is an appreciable figure, amounting to nearly one-
fifth the size of the box. Consequently, the whereabouts
of such a particle are largely unknown. With some confi-
dence, we may assert only that the particle is likely to be
in the range L/2 � 0.181L.

Finally, notice that none of these results depends on the
time, because in a stationary state t enters only through the
exponential factor e�i	t, which cancels when � is com-
bined with �* in the calculation of averages. Therefore, it
is generally true that, in a stationary state, all averages,
as well as probabilities, are time independent.

The first integral evaluates to �3/3; the second may be
integrated twice by parts to get

Then,

Finally, the uncertainty in position for this particle is

�x � √�x2� � �x �2 � L √ 1

3
�

1

2�2 �
1

4
� 0.181L

�x2� �
L2

�3 � �3

3
�

�

2 � �
L2

3
�

L2

2�2

� 1
2 � cos 2� ��0 � �/2

��

0
�2 cos 2� d� � ���

0
� sin 2� d�

Average momentum of a

particle

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



6.8 OBSERVABLES AND OPERATORS

An observable is any particle property that can be measured. The position and
momentum of a particle are observables, as are its kinetic and potential ener-
gies.12 In quantum mechanics, we associate an operator with each of these ob-
servables. Using this operator, one can calculate the average value of the cor-
responding observable. An operator here refers to an operation to be
performed on whatever function follows the operator. The quantity operated
on is called the operand. In this language a constant c becomes an operator,
whose meaning is understood by supplying any function f (x) to obtain cf(x).
Here the operator c means “multiplication by the constant c.” A more compli-
cated operator is d/dx, which, after supplying an operand f(x), means
“take the derivative of f(x) with respect to x .” Still another example is 
(d/dx)2 � (d/dx)(d/dx). Supplying the operand f(x) gives (d/dx)2f(x) �

(d/dx)(df/dx) � d2f/dx2. Hence, (d/dx)2 means “take the second derivative
with respect to x, that is, take the indicated derivative twice.”

The operator concept is useful in quantum mechanics because all expecta-
tion values we have encountered so far can be written in the same general
form, namely,

(6.37)

In this expression, Q is the observable and [Q] is the associated operator. The
order of terms in Equation 6.37 is important; it indicates that the operand for [Q]
always is �. Comparing the general form with that for �p� in Equation 6.36
shows that the momentum operator is [p] � (
/i)(�/�x). Similarly, writing
x �� �2 � �*x� in Equation 6.31 implies that the operator for position is [x] �

x. From [x] and [p] the operator for any other observable can be found. For
instance, the operator for x2 is just [x2] � [x]2 � x2. For that matter, the oper-
ator for potential energy is simply [U ] � U([x]) � U(x), meaning that aver-
age potential energy is computed as

Still another example is the kinetic energy K. Classically, K is a function of p :
K � p2/2m . Then the kinetic energy operator is [K] � ([p])2/2m �

(�
/2m)�2/�x2, and average kinetic energy is found from

To find the average total energy for a particle, we sum the average kinetic and
potential energies to get

(6.38)�E � � �K � � �U � � ��

��
�* 	�


2

2m

�2

�x2 � U(x)
 � dx

�K � � ��

��
�*[K]� dx � ��

��
�* ��


2

2m

�2�

�x2 �dx

�U � � ��

��
�*[U ]� dx � ��

��
�*U(x)� dx

�Q � � ��

��
�*[Q]� dx
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12By contrast, the wavefunction �, although clearly indispensable to the quantum description, is
not directly measurable and so is not an observable.

Operators in quantum

mechanics

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



The form of this result suggests that the term in the braces is the operator for
total energy. This operator is called the Hamiltonian, symbolized by [H ]:

(6.39)

The designation [E] is reserved for another operator, which arises as follows:
Inspection of Schrödinger’s equation (Equation 6.10) shows that it can be
written neatly as [H ]� � i���/�t. Using this in Equation 6.38 gives an equiv-
alent expression for �E � and leads to the identification of the energy operator :

(6.40)

Notice that [H ] is an operation involving only the spatial coordinate x,
whereas [E] depends only on the time t. That is, [H ] and [E] really are two
different operators, but they produce identical results when applied to any
solution of Schrödinger’s equation. This is because the LHS of Schrödinger’s
equation is simply [H ]�, while the RHS is none other than [E]� (compare
Equation 6.10)! Table 6.2 summarizes the observables we have discussed and
their associated operators.

QUANTUM UNCERTAINTY AND THE
EIGENVALUE PROPERTY

In Section 6.7 we showed how �x, the quantum uncertainty in position, could be found

from the expectation values �x2� and �x�. But the argument given there applies to any

observable, that is, the quantum uncertainty �Q for any observable Q is calculated as

(6.41)

Again, if �Q � 0, Q is said to be a sharp observable and all measurements of Q yield

the same value. More often, however, �Q � 0 and repeated measurements reveal a

distribution of values—as in Table 6.1 for the observable x. In such cases, we say the

observable is fuzzy, suggesting that, prior to actual measurement, the particle cannot

be said to possess a unique value of Q.

�Q � √�Q2� � �Q �2

[E] � i�
�

�t

[H] � �
�2

2m

�2

�x2 � U(x)
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Quantum uncertainty for any

observable Q

O P T I O N A L

Table 6.2 Common Observables and 

Associated Operators

Observable Symbol Associated Operator

Position x x

Momentum p

Potential energy U U(x)

Kinetic energy K

Hamiltonian H

Total energy E i�
�

�t

�
�2

2m

�2

�x2 � U(x)

�
�2

2m

�2

�x2

�

i

�

�x
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In classical physics all observables are sharp.13 The extent to which sharp

observables can be specified in quantum physics is limited by uncertainty principles,

such as

(6.42)

The uncertainties here are to be calculated from Equation 6.41. Equation 6.42 says

that no matter what the state of the particle, the spread in distributions obtained in

measurements of x and of p will be inversely related: when one is small, the other

will be large. Alternatively, if the position of the particle is quite “fuzzy,” its momen-

tum can be relatively “sharp,” and vice versa. The degree to which both may be si-

multaneously sharp is limited by the size of 
. The incredibly small value of 
 in SI

units is an indication that quantum ideas are unnecessary at the macroscopic level.

Despite restrictions imposed by uncertainty principles, some observables in quan-

tum physics may still be sharp. The energy E of all stationary states is one example.

In the free particle plane waves of Section 6.2 we have another: The plane wave with

wavenumber k,

describes a particle with momentum p � 
k. Evidently, momentum is a sharp ob-

servable for this wavefunction. We find that the action of the momentum operator

in this instance is especially simple:

that is, the operation [p] returns the original function multiplied by a constant. This

is an example of an eigenvalue problem for the operator [p].14 The wavefunction

�k is the eigenfunction, and the constant, in this case 
k, is the eigenvalue. Notice that

the eigenvalue is just the sharp value of particle momentum for this wave. This con-

nection between sharp observables and eigenvalues is a general one: For an observ-
able Q to be sharp, the wavefunction must be an eigenfunction of the opera-
tor for Q. Further, the sharp value for Q in this state is the eigenvalue. In this

way the eigenvalue property can serve as a simple test for sharp observables, as the

following examples illustrate.

EXAMPLE 6.16 Plane Waves and Sharp Observables

Use the eigenvalue test to show that the plane wave �k(x, t) � e i(kx�	t) is one for which

total energy is a sharp observable. What value does the energy take in this case?

Solution To decide the issue we examine the action of the energy operator [E] on

the candidate function ei(kx�	t). Since taking a derivative with respect to t of this

function is equivalent to multiplying the function by �i	, we have

[E]ei(kx�	t) � �i

�

�t � ei(kx�	t) � 
	ei(kx�	t)

[p]�k(x, t) � � 


i

�

�x � ei(kx�	t) � 
k�k(x, t)

�k(x, t) � ei(kx�	t)

�x �p �
1

2
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13We discount in this discussion any random errors of measurement. In principle at least, the
imprecision resulting from such errors can be reduced to arbitrarily low levels.

14The eigenvalue problem for any operator [Q] is [Q]� � q�; that is, the result of the opera-
tion [Q] on some function � is simply to return a multiple q of the same function. This is
possible only for certain special functions �, the eigenfunctions, and then only for certain spe-
cial values of q, the eigenvalues. Generally, [Q] is known; the eigenfunctions and eigenvalues
are found by imposing the eigenvalue condition.

Eigenfunctions and

eigenvalues
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showing that e i(kx�	t) is an eigenfunction of the energy operator [E] and the eigen-

value is 
	. Thus, energy is a sharp observable and has the value 
	 in this state.

It is instructive to compare this result with the outcome found by using the other

energy operator, [H]. The Hamiltonian for a free particle is simply the kinetic en-

ergy operator [K ], because the potential energy is zero in this case. Then

Again, the operation returns the original function with a multiplier, so that ei(kx�	t)

also is an eigenfunction of [H]. The eigenvalue in this case is 
2k2/2m, which also

must be the sharp value of particle energy. The equivalence with 
	 follows from

the dispersion relation for free particles (see footnote 1).

Exercise 6 Show that total energy is a sharp observable for any stationary state.

EXAMPLE 6.17 Sharp Observables for a Particle in a Box

Are the stationary states of the infinite square well eigenfunctions of [p]? of [p]2? If

so, what are the eigenvalues? Discuss the implications of these results.

Solution The candidate function in this case is any one of the square well wave-

functions . Because the first derivative gives

(d/dx)sin(n�x/L) � (n�/L)cos(n�x/L), we see at once that the operator [p] will

not return the original function �, and so these are not eigenfunctions of the mo-

mentum operator. They are, however, eigenfunctions of [p]2. In particular, we have

(d2/dx2)sin(n�x/L) � �(n�/L)2sin(n�x/L), so that

The eigenvalue is the multiplier (n�
/L)2. Thus, the squared momentum (or

magnitude of momentum) is sharp for such states, and repeated measurements of

p2 (or �p �) for the state labeled by n will give identical results equal to (n�
/L)2

(or n�
/L). By contrast, the momentum itself is not sharp, meaning that different

values for p will be obtained in successive measurements. In particular, it is the sign

or direction of momentum that is fuzzy, consistent with the classical notion of a par-

ticle bouncing back and forth between the walls of the “box.”

SUMMARY

In quantum mechanics, matter waves (or de Broglie waves) are represented
by a wavefunction �(x, t). The probability that a particle constrained to
move along the x-axis will be found in an interval dx at time t is given by
�� �2dx. These probabilities summed over all values of x must total 1 (cer-
tainty). That is,

� � n�


L �
2

�(x, t)

[p]2�(x, t) � �(
/i)2 � n�

L �
2

�(x, t)

�(x, t) � √2/L sin(n�x/L)e�iEnt/


� ��

2

2m � (ik)2ei(kx�	t)

[H]ei(kx�	t) � ��

2

2m

�2

�x2 � ei(kx�	t)
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(6.2)

This is called the normalization condition. Furthermore, the probability that
the particle will be found in any interval a � x � b is obtained by integrating
the probability density �� �2 over this interval.

Aside from furnishing probabilities, the wavefunction can be used to find
the average, or expectation value, of any dynamical quantity. The average po-
sition of a particle at any time t is

(6.31)

In general, the average value of any observable Q at time t is

(6.37)

where [Q] is the associated operator. The operator for position is just [x] � x,
and that for particle momentum is [p] � (
/i)�/�x.

The wavefunction � must satisfy the Schrödinger equation,

(6.10)

Separable solutions to this equation, called stationary states, are �(x, t) �

�(x)e�i	t, with �(x) a time-independent wavefunction satisfying the time-
independent Schrödinger equation

(6.13)

The approach of quantum mechanics is to solve Equation 6.13 for � and E,
given the potential energy U(x) for the system. In doing so, we must require

• that �(x) be continuous
• that �(x) be finite for all x, including x � ��

• that �(x) be single valued
• that d�/dx be continuous wherever U(x) is finite

Explicit solutions to Schrödinger’s equation can be found for several poten-
tials of special importance. For a free particle the stationary states are the plane
waves �(x) � eikx of wavenumber k and energy E � 
2k2/2m. The particle mo-
mentum in such states is p � 
k, but the location of the particle is completely
unknown. A free particle known to be in some range �x is described not by a
plane wave, but by a wave packet, or group, formed from a superposition of
plane waves. The momentum of such a particle is not known precisely, but only
to some accuracy �p that is related to �x by the uncertainty principle,

(6.42)

For a particle confined to a one-dimensional box of length L, the station-
ary-state waves are those for which an integral number of half-wavelengths can
be fit inside, that is, L � n�/2. In this case the energies are quantized as

(6.17)En �
n2�2
2

2mL2   n � 1, 2, 3, � � �

�x �p � 1
2 


�

2

2m

d2�

dx2 � U(x)�(x) � E�(x)

�

2

2m

�2�

�x2 � U(x)�(x, t) � i

��

�t

�Q � � ��

��
�*[Q]� dx

�x� � ��

��
�*x� dx

��

��
� � �2 dx � 1
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ern Physics, 6th ed., by R. Serway and J. Jewett, Jr., Bel-
mont, CA, Brooks/Cole–Thomson Learning, 2004.

4. A novel but delightfully refreshing exposition of quan-
tum theory is presented by R. Feynman, R. Leighton,
and M. Sands in The Feynman Lectures on Physics Vol. III,

Modern Physics, Reading, MA, Addison-Wesley Publishing
Co., 1965. This work is more advanced and sophisticated
than other introductory texts in the field, though still
somewhat below the intermediate level.

5. For a very readable introduction to charge-coupled de-
vices, see “Charge-coupled Devices in Astronomy”, Sci.

Am., volume 247(4), pp 66–74, Oct. 1982, by Jerome
Kristian and Morley Blouke.

1. L. de Broglie, New Perspectives in Physics, New York, Basic
Books Inc., 1962. A series of essays by Louis de Broglie on
various aspects of theoretical physics and on the history
and philosophy of science. A large part of this work is de-
voted to de Broglie’s developing attitudes toward the in-
terpretation of wave mechanics and wave–particle duality.

2. For an in-depth look at the problems of interpretation
and measurement surrounding the formalism of quan-
tum theory, see M. Jammer, The Philosophy of Quantum

Mechanics, New York, John Wiley and Sons, Inc., 1974.
3. A concise, solid introduction to the basic principles of

quantum physics with applications may be found in
Chapter 41 of Physics for Scientists and Engineers with Mod-

SUGGESTIONS FOR FURTHER READING

and the wavefunctions within the box are given by

(6.18)

For the harmonic oscillator the potential energy function is U(x) �

m	2x2, and the total particle energy is quantized according to the relation

(6.29)

The lowest energy is E0 � 
	; the separation between adjacent energy levels
is uniform and equal to 
	. The wavefunction for the oscillator ground state is

(6.26)

where  � m	/2
 and C0 is a normalizing constant. The oscillator results ap-
ply to any system executing small-amplitude vibrations about a point of stable
equilibrium. The effective spring constant in the general case is

(6.24)

with the derivative of the potential evaluated at the equilibrium point a.
The stationary state waves for any potential share the following attributes:

• Their time dependence is e�i	t.
• They yield probabilities that are time independent.
• All average values obtained from stationary states are time independent.
• The energy in any stationary state is a sharp observable; that is, re-

peated measurements of particle energy performed on identical systems
always yield the same result, E � 
	.

For other observables, such as position, repeated measurements usually
yield different results. We say these observables are fuzzy. Their inherent
“fuzziness” is reflected by the spread in results about the average value, as mea-
sured by the standard deviation, or uncertainty. The uncertainty in any ob-
servable Q can be calculated from expectation values as

(6.41)�Q � √�Q2� � �Q �2

K � m	2 �
d2U

dx2 �
a

�0(x) � C0e�x2

1
2

En � �n �
1

2 � 
	  n � 0, 1, 2, � � �

1
2

�n(x) � √ 2

L
 sin � n�x

L �  n � 1, 2, 3, � � �
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QUESTIONS

1. The probability density at certain points for a particle
in a box is zero, as seen in Figure 6.9. Does this imply
that the particle cannot move across these points?
Explain.

2. Discuss the relation between the zero-point energy and
the uncertainty principle.

3. Consider a square well with one finite wall and one infi-
nite wall. Compare the energy and momentum of a par-
ticle trapped in this well to the energy and momentum
of an identical particle trapped in an infinite well with
the same width.

4. Explain why a wave packet moves with the group velocity
rather than with the phase velocity.

5. According to Section 6.2, a free particle can be repre-
sented by any number of waveforms, depending on the

values chosen for the coefficients a(k). What is the
source of this ambiguity, and how is it resolved?

6. Because the Schrödinger equation can be formulated in
terms of operators as [H ]� � [E]�, is it incorrect to con-
clude from this the operator equivalence [H ] � [E]?

7. For a particle in a box, the squared momentum p2 is a
sharp observable, but the momentum itself is fuzzy. Ex-
plain how this can be so, and how it relates to the classi-
cal motion of such a particle.

8. A philosopher once said that “it is necessary for the very
existence of science that the same conditions always pro-
duce the same results.” In view of what has been said in
this chapter, present an argument showing that this
statement is false. How might the statement be reworded
to make it true?

PROBLEMS

6.1 The Born Interpretation

1. Of the functions graphed in Figure P6.1, which are
candidates for the Schrödinger wavefunction of an ac-
tual physical system? For those that are not, state why
they fail to qualify.

2. A particle is described by the wavefunction

(a) Determine the normalization constant A. (b) What
is the probability that the particle will be found be-
tween x � 0 and x � L/8 if a measurement of its posi-
tion is made?

6.2 Wavefunction for a Free Particle

3. A free electron has a wavefunction

where x is measured in meters. Find (a) the electron’s
de Broglie wavelength, (b) the electron’s momentum,
and (c) the electron’s energy in electron volts.

4. Spreading of a Gaussian wave packet. The Gaussian
wave packet �(x, 0) of Example 6.3 is built out of
plane waves according to the amplitude distribu-
tion function . Calculate
�(x, t) for this packet and describe its evolution.

6.3 Wavefunctions in the Presence of Forces

5. In a region of space, a particle with zero energy has a
wavefunction

(a) Find the potential energy U as a function of x.
(b) Make a sketch of U(x) versus x.

6. The wavefunction of a particle is given by

where A, B, and k are constants. Show that � is a solu-
tion of the Schrödinger equation (Eq. 6.13), assuming

�(x) � A cos(kx) � B sin(kx)

�(x) � Axe�x2/L2

a(k) � (C/√�)exp(�2k2)

�(x) � A sin(5 � 1010 x)

�(x) � 	A cos � 2�x

L �  for �
L

4
� x �

L

4

0  otherwise

(a) (b)

(c) (d)

(e)

x x

x x

x

ψ

ψ ψ

ψ ψ

Figure P6.1
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228 CHAPTER 6 QUANTUM MECHANICS IN ONE DIMENSION

the particle is free (U � 0), and find the corresponding
energy E of the particle.

6.4 The Particle in a Box

7. Show that allowing the state n � 0 for a particle in a
one-dimensional box violates the uncertainty principle,
�x �p � 
/2.

8. A bead of mass 5.00 g slides freely on a wire 20.0 cm
long. Treating this system as a particle in a one-dimen-
sional box, calculate the value of n corresponding
to the state of the bead if it is moving at a speed of
0.100 nm per year (that is, apparently at rest).

9. The nuclear potential that binds protons and neutrons
in the nucleus of an atom is often approximated by a
square well. Imagine a proton confined in an infinite
square well of length 10�5 nm, a typical nuclear diame-
ter. Calculate the wavelength and energy associated
with the photon that is emitted when the proton un-
dergoes a transition from the first excited state (n � 2)
to the ground state (n � 1). In what region of the elec-
tromagnetic spectrum does this wavelength belong?

10. An electron is contained in a one-dimensional box of
width 0.100 nm. (a) Draw an energy-level diagram for
the electron for levels up to n � 4. (b) Find the wave-
lengths of all photons that can be emitted by the elec-
tron in making transitions that would eventually get it
from the n � 4 state to the n � 1 state.

11. Consider a particle moving in a one-dimensional box
with walls at x � �L/2 and x � L/2. (a) Write the wave-
functions and probability densities for the states n � 1,
n � 2, and n � 3. (b) Sketch the wavefunctions and
probability densities. (Hint: Make an analogy to the case
of a particle in a box with walls at x � 0 and x � L.)

12. A ruby laser emits light of wavelength 694.3 nm. If this
light is due to transitions from the n � 2 state to the
n � 1 state of an electron in a box, find the width of
the box.

13. A proton is confined to moving in a one-dimensional
box of width 0.200 nm. (a) Find the lowest possible en-
ergy of the proton. (b) What is the lowest possible en-
ergy of an electron confined to the same box? (c) How
do you account for the large difference in your results
for (a) and (b)?

14. A particle of mass m is placed in a one-dimensional box
of length L. The box is so small that the particle’s
motion is relativistic, so that E � p2/2m is not valid.
(a) Derive an expression for the energy levels of the
particle using the relativistic energy–momentum rela-
tion and the quantization of momentum that derives
from confinement. (b) If the particle is an electron in a
box of length L � 1.00 � 10�12 m, find its lowest possi-
ble kinetic energy. By what percent is the nonrelativistic
formula for the energy in error?

15. Consider a “crystal” consisting of two nuclei and two
electrons, as shown in Figure P6.15. (a) Taking into ac-
count all the pairs of interactions, find the potential

energy of the system as a function of d . (b) Assuming
the electrons to be restricted to a one-dimensional box
of length 3d, find the minimum kinetic energy of the
two electrons. (c) Find the value of d for which the
total energy is a minimum. (d) Compare this value of d
with the spacing of atoms in lithium, which has a den-
sity of 0.53 g/cm3 and an atomic weight of 7. (This type
of calculation can be used to estimate the densities of
crystals and certain stars.)

16. An electron is trapped in an infinitely deep potential well
0.300 nm in width. (a) If the electron is in its ground
state, what is the probability of finding it within 0.100 nm
of the left-hand wall? (b) Repeat (a) for an electron in
the 99th excited state (n � 100). (c) Are your answers
consistent with the correspondence principle?

17. An electron is trapped at a defect in a crystal. The de-
fect may be modeled as a one-dimensional, rigid-walled
box of width 1.00 nm. (a) Sketch the wavefunctions
and probability densities for the n � 1 and n � 2
states. (b) For the n � 1 state, find the probability
of finding the electron between x1 � 0.15 nm and
x2 � 0.35 nm, where x � 0 is the left side of the box.
(c) Repeat (b) for the n � 2 state. (d) Calculate the en-
ergies in electron volts of the n � 1 and n � 2 states.

18. Find the points of maximum and minimum probability
density for the nth state of a particle in a one-dimen-
sional box. Check your result for the n � 2 state.

19. A 1.00-g marble is constrained to roll inside a tube of
length L � 1.00 cm. The tube is capped at both ends.
Modeling this as a one-dimensional infinite square
well, find the value of the quantum number n if the
marble is initially given an energy of 1.00 mJ. Calculate
the excitation energy required to promote the marble to
the next available energy state.

6.5 The Finite Square Well

20. Consider a particle with energy E bound to a finite

square well of height U and width 2L situated on �L �

x � �L. Because the potential energy is symmetric
about the midpoint of the well, the stationary state
waves will be either symmetric or antisymmetric about
this point. (a) Show that for E � U, the conditions for
smooth joining of the interior and exterior waves lead
to the following equation for the allowed energies of
the symmetric waves:

k tan kL �  (symmetric case)

Figure P6.15

q1 = –e

q2 = +ed d d

q1 q2 q1 q2

+ –– +
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PROBLEMS 229

where and is the
wavenumber of oscillation in the interior. (b) Show that
the energy condition found in (a) can be rewritten as

Apply the result in this form to an electron trapped at a
defect site in a crystal, modeling the defect as a square
well of height 5 eV and width 0.2 nm. Solve the equa-
tion numerically to find the ground-state energy for the
electron, accurate to �0.001 eV.

21. Sketch the wavefunction �(x) and the probability den-
sity ��(x)�2 for the n � 4 state of a particle in a finite po-
tential well.

22. The potential energy of a proton confined to
an atomic nucleus can be modeled as a square

well of width 1.00 � 10�5 nm and height 26.0 MeV. De-
termine the energy of the proton in the ground state
and first excited state for this case, using the Java applet
available at our companion Website (http://info.
brookscole.com/mp3e QMTools Simulations : Prob-
lem 6.22). Refer to Exercise 3 of Example 6.8 for details.
Calculate the wavelength of the photon emitted when
the proton undergoes a transition from the first excited
state to the ground state, and compare your result with
that found using the infinite-well model of Problem 9.

23. Consider a square well having an infinite wall at x � 0
and a wall of height U at x � L (Fig. P6.23). For the
case E � U, obtain solutions to the Schrödinger equa-
tion inside the well (0 � x � L) and in the region be-
yond (x � L) that satisfy the appropriate boundary
conditions at x � 0 and x � �. Enforce the proper
matching conditions at x � L to find an equation for
the allowed energies of this system. Are there condi-
tions for which no solution is possible? Explain.

k sec kL �
√2mU




k � √2mE/
2 � √(2m/
2)(U � E) 25. Show that the oscillator energies in Equation 6.29 cor-
respond to the classical amplitudes

26. Obtain an expression for the probability density Pc(x)
of a classical oscillator with mass m, frequency 	, and
amplitude A. (Hint: See Problem 28 for the calculation
of classical probabilities.)

27. Coherent states. Use the Java applet available
at our companion website (http://info.

brookscole.com/mp3e QMTools Simulations : Prob-
lem 6.27) to explore the time development of a Gauss-
ian waveform confined to the oscillator well. The de-
fault settings for the initial wave describe a Gaussian
centered in the well with an adjustable width set by the
value of the parameter a. Describe the time evolution
of this wavefunction. Is it what you expected? Account
for your observations. Now displace the initial wave-
form off of center by increasing the parameter d from
zero to d � 1. Again describe the time evolution of the
resulting wavefunction. What is remarkable about this
case? Such wavefunctions, called coherent states, are im-
portant in the quantum theory of radiation.

6.7 Expectation Values

28. Classical probabilities. (a) Show that the classical probabil-
ity density describing a particle in an infinite square well
of dimension L is Pc(x) � 1/L. (Hint: The classical prob-
ability for finding a particle in dx—Pc(x)dx—is propor-
tional to the time the particle spends in this interval.)
(b) Using Pc(x), determine the classical averages �x� and
�x2� for a particle confined to the well, and compare with
the quantum results found in Example 6.15. Discuss your
findings in light of the correspondence principle.

29. An electron is described by the wavefunction

where x is in nanometers and C is a constant. (a) Find the
value of C that normalizes �. (b) Where is the electron
most likely to be found; that is, for what value of x is the
probability for finding the electron largest? (c) Calculate
�x� for this electron and compare your result with its most
likely position. Comment on any differences you find.

30. For any eigenfunction �n of the infinite square well,
show that �x� � L/2 and that

where L is the well dimension.
31. An electron has a wavefunction

where x0 is a constant and for normaliza-
tion (see Example 6.1). For this case, obtain expres-

C � 1/√x0

�(x) � Ce��x�/x0

�x2� �
L2

3
�

L2

2(n�)2

�(x) � 	0    for x � 0

Ce�x(1 � e�x)  for x � 0

An � √ (2n � 1)


m	

Figure P6.23

U

E

L0

∞

6.6 The Quantum Oscillator

24. The wavefunction

also describes a state of the quantum oscillator, provided
the constant  is chosen appropriately. (a) Using
Schrödinger’s equation, obtain an expression for  in
terms of the oscillator mass m and the classical frequency
of vibration 	. What is the energy of this state? (b) Nor-
malize this wave. (Hint: See the integral of Problem 32.)

�(x) � Cxe�x2
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sions for �x� and �x in terms of x0. Also calculate the
probability that the electron will be found within a
standard deviation of its average position, that is, in the
range �x� � �x to �x� � �x, and show that this is inde-
pendent of x0.

32. Calculate �x�, �x2�, and �x for a quantum oscillator in
its ground state. Hint: Use the integral formula

33. (a) What value do you expect for �p� for the quantum
oscillator? Support your answer with a symmetry argu-
ment rather than a calculation. (b) Energy principles
for the quantum oscillator can be used to relate �p2� to
�x2�. Use this relation, along with the value of �x2� from

��

0
x2e�ax2

dx �
1

4a √ �

a
  a � 0

Problem 32, to find �p2� for the oscillator ground state.
(c) Evaluate �p, using the results of (a) and (b).

34. From the results of Problems 32 and 33, evaluate �x �p

for the quantum oscillator in its ground state. Is the re-
sult consistent with the uncertainty principle? (Note
that your computation verifies the minimum uncer-
tainty product; furthermore, the harmonic oscillator
ground state is the only quantum state for which this
minimum uncertainty is realized.)

6.8 Observables and Operators

35. Which of the following functions are eigenfunctions of
the momentum operator [p]? For those that are eigen-
functions, what are the eigenvalues?
(a) A sin(kx) (c) A cos(kx) � iA sin(kx)
(b) A sin(kx) � A cos(kx) (d) Ae ik(x�a)
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Figure P6.36

0

x

∞

ADDITIONAL PROBLEMS

36. The quantum bouncer. The bouncer is the quan-
tum analog to the classical problem of a ball

bouncing vertically (and elastically) on a level surface
and is modeled by the potential energy shown in Figure
P6.36. The coordinate normal to the surface is denoted
by x, and the surface itself is located at x � 0. Above the
surface, the potential energy for the bouncer is linear,
representing the attractive force of a uniform field—in
this case the gravity field near the Earth. Below the sur-
face, the potential energy rises abruptly to a very large
value consistent with the bouncer’s inability to penetrate
this region. Obtaining stationary states for the bouncer
from the Schrödinger equation using analytical tech-
niques requires knowledge of special functions. Numeri-
cal solution furnishes a simpler alternative and allows for
effortless study of the bound-state waveforms, once they
are found. The Java applet for the quantum bouncer can
be found at http://info.brookscole.com/mp3e QMTools
Simulations : Problem 6.36. Use the applet as described
there to find the three lowest-lying states of a tennis ball

(mass � 50 g) bouncing on a hard floor. Count the num-
ber of nodes for each wavefunction to verify the general
rule that the nth excited state exhibits exactly n nodes.
For each state, determine the most probable distance
above the floor for the bouncing ball and compare with
the maximum height reached in the classical case. (Clas-
sically, the ball is most likely to be found at the top of its
flight, where its speed drops to zero—see Problem 28.)

37. Nonstationary states. Consider a particle in an infinite
square well described initially by a wave that is a superpo-
sition of the ground and first excited states of the well:

(a) Show that the value normalizes this wave,
assuming �1 and �2 are themselves normalized.
(b) Find � (x, t) at any later time t. (c) Show that the su-
perposition is not a stationary state, but that the average
energy in this state is the arithmetic mean (E1 � E2)/2
of the ground- and first excited-state energies E1 and E2.

38. For the nonstationary state of Problem 37, show that
the average particle position �x� oscillates with time as

where

and � � (E2 � E1)/
. Evaluate your results for the
mean position x0 and amplitude of oscillation A for an
electron in a well 1 nm wide. Calculate the time for the
electron to shuttle back and forth in the well once. Cal-
culate the same time classically for an electron with en-
ergy equal to the average, (E1 � E2)/2.

A � � x�1*�2 dx

x0 �
1

2 �� x � �1 �2 dx � � x � �2 �2 dx�

�x � � x0 � A cos(�t)

C � 1/√2

�(x, 0) � C[�1(x) � �2(x)]
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7
Tunneling Phenomena

7.1 The Square Barrier

7.2 Barrier Penetration: 
Some Applications
Field Emission
� Decay
Ammonia Inversion
Decay of Black Holes

Summary

ESSAY The Scanning Tunneling
Microscope, Roger A. Freedman
and Paul K. Hansma

Chapter Outline

In this chapter the principles of wave mechanics are applied to particles strik-
ing a potential barrier. Unlike potential wells that attract and trap particles,
barriers repel them. Because barriers have no bound states, the emphasis
shifts to determining whether a particle incident on a barrier is reflected or
transmitted.

In the course of this study we shall encounter a peculiar phenomenon called
tunneling. A purely wave-mechanical effect, tunneling nevertheless is essential
to the operation of many modern-day devices and shapes our world on a scale
from atomic all the way up to galactic proportions. The chapter includes a dis-
cussion of the role played by tunneling in several phenomena of practical inter-
est, such as field emission, radioactive decay, and the operation of the ammonia
maser. Finally, the chapter is followed by an essay on the scanning tunneling
microscope, or STM, a remarkable device that uses tunneling to make images
of surfaces with resolution comparable to the size of a single atom.

7.1 THE SQUARE BARRIER

The square barrier is represented by a potential energy function U(x) that
is constant at U in the barrier region, say between x � 0 and x � L, and
zero outside this region. One method for producing a square barrier poten-
tial using charged hollow cylinders is shown in Figure 7.1a. The outer cylin-
ders are grounded while the central one is held at some positive potential
V. For a particle with charge q, the barrier potential energy is U � qV. The
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charge experiences no electric force except in the gaps separating the cylin-
ders. The force in the gaps is repulsive, tending to expel a positive charge q
from the central cylinder. The electric potential energy for the idealized
case in which the gaps have shrunk to zero size is the square barrier,
sketched in Figure 7.1b.

A classical particle incident on the barrier, say from the left, experiences a
retarding force on arriving at x � 0. Particles with energies E greater than U
are able to overcome this force, but suffer a reduction in speed to a value
commensurate with their diminished kinetic energy (E � U ) in the barrier re-
gion. Such particles continue moving to the right with reduced speed until
they reach x � L, where they receive a “kick” accelerating them back to their
original speed. Thus, particles having energy E � U are able to cross the
barrier with their speed restored to its initial value. By contrast, particles with
energy E � U are turned back (reflected) by the barrier, having insufficient
energy to cross or even penetrate it. In this way the barrier divides the space
into classically allowed and forbidden regions determined by the particle
energy: If E � U, the whole space is accessible to the particle; for E � U only
the interval to the side of the barrier in which the particle originates is accessi-
ble—the barrier region itself is forbidden, and this precludes particle motion
on the far side as well.

According to quantum mechanics, however, there is no region inaccessi-
ble to our particle, regardless of its energy, since the matter wave associ-
ated with the particle is nonzero everywhere. A typical wavefunction for this
case, illustrated in Figure 7.2a, clearly shows the penetration of the wave into
the barrier and beyond. This barrier penetration is in complete disagreement
with classical physics. The process of penetrating the barrier is called tunnel-
ing: we say the particle has tunneled through the barrier.

The mathematical expression for � on either side of the barrier is easily
found. To the left of the barrier the particle is free, so the wavefunction here is
composed of the free particle plane waves introduced in Chapter 6:

(7.1)

This wavefunction �(x, t) is actually the sum of two plane waves. Both have
frequency � and energy E � �� � �2k2/2m, but the first moves from left to
right (wavenumber k), the second from right to left (wavenumber �k). Thus,

�(x, t) � Aei(kx��t) 	 Bei(�kx��t)

232 CHAPTER 7 TUNNELING PHENOMENA

q

V

(a)

+ + + +

+ + + +

(b)

0 L
x

U =  qV

Figure 7.1 (a) Aligned metallic cylinders serve as a potential barrier to charged parti-
cles. The central cylinder is held at some positive electric potential V, and the outer
cylinders are grounded. A charge q whose total energy is less than qV is unable to pene-
trate the central cylinder classically, but can do so quantum mechanically by a process
called tunneling. (b) The potential energy seen by this charge in the limit where the
gaps between the cylinders have shrunk to zero size. The result is the square barrier po-
tential of height U.
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that part of � proportional to A is interpreted as a wave incident on the bar-
rier from the left; that proportional to B as a wave reflected from the barrier
and moving from right to left (Fig. 7.2b). The reflection coefficient R for the
barrier is calculated as the ratio of the reflected probability density to the inci-
dent probability density:

(7.2)

In wave terminology, R is the fraction of wave intensity in the reflected beam;
in particle language, R becomes the likelihood (probability) that a particle in-
cident on the barrier from the left is reflected by it.

Similar arguments apply to the right of the barrier, where, again, the parti-
cle is free:

(7.3)

This form for �(x, t) is valid in the range x � L, with the term proportional to
F describing a wave traveling to the right, and that proportional to G a wave
traveling to the left in this region. The latter has no physical interpretation for
waves incident on the barrier from the left, and so is discarded by requiring
G � 0. The former is that part of the incident wave that is transmitted through
the barrier. The relative intensity of this transmitted wave is the transmission
coefficient for the barrier T :

(7.4)

The transmission coefficient measures the likelihood (probability) that a parti-
cle incident on the barrier from the left penetrates to emerge on the other
side. Since a particle incident on the barrier is either reflected or transmitted,
the probabilities for these events must sum to unity:

R 	 T � 1 (7.5)

Equation 7.5 expresses a kind of sum rule obeyed by the barrier coefficients.
Further, the degree of transmission or reflection will depend on particle

T �
(�*�)transmitted

(�*�)incident
�

F *F

A*A
�

� F �2

� A �2

�(x, t) � Fei(kx��t) 	 Gei(�kx��t)

R �
(�*�)reflected

(�*�)incident
�

B*B

A*A
�

� B �2

� A �2
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I
Ψ

Ψ

(a) (b)

(incident)

(reflected)

0 L
x

Ae +ikx

Be –ikx

II
Ψ

(transmitted)

Fe +ikx

Figure 7.2 (a) A typical stationary-state wave for a particle in the presence of a square
barrier. The energy E of the particle is less than the barrier height U. Since the
wave amplitude is nonzero in the barrier, there is some probability of finding the
particle there. (b) Decomposition of the stationary wave into incident, reflected, and
transmitted waves.

Reflection coefficient for a

barrier

Transmission coefficient for a

barrier
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234 CHAPTER 7 TUNNELING PHENOMENA

energy. In the classical case T � 0 (and R � 1) for E � U, but T � 1 (and
R � 0) for E � U. The wave-mechanical predictions for the functions T(E)
and R(E ) are more complicated; to obtain them we must examine the matter
wave within the barrier.

To find � in the barrier, we must solve Schrödinger’s equation. Let
us consider stationary states 
(x)e�i�t whose energy E � �� is below
the top of the barrier. This is the case E � U for which no barrier pen-
etration is permitted classically. In the region of the barrier (0 � x � L),
U(x) � U and the time-independent Schrödinger equation for 
(x) can be
rearranged as

With E � U, the term in braces is a positive constant, and solutions to this
equation are the real exponential forms e��x. Since (d2/dx2)e��x � (�)2e��x, we
should identify the term in braces with �2 or, equivalently,

(7.6)

For wide barriers, the probability of finding the particle should decrease
steadily into the barrier; in such cases only the decaying exponential is impor-
tant, and it is convenient to define a barrier penetration depth � � 1/�. At a
distance � into the barrier, the wavefunction has fallen to 1/e of its value at the
barrier edge; thus, the probability of finding the particle is appreciable only
within about � of the barrier edge.

The complete wavefunction in the barrier is, then,

(7.7)

The coefficients C and D are fixed by requiring smooth joining of the wave-
function across the barrier edges; that is, both � and �/x must be continu-
ous at x � 0 and x � L. Writing out the joining conditions using Equations
7.1, 7.3, and 7.7 for � in the regions to the left, to the right, and within the
barrier, respectively, gives

(7.8)

In keeping with our previous remarks, we have set G � 0. Still, there is one
more unknown than there are equations to find them. Actually this is as it
should be, since the amplitude of the incident wave merely sets the scale for
the other amplitudes. That is, doubling the incident wave amplitude simply
doubles the amplitudes of the reflected and transmitted waves. Dividing
Equations 7.8 through by A furnishes four equations for the four ratios B/A,
C/A, D/A, and F/A. These equations may be solved by repeated substitution

(�D)e	�L � (�C)e��L � ikFeikL   �continuity of 
�

x
 at x � L�

Ce��L 	 De	�L � FeikL    (continuity of � at x � L)

ikA � ikB � �D � �C  �continuity of 
�

x
 at x � 0�

A 	 B � C 	 D   (continuity of � at x � 0)

�(x, t) � 
(x)e�i�t � Ce��x�i�t 	 De	�x�i�t for 0 � x � L

� �
√2m(U � E)

�

d2


dx2 � � 2m(U � E)

�2 � 
(x)

Joining conditions at a

square barrier
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to find B/A and so on in terms of the barrier height U, the barrier width
L, and the particle energy E. The result for the transmission coefficient T
is (see Problem 7)

(7.9)

where sinh denotes the hyperbolic sine function: sinh x � (ex � e�x)/2.
A sketch of T(E) for the square barrier is shown in Figure 7.3. Equation

7.9 holds only for energies E below the barrier height U. For E � U, �

becomes imaginary and sinh(�L) turns oscillatory. This leads to fluctuations
in T(E) and isolated energies for which transmission occurs with complete
certainty, that is, T(E) � 1. Such transmission resonances arise from wave
interference and constitute further evidence for the wave nature of matter
(see Example 7.3).

T(E) � �1 �
1

4 � U 2

E(U � E) � sinh2�L�
�1
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T

E
U0

1

E1 E2 E3

Figure 7.3 A sketch of the
transmission coefficient T(E)
for a square barrier. Oscillation
in T(E) with E, and the trans-
mission resonances at E1, E2,
and E3, are further evidence for
the wave nature of matter.

The transmission coefficient from Equation 7.9 is then

Substituting L � 50.0 Å (5.00 nm) gives

T � 0.963 � 10�38

a fantastically small number on the order of 10�38! With
L � 10.0 Å (1.00 nm), however, we find

T � 0.657 � 10�7

We see that reducing the layer thickness by a factor of 5
enhances the likelihood of penetration by nearly 31 or-
ders of magnitude!

T � �1 �
1

4 � 102

7(3) � sinh2(0.8875 Å�1)L�
�1

EXAMPLE 7.1 Transmission Coefficient 
for an Oxide Layer

Two copper conducting wires are separated by an insulat-
ing oxide layer (CuO). Modeling the oxide layer as a
square barrier of height 10.0 eV, estimate the transmis-
sion coefficient for penetration by 7.00-eV electrons
(a) if the layer thickness is 5.00 nm and (b) if the layer
thickness is 1.00 nm.

Solution From Equation 7.6 we calculate � for this
case, using � � 1.973 keV � Å/c and me � 511 keV/c2 for
electrons to get

�
√2(511 keV/c2)(3.00 � 10�3 keV)

1.973 keV�Å/c
� 0.8875 Å�1

� �
√2me(U � E)

�

Exercise 1 Go to our companion Web site (http://info.brookscole.com/
mp3e) and select QMTools Simulations : Exercise 7.1. This particular Java applet
shows the de Broglie wave (actually, just the real part) for an electron with energy
7.00 eV incident from the left on a square barrier 10.0 eV high and 1.0 Å wide. Compare
this waveform with the illustration of Figure 7.2a. In fact, this wave is inherently complex
valued, with a modulus and phase that varies from point to point. A more informative
display plots the modulus in the usual way but uses color to represent the phase of the
wave. Right-click on the waveform and select Properties . . . : Color-4-Phase : Apply to
show the color-for-phase plotting style. Why does the transmitted wave (to the right of
the barrier) now have a uniform height? What is the significance of this height? Follow
the on-site instructions to display the incident component of this scattering wave and
determine the transmission coefficient directly from the graphs. Compare your result
with the prediction of Equation 7.9.
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236 CHAPTER 7 TUNNELING PHENOMENA

becomes

�(x, t) � Cei(�k�x ��t) 	 Dei(k�x ��t) 0 � x � L

with k� � [2m(E � U )/�2]1/2 a real number.
The barrier wavefunction will join smoothly to the ex-

terior waveforms if the wavefunction and its slope are
continuous at the barrier edges x � 0 and x � L. These
continuity requirements are identical to Equations 7.8
with the replacement � � ik� everywhere. In particular,
we now have

A 	 B � C 	 D (continuity of �
at x � 0)

kA � kB � k�D � k�C

Ce�ik�L 	 Deik�L � FeikL (continuity of � at
x � L)

k�Deik�L � k�Ce�ik�L � kFeikL

To isolate the transmission amplitude F/A, we must elimi-
nate from these relations the unwanted coefficients B,
C, and D. Dividing the second line by k and adding to the
first eliminates B, leaving A in terms of C and D. In
the same way, dividing the fourth line by k� and adding
the result to the third line gives D (in terms of F ), while
subtracting the result from the third line gives C (in
terms of F ). Combining the previous results finally yields
A in terms of F :

The transmission probability is T � �F/A�2. Writing 
e�ik�L � cos k�L �i sin k�L and simplifying, we obtain the
final result

We see that transmission resonances occur whenever
k�L is a multiple of �. Using k� � [2m(E � U )/�2]1/2, we
can express the resonance condition in terms of the par-
ticle energy E as

E � U 	 n2 �2�2

2mL2   n � 1, 2, � � �

� 1 	
1

4 � U 2

E(E � U) � sin2 k�L

1

T
� � A

F �2 �
1

4 �2 cosk�L � i � k�

k
	

k

k� � sink�L �2

	 �2 	 � k�

k
	

k

k� �� e�ik�L�

A �
1

4
FeikL ��2 � � k�

k
	

k

k� �� eik�L

at x � L�
�continuity of 

�

x

at x � 0�
�continuity of 

�

x

EXAMPLE 7.2 Tunneling Current
Through an Oxide Layer

A 1.00-mA current of electrons in one of the wires of
Example 7.1 is incident on the oxide layer. How much
of this current passes through the layer to the adjacent
wire if the electron energy is 7.00 eV and the layer
thickness is 1.00 nm? What becomes of the remaining
current?

Solution Because each electron carries a charge equal
to e � 1.60 � 10�19 C, an electron current of 1.00 mA
represents 10�3/(1.60 � 10�19) � 6.25 � 1015 electrons
per second impinging on the barrier. Of these, only the
fraction T is transmitted, where T � 0.657 � 10�7 from
Example 7.1. Thus, the number of electrons per second
continuing on to the adjacent wire is

(6.25 � 1015)(0.657 � 10�7) � 4.11 � 108 electrons/s

This number represents a transmitted current of

(4.11 � 108/s)(1.60 � 10�19 C)� 6.57 � 10�11 A

� 65.7 pA (picoamperes)

(Notice that the same transmitted current would be ob-
tained had we simply multiplied the incident current
by the transmission coefficient.) The remaining 
1.00 mA � 65.7 pA is reflected at the layer. It is impor-
tant to note that the measured conduction current in the
wire on the side of incidence is the net of the incident
and reflected currents, or again 65.7 pA.

EXAMPLE 7.3 Transmission Resonances

Consider a particle incident from the left on a square
barrier of width L in the case where the particle energy E
exceeds the barrier height U. Write the necessary wave-
functions and impose the proper joining conditions to
obtain a formula for the transmission coefficient for this
case. Show that perfect transmission (resonance) results
for special values of particle energy, and explain this phe-
nomenon in terms of the interference of de Broglie
waves.

Solution To the left and right of the barrier, the wave-
functions are the free particle waves given by Equations
7.1 and 7.3 (again with G � 0 to describe a purely trans-
mitted wave on the far side of the barrier):

The wavenumber k and frequency � of these oscillations
derive from the particle energy E in the manner char-
acteristic of (nonrelativistic) de Broglie waves; that is,
E � (�k)2/2m � ��. Within the barrier, the wavefunction
also is oscillatory. In effect, the decay constant � of Equa-
tion 7.6 has become imaginary, since E � U. Introducing
a new wavenumber k� as � � ik�, the barrier wavefunction

�(x, t) � Fei(kx��t)        x � L

�(x, t) � Aei(kx��t) 	 Bei(�kx��t)  x � 0
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7.1 THE SQUARE BARRIER 237

The conditions for smooth joining at x � 0 yield

A 	 B � C (continuity of �)

ikA � ikB � ��C

Solving the second equation for C and substituting into
the first (with � � 1/�) gives A 	 B � �ik�A 	 ik�B, or

The reflection coefficient is R � �B/A�2 � (B/A)(B/A)*,
or

Thus, an infinitely wide barrier reflects all incoming
particles with energies below the barrier height, in agree-
ment with the classical prediction. Nevertheless, there is
a nonzero wave in the step region since

But the wavefunction for x � 0, �(x, t) � Ce��x�i�t, is
not a propagating wave at all; that is, there is no net trans-
mission of particles to the right of the step. However,
there will be quantum transmission through a barrier of
finite width, no matter how wide (compare Eq. 7.9).

C

A
� 1 	

B

A
�

�2ik�

1 � ik�
� 0

R � � (1 	 ik�)

(1 � ik�) ��
(1 � ik�)

(1 	 ik�) � � 1

B

A
� �

(1 	 ik�)

(1 � ik�)

�continuity of 
�

x �

EXAMPLE 7.4 Scattering by a Potential Step

The potential step shown in Figure 7.4 may be regarded
as a square barrier in the special case where the barrier
width L is infinite. Apply the ideas of this section to dis-
cuss the quantum scattering of particles incident from
the left on a potential step, in the case where the step
height U exceeds the total particle energy E.

Solution The wavefunction everywhere to the right of
the origin is the barrier wavefunction given by Equation
7.7. To keep � from diverging for large x, we must take
D � 0, leaving only the decaying wave

�(x, t) � Ce��x �i�t x � 0

This must be joined smoothly to the wavefunction on the
left of the origin, given by Equation 7.1:

�(x, t) � Ae ikx �i�t 	 Be�ikx �i�t x � 0

x � L must travel the extra distance 2L before recombin-
ing with the wave reflected at the front, leading to a
phase difference of 2k�L. But this wave also suffers an in-
trinsic phase shift of � radians, having been reflected
from a medium with higher optical density.1 Thus,
the condition for destructive interference becomes
2k�L 	 � � (2n 	 1)�, or simply k�L � n�, where n � 1,
2, . . . .

Perfect transmission also arises when particles are
scattered by a potential well, a phenomenon known as
the Ramsauer–Townsend effect (see Problem 11).

Particles with these energies are transmitted perfectly
(T � 1), with no chance of reflection (R � 0).

Resonances arise from the interference of the matter
wave accompanying a particle. The wave reflected from
the barrier can be regarded as the superposition of mat-
ter waves reflected from the leading and trailing edges of
the barrier at x � 0 and x � L, respectively. If these re-
flected waves arrive phase shifted by odd multiples of
180� or � radians, they will interfere destructively, leaving
no reflected wave (R � 0) and thus perfect transmission.
Now the wave reflected from the rear of the barrier at

Exercise 2 Verify that for E �� U, the transmission coefficient of Example 7.3 ap-
proaches unity. Why is this result expected? What happens to T in the limit as E ap-
proaches U ?

1This is familiar from the propagation of classical waves: A traveling wave arriving at the interface
separating two media is partially transmitted and partially reflected. The reflected portion is
phase shifted 180� only in the case where the wave speed is lower in the medium being pene-
trated. For matter waves, p � h/�, and the wavelength (hence, wave speed) is largest in regions
where the kinetic energy is smallest. Thus, the matter wave reflected from the front of a barrier
suffers no change in phase, but that reflected from the rear is phase shifted 180�.

0
0

E

U

Figure 7.4 (Example 7.4) The potential step of height
U may be thought of as a square barrier of the same
height in the limit where the barrier width L becomes
infinite. All particles incident on the barrier with energy
E � U are reflected.
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The existence of a barrier wave without propagation (as in Example 7.4) is
familiar from the optical phenomenon of total internal reflection exploited in
the construction of beam splitters (Figure 7.5): Light entering a right-angle
prism is completely reflected at the hypotenuse face, even though an electro-
magnetic wave, the evanescent wave, penetrates into the space beyond. A sec-
ond prism brought into near contact with the first can “pick up” this evanes-
cent wave, thereby transmitting and redirecting the original beam (Fig. 7.5b).
This phenomenon, known as frustrated total internal reflection, is the
optical analog of tunneling: In effect, photons have tunneled across the gap
separating the two prisms.

7.2 BARRIER PENETRATION: SOME APPLICATIONS

In actuality, few barriers can be modeled accurately using the square barrier
discussed in the preceding section. Indeed, the extreme sensitivity to barrier
constants found there suggests that barrier shape will be important in making
reliable predictions of tunneling probabilities. The transmission coefficient
for a barrier of arbitrary shape, as specified by some potential energy function
U(x), can be found from Schrödinger’s equation. For high, wide barriers,
where the likelihood of penetration is small, a lengthy treatment yields the ap-
proximate result

(7.10)

The integral in Equation 7.10 is taken over the classically forbidden region
where E � U(x). A simple argument leading to this form follows by
representing an arbitrary barrier as a succession of square barriers, all of
which scatter independently, so that the transmitted wave intensity of

T(E) � exp ��
2

�
√2m 	 √U(x) � E dx�
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Figure 7.5 (a) Total internal reflection of light waves at a glass–air boundary. An evanes-
cent wave penetrates into the space beyond the reflecting surface. (b) Frustrated total in-
ternal reflection. The evanescent wave is “picked up” by a neighboring surface, resulting
in transmission across the gap. Notice that the light beam does not appear in the gap.

(a) (b)

Approximate transmission

coefficient of a barrier with

arbitrary shape
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one becomes the incident wave intensity for the next, and so forth (see
Problem 15).

The use of Equation 7.10 is illustrated in the remainder of this section,
where it is applied to several classic problems in contemporary physics.

Field Emission

In field emission, electrons bound to a metal are literally torn from the
surface by the application of a strong electric field. In this way, the metal
becomes a source that may be conveniently tapped to furnish electrons for
many applications. In the past, such cold cathode emission, as it was known,
was a popular way of generating electrons in vacuum tube circuits, producing
less electrical “noise” than hot filament sources, where electrons were “boiled
off” by heating the metal to a high temperature. Modern applications include
the field emission microscope (Fig. 7.6) and a related device, the scanning
tunneling microscope (see the essay at the end of this chapter), both of
which use the escaping electrons to form an image of structural details at the
emitting surface.

Field emission is a tunneling phenomenon. Figure 7.7a shows schematically
how field emission can be obtained by placing a positively charged plate near
the source metal to form, effectively, a parallel-plate capacitor. In the gap be-
tween the “plates” there is some electric field �, but the electric field inside
the metal remains zero due to the shielding by the mobile metal electrons at-
tracted to the surface by the positively charged plate. Note that an electron in
the bulk is virtually free, yet still bound to the metal by a potential well of
depth U. The total electron energy E, which includes kinetic energy, is nega-
tive to indicate a bound electron; indeed, �E � represents the energy needed to
free this electron, a value at least equal to the work function of the metal.

Once beyond the surface (x � 0), our electron is attracted by the electric
force in the gap, F � e�, represented by the potential energy U(x) � �e�x.
The potential energy diagram is shown in Figure 7.7b, together with the classi-
cally allowed and forbidden regions for an electron of energy E. The intersec-
tions of E with U(x) at x1 (� 0) and x2 (� �E/e�) mark the classical turning
points, where a classical particle with this energy would be turned around to
keep it from entering the forbidden zone. Thus, from a classical viewpoint, an
electron initially confined to the metal has insufficient energy to surmount the
potential barrier at the surface and would remain in the bulk forever! It is only
by virtue of its wave character that the electron can tunnel through this barrier
to emerge on the other side. The probability of such an occurrence is
measured by the transmission coefficient for the triangular barrier depicted in
Figure 7.7b.

To calculate T(E ) we must evaluate the integral in Equation 7.10 over the
classically forbidden region from x1 to x2. Since U(x) � �e�x in this region
and E � �e�x2, we have

� �
2

3
√e� {x2 � x }3/2 �

x 2

0
�

2

3
√e� � � E �

e� �
3/2

	 √U(x) � E dx � √e� 	x 2

0
√x2 � x dx
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Fluorescent
screen

Cathode tip

Figure 7.6 Schematic diagram
of a field emission microscope.
The intense electric field at the
tip of the needle-shaped speci-
men allows electrons to tunnel
through the work function bar-
rier at the surface. Since the tun-
neling probability is sensitive to
the exact details of the surface
where the electron passes, the
number of escaping electrons
varies from point to point with
the surface condition, thus pro-
viding a picture of the surface
under study.

Tunneling model for field

emission
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Using this result in Equation 7.10 gives the transmission coefficient for field
emission as

(7.11)

The strong dependence of T on electron energy E in the bulk is evident
from this expression. It is also apparent that the quantity in curly brackets
must have the dimensions of electric field and represents a characteristic field
strength—say, �c —for field emission:

(7.12)

The escape probability is largest for the most energetic electrons; these are the
ones most loosely bound and for which �E � � �, the work function of the

�c �
4√2m � E �3/2

3e�

T(E) � exp ���
4√2m � E �3/2

3e� � 1

� �
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Transmission coefficient for

field emission

Metal

(a)

e – with
energy
E < 0

+

+

+

+

+

+

+

+

+

(b)

0

E

–U

x1 = 0

x

U(x) = – e x

x2 = – E/e

φ

Axis normal
to metal surface

ε

ε

ε

Figure 7.7 (a) Field emission from a metal surface. (b) The potential energy seen
by an electron of the metal. The electric field produces the triangular potential
barrier shown, through which electrons can tunnel to escape the metal. Turning points
at x1 � 0 and x2 � �E/e� delineate the classically forbidden region. (Note that x2 is
positive since E is negative.) Tunneling is greatest for the most energetic electrons, for
which �E � is equal to the work function � of the metal.
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7.2 BARRIER PENETRATION: SOME APPLICATIONS 241

metal. For �E � � � � 4.0 eV, a typical value for many metals, we calculate the
characteristic field strength to be �c � 5.5 � 1010 V/m, a strong field by labo-
ratory standards. Measurable emission occurs even with much weaker fields,
however, since the emission rate depends on the product of the transmission
coefficient and the number of electrons per second that collide with the bar-
rier. This collision frequency is quite high for a bulk sample containing some-
thing like 1022 electrons per cubic centimeter, and values in excess of 1030 col-
lisions per second per square centimeter are not uncommon (see Problem
18)! In this way field emission rates on the order of 1010 electrons per second
(currents of about 1 nA) can be realized with applied fields as small as �c/50,
or about 109 V/m.

Figure 7.8 Field emission microscope image of the surface of a crystalline platinum
alloy with a magnification of 3,000,000�. Individual atoms can be seen on surface lay-
ers using this technique. (Manfred Kage/Peter Arnold, Inc.)

area 1 cm2 is

� � f T(E) � 1.0 � 1030 exp(��c/�)

The electric field � in the gap is 10 kV/0.010 mm �

1.0 � 109 V/m. Using this and �c � 5.5 � 1010 V/m
gives for the exponential exp{�55} � 1.30 � 10�24 and
an emission rate of � � 1.30 � 106 electrons per second.
Since each electron carries a charge e � 1.60 � 10�19 C,
the tunneling current is

I � 2.1 � 10�13 A � 0.21 pA

EXAMPLE 7.5 Tunneling in a 
Parallel-Plate Capacitor

Estimate the leakage current due to tunneling that passes
across a parallel-plate capacitor charged to a potential
difference of 10 kV. Take the plate separation to be
d � 0.010 mm and the plate area to be A � 1.0 cm2.

Solution The number of electrons per second imping-
ing on the plate surface from the bulk is the collision fre-
quency f, about 1030 per second per square centimeter
for most metals. Of these, only the fraction given by the
transmission coefficient T can tunnel through the poten-
tial barrier in the gap to register as a current through the
device. Thus, the electron emission rate for a plate of
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� Decay

The decay of radioactive elements with the emission of � particles (helium nu-
clei composed of two protons and two neutrons) was among the long-standing
puzzles to which the fledgling field of wave mechanics was first applied shortly
after its inception in 1926. That � particles are a disintegration product of
such species as radium, thorium, and uranium was well documented as early as
1900, but certain features of this decay remained a mystery, finally unraveled
in 1928 in the now-classic works of George Gamow and R. W. Gurney and
E. U. Condon. Their contribution was to recognize that the newly discovered
tunnel effect lay behind the two most puzzling aspects of � decay:

• All � particles emitted from any one source have nearly the same energy
and, for all known emitters, emerge with kinetic energies in the same nar-
row range, from about 4 to 9 MeV.

• In contrast to the uniformity of energies, the half-life of the emitter (time
taken for half of the emitting substance to decay) varies over an enor-
mous range—more than 20 orders of magnitude!—according to the
emitting element (Table 7.1).

For instance, alphas emerge from the element thorium with kinetic energy
equal to 4.05 MeV, only a little less than half as much as the alphas emitted
from polonium (8.95 MeV). Yet the half-life of thorium is 1.4 � 1010 years,
compared with only 3.0 � 10�7 seconds for the half-life of polonium!

Gamow attributed this striking behavior to a preformed � particle rattling
around within the nucleus of the radioactive (parent) element, eventually tun-
neling through the potential barrier to escape as a detectable decay product
(Fig. 7.9a). While inside the parent nucleus, the � is virtually free, but nonethe-
less confined to the nuclear potential well by the nuclear force. Once outside
the nucleus, the � particle experiences only the Coulomb repulsion of the
emitting (daughter) nucleus. (The nuclear force on the � outside the nucleus
is insignificant due to its extremely short range, �10�15 m.) Figure 7.9b shows
the potential-energy diagram for the � particle as a function of distance r from
the emitting nucleus. The nuclear radius R is about 10�14 m, or 10 fm [note
that 1 fm (fermi) � 10�15 m] for heavy nuclei2; beyond this there is only the
energy of Coulomb repulsion, U(r) � kq1q2/r, between the doubly charged �
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2The fermi (fm) is a unit of distance commonly used in nuclear physics.

Table 7.1 Characteristics of Some

Common � Emitters

Element � Energy Half-Life*

212
84Po 8.95 MeV 2.98 � 10�7 s

240
96Cm 6.40 MeV 27 days

226
88Ra 4.90 MeV 1.60 � 103 yr

232
90Th 4.05 MeV 1.41 � 1010 yr

*Note that half-lives range over 24 orders of magni-
tude when � energy changes by a factor of 2.
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7.2 BARRIER PENETRATION: SOME APPLICATIONS 243

(q1 � +2e) and a daughter nucleus with atomic number Z (q2 � 	Ze). Classi-
cally, even a 9-MeV � particle initially bound to the nucleus would have insuffi-
cient energy to overcome the Coulomb barrier (�30 MeV high) and escape.
But the � particle, with its wave attributes, may tunnel through the barrier to ap-
pear on the outside. The total � particle energy E inside the nucleus becomes
the observed kinetic energy of the emerging � once it has escaped. It is the
sensitivity of the tunneling rate to small changes in particle energy that
accounts for the wide range of half-lives observed for � emitters.

The tunneling probability and associated decay rate are calculated in much
the same way as for field emission, apart from the fact that the barrier shape
now is Coulombic, rather than triangular. The details of this calculation are
given in Example 13.9 (Chapter 13), with the result

(7.13)

In this expression, r0 � �2/m�ke2 is a kind of “Bohr” radius for the � particle.
The mass of the � particle is m� � 7295me, so r0 has the value a0/7295 �

7.25 � 10�5 Å, or 7.25 fm. The length r0, in turn, defines a convenient energy

T(E) � exp ��4�Z √ E0

E
	 8 √ ZR

r0
�

Figure 7.9 (a) � decay of a radioactive nucleus. (b) The potential energy seen by an
� particle emitted with energy E. R is the nuclear radius, about 10�14 m, or 10 fm.
� particles tunneling through the potential barrier between R and R1 escape the nu-
cleus to be detected as radioactive decay products.
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Alpha particle (+2e)
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unit E0 analogous to the Rydberg in atomic physics:

To obtain decay rates, T(E ) must be multiplied by the number of collisions
per second that an � particle makes with the nuclear barrier. This collision
frequency f is the reciprocal of the transit time for the � particle crossing the
nucleus, or f � v/2R , where v is the speed of the � particle inside the nucleus.
In most cases, f is about 1021 collisions per second (see Problem 17). The
decay rate � (the probability of � emission per unit time) is then

The reciprocal of � has dimensions of time and is related to the half-life of the
emitter t1/2 as

(7.14)t1/2 �
ln2

�
�

0.693

�

� � fT(E) � 1021 exp {�4�Z√E0/E 	 8√Z(R/r0)}

E0 �
ke2

2r0
� � ke2

2a0
�� a0

r0
� � (13.6 eV)(7295) � 0.0993 MeV
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If polonium (Z � 84) is the radioactive species, the
daughter element is lead, with Z � 82. Using for the dis-
integration energy E � 8.95 MeV, we obtain for the trans-
mission factor

Assuming f is unchanged at 1021 collisions per second, we
get for this case � � 8.2 � 108 alphas per second and a
half-life

The measured half-life of polonium is 3.0 � 10�7 s.
Given the crudeness of our method, both estimates

should be considered satisfactory. Further, the calcula-
tions show clearly how a factor of only 2 in disintegration
energy leads to half-lives differing by more than 26 or-
ders of magnitude!

t1/2 �
0.693

8.2 � 108 � 8.4 � 10�10 s

� exp {�27.825} � 8.2 � 10�13

exp {�4�(82)√(0.0993/8.95 	 8√82(9.00/7.25)}

EXAMPLE 7.6 Estimating the Half-lives of
Thorium and Polonium

Using the tunneling model just developed, estimate the
half-lives for � decay of the radioactive elements tho-
rium and polonium. The energy of the ejected alphas is
4.05 MeV and 8.95 MeV, respectively, and the nuclear
size is about 9.00 fm in both cases.

Solution For thorium (Z � 90), the daughter nucleus
has atomic number Z � 88, corresponding to the ele-
ment radium. Using E � 4.05 MeV and R � 9.00 fm, we
find for the transmission factor T(E) in Equation 7.13

Taking f � 1021 Hz, we obtain for the decay rate the
value � � 1.29 � 10�18 alphas per second. The associ-
ated half-life is, from Equation 7.14,

which compares favorably with the actual value for tho-
rium, 1.4 � 1010 yr.

t1/2 �
0.693

1.3 � 10�18 � 5.4 � 1017 s � 1.7 � 1010 yr

� exp {�89.542} � 1.3 � 10�39

exp {�4�(88)√(0.0993/4.05) 	 8√88(9.00/7.25)}

The radioactive decay process also can be understood in terms of
the time evolution of a nonstationary state, in this case one representing the �
particle initially confined to the parent nucleus. Solving the Schrödinger equa-
tion for the time-dependent waveform in this instance is complicated, making
numerical studies the option of choice here. The interested reader is referred
to our companion Web site for further details and a fully quantum-mechanical
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simulation of � decay from an unstable nucleus. Go to http://info.brookscole.
com/mp3e, select QMTools Simulations : Leaky Wells (Tutorial) and follow
the on-site instructions.

Ammonia Inversion

The “inversion” of the ammonia molecule is another example of tunneling,
this time for an entire atom. The equilibrium configuration of the ammonia
(NH3) molecule is shown in Figure 7.10a: The nitrogen atom is situated at
the apex of a pyramid whose base is the equilateral triangle formed by the
three hydrogen atoms. But this equilibrium is not truly stable; indeed, there
is a second equilibrium position for the nitrogen atom on the opposite side
of the plane formed by the hydrogen atoms. With its two equilibrium loca-
tions, the nitrogen atom of the ammonia molecule constitutes a double
oscillator, which can be modeled by using the potential shown in Figure
7.10b. A nitrogen atom initially located on one side of the symmetry plane
will not remain there indefinitely, since there is some probability that it can
tunnel through the oscillator barrier to emerge on the other side. When this
occurs, the molecule becomes inverted (Fig. 7.10c). But the process does not
stop there; the nitrogen atom, now on the opposite side of the symmetry
plane, has a probability of tunneling back through the barrier to take up its
original position! The molecule does not just undergo one inversion, but
flip-flops repeatedly, alternating between the two classical equilibrium con-
figurations. The “flopping” frequency is fixed by the tunneling rate and
turns out to be quite high, on the order of 1010 Hz (microwave range of the
electromagnetic spectrum)!

We can estimate the tunneling probability for inversion using Equation
7.10. The double oscillator potential of Figure 7.10b is described by the poten-
tial energy function
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Double oscillator

representation of the

ammonia molecule

U(x)
(Nitrogen atom)

–a 0

Symmetry
plane

Axis normal
to symmetry

plane

(b)

+a

E

x

(c)(a)

H

N

H

H
H

N

H

H

Figure 7.10 (a) The ammonia molecule NH3. At equilibrium, the nitrogen atom is sit-
uated at the apex of a pyramid whose base is the equilateral triangle formed by the three
hydrogen atoms. By symmetry, a second equilibrium configuration exists for the nitrogen
atom on the opposite side of the plane formed by the hydrogen atoms. (b) The potential
energy seen by the nitrogen atom along a line perpendicular to the symmetry plane. The
two equilibrium points at �a and 	a give rise to the double oscillator potential shown. A
nitrogen atom with energy E can tunnel back and forth through the barrier from one
equilibrium point to the other, with the result that the molecule alternates between the
normal configuration in (a) and the inverted configuration shown in (c).
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(7.15)

with � the classical frequency of vibration for the nitrogen atom around either
of the equilibrium points x � �a. We suppose the nitrogen atom possesses the
minimum energy of vibration, E � ��. There are four classical turning points
for which U(x) � E (see Fig. 7.10b); the limits for the tunneling integral are
the pair closest to x � 0, and these are given by x � �(a � A), where A is the
vibration amplitude for the nitrogen atom in a single oscillator well. The vibra-
tion amplitude A is found from energy conservation by recognizing that here
all the energy is in potential form: �� � M�2A2, or

(7.16)

Since the tunneling integral is symmetric about x � 0, we may write it as

where U(x) and E have been expressed in terms of A, using Equation 7.16.
The integral on the right can be evaluated in terms of hyperbolic functions,3

with the result

where y0 is defined by the relation cosh(y0) � a/A. The transmission coeffi-
cient is then

(7.17)

To get the tunneling rate � (and its reciprocal—the tunneling time), we must
multiply T by the frequency with which the nitrogen atom collides with the po-
tential barrier. For an atom vibrating about its equilibrium position, this is the
vibration frequency f � �/2�. From Equation 7.16, we see that f is related to
the vibration amplitude as f � �/2�MA2.

The tunneling rate depends sensitively on the values chosen for a and A.
For the equilibrium distance from the symmetry plane, we take a � 0.38 Å, an
experimental value obtained from x-ray diffraction measurements.4 The vibra-
tion amplitude A is not directly observable, but its value can be calculated
from U(0), the height of the potential barrier at x � 0, which is known to be
0.25690 eV. Using Equations 7.15 and 7.16, and taking M � 14 u for the mass
of the nitrogen atom, we find

� 0.096Å

A � � �2a2

2MU(0) �
1/4

� � (1.973 keV�Å/c)2(0.38Å)2

2(14)(931.50 	 103 keV/c2)(0.2569 	 10�3 keV) �
1/4

T � e�[sinh(2y0)�2y0]

4

A2 �a�A

0
√(x � a)2 � A2 dx � sinh(2y0) � 2y0

2

�
√2m �a�A

�(a�A)
√U(x) � E dx �

4

A2 �a�A

0
√(x � a)2 � A2 dx

A � √
�

M�

1
2

1
2

1
2

U(x) �
1
2 M�2(� x � � a)2

246 CHAPTER 7 TUNNELING PHENOMENA

3Introduce a new integration variable y with the substitution x � a � �A cosh(y), and use the prop-
erties of the hyperbolic cosine and sine functions, cosh(y) � (e y 
 e�y), sinh(y) � (e y � e�y), to
obtain the final form.

4B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules, New York, John Wiley and Sons,
Inc., 1983, p. 456.

1
2

1
2

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



This underestimates the true value for A because we have (incorrectly) identi-
fied M as the mass of the nitrogen atom. In fact, M should be the reduced mass
of the nitrogen–hydrogen group, about 2.47 u.5 With this correction, we find
A � 0.148 Å and a tunneling rate � � f T � 2.4 � 1012 Hz. The observed tun-
neling rate, 2.4 � 1010 Hz, suggests a somewhat smaller value for A. By trial
and error, we find the actual tunneling rate is reproduced with A � 0.125 Å,
still a reasonable figure for the vibration amplitude of the nitrogen atom in
the ammonia molecule.

Notice that because of tunneling, the nitrogen atom on one side of
the symmetry plane or the other does not constitute a stationary state of the
ammonia molecule, since the probability for finding it there changes over
time. In fact, the flopping behavior stems from a simple combination of two
stationary states of nearly equal energy for the nitrogen atom in this environ-
ment. Such superpositions of closely spaced (in energy) stationary states have
applications that transcend this one example and are the subject of a com-
puter-based tutorial available at our companion Web site. For more informa-
tion, go to http://info.brookscole.com/mp3e, select QMTools Simulations :

Two-Center Potentials (Tutorial), and follow the on-site instructions.
Since the flopping frequency is in the microwave range, the ammonia mole-

cule can serve as an amplifier for microwave radiation. The ammonia maser
operates on this principle. Because of the small energy difference between the
ground and first excited states of the ammonia molecule, ammonia vapor at
room temperature has roughly equal numbers of molecules in both states.
Having opposite electric dipole moments, these states are easily separated by
passing the vapor through a nonuniform electric field. In this way, ammonia
vapor can be produced with the unusually large concentrations of excited
molecules needed to create the population inversion necessary for maser op-
eration. A spontaneous deexcitation to the ground state of one molecule re-
leases a (microwave) photon, which, in turn, induces other molecules to deex-
cite. The result—much like a chain reaction—produces a photon cascade: an
intense burst of coherent microwave radiation. The operation of masers and
lasers is discussed in more detail in Chapter 12 and on our website at
http://info.brookscole.com/mp3e.

Decay of Black Holes

Once inside the event horizon, nothing—not even light—can escape the
gravitational pull of a black hole.6 That was the view held until 1974, when the
brilliant British astrophysicist Stephen Hawking proposed that black holes are
indeed radiant objects, emitting a variety of particles by a mechanism involv-
ing tunneling through the (gravitational) potential barrier surrounding the
black hole. The thickness of this barrier is proportional to the size of the black
hole, so that the likelihood of a tunneling event initially may be extremely
small. As the black hole emits particles, however, its mass and size steadily

7.2 BARRIER PENETRATION: SOME APPLICATIONS 247

5In this mode of vibration, all three hydrogen atoms move in unison as if they were a single object
with mass 3 u. The reduced mass refers to the pair consisting of this total mass and the mass of
the nitrogen atom (14 u).

6A brief introduction to black holes is found in Clifford Will’s essay “The Renaissance of General
Relativity” on our companion Web site.
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decrease, making it easier for more particles to tunnel out. In this way emis-
sion continues at an ever-increasing rate, until eventually the black hole radi-
ates itself out of existence in an explosive climax! Thus, Hawking’s scenario
leads inexorably to the decay and eventual demise of any black hole.

Calculations indicate that a black hole with the mass of our Sun would survive
against decay by tunneling for about 1066 years. On the other hand, a black hole
with the mass of only a billion tons and roughly the size of a proton (such mini
black holes are believed to have been formed just after the Big Bang origin of
the Universe) should have almost completely evaporated in the 10 billion years
that have elapsed since the time of creation, and black holes a few times heavier
should still be evaporating strongly. A large portion of the energy emitted by
such holes would be in the form of gamma rays. Indeed, gamma rays from inter-
stellar space have been observed, but in quantities and with properties that are
readily explained in other ways. Currently there is no compelling observational
evidence of black-hole evaporation in the Universe today.

SUMMARY

For potentials representing barriers, the stationary states are not localized, but
extend throughout the entire space in a manner that describes particle scat-
tering. When a matter wave encounters a potential barrier, part of the wave is
reflected by the barrier and part is transmitted through the barrier. In particle
language, an object colliding with the barrier does not predictably rebound or
penetrate, but can only be assigned probabilities for reflection and transmis-
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QUESTIONS 249

sion. These probabilities are given by the reflection coefficient R and trans-
mission coefficient T, respectively. For any particle energy E, these two scat-
tering coefficients must obey the sum rule:

R(E) 	 T(E) � 1 (7.5)

expressing the fact that the particle either is reflected or transmitted. Due to
its wave nature, a particle has some nonzero probability of penetrating the bar-
rier even when it has insufficient energy to do so on classical grounds. This
process, called tunneling, is the basic mechanism underlying the phenomena
of field emission, � decay of radioactive nuclei, ammonia inversion, Hawk-
ing radiation from black holes, and many more. The likelihood of a particle
with mass m and energy E tunneling through a barrier of arbitrary shape U(x)
is given approximately as

(7.10)

The integral in Equation 7.10 is taken over the range of x where U(x) � E,
called the classically forbidden region because a classical particle in
this interval would have to have a negative value of kinetic energy (an
impossibility!).

T(E) � exp ��
2

�
√2m 	 √U(x) � E dx�

3. For readable accounts of tunneling from black holes, see
S. W. Hawking, “The Quantum Mechanics of Black
Holes,” Sci. Am., January 1977, pp. 34–40; and J. D. Beck-
enstein, “Black-hole Thermodynamics,” Phys. Today, Janu-
ary 1980, pp. 24–31. For a fascinating historical perspec-
tive of these discoveries in the making, written by one of
the participants, see K. Thorne’s Black Holes and Time

Warps, New York, W. W. Norton & Company, Inc., 1994.

1. Many of the topics in this chapter also are treated at
about the same level by A. P. French and E. F. Taylor in
An Introduction to Quantum Physics, New York, W. W. Nor-
ton and Company, Inc., 1978.

2. Experimental aspects of field emission microscopy and
related analytical surface techniques are discussed by
P. F. Kane in Chapter 6 of Characterization of Solid Sur-

faces, New York, Plenum Press, 1974, pp. 133 – 146.

SUGGESTIONS FOR FURTHER READING

QUESTIONS

1. Consider a particle with energy E scattered from a poten-
tial barrier of height U � E. How does the amplitude of
the reflected wave change as the barrier height is reduced?
How does the amplitude of the incident wave change?

2. An electron and a proton of identical energy encounter
the same potential barrier. For which is the probability
of transmission greatest, and why?

3. In classical physics, only differences in energy have physi-
cal significance. Discuss how this carries over to the
quantum scattering of particles by examining how
adding a constant potential U0 everywhere affects barrier
reflection and transmission coefficients.

4. Suppose a particle with energy E is located within a
barrier whose height U is greater than E. Will this par-
ticle be found to have a negative kinetic energy? Ex-
plain.

5. Explain how a barrier whose width is L might be consid-
ered wide for penetration by protons, yet at the same
time narrow for penetration by electrons.

6. Discuss the suitability of portraying wavefunctions and
potential barriers on the same graph, as in Figure 7.2a.
Can a wave whose crest falls below the top of a square
barrier ever penetrate the barrier? Explain.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



250 CHAPTER 7 TUNNELING PHENOMENA

PROBLEMS

7.1 The Square Barrier

1. A particle incident on the potential step of Example
7.4 with a certain energy E � U is described by the wave


(x) � e�kx for x � 0

(a) Verify by direct calculation that the reflection coef-
ficient is unity in this case. (b) How must k be related
to E in order for 
(x) to solve Schrödinger’s equation
in the region to the left of the step (x � 0)? to the right
of the step (x � 0)? What does this say about the ratio
E/U ? (c) Evaluate the penetration depth � � 1/k for
10 MeV protons incident on this step.

2. Consider the step potential of Example 7.4 in the case
where E � U. (a) Examine the Schrödinger equation
to the left of the step to find the form of the solution in
the range x � 0. Do the same to the right of the step to
obtain the solution form for x � 0. Complete the solu-
tion by enforcing whatever boundary and matching
conditions may be necessary. (b) Obtain an expression
for the reflection coefficient R in this case, and show
that it can be written in the form

where k1 and k2 are wavenumbers for the incident and
transmitted waves, respectively. Also write an expres-
sion for the transmission factor T using the sum rule
obeyed by these coefficients. (c) Evaluate R and T in
the limiting cases of E : U and E : �. Are the results
sensible? Explain. (This situation is analogous to the
partial reflection and transmission of light striking an
interface separating two different media.)

3. Use the results of the preceding problem to calculate
the fraction of 25-MeV protons reflected and the frac-
tion transmitted by a 20-MeV step. How do your an-
swers change if the protons are replaced by electrons?

4. A 0.100-mA electron beam with kinetic energy 54.0 eV
enters a sharply defined region of lower potential where
the kinetic energy of the electrons is increased by
10.0 eV. What current is reflected at the boundary? (This
simulates electron scattering at normal incidence from a
metal surface, as in the Davisson–Germer experiment.)

5. (a) Tunneling of particles through barriers that are
high or wide (or both) is very unlikely. Show that for a
square barrier with

and particle energies well below the top of the
barrier (E �� U ) the probability for transmission is

2mUL2

�2 �� 1

R �
(k1 � k2)2

(k1 	 k2)2


(x) � 1
2 {(1 	 i)eikx 	 (1�i)e�ikx }  for x � 0

approximately

(The combination UL2 is sometimes referred to as the
barrier strength.) (b) Give numerical estimates for the
exponential factor in P for each of the following cases:
(1) an electron with U � E � 0.01 eV and L � 0.1 nm;
(2) an electron with U � E � 1 eV and L � 0.1 nm;
(3) an � particle (m � 6.7 � 10�27 kg) with U � E �

106 eV and L � 10�15 m; and (4) a bowling ball 
(m � 8 kg) with U � E � 1 J and L � 2 cm (this corre-
sponds to the ball’s getting past a barrier 2 cm wide
and too high for the ball to slide over).

6. A beam of electrons is incident on a barrier 5 eV high
and 1 nm wide. Write a simple computer program to
find what energy the electrons should have if 0.1% of
them are to get through the barrier.

7. Starting from the joining conditions, Equations 7.8,
obtain the result for the transmission coefficient of a
square barrier given in Equation 7.9 (valid when the
particle has insufficient energy to penetrate the barrier
classically: E � U ).

8. Use the Java applet available at our compan-
ion Web site (http://info.brookscole.com/

mp3e QMTools Simulations : Problem 7.8) to investi-
gate the scattering of electrons from a square barrier
1.00 Å thick and 10.0 eV high, in the case where the
electron energy is equal to the barrier height, E � U.
What is the functional form of the wave in the barrier
region? Determine the transmission coefficient at this
energy, and compare your result with the prediction of
Equation 7.9. What does classical physics predict for
the probability of transmission in this case?

9. Use the Java applet referenced in the preced-
ing problem to obtain transmission and reflec-

tion coefficients for a 5.00-eV electron incident on a
square barrier that is 1.00 Å thick and 10.0 eV high.
Verify the sum rule, Equation 7.5, and compare your
result for T(E) with the prediction of Equation 7.9.
What must the barrier thickness be to transmit 5.00-eV
protons with the same probability?

10. Scattering resonances. Use the Java applet avail-
able at our companion Web site (http://info.

brookscole.com/mp3e QMTools Simulations : Prob-
lem 7.10) to locate the two lowest energies E giving rise
to perfect transmission for electrons scattering from a
square barrier of width 1.00 Å and height 10.0 eV (look
for zero-amplitude reflections while varying E ). For
each energy use the “Trace” feature to estimate the
electron wavelength � in the barrier. (Hint : Zoom in
for a close-up view of the barrier waveform and greater
accuracy.) Compare � with the barrier width L and dis-

P � 16
E

U
e�2[√2m(U�E)/�]L
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PROBLEMS 251

cuss your findings in terms of the interference of waves
reflected from the leading and trailing edges of the
barrier (see Example 7.3).

11. The Ramsauer–Townsend effect. Consider the scattering
of particles from the potential well shown in Figure
P7.11. (a) Explain why the waves reflected from the
well edges x � 0 and x � L will cancel completely if
2L � �2, where �2 is the de Broglie wavelength of the
particle in region 2. (b) Write expressions for the wave-
functions in regions 1, 2, and 3. Impose the necessary
continuity restrictions on � and �/x to show explic-
itly that 2L � �2 leads to no reflected wave in region 1.
[This is a crude model for the Ramsauer–Townsend ef-
fect observed in the collisions of slow electrons with no-
ble gas atoms like argon, krypton, and xenon. Elec-
trons with just the right energy are diffracted around
these atoms as if there were no obstacle in their path
(perfect transmission). The effect is peculiar to the no-
ble gases because their closed-shell configurations pro-
duce atoms with abrupt outer boundaries.]

negative, we find that T(E) diverges for some particular
energy E0. Find this value E0. (As it happens, E0 is the
energy of a bound state in the delta well. The calculation
illustrates a general technique, in which bound states are
sought among the singularities of the scattering coeffi-
cients for a potential well of arbitrary shape.) (d) What
fraction of the particles incident on the well with energy
E � �E0� is transmitted and what fraction is reflected?

L 0

L

x

U      ∞

U

x

L

U =
S—
L

E

U

x = 0 x = L

1 2 3

Figure P7.11

Figure P7.12

12. A potential model of interest for its simplicity is the delta

well. The delta well may be thought of as a square well of
width L and depth S/L in the limit L : 0 (Fig. P7.12).
The limit is such that S, the product of the well depth
with its width, remains fixed at a finite value known as
the well strength. The effect of a delta well is to intro-
duce a discontinuity in the slope of the wavefunction at
the well site, although the wave itself remains continu-
ous here. In particular, it can be shown that

for a delta well of strength S situated at x � 0. (a) Solve
Schrödinger’s equation on both sides of the well (x � 0
and x � 0) for the case where particles are incident
from the left with energy E � 0. Note that in these
regions the particles are free, so that U(x) � 0.
(b) Enforce the continuity of 
 and the slope condition
at x � 0. Solve the resulting equations to obtain the
transmission coefficient T as a function of particle en-
ergy E. Sketch T(E ) for E � 0. (c) If we allow E to be

d


dx �
0	

�
d


dx �
0�

� �
2mS

�2 
(0)

13. Obtain directly an expression for the reflection coeffi-
cient R(E) for the delta well of Problem 12, and verify
the sum rule

R(E) 	 T(E) � 1

for all particle energies E � 0.
14. Keeping constant speed 0.8 m/s, a marble rolls back

and forth inside a shoebox. Make an order-of-
magnitude estimate of the probability of its escaping
through the wall of the box by quantum tunneling.
State the quantities you take as data and the values you
measure or estimate for them.

7.2 Barrier Penetration

15. A barrier of arbitrary shape can be approximated as a
succession of square barriers, as shown in Figure P7.15.
Write the transmission coefficient for this barrier using
the result of Equation 7.9 for each of the individual
barriers, assuming the transmitted wave intensity for
one becomes the incident wave intensity for the barrier
immediately following it in the series. Show that the
form of Equation 7.10 is recovered in the case where
E � U and �L �� 1.

16. Consider an � particle confined to a thorium nucleus.
Model the nuclear potential as a semi-infinite square
well with an infinitely high wall at r � 0 and a wall of
height 30.0 MeV at the nuclear radius R � 9.00 fm.
Use the iterative method described in Example 6.8 to
estimate the smallest values of energy and velocity per-
mitted for the � particle. What conclusion can you
draw from the fact that the ejected � is observed to have
a kinetic energy of 4.05 MeV?
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17. The attempt frequency of an � particle to escape the
nucleus is the number of times per second it collides
with the nuclear barrier. Estimate this collision fre-
quency in the tunneling model for the � decay of tho-
rium, assuming the � behaves like a true particle inside
the nucleus with total energy equal to the observed ki-
netic energy of decay. The daughter nucleus for this
case (radium) has Z � 88 and a radius of 9.00 fm. Take
for the overall nuclear barrier 30.0 MeV, measured
from the bottom of the nuclear well to the top of the
Coulomb barrier (see Fig. 7.8).

18. Verify the claim of Section 7.2 that the electrons of a
metal collide with the surface at a rate of about 1030 per
second per square centimeter. Do this by estimating the
collision frequency of electrons in a 1.00-cm cube of
copper metal with one face of the cube surface. Assume
that each copper atom contributes one conduction
electron to the metal (the chemical valence of copper is
	1) and that these conduction electrons move freely

with kinetic energy equal to 7.00 eV. In fact, not all the
electrons have this energy; see Chapter 10.

19. Resonant tunneling. Heterostructures formed
from layered semiconductors have characteris-

tics important to many modern electronic devices.
Here, we use computer simulation to study tunneling
in a three-layer gallium arsenide/gallium aluminum ar-
senide (GaAs–Ga1�xAlxAs) sandwich. The GaAs layer
constitutes a potential well between two confining bar-
riers formed by the Ga1�xAlxAs layers. Unusually large
transmission (resonant tunneling) through the device
occurs when the energy of the incident electron coin-
cides with that of a bound state in the central well. The
Java applet simulating this device can be found at
http://info.brookscole.com/mp3e QMTools Simula-
tions : Problem 7.19. The barriers are 0.25 eV high
and 5.0 nm wide, with a gap of equal width separating
them. Note that electrons in these materials behave
like free electrons with an effective mass m* �

0.067me, only a fraction of the free electron value.
Starting from E � 0, gradually increase the electron en-
ergy to find the lowest value for peak transmission. In-
vestigate the width of the resonance by varying the elec-
tron energy further until T(E ) falls to half of its peak
value. (In practice, the incident electron energy is
fixed and the device is “tuned” to resonance by apply-
ing a suitable bias voltage that alters the bound-state
energies of the central well.)

20. Ammonia inversion. Inversion of the ammonia
molecule can be simulated using the Java applet

available at our companion Web site (http://info.brooks
cole.com/mp3e QMTools Simulations : Problem 7.20)
The potential energy is the double oscillator of Equation
7.15 with parameter values chosen to model the nitro-
gen atom in NH3 (as discussed in the text) and a re-
duced mass of 2.47 u for the atom in this environment.
(a) Find and display the two lowest-lying stationary states
of the nitrogen atom in the ammonia molecule. De-
scribe the appearance of these waveforms (symmetry,
number of nodes, and so on). (b) Construct an initial
(nonstationary) state for the atom by mixing together
these two stationary waves with equal amplitude. De-
scribe this state. What does it imply for the location of
the atom initially? (c) Explore the time evolution of the
state constructed in (b). Verify that the atom flip-flops
between the two equilibrium positions and determine
the “flopping” frequency. Multiplying the flopping fre-
quency by Planck’s constant gives a characteristic energy
for this process. How does this characteristic energy
compare to the energy separation of the stationary
states? Explain (see Problem 6.38).

(b)

U(x)

∆x

(a)

xx2x1x

U(x)

E

Figure P7.15
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T
he basic idea of quantum mechanics, that particles have properties of waves and
vice versa, is among the strangest found anywhere in science. Because of this
strangeness, and because quantum mechanics mostly deals with the very small, it

might seem to have little practical application. As we will show in this essay, however,
one of the basic phenomena of quantum mechanics—the tunneling of particles—is at
the heart of a very practical device that is one of the most powerful microscopes ever
built. This device, the scanning tunneling microscope, or STM, enables physicists to
make highly detailed images of surfaces with resolution comparable to the size of a sin-
gle atom. Such images promise to revolutionize our understanding of structures and
processes on the atomic scale.

Before discussing how the STM works, we first look at a sample of what the STM can
do. An image made by a scanning tunneling microscope of the surface of a piece of
gold is shown in Figure 1. You can easily see that the surface is not uniformly flat, but is
a series of terraces separated by steps that are only one atom high. Gentle corrugations
can be seen in the terraces, caused by subtle rearrangements of the gold atoms.
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What makes the STM so remarkable is the fineness of the detail that can be seen in
images such as Figure 1. The resolution in this image—that is, the size of the smallest
detail that can be discerned—is about 2 Å (2 � 10�10 m). For an ordinary microscope,
the resolution is limited by the wavelength of the waves used to make the image. Thus
an optical microscope has a resolution of no better than 2000 Å, about half the wave-
length of visible light, and so could never show the detail displayed in Figure 1.
Electron microscopes can have a resolution of 2 Å by using electron waves of wave-
length 4 Å or shorter. From the de Broglie formula, � � h/p, the electron momentum
p required to give this wavelength is 3100 eV/c, corresponding to an electron speed
v � p/me � 1.8 � 106 m/s. Electrons traveling at this high speed would penetrate into
the interior of the piece of gold in Figure 1 and so would give no information about in-
dividual surface atoms.

The image in Figure 1 was made by Gerd Binnig, Heinrich Rohrer, and collabora-
tors at the IBM Research Laboratory in Zurich, Switzerland. Binnig and Rohrer in-
vented the STM and shared the 1986 Nobel prize in physics for their work. Such is the
importance of this device that unlike most Nobel prizes, which come decades after the
original work, Binnig and Rohrer received their Nobel prize just six years after their
first experiments with an STM.

One design for an STM is shown in Figure 2. The basic idea behind its operation is
very simple, as shown in Figure 3. A conducting probe with a very sharp tip is brought
near the surface to be studied. Because it is attracted to the positive ions in the surface,
an electron in the surface has a lower total energy than would an electron in the empty
space between surface and tip. The same thing is true for an electron in the tip. In clas-
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1 cm

Figure 2 One design for a scanning tunneling microscope (STM). The sample to be
studied is mounted on a plate in the cylindrical dish. The probe extends beneath the
left tripod. The micrometer attached to the spring is used to position the sample.
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sical Newtonian mechanics, electrons could not move between the surface and tip be-
cause they would lack the energy to escape either material. But because the electrons
obey quantum mechanics, they can “tunnel” across the barrier of empty space between
the surface and the tip. Let us explore the operation of the STM in terms of the discus-
sion of tunneling in Section 7.1.

For an electron in the apparatus of Figures 2 and 3, a plot of the energy as a func-
tion of position would look like Figure 7.2b. The horizontal coordinate in this figure
represents electron position. Now L is to be interpreted as the distance between the
surface and the tip, so that coordinates less than 0 refer to positions inside the surface
material and coordinates greater than L refer to positions inside the tip. The barrier
height U � q� is the potential-energy difference between an electron outside the mate-
rial and an electron in the material. That is, an electron in the surface or tip has poten-
tial energy �U compared with one in vacuum. (We are assuming for the moment that
the surface and tip are made of the same material. We will comment on this assump-
tion shortly.) The kinetic energy of an electron in the surface is E, so that an amount of
energy equal to (U � E) must be given to an electron to remove it from the surface.
Thus (U � E) is the work function of an electron in the surface.

For the potential energy curve of Figure 7.2b, one could expect as much tunneling
from the surface into the tip as in the opposite direction. In a STM, the direction in which
electrons tend to cross the barrier is controlled by applying a voltage between the surface
and the tip. With preferential tunneling from the surface into the tip, the tip samples the
distribution of electrons in and above the surface. Because of this “bias” voltage, the work
functions of surface and tip are different, giving a preferred direction of tunneling. This is
also automatically the case if the surface and tip are made of different materials. In addi-
tion, the top of the barrier in Figure 7.2b will not be flat but will be tilted to reflect the
electric field between the surface and the tip. If the barrier energy U is large compared
with the difference between the surface and tip work functions, however, and if the bias
voltage is small compared with � � U/q, we can ignore these complications in our calcula-
tions. Then all the results for a square barrier given in Section 7.1 may be applied to a
STM. Detailed discussions of the effects that result when these complications are included
can be found in the article by P. K. Hansma and J. Tersoff and in the Nobel prize lecture
of Binnig and Rohrer (see Suggestions for Further Reading).

The characteristic scale of length for tunneling is set by the work function (U � E ).
For a typical value (U � E ) � 4.0 eV, this scale of length is

The probability that a given electron will tunnel across the barrier is just the transmis-
sion coefficient T (Equation 7.9). If the separation L between surface and tip is not
small compared with �, then the barrier is “wide” and we can use the approximate re-
sult of Problem 5 for T. The current of electrons tunneling across the barrier is simply
proportional to T. The tunneling current density can be shown to be

In this expression e is the charge of the electron and V is the bias voltage between sur-
face and tip.

We can see from this expression that the STM is very sensitive to the separation L
between tip and surface. This is because of the exponential dependence of the tunnel-
ing current on L (this is much more important than the 1/L dependence). As we saw
earlier, typically � � 1.0 Å. Hence, increasing the distance L by just 0.01 Å causes
the tunneling current to be multiplied by a factor e�2(0.01 Å)/(1.0 Å) � 0.98; that is, the

j �
e 2V

4�2L��
e2L/�

� 0.98 Å � 1.0 Å

� �
�

√2me(U � E)
�

�c

√2mec2(U � E)
�

1.973 keV�Å

√2(511 keV)(4.0 � 10�3 keV)
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(a)

(b)

Material Empty space

Material Empty
space

Probe







Figure 3 (a) The wavefunc-
tion of an electron in the sur-
face of the material to be stud-
ied. The wavefunction extends
beyond the surface into the
empty region. (b) The sharp tip
of a conducting probe is
brought close to the surface.
The wavefunction of a surface
electron penetrates into the tip,
so that the electron can “tun-
nel” from surface to tip. Com-
pare this figure to Figure 7.2a.
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current decreases by 2%—a change that is measurable. For distance L greater than
10 Å (that is, beyond a few atomic diameters), essentially no tunneling takes place. This
sensitivity to L is the basis of the operation of the STM: Monitoring the tunneling cur-
rent as the tip is scanned over the surface gives a sensitive measure of the topography
of the surface. In this way the STM can measure the height of surface features to within
0.01 Å, or approximately one one-hundredth of an atomic diameter.

The STM also has excellent lateral resolution, that is, resolution of features in the
plane of the surface. This is because the tips used are very sharp indeed, typically only
an atom or two wide at their extreme end. Thus the tip samples the surface electrons
only in a very tiny region approximately 2 Å wide and so can “see” very fine detail. You
might think that making such tips would be extremely difficult, but in fact it’s relatively
easy—sometimes just sharpening the tip on a fine grinding stone (or even with fine
sandpaper) is enough to cause the tip atoms to rearrange by themselves into an atomi-
cally sharp configuration. (If you find this surprising, you’re not alone. Binnig and
Rohrer were no less surprised when they discovered this.)

There are two modes of operation for the STM, shown in Figure 4. In the constant
current mode (Fig. 4a), a convenient operating voltage (typically between 2 mV and 2 V)
is first established between surface and tip. The tip is then brought close enough to the
surface to obtain measurable tunneling current. The tip is then scanned over the surface
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while the tunneling current I is measured. A feedback network changes the vertical posi-
tion of the tip, z, to keep the tunneling current constant, thereby keeping the separation L
between surface and tip constant. An image of the surface is made by plotting z versus
lateral position (x, y). The simplest scheme for plotting the image is shown in the graph
below the schematic view. The height z is plotted versus the scan position x. An image
consists of multiple scans displaced laterally from each other in the y direction.

The constant current mode was historically the first to be used and has the advan-
tage that it can be used to track surfaces that are not atomically flat (as in Fig. 1). The
feedback network, however, requires that the scanning be done relatively slowly. As a
result, the sample being scanned must be held fixed in place for relatively long times to
prevent image distortion.

Alternatively, in the constant height mode (Fig. 4b), the tip is scanned across the
surface at constant voltage and nearly constant height while the current is monitored.
In this case the feedback network responds only rapidly enough to keep the average
current constant, which means that the tip maintains the same average separation from
the surface. The image is then a plot of current I versus lateral position (x, y), as shown
in the graph below the schematic. Again, multiple scans along x are displayed laterally
displaced in the y direction. The image shows the substantial variation of tunneling
current as the tip passes over surface features such as individual atoms. The constant
height mode allows much faster scanning of atomically flat surfaces (100 times faster
than the constant current mode), since the tip does not have to be moved up and
down over the surface “terrain.” This fast scanning means that making an image of a
surface requires only a short “exposure time.” By making a sequence of such images,
researchers may be able to study in real time processes in which the surfaces rearrange
themselves—in effect making an STM “movie.”

Individual atoms have been imaged on a variety of surfaces, including those of so-
called layered materials in which atoms are naturally arranged into two-dimensional lay-
ers. Figure 5 shows an example of atoms on one of these layered materials. In this im-
age it is fascinating not only to see individual atoms but also to note that some atoms
are missing. Specifically, there are three atoms missing from Figure 5. Can you find the
places where they belong?
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Figure 5 Image of atoms on a surface of tantalum disulfide (TaS2) immersed in liq-
uid nitrogen; 1 nm � 10�9 m � 10 Å. The figure is from C. G. Slough, W. W. McNairy,
R. V. Coleman, B. Drake, and P. K. Hansma, Phys. Rev. B34:994, 1986.
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Another remarkable aspect of the STM image in Figure 5 is that it was obtained with
the surface and tip immersed in liquid nitrogen. We assumed earlier in this essay that the
space between the surface and tip must be empty, but in fact electron tunneling can take
place not just through vacuum but also through gases and liquids—even water. This
seems very surprising since we think of water, especially water with salts dissolved in it, as
a conductor. But water is only an ionic conductor. For electrons, water behaves as an insu-
lator just as vacuum behaves as an insulator. Thus electrons can flow through water only
by tunneling, which makes scanning tunneling microscopy possible “under water.”

As an example, Figure 6 shows individual carbon atoms on a graphite surface. It was
obtained for a surface immersed in a silver-plating solution, which is highly conductive
for ions but behaves as an insulator for electrons. (The sides of the conducting probe
were sheathed with a nonconductor, so the predominant current into the probe comes
from electrons tunneling into the exposed tip. The design of STM used to make this
particular image is the one shown in Fig. 2.) Sonnenfeld and Schardt observed atoms
on this graphite surface before plating it with silver, after “islands” of silver atoms were
plated onto the surface, and after the silver was electrochemically stripped from the
surface. Their work illustrates the promise of the scanning tunneling microscope for
seeing processes that take place on an atomic scale.

The original STMs were one-of-a-kind laboratory devices, but commercial STMs have
recently become available. Figure 7 is an image of a graphite surface in air made with
such a commercial STM. Note the high quality of this image and the recognizable rings
of carbon atoms. You may be able to see that three of the six carbon atoms in each ring
appear lower than the other three. All six atoms are in fact at the same level, but the three
that appear lower are bonded to carbon atoms lying directly beneath them in the under-
lying atomic layer. The atoms in the surface layer that appear higher do not lie directly
over subsurface atoms and hence are not bonded to carbon atoms beneath them. For the
higher-appearing atoms, some of the electron density that would have been involved in
bonding to atoms beneath the surface instead extends into the space above the surface.
This extra electron density makes these atoms appear higher in Figure 7, since what the
STM maps is the topography of the electron distribution.

The availability of commercial instruments should speed the use of scanning tunnel-
ing microscopy in a variety of applications. These include characterizing electrodes for
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electrochemistry (while the electrode is still in the electrolyte), characterizing the
roughness of surfaces, measuring the quality of optical gratings, and even imaging
replicas of biological structures.

Perhaps the most remarkable thing about the scanning tunneling microscope is that
its operation is based on a quantum mechanical phenomenon—tunneling—that was
well understood in the 1920s, yet the STM itself wasn’t built until the 1980s. What other
applications of quantum mechanics may yet be waiting to be discovered?

Suggestions for Further Reading

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49:57, 1982. The first
description of the operation of a scanning tunneling microscope.

G. Binnig and H. Rohrer, Sci. Am., August 1985, p. 50. A popular description of the
STM and its applications.

C. F. Quate, Phys. Today, August 1986, p. 26. An overview of the field of scanning tun-
neling microscopy, including insights into how it came to be developed.

P. K. Hansma and J. Tersoff, J. Appl. Phys. 61:R1, 1987. A comprehensive review of the
“state of the art” in scanning tunneling microscopy.

G. Binnig and H. Rohrer, Rev. Mod. Phys. 59:615, 1987. The text of the lecture given on
the occasion of the presentation of the 1986 Nobel prize in physics.
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8
Quantum Mechanics
in Three Dimensions

8.1 Particle in a Three-Dimensional
Box

8.2 Central Forces and Angular
Momentum

8.3 Space Quantization

8.4 Quantization of Angular
Momentum and Energy
(Optional)
Lz Is Sharp: The Magnetic Quantum

Number

�L� Is Sharp: The Orbital Quantum
Number

E Is Sharp: The Radial Wave
Equation

8.5 Atomic Hydrogen and 
Hydrogen-like Ions
The Ground State of Hydrogen-like Atoms
Excited States of Hydrogen-like Atoms

8.6 Antihydrogen

Summary

Chapter Outline

So far we have shown how quantum mechanics can be used to describe
motion in one dimension. Although the one-dimensional case illustrates such
basic features of systems as the quantization of energy, we need a full three-
dimensional treatment for the applications to atomic, solid-state, and nuclear
physics that we will meet in later chapters. In this chapter we extend the con-
cepts of quantum mechanics from one to three dimensions and explore the
predictions of the theory for the simplest of real systems—the hydrogen atom.

With the introduction of new degrees of freedom (and the additional
coordinates needed to describe them) comes a disproportionate increase in
the level of mathematical difficulty. To guide our inquiry, we shall rely on clas-
sical insights to help us identify the observables that are likely candidates for
quantization. These must come from the ranks of the so-called sharp observables
and, with few exceptions, are the same as the constants of the classical motion.

8.1 PARTICLE IN A THREE-DIMENSIONAL BOX

Let us explore the workings of wave mechanics in three dimensions through
the example of a particle confined to a cubic “box.” The box has edge length
L and occupies the region 0 � x, y, z � L, as shown in Figure 8.1. We assume
the walls of the box are smooth, so they exert forces only perpendicular to the
surface, and that collisions with the walls are elastic. A classical particle would
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8.1 PARTICLE IN A THREE-DIMENSIONAL BOX 261

rattle around inside such a box, colliding with the walls. At each collision, the
component of particle momentum normal to the wall is reversed (changes
sign), while the other two components of momentum are unaffected (Fig.
8.2). Thus, the collisions preserve the magnitude of each momentum compo-
nent, in addition to the total particle energy. These four quantities—�px �, �py �,
�pz �, and E —then, are constants of the classical motion, and it should be possi-
ble to find quantum states for which all of them are sharp.1

The wavefunction � in three dimensions is a function of r and t. Again the
magnitude of � determines the probability density P(r, t) � ��(r, t) �2, which
is now a probability per unit volume. Multiplication by the volume element
dV(�dx dy dz) gives the probability of finding the particle within the volume
element dV at the point r at time t.

Since our particle is confined to the box, the wavefunction � must be zero
at the walls and outside. The wavefunction inside the box is found from
Schrödinger’s equation,

(8.1)

We see that �2/�x2 in the one-dimensional case is replaced in three dimen-
sions by the Laplacian,

(8.2)

where U(r) is still the potential energy but is now a function of all the space
coordinates: U(r) � U(x, y, z). Indeed, the Laplacian together with its multi-
plying constant is just the kinetic energy operator of Table 6.2 extended to in-
clude the contributions to kinetic energy from motion in each of three mutu-
ally perpendicular directions:

(8.3)

This form is consistent with our belief that the Cartesian axes identify inde-
pendent but logically equivalent directions in space. With this identification of
the kinetic energy operator in three dimensions, the left-hand side of Equa-
tion 8.1 is again the Hamiltonian operator [H ] applied to �, and the right-
hand side is the energy operator [E] applied to � (see Section 6.8). As it does
in one dimension, Schrödinger’s equation asserts the equivalence of these two
operators when applied to the wavefunction of any physical system.

Stationary states are those for which all probabilities are constant in time,
and are given by solutions to Schrödinger’s equation in the separable form,

� [Kx] � [Ky] � [Kz]

�
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Figure 8.1 A particle con-
fined to move in a cubic box of
sides L. Inside the box U � 0.
The potential energy is infinite
at the walls and outside the box.

1Recall from Section 6.7 that sharp observables are those for which there is no statistical distribu-
tion of measured values. Indeed, quantum wavefunctions typically are labeled by the sharp ob-
servables for that state. (For example, the oscillator states of Section 6.6 are indexed by the quan-
tum number n, which specifies the sharp value of particle energy E. In this case, the sharp values
of energy also are quantized, that is, limited to the discrete values (n � )�	. It follows that any
sharp observable is constant over time (unless the corresponding operator explicitly involves
time). The converse—that quantum states exist for which all constants of the classical motion are
sharp—is not always true but occurs frequently enough that it can serve as a useful rule of thumb.

1
2

Figure 8.2 Change in particle
velocity (or momentum) dur-
ing collision with a wall of the
box. For elastic collision with a
smooth wall, the component
normal to the wall is reversed,
but the tangential components
are unaffected.

v′

v

v||

v⊥

v||

–v⊥

Schrödinger equation in

three dimensions
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�(r, t) � 
(r)e�i	t (8.4)

With this time dependence, the right-hand side of Equation 8.1 reduces to
�	�, leaving 
(r) to satisfy the time-independent Schrödinger equation for
a particle whose energy is E � �	:

(8.5)

Since our particle is free inside the box, we take the potential energy U(r) � 0
for 0 � x, y, z � L. In this case the spatial wavefunction also is separable; that is,
solutions to Equation 8.5 with U(r) � 0 can be found in product form:


(r) � 
(x, y, z) � 
1(x)
2(y)
3(z) (8.6)

Substituting Equation 8.6 into Equation 8.5 and dividing every term by the
function 
(x, y, z) gives (for U(r) � 0)

In this form the independent variables are isolated: the first term on the left
depends only on x, the second only on y, and the third only on z. To satisfy
the equation everywhere inside the cube, each of these terms must reduce to a
constant:

(8.7)

The stationary states for a particle confined to a cube are obtained from these
three separate equations. The energies E1, E2, and E3 are separation con-
stants and represent the energy of motion along the three Cartesian axes x, y,
and z. Consistent with this identification, the Schrödinger equation requires
that E1 � E2 � E3 � E.

The first of Equations 8.7 is the same as that for the infinite square well in one
dimension. Independent solutions to this equation are sin k1x and cos k1x, where

is the wavenumber of oscillation. Only sin k1x satisfies the condi-
tion that the wavefunction must vanish at the wall x � 0, however. Requiring the
wavefunction to vanish also at the opposite wall x � L implies k1L � n1�, where
n1 is any positive integer. In other words, we must be able to fit an integral num-
ber of half-wavelengths into our box along the direction marked by x. It follows
that the magnitude of particle momentum along this direction must be one of
the special values

Identical considerations applied to the remaining two equations show that
the magnitudes of particle momentum in all three directions are similarly

� px � � �k1 � n1
��

L
  n1 � 1, 2, � � �

k1 � √2m E1/�2

�
�2

2m
3

d2
3

dz2 � E3

�
�2

2m
2

d2
2

dy2 � E2

�
�2

2m
1

d2
1

dx2 � E1

�
�2

2m
1

d2
1

dx2 �
�2

2m
2

d2
2

dy2 �
�2

2m
3

d2
3

dz2 � E

�
�2

2m
�2
(r) � U(r)
(r) � E
(r)
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The time-independent

Schrödinger equation
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8.1 PARTICLE IN A THREE-DIMENSIONAL BOX 263

quantized:

n1 � 1, 2, . . .

n2 � 1, 2, . . . (8.8)

n3 � 1, 2, . . .

Notice that ni � 0 is not allowed, since that choice leads to a 
i that is also
zero and a wavefunction 
(r) that vanishes everywhere. Since the momenta
are restricted this way, the particle energy (all kinetic) is limited to the follow-
ing discrete values:

(8.9)

Thus, confining the particle to the cube serves to quantize its momentum and
energy according to Equations 8.8 and 8.9. Note that three quantum numbers
are needed to specify the quantum condition, corresponding to the three
independent degrees of freedom for a particle in space. These quantum
numbers specify the values taken by the sharp observables for this system.

Collecting the previous results, we see that the stationary states for this par-
ticle are

�(x, y, z, t) � A sin(k1x)sin(k2y)sin(k3z)e�i	t for 0 � x, y, z � L

� 0 otherwise
(8.10)

The multiplier A is chosen to satisfy the normalization requirement. Example
8.1 shows that A � (2/L)3/2 for the ground state, and this result continues to
hold for the excited states as well.

E �
1

2m
(� px �2 � � py �2 � � pz �2) �

�2�2

2mL2 {n1
2 � n2

2 � n3
2 }

� pz � � �k3 � n3
��

L

� py � � �k2 � n2
��

L

� px � � �k1 � n1
��

L

Using 2 sin2  � 1 � cos 2 gives

The same result is obtained for the integrations over y

and z. Thus, normalization requires

or

A � � 2

L �
3/2

1 � A2 � L

2 �
3

�L

0
 sin2(�x/L)dx �

L

2
�

L

4�
sin(2�x/L) �

L

0
�

L

2

EXAMPLE 8.1 Normalizing the Box
Wavefunctions

Find the value of the multiplier A that normalizes the wave-
function of Equation 8.10 having the lowest energy.

Solution The state of lowest energy is described by
n1 � n2 � n3 � 1, or k1 � k2 � k3 � �/L. Since � is
nonzero only for 0 � x, y, z � L, the probability density
integrated over the volume of this cube must be unity:

� ��L

0
 sin2(�z/L)dz�

� A2 ��L

0
 sin2(�x/L)dx���L

0
 sin2(�y/L)dy�

1 � �L

0
dx �L

0
dy �L

0
dz � �(x, y, z, t) �2

Allowed values of

momentum components

for a particle in a box

Discrete energies allowed for

a particle in a box
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Exercise 1 With what probability will the particle described by the wavefunction of
Example 8.1 be found in the volume 0 � x, y, z � L/4?

Answer 0.040, or about 4%

Exercise 2 Modeling a defect trap in a crystal as a three-dimensional box with edge
length 5.00 Å, find the values of momentum and energy for an electron bound to the
defect site, assuming the electron is in the ground state.

Answer �px � � �py � � �pz � � 1.24 keV/c; E � 4.51 eV

The ground state, for which n1 � n2 � n3 � 1, has energy

There are three first excited states, corresponding to the three different combi-
nations of n1, n2, and n3, whose squares sum to 6. That is, we obtain the same
energy for the three combinations n1 � 2, n2 � 1, n3 � 1, or n1 � 1, n2 � 2,
n3 � 1, or n1 � 1, n2 � 1, n3 � 2. The first excited state has energy

Note that each of the first excited states is characterized by a different wave-
function: 
211 has wavelength L along the x-axis and wavelength 2L along the
y- and z-axes, but for 
121 and 
112 the shortest wavelength is along the y-axis
and the z-axis, respectively.

Whenever different states have the same energy, this energy level is said to
be degenerate. In the example just described, the first excited level is three-
fold (or triply) degenerate. This system has degenerate levels because of the
high degree of symmetry associated with the cubic shape of the box. The de-
generacy would be removed, or lifted, if the sides of the box were of unequal
lengths (see Example 8.3). In fact, the extent of splitting of the originally de-
generate levels increases with the degree of asymmetry.

Figure 8.3 is an energy-level diagram showing the first five levels of a
particle in a cubic box; Table 8.1 lists the quantum numbers and degenera-
cies of the various levels. Computer-generated plots of the probability den-
sity �
(x, y, z) �2 for the ground state and first excited states of a particle in a
box are shown in Figure 8.4. Notice that the probabilities for the (degener-
ate) first excited states differ only in their orientation with respect to the
coordinate axes, again a reflection of the cubic symmetry imposed by the
box potential.

E211 � E121 � E112 �
6�2�2

2mL2

E111 �
3�2�2

2mL2
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Figure 8.3 An energy-level di-
agram for a particle confined to
a cubic box. The ground-state
energy is E0 � 3�2�2/2mL2,
and n2 � n1

2 � n2
2 � n3

2. Note
that most of the levels are de-
generate.

12

11

9

6

3

4E0

E0

3E0

2E0

E0

11––
3

None

3

3

3

None

Degeneracyn2

n2 � 2, n3 � 1 or n1 � 2, n2 � 1, n3 � 2 or n1 � 1,
n2 � 2, n3 � 2. The corresponding wavefunctions inside
the box are

�221 � A  sin� 2�x

L � sin� 2�y

L � sin� �z

L � e�iE221t/�

EXAMPLE 8.2 The Second Excited State

Determine the wavefunctions and energy for the second
excited level of a particle in a cubic box of edge L. What
is the degeneracy of this level?

Solution The second excited level corresponds to
the three combinations of quantum numbers n1 � 2,
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8.1 PARTICLE IN A THREE-DIMENSIONAL BOX 265

Table 8.1 Quantum Numbers and Degeneracies

of the Energy Levels for a Particle

Confined to a Cubic Box*

n1 n2 n3 n2 Degeneracy

1 1 1 3 None

1 1 2 6
1 2 1 6 Threefold
2 1 1 6

1 2 2 9
2 1 2 9 Threefold
2 2 1 9

1 1 3 11
1 3 1 11 Threefold
3 1 1 11

2 2 2 12 None

*Note : n2 � n1
2 � n2

2 � n3
2.

�
�
�

Ψ1112 Ψ2112 Ψ1212

(b)(a) (c)

xy xy xy

Figure 8.4 Probability density (unnormalized) for a particle in a box: (a) ground
state, ��111 �2; (b) and (c) first excited states, ��211 �2 and ��121 �2. Plots are for �� �2 in
the plane z � L. In this plane, ��112 �2 (not shown) is indistinguishable from ��111 �2.1

2

�122 � A  sin� �x

L � sin� 2�y

L � sin� 2�z

L � e�iE122t/�

�212 � A  sin� 2�x

L � sin� �y

L � sin� 2�z

L � e�iE212t/� The level is threefold degenerate, since each of these
wavefunctions has the same energy,

E221 � E212 � E122 �
9�2�2

2mL2
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266 CHAPTER 8 QUANTUM MECHANICS IN THREE DIMENSIONS

8.2 CENTRAL FORCES AND ANGULAR MOMENTUM

The formulation of quantum mechanics in Cartesian coordinates is the nat-
ural way to generalize from one to higher dimensions, but often it is not the
best suited to a given application. For instance, an atomic electron is attracted
to the nucleus of the atom by the Coulomb force between opposite charges.
This is an example of a central force, that is, one directed toward a fixed
point. The nucleus is the center of force, and the coordinates of choice here
are spherical coordinates r, , � centered on the nucleus (Fig. 8.5). If the
central force is conservative, the particle energy (kinetic plus potential) stays

The allowed energies are

The lowest energy occurs again for n1 � n2 � n3 � 1. In-
creasing one of the integers by 1 gives the next-lowest, or
first, excited level. If L1 is the largest dimension, then
n1 � 2, n2 � 1, n3 � 1 produces the smallest energy in-
crement and describes the first excited state. Further, so
long as both L2 and L3 are not equal to L1, the first ex-
cited level is nondegenerate, that is, there is no other
state with this energy. If L 2 or L3 equals L1, the level is
doubly degenerate; if all three are equal, the level will be
triply degenerate. Thus, the higher the symmetry, the
more degeneracy we find.

�
�2�2

2m �� n1

L1
�

2

� � n2

L2
�

2

� � n3

L3
�

2

�
E � (� px �2 � � py �2 � � pz �2)/2m

EXAMPLE 8.3 Quantization in a 
Rectangular Box

Obtain a formula for the allowed energies of a particle
confined to a rectangular box with edge lengths L1, L2,
and L3. What is the degeneracy of the first excited state?

Solution For a box having edge length L1 in the x di-
rection, 
 will be zero at the walls if L1 is an integral
number of half-wavelengths. Thus, the magnitude of par-
ticle momentum in this direction is quantized as

Likewise, for the other two directions, we have

� pz � � �k3 � n3
��

L3
  n3 � 1, 2, � � �

� py � � �k2 � n2
��

L2
  n2 � 1, 2, � � �

� px � � �k1 � n1
��

L1
  n1 � 1, 2, � � �

Nucleus

Electron

z = r cosθ

φ

x

z

y

r θ

x = r sin   cosθ φ

y = r sin   sinθ φ

r sinθ

Figure 8.5 The central force on an atomic electron is one directed toward a fixed
point, the nucleus. The coordinates of choice here are the spherical coordinates r, , �

centered on the nucleus.
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8.2 CENTRAL FORCES AND ANGULAR MOMENTUM 267

constant and E becomes a candidate for quantization. In that case, the quan-
tum states are stationary waves 
(r)e�i	t, with 	 � E/�, where E is the sharp
value of particle energy.

But for central forces, angular momentum L about the force center also
is constant (a central force exerts no torque about the force center), and
we might expect that wavefunctions can be found for which all three angu-
lar momentum components take sharp values. This imposes severe con-
straints on the form of the wavefunction. In fact, these constraints are so se-
vere that it is impossible to find a wavefunction satisfying all of them at
once; that is, not all components of angular momentum can be known si-
multaneously!

The dilemma is reminiscent of our inability to specify simultaneously the
position and momentum of a particle. Indeed, if the direction of L were
known precisely, the particle would be confined to the orbital plane (the
plane perpendicular to the vector L), and its coordinate in the direction nor-
mal to this plane would be accurately known (and unchanging) (Fig. 8.6). In
that case, however, the particle could have no momentum out of the orbital
plane, so that its linear momentum perpendicular to this plane also would be
known (to be zero), in violation of the uncertainty principle. The argument
just given may be refined to establish an uncertainty principle for angular mo-
mentum: it is impossible to specify simultaneously any two components
of angular momentum. Alternatively, if one component of L is sharp, then
the remaining two must be “fuzzy.”2

Along with E and one component of L, then, what else might be quantized,
or sharp, for central forces? The answer is contained in the following obser-
vation: With only one component of L sharp, there is no redundancy in
having the magnitude �L � sharp also. In this way, E, �L �, and one component of
L, say Lz, become the sharp observables subject to quantization in the central
force problem.

Wavefunctions for which �L � and Lz are both sharp follow directly from
separating the variables in Schrödinger’s equation for a central force. We take
the time-independent wavefunction in spherical coordinates r, , � to be the
product

(8.11)

and write Schrödinger’s time-independent equation (Eq. 8.5) in these coordi-
nates using the spherical coordinate form for the Laplacian3:

�2 �
�2

�r2 � � 2

r �
�

�r
�

1

r2 � �2

�2 � cot
�

�
� csc2 

�2

��2 �


(r) � 
(r, , �) � R(r)�()�(�)

L

r
v

Figure 8.6 The angular mo-
mentum L of an orbiting parti-
cle is perpendicular to the
plane of the orbit. If the direc-
tion of L were known precisely,
both the coordinate and mo-
mentum in the direction per-
pendicular to the orbit would
be known, in violation of the
uncertainty principle.

2Angular momentum is a notable exception to the argument that constants of the classical
motion correspond to sharp observables in quantum mechanics. The failure is rooted in an-
other maxim—the uncertainty principle—that takes precedence. The only instance in which
two or more angular momentum components may be known exactly is the trivial case Lx � Ly

� Lz � 0.
3The Laplacian in spherical coordinates is given in any more advanced scientific text or may be
constructed from the Cartesian form by following the arguments of Section 8.4.

Uncertainty principle for

angular momentum

Separation of variables

for the stationary state

wavefunction
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After dividing each term in Equation 8.5 by R��, we are left with

Notice that ordinary derivatives now replace the partials and that U(r)
becomes simply U(r) for a central force seated at the origin. We can isolate the
dependence on � by multiplying every term by r 2sin2 to get, after some re-
arrangement,

(8.12)

In this form the left side is a function only of � while the right side depends
only on r and . Because these are independent variables, equality of the two
sides requires that each side reduce to a constant. Following convention, we
write this separation constant as �m�

2, where m� is the magnetic quantum
number.4

Equating the left side of Equation 8.12 to �m�

2 gives an equation for �(�):

(8.13)

A solution to Equation 8.13 is �(�) � exp(im��); this is periodic with period
2� if m� is restricted to integer values. Periodicity is necessary here because all
physical properties that derive from the wavefunction should be unaffected by
the replacement � : � � 2�, both of which describe the same point in space
(see Fig. 8.5).

Equating the right side of Equation 8.12 to �m�

2 gives, after some further
rearrangement,

(8.14)

In this form the variables r and  are separated, the left side being a func-
tion only of r and the right side a function only of . Again, each side must
reduce to a constant. This furnishes two more equations, one for each of the
remaining functions R(r) and �(), and introduces a second separation

�
m�

2

sin2

r2

R � d2R

dr2 �
2

r

dR

dr � �
2mr2

�2 [E � U(r)] � �
1

� � d2�

d2 � cot
d�

d �

d2�

d�2 � �m�

2
�(�)

�
2mr2

�2 [E � U(r)]�

1

�

d2�

d�2 � �sin2 � r2

R � d2R

dr2 �
2

r

dR

dr � �
1

� � d2�

d2 � cot
d�

d �

�
�2

2m�

1

r2 sin2 

d2�

d�2 � U(r) � E

��2

2mR � d2R

dr2 �
2

r

dR

dr � �
�2

2m�

1

r2 � d2�

d2 � cot
d�

d �

268 CHAPTER 8 QUANTUM MECHANICS IN THREE DIMENSIONS

4This seemingly peculiar way of writing the constant multiplier is based on the physical signifi-
cance of the function �(�) and is discussed at length in (optional) Section 8.4. The student is re-
ferred there for a concise treatment of the quantum central force problem based on the operator
methods of Section 6.8.
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8.2 CENTRAL FORCES AND ANGULAR MOMENTUM 269

constant, which we write as �(� � 1). Equating the right side of Equation 8.14
to �(� � 1) requires �() to satisfy

(8.15)

� is called the orbital quantum number. For 
(r) to be an acceptable
wavefunction, �() also must be bounded and single-valued, conditions
which are met for functions satisfying Equation 8.15 only if � is a nonnega-
tive integer, and then only if m� is limited to absolute values not larger than
�. The resulting solutions �() are polynomials in cos  known as associ-
ated Legendre polynomials. A few of these polynomials are listed in Table
8.2 for easy reference. The products �()�(�) specify the full angular de-
pendence of the central force wavefunction and are known as spherical
harmonics, denoted by . Some spherical harmonics are given in
Table 8.3. The constant prefactors are chosen to normalize these
functions.5

Y �

m
� (, �)

d2�

d2 � cot
d�

d
� m�

2 csc2 �() � ��(� � 1)�()

5The normalization is such that the integral of over the surface of a sphere with unit
radius is 1.

� Y �
m� �2

Table 8.2 Some

Associated

Legendre

Polynomials

P�
m�(cos �)

P0
0 � 1

P1
0 � 2 cos 

P1
1 � sin 

P2
0 � 4(3 cos2  � 1)

P2
1 � 4 sin  cos 

P 2
2 � sin2 

P3
0 � 24(5 cos3  � 3 cos )

P3
1 � 6 sin (5 cos2  � 1)

P3
2 � 6 sin2  cos 

P3
3 � sin3 

Table 8.3 The Spherical Harmonics Y�
m�(�, �)

Y 3
�3 � �1

8 √ 35

�
�sin3  �e�3i�

Y 3
�2

� 1
4 √ 105

2�
� sin2  �cos � e�2i�

Y 3
�1

� �1
8 √ 21

�
�sin �(5cos2  � 1) � e�i�

Y 3
0 � 1

4 √ 7

�
�(5 cos3  � 3cos)

Y 2
�2

� 1
4 √ 15

2�
� sin2 � e�2i�

Y 2
�1

� �1
2 √ 15

2�
�sin �cos � e�i�

Y 2
0

� 1
4 √ 5

�
�(3 cos2 � 1)

Y 1
�1

� �1
2 √ 3

2�
� sin � e�i�

Y 1
0 � 1

2√ 3

�
�cos

Y 0
0 �

1

2√�
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270 CHAPTER 8 QUANTUM MECHANICS IN THREE DIMENSIONS

In keeping with our earlier remarks, the separation constants �(� � 1) and
m� should relate to the sharp observables �L �, Lz, and E for central forces. The
connection is established by the more detailed arguments of Section 8.4, with
the result

� � 0, 1, 2, . . .

Lz � m�� m� � 0, �1, �2, . . . , �� (8.16)

We see that the limitation on the magnetic quantum number m� to values be-
tween �� and ��, obtained on purely mathematical grounds from separating
variables, has an obvious physical interpretation: the z component of angular
momentum, Lz, must never exceed the magnitude of the vector, �L �! Notice,
too, that � and m� are quantum numbers for angular momentum only; their
connection with particle energy E must depend on the potential energy func-
tion U(r) and is prescribed along with the radial wavefunction R(r) in the final
stage of the separation procedure.

To obtain R(r), we return to Equation 8.14 and equate the left side to
�(� � 1). Rearranging terms once more, we find that R(r) must satisfy

(8.17)

This is the radial wave equation; it determines the radial part of the
wavefunction � and the allowed particle energies E. As the equation contains
the orbital quantum number �, each angular momentum orbital is expected
to give rise to a different radial wave and a distinct energy. By contrast, the
magnetic quantum number m� appears nowhere in this equation. Thus, the
radial wave and particle energy remain the same for different m� values consis-
tent with a given value of �. In particular, for a fixed � the particle energy E
is independent of m�, and so is at least 2� �1-fold degenerate. Such de-
generacy—a property of all central forces—stems from the spherical symmetry
of the potential and illustrates once again the deep-seated connection be-
tween symmetry and the degeneracy of quantum states.

The reduction from Schrödinger’s equation to the radial wave equation
represents enormous progress and is valid for any central force. Still, the task
of solving this equation for a specified potential U(r) is a difficult one, often
requiring methods of considerable sophistication. In Section 8.5 we tackle this
task for the important case of the electron in the hydrogen atom.

�
�2

2m � d2R

dr2 �
2

r

dR

dr � �
�(� � 1)�2

2mr2 R(r) � U(r)R(r) � ER(r)

� L � � √�(� � 1)�
Angular momentum and its z

component are quantized

Radial wave equation

The corresponding angular momentum has magnitude

�L � � mvR � (1.00 kg)(6.28 m/s)(1.00 m)

� 6.28 kg � m2/s

But angular momentum is quantized as 
which is approximately �� when � is large. Then

� �
� L �
�

�
6.28 kg�m2/s

1.055 � 10�34 kg�m2/s
� 5.96 � 1034

√�(� � 1)�,

EXAMPLE 8.4 Orbital Quantum Number 
for a Stone

A stone with mass 1.00 kg is whirled in a horizontal circle
of radius 1.00 m with a period of revolution equal to
1.00 s. What value of orbital quantum number � de-
scribes this motion?

Solution The speed of the stone in its orbit is

v �
2	R

T
�

2	(1.00 m)

1.00 s
� 6.28 m/s
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8.3 SPACE QUANTIZATION 271

8.3 SPACE QUANTIZATION

For wavefunctions satisfying Equations 8.13 and 8.15, the orbital angular mo-
mentum magnitude �L �, and Lz, the projection of L along the z-axis, are both
sharp and quantized according to the restrictions imposed by the orbital and
magnetic quantum numbers, respectively. Together, � and m� specify the
orientation of the angular momentum vector L. The fact that the direction of
L is quantized with respect to an arbitrary axis (the z-axis) is referred to as
space quantization.

Let us look at the possible orientations of L for a given value of orbital
quantum number �. Recall that m� can have values ranging from �� to ��. If
� � 0, then m� � 0 and Lz � 0. In fact, for this case �L � � 0, so that all compo-
nents of L are 0. If � � 1, then the possible values for m� are �1, 0, and �1, so
that Lz may be ��, 0, or ��. If � � 2, m� can be �2, �1, 0, �1, or �2, corre-
sponding to Lz values of �2�, ��, 0, ��, or �2�, and so on. A classical visual-
ization of the algebra describing space quantization for the case � � 2 is
shown in Figure 8.7a. Note that L can never be aligned with the z-axis, since Lz

must be smaller than the total angular momentum L. From a three-dimen-
sional perspective, L must lie on the surface of a cone that makes an angle 
with the z-axis, as shown in Figure 8.7b. From the figure, we see that  also is
quantized and that its values are specified by the relation

(8.18)

Classically,  can take any value; that is, the angular momentum vector L can
point in any direction whatsoever. According to quantum mechanics, the
possible orientations for L are those consistent with Equation 8.18. Further-
more, these special directions have nothing to do with the forces acting on

cos �
Lz

� L �
�

m�

√�(� � 1)

In fairness to Bohr, we should point out that the
Bohr model makes no distinction between the quanti-
zation of L and quantization of its components along
the coordinate axes. From the classical viewpoint, the
coordinate system can always be oriented to align one
of the axes, say the z-axis, along the direction of L. In
that case, L may be identified with �Lz�. The Bohr postu-
late in this form agrees with the quantization of Lz in
Equation 8.16 and indicates � � 1 for the first Bohr or-
bit! This conflicting result derives from a false asser-
tion, namely, that we may orient a coordinate axis
along the direction of L. The freedom to do so must be
abandoned if the quantization rules of Equation 8.16
are correct! This stunning conclusion is one of the
great mysteries of quantum physics and is implicit in
the notion of space quantization that we discuss in the
next section.

Again, we see that macroscopic objects are described by
enormous quantum numbers, so that quantization is not
evident on this scale.

EXAMPLE 8.5 The Bohr Atom Revisited

Discuss angular momentum quantization in the Bohr
model. What orbital quantum number describes the elec-
tron in the first Bohr orbit of hydrogen?

Solution Angular momentum in the Bohr atom is
quantized according to the Bohr postulate

�L � � mvr � n�

with n � 1 for the first Bohr orbit. Comparing this with the
quantum mechanical result, Equation 8.14, we see that the
two rules are incompatible! The magnitude �L� can never
be an integral multiple of �—the smallest nonzero value
consistent with Equation 8.16 is for � � 1.� L � � √2�

The orientations of L are

restricted (quantized)
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272 CHAPTER 8 QUANTUM MECHANICS IN THREE DIMENSIONS

the particle, provided only that these forces are central. Thus, the rule of
Equation 8.18 does not originate with the law of force but derives from
the structure of space itself, hence the name space quantization.

Figure 8.7 is misleading in showing L with a specific direction, for which all
three components Lx, Ly, and Lz are known exactly. As we have mentioned,
there is no quantum state for which this condition is true. If Lz is sharp, then
Lx and Ly must be fuzzy. Accordingly, it is more proper to visualize the vector L
of Figure 8.7b as precessing around the z-axis so as to trace out a cone in
space. This allows the components Lx and Ly to change continually, while Lz

maintains the fixed value m��.6

Finally, we obtain the allowed values of  from

Substituting the values for m� gives

cos � �0.866, �0.577, �0.289, and 0

or

 � �30�, �54.8�, �73.2�, and 90�

cos �
Lz

� L �
�

m�

2√3

EXAMPLE 8.6 Space Quantization for an
Atomic Electron

Consider an atomic electron in the � � 3 state. Calculate
the magnitude �L � of the total angular momentum and
the allowed values of Lz and .

Solution With � � 3, Equation 8.16 gives

The allowed values of Lz are m��, with m� � 0, �1, �2,
and �3. This gives

Lz � �3�, �2�, ��, 0, �, 2�, 3�

� L � � √3(3 � 1)� � 2√3�

� = 2

z

Lz = 0

Lz = –2h

Lz = –h

Lz = h

Lz = 2h

|L | =    6h√

(a) (b)

Lz = 0

Lz = –2h

Lz = –h

Lz = h

Lz = 2h

z

LθLz

Figure 8.7 (a) The allowed projections of the orbital angular momentum for the
case � � 2. (b) From a three-dimensional perspective, the orbital angular momentum
vector L lies on the surface of a cone. The fuzzy character of Lx and Ly is depicted by
allowing L to precess about the z-axis, so that Lx and Ly change continually while Lz

maintains the fixed value m��.

6This precession of the classical vector to portray the inherent fuzziness in Lx and Ly is meant to
be suggestive only. In effect, we have identified the quantum averages 
Lx� and 
Ly� with their
averages over time in a classical picture, but the two kinds of averaging in fact are quite distinct.
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Exercise 3 Compare the minimum angles between L and the z-axis for the electron
of Example 8.6 and for the 1.00-kg stone of Example 8.4.

Answer 30� for the electron but only 2.3 � 10�16 degrees for the stone

8.4 QUANTIZATION OF ANGULAR
MOMENTUM AND ENERGY

We saw in Section 8.2 that angular momentum plays an essential role in the quantiza-

tion of systems with spherical symmetry. Here we develop further the properties of

angular momentum from the viewpoint of quantum mechanics and show in more

detail how angular momentum considerations facilitate the solution to Schrödinger’s

equation for central forces.

Our treatment is based on the operator methods introduced in Section 6.8,

which the reader should review at this time. In particular, the eigenvalue condition

[Q ]� � q� (8.19)

used there as a test for sharp observables becomes here a tool for discovering the

form of the unknown wavefunction �. (Recall that [Q ] denotes the operator for

some observable Q and q is the sharp value of that observable when measured for a

system described by the wavefunction �.) We look on Equation 8.19 now as a con-

straint imposed on the wavefunction � that guarantees that the observable Q will

take the sharp value q in that state. The more sharp observables we can identify for

some system, the more we can learn in advance about the wavefunction describing

that system. With few exceptions, the sharp observables are just those that are
constants of the classical motion. (See footnote 1.)

Consider the particle energy. If total energy is constant, we should be able to find

wavefunctions � for which E is a sharp observable. Otherwise, repeated measure-

ments made on identical systems would reveal a statistical distribution of values for

the particle energy, inconsistent with the idea of a quantity not changing over time.

Thus, energy conservation suggests �E � 0, which, in turn, requires � to be an

eigenfunction of the energy operator

[E]� � E �

Because [E] � i��/�t this eigenvalue condition is met by the stationary waves


(r)e�i	t, with E � �	 the sharp value of particle energy.

The argument for energy applies equally well to other constants of the classical

motion.7 If the only forces are central, angular momentum about the force center is

a constant of the motion. This is a vector quantity L � r � p, whose rectangular

components are expressed in terms of position and momentum components as

Lz � (r � p)z � xpy � ypx

and so on. In the same way, the operators for angular momentum are found from the

coordinate and momentum operators. From Chapter 6, the operator for x is just the

O P T I O N A L

7Exceptions to this rule do exist. For instance, an atomic electron cannot have all three angular
momentum components sharp at once, even though in this case all components are constant
classically. For such incompatible observables, quantum mechanics adopts the broader interpreta-
tion of a conserved quantity as one whose average value does not change over time, no matter what
may be the initial state of the system. With this definition, all components of angular momentum
for an atomic electron remain constant, but no more than one can be sharp in a given state.
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coordinate itself, and the operator for momentum in this direction is (�/i) �/�x.

Similar relations should apply to the directions labeled y and z,8 so that the operator

for Lz becomes

(8.20)

Angular momentum finds its natural expression in the spherical coordinates

of Figure 8.5. A little geometry applied to Figure 8.5 shows that the spherical-to-

Cartesian coordinate transformation equations are

z � r cos

x � r sin cos� (8.21)

y � r sin sin�

The inverse transformations are

(8.22)

The procedure for transcribing operators such as [Lz ] from Cartesian to spherical

form is straightforward, but tedious. For instance, an application of the chain rule gives

for any function f. On the left we think of f expressed as a function of x, y, z, but on

the right the same function is expressed in terms of r, , �. The partial derivatives

�r/�z, and so on, are to be taken with the aid of the transformation equations, hold-

ing x and y fixed. The simplest of these is ��/�z . From the inverse transformations

in Equations 8.22, we see that � is independent of z, so that ��/�z � 0. From the

same equations we find that

To obtain �/�z we differentiate the second of Equations 8.22 implicitly to get

Converting the right-hand side back to spherical coordinates gives

or �/�z � �sin/r. Collecting the previous results, we have

�

�z
�

�r

�z

�

�r
�

�

�z

�

�
� cos

�

�r
�

sin

r

�

�

�sin
�

�z
� �

(r cos)2

r3 �
1

r
�

1 � cos2 

r
�

sin2 

r

�sin
�

�z
�

�{cos}

�z
� z(�1

2){x2 � y2 � z2}�3/2(2z) � {x2 � y2 � z2}�1/2

�r

�z
�

1

2
 {x2 � y2 � z2}�1/2(2z) �

z

r
� cos

�f

�z
�

�r

�z

�f

�r
�

�

�z

�f

�
�

��

�z

�f

��

tan� �
y

x

cos �
z

r
� z {x2 � y2 � z2}�1/2

r � {x2 � y2 � z2}1/2

[Lz] � [x][py] � [y][px] �
�

i �x
�

�y
� y

�

�x �

274 CHAPTER 8 QUANTUM MECHANICS IN THREE DIMENSIONS

8For the momentum operator along each axis we use the one-dimensional form from Chapter
6, ([px] � (�/i)�/�x, etc.), consistent with the belief that Cartesian axes identify independent
but logically equivalent directions in space.
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In like fashion, we can obtain spherical representations for �/�x, �/�y and ulti-

mately for the angular momentum operators themselves:

(8.23)

Notice that the operators for angular momentum in spherical form do not contain

the radial coordinate r—our reward for selecting the right system of coordinates! By

insisting that angular momentum be sharp in the quantum state �, and using the

differential forms (Eqs. 8.23) for the angular momentum operators, we can discover

how the wavefunction depends on the spherical angles  and � without knowing the

details of the central force.

Lz Is Sharp: The Magnetic Quantum Number

For Lz to be sharp, our wavefunction � � 
(r)e�i	t must be an eigenfunction of

[L z], or

(8.24)

with Lz the eigenvalue (a number). Equation 8.24 prescribes the functional depen-

dence of 
 on the azimuthal angle � to be

(8.25)

with C still any function of r and . The values taken by Lz must be restricted, however.

Since increasing � by 2� radians returns us to the same place in space (see Fig. 8.5),

the wavefunction also should return to its initial value, that is, the solutions repre-

sented by Equation 8.25 must be periodic in � with period 2�. This will be true if Lz/�

is any integer, say, m� or Lz � m��. The magnetic quantum number m� indicates the

(sharp) value for the z component of angular momentum in the state described by 
.

Because all components of L are constant for central forces, we should continue

by requiring the wavefunction of Equation 8.25 also to be an eigenfunction of the

operator for a second angular momentum component, say [Lx], so that Lz and Lx

might both be sharp in the state 
. For 
 to be an eigenfunction of [Lx] with eigen-

value Lx requires

This relation must hold for all values of  and �. In particular, for � � 0 the re-

quirement is

Because 
 varies exponentially with � according to Equation 8.25, the indicated de-

rivative may be taken and evaluated at � � 0 to get

(�Lz cot) 
 � Lx


which can be satisfied for all  only if Lx � Lz � 0 or if 
 vanishes identically. A simi-

lar difficulty arises if we attempt to make Ly sharp together with Lz. Therefore,

i�cot
�


��
� Lx


i� �sin�
�


�
� cot  cos �

�


�� � � Lx



(r) � CeiLz�/�

�i�
�


��
� Lz


[Lz] � �i�
�

��

[Ly] � �i� �cos�
�

�
� cot sin �

�

�� �

[Lx] � i� �sin�
�

�
� cot cos �

�

�� �
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unless the angular momentum is exactly zero (all components), there is no
wavefunction for which two or more components are simultaneously sharp!

�L � Is Sharp: The Orbital Quantum Number

To make further progress, we must look to other constants of the classical motion.

In addition to each component of angular momentum, the magnitude �L � of the

vector also is constant and becomes a candidate for an observable that can be made

sharp together with Lz. Consider simply the squared-magnitude L2 � L � L. The

operator for L2 is

[L]2 � [Lx]
2 � [Ly]

2 � [Lz]
2

Using Equation 8.23, we find the spherical coordinate form for [L2]:

(8.26)

For L2 to be sharp requires or

But from Equation 8.24, we see that differentiating 
 with respect to � is equivalent

to multiplication by iLz/� � im�, so that the last equation reduces to

(8.27)

For wavefunctions satisfying Equation 8.27, the magnitude of angular momen-

tum will be sharp at the value �L �. The equation prescribes the dependence of 
 on

the polar angle . The solutions are not elementary functions but can be investi-

gated with the help of more advanced techniques. The results of such an investiga-

tion are reported in Section 8.2 and repeated here for completeness: Physically

acceptable solutions to Equation 8.27 can be found provided ,

where �, the orbital quantum number, must be a nonnegative integer. Furthermore,

the magnetic quantum number, also appearing in Equation 8.27, must be limited as

�m� � � �. With these restrictions, the solutions to Equation 8.27 are the associated

Legendre polynomials in cos, denoted . Several of these polynomials are

listed in Table 8.2 for easy reference; you may verify by direct substitution that they

satisfy Equation 8.27 for the appropriate values of � and m�.

The associated Legendre polynomials may be multiplied by exp(im��) and still

satisfy the orbital equation Equation 8.27. Indeed, the products exp(im��)

satisfy both Equations 8.24 and 8.27; thus, they represent waves for which �L � and Lz

are simultaneously sharp. Except for a multiplicative constant, these are just the

spherical harmonics introduced in Section 8.2.

E Is Sharp: The Radial Wave Equation

For energy to be constant, E should be a sharp observable. The stationary state form

�(r, t) � 
(r)e�i	t results from imposing the eigenvalue condition for the energy

operator [E ]—but what of the other energy operator [H ] � [K ] � [U ] (the

Hamiltonian)? In fact, requiring [H ]� � E � is equivalent to writing the time-

independent Schrödinger equation for 
(r)

(8.28)�
�2

2m
�2
 � U(r)
 � E


Y �

m
�(, �)

P�

m�(cos)

P�

m�(cos)

� L � � √�(� � 1)�

��2 � �2


� 2 � cot
�


�
� m�

2
csc2  
� � � L �2


��2 � �2


� 2 � cot
�


�
� csc2

�2


��2 � � � L �2


[L2]
 � � L �2


[L2] � ��2 � �2

�2 � cot
�

�
� csc2 

�2

��2 �
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8.5 ATOMIC HYDROGEN AND HYDROGEN-LIKE IONS 277

because [U ] � U(r) and the kinetic energy operator [K] in three dimensions is

none other than

The spherical form of the Laplacian given in Section 8.2 may be used to write

[K ] in spherical coordinates:

Comparing this with the spherical representation for [L2] from Equation 8.26 shows

that [K ] is the sum of two terms,

(8.29)

representing the separate contributions to the kinetic energy from the orbital and

radial components of motion. The comparison also furnishes the spherical form for

[Krad]:

(8.30)

These expressions for [K ] are completely general. When applied to waves

for which �L � is sharp, however, the operator [L2] may be replaced with the number

�L�2 � �(� � 1)�2. Therefore, the Schrödinger equation (Eq. 8.28) becomes

(8.31)

For central forces, all terms in this equation, including U(r), involve only the spheri-

cal coordinate r : the angle variables  and � have been eliminated from further con-

sideration by the requirement that 
 be an eigenfunction of [L2]! It follows that the

solutions to Equation 8.31 take the form of a radial wave R(r) multiplied by a spher-

ical harmonic:

(8.32)

The spherical harmonic may be divided out of each term in Equation 8.31, in effect

replacing 
(r) by R(r). The result is just the radial wave equation of Section 8.2; it

determines the radial wavefunction R(r) and the allowed particle energies E, once

the potential energy function U(r) is specified.

8.5 ATOMIC HYDROGEN AND HYDROGEN-LIKE IONS

In this section we study the hydrogen atom from the viewpoint of wave
mechanics. Its simplicity makes atomic hydrogen the ideal testing ground for
comparing theory with experiment. Furthermore, the hydrogen atom is the
prototype system for the many complex ions and atoms of the heavier
elements. Indeed, our study of the hydrogen atom ultimately will enable us
to understand the periodic table of the elements, one of the greatest triumphs
of quantum physics.

The object of interest is the orbiting electron, with its mass m and charge
�e, bound by the force of electrostatic attraction to the nucleus, with its
much larger mass M and charge �Ze, where Z is the atomic number. The


(r) � R(r)Y �

m� (, �)

[Krad]
(r) �
�(� � 1)�2

2mr2 
(r) � U(r)
(r) � E
(r)

[Krad] � �
�2

2m � �2

�r2 �
2

r

�

�r �

[K] � [Krad] � [Korb] � [Krad] �
1

2mr2 [L2]

[K] � �
�2

2m � �2

�r2 �
2

r

�

�r
�

1

r2 � �2

�2 � cot
�

�
� csc2

�2

��2 ��

[K] �
[px]

2 � [py]
2 � [pz]

2

2m
�

(�/i)2{(�/�x)2 � (�/�y)2 � (�/�z)2}

2m
� �

�2

2m
�2
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choice Z � 1 describes the hydrogen atom, while for singly ionized helium
(He�) and doubly ionized lithium (Li2�), we take Z � 2 and Z � 3, respec-
tively, and so on. Ions with only one electron, like He� and Li2�, are called
hydrogen-like. Because M �� m, we will assume that the nucleus does not
move but simply exerts the attractive force that binds the electron. This force
is the coulomb force, with its associated potential energy

(8.33)

where k is the coulomb constant.
The hydrogen atom constitutes a central force problem; according to Sec-

tion 8.2, the stationary states for any central force are

(8.34)

where is a spherical harmonic from Table 8.3. The radial wavefunc-
tion R(r) is found from the radial wave equation of Section 8.2,

(8.17)

U(r) is the potential energy of Equation 8.33; the remaining terms on the left
of Equation 8.17 are associated with the kinetic energy of the electron. The
term proportional to �(� � 1)�2 � (�L2 �) is the orbital contribution to kinetic
energy, Korb. To see this, consider a particle in circular orbit, in which all the
kinetic energy is in orbital form (since the distance from the center remains
fixed). For such a particle and �L � � mvr. Eliminating the parti-
cle speed v, we get

(8.35)

Although it was derived for circular orbits, this result correctly represents the
orbital contribution to kinetic energy of a mass m in general motion with
angular momentum L.9

The derivative terms in Equation 8.17 are the radial contribution to the
kinetic energy, that is, they represent the contribution from electron motion
toward or away from the nucleus. The leftmost term is just what we should
write for the kinetic energy of a matter wave 
 � R(r) associated with motion
along the coordinate line marked by r. But what significance should we attach
to the first derivative term dR/dr? In fact, the presence of this term is evidence
that the effective one-dimensional matter wave is not R(r), but rR(r). In support of
this claim we note that

Then the radial wave equation written for the effective one-dimensional
matter wave g(r) � rR(r) takes the same form as Schrödinger’s equation in

d2(rR)

dr2 � r � d2R

dr2 �
2

r

dR

dr �

Korb �
m

2 � � L �
mr �

2

�
� L �2

2mr2

Korb � 1
2 mv2

�
�2

2m � d2R

dr2 �
2

r

dR

dr � �
�(� � 1)�2

2mr2 R(r) � U(r)R(r) � ER(r)

Y�
m�(, �)

�(r, , �, t) � R(r)Y�
m�(, �)e�i	t

U(r) �
k(�Ze)(�e)

r
� �

kZe2

r

278 CHAPTER 8 QUANTUM MECHANICS IN THREE DIMENSIONS

9For any planar orbit we may write �L � � rp�, where p� is the component of momentum in the
orbital plane that is normal to the radius vector r. The orbital part of the kinetic energy is then
Korb � p�

2/2m � �L �2/2mr 2.
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one dimension,

(8.36)

but with an effective potential energy

(8.37)

The magnitude of g(r) also furnishes probabilities, as described later in this
section.

The solution of Equation 8.36 with U(r) � �kZe2/r (for one-electron atoms
or ions) requires methods beyond the scope of this text. Here, as before, we
shall present the results and leave their verification to the interested reader.
Acceptable wavefunctions can be found only if the energy E is restricted to be
one of the following special values:

n � 1, 2, 3, . . . (8.38)

This result is in exact agreement with that found from the simple Bohr theory
(see Chapter 4): a0 � �2/meke2 is the Bohr radius, 0.529 Å, and ke2/2a0 is the
Rydberg energy, 13.6 eV. The integer n is called the principal quantum num-
ber. Although n can be any positive integer, the orbital quantum number now
is limited to values less than n; that is, � can have only the values

(8.39)

The cutoff at (n � 1) is consistent with the physical significance of these quan-
tum numbers: The magnitude of orbital angular momentum (fixed by �) can-
not become arbitrarily large for a given energy (fixed by n). A semiclassical ar-
gument expressing this idea leads to �max � n � 1 (see Problem 20). In the
same spirit, the restriction on the magnetic quantum number m� to values be-
tween �� and �� guarantees that the z component of angular momentum
never exceeds the magnitude of the vector.

The radial waves R(r) for hydrogen-like atoms are products of exponentials
with polynomials in r/a0. These radial wavefunctions are tabulated as Rn�(r) in
Table 8.4 for principal quantum numbers up to and including n � 3.

For hydrogen-like atoms, then, the quantum numbers are n, �, and m�, as-
sociated with the sharp observables E, �L �, and Lz, respectively. Notice that the
energy E depends on n, but not at all on � or m�. The energy is independent
of m� because of the spherical symmetry of the atom, and this will be true for
any central force that varies only with distance r. The fact that E also is inde-
pendent of � is a special consequence of the coulomb force, however, and is
not to be expected in heavier atoms, say, where the force on any one electron
includes the electrostatic repulsion of the remaining electrons in the atom, as
well as the coulombic attraction of the nucleus.

For historical reasons, all states with the same principal quantum number
n are said to form a shell. These shells are identified by the letters K, L, M,
. . . , which designate the states for which n � 1, 2, 3, . . . . Likewise, states

� � 0, 1, 2, � � � , (n � 1)

En � �
ke2

2a0
� Z2

n2 �

Ueff �
� L �2

2mr2 � U(r) �
�(� � 1)�2

2mr2 � U(r)

�
�2

2m

d2g

dr2 � Ueff(r)g(r) � Eg(r)

Allowed energies for

hydrogen-like atoms

Allowed values of �

Principal quantum number n

n � 1, 2, 3, . . .

Orbital quantum number �

� � 0, 1, 2, . . . , (n � 1)

Magnetic quantum number m�

m� � 0, �1, �2, . . . , ��
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having the same value of both n and � are said to form a subshell. The letters
s, p, d, f, . . . are used to designate the states for which � � 0, 1, 2, 3, . . . .10

This spectroscopic notation is summarized in Table 8.5.
The shell (and subshell) energies for several of the lowest-lying states of the

hydrogen atom are illustrated in the energy-level diagram of Figure 8.8. The
figure also portrays a few of the many electronic transitions possible within the
atom. Each such transition represents a change of energy for the atom and
must be compensated for by emission (or absorption) of energy in some other
form. For optical transitions, photons carry off the surplus energy, but not
all energy-conserving optical transitions may occur. As it happens, photons
also carry angular momentum. To conserve total angular momentum (atom �
photon) in optical transitions, the angular momentum of the electron in the

280 CHAPTER 8 QUANTUM MECHANICS IN THREE DIMENSIONS

Table 8.4 The Radial Wavefunctions Rn�(r) of

Hydrogen-like Atoms for n � 1, 2, and 3

n � Rn�(r)

1 0

2 0

2 1

3 0

3 1

3 2 � Z

3a0
�

3/2 2√2

27√5
� Zr

a0
�

2

e�Zr/3a0

� Z

3a0
�

3/2 4√2

3

Zr

a0
�1 �

Zr

6a0
� e�Zr/3a0

� Z

3a0
�

3/2

 2 �1 �
2Zr

3a0
�

2

27 � Zr

a0
�

2

� e�Zr/3a0

� Z

2a0
�

3/2 Zr

√3a0

e�Zr/2a0

� Z

2a0
�

3/2

�2 �
Zr

a0
� e�Zr/2a0

� Z

a0
�

3/2

 2e�Zr/a0

10s, p, d, f are one-letter abbreviations for sharp, principal, diffuse, and fundamental. The nomencla-
ture is a throwback to the early days of spectroscopic observations, when these terms were used
to characterize the appearance of spectral lines.

Table 8.5 Spectroscopic Notation for

Atomic Shells and Subhells

n Shell Symbol � Shell Symbol

1 K 0 s

2 L 1 p

3 M 2 d

4 N 3 f

5 O 4 g

6 P 5 h

. . . . . .
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initial and final states must differ by exactly one unit, that is

��f � �i � � 1 or �� � �1 (8.40)

Equation 8.40 expresses a selection rule that must be obeyed in optical transi-
tions.11 As Figure 8.8 indicates, the transitions 3p : 1s and 2p : 1s are
allowed by the rule (�� � �1), but the 3p : 2p transition is said to be
forbidden (�� � 0). (Such transitions can occur, but with negligible probabil-
ity compared with that of allowed transitions.) Clearly, selection rules play a
vital role in the interpretation of atomic spectra.

E(eV)

0
–0.8

–1.5

–3.4

–13.6

Allowed

Forbidden

1s

2s

3s

4s

2p

3p 3d

4p 4d 4f

Figure 8.8 Energy-level diagram of atomic hydrogen. Allowed photon transitions are
those obeying the selection rule �� � �1. The 3p : 2p transition (�� � 0) is said to
be forbidden, though it may still occur (but only rarely).

11�� � 0 also is allowed by angular momentum considerations but forbidden by parity conservation.
Further, since the angular momentum of a photon is just ��, the z component of the atom’s angu-
lar momentum cannot change by more than ��, giving rise to a second selection rule, �m� � 0, �1.

n � 2, � � 1, m� � �1

n � 2, � � 1, m� � 0

n � 2, � � 1, m� � �1

Because all of these states have the same principal quan-
tum number, n � 2, they also have the same energy,
which can be calculated from Equation 8.38. For Z � 1
and n � 2, this gives

E2 � �(13.6 eV){12/22}� �3.4 eV

EXAMPLE 8.7 The n � 2 Level of Hydrogen

Enumerate all states of the hydrogen atom correspond-
ing to the principal quantum number n � 2, giving the
spectroscopic designation for each. Calculate the ener-
gies of these states.

Solution When n � 2, � can have the values 0 and 1. If
� � 0, m� can only be 0. If � � 1, m� can be �1, 0, or �1.
Hence, we have a 2s state with quantum numbers

n � 2, � � 0, m� � 0

and three 2p states for which the quantum numbers are

Selection rule for allowed

transitions
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Exercise 4 How many possible states are there for the n � 3 level of hydrogen? For
the n � 4 level?

Answers Nine states for n � 3, and 16 states for n � 4.

The Ground State of Hydrogen-like Atoms

The ground state of a one-electron atom or ion with atomic number Z, for
which n � 1, � � 0, and m� � 0, has energy

E1 � �(13.6 eV)Z 2 (8.41)

The wavefunction for this state is

(8.42)

The constants are such that 
 is normalized. Notice that 
100 does not depend
on angle, since it is the product of a radial wave with . In fact, all
the � � 0 waves share this feature; that is, all s-state waves are spherically
symmetric.

The electron described by the wavefunction of Equation 8.42 is found with
a probability per unit volume given by

(Three-dimensional renditions of the probability per unit volume �
(r) �2 —
often called electron “clouds”—are constructed by making the shading at
every point proportional to �
(r) �2.) The probability distribution also is
spherically symmetric, as it would be for any s-state wave; that is, the likeli-
hood for finding the electron in the atom is the same at all points equidis-
tant from the center (nucleus). Thus, it is convenient to define another
probability function, called the radial probability distribution, with its as-
sociated density P(r), such that P(r) dr is the probability of finding the
electron anywhere in the spherical shell of radius r and thickness dr
(Fig. 8.9). The shell volume is its surface area, 4�r 2, multiplied by the shell
thickness, dr. Since the probability density �
100 �2 is the same everywhere in
the shell, we have

P(r)dr � �
 �2 4�r 2 dr

or, for the hydrogen-like 1s state,

(8.43)

The same result is obtained for P1s(r) from the intensity of the effective one-
dimensional matter wave g(r) � rR(r):

(8.44)P(r) � � g(r) �2 � r2� R(r) �2

P1s(r) �
4Z3

a0
3 r2e�2Zr/a0

� 
100 �2 �
Z3

�a0
3 e�2Zr/a0

Y 0
0 � 1/√4�


100 � R10(r)Y 0
0 � ��1/2(Z/a0)3/2e�Zr/a0
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dr

r

Figure 8.9 P(r) dr is the prob-
ability that the electron will be
found in the volume of a spher-
ical shell with radius r and
thickness dr. The shell volume
is just 4�r 2 dr.

The radial probability

density for any state
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8.5 ATOMIC HYDROGEN AND HYDROGEN-LIKE IONS 283

In fact, Equation 8.44 gives the correct radial probability density for any state; for the
spherically symmetric s-states this is the same as 4�r 2�
 �2, since then

.12

A plot of the function P1s(r) is presented in Figure 8.10a; Figure 8.10b
shows the 1s electron “cloud” or probability per unit volume �
100 �2 from
which P1s(r) derives. P(r) may be loosely interpreted as the probability of find-
ing the electron at distance r from the nucleus, irrespective of its angular posi-
tion. Thus, the peak of the curve in Figure 8.10a represents the most probable
distance of the 1s electron from the nucleus. Furthermore, the normalization
condition becomes

(8.45)

where the integral is taken over all possible values of r. The average distance of
the electron from the nucleus is found by weighting each possible distance
with the probability that the electron will be found at that distance:

(8.46)

In fact, the average value of any function of distance f(r) is obtained


r� � ��

0
rP(r) dr

1 � ��

0
P(r) dr


(r) � (1/√4�)R(r)

The average distance of an

electron from the nucleus

12From its definition, P(r) dr always may be found by integrating over the
volume of a spherical shell having radius r and thickness dr. Since the volume element in spheri-
cal coordinates is dV � r 2dr sin d d�, and the integral of over angle is unity (see foot-
note 5), this leaves P(r) � r 2�R(r) �2.

�Y �

m� �2

� 
 �2 � � R(r) �2 �Y �

m� �2

P 1s

r = a0/Z r

x

y

z

(b)(a)

Z 3
–––
a0

3π
e –2Zr/a0=
    2


100

4Z 3
–––
a0

3
r 2e –2Zr/a0=P 1s(r)

Figure 8.10 (a) The curve P1s(r) representing the probability of finding the electron
as a function of distance from the nucleus in a 1s hydrogen-like state. Note that the
probability takes its maximum value when r equals a0/Z. (b) The spherical electron
“cloud” for a hydrogen-like 1s state. The shading at every point is proportional to the
probability density �
1s(r) �2.
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by weighting the function value at every distance with the probability at
that distance:

(8.47)
 f � � ��

0
f(r)P(r) dr

284 CHAPTER 8 QUANTUM MECHANICS IN THREE DIMENSIONS

The right-hand side is zero for r � 0 and for r � a0.
Since P(0) � 0, r � 0 is a minimum of P(r), not a maxi-
mum. Thus, the most probable distance is

r � a0

The average distance is obtained from Equation 8.46,
which in this case becomes

Again introducing z � 2r/a0, we obtain

The definite integral on the right is one of a broader
class,

whose value n! � n(n � 1) . . . (1) is established by re-
peated integration by parts. Then

The average distance and the most probable dis-
tance are not the same, because the probability curve
P(r) is not symmetric about the peak distance a0. In-
deed, values of r greater than a0 are weighted more
heavily in Equation 8.46 than values smaller than a 0, so
the average 
r � actually exceeds a 0 for this probability
distribution.


r � �
a0

4
(3!) �

3

2
a0

��

0
zne�z dz � n!


r � �
a0

4
��

0
z3e�z dz


r � �
4

a0
3 ��

0
r 3e�2r/a0 dr

EXAMPLE 8.8 Probabilities for the 
Electron in Hydrogen

Calculate the probability that the electron in the ground
state of hydrogen will be found outside the first Bohr
radius.

Solution The probability is found by integrating the ra-
dial probability density for this state, P1s(r), from the
Bohr radius a0 to �. Using Equation 8.43 with Z � 1 for
hydrogen gives

We can put the integral in dimensionless form by chang-
ing variables from r to z � 2r/a0. Noting that z � 2 when
r � a0, and that dr � (a0/2) dz, we get

This is about 0.677, or 67.7%.

EXAMPLE 8.9 The Electron–Proton 
Separation in Hydrogen

Calculate the most probable distance of the electron
from the nucleus in the ground state of hydrogen, and
compare this with the average distance.

Solution The most probable distance is the value of r that
makes the radial probability P(r) a maximum. The slope
here is zero, so the most probable value of r is obtained by
setting dP/dr � 0 and solving for r. Using Equation 8.43
with Z � 1 for the 1s, or ground, state of hydrogen, we get

0 � � 4

a0
3 � d

dr
{r 2e�2r/a0} � � 4

a0
3 � e�2r/a0 ��

2r2

a0
� 2r�

P �
1

2
��

2
z2e�z dz � �

1

2
{z2 � 2z � 2}e�z �

�

2
� 5e�2

P �
4

a0
3 ��

a0

r 2e�2r/a0 dr

Excited States of Hydrogen-like Atoms

There are four first excited states for hydrogen-like atoms: 
200, 
210, 
211,
and 
21�1. All have the same principal quantum number n � 2, hence the
same total energy

Accordingly, the first excited level, E2, is fourfold degenerate.

E2 � �(13.6 eV)
Z2

4

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



8.5 ATOMIC HYDROGEN AND HYDROGEN-LIKE IONS 285

The 2s state, 
200, is again spherically symmetric. Plots of the radial proba-
bility density for this and several other hydrogen-like states are shown in Figure
8.11. Note that the plot for the 2s state has two peaks. In this case, the most
probable distance (�5a0/Z ) is marked by the highest peak. An electron in the
2s state would be much farther from the nucleus (on the average) than an elec-
tron in the 1s state. Likewise, the most probable distances are even greater for
an electron in any of the n � 3 states (3s, 3p, or 3d). Observations such as these
continue to support the old idea of a shell structure for the atom, even in the
face of the uncertainties inherent in the wave nature of matter.

The remaining three first excited states, 
211, 
210, and 
21�1, have � � 1
and make up the 2p subshell. These states are not spherically symmetric. All of
them have the same radial wavefunction R21(r), but they are multiplied by dif-
ferent spherical harmonics and thus depend differently on the angles  and �.
For example, the wavefunction 
211 is

(8.48)
211 � R21(r)Y 1
1 � ��1/2 � Z

a0
�

3/2

� Zr

8a0
� e�Zr/2a 0 sin  ei�

0.6

0.5

0.4

0.3

0.2

0.1

0
0 4 8 12 16 20 24 28 32 36 40

0.20

0.08

0
0 4 8 12 16 20 24 28 32 36 40

0.12

0
0 4 8 12 16 20 24 28 32 36 40

1s

2s

3s
4s

Zr/a0

0.16

0.12

0.04

0.08

0.04

2p

3p

4p

3d

4f 4d

P(r)
a0––
Z 3 ⋅

P(r)
a0––
Z 3 ⋅

P(r)
a0––
Z 3 ⋅

Zr/a0

Zr/a0

Figure 8.11 The radial probability density function for several states of hydrogen-like
atoms.
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Notice, however, that the probability density �
211�2 is independent of � and
therefore is symmetric about the z-axis (Fig. 8.12a). Since , the
same is true for all the hydrogen-like states , as suggested by the remain-
ing illustrations in Figure 8.12.

The 
210 state

(8.49)

has distinct directional characteristics, as shown in Figure 8.13a, and is some-
times designated [
2p]z to indicate the preference for the electron in this state
to be found along the z-axis. Other highly directional states can be formed by
combining the waves with m� � �1 and m� � �1. Thus, the wavefunctions

(8.50a)[
2p]x �
1

√2
{
211 � 
21�1}


210 � R21(r)Y 1
0

� ��1/2 � Z

2a0
�

3/2

� Zr

2a0
� e�Zr/2a0 cos


n�m�

� eim1� �2 � 1
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z

y

x

z

z

n = 2, � = 1, m� = ±1

(a)

n = 3, � = 1, m� = 0

(b)

n = 3, � = 2, m� = 0

(c)

Figure 8.12 (a) The probability density �
211 �2 for a hydrogen-like 2p state. Note the
axial symmetry about the z-axis. (b) and (c) The probability densities �
(r) �2 for several
other hydrogen-like states. The electron “cloud” is axially symmetric about the z-axis
for all the hydrogen-like states .
n�m�

(r)

y

2px

(b)

y

x

z

2pz

(a)

y

2py

(c)

x

z

x

z

Figure 8.13 (a) Probability distribution for an electron in the hydrogenlike 2pz state,
described by the quantum numbers n � 2, � � 1, m� � 0. (b) and (c) Probability distri-
butions for the 2px and 2py states. The three distributions 2px, 2py, and 2pz have the
same structure, but differ in their spatial orientation.
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8.6 ANTIHYDROGEN 287

and

(8.50b)

have large probability densities along the x- and y-axes, respectively, as shown
in Figures 8.13b and 8.13c. The wavefunctions of Equations 8.50, formed as su-
perpositions of first excited state waves with identical energies E2, are them-
selves stationary states with this same energy; indeed, the three wavefunctions
[
2p]z, [
2p]x, and [
2p]y together constitute an equally good description of
the 2p states for hydrogenlike atoms. Wavefunctions with a highly directional
character, such as these, play an important role in chemical bonding, the for-
mation of molecules, and chemical properties.

The next excited level, E3, is ninefold degenerate; that is, there are nine dif-
ferent wavefunctions with this energy, corresponding to all possible choices for
� and m� consistent with n � 3. Together, these nine states constitute the third
shell, with subshells 3s, 3p, and 3d composed of one, three, and five states, re-
spectively. The wavefunctions for these states may be constructed from the en-
tries in Tables 8.3 and 8.4. Generally, they are more complicated than their
second-shell counterparts because of the increasing number of nodes in the
radial part of the wavefunction.

The progression to higher-lying states leads to still more degeneracy and
wavefunctions of ever-increasing complexity. The nth shell has energy

and contains exactly n subshells, corresponding to � � 0, 1, . . . , n � 1.
Within the �th subshell there are 2� � 1 orbitals. Altogether, the nth shell
contains a total of n2 states, all with the same energy, En; that is, the energy
level En is n2 degenerate. Equivalently, we say the nth shell can hold as many
as n2 electrons, assuming no more than one electron can occupy a given or-
bital. This argument underestimates the actual shell capacity by a factor of 2,
owing to the existence of electron spin, as discussed in the next chapter.

8.6 ANTIHYDROGEN

The constituents of hydrogen atoms, protons and electrons, are abundant in
the universe and among the elementary particles that make up all matter
around us. But each of these elementary particles has a partner, its antiparticle,
identical to the original in all respects other than carrying charge of the oppo-
site sign.13 The anti-electron, or positron, was discovered in 1932 by Carl
Anderson.14 The positron has the same mass as the electron but carries charge

En � �(13.6 eV)
Z2

n2

[
2p]y �
1

√2
{
211 � 
21�1}

13Strictly speaking, the antiparticle also has a magnetic moment opposite that of its companion
particle. Magnetic moments are discussed in Chapter 9, and are intimately related to a new par-
ticle property called spin. The spin is the same for particle and antiparticle.

14The idea of antiparticles received a solid theoretical underpinning in 1928 with P. A. M. Dirac’s
relativistic theory of the electron. While furnishing an accurate quantum description of elec-
trons with relativistic energies, Dirac’s theory also included mysterious “negative energy” states.
Eventually Dirac realized that these “negative energy” states actually describe antiparticles with
positive energy. Dirac’s conjecture was subsequently confirmed with the discovery of the
positron in 1932. See Section 15.2.
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�e. Because it cannot be produced without a powerful particle accelerator, the
much more massive antiproton was not observed until 1955. Again, the an-
tiproton has the same mass as the proton but is oppositely charged. Just as
atoms and ordinary matter are made up of particles, it is easy to conceive of
anti-atoms and all forms of antimatter built out of antiparticles. Indeed, on the
face of it there would be no way to tell if we lived in an antimatter world and
were ourselves composed entirely of antimatter!

The simplest such anti-atom is antihydrogen, the most fundamental neu-
tral unit of antimatter. Antihydrogen consists of a positron bound electrically
to an antiproton. Many physicists believe that the study of antihydrogen can
answer the question of whether there is some fundamental, heretofore un-
known difference between matter and antimatter and why our Universe seems
to be composed almost exclusively of ordinary matter. For the reasons out-
lined here, the production of antihydrogen is fraught with difficulties, and it
was not until the mid 1990s that two groups, one at CERN and the other at
Fermilab, reported success in producing antihydrogen at high energies. In
2002, the CERN group reported antihydrogen production at the very low en-
ergies required for precision comparison measurements with ordinary hydro-
gen. Trapping the anti-atoms long enough so that experiments can be per-
formed on them is much more difficult and has not yet been achieved.

When a particle and its antiparticle collide, both disappear in a burst of
electromagnetic energy. This is pair annihilation, the direct conversion of
mass into energy in accord with Einstein’s famous relation E � mc2. An elec-
tron and a positron combine to produce two (sometimes three) gamma-ray
photons (one photon alone cannot conserve both energy and momentum).
The collision of a proton and antiproton produces three or four other ele-
mentary particles called pions. The problem that experimentalists face is that
their laboratories and measuring instruments are made of ordinary matter
and antiparticles will self-destruct on first contact with the apparatus. A similar
problem arises in the containment of plasmas, which are tamed using a mag-
netic trap, that is, a configuration of magnetic fields that exert forces on
charged particles of the plasma to keep them confined. But neutral anti-atoms
experience only weak magnetic forces and will quickly escape the trap unless
they are moving very slowly. Thus, the antihydrogen atom must be cold if it is
to survive long enough to be useful for precision experiments, and this pre-
sents yet another challenge. While positrons are readily available as decay
products of naturally occurring radioactive species like 22Na, antiprotons must
be created artificially in particle accelerators by bombarding heavy targets
(Be) with ultra-energetic (�GeV) protons. The positrons and antiprotons so
produced are very energetic and must be slowed down enormously to form
cold antihydrogen. The slowdown is achieved at the cost of lost particles in
what is essentially an accelerator run backwards. The CERN experiment yields
about 50,000 antihydrogen atoms starting from some 1.5 million antiprotons.
And of these, only a small fraction is actually detected.

Detecting antihydrogen is a challenge in its own right. The existence of an an-
tiproton is confirmed by the decay products (pions) it produces on annihilation
with its antimatter counterpart, the proton. These decay products leave direc-
tional traces in the detectors that surround the anti-atom sample. From the direc-
tional traces, physicists are able to reconstruct the precise location of the annihi-
lation event. To confirm the existence of antihydrogen, however, one must also
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SUMMARY 289

record electron–positron annihilation in the same place at the same time. The
tell-tale gamma-ray photons produced in that annihilation can also be traced
back to a point of origination. Thus, the signature of antihydrogen is the coinci-
dence of multiple distinct detection events, as illustrated in Figure 8.14.

According to the theory presented in this chapter, the energy spectrum of
antihydrogen should be identical to that of ordinary hydrogen. The hydrogen
atom is the best known of all physical systems, and extremely precise measure-
ments of its spectrum have been made, the best of which is accurate to about 2
parts in 1014. Thus, comparing spectra of antihydrogen with ordinary hydro-
gen would allow a stringent test of the symmetry expected between matter and
antimatter in atomic interactions. This symmetry is rooted in so-called CPT in-
variance, which states that if one were to take any lump of matter, reverse the
sign of all the elementary charges (C), the direction of time’s flow (T), and
another property of particles called parity (P), the specimen would obey the
same laws of physics. CPT invariance is a very general consequence of quan-
tum theory and the covariance of quantum laws under Lorentz transformation
demanded by special relativity and is the cornerstone for every modern theory
of matter. If CPT invariance is violated, the whole of physical theory at the fun-
damental level will have to be rewritten. While nearly all physicists agree that is
very unlikely, the prospect of CPT violation holds tantalizing possibilities and
may shed light on one of the most perplexing problems of modern cosmol-
ogy: why there is now a preponderance of matter in the Universe, when the
Big Bang theory predicts that matter and antimatter should have been created
in equal amounts. Furthermore, if antihydrogen responds differently to grav-
ity, the theory of relativity in its present form would be compromised, a devel-
opment that could point the way to the long-sought unification of relativity
and quantum theory.

SUMMARY

In three dimensions, the matter wave intensity ��(r, t) �2 represents the 
probability per unit volume for finding the particle at r at time t. Proba-
bilities are found by integrating this probability density over the volume 
of interest.

The wavefunction itself must satisfy the Schrödinger equation

(8.1)

Stationary states are solutions to this equation in separable form: �(r, t) �


(r)e�i	t with 
(r) satisfying

(8.5)

This is the time-independent Schrödinger equation, from which we obtain
the time-independent wavefunction 
(r) and the allowed values of particle
energy E.

For a particle confined to a cubic box whose sides are L, the magnitudes of
the components of particle momentum normal to the walls of the box can be
made sharp, as can the particle energy. The sharp momentum values are
quantized as

�
�2

2m
�2
(r) � U(r)
(r) � E
(r)

�
�2

2m
�2� � U(r)� � i�

��

�t

Figure 8.14 Antihydrogen is
detected through its destruction
in collisions with matter parti-
cles. The annihilation of the an-
tiproton produces pions that,
picked up in the surrounding
detectors (light colored), can be
traced back (four light colored
dashed lines) to the annihila-
tion point. Similarly, the annihi-
lation of the positron produces
a distinctive back-to-back two-
photon signature (two dashed
tracks at 180� to one another).
Overlap of the two annihilation
points signifies that the positron
and antiproton were bound to-
gether in an atom of antihydro-
gen. (Adapted from Nature, 419,
456–459, October 3, 2002.)
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(8.8)

and the allowed energies are found to be

(8.9)

The three quantum numbers n1, n2, and n3 are all positive integers, one
for each degree of freedom of the particle. Many levels of this system are
degenerate; that is, there is more than one wavefunction with the same 
energy.

For particles acted on by a central force, the angular momentum L is a
constant of the classical motion and is quantized along with particle energy.
Wavefunctions for which the z component Lz and magnitude �L � of angular
momentum are simultaneously sharp are the spherical harmonics
in the spherical coordinate angles  and �. For any central force, angular
momentum is quantized by the rules

and

Lz � m�� (8.16)

The orbital quantum number � must be a nonnegative integer. For a fixed
value of �, the magnetic quantum number m� is restricted to integer
values lying between �� and ��. Since �L� and Lz are quantized differently,
the classical freedom to orient the z-axis in the direction of L must be aban-
doned. This stunning conclusion is the essence of space quantization.
Furthermore, no two components of L, such as Lz and Ly, can be sharp
simultaneously. This implies a lower limit to the uncertainty product 
�Lz �Ly and gives rise to an uncertainty principle for the components of
angular momentum.

A central force of considerable importance is the force on the electron in a
one-electron atom or ion. This is the coulomb force, described by the poten-
tial energy U(r) � �kZe2/r, where Z is the atomic number of the nucleus. The
allowed energies for this case are given by

(8.38)

This coincides exactly with the results obtained from the Bohr theory. The en-
ergy depends only on the principal quantum number n. For a fixed value of
n, the orbital and magnetic quantum numbers are restricted as

� � 0, 1, 2, . . . , n � 1

m� � 0, �1, �2, . . . , �� (8.39)

En � �
ke2

2a0
� Z2

n2 �  n � 1, 2, � � � 

� L � � √�(� � 1)�

Y �

m�(, �)

E �
�2�2

2mL2 {n1
2 � n2

2
� n3

2 }

� pz � � n3
��

L

� py � � n2
��

L

� px � � n1
��

L
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All states with the same principal quantum number n form a shell, identified
by the letters K, L, M, . . . (corresponding to n � 1, 2, 3, . . .). All states
with the same values of n and � form a subshell, designated by the letters s, p,
d, f, . . . (corresponding to � � 0, 1, 2, . . .).

The wavefunctions for an electron in hydrogen or a hydrogen-like ion,

depend on the three quantum numbers n, �, and m� and are products of
spherical harmonics multiplied by radial wavefunctions Rn�(r). The effective
one-dimensional wavefunction g(r) � rRn�(r) is analogous to the wavefunc-
tion 
(x) in one dimension; the intensity of g(r) gives the radial probability
density,

P(r) � �g(r) �2 � r 2�Rn�(r) �2 (8.44)

P(r) dr is the probability that the electron will be found at a distance
between r and r � dr from the nucleus. The most probable distance is the
one that maximizes P(r) and generally differs from the average distance 
r�,
calculated as

(8.46)

The most probable values are found to coincide with the radii of the allowed
orbits in the Bohr theory.


r� � ��

0
rP(r) dr


(r, , �) � Rn �(r)Y�

m�(, �)

7 of Modern Physics, 2nd ed., by Kenneth Krane, New
York, John Wiley and Sons, Inc., 1996.

3. Illustrations in perspective of the electron “cloud”
�
(r) �2 for various hydrogen-like states may be found in
Quantum Physics of Atoms, Molecules, Solids, Nuclei, and

Particles, 2nd ed., by R. Eisberg and R. Resnick, New
York, John Wiley and Sons, Inc., 1985.

1. For more on the use of angular momentum to simplify
the three-dimensional Schrödinger equation in central
force applications, see Chapter 11 of An Introduction to

Quantum Physics, by A. P. French and Edwin F. Taylor,
New York, W. W. Norton and Company, Inc., 1978.

2. A discussion of the radial probability density and its use
for the lowest states of hydrogen is contained in Chapter

SUGGESTIONS FOR FURTHER READING

QUESTIONS

1. Why are three quantum numbers needed to describe
the state of a one-electron atom?

2. Compare the Bohr theory with the Schrödinger treat-
ment of the hydrogen atom. Comment specifically on
the total energy and orbital angular momentum.

3. How do we know whether a given 2p electron in an atom
has m� � 0, �1, or �1? What value of m� characterizes a
directed orbital such as [
2p]x of Equation 8.50?

4. For atomic s states, the probability density �
 �2 is largest
at the origin, yet the probability for finding the electron

a distance r from the nucleus, given by P(r), goes to zero
with r. Explain.

5. For the electron in the ground state of hydrogen—
as with many other quantum systems—the kinetic
and potential energies are fuzzy observables, but their
sum, the total energy, is sharp. Explain how this can
be so.

6. Discuss the relationship between space quantization and
Schrödinger’s equation. If the latter were invalid, would
space quantization still hold?
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292 CHAPTER 8 QUANTUM MECHANICS IN THREE DIMENSIONS

PROBLEMS

8.1 Particle in a Three-Dimensional Box

1. A particle of mass m moves in a three-dimensional box
with edge lengths L1, L2, and L3. Find the energies of
the six lowest states if L1 � L, L2 � 2L, and L3 � 2L.
Which of these energies are degenerate?

2. An electron moves in a cube whose sides have a length
of 0.2 nm. Find values for the energy of (a) the ground
state and (b) the first excited state of the electron.

3. A particle of mass m moves in a three-dimensional box
with sides L. If the particle is in the third excited level,
corresponding to n2 � 11, find (a) the energy of the
particle, (b) the combinations of n1, n2, and n3 that
would give this energy, and (c) the wavefunctions for
these different states.

4. A particle of mass m moves in a two-dimensional box of
sides L. (a) Write expressions for the wavefunctions
and energies as a function of the quantum numbers n1

and n2 (assuming the box is in the xy plane). (b) Find
the energies of the ground state and first excited state.
Is either of these states degenerate? Explain.

5. Assume that the nucleus of an atom can be regarded as
a three-dimensional box of width 2 � 10�14 m. If a pro-
ton moves as a particle in this box, find (a) the ground-
state energy of the proton in MeV and (b) the energies
of the first and second excited states. (c) What are the
degeneracies of these states?

6. Obtain the stationary states for a free particle in three
dimensions by separating the variables in Schrödinger’s
equation. Do this by substituting the separable form
�(r, t) � 
1(x)
2(y)
3(z)�(t) into the time-dependent
Schrödinger equation and dividing each term by
�(r, t). Isolate all terms depending only on x from
those depending only on y, and so on, and argue that
four separate equations must result, one for each of the
unknown functions 
1, 
2, 
3, and �. Solve the result-
ing equations. What dynamical quantities are sharp for
the states you have found?

7. For a particle confined to a cubic box of dimension L,
show that the normalizing factor is A � (2/L)3/2, the
same value for all the stationary states. How is this result
changed if the box has edge lengths L1, L 2, and L 3, all
of which are different?

8. Consider a particle of mass m confined to a three-
dimensional cube of length L so small that the parti-
cle motion is relativistic. Obtain an expression for the
allowed particle energies in this case. Compute the
ground-state energy for an electron if L � 10 fm
(10�5 nm), a typical nuclear dimension.

8.2 Central Forces and Angular Momentum

9. If an electron has an orbital angular momentum of
4.714 � 10�34 J � s, what is the orbital quantum number
for this state of the electron?

10. Consider an electron for which n � 4, � � 3, and
m� � 3. Calculate the numerical value of (a) the orbital
angular momentum and (b) the z component of the
orbital angular momentum.

11. The orbital angular momentum of the Earth in its mo-
tion about the Sun is 4.83 � 1031 kg � m2/s. Assuming it
is quantized according to Equation 8.16, find (a) the
value of � corresponding to this angular momentum
and (b) the fractional change in �L � as � changes from
� to � � 1.

8.5 Atomic Hydrogen and Hydrogen-like Ions

12. The normalized ground-state wavefunction for the
electron in the hydrogen atom is

where r is the radial coordinate of the electron and a0

is the Bohr radius. (a) Sketch the wavefunction versus
r. (b) Show that the probability of finding the elec-
tron between r and r � dr is given by �
(r) �24�r2 dr.
(c) Sketch the probability versus r and from your
sketch find the radius at which the electron is most
likely to be found. (d) Show that the wavefunction as
given is normalized. (e) Find the probability of locating
the electron between r1 � a0/2 and r2 � 3a0/2.

13. (a) Determine the quantum numbers � and m� for the
He� ion in the state corresponding to n � 3. (b) What
is the energy of this state?

14. (a) Determine the quantum numbers � and m� for the
Li2� ion in the states for which n � 1 and n � 2.
(b) What are the energies of these states?

15. In obtaining the results for hydrogen-like atoms in Sec-
tion 8.5, the atomic nucleus was assumed to be immo-
bile due to its much larger mass compared with that of
the electron. If this assumption is relaxed, the results
remain valid if the electron mass m is replaced every-
where by the reduced mass � of the electron–nucleus
combination:

Here M is the nuclear mass. (a) Making this replace-
ment in Equation 8.38, show that a more general ex-
pression for the allowed energies of a one-electron
atom with atomic number Z is

(b) The wavelength for the n � 3 to n � 2 transition of
the hydrogen atom is 656.3 nm (visible red light).
What is the wavelength of this same transition in singly
ionized helium? In positronium? (Note: Positronium is

En � �
�k2e4

2�2 � Z2

n2 �

� �
mM

m � M


(r, , �) �
1

√�
� 1

a0
�

3/2

e�r/a0
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ADDITIONAL PROBLEMS 293

an “atom” consisting of a bound positron–electron
pair. A positron is a positively charged electron.)

16. Calculate the possible values of the z component of an-
gular momentum for an electron in a d subshell.

17. Calculate the angular momentum for an electron in
(a) the 4d state and (b) the 6f state of hydrogen.

18. A hydrogen atom is in the 6g state. (a) What is the prin-
cipal quantum number? (b) What is the energy of the
atom? (c) What are the values for the orbital quantum
number and the magnitude of the electron’s orbital an-
gular momentum? (d) What are the possible values for
the magnetic quantum number? For each value, find
the corresponding z component of the electron’s or-
bital angular momentum and the angle that the orbital
angular momentum vector makes with the z-axis.

19. Prove that the nth energy level of an atom has degener-
acy equal to n2.

20. For fixed electron energy, the orbital quantum number
� is limited to n � 1. We can obtain this result from a
semiclassical argument using the fact that the largest
angular momentum describes circular orbits, where all
the kinetic energy is in orbital form. For hydrogen-like
atoms, U(r) � �Zke2/r, and the energy in circular or-
bits becomes

Quantize this relation using the rules of Equations 8.16
and 8.38, together with the Bohr result for the allowed
values of r, to show that the largest integer value of �

consistent with the total energy is �max � n � 1.
21. Suppose that a hydrogen atom is in the 2s state. Taking

r � a0, calculate values for (a) 
2s(a0), (b) �
2s(a0) �2,
and (c) P2s(a0).

22. The radial part of the wavefunction for the hydrogen
atom in the 2p state is given by

where A is a constant and a0 is the Bohr radius. Using
this expression, calculate the average value of r for an
electron in this state.

23. A dimensionless number that often appears in atomic
physics is the fine-structure constant �, given by

� �
ke2

�c

R2p(r) � Are�r/2a0

E �
� L �2

2mr2 �
Zke2

r

where k is the Coulomb constant. (a) Obtain a numerical
value for 1/�. (b) In scattering experiments, the “size” of
the electron is the classical electron radius, r0 � ke2/mec

2.
In terms of �, what is the ratio of the Compton wave-
length, � � h/mec, to the classical electron radius? (c) In
terms of �, what is the ratio of the Bohr radius, a0, to the
Compton wavelength? (d) In terms of �, what is the ratio
of the Rydberg wavelength, 1/R, to the Bohr radius?

24. Calculate the average potential and kinetic energies for
the electron in the ground state of hydrogen.

25. Compare the most probable distances of the electron
from the proton in the hydrogen 2s and 2p states with
the radius of the second Bohr orbit in hydrogen, 4a0.

26. Compute the probability that a 2s electron of hydrogen
will be found inside the Bohr radius for this state, 4a0.
Compare this with the probability of finding a 2p elec-
tron in the same region.

27. Use the Java applet available at our companion
Web site (http://info.brookscole.com/mp3e

: QMTools Simulations : Problem 8.27) to display
the radial waveforms for the n � 3 level of atomic
hydrogen. Locate the most probable distance from the
nucleus for an electron in the 3s state. Do the same for
an electron in the 3p and 3d states. What does the sim-
ple Bohr theory predict for this case?

28. Angular Variation of Hydrogen Wavefunctions.

Use the Java applet of the preceding problem
to display the electron clouds for the n � 4 states of
atomic hydrogen. Observe the distinctly different sym-
metries of the s, p, d, and f orbitals in the case m� � 0.
Which of these orbitals is most extended, that is, in
which orbital is the electron likely to be found furthest
away from the nucleus? Explore the effect of the mag-
netic quantum number m� on the overall appearance
and properties of the n � 4 orbitals. Can you identify
any trends?

29. As shown in Example 8.9, the average distance of the
electron from the proton in the hydrogen ground state
is 1.5 bohrs. For this case, calculate �r, the uncertainty
in distance about the average value, and compare it
with the average itself. Comment on the significance of
your result.

30. Calculate the uncertainty product �r�p for the 1s elec-
tron of a hydrogen-like atom with atomic number Z.
(Hint: Use 
p� � 0 by symmetry and deduce 
p2� from
the average kinetic energy, calculated as in Problem 24.)

ADDITIONAL PROBLEMS

31. An electron outside a dielectric is attracted to the surface
by a force F � �A/x2, where x is the perpendicular dis-
tance from the electron to the surface and A is a con-
stant. Electrons are prevented from crossing the surface,
since there are no quantum states in the dielectric for

them to occupy. Assume that the surface is infinite in ex-
tent, so that the problem is effectively one-dimensional.
Write the Schrödinger equation for an electron outside
the surface x � 0. What is the appropriate boundary con-
dition at x � 0? Obtain a formula for the allowed energy

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



294 CHAPTER 8 QUANTUM MECHANICS IN THREE DIMENSIONS

levels in this case. (Hint: Compare the equation for 
(x)
with that satisfied by the effective one-dimensional wave-
function g(r ) � rR(r ) for hydrogen-like atoms.)

32. The Spherical Well. The three-dimensional
analog of the square well in one dimension,

the spherical well is commonly used to model the po-
tential energy of nucleons (protons, neutrons) in an
atomic nucleus. It is defined by a potential U(r) that
is zero everywhere inside a sphere and takes a large
(possibly infinite) positive value outside this sphere.
Use the Java applet available at our companion Web
site (http://info.brookscole.com/mp3e : QMTools
Simulations : Problem 8.32) to find the ground-
state energy for a proton bound to a spherical well of
radius 9.00 fm and height 30.0 MeV. Is the ground
state an s state? Explain. Also report the most proba-
ble distance from the center of the well for this
nucleon.

33. Use the Java applet of Problem 32 to find the
first three excited-state energy levels for the

spherical well described there. What orbital quantum
numbers � describe these states? Determine the degen-
eracy of each excited level and display the probability
clouds for the degenerate wavefunctions.

34. Example 8.9 found the most probable value and the
average value for the distance of the electron from the
proton in the ground state of a hydrogen atom. For
comparison, find the median value as follows. (a) Derive
an expression for the probability, as a function of r,
that the electron in the ground state of hydrogen will
be found outside a sphere of radius r centered on the
nucleus. (b) Find the value of r for which the probabil-
ity of finding the electron outside a sphere of radius r is
equal to the probability of finding the electron inside
this sphere. (You will need to solve a transcendental
equation numerically.)
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9
Atomic Structure

9.1 Orbital Magnetism and 
the Normal Zeeman Effect

9.2 The Spinning Electron

9.3 The Spin–Orbit Interaction and
Other Magnetic Effects

9.4 Exchange Symmetry and the
Exclusion Principle

9.5 Electron Interactions and
Screening Effects (Optional)

9.6 The Periodic Table

9.7 X-ray Spectra and 
Moseley’s Law

Summary

Chapter Outline

Much of what we have learned about the hydrogen atom with its single
electron can be used directly to describe such single-electron ions as
He� and Li2�, which are hydrogen-like in their electronic structure. Mul-
tielectron atoms, however, such as neutral helium and lithium, introduce
extra complications that stem from the interactions among the atomic
electrons. Thus, the study of the atom inevitably involves us in the com-
plexities of systems consisting of many interacting electrons. In this chapter
we will learn some of the basic principles needed to treat such systems
effectively and apply these principles to describe the physics of electrons
in atoms.

Being of like charge and confined to a small space, the electrons of an
atom repel one another strongly through the Coulomb force. In addition,
we shall discover that the atomic electrons behave like tiny bar magnets, in-
teracting magnetically with one another as well as with any external mag-
netic field applied to the atom. These magnetic properties derive in part
from a new concept — electron spin—which will be explored at some length
in this chapter.

Another new physical idea, known as the exclusion principle, is also pre-
sented in this chapter. This principle is extremely important in understanding
the properties of multielectron atoms and the periodic table. In fact, the im-
plications of the exclusion principle are almost as far-reaching as those of the
Schrödinger equation itself.
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9.1 ORBITAL MAGNETISM AND THE
NORMAL ZEEMAN EFFECT

An electron orbiting the nucleus of an atom should give rise to magnetic effects,
much like those arising from an electric current circulating in a wire loop. In
particular, the motion of charge generates a magnetic field within the atom, and
the atom as a whole is subject to forces and torques when it is placed in an exter-
nal magnetic field. These magnetic interactions can all be described in terms of
a single property of the atom—the magnetic dipole moment.

To calculate the magnetic moment of an orbiting charge, we reason by
analogy with a current-carrying loop of wire. The moment � of such a loop
has magnitude �� � � iA, where i is the current and A is the area bounded by
the loop. The direction of this moment is perpendicular to the plane of the
loop, and its sense is given by a right-hand rule, as shown in Figure 9.1a. This
characterization of a current loop as a magnetic dipole implies that its mag-
netic behavior is similar to that of a bar magnet with its north-south axis di-
rected along � (Fig. 9.1b).

For a circulating charge q, the (time-averaged) current is simply q/T,
where T is the orbital period. Furthermore, A/T is just the area swept out
per unit time and equals the magnitude of the angular momentum �L � of
the orbiting charge divided by twice the particle mass m.1 This relation is

296 CHAPTER 9 ATOMIC STRUCTURE

Figure 9.1 (a) The magnetic field in the space surrounding a current-carrying wire
loop is that of a magnetic dipole with moment � perpendicular to the plane of the
loop. The vector � points in the direction of the thumb if the fingers of the right hand
are curled in the sense of the current i (right-hand rule). (b) The magnetic field in the
space surrounding a bar magnet is also that of a magnetic dipole. The dipole moment
vector � points from the south to the north pole of the magnet. (c) The magnetic mo-
ment � of an orbiting electron with angular momentum L. Since the electron is nega-
tively charged, � and L point in opposite directions.

(a)

i

µ
N

S

L

v
r

µ

(b) (c)

1This is one of Kepler’s laws of planetary motion, later shown by Newton to be a consequence of
any central force.
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easily verified for circular orbits, where �L � � mvr, v � 2�r/T, and A � �r 2,
so that

The same result holds for orbital motion of any kind (see Problem 2), so that
�� � � iA becomes

(9.1)

for the magnetic moment of an orbiting charge q. Since L is perpen-
dicular to the orbital plane, so too is �. You may verify that the sense
of the vector described by Equation 9.1 is consistent with that ex-
pected from the right-hand rule. Thus, the magnetic moment vector is
directed along the angular momentum vector, and its magnitude is fixed
by the proportionality constant q/2m, called the gyromagnetic ratio. For
electrons, q � �e so the direction of � is opposite the direction of L
(Fig. 9.1c).

On the atomic scale, the elemental unit of angular momentum is �. It fol-
lows that the natural unit for atomic moments is the quantity e�/2me, called
the Bohr magneton and designated by the symbol �B. Its value in SI units
( joules/tesla) is

(9.2)

Because � is proportional to L, the orbital magnetic moment is subject to
space quantization, as illustrated in Figure 9.2. In particular, the z component
of the orbital magnetic moment is fixed by the value of the magnetic quantum
number m� as

(9.3)

Just as with angular momentum, the magnetic moment vector can be visual-
ized as precessing about the z-axis, thereby preserving this sharp value of �z

while depicting the remaining components �x and �y as fuzzy.
The interaction of an atom with an applied magnetic field depends on the

size and orientation of the atom’s magnetic moment. Suppose an external
field B is applied along the z-axis of an atom. According to classical electro-
magnetism, the atom experiences a torque

� � � � B (9.4)

that tends to align its moment with the applied field. Instead of aligning
itself with B, however, the moment actually precesses around the field direc-
tion! This unexpected precession arises because � is proportional to the
angular momentum L. The motion is analogous to that of a spinning
top precessing in the Earth’s gravitational field. The gravitational torque
acting to tip it over instead results in precession because of the angular

�z � �
e

2me
Lz � �

e�

2me
m� � ��Bm�

�B �
e�

2me
� 9.274 � 10�24 J/T

� �
q

2m
L

� L � � m � 2�r

T �r � 2m � �r2

T � � 2m � A

T �  or  A

T
�

� L �
2m
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Magnetic moment of an

orbiting charge

Bohr magneton

A magnetic moment

precesses in a magnetic field
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298 CHAPTER 9 ATOMIC STRUCTURE

momentum possessed by the spinning top. Returning to the atomic case,
because � � dL/dt, we see from Equation 9.4 that the change in angular
momentum, dL, is always perpendicular to both L and B. Figure 9.3 depicts
the motion (precession) that results. For atoms in a magnetic field this is
known as Larmor precession.

From the geometry of Figure 9.3, we see that in a time dt the precession an-
gle increases by d�, where

L sin 	 
 d� � �dL �

But Equations 9.1 and 9.4 can be combined to give

For electrons we take q � �e and the frequency of precession, or Larmor fre-
quency �L, becomes

(9.5)

It is useful to introduce the quantum of energy ��L associated with the
Larmor frequency �L. This energy is related to the work required to reorient
the atomic moment against the torque of the applied field. Remembering that

�L �
d�

dt
�

1

L sin	

� dL �
dt

�
e

2me
B

� dL � � � � � dt � � q

2me
LB sin	 � dt

Figure 9.3 Larmor precession
of the orbital moment � in an
applied magnetic field B. Since
� is proportional to L, the
torque of the applied field
causes the moment vector � to
precess around the direction of
B with frequency �L � eB/2me.

µ

φ

θ

θ

B

L

dL

L sin
d

z

2 B

B

– B

–2 B

 = 

=

(  + 1)

6

� � B

B

� = 2

0
µ

µ

µ

µ

µ

µ

µ

µ

Figure 9.2 The orientations in space and z components of the orbital mag-
netic moment for the case � � 2. There are 2� � 1 � 5 different possible orien-
tations.
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the work of a torque � to produce an angular displacement d	 is dW � � d	, we
have from Equation 9.4

dW � ��B sin	 d	 � d(�B cos	) � d(� 
 B)

The minus sign signifies that the external torque must oppose that produced by
the magnetic field B. The work done is stored as orientational potential en-
ergy of the dipole in the field. Writing dW � �dU, we identify the magnetic
potential energy U as

(9.6)

Equation 9.6 expresses the fact that the energy of a magnetic dipole in
an external magnetic field B depends on its orientation in this field. The
magnetic energy is minimal when � and B are aligned; therefore, this align-
ment is the preferred orientation. Because the possible orientations for �

are restricted by space quantization, the magnetic energy is quantized
accordingly. Taking the z-axis along B, and combining Equations 9.1, 9.3,
and 9.6, we find

(9.7)

From Equation 9.7 we see that the magnetic energy of an atomic electron de-
pends on the magnetic quantum number m� (so named for this dependence!)
and, therefore, is quantized. The total energy of this electron is the sum of its
magnetic energy U plus whatever energy it had in the absence of an applied
field—say, E0. Therefore,

E � E0 � ��Lm� (9.8)

For atomic hydrogen, E0 depends only on the principal quantum number n;
in more complex atoms, the atomic energy also varies according to the sub-
shell label �, as discussed further in Section 9.5.

Unlike energies, the wavefunctions of atomic electrons are unaffected
by the application of a magnetic field. This somewhat surprising result can be
partly understood by recognizing that according to classical physics, the only
effect of the field is to cause (Larmor) precession around the direction of B.
For atomic electrons, this translates into precession of L about the z-axis. How-
ever, such a precession is already implicit in our semiclassical picture of elec-
tron orbits in the absence of external fields, as required by the sharpness of Lz

while Lx and Ly remain fuzzy. From this viewpoint, the introduction of an
applied magnetic field merely transforms this virtual precession2 into a real one
at the Larmor frequency!

U �
e

2me
L 
B �

eB

2me
Lz � ��Lm�

U � �� 
B
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2In zero magnetic field, the precession of the classical vector may be termed virtual (not real)
since even though the same value may not be obtained for Lx (or Ly) in successive measurements,
the average value �Lx� (or �Ly�) does not change over time. With B nonzero, however, it can be
shown that (d2/dt2) �Lx� � ��L

2 �Lx� (and similarly for �Ly�), indicating that �Lx� (and �Ly�) oscil-
lates at the Larmor frequency �L.

The energy of a magnetic

moment depends on its

orientation in a magnetic field
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300 CHAPTER 9 ATOMIC STRUCTURE

Evidence for the existence of atomic moments is the appearance of extra
lines in the spectrum of an atom that is placed in a magnetic field. Consider a
hydrogen atom in its first excited (n � 2) state. For n � 2, � can have values 0
and 1. The magnetic field has no effect on the state for which � � 0, since
then m� � 0. For � � 1, however, m� can take values of 1, 0, and �1, and the
first excited level is split into three levels by the magnetic field (Figure 9.4).

(       +       )(       –       )

No magnetic field Magnetic field present

Spectrum with magnetic
field present

Spectrum without 
magnetic field

0 0 L 0 0 L

n  =  2,     =  1�

h

n  =  1,     =  0�

0

h 0 h L
(       –       ) h 0 h L

(      +         )

h 0

�m   =  1

�m   =  0

�m   =  –1

�m   =  0

ω

ω ω ω

ω

ω ω ω ω ωω

ω

With n � 2, � can be 0 or 1, and m� is 0(twice) and 1.
Thus, the magnetic energy U can be 0, ���L, or ���L.
In such applications, the energy quantum ��L is called
the Zeeman energy. This Zeeman energy divided by � is
the Larmor frequency:

�L �
5.79 � 10�5 eV

6.58 � 10�16 eV
s
� 8.80 � 1010 rad/s

� 9.27 � 10�24 J � 5.79 � 10�5 eV

EXAMPLE 9.1 Magnetic Energy of the 
Electron in Hydrogen

Calculate the magnetic energy and Larmor frequency for
an electron in the n � 2 state of hydrogen, assuming the
atom is in a magnetic field of strength B � 1.00 T.

Solution Taking the z -axis along B, we calculate the
magnetic energy from Equation 9.7 as

For a 1.00 T field, the energy quantum ��L has the value

��L �
e�

2me
B � �BB � (9.27 � 10�24 J/T)(1.00 T)

U �
eB

2me
Lz �

e�

2me
Bm� � ��Lm�

Figure 9.4 Level splittings for the ground and first excited states of a hydrogen
atom immersed in a magnetic field B. An electron in one of the excited states decays
to the ground state with the emission of a photon, giving rise to emission lines at �0,
�0 � �L, and �0 � �L. This is the normal Zeeman effect. When B � 0, only the line
at �0 is observed.
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9.1 ORBITAL MAGNETISM AND THE NORMAL ZEEMAN EFFECT 301

The original (Lyman) emission line is replaced by the three lines depicted in
Figure 9.4. The central line appears at the same frequency �0 as it would with-
out a magnetic field. This is flanked on both sides by new lines at frequencies
�0  �L. Therefore, the magnetic field splits the original emission line into
three lines. Because �L is proportional to B, the amount of splitting increases
linearly with the strength of the applied field. This effect of spectral line
splitting by a magnetic field is known as the normal Zeeman effect after
its discoverer, Pieter Zeeman.

Zeeman spectra of atoms excited to higher states should be more complex,
because many more level splittings are involved. For electrons excited to the
n � 3 state of hydrogen, the expected Zeeman lines and the atomic transitions
that give rise to them are shown in Figure 9.5. Accompanying each hydrogen
line are anywhere from two to six satellites at frequencies removed from the
original by multiples of the Larmor frequency. But the observed Zeeman spec-
trum is not this complicated, owing to selection rules that limit the transitions

n  =  3

n  =  2

n  =  1

Spectrum

+ 2
+ 1

0
– 1

– 2

l  =  2

l  =  1
+ 1

0

– 1

l  =  00

�
m

–2 L +2 L– L L–3 L +3 L

3,2 2,1 3,1ω

ω ω

ω

ω

ω

ω ω ω

Figure 9.5 Zeeman spectral lines and the underlying atomic transitions that give rise
to them for an electron excited to the n � 3 state of hydrogen. Because of selection
rules, only the transitions drawn in color actually occur. Transitions from the n � 3,
l � 1 orbitals (not shown) to the n � 1 state give rise to the colored lines in the illustra-
tion at the bottom right.

The normal Zeeman effect
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to those for which � changes by 1 and m� changes by 0, �1, or �1. The result
is that satellites appear at the Larmor frequency only and not at multiples of
this frequency. The selection rules express conservation of angular momen-
tum for the system, taking into account the angular momentum of the emitted
photon. (See Section 8.5.)

Finally, even the splitting of an emission line into a triplet of equally spaced
lines as predicted here, called the normal Zeeman effect, frequently is not ob-
served. More commonly, splittings into four, six, or even more unequally
spaced lines are seen. This is the anomalous Zeeman effect, which has its roots
in the existence of electron spin.

9.2 THE SPINNING ELECTRON

The anomalous Zeeman splittings are only one of several phenomena not
explained by the magnetic interactions discussed thus far. Another is the
observed doubling of many spectral lines referred to as fine structure. Both
effects are attributed to the existence of a new magnetic moment—the spin
moment—that arises from the electron spinning on its axis.

We have seen that the orbital motion of charge gives rise to magnetic
effects that can be described in terms of the orbital magnetic moment � given
by Equation 9.1. Similarly, a charged object in rotation produces magnetic
effects related to the spin magnetic moment �s. The spin moment is found
by noting that a rotating body of charge can be viewed as a collection of
charge elements �q with mass �m all rotating in circular orbits about a fixed
line, the axis of rotation (Fig. 9.6). To each of these we should apply Equation
9.1 with L replaced by Li, the orbital angular momentum of the ith charge
element (Fig. 9.6b). If the charge-to-mass ratio is uniform throughout the
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z

x

y

∆q

S

z

x

y

∆q

Li

ri
pi

(a) (b)

Figure 9.6 (a) A spinning charge q may be viewed as a collection of charge elements
�q orbiting a fixed line, the axis of rotation. (b) The circular path followed by one such
charge element. The angular momentum of this charge element Li � ri � pi lies along
the axis of rotation. The magnetic moments accompanying these orbiting charge ele-
ments are summed to give the total magnetic moment of rotation, or spin magnetic
moment, of the charge q.
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body, then �q/�m is the ratio of total charge q to total mass me and we get for
the spin moment

(9.9)

where S, the spin angular momentum, is the total angular momentum of
rotation. The spin angular momentum S points along the axis of rotation
according to a right-hand rule, as shown in Figure 9.6; its magnitude depends
on the size and shape of the object, as well as its speed of rotation. If the
charge-to-mass ratio is not uniform, the gyromagnetic ratio in Equation 9.9,
q/2me, must be multiplied by a dimensionless constant, the g factor, whose
value reflects the detailed charge-to-mass distribution within the body. Note
that g factors different from unity imply a distribution of charge that is not

�s �
q

2me
� Li �

q

2me
S
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A rotating charge gives rise

to a spin magnetic moment

O
tto Stern was one of the
finest experimental physicists
of the 20th century. Born

and educated in Germany (Ph.D. in
physical chemistry in 1912), he at first
worked with Einstein on theoretical
issues in molecular theory, in particu-
lar applying the new quantum ideas
to theories of the specific heat of
solids. From about 1920, Stern de-
voted himself to his real life’s work,
the development of the molecular
beam method, which enabled him to
investigate the properties of free or
isolated atoms and culminated in a
Nobel prize in 1945. In this method, a
thin stream of atoms is introduced
into a high-vacuum chamber where
the atoms are free, and hence the
properties of individual atoms may
be investigated by applying external
fields or by some other technique.

Stern first used this method to
confirm that silver atoms obey the
Maxwell speed distribution. Shortly
after, in a series of elegant and diffi-
cult experiments with Walter Gerlach,
Stern showed that silver atoms obey
space quantization and succeeded in
measuring the magnetic moment of
the silver atom. In the period from
1923 to 1933, Stern directed a re-
markably productive molecular beam
laboratory at the University of Ham-
burg. With his students and cowork-
ers he directly demonstrated the wave

nature of helium atoms and mea-
sured the magnetic moments of many
atoms. Finally, with a great deal of ef-
fort, he succeeded in measuring the
very small magnetic moments of the
proton and deuteron. For these last
important fundamental measure-
ments he was awarded the Nobel
prize. In connection with the mea-
surement of the proton’s magnetic
moment, an interesting story is told
by Victor Weisskopf, which should
gladden the hearts of experimental-
ists everywhere:

“There was a seminar held by the
theoretical group in Göttingen, and
Stern came down and gave a talk on

the measurements he was about to
finish of the magnetic moment of the
proton. He explained his apparatus,
but he did not tell us the result. He
took a piece of paper and went to
each of us saying, ‘What is your pre-
diction of the magnetic moment of
the proton?’ Every theoretician from
Max Born down to Victor Weisskopf
said, ‘Well, of course, the great thing
about the Dirac equation is that it
predicts a magnetic moment of one
Bohr magneton for a particle of spin
one-half!’ Then he asked us to write
down the prediction; everybody wrote
‘one magneton.’ Then, two months
later, he came to give again a talk
about the finished experiment, which
showed that the value was 2.8 magne-
tons. He then projected the paper
with our predictions on the screen. It
was a sobering experience.”*

In protest over Nazi dismissals of
some of his closest coworkers, Stern
resigned his post in Hamburg and
came to the Carnegie Institute of
Technology in the United States in
1933. Here he worked on molecular
beam research until his retirement
in 1946.

*From Victor F. Weisskopf, Physics in the

Twentieth Century; Selected Essays: My Life

as a Physicist, Cambridge, MA, The MIT
Press, 1972.

OTTO STERN

(1888–1969)
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304 CHAPTER 9 ATOMIC STRUCTURE

tightly linked to the distribution of mass, an unusual circumstance but one
that cannot be excluded.3

The existence of a spin magnetic moment for the electron was first demon-
strated in 1921 in a classic experiment performed by Otto Stern and Walter
Gerlach. Electron spin was unknown at that time; the Stern–Gerlach experi-
ment was originally conceived to demonstrate the space quantization associ-
ated with orbiting electrons in atoms. In their experiment, a beam of silver
atoms was passed through a nonuniform magnetic field created in the gap be-
tween the pole faces of a large magnet. The beam was then detected by being
deposited on a glass collector plate (Fig. 9.7). A nonuniform field exerts a
force on any magnetic moment, so that each atom is deflected in the gap by
an amount governed by the orientation of its moment with respect to the di-
rection of inhomogeneity (the z-axis), as illustrated in Figure 9.7b. If the mo-
ment directions are restricted by space quantization as in Figure 9.2, so too are
the deflections. Thus, the atomic beam should split into a number of discrete
components, one for each distinct moment orientation present in the beam.
This is contrary to the classical expectation that any moment orientation (and
hence any beam deflection) is possible, and all would combine to produce a
continuous fanning of the atomic beam (Fig. 9.7c).

The Stern–Gerlach experiment produced a staggering result: The silver
atomic beam was clearly split—but into only two components, not the odd num-
ber (2� � 1) expected from the space quantization of orbital moments! This is
all the more remarkable when we realize that silver atoms in their ground state
have no orbital angular momentum (� � 0), because the outermost electron in
silver normally would be in an s state. The result was so surprising that the
experiment was repeated in 1927 by T. E. Phipps and J. B. Taylor with a beam of
hydrogen atoms replacing silver, thereby eliminating any uncertainties arising
from the use of the more complex silver atoms. The results, however, were
unchanged. From these experiments, we are forced to conclude that there is
some contribution to the atomic magnetic moment other than the orbital
motion of electrons and that this moment is subject to space quantization.

Our present understanding of the situation dates to the 1925 paper
of Samuel Goudsmit and George Uhlenbeck, then graduate students at
the University of Leiden. Goudsmit and Uhlenbeck believed that the
unknown moment had its origin in the spinning motion of atomic
electrons, with the spin angular momentum obeying the same quantization
rules as orbital angular momentum. The magnetic moment seen in
the Stern – Gerlach experiment is attributed to the spin of the outermost
electron in silver. Because all allowed orientations of the spin moment
should be represented in the atomic beam, the observed splitting presents a
dramatic confirmation of space quantization as applied to electron spin,
with the number of components (2s � 1) indicating the value of the spin
quantum number s.

The spin magnetic moment suggests that the electron can be viewed as a
charge in rotation, although the classical picture of a spinning body of

3It is only fair to caution the reader at this point not to take the classical view of an electron as a
tiny charged ball spinning on its axis too literally. Although such a picture is useful in first intro-
ducing and visualizing electron spin, it is not technically correct. Several shortcomings of the clas-
sical picture are discussed in detail on pp. 306 and 307.
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9.2 THE SPINNING ELECTRON 305

charge must be adjusted to accommodate the wave properties of matter.
The resulting semiclassical model of electron spin can be summarized as
follows:

• The spin quantum number s for the electron is ! This value is dictated
by the observation that an atomic beam passing through the Stern–
Gerlach magnet is split into just two components (� 2s � 1). Accord-
ingly, there are exactly two orientations possible for the spin axis,
described as the “spin-up” and “spin-down” states of the electron. This
is space quantization again, according to the quantization rules for
angular momentum4 as applied to a spin of :

where or (9.10)

The two values �/2 for Sz correspond to the two possible orientations
for S shown in Figure 9.8. The value ms � � refers to the spin-up case,
sometimes designated with an up arrow (q) or simply a plus sign (�).
Likewise, ms � � is the spin-down case, (p) or (�). The fact that s has a
nonintegral value suggests that spin is not merely another manifestation
of orbital motion, as the classical picture implies.

1
2

1
2

�1
2ms � 1

2Sz � ms�

1
2

1
2 Properties of electron spin

Figure 9.7 The Stern–Gerlach experiment to detect space quantization. (a) A beam
of silver atoms is passed through a nonuniform magnetic field and detected on a
collector plate. (b) The atoms, with their magnetic moment, are equivalent to tiny bar
magnets. In a nonuniform field, each atomic magnet experiences a net force that
depends on its orientation. (c) If any moment orientation were possible, a continuous
fanning of the beam would be seen at the collector. For space quantization, the
fanning is replaced by a set of discrete lines, one for each distinct moment orientation
present in the beam.
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4For integer angular momentum quantum numbers, the z component is quantized as ms � 0, 1, . . .
s, which can also be written as ms � s, s �1, . . . , �s. For s � , the latter implies ms � or .�1
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• The magnitude of the spin angular momentum is

(9.11)

and never changes! This angular momentum of rotation cannot be
changed in any way, but is an intrinsic property of the electron, like
its mass or charge. The notion that �S � is fixed contradicts classical laws,
where a rotating charge would be slowed down by the application of a
magnetic field owing to the Faraday emf that accompanies the changing
magnetic field (the diamagnetic effect). Furthermore, if the electron
were viewed as a spinning ball with angular momentum subject to
classical laws, parts of the ball near its surface would be rotating with
velocities in excess of the speed of light!5 All of this is taken to mean that
the classical picture of the electron as a charge in rotation must not be
pressed too far; ultimately, the spinning electron is a quantum entity defy-
ing any simple classical description.

• The spin magnetic moment is given by Equation 9.9 with a g factor of 2;
that is, the moment is twice as large as would be expected for a body with

�√3/2

� S � � √s(s � 1)� �
√3

2
�
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Spin up

S =  3

2

ms = – 1
2

Spin down

–1
2

1
2

0

Sz

1
2

ms =h

h

h

The spin angular momentum

of an electron

5This follows from the extremely small size of the electron. The exact size of the electron is un-
known, but an upper limit of 10�6 Å is deduced from experiments in which electrons are scat-
tered from other electrons. According to some current theories, the electron may be a true point
object, that is, a particle with zero size!

Figure 9.8 The spin angular mo-
mentum also exhibits space quan-
tization. This figure shows the two
allowed orientations of the spin
vector S for a spin particle, such
as the electron.

1
2
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9.2 THE SPINNING ELECTRON 307

spin angular momentum given by Equation 9.10. The value g � 2 is
required by the amount of beam deflection produced by the Stern–
Gerlach magnet; the larger the magnetic moment, the greater will be the
deflection of the atomic beam. As already mentioned, any g factor other
than unity implies a nonuniform charge-to-mass ratio in the classical pic-
ture. The g factor of 2 can be realized classically but suggests a bizarre
picture that cannot be taken seriously (see Problem 8). The correct g fac-
tor of 2 is predicted by the relativistic quantum theory of the electron put
forth by Paul Dirac in 1929.6

With the recognition of electron spin we see that an additional quantum
number, ms, is needed to specify the internal, or spin, state of an electron.
Therefore, the state of an electron in hydrogen must be described by the four
quantum numbers n, �, m�, and ms. Furthermore, the total magnetic moment
now has orbital and spin contributions:

(9.12)

Because of the electron g factor, the total moment � is no longer in the same
direction as the total (orbital plus spin) angular momentum J � L � S. The
component of the total moment � along J is sometimes referred to as the ef-
fective moment. When the magnetic field B applied to an atom is weak, the
effective moment determines the magnetic energy of atomic electrons accord-
ing to Equation 9.6. As we shall discover in Section 9.3, the number of possible
orientations for J (and, hence, for the effective moment) is even, leading to
the even number of spectral lines seen in the anomalous Zeeman effect.

� � �0 � �s �
�e

2me
{L � gS}

6The g factor for the electron is not exactly 2. The best value to date is g � 2.00232. The discrep-
ancy between Dirac’s predicted value and the observed value is attributed to the electron inter-
acting with the “vacuum.” Such effects are the subject of quantum electrodynamics, developed by
Richard Feynman in the early 1950s.

The total magnetic moment

of an electron

For the up spin state, we take the plus sign and get
cos	 � 0.577, or 	 � 54.7°. The down spin orientation is
described by the minus sign and gives cos	 � �0.577, or
	 � 125.3°. Because the axis of rotation coincides with
the direction of the spin vector, these are the angles the
rotation axis makes with the z-axis.

While Sz is sharp in either the up or down spin orien-
tation, both Sx and Sy are fuzzy. This fuzziness may be de-
picted by allowing the spin vector to precess about the 
z -axis, as we did for the orbital angular momentum in
Chapter 8.

EXAMPLE 9.2 Semiclassical Model for
Electron Spin

Calculate the angles between the z-axis and the spin angu-
lar momentum S of the electron in the up and down spin
states. How should we portray the fuzziness inherent in the
x and y components of the spin angular momentum?

Solution For the electron, the magnitude of the spin
angular momentum is , and the z compo-
nent of spin is Sz � �/2. Thus, the spin vector S is in-
clined from the z -axis at angles given by

cos 	 �
Sz

� S �
� 

1

√3

� S � � �√3/2
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Exercise 1 The photon is a spin 1 particle, that is, s � 1 for the photon. Calculate the
possible angles between the z-axis and the spin vector of the photon.

Answer 45�, 90�, and 135�
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values 0 (twice) and 1, there is an orbital contribution
to the magnetic energy U0 � m���L that introduces new
levels at E2  ��L, as discussed in Example 9.1. The pres-
ence of electron spin splits each of these into a pair of
levels, the additional (spin) contribution to the energy
being Us � (gms)��L (Fig. 9.9). Because g � 2 and ms is
 for the electron, the spin energy in the field �Us � is

again the Zeeman energy ��L. Therefore, an electron in
this shell can have any one of the energies

E2, E2  ��L, E2  2��L

In making a downward transition to the n � 1 shell with
energy E1 � �13.6 eV, the final state of the electron may
have energy E1 � ��L or E1 � ��L, depending on the
orientation of its spin in the applied field. Therefore, the
energy of transition may be any one of the following pos-
sibilities:

�E2,1, �E2,1  ��L, �E2,1  2��L, �E2,1  3��L

1
2

EXAMPLE 9.3 Zeeman Spectrum of Hydrogen
Including Spin

Examine the Zeeman spectrum produced by hydrogen
atoms initially in the n � 2 state when electron spin is
taken into account, assuming the atoms to be in a mag-
netic field of magnitude B � 1.00 T.

Solution The electron energies now have a magnetic
contribution from both the orbital and spin motions.
Choosing the z-axis along the direction of B, we calculate
the magnetic energy from Equations 9.6 and 9.12:

The energy (e�/2me)B is the Zeeman energy �BB or ��L;
its value in this example is

�BB � (9.27 � 10�24 J/T)(1.00 T) � 9.27 � 10�24 J

� 5.79 � 10�5 eV

For the n � 2 state of hydrogen, the shell energy is
E2 � �(13.6 eV)/22 � �3.40 eV. Because m� takes the

U � �� 
B �
e

2me
B{Lz � gSz} �

e�

2me
B(m� � gms)

Without spin With spin

Spectrum with spinSpectrum without spin
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–3 L +3 L

2,1

n  =  2, m =
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l  =  0

m =  1, ms  =  1/2
m =  0, ms  =  1/2
m = 1, ms  = �1/2
m =  0, ms  =  –1/2
m =  –1, ms  =  –1/2

m =  0, ms  =  1/2
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Figure 9.9 (Example 9.3) Predicted Zeeman pattern and underlying atomic transi-
tions for an electron excited to the n � 2 state of hydrogen, when electron spin is
taken into account. Again, selection rules prohibit all but the colored transitions.
Because of the neglect of the spin–orbit interaction, the effect shown here (called the
Paschen–Back effect) is observed only in very intense applied magnetic fields.
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9.3 THE SPIN–ORBIT INTERACTION AND
OTHER MAGNETIC EFFECTS

The existence of both spin and orbital magnetic moments for the electron in-
evitably leads to their mutual interaction. This so-called spin–orbit interac-
tion is best understood from the vantage point of the orbiting electron, which
“sees” the atomic nucleus circling it (Fig. 9.10). The apparent orbital motion
of the nucleus generates a magnetic field at the electron site, and the electron
spin moment acquires magnetic energy in this field according to Equation 9.6.
This can be thought of as an internal Zeeman effect, with B arising from the
orbital motion of the electron itself. The electron has a higher energy when its
spin is up, or aligned with B, than when its spin is down, or aligned opposite
to B (Fig. 9.10b).

The energy difference between the two spin orientations is responsible
for the fine structure doubling of many atomic spectral lines. For example,
the 2p : 1s transition in hydrogen is split into two lines because the 2p level
is actually a spin doublet with a level spacing of about 5 � 10�5 eV (Fig. 9.11),
while the 1s level remains unsplit (there is no orbital field in a state with
zero orbital angular momentum). Similarly, the spin–orbit doubling of the
sodium 3p level gives rise to the well-known sodium D lines to be discussed
in Example 9.4.

The coupling of spin and orbital moments implies that neither orbital an-
gular momentum nor spin angular momentum is conserved separately.
But total angular momentum J � L � S is conserved, so long as no external
torques are present. Consequently, quantum states exist for which � J � and Jz
are sharp observables quantized in the manner we have come to expect for an-
gular momentum:

Jz � mj� with mj � j, j � 1, . . . , �j

(9.13)

Permissible values for the total angular momentum quantum number j are

j � � � s, � � s � 1, . . . , �� � s � (9.14)

in terms of the orbital (�) and spin (s) quantum numbers. For an atomic elec-
tron s � and � � 0, 1, 2, . . . , so j � (for � � 0) and j � �  (for � � 0).1

2
1
2

1
2

� J � � √j( j � 1)�
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eliminating the satellites at �2,1  3�L. Furthermore, the
spin moment and the orbital moment of the electron
interact with each other, a circumstance not recognized in
our calculation. Only when this spin–orbit interaction
energy is small compared with the Zeeman energy, ��L,
do we observe the spectral lines predicted here. This is
the case for the Paschen–Back effect, in which the
magnetic field applied to the atom is intense enough to
make ��L the dominant energy. Typically, to observe the
Paschen–Back effect requires magnetic fields in excess of
several tesla.

Photons emitted with these energies have frequencies

�2,1, �2,1  �L, �2,1  2�L, �2,1  3�L

Therefore the spectrum should consist of the original
line at �2,1 flanked on both sides by satellite lines sepa-
rated from the original by the Larmor frequency, twice
the Larmor frequency, and three times this frequency.
Notice that the lines at �2,1  2�L and �2,1  3�L appear
solely because of electron spin.

Again, however, the observed pattern is not the
predicted one. Selection rules inhibit transitions unless
m� � ms changes by 0, �1, or �1. This has the effect of
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These results can be deduced from the vector addition model shown in Figure
9.12a. With j � , there are only two possibilities for mj, namely mj �  . For

j � �  , the number of possibilities (2j � 1) for mj becomes either 2� or
2� � 2. Notice that the number of mj values is always even for a single electron,
leading to an even number of orientations in the semiclassical model for J

1
2

1
2

1
2
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∆E ≅  2 B  =  5 ×  10–5  eVµ

µ

µ

Figure 9.11 The 2p level of hydrogen is split by the spin–orbit effect into a doublet
separated by the spin–orbit energy �E � 5 � 10�5 eV. The higher energy state is the
one for which the spin angular momentum of the electron is “aligned” with its orbital
angular momentum. The 1s level is unaffected, since no magnetic field arises for or-
bital motion with zero angular momentum.

Figure 9.12 (a) A vector model for determining the total angular momentum
J � L � S of a single electron. (b) The allowed orientations of the total angular mo-
mentum J for the states j � and j � . Notice that there are now an even number
of orientations possible, not the odd number familiar from the space quantization
of L alone.
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Figure 9.10 (a) Left: An elec-
tron with angular momentum L
orbiting the nucleus of an atom.
In the spin-up orientation shown
here, the spin angular momen-
tum S of the electron is
“aligned” with L. Right: From the
viewpoint of the orbiting elec-
tron, the nucleus circulates as
shown. (b) The apparently circu-
lating nuclear charge is repre-
sented by the current i and
causes a magnetic field B at the
site of the electron. In the pres-
ence of B, the electron spin
moment �s acquires magnetic
energy U � ��s 
B. The spin
moment �s is opposite the spin
vector S for the negatively
charged electron. The direction
of B is given by a right-hand
rule: With the thumb of the right
hand pointing in the direction of
the current i, the fingers give the
sense in which the B field circu-
lates about the orbit path. The
magnetic energy is highest for
the case shown, where S and L
are “aligned.”
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(Fig. 9.12b), rather than the odd number predicted for the orbital angular
momentum L alone.

A common spectroscopic notation is to use a subscript after a letter to
designate the total angular momentum of an atomic electron, where the let-
ter itself (now uppercase) describes its orbital angular momentum. For
example, the notation 1S1/2 describes the ground state of hydrogen,
where the 1 indicates n � 1, the S tells us that � � 0, and the subscript 

denotes j � . Likewise, the spectroscopic notations for the n � 2 states of

hydrogen are 2S1/2(� � 0, j � ), 2P3/2(� � 1, j � ), and 2P1/2(� � 1, j � ).

Again, the spin–orbit interaction splits the latter two states in energy by

about 5 � 10�5 eV.

1
2

3
2

1
2

1
2

1
2
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For the sodium doublet, the observed wavelength differ-
ence is

�2 � �1 � 589.592 nm � 588.995 nm � 0.597 nm

Using this with hc � 1240 eV 
 nm gives

�E �
(1240 eV
nm)(0.597 nm)

(589.592 nm)(588.995 nm)
� 2.13 � 10�3 eV

EXAMPLE 9.4 The Sodium Doublet

The famed sodium doublet arises from the spin–orbit
splitting of the sodium 3p level, and consists of the
closely spaced pair of spectral lines at wavelengths of
588.995 nm and 589.592 nm. Show on an energy-level di-
agram the electronic transitions giving rise to these lines,
labeling the participating atomic states with their proper
spectroscopic designations. From the doublet spacing,
determine the magnitude of the spin–orbit energy.

Solution The outer electron in sodium is the first
electron to occupy the n � 3 shell, and it would go into
the lowest-energy subshell, the 3s or 3S1/2 level.
The next-highest levels belong to the 3p subshell. The
2(2� � 1) � 6 states of this subshell are grouped into
the 3P1/2 level with two states, and the 3P3/2 level with
four states. The spin – orbit effect splits these levels
by the spin – orbit energy. The outer electron, once it
is excited to either of these levels by some means (such
as an electric discharge in the sodium vapor lamp),
returns to the 3S1/2 level with the emission of a pho-
ton. The two possible transitions 3P3/2 : 3S1/2 and
3P1/2 : 3S1/2 are shown in Figure 9.13. The emitted
photons have nearly the same energy but differ by
the small amount �E representing the spin – orbit split-
ting of the initial levels. Since E � hc/� for photons,
�E is found as

�E �
hc

�1
�

hc

�2
�

hc(�2 � �1)

�1�2

∆E3p

3s 3S1/2

3P1/2

3P3/2

588.995 nm 589.592 nm

Figure 9.13 (Example 9.4). The transitions 3P3/2 : 3S1/2

and 3P1/2 : 3S1/2 that give rise to the sodium doublet. The
3p level of sodium is split by the spin–orbit effect, but the 3s

level is unaffected. In the sodium vapor lamp, electrons
normally in the 3s level are excited to the 3p levels by an
electric discharge.

Spectroscopic notation

extended to include spin

Exercise 2 Using the spin–orbit interaction energy calculated in Example 9.4, calcu-
late the magnitude of the magnetic field at the site of the orbiting 3p electron in
sodium.

Answer B � 18.38 T, a large field by laboratory standards.
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9.4 EXCHANGE SYMMETRY AND THE
EXCLUSION PRINCIPLE

As mentioned earlier, the existence of spin requires that the state of an atomic
electron be specified with four quantum numbers. In the absence of spin–
orbit effects these could be n, �, m�, and ms; if the spin–orbit interaction is
taken into account, m� and ms are replaced by j and mj. In either case, four
quantum numbers are required, one for each of the four degrees of freedom
possessed by a single electron.

In those systems where two or more electrons are present, we might
expect to describe each electronic state by giving the appropriate set of four
quantum numbers. In this connection an interesting question arises,
namely, “How many electrons in an atom can have the same four quantum
numbers, that is, be in the same state?” This important question was
answered by Wolfgang Pauli in 1925 in a powerful statement known as
the exclusion principle. The exclusion principle states that no two
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W
olfgang Pauli was an ex-
tremely talented Austrian
theoretical physicist who

made important contributions in
many areas of modern physics. At the
age of 21, Pauli gained public recog-
nition with a masterful review article
on relativity, which is still considered
to be one of the finest and most com-
prehensive introductions to the sub-
ject. Other major contributions were
the discovery of the exclusion princi-
ple, the explanation of the connec-
tion between particle spin and statis-
tics, theories of relativistic quantum
electrodynamics, the neutrino hy-
pothesis, and the hypothesis of nu-
clear spin. An article entitled “The
Fundamental Principles of Quantum
Mechanics,” written by Pauli in 1933
for the Handbuch der Physik, is widely
acknowledged to be one of the best
treatments of quantum physics ever
written. Pauli was a forceful and col-
orful character, well known for his
witty and often caustic remarks di-
rected at those who presented new
theories in a less than perfectly clear
manner. Pauli exerted great influ-
ence on his students and colleagues
by forcing them with his sharp criti-
cism to a deeper and clearer under-

standing. Victor Weisskopf, one of
Pauli’s famous students, has aptly
described him as “the conscience of
theoretical physics.” Pauli’s sharp
sense of humor was also nicely cap-
tured by Weisskopf in the following
anecdote:

“In a few weeks, Pauli asked me to
come to Zurich. I came to the big
door of his office, I knocked, and no
answer. I knocked again and no an-
swer. After about five minutes he said,
rather roughly, “Who is it? Come in!”

I opened the door, and here was
Pauli—it was a very big office—at the
other side of the room, at his desk,
writing and writing. He said, “Who is
this? First I must finish calculating.”
Again he let me wait for about five
minutes and then: “Who is that?” “I
am Weisskopf.” “Uhh, Weisskopf, ja,
you are my new assistant.” Then he
looked at me and said, “Now, you see
I wanted to take Bethe, but Bethe
works now on the solid state. Solid
state I don’t like, although I started it.
This is why I took you.” Then I said,
“What can I do for you, sir?” and he
said “I shall give you right away a
problem.” He gave me a problem,
some calculation, and then he said,
“Go and work.” So I went, and after
10 days or so, he came and said,
“Well, show me what you have done.”
And I showed him. He looked at it
and exclaimed: “I should have taken
Bethe!”*

*From Victor F. Weisskopf, Physics in the

Twentieth Century: Selected Essays: My Life

as a Physicist. Cambridge, MA, The MIT
Press, 1972, p. 10.

WOLFGANG PAULI

(1900–1958)
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electrons in an atom can have the same set of quantum numbers. We
should point out that if this principle were not valid, every electron would
occupy the 1s atomic state (this being the state of lowest energy), the chem-
ical behavior of the elements would be drastically different, and nature as
we know it would not exist!

The exclusion principle follows from our belief that electrons are identical
particles—that it is impossible to distinguish one electron from another. This
seemingly innocuous statement takes on added importance in view of the wave
nature of matter, and has far-reaching consequences. To gain an appreciation
for this point, let us consider a collision between two electrons, as shown in
Figure 9.14. Figures 9.14a and 9.14b depict two distinct events, the scattering
effect being much stronger in the latter where the electrons are turned
through a larger angle. Each event, however, arises from the same initial
condition and leads to the same outcome—both electrons are scattered
and emerge at angles 	 relative to the axis of incidence. Had we not followed
their paths, we could not decide which of the two collisions actually occurred,
and the separate identities of the electrons would have been lost in the
process of collision.

But paths are classical concepts, blurred by the wave properties of matter
according to the uncertainty principle. That is, there is an inherent fuzziness
to these paths, which blends them inextricably in the collision region, where
the electrons may be separated by only a few de Broglie wavelengths. The
quantum viewpoint is better portrayed in Figure 9.14c, where the two distinct
possibilities (from a classical standpoint) merge into a single quantum
event—the scattering of two electrons through an angle 	. Note that indis-
tinguishability plays no role in classical physics: All particles, even identical
ones, are distinguishable classically through their paths! With our acceptance
of matter waves, we must conclude that identical particles cannot be told

9.4 EXCHANGE SYMMETRY AND THE EXCLUSION PRINCIPLE 313

Figure 9.14 The scattering of two electrons as a result of their mutual repulsion.
The events depicted in (a) and (b) produce the same outcome for identical
electrons but are nonetheless distinguishable classically because the path taken
by each electron is different in the two cases. In this way, the electrons retain
their separate identities during collision. (c) According to quantum mechanics,
the paths taken by the electrons are blurred by the wave properties of matter.
In consequence, once they have interacted, the electrons cannot be told apart in
any way!
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a b
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2
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apart in any way—they are truly indistinguishable. Incorporating this
remarkable fact into the quantum theory leads to the exclusion principle
discovered by Pauli.

Let us see how indistinguishability affects our mathematical description
of a two-electron system, say, the helium atom. Each electron has kinetic
energy and the atom has electrostatic potential energy associated with the
interaction of the two electrons with the doubly charged helium nucleus.
These contributions are represented in Schrödinger’s equation for one
electron by terms

where �1
2 is the Laplacian in this electron’s coordinate, r1. For brevity, let us

write the sum of both terms simply as h(1)�, with the label 1 referring to r1.
For the second electron, we write the same expression, except that r1 must be
replaced everywhere by r2, the coordinate of the second electron. The station-
ary states for our two-electron system satisfy Schrödinger’s time-independent
equation,

h(1)� � h(2)� � E� (9.15)

The fact that h(1) and h(2) are the same but for their arguments reflects the
indistinguishability of the two electrons.

Equation 9.15 accounts for the electrons’ kinetic energy and the atom’s
potential energy, but ignores the interaction between the two electrons. In
fact, the electrons repel each other through the Coulomb force, leading to an
interaction energy that must be added to the left-hand side of Equation 9.15.
For simplicity, we shall ignore this interaction and treat the electrons as inde-
pendent objects, each unaffected by the other’s presence. In Section 9.5 we
show how this independent particle approximation can be improved to give a bet-
ter description of reality.

The two-electron wavefunction depends on the coordinates of both parti-
cles, � � �(r1, r2), with ��(r1, r2) �2 representing the probability density for
finding one electron at r1 and the other at r2. The indistinguishability of elec-
trons requires that a formal interchange of particles produce no observable
effects. In particular, all probabilities are unaffected by the interchange, so the
wavefunction � must be one for which

��(r1, r2) �2 � ��(r2, r1) �2

We say that such a wavefunction exhibits exchange symmetry. The wavefunc-
tion itself may be either even or odd under particle exchange. The former is
characterized by the property

(9.16)

and describes a class of particles called bosons. Photons belong to this class, as
do some more exotic particles such as pions. Electrons, as well as protons and
neutrons, are examples of fermions, for which

�(r1, r2) � �(r2, r1)

�
�2

2me
�1

2� �
k(2e)(�e)

r1
�
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Exchange symmetry

for bosons

Electrons are truly

indistinguishable
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(9.17)

Therefore, our two-electron helium wavefunction must obey Equation 9.17 to
account for the indistinguishability of electrons.7

To recover the Pauli principle, we must examine the wavefunction more
closely. For independent electrons, solutions to Equation 9.15 are easily
found. Because each electron “sees” only the helium nucleus, the wavefunc-
tion in each coordinate must be an atomic function of the type discussed in
Chapter 8. We denote these atomic functions by �a, where a is a collective la-
bel for the four quantum numbers n, �, m�, and ms (or n, �, j, and mj if
spin–orbit effects are included). The products �a(r1)�b(r2) satisfy our equa-
tion, because

h(1)�a(r1)�b(r2) � Ea�a(r1)�b(r2)

h(2)�a(r1)�b(r2) � Eb�a(r1)�b(r2)

Ea and Eb are hydrogen-like energies for the states labeled a and b (see Eq.
8.38). Therefore,

[h(1) � h(2)]�a(r1)�b(r2) � (Ea � Eb)�a(r1)�b(r2) (9.18)

and E � Ea � Eb is the total energy of this two-electron state.
Notice that the one-electron energies are simply additive, as we might have

anticipated for independent particles. Furthermore, the solution �a(r1)�b(r2)
describes one electron occupying the atomic state labeled a and the other the
state labeled b. But this product is not odd under particle exchange, as
required for identical fermions. However, you can verify that �a(r2)�b(r1) also
is a solution to Equation 9.15 with energy E � Ea � Eb, corresponding to our
two electrons having exchanged states. The antisymmetric combination of
these two

�ab(r1, r2) � �a(r1)�b(r2) � �a(r2)�b(r1) (9.19)

does display the correct exchange symmetry, that is,

�ab(r2, r1) � �a(r2)�b(r1) � �a(r1)�b(r2)

� ��ab(r1, r2)

Therefore, Equation 9.19 furnishes an acceptable description of the system.
Notice, however, that it is now impossible to decide which electron occupies
which state—as it should be for identical electrons! Finally, we see that when
a and b label the same state (a � b), �ab is identically zero—the theory allows
no solution (description) in this case, in agreement with the familiar state-
ment of the exclusion principle.

�(r1, r2) � ��(r2, r1)
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7It is an experimental fact that integer spin particles are bosons, but half-integer spin particles are
fermions. This connection between spin and symmetry under particle exchange can be shown to
have a theoretical basis when the quantum theory is formulated so as to conform to the require-
ments of special relativity.

Exchange symmetry

for fermions
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9.5 ELECTRON INTERACTIONS AND
SCREENING EFFECTS

The preceding discussion of the helium atom exposes an issue that arises whenever

we treat a system with two or more electrons, namely, how to handle the effects of

electron–electron repulsion. Electrons confined to the small space of an atom are

expected to exert strong repulsive electrical forces on one another. To ignore these

altogether, as in the independent-particle model, is simply too crude; to include

them exactly is unmanageable, since precise descriptions even for the classical mo-

tion in this case are unknown except through numerical computation. Accordingly,

some workable approximation scheme is needed. A most fruitful approach to this

problem begins with the notion of an effective field.

Any one atomic electron is subject to the Coulomb attraction of the nucleus as

well as the Coulomb repulsion of every other electron in the atom. These influences

largely cancel each other, leaving a net effective field with potential energy Ueff(r).

316 CHAPTER 9 ATOMIC STRUCTURE

describes electron 1 as having spin up and electron 2 as
having spin down. These spin directions are reversed in
the second term. If we introduce the notation ���� to
describe the two electron spins in the first term, then the
second term becomes ����, and the total two-electron
wavefunction for the helium ground state can be written

The equal admixture of the spin states ���� and ����
means the spin of any one of the helium electrons is just
as likely to be up as it is to be down. Notice, however, that
the spin of the remaining electron is always opposite the
first. Such spin–spin correlations are a direct consequence
of the exclusion principle. (The valence electrons in dif-
ferent orbitals of many higher-Z atoms tend to align their
spins. This tendency—known as Hund’s rule—is an-
other example of spin–spin correlations induced by the
exclusion principle.)

The total electronic energy of the helium atom in this
approximation is the sum of the one-electron energies Ea

and Eb :

E � Ea � Eb � �54.4 eV � 54.4 eV � �108.8 eV

The magnitude of this number, 108.8 eV, represents the
energy (work) required to remove both electrons from
the helium atom in the independent particle model. The
measured value is substantially lower, about 79.0 eV,
because of the mutual repulsion of the two elec-
trons. Specifically, it requires less energy—only about
24.6 eV—to remove the first electron from the atom,
because the electron left behind screens the nuclear
charge, making it appear less positive than a bare helium
nucleus.

�(r1, r2) � ��1(2/a0)3 e�2(r1�r2)/a0 {� ��� � � ���}

EXAMPLE 9.5 Ground State of the 
Helium Atom

Construct explicitly the two-electron ground-state wave-
function for the helium atom in the independent parti-
cle approximation, using the prescription of Equation
9.19. Compare the predicted energy of this state with the
measured value, and account in a qualitative way for any
discrepancy.

Solution In the independent-particle approximation,
each helium electron “sees” only the doubly charged he-
lium nucleus. Accordingly, the ground-state wavefunction
of the helium atom is constructed from the lowest-energy
hydrogen-like wavefunctions, with atomic number Z � 2
for helium. These are states for which n � 1, � � 0, and
m� � 0. Referring to Equation 8.42 of Chapter 8, we find
(with Z � 2)

To this orbital function we must attach a spin label ()
indicating the direction of electron spin. Thus, the one-
electron state labels a and b in this example are given by
a � (1, 0, 0, �), b � (1, 0, 0, �). Because there is no
orbital field to interact with the electron spin, the ener-
gies of these two states are identical and are just the
hydrogen-like levels of Equation 8.38 with n � 1 and
Z � 2:

Ea � Eb � �(22/12)(13.6 eV) � �54.4 eV

The antisymmetric two-electron wavefunction for the
ground state of helium is then

�(r1, r2) � �1 0 0�(r1)�1 0 0�(r2) � �1 0 0�(r1)�1 0 0�(r2)

Both terms have the same spatial dependence but differ
as to their spin. The first term of the antisymmetric wave

�100(r) � ��1/2(2/a0)3/2e�2r/a0

O P T I O N A L
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Ueff may not be Coulombic—or even spherically symmetric—and may be different

for each atomic electron. The success of this approach hinges on how simply and

accurately we can model the effective potential. A few of the more obvious possibili-

ties are outlined here.

The outermost, or valence, electrons of an atom “see” not the bare nucleus, but

one shielded, or screened, by the intervening electrons. The attraction is more like

that arising from a nucleus with an effective atomic number Zeff somewhat less than

the actual number Z and would be described by

(9.20)

For a Z-electron atom, Zeff � Z would represent no screening whatever; at

the opposite extreme is perfect screening by the Z � 1 other electrons, giving

Zeff � Z � (Z � 1) � 1. The best choice for Zeff need not even be integral, and use-

ful values may be deduced from measurements of atomic ionization potentials (see

Example 9.6). Furthermore, the degree of screening depends on how much time an

electron spends near the nucleus, and we should expect Zeff to vary with the shell

and subshell labels of the electron in question. In particular, a 4s electron is

screened more effectively than a 3s electron, since its average distance from the

nucleus is greater. Similarly, a 3d electron is better screened than a 3s, or even a 3p

electron (lower angular momentum implies more eccentric classical orbits, with

greater penetration into the nuclear region). The use of a Zeff for valence electrons

is appropriate whenever a clear distinction exists between these and inner (core)

electrons of the atom, as in the alkali metals.

EXAMPLE 9.6 Zeff for the 3s Electron in Sodium

The outer electron of the sodium atom occupies the 3s atomic level. The observed

value for the ionization energy of this electron is 5.14 eV. From this information, de-

duce a value of Zeff for the 3s electron in sodium.

Solution Since the ionization energy, 5.14 eV, represents the amount of energy

that must be expended to remove the 3s electron from the atom, we infer that

the energy of the 3s electron in sodium is E � �5.14 eV. This should be

compared with the energy of a 3s electron in a hydrogen-like atom with atomic

number Z eff, or

Equating this to �5.14 eV and solving for Zeff gives

In principle, nuclear shielding can be better described by allowing Zeff to vary

continuously throughout the atom in a way that mimics the tighter binding accom-

panying electron penetration into the core. Two functional forms commonly are

used for this purpose. For Thomas–Fermi screening we write

(9.21)

where aTF is the Thomas–Fermi screening length. According to Equation 9.21, Zeff

is very nearly Z close to the nucleus (r � 0) but drops off quickly in the outer region,

Zeff(r) � Z e�r/aTF

Zeff � 3 √ 5.14

13.6
� 1.84

E � �
Zeff

2

32 (13.6 eV)

Ueff(r) �
k(Zeffe)(�e)

r
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becoming essentially zero for r �� aTF. In this way, aTF becomes an indicator of

atomic size. The Thomas–Fermi model prescribes aTF proportional to Z �1/3; the

weak variation with Z suggests that all atoms are essentially the same size, regardless

of how many electrons they may have. Because the Thomas–Fermi potential is not

Coulombic, the one-electron energies that result from the use of Equation 9.21 vary

within a given shell; that is, they depend on the principal (n) and orbital (�) quan-

tum numbers. The study of these energies and their associated wavefunctions

requires numerical methods, or further approximation. The Thomas–Fermi

approximation improves with larger values of Z and so is especially well suited to

describe the outer electronic structure of the heavier elements.

In another approach, called the quantum-defect method, nuclear shielding is

described by

(9.22)

where b is again a kind of screening length. This form is appropriate to the alkali

metals, where a lone outer electron is responsible for the chemical properties of the

atom. From Equation 9.22, this electron “sees” Zeff � 1 for r �� b and larger values

in the core. The special virtue of Equation 9.22 is that it leads to one-electron ener-

gies and wavefunctions that can be found without further approximation. In particu-

lar, the energy levels that follow from Equation 9.22 can be shown to be

(9.23)

where D(�) is termed the quantum defect, since it measures the departure from

the simple hydrogen-atom level structure. As the notation suggests, the quantum

defect for an s electron differs from that for a p or d electron, but all s electrons

have the same quantum defect, regardless of their shell label. Table 9.1 lists some

quantum defects deduced experimentally for the sodium atom. Taking b � 0 in

Equation 9.22 causes all quantum defects to vanish, returning us to the hydrogen-

like level structure discussed in Chapter 8.

The use of a simple Zeff, or the more complicated forms of the Thomas – Fermi

or quantum-defect method, still results in a Ueff with spherical symmetry; that is,

the electrons move in a central field. The Hartree theory discards even this fea-

ture in order to achieve more accurate results. According to Hartree, the elec-

tron “cloud” in the atom should be treated as a classical body of charge distrib-

uted with some volume charge density �(r). The potential energy of any one

atomic electron is then

(9.24)

The first term is the attractive energy of the nucleus, and the second term is the re-

pulsive energy of all other atomic electrons. This Ueff gives rise to a one-electron

Schrödinger equation for the energies Ei and wavefunctions �i of this, say the i th,

atomic electron.

Ueff(r) �
kZe2

r
� � ke 	 �(r�)

� r � r� � 
 dV �

En �
ke2

2a0
 {n � D(�)}�2

Zeff(r) � 1 �
b

r
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Table 9.1 Some Quantum Defects 

for the Sodium Atom

Subshell s p d f

D(�) 1.35 0.86 0.01 �0

Quantum defects
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But the Hartree theory is self-consistent. That is, the charge density �(r) due

to the other atomic electrons is itself calculated from the electron wavefunc-

tions as

�(r) � �e ��j(r) �2 (9.25)

The sum in Equation 9.25 includes all occupied electron states �j except the ith

state. In this way the mathematical problem posed by Ueff is turned back on itself:

We must solve not one Schrödinger equation, but N of them in a single stroke, one

for each of the N electrons in the atom! This is accomplished using numerical

methods in an iterative solution scheme. An educated guess is made initially for

each of the N ground-state electron waves. Starting with this guess, the � and Ueff for

every electron can be computed and all N Schrödinger equations solved. The result-

ing wavefunctions are compared with the initial guesses; if discrepancies appear, the

calculation is repeated with the new set of electron wavefunctions replacing the old

ones. After several such iterations, agreement is attained between the starting

and calculated wavefunctions. The resulting N electron wavefunctions are said to be

fully self-consistent. Implementation of the Hartree method is laborious and

demands considerable skill, but the results for atomic electrons are among the

best available. Indeed, the Hartree and closely related Hartree–Fock methods

are the ones frequently used today when accurate atomic energy levels and wave-

functions are required.

9.6 THE PERIODIC TABLE

In principle, it is possible to predict the properties of all the elements by
applying the procedures of wave mechanics to each one. Because of the large
number of interactions possible in multielectron atoms, however, approxima-
tions must be used for all atoms except hydrogen. Nevertheless, the electronic
structure of even the most complex atoms can be viewed as a succession of
filled levels increasing in energy, with the outermost electrons primarily
responsible for the chemical properties of the element.

In the central field approximation, the atomic levels can be labeled by
the quantum numbers n and �. From the exclusion principle, the maximum
number of electrons in one such subshell level is 2(2� � 1). The energy
of an electron in this level depends primarily on the quantum number n,
and to a lesser extent on �. The levels can be grouped according to the
value of n (the shell label), and all those within a group have energies that
increase with increasing �. The order of filling the subshell levels with
electrons is as follows: Once a subshell is filled, the next electron goes into
the vacant level that is lowest in energy. This minimum energy principle
can be understood by noting that if the electron were to occupy a higher
level, it would spontaneously decay to a lower one with the emission of
energy.

The chemical properties of atoms are determined predominantly by the
least tightly bound, or valence, electrons, which are in the subshell of high-
est energy. The most important factors are the occupancy of this subshell
and the energy separation between this and the next-higher (empty) sub-
shell. For example, an atom tends to be chemically inert if its highest 
subshell is full and there is an appreciable energy gap to the next-higher
subshell, since then electrons are not readily shared with other atoms to

�

9.6 THE PERIODIC TABLE 319

Hartree’s self-consistent

fields

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



form a molecule. The quasi-periodic recurrence of similar highest-shell
structures as Z increases is responsible for the periodic system of the chemi-
cal elements.

The specification of n and � for each atomic electron is called the electron
configuration of that atom. We are now in a position to describe the electron
configuration of any atom in its ground state:

Hydrogen has only one electron, which, in its ground-state, is described by
the quantum numbers n � 1, � � 0. Hence, its electron configuration is
designated as 1s1.

Helium, with its two electrons, has a ground-state electron configuration of
1s2. That is, both electrons are in the same (lowest-energy) 1s subshell.
Since two is the maximum occupancy for an s subshell, the subshell (and in
this case also the shell) is said to be closed, and helium is inert.

Lithium has three electrons. Two of these are assigned to the 1s subshell,
and the third must be assigned to the 2s subshell, because this subshell has
slightly lower energy than the 2p subshell. Hence, the electron configura-
tion of lithium is 1s22s1.

With the addition of another electron to make beryllium, the 2s subshell is
closed. The electron configuration of beryllium, with four electrons alto-
gether, is 1s22s2. (Beryllium is not inert, however, because the energy gap sepa-
rating the 2s level from the next available level—the 2p—is not very large.)

Boron has a configuration of 1s22s22p1. (With spin–orbit doubling, the 2p
electron in boron actually occupies the 2P1/2 sublevel, corresponding to
n � 2, � � 1, and j � .)

Carbon has six electrons, and a question arises of how to assign the two 2p
electrons. Do they go into the same orbital with paired spins (qp), or
do they occupy different orbitals with unpaired spins (qq)? Experi-
ments show that the energetically preferred configuration is the latter, in
which the spins are aligned. This is one illustration of Hund’s rule,
which states that electrons usually fill different orbitals with unpaired
spins, rather than the same orbital with paired spins. Hund’s rule can be
partly understood by noting that electrons in the same orbital tend to be
closer together, where their mutual repulsion contributes to a higher en-
ergy than if they were separated in different orbitals. Some exceptions to
this rule do occur in those elements with subshells that are nearly filled
or half-filled. The progressive filling of the 2p subshell illustrating Hund’s
rule is shown schematically in Figure 9.15. With neon, the 2p subshell is
also closed. The neon atom has ten electrons in the configuration
1s22s22p6. Because the energy gap separating the 2p level from the next
available level — the 3s — is quite large, the neon configuration is excep-
tionally stable and the atom is chemically inert.

A complete list of electron configurations for all the known elements is
given in Table 9.2. Note that beginning with potassium (Z � 19), the 4s sub-
shell starts to fill while the 3d level remains empty. Only after the 4s subshell
is closed to form calcium does the 3d subshell begin to fill. We infer that the
3d level has a higher energy than the 4s level, even though it belongs to a
lower-indexed shell. This should come as no surprise, because the energy

1
2
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separating consecutive shells becomes smaller with increasing n (see the
hydrogen-like spectrum), but the energy separating subshells is more nearly
constant because of the screening discussed in Section 9.5. (In fact, the
energy separating the 3d and 4s levels is very small, as evidenced by the
electron configuration of chromium, in which the 3d subshell temporarily
regains an electron from the 4s.) The same phenomenon occurs again
with rubidium (Z � 37), in which the 5s subshell begins to fill at the expense
of the 4d and 4f subshells. Energetically, the electron configurations
shown in the table imply the following ordering of subshells with respect to
energy:

1s � 2s � 2p � 3s � 3p � 4s � 3d � 4p � 5s � 4d � 5p � 6s � 4f � 5d

� 6p � 7s � 6d � 5f . . .

The elements from scandium (Z � 21) to zinc (Z � 30) form the first
transition series. These transition elements are characterized by progres-
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Figure 9.15 Electronic configurations of successive elements from lithium to neon.
The filling of electronic states must obey the Pauli exclusion principle and Hund’s rule.
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sive filling of the 3d subshell while the outer electron configuration is
unchanged at 4s2 (except in the case of copper). Consequently, all the tran-
sition elements exhibit similar chemical properties. This belated occupancy
of inner d subshells is encountered again in the second and third transition
series, marked by the progressive filling of the 4d and 5d subshells, respec-
tively. The second transition series includes the elements yttrium (Z � 39)
to cadmium (Z � 48); the third contains the elements lutetium (Z � 71) to
mercury (Z � 80).

Related behavior is also seen as the 4f and 5f subshells are filled. The lan-
thanide series, stretching from lanthanum (Z � 57) to ytterbium (Z � 70), is
marked by a common 6s2 valence configuration, with the added electrons
completing the 4f subshell (the nearby 5d levels also are occupied in some
instances). The lanthanide elements, or lanthanides, also are known as the
rare earths because of their low natural abundance. Cerium (Z � 58), which
forms 0.00031% by weight of the Earth’s crust, is the most abundant of the
lanthanides.

322 CHAPTER 9 ATOMIC STRUCTURE

Table 9.2 Electronic Configurations of the Elements

Ground Ionization Ground Ionization
Z Symbol Configuration Energy (eV) Z Symbol Configuration Energy (eV)

1 H 1s1 13.595 27 Co 3d 74s2 7.86
2 He 1s2 24.581 28 Ni 3d 84s2 7.633
3 Li [He] 2s1 5.390 29 Cu 3d104s1 7.724
4 Be 2s2 9.320 30 Zn 3d104s2 9.391
5 B 2s22p1 8.296 31 Ga 3d104s24p1 6.00
6 C 2s22p2 11.256 32 Ge 3d104s24p2 7.88
7 N 2s22p3 14.545 33 As 3d104s24p3 9.81
8 O 2s22p4 13.614 34 Se 3d104s24p4 9.75
9 F 2s22p5 17.418 35 Br 3d104s24p5 11.84

10 Ne 2s22p6 21.559 36 Kr 3d104s24p6 13.996
11 Na [Ne] 3s1 5.138 37 Rb [Kr] 5s1 4.176
12 Mg 3s2 7.644 38 Sr 5s2 5.692
13 Al 3s23p1 5.984 39 Y 4d5s2 6.377
14 Si 3s23p2 8.149 40 Zr 4d25s2 6.835
15 P 3s23p3 10.484 41 Nb 4d 45s1 6.881
16 S 3s23p4 10.357 42 Mo 4d 55s1 7.10
17 Cl 3s23p5 13.01 43 Tc 4d 55s2 7.228
18 Ar 3s23p6 15.755 44 Ru 4d 75s1 7.365
19 K [Ar] 4s1 4.339 45 Rh 4d 85s1 7.461
20 Ca 4s2 6.111 46 Pd 4d10 8.33
21 Sc 3d4s2 6.54 47 Ag 4d105s1 7.574
22 Ti 3d 24s2 6.83 48 Cd 4d105s2 8.991
23 V 3d 34s2 6.74 49 In 4d105s25p1 5.785
24 Cr 3d 54s 6.76 50 Sn 4d105s25p2 7.342
25 Mn 3d 54s2 7.432 51 Sb 4d105s25p3 8.639
26 Fe 3d 64s2 7.87 52 Te 4d105s25p4 9.01
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Table 9.2 Electronic Configurations of the Elements

Ground Ionization Ground Ionization
Z Symbol Configuration Energy (eV) Z Symbol Configuration Energy (eV)

53 I 4d105s25p5 10.454 79 Au [Xe, 4f 145d10] 6s1 9.22
54 Xe 4d105s25p6 12.127 80 Hg 6s2 10.434
55 Cs [Xe] 6s1 3.893 81 Tl 6s26p1 6.106
56 Ba 6s2 5.210 82 Pb 6s26p2 7.415
57 La 5d6s2 5.61 83 Bi 6s26p3 7.287
58 Ce 4f 5d6s2 6.54 84 Po 6s26p4 8.43
59 Pr 4f 36s2 5.48 85 At 6s26p5 9.54
60 Nd 4f 46s2 5.51 86 Rn 6s26p6 10.745
61 Pm 4f 56s2 5.60 87 Fr [Rn] 7s1 3.94
62 Fm 4f 66s2 5.644 88 Ra 7s2 5.277
63 Eu 4f 76s2 5.67 89 Ac 6d7s2 5.17
64 Gd 4f 75d6s2 6.16 90 Th 6d27s2 6.08
65 Tb 4f 96s2 6.74 91 Pa 5f 26d7s2 5.89
66 Dy 4f 106s2 6.82 92 U 5f 36d 7s2 6.194
67 Ho 4f 116s2 6.022 93 Np 5f 46d7s2 6.266
68 Er 4f 126s2 6.108 94 Pu 5f 67s2 6.061
69 Tm 4f136s2 6.185 95 Am 5f 77s2 5.99
70 Yb 4f 146s2 6.22 96 Cm 5f 76d 7s2 6.02
71 Lu 4f 145d6s2 6.15 97 Bk 5f 86d 7s2 6.23
72 Hf 4f 145d26s2 6.83 98 Cf 5f 107s2 6.30
73 Ta 4f 145d36s2 7.88 99 Es 5f 117s2 6.42
74 W 4f 145d46s2 7.98 100 Fm 5f 127s1 6.50
75 Re 4f 145d 56s2 7.87 101 Mv 5f 137s2 6.58
76 Os 4f 145d66s2 8.71 102 No 5f 147s2 6.65
77 Ir 4f 145d76s2 9.12 103 Lw 5f 146d 7s2

78 Pt 4f 145d86s2 8.88 104 Ku 5f 146d27s2

Note: The bracket notation is used as a shorthand method to avoid repetition in indicating inner-shell electrons. Thus, [He] represents
1s2, [Ne] represents 1s22s22p6, [Ar] represents 1s22s22p63s23p6, and so on.

In the actinide series from actinium (Z � 89) to nobelium (Z � 102), the
valence configuration remains 7s2, as the 5f subshell progressively fills (along
with occasional occupancy of the nearby 6d level).

Table 9.2 also lists the ionization energies of the elements. The ionization
energy for each element is plotted against its atomic number Z in Figure
9.16a. This plot shows that the ionization energy tends to increase within a
shell, then drops dramatically as the filling of a new shell begins. The behavior
repeats, and it is from this recurring pattern that the periodic table gets its
name. A similar repetitive pattern is observed in a plot of the atomic volume
per atom versus atomic number (see Fig. 9.16b).

The primary features of these plots can be understood from simple argu-
ments. First, the larger nuclear charge that accompanies higher values of
Z tends to pull the electrons closer to the nucleus and binds them more
tightly. Were this the only effect, the ionization energy would increase
and the atomic volume would decrease steadily with increasing Z. But the
innermost, or core, electrons screen the nuclear charge, making it less
effective in binding the outer electrons. The screening effect varies in a
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Figure 9.16 (a) Ionization energy of the elements versus atomic number Z . (b) Atomic
volume of the elements versus atomic number Z . The recurring pattern with increasing
atomic number exemplifies the behavior from which the periodic table gets its name.

complicated way from one element to the next, but it is most pronounced
for a lone electron outside a closed shell, as in the alkali metals (Li, Na, K,
Rb, Cs, and Fr). For these configurations the ionization energy drops
sharply, only to rise again as the nuclear charge intensifies at higher Z. The
variation in ionization energy is mirrored by the behavior of atomic volume,
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9.7 X-RAY SPECTRA AND MOSELEY’S LAW 325

which peaks at the alkali configurations and becomes smaller as the screen-
ing effect subsides.

9.7 X-RAY SPECTRA AND MOSELEY’S LAW

Electronic transitions within the inner shells of heavier atoms are accompa-
nied by large energy transfers. If the excess energy is carried off by a photon,
x rays are emitted at specific wavelengths peculiar to the emitting atom. This
explains why discrete x-ray lines are produced when energetic electrons bom-
bard a metal target, as discussed earlier in Section 3.5.

The inner electrons of high Z elements are bound tightly to the atom, be-
cause they see a nuclear charge essentially unscreened by the remaining elec-
trons. Consider the case of molybdenum (Mo), with atomic number Z � 42
(see Table 9.2). The innermost, or K shell, electrons have n � 1 and energy
(from Equation 8.38)

E1 � �
ke2

2a0
� Z2

12  � �(13.6 eV)(42)2 � �23990.4 eV

O

N

M

L

K

n = 5

n = 4

n = 3

n = 2

n = 1

Kαα
Kββ

K γγ
Kδδ

K εε

Lα
Lβ

Lγ
Lδ

Mαα
Mββ

M γγ

Nα Nβ

Figure 9.17 Origin of x-ray spectra. The K series (K�, K�, K�, . . .) originates with
electrons in higher-lying shells making a downward transition to fill a vacancy in the K

shell. In the same way, the filling of vacancies created in higher shells produces the L
series, the M series, and so on.
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Thus, approximately 24 keV must be supplied to dislodge a K shell electron
from the Mo atom.8 Energies of this magnitude are routinely delivered via
electron impact: electrons accelerated to kilovolt energies collide with
atoms of a molybdenum target, giving up most or all of their energy to one
atom in a single collision. If large enough, the collision energy may excite
one of the K shell electrons to a higher vacant level or free it from the atom
altogether. (Recall there are two electrons in a filled K shell.) In either case,
a vacancy, or hole, is left behind. This hole is quickly filled by another,
higher-lying atomic electron, with the energy of transition released in the
form of a photon. The exact energy (and wavelength) of the escaping pho-
ton depends on the energy of the electron filling the vacancy, giving rise to
an entire K series of emission lines denoted in order of increasing energy
(decreasing wavelength) by K�, K�, K�, . . . . In the same way, the filling of
vacancies left in higher shells produces the L series, the M series, and so on,
as illustrated in Figure 9.17.

326 CHAPTER 9 ATOMIC STRUCTURE

Henry G. J. Moseley (1887 – 1915) discovered a direct way to measure Z, the atomic
number, from the characteristic x-ray wavelength emitted by an element. Moseley’s
work not only established the correct sequence of elements in the periodic table
but also provided another confirmation of the Bohr model of the atom, in this case
at x-ray energies. One wonders what other major discoveries Moseley would
have made if he had not been killed in action at the age of 27 in Turkey in the first
world war. (University of Oxford, Museum of the History of Science/Courtesy AIP Niels Bohr

Library)

8In contrast, only 7.10 eV (the ionization energy from Table 9.2) is required to free the outermost,
or 5s, electron.
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Figure 9.18 The original data of Moseley showing the relationship between atomic
number Z and the characteristic x-ray frequencies. The gaps at Z � 43, 61, and 75 rep-
resent elements unknown at the time of Moseley’s work. (There are also several errors
in the atomic number designations for the elements.) (© From H. G. J. Moseley, Philos.
Mag. (6), 27:703, 1914)
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The energy of the longest-wavelength photons in a series can be estimated
from simple screening arguments. For the K� line, the K shell vacancy is filled
by an electron from the L shell (n � 2). But an electron in the L shell is par-
tially screened from the nucleus by the one remaining K shell electron and so
sees a nuclear charge of only Z � 1. Thus, the energy of the K� photon can be
approximated as an n � 2 to n � 1 transition in a one-electron atom with an
effective nuclear charge of Z � 1:

(9.26)

For molybdenum (Z � 42), this is E[K�] � 17.146 keV, corresponding to a
wavelength

For comparison, the observed K� line of molybdenum has wavelength
0.7095 Å, in reasonable agreement with our calculation.

In a series of careful experiments conducted from 1913 to 1914, the British
physicist H. G. J. Moseley measured the wavelength of K� lines for numerous
elements and confirmed the validity of Equation 9.26, known as Moseley’s
law. According to Moseley’s law, a plot of the square root of photon frequency
(E/h)1/2 versus atomic number Z should yield a straight line. Such a Moseley
plot, as it is called, is reproduced here as Figure 9.18. Before Moseley’s work,
atomic numbers were mere placeholders for the elements appearing in the
periodic table, the elements being ordered according to their mass. By mea-
suring their K� lines, Moseley was able to establish the correct sequence of ele-
ments in the periodic table, a sequence properly based on atomic number
rather than atomic mass. The gaps in Moseley’s data at Z � 43, 61, and 75 rep-
resent elements unknown at the time of his work.

SUMMARY

The magnetic behavior of atoms is characterized by their magnetic moment.
The orbital moment of an atomic electron is proportional to its orbital angu-
lar momentum:

(9.1)

The constant of proportionality, �e/2me, is called the gyromagnetic ratio.
Since L is subject to space quantization, so too is the atomic moment �.
Atomic moments are measured in Bohr magnetons, �B � e�/2me; the SI
value of �B is 9.27 � 10�24 J/T.

An atom subjected to an external magnetic field B experiences a mag-
netic torque, which results in precession of the moment vector � about the
field vector B. The frequency of precession is the Larmor frequency �L

given by

(9.5)�L �
eB

2me

� �
�e

2me
L

�[K�] �
hc

E[K�]
�

12.4 keV
Å

17.146 keV
� 0.723 Å

E[K�] � �
ke2

2a0

(Z � 1)2

22 �
ke2

2a0

(Z � 1)2

12 �
ke2

2a0

3(Z � 1)2

4
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SUMMARY 329

Associated with the Larmor frequency is the energy quantum ��L � �BB. The
�th subshell level of an atom placed in a magnetic field is split by the field into
2� � 1 sublevels separated by the Larmor energy ��L. This is the Zeeman
effect, and ��L is also known as the Zeeman energy. The magnetic contribu-
tion to the energy of the atom is

U � ��Lm� (9.7)

where m� is the same magnetic quantum number discussed in Chapter 8.
Equation 9.7 is a special case of the more general result

U � �� 
 B (9.6)

for the magnetic potential energy U of any magnetic moment � in an applied
field B.

In addition to any orbital magnetic moment, the electron possesses an in-
trinsic magnetic moment called the spin moment, �s. In a classical picture,
the spin moment arises from the rotation of the electron on its axis and is pro-
portional to the angular momentum of rotation, or spin, S. The magnitude of
the spin angular momentum is

(9.11)

corresponding to a spin quantum number s � , analogous to the orbital
quantum number �. The z component of S is quantized as

Sz � ms� (9.10)

where the spin magnetic quantum number ms is the analog of the orbital
magnetic quantum number m�. For the electron, ms can be either or ,
which describes the spin-up and spin-down states, respectively. Equations 9.10
and 9.11 imply that electron spin also is subject to space quantization. This was
confirmed experimentally by Stern and Gerlach, who observed that a beam of
silver atoms passed through a nonuniform magnetic field was split into two
distinct components. The same experiment shows that the spin moment is re-
lated to the spin angular momentum by

This is twice as large as the orbital moment for the same angular momentum.
The anomalous factor of 2 is called the g factor of the electron. With the
recognition of spin, four quantum numbers—n, �, m�, and ms —are needed
to specify the state of an atomic electron.

The spin moment of the electron interacts with the magnetic field arising
from its orbital motion. The energy difference between the two spin orienta-
tions in this orbital field is responsible for the fine structure doubling of
atomic spectral lines. With the spin–orbit interaction, atomic states are
labeled by a quantum number j for the total angular momentum J � L � S.
The value of j is included as a subscript in the spectroscopic notation of
atomic states. For example, 3P1/2 specifies a state for which n � 3, � � 1, and
j � . For each value of j, there are 2j � 1 possibilities for the total magnetic
quantum number mj.

1
2

�s � �
e

me
S

�1
2�1

2

1
2

� S � �
√3

2
�

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



330 CHAPTER 9 ATOMIC STRUCTURE

3. R. Eisberg and R. Resnick, Quantum Physics of Atoms, Mol-

ecules, Solids, Nuclei, and Particles, 2nd ed., New York,
John Wiley and Sons, Inc., 1985.

4. B. H. Bransden and C. J. Joachain, Physics of Atoms and

Molecules, New York, John Wiley and Sons, Inc., 1990.

1. A classic work on the physics of atoms is H. E. White, Intro-

duction to Atomic Spectra, New York, McGraw-Hill, 1934.

The following sources contain more extensive discussions
of the topics found in this chapter:

2. A. P. French and E. F. Taylor, An Introduction to Quantum

Physics, New York, W. W. Norton and Company, Inc.,
1978.

SUGGESTIONS FOR FURTHER READING

QUESTIONS

1. Why is the direction of the orbital angular momen-
tum of an electron opposite that of its magnetic mo-
ment?

2. Why is an inhomogeneous magnetic field used in the
Stern–Gerlach experiment?

3. Could the Stern–Gerlach experiment be performed
with ions rather than neutral atoms? Explain.

4. Describe some experiments that would support the
conclusion that the spin quantum number for elec-
trons can have only the values .

5. Discuss some of the consequences of the exclusion
principle.

6. Why do lithium, potassium, and sodium exhibit similar
chemical properties?

7. From Table 9.2, we find that the ionization energies
for Li, Na, K, Rb, and Cs are 5.390, 5.138, 4.339,
4.176, and 3.893 eV, respectively. Explain why these
values are to be expected in terms of the atomic
structures.

1
2

8. Although electrons, protons, and neutrons obey the ex-
clusion principle, some particles that have integral
spin, such as photons (spin � 1), do not. Explain.

9. How do we know that a photon has a spin of 1?
10. An energy of about 21 eV is required to excite an

electron in a helium atom from the 1s state to the 2s

state. The same transition for the He� ion requires
about twice as much energy. Explain why this is so.

11. Discuss degeneracy as it applies to a multielectron atom.
Can a one-electron atom have degeneracy? Explain.

12. The absorption or emission spectrum of a gas consists
of lines that broaden as the density of gas molecules in-
creases. Why do you suppose this occurs?

13. For a one-electron atom or ion, spin–orbit coupling
splits all states except s states into doublets. Why are s
states exceptions to this rule?

14. Why is it approximately correct to neglect the screening
effect of outer-shell electrons (for example, electrons in
the M and N shells) on an electron in the L shell?

The exclusion principle states that no two electrons can be in the same
quantum state; that is, no two electrons can have the same four quantum num-
bers. The exclusion principle derives from the notion that electrons are identi-
cal particles called fermions. Fermions are described by wavefunctions that
are antisymmetric in the electron coordinates. Wavefunctions that are symmet-
ric in the particle coordinates describe another class of objects called bosons,
to which no exclusion principle applies. All known particles are either fermi-
ons or bosons. An example of a boson is the photon.

Using the exclusion principle and the principle of minimum energy, one
can determine the electronic configurations of the elements. This serves as a
basis for understanding atomic structure and the physical and chemical prop-
erties of the elements.

One can catalog the discrete x-ray line spectra emitted by different metals
in terms of electronic transitions within inner shells. When electron bombard-
ment creates a vacancy in an inner K or L shell, a higher-lying atomic electron
quickly fills the vacancy, giving up its excess energy as an x-ray photon. Accord-
ing to Moseley’s law, the square root of this photon frequency should be pro-
portional to the atomic number of the emitting atom.
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PROBLEMS

9.1 Orbital Magnetism and the Normal
Zeeman Effect

1. In the technique known as electron spin resonance
(ESR), a sample containing unpaired electrons is
placed in a magnetic field. Consider the simplest situa-
tion, that in which there is only one electron and there-
fore only two possible energy states, corresponding to
ms � . In ESR, the electron’s spin magnetic moment
is “flipped” from a lower energy state to a higher en-
ergy state by the absorption of a photon. (The lower
energy state corresponds to the case in which the mag-
netic moment �s is aligned with the magnetic field,
and the higher energy state corresponds to the case
where �s is aligned against the field.) What is the pho-
ton frequency required to excite an ESR transition in a
magnetic field of 0.35 T?

2. Show that for a mass m in orbit with angular momen-
tum L the rate at which area is swept out by the orbit-
ing particle is

(Hint: First show that in its displacement, dr, along the

path, the particle sweeps out an area dA � �r � dr �,
where r is the position vector of the particle drawn
from some origin.)

9.2 The Spinning Electron

3. How many different sets of quantum numbers are
possible for an electron for which (a) n � 1, (b) n � 2,
(c) n � 3, (d) n � 4, and (e) n � 5? Check your results
to show that they agree with the general rule that the
number of different sets of quantum numbers is equal
to 2n2.

4. List the possible sets of quantum numbers for an elec-
tron in (a) the 3d subshell and (b) the 3p subshell.

5. The force on a magnetic moment �z in a nonuniform
magnetic field Bz is given by

If a beam of silver atoms travels a horizontal distance of
1 m through such a field and each atom has a speed of
100 m/s, how strong must the field gradient dBz /dz be
in order to deflect the beam 1 mm?

6. Consider the original Stern–Gerlach experiment em-
ploying an atomic beam of silver, for which the mag-
netic moment is due entirely to the spin of the single
valence electron of the silver atom. Assuming the mag-
netic field B has magnitude 0.500 T, compute the
energy difference in electron volts of the silver atoms
in the two exiting beams.

Fz � �z
dBz

dz

1
2

dA

dt
�

� L �
2m

1
2

7. When the idea of electron spin was introduced, the
electron was thought to be a tiny charged sphere
(today it is considered a point object with no exten-
sion in space). Find the equatorial speed under the
assumption that the electron is a uniform sphere of
radius 3 � 10�6 nm, as early theorists believed, and
compare your result to the speed of light, c.

8. Consider a right circular cylinder of radius R, with
mass M uniformly distributed throughout the cylinder
volume. The cylinder is set into rotation with angular
speed � about its longitudinal axis. (a) Obtain an
expression for the angular momentum L of the rotat-
ing cylinder. (b) If charge Q is distributed uniformly
over the curved surface only, find the magnetic mo-
ment � of the rotating cylinder. Compare your ex-
pressions for � and L to deduce the g factor for this
object.

9. An exotic elementary particle called the omega minus

(symbol ��) has spin . Calculate the magnitude of the
spin angular momentum for this particle and the possi-
ble angles the spin angular momentum vector makes
with the z -axis. Does the �� obey the Pauli exclusion
principle? Explain.

9.3 The Spin–Orbit Interaction and Other
Magnetic Effects

10. Consider a single-electron atom in the n � 2 state. Find
all possible values for j and mj for this state.

11. Find all possible values of j and mj for a d electron.
12. Give the spectroscopic notation for the following states:

(a) n � 7, � � 4, j � ; (b) all the possible states of an

electron with n � 6 and � � 5.
13. An electron in an atom is in the 4F5/2 state. (a) Find the

values of the quantum numbers n, �, and j. (b) What is
the magnitude of the electron’s total angular momen-
tum? (c) What are the possible values for the z compo-
nent of the electron’s total angular momentum?

14. (a) Starting with the expression J � L � S for the total
angular momentum of an electron, derive an expres-
sion for the scalar product L � S in terms of the quan-
tum numbers j, �, and s. (b) Using L � S � �L � �S � cos	,
where 	 is the angle between L and S, find the angle
between the electron’s orbital angular momentum and
spin angular momentum for the following states:
(1) P1/2, P3/2 and (2) H9/2, H11/2.

15. Spin –Orbit energy in an atom. Estimate the magnitude
of the spin –orbit energy for an atomic electron in
the hydrogen 2p state. (Hint: From the vantage point
of the moving electron, the nucleus circles it in an
orbit with radius equal to the Bohr radius for this
state. Treat the orbiting nucleus as a current in a
circular wire loop and use the result from classical
electromagnetism,

9
2

3
2
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332 CHAPTER 9 ATOMIC STRUCTURE

for the B field at the center of loop with radius r and
magnetic moment �. Here, km � 10�7 N/A2 is the
magnetic constant in SI units.)

9.4 Exchange Symmetry and the Exclusion Principle

16. Show that the symmetric combination of two single
particle wavefunctions

�ab(r1, r2) � �a(r1)�b(r2) � �a(r2)�b(r1)

displays the exchange symmetry characteristic of
bosons, Equation 9.16. Is it possible for two bosons to
occupy the same quantum state? Explain.

17. Eight identical, noninteracting particles are placed in
a cubical box of sides L � 0.200 nm. Find the lowest
energy of the system (in electron volts) and list the
quantum numbers of all occupied states if (a) the par-
ticles are electrons and (b) the particles have the same
mass as the electron but do not obey the exclusion
principle.

9.5 Electron Interactions and Screening Effects
(Optional)

18. The claim is made in Section 9.5 that a d electron is
screened more effectively from the nuclear charge in
an atom than is a p electron or an s electron. Give a
classical argument based on the definition of angular
momentum L � r � p that indicates that smaller val-
ues of angular momentum are associated with orbits of
larger eccentricity. Verify this quantum mechanically by
calculating the probability that a 2p electron of hydro-
gen will be found inside the n � 1 atomic shell and
comparing this with the probability of finding a hydro-
gen 2s electron in this same region. For which is the
probability largest, and what effect does this have on
the degree of screening? The relevant wavefunctions
may be found in Table 8.4 of Chapter 8.

19. Multielectron atoms. For atoms containing many
electrons, the potential seen by the outer, or

valence, electrons is often described by the Thomas–
Fermi form (see Equation 9.21)

where Z is the atomic number and a is the
Thomas–Fermi screening length. Use the Java applet
available at our companion Web site (http://info.
brookscole.com/mp3e QMTools Simulations : Prob-
lem 9.19) to find the lowest valence energy and wave-
function for gold (Au), taking Z � 79 and a � 0.39 a 0.
(According to Table 9.2, gold has a valence electron
configuration of 6s1.) How many nodes does this wave-
function exhibit? Use the results of this study to esti-

U(r) � �
Zke 2

r
e�r/a

B �
2km�

r3

mate the ionization energy of gold, and compare with
the experimental value given in Table 9.2. Also report
the most probable distance from the nucleus for the 6s

electron in gold, according to your findings. What size
would you assign to the gold atom? How does this size
compare with that of the hydrogen atom? 

20. Quantum defects. According to Table 9.1, the p-
wave quantum defect for sodium is 0.86. What

is the energy of the 2p level in sodium? the 3p level?
Use the Java applet available at our companion Web
site (http://info.brookscole.com/mp3e QMTools Sim-
ulations : Problem 9.20) to determine the screening
length b in Equation 9.22 that reproduces the observed
p-state energies for the sodium atom. Based on your
findings, report the most probable distance from the
nucleus for the 2p electrons in sodium.

9.6 The Periodic Table

21. (a) Write out the electronic configuration for oxygen
(Z � 8). (b) Write out the values for the set of quan-
tum numbers n, �, m�, and ms for each of the electrons
in oxygen.

22. Which electronic configuration has a lower energy:
[Ar]3d44s2 or [Ar]3d54s1? Identify this element and
discuss Hund’s rule in this case. (Note: The notation
[Ar] represents the filled configuration for Ar.)

23. Which electronic configuration has the lesser energy
and the greater number of unpaired spins: [Kr]4d95s1

or [Kr]4d10? Identify this element and discuss Hund’s
rule in this case. (Note: The notation [Kr] represents
the filled configuration for Kr.)

24. Devise a table similar to that shown in Figure 9.15 for
atoms with 11 through 19 electrons. Use Hund’s rule
and educated guesswork.

25. The states of matter are solid, liquid, gas, and plasma.
Plasma can be described as a gas of charged particles,
or a gas of ionized atoms. Most of the matter in the So-
lar System is plasma (throughout the interior of the
Sun). In fact, most of the matter in the Universe is
plasma; so is a candle flame. Use the information in
Figure 9.16 to make an order-of-magnitude estimate for
the temperature to which a typical chemical element
must be raised to turn into plasma by ionizing most of
the atoms in a sample. Explain your reasoning. 

9.7 X-ray Spectra and Moseley’s Law

26. Show that Moseley’s law for K� radiation may be ex-
pressed as

where f is the x-ray frequency and Z is the atomic num-
ber. (b) Check the agreement of the original 1914 data
shown in Figure 9.18 with Moseley’s law. Do this by

√f � √ 3

4 � 13.6 eV

h � (Z � 1)
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comparing the least-squares slope and intercept of the
K� line in Figure 9.18 to the theoretical slope and in-
tercept predicted by Moseley’s law. (c) Is the screened
charge seen by the L shell electron equal to Z � 1?

27. (a) Derive an equation similar to that in Problem 26,
but for L� x rays. Assume, as in the case of K� x rays,
that electrons in the shell of origin (in this case M)

produce no screening and that all screening is attrib-
uted to electrons in the inner shells (in this case L and
K). (b) Test your equation by comparing its slope and
intercept with that of the experimental L� line in Fig-
ure 9.18. (c) From the intercept of the experimental
L� line, deduce the average screened charge seen by
the M shell electron.
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10
Statistical Physics

10.1 The Maxwell–Boltzmann
Distribution
The Maxwell Speed Distribution for

Gas Molecules in Thermal
Equilibrium at Temperature T

The Equipartition of Energy

10.2 Under What Physical Conditions
Are Maxwell–Boltzmann Statistics
Applicable?

10.3 Quantum Statistics 
Indistinguishability and

Wavefunctions and the
Bose–Einstein Condensation and
Pauli Exclusion Principle

Bose–Einstein and Fermi–Dirac
Distributions

10.4 Applications of Bose–Einstein
Statistics
Blackbody Radiation
Einstein’s Theory of Specific Heat

10.5 An Application of Fermi-Dirac
Statistics
The Free Electron Gas Theory of Metals

Summary

ESSAY: Laser Manipulation of Atoms, by
Steven Chu

Chapter Outline

Thermodynamics is based on macroscopic or bulk properties, such as tem-
perature and pressure of a gas. In this chapter we explain thermodynamic
properties in terms of the motion of individual atoms. The goal of this micro-
scopic approach, known as statistical physics, or statistical mechanics, is to
explain the relationships between thermodynamic bulk properties using a
more fundamental atomic picture. It is possible in principle to calculate
the detailed motion of individual atoms from Newton’s laws or the
Schrödinger equation. The number of atoms in the average size sample
(�1022 atoms/cm3), however, makes such calculations impractical, and we
must rely on a statistical approach.

In this chapter we introduce the laws of statistical physics and discuss sys-
tems of particles that obey either classical or quantum mechanics. We will
show how a fixed amount of energy may be shared or distributed among a
large number of particles in thermal equilibrium at temperature T. We investi-
gate this energy distribution by calculating the average number of particles
with a specific energy or, what is essentially the same thing, by finding the
probability that a single particle has a certain energy.
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10.1 THE MAXWELL–BOLTZMANN DISTRIBUTION

The satisfying explanation of thermodynamics in terms of averages over
atomic properties was given in the second half of the 1800s by three physicists:
James Clerk Maxwell, Ludwig Boltzmann, and Josiah Willard Gibbs. Maxwell, a
Scottish professor at Cambridge, was extremely impressed by the work of
Rudolf Clausius in explaining the apparent contradiction between the high
speed of gas molecules at room temperature (about 400 m/s) and the slow
diffusion rate of a gas. Clausius had explained this riddle by reasoning that gas
molecules do not all travel at a single high speed, but that there is a well-
defined distribution of molecular speeds in a gas that depends on the gas tem-
perature; furthermore, the gas molecules collide and hence follow long zigzag
paths from one spot to another. Building on this idea, Maxwell was able to
derive the functional form of the equilibrium speed distribution, which is
the number of gas molecules per unit volume having speeds between v and
v � dv at a specific temperature. Applying the theory of statistics to this distri-
bution, Maxwell was able to calculate the temperature dependence of quanti-
ties such as the average molecular speed, the most probable speed, and the
dispersion, or width, of the speed distribution.

In 1872, Boltzmann, an Austrian professor at the University of Vienna, pro-
foundly impressed with Darwin’s ideas on evolution, took Maxwell’s work a
step further. He not only wanted to establish the properties of the equilibrium
or most probable distribution but he also wished to describe the evolution
in time of a gas toward the Maxwellian distribution—the so-called approach-
to-equilibrium problem. With the use of a time-dependent speed distribution
function and his kinetic equation, Boltzmann was able to show that a system
of particles that starts off with a non-Maxwellian speed distribution steadily
approaches and eventually achieves an equilibrium Maxwellian speed distribu-

Is the universe a gambling casino? (Courtesy of Tropicana Casino And Resort)

Ludwig Boltzmann (1844–1908),
an Austrian theoretical physicist.
(Courtesy AIP Niels Bohr Library,

Lande Collection)
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tion. Boltzmann, a staunch advocate of the reality of molecules, was subjected
to personal attacks at the hands of critics who rejected the molecular theory of
matter in the late 1800s. Depressed over the lack of universal acceptance of his
theories, he committed suicide in 1908.

Gibbs, in contrast to Boltzmann, led a rather sheltered and secluded life as
a professor at Yale. The son of a Yale professor, he lived his adult life in the
same house in New Haven in which he had grown up, quietly establishing sta-
tistical mechanics and the kinetic theory of gases on a rigorous mathematical
basis. Gibbs published his work in the obscure Transactions of the Connecticut
Academy of Arts and Sciences, and his work remained relatively unknown during
his lifetime.

Having briefly discussed the contributions of Maxwell, Boltzmann, and
Gibbs to statistical mechanics, let us examine the underlying assumptions and
explicit form of the Maxwell–Boltzmann distribution for a system of particles.
The basic assumptions are:

• The particles are identical in terms of physical properties but distinguish-
able in terms of position, path, or trajectory. It will be demonstrated later in
this chapter that this assumption is equivalent to the statement that the par-
ticle size is small compared with the average distance between particles.

• The equilibrium distribution is the most probable way of distributing the
particles among various allowed energy states subject to the constraints of
a fixed number of particles and fixed total energy.

• There is no theoretical limit on the number of particles in a given energy
state, but the density of particles is sufficiently low and the temperature
sufficiently high that no more than one particle is likely to be in a given
state at the same time.

To make these assumptions concrete, let us consider the analysis of a
manageable-sized system of distinguishable particles. In particular, consider
the distribution of a total energy of 8E among six particles where E is an indi-
visible unit of energy. To work with a diagram of reasonable size, Figure 10.1a
enumerates the 20 possible ways of sharing an energy of 8E among six indistin-
guishable particles. Since we are actually interested in distinguishable particles,
each of the 20 arrangements can be decomposed into many distinguishable
substates, or microstates, as shown explicitly for one arrangement in Figure
10.1b. The number of microstates for each of the 20 arrangements is given in
parentheses in Figure 10.1a and may be computed from the relation

(10.1)

where NMB is the Maxwell–Boltzmann number of microstates, N is the total
number of particles, and n1, n2, n3, . . . are the numbers of particles in occu-
pied states of a certain energy. This result may be understood by arguing that
the first energy level may be assigned in N ways, the second in N � 1 ways, and
so on, giving N ! in the numerator. The factor in the denominator of Equation
10.1 corrects for indistinguishable order arrangements when more than one
particle occupies the same energy level. As an example of the use of Equation
10.1, consider the energy distribution of six particles, with two having energy
1E, one having energy 6E, and three having energy 0. This energy distribution
is shown in the fourth diagram from the left in the top row of Figure 10.1a. In

NMB �
N !

n1!n2!n3! � � �
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Assumptions of the

Maxwell–Boltzmann

distribution
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10.1 THE MAXWELL–BOLTZMANN DISTRIBUTION 337

this case, N � 6, n1(0E) � 3 (that is, the number of particles in the 0 energy
state is 3), n2(1E) � 2, n3(2E) � 0, n4(3E) � 0, n5(4E) � 0, n6(5E) � 0,
n7(6E) � 1, n8(7E) � 0, and n9(8E) � 0. Since only the numbers of particles
in occupied levels appear in the denominator of Equation 10.1, we find that

8E

6E

4E

2E

  0

(6) (30) (30) (60) (30)

8E

6E

4E

2E

  0

(120) (60) (15) (120) (60)

8E

6E

4E

2E

  0

(180) (30) (60) (90) (180)

8E

6E

4E

2E

  0

(120) (6) (15) (60) (15)

FDFDFD

8E

6E

4E

2E

  0
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Particle label

(a)

(b)

Figure 10.1 (a) The 20 arrangements of six indistinguishable particles with a total en-
ergy of 8E. (b) The decomposition of the upper left-hand arrangement of part (a) into
six distinguishable states for distinguishable particles.
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the number of distinguishable microstates for this case is

in agreement with the number in parentheses in the diagram.
To find the average number of particles with a particular value of energy,

say Ej, we sum the number of particles with energy Ej in each arrangement
weighted by the probability of realizing that arrangement: 

(10.2)

Here is the average number of particles in the j th energy level, is the
number of particles found in the j th level in arrangement 1, is the num-
ber of particles found in the j th level in arrangement 2, p 1 is the probability
of observing arrangement 1, p 2 is the probability of arrangement 2, and so
on. Using the basic postulate of statistical mechanics, that any indi-
vidual microstate is as likely as any other individual microstate, we
may go on to calculate the various p’s and ’s. For example, since there are
a total of 1287 microstates (the sum of all the numbers in the parentheses),
and 6 distinguishable ways of obtaining arrangement 1 (the leftmost
arrangement in row 1 in Fig. 10.1a), we see that p1 � 6/1287. Using these
ideas and Equation 10.2, we calculate the average number of particles with
energy 0 as follows:

� (5)(6/1287) � (4)(30/1287) � (4)(30/1287) � (3)(60/1287)

� (4)(30/1287) � (3)(120/1287) � (2)(60/1287) � (4)(15/1287)

� (3)(120/1287) � (3)(60/1287) � (2)(180/1287)

� (1)(30/1287) � (3)(60/1287) � (2)(90/1287) � (2)(180/1287)

� (1)(120/1287) � (0)(6/1287) � (2)(15/1287)

� (1)(60/1287) � (0)(15/1287)

� 2.307

Now notice that it is easy to calculate the probability of finding a particle with
energy 0 if we imagine reaching randomly into a box containing the six parti-
cles with total energy 8E. This probability, p(0), is simply the average number
of particles with energy 0 divided by the total number of particles:

It is left as a problem (Problem 1) to show that the probabilities of finding a
particle with energies from 1E through 8E are as follows:

p(1E) � 0.256

p(2E) � 0.167

p(3E) � 0.0978

p(4E) � 0.0543

p(5E) � 0.0272

p(6E) � 0.0117

p(0) �
n0

6
�

2.307

6
� 0.385

n0

n j

nj2

nj1n j

nj � n j1p1 � n j2p2 � � � �

NMB �
6!

3!2!1!
� 60

338 CHAPTER 10 STATISTICAL PHYSICS

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



10.1 THE MAXWELL–BOLTZMANN DISTRIBUTION 339

p(7E) � 0.00388

p(8E) � 0.000777

These results, which are plotted in Figure 10.2, show that this simple system
follows an approximately exponential decrease in probability with energy.
(See Problem 5.) The rapid decrease in probability with increasing energy
shown in Figure 10.2 indicates that we are more likely to find the energy uni-
formly distributed among many particles of the system rather than concen-
trated in a few particles.

One may rigorously derive the Maxwell–Boltzmann distribution for a sys-
tem in thermal equilibrium at the absolute temperature T containing a large
number of particles by using calculus (see reference 1 in Suggestions for Fur-
ther Reading at the end of this chapter). The expression for the number of
ways of distributing the particles among the allowed energy states is maxi-
mized subject to two constraints. These constraints are (1) that the total num-
ber of particles is constant at any temperature and (2) that the total system en-
ergy is fixed at a given temperature. One finds an exponential form

(10.3)

where fMB is the Maxwell–Boltzmann probability of finding a particle with en-
ergy Ei , or in the language of statistical mechanics, the probability that a state
with energy Ei is occupied at the absolute temperature T. If the number of states
with the same energy Ei is denoted by gi (gi is called the degeneracy or statisti-
cal weight), then the number of particles, ni , with energy Ei is equal to the prod-
uct of the statistical weight and the probability that the state Ei is occupied, or

ni � gi fMB (10.4)

The parameter A in Equation 10.3 is a normalization coefficient, which is simi-
lar to the normalization constant in quantum physics. A is determined by re-
quiring the number of particles in the system to be constant, or

N � ni (10.5)

where N is the total number of particles in the system.
When the allowed energy states are numerous and closely spaced, the dis-

crete quantities are replaced by continuous functions as follows:

where g(E) is the density of states or the number of energy states per unit
volume in the interval dE. In a similar manner, Equations 10.4 and 10.5 may
be replaced as follows:

ni � gi fMB 9: n(E) dE � g(E) fMB(E)dE (10.6)

(10.7)

where n(E)dE is the number of particles per unit volume with energies be-
tween E and E � dE. Note that Equations 10.6 and 10.7 may also be used for a
system of quantum particles, provided that g(E) and fMB(E) are replaced with
the appropriate density of states and quantum distribution functions.

N � � ni 9:

N

V
� ��

0
n(E) dE � ��

0
g(E)fMB(E)dE

fMB 9: Ae�E/kBT

gi 9: g(E)

�

fMB � Ae �Ei/kBT
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Figure 10.2 The distribution
function for an assembly of six
distinguishable particles with a
total energy of 8E.
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depends only on the initial population, since there are no

restrictions on the number of particles in the final state.
Returning to the calculation of the emission strength,
S, we find the relative values:

In reality, the transition probabilities depend on
the wavefunctions of the states involved, but to sim-
plify matters we assume equal probabilities of transi-
tion; that is, P(2 : 1) � P(3 : 1) � P(3 : 2). This
yields

If the emission lines are narrow, the measured heights of
the 3 : 1 and 3 : 2 lines will be 75% of the height of
the 2 : 1 line, as shown in Figure 10.3. For broader
lines, the area under the peaks must be used as the
experimental measure of emission strength.

S(3 : 2)

S(2 : 1)
� 0.75

� 0.75

S(3 : 1)

S(2 : 1)
�

n3

n2
�

g3

g2
e(E2�E3)/kBT �

18

8
e�1.89/1.73

S(3 : 2)

S(2 : 1)
�

n3P(3 : 2)

n2P(2 : 1)

S(3 : 1)

S(2 : 1)
�

n3P(3 : 1)

n2P(2 : 1)

EXAMPLE 10.1 Emission Lines from 
Stellar Hydrogen

(a) Find the populations of the first and second excited
states relative to the ground state for atomic hydrogen
at room temperature, assuming that hydrogen obeys
Maxwell–Boltzmann statistics.

Solution For a gas at ordinary pressures, the atoms
maintain the discrete quantum levels of isolated atoms.
Recall that the discrete energy levels of atomic hydrogen
are given by En � (�13.6/n2) eV and the degeneracy by
gn � 2n2. Thus we have

Using Equation 10.4 gives

The ratio of n3/n1 will be even smaller. Therefore, essen-
tially all atoms are in the ground state at 300 K.

(b) Find the populations of the first and second ex-
cited states relative to the ground state for hydrogen
heated to 20,000 K in a star.

Solution When a gas is at very high temperatures (as in
a flame, under electric discharge, or in a star), detectable
numbers of atoms are in excited states. In this case, 
T � 20,000 K, kBT � 1.72 eV, and we find

(c) Find the emission strengths of the spectral lines
corresponding to the transitions E3 : E1 and E3 : E2

relative to E2 : E1 at 20,000 K, assuming equal probabil-
ity of transition for E3 : E1, E3 : E2, and E2 : E1.

Solution The strength of an emission or absorption
line is proportional to the number of atomic transi-
tions per unit time. For particles obeying Maxwell –
Boltzmann statistics, the number of transitions per unit
time from some initial state (i) to some final state
(f) equals the product of the population of the initial
state and the probability for the transition i : f. Note
that the transition rate for particles obeying MB statistics

n3

n1
�

g3

g1
e(E1�E 3)/k BT � 9e�12.1/1.72 � 0.0807

n2

n1
�

g2

g1
e(E1�E2)/k BT � 4e�10.2/1.72 � 0.0107

� 4e�395 � 0

�
8

2
 exp {(�10.2 eV)/(8.617 � 10�5 eV/K)(300 K)}

n2

n1
�

g2Ae�E2/kBT

g1Ae�E1/kBT �
g2

g1
e(E1�E2)/kBT

Second excited state: E3 � �1.51 eV  g3 � 18

First excited state: E2 � �3.40 eV  g2 � 8

Ground state: E1 � �13.6 eV  g1 � 2

λ

Detector
output

2
1.0

0.75

0.50

0.25

0

1

3 1 3 2

Figure 10.3 The predicted emission spectrum for the
2 : 1, 3 : 1, and 3 : 2 transitions for atomic hydrogen
at 20,000 K.
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The Maxwell Speed Distribution for Gas
Molecules in Thermal Equilibrium at Temperature T

Maxwell’s important formula for the equilibrium speed distribution, or the
number of molecules with speeds between v and v � dv in a gas at temperature
T, may be found by using the Maxwell–Boltzmann distribution in its continu-
ous form (Eqs. 10.6 and 10.7). In particular, we shall show that

(10.8)

where n(v)dv is the number of gas molecules per unit volume with speeds be-
tween v and v � dv, N/V is the total number of molecules per unit volume, m
is the mass of a gas molecule, kB is Boltzmann’s constant, and T is the absolute
temperature. This speed distribution function is sketched in Figure 10.4. The
v2 term determines the behavior of the distribution as v : 0, and the expo-
nential term determines what happens as v : �.

For an ideal gas of point particles (no internal structure and no interac-
tions between particles), the energy of each molecule consists only of transla-
tional kinetic energy and we have

for each molecule. Since the gas molecules have speeds that are continuously
distributed from 0 to � , the energy distribution of molecules is also continu-
ous and we may write the number of molecules per unit volume with energy
between E and E � dE as

To find the density of states, g(E), we introduce the concept of velocity
space. According to this idea, the velocity of each molecule may be repre-
sented by a velocity vector with components vx , vy , and vz or by a point in veloc-
ity space with coordinate axes vx, vy, and vz (Fig. 10.5). From Figure 10.5 we
note that the number of states f(v)dv with speeds between v and v � dv is pro-
portional to the volume of the spherical shell between v and v � dv:

f(v) dv � C 4�v2 dv (10.9)

where C is some constant. Because E � mv2, each speed v corresponds to a
single energy E, and the number of energy states, g(E)dE, with energies
between E and E � dE is the same as the number of states with speeds between
v and v � dv. Thus,

g(E) dE � f(v) dv � C4�v2 dv

Substituting this expression for g(E)dE into our expression for n(E)dE, we
obtain

where the constant C has been absorbed into the normalization coefficient A.
Since the number of molecules with energy between E and E � dE equals the
number of molecules with speed between v and v � dv, we may write

(10.10)n(E)dE � n(v)dv � A4�v2e�mv2/2kBT dv

n(E)dE � A4�v2e�mv2/2kBT dv

1
2

n(E)dE � g(E)f MB(E)dE � g(E)Ae�mv 2/2kBT dE

E � 1
2mv2

n(v)dv �
4�N

V � m

2�kBT �
3/2

v2e�mv2/2kBTdv
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n(v)

v

∆v

n(v)

Figure 10.4 The speed distrib-
ution of gas molecules at some
temperature. The number of
molecules in the range �v is
equal to the area of the shaded
rectangle, n(v)�v. The most
probable speed, vmp, the average
speed, , and the root mean
square speed, vrms, are indicated.

v

v = constant

vy

vx

vx

vz

vz

vy

dv

v

Figure 10.5 Velocity space.
The number of states with
speeds between v and v � dv is
proportional to the volume of a
spherical shell with radius v and
thickness dv.
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To find A we use the fact that the total number of particles per unit volume
is N/V :

(10.11)

Because

we find with j � 1 and a � m/2kBT

or

Therefore, the normalization coefficient A depends on the number of par-
ticles per unit volume, the particle mass, and the temperature. Substituting
this value for A into Equation 10.10, we finally obtain Maxwell’s famous
1859 result:

(10.8)

To find the average speed, , indicated in Figure 10.4, we multiply n(v)dv
by v, integrate over all speeds from 0 to �, and divide the result by the total
number of molecules per unit volume:

Using the definite integral formula

gives

(10.12)

This important result, first proved by Maxwell, shows that the average speed of
the molecules in a gas is proportional to the square root of the temperature
and inversely proportional to the square root of the molecular mass. The root
mean square speed may be found by finding the average of v2, denoted ,
and then taking its square root. Consequently, we have

v2 �

��

0
v2n(v)dv

N/V
� 4� � m

2�kBT �
3/2 ��

0
v4e�mv2/2k BT dv

v2

v � 4� � m

2�kBT �
3/2

� 1

2 � �
2kBT

m �
2

� √ 8kBT

� m

��

0
z3e�az2

dz �
1

2a2

v �

��

0
vn(v)dv

N/V
�

4�(N/V )(m/2�kBT)3/2 ��

0
v3e�mv2/2kBT dv

N/V

v

n(v)dv �
4�N

V � m

2�kBT �
3/2

v2e�mv2/2kBT dv

A �
N

V � m

2�kBT �
3/2

N

V
�

(4�A)

22(m/2kBT) √ � 2kBT

m
� A � 2�kBT

m �
3/2

��

0
z2je�az2

dz �
1�3�5 � � �  (2j � 1)

2j�1a j √ �

a
  j � 1, 2, 3, � � �

N

V
� ��

0
n(v)dv � ��

0
4�Av2e�mv2/2kBT dv
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Using the definite integral formula

gives

(10.13)

Since the root mean square speed, vrms, is defined as , we have

(10.14)

Note that vrms is not the same as the average speed, , but is about 10% greater,
as indicated in Figure 10.4. The derivation of the most probable speed, vmp, is
left to Problem 2.

The Equipartition of Energy

As a final remark to this section, we observe that Equation 10.13 may be rewrit-
ten as

In this form, Equation 10.13 is consistent with the result known as the
equipartition of energy, or the equipartition theorem. According to this
theorem, a classical molecule in thermal equilibrium at temperature T
has an average energy of kBT/2 for each independent mode of motion or
so-called degree of freedom. In this case there are 3 degrees of freedom cor-
responding to translational motion of the molecule along the independent x,
y, and z directions in space; hence the average kinetic energy in each indepen-
dent direction is kBT/2:

The total average kinetic energy consequently equals 3 times kBT/2, in agree-
ment with Equation 10.13:

Note that degrees of freedom are not only associated with translational veloci-
ties. A degree of freedom is also associated with each rotational velocity as well
so that for a molecule with moment of inertia I1 rotating about
an axis with angular velocity 	1. In fact, each variable that occurs squared
in the formula for the energy of a particular system represents a degree
of freedom subject to the equipartition of energy. For example, a one-
dimensional harmonic oscillator with E � mvx

2 � kx2 has 2 degrees of free-
dom, one associated with its kinetic energy and the variable vx

2 and the other
with its potential energy and the variable x2. Thus, each oscillator in a group
in thermal equilibrium at T has and . The
average total energy of each one-dimensional harmonic oscillator is then

. This result will be of use to us
shortly when we model the atoms of a solid as a system of vibrating harmonic
oscillators.

Etotal � K � U � kBT/2 � kBT/2 � kBT

U � 1
2kx2 � 1

2kBTK � 1
2mv 2

x � 1
2kBT

1
2

1
2

1
2 I1	2

1 � 1
2kBT

1
2mv2 � 1

2mv 2
x � 1

2mvy
2 � 1

2mvz
2 � 3

2kBT

1
2mv 2

x � 1
2mvy

2 � 1
2mvz

2 � 1
2kBT

1
2mv2 � K � 3

2kBT

v

vrms � √ 3kBT

m

vrms � √v2

v2 � 4� � m

2�kBT �
3/2

� 3

8(m/2kBT )2 � � 2�kBT

m �
1/2

�
3kBT

m

��

0
z4e�az2

dz �
3

8a2 √ �

a
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Exercise 1 (a) Show that the formula for the number of molecules with energies be-
tween E and E � dE in an ideal gas at temperature T is given explicitly in terms of E by

(b) Use this result to show that the total energy per unit volume of the gas is given
by

in agreement with the equipartition theorem.

Exercise 2 Confirm Maxwell’s 1859 result that the “spread-outness” of the speed dis-
tribution increases as . Do this by showing that the standard deviation of the molec-
ular speeds is given by

10.2 UNDER WHAT PHYSICAL CONDITIONS
ARE MAXWELL–BOLTZMANN
STATISTICS APPLICABLE?

If we reexamine the assumptions that led to the Maxwell–Boltzmann distribu-
tion for classical particles, keeping the quantum mechanical wave nature of parti-
cles in mind, we immediately find a problem with the assumption of distinguisha-
bility. Since particles exhibit wave-like behavior, they are necessarily fuzzy and are
not distinguishable when they are close together because their wavefunctions
overlap. (See Section 9.4, “Exchange Symmetry and the Exclusion Principle,” for
a review of this issue.) If trading molecule A for molecule B no longer counts as a
different configuration, then the number of ways a given energy distribution can
be realized changes, as does the equilibrium or most probable distribution. Thus
the classical Maxwell–Boltzmann distribution must be replaced by a quantum
distribution when there is wavefunction overlap or when the particle concentra-
tion is high. The MB distribution is a valid approximation to the correct quan-
tum distribution, however, in the common case of gases at ordinary conditions.
Quantum statistics are required for cases involving high particle concentrations,
such as electrons in a metal1 or photons in a blackbody cavity.

It is useful to develop a criterion to determine when the classical distribu-
tion is valid. We may say that the Maxwell–Boltzmann distribution is valid
when the average distance between particles, d, is large compared with
the quantum uncertainty in particle position, �x, or

�x 

 d (10.15)

To find �x we use the uncertainty principle and evaluate �px for a particle
of mass m. For such a particle that is part of a system of particles in thermal

�v � √3 �
8

�
� √ kBT

m

√T

Etotal �
3

2

NkT

V

n(E)dE �
2�(N/V )

(�kBT )3/2 E1/2e�E/kBT dE
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1The density of conduction electrons in a metal is several thousand times the density of molecules
in a gas at standard temperature and pressure.
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equilibrium at temperature T, and from the equiparti-
tion theorem. Thus

(10.16)

Substituting this expression for �px into �px �x � /2, we find

(10.17)

As mentioned before, the uncertainty in particle position, �x, must be much
less than the average distance, d, between particles if the particles are to be dis-
tinguishable and the Maxwell–Boltzmann distribution is to hold. Substituting
d � (V/N )1/3 and into the relation �x 

 d gives

or cubing both sides,

(10.18)

Equation 10.18 shows that the Maxwell–Boltzmann distribution holds for low
particle concentration and for high particle mass and temperature.

� N

V � 3

8(mkBT)3/2 

 1



2√mkBT


 � V

N �
1/3

�x � /2 √mkBT

�x �


2√mkBT

�px � √p 2
x � (px)

2 � √mkBT

px
2/2m � kBT/2px � 0
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� 5.86 � 1022 electrons/cm3

� 5.86 � 1028 electrons/m3

Note that the density of free electrons in silver is about
2000 times greater than the density of hydrogen gas mol-
ecules at STP; that is,

Using 3 � 1.174 � 10�102 ( J � s)3, me � 9.109 � 10�31 kg,
and kBT � 4.14 � 10�21 J (at T � 300 K), we find

Comparing this result to the condition given by Equation
10.18, we conclude that the Maxwell–Boltzmann distri-
bution does not hold for electrons in silver because of the
small mass of the electron and the high free electron
density. We shall see that the correct quantum distribu-
tion for electrons is the Fermi–Dirac distribution.

� N

V � 3

8(mekBT )3/2 � 4.64

(N/V )electrons in Ag

(N/V )H2 at STP
�

5.86 � 1028 m�3

2.69 � 1025 m�3 � 2180

10.5 g/cm3

107.9 g/mol
 (6.02 � 1023 electrons/mol)

EXAMPLE 10.2 When Can We Use
Maxwell–Boltzmann Statistics?

(a) Are Maxwell–Boltzmann statistics valid for hydrogen
gas at standard temperature and pressure (STP)?

Solution Under standard conditions of 273 K and 
1 atmosphere, 1 mol of H2 gas (6.02 � 1023 molecules)
occupies a volume of 22.4 � 10�3 m3. Using �

3.34 � 10�27 kg, and kBT � 3.77 � 10�21 J, we find

This is much less than 1, and from the condition given
by Equation 10.18, we conclude that even hydrogen,
the lightest gas, is described by Maxwell–Boltzmann
statistics.

(b) Are Maxwell–Boltzmann statistics valid for con-
duction electrons in silver at 300 K?

Solution Silver has a density of 10.5 g/cm3 and a molar
weight of 107.9 g. Assuming one free electron per silver
atom, the density of free electrons in silver is found to be

� 8.83 � 10�8

�
(1.055 � 10�34)3 ( J�s)3

8[(3.34 � 10�27 kg)(3.77 � 10�21 J)]3/2

� � 6.02 � 1023

22.4 � 10�3 m3 �� N

V � 3

8(mkBT)3/2

mH2

Criterion for the validity of

Maxwell–Boltzmann

statistics
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10.3 QUANTUM STATISTICS

Wavefunctions and the Bose–Einstein
Condensation and Pauli Exclusion Principle

Maxwell–Boltzmann statistics apply to systems of identical, distinguishable parti-
cles. As mentioned in the previous section, in quantum terms this means the
wavefunctions of the particles do not overlap. If the individual particle wave-
functions do overlap, then the particles become indistinguishable or inter-
changeable, and this forces the system wavefunction to be either even or odd
under particle exchange (see Section 9.4). In order to understand the impor-
tant connection between wavefunctions and distribution functions, as well as
the origin of the Bose–Einstein condensation for a system of particles with no
actual attractive physical forces between particles, we look at a simple system of
two particles with two possible quantum states to expose the essential features.

Consider two independent particles—particle 1 located at the position r1

and particle 2 located at r2 —and two quantum states—state a and state b. For
distinguishable particles there exist two possible system wavefunctions, which
are simple products of normalized single particle wavefunctions:

�A � �a(r1)�b(r2)

�B � �a(r2)�b(r1)

Now we ask for the probability that both particles are in the same state, say a.
In this case, both �A and �B are the same, and we find the probability of two
distinguishable particles described by the Maxwell–Boltzmann distribution to
be in the same state to be given by

�MB* �MB � �a* (r1)�a* (r2)�a(r1)�a(r2) � ��a(r1) �2 ��a(r2) �2

If the particles are indistinguishable, we can’t tell if a given particle is in state
a or b, and to reflect this fact, the system wavefunction must be a combination of
the distinguishable wavefunctions �A and �B. As mentioned in Section 9.4 and
Problem 9.16, bosons have a symmetric wavefunction, �B, given by

where we have added as the normalization constant. Fermions have an

antisymmetric wavefunction �F , where 

For comparison to the case of distinguishable particles, we now recalculate the
probability that two bosons or fermions occupy the same state. For bosons the
wavefunction becomes

and the probability for two bosons to be in the same state is

�B* �B � 2 ��a(r1) �2 ��a(r2) �2 � 2��B* �MB

�B �
1

√2
[�a(r1)�a(r2) � �a(r2)�a(r1)] � √2�a(r1)�a(r2)

�F �
1

√2
[�a(r1)�b(r2) � �a(r2)�b(r1)]

1

√2

�B �
1

√2
[�a(r1)�b(r2) � �a(r2)�b(r1)]
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Thus we have the amazing result that bosons are twice as probable to occupy the
same state as distinguishable particles! This is an entirely quantum mechanical
effect and it is as if there were a force attracting additional bosons once a boson
occupies a state, even though there are no actual attractive physical forces, such
as electromagnetic intermolecular forces, present. Einstein was the first to point
out that an ideal gas of bosons (with no attractive intermolecular forces!) could
still undergo a strange kind of condensation at low-enough temperatures called
a Bose–Einstein condensation (BEC). A Bose–Einstein condensation is a sin-
gle cooperative state with all individual particle wavefunctions in phase in the
ground state. In 1995 Einstein’s prediction was directly confirmed by a group at
the University of Colorado led by Eric Cornell and Carl Wieman who observed a
BEC in a cloud of rubidium atoms cooled to less than 100 nK (see the guest
essay by Steven Chu at the end of this chapter for details).

For fermions, as in Chapter 9, we find a probability of zero for two fermions
to be in the same state since the wavefunction is zero:

This is just the Pauli exclusion principle again.

Bose–Einstein and Fermi–Dirac Distributions

As we have seen there are two distributions for indistiguishable particles
that flow from parity requirements on the system wavefunctions, the
Bose–Einstein distribution and the Fermi–Dirac distribution. To obtain
the Bose–Einstein distribution, we retain the MB assumption of no theoretical
limit on the number of particles per state. Particles that obey the Bose–
Einstein distribution are called bosons and are observed to have integral
spin. Some examples of bosons are the alpha particle (S � 0), the photon
(S � 1), and the deuteron (S � 1). To obtain the Fermi–Dirac distribution we
stipulate that only one particle can occupy a given quantum state. Particles
that obey the Fermi–Dirac distribution are called fermions and are observed
to have half integral spin. Some important examples of fermions are the
electron, the proton, and the neutron, all with spin .

To see the essential changes in the distribution function introduced by
quantum statistics, let us return to our simple system of six particles with a to-
tal energy of 8E. First we consider the Bose–Einstein case; the particles are in-
distinguishable and there is no limit on the number of particles in a particular
energy state. Figure 10.1a was drawn to represent this situation. Since the par-
ticles are indistinguishable, each of the 20 arrangements shown in Figure
10.1a is equally likely, so the probability of each arrangement is 1/20. The av-
erage number of particles in a particular energy level may be calculated by
again using Equation 10.2. The average number of particles in the zero energy
level is found to be

� (5)(1/20) � (4)(1/20) � (4)(1/20) � (3)(1/20) � (4)(1/20)

� (3)(1/20) � (2)(1/20) � (4)(1/20) � (3)(1/20) � (3)(1/20)

� (2)(1/20) � (1)(1/20) � (3)(1/20) � (2)(1/20) � (2)(1/20)

� (1)(1/20) � (0)(1/20) � (2)(1/20) � (1)(1/20) � (0)(1/20)

� 49/20 � 2.45

n0

1
2

�F �
1

√2
[�a(r1)�a(r2) � �a(r2)�a(r1)] � 0

10.3 QUANTUM STATISTICS 347

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



Similarly, we find � 31/20 � 1.55, � 18/20 � 0.90, � 9/20 � 0.45,
� 6/20 � 0.30, � 3/20 � 0.15, � 2/20 � 0.10, � 1/20 � 0.05,

and � 0.05. Once again using the idea that the probability of finding a par-
ticle with a given energy, p(E), is simply the average number of particles with
that energy divided by the total number of particles, we find

In like manner we find: p(1E) � 0.258, p(2E) � 0.150, p(3E) � 0.0750,
p(4E) � 0.0500, p(5E) � 0.0250, p(6E) � 0.0167, p(7E) � 0.00833, and
p(8E) � 0.00833. A plot of these values in Figure 10.6 shows that the
Bose–Einstein distribution gives results similar, but not identical, to the
Maxwell–Boltzmann distribution. In general, the Bose–Einstein distribution
tends to have more particles in the lowest energy levels. At higher energies,
the curves come together and both exhibit a rapid decrease in probability
with increasing energy.

To illustrate the distinctive shape of the Fermi–Dirac distribution, again
consider our simple example of six indistinguishable particles with energy 8E.
Since the particles are fermions, we impose the constraint that no more than
two particles can be assigned to a given energy state (corresponding to elec-
trons with spin up and down). There are only three arrangements (denoted
by FD) out of the 20 shown in Figure 10.1a that meet this additional constraint
imposed by the Pauli exclusion principle. Since each of these arrangements is
equally likely, each has a probability of occurrence of 1/3, and we again use
Equation 10.2 to calculate the average number of fermions in the zero energy
level, as follows:

Similarly, we find for the average number of fermions with energies of 1E
through 8E the following:

� 5/3 � 1.67, � 3/3 � 1, � 3/3 � 1, � 1/3 � 0.33,

� � � � 0

Finally, we obtain the probabilities of finding a fermion with energies 0
through 8E :

p(0) � 2.00/6 � 0.333, p(1E) � 0.278, p(2E) � 0.167, p(3E) � 0.167,

p(4E) � 0.0550, and p(5E) � p(6E) � p(7E) � p(8E) � 0

When this distribution is plotted, we discover a distinctly different shape from
the Maxwell–Boltzmann or Bose–Einstein curves (Fig. 10.7). The results show
a leveling off of probability at both low and high energies. Although it is not
entirely clear that the points plotted in Figure 10.7 conform to the smooth
curve drawn, consideration of systems with more than six particles proves this
to be the case (see Problem 10.11).

When large numbers of quantum particles are considered, continuous distri-
bution functions may be rigorously derived for both the Bose–Einstein (BE)
and Fermi–Dirac (FD) cases. By maximizing the number of ways of distribut-
ing the indistinguishable quantum particles among the allowed energy states,
again subject to the two constraints of a fixed number of particles and a fixed

n8n7n6n5

n4n3n2n1

n0 � (2)(1/3) � (2)(1/3) � (2)(1/3) � 2.00

p(0) �
n0

6
�

2.45

6
� 0.408

n8

n7n6n5n4

n3n2n1
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Figure 10.7 The distribution
function for six indistinguish-
able particles with total energy
8E constrained so that no more
than two particles occupy the
same energy state (fermions).

Figure 10.6 The distribution
function for six indistinguish-
able particles with total energy
8E (bosons).
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total energy, we find the distribution functions to have the explicit forms:

(10.19)

(10.20)

where f(E) is the probability of finding a particle in a particular state of en-
ergy E at a given absolute temperature T. As noted earlier, the number of par-
ticles per unit volume with energy between E and E � dE is given by

n(E) dE � g(E)fBE(E) dE (10.21)

or

n(E) dE � g(E)fFD(E) dE (10.22)

Thus the parameters B and H in Equations 10.19 and 10.20 may be deter-
mined from the total number of particles, N, since integrating Equations 10.21
and 10.22 yields

(10.23)

and

(10.24)

In general we find that B and H depend on the system temperature and
particle density as shown by Equations 10.23 and 10.24. For a system of
bosons that are not fixed in number with temperature, Equation 10.23
no longer serves to determine B. By maximizing the ways of distributing
the bosons among allowed states subject to the single constraint of fixed
energy, it can be shown that the coefficient B in Equation 10.19 is equal
to 1. This is a particularly important case since both photons in a black-
body cavity and phonons in a solid are bosons whose numbers per unit
volume increase with increasing temperature. (We define phonons shortly.)
Thus,

(for photons or phonons)

For the case of the Fermi–Dirac distribution, H depends strongly on tempera-
ture and is often written in an explicitly temperature-dependent form as

, where EF is called the Fermi energy.2 With this substitution,
Equation 10.20 changes to the more common form

(10.25)fFD(E) �
1

e(E�EF)/kBT � 1

H � e�EF/kBT

f(E) �
1

eE/kBT � 1

� N

V �
fermions

� ��

0

g(E)

HeE/kBT � 1
dE

� N

V �
bosons

� ��

0

g(E)

BeE/kBT � 1
dE

f FD(E) �
1

HeE/kBT � 1

f BE(E) �
1

BeE/kBT � 1
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2If we force the functional form of H to be , EF will itself have a weak dependence on
T. Fortunately, this dependence of EF on T is so weak that we can ignore it here.

H � e�EF/kBT

Fermi–Dirac distribution
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This expression shows the meaning of the Fermi energy: The probability
of finding an electron with an energy equal to the Fermi energy is
exactly 1/2 at any temperature.

A plot comparing the Maxwell–Boltzmann, Bose–Einstein, and Fermi–Dirac
distributions as functions of energy at a common temperature of 5000 K is shown
in Figure 10.8. Note that for large E, all occupation probabilities decrease to zero
as . For small values of E, the FD probability saturates at 1 as required by
the exclusion principle, the MB probability constantly increases but remains
finite, and the BE probability tends to infinity. This very high probability for
bosons to have low energies means that at low temperatures most of the particles
drop into the ground state. When this happens, a new phase of matter with dif-
ferent physical properties can occur. This change in phase for a system of bosons
is called a Bose–Einstein condensation (BEC), and it occurs in liquid helium
at a temperature of 2.18 K. Below 2.18 K liquid helium becomes a mixture of the
normal liquid and a phase with all molecules in the ground state. The ground-
state phase, called liquid helium II, exhibits many interesting properties, one
being zero viscosity. For more on Bose condensation and applications of this
remarkable state of matter, see the essay by Steven Chu at the end of this chapter.

The history of the discovery of the quantum distributions is interesting. The
first quantum distribution to be discovered was the Bose–Einstein function
introduced in 1924 by Satyendranath Bose (Indian physicist, 1894–1974),
working in isolation. He sent his paper, which contained a new proof of the
Planck formula for blackbody radiation, to Einstein. In this paper, Bose
applied the normal methods of statistical mechanics to light quanta but
treated the quanta as absolutely indistinguishable. Einstein was impressed by
Bose’s work and proceeded to translate the paper into German for publication
in the Zeitschrift für Physik.3 To obtain the quantum theory of the ideal gas,

e�E/kBT
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Figure 10.8 A comparison of Maxwell–Boltzmann, Bose–Einstein, and Fermi–Dirac
distribution functions at 5000 K.

3S. N. Bose, Z. Phys., 26:178, 1924.
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Einstein extended the method to molecules in several papers published in
1924 and 1925.

In 1925, Wolfgang Pauli, after an exhaustive study of the quantum numbers
assigned to atomic levels split by the Zeeman effect, announced his new and
fundamental principle of quantum theory, the exclusion principle: Two elec-
trons in an atom cannot have the same set of quantum numbers. In 1926,
Enrico Fermi obtained the second type of quantum statistics that occurs in
nature by combining Pauli’s exclusion principle with the requirement of indis-
tinguishability. Paul Dirac is also credited for this work, since he performed a
more rigorous quantum mechanical treatment of these statistics in 1926. The
empirical observation that particles with integral spin obey BE statistics and
particles with half-integral spin obey FD statistics was explained much later (in
1940) by Pauli, using relativity and causality arguments.

10.4 APPLICATIONS OF BOSE–EINSTEIN
STATISTICS

Blackbody Radiation

In this section we apply BE statistics to the problem of determining the energy
density (energy per unit volume) of electromagnetic radiation in an enclosure
heated to temperature T, now treating the radiation as a gas of photons. (In
Chapter 3 we discussed the importance of this blackbody problem for quan-
tum physics.) Since photons have spin 1, they are bosons and follow
Bose–Einstein statistics. The number of photons per unit volume with energy
between E and E � dE is given by n(E) dE � g(E)fBE(E) dE. The energy density
of photons in the range from E to E � dE is

(10.26)

To complete our calculation, we need the factor g(E), the density of states for
photons in an enclosure. This important calculation, given in Web Appendix 1
on our Web site, shows that the number of photon states per unit volume with
frequencies between f and f � df is

using E � hf for photons. Since the number of photon states per unit volume
with frequencies between f and f � df is equal to the number of photon states
with energies between E and E � dE, we have

Thus we find that the density of states for photons is

(10.27)

Substituting Equation 10.27 into Equation 10.26 gives the expression for the
energy density:

g(E) �
8�E2

(hc)3

N( f ) df �
8�E2 dE

(hc)3 � g(E) dE

N( f ) df �
8�f 2 df

c3 �
8�(hf )2d(hf )

(hc)3 �
8�E2 dE

(hc)3

u(E) dE � En(E) dE �
g(E)E dE

eE/kBT � 1
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The exclusion principle
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(10.28)

Converting from photon energy to frequency using E � hf in Equation 10.28,
we immediately retrieve the Planck blackbody formula:

(3.9)

Thus the Planck formula for a blackbody follows directly and simply from
Bose–Einstein statistics.

u( f, T) �
8�h

c3

f 3

ehf/kBT � 1

u(E) dE �
8�

(hc)3

E3 dE

eE/kBT � 1

352 CHAPTER 10 STATISTICAL PHYSICS

(c) Calculate the number of photons/cm3 inside a cavity
whose walls are heated to 3000 K. Compare this with a
cavity whose walls are at 3.00 K.

Solution From standard tables,

Therefore,

Likewise, N/V (at 3.00 K) � 5.47 � 102 photons/cm3.
Therefore, the photon density decreases by a factor
of 109 when the temperature drops from 3000 K to
3.00 K.

� 5.47 � 1011 photons/cm3

N

V
(at 3000 K) � (8�) � (8.62 � 10�5 eV/K)(3000 K)

1.24 � 10�4 eV �cm �
3

� (2.40)

��

0

z2 dz

e z � 1
� 2.40

EXAMPLE 10.3 Photons in a Box

(a) Find an expression for the number of photons per
unit volume with energies between E and E � dE in a cav-
ity at temperature T.

Solution

(b) Find an expression for the total number of photons
per unit volume (all energies).

Solution

or

N

V
� 8� � kBT

hc �
3 ��

0

z2 dz

e z � 1

N

V
� ��

0
n(E) dE �

8�(kBT)3

(hc)3 ��

0

(E/kBT)2(dE/kBT)

eE/kBT � 1

n(E) dE � g(E)f(E) dE �
8�E2 dE

(hc)3(eE/kBT � 1)

Einstein’s Theory of Specific Heat

Recall that the molar specific heat of a substance, C, is the ratio of the differ-
ential thermal energy, dU, added to a mole of substance divided by the result-
ing differential increase in temperature, dT, or

(10.29)

Thus C has units of calories per mole per kelvin (cal/mol � K). To develop a
theoretical expression for comparison to the experimental curves of C versus
T measured for different elemental solids, we need an expression for U, the
internal thermal energy of the solid, as a function of the solid’s temperature,
T. Differentiation of this expression will then yield the specific heat as a func-
tion of temperature.

To find an expression for U, let us model the solid as a collection of
atoms vibrating independently on springs with equal force constants in the x,

C �
dU

dT
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y, and z directions, each atom being represented by three identical one-
dimensional harmonic oscillators. The internal energy of each atom may
then be calculated from the classical equipartition theorem. A one-
dimensional harmonic oscillator has 2 degrees of freedom: one for its ki-
netic energy and one for its potential energy. (Physically this means that
thermal energy added to the atoms in a solid may go into atomic vibration
or into work done to stretch the springs holding the atoms in place.) Be-
cause the equipartition theorem states that the average thermal energy per
degree of freedom should be kBT/2, the internal energy per atom of a solid
should be (kBT/2 per degree of freedom) � (2 degrees of freedom per
one-dimensional oscillator) � (three oscillators per atom) � 3kBT. As a
mole contains Avogadro’s number of atoms, NA, the total internal energy
per mole, U, is predicted to be

U � 3NAkBT � 3RT (10.30)

where R is the universal gas constant given by R � NAkB � 8.31 J/mol � K �

1.99 cal/mol � K. Using C � dU/dT, we immediately see that C should be con-
stant with temperature:

(10.31)

The specific heat of many solids is indeed constant with temperature, espe-
cially at higher temperatures, as can be seen in Figure 10.9, showing good
agreement with the classical idea that the average thermal energy is kBT/2 per
degree of freedom. However, as can also be seen in Figure 10.9, the specific
heat of all solids drops sharply at some temperature and approaches zero as
the temperature approaches 0 K.

The explanation of why classical physics failed to give the correct value of
specific heat at all temperatures was given by Einstein in 1907. He realized
that the quantized energies of vibrating atoms in a solid must be explicitly
considered at low temperatures to secure agreement with experimental
measurements of specific heat. Einstein assumed that the atoms of the solid

C �
d

dT
 (3RT) � 3R � 5.97 cal/mol�K
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Figure 10.9 The dependence of specific heat on temperature for several solid elements.
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could be modeled as a system of independent or uncoupled three-dimensional
quantum harmonic oscillators with equal spring constants in the x, y, and z
directions. He then showed that the average energy of a one-dimensional
oscillator with frequency 	 at temperature T was given by the Bose –
Einstein distribution, or 

Because the atoms are considered to be independent, he gave the internal
energy of a mole of atoms, or NA atoms, as 

Finally, he obtained the molar specific heat:

(10.32)

It is left as an exercise to show that Equation 10.32 predicts that C approaches
zero for small T as , and that C approaches 3R for large T.

To understand Equation 10.32 qualitatively, consider the quantity , the
average one-dimensional quantum oscillator energy at temperature, T :

(10.33)

Recall that the vibrating atoms of the solid have quantized energy levels
spaced 	 apart. For high temperatures such that 	 

 kBT, the energy level
spacing 	 is small relative to the average thermal energy per atom, and
we can expect many atoms to be in excited energy levels. In fact, we can
expand the exponential in the denominator of Equation 10.33 as
exp(	/kBT) � 1 � 	/kBT � � � � to get

In this case the atomic energies appear to be continuous and the classical
result C � 3R holds. For low temperatures such that 	 �� kBT, Equation
10.33 shows that the average thermal energy of an oscillator rapidly tends to
zero. This means the average energy is much less than the spacing between
adjacent atomic energy levels, 	, and there is insufficient thermal energy to
raise an atom out of its ground state to higher energy levels. In this case atoms
are unable to absorb energy from the surroundings for a small increase in
temperature, and the increase in internal energy with temperature or specific
heat tends to zero.

A final point to note is that Equation 10.32 has only one adjustable parame-
ter, 	, the harmonic oscillator vibration frequency, which is chosen to give the
best fit of Equation 10.32 to the experimental heat capacity data. Frequently,
	 is given in terms of an equivalent temperature TE, called the Einstein
temperature, where

	 � kBTE (10.34)

E �
	

e	/kBT � 1
� kBT

E �
	

e	/kBT � 1

E
e�	/kBT

C �
dU

dT
� 3R � 	

kBT �
2 e	/kBT

(e	/kBT � 1)2

U � 3NAE � 3NA
	

e	/kBT � 1

E �
	

e	/kBT � 1
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In his pioneering 1907 paper, Einstein found good agreement between his for-
mula and Heinrich Weber’s data on diamond, with TE � 1300 K. This agree-
ment is shown in Figure 10.10.

The too rapid falloff of the Einstein formula at low temperatures hinted
at in Figure 10.10 was confirmed in 1911 by Hermann Nernst. Although it
was generally felt that the problem with Einstein’s result was the assumption
that each atom vibrated independently of its neighbors at a single fixed fre-
quency, no one really knew how to treat a band or spread of frequencies
corresponding to groups of neighboring atoms interacting and moving
together. In 1912, however, Peter Debye obtained the experimentally
observed temperature dependence of C � T 3 for low temperatures by
modeling a solid as a continuous elastic object whose internal energy was
made up of the energy in standing sound (elastic) waves. These sound
waves are both transverse and longitudinal in a solid and possess a range of
frequencies from zero to some maximum value determined by the depen-
dence of the minimum wavelength on the interatomic spacing. Further-
more, these elastic waves or lattice vibrations are quantized, like electromag-
netic waves or photons. A quantized elastic vibration of frequency �,
called a phonon, travels at the speed of sound in a solid, and carries a
quantum of elastic energy ��. Debye was able to show that a “phonon
gas” with a distribution of allowed frequencies was a better model of a solid
at low temperatures than a system of independent harmonic oscillators
all having the same frequency. Since the introduction of the idea of
phonons by Debye, the concept has found many applications in condensed
matter physics, including the electron–phonon interaction in supercon-
ductivity and the coupling of phonons to the motion of impurity atoms and
molecules in a lattice.

Exercise 3 Show that Equation 10.32 predicts that C approaches zero for small T as
and that C approaches 3R for large T.e�	/kBT
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Figure 10.10 Einstein’s specific heat formula fitted to Weber’s experimental data for
diamond. This figure is adapted from A. Einstein, Ann. Physik., 4(22):180, 1907.
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Exercise 4 (a) Calculate the vibration frequency of lead atoms and their energy-level
spacing if the Einstein temperature of lead is 70 K. (b) Explain the low Einstein tem-
perature of lead relative to that for diamond in terms of the physical properties of lead.
(c) Calculate the average one-dimensional oscillator energy in lead at room tempera-
ture. Is there enough energy to raise lead atoms out of the ground state at 300 K?

10.5 AN APPLICATION OF FERMI–DIRAC STATISTICS:
THE FREE ELECTRON GAS THEORY OF METALS

Because the outer electrons are weakly bound to individual atoms in a metal,
we can treat these outer conduction electrons as a gas of fermions trapped
within a cavity formed by the metallic surface. Many interesting physical quan-
tities, such as the average energy, Fermi energy, specific heat, and thermionic
emission rate, may be derived from the expression for the concentration of
electrons with energies between E and E � dE:

n(E) dE � g(E)f FD(E) dE (10.22)

Recall that the probability of finding an electron in a particular energy state
E is given by the Fermi–Dirac distribution function,

f FD(E) �
1

e(E�E F)/kBT � 1
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The spacing between adjacent oscillator energy levels in
carbon is

	 � (6.58 � 10�16 eV � s)(1.70 � 1014 Hz) � 0.112 eV

(b) Calculate the average oscillator energy at room
temperature and at 1500 K and compare this energy with
the carbon energy-level spacing 	. Is there sufficient
thermal energy on average to excite carbon atoms at
300 K? at 1500 K?

Solution The average oscillator energy at room tem-
perature (300 K) is

while the average oscillator energy at 1500 K is

Comparing, we see that at 300 K is about 0.01	, and 
at 1500 K is approximately equal to 	. This means that
at 300 K most carbon atoms are frozen into the oscillator
ground state and the specific heat tends to zero.

EE

E �
0.112 eV

e0.112 eV/(8.62�10�5 eV/K)(1500 K) � 1
� 0.0813 eV

�
0.112 eV

e0.112 eV/(8.62�10�5 eV/K)(300 K) � 1
� 0.00149 eV

E �
	

e	/kBT � 1

E

EXAMPLE 10.4 The Specific Heat of Diamond

As we have seen, a solid at temperature T can be viewed
as a system of quantized harmonic oscillators with
discrete energy levels separated by 	. The oscillators
can only absorb thermal energy, however, if the tempera-
ture is high enough that the average thermal energy
of the oscillator, , is approximately equal to the oscilla-
tor energy-level spacing, 	. For low temperatures such
that 

 	, there is so little thermal energy available
that the atoms cannot even be raised to the first excited
state and the specific heat tends to zero. In the following
example we show that the carbon atoms in diamond
are effectively decoupled from thermal energy at room
temperature but can absorb energy at a temperature
of 1500 K.
(a) Calculate the vibration frequency of the carbon
atoms in diamond if the Einstein temperature is 1300 K.
Also find the energy-level spacing for the carbon 
atoms.

Solution Since 	 � kBTE, the frequency of vibration
of carbon atoms in diamond is

� 1.70 � 1014 Hz

	 �
kBTE


�

(8.62 � 10�5 eV/K)(1300 K)

6.58 � 10�16 eV�s

E

E
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Plots of this function versus energy are shown in Figure 10.11 for the cases
T � 0 K and T � 0. Note that at T � 0 K, fFD � 1 for E 
 EF, and f FD � 0 for
E � EF. Thus all states with energies less than EF are completely filled and all states
with energies greater than EF are empty. This is in sharp contrast to the predic-
tions of MB and BE statistics, in which all particles condense to a state of zero en-
ergy at absolute zero. In fact, far from having zero speed, a conduction electron in
a metal with the cutoff energy EF has a speed vF which satisfies the relation

(10.35)

where vF is called the Fermi speed. Substituting a typical value of 5 eV for the
Fermi energy yields the remarkable result that electrons at the Fermi level pos-
sess speeds of the order of 106 m/s at 0 K!

Figure 10.11b shows that as T increases, the distribution rounds off slightly,
with states between E and E � kBT losing population and states between E and
E � kBT gaining population. In general, EF also depends on temperature, but
the dependence is weak in metals, and we may say that EF(T) � EF(0) up to
several thousand kelvin.

Let us now turn to the calculation of the density of states, g(E), for conduc-
tion electrons in a metal. Since the electrons may be viewed as a system of
matter waves whose wavefunctions vanish at the boundaries of the metal,
we obtain the same result for electrons as for electromagnetic waves con-
fined to a cavity. In the latter case, we found (see our Web site at http://info.
brookscole.com/mp3e) that the number of states per unit volume with
wavenumber between k and k � dk is

(3.44)

To apply this expression to electrons in a metal, we must multiply it by a factor
of 2 to account for the two allowed spin states of an electron with a given mo-
mentum or energy:

(10.36)g(k) dk �
k2 dk

�2

g(k) dk �
k2 dk

2�2

1
2mevF

2 � EF
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Figure 10.11 A comparison of the Fermi–Dirac distribution functions at (a) absolute
zero and (b) finite temperature.
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To obtain g(E) from g(k), we assume nonrelativistic free electrons. Thus

or

(10.37)

and

(10.38)

Substituting Equations 10.37 and 10.38 into Equation 10.36 yields

(10.39)

where

(10.40)

Thus the key expression for the number of electrons per unit volume with
energy between E and E � dE becomes

(10.41)

Figure 10.12 is a plot of n(E) versus E, showing the product of an increasing
density of states and the decreasing FD distribution. Because

(10.42)

we can determine the Fermi energy as a function of the electron concen-
tration, N/V . For arbitrary T, Equation 10.42 must be integrated numerically.
At T � 0 K, the integration is simple since f FD(E) � 1 for E 
 EF and is 0 for
E � EF. Therefore, at T � 0 K, Equation 10.42 becomes

(10.43)

Substituting the value of D from Equation 10.40 into Equation 10.43 gives for
the Fermi energy at 0 K, EF(0),

(10.44)

Equation 10.44 shows a gradual increase in EF(0) with increasing electron con-
centration. This is expected, because the electrons fill the available energy
states, two electrons per state, in accordance with the Pauli exclusion principle
up to a maximum energy EF. Representative values of EF(0) for various metals
calculated from Equation 10.44 are given in Table 10.1. This table also lists
values of the Fermi speed and the Fermi temperature, TF, defined by

EF(0) �
h2

2me
� 3N

8�V �
2/3

N

V
� D �EF

0
E1/2 dE � 2

3 DEF
3/2

N

V
� ��

0
n(E) dE � D ��

0

E1/2 dE

e(E�E F)kBT � 1

n(E) dE �
DE1/2 dE

e(E�E F)/kBT � 1

D �
8√2�me

3/2

h3

g(E) dE � DE1/2 dE

dk �
1

2 � 2me

2 �
1/2

E�1/2 dE

k � � 2meE

2 �
1/2

E �
p2

2me
�

2k2

2me
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Density of states for

conduction electrons

Number of electrons per unit

volume with energy between

E and E � dE

1 2 3
E(eV)

n(E)

T = 0 K

kBT

T = 300 K

Figure 10.12 The number of
electrons per unit volume with
energy between E and E � dE.
Note that n(E) � g(E)fFD(E).
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(10.45)

As a final note, it is interesting that a long-standing puzzle concerning the
anomalously small contribution of the conduction electron “gas” to the heat
capacity of a solid has a qualitative solution in terms of the Fermi–Dirac distri-
bution. If conduction electrons behaved classically, warming a gas of N elec-
trons from 0 to 300 K should result in an average energy increase of 3kBT/2
for each particle, or a total thermal energy per mole, U, given by

Thus the electronic heat capacity per mole should be given by

assuming one free electron per atom. An examination of Figure 10.12, how-
ever, shows that on heating from 0 K, very few electrons become excited and
gain an energy kBT. Only a small fraction f within kBT of EF can be excited ther-
mally. The fraction f may be approximated by the ratio of the area of a thin rec-
tangle of width kBT and height n(EF) to the total area under n(E). Thus

Since only f N of the electrons gain an energy of the order of kBT, the actual
total thermal energy gained per mole is

From this result, we find that the electronic heat capacity is

Cel �
dU

dT
� 3R

T

TF

U � � 3

2

T

TF
�(NAkBT ) �

3

2

RT 2

TF

�
(kBT)g(EF)

D �E
F

0
E1/2 dE

�
(kBT)D(EF)1/2

2
3 DEF

3/2 �
3

2

kBT

EF
�

3

2

T

TF

f �
area of shaded rectangle in Figure 10.12

total area under n(E)

Cel �
dU

dT
� 3

2 R

U � NA (3
2 kBT) � 3

2 RT

TF 	
EF

kB
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Table 10.1 Calculated Values of Various Parameters for

Metals Based on the Free Electron Theory

Electron Fermi Fermi Fermi
Concentration Energy Speed Temperature

Metal (m�3) (eV) (m/s) (K)

Li 4.70 � 1028 4.72 1.29 � 106 5.48 � 104

Na 2.65 � 1028 3.23 1.07 � 106 3.75 � 104

K 1.40 � 1028 2.12 0.86 � 106 2.46 � 104

Cu 8.49 � 1028 7.05 1.57 � 106 8.12 � 104

Ag 5.85 � 1028 5.48 1.39 � 106 6.36 � 104

Au 5.90 � 1028 5.53 1.39 � 106 6.41 � 104
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Substituting T � 300 K and TF � 5 � 104 K, we find a very small value for the
electronic heat capacity at ordinary temperatures:

Thus, the electrons contribute only 0.018R/1.5R, or about 1% of the classi-
cally expected amount, to the heat capacity.

Cel � 3R � 300 K

50,000 K � � 0.018R
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(b) Calculate the Fermi speed for gold at 0 K.

Solution Since mevF
2 � EF,

(c) Calculate the Fermi temperature for gold at 0 K.

Solution The Fermi temperature is given by

Thus a gas of classical particles would have to be heated
to about 64,000 K to have an average energy per particle
equal to the Fermi energy at 0 K!

� 64,000 K

TF �
EF

kB
�

5.53 eV

8.62 � 10�5 eV/K

� 1.39 � 106 m/s

vF � � 2EF

me
�

1/2

� � 2 � 5.85 � 10�19 J

9.11 � 10�31 kg �
1/2

1
2

EXAMPLE 10.5 The Fermi Energy of Gold

(a) Calculate the Fermi energy of gold at 0 K.

Solution The density of gold is 19.32 g/cm3, and its
molar weight is 197 g/mol. Assuming each gold atom
contributes one free electron to the Fermi gas, we can
calculate the electron concentration as follows:

Using Equation 10.44, we find

� 8.85 � 10�19 J � 5.53 eV

�
(6.625 � 10�34 J�s)2

2(9.11 � 10�31 kg) � 3 � 5.90 � 1028 m�3

8� �
2/3

EF(0) �
h2

2me
� 3N

8�V �
2/3

� 5.90 � 1028 electrons/m3

� 5.90 � 1022 electrons/cm3

N

V
� (19.32 g/cm3)� 1

197 g/mol � � (6.02 � 1023 electrons/mol)

SUMMARY

Statistical physics deals with the distribution of a fixed amount of energy
among a number of particles that are identical and indistinguishable in any way
(quantum particles) or identical particles that are distinguishable in the classi-
cal limit of narrow particle wave packets and low particle density. In most situa-
tions, one is not interested in the energies of all the particles at a given instant,
but rather in the time average of the number of particles in a particular energy
level. The average number of particles in a given energy level is of special
interest in spectroscopy because the intensity of radiation emitted or absorbed
is proportional to the number of particles in a particular energy state.

For a system described by a continuous distribution of energy levels, the
number of particles per unit volume with energy between E and E � dE is
given by

n(E) dE � g(E)f(E) dE (10.6)

where g(E) is the density of states or the number of energy states per unit
volume in the interval dE and f(E) is the probability that a particle is in the
energy state E. The function f(E) is called the distribution function.
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Three distinct distribution functions are used, depending on whether the
particles are distinguishable and whether there is a restriction on the number
of particles in a given energy state:

• Maxwell–Boltzmann Distribution (Classical). The particles are distin-
guishable, and there is no limit on the number of particles in a given
energy state.

(10.3)

• Bose–Einstein Distribution (Quantum). The particles are indistinguish-
able, and there is no limit on the number of particles in a given energy state.

(10.19)

• Fermi–Dirac Distribution (Quantum). The particles are indistinguish-
able, and there can be no more than one particle per quantum state.

(10.25)

where EF is the Fermi energy. At T � 0 K, all levels below EF are filled
and all levels above EF are empty.

At low particle concentrations and high temperature, most systems are well
described by Maxwell–Boltzmann statistics. The criterion that determines
when the classical Maxwell–Boltzmann distribution is valid is 

(10.18)

where N/V is the particle concentration, m is the particle mass, and T is the
absolute temperature. For high particle concentration, low particle mass, and
modest temperature, there is considerable overlap between the particles’
wavefunctions, and quantum distributions must be used to describe these sys-
tems of indistinguishable particles.

A system of photons in thermal equilibrium at temperature T is described
by the Bose–Einstein distribution with B � 1 and a density of states given by

(10.27)

Thus, the concentration of photons with energies between E and E � dE is

Phonons, which are quantized lattice vibrations of a solid, are also described
by the Bose–Einstein distribution with B � 1.

Free (conduction) electrons in metals obey the Pauli exclusion principle,
and we must use the Fermi–Dirac distribution to treat such a system. The den-
sity of states for electrons in a metal is

(10.39)g(E) �
8√2�me

3/2

h3 E1/2

n(E) dE �
8�E2

(hc)3 � 1

eE/kBT � 1 � dE

g(E) �
8�E2

(hc)3

� N

V � h3

(8mkBT)3/2 

 1

f FD(E) �
1

e(E�EF)/kBT � 1

f BE(E) �
1

BeE/kBT � 1

f MB(E) � Ae�E/kBT
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hence the number of electrons per unit volume with energy between E and
E � dE is

(10.41)

An expression for the Fermi energy at 0 K as a function of electron concentra-
tion may be obtained by integrating Equation 10.41. One finds

(10.44)

The small electronic contribution to the heat capacity of a metal can be
explained by noting that only a small fraction of the electrons near EF gain
kBT in thermal energy when the metal is heated from 0 K to T K.

EF(0) �
h2

2me
� 3N

8�V �
2/3

n(E) dE �
8√2�me

3/2 E1/2

h3(e(E�EF)/kBT � 1)
dE
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Figure P10.3 A schematic drawing of an apparatus used
to verify the Maxwell speed distribution.
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More advanced treatments of statistical physics may be
found in the following books:

SUGGESTIONS FOR FURTHER READING

QUESTIONS

1. Discuss the basic assumptions of Maxwell–Boltzmann,
Fermi–Dirac, and Bose–Einstein statistics. How do they
differ, and what are their similarities?

2. Explain the role of the Pauli exclusion principle in de-
scribing the electrical properties of metals.

PROBLEMS

10.1 The Maxwell–Boltzmann Distribution

1. Verify that for a system of six distinguishable particles
with total energy 8E, the probabilities of finding a parti-
cle with energies 1E through 8E are: 0.256, 0.167,
0.0978, 0.0543, 0.0272, 0.0117, 0.00388, 0.000777.

2. Show that the most probable speed of a gas molecule is

Note that the most probable speed corresponds to the
point where the Maxwellian speed distribution curve,
n(v), has a maximum.

3. Figure P10.3 shows an apparatus similar to that used by
Otto Stern in 1920 to verify the Maxwell speed distribu-
tion. A collimated beam of gas molecules from an
oven, O, is allowed to enter a rapidly rotating cylinder
when slit S is coincident with the beam. The pulse of
molecules created by the rapid rotation of S then
strikes and adheres to a glass plate detector, D. The ve-
locity of a molecule may be determined from its posi-
tion on the glass plate (fastest molecules to the right).
The number of molecules arriving with a given velocity

vmp � √ 2kBT

m

may be determined by measuring the density of mole-
cules deposited on D at a given position. Suppose that

D

A

O

S

ω
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the oven contains a gas of bismuth molecules (Bi2) at
850 K, and that the cylinder is 10 cm in diameter and
rotates at 6250 rpm. (a) Find the distance from A of
the impact points of molecules traveling at , vrms, and
vmp. (b) Why do you suppose that measurements were
originally made with Bi2 instead of O2 or N2?

4. Energy levels known as tunneling levels have been
observed from CN� ions incorporated into KCl crys-
tals. These levels arise from the rotational motion of
CN� ions as they tunnel, at low temperatures, through
barriers separating crystalline potential minima.
According to one model, the tunneling levels should
consist of four equally spaced levels in the far IR with
spacing of 12.41 � 10�5 eV (1 cm�1). Assuming that
the CN� ions obey Maxwell–Boltzmann statistics and
using Figure P10.4, calculate and sketch the expected
appearance of the absorption spectra (strength of
absorption vs. energy) at 4 K and 1 K. Assume equal
transition probabilities for all allowed transitions, and
make the strength of absorption proportional to the
peak height. Use kB � 8.62 � 10�5 eV/K.

v

If the lifetime of the n � 2 state is 100 ns, calculate the
power (in watts) emitted by the hot atoms.

7. Consider a molecule with a permanent electric dipole
moment p placed in an electric field �, with p aligned
either parallel or antiparallel to �. (a) Recall that
the energy of a dipole in an electric field is given by
E � � p ��, and show that this system has two allowed
energy states separated by 2p�. (b) Assume a ground-
state energy of 0 and an excited-state energy of 2p�
and degeneracies in the ratio g(2p�)/g(0) � 2/1.
For a collection of N molecules obeying Maxwell–
Boltzmann statistics, calculate the ratio of the number
of molecules in the excited state to the number in the
ground state at temperature T. (c) For high T such that
kBT �� 2p�, the ratio of the number of molecules in
the upper state to the number in the lower is 2 to 1.
Taking reasonable estimates of p � 1.0 � 10�30 C � m
and � � 1.0 � 106 V/m, find the temperature at
which the ratio has fallen by a measurable 10% to
1.9 to 1. (d) Calculate the average energy at T and

show that : 0 as T : 0 and : 4p�/3 as T : �.
(e) Find E total from , and show that the heat capacity
for this two-level system is

(f) Sketch C as a function of 2p�/kBT. Find the value
of 2p�/kBT at which C is a maximum, and explain, in
physical terms, the dependence of C on T.

8. Use the distribution function given in Exercise 10.1,

to find (a) the most probable kinetic energy of gas mol-
ecules at temperature T, (b) the mean kinetic energy at
T, and (c) the root mean square kinetic energy at T.

9. The light from a heated atomic gas is shifted in fre-
quency because of the random thermal motion of light-
emitting atoms toward or away from an observer. Esti-
mate the fractional Doppler shift (�f/f0), assuming that
light of frequency f0 is emitted in the rest frame of each
atom, that the light-emitting atoms are iron atoms in a
star at temperature 6000 K, and that the atoms are mov-
ing relative to an observer with the mean speed

Must we use the relativistic Doppler shift formulas

for this calculation? Such thermal Doppler shifts are
measurable and are used to determine stellar surface
temperatures.

f � f0
√1 � v/c

√1 � v/c

v � �√ 8kBT

�m

n(E) dE �
2�(N/V )

(�kBT )3/2 E1/2e�E/kBT dE

C � � NkB

2 �� 2p�
kBT �

2

� e2p�/kBT

(1 � 1
2e2p�/kBT )2 �

E

EE

E
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∆

∆

∆

Energy

∆  =  1 cm–1  =  12.41 × 10–5 eV

E3    (1)

E2    (2)

E1    (2)

E0    (1)

Figure P10.4 Tunneling energy levels. Allowed transi-
tions are indicated by vertical arrows. The degeneracy of
each level is indicated in parentheses.

5. Fit an exponential curve P(E) � Ae�BE to Figure 10.2
to see how closely the system of six distinguishable par-
ticles comes to an exponential distribution. Use the val-
ues at energies of 0 and 1E to determine A and B.

6. The energy difference between the first excited state of
mercury and the ground state is 4.86 eV. (a) If a sample
of mercury vaporized in a flame contains 1020 atoms in
thermal equilibrium at 1600 K, calculate the number of
atoms in the n � 1 (ground) and n � 2 (first excited)
states. (Assume the Maxwell–Boltzmann distribution
applies and that the n � 1 and n � 2 states have equal
statistical weights.) (b) If the mean lifetime of the n � 2
state is � seconds, the transition probability is 1/� and
the number of photons emitted per second by the n � 2
state is n2/�, where n2 is the number of atoms in state 2.
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10.2 Under What Physical Conditions Do
Maxwell–Boltzmann Statistics Apply?

10. Helium atoms have spin 0 and are therefore bosons.
(a) Must we use the Bose–Einstein distribution at stan-
dard temperature and pressure to describe helium gas,
or will the Maxwell–Boltzmann distribution suffice?
(b) Helium becomes a liquid with a density of
0.145 g/cm3 at 4.2 K and atmospheric pressure. Must
the Bose–Einstein distribution be used in this case?
Explain.

10.3 Quantum Statistics

11. To obtain a more clearly defined picture of the
Fermi–Dirac distribution, consider a system of 20
Fermi–Dirac particles sharing 94 units of energy. By
drawing diagrams like Figure P10.11, show that there
are nine different microstates. Using Equation 10.2,
calculate and plot the average number of particles in
each energy level from 0 to 14E. Locate the Fermi en-
ergy at 0 K on your plot from the fact that electrons at
0 K fill all the levels consecutively up to the Fermi en-
ergy. (At 0 K the system no longer has 94 units of en-
ergy, but has the minimum amount of 90E.)

10.4 Bose–Einstein Statistics

12. (a) Find the average energy per photon for photons in
thermal equilibrium with a cavity at temperature T.
(b) Calculate the average photon energy in electron
volts at T � 6000 K. Hint: Two useful integrals are

13. (a) Show that the specific heat of any substance in the
Einstein model equals 5.48 cal/mol � K at T � TE.
(b) Using this result, estimate the Einstein tempera-
tures of lead, aluminum, and silicon from Figure 10.9.
(c) Using the temperatures found in part (b), calculate
the Einstein specific heats of each element at 50-K
intervals and compare with the experimental results
shown in Figure 10.9. You may wish to photocopy
Figure 10.9 and plot your calculated values on this fig-
ure for easy comparison.

10.5 Fermi–Dirac Statistics

14. The Fermi energy of copper at 0 K is 7.05 eV. (a) What
is the average energy of a conduction electron in cop-
per at 0 K? (b) At what temperature would the average
energy of a molecule of an ideal gas equal the energy
obtained in (a)? (See Problem 16)

15. The Fermi energy of aluminum is 11.63 eV. (a) Assum-
ing that the free electron model applies to aluminum,
calculate the number of free electrons per unit volume
at low temperatures. (b) Determine the valence of alu-
minum by dividing the answer found in part (a) by the
number of aluminum atoms per unit volume as calcu-
lated from the density and the atomic weight. Note that
aluminum has a density of 2.70 g/cm3.

16. Show that the average kinetic energy of a conduction

electron in a metal at 0 K is given by � 3EF/5. By way
of contrast, note that all of the molecules in an ideal
gas at 0 K have zero energy! Hint: Use the standard defin-
ition of an average given by

where EF is in electron volts when n is in electrons per
cubic meter.

17. Although we usually apply Fermi–Dirac statistics to free
electrons in a conductor, Fermi–Dirac statistics apply to
any system of spin particles, including protons and neu-
trons in a nucleus. Since protons are distinguishable
from neutrons, assume that each set of nucleons inde-
pendently obeys the Fermi–Dirac distribution and that
the number of protons equals the number of neutrons.
Using these ideas, estimate EF and for the nucleons in
Zn. (Zn has 30 protons, 34 neutrons, and a radius of
4.8 � 10�15 m.) Are your answers reasonable? Explain.

E

1
2

E �

��

0
Eg(E)f FD(E) dE

N/V

E

��

0

z2dz

e z � 1
� 2.41 and ��

0

z3dz

e z � 1
�

�4

15

1 Microstate...8 others?

15E

10E

5E

0

Figure P10.11 One of the nine equally probable mi-
crostates for 20 FD particles with a total energy of 94E.
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18. Show that Equation 10.44 can be expressed as

EF � (3.65 � 10�19)n2/3 eV

where EF is in electron volts when n is in electrons per
cubic meter.

19. Calculate the probability that a conduction electron in
copper at 300 K has an energy equal to 99% of the
Fermi energy.

20. Find the probability that a conduction electron in a
metal has an energy equal to the Fermi energy at the
temperature 300 K.

21. Sodium is a monovalent metal having a density of
0.971 g/cm3 and a molar mass of 23.0 g/mol. Use this
information to calculate (a) the density of charge carri-
ers, (b) the Fermi energy, and (c) the Fermi speed for
sodium.

22. Calculate the energy of a conduction electron in silver
at 800 K if the probability of finding the electron in
that state is 0.95. Assume that the Fermi energy for sil-
ver is 5.48 eV at this temperature.

23. Consider a cube of gold 1 mm on an edge. Calculate
the approximate number of conduction electrons in
this cube whose energies lie in the range from 4.000 to
4.025 eV at 300 K. Assume EF(300 K) � EF(0).

24. (a) Consider a system of electrons confined to a
three-dimensional box. Calculate the ratio of the
number of allowed energy levels at 8.5 eV to the
number of allowed energy levels at 7.0 eV. (b) Cop-
per has a Fermi energy of 7.0 eV at 300 K. Calculate
the ratio of the number of occupied levels at an en-
ergy of 8.5 eV to the number of occupied levels at the
Fermi energy. Compare your answer with that ob-
tained in part (a).

Calculator/Computer Problems

25. Consider a system of 104 oxygen molecules per cubic
centimeter at a temperature T. Calculate and plot a
graph of the Maxwell distribution, n(v), as a function
of v and T. Use your program to evaluate n(v) for
speeds ranging from v � 0 to v � 2000 m/s (in inter-
vals of 100 m/s) at temperatures of (a) 300 K and
(b) 1000 K. (c) Make graphs of n(v) versus v and use
the graph at T � 1000 K to estimate the number of
molecules per cubic centimeter having speeds between
800 m/s and 1000 m/s at T � 1000 K. (d) Calculate
and indicate on each graph the root mean square
speed, the average speed, and the most probable speed
(see Problem 2).

26. Graph the Fermi–Dirac distribution function, Equa-
tion 10.25, versus energy. Plot f (E) versus E for (a) 
T � 0.2TF and (b) T � 0.5TF, where TF is the Fermi
temperature, defined by Equation 10.45.

27. Copper has a Fermi energy of 7.05 eV at 300 K
and a conduction electron concentration of
8.49 � 1028 m�3. Calculate and plot (a) the density of
states, g(E); versus E; (b) the particle distribution func-
tion, n(E), as a function of energy at T � 0 K; and
(c) the particle distribution function versus E at
T � 1000 K. Your energy scales should range from
E � 0 to E � 10 eV.
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T
he ability to control charged particles at a distance with electric and magnetic
fields has led to an enormous number of advances in science and technology.
Applications include particle accelerators, x-ray sources, television, and vacuum

tubes. Until recently, our ability to control the motion of neutral particles has been
much more limited. Usually, the device we use to hold an object such as the tips of your
fingers or the wall of a bottle do not exert any force on an object until the device is
brought within a few atomic diameters of the object. Once the atoms at the surface of
your fingers are atomically close to an object, the electrons on your finger are repelled
by the electrons of the object. The electric forces generated by this repulsion allow us
to grasp neutral objects.

In the last two decades, scientists have developed the ability to manipulate neutral par-
ticles, such as atoms, molecules, and micron-sized particles. This new ability has quickly
led to a wide number of applications, including the study of atom–atom interactions and
light–matter interactions in an entirely new regime, the production of new quantum states
of matter, and the construction of exquisitely accurate atomic clocks and accelerometers.

LASER COOLING

The revolution in the control of neutral atoms is based on the ability to laser-cool
atoms to extremely low temperatures. How cold? The surface of the Sun (5000 K) is 18
times hotter than the freezing point of water and 1250 times hotter than the tempera-
ture at which helium liquefies (4 K). By comparison, atoms have been cooled by lasers
to less than 10�9 K, a billion times colder than liquid helium temperatures.

The first methods of laser cooling were simple. Since photons have momentum, light
can exert forces on atoms. For a photon of frequency f, its momentum is p� � E/c �

hf/c. As an example, a sodium atom absorbing one quantum of yellow light at 589 nm
will recoil with a velocity change �v � p�/mNa � 3 cm/s. Although typical atomic
speeds are on the order of 105 cm/s, laser light directed against a beam of atoms can be
used to slow the atoms down since a laser can induce over 107 photon absorptions per
second. Typically, atoms in a thermal beam can be stopped in a few milliseconds.

Atoms absorb light only if the laser is tuned to a resonance frequency. An atom
moving toward a laser beam with velocity v will experience an upward Doppler frac-
tional frequency shift given by �f/f � v/c. Thus, an atom moving toward a laser beam
at 105 cm/s will be in resonance with the laser beam only if the light is tuned 1.7 GHz
below the atomic resonance. As the atom slows down, the laser frequency has to be
continuously increased in order to keep it in resonance.

Once the atoms are fairly cold, further laser cooling is accomplished by surround-
ing the atom with counterpropagating laser beams tuned slightly to the low-frequency
side of an atomic resonance as in Figure 1. The atoms absorb more photons from the
beam opposing its motion because of the Doppler shift, independent of the direction
of motion. By surrounding the atom with six laser beams, cooling in all three dimen-
sions is accomplished. This method of laser cooling was first proposed in 1975 by
Theodore Hänsch and Arthur Schawlow at Stanford University and first demonstrated
by Steve Chu and his colleagues at AT&T Bell Labs in 1985. At that time, sodium atoms
were cooled from over 500 K to 240 �K. The sea of photons surrounding the atoms was
dubbed “optical molasses” because the light field serves as a viscous damping medium
that slows the motion of the atoms.

As the atoms cool to temperatures at which the average Doppler shift is a small frac-
tion of the resonance linewidth, the differential absorption, and hence the cooling
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force, decreases. An equilibrium temperature is reached when the cooling rate of opti-
cal molasses balances the heating rate due to the random absorption and reemission of
photons. For a simple atom consisting of one ground and one excited state separated
by 	, the minimum equilibrium temperature was calculated to be kBT � 	/2. In
1988, a NIST1 group at Gaithersburg, Maryland, led by William Phillips discovered that
atoms could be cooled in optical molasses to temperatures far below this theoretical
minimum temperature.

Jean Dalibard and Claude Cohen-Tannoudji at the École Normale Supérieure,
and Steve Chu, now at Stanford, realized that the low temperatures were due to the
interplay between several physical effects. (1) Atoms with nonzero angular momentum
have several Zeeman sublevels in the ground and excited states. (2) These Zeeman energy
levels shift with the presence of light by different amounts, depending on the strength of
the coupling of the atom to the light field. If the laser is tuned below the resonance fre-
quency, the states are shifted to lower energy. (3) For a given polarization of the light field,
the atom is preferentially driven into the quantum states with the lowest energy. (The pop-
ulation of specific Zeeman states due to polarized light is known as “optical pumping.” Al-
fred Kastler was awarded a Nobel prize in 1966 for his studies of this effect.)

Two counterpropagating laser beams with orthogonal linear polarization generate a
laser field having spatially dependent polarization as in Figure 2. An atom in a region
in space where the light has positive helicity (��) will optically pump into a low-energy
ground state mF � �F. If it then moves into a region of space where the light has nega-
tive helicity (��), the �F state becomes the highest-energy ground state. The kinetic
energy of the atom is thus converted into internal energy. This internal energy is dissi-
pated by the optical pumping effect, which drives the atom into the mF � �F state, the
low-energy state for �� light. In effect, the atom slows down as it rolls up a potential hill
created by the light shift of the atomic energy states. Near the top of the hill, the atom
optically pumps into the new low-energy state; that is, it finds itself at the bottom of a
new hill. Optical molasses with polarization gradients is sometimes referred to as Sisy-
phus cooling, after the mythical condemned man who faced the perpetual torment of
rolling a rock up a hill only to have it roll back down again. This cooling process has
cooled sodium atoms to 35 �K and cesium atoms to 3 �K.

Other laser cooling techniques that use a number of quantum coherence tricks and
that are given exotic names, such as “coherent population trapping” and “stimulated

Figure 1 An atom irradiated by two counterpropagating laser beams tuned to fre-
quency fL will see frequencies fL � �fD. If fL is tuned below the atomic resonance, the
atom will receive more photon momentum kicks from the beam opposing the motion.
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Figure 2 (a) Polarization gra-
dients that result from the super-
position of orthogonal linearly
polarized light. The local polar-
ization of the light changes from
positive helicity (��) to linear to
negative helicity polarization
(��) in a distance �/4. (b) The
energy levels of an atom with an
F � 1/2 ground state and an
F � 3/2 excited state irradiated
with positive-helicity light. The
dashed lines show the allowed
spontaneous emission paths, and
the dotted lines denote the en-
ergy levels in the absence of the
light shifts. Because the excita-
tion light is always trying to add
� unit of angular momentum
to the atom, repeated excitation
and spontaneous emission will
optically pump the atom into the
�1/2 ground state. The light
shifts are greatly exaggerated
with respect to the separation of
the energy levels. (From S. Chu,

Science, 253:861–866, 1991).1National Institute of Standards and Technology.
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Raman cooling,” have cooled atoms to temperatures in the nanokelvin range at which
the average speed is less than the speed change an atom experiences if it recoils from a
single photon. An explanation of these cooling methods can be found in the articles
listed at the end of this essay.

Once atoms are cooled to low temperatures corresponding to speeds on the order
of 1 cm/s, they can be easily manipulated with light, as well as static magnetic or elec-
tric fields. For example, atoms cooled to microkelvin energies have been tossed upward
with light to form an atomic fountain. As they follow the ballistic trajectory dictated by
gravity, they are in a nearly perturbation-free environment, and very accurate measure-
ments of atomic energy level splittings are possible.

A fundamental limitation to the accuracy of any measurement is the Heisenberg un-
certainty principle, which states that the quantum measurement time �t and the uncer-
tainty in the energy measurement �E must be greater than /2: �E �t � /2. For an
atom in an atomic beam the measurement time is limited by the transit time of the
atom through the measuring device. With an atomic fountain, the measurement time
has been increased from a few milliseconds to roughly one second. This thousandfold
increase in the measurement time will undoubtedly lead to more accurate atomic
clocks. The current time standard, defined by the energy level splitting between two
ground states of the cesium atom, is accurate to one part in 1014.

Atomic fountains have also been used to construct atom interferometers. Similar to
an optical interferometer, the atom interferometer splits the atom into a superposition
of two coherent states that separate spatially and recombine to form interference
fringes. Atom interferometers make extremely sensitive inertial sensors because of the
long transit time of the atoms through the device. The Stanford group has measured g,
the acceleration of an atom due to gravity, with a resolution of one part in 108 with an
atom interferometer, and it is likely that the uncertainty will be reduced to less than
one part in 1011. A portable version of this device could replace the mechanical “g” me-
ters now used in oil exploration. A low value of g could signify the presence of porous,
oil-laden rock, which has a lower density than solid rock.

ATOM TRAPPING

Atoms cooled below a millikelvin can also be held in space with either static magnetic
fields, laser fields, or a combination of a weak magnetic field and circularly polarized
light. Atom traps have been used to accumulate a large number of laser-cooled atoms,
confine them for further cooling, and use them for studies of atomic collisions at very
low temperatures.

A magnetic trap exerts forces on an atom via the atom’s magnetic moment. The
potential energy of a magnetic dipole in a magnetic field B is given by �� � B, where �
is the magnetic moment, typically on the order of 1 �B. Atoms were first magnetically
trapped in 1985 by the NIST group with a “spherical quadrupole field” as shown in
Figure 3. At the center of the trapping coils, the B-field is 0 and increases linearly as
one moves radially outward. An atom with its magnetic dipole aligned antiparallel to
the B-field minimizes its energy by seeking regions where the field magnitude is small-
est; that is, the atom experiences a force that drives it to the center of the trap. If the
atom moves slowly in the trap, it can remain aligned antiparallel to the magnetic field,
even if the field changes direction. Classically, if the magnetic moment precesses
rapidly around a slowly changing magnetic field, it continues to spin around a chang-
ing field axis. Quantum mechanically, the state of the atom “adiabatically” follows
external field conditions that define that quantum state.

Atoms can also be held with a laser beam by using intense light tuned far from an
atomic resonance to polarize the atom. The induced dipole moment p on the atom
points in the same direction as the driving electric field as long as the frequency of the
light is well below the atomic resonance frequency. Thus, the potential energy of the
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Figure 3 A spherical quadru-
pole trap showing some of the
magnetic field lines and the di-
rection of the currents. The
dashed line indicates an atom
moving in the trap with its mag-
netic moment (bright colored
arrows) remaining antiparallel
to the field lines.
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ESSAY LASER MANIPULATION OF ATOMS 369

atom in the light field, �p ��, causes the atom to seek regions of highest laser inten-
sity. The first optical trap, demonstrated by the Bell Labs group in 1986, was based on a
single focused laser beam. Since the focal point of a laser beam can be easily moved
with mirrors or lenses, this trap was dubbed “optical tweezers.” If the light is tuned
above the atomic resonance, an atom is repelled by the light. A box of light formed
from focused sheets of light has also been used to trap atoms by the Stanford group. By
using an optical microscope to focus the laser light and simultaneously observe sam-
ples, this type of trap has also been used to manipulate particles, such as micron-sized
spheres, bacteria, and viruses and individual molecules of DNA in aqueous solution.

The most widely used atom trap, first demonstrated at Bell Labs in 1987, uses a com-
bination of a weak spherical magnetic quadrupole field and circularly polarized light.
The magnetic field shifts the Zeeman energy levels of the atom as in Figure 4. When
illuminated with circularly polarized light, an atom to the right of the trap center will
predominately scatter �� light, and atoms left of center will scatter more �� light.
Thus, the atoms are pushed to the trap center by the same scattering force used in the
first laser cooling experiments. The advantage of this trap is that it combines laser trap-
ping with laser cooling and needs only low-intensity laser light and weak magnetic
fields. Another advantage is that atoms can be loaded directly inside a low-pressure
vapor cell without the initial slowing from an atomic beam. Over 1010 atoms can be col-
lected in a magneto-optic/cell trap in a few seconds.

–
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z

y

AtomAtom

B = B(z)k

F – F + F – F +

–+

σσ σ σ

σ

+–σ σ + +–

B > 0B = 0B < 0

J = 1

J = 0

mJ = –1 mJ = 0 mJ = +1

0
σ

σ σ σ σ

Figure 4 In a spherical quadrupole magnetic field, the energy levels of an atom with
a J � 0 ground state and a J � 1 excited state will be shifted in energy in a spatially
dependent way. For example, along the z-axis of the field given in Figure 3, the B field
is positive and increases linearly along the �z-axis. It reverses direction along the
�z-axis. An atom irradiated by two counterpropagating beams tuned below the transi-
tion frequency as in optical molasses will cool. If the light is circularly polarized as
shown, the momentum exchange will also trap the atom by tending to force it to the
B � 0 region. Because �� light excites the transition mJ � 0 : mJ � �1, and �� light
excites mJ � 0 : mJ � �1, the �� beam is slightly more in resonance with an atom
located in the positive z direction than the �� light. Consequently, more �� photons
than �� photons are scattered by an atom in the �z position.
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BOSE–EINSTEIN CONDENSATION

Laser-cooled atoms in traps allow one to study atomic collisions in the new domain of
ultracold temperatures. At very low temperatures, the atoms will no longer exhibit a
Maxwell–Boltzmann distribution of energies. Depending on whether a gas of atoms has
total angular momentum 0, 1, 2, . . . or /2, 3/2, 5/2, . . . the atoms obey
either Bose–Einstein or Fermi–Dirac statistics. One of the most dramatic quantum gas
effects predicted by Einstein should occur when the de Broglie wavelength � � h/p of
Bose atoms is comparable to the interatomic spacing. At the critical phase space den-
sity of n�3 � 2.612, where n is the density of atoms in the gas, a sizable fraction of the
atoms should begin to condense into a single quantum state.

In 1995, a group at the University of Colorado at Boulder led by Eric Cornell and
Carl Wieman verified this prediction for a gas of rubidium atoms by combining many
of the cooling and trapping techniques developed in the previous ten years. They
started by cooling and trapping atoms in a magneto-optic trap. Further cooling was
accomplished using optical molasses and Sisyphus cooling in the absence of a magnetic
field. At this point, the phase space density of the atoms was increased above that of an
intense thermal atomic beam by 13 orders of magnitude. The atoms were then opti-
cally pumped into a particular atomic Zeeman state and loaded into a magnetic trap.

The spherical quadrupole magnetic trap they used was modified to correct a known
flaw of the NIST trap. If an atom in the trap ventures close to the zero magnetic field
point, the precession frequency of the atom goes to zero and its spin can no longer follow
the direction of the field line. The spin could then flip to become parallel to the field and
hence antitrapped: the trap has a “hole” at its center. The Boulder group solved the prob-
lem by rotating the zero point of the magnetic field with additional magnetic field coils. If
the rotation frequency is made much faster than the atomic motion in the trap, the atoms
experience a time-averaged potential centered on the point of rotation. Since the hole ro-
tates outside of the ensemble of atoms, the atoms never see the hole.

The final cooling to about 20 nK was accomplished by “evaporization” from the
magnetic trap, a cooling technique first demonstrated by Harold Hess, Tom Greytak,
Dan Kleppner, and colleagues at MIT in 1989. Evaporization allows the very hottest
atoms to leave the sample, thereby reducing the average energy of the remaining
atoms. Collisions rethermalize the sample to produce more hot atoms, and as the evap-
orization proceeds, the evaporization barrier is lowered in order to continue the cool-
ing process. Using this technique, they were able to increase the phase space density by
another 5 orders of magnitude.

Figure 5 shows the velocity distribution of a cloud of about 2000 rubidium atoms
cooled in the vicinity of the Bose condensation threshold. The real experimental diffi-
culty is to both cool and maintain sufficiently low density in the cloud (interatomic dis-
tance about 10�4 cm) to preserve the ideal gas character of the cloud, minimize inter-
atomic forces, and prevent liquifaction. Just above the required phase space density,
the atomic energy is distributed in all directions equally among the many quantum
states, in accord with the equipartition theorem of statistical physics. As the threshold
condition is crossed, a central peak at v � 0 begins to form, signifying the onset of a
condensation. With further cooling, most of the atoms condense into the ground
quantum state of the system. Since the trap potential is not spherically symmetrical, the
ground quantum state is also asymmetrical.

Once the atoms are in a Bose condensate, their energy is defined in terms of the
localization energy �x�p � /2. Since the atoms remain in the Bose condensate as the
confining forces of the trap are relaxed, the effective temperature kBT/2 � 3�p2/2m

can be brought into the picokelvin range.
The activity in laser cooling and atom trapping has exploded into many areas of

physics, chemistry, biology, and medicine. One of the joys of science is that many of
these applications were not foreseen by the inventors of the field in the early days.
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Similarly, the applications of a Bose–Einstein condensate of atoms cannot be predicted.
Since the condensate is analogous to in-phase photons in a laser cavity, one can, in
principle, construct an exquisitely intense beam of atoms or atom laser. Another
unforeseen application is the remarkable slowing and stopping of light pulses in
a Bose–Einstein condensate of sodium atoms first observed in 2000 by the Danish-
American physicist Lene Vestergaard Hau.2 Since all of the information content in a
light pulse slowed in a BEC is recoverable at later times, this effect can probably be
used in opto-electronic components such as switches, memories, and delay lines.

This is indeed still an exciting time for physics.

Suggestions for Further Reading

For general reviews of cooling and trapping, see S. Chu, Sci. Am., February, 1992; and
S. Chu, Science, 253:861, 1991.

For a description of newer methods of laser cooling, see C. Cohen-Tannoudji and
W. D. Phillips, Phys. Today, 43:33, 1990. Raman cooling is described in M. Kasevich
and S. Chu, Phys. Rev. Lett., 69:1741, 1992.

The first Bose–Einstein condensation of a gas is described in M. H. Anderson, J. R.
Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science, 269:198, 1995.

2Hau et al., Nature, 18 February, 1999.
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Chapter Outline

Except for the inert gases, elements generally combine to form chemical
compounds whose basic unit is the molecule, an aggregate of individual atoms
joined by chemical bonds. The physical and chemical properties of molecules
derive from their constituent atoms—their arrangement, the manner and
degree to which they interact, and their individual electronic structures.

The properties of molecules can be studied experimentally by examining
their spectra. As with atoms, a molecule can emit or absorb photons, with
accompanying electronic transitions among the allowed energy levels of the
molecule. The resulting emission or absorption spectrum is different for each
molecule and acts as a sort of fingerprint of its electronic structure.

But molecules also emit or absorb energy in ways not found in atoms. Mole-
cules can rotate, storing energy in the form of kinetic energy of rotation, and
they can vibrate, and so possess energy of vibration. As we shall discover, both
the rotational and vibrational energies are quantized and so give rise to their
own unique spectra. It follows that molecular spectra are vastly more compli-
cated than atomic spectra, but also carry a good deal more information. In
particular, the vibration–rotation spectrum tells us how the individual atoms
that form the molecule are arranged and the strength of their interaction.

In this chapter we shall describe the bonding mechanisms in molecules, the
various modes of molecular excitation, and the radiation emitted or absorbed
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11.1 BONDING MECHANISMS: A SURVEY 373

by molecules. In the course of our study we shall encounter the quantum
origins of the chemical bond and discover why some atoms bond to form a
molecule and others do not. Central to this inquiry are the roles played by the
exclusion principle and tunneling, nonclassical ideas that underscore the
importance of wave mechanics to the study of molecular structure.

11.1 BONDING MECHANISMS: A SURVEY

Two atoms combine to form a molecule because of a net attractive force be-
tween them. Furthermore, the total energy of the bound molecule is less than
the total energy of the separated atoms; the energy difference is the energy
that must be supplied to break apart the molecule into its constituent atoms.

Fundamentally, the bonding mechanisms in a molecule are primarily due
to electrostatic forces between atoms (or ions). When two atoms are separated
by an infinite distance, the force between them is zero, as is their electrostatic
energy. As the atoms are brought closer together, both attractive and repulsive
forces come into play. At very large separations, the dominant forces are
attractive in nature. For small separations, repulsive forces between like
charges begin to dominate. The potential energy of the pair can be positive or
negative, depending on the separation between the atoms.

The total potential energy U of a system of two atoms often is approximated
by the expression

where r is the internuclear separation distance between the two atoms, A and
B are constants associated with the attractive and repulsive forces, and n and m
are small integers. Figure 11.1 presents a sketch of the total potential energy

U � �
A

rn �
B

rm

Attractive potential ∝ 1/r
n

0

Total potential

r

U(r)

Repulsive potential ∝ 1/r m

Equilibrium
separation

Binding
energy

Figure 11.1 The total particle energy as a function of the internuclear separation for
a system of two atoms.
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versus internuclear separation for a two-atom system. Note that the potential
energy for large separations is negative, corresponding to a net attractive
force. At the equilibrium separation, the attractive and repulsive forces just
balance. At this point, the potential energy has its minimum value and the
slope of the curve is zero.

A complete description of the binding mechanisms in molecules is a highly
complex problem because bonding involves the mutual interactions of many
particles. In this section we shall discuss some simplified models in order of
decreasing bond strength: the ionic bond, the covalent bond, the van der
Waals bond, and the hydrogen bond. 

Ionic Bonds

When two atoms combine in such a way that one or more electrons are trans-
ferred from one atom to the other, the bond formed is called an ionic bond.
Ionic bonds are fundamentally caused by the Coulomb attraction between
oppositely charged ions. A familiar example of an ionically bonded molecule
is sodium chloride, NaCl, or common table salt. Sodium, which has an elec-
tronic configuration 1s22s22p63s, gives up its 3s valence electron to form a
Na� ion. The energy required to ionize the atom to form Na� is 5.1 eV. Chlo-
rine, which has an electronic configuration 1s22s22p5, is one electron short of
the closed-shell structure of argon. Because closed-shell configurations are
energetically more favorable, the Cl� ion is more stable than the neutral
Cl atom. The energy released when an atom takes on an electron is the
electron affinity of the atom. For chlorine, the electron affinity is 3.7 eV.
Therefore, the energy required to form Na� and Cl� from isolated atoms is
5.1 � 3.7 � 1.4 eV. It costs 5.1 eV to remove the electron from the Na atom
but you gain 3.7 eV of it back when that electron joins the Cl atom. The differ-
ence, in this case 1.4 eV, is called the activation energy of the molecule. As
the ions are brought closer together, their mutual energy decreases due to
electrostatic attraction. At sufficiently small separations, the energy of forma-
tion becomes negative, indicating that the ion pair now is energetically pre-
ferred over neutral Na and Cl atoms.

The total energy versus internuclear separation for Na� and Cl� ions is
sketched in Figure 11.2. At very large separation distances, the energy of the
system of ions is 1.4 eV, as just calculated. The total energy has a minimum
value of �4.2 eV at the equilibrium separation of about 0.24 nm. This means
that the energy required to break the Na��Cl� bond and form neutral
sodium and chlorine atoms, called the dissociation energy, is 4.2 eV.

When the two ions are brought closer than 0.24 nm, the electrons in closed
shells begin to overlap, which results in a repulsion between the closed shells.
This repulsion is partly electrostatic in origin and partly a result of the identity
of electrons. Because they must obey the exclusion principle (Chapter 9), some
electrons in overlapping shells are forced into higher energy states and the
system energy increases, as if there were a repulsive force between the ions.

Covalent Bonds

A covalent bond between two atoms is one in which electrons supplied by
either one or both atoms are shared by the two atoms. Many diatomic mole-
cules, such as H2, F2, and CO, owe their stability to covalent bonds. In the case
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11.1 BONDING MECHANISMS: A SURVEY 375

of the H2 molecule, the two electrons are equally shared between the nuclei
and form a so-called molecular orbital. The two electrons are more likely to be
found between the two nuclei, hence the electron density is large in this
region. The formation of the molecular orbital from the s orbitals of the two
hydrogen atoms is represented in Figure 11.3. Because of the exclusion princi-
ple, the two electrons in the ground state of H2 must have antiparallel spins. If
a third H atom is brought near the H2 molecule, the third electron would
have to occupy a higher-energy quantum state because of the exclusion princi-
ple, which is an energetically unfavorable situation. Hence, the H3 molecule is
not stable and does not form. The stability of H2 and related species is exam-
ined in detail in Section 11.4.

More complex stable molecules, such as H2O, CO2, and CH4, are also
formed by covalent bonds. Consider methane, CH4, a typical organic mole-
cule shown schematically in the electron-sharing diagram of Figure 11.4a.
Note that covalent bonds are formed between the carbon atom and each of
the four hydrogen atoms. The spatial electron distribution of the four cova-
lent bonds is shown in Figure 11.4b. The four hydrogen nuclei are at the cor-
ners of a regular tetrahedron, with the carbon nucleus at the center.

van der Waals Bonds

Ionic and covalent bonds occur between atoms to form molecules or ionic
solids, so that they can be described as bonds within molecules. Two additional
types of bonds, van der Waals bonds and hydrogen bonds, can occur between
molecules.

We might expect that two neutral molecules would not interact by means of
the electric force because they each have zero net charge. We find, however,
that they are attracted to each other by weak electrostatic forces called van der
Waals forces. Likewise, atoms that do not form ionic or covalent bonds are
attracted to each other by van der Waals forces. Inert gases, for example,
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Figure 11.3 Classical orbit
model for the covalent bond
formed by the two 1s electrons
of the H2 molecule.

Figure 11.2 Total energy versus the internuclear separation for Na� and Cl� ions.
The energy required to separate the NaCl molecule into neutral atoms of Na and Cl is
the dissociation energy, 4.2 eV.
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because of their filled shell structure, do not generally form molecules.
Because of van der Waals forces, however, at sufficiently low temperatures at
which thermal excitations are negligible, inert gases first condense to liquids
and then solidify (with the exception of helium, which does not solidify at
atmospheric pressure). The van der Waals force arises when an electrically
neutral molecule has centers of positive and negative charge that do not coin-
cide. As a result, the molecule constitutes an electric dipole. The interaction
between electric dipoles causes two molecules to attract one another.

There are three types of van der Waals forces, which we shall briefly
describe. The first type, called the dipole–dipole force, is an interaction
between two molecules, each having a permanent electric dipole moment. For
example, polar molecules such as HCl and H2O have permanent electric
dipole moments and attract other polar molecules. In effect, one molecule
interacts with the electric field produced by another molecule.

The second type, the dipole-induced force, results when a polar molecule
having a permanent electric dipole moment induces a dipole moment in a
nonpolar molecule. In this case, the electric field of the polar molecule
creates the dipole moment in the nonpolar molecule, which then results in an
attractive force between the molecules.

The third type, called the dispersion force, is an attractive force that
occurs between two nonpolar molecules. Although the average dipole
moment of a nonpolar molecule is zero, charge fluctuations can cause two
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Figure 11.4 (a) Classical orbit model for the four covalent bonds in the CH4 mole-
cule. (b) Quantum-mechanical picture of the spatial arrangement of the four covalent
bonds of the CH4 molecule. The carbon atom is at the center of a tetrahedron with
hydrogen atoms at its corners. The orbitals supplied by carbon are actually sp3 hybrid
orbitals as explained at the end of Section 11.5. These orbitals have two lobes, and only
the larger lobes, which are shown here greatly narrowed for ease of depiction, partici-
pate in the bonding. Each C!H bond consists of an overlapping 1s orbital from hy-
drogen and an sp3 hybrid orbital from carbon. (Adapted from D. Ebbing, General Chem-
istry, 5th ed., Boston, Houghton Mifflin Co., 1996)
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11.2 MOLECULAR ROTATION AND VIBRATION 377

nonpolar molecules near each other to have dipole moments that are corre-
lated in time so as to produce an attractive van der Waals force.

Because all three types of van der Waals forces are dipolar in origin, they all
fall off with separation distance r as 1/r 7; however, the proportionality con-
stant is different for each type.

The Hydrogen Bond

Because hydrogen has only one electron, it is expected to form a covalent bond
with only one other atom within a molecule. A hydrogen atom in a given mole-
cule can also form a second type of bond between molecules called a hydrogen
bond. One example of a hydrogen bond is the hydrogen difluoride ion, (HF2)�,
shown in Figure 11.5. The two negative fluorine ions are bound by the positively
charged proton between them. This is a relatively weak chemical bond, with a
binding energy of only about 0.1 eV. The water molecule, H2O, is another exam-
ple of a system that contains hydrogen bonds. In the two covalent bonds in this
molecule, the electrons from the hydrogen atoms are more likely to be found
near the oxygen atom than near the hydrogen atoms. This leaves essentially bare
protons at the positions of the hydrogen atoms. This unshielded positive charge
can be attracted to the negative end of another polar molecule. Because the pro-
ton is unshielded by electrons, the negative end of the other molecule can come
very close to the proton to form a bond that is strong enough to form a solid crys-
talline structure, such as that of ice. The bonds within a water molecule are cova-
lent, but the bonds between water molecules in ice are hydrogen bonds.

The hydrogen bond is relatively weak compared with other chemical
bonds—it can be broken with an input energy of about 0.1 eV. Because of
this, ice melts at the low temperature of 0�C. Despite the fact that this bond is
very weak, hydrogen bonding is a critical mechanism responsible for the link-
ing of biological molecules and polymers. For example, in the case of the
DNA (deoxyribonucleic acid) molecule, which has a double-helix structure,
hydrogen bonds formed by the sharing of a proton between two atoms create
linkages between the turns of the helix.

11.2 MOLECULAR ROTATION AND VIBRATION

As is the case with atoms, we can study the structure and properties of mole-
cules by examining the radiation they emit or absorb. Before we describe
these processes, it is important to first understand the various ways of exciting
a molecule.

Consider an individual molecule in the gaseous phase of a substance. The
energy of the molecule can be divided into four categories: (1) electronic
energy, due to the interactions between the molecule’s electrons and nuclei;
(2) translational energy, due to the motion of the molecule’s center of mass
through space; (3) rotational energy, due to the rotation of the molecule
about its center of mass; and (4) vibrational energy, due to the vibration of the
molecule’s constituent atoms.

Because the translational energy is unrelated to internal structure, this compo-
nent is unimportant in interpreting molecular spectra. The electronic energy

E � Eel � Etrans � Erot � Evib

H+

F– F–

Figure 11.5 Hydrogen bond-
ing in the (HF2)� molecular
ion. The two negative fluorine
ions are bound by the positively
charged proton between them.
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of a molecule is very complex because it involves the interaction of many
charged particles. Electronic energies are the subject of Section 11.4. Here we
concentrate on the significant information about a molecule that can be
deduced by analyzing its rotational and vibrational energy states, which give
spectral lines in the infrared region of the electromagnetic spectrum.

Molecular Rotation

Let us consider the rotation of a molecule about its center of mass. We
confine our discussion to a diatomic molecule, although the same ideas can
be extended to polyatomic molecules. As shown in Figure 11.6a, the
diatomic molecule has only 2 rotational degrees of freedom, corresponding
to rotations about the y- and z-axes, that is, the axes perpendicular to the
molecular axis.1

The energy of a rigid rotating molecule is all kinetic. Let m1 and m2 denote
the atomic masses, with speeds v1 and v2. For a molecule in rotation, the
speeds v1 and v2 are interrelated. In terms of the angular velocity of rotation
�, we have

v1 � �r1  and  v2 � �r2
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Figure 11.6 (a) A diatomic molecule oriented along the x-axis has 2 rotational
degrees of freedom, corresponding to rotation about the y- and z-axes. (b) Allowed
rotational energies of a diatomic molecule as calculated using Equation 11.5.

1The excitation energy for rotations about the molecular axis is so large that such modes are not
observable. This follows because nearly all the molecular mass is concentrated within nuclear
dimensions of the rotation axis, giving a negligibly small moment of inertia about the internu-
clear line (see Problem 12).
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where r1 is the distance of m1 from the axis of rotation and similarly for r2 (see
Fig. 11.6a). The angular momentum of rotation about the z-axis is

The quantity in curly brackets {. . .} is the moment of inertia, denoted I. With
this identification, the energy of rotation is

Eliminating � from the preceding two equations gives the simple result

(11.1)

Comparing Equation 11.1 with the kinetic energy of a particle in transla-
tion, p2/2m, we see that the moment of inertia I of the molecule measures its
resistance to changes in rotation in the same way that the mass m of a single
particle measures its resistance to changes in translation. The value for I
depends on the rotation axis, however. For the important case where the axis
of rotation passes through the center of mass,2 we have m1r1 � m2r2, and r1

and r2 can be written in terms of the atomic separation R0 � r1 � r 2 as

Then the moment of inertia about the center of mass, ICM, becomes

(11.2)

where � is the reduced mass of the molecule,

(11.3)

Unlike moment of inertia, which is a property of the molecule, angular
momentum L is a dynamical variable; in the transition to quantum mechanics,
L2 becomes quantized. As shown in Chapter 8, the correct quantization rule is

(11.4)

which, in turn, restricts the energy of rotation to be one of the discrete values

(11.5)

In the context of molecular rotation, the integer � is called the rotational
quantum number. Thus, we see that the rotational energy of the mole-
cule is quantized and depends on the moment of inertia of the molecule.
The allowed rotational energies of a diatomic molecule are sketched in

Erot �
�2

2ICM
�(� � 1)

L2 � �(� � 1)�2  � � 0, 1, 2, � � �

� �
m1m2

m1 � m2

ICM � � m1m2

m1 � m2
� R 0

2 � �R 0
2

R0 � � m2

m1
� 1� r2 � �1 �
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m2
� r1

Erot �
L2
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1 � 1
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2 � 1
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Rotational energy and

angular momentum

2Since there is no axis about which the molecule is constrained to rotate, the correct axis for cal-
culating rotational energy is one passing through the center of mass. Energy associated with rota-
tion about any other axis would include some energy of translation, as well as energy of rotation.

Allowed energies for rotation
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Figure 11.6b. These results apply also to polyatomic molecules, provided the
appropriate generalization of ICM is used.

The spacing between adjacent rotational levels can be calculated from
Equation 11.5:

(11.6)

where � is the quantum number of the higher energy state. In going from one
rotational state to the next, the molecule loses (or gains) energy, 	E. The loss
(or gain) typically is accompanied by photon emission (or absorption) at
the frequency � � 	E/�. Thus, photons should be observed at the frequen-
cies �0 � �/ICM, 2�0, 3�0, . . . . These predictions are in excellent agree-
ment with experiment.3 The wavelengths and frequencies for the absorption
spectrum of the CO molecule are given in Table 11.1. The lowest frequencies
lie in the microwave range of the electromagnetic spectrum, as is typical of the
rotational spectra of all molecules. This indicates that the energy required to
excite a molecule into rotation is quite small, on the order of 10�4 eV. From
the data, one can deduce the moment of inertia and the bond length of the
molecule, as shown in the following example.

∆E � E� � E�� 1 �
�2

2ICM
 {�(� � 1) � (� � 1)�} �

�2

ICM
�
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3These simple statements must be refined when molecular vibration is taken into account, as dis-
cussed in Section 11.3.

Table 11.1 Microwave Absorption Lines for Several Rotational

Transitions of the CO Molecule

Wavelength of Frequency of
Rotational Transition Absorption Line (m) Absorption Line (Hz)

� � 0 : � � 1 2.60 
 10�3 1.15 
 1011

� � 1 : � � 2 1.30 
 10�3 2.30 
 1011

� � 2 : � � 3 8.77 
 10�4 3.46 
 1011

� � 3 : � � 4 6.50 
 10�4 4.61 
 1011

so that ICM becomes

(b) Calculate the bond length of the molecule.

Solution Equation 11.2 can be used to calculate the
bond length once the reduced mass of the molecule is
found. Since the carbon and oxygen atomic masses are
12.0 u and 16.0 u, respectively, the reduced mass of the
CO molecule is, from Equation 11.3,

� 1.14 
 10�26 kg� �
(12.0 u)(16.0 u)

12.0 u � 16.0 u
� 6.857 u

ICM �
�

�
�

1.055 
 10�34 J�s

7.23 
 1011 rad/s
� 1.46 
 10�46 kg�m2

EXAMPLE 11.1 Rotation of the CO Molecule

The � � 0 to � � 1 rotational transition of the CO mole-
cule occurs at a frequency of 1.15 
 1011 Hz. (a) Use this
information to calculate the moment of inertia of the
molecule about its center of mass.

Solution From Equation 11.6, we see that the energy
difference between the � � 0 and � � 1 rotational levels
is �2/ICM. Equating this to the energy of the absorbed
photon, we get

The angular frequency � of the absorbed radiation is

� � 2�f � 2�(1.15 
 1011 Hz) � 7.23 
 1011 rad/s

�2

ICM
� ��
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Molecular Vibration

A molecule is a flexible structure whose atoms are bonded together by what
can be considered “effective springs.” If disturbed, the molecule can vibrate,
taking on vibrational energy. This energy of vibration may be altered if the
molecule is exposed to radiation of the proper frequency.

Consider again a diatomic molecule. The potential energy U(r) versus
atomic separation r for such a molecule is sketched in Figure 11.7a. The equi-
librium separation of the atoms is denoted there by R0; for small displace-
ments from equilibrium, the atoms vibrate, as if connected by a spring with
unstretched length R0 and force constant K (Fig. 11.7b).4 Atomic displace-
ments in the direction of the molecular axis give rise to oscillations along the
line joining the atoms. For these longitudinal vibrations, the system is effec-
tively one-dimensional, with the coordinates of each atom measured along the
molecular axis.

We denote by �1 and �2 the displacements from equilibrium of m1 and m2,
respectively. In terms of these displacements, the effective spring is stretched a
net amount �1 � �2, and the elastic energy of the two-atom pair is

U � 1
2 K(�1 � �2)2
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Harmonic approximation to

molecular vibration

4In Section 6.6 of Chapter 6 we showed that the effective force constant K is given by the curva-
ture of U(r) evaluated at the equilibrium separation R 0; that is, .K � 2U/r 2 �R0

This example hints at the immense power of spectro-
scopic measurements to determine molecular properties!

where the conversion 1 u � 1.66 
 10�27 kg has been
used. Then

� 1.13 
 10�10 m � 0.113 nm

R 0 � √ ICM

�
� √ 1.46 
 10�46 kg�m2

1.14 
 10�26 kg

(b)

m1

m2

K

r

(a)

r
R 0

U(r)

Figure 11.7 (a) A plot of the potential energy of a diatomic molecule versus atomic
separation. The parameter R 0 is the equilibrium separation of the atoms. (b) Model of
a diatomic molecule whose atoms are bonded by an effective spring of force constant
K. The fundamental vibration is along the molecular axis.
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The kinetic energy of the pair is (p1
2/2m1) � (p2

2/2m2), but some of this rep-
resents translational energy for the molecule as a whole. To isolate the vibra-
tional component, we examine the problem in the center-of-mass (CM) frame,
where the total momentum of the molecule is zero. In the CM, the atomic mo-
menta are equal in magnitude but oppositely directed—that is, p2 � �p1 —
and the kinetic energy (now of vibration only) is simply

where � is again the reduced mass defined in Equation 11.3.
The preceding relations describe a one-dimensional oscillator with vibra-

tion coordinate � � �1 � �2. The Schrödinger equation for this case is

(11.7)

which is that for the quantum oscillator studied in Chapter 6, with x there re-
placed by �. The allowed energies of vibration are the oscillator levels (com-
pare Equation 6.29),

v � 0, 1, 2, . . . (11.8)

where v is an integer called the vibrational quantum number. The angular
frequency � is the classical frequency of vibration and is related to the force
constant K by

K � ��2 (11.9)

In the lowest vibrational state, v � 0, we find E vib � ��, the so-called zero-
point energy. The accompanying vibration—the zero-point motion—is pre-
sent even when the molecule is not excited. From Equation 11.8 we see also
that the energy difference between any two successive vibrational levels is the
same and is given by 	E vib � ��. A typical value for 	E vib can be found from
the entries in Table 11.2 and turns out to be about 0.3 eV.

An energy level diagram for the vibrational energies of a diatomic molecule
is given in Figure 11.8. Normally, most molecules are in the lowest energy state
because the thermal energy at ordinary temperatures (kBT � 0.025 eV) is
insufficient to excite the molecule to the next available vibrational state.

1
2

E vib � (v � 1
2)��

�
�2

2�

d2�

d�2 � 1
2 K�2�(�) � Evib�(�)

KE vib � p2
1 � 1

2m1
�

1

2m2
� �

p1
2

2�
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Figure 11.8 Allowed vibra-
tional energies of a diatomic
molecule, where � is the funda-
mental frequency of vibration 

given by . Note that
the spacings between adjacent
vibrational levels are equal.

� � √K/�

Table 11.2 Fundamental Vibrational Frequencies and Effective

Force Constants for Some Diatomic Molecules

Molecule Frequency (Hz), v � 0 to v � 1 Force Constant (N/m)

HF 8.72 
 1013 970
HCl 8.66 
 1013 480
HBr 7.68 
 1013 410
HI 6.69 
 1013 320
CO 6.42 
 1013 1860
NO 5.63 
 1013 1530

From G. M. Barrows, The Structure of Molecules, New York, W. A. Benjamin, 1963.

Allowed energies for

vibration
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Electromagnetic radiation, however, can stimulate transitions to the first
excited level. Such a transition would be accompanied by the absorption of a
photon to conserve energy. Once excited, the molecule can return to the
lower vibrational state by emitting a photon of the same energy. For molecular
vibrations, photon absorption and emission occur in the infrared region of
the spectrum. Absorption frequencies for the v � 0 to v � 1 transitions of sev-
eral diatomic molecules are listed in Table 11.2, together with the effective
force constants K calculated from Equation 11.9. Since larger force constants
describe stiffer springs, K indicates the strength of the molecular bond. Notice
that the CO molecule, which is bonded by several electrons, is much more
rigid than such single-bonded molecules as HCl.
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Thus, infrared spectroscopy furnishes useful information
on the elastic properties (bond strengths) of molecules.

(b) What is the classical amplitude of vibration for a
CO molecule in the v � 0 vibrational state?

Solution The total vibrational energy for the molecule is
Evib � ��. At maximum displacement, the CO molecule
has transformed all this into elastic energy of the spring,

where A is the vibration amplitude. Using K � ��2 and
� � 1.14 
 10�26 kg, we get

Comparing this with the bond length of 0.113 nm, we see
that the vibration amplitude is only about 4% of the
bond length.

� 4.79 
 10�12 m � 0.00479 nm

A � � �

�� �
1/2

� � 1.055 
 10�34

(1.14 
 10�26)(4.03 
 1014) �
1/2

1
2 �� � 1

2 KA2

1
2

EXAMPLE 11.2 Vibration of the CO Molecule

The CO molecule shows a strong absorption line at the
frequency 6.42 
 1013 Hz. (a) Calculate the effective
force constant for this molecule.

Solution The absorption process is accompanied by
a molecular transition from the v � 0 to the v � 1
vibrational level. Since the energy difference between
these levels is 	E vib � ��, the absorbed photon must
have carried this much energy. It follows that the
photon frequency is just 	E vib/� � �, the frequency
of the CO oscillator! From the information given, we
calculate

� � 2�f � 2�(6.42 
 1013) � 4.03 
 1014 rad/s

Using 12.0 u and 16.0 u for the carbon and oxygen
atomic masses, we find � � 6.857 u � 1.14 
 10�26 kg,
as in Example 11.1. Then

K � ��2 � (1.14 
 10�26)(4.03 
 1014)2

� 1.86 
 103 N/m

Exercise 1 Compare the effective force constant for the CO molecule deduced here
with that of an ordinary laboratory spring that stretches 0.5 m when a 1.0 kg mass is
suspended from it.

Answer 1.86 
 103 N/m for the molecule versus only 19.6 N/m for the laboratory
spring.

A proper treatment of molecular rotation and vibration should begin
with Schrödinger’s wave equation in three dimensions. However, because
such problems involve many particles, approximation methods are neces-
sary. For diatomic molecules, the particle mass m is replaced by the reduced
mass � of the system, and the potential U(r) describes the interaction
between atoms. Since the force between atoms depends only on their sepa-
ration, U is spherically symmetric, and the wavefunctions are just spherical
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harmonics, , multiplied by solutions, R(r), to the radial wave
equation (Section 8.2). In this context, the angular momentum quantum
numbers � and m� specify the rotational state of the molecule. Molecular
vibration is described by the radial wave R(r ) and reflects the choice of
interatomic potential U(r ). Near equilibrium, U(r ) closely resembles the
potential of a spring, leading to vibrational energies characteristic of the
quantum oscillator.

In actuality, the atoms of a molecule exert complicated forces on one
another; these forces are harmonic only when the atoms are close to their
equilibrium positions. More vibrational energy implies larger vibration ampli-
tude, and with it a breakdown of the harmonic approximation—the effective
spring must give way to a more accurate representation of the true interatomic
force. One way to do this consists of replacing the harmonic potential K�2

in Equation 11.7 with the Morse potential shown in Figure 11.9a. Near equi-
librium (r � R0) the Morse potential is harmonic; further away, U(r ) mimics
the asymmetry characteristic of interatomic forces, becoming zero when
the atoms are widely separated (r : �) but rising sharply as the atoms come
close together. In consequence, oscillations take place about an average posi-
tion �r	 that increases with the energy of vibration. This is the origin of thermal
expansion, in which the increased vibrational energy results from raising the
temperature of the sample. Unlike the harmonic oscillator, the interval sepa-
rating successive levels of the Morse oscillator diminishes steadily at higher
energies, as illustrated in Figure 11.9b. The Morse oscillator is explored fur-
ther in Problems 14–17.

1
2

Y �
m�(�, �)
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Figure 11.9 (a) Potential energy U(r) for the Morse oscillator. In the equilibrium
region around R0, U(r) is harmonic, but rises sharply as the atoms are brought closer
together. (b) Allowed energies of vibration for the Morse oscillator. Notice that the sep-
aration between adjacent levels decreases with increasing energy.

Anharmonic effects
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11.3 MOLECULAR SPECTRA

In general, a molecule rotates and vibrates simultaneously. To a first approxi-
mation, these motions are independent of each other and the total rotational
and vibrational energy of the molecule is given by the sum of Equations 11.5
and 11.8:

(11.10)

The levels prescribed by Equation 11.10 constitute the simplest approximation
to the rotation–vibration spectrum of any molecule. Each level is indexed
by the two quantum numbers � and v, specifying the state of rotation and
vibration, respectively. For each allowed value of the vibrational quantum
number v, there is a complete set of rotational levels, corresponding to � � 0,
1, 2, . . . . Since successive rotational levels are separated by energies much
smaller than the vibrational energy ��, the rotation–vibration levels of a typi-
cal molecule appear as shown in Figure 11.10. Normally, the molecule would
take on the configuration with lowest energy, in this case the one designated
by v � 0 and � � 0. External influences, such as temperature or the presence
of electromagnetic radiation, can change the molecular condition, resulting
in a transition from one rotation–vibration level to another. The attendant
change in molecular energy must be compensated by absorption or emission
of energy in some other form. When electromagnetic radiation is involved, the
transitions—referred to as optical transitions—are subject to other conser-
vation laws as well, since photons carry both momentum and energy.

Any optical transition between molecular levels with energies E1 and E2

must be accompanied by photon emission or absorption at the frequency

(11.11)

Because hf is the photon energy, this is energy conservation for the system of mol-
ecule plus photon. Equation 11.11 expresses a kind of resonance between the two;
unless photons of the correct frequency (energy) are available, no transition is
possible. Similar restrictions apply to other quantities that we know must be con-
served in the process of transition. In particular, the initial and final states for an
optical transition also must differ by exactly one angular momentum unit:

(11.12)

The inference to be drawn from Equation 11.12 is that the photon carries
angular momentum in the amount of �, that is, the photon is a spin 1 particle
with spin quantum number s � 1. Equation 11.12 then expresses angular
momentum conservation for the system molecule plus photon. Equations
11.11 and 11.12 are the selection rules for optical transitions.

For the lower vibrational levels, there is also a restriction on the vibrational
quantum number v :

(11.13)

Equation 11.13 reflects the harmonic character of the interatomic force rather
than any photon property; indeed, for higher vibrational energies the concept

� v2 � v1 � � 1  or  	v � �1

� �2 � �1 � � 1  or  	� � �1

f �
� E2 � E1 �

h
  or  	E � �hf

Erot�vib �
�2

2ICM
�(� � 1) � (v � 1

2)��
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Figure 11.10 The rotation–
vibration levels for a typical mol-
ecule. Note that the vibrational
levels are separated by much
larger energies so that a com-
plete rotational spectrum can be
associated with each vibrational
level.

Rotation–vibration spectrum

of a diatomic molecule
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of an effective spring joining the atoms is inaccurate, and Equation 11.13
ceases to be valid.

Selection rules greatly restrict the number of photon frequencies or wave-
lengths observed in molecular spectra, since transitions are prohibited unless
all rules are obeyed simultaneously.5 For instance, a pure rotational transition
normally would not be observed, since this requires 	v � 0 in violation of
Equation 11.13. In the same way, a pure vibrational transition (	� � 0) is for-
bidden, and we conclude that optical transitions usually involve both molecu-
lar vibration and rotation.

The spectrum of a particular molecule can be predicted by considering a
collection of such molecules, initially undisturbed. At ordinary temperatures
there is insufficient thermal energy to excite any but the v � 0 vibrational
mode, although the molecules will be in various states of rotation. Since a
pure rotational transition is forbidden, optical absorption must result from
transitions in which v increases by one unit but � either increases or decreases,
also by one unit (Figure 11.11a). Therefore, the molecular absorption
spectrum consists of two sequences of lines, represented by 	� � �1, with
	v � �1 for both cases. The energies of the absorbed photons are readily cal-
culated from Equation 11.14:

� � 0, 1, . . . (	� � �1)

(11.14)

� � 1, 2, . . . (	� � �1)

Here � is the rotational quantum number of the initial state. The first of Equa-
tions 11.14 generates a series of equally spaced lines at frequencies above the
characteristic vibration frequency �, and the second generates a series below
this frequency. Adjacent lines are separated in (angular) frequency by the fun-
damental unit �/ICM. Notice that � itself is excluded, since � cannot be zero if
the transition is one for which � decreases (	� � �1). Figure 11.11b shows
the expected frequencies in the absorption spectrum for the molecule; these
same frequencies appear in the emission spectrum.

The absorption spectrum of the HCl molecule shown in Figure 11.12 fol-
lows this pattern very well and reinforces our model. However, one peculiarity
is apparent: Each line in the HCl spectrum is split into a doublet. This dou-
bling occurs because the sample is a mixture of two chlorine isotopes, 35Cl and
37Cl, whose different masses give rise to two distinct values for ICM. Notice,
too, that not all spectral lines appear with the same intensity, because even the
allowed transitions occur at different rates (number of photons absorbed per
second). Transition rates are governed chiefly by the populations of the initial
and final states, and these depend on the degeneracy of the levels as well as
the temperature of the system.

	E � �� �
�2

ICM
 (� � 1)

	E � �� �
�2

ICM
�
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5The selection rules given are for harmonic oscillations and rotations of a rigid rotor. In practice,
violations of these rules are observed for predictable reasons, such as anharmonicity or 
rotation–vibration coupling.
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Figure 11.12 The absorption spectrum of the HCl molecule. Each line is split into a
doublet because chlorine has two isotopes, 35Cl and 37Cl, which have different nuclear
masses. (This is an adaptation of data taken by T. Faulkner and T. Nestrick at Oakland
University, Rochester, MI.)

Figure 11.11 (a) Absorptive transitions between the v � 0 and v � 1 vibrational
states of a diatomic molecule. The transitions obey the selection rule 	� � �1 and fall
into two sequences: those for which 	� � �1 and those for which 	� � �1. The transi-
tion energies are given by Equation 11.14. (b) Expected lines in the optical absorption
spectrum of a molecule. The lines on the right side of center correspond to transitions
in which � changes by �1, and the lines to the left of center correspond to transitions
for which � changes by �1. These same lines appear in the emission spectrum.
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The excitation of rotational and vibrational energy levels is an important
consideration in current models of global warming. For CO2 molecules, most
of the absorption lines are in the infrared portion of the spectrum. Thus, visi-
ble light from the Sun is not absorbed by atmospheric CO2 but instead strikes
the Earth’s surface, warming it. In turn, the surface of the Earth, being at a
much lower temperature than the Sun, emits thermal radiation that peaks in
the infrared portion of the electromagnetic spectrum. This infrared radiation
is absorbed by the CO2 molecules in the air instead of radiating out into space.
Thus, atmospheric CO2 acts like a one-way valve for energy from the Sun and
is responsible, along with some other atmospheric molecules, for raising the
temperature of the Earth’s surface above its value in the absence of an atmos-
phere. This phenomenon is commonly called the “greenhouse effect.” The
burning of fossil fuels in today’s industrialized society adds more CO2 to the
atmosphere. Many scientists fear that this will increase the absorption of
infrared radiation, raising the Earth’s temperature further, and may cause sub-
stantial climatic changes.

Finally, we note that molecules, like atoms, often simply scatter radiation,
without having first to absorb and later re-emit it. (Indeed, photons of any
energy can be scattered, so no resonance is involved.) In Rayleigh scatter-
ing, the photon energy is unchanged by the collision. Rayleigh scattering is
stronger at shorter photon wavelengths, and it is this selectivity in the scatter-
ing that accounts for the blue color of the daytime sky. But Raman scattering
also can occur, with the photon losing—or even gaining—energy in the colli-
sion. (Sir Chandrasekhara V. Raman, Indian physicist, 1888–1970, received
the 1930 Nobel Prize in Physics for his work on the scattering of light and the
effect that bears his name.) Because the photon energy changes, the Raman
effect is an example of an inelastic process. For such processes, energy is still
conserved overall, with the photon energy loss or gain compensated by a suit-
able change in the rotational and/or vibrational state of the molecule. Where
rotation is involved, the energy exchanged in Raman scattering is consistent
with the selection rule 	� � �2. Figure 11.13 depicts a typical Raman process

388 CHAPTER 11 MOLECULAR STRUCTURE

Raman scattered photon

Incident photon

Eel � (� � 2)(� � 3)h2

2ICM

h2

2ICM
Eel �

E �

E

�(� � 1)

	E � (2� � 3)h2

ICM

Figure 11.13 An illustration of Raman scattering. In this case an incoming photon
with energy E scatters from a molecule and emerges with reduced energy E �. The
energy lost by the photon increases the rotational energy of the molecule in accor-
dance with the selection rule 	� � 2. The energy loss translates into a change in pho-
ton frequency, the Raman shift, that can be used to probe molecular structure.
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where an incoming photon with energy E is scattered and emerges with a
reduced energy E �, the difference being expended to excite a higher rota-
tional state of the molecule. The excitation energy 	E is found from Equation
11.10 using �, v for the quantum numbers of the initial state and � � 2, v for
those of the final state (	� � 2, 	v � 0). The scattered photon has lower fre-
quency f � compared to the original; the Raman shift f � f � is just the excita-
tion energy 	E divided by h, or

(11.15)

Measurements of the Raman shift can be used to determine the moment of in-
ertia of the molecule, which furnishes important clues about the molecular
structure. Indeed, Raman spectra serve as a kind of “fingerprint” for molecules,
and have been used successfully to identify minerals in lunar soil samples.

Raman scattering is relatively weak, and observable only if the incident radi-
ation is sufficiently intense. With the advent of powerful monochromatic laser
sources, Raman spectroscopy has found application in the remote monitoring
of pollutants. For example, the scattering produced by a laser beam directed
on the plume from an industrial smokestack can be used to monitor the efflu-
ent for levels of those molecules that produce recognizable Raman lines.

In the Raman process, the electronic state of the molecule is unchanged.
Molecular spectra for which changes occur in the electronic state as well as in
the vibrational and/or rotational states of the molecule are called electronic
spectra. Because the electronic energy levels of a molecule are separated by
much larger energies (
 1 eV) than vibrational (or rotational) levels, elec-
tronic transitions give rise to spectral lines that lie in the visible or ultraviolet
range. For the same reason, a complete set of vibrational levels may be associ-
ated with each electronic level, just as a complete rotational spectrum accom-
panies each vibrational level.

In cataloging the electronic spectra of molecules, we find that other photon
processes can occur that, like Raman scattering, have no counterpart in
atomic spectra. Molecules that absorb electromagnetic energy in the visible or
near-ultraviolet range may re-emit it at a longer wavelength in a process called
fluorescence. Fluorescence follows the three-step sequence shown schemati-
cally in Figure 11.14. Step 1 is photon absorption that excites the molecule to
a more energetic electronic-vibrational state. In step 2, the molecule rids itself
of some vibrational energy in collisions with neighboring molecules. This is
followed by deexcitation to the original level in step 3 with the emission of a
photon having less energy (longer wavelength) than the absorbed photon.
The difference in energy, called the Stokes shift, is fundamental to the sensi-
tivity of fluorescence techniques because it allows the emitted photons to be
detected against a background isolated from the absorbed photons. In a
related process called phosphorescence, step 2 proceeds through a different
mechanism that leaves the molecule in a metastable state. Step 3 then must
proceed via a forbidden transition, that is, one that violates the selection rules
for optical transitions and so on average takes a much longer time to occur. In
some phosphorescent materials, emission is delayed by as much as minutes or
even hours following absorption. The afterglow associated with phosphores-
cence is exploited in assorted “glow-in-the-dark” items, such as watch faces and
numerous novelty items.

f � f � �
�

2�ICM
 (2� � 3)
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Fluorescence plays a prominent role in our everyday lives, and is increas-
ingly becoming a vital tool for biomedical research. The aptly named
fluorescent lamp is a tube coated on the inside surface with a phosphor that
fluoresces when exposed to the ultraviolet light produced by passing an elec-
tric current through the mercury vapor that fills the tube. And most laundry
detergents contain a dye that fluoresces strongly in the blue when exposed to
sunlight—this blue cast makes clothes appear cleaner than they really are!
Modern fluorescence techniques can accurately measure ion concentrations
in living cells down to femtomolar (10�15 molar) levels with no adverse effects
on cell behavior and can monitor changes in concentrations on a time scale of
picoseconds (10�12 s). As a result, cell membrane structure and function are
actively being studied using fluorescent probes.

11.4 ELECTRON SHARING AND
THE COVALENT BOND

In this section we examine the allowed energies and wavefunctions for elec-
trons in a molecule. There are two aspects to the problem: One deals with the
complexity of electron motion in the field of several nuclei; the other with the
effect of all other electrons on the motion of any one. The two may be divided
by first treating a one-electron molecular ion such as H2

� and subsequently ex-
amining the effects of adding one more electron to give the neutral hydrogen
molecule H2.

The Hydrogen Molecular Ion

The hydrogen molecular ion H2
� consists of one electron in the field of two

protons (Fig. 11.15). The electron is drawn to each proton by the force of
Coulomb attraction, resulting in a total potential energy of
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Figure 11.14 Fluorescence is a three-step process. In step 1 a photon with energy E is
absorbed, in the process exciting a higher vibrational state of the molecule. This excess
energy of vibration is lost in step 2 to collisions with neighboring molecules. The mole-
cule returns to its original state in step 3 by emitting a photon with reduced energy E�.
The difference between the absorbed and emitted photon energies is known as the
Stoke’s shift. In phosphorescence, the final transition is forbidden by selection rules,
resulting in photon emission that is delayed by minutes—or even hours—after the ini-
tial absorption.

+ +
H H

R

Figure 11.15 The hydrogen
molecular ion H2

�. The lone
electron is attracted to both pro-
tons by the electrostatic force
between opposite charges. The
equilibrium separation �R� of
the protons in H2

� is about 
0.1 nm. (Adapted from D. Ebbing,

General Chemistry 5th ed.,
Boston, Houghton Mifflin Co.,
1996.)
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(11.16)

In this expression, one proton is assumed to be at the origin of coordinates
r � 0, and the other at R. The equilibrium separation R � �R � of the protons
in H2

� is about 0.1 nm. The stationary state wavefunctions and energies for the
electron in H2

� are solutions to the time-independent Schrödinger equation
with the potential U(r) of Equation 11.16.

As a guide, it is useful to consider the problem in the two limiting cases
R : 0 and R : � , for which the results are already known. As R : 0, the two
protons coalesce to form a nucleus of helium; consequently, the wavefunctions
and energies in this united atom limit are those of He�, given by the formu-
las of Chapter 8 with atomic number Z � 2. In particular, the ground and first
excited states are both spherically symmetric waves with energies of �54.4 eV
and �13.6 eV, respectively. In the separated atom limit R : �, the electron
sees only the field of a single proton and the levels are those of atomic hydro-
gen, �13.6 eV for the ground state and �3.4 eV for the first excited state.
Energies for these extreme cases can be marked on the correlation diagram
of Figure 11.16. The degeneracy of these levels (excluding spin) is important
and is given by the numbers in parentheses. Notice especially that the ground
state of the united atom is nondegenerate, but the ground state for the sepa-
rated atoms is doubly degenerate. The extra degeneracy stems from the pres-
ence of the second proton in H2

�: In the separated atom limit, the electron
can occupy a hydrogen-like orbital around either proton. The same argument
shows that all of the atomic levels in the separated atom limit have an extra,
twofold degeneracy, corresponding to hydrogen-like wavefunctions centered
at the site of either proton. The completed correlation diagram for H2

� in-
cludes the energy levels at any proton separation R .

To find out what happens at intermediate values of R, consider first the case
where R is finite but large, so that the influence of the other proton, though
weak, cannot be ignored. This appearance of a second attractive force center
means that the electron does not remain with its parent proton indefinitely.
Given sufficient time, the electron can tunnel through the intervening potential
barrier to occupy an atomic orbital around the far proton. Some time later, the
electron tunnels back to the original proton. In principle, the situation is no dif-
ferent from the inversion of the ammonia molecule discussed in Section 7.2: In
effect, H2

� is a double oscillator, for which the stationary states are not wavefunc-
tions concentrated at a single force center but divided equally between them.
The tunneling time increases with proton separation, and may be very long in-
deed—something like 1 s for protons 1 nm apart (an eternity by atomic stan-
dards). But the time itself is inconsequential, since we are interested here in the
stationary states that have, so to speak, “all the time in the world” to form.

From the symmetry of H2
�, the tunneling probability from one proton to

the other must be the same in either direction, and so we expect the electron
to spend equal amounts of time in the vicinity of each. It follows that the sta-
tionary state wave is an equal mixture of atomic-like wavefunctions centered
on each proton as, for example,

(11.17)��(r) � �a(r) � �a(r � R)

U(r) � �
ke2

� r �
�

ke2

� r � R �
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The subscript a on the right side of Eq. 11.17 is a collective label for all the
quantum numbers needed to specify an atomic state; for the ground state of
atomic hydrogen, a is (1, 0, 0), meaning n � 1, � � 0, and m� � 0. Equation
11.17 describes the symmetric combination of two atomic wavefunctions centered
at the proton sites r � 0 and r � R. The wavefunction and probability density
given by ��(r) are sketched in Figure 11.17a and b; both are symmetric about
the molecular center located at r � R/2, or halfway between the two protons.

However, we could also have written the antisymmetric form

(11.18)

This again leads to a symmetric probability distribution, but one with a node
at the molecular center (Fig. 11.17c and d). In fact, Equations 11.17 and 11.18
both approximate true molecular wavefunctions when R is large, but they
describe states having distinctly different energies. In particular, �� has a
somewhat higher energy than ��, since the electron in the antisymmetric state
is more confined, being relegated largely to the vicinity of one or the other
nucleus. As with the particle in a box, this greater degree of confinement

��(r) � �a(r) � �a(r � R)
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Figure 11.16 Correlation diagram for H2
�, showing the two lowest electron energy

levels as a function of proton separation, in bohrs. [Recall that 1 bohr (a0) � 0.529 Å.]
At R � 0, the levels are those of the united atom (ion) He�, and at R � � the levels are
those of neutral H. The degeneracy of the various levels (excluding spin) is given by
the numbers in parentheses.
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comes at the expense of increased kinetic energy. Only in the limit R : �

do the two energies merge to form the (doubly degenerate) atomic level
of the separate atoms. As R : 0, continuity requires the lower of the two
energies to approach �54.4 eV, the ground-state energy of the united atom
He�; similarly, the higher energy goes over to the first excited-state energy
of He�, �13.6 eV.

We have come upon the quantum origins of the covalent bond. The ener-
getically preferred state �� is referred to as the bonding orbital, since the
electron in this state spends much of its time in the space between the two
protons, shuttling to and fro and acting as a kind of “glue” that holds the
molecule together. The more energetic state �� is the antibonding orbital
and decreases the molecular stability. Notice that a bonding–antibonding
orbital pair is associated with every orbital of the separated atoms, not just with
the ground state.

The energy of the bonding orbitals in H2
� can be estimated from

Schrödinger’s equation. For the electron in H2
� this is

with U(r) the potential energy of the electron in the field of the two protons, as
in Equation 11.16. Let us multiply every term by �* and integrate over the whole
space. Then the right-hand side becomes just E (assuming � is normalized),

leaving for the left-hand side an expression that we can use to compute the
value of E :

(11.19)E � ��* ��
�2

2m
�2 � � ke2

� r �
�

ke2

� r � R � � � dV

E � � � �2 dV � E

�
�2

2m
�2� � U(r)� � E�
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Figure 11.17 The wavefunction (a) and probability density (b) for the approximate
molecular wave �� formed from the symmetric combination of atomic orbitals cen-
tered at r � 0 and r � R. (c) and (d): Wavefunction and probability density for the
approximate molecular wave �� formed from the antisymmetric combination of these
same orbitals.
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If � is the true molecular wavefunction, this equation furnishes the exact value
of particle energy in the state � ; if � is an approximate wavefunction, Equa-
tion 11.19 yields an approximation to E.

Substituting for � the symmetric combination �� (suitably normalized—
see the Chapter 11 Web Appendix titled “Overlap Integrals of Atomic Wave-
functions”) gives a first approximation to the energy of the bonding orbitals in
H2

�. For the case where �a refers to the hydrogen-atom ground state, the mo-
lecular energy E� can be shown to be

(11.20)

with 	 the overlap integral of atomic wavefunctions found in the Chapter 11
Web Appendix:

These expressions for E� and 	 are given in atomic units, where the rydberg
(1 Ry � �13.6 eV) is adopted as the unit of energy to go along with the bohr
unit of length.

In the limit of large R , 	 : 0 and E� approaches the energy of an iso-
lated hydrogen atom, Ea � �1 Ry, as it should. As R decreases, E� becomes
more and more negative, finally reaching �3 Ry at R � 0, where the nuclei
coalesce. (The correct value of �4 Ry for the ground state of He� is not
reproduced owing to the approximation inherent in our use of Equation
11.17 for the molecular wavefunction, which fails completely as R : 0.)
Since E� decreases steadily with R, the molecule appears to be unstable and
should collapse to R � 0 under the bonding tendency of the orbiting elec-
tron. But this overlooks the Coulomb energy of the protons, which must be
included to obtain the total molecular energy. Two protons separated by a
distance R repel each other with energy ke 2/R , or 2/R Ry. The Coulomb
repulsion of the protons offsets the bonding attraction of the electron
to stabilize the molecule at that separation for which the total energy is
minimal. The total molecular energy given by our model is sketched as
a function of R in Figure 11.18. The minimum comes at R 0 � 2.49 bohrs,
or 0.132 nm, and agrees reasonably well with the observed bond length
for H2

�, 0.106 nm.
At the equilibrium separation of 2.49 bohrs, we find E� � �2.13 Ry, and

a total molecular energy of E� � 2/R0 � �1.13 Ry. The negative of this,
1.13 Ry or 15.37 eV, represents the work required to separate the molecule
into its constituents and is the dissociation energy introduced in Section 1.
The measured dissociation energy for H� is about 16.3 eV. The bond energy,
or the work required to separate H2

� into H and H�, is the difference between
the molecular energy at R � � and at equilibrium. Our model predicts a bond
energy of 15.37 eV � 13.6 eV � 1.77 eV, which is somewhat less than the ac-
tual value of 2.65 eV. The difference can be attributed to our use of Equation
11.17 for the molecular wavefunction, an approximation that is best for larger
values of R .

To obtain the energy of the antibonding orbitals for H2
�, we replace �

in Equation 11.19 with the antisymmetric wave �� of Equation 11.18 (again,

	 � �1 � R �
R2

3 � e�R

E� � �1 �
2

1 � 	 � 1

R
�

1

R
 (1 � R)e�2R � (1 � R)e�R�
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suitably normalized). With �a the hydrogen ground state, we find for the en-
ergy of the lowest antibonding orbital in H2

�

(11.21)

For large separations, E� coincides with E� at �1 Ry. With decreasing
R , however, E� steadily increases and always lies above E�. In particular, E�

for any finite value of R is higher than the energy of H � H� in isolation,
and no stable molecular ion will be formed in this state. Inclusion of the
nuclear repulsion only enhances the instability. This is the antibonding
effect for H2

�.
Although Eq. 11.21 seriously overestimates the true molecular energy

for small values of R, the conclusion reached about the instability of this
state is, nonetheless, correct. The true antibonding orbital energy
approaches �1 Ry in the united atom limit and exhibits a broad, shallow
minimum near R � 3 bohrs (see Fig. 11.16). Equilibrium cannot be
sustained, however, when the Coulomb repulsion of the nuclei is included;
that is, the curve of total molecular energy shows no minimum for the
antibonding state.

The previous discussion of bonding and antibonding orbitals for
H2

� exemplifies the complexity of covalent bonding in real systems.
To illustrate the fundamental ideas without incurring all the mathematical
“baggage” that accompanies real-world applications, simplified models are of-
ten employed along with numerical methods of solution. Common to all such
models is a potential energy having two (or more) points of stable equilibrium
(attractive force centers). To explore the allowed energies and wavefunctions
in these cases, go to http://info.brookscole.com/mp3e, select QMTools Simu-
lations : Two-Center Potentials (Tutorial), and follow the on-site instructions.
You will also find there specific applications to the covalent bond in diatomic
molecules composed of like atoms.

E� � �1 �
2

1 � 	 � 1

R
�

1

R
 (1 � R)e�2R � (1 � R)e�R�
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Figure 11.18 The total molecular energy for the bonding orbital of H 2
�, as given by

the approximate wavefunction �� of Equation 11.17. The predicted bond length
occurs at the point of stable equilibrium, around R � 2.5 bohrs. The predicted bond
energy is about 1.77 eV.
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The Hydrogen Molecule

The addition of one more electron to H2
� gives the hydrogen molecule, H2.

The second electron provides even more “glue” for covalent bonding and
should produce a stronger bond than that seen in H2

�. Indeed, the bond
energy for H2 is 4.5 eV, compared with 2.65 eV for H2

�. (Naively, we might
have expected the bond energy to double with the number of electrons,
but the electrons repel each other—an antibonding effect.) The second
electron also results in a measured bond length for H2 equal to 0.074 nm,
which is noticeably shorter than the 0.1 nm found for the single-bonded mole-
cular ion H2

�.

396 CHAPTER 11 MOLECULAR STRUCTURE

By trial and error, we discover that the minimum energy
occurs at about R 0 � 1.44 bohrs, or 0.076 nm, which
becomes the bond length predicted by our model. The
molecular energy at this separation is E0 � �3.315 Ry.
Comparing this with the total energy of the separated
hydrogen atoms, �2 Ry, leaves for the bond energy
1.315 Ry, or 17.88 eV. Due to our neglect of electron
repulsion, this model grossly exaggerates the bond
energy, although it does get the bond length about right.
Even the latter agreement is probably fortuitous, how-
ever, since Equation 11.17 is not expected to be accurate
even for noninteracting electrons at nuclear separations
as small as 1.5 bohrs.

EXAMPLE 11.3 The Hydrogen Molecular Bond

Estimate the bond length and the bond energy of H2,
assuming that each electron moves independently of the
other and is described by the approximate wavefunction
of Equation 11.17.

Solution If the electrons do not interact, the energy of
each must be the bonding energy E� of Equation 11.20.
The total energy of the molecule in this independent parti-

cle model is then

�
2

R
� 2 �

4

1 � 	 � 1

R
�

1

R
 (1 � R)e�2R � (1 � R)e�R�

Etotal �
2

R
� 2E�
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Figure 11.19 Total molecular energy for the bonding and antibonding orbitals of
H2. For both electrons to be in the bonding orbital, their spins must be opposite. The
bond energy for H2 is 4.5 eV and the bond length is 0.074 nm. Since the energy of the
antibonding orbital exceeds that of the isolated H atoms, no stable molecule can be
formed in this state.
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So far we have not recognized that the two electrons in H2, being identical
fermions, are subject to the exclusion principle. If both electrons occupy the
bonding orbital of H2 —as we have been assuming— their spins must be opposite.
If their spins were parallel, one electron would be forced into the antibonding
orbital, where it has higher energy. Figure 11.19 shows the electronic energy
of the molecule for the two cases. These curves were obtained from laborious
calculations that account in an approximate way for the effect of
electron–electron repulsion. The results imply that no stable molecule is
formed in the parallel spin case.

11.5 BONDING IN COMPLEX MOLECULES

The bonds we found in H2
� and H2 are known as sigma-type molecular bonds,

denoted �. They arise from the overlap of atomic s states and are characterized by

an electron density that is axially symmetric about the line joining the two atoms.

Bonding between atoms having more electrons often involves the overlap of p states

or other atomic orbitals and leads to other types of molecular bonds with their own

distinctive characteristics.

Consider the nitrogen molecule, N2, the simplest molecule to exhibit bonds

other than the � type. The electron configuration of the nitrogen atom is 1s22s22p3.

The molecular bond in N2 is due primarily to the three valence electrons in the 2p

subshell; the inner s electrons are too tightly bound to their parent atoms to partici-

pate in the sharing necessary for bond formation. The 2p subshell is made up of

three atomic orbitals (m� � 1, 0, �1), and each of these gives rise to a bonding and

an antibonding orbital for the molecule. The N2 molecule has six valence electrons

to accommodate, three from each N atom. With two electrons in each of the three

bonding orbitals, the N2 molecule is especially stable, with a bond energy of 9.8 eV

and a bond length of 0.11 nm.

Of the three bonding–antibonding orbital pairs in N2, however, only one is a

sigma bond. Recall that atomic p states are lobed structures with highly directional

characteristics. The electron density in the pz orbital (m� � 0) is concentrated along

the z-axis; similarly, the px and py orbitals are marked by electron densities along the

x- and y-axes, respectively (Fig. 8.13). (The px and py orbitals are not eigenstates of

Lz, but are formed from the m� � �1 states according to the prescription of Equa-

tion 8.50 in Chapter 8). When two N atoms are brought together, one of the three

axes—say the z-axis—will become the molecular axis for N2 in order to maximize

atomic overlaps and produce the strongest bond. This is the sigma bond, because it

has axial symmetry. The px orbitals, however, also overlap to form a different kind of

bond—the pi bond (�)—which has a plane of symmetry in the nodal plane of the

p orbitals. The same is true of the py orbitals. Figure 11.20 illustrates the different

kinds of bonds in the N2 molecule. The pi bonds are weaker than the sigma bond

because they involve less electron overlap.

So far we have been discussing only molecules formed from like atoms. These

homonuclear molecules exemplify the pure covalent bond. The joining of two differ-

ent atomic species to form a heteronuclear molecule produces polar covalent bonds.

The hydrogen fluoride molecule, HF, is a good example. The F atom has nine elec-

trons in the configuration 1s22s22p5. Of the five 2p electrons, four completely fill

two of the 2p orbitals, leaving one 2p electron to be shared with the H atom (the

filled orbitals are especially stable and do not significantly affect the molecu-

lar bonding in HF). When the two atoms are brought together, the 2p orbital of F

overlaps the 1s orbital of H to form a bonding–antibonding orbital pair for the HF 
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molecule. The result is an s–p bond, with both electrons occupying the more stable

bonding orbital. The s–p bond in HF is polar since the shared electrons spend

more time in the vicinity of the F atom due to its high electronegativity. Equiva-

lently, the bond is partly ionic, and the HF molecule shows a permanent electric di-

pole moment. The bond energy for HF is 5.90 eV, and the bond length is 0.092 nm.

The case of HF suggests correctly that purely covalent bonds are found only in

homonuclear molecules; heteronuclear molecules always form bonds with some

degree of ionicity, as measured by a dipole moment. The water molecule, H2O, is

another example of an s–p -bonded structure with a dipole moment, as is the am-

monia molecule, NH3. In NH3, each of the three 2p electrons in the N atom forms

an s–p bond with an H atom. Since the px, py, and pz atomic orbitals are directed

along mutually perpendicular axes, we would expect the three s–p bonds to be at

right angles. In fact, the measured bond angle in NH3 is somewhat larger—about

107�—because of the electrostatic repulsion of the H nuclei.

In closing, we mention briefly the bonds formed by the carbon atom. These

bonds result from s–p hybridization, a concept that accounts for the almost end-

less variety of organic compounds. The C atom has six electrons in the configura-

tion 1s22s22p2. We might conclude that only the two 2p electrons are prominent in

molecular bonding and that carbon is divalent. The existence of hydrocarbons like

CH4 (methane), however, shows that the C atom shares all four of its second-shell

electrons, suggesting that the binding energy of the 2s electrons in the carbon atom

is not much different from that of the 2p electrons. But most surprising is the fact

that all four bonds are equivalent! There are not two s–p bonds and two s– s bonds
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Figure 11.20 (a) and (b): Formation of a sigma bond in N2 from the overlap of the
2pz orbitals on adjacent N atoms. (c) Formation of a pi bond by overlap of the 2px

orbitals on adjacent N atoms. A similar bond is formed by overlap of the 2py orbitals.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



as we might have anticipated, but four structurally identical molecular bonds. These

bonds arise from the overlap of the 1s orbital in H with atomic orbitals in C formed

from a mixture of carbon 2s and 2p orbitals. In CH4 these mixed, or hybrid, orbitals

are represented by wavefunctions such as

(11.22)

Other combinations arise by subtracting, rather than adding, the individual wave-

functions, but all mix one 2s and three 2p atomic orbitals to give four sp3 hybrids. In

other carbon compounds, hybridization may involve only one or two of the 2p

orbitals; these are described as sp and sp2 hybrids, respectively. It is this complexity

that gives rise to the rich variety of organic materials.

SUMMARY

Two or more atoms may combine to form molecules because of a net attractive
force between them. The resulting molecular bonds are classified according to
the bonding mechanisms and are of the following types:

1. Ionic bonds. Certain molecules form ionic bonds because of the
Coulomb attraction between oppositely charged ions. Sodium chloride
(NaCl) is one example of an ionically bonded molecule.

2. Covalent bonds. The covalent bond in a molecule is formed by the
sharing of valence electrons of its constituent atoms. For example, the
two electrons of the H2 molecule are equally shared between the nuclei.

3. van der Waals bonds. This is a weak electrostatic bond between mole-
cules or atoms that do not form ionic or covalent bonds. It is responsible
for the condensation of inert gas atoms and nonpolar molecules into the
liquid phase.

4. Hydrogen bonds. This type of bonding corresponds to the attraction of
two negative ions by an intermediate hydrogen atom (a proton).

The energy of a molecule in a gas consists of contributions from the elec-
tronic interactions, the translation of the molecule, rotations, and vibrations.
The allowed values of the rotational energy of a diatomic molecule are given by

(11.5)

where ICM is the moment of inertia of the molecule about its center of mass
and � is an integer called the rotational quantum number.

The allowed values of the vibrational energy of a diatomic molecule are
given by

(11.8)

where v is the vibrational quantum number. The quantity � is the classical
frequency of vibration and is related to �, the reduced mass of the molecule,
and K, the force constant of the effective spring bonding the molecule, by the
relation .

The internal state of motion of a molecule is some combination of rotation
and vibration. Any change in the molecular condition is described as a transi-
tion from one rotation–vibration level to another. When accompanied by the
emission or absorption of photons, these are called optical transitions. Besides

� � √K/�

Evib � (v � 1
2)��  v � 0, 1, 2, � � �

Erot �
�2

2ICM
�(� � 1)  � � 0, 1, 2, � � �

� � �2s � [�2p]x � [�2p]y � [�2p]z
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conserving energy, optical transitions must conform to the selection rules

(11.12, 11.13)

In the most common case, the absorption spectrum of a diatomic molecule
consists of two sequences of lines, corresponding to 	� � �1, with 	v � �1
for both sequences. Measurements made on such spectra can be used to deter-
mine the length and strength of the molecular bonds.

In Raman scattering, the incident and emergent photons have different
energies, with the discrepancy attributed to a change in the rotation–
vibration state of the scattering molecule. The colliding photon can gain or
lose energy in this process, depending on whether energy is delivered to or
extracted from the rotation–vibration state of the molecule.

Other inelastic photon processes also can occur with molecules. Molecules
that absorb electromagnetic energy in the visible or near-ultraviolet range may
re-emit it at a longer wavelength in a process called fluorescence. In this
process, the energy absorbed in vibrational form is dissipated through colli-
sions with other molecules, leaving less energy for the emitted photon. In a
related process called phosphorescence, the transition giving rise to the emit-
ted photon has an unusually long lifetime, with the result that the emitted radi-
ation is delayed minutes—or even hours—following the initial absorption.

The electronic states of a molecule are classified as bonding or antibonding.
A bonding state is one for which the electron density is large in the space be-
tween the nuclei. An electron in a bonding orbital can be thought of as shut-
tling rapidly from one nucleus to the other, drawing them together as a kind of
“glue.” The bonding state is energetically preferred over the antibonding state,
where the electron spends more of its time outside the bonding region. In a di-
atomic molecule composed of like atoms (homonuclear molecule), each atomic
orbital gives rise to a bonding–antibonding orbital pair for the molecule.

	� � �1  and  	v � �1
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and Solids, Vol. 1, New York, McGraw-Hill Book Com-
pany, Inc., 1963.

3. An elaborate discussion of chemical bonding in organic
compounds may be found in Chapter 9 of K. Krane,
Modern Physics, 2nd ed., New York, John Wiley and Sons,
Inc., 1996.

1. Molecular bonding is discussed extensively at an intro-
ductory level in Chapter 24 of J. Brackenridge and
R. Rosenberg, The Principles of Physics and Chemistry, New
York, McGraw-Hill Book Company, Inc., 1970. This work
also includes a number of nice illustrations of molecular
bonds in various compounds.

2. For an in-depth treatment of the bonding in H2
� and the

H2 molecule, see J. C. Slater, Quantum Theory of Molecules

SUGGESTIONS FOR FURTHER READING

QUESTIONS

1. List three ways (modes) a diatomic molecule can store
energy internally. Which of the three modes is easiest to
excite, that is, requires the least energy? Which requires
the most energy?

2. How do the effective force constants for the molecules
listed in Table 11.2 compare with those found for typical
laboratory springs? Comment on the significance of
your findings.

3. Describe hybridization, why it occurs, and what it has to
do with molecular bonding. Give an explicit example of
where it occurs.

4. Discuss the mechanisms responsible for the different
types of bonds that can occur to form stable molecules.

5. Explain the role of the Pauli exclusion principle in de-
termining the stability of molecules, using H2 and the
(hypothetical) species H3 as examples.
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PROBLEMS 401

6. Discuss the relationship between tunneling and the co-
valent bond. From the viewpoint of possible chemical
species, what would be the similarities and differences
between the world in which we live and one devoid of
tunneling?

7. Distinguish between the dissociation energy of a mole-
cule and its bond energy. Which of the two is expected
to be greater?

8. In treating the rotational levels of a diatomic molecule,
why do we ignore rotation about the internuclear line?
Can you think of a case involving a triatomic molecule in
which similar considerations might apply?

9. Explain why the noble gases tend to be monatomic
rather than diatomic.

PROBLEMS

11.1 Bonding Mechanisms: A Survey 

1. Potassium iodide can be taken as a medicine to reduce
radiation dosage to the thyroid gland, before or after
exposure to radioactive iodine. In the potassium iodide
molecule, assume that the atoms K and I bond ionically
by the transfer of one electron from K to I. (a) The ion-
ization energy of K is 4.34 eV, and the electron affinity of
I is 3.06 eV. What energy is needed to transfer an elec-
tron from K to I, to form K� and I� ions from neutral
atoms? (b) A model potential energy function for the KI
molecule is the Lennard–Jones (12, 6) potential:

where r is the internuclear separation distance, and �
and � are adjustable constants. Ea is added to ensure
the correct asymptotic behavior at large r and is the
activation energy calculated in (a). At the equilibrium
separation distance r � r0 � 0.305 nm, U(r) is a mini-
mum, and dU/dr � 0. U(r0) is the negative of the
dissociation energy: U(r0) � �3.37 eV. Use the experi-
mental values for the equilibrium separation and disso-
ciation energy of KI to determine � and �. (c) Calcu-
late the force needed to rupture the molecule.

10.2 Molecular Rotation and Vibration

2. Use the data in Table 11.2 to calculate the reduced
mass of the NO molecule; then compute a value for �
using Equation 11.3. Compare the two results.

3. The CO molecule undergoes a rotational transition
from the � � 1 level to the � � 2 level. Using Table
11.1, calculate the values of the reduced mass and the
bond length of the molecule. Compare your results
with those of Example 11.1.

4. Use the data in Table 11.2 to calculate the maximum
amplitude of vibration for (a) the HI molecule and
(b) the HF molecule. Which molecule has the weaker
bond?

5. The � � 5 to � � 6 rotational absorption line of a di-
atomic molecule occurs at a wavelength of 1.35 cm (in
the vapor phase). (a) Calculate the wavelength and fre-
quency of the � � 0 to � � 1 rotational absorption line.
(b) Calculate the moment of inertia of the molecule.

U(r) � 4� �� �

r �
12

� � �

r �
6

 � Ea

6. The HF molecule has a bond length of 0.092 nm.
(a) Calculate the reduced mass of the molecule.
(b) Sketch the potential energy versus internuclear sep-
aration in the vicinity of r � 0.092 nm.

7. The HCl molecule is excited to its first rotational
energy level, corresponding to � � 1. If the distance
between its nuclei is 0.1275 nm, what is the angular
velocity of the molecule about its center of mass?

8. The v � 0 to v � 1 vibrational transition of the HI mole-
cule occurs at a frequency of 6.69 
 1013 Hz. The same
transition for the NO molecule occurs at a frequency of
5.63 
 1013 Hz. Calculate (a) the effective force constant
and (b) the amplitude of vibration for each molecule.
(c) Explain why the force constant of the NO molecule is
so much larger than that of the HI molecule.

9. Consider the HCl molecule, which consists of a hydro-
gen atom of mass 1 u bound to a chlorine atom of mass
35 u. The equilibrium separation between the atoms is
0.128 nm, and it requires 0.15 eV of work to increase or
decrease this separation by 0.01 nm. (a) Calculate the
four lowest rotational energies (in eV) that are possi-
ble, assuming the molecule rotates rigidly. (b) Find the
molecule’s “spring constant” and its classical frequency
of vibration. (Hint: Recall that U � Kx 2.) (c) Find the
two lowest vibrational energies and the classical ampli-
tude of oscillation corresponding to each of these ener-
gies. (d) Determine the longest wavelength radiation
that the molecule can emit in a pure rotational transi-
tion and in a pure vibrational transition.

10. The hydrogen molecule comes apart (dissociates)
when it is excited internally by 4.5 eV. Assuming that
this molecule behaves exactly like a harmonic oscillator
with classical frequency � � 8.277 
 1014 rad/s, find
the vibrational quantum number corresponding to its
4.5-eV dissociation energy.

11. As a model for a diatomic molecule, consider two iden-
tical point masses m connected by a rigid massless rod
of length R0. Suppose that this molecule rotates about
an axis perpendicular to the rod through its midpoint.
Use the Bohr quantization rule for angular momentum
to obtain the allowed rotational energies in this
approximation. Compare your result with the correct
quantum mechanical treatment of this model.

1
2
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402 CHAPTER 11 MOLECULAR STRUCTURE

12. For the model of a diatomic molecule described in
Problem 11, derive an expression for the minimum en-
ergy required to excite the molecule into rotation
about the internuclear line, that is, about the axis joining
the two masses. Assume that the masses are uniform
spheres of radius r . Apply your result to the hydrogen
molecule, H2, by taking m equal to the proton mass
and r equal to the nuclear size, about 10 fm.

13. The rotational motion of molecules has an effect on
the equilibrium separation of the nuclei, a phenome-
non known as bond stretching. To model this effect, con-
sider a diatomic molecule with reduced mass �, oscilla-
tor frequency �0, and internuclear separation R0 when
the angular momentum is zero. The effective potential
energy for nonzero values of � is then (see Section 8.5)

(a) Minimize the effective potential Ueff(r) to find an
equation for the equilibrium separation of the nuclei,
R�, when the angular momentum is �. Solve this
equation approximately, assuming � �� ��0R 0

2/�.
(b) Near the corrected equilibrium point, R�, the effec-
tive potential again is nearly harmonic and can be writ-
ten approximately as

Find expressions for the corrected oscillator frequency
� and the energy offset U0 by matching Ueff and its first
two derivatives at the equilibrium point R� . Show that
the fractional change in frequency is given by

14. As an alternative to harmonic interactions, the Morse

potential,

can be used to describe the vibrations of a diatomic
molecule. The parameters R0, U0, and � are chosen to
fit the data for a particular atom pair. (a) Show that R0

is the equilibrium separation and that the potential
energy far from equilibrium approaches U0. (b) Show
that near equilibrium (r � R0) the Morse potential is
harmonic, with force constant K � m�2 � 2U0�2.
(c) The lowest vibrational energy for the Morse oscilla-
tor can be shown to be

Obtain from this an expression for the dissociation
energy of the molecule. (d) Apply the results of parts
(b) and (c) to deduce the Morse parameters U0 and �

for the hydrogen molecule. Use the experimental

Evib � 1
2 �� �

(��)2

16U0

U(r) � U0 {1 � e��(r�R 0)}2

	�

�0
�

3�(� � 1)�2

2�2�2
0R0

4

Ueff � 1
2 ��2(r � R�)2 � U0

Ueff � 1
2 ��0

2(r � R0)2 � �(� � 1)
�2

2�r 2

values 573 N/m and 4.52 eV for the effective spring
constant and dissociation energy, respectively. (The
measured value of R0 for H2 is 0.074 nm.)

15. The allowed energies of vibration for the Morse oscilla-
tor can be shown to be

where v � 0, 1, . . . . Obtain from this an expression
for the interval separating successive levels of the
Morse oscillator, and show that this interval dimin-
ishes steadily at higher energies, as illustrated in
Figure 11.9b. From your result, deduce an upper
limit for the vibrational quantum number v. What
is the largest vibrational energy permitted for the
Morse oscillator?

16. The Morse Oscillator Spectrum. Use the Java
applet available at our companion Web site

(http://info.brookscole.com/mp3e : QMTools Simu-
lations : Problem 11.16) to display the first three pure
vibrational states (� � 0, v � 0, 1, 2) of the H2 mole-
cule in the Morse oscillator approximation to the inter-
atomic potential. The number of Morse vibrational
states is limited. See if you can find the highest-lying
pure vibrational state for this case. What is the vibra-
tional quantum number v for this state?

17. Consider higher rotational states of the Morse
oscillator described in Problem 16. Use the Java

applet referenced there to find the energies of the two
lowest rotational levels (� � 1 and � � 2) associated
with the vibrational ground state of the H2 molecule in
this model. Compare your results with the predictions
of Equation 11.10 for this case. Are the rotations and
vibrations of the H2 molecule really independent?

18. An H2 molecule is in its vibrational and rotational
ground states. It absorbs a photon of wavelength
2.2112 �m and jumps to the v � 1, � � 1 energy level.
It then drops to the v � 0, � � 2 energy level, while
emitting a photon of wavelength 2.4054 �m. Calculate
(a) the moment of inertia of the H2 molecule about an
axis through its center of mass, (b) the vibrational fre-
quency of the H2 molecule, and (c) the equilibrium
separation distance for this molecule.

11.4 Electron Sharing and the Covalent Bond

19. A one-dimensional model for the electronic energy of a
diatomic homonuclear molecule is described by the
potential well and barrier shown in Figure P11.19.
In the simplest case, the barrier width is shrunk to zero
(w : 0) while the barrier height increases without
limit (U : �) in such a way that the product Uw ap-
proaches a finite value S called the barrier strength.
Such a barrier—known as a delta function barrier—
can be shown to produce a discontinuous slope in the

Evib � (v � 1
2)�� � (v � 1

2)2 (��)2

4U0
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wavefunction at the barrier site L/2 given by

Solve the wave equation in the well subject to this con-
dition to obtain expressions for the energies of the
ground state and first excited state as functions of the
barrier strength S. Examine carefully the limits S : 0
and S : � and comment on your findings.

d�

dx �
L/2�

�
d�

dx �
L/2�

�
2mS

�2 �(L/2)
where 	x is a small increment.)

21. Repeat the calculations of Problem 20 for the case of
the neutral hydrogen molecule, H2. Take for the mole-
cular energy of H2

where E� is the bonding energy of H2
� given in Problem

20. Compare your result for the effective spring constant
with the experimental value for H2, about 573 N/m.

22. Modeling a Heteronuclear Molecule. Before at-
tempting this problem, review the on-line tutor-

ial at http://info.brookscole.com/mp3e : QMTools
Simulations : Two-Center Potentials (Tutorial) and the
application to covalent bonding presented there. The
application references a Java applet that uses a divided
square well to model the potential energy of an electron
in a diatomic molecule. The defaults portray “atomic”
wells 100 eV high and 2.00 Å wide, separated by a bar-
rier 0.500 Å wide and 100 eV high. Moving the divider
off-center destroys the identity of the atomic wells to
either side and transforms the model to one of a het-
eronuclear molecule. Without changing the bar-
rier width or height, reposition the divider to leave
atomic wells with widths 1.75 Å and 2.25 Å. Find the
bonding–antibonding orbital pair that derives from
the atomic ground states for this heteronuclear mol-
ecule. Contrast the energy-splitting and molecular wave-
functions with those found for a homonuclear molecule,
specifically noting any similarities or differences.

23. The Java applet referenced in Problem 22 can
be used to examine the behavior of an electron

initially confined to one side of a divided square well.
Here we use the applet defaults to model a homonu-
clear molecule. Take for the initial state �(x, 0) a sum of
the bonding and antibonding orbitals that derive from
the atomic ground state. How much time, in seconds,
elapses before the electron can be said to have crossed
the divider? The reciprocal of this time is the crossing
frequency. Compare this crossing frequency with the fre-
quency 	E/h representing the energy splitting of the
bonding and antibonding states in the mixture. How
would your results change if the width and/or height of
the central divider were increased?

Etotal �
2

R
� 2E�

d2f

dx2 � (1/	x)2 { f(x � 	x) � 2f(x) � f(x � 	x)}

∞ ∞

0 L
L/2

w

U

Figure P11.19

20. In Section 11.4 it is stated that the approximate elec-
tronic energy for the bonding state of H2

� as a function
of the internuclear separation R is (in atomic units)

To this we add the Coulomb energy of the two protons,
2/R , to get the total energy of this molecular ion, Etotal.
(a) Write a simple computer program to evaluate Etotal

for any given value of R. Use your program to verify
that the equilibrium separation of the protons in H2

� is
R0 � 2.49 bohrs, according to this model. (b) Use this
model to predict a value for the effective spring con-
stant that governs the vibrations of the H2

� molecular
ion, and compare your result with the values reported
in Table 11.2. (Hint: Use the well-known finite differ-
ence approximation to the second derivative,

E� � �1 �
2

1 � 	 � 1

R
�

1

R
(1 � R)e�2R � (1 � R)e�R�
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Chapter Outline

Matter in the solid state has been a subject of enormous fascination since the
beginnings of civilization. Primitive people were attracted to the solid state by
its beauty, as in radiant, symmetric gemstones, and by its utility, as in metal
tools. These two attributes, utility and beauty, are just as important in physics to-
day. Industrial applications have made solid-state physics, or condensed-matter
physics, the largest subfield of physics, as evidenced by the number of pages al-
located in physics journals and the number of physicists employed in this field.
The beautiful symmetry and regularity of crystalline solids have both allowed
and stimulated rapid progress in the physics of crystalline solids in the 20th
century. Interestingly, although rapid theoretical progress has occurred with
the most random (gases) and the most regular (crystalline solids) atomic
arrangements, much less has been done with liquids and amorphous (irregu-
lar) solids until quite recently. Applications such as solar cells, memory

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



12.1 BONDING IN SOLIDS 405

elements, fiber-optic waveguides, and xerography have driven the relatively
recent rush of interest in low-cost amorphous materials.

In this chapter we first describe how molecules combine to form crystalline
and amorphous solids. We then introduce one of the simplest classical models
of conductors, the free electron gas model, to gain physical insight into the
processes of electrical and thermal conduction. Next we consider the quan-
tum theory of metals to explain the deficiencies of the classical model. We
describe the band theory of solids to explain the differences between insula-
tors, conductors, and semiconductors and include a brief discussion of p -n
junctions, semiconductor devices, and superconductivity. Finally we discuss
the general principles of lasers and some of the specifics of gas and semi-
conductor lasers.

12.1 BONDING IN SOLIDS

A crystalline solid consists of a large number of atoms arranged in a regular
array, forming a periodic structure. The bonding schemes for molecules dis-
cussed in Chapter 11 are also appropriate for describing the bonding mecha-
nisms in solids. For example, the ions in the NaCl crystal are ionically bonded,
while the carbon atoms in the diamond structure form covalent bonds.
Another type of bonding mechanism is the metallic bond, which is responsible
for the cohesion of copper, silver, sodium, and other metals. Finally, the weak-
est type of bonding, van der Waals bonding, is responsible for the cohesion of
organic solids and rare gas crystals. Refer to Section 11.1 for a survey of molec-
ular bonding mechanisms.

Ionic Solids

Many crystals form by ionic bonding, where the dominant effect is the
Coulomb interaction between the ions. Consider the NaCl crystal shown in
Figure 12.1, where each Na� ion has six nearest-neighbor Cl� ions and each

Figure 12.1 (a) The crystal structure of NaCl. The unit cell shown here represents
four NaCl units and is the smallest repeating unit having the symmetry of the crystal.
(b) In the NaCl structure, each positive sodium ion is surrounded by six negative chlo-
rine ions, and each chlorine ion is surrounded by six sodium ions.

(a) (b)

Na+

Cl –
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Cl� ion has six nearest-neighbor Na� ions. Each Na� ion is attracted to the
six Cl� ions. The corresponding attractive potential energy is �6ke 2/r,
where r is the Na�–Cl� separation and k is the Coulomb constant 
k � 1/4��0. In addition, there are 12 Na� ions at a distance of from the
Na�, which produce a weaker repulsive force on the Na� ion. Furthermore,
beyond these 12 Na� ions one finds more Cl� ions that produce an attrac-
tive force, and so on. The net effect of all these interactions is an attractive
electrostatic potential energy,

(12.1)

where � is a dimensionless number called the Madelung constant. The value
of � depends only on the particular type of crystal lattice or structure. For
example, � � 1.7476 for the NaCl structure. When the constituent ions of a
crystal are brought close together, the electrons in closed shells begin to over-
lap, which results in a repulsion between the closed shells that is partly electro-
static in origin and partly a result of the Pauli exclusion principle. This intro-
duces a repulsive potential energy term into the expression for the total
potential energy of the crystal, which we write as B/rm, where m is an integer
on the order of 10. The total potential energy per ion pair of the crystal is
therefore of the form

(12.2)

(We do not sum over neighbors in the case of the repulsive force because this
force is negligible when ions are separated by a distance larger than the equi-
librium separation, r0.) Figure 12.2 is a plot of the total potential energy per
ion pair of the crystal versus ion separation. The potential energy has its 

Utotal � ��k
e 2

r
�

B

rm

Uattractive � ��k
e 2

r

√2r
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Attractive Coulomb potential ∝ 1/r

0

Total potential

r0

U0

r

Potential energy

Repulsive potential ∝ 1/r m

–

+

Figure 12.2 Potential energy per ion pair versus ion separation for an ionic solid. U0

is the ionic cohesive energy, and r0 is the equilibrium separation between ions.
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minimum value U0 at the equilibrium separation where r � r0. It is left to an
end-of-chapter problem (Problem 1) to show that B may be expressed in terms
of r0 and m and that the minimum energy U0 is

(12.3)

The absolute value of U0, called the ionic cohesive energy of the solid, is the
energy required to pull the solid apart into a collection of infinitely separated
positive and negative ions. The measured ionic cohesive energy of NaCl is
7.84 eV per ion pair or about 760 kJ/mol. In calculating the atomic cohesive
energy, which is the energy needed to pull the solid apart into a collection of
infinitely separated Na and Cl neutral atoms, we must keep in mind that one
gains 5.14 eV in going from Na� to Na and one must supply 3.61 eV in order
to convert Cl� to Cl. Thus the atomic cohesive energy of NaCl per atom pair
may be computed as

�7.84 eV � 5.14 eV � 3.61 eV � �6.31 eV

The atomic cohesive energy is an important comparative measure of the
strengths of differently bonded solids. Table 12.1 lists measured atomic cohe-
sive energies per atom pair and melting points for a few ionic compounds.

Ionic crystals have the following general properties:

• They form relatively stable and hard crystals.
• They are poor electrical conductors because there are no available free

electrons.
• They have fairly high melting and boiling points since appreciable ther-

mal energy must be added to the crystal to overcome the large cohesive
energy.

• They are transparent to visible radiation but absorb strongly in the in-
frared region. This occurs because the electrons form such tightly bound
shells in ionic solids that visible radiation does not contain sufficient
energy to promote electrons to the next allowed shell and so is not ab-
sorbed. The strong infrared absorption (at 20 to 150 �m) occurs because
the vibrations of the rather massive ions have a low natural frequency and
experience resonant absorption in the low-energy infrared region.

• They are generally quite soluble in polar liquids such as water. The water
molecule, which has a permanent electric dipole moment, exerts an at-
tractive force on the charged ions, which breaks the ionic bonds and dis-
solves the solid.

U0 � ��k
e 2

r0
�1 �

1

m �
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Atomic cohesive energy

Table 12.1 Properties of Some Ionic Crystals

Equilibrium Separation Atomic Cohesive Energy Melting Point
Crystal (Å) (eV per atom pair) (K)

LiF 2.01 8.32 1143
NaCl 2.82 6.31 1074
RbF 2.82 7.10 1068
KCl 3.15 6.48 1043
CsI 3.95 5.36 621
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Covalent Solids

As we found in Chapter 11, the covalent bond is very strong. Solid carbon, in
the form of diamond, is a crystal whose atoms are covalently bonded. Because
atomic carbon has the electron configuration 1s22s22p2, it lacks four electrons
with respect to a filled shell (2p6). Hence each carbon atom in diamond bonds
covalently to four other carbon atoms to form a stable closed-shell structure.

In the diamond structure, each carbon atom is covalently bonded to four
other carbon atoms at the corners of a cube, as illustrated in Figure 12.3a. Fig-
ure 12.3b shows the crystal structure of diamond. Note that each carbon atom
forms covalent bonds with four nearest-neighbor atoms. The basic structure of
diamond is called tetrahedral (each carbon atom is at the center of a regular
tetrahedron), and the angle between the bonds is 109.5�. Other covalent crys-
tals, such as silicon and germanium, have similar structures.

Table 12.2 gives the properties of some covalent solids. Note that the atomic
cohesive energies are greater than for ionic solids, which accounts for the

408 CHAPTER 12 THE SOLID STATE

Figure 12.3 (a) Each carbon atom in diamond is covalently bonded to four other
carbons and the four outer carbons form a tetrahedron. (b) The crystal structure of di-
amond, showing the tetrahedral bond arrangement. (After W. Shockley, Electrons and
Holes in Semiconductors, New York, Van Nostrand, 1950)

(a)

(b)

Table 12.2 Properties of Some Covalent Crystals

Atomic Cohesive Energy Melting Point
Crystal (eV/atom)* (K)

C (diamond) 7.37 �4000
SiC 6.15 2870
Si 4.63 1687
Ge 3.85 1211

*Since covalent atomic cohesive energies are given in electron volts per atom,
they should be multiplied by 2 for a proper comparison to Table 12.1.
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hardness of covalent solids. Diamond is particularly hard and has an extremely
high melting point (about 4000 K). In general, covalently bonded solids are
very hard, have large bond energies and high melting points, and are good in-
sulators, since the electrons are tightly bound in localized bonds. Because elec-
trons are so tightly bound in diamond and other covalent solids, there is insuf-
ficient energy in visible light to raise electrons to excited states. Consequently,
many covalent solids do not absorb visible light and so appear transparent.

Metallic Solids

Metallic bonds are generally weaker than ionic or covalent bonds. The valence
electrons in a metal are relatively free to move throughout the material. There is
a large number of such mobile electrons in a metal, typically one or two electrons
per atom. The metal structure can be viewed as a lattice of positive ions sur-
rounded by a “gas” of nearly free electrons (Fig. 12.4). The binding mechanism
in a metal is the attractive force between the positive ions and the electron gas.

Metals have an atomic cohesive energy in the range of 1 to 4 eV, which is
smaller than the cohesive energies of covalent solids but still large enough to pro-
duce strong solids (see Table 12.3). Visible light interacts strongly with the free
electrons in metals because these conduction electrons can move with large
amplitude in the oscillating electric field of the light wave, both strongly
absorbing the light wave and reradiating it. Hence visible light is absorbed and
re-emitted quite close to the surface of a metal, which accounts for both the non-
transparency to visible light and the shiny nature of metallic surfaces. In addition
to the high electrical conductivity of metals produced by the free electrons, the
nondirectional nature of the metallic bond allows many different types of metal-
lic atoms to be dissolved in a host metal in varying amounts. The resulting solid
solutions, or alloys, may be designed to have particular properties, such as high
strength, low density, ductility, resistance to corrosion, and so on.

Molecular Crystals

A fourth class of binding can occur even when electrons are not available to
participate in bond formation, as in the cases of saturated organic molecules
(CH4) and inert gas atoms with closed electron shells. The weak electric forces
at work in this type of bonding include van der Waals forces and arise from
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Figure 12.4 The free electron
model of a metal. The negative
electron gas acts as a kind of
glue to hold the positive metal
ions together.

Metal ion

Electron gas

Table 12.3 Properties of Some Metallic Crystals

Atomic Cohesive Energy Melting Point
Crystal (eV/atom)* (K)

Fe 4.28 2082
Cu 3.49 1631
Au 3.81 1338
Ag 2.95 1235
Pb 2.04 874
Zn 1.35 693

*Since metallic atomic cohesive energies are given in electron volts
per atom, they should be multiplied by 2 for a proper comparison to
Table 12.1.
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the attractive force between electric dipoles. (See the discussion of van der
Waals bonds in Section 11.1.) Some simple molecules containing hydrogen,
such as water, have permanent dipole moments (due to the built-in separation
of positive and negative centers of charge) and form relatively strong bonds
known as hydrogen bonds. Ice, for example, is hydrogen bonded with a cohe-
sive energy of about 0.52 eV/molecule or 12 kcal/mol. (Note that 1 eV/mole-
cule � 23 kcal/mol.) Actually, hydrogen bonding involves more than dipole
attractive forces and may be considered a sort of covalent bond where protons
are shared rather than electrons. Two molecules without permanent dipole
moments also experience fluctuation-induced dipole–dipole attractions, but
these van der Waals forces are much weaker. Such weak forces hold together
many organic solids with comparatively low melting and boiling points, as well
as inert gas crystals. Two typical cases are solid methane, with a cohesive en-
ergy of about 0.10 eV/molecule and a melting point of 91 K, and solid argon,
with a cohesive energy of 0.078 eV/molecule and a melting point of 84 K.

Amorphous Solids

The apparent simplicity and regularity of crystalline solids suggest that it will
be most profitable to focus attention on perfect crystals. This is the direction
we shall take in most of this chapter. However, real crystals are far from per-
fect, since they contain irregularities and impurities that can have profound
effects on their strength, conductivity, and other properties. This gives us
some motivation for a brief discussion of crystal defects and the nature of
amorphous solids.

It is well known that crystals of a given material form when the liquid state
of that material is cooled sufficiently. For example, water forms crystals when
cooled to 0�C. In general, more perfect crystals form if a liquid is cooled
slowly, allowing the molecules to relax gradually to states having minimum
potential energy. Conversely, rapid cooling of a liquid causes many disloca-
tions in the resulting lattice structure. If the cooling is rapid enough, almost
any liquid can form an amorphous solid (or glass) without long-range order,
as shown in Figure 12.5. Although an amorphous solid has no long-range
order, there is extensive short-range order in that bond lengths and bond

410 CHAPTER 12 THE SOLID STATE

Figure 12.5 Two-dimensional sketches of the atoms in a crystal, a glass, and a gas.
Note that the crystal has equal bond lengths and angles, the glass has a distribution of
nearly equal bond lengths and angles, and the gas has a completely random spatial
distribution of atoms. (After R. Zallen, The Physics of Amorphous Solids, New York, John

Wiley and Sons, 1983)

Crystal GasGlass
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angles for nearest neighbors are nearly the same throughout the solid. Even
metals can be made to solidify in an amorphous form (called a metallic
glass) if the metal in the liquid state can be cooled by 1000 K in about 1 mil-
lisecond. Figure 12.6 illustrates one clever technique for achieving cooling
rates of 106 K/s, known as melt spinning.

The main experimental techniques for determining the distribution of
atoms in crystalline and amorphous solids are x-ray diffraction, electron dif-
fraction, and neutron diffraction. The primary experimental data are mea-
surements of the scattered intensity Is(	), as sketched in Figure 12.7. Figure
12.8 shows actual photographic records of the electron intensity scattered
from amorphous and crystalline iron samples. Note that the regular spacing of
atoms over many atomic separations in the crystalline sample leads to many
sharp diffraction lines. This is in contrast to the metallic glass sample, in which
the distribution of atomic separations and bond angles over one or two atomic
separations leads to fewer, more diffuse lines.

12.1 BONDING IN SOLIDS 411

Figure 12.6 Preparing an amor-
phous metal ribbon by melt spinning.

Figure 12.8 Electron diffraction patterns of (a) amorphous iron and (b) crystalline
iron. (From T. Ichikawa, Phys. Status, Solidi A, 19:707, 1973)

Figure 12.7 A basic experimental setup for determining the distribu-
tion of atoms in a powder sample. Rings of constant intensity on the
photographic plate arise from the tiny, randomly oriented crystals com-
prising the powder. (After R. Zallen, The Physics of Amorphous Solids,
New York, John Wiley and Sons, 1983)

(a) (b)

Monochromatic
beam of x rays,

electrons, or neutrons

Sample
2

Photographic plate
or other detector

Is (  )θ

θ

Pressure

15 m/s

Massive cold disk

Heater

Molten metal

Metallic
glass ribbon

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



The distribution of atoms in space, which is described by the radial dis-
tribution function (RDF), 
(r), may be obtained by taking the Fourier
transform of Is(	).1 Note that 
(r) dr is the probability of finding neigh-
boring atoms between r and r � dr from any atom chosen as the origin.
Thus we expect 
(r) to consist of many sharp maxima for crystals, because
their structures consist of extremely regular shells of nearest-neighbor
atoms, next-nearest-neighbor atoms, and so forth. On the other hand, we
expect fewer and broader maxima for glasses because of their short-range
order and distribution of bond lengths. Figure 12.9 shows schematic illus-

412 CHAPTER 12 THE SOLID STATE

Figure 12.9 Representative radial distribution functions (RDF) for a substance in
crystalline, amorphous, and gas phases. (After R. Zallen, The Physics of Amorphous
Solids, New York, John Wiley and Sons, 1983)

1See, for example, R. Zallen, The Physics of Amorphous Solids, New York, John Wiley and Sons, 1983,
Chapter 2.

Figure 12.10 RDFs for amorphous and crystalline
germanium, calculated from x-ray scattering. (From 

R. J. Temkin, W. Paul, and G. A. N. Connell, Adv. Phys.,
22:581, 1973)
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trations of these differences in the radial distribution function for the
crystal, glass, and gas phases. Note that the RDFs for the crystal and glass
phases are superimposed on a background equivalent to the gas RDF,

gas(r) � Ar 2, where A is a constant. The RDFs for both crystal and glass
approach the gas RDF for large r values because the distribution of atoms
becomes effectively continuous over large distances and smoothes out to 
an average value of atoms per unit volume, as in the gas phase. Because
the volume of a spherical shell is 4�r 2 dr, the number of atoms between 
r and r � dr in the gas phase is given by 
gas(r)dr � (4�r 2 dr). Thus 

gas(r) � Ar 2, where A � 4� .

Figure 12.10 shows actual RDFs for crystalline and amorphous ger-
manium obtained from x-ray diffraction measurements. Note that the
amorphous RDF merges with the smeared background after about four
oscillations, indicating only short-range order. However, the crystalline RDF
still varies sharply after 14 oscillations. Furthermore, note that the crys-
talline RDF peaks are not as sharp as might be expected but are broad-
ened by thermal and zero-point vibrations of the atoms about their lattice
positions.

Amorphous solids have many useful and interesting physical properties,
such as extremely high optical transparency, extremely high strength, and
low density. You may wish to read Zallen (cited in Suggestions for Further
Reading at the end of this chapter) for more information about amorphous
solids. We conclude our brief introduction to this rapidly expanding field
with Table 12.4, which lists some of the technological applications of amor-
phous solids.

12.2 CLASSICAL FREE ELECTRON
MODEL OF METALS

Shortly after Thomson’s discovery of the electron, Drude and Thomson
proposed the free electron theory of metals. According to this theory, the
physical properties of a metal may be explained by modeling the metal as a
classical gas of conduction electrons moving through a fixed lattice of posi-
tive ion cores. Thomson, Drude, and Lorentz used this picture of a highly

n
n

n
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Table 12.4 Examples of Technological Applications 

of Amorphous Solids

Type Material Use

Oxide glass (SiO2)0.8(Na2O)0.2 Transparent window glass
Oxide glass (SiO2)0.9(GeO2)0.1 Ultratransparent optical fibers
Organic polymer Polystyrene Strong, low-density plastics
Chalcogenide glass Se, As2Se3 Photoconductive films used for 

xerography
Amorphous silicon Si0.9H0.1 Solar cells
Metallic glass Fe0.8B0.2 Ferromagnetic low-loss ribbons used as

transformer cores
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mobile electron “fluid” to explain the high electrical and thermal conduc-
tivities of metals, shown in Table 12.5, with considerable success. In particu-
lar, the model predicts the correct functional form of Ohm’s law and the
remarkably simple empirical connection between the electrical and thermal
conductivities of a metal known as the Wiedemann–Franz relation.2 How-
ever, the model does not accurately predict the experimental values of elec-
trical and thermal conductivities when classical electronic mean free paths
are used in the calculations. In fact, we shall see that the shortcomings of
the classical model can be remedied only by taking into account the wave
nature of the electron. This involves replacing the Maxwell–Boltzmann rms
velocity for electrons with the Fermi velocity (see Section 10.5) as well as
replacing the classical mean free path of electrons with the much longer
quantum mean free path, which may be hundreds to thousands of times the
interatomic distance. Such long mean free paths occur because the electron
is a wave and, as such, is able to pass freely through a nearly perfect lattice,
scattering only when it encounters impurity atoms or other deviations from
crystalline regularity.

Ohm’s Law

Ohm’s law was first established as an experimental result applicable to a wide
range of metals and semiconductors. It states that the current density in a ma-
terial is directly proportional to the applied electric field. That is,

J � �E (12.4)

where J is the current density (A/m2), � is the electrical conductivity of the
material (��1 m�1), and E is the electric field (V/m). Rather than viewing
Equation 12.4 simply as a proportionality between applied field and resulting
current, it is more instructive to interpret this equation as a definition of �.
Interpreted in this way, Equation 12.4 tells us that a single constant, �, which
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2The Wiedemann–Franz relation states that the ratio of thermal conductivity to electrical conduc-
tivity for metals is proportional to the temperature and that the value of the proportionality con-
stant is independent of the metal considered.

Table 12.5 Thermal Conductivity, K, and Electrical

Conductivity, �, of Selected Substances

at Room Temperature

Substance K in W � m�1K�1 � in (� � m)�1

Silver 427 62  106

Copper 390 59  106

Gold 314 41  106

Aluminum 210 35  106

Iron 63 10  106

Steel 50 1.4  106

Nichrome 14 0.9  106

Quartz 13
NaCl 7.0 �10�4
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depends on the material and temperature but not on applied field or voltage, com-
pletely characterizes the electrical conduction in an ohmic solid.

We can derive Ohm’s law by considering a conductor to consist of a gas of
classical particles (conduction electrons) moving through a background of
immobile, heavy ions. The electrons in a metal move randomly along
straight-line trajectories, which are constantly interrupted by collisions with
lattice ions (see Fig. 12.11a). The root mean square speed at room tem-
perature is fairly high (�105 m/s) and may be calculated from the classical
equipartition theorem:

or

(12.5)

Each step of the motion (the path between collisions) shown in Figure
12.11a is a “free path”; the average free path, or mean free path, L, is
related to the mean free time, �, the average time between collisions, and
to vrms by

L � vrms� (12.6)

In Drude’s original model, L was taken to be several angstroms, consistent
with the view that an electron generally travels one interatomic spacing before
bumping into a large ion.

When an electric field is applied to the sample, an electric force is exerted
on an electron during each interval between collisions, resulting in a dis-
placement that is small compared to the mean free path. The cumulative
effect of these displacements may be viewed in terms of a small average drift
speed, vd, superimposed on the rather high random thermal speed, as shown
in Figure 12.11b.

vrms � √v2 � � 3kBT

me
�

1/2

1
2 mev2 � 3

2 kBT
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Figure 12.11 (a) Random successive displacements of an electron in a metal with-
out an applied electric field. (b) A combination of random displacements and dis-
placements produced by an external electric field. The net effect of the electric field
is to add together multiple displacements of length vd� opposite the field direc-
tion. For purposes of illustration, this figure greatly exaggerates the size of vd com-
pared with vrms.
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We may derive an expression for vd by assuming that the total displace-
ments, s, of an electron after b collisions is

(12.7)

where t1, t2, and so on are the successive times between collisions and a
is the acceleration (a � eE/me) produced by the electric field. Note that
we have ignored the random initial velocities of the electron in Equation
12.7, since these average to zero. We may write Equation 12.7 in terms of
averages as

(12.8)

Because the average value of t2 is � 2�2 (see Problem 9), Equation 12.8
becomes

s � ab�2

or

(12.9)

Comparing Equation 12.9 to the expression for the displacement in terms of
the drift speed, s � bvd�, we find

(12.10)vd �
eE�

me

s �
eE

me
b�2

t2

s �
a

2
 (b)(t2)

s �
a

2
 (t1

2 � t2
2 � t3

2 � � � � � t b
2)
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Figure 12.12 The connection between current density, J, and drift velocity, vd. The
charge that passes through A in time dt is the charge contained in the small paral-
lelepiped, neAvd dt.
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To find the magnitude of the current density, J, when n electrons per
unit volume all move with speed vd, we note that in a time dt the electrons
move a distance vddt, so that nAvddt electrons cross an area A perpendicular
to the direction of electron flow (Fig. 12.12). Since each electron has a
charge e, the charge crossing the area A in the time dt is neAvddt, and the
current density is

(12.11)

Substituting vd � eE�/me into Equation 12.11 yields

(12.12)

The proportionality of J to E given by Equation 12.12 shows that the
classical free electron model predicts the observed Ohm’s law depen-
dence of J on E. For this case, the conductivity, which is independent of E, is

(12.13)

or, using � � L/vrms,

(12.14)

Substituting the Maxwell–Boltzmann rms thermal speed into Equation 12.14
yields

(12.15)

Table 12.6 lists measured values of � for various metals, for comparison with
calculations using Equation 12.15. Since the resistivity, 
, is the reciprocal of
the conductivity, Equation 12.15 may also be written

(12.16)
 �
(3kBTme)1/2

ne2L

� �
ne2L

(3kBTme)1/2

� �
ne2L

mevrms

� �
ne2�

me

J � nevd �
ne2�

me
E

J �
neAvd dt

Adt
� nevd
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Classical expressions for

conductivity and resistivity

Table 12.6 Electrical Conductivity of

Metals at 300 K

Substance Measured � in (� � m)�1

Copper 59  106

Aluminum 35  106

Sodium 22  106

Iron 10  106

Mercury 1.0  106
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Although the classical electron gas model does predict Ohm’s law, we see
from Example 12.1 that it results in conductivity values that differ from
measured values by an order of magnitude. Worse yet, the measured resistivity
of most metals is found to be proportional to the absolute temperature (see
Fig. 12.13), yet the classical electron gas model predicts a much weaker depen-
dence of 
 on T. From Equation 12.16 we see that the classical model incor-
rectly predicts that resistivity should be proportional to the square root of
the absolute temperature. In Section 12.3 we will give a different model
of electron scattering, which explains the observed linear dependence of 
 on
T at high temperatures.

Classical Free Electron Theory of Heat Conduction

The thermal conductivity of a substance, K, is defined in a way similar to elec-
trical conductivity, �. In the case of electrical conductivity we found current
density equal to conductivity times voltage gradient, or

(12.17)J � �� 
�V

�x
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Thus,

The ratio of drift speed to rms speed is

(b) Using Equation 12.6, we find for the average time be-
tween collisions

Thus, in this model, the electrons experience several
hundred trillion collisions per second!

(c) Equation 12.15 gives for T � 300 K

From Table 12.6 we see that this value of the conductivity
is about 10 times smaller than the measured value!

� �
ne 2L

(3kBTme)1/2 � 5.3  106 (��m)�1

� �
L

vrms
�

2.6  10�10 m

1.2  105 m/s
� 2.2  10�15 m/s

vd

vrms
� 1.5  10�9

� 1.8  10�4 m/s

vd �
J

ne
�

(10 A)/(4  10�6 m2)

(8.49  1028 m�3)(1.6  10�19 C)

EXAMPLE 12.1 The Classical Free Electron
Model of Conductivity in Solids

(a) Show that the rms thermal speed of electrons at 300 K
is many orders of magnitude higher than the drift speed,
vd. To find vd, assume that a copper wire with a cross
section of 2 mm  2 mm carries a current of 10 A, and
that each copper atom contributes 1 free electron. The
density of copper at room temperature is 8.96 g/cm3.
(b) Estimate �, the average time between collisions for
copper at room temperature, assuming that the mean free
path is the interatomic distance, 2.6 Å. (c) Calculate the
conductivity of copper at room temperature as a test of
the classical free electron gas theory, and compare this to
the measured value found in Table 12.6.

Solution (a) By Equation 12.5,

To calculate vd we use J � nevd, or vd � J/ne . The num-
ber of free (conduction) electrons per cubic centimeter,
n, in copper is

� 8.49  1022 electrons/cm3

 � 8.96 g

cm3 �� 1 mol

63.5 g �

n � � 1 free electron

atom �� 6.02  1023 atoms

mol �

� 1.17  105 m/s

� � 3(1.38  10�23 J/K )(300 K )

9.11  10�31kg �
1/2

vrms � � 3kBT

me
�

1/2
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Likewise, we now have thermal current density (W/m2) equal to thermal con-
ductivity times temperature gradient, or

(12.18)

Here �Q is the thermal energy conducted through a cross-sectional area A
in time �t between two planes with a temperature gradient of �T/�x. Since
good electrical conductors are also good conductors of thermal energy, it is
natural to assume that the highly mobile electron gas is responsible for trans-
porting charge as well as thermal energy through the metal via random colli-
sion processes. A remarkable triumph of the classical free electron model was
to show that if free electrons were responsible for both electrical and thermal
conduction in metals, then the ratio of K/� should be a universal constant, the
same for all metals, and dependent only on the absolute temperature. Since such an
unusually simple connection between K and � had already been observed
experimentally (the Wiedemann–Franz law), this prediction confirmed that
the motion of the electron gas was basically responsible for both electrical and
thermal conductivity.

Since the Wiedemann–Franz law is such a simple result, it bears considera-
tion in more detail. The kinetic theory of gases may be applied to the free
electron gas to calculate the flux of thermal energy (W/m2) carried by
electrons moving from a region at temperature T � �T to a region at lower
temperature T.3 Using this result, one immediately finds that the thermal

�Q

A �t
� �K

�T

�x
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Figure 12.13 The resistivity of pure copper as a function of temperature.
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3See C. Kittel, Introduction to Solid State Physics, 6th ed., New York, John Wiley and Sons, 1986,
Chapter 5.
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conductivity, K, depends simply on the heat capacity per unit volume, Cv, vrms,
and the mean free path, L, of the electrons, as follows:

(12.19)

If we assume that the electrons behave as a classical ideal gas and obey
Maxwell–Boltzmann statistics, the heat capacity per mole is found to be 3R/2
or 3NAkB/2, where NA is Avogadro’s number. To convert this to heat capacity
per unit volume for use in Equation 12.19, we must multiply by the ratio of the
electron density to Avogadro’s number. Thus,

and Equation 12.19 becomes

(12.20)

If we simply use the interatomic distance for L in Equation 12.20, we will find
incorrect values, as in the case of electrical conductivity. However, if we form
the ratio of K to �, we avoid the problem of having to assign values to n and L,
as these quantities cancel. Thus,

Substituting v2
rms � 3kBT/me into this expression gives the desired classical re-

sult, known as the Wiedemann–Franz law:

(12.21)

Equation 12.21 shows that the ratio of K/� for any metal is proportional to T
and depends only on the universal constants kB and e . This result agrees with
the empirical law of Wiedemann and Franz (1853) which states that K/�T
has the same value for all metals. The ratio K/�T is known as the Lorentz
number, and according to our classical theory, it has the same value,
3kB

2 /2e2 � 1.1  10�8 W � �/K2, for any metal at any temperature. Table 12.7
shows that, indeed, the ratio of K/�T is nearly constant from metal to metal
and with varying temperatures, but that the value of 3kB

2/2e2 does not agree
precisely with the measured Lorentz numbers. Overall, however, the agree-
ment of the simple classical theory with experiment is good and is taken to
constitute strong evidence that the free electron gas accounts for both electri-
cal and thermal conductivity in metals.

12.3 QUANTUM THEORY OF METALS

Although the classical electron gas model broadly describes the electrical
and thermal properties of metals, there are notable deficiencies in the predic-
tions of this model—in the numerical values of K and �, in the temperature
dependence of �, and in the prediction of an excess heat capacity for metals
(see Section 10.5.) These deficiencies can be rectified by replacing

K

�
�

3kB
2

2e2 T

K

�
�

kBnvrmsL/2

ne2L/mevrms
�

kB(vrms)
2me

2e2

K �
kBnvrmsL

2

Cv � (3
2NAkB) � n

NA
� � 3

2kBn

K � 1
3CvvrmsL
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Table 12.7 Experimental

Lorentz Numbers K/�T in

Units of 10�8 W � �/K2*

Metal 273 K 373 K

Ag 2.31 2.37
Au 2.35 2.40
Cd 2.42 2.43
Cu 2.23 2.33
Ir 2.49 2.49
Mo 2.61 2.79
Pb 2.47 2.56
Pt 2.51 2.60
Sn 2.52 2.49
W 3.04 3.20
Zn 2.31 2.33

*From C. Kittel, Introduction to Solid

State Physics, 2nd ed., New York,
John Wiley and Sons, 1965.

Wiedemann–Franz law
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the Maxwell–Boltzmann distribution with the Fermi–Dirac distribution for
the conduction electrons in the metal and by calculating the electron mean
free path while explicitly taking the wave nature of the electron into account.
Since quantum mechanical calculations of electron mean free path are com-
plicated, we shall rely on qualitative arguments and inferences from measured
quantities to give physical insight into the surprising transparency of metals to
conduction electrons.

Replacement of vrms with vF

As we have seen in Section 10.3, the electrons in a metal must be described by
Fermi–Dirac statistics, and essentially all energy levels are filled up to the
Fermi energy, EF. Because of restrictions imposed by the Pauli principle on the
quantum states of scattered electrons, one might anticipate a “bottleneck” in
electron transport through a metal because of a lack of empty final states.
That this is not the case is illustrated in Figure 12.14, which shows the velocity
distribution in three dimensions of conduction electrons in a metal. Essen-
tially all the electrons have velocities within a radius of in velocity
space [ me(vx

2 � v y
2 � vz

2) � EF]. Figure 12.14b shows that the application of
an electric field causes all the electron velocities to increase by an increment
vd. Since the shift of the electron originally at A creates an empty final state for
the electron originally at B, there is no bottleneck. Furthermore, the net effect
of the E field is to leave an intact core of states for electrons with E � EF

and to produce a displacement of those electrons near the Fermi surface hav-
ing v � vF. Thus only those electrons with v � v F are free to move and partici-
pate in electrical and thermal conduction, and we can presumably use the
classical expressions for � and K,

� �
ne 2L

mevrms
  and  K � 1

3CvvrmsL

1
2

√2EF/me
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Electrons with
velocities at the
surface of the
sphere have
energy EF

vy

vx

A

(a)

2EF–––me

(b)

Displaced
Fermi sphere

A
B

E

vy

vd

vx

Figure 12.14 (a) Allowed velocity vectors, or positions in velocity space, of conduc-
tion electrons in a metal without an applied electric field. (b) The net effect of an
applied electric field is a small displacement of the Fermi sphere, the displaced elec-
trons having a speed of approximately vF.
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with the Maxwell–Boltzmann rms speed replaced by the Fermi speed; thus,

(12.22)

and

(12.23)

Wiedemann–Franz Law Revisited

Let us test the validity of the quantum replacement of vrms with v F by recalcu-
lating K/�T and checking for improved agreement with experiment. First we
note that using a Maxwell–Boltzmann molar heat capacity of 3R/2 for elec-
trons in a metal is incorrect, since conduction electrons obey Fermi–Dirac sta-
tistics. As already mentioned in Section 10.5, only a fraction of the electrons
within kBT of EF change energy as the temperature changes, leading to a mo-
lar heat capacity that is a small fraction of 3R/2:

An exact calculation is rather complicated4 but leads to a similar result:

(12.24)

Changing C to a heat capacity per unit volume and substituting into K �

CvFL yields

Using R � NAkB and EF � mevF
2, we find

(12.25)

Now, forming the Lorentz number K/�T yields

or

(12.26)

A comparison of this result with Table 12.7 shows improved and excellent
agreement between theoretical and experimental Lorentz values, thus justify-
ing the replacement of vrms with vF.

K

�T
�

�2kB
2

3e2 � 2.45  10�8 W � �/K2

K

�T
�

(�2/3)(kB
2T/mevF)(nL)

(ne2L/mevF)T

K �
�2

3 � kB
2T

mevF
� nL

1
2

K � 1
3 � �2

3 �� kBT

EF
� (3

2 R) � n

NA
� vFL

1
3

C �
�2

3 � kBT

EF
� (3

2 R)

C � 2 � kBT

EF
� (3

2 R)

K � 1
3CvvFL

� �
ne2L

mevF
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4See Kittel, op. cit., Chapter 6.

Quantum form of the

Wiedemann–Franz law
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Quantum Mean Free Path of Electrons

Changes from the classical value of electron mean free path arise from the
wave properties of the electron. Consider, once again, our familiar copper
sample. If we simply use the interatomic distance between copper atoms as the
mean free path L for electrons, and vF for vrms in � � ne2L/mevrms, we find a
value for � that is about 200 times smaller than the measured value of the con-
ductivity. This discrepancy implies that we are using the wrong value for L and
that the scattering sites for electrons are not adjacent ion cores but more
widely separated scattering centers. These scattering centers consist of depar-
tures from perfect lattice regularity, such as thermal displacements of ions
from equilibrium lattice sites, dislocations, and impurity atoms. Because quan-
tum calculations of L that include these effects are complicated, let us make a
rough estimate of L for copper at room temperature by using the measured
value of �. Solving � � ne2L/mevF for L yields

(12.27)

Using a Fermi energy of 7.05 eV for copper (see Table 10.1) gives

Substituting this value into Equation 12.27 gives

This is about 150 times the distance between copper atoms. Using � � L/vF,
we can also estimate the mean free time between electronic collisions in cop-
per at room temperature:

We can account for the unexpectedly long electron mean free path by
taking the wave nature of the electron into account. Quantum mechanical
calculations show that electron waves with a broad range of energies can
pass through a perfect lattice of ion cores unscattered, without resistance,
and with an infinite mean free path. The actual resistance of a metal is due
to the random thermal displacements (thermal vibrations) of ions about
lattice points and to other deviations from a perfect lattice, such as impurity
atoms and defects that scatter electron waves. The lack of electron scatter-
ing by a perfect lattice can be understood by noting that the electron wave
generally travels through the metal unattenuated, just as does light through
a transparent crystal. Strong reflections of electron waves are set up only for
specific electron energies, and when this occurs, the electron wave cannot
travel freely through the crystal. As we shall see in the next section, these
strong reflections occur when the lattice spacing is equal to an integral
number of electronic wavelengths, resulting in a discrete set of forbidden
energy bands for electrons.

� �
3.90  10�8 m

1.57  106 m/s
� 2.50  10�14 s

� 3.9  10�8 m � 390 Å

L �
(9.11  10�31 kg)(1.57  106 m/s)(5.9  107 ��1 m�1)

(8.49  1028 electrons/m3)(1.60  10�19 C)2

vF � � 2EF

me
�

1/2

� � (2)(7.05  1.6  10�19 J)

9.11  10�31 kg �
1/2

� 1.57  106 m/s

L �
mevF�

ne 2
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Causes of resistance

in a metal
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From a classical viewpoint, the observed proportionality of resistivity to
absolute temperature at high temperature is the result of the scattering of elec-
trons by lattice ions vibrating with larger amplitude the higher the temperature.
In the quantum view, as we saw in Chapter 10, lattice vibrations have a quantized
energy ��, where � is the angular frequency of vibration of the lattice ion.
These quantized lattice vibrations are called phonons, and for purposes of cal-
culation, the vibrating lattice ions are replaced by phonons. The number of
phonons with energy �� that are available at a given temperature T is denoted
by np and is proportional to the Bose–Einstein distribution function:

(10.33)

At high temperatures, kBT is much greater than ��, and this becomes

Thus the number of phonons available to scatter electrons is directly propor-
tional to T. Finally, since the number of electron scatterers is proportional to
the temperature, so is the resistivity, 
.

In addition to the temperature-dependent part of the resistivity, there is
also a temperature-independent contribution to the resistivity of the metal,
which clearly manifests itself for temperatures less than about 10 K. This resid-
ual resistivity 
i, which remains as T : 0, is produced by electron waves scat-
tering from impurities and structural imperfections in a given sample (see Fig-
ure 12.15). The parallel nature of the curves shown in Figure 12.15 implies
that the resistivity caused by thermal motion of the lattice, 
L, is independent
of the impurity concentration and that 
i is independent of temperature. This
result is formalized in a result known as Matthiessen’s rule, which states that

np �
kBT

��

np �
1

e ��/kBT �1
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the resistivity of a metal may be written in the form


 � 
i � 
L (12.28)

where 
i depends only on the concentration of crystal imperfections and 
L

depends only on T .

12.4 BAND THEORY OF SOLIDS

In Sections 12.2 and 12.3 we discussed the classical and quantum models of
metals, making the simplifying assumption that the metal consists of a gas of
free electrons. Since good insulators have enormous resistivity compared to
metals (a factor of 1024 greater), their electronic configurations must be quite
different. In fact, most outer-shell electrons in an insulator are not free but are
involved in ionic or covalent bonds, as discussed earlier. Furthermore, in
order to more fully understand the electronic properties of solids, one must
consider the effect of the lattice ions.

In the general case, there are two approaches to the determination of elec-
tronic energies in a solid. One is to follow the behavior of energy levels of iso-
lated atoms as they are brought closer and closer to form a solid. The other is
to show that energy bands arise when the Schrödinger equation is solved for
electrons subject to a periodic potential representing the lattice ions. We shall
follow the isolated-atom approach here first, since it is simpler and immedi-
ately leads to an explanation of the differences between conductors, insula-
tors, and semiconductors. Later in this section we shall explicitly consider the
effect of a periodic potential on electron waves, to show how energy bands
arise from another viewpoint.

Isolated-Atom Approach to Band Theory

If two identical atoms are very far apart, they do not interact, and their elec-
tronic energy levels can be considered to be those of isolated atoms. Suppose
the two atoms are sodium, each having an outermost 3s electron with a specific
energy. As the two sodium atoms are brought closer together, their wavefunc-
tions overlap, and the two degenerate, isolated 3s energy levels are split into
two different levels, as shown in Figure 12.16a. We can understand this splitting
by considering the appropriate electronic wavefunctions for the case of widely
separated atoms and the case of neighboring atoms. (For a more complete and
careful treatment of this splitting, see the discussion of covalent bonding in
Section 11.4.) Figure 12.17 shows idealized isolated atom wavefunctions �1 and
�2 as well as the linear combinations �1 � �2 and �1 � �2 that represent
approximate electronic wavefunctions for the two atoms close together. Note
that an electron in the state �1 � �2 has a substantial probability of being
found midway between the ion cores, while in the state �1 � �2 the probability
density vanishes at the midpoint. Since the electron spends part of its time mid-
way between the two attractive ion cores in the state �1 � �2, the electron is
more tightly bound (has lower energy) in the state �1 � �2 than in �1 � �2.
This leads to the two different 3s energy levels shown in Figure 12.16a.5

12.4 BAND THEORY OF SOLIDS 425

5The width of the energy band �E depends on the amount of charge distribution overlap between
adjacent atoms and hence on the interatomic separation, r0.
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When a large number of atoms are brought together to form a solid, a similar
phenomenon occurs. As the atoms are brought close together, the various 
isolated-atom energy levels begin to split. This splitting is shown in Figure
12.16b for six atoms in proximity. In this case there are six energy levels cor-
responding to six different linear combinations of isolated-atom wavefunctions.
The width of an energy band (designated �E in Fig. 12.16) depends only on the
number of atoms close enough to interact strongly, which is always a small num-
ber. If we consider the total number of atoms in a solid (N � 1023 atoms/cm3),
we find a very large number of levels (determined by N ) spaced within the
width �E, so the levels may be regarded as a continuous band of energy levels
(see Fig. 12.16c). In the case of sodium, it is common to refer to the continuous
distribution of allowed energy levels as the 3s band, because it originates from
the 3s levels of individual sodium atoms. In general, a crystalline solid has nu-
merous allowed energy bands, one band arising from each atomic energy level.
Figure 12.18 shows the allowed energy bands of sodium. Note that energy gaps,
or forbidden energy regions, separate the allowed energy bands. Forbidden en-
ergy regions arise from the separation between different atomic levels and will
always be present unless individual atomic levels broaden so much that they
overlap, as do the 3s and 3p bands in sodium.

If the solid contains N atoms, each energy band has N energy levels. The 1s,
2s, and 2p bands of sodium are each full of electrons, as indicated by the dark
gray-shaded areas in Figure 12.18. A level whose orbital angular momentum is
� can hold 2(2� � 1) electrons. The factor of 2 arises from the two possible
electron-spin orientations, while the factor 2� � 1 corresponds to the number
of possible orientations of the orbital angular momentum. The capacity of
each band for a system of N atoms is 2(2� � 1)N electrons. Hence the 1s and
2s bands each contain 2N electrons (� � 0), while the 2p band contains 6N
electrons (� � 1). Because sodium has only one 3s electron and there is a total
of N atoms in the solid, the 3s band contains only N electrons and is only half
full. The 3p band, which is above the 3s band, is completely empty.

Conduction in Metals, Insulators, and Semiconductors

The enormous variation in electrical conductivity of metals, insulators, and
semiconductors may be explained qualitatively in terms of energy bands. We
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Figure 12.16 (a) The splitting of the 3s levels when two sodium atoms are brought
together. (b) The splitting when six sodium atoms are brought together. (c) The for-
mation of a 3s band when a large number of sodium atoms are assembled to form a
solid. Note that r0 is the actual lattice constant.

(a)

�2��1�

(c)

�1 – �2� �

(b)

�1 + �2� �

Figure 12.17 Idealized sodium
wavefunctions in various stages
of combination. (a) Wavefunc-
tions of electrons bound to two
ion cores at large separation.
(b) One linear combination of
wavefunctions that is appropriate
for electrons bound to ion cores
at small separation is �1 � �2.
(c) The other linear combina-
tion is �1 � �2.
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Figure 12.18 The energy
bands of sodium are shaded gray
in this figure. The solid contains
N atoms. Note the energy gaps
between allowed bands and that
the 3s and 3p bands overlap in
sodium. The number of elec-
trons in each energy band is in-
dicated to the right of the band.
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shall see that the position and the electronic occupation of the highest band
or, at most, of the highest two bands determine the conductivity of a solid.

Metals. We can understand electrical conduction in metals by considering
the half-filled 3s band of sodium. Figure 12.19 shows this typical half-filled
metallic band at T � 0 K, where the shaded region represents levels that are
filled with electrons. Since electrons obey Fermi–Dirac statistics, all levels
below the Fermi energy, EF, are filled with electrons, while all levels above EF

are empty. In the case of sodium, the Fermi energy lies in the middle of the
band. At temperatures greater than 0 K, some electrons are thermally excited
to levels above EF (as shown by the Fermi–Dirac distribution to the left of Fig.
12.19), but overall there is little change from the 0-K case. If an electric field
is applied to the metal, electrons with energies near the Fermi energy
can gain a small amount of additional energy from the field and reach
nearby empty energy states. Thus electrons are free to move with only a
small applied field in a metal because there are many unoccupied energy
states very close to occupied energy states.

Insulators. Now consider the two highest-energy bands of a material having
the lower band completely filled with electrons and the higher completely
empty at 0 K (see Fig. 12.20). It is common to refer to the separation between
the outermost filled and empty bands as the energy gap, Eg, of the material.
The lower band filled with electrons is called the valence band, and the
upper, empty band is the conduction band. The Fermi energy is at the
midpoint of the energy gap, as shown in Figure 12.20. Since the energy
gap for an insulator is large (�10 eV) compared to kBT at room temperature
(kBT � 0.025 eV at 300 K), the Fermi–Dirac distribution predicts that very few
electrons will be thermally excited into the upper band at normal tempera-
tures, as can be seen by the small value of f FD at the bottom of the conduction
band in Figure 12.20. Although an insulator has many vacant states in the
conduction band that can accept electrons, there are so few electrons
actually occupying conduction-band states at room temperature that the
overall contribution to electrical conductivity is very small, resulting in
a high resistivity for insulators.
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E

T  > 0

0f FD 1
Metal

E = EF

E = 0

Figure 12.19 A half-filled band of a conductor such as the 3s band of sodium. At 
T � 0 K, the Fermi energy lies in the middle of the band. The Fermi–Dirac probability
that an energy state E is occupied at T � 0 K is shown at the left.
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Semiconductors. Now consider a material that has a much smaller energy
gap, on the order of 1 eV. Such materials are called semiconductors;
Table 12.8 shows the energy gaps for some representative semiconductors. At
T � 0 K, all electrons are in the valence band, and there are no electrons in
the conduction band. Thus semiconductors are poor conductors at low temper-
atures. At ordinary temperatures, however, the situation is quite different. As
shown in Figure 12.21, the populations of the valence and conduction bands
are altered. Because the Fermi level, EF, is located at about the middle of the
gap for a semiconductor and Eg is small, appreciable numbers of electrons are
thermally excited from the valence band to the conduction band. Since there
are many empty nearby states in the conduction band, a small applied poten-
tial can easily raise the energy of the electrons in the conduction band, result-
ing in a moderate current. Because thermal excitation across the narrow gap
is more probable at higher temperatures, the conductivity of semiconductors
depends strongly on temperature and increases rapidly with temperature. This
contrasts sharply with the conductivity of a metal, which decreases slowly with
temperature (see Section 12.3).
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Figure 12.21 The band structure of a semiconductor at ordinary temperatures 
(T � 300 K). Note that the energy gap is much smaller than in an insulator and that
many electrons occupy states in the conduction band.

Table 12.8 Energy-Gap

Values for Some 

Semiconductors*

Eg(eV)

Crystal 0 K 300 K

Si 1.17 1.14
Ge 0.744 0.67
InP 1.42 1.35
GaP 2.32 2.26
GaAs 1.52 1.43
CdS 2.582 2.42
CdTe 1.607 1.45
ZnO 3.436 3.2
ZnS 3.91 3.6

*From C. Kittel, Introduction to Solid

State Physics, 6th ed., New York, John
Wiley and Sons, 1986.

Conduction band

Energy gap

Valence band

Insulator
Eg ≈ 10 eV

Eg

E = 0

E = E F

E

T  > 0

0f FD 1

Figure 12.20 An insulator at T � 0 K has a filled valence band and an empty conduc-
tion band. The Fermi level lies midway between these bands. The Fermi–Dirac proba-
bility that an energy state E is occupied at T � 0 K is shown to the left.
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It is important to point out that there are both negative and positive charge
carriers in a semiconductor. When an electron moves from the valence band
into the conduction band, it leaves behind a vacant valence electron site, or so-
called hole, in the otherwise filled valence band. This hole (electron-deficient
site) appears as a positive charge, �e. The hole acts as a charge carrier in the
sense that a valence electron from a nearby site can transfer into the hole,
thereby filling it and leaving a hole behind in the electron’s original place. Thus
the hole migrates through the valence band. In a pure crystal containing only
one element or compound, there are equal numbers of conduction electrons
and holes. Such combinations of charges are called electron–hole pairs, and a
pure semiconductor that contains such pairs is called an intrinsic semiconduc-
tor (see Fig. 12.22). In the presence of an electric field, the holes move in the
direction of the field and the conduction electrons move opposite the field.
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7 eV in a single mean free path. Thus, for an electron
to gain 7 eV in a distance L, we require an electric
field of

This is an enormous field compared to the field required
to produce conduction in metals.

E �
V

L
�

7 V

5  10�8 m
� 1.4  108 V/m

EXAMPLE 12.2

Estimate the electric field strength required to produce
conduction in diamond, an excellent insulator at room
temperature. Assume a mean free path of 5  10�8 m
and an energy gap of 7 eV in diamond.

Solution If an electron in diamond is to conduct, it
must be supplied with 7 eV of energy from the electric
field. Since the electron generally loses most of its
excess energy in each collision, the field must supply

Conduction band

Narrow forbidden gap

Valence band

electrons

holes+

+ +

Applied E field

Energy

Figure 12.22 An intrinsic semiconductor. The electrons move toward the left and the
holes move toward the right when the applied electric field is to the right as shown.

Energy Bands from Electron Wave Reflections

We now take a completely different approach to understanding the origin of
energy bands in solids. This approach involves modifying the free electron
wavefunctions to take into account the scattering of electron waves by the peri-
odic crystal lattice.
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Recall that a completely free electron moving in the �x direction is repre-
sented by a traveling wave with wavenumber k � 2�/�, described by

�free � Ae i(kx��t)

According to de Broglie, the wave carries momentum p � �k and energy 
E � ��. Furthermore, the energy of the free electron as a function of k is

and a plot of E versus k yields a parabola (see Fig. 12.23). From Fig. 12.23 we
see that allowed energy values are distributed continuously from zero to infin-
ity, and there are no breaks or gaps in energy at particular k values.

Now consider what happens to a traveling electron wave when it passes
through a one-dimensional crystal lattice with atomic spacing a. We start with
incident electron waves of very long wavelength, or small k, and low energy,
traveling to the right as in Figure 12.24a. In this case, waves reflected from suc-
cessive atoms and traveling to the left are all slightly out-of-phase and cancel out
on average. Thus the electron wave does not get reflected, and the electron
moves through the lattice like a free particle. If, however, we make the elec-
tron wavelength shorter and shorter, when we reach the condition � � 2a,

E �
p2

2me
�

�2k2

2me
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Figure 12.23 Energy versus
wavenumber k for a free elec-
tron, where k � 2�/�.
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Figure 12.24 (a) Reflection of electron waves when � �� a. (b) Reflection of
electron waves when � � 2a. (c) Constructive interference of waves reflected from
atoms 1 and 2.
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waves reflected from adjacent atoms will be in-phase, as shown in Figure
12.24b, and there will be a strong reflected wave. This occurs because the path
length difference is 2a for a wave reflected to the left directly from atom 1
compared to a wave that travels from 1 to 2 and then is reflected back to 1, as
shown in Figure 12.24c. The longest wavelength at which constructive interfer-
ence of reflected waves occurs is thus

2a � �

In general, constructive interference also occurs at other, shorter wavelengths,

2a � �n� n � 1, 2, 3, . . . (12.29)

where the negative sign arises from reflection from the atom to the left of
atom 1. In terms of wavenumber k, Equation 12.29 predicts strong reflected
electron waves when

n � 1, 2, 3, . . . (12.30)

Thus, for k � �n�/a the electron wavefunctions are not just waves traveling
to the right but are composed of equal parts of waves traveling to the right
(incident) and to the left (reflected). Since the waves traveling left and right
can be added or subtracted, we have two different possible standing wave
types, denoted by �� and ��:

�� � Bei(kx��t ) � Bei(�kx��t) (12.31)

�� � Bei(kx��t) � Bei(�kx��t) (12.32)

where Bei(kx��t) describes a wave traveling to the right and Bei(�kx��t) a wave
traveling to the left. Using Euler’s identity, ei	 � cos	 � i sin	, one can show
that for k � ��/a, �� and �� take the more useful forms

(12.33)

(12.34)

The key point is that �� has a slightly higher energy than �free, and �� has
a slightly lower energy than �free, at k � �/a. This leads to a discontinuity in
energy, or a band gap, at k � �/a as shown in Figure 12.25. To show that
the �� state has a higher energy than the �� state, we must consider both
kinetic and potential energies of the electron in these states. The kinetic
energy of the electron is the same in both states, since both have the same
magnitude of momentum, p � �k � ��/a. Thus the average kinetic energy
of both �� and �� is

The potential energies of the two states are different, however, since �� and
�� distribute the electrons differently with respect to the positions of the posi-
tive ion cores. Figure 12.26 shows the distributions of electronic charge for the
case of a traveling wave and the two standing wave cases, �� and ��. They are

�K � � 	 p2

2me

 �

�2k2

2me
�

�2�2

2mea2

�� � 2Be�i�t cos 
�x

a

�� � �2Bie�i�t sin
�x

a

k � �
n�

a

12.4 BAND THEORY OF SOLIDS 431

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



calculated from the probability densities as follows:

Note that the traveling wave solution distributes electronic charge uniformly
along the lattice. On the other hand, �� concentrates electronic charge midway

�*
��� � ��2Bie�i�t sin 

�x

a �
*

��2Bie�i�t sin 
�x

a � � 4� B �2 sin2 �x

a

�*
��� � �2Be�i�t cos 

�x

a �
*

�2Be�i�t cos 
�x

a � � 4� B �2 cos2 �x

a

�*
free�free � [Aei(kx��t)]*[Aei(kx��t)] � � A �2
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Figure 12.25 Energy versus wavenumber for a one-dimensional lattice with atomic
separation a. The E versus k curve for the free electron case is shown dashed. Note the
forbidden bands corresponding to impossible energy states for the electron.

Figure 12.26 Probability densities of standing waves and traveling (free) electron
waves in a one-dimensional lattice. Note that the state �� places the electron over the
positive ion and consequently has the lowest potential energy.
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between the ions, while �� concentrates electronic charge right over the positive
ion cores, minimizing the electron’s potential energy.6 Thus we would expect the
average potential energy of the electron in the state �� to be somewhat below
the free electron energy, and the average potential energy in the state �� to be a
bit above the free electron energy. This difference in potential energy between
�� and �� leads to a difference in total energy, since the kinetic energies of
�� and �� are the same. Thus the total energy of the electron in the state �� at
k � �/a shown in Figure 12.25 lies slightly below the free electron energy
parabola, and the total energy of the state �� lies slightly above the free electron
energy. Also, Figure 12.25 shows that the overall effect of the lattice is to intro-
duce forbidden gaps in the free electron E versus k plot at values of k � �n�/a.

12.5 SEMICONDUCTOR DEVICES

The p-n Junction

In order to make devices, one must be able to fabricate semiconductors with
well-defined regions of different conductivity. Both the type (positive or nega-
tive) and number of carriers in a semiconductor may be tailored to the needs
of a particular device by the addition of specific impurities in a process called
doping. For example, when an atom with five valence electrons, such as
arsenic, is added to a semiconductor from Group IV of the periodic table, four
valence electrons participate in the covalent bonds and one electron is left
over (see Fig. 12.27a). This extra electron is nearly free and has an energy
level that lies within the energy gap, just below the conduction band, as shown
in Figure 12.27b. Such a pentavalent atom in effect donates an electron to the
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6Recall that the electron’s electrical potential energy is the work done by an external force to
move the electron to a particular point. To move the electron to a positive ion requires the mini-
mum external work. Thus the electron has the minimum potential energy in this position.
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Figure 12.27 (a) A two-dimensional representation of a semiconductor containing a
donor atom (colored spot). (b) An energy-band diagram of a semiconductor in which the
donor levels lie within the forbidden gap, just below the bottom of the conduction band.
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semiconductor and is referred to as a donor atom. Since the energy spacing
between the donor levels and the bottom of the conduction band is very small
(typically about 0.05 eV), a small amount of thermal energy causes an electron
in these levels to move into the conduction band. (Recall that the average
thermal energy of an electron at room temperature is kBT � 0.025 eV.) Semi-
conductors doped with donor atoms are called n-type semiconductors be-
cause the charge carriers are negatively charged electrons.

If the semiconductor is doped with atoms having three valence electrons,
such as indium and aluminum, the three electrons form covalent bonds with
neighboring atoms, leaving an electron deficiency, or hole, in the fourth bond
(see Fig. 12.28a). The energy levels of such impurities also lie within the en-
ergy gap, just above the valence band, as indicated in Figure 12.28b. Electrons
from the valence band have enough thermal energy at room temperature to
fill these impurity levels, leaving behind a hole in the valence band. Because a
trivalent atom in effect accepts an electron from the valence band, such impu-
rities are referred to as acceptors. A semiconductor doped with trivalent
(acceptor) impurities is known as a p -type semiconductor because the
charge carriers are positively charged holes. When conduction is dominated
by acceptor or donor impurities, the material is called an extrinsic semicon-
ductor or impurity semiconductor. The typical range of doping densities for
n - or p -type semiconductors is 1013 to 1019 cm�3.

Now consider what happens when a p -type semiconductor is joined to an
n -type semiconductor to form a p-n junction. We find that the completed junc-
tion consists of three distinct semiconductor regions, as shown in Figure 12.29a: a
p -type region, a depletion region, and an n -type region. The depletion region
may be visualized as arising when the two halves of the junction are brought to-
gether and mobile donor electrons diffuse to the p side of the junction, leaving
behind immobile positive ion cores. (Conversely, holes diffuse to the n side and
leave a region of fixed negative ion cores.) The region extending several mi-
crons from the junction is called the depletion region because it is
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Figure 12.28 (a) A two-dimensional representation of a semiconductor contain-
ing an acceptor atom (colored spot). (b) An energy-band diagram of a semiconduc-
tor in which the acceptor levels lie within the forbidden gap, just above the top of
the valence band.
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depleted of mobile charge carriers. It also contains a built-in electric field on
the order of 103 to 105 V/cm, which serves to sweep mobile charge out of this re-
gion and keep it truly depleted. This electric field creates a potential barrier V0

that prevents the further diffusion of holes and electrons across the junction and
ensures zero current through the junction when no external voltage is applied.

Perhaps the most notable feature of the p -n junction is its ability to pass cur-
rent in only one direction. Such diode action is easiest to understand in terms
of the potential diagram in Figure 12.29c. If a positive external voltage is
applied to the p side of the junction, the overall barrier is decreased, resulting
in a current that increases exponentially with increasing forward voltage or
bias. For reverse bias (a positive external voltage applied to the n side of the
junction), the potential barrier is increased, resulting in a very small reverse
current that quickly reaches a saturation value, I0, with increasing reverse bias.
The current–voltage relation for an ideal diode is

(12.35)

where q is the electronic charge, kB is Boltzmann’s constant, and T is the
temperature in kelvins. Figure 12.30 shows a plot of an I–V characteristic for a
real diode, along with a schematic of a diode under forward bias. Region
1 shows reverse-bias operation, region 2 ordinary forward bias, and region
3 the extreme forward bias needed for a p -n junction laser. We treat p -n
junction lasers in Section 12.7.

I � I0(eqV/kBT � 1)
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Figure 12.29 (a) The physical arrangement of a p -n junction. (b) Built-in electric
field versus x for the p -n junction. (c) Built-in potential versus x for the p -n junction.
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Light-Emitting and -Absorbing
Diodes—LEDs and Solar Cells

Light emission and absorption in semiconductors is similar to light emission
and absorption by gaseous atoms, except that discrete atomic energy levels
must be replaced by bands in semiconductors. As shown in Figure 12.31a, an
electron excited electrically into the conduction band can easily recombine
with a hole (especially if the electron is injected into a p -type region), emitting
a photon of band-gap energy. Examples of p -n junctions that convert electrical
input to light output are light-emitting diodes (LEDs) and injection lasers.
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Figure 12.30 The characteristic curve for a real diode.

Taking kBT � 0.025 eV at room temperature gives

� �2.4  1017

If

Ir
�

I0(e(1.0 eV)/(0.025 eV) � 1)

I0(e�(1.0 eV)/(0.025 eV) � 1)
�

(e40 � 1)

(e�40 � 1)

EXAMPLE 12.3 Forward and Reverse
Currents in a Diode

Calculate the ratio of the forward current to the reverse
current for a diode described by Equation 12.35 for an
applied voltage across the diode of �1.0 V (forward bias)
and �1.0 V (reverse bias).

Solution

Iforward

Ireverse
�

I0(e�qV/kBT � 1)

I0(e�qV/kBT � 1)
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Conversely, an electron in the valence band may absorb a photon and be
promoted to the conduction band, leaving a hole behind (see Fig. 12.31b).
Devices in which light-generated electrons and holes are separated by a junc-
tion field and collected as current are called solar cells or photovoltaic
devices. They are described in detail in an essay by John Meakin on our Web
site http://info.brookscole.com/mp3e.

The Junction Transistor

The invention of the transistor by American physicists John Bardeen
(1908–1991), Walter Brattain (1902–1987), and William Shockley (1910–1989)
in 1948 totally revolutionized the world of electronics and led to a Nobel prize,
shared by the three men, in 1956. By 1960 the transistor had replaced the
vacuum tube in many electronic applications, giving rise to a multibillion-dollar
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Figure 12.31 (a) Light emission from a semiconductor. (b) Light absorption by a
semiconductor.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

Image not available due to copyright restrictions

 



industry that produces such popular devices as pocket radios, handheld organiz-
ers, computers, CD and DVD players, cell phones, and electronic games.

The junction transistor consists of a semiconducting material with a very
narrow n region sandwiched between two p regions, called the pnp transistor,
or a p region sandwiched between two n regions, called the npn transistor.
Because the operations of the two transistors are essentially the same, we shall
describe only the pnp transistor.

Figure 12.32 shows the structure of the pnp transistor together with its cir-
cuit symbol. The outer regions of the transistor are called the emitter and the
collector, and the narrow central region is called the base. Note that the configu-
ration contains two junctions. One junction is the interface between the emit-
ter and the base, and the other is that between the base and the collector.

Suppose a voltage is applied to the transistor such that the emitter is at a
higher potential than the collector. (This is accomplished with battery Vec in
Figure 12.33.) If we think of the transistor as two diodes back to back, we see
that the emitter–base junction is forward-biased and the base–collector junc-
tion is reverse-biased. Because the p -type emitter is heavily doped relative to
the base, nearly all of the current consists of holes moving across the 
emitter–base junction. Most of these holes do not recombine in the base be-
cause it is very narrow. The holes are finally accelerated across the reverse-
biased base–collector junction, producing the current Ic in Figure 12.33.

Although only a small percentage of holes recombine in the base, those
that do limit the emitter current to a small value, because positive charge car-
riers accumulate in the base and prevent holes from flowing into this region.
To prevent this limitation of current, some of the positive charge on the base
must be drawn off; this is accomplished by connecting the base to a second
battery, Veb in Figure 12.33. Those positive charges that are not swept across
the collector–base junction leave the base through this added pathway. This
base current, Ib, is very small, but a small change in it can significantly change
the larger collector current, Ic. If the transistor is properly biased, the collector
(output) current is directly proportional to the base (input) current, and the
transistor acts as a current amplifier. This condition may be written

Ic � �Ib (12.36)
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Figure 12.33 A small base current, Ib, controls a large collector current, Ic. Note that
Ie � I b � Ic , I b �� Ic , and Ic � �I b, where � � 10 to 100.
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Figure 12.32 (a) The pnp tran-
sistor consists of an n region
(base) sandwiched between two
p regions (the emitter and the
collector). (b) The circuit sym-
bol for the pnp transistor.
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where �, the current gain, is typically in the range from 10 to 100. Thus the
transistor may be used to amplify a small time-varying signal. The small voltage
to be amplified is placed in series with the battery Veb as shown in Figure 12.33.
The time-dependent input signal produces a small variation in the base cur-
rent. This variation results in a large change in collector current and hence a
large change in voltage across the output resistor.

The Field-Effect Transistor (FET)

During the 1960s, the electronics industry converted many electronic applica-
tions from the junction transistor to the field-effect transistor (FET), which is
easier to manufacture and uses much less power than the junction transistor.
Figure 12.34 shows the structure of a very common device, the MOSFET, or
metal-oxide-semiconductor field-effect transistor. You are likely using mil-
lions of MOSFET devices as switches when you are working on your new laptop.

There are three metal connections to the transistor—the source, drain, and
gate. The source and drain are connected to n -type semiconductor regions at
either end of the structure. These regions are connected by a narrow channel
of additional n -type material, the n channel. The source and drain regions
and the n channel are embedded in a p -type substrate material. This forms a
depletion region, as in the junction diode, along the bottom of the n channel.
(Depletion regions also exist at the junctions underneath the source and
drain regions, but we will ignore these because the operation of the device
depends primarily on the behavior in the channel.) The gate is separated
from the n channel by a layer of insulating silicon dioxide. Thus, it does not
make electrical contact with the rest of the semiconducting material.

(a) (b)

(a) Jack Kilby, co-inventor of the integrated circuit, is surrounded by devices containing
integrated circuits at the Texas Instruments headquarters. (Roger Ressmeyer/CORBIS)
(b) Robert Noyce, former Sematech chief executive, holding up a semiconductor wafer
at Sematech in Austin, Texas in 1989. (AP photo/David Breslaner)
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Imagine that a voltage source �VSD is applied across the source and drain as
shown in Figure 12.34b. With this situation, electrons will flow through the
upper region of the n channel. Electrons cannot flow through the depletion
region in the lower part of the n channel because this region is depleted of
charge carriers. Now a second voltage �VSG is applied across the source and
gate as in Figure 12.34c. The positive potential on the gate electrode results in
an electric field below the gate that is directed downward in the n channel.
(This is the field in “field-effect.”) This electric field exerts upward forces on
electrons in the region below the gate, causing them to move into the n chan-
nel. This causes the depletion region to become smaller, widening the area
through which there is current between the top of the n channel and the
depletion region. As the area widens, the current increases.

If a varying voltage is applied to the gate, the area through which the
source–drain current exists varies in size according to the varying gate voltage.
A small variation in gate voltage results in a large variation in current and a
correspondingly large voltage across the resistor in Figure 12.34c. Therefore,
the MOSFET acts as a voltage amplifier. A circuit consisting of a chain of such
transistors can result in a very small initial signal from a microphone being
amplified enough to drive powerful speakers at an outdoor concert.

The MOSFET can be used as a switch by reversing the potential difference
�VSG in Figure 12.34c. In this case, increasing the voltage causes the n channel
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Figure 12.34 (a) The structure of a metal-oxide-semiconductor field-effect transistor
(MOSFET). (b) A source–drain voltage is applied, with the result that current exists in
the circuit. (c) A gate voltage is applied. The gate voltage can be used to control the
source–drain current, so that the MOSFET acts as an amplifier.
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to decrease in size. If this voltage is large enough to completely block the area
through which electrons pass, the current falls to zero. Thus the MOSFET can
be viewed as a low-power switch: A very low input current in the source–gate
circuit essentially opens and closes the source–drain circuit by changing the
resistance of the source–drain by several orders of magnitude. This very low
power switching behavior is especially useful in integrated circuits with mil-
lions of transistors, where power dissipation is a major problem.

The Integrated Circuit

The integrated circuit (IC), invented independently by Americans Jack Kilby
(b. 1923; Nobel prize, 2000) at Texas Instruments in late 1958 and Robert Noyce
(1927–1992) at Fairchild Camera and Instrument in early 1959, has justly been
called the most remarkable technology ever to hit mankind. ICs have started a
second industrial revolution and are found at the hearts of computers, watches,
cameras, automobiles, aircraft, robots, space vehicles, and all sorts of communica-
tion and switching networks. In simplest terms, an integrated circuit is a collec-
tion of interconnected transistors, diodes, resistors, and capacitors fabricated on
a single piece of silicon, affectionately known as a chip. State-of-the-art chips eas-
ily contain several million components in a 1-cm2 area (Fig. 12.35).

Interestingly, integrated circuits were invented partly in an effort to achieve
circuit miniaturization and partly to solve the interconnection problem
spawned by the transistor. In the era of vacuum tubes, the relatively great power
and size of individual components severely limited the number of components
that could be interconnected in a given circuit. With the advent of the tiny, low-
power, highly reliable transistor, design limits on the number of components
disappeared and were replaced by the challenge of wiring together hundreds
of thousands of components. The magnitude of this problem can be appreci-
ated when one considers that second-generation computers (consisting of dis-
crete transistors) contained several hundred thousand components requiring
more than a million hand-soldered joints to be made and tested.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

Image not available due to copyright restrictions

 



Figures 12.36 and 12.37 show pictures of the first ICs that contained multi-
ple electronic devices on a single piece of silicon. Noyce’s IC also shows inter-
connections between devices fabricated as part of the chip manufacturing process.
In addition to solving the interconnection problem, ICs possess the advan-
tages of miniaturization and fast response, two attributes that are critical for
high-speed computers. The fast response is actually also a product of the
miniaturization and close packing of components, because the response time
of a circuit depends on the time it takes for electrical signals traveling at about
1 ft/ns to pass from one component to another. This time is reduced by the
closer packing of components. Additional information on the history, theory
of operation, and fabrication of chips may be found in the Suggestions for
Further Reading at the end of this chapter.

Figure 12.38a illustrates the dramatic advances made in chip technology
since Intel introduced the first microprocessor in 1971. Figure 12.38b is a
graph of the logarithm of the number of transistors in a chip as a function of
the year in which the chip was introduced. Because this growth follows an
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Figure 12.38 Dramatic advances in chip technology related to computer microchips
manufactured by Intel. (a) A plot of the number of transistors on a single computer
chip versus year of manufacture. (b) A plot of the logarithm of the number of transis-
tors in part (a). The fact that this plot is approximately a straight line shows that the
growth is exponential.

approximately straight line, we conclude that that the growth is exponential.
“Moore’s law,” proposed in 1965 by Gordon Moore, a cofounder of Intel with
Noyce, claims that the number of transistors per square inch on integrated cir-
cuits should double every 18 months. The doubling time in Figure 12.38b is
longer than 18 months because this graph shows only the total number of
transistors and does not take into account the shrinking size of the integrated
circuit over the years. When the density of transistors per square centimeter is
graphed, the results are similar to those predicted by Moore’s law.

12.6 SUPERCONDUCTIVITY

There is a class of metals and compounds known as superconductors whose
electrical resistance R decreases to virtually zero below a certain temperature
Tc , called the critical temperature (Table 12.9). Let us now look at these amazing
materials with infinite conductivity in greater detail, using what we have just
learned about the properties of solids to help us understand the behavior of
superconductors.

We start by examining the Meissner effect, a phenomenon in which mag-
netic fields are expelled from the interior of superconductors. Simple argu-
ments based on the laws of electricity and magnetism can be used to show that
the magnetic field inside a superconductor cannot change with time. Accord-
ing to Ohm’s law, the resistance of a conductor is given by R � �V/I, where
�V is the potential difference across the conductor and I is the current in the
conductor. Because the potential difference �V is proportional to the electric
field inside the conductor, the electric field is proportional to the resistance of
the conductor. Therefore, because R � 0 for a superconductor at or below its
critical temperature, the electric field in its interior must be zero. Now re-
call that Faraday’s law of induction can be expressed as

� E �ds � �
d�B

dt

Table 12.9 Critical 

Temperatures for 

Various Superconductors

Material Tc(K)

Zn 0.88
Al 1.19
Sn 3.72
Hg 4.15
Pb 7.18
Nb 9.46
Nb3Sn 18.05
Nb3Ge 23.2
YBa2Cu3O7 92
Bi–Sr–Ca–Cu–O 105
Tl–Ba–Ca–Cu–O 125
HgBa2Ca2Cu3O8 134
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That is, the line integral of the electric field around any closed loop is equal
to the negative rate of change in the magnetic flux �B through the loop.
Because E is zero everywhere inside the superconductor, the integral over
any closed path inside the superconductor is zero. Therefore, d�B/dt � 0;
this tells us that the magnetic flux in the superconductor cannot change.
From this information, we conclude that B � �B/A must remain constant
inside the superconductor.

Before 1933, it was assumed that superconductivity was a manifestation of
perfect conductivity. If a perfect conductor is cooled below its critical tempera-
ture in the presence of an applied magnetic field, the field should be trapped
in the interior of the conductor even after the external field is removed. In ad-
dition, the final state of the perfect conductor should depend on which occurs
first, the application of the field or the cooling to below Tc . If the field is
applied after the material has been cooled, the field should be expelled from
the superconductor. If the field is applied before the material is cooled, the
field should not be expelled once the material has been cooled. In 1933,
however, W. Hans Meissner and Robert Ochsenfeld discovered that when a
metal becomes superconducting in the presence of a weak magnetic field, the
field is expelled. Thus, the same final state B � 0 is achieved whether the field
is applied before or after the material is cooled below its critical temperature.

The Meissner effect is illustrated in Figure 12.39 for a superconducting
material in the shape of a long cylinder. Note that the field penetrates the
cylinder when its temperature is greater than Tc (Fig. 12.39a). As the tempera-
ture is lowered to below Tc , however, the field lines are spontaneously ex-
pelled from the interior of the superconductor (Fig. 12.39b). Thus, a super-
conductor is more than a perfect conductor (resistivity 
 � 0); it is also a
perfect diamagnet (B � 0). The property that B � 0 in the interior of a su-
perconductor is as fundamental as the property of zero resistance. If the mag-
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(a) (b)

T < Tc

i

T > Tc

Figure 12.39 A superconductor in the form of a long cylinder in the presence of an
external magnetic field. (a) At temperature above Tc , the field lines penetrate the
cylinder because it is in its normal state. (b) When the cylinder is cooled to T � Tc and
becomes superconducting, magnetic flux is excluded from its interior by the induction
of surface currents.
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12.6 SUPERCONDUCTIVITY 445

Figure 12.40 A small permanent magnet levitated above a pellet of the YBa2CU3O7��

superconductor cooled to the temperature of liquid nitrogen, 77 K. (Courtesy of IBM

Research)

nitude of the applied magnetic field exceeds a critical value Bc , defined as the
value of B that destroys a material’s superconducting properties, the field
again penetrates the sample.

Because a superconductor is a perfect diamagnet having a negative mag-
netic susceptibility, it repels a permanent magnet. In fact, one can perform a
demonstration of the Meissner effect by floating a small permanent magnet
above a superconductor and achieving magnetic levitation, as seen in Figure
12.40. Recall from your study of electricity that a good conductor expels static
electric fields by moving charges to its surface. In effect, the surface charges
produce an electric field that exactly cancels the externally applied field inside
the conductor. In a similar manner, a superconductor expels magnetic fields
by forming surface currents. To see why this happens, consider again the
superconductor shown in Figure 12.39. Let us assume that the sample is ini-
tially at a temperature T � Tc as illustrated in Figure 12.39a, so that the mag-
netic field penetrates the cylinder. As the cylinder is cooled to a temperature
T � Tc , the field is expelled, as shown in Figure 12.39b. Surface currents
induced on the superconductor’s surface produce a magnetic field that
exactly cancels the externally applied field inside the superconductor. As
you would expect, the surface currents disappear when the external magnetic
field is removed.

A successful theory of superconductivity in metals was published in 1957 by
American physicists John Bardeen, Leon N. Cooper (b. 1930), and J. Robert
Schreiffer (b. 1931) and is generally called BCS theory, based on the first let-
ters of their last names. This theory led to a Nobel Prize in Physics for the
three scientists in 1972 (the second Nobel prize for Bardeen!). In this theory,
two electrons can interact via distortions in the array of lattice ions so that
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there is a net attractive force between the electrons.7 As a result, the two elec-
trons are bound into an entity called a Cooper pair. The Cooper pair behaves
like a particle with integral spin. Recall that particles with integral spin are
bosons. (Particles with half-integer spins are fermions.) An important feature of
bosons is that they do not obey the Pauli exclusion principle. Consequently, at
very low temperatures, it is possible for all bosons in a collection of such parti-
cles to be in the lowest quantum state. As a result, the entire collection of
Cooper pairs in the metal is described by a single wavefunction. Above
the energy level associated with this wavefunction is an energy gap equal to the
binding energy of a Cooper pair. Under the action of an applied electric field,
the Cooper pairs experience an electric force that causes them to move
through the metal. A random-scattering event of a Cooper pair from a lattice
ion represents resistance to the electric current. Such a collision changes the
energy of the Cooper pair because some energy is transferred to the lattice
ion. But there are no available energy levels below that of the Cooper pair (it
is already in the lowest energy level), and none available above, because of the
energy gap. As a result, collisions are forbidden and there is no resistance to
the movement of Cooper pairs.

An important development in physics that elicited much excitement in
the scientific community was the discovery of high-temperature copper
oxide–based superconductors. The excitement began with a 1986 publication by
J. Georg Bednorz (b. 1950) and K. Alex Müller (b. 1927), scientists at the IBM
Zurich Research Laboratory in Switzerland. In their seminal paper,8

Bednorz and Müller reported strong evidence for superconductivity at 30 K in
an oxide of barium, lanthanum, and copper. They were awarded the Nobel
Prize for Physics in 1987 for their remarkable discovery. Shortly thereafter, a new
family of compounds was open for investigation, and research activity in the
field of superconductivity proceeded vigorously. In early 1987, groups at the
University of Alabama at Huntsville and the University of Houston announced
superconductivity at about 92 K in an oxide of yttrium, barium, and copper
(YBa2Cu3O7). Later that year, teams of scientists from Japan and the United
States reported superconductivity at 105 K in an oxide of bismuth, strontium,
calcium, and copper. More recently, scientists have reported superconductivity
at temperatures as high as 150 K in an oxide containing mercury. Today, one
cannot rule out the possibility of room-temperature superconductivity, and the
mechanisms responsible for the behavior of high-temperature superconductors
are still under investigation. The search for novel superconducting materials
continues both for scientific reasons and because practical applications become
more probable and widespread as the critical temperature is raised.

While BCS theory was very successful in explaining superconductivity in
metals, there is currently no widely accepted theory for high-temperature su-
perconductivity. This remains an area of active research. The interested reader
should see our companion Web site http://info.brookscole.com/mp3e for a
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7A highly simplified explanation of this attraction between electrons is as follows. Around one
electron, the attractive Coulomb force causes surrounding positively charged lattice ions to move
slightly inward toward the electron. As a result, there is a higher concentration of positive charge
in this region than elsewhere in the lattice. A second electron is attracted to the higher concen-
tration of positive charge.

8J. G. Bednorz and K. A. Müller, Z. Phys. B, 64:189, 1986.
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Spontaneous transition

detailed treatment of superconductivity, including discussions of magnetism in
matter, Type I and II superconductors, BCS theory, Josephson tunneling, high-
temperature superconductivity, and superconducting devices.

12.7 LASERS

Lasers provide an interesting example of the basic principles of the interac-
tion of radiation with atoms. Because of this and because of the large number
of engineering applications of lasers—such as CD-ROMs, precision surveying
and length measurement, precision cutting and shaping of materials, and
communication by optical fibers—it is worthwhile to discuss the principles of
operation of lasers in some detail.

Absorption, Spontaneous Emission, and
Stimulated Emission

To understand the operation of a laser, we must become familiar with the
processes that describe the emission and absorption of radiation by atoms.
Although it would be stretching the truth to say that Einstein anticipated the
laser, he laid the foundations for the device with his explanation in 1917 of the
processes of atomic absorption, spontaneous emission, and stimulated emis-
sion.9 Einstein showed that an atom can absorb a photon of energy, hf, from a
radiation field and make a transition from a lower energy state, E1, to a higher
state, E2, where E2 � E1 � hf . Let us set the probability of absorption per unit
time per atom equal to B12u( f , T ), where B12 is Einstein’s coefficient of absorp-
tion and u( f , T ) is the energy density per unit frequency in the radiation field.
The probability of absorption of radiation is thus assumed to be proportional
to the density of radiation. Once excited, an atom in state 2 is observed to have
a definite probability per second of making a spontaneous transition (that is,
one not induced by radiation) back to level 1. The spontaneous transition rate
may be characterized by the coefficient A21 (transitions per unit time) or by the
spontaneous emission lifetime, t s � 1/A21 (time per transition).

In addition to spontaneous emission, which is independent of the radiation
density, another kind of emission can occur that is dependent on the radiation
density. If a photon of energy hf interacts with an atom when it is in level 2, the
electric field associated with this photon can stimulate or induce atomic emis-
sion such that the emitted electromagnetic wave (photon) vibrates in-phase
with the stimulating wave (photon) and travels in the same direction. Two
such photons are said to be coherent. We may set the stimulated transition
rate per atom equal to B21u( f , T ), where B21 is Einstein’s coefficient of stimu-
lated emission. Figure 12.41 summarizes the three processes of absorption,
spontaneous emission, and stimulated emission.10

9A. Einstein, “Zur Quanten Theorie der Strahlung (On the Quantum Theory of Radiation),” Phys.
Zeit., 18:121–128, 1917.

10Although spontaneous emission has no classical analog and is a truly quantum effect (arising
from quantization of the radiation field), absorption and stimulated emission do have classical
analogs. If the atom–photon interaction is modeled as a charged harmonic oscillator driven by
an electromagnetic wave, the classical oscillator can either absorb energy from the wave or give
up energy, depending on the relative phases of oscillator and wave.
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Since the number of upward transitions per unit time must equal the number
of downward transitions per unit time, we have

N1u( f , T )B12 � N2[B21u( f , T ) � A21] (12.38)

Using Equation 12.37, this becomes

(12.39)u( f, T ) �
A21

B12ehf/kBT � B21
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Next, following Einstein, consider a mixture of atoms and radiation in ther-
mal equilibrium at temperature T. The populations N1 and N2 of the energy
levels E1 and E2 obey the Boltzmann relation (discussed in Chapter 10).

(12.37)

This equilibrium ratio of populations represents a case of dynamic equilibrium
in which the number of atomic transitions per second up (from E1 to E2) is
balanced by the number of spontaneous and stimulated transitions per second
down (from E2 to E1). Since the number of atoms making transitions is pro-
portional to the population of the starting level as well as to the transition
probability, we may write

N2

N1
� e�(E2�E1)/kBT � e�hf/kBT

Number of atoms going from 2 to 1 per unit time spontaneously � N2A21

Number of atoms going from 1 to 2 per unit time � N1u( f , T )B12

Number of atoms going from 2 to 1 per unit time by stimulated emission
� N2u( f , T )B21

where u( f, T ) is the radiation energy density per unit frequency ( J/m3 � Hz).

For spontaneous emission there is no dependence on the radiation field, and
we merely have

Energy

Absorption

(a)

E2

hf

E1
Stimulated
emission

(c)

E2

hfin

E1

2 hfout

Spontaneous
emission

(b)

E2

hf

E1

E2 – E1 = hf

Figure 12.41 The processes of (a) absorption and (b) spontaneous emission. The
lifetime of the upper state is t s, and the photon is emitted in a random direction.
(c) Stimulated emission. In this process, the emitted photons are in phase with the
stimulating photon, and all have the same direction of travel.
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Relation of Einstein

coefficients of stimulated

emission, absorption, and

spontaneous emission

Population inversion

Equation 12.39 is an expression for the radiation density per unit frequency of
a system of atoms and radiation in equilibrium at temperature T expressed in
terms of Einstein coefficients A21, B12, and B21. But Planck’s blackbody radia-
tion law (Chapter 3) provides us with an expression for a system of radiation
and oscillators in thermal equilibrium:

(3.9)

Comparing Equations 12.39 and 3.9, we find the interesting results

(12.40)

and

(12.41)

Equation 12.40 states that any atom that has a finite probability per unit time
of absorption has an equal probability of stimulated emission. Equation 12.41
shows that the process of spontaneous emission dominates the process of stim-
ulated emission at higher frequency.

Population Inversion and Laser Action

Since B12 � B 21, there is an equal probability that a photon will cause an
upward (absorption) or downward (stimulated emission) atomic transition.
When light is incident on a system of atoms in thermal equilibrium, there
is usually a net absorption of energy since, according to the Boltzmann
distribution, there are more atoms in the ground state than in excited
states. However, if one can invert the situation so that there are more atoms
in an excited state than in a lower state — a condition called population
inversion— amplification of photons can result. Under the proper condi-
tions, a single input photon can result in a cascade of stimulated photons,
all of which are in-phase, traveling in the same direction and of the same
frequency as the input photon. Since the device that does this is a light
amplifier, it is called a laser, an acronym for light amplification by stimu-
lated emission of radiation.

Although there are many different types of lasers, most lasers have certain
essential features:

• An energy source capable of producing either pulsed or continuous popu-
lation inversions. In the case of the helium–neon gas laser, the energy
source is an electrical discharge that imparts energy by electron–atom col-
lisions. In the case of the ruby crystal laser, the population inversion is pro-
duced by intense flashes of broadband illumination from flash lamps. The
process of excitation with intense illumination is called optical pumping.

• A lasing medium with at least three energy levels: a ground state; an inter-
mediate (metastable) state with a relatively long lifetime, t s; and a high-
energy pump state (Fig. 12.42). To obtain population inversion, t s must
be greater than t 2, the lifetime of the pump state E2. Note, too, that
amplification cannot be obtained with only two levels, because such a

A21

B
�

8�hf 3

c3

B21 � B12 � B

u( f, T ) �
8�hf 3

c3

1

(ehf/kBT � 1)
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system cannot support a population inversion. At most, with extremely
intense optical pumping we can increase the population of the upper
state in a two-level system until it equals the population of the lower state.
Further pumping serves only to excite as many downward transitions as
upward transitions, since the probability of absorption is equal to the
probability of stimulated emission for a given transition. For a population
inversion to be produced, energy absorption must occur for a transition
different from the transition undergoing stimulated emission—thus the
need for at least a three-level system.

• A method of containing the initially emitted photons within the laser so
that they can stimulate further emission from other excited atoms. In
practice this is usually achieved by placing mirrors at the ends of the las-
ing medium so that photons make multiple passes through the laser.
Thus the laser may be thought of as an optical resonator or oscillator with
two opposing reflectors at right angles to the laser beam. The oscillation
consists of a plane wave bouncing back and forth between the reflectors.
The oppositely traveling plane waves, in turn, generate a highly mono-
chromatic standing wave, which is strongest at resonance when an inte-
gral number of half-wavelengths just fits between the reflectors (Fig.
12.43). To extract a highly collimated beam from the laser, one of the
parallel mirrors is made slightly transmitting so that a small amount of
energy leaks out of the cavity.

These three features of lasers lead to several unique characteristics of laser
light that make it a much more powerful technological tool than light from
ordinary sources. These unique characteristics are high monochromaticity,
strong intensity, spatial coherence, and low beam divergence. Table 12.10
shows typical values of these quantities for a low-power gas laser. In com-
parison with a single emission line in a strong conventional light source,
the He–Ne laser is about 100 times more monochromatic, generates about
100 times more beam power, and has about 1000 times more exit irradiance
(power per unit area). The beam divergence, or spread, is measured in
milliradians (mrad). A 1.0-mrad laser would have a beam diameter of 1 cm
at a distance of 10 m.
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Pump
input

Laser output

E0 (ground state)

hfhf0

E2 (pump state), t2

E1 (metastable state), t s > t2

Fast decay

Figure 12.42 A three-level laser system. t2 is the lifetime of the state E2, and ts is the
lifetime of the state E1.
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Mirror 1

0

Direction of propagation

(a)

m = 1

m = 2

Mirror 2

(b)

w

L

Figure 12.43 Cavity modes in a laser. (a) Longitudinal modes have L � m�/2, where m
is an integer, � is the laser wavelength in the laser material, and L is the distance between
the two mirrors. (b) Modes with transverse components can exist if both ends and sides of
the laser are made reflective. Arrows show the direction of propagation of light rays.

Table 12.10 Typical He-Ne Gas Laser Characteristics

Beam Diameter Beam 
Monochromaticity Beam Power at Laser Exit Divergence

632.81 � 0.002 nm 10 mW 0.50 mm 1.0 mrad

Irradiance for a Beam Focused 
Irradiance at Laser Exit to a 10-�m Diameter

5100 mW/cm2 1.27  107 mW/cm2

Semiconductor Lasers

One of the most important light sources for fiber-optic communication is the
semiconductor laser. This laser is eminently suited to fiber-optic communica-
tion because of its small size (maximum dimension several tenths of a millime-
ter), high efficiency (25 to 30%), simplicity, long lifetime (p -n junctions have
estimated working lifetimes of about 100 years), ease of modulation (through
control of the junction current), and fast response (extending well into the
GHz range). Figure 12.44 shows a typical gallium arsenide (GaAs) p -n junction
laser along with nominal operating values. The first semiconductor laser was
made of GaAs and operated at 0.842 �m in the IR.11,12 Shortly thereafter,

11R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent Light Emission
from GaAs Junctions,” Phys. Rev. Lett., 9:336, 1962.

12M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, and G. Lasher, “Stimulated Emission of Radia-
tion from GaAs p -n Junctions,” Appl. Phys. Lett., 1:62, 1962.
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Holonyak and Bevacqua reported the operation of a visible GaAs p -n junction
laser,13 and the laser was on its way to becoming an important part of semicon-
ductor device technology.

Semiconductor lasers are similar to other lasers in that they require a popu-
lation inversion between quantum levels in order to produce laser action.
They are notably different from gas lasers in that (a) discrete energy levels in
gas lasers become energy bands in semiconductors, and (b) optical pumping
and electrical discharge in conventional lasers are replaced by injection
pumping in semiconductors. In injection pumping, large forward currents
are passed through the laser diode, and electrons and holes are injected into p
and n regions, respectively, where they recombine and emit radiation. Let us
briefly sketch the main points needed to understand semiconductor lasers.

In semiconductors, the discrete energy levels found in isolated atoms widen
into bands because of the perturbations caused by neighboring atoms. We are
basically interested in the two outermost energy bands, known as the valence
(v) and conduction (c) bands. In a semiconductor such as silicon in thermal
equilibrium at room temperature, the valence band is filled with electrons
and the conduction band, where electrons can move freely, contains no elec-
trons. Since the two levels are separated by a forbidden energy region or gap,
Eg � 1.1 eV, very few electrons possess enough thermal energy at room tem-
perature to cross the gap and carry a current in the material. Hence silicon,
like other semiconductors, is normally a poor conductor of electricity. How-
ever, light, heat, or electrical energy added to a semiconductor can promote
electrons into the conduction band (c band) and increase the conductivity of
a semiconductor. The hole (vacancy) left by the electron in the valence band
(v band) plays an equally important role in conduction in a semiconductor,
since it behaves as a positive charge moving opposite in direction to the con-
duction electron. In fact, the hole actually completes the current path
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13N. Holonyak, Jr., and S. F. Bevacqua, Appl. Phys. Lett., 1:82, 1962.
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L = 0.3 mm
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 = 840 nm
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Figure 12.44 A gallium arsenide p -n junction laser.
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Filled
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Figure 12.45 (a) Energy bands in pure silicon at 0 K. (b) Generation and recombina-
tion of electron–hole pairs in silicon.

through the semiconductor. This process of the creation of an electron–hole
pair is called pair generation. An electron in the c band can also “fall into” a
hole and recombine with it, emitting light of band-gap energy in the process.
Both of these important processes are indicated schematically in Figure 12.45.
If the thermal equilibrium situation of empty c band and full v band is dis-
turbed by intense optical or electrical excitation, a semiconductor population
inversion can be set up, with the v band empty of electrons (full of holes) to a
depth X and the c band full of electrons to a height Y. As can be seen in Figure
12.46, once a few spontaneously emitted photons with energy Eg induce stimu-
lated emission at Eg , stimulated emission eventually far exceeds absorption
since photons with energy Eg lack sufficient energy to be absorbed. Ultimately,
the dominance of the rate of stimulated emission over the rate of absorption
leads to line narrowing and laser action.

Other Types of Semiconductor Lasers. For simplicity, we have described
only the basic GaAs injection laser. To leave the reader with the impression
that this is the most important laser would be a serious distortion of the truth,

+ + + + + + +

(b) After intense optical 
or electrical pumping

Y

X

Ee Ea

Electrons

(a) Thermal equilibrium

v -band

c  band

Eg

Figure 12.46 A population inversion in a semiconductor. Note that Ee , the emission
energy, is equal to Eg and that Ea, the absorption energy, is equal to Eg � X � Y. The
absorption energy is Eg � X � Y, and not just Eg � X , because electrons obey the Pauli
exclusion principle. Thus electrons must absorb enough energy to occupy states above Y.
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for the present field of semiconductor lasers is enormously rich and varied.
The GaAs laser is a single-homojunction laser (one junction fabricated from a
single compound), but many current lasers are double-heterojunction (DH)
lasers, such as the PbTe–PbSnTe and the GaAs–AlGaAs lasers.14 When two
junctions are formed in the laser, the injected carriers are confined to a nar-
rower region so that a lower threshold current is required for laser action, per-
mitting continuous laser operation at room temperature. In addition, by vary-
ing the amount of Sn or Al in the ternary alloy, one can vary the band-gap
energy and, consequently, the laser wavelength. Also, GaAs–AlGaAs multilayer
junctions are relatively easy to fabricate since AlGaAs layers may be grown epi-
taxially on GaAs layers. DH lasers can be formed with many other compounds,
including quaternary alloys, and tunable semiconductor lasers can be made
whose emission wavelengths can be varied by changes in the applied pressure
or magnetic field. These techniques have resulted in semiconductor lasers that
span the broad range from 0.3 to 40 �m. These and other developments in
the field of semiconductor lasers, which is a truly fascinating combination of
optics, material science, and device physics, are treated more extensively in
some of the Suggestions for Further Reading cited at the end of this chapter.

SUMMARY

Bonding mechanisms in solids can be classified in a manner similar to that
used to describe bonding of atoms to form molecules. Ionic solids, such as
NaCl, are formed by the net attractive coulomb force between positive and
negative ion neighbors. Ionic crystals are fairly hard, have high melting points,
and have strong cohesive energies of several electron volts. Covalent solids,
such as diamond, form when valence electrons are shared by adjacent atoms,
producing bonds of great stability. Covalent solids are generally very hard,
have high melting points, and possess the highest cohesive energies, ranging
up to 8 eV per atom. Metallic solids are held together by the metallic bond,
which arises from the attractive force between the positive ion cores and the
electron “gas.” This electron gas acts as a kind of “cement” to hold the ion
cores together. Generally, metallic solids are softer and have lower cohesive en-
ergies than covalent solids. The most weakly bound solids are molecular crys-
tals, which are held together by van der Waals or dipole–dipole forces. Molec-
ular crystals, such as solid argon, have low melting points and low cohesive
energies on the order of 0.1 eV per molecule.

The classical free electron model of metals is generally successful in
explaining the electrical and thermal properties of metals. According to this
theory, a metal is modeled by a gas of conduction electrons moving through a
fixed lattice of ion cores. Taking into account the collisions of electrons with
the lattice, the classical free electron model predicts that metals will obey
Ohm’s law, J � �E, with the electrical conductivity � given by

(12.15)� �
ne2L

(3kBTme)1/2
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14PbSnTe and AlGaAs are called ternary (three-component) alloys. They are crystalline solid solu-
tions with Sn and Al randomly replacing some Pb and Ga atoms, respectively.
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SUMMARY 455

where n is the concentration of conduction electrons, L is the electronic
mean free path, T is the absolute temperature, and me is the mass of the elec-
tron. The classical model may also be applied to heat conduction by electrons
in metals to show that K/�, where K is the thermal conductivity, is a universal
constant for all metals and depends only on the absolute temperature
(Wiedemann–Franz law.) The classical model yields for this ratio

(12.21)

Although the classical electron gas model broadly describes the electrical
and thermal properties of metals, there are notable deficiencies in its predic-
tions—namely, in the numerical values of � and K and in the temperature
dependence of �. These deficiencies may be rectified by taking into account
the wave nature and indistinguishability of electrons, by replacing the
Maxwell–Boltzmann distribution with the Fermi–Dirac distribution. When
this is done, Equation 12.21 for K/� takes the new form

(12.26)

and shows excellent agreement with experimental values. The correct quan-
tum expression for the conductivity of a metal is

where v F is the Fermi speed and L is the quantum mean free path, which is
usually several hundred times the metal’s interatomic distance. This unusually long
mean free path occurs because electron waves can pass through a lattice of
ions without appreciable scattering, since they scatter only from widely
spaced crystal imperfections, such as thermal displacements of ions and
impurity atoms. The observed temperature dependence of � can also be
explained as the result of electron scattering from thermal lattice vibra-
tions, or phonons.

When many atoms are brought together, the individual atomic levels
form a set of allowed bands separated by forbidden energy regions, or gaps.
One can understand the properties of metals, insulators, and semiconduc-
tors in terms of the band theory of solids. The highest occupied band of a
metal is partially filled with electrons. Therefore, many electrons are free to
move throughout the metal and contribute to the conduction current when
raised in energy a small amount by a small applied electric field. In an insu-
lator at T � 0 K, the valence band is completely filled with electrons and the
conduction band is empty. The region between the valence band and the
conduction band is called the energy gap of the material. The energy gap
of an insulator is of the order of 10 eV. Because this gap is large compared
to kBT at ordinary temperatures, very few electrons are thermally excited
into the conduction band, which explains the small electrical conductivity
of an insulator.

A semiconductor is a material with a small energy gap, of the order of
1 eV, and a valence band that is filled at 0 K. Because of this small energy
gap, a significant number of electrons can be thermally excited from the
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valence band into the conduction band as temperature increases, thereby
producing a semiconductor conductivity that increases with temperature.
The electrical properties of a semiconductor can be modified by adding
donor atoms with five valence electrons (such as arsenic) or by adding
acceptor atoms with three valence electrons (such as boron). A semicon-
ductor doped with donor atoms is called an n-type semiconductor, and
one doped with acceptor atoms is called p-type. The energy levels of these
donor and acceptor atoms fall within the energy gap of the material, the
donor levels falling just below the conduction band and the acceptor levels
just above the valence band.

When a p-type material is joined to an n-type material, a p-n junction is
formed with the current–voltage characteristics of a diode. If a p-n junction
is operated under strong forward bias, electrons can be injected into the 
p -type material and holes into the n -type material, where they recombine
with holes and electrons, respectively, emitting photons with band-gap en-
ergy. This is the principle of operation of the light-emitting diode (LED)
and the injection laser. If a p -n junction absorbs a photon with energy
greater than or equal to the band gap, an electron may be promoted to the
conduction band (leaving a hole in the valence band), thereby producing a
current. Devices in which light-generated electrons and holes are separated
by a built-in junction field and collected as current are called solar cells.
Other semiconductor devices that have revolutionized life in the latter half
of the 20th century are the transistor and the integrated circuit (IC).
The transistor is a small, low-power, highly reliable amplifying device that
basically consists of two p -n junctions placed back to back. The integrated
circuit, which is the heart of the small computer, consists of millions of
interconnected transistors, diodes, resistors, and capacitors fabricated on a
single chip of silicon. Interestingly, integrated circuits were invented partly
in an effort to achieve greater miniaturization and partly to solve the inter-
connection problem spawned by the transistor.

Superconductivity occurs when the resistance of a sample falls suddenly to
zero at some critical temperature Tc . At Tc magnetic field lines are also com-
pletely expelled from the interior to give B � 0 inside the superconductor,
a phenomenon known as the Meissner effect. BCS theory explains
superconductivity in terms of the formation of pairs of free electrons, called
Cooper pairs. Cooper pairs can move unhindered through the lattice without
scattering from lattice ions.

The processes of atomic absorption, spontaneous emission, and stimulated
emission are crucial to an understanding of laser action. By considering a
group of atoms and radiation in thermal equilibrium and balancing the rate of
upward transitions against the rate of downward transitions, one can show that

B21 � B12 � B (12.40)

and

(12.41)

where B12 is Einstein’s coefficient of absorption, B21 is Einstein’s coefficient of
stimulated emission, and A21 is the probability of spontaneous emission per
second per atom.

A21

B
�

8�hf 3

c3
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about halfway through reaches advanced undergraduate
and graduate levels.

5. C. Kittel, Introduction to Solid State Physics, 7th ed., New
York, John Wiley and Sons, 1996. A detailed, compre-
hensive, up-to-date treatment of solid-state physics at the
senior or graduate level. It contains many useful tables
of the properties of solids.

Readings on Lasers
6. C. K. N. Patel, “High-Power Carbon Dioxide Lasers,” Sci.

Amer., August 1968, pp. 22–23.
7. A. L. Schawlow, “Laser Light,” Sci. Amer., September

1968, pp. 120–126.

More advanced treatments of lasers may be found in

8. J. I. Pankove, Optical Processes in Semiconductors, New York,
Dover Publications, 1971.

9. S. M. Sze, Physics of Semiconductor Devices, 2nd ed., New
York, John Wiley and Sons, 1981.

1. R. Zallen, The Physics of Amorphous Solids, New York,
John Wiley and Sons, 1983. A comprehensive treat-
ment of amorphous solids at a senior undergraduate
level. Great care is exercised in introducing new con-
cepts verbally before launching into mathematical
arguments.

2. T. R. Reid, The Chip: How Two Americans Invented the Mi-

crochip and Launched a Revolution, New York, Simon and
Schuster, 1984. An informal, nonmathematical, ex-
tremely interesting chip history.

3. B. G. Streetman, Solid State Electronic Devices, 2nd ed.,
Englewood Cliffs, NJ, Prentice-Hall, 1980. A comprehen-
sive treatment of devices at the junior-senior undergrad-
uate level.

4. W. Shockley, Electrons and Holes in Semiconductors,
Melbourne, FL, Krieger Publishing Co., 1950. The clas-
sic “granddaddy” text on semiconductors. Although
somewhat dated, the book is a marvelous compendium
of Shockley’s insights in the field of semiconductor
physics. It starts out at a very clear introductory level and

SUGGESTIONS FOR FURTHER READING

QUESTIONS

1. Explain how the energy bands of metals, semiconduc-
tors, and insulators account for the following general
optical properties: (a) Metals are opaque to visible
light. (b) Semiconductors are opaque to visible light
but transparent to infrared (many IR lenses are made
of germanium). (c) Many insulators, such as diamond,
are transparent to visible light.

2. Table 12.8 shows that the energy gaps for semiconduc-
tors decrease with increasing temperature. What ac-
counts for this behavior?

3. The resistivity of most metals increases with increasing
temperature, whereas the resistivity of a semiconductor
decreases with increasing temperature. What explains
this difference in behavior?

4. Discuss the differences among the band structures of
metals, insulators, and semiconductors. How does the
band structure model enable you to better understand
the electrical properties of these materials?

5. Discuss the electrical, physical, and optical properties
of ionically bonded solids.

Amplification of the light from a particular atomic transition and genera-
tion of an intense, monochromatic, coherent, and highly collimated beam
(laser action) may be achieved if certain conditions are met:

• The lasing medium must contain at least three energy levels: a ground state,
an intermediate state with a long lifetime, and a high-energy pump state.

• There must be an electrical or optical energy source capable of “pump-
ing” atoms into excited states faster than they leave, so that a population
inversion is produced.

• There must be a method of confining the first wave of emitted photons
within the laser so that they can stimulate further emission.

Actual lasers include solid-state crystalline lasers such as the ruby laser, gas
lasers such as the He–Ne laser, and semiconductor lasers such as the GaAs
laser. The most important light source for optical signal processing is the semi-
conductor laser. This laser is essentially a p -n junction operated under strong
forward bias. Typical advantages of these lasers are small size, high efficiency,
simplicity, ease of modulation, and fast response.
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458 CHAPTER 12 THE SOLID STATE

PROBLEMS

12.1 Bonding in Solids

1. Show that the minimum potential energy of an ion pair
in an ionic solid is

where r0 is the equilibrium separation between ions, �
is the Madelung constant, and the repulsive potential
energy between ions is B/r m. �U0 � is called the ionic

cohesive energy and is the energy required to separate to
infinity an ion pair originally at a separation of r0 in the
crystal. Hint:

2. Show that the angle between carbon bonds shown in
Figure 12.3a is 109.5�.

3. Calculate the ionic cohesive energy for NaCl, using Equa-
tion 12.3. Take � � 1.7476, r0 � 0.281 nm, and m � 8.

4. LiCl, which has the same crystal structure as NaCl, has
r0 � 0.257 nm and has a measured ionic cohesive en-
ergy of 199 kcal/mol. (a) Find the integral value of m

dU

dr �
r�r0

� 0

U0 � ��k
e2

r0
�1 �

1

m �

that best agrees with the measured value 199 kcal/mol.
(b) Is the value of U0 very sensitive to a change in m?
Compute the percent change in U0 when m increases
by 1.

5. Consider a one-dimensional chain of alternating posi-
tive and negative ions. Show that the potential energy
of an ion in this hypothetical crystal is

where � � 2 ln 2 (the Madelung constant), and r is the
interionic spacing. [Hint: Make use of the series expan-
sion for ln(1 � x).]

6. (a) Show that the force on an ion in an ionic solid can
be written

where r0 is the equilibrium separation and � is the
Madelung constant. (Hint: Make use of the value of B
found in Problem 1.) (b) Imagine that an ion in the
solid is displaced a small distance x from r0, and show

F � �k� 
e2

r 2 �1 � � r0

r �
m�1

�

U(r) � �k�
e2

r

6. Discuss the electrical and physical properties of cova-
lently bonded solids.

7. When a photon is absorbed by a semiconductor, an
electron–hole pair is said to be created. Give a physical
explanation of this concept, using the energy band
model as the basis for your description.

8. In a semiconductor such as silicon, pentavalent atoms
such as arsenic are donor atoms, and trivalent atoms
such as indium are acceptors. Inspect the periodic table
shown on the endpapers, and determine which other ele-
ments would be considered either donors or acceptors.

9. Explain how a p -n junction diode operates as a recti-
fier, as a solar cell, and as a LED.

10. What are the basic assumptions made in the classical
free electron theory of metals? How does the energy
band model differ from the classical free electron the-
ory in describing the properties of metals?

11. Explain the similarities of electrical conduction and
heat conduction in metals.

12. Discuss the differences between crystalline solids,
amorphous solids, and gases.

13. Discuss the physical sources of electrical resistance in a
metal. Does the resistance depend upon the strong re-
flections set up when the lattice spacing is equal to an
integral number of electronic wavelengths?

14. Does it seem reasonable that the average of the square
of a quantity is greater than the square of the average?
(Recall from Section 12.2 that and .)t2 � 2� 2t � �

15. How are the equations governing heat flow and charge
flow similar for metals?

16. Radiative emission by an atom can be spontaneous or
stimulated. Distinguish between these two processes,
identifying the characteristic features of each. De-
scribe the role(s) each one plays in the operation of a
laser.

17. Why must a lasing medium possess at least three energy
levels?

18. Since the light from semiconductor lasers can be mod-
ulated easily, these lasers are of great use in light-wave
communication systems. Show that laser communica-
tion systems possess a great advantage over microwave
communication systems in terms of the amount of in-
formation that can be carried. (Hint: If each speech
channel requires a bandwidth of 5 kHz, calculate the
number of channels carried by a laser beam of 1016 Hz
and by a microwave beam of 1010 Hz.)

19. Discuss the main criteria that must be met to achieve
laser action in a three-level system.

20. What are the three fundamental ways in which light
(photons) interacts with matter (atoms)? Briefly ex-
plain each.

21. Assuming that K is a positive constant in Equation
12.18, explain why there is a negative sign in this equa-
tion.

22. Explain why Cooper pairs do not scatter from positive
lattice ions in a metal.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



PROBLEMS 459

that the ion experiences a restoring force F � �Kx ,
where

(c) Use the result of (b) to estimate the frequency of
vibration of an Na� ion in NaCl. Take m � 8 and use
the value � � 1.7476. (d) At what wavelength would
the Na� ion absorb incident radiation? Is this wave-
length in the UV, visible, or IR part of the spectrum?

7. (a) Calculate the ionic cohesive energy for KCl,
which has the same crystal structure as NaCl. Take r0 �

0.314 nm and m � 9. (b) Calculate the atomic cohesive
energy of KCl by using the facts that the ionization
energy of potassium is 4.34 eV (that is, K � 4.34 eV :

K� � e) and that the electron affinity of chlorine is
3.61 eV (Cl� � 3.61 eV : Cl � e).

8. The Madelung constant for the NaCl structure may be
found by summing an infinite alternating series of
terms giving the electrostatic potential energy between
an Na� ion and its 6 nearest Cl� neighbors, its 12 next-
nearest Na� neighbors, and so on (see Fig. 12.1a).
(a) From this expression, show that the first three terms
of the infinite series for the Madelung constant for the
NaCl structure yield � � 2.13. (b) Does this infinite
series converge rapidly? Calculate the fourth term as a
check.

12.2 Classical Free Electron Model of Metals

9. Consider a group of N electrons, all of which experi-
ence a collision with lattice ions at t � 0. One can show
that the number of electrons that suffer their next col-
lision between t and t � dt follows the exponentially
decreasing distribution

where � is the mean free time. (a) Show that

, as expected. (b) Show that this distribu-

tion leads to . Hint:

(c) Show, similarly, that , as stated in the de-
rivation of Equation 12.9.

10. Silver has a density of 10.5  103 kg/m3 and a resistivity
of 1.60  10�8 ��m at room temperature. (a) On the
basis of the classical free electron gas model, and assum-
ing that each silver atom contributes one electron to the
electron gas, calculate the average time between colli-
sions of the electrons. (b) Calculate the mean free path
from � and the electron’s thermal velocity. (c) How does
the mean free path compare to the lattice spacing?

t2 � 2� 2

t �
n1t1 � n2t2 � � � � � n f tf

N
�

1

N
�

0
t �n(t) dt

t � �

�

0
n(t)dt � N

n(t)dt �
Ne�t/�

�
dt

K �
k�e2

r0
3  (m � 1)

11. The contribution of a single electron or hole to the
electric conductivity of a semiconductor can be ex-
pressed by an important property called the mobility.
The mobility, �, is defined as the particle drift speed
per unit electric field or, in terms of a formula, 
� � vd/E. Note that mobility describes the ease with
which charge carriers drift in an electric field and that
the mobility of an electron, �n, may be different from
the mobility of a hole, �p, in the same material. (a)
Show that the current density may be written in terms
of mobility as J � ne�nE, where �n � e�/me. (b) Show
that when both electrons and holes are present, the
conductivity may be expressed in terms of �p and �n as
� � ne�n � pe�p, where n is the electron concentration
and p is the hole concentration. (c) If a germanium
sample has �n � 3900 cm2/V � s, calculate the drift
speed of an electron when a field of 100 V/cm is ap-
plied. (d) A pure (intrinsic) sample of germanium has
�n � 3900 cm2/V � s and �p � 1900 cm2/V � s. If the
hole concentration is equal to 3.0  1013 cm�3, calcu-
late the resistivity of the sample.

12. Gallium arsenide (GaAs) is a semiconductor material
of great interest for its high power-handling capabili-
ties and fast response time. (a) Calculate the drift
speed of electrons in GaAs for a field of 10 V/cm if the
electron mobility is �n � 8500 cm2/V � s. (See Problem
11 for the definition of �.) (b) What percent of the
electron’s thermal speed at 300 K is this drift speed?
(c) Assuming an effective electron mass equal to the
free electron mass, calculate the average time between
electron collisions. (d) Calculate the electronic mean
free path.

12.3 Quantum Theory of Metals

13. Assuming that conduction electrons in silver are de-
scribed by the Fermi free electron gas model with 
EF � 5.48 eV, repeat the calculations of Problem 10.

14. Sodium is a monovalent metal having a density of
0.971 g/cm3, an atomic weight of 23.0 g/mol, and a re-
sistivity of 4.20 �� � cm at 300 K. Use this information
to calculate (a) the free electron density; (b) the Fermi
energy, EF, at 0 K; (c) the Fermi velocity, vF; (d) the av-
erage time between electronic collisions; (e) the mean
free path of the electrons, assuming that EF at 0 K is
the same as EF at 300 K; and (f) the thermal conductiv-
ity. For comparison to (e), the nearest-neighbor dis-
tance in sodium is 0.372 nm.

12.4 Band Theory of Solids

15. The energy gap for Si at 300 K is 1.14 eV. (a) Find the
lowest-frequency photon that will promote an electron
from the valence band to the conduction band of sili-
con. (b) What is the wavelength of this photon?

16. From the optical absorption spectrum of a certain
semiconductor, one finds that the longest wavelength
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460 CHAPTER 12 THE SOLID STATE

of radiation absorbed is 1.85 �m. Calculate the energy
gap for this semiconductor.

17. The simplest way to model the energy-level splitting
that is produced when two originally isolated atoms
are brought close together is with two finite wells. In
this model, the Coulomb potential experienced by
the outermost electron in each atom is approximated
by a one-dimensional finite square well of depth U

and width a. The energy levels for two atoms close to-
gether may be found by solving the time-independent
Schrödinger equation for a potential consisting of
two finite wells separated by a distance b. (a) Start
this problem by “warming up” with a solution to the
single finite well shown in Figure P12.17a. Justify the

solutions listed for regions I, II, and III, and apply
the standard boundary conditions (� and d�/dx con-
tinuous at x � 0 and x � a) to obtain a transcenden-
tal equation for the bound-state energies. (b) Solve
numerically for the bound-state energies when an
electron is confined to a well with U � 100 eV and 
a � 1 Å. You should find two bound states at approxi-
mately 19 and 70 eV. (c) Now consider the finite wells
separated by a distance b, as shown in Figure P12.17b.
Impose the conditions of continuity in � and d�/dx

at x � 0 and x � a to obtain

Show that the boundary conditions at x � a � b yield

where � � k(a � b) and � � K(a � b). The boundary
conditions at x � 2a � b yield

Thus, the two expressions for F/G may be set equal and
the expression for D/E! used to obtain a transcenden-
tal equation for the energy E. (d) Solve for the bound-
state energies when U � 100 eV and a � b � 1 Å. You
should observe twofold splitting of the bound-state en-
ergies found at 19 and 70 eV for the single well.

12.5 Semiconductor Devices

18. One can roughly calculate the weak binding energy of
a donor electron as well as its orbital radius in a semi-
conductor on the basis of the Bohr theory of the atom.
Recall that for a single electron bound to a nucleus of
charge Z, the binding energy of the ground state is
given by

(4.36)

and the ground-state radius by

r1 = a0/Z (4.35)

For the case of a phosphorus donor atom in silicon,
the outermost donor electron is attracted by a nuclear
charge of Z � 1. However, because the phosphorus nu-
cleus is embedded in the polarizable silicon, the effec-
tive nuclear charge seen by the electron is reduced to
Z/", where " is the dielectric constant. (a) Calculate
the binding energy of a donor electron in Si(" � 12)
and Ge(" � 16), and compare to the thermal energy
available at room temperature. (b) Calculate the ra-
dius of the first Bohr orbit of a donor electron in Si

ke2Z2

2a0
� 13.6Z2 eV

F

G
�

cos k(2a � b) � (K/k)sin k(2a � b)

sin k(2a � b) � (K/k)cos k(2a � b)

F

G
�

(D/E!)e�[cos � � (K/k)sin �] � e��[cos � � (K/k)sin �]

(D/E!)e�[sin � � (K/k)cos �] � e��[sin � � (K/k)cos �]

D

E !
�

2e�2Ka[cos ka � 1
2(K/k � k/K )sin ka]

(k/K � K/k)sin ka

I II III
U

Potential(a)

x = 0 x = a

E < U

x

ΨI = AeKx

ΨII = B cos kx + C sin kx

ΨIII = De–Kx

Kh = [2m(U – E)]1/2

kh = (2mE)1/2

Potential

x = 0 a

(b)

x

E < U

I II III IV V
U

a + b 2a + b

ΨI = AeKx

ΨII = B cos kx + C sin kx

ΨIII = DeKx + E ′e–Kx

Kh = [2m(U – E)]1/2

kh = (2mE)1/2

ΨIV = F cos kx + G sin kx

ΨV = He–Kx

Figure P12.17 (a) Potential and eigenfunctions for a sin-
gle finite well of depth U, where E � U. (b) Potential and
eigenfunctions for two finite wells. The width of each well is
a, and the wells are separated by a distance b.
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Figure P12.19 A high-resolution emission spectrum of
the GaAs laser, operated just below the laser threshold.

and Ge. How does the Bohr orbit radius compare to
the nearest-neighbor distance in Si(2.34 Å) and in
Ge(2.43 Å)?

12.7 Lasers

19. Cavity modes in lasers. Under high resolution and at
threshold current, the emission spectrum from a GaAs
laser is seen to consist of many sharp lines, as shown in
Figure P12.19. Although one line generally dominates
at higher currents, let us consider the origin and spac-
ing of the multiple lines, or modes, shown in this figure.
Recall that standing waves or resonant modes corre-
sponding to the sharp emission lines are formed when
an integral number m of half-wavelengths fits between
the cleaved GaAs surfaces. If L is the distance between
cleaved faces, n is the index of refraction of the semi-
conductor, and � is the wavelength in air, we have

(a) Show that the wavelength separation between
adjacent modes (the change in wavelength for the case
�m � �1) is

(Hint: Since m is large and we want the small change in
wavelength that corresponds to �m � 1, we can con-
sider m to be a continuous function of � and differenti-
ate m � 2Ln/�). (b) Using the following typical values
for GaAs, calculate the wavelength separation between
adjacent modes. Compare your results to Figure
P12.19.

� � 837 nm

2L � 0.60 nm

n � 3.58

(c) Estimate the mode separation for the He–Ne gas
laser using � � 632.8 nm, 2L � 0.6 m, n � 1, and
dn/d� � 0. On the basis of this calculation and the re-
sult of part (b), what is the controlling factor in mode
separation in both solids and gases?

20. How monochromatic is a laser? The natural line width
emitted by a collection of Cr3� ions in ruby in thermal
equilibrium at 290 K is about 0.4 nm for the 694.4-nm
line. This is the thermal line width. Show that the emis-
sion from a ruby laser is much more monochromatic
than 694.4 � 0.2 nm if laser emission is confined to 
a single-cavity mode. Take the length of the ruby 
between polished faces to be 10 cm, n � 1.8, and
dn/d� � 0. (See Problem 19.)

dn/d� � 3.8  10�4 (nm)�1� at � � 837 nm

� �� � �
�2

2L �n � � 
dn

d� �

m �
L

�/2n

ADDITIONAL PROBLEMS

21. A thin rod of superconducting material 2.50 cm long is
placed into a 0.540-T magnetic field with its cylindrical
axis along the magnetic field lines. (a) Sketch the di-
rections of the applied field and the induced surface
current. (b) Find the magnitude of the surface current
on the curved surface of the rod.

22. Determine the current generated in a superconducting
ring of niobium metal 2.00 cm in diameter when a
0.020 0-T magnetic field directed perpendicular to the
ring is suddenly decreased to zero. The inductance of
the ring is 3.10  10�8 H.

23. A convincing demonstration of zero resistance. A direct and
relatively simple demonstration of zero dc resistance
can be carried out using the four-point probe method.
The probe shown in Figure P12.23 consists of a disk of
YBa2Cu3O7 (a high-Tc superconductor) to which four
wires are attached by indium solder. Current is main-
tained through the sample by applying a dc voltage be-
tween points a and b, and it is measured with a dc am-
meter. The current can be varied with the variable
resistance R. The potential difference �Vcd between c

and d is measured with a digital voltmeter. When the
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462 CHAPTER 12 THE SOLID STATE

probe is immersed in liquid nitrogen, the sample
quickly cools to 77 K, below the critical temperature of
the material, 92 K. The current remains approximately
constant, but �Vcd drops abruptly to zero. (a) Explain this
observation on the basis of what you know about super-
conductors. (b) The data in Table P12.23 represent ac-
tual values of �Vcd for different values of I taken on the
sample at room temperature. A 6-V battery in series
with a variable resistor R supplied the current. The val-
ues of R ranged from 10 � to 100 �. The data are from
the author’s [RAS] laboratory. Make an I–�V plot of the
data, and determine whether the sample behaves in a
linear manner. From the data obtain a value for the dc
resistance of the sample at room temperature. (c) At
room temperature it is found that �Vcd � 2.234 mV for
I � 100.3 mA, but after the sample is cooled to 77 K,
�Vcd � 0 and I � 98.1 mA. What do you think might
cause the slight decrease in current?

24. Under pressure, liquid helium can solidify as each
atom bonds with four others, and each bond has an av-
erage energy of 1.74  10�23 J. Find the latent heat of
fusion for helium in joules per gram. (The molar mass
of He is 4.00 g/mol.)

25. A diode, a resistor, and a battery are connected in a se-
ries circuit. The diode is at a temperature for which
kBT � 25.0 meV and has a saturation current of 
1.00 �A. The resistance of the resistor is 745 �, and the
battery maintains a constant potential difference of
2.42 V. (a) Find graphically the current in the loop.
Proceed as follows: On the same axes, draw graphs of
the current in the diode ID and the current in the wire
IW versus the voltage across the diode �V . Choose val-
ues of �V ranging from 0 to 0.250 V in steps of 0.025 V.
Determine the value of �V at the intersection of the
two graph lines, and calculate the corresponding cur-
rents ID and IW. Do they agree? (b) Find the ohmic re-
sistance of the diode, which is defined as the ratio
�V/ID. (c) Find the dynamic resistance of the diode,
which is defined as the derivative d(�V )/dID.

Table P12.23 Current Versus Potential 

Difference �Vcd Measured in a Bulk 

Ceramic Sample of YBa2Cu3O7��

at Room Temperature

I (mA) �Vcd (mV)

57.8 1.356
61.5 1.441
68.3 1.602
76.8 1.802
87.5 2.053

102.2 2.398
123.7 2.904
155 3.61

Superconductora

b

c

d

R

A V

Figure P12.23 Circuit diagram used in the four-point
probe measurement of the dc resistance of a sample. A dc
digital ammeter is used to measure the current, and the po-
tential difference between c and d is measured with a dc
digital voltmeter. Note that there is no voltage source in the
inner loop circuit where �Vcd is measured.
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Summary

Chapter Outline

In 1896, the year that marks the birth of nuclear physics, the French physi-
cist Henri Becquerel (1852 – 1908) discovered radioactivity in uranium com-
pounds. Following his discovery, scientists did a great deal of research in
attempts to understand the nature of the radiation emitted by radioactive
nuclei. Pioneering work by Ernest Rutherford showed that the emitted radi-
ation was of three types, which he called alpha, beta, and gamma rays.
Rutherford classified the rays according to the nature of the electric
charges they possessed and their abilities to penetrate matter and ionize air.
Later experiments showed that alpha rays are helium nuclei, beta rays are
electrons, and gamma rays are high-energy photons.

In 1911 Rutherford and his students Geiger and Marsden performed a
number of important scattering experiments involving alpha particles. The
experiments established that the nucleus of an atom can be regarded as essen-
tially a point mass and point charge and that most of the atomic mass is con-
tained in the nucleus. Subsequent studies revealed the presence of a previ-
ously unknown short-range type of force, the nuclear force, which is
predominant at distances of less than approximately 10�14 m and is zero at
great distances.
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Other milestones in the development of nuclear physics include:

• The observation of nuclear reactions in 1930 by Cockroft and Walton, us-
ing artificially accelerated particles

• The discovery of the neutron in 1932 by Chadwick and the conclusion
that neutrons make up about half of the nucleus

• The discovery of artificial radioactivity in 1933 by Joliot and Irene Curie
• The discovery of nuclear fission in 1938 by Meitner, Hahn, and Strassmann
• The development of the first controlled fission reactor in 1942 by Fermi

and his collaborators

In this chapter we discuss the properties and structure of the atomic nu-
cleus. We first describe the basic properties of nuclei, then discuss nuclear
forces and binding energy, nuclear models, and the phenomenon of radioac-
tivity. Finally, we examine the processes by which nuclei decay.

13.1 SOME PROPERTIES OF NUCLEI

All nuclei are composed of two types of particles: protons and neu-
trons. The only exception is the ordinary hydrogen nucleus, which is a
single proton. In describing the atomic nucleus, we must use the follow-
ing quantities:

464 CHAPTER 13 NUCLEAR STRUCTURE

Ernest Rutherford (1871–1937),
a physicist from New Zealand,
was awarded a Nobel prize in
1908 for discovering that atoms
can be broken apart by alpha
rays and for studying radioactiv-
ity. “On consideration, I realized
that this scattering backward
must be the result of a single col-
lision, and when I made calcula-
tions I saw that it was impossible
to get anything of that order of
magnitude unless you took a sys-
tem in which the greater part of
the mass of the atom was concen-
trated in a minute nucleus. It was
then that I had the idea of an
atom with a minute massive cen-
ter carrying a charge.” (Photo

courtesy of AIP Niels Bohr Library)

The natural abundances of isotopes can differ substantially. For example,
11
6C, 12

6C, 13
6C, and 14

6C are four isotopes of carbon. The natural abundance
of the 12

6C isotope is about 98.9%, whereas that of the 13
6C isotope is only

about 1.1%. Some isotopes do not occur naturally but can be produced
in the laboratory through nuclear reactions. Even the simplest element,
hydrogen, has isotopes: 1

1H, the ordinary hydrogen nucleus; 2
1H, deu-

terium; and 31H, tritium.

In representing nuclei, it is convenient to have a system of symbols to
show how many protons and neutrons are present. The symbol used is A

Z X,
where X represents the chemical symbol for the element. For example,
56
26Fe(iron) has a mass number of 56 and an atomic number of 26; it there-
fore contains 26 protons and 30 neutrons. When no confusion is likely to
arise, we omit the subscript Z because the chemical symbol can always be
used to determine Z.

The nuclei of all atoms of a particular element contain the same number of
protons but often contain different numbers of neutrons. Nuclei that are
related in this way are called isotopes.

• The atomic number, Z (sometimes called the charge number), which
equals the number of protons in the nucleus

• The neutron number, N, which equals the number of neutrons in the
nucleus.

• The mass number, A, which equals the number of nucleons (neu-
trons plus protons) in the nucleus.

The isotopes of an element have the same Z value but different N and A
values.

Isotopes
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Charge and Mass

The proton carries a single positive charge, equal in magnitude to the elec-
tron charge (where e � 1.602 177 3 � 10�19 C). The neutron is electrically
neutral, as its name implies. Because the neutron has no charge, it is more dif-
ficult to detect.

Atomic mass (the mass of an atom containing a nucleus and Z elec-
trons) can be measured with great precision with the mass spectrometer.
The proton is approximately 1836 times as massive as the electron, and the
masses of the proton and the neutron are almost equal. It is convenient to
define, for atomic masses, the atomic mass unit, u, in such a way that the
mass of the isotope 12C is exactly 12 u. That is, the mass of an atom is
measured relative to the mass of an atom of the neutral carbon-12 isotope
(the nucleus plus six electrons). Thus the mass of 12C is exactly 12 u, where
1 u � 1.660 540 � 10�27 kg. The proton and neutron each have a mass of
approximately 1 u, and the electron has a mass that is only a small fraction
of an atomic mass unit:

mass of proton � 1.007 276 5 u

mass of neutron � 1.008 664 9 u

mass of electron � 0.000 548 579 90 u

Because the rest energy of a particle is given by E � mc2, it is often conve-
nient to express the atomic mass unit in terms of its rest-energy equivalent. For
one atomic mass unit, we have

As noted in Chapter 2, physicists often express mass in terms of the unit
MeV/c2, so here the mass of 1 u is

Table 13.1 gives the masses of the proton, neutron, and electron in different
units. The masses and some other properties of selected isotopes are provided
in Appendix B.

1 u � 931.494 3 
MeV

c2

� 931.494 3 MeV

E � mc2 � (1.660 540 � 10�27 kg) 
(2.997 924 6 � 108 m/s)2

(1.602 177 3 � 10�19 J/eV)

13.1 SOME PROPERTIES OF NUCLEI 465

Table 13.1 Masses of the Proton, Neutron, and Electron 

in Various Units

Mass

Particle kg u MeV/c2

Proton 1.672 623 � 10�27 1.007 276 938.272 3
Neutron 1.674 929 � 10�27 1.008 665 939.565 6
Electron 9.109 390 � 10�31 5.48 579 9 � 10�4 0.510 999 1
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Size and Structure of Nuclei

The size and structure of nuclei were first investigated in Rutherford’s scattering
experiments, discussed in Section 4.2. In those experiments, Rutherford directed
positively charged nuclei of helium atoms (alpha particles) at a thin piece of
metal foil. As the � particles moved through the foil, they often passed near a
metal nucleus. Because of the positive charge on both the incident particles and
the nuclei, particles were deflected from their straight-line paths by the Coulomb
repulsive force. In fact, some particles were even deflected backward, through an
angle of 180� from the incident direction. Those particles were apparently mov-
ing directly toward a nucleus in a head-on collision course.

Rutherford employed an energy calculation and found an expression for the
distance, d, at which a particle approaching a nucleus is turned around by
Coulomb repulsion. In such a head-on collision, the kinetic energy of the incom-
ing alpha particle must be converted completely to electrical potential energy
when the particle stops at the point of closest approach and turns around (Fig.
13.1). If we equate the initial kinetic energy of the alpha particle to the electrical
potential energy of the system (� particle plus target nucleus), we have

Solving for d, the distance of closest approach, we get

From this expression, Rutherford found that 7-MeV � particles approached
nuclei to within 3.2 � 10�14 m when the foil was made of gold. Thus the radius
of the gold nucleus must be less than this value. For silver atoms, the distance
of closest approach was found to be 2 � 10�14 m. From these results, Ruther-
ford concluded that the positive charge in an atom is concentrated in a small
sphere with a radius of approximately 10�14 m, which he called the nucleus.
Because such small dimensions are common in nuclear physics, a convenient
length unit is the femtometer (fm), sometimes called the fermi, defined as

1 fm � 10�15 m

In the early 1920s it was known from the work of Rutherford, Bohr, and
Moseley that the nucleus contained Z protons with a charge �Ze but had a

d �
4kZe2

mv2

1
2 mv2 � k

q1q2

r
� k

(2e)(Ze)

d
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Since one atom of 12C is defined to have a mass of 12 u,
we find that

1 u �
1.99 � 10�26 kg

12
� 1.66 � 10�27 kg

EXAMPLE 13.1 The Atomic Mass Unit

Use Avogadro’s number to show that the atomic mass
unit is 1 u � 1.66 � 10�27 kg.

Solution We know that exactly 12 g of 12C contains
Avogadro’s number of atoms. Avogadro’s number, NA,
has the value 6.02 � 1023 atoms/mol. Thus the mass of
one carbon atom is

� 1.99 � 10�26 kg

mass of one 12C atom �
0.012 kg

6.02 � 1023 atoms

Figure 13.1 An alpha particle
on a head-on collision course
with a nucleus of charge Ze . Be-
cause of the Coulomb repulsion
between the like charges, the al-
pha particle approaches to a dis-
tance d from the nucleus, called
the distance of closest approach .

d

Ze
2e v = 0 +

+
+

+
+

+
+

+
++ +
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mass approximately equal to that of A protons, where A � 2Z . To account for
the nuclear mass, Rutherford proposed that the nucleus contained (A � Z)
neutral proton–electron combination particles in addition to the Z protons.
He called the hypothetical combination particle a neutron. This hypothesis
prompted an experimental search to confirm the existence of the neutron in
a free state outside the nucleus—a search that culminated in 1932. In that
year, the important experimental work of the British physicist James Chadwick
(1891–1974) clearly showed the existence of a particle with a charge of zero
and a mass of approximately 1 u. Chadwick (Fig. 13.2) was awarded the 1935
Nobel prize for this basic discovery.

Although Rutherford’s idea that the neutron was a neutral proton–electron
combination led to the important search for the neutron, both it and the idea
that electrons exist inside the nucleus and can leak out in beta decay have since
been abandoned. The current view is that the neutron is a fundamental particle,
not a proton–electron combination, and that the � particles (electrons) emitted
in radioactive nuclear decay are created at the moment of decay. As mentioned
in Chapter 5 (see Example 5.9), if electrons were confined in the nucleus, the
uncertainty principle would require them to possess unrealistically large kinetic
energies compared to the energies actually observed in beta decay.

Another argument against electrons in the nucleus concerns the magnetic
moments of nuclei, which are observed to be approximately 2000 times smaller
than the magnetic moment of the electron. As we saw in Chapter 9, the magnetic
moment of the electron is of the order of a Bohr magneton, �B � e	/2me,
where me is the mass of the electron. Thus, if the same kind of theory accounts
for the magnetic moment of a nucleus and there are no electrons in the nucleus,
we expect the nuclear magnetic moment to be of the order of a nuclear magne-
ton, �n � e	/2mp, where mp is the mass of a proton. Since mp is about 2000
times me, this model accounts for the observed size difference between nuclear
and electronic magnetic moments. If there were electrons in the nucleus, their
much larger moments would dominate and nuclei would have magnetic mo-
ments of the order of e	/2me, in disagreement with actual observations.

Table 13.2 lists important properties of the electron, proton, and neutron.
This table presents yet another reason for discarding the idea that a neutron is
a bound electron–proton pair: The spin of the neutron is and cannot be
composed from the electron and proton spins, both of which are .

Since the time of Rutherford’s scattering experiments, a multitude of other
experiments have shown that most nuclei are approximately spherical and
have an average radius of

(13.1)r � r 0A1/3

1
2

1
2
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Table 13.2 Masses, Spins, and Magnetic Moments

of the Proton, Neutron, and Electron

Particle Mass (MeV/c2) Spin Magnetic Moment

Proton 938.28 2.7928�n

Neutron 939.57 �1.9135�n

Electron 0.510 99 �1.0012�B
1
2

1
2

1
2

Nuclear radius
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where A is the mass number and r 0 is a constant equal to 1.2 � 10�15 m.
Because the volume of a sphere is proportional to the cube of its radius,
it follows from Equation 13.1 that the volume of a nucleus (assumed to
be spherical) is directly proportional to A, the total number of nucle-
ons. This suggests that all nuclei have nearly the same density. When
the nucleons combine to form a nucleus, they combine as though they
were tightly packed spheres (Fig. 13.3). This fact has led to an analogy
between the nucleus and a drop of liquid, in which the density of the
drop is independent of its size. We shall discuss the liquid-drop model
in Section 13.3.
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(c) The nuclear density can be found as follows:

Taking r0 � 1.2 � 10�15 m and m � 1.67 � 10�27 kg, we
find that

The nuclear density is approximately 2.3 � 1014 times as
great as the density of water (
water � 1.0 � 103 kg/m3)!


n �
3(1.67 � 10�27 kg)

4�(1.2 � 10�15 m)3 � 2.3 � 1017 kg

m3


n �
mass

volume
�

Am
4
3 �r0

3A
�

3m

4�r0
3

EXAMPLE 13.2 The Volume and Density 
of a Nucleus

Find (a) an approximate expression for the mass of a
nucleus of mass number A, (b) an expression for the
volume of this nucleus in terms of the mass number, and
(c) a numerical value for its density.

Solution (a) The mass of the proton is approximately
equal to that of the neutron. Thus, if the mass of one of
these particles is m, the mass of the nucleus is approxi-
mately Am.

(b) Assuming that the nucleus is spherical and using
Equation 13.1, we find that the volume is

V � 4
3 �r3 � 4

3 �r0
3A

Figure 13.3 A nucleus can be
modeled as a cluster of tightly
packed spheres, each of which
is a nucleon.

Nuclear Stability

The nucleus consists of a closely packed collection of protons and neutrons.
Like charges (the protons) in proximity exert very large repulsive electrostatic
forces on each other, which should cause the nucleus to fly apart. However,
nuclei are stable because of the presence of the nuclear force. This is an attrac-
tive force, with a very short range (about 2 fm), that acts between all nuclear
particles. The protons attract each other via the nuclear force, and at the same
time they repel each other through the Coulomb force. The attractive nuclear
force also acts between pairs of neutrons and between neutrons and protons.

There are approximately 260 stable nuclei; hundreds of other nuclei have
been observed but these are unstable. Figure 13.4 is a plot of N versus Z for some
stable nuclei. Note that light nuclei are most stable if they contain equal numbers
of protons and neutrons—that is, if N � Z. Furthermore, heavy nuclei are more
stable if the number of neutrons exceeds the number of protons. We can under-
stand this by recognizing that as the number of protons increases, the strength of
the Coulomb force increases, which tends to break the nucleus apart. As a result,
more neutrons are needed to keep the nucleus stable, since neutrons experience
only attractive nuclear forces. Eventually, the repulsive forces between protons
cannot be compensated for by the addition of more neutrons; this occurs when
Z � 83. Elements that contain more than 83 protons do not have stable nuclei.
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Interestingly, most stable nuclei have even values of A. In fact, certain values
of Z and N correspond to unusually high stability in nuclei. These values of N
and Z, called magic numbers, are

Z or N � 2, 8, 20, 28, 50, 82, 126 (13.2)

For example, the helium nucleus (two protons and two neutrons), with Z � 2
and N � 2, is very stable. The unusual stability of nuclei with progressively
larger magic numbers suggests a shell structure for the nucleus that is similar
to atomic shell structure. In Section 13.3 we briefly treat the shell model of the
nucleus, which explains magic numbers.

Nuclear Spin and Magnetic Moment

In Chapter 9 we discussed the fact that an electron has an intrinsic angular
momentum associated with its spin. A nucleus, like an electron, has an intrin-
sic angular momentum that arises from relativistic properties. The magnitude
of the nuclear angular momentum is , where I is a quantum num-
ber called the nuclear spin and may be an integer or a half-integer. Nuclear
angular momentum is the total angular momentum of all the nucleons,

√I(I � 1)	
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Figure 13.4 A plot of neutron number N versus atomic number Z for the stable nu-
clei (solid points). The dashed line, corresponding to the condition N � Z, is called
the line of stability. The shaded area shows radioactive nuclei.
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including both orbital and spin angular momentum of each nucleon. The
maximum component of the angular momentum projected along the z-axis is
I	. Figure 13.5 illustrates the possible orientations of the nuclear angular
momentum and its projections along the z-axis for the case where .

The nuclear angular momentum has a nuclear magnetic moment associ-
ated with it, similar to that of the electron. The magnetic moment of a nucleus
is measured in terms of the nuclear magneton �n, a unit of magnetic mo-
ment defined as

(13.3)

where mp is the proton mass. This definition is analogous to that of the Bohr
magneton, �B, which corresponds to the spin magnetic moment of a free elec-
tron (Section 9.2). Note that �n is smaller than �B by a factor of approxi-
mately 2000 due to the large difference in masses of the proton and electron.

The magnetic moment of a free proton is approximately 2.7928�n. Unfor-
tunately, there is no general theory of nuclear magnetism that explains this
value. Another surprising point is that a neutron also has a magnetic moment,
with a value of �1.9135�n. The fact that the neutron has a magnetic moment
is evidence that the uncharged neutron has an internal charge distribution.
The minus sign indicates that this moment is opposite the spin angular mo-
mentum of the neutron.

Nuclear Magnetic Resonance and
Magnetic Resonance Imaging

Nuclear magnetic moments (as well as electronic magnetic moments) precess
when placed in an external magnetic field. The frequency at which they precess,
called the Larmor precessional frequency, �L, is directly proportional to the
magnetic field. This precession is sketched in Figure 13.6a, where the magnetic
field is along the z-axis. For example, the Larmor frequency of a proton in a 1-T
magnetic field is 42.577 MHz. The potential energy of a magnetic dipole mo-
ment � in an external magnetic field B is given by �� �B. When the magnetic
moment � is lined up with the field as closely as quantum physics allows, the
potential energy of the dipole moment in the field has its minimum value, Emin.
When � is as antiparallel as possible, the potential energy has its maximum value,
Emax. Figure 13.6b shows these two energy states for a nucleus with a spin of .

It is possible to observe transitions between these two spin states through a
technique called nuclear magnetic resonance (NMR). A constant magnetic
field (B in Fig. 13.6a) is introduced to align magnetic moments, along with a
second, weak, oscillating magnetic field oriented perpendicular to B. When
the frequency of the oscillating field is adjusted to match the Larmor preces-
sional frequency, a torque acting on the precessing moments causes them to
“flip” between the two spin states. These transitions result in a net absorption
of energy by the spin system, an absorption that can be detected electronically.
Figure 13.7 is a sketch of the apparatus used in NMR. The absorbed energy is
supplied by the generator producing the oscillating magnetic field. Nuclear
magnetic resonance and a related technique called electron spin resonance
are extremely important methods of studying nuclear and atomic systems and

1
2

�n �
e	

2mp
� 5.05 � 10�27 J/T

I � 3
2
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Figure 13.5 The possible ori-
entations of the nuclear angular
momentum and its projections
along the z-axis for the case
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how those systems interact with their surroundings. Figure 13.8 shows a typical
NMR spectrum.

A widely used diagnostic technique called magnetic resonance imaging
(MRI) is based on nuclear magnetic resonance. Because about two-thirds of
the atoms in the human body are hydrogen, which gives a strong NMR signal,
MRI works exceptionally well for viewing internal tissues. In MRI, the patient
is placed inside a large solenoid that supplies a spatially varying magnetic field.
Because of the gradient in the magnetic field, protons in different parts of the
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Figure 13.6 (a) When a nucleus is placed in an external magnetic field, B, the mag-
netic moment precesses about the magnetic field with a frequency proportional to the
field. (b) A nucleus with spin can occupy one of two energy states when placed in an
external magnetic field. The lower energy state Emin corresponds to the case where the
spin is aligned with the field as much as possible according to quantum mechanics, and
the higher energy state Emax corresponds to the case where the spin is opposite the
field as much as possible.

1
2

Figure 13.7 An experimental arrangement for nuclear magnetic resonance. The
radio-frequency magnetic field of the coil, provided by the variable-frequency oscilla-
tor, must be perpendicular to the dc magnetic field. When the nuclei in the sample
meet the resonance condition, the spins absorb energy from the field of the coil, and
this absorption changes the Q of the circuit in which the coil is included. Most modern
NMR spectrometers use superconducting magnets at fixed field strengths and operate
at frequencies of approximately 200 MHz.
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body precess at different frequencies, and so the resonance signal can provide
information on the positions of the protons. A computer is used to analyze the
position information to provide data for the construction of a final image. Fig-
ure 13.9 shows an MRI scan of a human brain.

Another advantage of MRI over other imaging techniques is that it causes
minimal damage to cellular structures. Photons associated with the radio-
frequency signals used in MRI have energies of only about 10�7 eV. Because
molecular bond strengths are much greater (approximately 1 eV), the radio-
frequency radiation causes little cellular damage. In comparison, x rays and
gamma rays have energies ranging from 104 to 106 eV and can cause consider-
able cellular damage.

13.2 BINDING ENERGY AND NUCLEAR FORCES

The total mass of a nucleus is always less than the sum of the masses of its nu-
cleons. Because mass is a measure of energy, the total energy of the bound
system (the nucleus) is less than the combined energy of the separated
nucleons. This difference in energy is called the binding energy of the nu-
cleus and can be thought of as the energy that must be added to a nucleus to
break it apart into its components. Therefore, in order to separate a nucleus
into its constituent protons and neutrons, energy must be put into the system.

Conservation of energy and the Einstein mass–energy equivalence relation-
ship show that the binding energy of any nucleus of mass MA is

(13.4)

where M(H) is the atomic mass of hydrogen, MA represents the atomic mass of
the element A

ZX, mn is the mass of the neutron, and the masses are all
expressed in atomic mass units. Note that the mass of the Z electrons included

Eb(MeV) � [ZM(H) � Nmn � MA] � 931.494
MeV

u
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Figure 13.8 An NMR spectrum of 31P in a bridged metallic complex containing plat-
inum. The lines that flank the central strong peak are due to the interaction between
31P and other distant 31P nuclei. The outermost set of lines is due to the interaction be-
tween 31P and neighboring platinum nuclei. The spectrum was recorded at a fixed
magnetic field of about 4 T, and the mean frequency was 200 MHz.

Frequency

Binding energy of a nucleus
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in the first term in Equation 13.4 cancels with the mass of the Z electrons
included in the term MA, within a small difference associated with the atomic
binding energy of the electrons. Since atomic binding energies are typically
several electron volts and nuclear binding energies are several MeV, this differ-
ence is negligible.
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Eb � [0.002 388 u] � 931.494 MeV/u

� 2.224 MeV

This result tells us that in order to separate a deuteron
into its constituent parts at rest (a proton and a neu-
tron), it is necessary to add 2.224 MeV of energy to the
deuteron. One way of supplying the deuteron with this
energy is by bombarding it with energetic particles.

If the binding energy of a nucleus were zero, the nu-
cleus would separate into its constituent protons and
neutrons without the addition of any energy; that is, it
would spontaneously break apart.

EXAMPLE 13.3 The Binding Energy 
of the Deuteron

Calculate the binding energy of the deuteron, which con-
sists of a proton and a neutron, given that the atomic
mass of the deuteron is M2 � 2.014102 u.

Solution We know that the atomic mass of hydrogen
and the mass of the neutron are

M(H) � 1.007 825 u

mn � 1.008 665 u

Using Eq. 13.4, we find for the deuteron binding energy

Eb � [M(H) � mn � M2] � 931.494 MeV/u

� [2.016 490 u � 2.014 102 u] � 931.494 MeV/u

A plot of binding energy per nucleon, Eb/A, as a function of mass number
for various stable nuclei is shown in Figure 13.10. Except for the lighter nuclei,
the average binding energy per nucleon is about 8 MeV. For the deuteron, the
average binding energy per nucleon is Eb/A � 2.224/2 MeV � 1.112 MeV.
Note that the curve in Figure 13.10 peaks in the vicinity of A � 60. That is,
nuclei with mass numbers greater or less than 60 are not as tightly bound as

Figure 13.10 A plot of binding energy per nucleon versus mass number for the sta-
ble nuclei shown in Figure 13.4.
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those near the middle of the periodic table. The higher values of binding
energy near A � 60 imply that energy is released when a heavy nucleus with
A � 200 splits or fissions into several lighter nuclei that lie near A � 60.
Energy is released in fission because the final state, consisting of two lighter
fragments, is more tightly bound, or lower in energy, than the original
nucleus. Similarly, energy can be released when two light nuclei with A  20
combine or fuse to form one heavier nucleus. These two important processes,
fission and fusion, are considered in detail in Chapter 14.

Another important feature of Figure 13.10 is that the binding energy per
nucleon is approximately constant for A � 20. In this case, the nuclear forces
between a particular nucleon and all the other nucleons in the nucleus are
said to be saturated; that is, a particular nucleon forms attractive bonds with
only a limited number of other nucleons. Because of the short-range character
of the nuclear force, these other nucleons can be viewed as being the nearest
neighbors in the close-packed structure shown in Figure 13.3. If every nucleon
could interact with every other nucleon, each nucleon would form (A � 1)
bonds, and the binding energy per nucleon would be proportional to (A � 1)
rather than constant as observed.

The general features of the nuclear binding force have been revealed in a
wide variety of experiments. We summarize them as follows.

• The attractive nuclear force is a different kind of force from the common
forces of electromagnetism and gravitation, and since it dominates the re-
pulsive Coulomb force between protons in the nucleus, it is stronger than
the electromagnetic force.

• The nuclear force is a short-range force that rapidly falls to zero when the
separation between nucleons exceeds several fermis. Evidence for the
limited range of nuclear forces comes from scattering experiments and
from the saturation of nuclear forces already mentioned. The
neutron–proton (n–p) potential energy plot of Figure 13.11a, obtained
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Saturation of nuclear forces

Figure 13.11 (a) Potential energy versus separation for the neutron–proton system.
(b) Potential energy versus separation for the proton–proton system. The difference
in the two curves is due mainly to the Coulomb repulsion in the case of the
proton–proton interaction.
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by scattering neutrons from a target containing hydrogen, shows the
short range of the nuclear force. The depth of the n–p potential energy
is 40 to 50 MeV and contains a strong repulsive component that prevents
the nucleons from approaching much closer than 0.4 fm. Another inter-
esting feature of the nuclear force is that its size depends on the relative
spin orientations of the nucleons, as shown by scattering experiments
performed with spin-polarized beams and targets.

• From n–n, n–p, and p–p scattering experiments and other indirect evi-
dence, it is found that the nuclear force is independent of the electric
charge of the interacting nucleons. As might be expected from this
“charge-blind” character of the nuclear force, the nuclear force does not
affect electrons, and so it enables energetic electrons to serve as point-like
probes of the charge density of nuclei. The charge independence of the
nuclear force also means that the main difference between the n–p and
p–p interactions is that the p–p potential energy consists of a superposi-
tion of nuclear and coulomb interactions, as shown in Figure 13.11b. At
distances less than 2 fm, p–p and n–p potential energies are nearly iden-
tical, but at distances greater than this, the p–p potential has a positive
energy barrier, with a maximum of about 1 MeV at 4 fm.

Although the preceding “laundry list” of observed properties of the nuclear
force may be interesting, it leaves unanswered the deeper question of what
mechanism accounts for the powerful nuclear force. One model that success-
fully explains the nuclear force is the exchange force model. According to
this model, two nucleons—a proton and a neutron, for example—experience
an attractive force when one spontaneously emits a particle and the other ab-
sorbs that particle. From a classical point of view, the emitting and absorbing
nucleons are both strongly attracted to the exchanged particle as if connected
to it by elastic bands or springs. Since both nucleons are strongly attracted to
the same particle, they appear to be strongly attracted to each other.

You may wonder how the exchange of a particle of mass m between the
proton and neutron can occur without violating conservation of energy and
conservation of momentum. A violation of energy conservation must occur if a
proton at rest with energy mpc2 emits a particle of mass m with energy mc2 and
yet remains a proton with energy mpc2. Also, conservation of momentum
would cause a paired proton and neutron to recoil away from each other as
the proton emitted a particle and the neutron absorbed it, instead of pro-
ducing motion of the proton toward the neutron as required for an attractive
nuclear force.

The answer to both dilemmas seems to be a trick: The exchanged particle
exists for such a short time and is confined to such a small region of space that
it is allowed to violate the conservation of energy and momentum. It is a so-
called virtual particle. A virtual particle cannot be directly detected or mea-
sured during the momentum- and energy-violating processes taking place
inside the nucleus. Perhaps the best way to understand this is through the
uncertainty principles �E�t � 	/2 and �px�x � 	/2. These relationships
imply that energy conservation can be violated by an amount �E for a short
time interval �t and that momentum conservation can be violated by an
amount �px over a small nuclear region of size �x. Although it may appear
that a virtual particle can never be detected, if an incident particle strikes the
nucleus in just the right way, it can supply the missing momentum and energy
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required to make a virtual particle real, thereby permitting the exchanged par-
ticle to be measured in the laboratory.

A simple application of the energy– time uncertainty principle enables us to
estimate the mass of the exchanged particle that should be responsible for the
nuclear force. Since the amount by which energy conservation is violated in
the exchange process is �E � mc2, where m is the mass of the exchanged parti-
cle, we have

(13.5)

Realizing that �t is the time it takes the exchanged particle to travel a distance
d between nucleons, and that the maximum value of d is d � c�t for an
exchanged particle traveling at the speed of light, we find that

(13.6)

This expression shows that the range of the nuclear force, dmax, is in-
versely proportional to the mass of the exchanged particle, a general fea-
ture of exchange-force models. Finally, because the range of the nuclear force
is approximately 2 fm, we can estimate the rest energy of the exchanged parti-
cle that is responsible for the nuclear force:

Twelve years after the Japanese physicist Hideki-Yukawa (1907–1981) pro-
posed the exchange theory of the nuclear force just described, a strongly inter-
acting particle with a mass of about 140 MeV/c2, called the pi meson, was found
in cosmic-ray interactions, closely confirming his predictions. We discuss the pi
meson and other force-carrying exchange particles more fully in Chapter 15.

13.3 NUCLEAR MODELS

Although the details of nuclear forces are still not completely understood,
several nuclear models with adjustable parameters have been proposed, and
they help us understand various features of nuclear experimental data and the
mechanisms responsible for binding energy. The models we shall discuss are
(1) the liquid-drop model, which accounts for the nuclear binding energy;
(2) the independent-particle model, which accounts for more detailed fea-
tures of nuclei, including large differences in stability between nuclei with sim-
ilar Z and A values; and (3) the collective model.

Liquid-Drop Model

The liquid-drop model, proposed by C. F. von Weizsächer in 1935, treats the
nucleons as though they were molecules in a drop of liquid. The nucleons
interact strongly with each other and undergo frequent collisions as they jiggle
around within the nucleus. This jiggling motion is analogous to the thermally
agitated motions of molecules in a drop of liquid.

� 1.6 � 10�11 J � 100 MeV

mc2 �
	c

dmax
�

(1.05 � 10�34 J�s)(3.00 � 108 m/s)

2.0 � 10�15 m

dmax � c�t � c � 	

mc2 � �
	

mc

�t �
	

�E
�

	

mc2
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Three major effects influence the binding energy of the nucleus in the
liquid-drop model:

• The volume effect. Earlier we showed that the binding energy per
nucleon is approximately constant, indicating that the nuclear force
saturates (Fig. 13.10). Therefore, the total binding energy of the nucleus
is proportional to A and to the nuclear volume. The contribution to
the binding energy of this volume effect is C1A, where C1 is an adjustable
constant.

• The surface effect. Because nucleons on the surface of the drop have
fewer neighbors than those in the interior, surface nucleons reduce the
binding energy by an amount proportional to the number of surface nu-
cleons. Because the number of surface nucleons is proportional to the
surface area of the nucleus, 4�r 2, and r 2 � A2/3 (Eq. 13.1), the surface
term can be expressed as �C2A2/3, where C2 is a constant.

• The Coulomb repulsion effect. Each proton repels every other pro-
ton in the nucleus. The corresponding potential energy per pair of
interacting particles is ke 2/r, where k is the Coulomb constant. The
total Coulomb energy represents the work required to assemble Z
protons from infinity to a sphere of volume V. This energy is pro-
portional to the number of proton pairs Z(Z � 1)/2 and inversely
proportional to the nuclear radius. Consequently, the reduction in
energy that results from the Coulomb effect is �C3Z(Z � 1)/A1/3,
where C 3 is a constant.

Another effect that decreases the binding energy is significant for heavy nu-
clei with large excesses of neutrons. Since it is observed that for a given A
value, nuclei with Z � N have the largest binding energy, the binding energy
must be corrected by a symmetry term that favors Z � N and decreases the
binding energy symmetrically for N � Z or N � Z . The symmetry term is gen-
erally written as �C4(N � Z)2/A, where C4 is an adjustable constant.

Adding these contributions, we get as the total binding energy

(13.7)

This equation is often referred to as the Weizsächer semiempirical binding
energy formula, because it has some theoretical justification but contains
four constants that are adjusted to fit this expression to experimental data. For
nuclei with A � 15, the constants have the values

C1 � 15.7 MeV C2 � 17.8 MeV

C3 � 0.71 MeV C4 � 23.6 MeV

Equation 13.7, together with these constants, fits the known nuclear bind-
ing energy values very well. However, the liquid-drop model does not account
for some finer details of nuclear structure, such as certain stability rules and
angular momentum. On the other hand, it does provide a qualitative descrip-
tion of nuclear fission, shown schematically in Figure 13.12. If the drop vi-
brates with a large amplitude (which may be initiated by collision with another
particle), it distorts, and under the right conditions, it breaks apart. We shall
discuss the process of fission further in Chapter 14.

Eb � C1A � C2A2/3 � C3
Z(Z � 1)

A1/3 � C4
(N � Z)2

A
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Independent-Particle Model

The independent-particle model, often called the shell model, was devel-
oped independently by Maria Goeppert-Mayer (1906–1972, German-
American physicist) and Hans Jensen (1907–1973, German physicist), who
shared the Nobel prize in 1963 for this feat. The shell model is based upon
the assumption that each nucleon moves in a well-defined orbital state
within the nucleus in an average field produced by the other nucleons.
This model is similar to the shell model of the atom except for the character
of the force term. In the shell model, the nucleons exist in quantized energy
states, and there are few collisions between nucleons. Obviously, the assump-
tions of this model differ greatly from those made in the liquid-drop model.

Each quantized orbital state for a proton or neutron is analogous to one of
the orbital states of an electron in an atomic subshell, with the exception that
the ordering of nuclear states in energy is more closely modeled by a spheri-
cal-well potential than by the Coulomb potential that is appropriate for atomic
electrons. (See Problem 32 in Chapter 8 for a solution of the spherical well.)
The quantized states occupied by the nucleons can be described by a set of
quantum numbers. Because both the proton and the neutron have spin , we
can apply the Pauli exclusion principle to describe the allowed states (as we
did for electrons in Chapter 9). That is, each orbital state can contain only two
protons (or two neutrons) having opposite spin (Fig. 13.13). The protons have
a set of allowed states, which differ slightly from those of the neutrons because
they move in different potential wells. The proton levels are higher in energy
than the neutron levels because the protons experience a superposition of
Coulomb potential and nuclear potential, while the neutrons experience only
a nuclear potential. These two different wells are sketched in Figure 13.13.

Using only the fact that nuclear energy levels exist and that they fill
according to the Pauli exclusion principle, it is possible to explain the ten-
dency for N to equal Z in stable, light nuclei. To achieve maximum stability
for a given A, all the nucleons must be packed sequentially into the lowest
energy levels, leaving no gaps in filled levels. Since any energy state is filled
when it contains two protons (or two neutrons), another proton (or neu-
tron) added to the nucleus produces an increase in energy and a decrease
in stability of the nucleus. Thus, comparing 12

5B and 12
6C, the seventh neu-

tron in boron must occupy a higher energy level than the sixth neutron in
carbon (two nucleons per energy state), and consequently 12

5B has higher
energy and is less stable than 12

6C.

1
2
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Maria Goeppert-Mayer (1906–
1972) was born and educated in
Germany. She is best known
for her development of the
shell model (independent-
particle model) of the nucleus,
published in 1950. A similar
model was simultaneously de-
veloped by Hans Jensen, an-
other German scientist. Goep-
pert-Mayer and Jensen were
awarded the Nobel Prize in
Physics in 1963 for their extra-
ordinary work in understanding
the structure of the nucleus.
(Courtesy of Louise Barker/AIP

Niels Bohr Library)

Figure 13.12 Steps leading to fission according to the liquid-drop model of the nucleus.

(1) (2) (3) (4)
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To understand the observed characteristics of nuclear ground states, such as
angular momentum and the high stability of magic-number nuclei, it is neces-
sary to include nuclear spin-orbit effects. Unlike the spin-orbit interaction for an
electron in an atom, which is magnetic in origin, the spin-orbit effect for nucle-
ons in a nucleus is due to the nuclear force. It is much stronger than in the
atomic case and has opposite sign, so that in nuclei, spin-orbit split states with
higher angular momentum lie lower in energy. When the nuclear spin-orbit
effect is added to a spherical finite potential, the magic numbers are predicted,
because the spin-orbit potential produces especially large jumps between cer-
tain energy levels. In effect, the spin-orbit interaction substantially raises the
energy levels containing 9, 21, 29, 51, 83, and 127 nucleons, thereby making
the levels that contain 8, 20, 28, 50, 82, and 126 nucleons unusually stable.

Finally, it is possible to understand how individual nucleons can be consid-
ered to be moving in well-defined orbitals within the cramped confines of the
nucleus, which is literally swarming with other nucleons. Under these circum-
stances, it would seem that a given nucleon would undergo many collisions
and not move in a well-defined orbital. However, for the low-energy nuclear
ground state, the exclusion principle inhibits energy-changing collisions by
preventing colliding nucleons from occupying already filled low-lying energy
states. In effect, the exclusion principle prevents nucleon collisions within the
densely packed nucleus at low energy and justifies the shell-model approach.

Collective Model

A third model of nuclear structure, known as the collective model, combines
some features of the liquid-drop model and the independent-particle model.
The nucleus is considered to have some “extra” nucleons moving in quantized
orbits in addition to the filled core of nucleons. The extra nucleons are sub-
ject to the field produced by the core, as in the independent-particle scheme.
Deformations can be set up in the core as a result of a strong interaction
between the core and the extra nucleons, thereby initiating vibrational and
rotational motions, as in the liquid-drop model. The collective model has
been very successful in explaining many nuclear phenomena.

13.4 RADIOACTIVITY

In 1896 Henri Becquerel (1852–1908, French physicist) accidentally discovered
that uranyl potassium sulfate crystals emitted an invisible radiation that could
darken a photographic plate when the plate was covered to exclude light. After
a series of experiments, he concluded that the radiation emitted by the crystals
was of a new type, one that required no external stimulation and was so pene-
trating that it could darken protected photographic plates and ionize gases. This
process of spontaneous emission of radiation by uranium was soon to be called
radioactivity. Subsequent experiments by other scientists showed that other
substances were even more powerfully radioactive. Marie (1867–1934) and
Pierre Curie (1859–1906) conducted the most significant investigations of this
type. After several years of careful and laborious chemical separation processes
on tons of pitchblende, a radioactive ore, the Curies reported the discovery of
two previously unknown elements, both radioactive, which they named polo-
nium and radium. Subsequent experiments, including Rutherford’s famous
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Figure 13.13 A square-well po-
tential containing 12 nucleons.
The gray circles represent pro-
tons, and the colored circles rep-
resent neutrons. The energy lev-
els for the protons are slightly
higher than those for the neu-
trons because of the Coulomb
potential in the case of the pro-
tons. The difference in the levels
increases as Z increases. Note
that only two nucleons with op-
posite spin can occupy a given
level, as required by the Pauli ex-
clusion principle.

Energy

r r

pn
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M
arie Sklodowska Curie
was born in Poland shortly
after the unsuccessful Pol-

ish revolt against Russia in 1863. Af-
ter high school, she worked dili-
gently to help meet the educational
expenses of her older brother and
sister in Paris. At the same time, she
managed to save enough money for
her own move to Paris, where she
entered the Sorbonne in 1891. Al-
though she lived very frugally during
this period (she once fainted from
hunger in the classroom), she grad-
uated at the top of her class.

In 1895 Marie Sklodowska mar-
ried the French physicist Pierre
Curie (1859–1906), who was already
known for the discovery of piezoelec-
tricity. (A piezoelectric crystal ex-
hibits a potential difference under
pressure.) Using piezoelectric mate-
rials to measure the activity of ra-
dioactive substances, Marie Curie
demonstrated the radioactive nature
of the elements uranium and tho-
rium. In 1898 she and her husband
discovered a new radioactive ele-

ment contained in uranium ore,
which they called polonium after her
native land. By the end of 1898, the
Curies succeeded in isolating trace
amounts of an even more radioactive
element, which they named radium.
In an effort to produce weighable
quantities of radium, they took on
the painstaking job of isolating ra-

dium from pitchblende, an ore rich
in uranium. After four years of puri-
fying and repurifying tons of ore,
and using their own life savings to fi-
nance their work, the Curies suc-
ceeded in preparing about 0.1 g of
radium. In 1903, along with Henri
Becquerel, they received the Nobel
Prize in Physics for their studies of
radioactive substances.

After her husband’s death in an
accident in 1906, Marie Curie as-
sumed his professorship at the Sor-
bonne. Unfortunately, she experi-
enced prejudice in the scientific
community because she was a
woman. For example, after being
nominated to the French Academy
of Sciences, she was refused mem-
bership after losing by one vote.

In 1911 Marie Curie was awarded
a second Nobel prize, this one in
chemistry, for the discovery of ra-
dium and polonium. She spent the
last few decades of her life supervis-
ing the Paris Institute of Radium.

(Courtesy of AIP Niels Bohr Library / W. F. Meggers

Collection)

B I O G R A P H Y

MARIE SKLODOWSKA CURIE

(1867–1934)

work on alpha-particle scattering, suggested that radioactivity was the result of
the decay, or disintegration, of unstable nuclei.

Three types of radiation can be emitted by a radioactive substance: alpha
(�), in which the emitted particles are 4He nuclei; beta (�), in which the
emitted particles are either electrons or positrons; and gamma (�), in
which the emitted “rays” are high-energy photons. A positron is a particle
like the electron in all respects except that the positron has a charge of �e.
In this book, the symbol e� is used to designate an electron, and e� desig-
nates a positron.

It is possible to distinguish these three forms of radiation using the
scheme shown in Figure 13.14. The radiation from a radioactive sample is
directed into a region in which there is a magnetic field. The beam splits
into three components, two bending in opposite directions and the third
experiencing no change in direction. From this simple observation, we can
conclude that the radiation of the undeflected beam carries no charge (the
gamma ray), the component deflected upward consists of positively charged
particles (� particles), and the component deflected downward consists of
negatively charged particles (e�). If the beam includes a positron (e�), it is
deflected upward.

The three types of radiation have quite different penetrating powers. Alpha
particles barely penetrate a sheet of paper, beta particles can penetrate a few
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millimeters of aluminum, and gamma rays can penetrate several centimeters
of lead.

The rate at which a particular decay process occurs in a radioactive sample
is proportional to the number of radioactive nuclei present (that is, those nu-
clei that have not yet decayed). If N is the number of radioactive nuclei pres-
ent at some instant, the rate of change of N is

(13.8)

where �, called the decay constant, is the probability per unit time that a nu-
cleus will decay. The minus sign indicates that dN/dt is negative because � and
N are both positive; that is, N is decreasing in time.

If we write Equation 13.8 in the form

we can integrate the expression to give

or

(13.9)

where the constant N0 represents the number of radioactive nuclei at t � 0.
Equation 13.9 shows that the number of radioactive nuclei in a sample de-
creases exponentially with time.

N � N0e��t

ln � N

N0
� � ��t

�N

N0

dN

N
� �� �t

0
dt

dN

N
� ��dt

dN

dt
� ��N
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Exponential decay

Figure 13.14 The radiation from a radioactive source can be separated into three
components through the use of a magnetic field to deflect the charged particles. The
photographic plate at the right records the events. The gamma ray is not deflected by
the magnetic field.
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The decay rate R , or the number of decays per unit time, can be obtained
by differentiating Equation 13.9 with respect to time:

(13.10)

where R0 � N0� is the decay rate at t � 0 and R � �N. The decay rate of a
sample is often referred to as its activity. Note that both N and R decrease ex-
ponentially with time. The plot of N versus t shown in Figure 13.15 illustrates
the exponential decay law.

Another parameter that is useful in characterizing the decay of a particular
nucleus is the half-life, T1/2:

R � � dN

dt � � N0�e��t � R 0e��t
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Figure 13.15 A plot of the ex-
ponential decay law for radioac-
tive nuclei. The vertical axis
represents the number of ra-
dioactive nuclei present at any
time t, and the horizontal axis is
time. The time T1/2 is the half-
life of the sample.

The curie

The becquerel

Decay rate

Setting N � N0/2 and t � T1/2 in Equation 13.9 gives

Writing this in the form and taking the natural logarithm of both
sides, we get

(13.11)

This is a convenient expression for relating half-life to the decay constant. Note
that after an elapsed time of one half-life, N0/2 radioactive nuclei remain (by
definition); after two half-lives, half of these have decayed and N0/4 radioactive
nuclei remain; after three half-lives, N0/8 remain; and so on. In general, after n
half-lives, the number of radioactive nuclei remaining is N0/2n. Thus we see
that nuclear decay is independent of the past history of a sample.

A frequently used unit of activity is the curie (Ci), defined as

1 Ci � 3.7 � 1010 decays/s

This value was originally selected because it is the approximate activity of 1 g
of radium. The SI unit of activity is the becquerel (Bq):

1 Bq � 1 decay/s

Therefore, 1 Ci � 3.7 � 1010 Bq. The curie is a rather large unit, and the
more frequently used activity units are the millicurie mCi (10�3 Ci) and the
microcurie, �Ci (10�6 Ci).

T1/2 �
ln 2

�
�

0.693

�

e�T1/2 � 2

N0

2
� N0e��T1/2

T1 2

N(t)

N0

N0

N0

1
2

1
4

t

N =N0e – λt

2T1 2

The half-life of a radioactive substance is the time it takes half of a given
number of radioactive nuclei to decay.

Solution In 5730 yr half the sample will have decayed,
leaving 500 carbon-14 nuclei. In another 5730 yr (for a
total elapsed time of 11,460 yr), the number will be
reduced to 250 nuclei. After another 5730 yr (total time

EXAMPLE 13.4 How Many Nuclei Are Left?

The isotope carbon-14, 14
6C, is radioactive and has a

half-life of 5730 years (yr). If you start with a sample of
1000 carbon-14 nuclei, how many will still be around in
22,920 yr?

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



13.4 RADIOACTIVITY 483

EXAMPLE 13.6 The Activity of Carbon

A radioactive sample contains 3.50 �g of pure 11
6C, which

has a half-life of 20.4 min. (a) Determine the number of
nuclei in the sample at t � 0.

Solution The atomic mass of 11
6C is approximately 11.0,

and so 11.0 g contains Avogadro’s number (6.02 � 1023)
of nuclei. Therefore 3.50 �g contains N nuclei, where

(b) What is the activity of the sample initially and after
8.00 h?

Solution Since T1/2 � 20.4 min � 1224 s, the decay
constant is

Therefore, the initial activity or decay rate of the sample is

R0 � �N0 � (5.66 � 10�4 s�1)(1.92 � 1017)

� 1.08 � 1014 decays/s

We can use Equation 13.10 to find the activity at any time
t. For t � 8.00 h � 2.88 � 104 s, we see that �t � 16.3,
and so

R � R0e��t � (1.09 � 1014 decays/s)e�16.3

� 8.96 � 106 decays/s

Table 13.3 lists values for activity versus the time in hours
for this situation.

� �
0.693

T1/2
�

0.693

1224 s
� 5.66 � 10�4 s�1

N � 1.92 � 1017 nuclei

N

6.02 � 1023 nuclei/mol
�

3.50 � 10�6 g

11.0 g/mol

17,190 yr), 125 will remain. Finally, after four half-lives
(22,920 yr), only about 62 will remain.

These numbers represent ideal circumstances.
Calculation of radioactive decay is an averaging process
conducted with a very large number of atoms, and the
actual outcome depends on statistics. Our original sam-
ple in this example contained only 1000 nuclei, certainly
not a very large number. Thus, if we actually counted the
number remaining from this small sample after one half-
life, it probably would not be 500.

EXAMPLE 13.5 The Activity of Radium

The half-life of the radioactive nucleus 226
88Ra is about

1.6 � 103 yr. (a) What is the decay constant of 226
88Ra?

Solution (a) We can calculate the decay constant � by
using Equation 13.11 and the fact that

T1/2 � 1.6 � 103 yr

� (1.6 � 103 yr)(3.16 � 107 s/yr)

� 5.0 � 1010 s

Therefore,

Note that this result gives the probability that any single
226

88Ra nucleus will decay in 1 s.
(b) If a sample contains 3.0 � 1016 such nuclei at

t � 0, determine its activity at this time.

Solution (b) We can calculate the activity of the sample
at t � 0 using R0 � �N0, where R0 is the decay rate at
t � 0 and N0 is the number of radioactive nuclei present
at t � 0. Since N0 � 3.0 � 1016, we have

R0 � �N0 � (1.4 � 10�11 s�1)(3.0 � 1016)

� 4.2 � 105 decays/s

Since 1 Ci � 3.7 � 1010 decays/s, the activity, or decay
rate, at t � 0 is

R0 � 11.1 �Ci

(c) What is the decay rate after the sample is 2.0 � 103 yr
old?

Solution (c) We can use Equation 13.10 and the fact
that 2.0 � 103 yr � (2.0 � 103 yr)(3.15 � 107 s/yr) �

6.3 � 1010 s:

� 1.7 � 105 decays/s

� (4.2 � 105 decays/s)e�(1.4�10�11 s�1)(6.3�1010 s)

R � R 0e��t

� �
0.693

T1/2
�

0.693

5.0 � 1010 s
� 1.4 � 10�11 s�1

Table 13.3 Activity Versus Time for

the Sample Described in

Example 13.6

t (h) R (decays/s)

0 1.08 � 1014

1 1.41 � 1013

2 1.84 � 1012

3 2.39 � 1011

4 3.12 � 1010

5 4.06 � 109

6 5.28 � 108

7 6.88 � 107

8 8.96 � 106
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Exercise 1 Calculate in Example 13.6 the number of radioactive nuclei that remain
after 8.00 h.

Answer 1.58 � 1010 nuclei

484 CHAPTER 13 NUCLEAR STRUCTURE

To find �, we use Equation 13.11:

Substituting (2) into (1) gives

t � �� 8.04 days

0.693 � ln � 4.2 mCi

5.0 mCi � � 2.02 days

(2)  � �
0.693

T1/2
�

0.693

8.04 days

(1)  t � �
1

�
 ln � R

R0
�

EXAMPLE 13.7 A Radioactive Isotope 
of Iodine

A sample of the isotope 131I, which has a half-life of 8.04
days, has an activity of 5 mCi at the time of shipment.
Upon receipt of the 131I in a medical laboratory, its activ-
ity is 4.2 mCi. How much time has elapsed between the
two measurements?

Solution We can make use of Equation 13.10 in the form

Taking the natural logarithm of each side, we get

ln � R

R0
� � ��t

R

R0
� e��t

13.5 DECAY PROCESSES

As we stated in the preceding section, a radioactive nucleus spontaneously de-
cays by means of one of three processes: alpha decay, beta decay, or gamma
decay. Let us discuss these processes in more detail.

Alpha Decay

If a nucleus emits an � particle (4
2He), it loses two protons and two neutrons.

Therefore, the atomic number Z decreases by 2, the mass number A decreases
by 4, and the neutron number decreases by 2. The decay can be written as

(13.12)

where X is called the parent nucleus and Y the daughter nucleus. For exam-
ple, 238U and 226Ra are both alpha emitters and decay according to the
schemes

(13.13)

(13.14)

The half-life for the 238U decay is 4.47 � 109 years, and that for 226Ra decay is
1.60 � 103 years. In both cases, note that the mass number of the daughter
nucleus is 4 less than that of the parent nucleus. Likewise, the atomic number
is reduced by 2. The differences are accounted for in the emitted � particle
(the 4He nucleus). Observe that alpha decay processes release energy because

226
88Ra9:

222
86Rn � 4

2He

238
92U9:

234
90Th � 4

2He

A
ZX9:

A�4
Z�2 Y �

4
2HeAlpha decay
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the decay products, especially the alpha particle, are more tightly bound than
the parent nucleus (see Fig. 13.10.)

Figure 13.16 depicts the spontaneous decay of 226Ra. As a general rule,
(1) the sum of the mass numbers A must be the same on both sides of
the equation, and (2) the net charge must be the same on both sides of the
equation. In addition, the total relativistic energy and momentum must
be conserved. If we call MX the atomic mass of the parent, MY the mass of
the daughter, and M� the mass of the alpha particle, we can define the disin-
tegration energy Q :

Q � (MX � MY � M�)c2 (13.15)

Note that atomic mass rather than nuclear mass can be used here, because the
electronic masses cancel in an evaluation of the mass differences. Q is in joules
when the masses are in kilograms, and c is the usual 3.00 � 108 m/s. However,
when masses are expressed in the more convenient unit u, the value of Q can
be calculated in MeV with the expression

Q � (MX � MY � M�) � 931.494 MeV/u (13.16)

The disintegration energy Q appears in the form of kinetic energy of
the daughter nucleus and the � particle. The quantity given by Equation 13.16
is sometimes referred to as the Q value of the nuclear reaction. In the case of
the 226Ra decay described in Figure 13.16, if the parent nucleus is at rest when
it decays, the residual kinetic energy of the products is 4.87 MeV. Most of the
kinetic energy is associated with the alpha particle because this particle is
much less massive than the recoiling daughter nucleus, 222Rn. That is, because
momentum must be conserved, the lighter � particle recoils with a much
higher speed than the daughter nucleus. Generally, light particles carry off
most of the energy in nuclear decays.

It is fairly easy to calculate the fraction of the disintegration energy carried
off by the � particle by applying conservation of energy and momentum:

Q � KY � K� (13.17)

p Y � p� (13.18)

where the subscript Y stands for the daughter nucleus. Since the total kinetic
energy released in alpha decay (several MeV) is small compared to the rest en-
ergies of the � particle (3726 MeV) and the daughter nucleus (206.793 BeV
for 222Rn), we can use the classical expressions for momentum and kinetic
energy in Equations 13.17 and 13.18 to show that

(13.19)

where M Y and M� are the atomic masses of the daughter nucleus and the �
particle (see Problem 43 at the end of the chapter).

Interestingly, if one assumed that 238U (or other alpha emitters) decayed by
emitting a proton or neutron, the mass of the decay products would exceed
that of the parent nucleus, corresponding to negative Q values. These negative
Q values indicate that such decays do not occur spontaneously.

K� �
�Y

MY � M�

Q
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Disintegration energy Q

Figure 13.16 Alpha decay of
radium. The radium nucleus is
initially at rest. After the decay,
the radon nucleus has kinetic
energy KRn and momentum
pRn, and the alpha particle has
kinetic energy K� and momen-
tum p�.

222
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86

After decay

KRn

pRn

α
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We now turn to the mechanism of � decay. Imagine that an � particle is
somehow formed within the nucleus. Figure 13.17 is a plot of potential energy
versus distance r from the nucleus for a typical alpha particle–nucleus system,
where R is the range of the nuclear force. The curve represents the combined
effects of (1) the Coulomb repulsive energy, which gives the positive peak for
r � R , and (2) the nuclear attractive force, which causes the curve to be nega-
tive for r � R . As we saw in Example 13.8, a typical disintegration energy is
about 5 MeV, which is the approximate kinetic energy of the � particle, repre-
sented by the lower dashed line in Figure 13.17. According to classical physics,
the � particle is trapped in the potential well. How, then, does it ever escape
from the nucleus?

The answer to this question was first provided by George Gamow in 1928
and, independently, by R. W. Gurney and E. U. Condon in 1929, using quan-
tum mechanics. Briefly, the view of quantum mechanics is that there is always
some probability that the particle can penetrate (tunnel through) the barrier
(Section 7.2). Recall that the probability of locating the particle depends on
its wavefunction � and that the probability of tunneling is measured by �� �2.
Figure 13.18 is a sketch of the wavefunction for a particle of energy E meeting
a square barrier of finite height, a shape that approximates the nuclear
barrier. Note that the wavefunction exists both inside and outside the barrier.
Although the amplitude of the wavefunction is greatly reduced on the far side
of the barrier, its finite value in this region indicates a small but finite proba-
bility that the particle can penetrate the barrier. As the energy E of the particle

486 CHAPTER 13 NUCLEAR STRUCTURE

It is left to Problem 43 to show that the kinetic energy of
the � particle is about 4.8 MeV, whereas the recoiling
daughter nucleus carries off only about 0.1 MeV of
kinetic energy.

� (0.005 229 u) � �931.494
MeV

u � � 4.87 MeV

� 4.002 603 u) � 931.494
MeV

u

� (226.025 406 u � 222.017 574 u

EXAMPLE 13.8 The Energy Liberated 
When Radium Decays

The 226Ra nucleus undergoes alpha decay according to
Equation 13.12. Calculate the Q value for this process.
Take the atomic masses to be 226.025 406 u for 226Ra,
222.017 574 u for 222Rn, and 4.002 603 u for 4

2He, as
found in Appendix B.

Solution Using Equation 13.16, we see that

Q � (MX � MY � M�) � 931.494
MeV

u

Figure 13.17 Potential energy
versus separation for the alpha
particle–nucleus system. Classi-
cally, the energy of the alpha
particle is not great enough to
overcome the barrier, and so
the particle should not be able
to escape the nucleus.

Figure 13.18 The nuclear potential energy is modeled as a square barrier. The
energy of the alpha particle is E, which is less than the height of the barrier. According
to quantum mechanics, the alpha particle has some chance of tunneling through the
barrier, as indicated by the finite size of the wavefunction for r � R1.

U(r)

≈ 30 MeV

5 MeV

0 R

A B

R1

r

≈�40 MeV

0
R1R
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 nucleusU(r)
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increases, its probability of escaping also increases. Furthermore, the probabil-
ity increases as the width of the barrier decreases.

13.5 DECAY PROCESSES 487

Beta decay

Beta Decay

When a radioactive nucleus undergoes beta decay, the daughter nucleus has
the same number of nucleons as the parent nucleus, but the atomic number is
changed by 1:

(13.20)A
Z X9:

A
Z�1Y � e�

Combining this result with R1 � 2Zke2/E gives, for the
decay probability,

The parameter r0 � 	2/M�ke2 is a kind of Bohr radius
for the alpha particle, with the value 7.25 fm, and E0 is an
energy unit analogous to the Rydberg in atomic physics:

For the alpha decay of radium, the daughter nucleus
is radon with atomic number Z � 86 and mass number
A � 222. Equation 13.1 predicts the radius R of the
radon nucleus to be

R � (1.2 � 10�5 fm)(222)1/3 � 7.27 fm

Then the decay probability for alpha disintegration at
E � 5 MeV is

This probability is quite small, but the actual number
of disintegrations per second is much larger because of
the many collisions the alpha particle makes with the nu-
clear barrier. This collision frequency f is the reciprocal
of the transit time for the alpha particle crossing the nu-
cleus; that is, f � v/2R , where v is the speed of the alpha
particle inside the nucleus. Here, as in most cases, f is
about 1021 collisions per second (see Problem 16 in
Chapter 7), leading to a predicted decay rate � 10�13

disintegrations per second, in reasonable agreement with
the observed value of � � 1.4 � 10�11 s�1.

� exp {�78.008} � 1.32 � 10�34

exp {�4�(86) √(0.0993/5) � 8 √86(7.27/7.25) }

E0 �
ke2

2r0
�

14.40 eV�Å

(2)(7.25 � 10�5 Å)
� 0.0993 MeV

T(E) � exp {�4�Z √(E0/E) � 8 √Z(R/r0)}

� �R/R 1

0

dz

√z
�

�

2
� 2 √ R

R1

�1

0 √ 1

z
� 1 dz � �R/R 1

0 √ 1

z
� 1 dz �

�

2

EXAMPLE 13.9 Probability for Alpha Decay

Apply the tunneling methods of Chapter 7 to compute
the probability of escape from a 226

88Ra nucleus of an �

particle with disintegration energy 5 MeV.

Solution The escape probability is none other than the
transmission coefficient T(E) for the Coulomb barrier
shown in Figure 13.17. Equation 7.10 of Chapter 7 gives
T(E) approximately as

The integral is taken over the classically forbidden region
where E � U. For alpha decay, this region is bounded be-
low by the nuclear radius R and above by R1 � 2Zke2/E

[from E � U(R1) � 2Zke2/R1] (see Fig. 13.17). In this
expression, Z is the atomic number of the daughter nu-
cleus.

The tunneling integral to be evaluated is

where z � r/R1. An exact value for this integral can be
had with some effort, but a useful approximation
is found readily by noting that R/R1 is a small number
(R � 10 fm; R1 � 50 fm for E � 5 MeV). Thus, as a first
estimate we set the lower limit to zero and change vari-
ables with z � cos2 �, obtaining

To improve upon this, we break the original integral into
two and approximate the second, using 1/z �� 1 for z

small, to get

� ��/2

0
 [1 � cos2�]d� �

�

2

�1

0 √ 1

z
� 1 dz � 2 ��/2

0
 sin2 �d�

� R1 √E �1

R/R1
√ 1

z
� 1 dz

� √U(r) � E dr � √E �R1

R √ R1

r
� 1 dr

T(E) � exp�(2/	)√2m �√U(r)�E dr

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



(13.21)

Again, note that the nucleon number and total charge are both conserved in
these decays. However, as we shall see later, these processes are not described
completely by such expressions. We shall explain this shortly.

Two typical beta decay processes are

Notice that in beta decay a neutron changes into a proton (or vice versa). It is
also important to point out that the electron or positron in these decays is not
present beforehand in the nucleus but is created at the moment of decay out
of the rest energy of the decaying nucleus.

Now consider the energy of the system before and after the decay. As with
alpha decay, we assume energy is conserved and that the heavy recoiling
daughter nucleus carries off negligible kinetic energy. (See Problem 43.) Exper-
imentally, it is found that beta particles from a single type of nucleus are emit-
ted with a continuous range of kinetic energies up to some maximum value,
Kmax (Fig. 13.19). The kinetic energy of the system after the decay is equal to
the decrease in mass–energy of the system—that is, the Q value. However, be-
cause all parent nuclei of a given type have the same initial mass, the Q value
must be the same for each decay. In view of this and the fact that the daughter nu-
cleus carries off very little kinetic energy, why do the emitted beta particles
have different kinetic energies? The law of conservation of energy seems to be
violated! Further analysis shows that the decay processes given by Equations
13.20 and 13.21 also violate the principles of conservation of angular momen-
tum (spin) and linear momentum!

After a great deal of experimental and theoretical study, Pauli in 1930 pro-
posed that a third particle must be present to carry away the “missing” energy
and momentum. Fermi later named this particle the neutrino (“little neutral
one”) because it had to be electrically neutral and have little rest mass. Al-
though it eluded detection for many years, the neutrino (symbolized by �) was
finally detected experimentally in 1956. It has the following properties:

• Zero electric charge.
• A rest mass that is much smaller than that of the electron. Recent experi-

ments show that the mass of the neutrino is not 0 but is less than 2.8 eV/c2.
• A spin of , which satisfies the law of conservation of angular momentum

when applied to beta decay.
• Very weak interaction with matter, which makes it very difficult to detect.

For the general form of the beta decays considered earlier, we can now
write

(13.22)

(13.23)

where the symbol represents the antineutrino, the antiparticle to the neu-
trino. (We discuss antiparticles further in Chapter 15.) As in the case of alpha
decay, the decays just listed are analyzed through conservation of energy and
momentum, but we must use relativistic expressions because the kinetic ener-
gies of the electron and neutrino are not small compared to their rest energies.
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Properties of the neutrino

Figure 13.19 A typical beta
decay curve. The maximum ki-
netic energy observed for the
beta particles corresponds to
the Q value for the reaction.
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A process that competes with e� decay is called electron capture. This
occurs when a parent nucleus captures one of its own orbital atomic electrons
and emits a neutrino. The final product after decay is a nucleus whose charge
is Z � 1:

(13.24)

In most cases it is an inner K-shell electron that is captured, and this is
referred to as K capture. One example of this process is the capture of an
electron by 74Be to become 73Li:

Finally, it is instructive to mention the Q values for beta-decay processes. The
Q values for e� decay and electron capture are given by Q � (MX � MY)c2, while
the Q values for e� decay are given by Q � (M X � M Y � 2me)c2 where M X and
M Y are the masses of neutral atoms. These relationships are useful for determin-
ing whether or not possible beta-decay processes are energetically allowed.

Carbon Dating

The beta decay of 14C is commonly used to date organic samples. Cosmic
rays in the upper atmosphere cause nuclear reactions that create 14C. In

7
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E
nrico Fermi, an Italian-
American physicist, received
his doctorate from the Uni-

versity of Pisa in 1922, then did post-
doctoral work in Germany under
Max Born. He returned to Italy in
1924, and in 1926 became a profes-
sor of physics at the University of
Rome. He received the Nobel Prize
for Physics in 1938 for his work with
the production of transuranic ra-
dioactive elements (those more mas-
sive than uranium) by neutron bom-
bardment.

Fermi first became interested in
physics at the age of 14, after read-
ing an old physics book in Latin.
(He was an excellent scholar and
could recite Dante’s Divine Comedy

and much of Aristotle’s writings
from memory.) His great ability to
solve problems in theoretical physics
and his skill for simplifying very
complex situations made him some-
what of an oracle. Fermi was also a
gifted experimentalist and teacher.
During one of his early lecture trips
to the United States, a car that he

had purchased became disabled,
and he pulled into a nearby gas sta-
tion. After Fermi repaired the car
with ease, the station owner offered
him a job on the spot.

Fermi and his family emigrated
to the United States, and he became
a naturalized citizen in 1944. He
taught first at Columbia University,

then at the University of Chicago. As
part of the Manhattan Project dur-
ing World War II, Fermi was com-
missioned to design and build a
structure, called an atomic pile, in
which a self-sustained chain reaction
might occur. The structure, built in
a squash court under the stadium
of the University of Chicago, con-
tained uranium in combination with
graphite blocks to slow the neutrons
to thermal speeds. Cadmium rods
inserted in the pile were used to
absorb neutrons and control the
reaction rate. History was made at
3:45 P.M. on December 2, 1942, as
the cadmium rods were slowly with-
drawn and a self-sustained chain re-
action was observed. Fermi’s earth-
shaking achievement—the world’s
first nuclear reactor—marked the
beginning of the atomic age.

Fermi died of cancer in 1954 at
the age of 53. One year later, the
100th element was discovered and
named fermium in his honor.

(Fermi National Accelerator Laboratory)

Electron capture
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fact, the ratio of 14C to 12C in the carbon dioxide molecules of our atmos-
phere has a constant value of approximately 1.3 � 10�12. All living organ-
isms have this same ratio of 14C to 12C, because they continuously exchange
carbon dioxide with their surroundings. When an organism dies, however, it
no longer absorbs 14C from the atmosphere, and so the 14C/12C ratio de-
creases as a result of the beta decay of 14C, which has a half-life of 5730 yr.
It is therefore possible to measure the age of a material by measuring its
activity per unit mass caused by the decay of 14C. Using this technique,
scientists have been able to identify samples of wood, charcoal, bone, and
shell as having lived from 1000 to 25,000 yr ago. This knowledge has helped
us reconstruct the history of living organisms — including humans — during
that time span.

A particularly interesting example is the dating of the Dead Sea Scrolls,
a group of manuscripts discovered by a shepherd in 1947. Transla-
tion showed them to be religious documents, including most of the books
of the Old Testament. Because of their historical and religious signifi-
cance, scholars wanted to know their age. Carbon dating performed on
the material in which the scrolls were wrapped established their age at
approximately 1950 yr.
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Solution First calculate the decay constant for 14C,
which has a half-life of 5730 yr.

The number of 14C nuclei can be calculated in two steps.
(1) The number of 12C nuclei in 25.0 g of carbon is

Knowing that the ratio of 14C to 12C in the live sample
was 1.3 � 10�12, we see that the number of 14C nuclei in
25.0 g before decay is

Hence the initial activity of the sample is

(2) We can now calculate the age of the charcoal, using
Equation 13.10, which relates the activity R at any time t
to the initial activity R0:

R � R0e��t  or  e��t �
R

R0

� 6.13 decays/s � 370 decays/min

R0 � N0� � (1.6 � 1012 nuclei)(3.83 � 10�12 s�1)

� 1.6 � 1012 nuclei

N0(14C) � (1.3 � 10�12)(1.26 � 1024)

� 1.26 � 1024 nuclei

N(12C) �
6.02 � 1023 nuclei/mol

12.0 g/mol
 (25.0 g)

� 3.83 � 10�12 s�1

� �
0.693

T1/2
�

0.693

(5730 yr)(3.16 � 107 s/yr)

EXAMPLE 13.10 The Age of Ice Man

In 1991 a German tourist discovered the well-preserved
remains of a human, later dubbed “Ice Man,” trapped
in a glacier in the Italian Alps. Radioactive dating of
a sample of Ice Man established an age of 5300 yr.
Why did scientists date the sample with the isotope
14C rather than 11C, a beta emitter with a half-life
of 20.4 min?

Reasoning Carbon-14 has a long half-life, 5730 yr, so
the fraction of 14C nuclei remaining after one half-life is
high enough to enable accurate measurements of
changes in the sample’s activity. The 11C isotope, which
has a very short half-life, is not useful because its activity
decreases to a vanishingly small value over the age of the
sample, making it impossible to detect.

If a sample to be dated is not very old—say, about
50 yr—then the scientist should select the isotope of
some other element whose half-life is comparable to the
age of the sample. For example, if the sample contained
hydrogen, one could measure the activity of 3H (tritium),
a beta emitter with a half-life of 12.3 yr. As a general rule,
the expected age of the sample should be great enough
to allow measurement of a change in activity but not so
great that the activity is undetectable.

EXAMPLE 13.11 Radioactive Dating

An archaeologist finds a 25.0-g piece of charcoal in the
ruins of an ancient city. The sample shows a 14C activity
of 250 decays/min. How long has the tree from which
this charcoal came been dead?
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Gamma Decay

Very often, a nucleus that undergoes radioactive decay is left in an excited en-
ergy state. The nucleus can then undergo a second decay to a lower energy
state, perhaps to the ground state, by emitting a high-energy photon:

(13.25)

where X* indicates a nucleus in an excited state. The typical half-life of an
excited nuclear state is 10�10 s. Photons emitted in such a deexcitation process
are called gamma rays. Such photons have very high energy (in the range of
1 MeV to 1 GeV) relative to the energy of visible light (about 1 eV). Recall that
the energy of photons emitted (or absorbed) by an atom equals the difference in
energy between the two electronic states involved in the transition. Similarly, a
gamma-ray photon has an energy hf that equals the energy difference �E be-
tween two nuclear energy levels. When a nucleus decays by emitting a gamma ray,
the nucleus doesn’t change its atomic mass A or atomic number Z.

A nucleus may reach an excited state as the result of a violent collision with
another particle. It is also very common for a nucleus to be in an excited state
after undergoing an alpha or beta decay. The following sequence of events
represents a typical situation in which gamma decay occurs:

(13.26)

(13.27)

Figure 13.20 shows the decay scheme for 12B, which undergoes beta decay
with a half-life of 20.4 ms to either of two levels of 12C. It can either (1) decay
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� 1.0 � 1011 s � 3.2 � 103 yr

t �
0.39

�
�

0.39

3.84 � 10�12 s�1

Because it is given that R � 250 decays/min and because
we found that R0 � 370 decays/min, we can calculate t

by taking the natural logarithm of both sides of the last
equation:

��t � ln � R

R0
� � ln � 250

370 � � �0.39

Gamma decay

Figure 13.20 An energy-level diagram showing the initial nuclear state of a 12B
nucleus and two possible lower-energy states of the 12C nucleus. The beta decay of the
12B nucleus can result in either of two situations: The 12C nucleus is in the ground state
or in the excited state, in which case the nucleus is denoted as 12C*. In the latter case,
the beta decay to 12C* is followed by a gamma decay to 12C as the excited nucleus
makes a transition to the ground state.
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directly to the ground state of 12C by emitting a 13.4-MeV electron or (2) un-
dergo e� decay to an excited state of 12C*, followed by gamma decay to the
ground state. The latter process results in the emission of a 9.0-MeV electron
and a 4.4-MeV photon. Table 13.4 summarizes the pathways by which a
radioactive nucleus can undergo decay.

13.6 NATURAL RADIOACTIVITY

Four Radioactive Series

Radioactive nuclei are generally classified into two groups: (1) unstable nuclei
found in nature, which give rise to what is called natural radioactivity, and
(2) nuclei produced in the laboratory through nuclear reactions, which
exhibit artificial radioactivity. There are three series of naturally occurring
radioactive nuclei (Table 13.5). Each series starts with a specific long-lived
radioactive isotope whose half-life exceeds that of any of its descendants. The
three natural series begin with the isotopes 238U (Uranium Series), 235U
(Actinium Series), and 232Th (Thorium Series), and the corresponding
stable end products are three isotopes of lead: 206Pb, 207Pb, and 208Pb. The
fourth series in Table 13.5 is an artificial radioactive series called the Neptu-
nium Series because Neptunium is the longest-lived member of the series
other than its stable end product, 209Bi. The element 237Np is a transuranic
element (one having an atomic number greater than that of uranium) not
found in nature. This element has a half-life of “only” 2.14 � 106 years, much
less than the age of the Earth; consequently, any 237Np present when the Earth
was created would long since have decayed away.

Figure 13.21 shows the successive decays for the 232Th series. Note that
232Th first undergoes � decay to 228Ra. Next, 228Ra undergoes two successive �
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Figure 13.21 Successive decays
for the 232Th series.
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Table 13.4 Decay Processes

Alpha decay

Beta decay (e�)

Beta decay (e�)

Electron capture

Gamma decay A
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Table 13.5 The Four Radioactive Series

Series Starting Isotope Half-Life (years) Stable End Product

Uranium 238
92U 4.47 � 109 206

82Pb

Actinium 235
92U 7.04 � 108 207

82Pb

Thorium 232
90Th 1.41 � 1010 208

82Pb

Neptunium 237
93Npa 2.14 � 106 209

83Bi

aThis is the longest-lived member of the series. The starting isotope is actually plutonium, 241
94Pu.
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decays to 228Th. The series continues and finally branches when it reaches
212Bi. At this point, there are two decay possibilities. The end of the decay
series is the stable isotope 208Pb. Each step in the decay sequence shown in
Figure 13.21 may be characterized by a decrease of either 4 (for � decays) or 0
(for � or � decays) in the mass number A, together with appropriate changes
in Z. The two uranium series are somewhat more complex than the 232Th
series. Also, there are several naturally occurring radioactive isotopes, such as
14C and 40K, that are not part of the aforementioned decay series.

Radioactive series in nature constantly replenish our environment with
radioactive elements that would otherwise have disappeared long ago. For
example, because the Earth is approximately 5 � 109 years old, the supply of
226Ra (whose half-life is only 1600 years) would have been depleted by radioac-
tive decay long ago if it were not for the decay series that starts with 238U.

Determining the Age of the Earth

The casual statement that the Earth is about 5 billion years old deserves more
explanation not only because it has been a historically contentious subject but
also because the science is interesting. Various methods, ranging from geologi-
cal estimates based on weathering rates to estimates based on cooling rates of an
initially hot Earth, have been used. However, Rutherford’s method of using the
half-life and measured amounts of decay products in rocks (he had already used
it by 1904!) has proven the most accurate. Let’s follow this interesting story.

The first major scientific theory of the origin of the Solar System was that of
Pierre Simon de Laplace (1749–1827, French physicist) and William Herschel
(1738–1822, German–British astronomer). They suggested that the solar sys-
tem was formed from a hot, slowly rotating spherical cloud of gas, which
cooled and contracted, flattening into more rapidly rotating rings to conserve
angular momentum, with planets eventually condensing out of the rings. The
Sun was formed from the hot leftover central part of the gas cloud. Hermann
von Helmholtz (1821–1894, German physiologist and physicist), the great
champion of the law of energy conservation, realized that there was no need
to start with a rather artificial hot gas cloud. He modified the Laplace–
Herschel theory by assuming that the primordial gas cloud was cold and that
gravitational contraction produced heating in agreement with energy conser-
vation. An enormous contribution to the quantitative study of the cooling of
the Earth was made by Jean Baptiste Joseph Fourier (1768–1830, French
mathematician) with his solution of the heat conduction equation in terms of
sums of trigonometric functions (Fourier series). Taking into account varying
seasonal inflow of solar energy as well as heat flowing out of the Earth’s core,
and using measurements of the temperature at different depths in mines and
the thermal conductivity of rock as input parameters, Fourier concluded that
the idea of a cooling Earth with an intially hot interior did not contradict
known observations.

Geologists of the period generally agreed with these theories of an Earth
solidifying from a molten state, the interior gradually cooling in an average
way. Nineteenth-century geological estimates of the Earth’s age based on con-
tinuous weathering processes, such as erosion, predicted ages of hundreds of
millions of years. This hypothesis was readily adopted by Charles Darwin
(1809–1882, English naturalist) who felt that the natural selection processes
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of his theory of evolution required long periods on the order of hundreds of
millions of years.

Kelvin Weighs In. Hardly any scientific story involves more disciplines and
more famous scientific names than this one. Just sticking to the bare bones of
the plot we have to mention William Thompson, Lord Kelvin (1824–1907,
British physicist), one of the most important physicists of the 19th century. In
the 1860s Kelvin refined Fourier’s cooling model and estimated the Earth’s
age to be about 60 million years, starting from a uniform temperature of
about 10,000�F, the highest melting point of rock. He also estimated that the
Sun was about this age, or somewhat less, based on a model of solar energy
production powered by gravitational contraction.

Kelvin’s calculations started a serious disagreement between physicists who
believed in the 60-million-year figure, and geologists, who felt the Earth was 10
times older. Even antievolutionists sided with physicists, whom they saw as pro-
viding clear scientific evidence that the Earth had not existed long enough for
natural selection to occur. Neither side foresaw that the discovery of radioac-
tivity would supply both the explanation of the failure of cooling models and
an exquisitely accurate method of dating the Earth itself. 

The End of The Age-of-the-Earth-Problem. The discovery of radium and
the measurement of its abundance and the energy it gives off allowed the
Curies to explain Kelvin’s erroneous age for the Earth. When the amount of
thermal energy given off in one day by the radium in the Earth’s crust is calcu-
lated, it turns out to be comparable to the energy lost per day by the Earth’s
core by conduction through the crust and eventual radiation into space. This
means the Earth is warmer than it would be if energy were not added by ra-
dioactive decay. This led Kelvin to underestimate the actual cooling time when
he did not incorporate the energy released by radioactive decay into the
Earth’s energy budget.

As mentioned previously, shortly after the prodigious discovery of radioactive
series and the transmutation of series members into different chemical elements
by Rutherford and Frederick Soddy (1877–1956, English physical chemist),
Rutherford realized that radioactive techniques could be used to date the
Earth’s oldest rocks. The earliest methods involved measuring the amount of he-
lium (from alpha decay) trapped in rocks, but these methods only provided
a lower limit on the Earth’s age because some helium had presumably leaked
out of the rocks. In the 1940s, partly as a result of war work on the atomic bomb,
very sensitive techniques were developed by Clair Cameron Patterson
(1922–1995, American geochemist) and others of measuring tiny lead
concentrations in samples. Since the three natural radioactive series all produce
stable isotopes of lead, measurement of the amount of lead in very old rocks
should indicate the age of the Earth. However, a major difficulty is that one
needs to know the amount of primordial lead, that is, lead not produced by ra-
dioactive decay, present at the time of the formation of the Earth and Solar Sys-
tem. Because of their process of formation, iron meteorites containing almost
no uranium are believed to contain true primordial levels of lead. Patterson
used these and the oldest Earth rocks to arrive at the age of the Earth. In 1953
he found the still accepted value of (4.55 � 0.07) billion years . A modest yet en-
ergetic scientist, Patterson is quoted as saying about his momentous discovery,

494 CHAPTER 13 NUCLEAR STRUCTURE

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



True scientific discovery renders the brain incapable at such moments of shouting
vigorously to the world “Look at what I’ve done! Now I will reap the benefits of
recognition and wealth.” Instead such discovery instinctively forces the brain to
thunder “We did it” in a voice no one else can hear, within its sacred, but lonely,
chapel of scientific thought.

. . . “We” refers to what Patterson calls “the generations-old community of scientific
minds.” . . . To him it must have been an exercise in improving the state of the
“community of scientific minds.” His attitude recalls the remark of Newton: “If I
have seen farther than others, it is because I have stood on the shoulders of giants.”
(From Biographical Memoirs by George R. Tilton)

SUMMARY

A nuclear species can be represented by AZ X, where A is the mass number, the
total number of nucleons, and Z is the atomic number, the total number of
protons. The total number of neutrons in a nucleus is the neutron number,
N, where A � N � Z . Elements with the same Z but different A and N values
are called isotopes.

Assuming that a nucleus is spherical, its radius is

(13.1)

where r0 � 1.2 fm (1 fm � 10�15 m).
Nuclei are stable because of the nuclear force between nucleons. This

short-range force dominates the Coulomb repulsive force at distances of less
than about 2 fm and is nearly independent of charge. Light nuclei are most
stable when the number of protons equals the number of neutrons. Heavy nu-
clei are most stable when the number of neutrons exceeds the number of pro-
tons. In addition, the most stable nuclei have Z and N values that are both
even. Nuclei with unusually high stability have Z or N values of 2, 8, 20, 28, 50,
82, and 126, called magic numbers.

Nuclei have a total angular momentum of magnitude , where I is
called the nuclear-spin quantum number. The magnetic moment of a nu-
cleus is measured in terms of the nuclear magneton �n, where

(13.3)

When a nuclear moment is placed in an external magnetic field, it precesses
about the field with a frequency that is proportional to the field strength.

The difference between the combined mass of the separate nucleons and
that of the compound nucleus containing those nucleons, when multiplied by
c2, gives the binding energy Eb of the nucleus. We can calculate the binding
energy of any nucleus of mass MA with Z protons and N neutrons from

(13.4)

where all masses are atomic masses and mn is the mass of the neutron.
The liquid-drop model of nuclear structure treats the nucleons as molecules

in a drop of liquid. The three main contributions influencing binding energy
are the volume effect, the surface effect, and Coulomb repulsion. Summing
such contributions results in the semiempirical binding energy formula.

Eb (MeV) � [ZM(H) � Nmn � MA] � 931.494
MeV

u

�n �
e�

2mp
� 5.05 � 10�27 J/T

√I(I � 1)�

r � r 0A1/3
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The independent-particle model or shell model of nuclear structure
assumes that each nucleon moves in a well-defined quantized orbit within the
nucleus. The stability of certain nuclei—particularly those with magic num-
bers—can be explained with this model. Nuclei can move in well-defined
orbits inside the densely packed nucleus because two nucleons will collide
only if the energy of each state after the collision corresponds to one of the
unoccupied nuclear states.

The collective model of the nucleus combines some features of the liquid-
drop model and some features of the independent-particle model. It has been
very successful in describing a variety of nuclear phenomena.

A radioactive substance decays by alpha decay, beta decay, or gamma de-
cay. An alpha particle is a 4He nucleus; a beta particle is either an electron
(e�) or a positron (e�); a gamma particle is a high-energy photon.

If a radioactive material contains N0 radioactive nuclei at t � 0, the number
of nuclei N, remaining after a time t has elapsed is

(13.9)

where � is the decay constant, the probability per unit time that a nucleus
will decay. The decay rate, or activity, of a radioactive substance is

(13.10)

where R0 � N0� is the activity, or number of decays per unit time at t � 0. The
half-life T1/2 is defined as the time required for half of a given number of
radioactive nuclei to decay, where

(13.11)

Alpha decay can occur because, according to quantum mechanics, alpha par-
ticles can tunnel through the coulomb barriers of nuclei. A nucleus undergoing
beta decay emits either an electron (e�) and an antineutrino ( ) or a positron
(e�) and a neutrino (�). In electron capture, the nucleus of an atom absorbs
one of its own orbital electrons and emits a neutrino. In gamma decay, a nucleus
in an excited state decays to a lower energy state and emits a gamma ray.

�

T1/2 �
0.693

�

R � � dN

dt � � R0e��t

N � N0e��t
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QUESTIONS

1. Why are heavy nuclei unstable?
2. A proton precesses with a frequency �p in the presence

of a magnetic field. If the intensity of the magnetic
field is doubled, what happens to the precessional fre-
quency?

3. Explain why nuclei that are well off the line of stability
in Figure 13.4 tend to be unstable.

4. Consider two heavy nuclei, X and Y, with similar mass
numbers. If X has the higher binding energy, which
nucleus tends to be more unstable?

5. Discuss the differences between the liquid-drop model
and the independent-particle model of the nucleus.

6. How many values of Iz are possible for I � ? for I � 3?5
2

7. In nuclear magnetic resonance, how does increasing
the dc magnetic field change the frequency of the ac
field that excites a particular transition?

8. Would the liquid-drop model or the independent-
particle model be more appropriate for predicting the
behavior of a nucleus in a fission reaction? Which
would be more successful at predicting the magnetic
moment of a given nucleus? Which could better ex-
plain the gamma-ray spectrum of an excited nucleus?

9. If a nucleus has a half-life of one year, does that mean it
will be completely decayed after two years? Explain.

10. What fraction of a radioactive sample has decayed after
two half-lives have elapsed?
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PROBLEMS 497

11. Two samples of the same radioactive nuclide are pre-
pared, each having the same size. Sample A has twice
the initial activity of sample B. How does the half-life of
A compare with the half-life of B? After each sample
has passed through five half-lives, what is the ratio of
their activities?

12. Explain why the half-lives of radioactive nuclei are es-
sentially independent of temperature.

13. The radioactive nucleus 226
88Ra has a half-life of approxi-

mately 1.6 � 103 yr. Given that the Solar System is
about 5 billion years old, why do we still find this nu-
cleus in nature?

14. A free neutron undergoes beta decay with a half-life of
about 10 min. Can a free proton undergo a similar
decay?

15. Explain how you can carbon-date the age of a sample.
16. What is the difference between a neutrino and a photon?
17. Use Equation 13.24 to explain why the neutrino must

have a spin of .
18. A nucleus such as 226Ra that is initially at rest under-

goes alpha decay. Which has more kinetic energy after
the decay, the alpha particle or the daughter nucleus?

19. Can a nucleus emit alpha particles with different ener-
gies? Explain.

1
2

20. Explain why many heavy nuclei undergo alpha decay
but do not spontaneously emit neutrons or protons.

21. If an alpha particle and an electron have the same ki-
netic energy, which undergoes greater deflection when
passed through a magnetic field?

22. If photographic film is kept in a wooden box, alpha
particles from a radioactive source outside the box can-
not expose the film, but beta particles can. Explain.

23. Pick any beta-decay process, and show that the neu-
trino must have zero charge.

24. Suppose it could be shown that the intensity of cosmic
rays at the Earth’s surface was much greater 10,000
years ago. How would this difference affect what we ac-
cept as valid carbon-dated ages of ancient samples of
once-living matter?

25. Why is carbon dating unable to provide accurate esti-
mates of very old material?

26. Element X has several isotopes. What do these isotopes
have in common? How do they differ?

27. Explain the main differences among alpha, beta, and
gamma rays.

28. How many protons are in the nucleus 222
88Rn? How

many neutrons? How many orbiting electrons are in
the neutral atom?

Table 13.6 Some Atomic Masses

Atomic Atomic
Element Mass (u) Element Mass (u)

4
2He 4.002 603 27

13Al 26.981 539
7
3Li 7.016 003 30

15P 29.978 310
9
4Be 9.012 182 40

20Ca 39.962 591
10
5B 10.012 937 42

20Ca 41.958 63
12
6C 12.000 000 43

20Ca 42.958 766
13
6C 13.003 355 56

26Fe 55.934 939
14
7N 14.003 074 64

30Zn 63.929 145
15
7N 15.000 109 63

29Cu 63.929 599
15
8O 15.003 065 93

41Nb 92.906 377
17
8O 16.999 131 197

79Au 196.966 543
18
8O 17.999 160 202

80Hg 201.970 617
18
9F 18.000 937 216

84Po 216.001 888
20
10Ne 19.992 436 220

86Rn 220.011 368
23
11Na 22.989 768 234

90Th 234.043 593
23
12Mg 22.994 124 238

92U 238.050 785

PROBLEMS

Table 13.6 will be useful for many of these problems. A more
complete list of atomic masses appears in Appendix B.

13.1 Some Properties of Nuclei

1. Find the radii of (a) a nucleus of 42H and (b) a nucleus
of 238

92U. (c) What is the ratio of these radii?
2. The compressed core of a star formed in the wake of a

supernova explosion consists of only neutrons and is
called a neutron star. Calculate the mass of 10 cm3 of a
neutron star.

3. Consider the hydrogen atom to be a sphere of radius
equal to the Bohr radius, a0, given by Equation 3.29 in
Chapter 3, and calculate the approximate value of the
ratio of the nuclear mass density to the atomic mass
density.

4. The Larmor precessional frequency is

Calculate the radio-wave frequency at which reso-
nance absorption occurs for (a) free neutrons in a
magnetic field of 1 T, (b) free protons in a magn etic
field of 1 T, and (c) free protons in the Earth’s mag-
netic field at a location where the magnetic field
strength is 50 �T.

5. (a) Use energy methods to calculate the distance of
closest approach for a head-on collision between an al-
pha particle with an initial energy of 0.5 MeV and a
gold nucleus (197Au) at rest. (Assume that the gold nu-

f �
�E

h
�

2�B

h
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498 CHAPTER 13 NUCLEAR STRUCTURE

cleus remains at rest during the collision.) (b) What
minimum initial speed must the alpha particle have in
order to approach to a distance of 300 fm?

6. A neutron star is a nucleus composed entirely of neu-
trons and has a radius of about 10 km. Such a star
forms when a larger star cools down and collapses
under the influence of its own gravitational field.
The compression continues until the protons and
electrons merge to form neutrons. (a) Assuming that
Equation 13.1 is valid, estimate the mass number
A and mass M of a neutron star of radius R � 10 km.
(b) Find the acceleration due to gravity at the sur-
face of such a star. (c) Find the rotational kinetic
energy of the star if it rotates about its axis
30 times/s. (Assume that the star is a sphere of uni-
form density.)

7. Consider a hydrogen atom with the electron in the
2p state. The magnetic field at the nucleus produced
by the orbiting electron has a value of 12.5 T. The
proton can have its magnetic moment aligned in ei-
ther of two directions perpendicular to the plane of
the electron’s orbit. Because of the interaction of the
proton’s magnetic moment with the electron’s mag-
netic field, there will be a difference in energy be-
tween the states with the two different orientations of
the proton’s magnetic moment. Find that energy dif-
ference in electron volts.

8. Using a reasonable scale, sketch an energy-level dia-
gram for (a) a proton and (b) a deuteron, both in a
magnetic field B. (c) What are the absolute values
of the changes in energy that accompany the possi-
ble transitions between the levels shown in your
diagrams?

9. Copper, as it occurs naturally, consists of two stable iso-
topes, 63Cu and 65Cu. What is the relative abundance
of the two forms? In your calculations, take the atomic
weight of copper to be 63.55 and take the masses of the
two isotopes to be 62.95 u and 64.95 u.

10. (a) Find the radius of the 12
6C nucleus. (b) Find the

force of repulsion between a proton at the surface
of a 12

6C nucleus and the remaining five protons.
(c) How much work (in MeV) must be done to over-
come this electrostatic repulsion and put the last
proton into the nucleus? (d) Repeat (a), (b), and
(c) for 238

92U.

13.2 Binding Energy and Nuclear Forces

11. In Example 13.3, the binding energy of the deuteron
was calculated to be 2.224 MeV. This corresponds to a
value of 1.112 MeV/nucleon. What is the binding en-
ergy per nucleon for the heaviest isotope of hydrogen,
3H (called tritium)?

12. Using the atomic mass of 56
26Fe given in Table 13.6,

find its binding energy. Then compute the binding

energy per nucleon and compare your result with
Figure 13.10.

13. The 139
57 La isotope of lanthanum is stable. A radioac-

tive isobar (see Problem 14) of this lanthanum iso-
tope, 139

59 Pr, appears below the line of stable nuclei in
Figure 13.4 and decays by e� emission. Another ra-
dioactive isobar of 139La, 139

55 Cs, decays by e� emission
and appears above the line of stable nuclei in Figure
13.4. (a) Which of these three isobars has the highest
neutron-to-proton ratio? (b) Which has the greatest
binding energy per nucleon? (c) Which of the two
radioactive nuclei (139Pr or 139Cs) do you expect to
be heavier?

14. Two nuclei with the same mass number are known as
isobars. If the two nuclei also have interchanged atomic
and neutron numbers, such as 23

11Na and 23
12Mg, the nu-

clei are called mirror isobars. Binding-energy measure-
ments on these nuclei can be used to obtain evidence of
the charge independence of nuclear forces (that is,
proton–proton, proton–neutron, and neutron–-
neutron forces are approximately equal). (a) Calculate
the difference in binding energy for the two mirror nu-
clei 15

8O and 15
7N. (b) Calculate the difference in bind-

ing energy per nucleon for the mirror isobars 23
11Na and

23
12Mg. How do you account for the difference?

15. Calculate the binding energy per nucleon for the nuclei
(a) 20

10Ne, (b) 40
20Ca, (c) 93

41Nb, and (d) 197
79Au.

16. Calculate the minimum energy required to remove a
neutron from the 43

20Ca nucleus. (Hint: Use a formula
analogous to Eq. 13.4.)

17. Using the graph in Figure 13.10, estimate how much
energy is released when a nucleus of mass number 200
is split into two nuclei, each of mass number 100.

13.3 Nuclear Models

18. (a) In the liquid-drop model of nuclear structure, why
does the surface-effect term �C2A2/3 have a minus
sign? (b) The binding energy of the nucleus increases
as the volume-to-surface ratio increases. Calculate this
ratio for both spherical and cubical shapes, and ex-
plain which is more plausible for nuclei.

19. Treat the nucleus as a sphere of uniform volume
charge density 
. (a) Derive an expression for the total
energy required to assemble a sphere of charge corre-
sponding to a nucleus of atomic number Z and radius
R. (b) Using the result of (a), find an expression for
the electrostatic potential energy U in terms of the
mass number A for the case when N � Z (the nucleus is
on the line of stability). (c) Evaluate the result of
(b) for the nucleus 30

15P.
20. (a) Use Equation 13.7 and the given values for the

constants C1, C2, C3, and C4 to calculate the binding
energy per nucleon for the isobars 64

29Cu and 64
30Zn.

(b) Compare these values to the binding energy per
nucleon calculated with Equation 13.4.
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13.4 Radioactivity

21. Measurements on a radioactive sample show that its
activity decreases by a factor of 5 during a 2-h interval.
(a) Determine the decay constant of the radioactive
nucleus. (b) Calculate the value of the half-life for this
isotope.

22. The half-life of 131I is 8.04 days. (a) Calculate the decay
constant for this isotope. (b) Find the number of 131I
nuclei necessary to produce a sample with an activity
of 0.5 �Ci.

23. A freshly prepared sample of a certain radioactive isotope
has an activity of 10 mCi. After an elapsed time of 4 h, its
activity is 8 mCi. (a) Find the decay constant and half-life
of the isotope. (b) How many atoms of the isotope were
contained in the freshly prepared sample? (c) What is
the sample’s activity 30 h after it is prepared?

24. Tritium has a half-life of 12.33 yr. What percentage of
the 3H nuclei in a tritium sample will decay during a
period of 5 years?

25. A sample of radioactive material is said to be carrier-free

when no stable isotopes of the radioactive element are
present. Calculate the mass of strontium in a carrier-
free 5-mCi sample of 90Sr whose half-life is 28.8 yr.

26. How many radioactive atoms are present in a sample
that has an activity of 0.2 �Ci and a half-life of 8.1 days?

27. A laboratory stock solution is prepared with an initial
activity due to 24Na of 2.5 mCi/mL, and 10 mL of the
stock solution is diluted (at t0 � 0) to a working solu-
tion with a total volume of 250 mL. After 48 h, a 5-mL
sample of the working solution is monitored with a
counter. What is the measured activity? (Note : 1 mL �

1 milliliter, and the half-life of 24Na is 15.0 h.)
28. Start with Equation 13.10, and find the following useful

forms for the decay constant and half-life:

29. The radioactive isotope 198Au has a half-life of 64.8 h. A
sample containing this isotope has an initial activity of
40 �Ci. Calculate the number of nuclei that will decay
in the time interval from t1 � 10 h to t2 � 12 h.

30. During the manufacture of a steel engine component,
radioactive iron (59Fe) is included in the total mass of
0.2 kg. The component is placed in a test engine when
the activity due to this isotope is 20 �Ci. After a 1000-h
test period, oil is removed from the engine and found
to contain enough 59Fe to produce 800 disintegra-
tions/min per liter of oil. The total volume of oil in the
engine is 6.5 L. Calculate the total mass worn from the
engine component per hour of operation. (The half-
life for 59Fe is 45.1 days.)

31. The activity of a sample of radioactive material was
measured over 12 h, and the following net count rates
were obtained at the times indicated:

� �
1

t
 ln � R0

R �  T1/2 �
(ln 2)t

ln(R0/R)

Time (h) Counting Rate (counts/min)

1 3100
2 2450
4 1480
6 910
8 545

10 330
12 200

(a) Plot the activity curve on semilog paper. (b) Deter-
mine the disintegration constant and the half-life of
the radioactive nuclei in the sample. (c) What counting
rate would you expect for the sample at t � 0? (d) As-
suming the efficiency of the counting instrument to be
10%, calculate the number of radioactive atoms in the
sample at t � 0.

32. A by-product of some fission reactors is the isotope 239
94Pu,

which is an alpha emitter with a half-life of 24,000 years:

239
94Pu 9:

235
92U � �

Consider a sample of 1 kg of pure 239
94Pu at t � 0.

Calculate (a) the number of 239
94Pu nuclei present at

t � 0, (b) the initial activity in the sample, and (c) the
time required for the activity to decrease to 1 decay/s.

33. A piece of charcoal has a mass of 25 g and is known to
be about 25,000 years old. (a) Determine the number
of decays per minute expected from this sample. (b) If
the radioactive background in the counter without a
sample is 20 counts/min and we assume 100% effi-
ciency in counting, explain why 25,000 years is close to
the limit of dating with this technique.

34. A fission reactor accident evaporates 5 � 106 Ci of
90Sr(T1/2 � 27.7 yr) into the air. The 90Sr falls out
over an area of 104 km2. How long will it take the activ-
ity of the 90Sr to reach the agriculturally “safe” level of
2 �Ci/m2?

35. What specific activity (see Problem 36), in disintegra-
tions/min � g, would be expected for carbon samples
from 2000-year-old bones? (Note that the ratio of 14C
to 12C in living organisms is 1.3 � 10�12 and the half-
life of 14C is 5730 yr.)

36. In addition to the radioactive nuclei included in the
natural decay series, there are several other radioac-
tive nuclei that occur naturally. One is 147Sm, which
is 15% naturally abundant and has a half-life of ap-
proximately 1.3 � 1010 years. Calculate the number
of decays per second per gram (due to this isotope)
in a sample of natural samarium. The atomic weight
of samarium is 150.4. (Activity per unit mass is called
specific activity.)

37. A radioactive nucleus with decay constant � decays to a
stable daughter nucleus. (a) Show that the number of
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500 CHAPTER 13 NUCLEAR STRUCTURE

daughter nuclei, N2, increases with time according to
the expression

where N01 is the initial number of parent nuclei.
(b) Starting with 106 parent nuclei at t � 0, with a half-
life of 10 h, plot the number of parent nuclei and the
number of daughter nuclei as functions of time over
the interval 0 to 30 h.

38. Many radioisotopes have important industrial, med-
ical, and research applications. One of these is 60Co,
which has a half-life of 5.2 yr and decays by the emis-
sion of a beta particle (energy 0.31 MeV) and two
gamma photons (energies 1.17 MeV and 1.33 MeV).
A scientist wishes to prepare a 60Co sealed source that
will have an activity of at least 10 Ci after 30 months
of use. (a) What minimum initial mass of 60Co is re-
quired? (b) At what rate will the source emit energy
after 30 months?

39. The concept of radioactive half-life was described in
Section 13.4, and Equation 13.11 gives the relationship
between T1/2 and �. Another parameter that is often
useful in the description of radioactive processes is the
mean life, �. Although the half-life of a radioactive iso-
tope is accurately known, it is not possible to predict
the time when any individual atom will decay. The
mean life is a measure of the average length of exis-
tence of all the atoms in a particular sample. Show that
� � 1/�. (Hint: Remember that � is essentially an aver-
age value, and use the fact that the number of atoms
that decay between t and t � dt is equal to dN. Fur-
thermore, note that these dN atoms have a finite time
of existence, t.)

40. Potassium as it occurs in nature includes a radioactive
isotope 40K, which has a half-life of 1.27 � 109 yr and a
relative abundance of 0.0012%. These nuclei decay by
two different pathways—89% by e� emission and 11%
by e� emission. Calculate the total activity in Bq associ-
ated with 1 kg of KCl due to e� emission.

13.5 Decay Processes

41. Find the energy released in the alpha decay of 238
92U:

238
92U 9:

234
90 Th � 4

2He

You will find the mass values in Table 13.6 useful.
42. When, after a reaction or disturbance of any kind, a nu-

cleus is left in an excited state, it can return to its nor-
mal (ground) state by emission of a gamma-ray photon
(or several photons). Equation 13.25 describes this
process. The emitting nucleus must recoil in order to
conserve both energy and momentum. (a) Show that
the recoil energy of the nucleus is

E r �
(�E)2

2Mc2

N2 � N01(1 � e��t)

where �E is the difference in energy between the
excited and ground states of a nucleus of mass
M. (b) Calculate the recoil energy of the 57Fe nucleus
when it decays by gamma emission from the 14.4-keV
excited state. For this calculation, take the mass to
be 57 u. (Hint: When writing the equation for con-
servation of energy, use (Mv)2/2M for the kinetic
energy of the recoiling nucleus. Also, assume that
hf �� Mc 2.)

43. Equation 13.12 represents the decay of an unstable nu-
cleus at rest by alpha emission. The disintegration en-
ergy Q given by Equation 13.15 must be shared by the
alpha particle and the daughter nucleus in order to
conserve both energy and momentum in the decay
process. (a) Show that for nonrelativistic particles, Q

and K�, the kinetic energy of the � particle, are related
by the expression

where MY is the mass of the daughter nucleus. (b) Use
the result of (a) to find the energy of the � particle
emitted in the decay of 226Ra. (c) What is the kinetic en-
ergy of the daughter? (d) Apply the preceding expres-

sion for Q to the beta decay 210
83Bi 9:

210
84Po � e� to

verify the claim that the daughter nucleus carries off a
negligible amount of kinetic energy in beta decay. Why
is your answer an approximation?

44. Find the kinetic energy of an alpha particle emitted
during the alpha decay of 220

86Rn. Assume that the
daughter nucleus, 216

84Po, has zero recoil velocity.
45. Determine which of the following suggested decays can

occur spontaneously:

(a) 40
20Ca 9: e� � 40

19K � �

(b) 98
44Ru 9:

4
2He � 94

42Mo

(c) 144
60Nd 9:

4
2He � 140

58Ce

46. (a) Why is the following inverse � decay forbidden for
a free proton?

p 9: n � e� � �

(b) Why is the same reaction possible if the proton is
bound in a nucleus? For example, the following reac-
tion occurs:

13
7N 9:

13
6C � e� � �

(c) How much energy is released in the reaction given
in (b)? [Take the masses to be m(e�) � 0.000549 u,
M(13C) � 13.003355 u, and M(13N) � 13.005739 u,
and see Problem 49.]

47. Use the Heisenberg uncertainty principle to make a
reasonable argument against the hypothesis that free
electrons can be present in a nucleus. Use relativistic
expressions for the momentum and energy, and in-
clude appropriate assumptions and approximations.

Q � K� �1 �
M�

M Y
�
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48. The simplest example of beta decay is the beta decay of
the free neutron. Free neutrons have a half-life of
10.2 min and decay according to the reaction

(a) Find the maximum kinetic energy the electron may
have when a neutron decays at rest. (Hint: In this case,
the energy of the antineutrino is approximately zero,
the momentum of the proton equals the momentum of
the electron, and the kinetic energy of the proton is
negligible compared to that of the electron.) (b) Find
the proton’s kinetic energy in this case. (c) Find the
maximum kinetic energy and momentum that the anti-
neutrino may have and the proton’s kinetic energy in
this case. (Hint: Assume that the proton’s kinetic en-
ergy is negligible compared to that of the .)

49. Q values for � decay. One must be careful in calculating
Q values for beta decay. Atomic masses cannot always
be used without correction, because electron masses do
not always cancel as in alpha decay. Show that the cor-
rect expressions for beta decay are

electron capture Q � [M(A
ZX) � M( A

Z�1Y)]c2

positron emission Q � [M(A
ZX) � M( A

Z�1Y) � 2me]c2

electron emission Q � [M(A
ZX) � M( A

Z�1Y)]c2

�

n9: p � e� � �

where M(A
Z X) and M(Z �1

AY) are the atomic masses of
the parent and daughter, respectively, and me is the
mass of the electron.

13.6 Natural Radioactivity

50. Starting with 235
92U, the sequence of decays shown in

Figure P13.50 is observed, ending with the stable iso-
tope 207

82Pb. Enter the correct isotope symbol in each
open square.

e–

α

α α α α

α α α α

e– e– e– e–

e–
α

e–

α

e–

235U92U

207Pb82Pb

Figure P13.50

ADDITIONAL PROBLEMS

51. A 3H nucleus beta-decays into 3He by creating an elec-
tron and an antineutrino according to the reaction

Use Appendix B to determine the total energy released
in this reaction.

52. The nucleus 15
8O decays by electron capture. Write

(a) the basic nuclear process and (b) the decay
process. (c) Determine the energy of the neutrino. Dis-
regard the daughter’s recoil.

53. In a piece of rock from the Moon, the 87Rb content is
assessed to be 1.82 � 1010 atoms per gram of material
and the 87Sr content is found to be 1.07 � 109 atoms
per gram. (a) Determine the age of the rock.
(b) Could the material in the rock actually be much
older? What assumption is implicit in the use of
the radioactive dating method? (The relevant decay
is 87Rb :

87Sr � e�. The half-life of the decay is
4.8 � 1010 yr.)

54. (a) Can 57Co decay by e� emission? Explain. (b) Can
14C decay by e� emission? Explain. (c) If either answer
is yes, what is the range of kinetic energies available for
the beta particle?

55. When a material of interest is irradiated by neutrons,
radioactive atoms are produced continually and some

3
1H9:

3
2He � e� � �

decay according to their given half-lives. (a) If radioac-
tive atoms are produced at a constant rate R and their
decay is governed by the conventional radioactive de-
cay law, show that the number of radioactive atoms ac-
cumulated after an irradiation time t is

(b) What is the maximum number of radioactive atoms
that can be produced?

56. The ground state of 92
43Tc (molar mass 92.9102) decays

by electron capture and e� emission to energy levels of
the daughter (molar mass in ground state is 92.9068)
at 2.44 MeV, 2.03 MeV, 1.48 MeV, and 1.35 MeV.
(a) For which of these levels are electron capture and
e� decay allowed? (b) Identify the daughter and sketch
the decay scheme, assuming that all excited states deex-
cite by direct gamma decay to the ground state.

57. In an experiment on the transport of nutrients in the
root structure of a plant, two radioactive nuclides X
and Y are used. Initially, 2.50 times more nuclei of type
X are present than of type Y. Just three days later there
are 4.20 times more nuclei of type X than of type Y. Iso-
tope Y has a half-life of 1.60 d. What is the half-life of
isotope X? 

N �
R

�
 (1 � e��t)
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58. (a) The daughter nucleus formed in radioactive decay is
often radioactive. Let N10 represent the number of par-
ent nuclei at time t � 0, N1(t) the number of parent nu-
clei at time t, and �1 the decay constant of the parent.
Suppose the number of daughter nuclei at time t � 0 is
zero, let N2(t) be the number of daughter nuclei at time
t, and let �2 be the decay constant of the daughter. Show
that N2(t) satisfies the differential equation

(b) Verify by substitution that this differential equation
has the solution

This equation is the law of successive radioactive
decays. (c) 218Po decays into 214Pb with a half-life of
3.10 min, and 214Pb decays into 214Bi with a half-life of
26.8 min. On the same axes, plot graphs of N1(t) for
218Po and N 2(t) for 214Pb. Let N10 � 1000 nuclei, and
choose values of t from 0 to 36 min in 2-min intervals.
The curve for 214Pb at first rises to a maximum and
then starts to decay. At what instant tm is the number of
214Pb nuclei a maximum? (d) By applying the condi-

tion for a maximum , derive a symbolic for-

mula for tm in terms of �1 and �2 . Does the value
obtained in (c) agree with this formula?

59. A certain African artifact is found to have a carbon-14
activity of (0.12 � 0.01) Bq per gram of carbon.
Assume the uncertainty is negligible in the half-life of
14C (5730 yr) and in the activity of atmospheric carbon
(0.25 Bq per gram). The age of the object lies within
what range? 

dN2

dt
� 0

N2(t) �
N10�1

�1 � �2
 (e��2t � e��1t)

dN2

dt
� �1N1 � �2N2

60. As part of his discovery of the neutron in 1932, James
Chadwick determined the mass of the newly identified
particle by firing a beam of fast neutrons, all having the
same speed, at two different targets and measuring the
maximum recoil speeds of the target nuclei. The maxi-
mum speeds arise when an elastic head-on collision
occurs between a neutron and a stationary target
nucleus. (a) Represent the masses and final speeds of
the two target nuclei as m1, v1, m2, and v2 and assume
Newtonian mechanics applies. Show that the neutron
mass can be calculated from the equation

(b) Chadwick directed a beam of neutrons (produced
from a nuclear reaction) on paraffin, which contains
hydrogen. The maximum speed of the protons ejected
was found to be 3.3 � 107 m/s. Since the velocity of
the neutrons could not be determined directly, a sec-
ond experiment was performed using neutrons from
the same source and nitrogen nuclei as the target. The
maximum recoil speed of the nitrogen nuclei was
found to be 4.7 � 106 m/s. The masses of a proton and
a nitrogen nucleus were taken as 1 u and 14 u, respec-
tively. What was Chadwick’s value for the neutron mass?

61. A rock sample contains traces of 238U, 235U, 232Th,
208Pb, 207Pb, and 206Pb. Careful analysis shows that the
ratio of the amount of 238U to 206Pb is 1.164. (a) As-
sume that the rock originally contained no lead and
determine the age of the rock. (b) What should be the
ratios of 235U to 207Pb and of 232Th to 208Pb so that
they would yield the same age for the rock? Ignore the
minute amounts of the intermediate decay products in
the decay chains. Note that this form of multiple dating
gives reliable geological dates.

mn �
m1v1 � m2v2

v2 � v1
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Summary

Chapter Outline

This chapter is concerned with nuclear reactions in which particles and nuclei
collide and change into other nuclei and particles. We also consider the two
means by which energy can be derived from nuclear reactions: fission, in which
a large nucleus splits, or fissions, into two smaller nuclei, and fusion, in which
two small nuclei fuse to form a larger one. In either case, a release of energy
occurs that can then be used either destructively through bombs or construc-
tively through production of electric power. Finally, we examine the interaction
of radiation with matter and several devices for detecting radiation.

14.1 NUCLEAR REACTIONS

It is possible to change the structure of nuclei by bombarding them with ener-
getic particles. Such collisions that change the identities of the target nuclei are
called nuclear reactions. Rutherford was the first to observe them in 1919,
using naturally occurring radioactive sources for the bombarding particles. Since
then, thousands of nuclear reactions have been observed, especially after the
development of charged-particle accelerators in the 1930s. With today’s
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technology in particle accelerators, it is possible to achieve particle energies of
1000 GeV � 1 TeV and higher. These high-energy particles are used to create
new particles whose properties are helping to solve the mystery of the nucleus.

Consider a reaction in which a target nucleus X is bombarded by a particle
a, resulting in a nucleus Y and a particle b:

(14.1)

Sometimes this reaction is written in the more compact form

X(a, b)Y

As an example, consider the reaction 7Li(p, �)4He, or

Cockroft and Walton were first to observe this reaction in 1932, using protons
accelerated to 600 keV in an accelerator they had designed and built. A nu-
clear reaction such as this, and in fact any reaction, can occur only if it satisfies
certain conservation laws. The conservation laws for nuclear reactions are

• Conservation of mass number, A. The total number of nucleons must be the
same after the reaction as before. For the reaction under discussion,
Abefore � 1 � 7 � Aafter � 4 � 4.

• Conservation of charge, q. Here the charged nuclear particles are protons,
and qbefore � 1 � 3 � qafter � 2 � 2.

• Conservation of energy, linear momentum, and angular momentum. These
quantities are conserved because a nuclear reaction involves only internal
forces between a target nucleus and a bombarding nucleus, and there are
no external forces to upset these conservation principles.

Let us apply the conservation of energy to a reaction of the form of Equation
14.1 to compute the total kinetic energy released (or absorbed) in the reaction,
which is called the reaction energy, Q. Assume that the target nucleus X is orig-
inally at rest, the bombarding particle a has kinetic energy Ka, and the reaction
products b and Y have kinetic energies Kb and K Y. Conserving energy,

MXc2 � Ka � Mac
2 � MYc2 � KY � Mbc2 � Kb

As the total kinetic energy released in the reaction, Q , is equal to the differ-
ence between the kinetic energy of the final particles and that of the initial
particle, we find

Q � (KY � Kb) � Ka � (MX � Ma � M Y � Mb)c2 (14.2)

A reaction for which Q is positive converts nuclear mass to kinetic energy of
the products Y and b and is called an exothermic reaction. A reaction for
which Q is negative requires some minimum input kinetic energy from the
bombarding particle in order to occur. Such a reaction is called endothermic.

For an endothermic reaction to proceed, the incident particle must have a
minimum kinetic energy called the threshold energy, K th. Since K th must not
only supply �Q �, the excess mass–energy of the products, but also supply some
kinetic energy to the products to conserve momentum, K th is greater than �Q �.

For low-energy reactions, where the kinetic energies of all the interacting
particles are small compared to their rest energies, we can apply the nonrela-

1
1H � 7

3Li 9:
4
2He � 4

2He

a � X9: Y � b
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tivistic expressions K � mv2 and p � mv to find the threshold energy. It is left
as a problem (Problem 9) to show that when momentum and energy are con-
served in a low-energy negative Q reaction, the threshold energy is

(14.3)

Finally, we have included a selected list of measured Q values for reactions in-
volving light nuclei in Table 14.1.

Kth � �Q �1 �
Ma

MX
�

1
2
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Table 14.1 Q Values for Nuclear Reactions

Involving Light Nuclei

Reactiona Measured Q Value (MeV)

2H(n, �)3H 6.257 � 0.004
2H(d, p)3H 4.032 � 0.004
6Li(p, �)3H 4.016 � 0.005
6Li(d, p)7Li 5.020 � 0.006
7Li(p, n)7Be �1.645 � 0.001
7Li(p, �)4He 17.337 � 0.007
9Be(n, �)10Be 6.810 � 0.006
9Be(�, n)8Be �1.666 � 0.002
9Be(d, p)10Be 4.585 � 0.005
9Be(p, �)6Li 2.132 � 0.006
10B(n, �)7Li 2.793 � 0.003
10B(p, �)7Be 1.148 � 0.003
12C(n, �)13C 4.948 � 0.004
13C(p, n)13N �3.003 � 0.002
14N(n, p)14C 0.627 � 0.001
14N(n, �)15N 10.833 � 0.007
18O(p, n)18F �2.453 � 0.002
19F(p, �)16O �8.124 � 0.007

aThe symbols n, p, d, �, and � denote the neutron, proton,
deuteron, alpha particle, and photon, respectively.
From C. W. Li, W. Whaling, W. A. Fowler, and C. C. Laurit-
sen, Phy. Rev., 83:512, 1951.

(b) Find the kinetic energy of the products if 600-keV
protons are incident.

Solution (b) Since Q � Kproducts � K incident particle,

Kproducts � Q � K incident particle � 17.3 MeV � 0.6 MeV

� 17.9 MeV

This means that the two alpha particles share 17.9 MeV
of kinetic energy.

EXAMPLE 14.1

(a) Calculate the Q value for the reaction observed by
Cockcroft and Walton.

Solution (a) The reaction is

Using Q � (MLi � MH � 2MHe)c 2 and substituting
atomic mass values from Appendix B, we find

Q � (7.016 003 u � 1.007 825 u

� 2(4.002 603 u))(931.50 MeV/u) � 17.3 MeV

1
1H � 7

3Li 9:
4
2He � 4

2He
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14.2 REACTION CROSS SECTION

Since we deal in this chapter with the interactions between nuclei and matter,
it is useful to introduce a quantity called the cross section, which is a mea-
sure of the probability that a particular nuclear reaction will occur.

When a beam of particles is incident on a target in the form of a thin foil, not
every particle interacts with a target nucleus. The probability that an interaction
will occur depends on the ratio of the “effective” area of the target nucleus to
the area of the foil. The situation is analogous to throwing darts at a large wall
upon which many inflated balloons are hanging. If the darts are thrown at ran-
dom in the direction of the wall and the balloons are spread out so as not to
touch each other, there is some chance that you will hit a balloon on any given
throw. Furthermore, if you throw darts at a rate R0, the rate R at which balloons
burst will be less than R0. In fact, the probability of hitting a balloon will equal
R/R0. The ratio R/R0 will depend on the number of balloons N on the wall, the
area � of each balloon, and the area A of the wall. Since the total cross-sectional
area of the balloons is N�, the probability R/R0 equals the ratio N�/A.

With this analogy, we can now understand the concept of cross section as it
pertains to nuclear events. Suppose a beam of particles is incident upon a thin-
foil target, as in Figure 14.1a. Each target nucleus X has an effective area � called
the cross section. You can think of � as an effective area of the nucleus at right
angles to the direction of motion of the bombarding particles, as in Figure 14.1b,
but note that the reaction cross reaction � can be greater than, equal to, or less
than the actual geometrical cross section of the target nucleus. It is assumed that
the reaction X(a, b)Y will occur only if the incident particle strikes the area �.
Therefore, the probability that a collision will occur is proportional to �. That is,
the probability increases as � increases. In the general case, the size of � for a
specific reaction may also depend on the energy of the incident particle.

Let us consider the concept of cross section in more detail. In what follows,
we take the foil thickness to be x and its area to be A. Furthermore, we use the
following notation.

R0 � Rate at which incident particles strike the foil (particles/s)

R � Rate at which reaction events occur (reactions/s)

n � Number of target nuclei per unit volume (particles/m3)

Since the total number of target nuclei in the foil is nAx, the total area ex-
posed to the incident beam must be �nAx. It is assumed that the foil is suffi-
ciently thin that nuclei are not “hidden” behind others. The ratio of the rate
of interactions to the rate of incident particles, R/R0, must equal the ratio of
the area �nAx to the total area A of the foil, in analogy with the dart–balloon
collision events. That is,

(14.4)

This result shows that the probability that a nuclear reaction will occur is pro-
portional to the cross section �, the density of target nuclei n, and the thick-
ness of the target, x. A value for � for a specific reaction can therefore be ob-
tained by measuring R, R 0, n, and x and using Equation 14.4.

We can use the same reasoning to arrive at an expression for the number of
particles that penetrate a foil without undergoing reaction. Suppose that N0

R

R 0
�

�nAx

A
� �nx
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Reaction rate is proportional

to cross section and target

density

x

Thin foil
target

(a)

Total area
of foil = A Area of target

nucleus = σ

(b)

Figure 14.1 (a) A beam of
particles incident on a thin foil
target of thickness x. The view
shown is of an edge of the tar-
get. (b) A front view of the tar-
get, where the circles represent
the target nuclei.
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particles are incident on a foil of thickness dx and dN is the number of parti-
cles that interact with the target nuclei (Fig. 14.2). The ratio of the number of
interacting particles to the number of incident particles, dN/N, equals the
ratio of the total target cross section, nA� dx, to the total foil area A. That is,

where the minus sign indicates that particles are being removed from the
beam. Integrating this expression and taking N � N0 at x � 0,

(14.5)

That is, if N0 is the number of incident particles, the number that emerge
from the slab, N, decreases exponentially with target thickness.

Nuclear cross sections, which have dimensions of area, are typically of the or-
der of the square of the nuclear radius, which is about 10�28 m2. For this reason,
it is common to use the unit of 10�28 m2 for measuring nuclear cross sections.
This small unit is known, strangely enough, as the barn (b)1 and is defined as

1 barn � 10�28 m2 (14.6)

In reality, the concept of cross section in nuclear and atomic physics has little
to do with the actual geometric area of target nuclei. The model we have used
is simply a convenient one for describing the probability of occurrence of any
nuclear reaction. In fact, cross sections vary with both the specific reaction
considered and with the incident particle’s kinetic energy over much more
than several times the target nucleus’s geometrical area. For example, the
cross section for an antineutrino to interact with a proton via the nuclear weak
interaction is only about 10�19 b in the reaction

The cross sections for inelastic scattering of neutrons from iodine and xenon
via the nuclear strong interaction, however, are about 4 barns in the following
reactions:

n � 127I 9:
127I* � n (� � 4 b)

n � 129Xe 9:
129Xe* � n (� � 4 b)

(An inelastic scattering reaction is one in which the incident particle loses en-
ergy to the target nucleus, emerging from the reaction with less kinetic energy
but leaving the target in an excited state, here denoted by the asterisk.)

	 � p 9: e� � n  (� � 10�19 b)

N � N0e�n�x

ln� N

N0
� � �n�x

�N

N0

dN

N
� �n� �x

0
dx

�
dN

N
�

nA� dx

A
� n� dx
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The barn

Number of particles

transmitted through a

target of thickness x

Figure 14.2 If N0 is the num-
ber of particles incident on a tar-
get of thickness dx in some time
interval, the number emerging
from the target is N0 � dN.

dx

N0

N0 – dN

1“Barn” was introduced by the American physicists M. G. Holloway and C. P. Baker in 1942 in a hu-
morous twist. It served the purpose of a code word in concealing war work on reaction probabili-
ties and was appropriate because a cross section of 10�28 m2 really is “as big as the broad side of a
barn” for nuclear processes.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



Finally, an example of a nuclear reaction with a large scattering cross sec-
tion (104 b), and with a strongly energy-dependent cross section as well, is the
neutron capture reaction

n � 113Cd 9:
114Cd � � (� � 104 b)

In this reaction, which has a high probability only for low-energy neutrons, the
cadmium target incorporates an extra neutron into its nucleus, is raised to an
excited state, and emits its excess energy by gamma decay. Figure 14.3 shows the
strong dependence of cross section on incident neutron energy in this case.

14.3 INTERACTIONS INVOLVING NEUTRONS

In order to understand the process of nuclear fission and the physics of the
nuclear reactor, we must first understand the manner in which neutrons inter-
act with nuclei. As mentioned earlier, because of their charge neutrality, neu-
trons are not subject to Coulomb forces. Since neutrons interact very weakly
with electrons, matter appears fairly transparent to neutrons. In general, one
finds that typical cross sections for neutron-induced reactions increase as the
neutron energy decreases. Free neutrons undergo beta decay with a mean life-
time of about 10 min. On the other hand, neutrons in matter are usually ab-
sorbed by nuclei before they decay.

When a fast neutron (one with an energy greater than about 1 MeV) moves
through matter, it undergoes scattering events with nuclei. In each such event,
the neutron gives up some of its kinetic energy to a nucleus. The neutron con-
tinues to undergo collisions until its energy is of the order of the thermal en-
ergy kBT, where kB is Boltzmann’s constant and T is the absolute temperature.
A neutron with this energy is called a thermal neutron. At this low energy,
there is a high probability that the neutron will be captured by a nucleus, as
can be seen for the case of Cd, shown in Figure 14.3. This neutron-capture

508 CHAPTER 14 NUCLEAR PHYSICS APPLICATIONS
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process can be written

(14.7)

Although we do not indicate it here, the nucleus X is in an excited state X* for
a very short time before it undergoes gamma decay. Also, the product nucleus
A
ZX is usually radioactive and may decay by � or 
 emission.

The neutron-capture cross section associated with the preceding process
depends on the nature of the target nucleus and the energy of the incident
neutron. For some materials and for fast neutrons, the cross section is so small
that elastic collisions dominate. Materials for which this occurs are called
moderators, since they slow down (or moderate) the originally energetic neu-
trons very effectively. Boron, graphite, and water are a few examples of moder-
ator materials.

During an elastic collision between two particles, the maximum kinetic en-
ergy is transferred from one particle to the other when they have the same
mass. Consequently, a neutron loses all of its kinetic energy when it collides
head-on with a proton, in analogy with the collision between a moving billiard
ball and a stationary one. If the collision is oblique, the neutron loses only part
of its kinetic energy. For this reason, materials which are abundant in hydro-
gen, such as paraffin and water, are good moderators for neutrons.

At some point, many of the neutrons in the moderator become thermal
neutrons, which are neutrons in thermal equilibrium with the moderator ma-
terial. Their average kinetic energy at room temperature is

which corresponds to a neutron root-mean-square speed of about 2800 m/s.
Thermal neutrons have a distribution of velocities just as the molecules in a
container of gas do. A high-energy neutron, whose energy is several MeV, will
thermalize (that is, reach Kav) in less than 1 ms when incident on a moderator
such as graphite (carbon) or water.

Kav �
3
2

kBT � 0.04 eV

1
0n � A

ZX 9:
A�1

Z X � �

14.3 INTERACTIONS INVOLVING NEUTRONS 509

Neutron-capture process

Substituting this value into Equation 14.4, together with
the given data for x and �, gives

Since the rate of incident particles per unit area is 
R0 � 5.0 � 1012 neutrons/cm2 � s,

Therefore, the number of neutrons captured by
1.0 cm2/s is only 1.8 � 107 neutrons, whereas the inci-
dent number is 5.0 � 1012 neutrons. That is, only about
4 neutrons out of 1 million are captured!

� 1.8 � 107 neutrons/cm2�s

R � (5.0 � 1012 neutrons/cm2�s)(3.6 � 10�6)

(0.30 � 10�3 m) � 3.6 � 10�6

� (2.0 � 10�31 m2)(6.02 � 1028 nuclei/m3)

R

R0
� �nx

EXAMPLE 14.2 Neutron Capture by Aluminum

An aluminum foil of thickness 0.30 mm is bombarded
by energetic neutrons. The aluminum nuclei undergo
neutron capture according to the process 27Al(n, �)
28Al, with a measured capture cross section of
2.0 � 10�3 b � 2.0 � 10�31 m2. Assuming the flux of
incident neutrons to be 5.0 � 1012 neutrons/cm2 � s,
calculate the number of neutrons captured per second
by 1.0 cm2 of the foil.

Solution To solve this problem, we must first evaluate
the density of nuclei n (which equals the density of
atoms). Since the density of aluminum is 2.7 g/cm3 and
A � 27 for aluminum, we have

� 6.02 � 1022 nuclei/cm3 � 6.02 � 1028 nuclei/m3

n �
6.02 � 1023 nuclei/mol

27 g/mol
� 2.7

g
cm3
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14.4 NUCLEAR FISSION

Nuclear fission occurs when a very heavy nucleus such as 235U splits, or fis-
sions, into two particles of comparable mass. In such a reaction, the total
mass of the product particles is less than the original mass. Fission is ini-
tiated by the capture of a thermal neutron by a heavy nucleus and involves the
release of about 200 MeV per fission. This energy release occurs because the
smaller fission-product nuclei are more tightly bound by about 1 MeV per nu-
cleon than the original heavy nucleus.

The process of nuclear fission was first observed in 1938 by Otto Hahn
(1879–1968, German chemist), Lise Meitner (1878–1968, Austrian physicist),
and Fritz Strassmann (1902–1980, German chemist), following some basic
studies by Fermi concerning the interaction of thermal neutrons with uranium.
After bombarding uranium (Z � 92) with neutrons, Hahn and Strassmann per-
formed a chemical analysis and discovered among the products two medium-
mass elements, barium and lanthanum. Shortly thereafter, Lise Meitner and
her nephew Otto Frisch (1904–1979, German-British physicist) explained what
had happened and coined the term fission. The uranium nucleus could split
into nearly equal fragments after absorbing a neutron. Measurements showed
that about 200 MeV of energy was released in each fission event.

The fission of 235U by thermal neutrons can be represented by
1
0n � 235

92U 9:
236

92U* 9: X � Y � neutrons (14.8)

where 236U* is an intermediate excited state that lasts for only about 10�12 s
before splitting into X and Y. The resulting nuclei X and Y are called fission
fragments. There are many combinations of X and Y that satisfy the require-
ments of conservation of mass–energy, charge, and nucleon number. Figure
14.4 shows the actual mass distribution of fragments in the fission of 235U. The

Fission of 235U
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process results in the production of several neutrons, typically two or three.
On the average, about 2.5 neutrons are released per event. A typical reaction
of this type is

1
0n � 235

92U 9:
141
56Ba � 92

36Kr � 31
0n (14.9)

Of the 200 MeV or so released in this reaction, most goes into the kinetic
energy of the heavy fragments barium and krypton.

The breakup of the uranium nucleus can be compared to what happens to
a drop of water when excess energy is added to it. All the atoms in the drop
have energy, but not enough to break up the drop. However, if enough energy
is added to set the drop into vibration, it undergoes elongation and compres-
sion until the amplitude of vibration becomes large enough to cause the drop
to break. In the uranium nucleus, a similar process occurs. Figure 14.5 shows
various stages of the nucleus as the result of neutron capture. The sequence of
events for 235U can be described as follows:

1. The 235U nucleus captures a thermal (slow-moving) neutron.
2. This capture results in the formation of 236U*, and the excess energy of

this nucleus causes it to undergo violent oscillations.
3. The 236U* nucleus becomes highly distorted, and the force of repulsion

between protons in the two halves of the dumbbell shape tends to in-
crease the distortion.

4. The nucleus splits into two fragments, emitting several neutrons in the
process.

As can be seen in Figure 14.4, the most probable fission events corres-
pond to fission fragments with mass numbers A � 140 and A � 95. These
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Figure 14.4 The distribution of fission products versus mass number for the fission
of 235U bombarded with slow neutrons. Note that the ordinate has a logarithmic scale.
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fragments, which share the protons and neutrons of the mother nucleus, both
fall on the neutron-rich side of the stability line in Figure 13.4 (Chapter 13).
Since fragments that have a large excess of neutrons are unstable, the 
neutron-rich fragments almost instantaneously release two or three neutrons.
The remaining fragments are still rich in neutrons and proceed to decay to
more stable nuclei through a succession of beta decays. In the process of such
decays, gamma rays are also emitted by nuclei in excited states.

Let us estimate the disintegration energy Q released in a typical fission
process. From Figure 13.10 we see that the binding energy per nucleon for
heavy nuclei (A � 240) is about 7.6 MeV, whereas in the intermediate mass
range, the binding energy per nucleon is about 8.5 MeV. Taking the mass
number of the mother nucleus to be A � 240, we see that the energy released
per nucleon is estimated to be

About 85% of this energy appears in the form of kinetic energy in the heavy
fragments. This energy is very large compared to the energy released in chem-
ical processes. For example, the energy released in the combustion of one
molecule of octane used in gasoline engines is about one-millionth the energy
released in a single uranium fission event!

Q � (240 nucleons)�8.5
MeV

nucleon
� 7.6

MeV
nucleon � � 200 MeV
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Figure 14.5 The stages in a nuclear fission event as described by the liquid-drop
model of the nucleus.

235U

236U*

(1) (2) (3)

Y

(4)

X

Solution By balancing mass numbers and atomic num-
bers, we find that these reactions can be written

1
0n � 235

92U 9:
140
54Xe � 94

38Sr � 2(1
0n)

1
0n � 235

92U 9:
132
50Sn � 101

42Mo � 3(1
0n)

Thus two neutrons are released in the first reaction and
three in the second.

EXAMPLE 14.3 The Fission of Uranium

In addition to the barium– lanthanum reaction observed
by Meitner and Frisch and the barium–krypton reaction
of Equation 14.9, two other ways in which 235U can fis-
sion when bombarded with a neutron are (1) by forming
140Xe and 94Sr and (2) by forming 132Sn and 101Mo. In
each case, neutrons are also released. Find the number
of neutrons released in each event.
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14.5 NUCLEAR REACTORS

In the last section we saw that when 235U fissions, an average of 2.5 neutrons
are emitted per event. These neutrons can in turn trigger other nuclei to fis-
sion, with the possibility of a chain reaction (Fig. 14.6). Calculations show that
if the chain reaction is not controlled (that is, if it does not proceed slowly), it
can result in a violent explosion, with the release of an enormous amount of
energy. For example, if the energy in 1 kg of 235U were released, it would be
equivalent to detonating about 20,000 tons of TNT! This, of course, is the
principle behind the first nuclear bomb, an uncontrolled fission reaction.

A nuclear reactor is a system designed to maintain what is called a self-
sustained chain reaction. This important process was first achieved in 1942
by Fermi at the University of Chicago, with natural uranium as the fuel (Fig.
14.7). Most reactors in operation today also use uranium as fuel. Natural
uranium contains only about 0.7% of the 235U isotope, with the remaining
99.3% being 238U. This fact is important for the operation of a reactor,
because 238U almost never fissions. Instead, it tends to absorb neutrons,

that the incident neutron provides a few MeV of excita-
tion energy to separate the Ba and Kr nuclei within the
uranium nucleus so that the two fragments 141

56Ba and
92
36Kr are driven apart by Coulomb repulsion. We also ne-
glect the small amount of kinetic energy (several MeV)
carried off by the neutrons produced in the reaction.

Solution First we calculate the separation, r, of the Ba
and Kr nuclei at which the nuclear force between them
falls to zero. This is r � r Ba � r Kr, where r Ba and r Kr are
the nuclear radii of Ba and Kr given by Equation 13.1.
Thus

r Ba � (1.2 � 10�15 m)(141)1/3 � 6.2 � 10�15 m

r Kr � (1.2 � 10�15 m)(92)1/3 � 5.4 � 10�15 m

r � 12 � 10�15 m

Next calculate the Coulomb potential energy for two
charges of Z1 � 56 and Z2 � 36 separated by a distance
of 12 fm. The potential energy of the two nuclei on the
brink of separation is

As the two fragments separate, this potential energy is
converted to an amount of kinetic energy consistent with
the total measured energy release of about 200 MeV. This
shows that the simple fission mechanism suggested here
is plausible.

� 240 MeV

U �
k(Z1e)(Z2e)

r
�

(1.440 eV�nm)(56)(36)
12 � 10�15 m

EXAMPLE 14.4 The Energy Released 
in the Fission of 235U

Calculate the total energy released if 1.00 kg of 235U un-
dergoes fission, taking the disintegration energy per
event to be Q � 208 MeV (a more accurate value than
the estimate given before).

Solution We need to know the number of nuclei in
1 kg of uranium. Since A � 235, the number of nuclei is

Hence the disintegration energy is

Since 1 MeV is equivalent to 4.14 � 10�20 kWh, we find
that E � 2.37 � 107 kWh. If this amount of energy were
released suddenly, it would be equivalent to detonating
20,000 tons of TNT!

EXAMPLE 14.5 A Rough Mechanism 
for the Fission Process

Consider the fission reaction 235
92U � n :

141
56Ba � 92

36Kr �

21
0n. Show that the model of the fission process in

which an excited 235
92U nucleus elongates enough to over-

come attractive nuclear forces and separates into two
charged fragments can be used to estimate the energy
released in this fission process. In this model, we assume

� 5.32 � 1026 MeV

E � NQ � (2.56 � 1024 nuclei) �208
MeV

nucleus �

� 2.56 � 1024 nuclei

N �
6.02 � 1023 nuclei/mol

235 g/mol
 (1.00 � 103 g)
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producing neptunium and plutonium. For this reason, reactor fuels must be
artificially enriched to contain at least a few percent 235U.

To achieve a self-sustained chain reaction, on average one of the neutrons
emitted in 235U fission must be captured by another 235U nucleus and cause
it to undergo fission. A useful parameter for describing the level of reactor
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Figure 14.6 A nuclear chain reaction initiated by the capture of a neutron. (Many
pairs of different isotopes are produced.)

Fragments

Neutron

235U

Figure 14.7 A sketch of the world’s first reactor, which was composed of layers of
graphite interspersed with uranium. (Because of wartime secrecy, there are no pho-
tographs of the completed reactor.) The first self-sustained chain reaction was achieved
on December 2, 1942. Word of the success was telephoned immediately to Washington,
D.C., in the form of this coded message: “The Italian navigator has landed in the New
World and found the natives very friendly.” The historic event took place in an impro-
vised laboratory in the racquet court under the west stands of the University of
Chicago’s Stagg Field, and the Italian navigator guiding the work was Fermi.

Chain reaction
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operation is the reproduction constant K, defined as the average number of
neutrons from each fission event that actually cause another fission event. As
we have seen, K can have a maximum value of 2.5 in the fission of uranium. In
practice, however, K is less than this because of several factors, to be discussed.

A self-sustained chain reaction is achieved when K � 1. Under this condi-
tion the reactor is said to be critical. When K  1, the reactor is subcritical
and the reaction dies out. When K is substantially greater than unity, the reac-
tor is said to be supercritical and a runaway reaction occurs. In a nuclear reac-
tor run by a utility company to furnish power, it is necessary to maintain a
value of K slightly greater than unity.

Figure 14.8 shows the basic ingredients of a nuclear reactor core. The fuel
elements consist of enriched uranium. The function of the remaining parts of
the reactor and some aspects of its design will now be described.

Neutron Leakage

In any reactor, a fraction of the neutrons produced in fission leak out of the
core before inducing other fission events. If the fraction leaking out is too
great, the reactor will not operate. The percentage lost is large if the reactor is
very small because leakage is a function of the ratio of surface area to volume.
Therefore, a critical feature of the design of a reactor is to choose the correct
surface-area-to-volume ratio so that a sustained reaction can be achieved.

Regulating Neutron Energies

Recall that the neutrons released in fission events are very energetic, having ki-
netic energies of about 2 MeV. It is necessary to slow these neutrons to ther-
mal energies to allow them to be captured and produce fission of other 235U
nuclei, because the probability of neutron-induced fission increases with de-
creasing energy, as shown in Figure 14.9. The energetic neutrons are slowed
down by a moderator substance surrounding the fuel, as shown in Figure 14.8.

Neutron Capture

In the process of being slowed down, neutrons may be captured by nuclei that
do not fission. The most common event of this type is neutron capture by
238U, which constitutes over 90% of the uranium in the fuel elements. The
probability of neutron capture by 238U is very high when the neutrons have
high kinetic energies and very low when they have low kinetic energies. Thus
the slowing down of the neutrons by the moderator serves the secondary pur-
pose of making them available for reaction with 235U and decreasing their
chances of being captured by 238U.

Control of Power Level

It is possible for a reactor to reach the critical stage (K � 1) after all the neu-
tron losses just described are minimized. However, some method of control is
needed to maintain a K value near unity. If K were to rise above this value, the
heat produced in the runaway reaction would melt the reactor. To control the
power level, control rods are inserted into the reactor core (see Fig. 14.8).
These rods are made of materials such as cadmium that absorb neutrons very
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Figure 14.8 A cross section of
a reactor core showing the con-
trol rods, fuel elements, and
moderating material surrounded
by a radiation shield.
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efficiently (see Fig. 14.3). By adjusting the number and position of these con-
trol rods in the reactor core, the K value can be varied and any power level
within the design range of the reactor can be achieved.

Although there are several types of reactor that convert the kinetic energy
of fission fragments to electrical energy, the most common type in use in the
United States is the pressurized-water reactor (Fig. 14.10). Its main parts are
common to all reactor designs. Fission events in the reactor core supply heat
to the water contained in the primary (closed) loop, which is maintained at
high pressure to keep it from boiling. This water also serves as the moderator.
The hot water is pumped through a heat exchanger, and the heat is trans-
ferred to the water contained in the secondary loop. The hot water in the sec-
ondary loop is converted to steam, which drives a turbine-generator system to
create electric power. Note that the water in the secondary loop is isolated
from the water in the primary loop to prevent contamination of the secondary
water and steam by radioactive nuclei from the reactor core.

Safety and Waste Disposal

The 1979 near-disaster at a nuclear power plant on Three Mile Island in Pennsyl-
vania and the 1986 accident at the Chernobyl reactor in the Ukraine rightfully
focused attention on reactor safety. The Three Mile Island accident was the result
of inadequate control-room instrumentation and poor emergency-response
training. There were no injuries or detectable health impacts from the event,
even though more than one-third of the fuel melted. This unfortunately was not
the case at Chernobyl, where the activity of the materials released immediately
after the accident totaled approximately 1.2 � 1019 Bq and resulted in the evacu-
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Figure 14.10 Main components of a pressurized-water reactor.
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ation of 135,000 people. Thirty individuals died during the accident or shortly
thereafter and data from the Ukraine Radiological Institute suggest that more
than 2,500 deaths could be attributed to the Chernobyl accident. In the period
1986–1997 there was a tenfold increase in the number of children contracting
thyroid cancer from the ingestion of radioactive iodine in milk from cows that
ate contaminated grass. One conclusion of an international conference studying
the Ukraine accident was that the main causes of the Chernobyl accident were
the coincidence of severe deficiencies in the reactor design and a violation of
safety procedures. Most of these deficiencies have been addressed at plants of
similar design in Russia and neighboring countries of the former Soviet Union.

Commercial reactors achieve safety through careful design, rigid operating
protocol, and thorough emergency-response training of operators. It is only
when these variables are compromised that reactors pose a danger. Radiation
exposure and the potential health risks associated with such exposure are con-
trolled by three layers of containment. The fuel and radioactive fission prod-
ucts are contained inside the reactor vessel. Should this vessel rupture, the re-
actor building acts as a second containment structure to prevent radioactive
material from contaminating the environment. Finally, the reactor facilities
must be in a remote location to protect the general public from exposure
should radiation escape the reactor building.

A continuing concern about nuclear fission reactors is the safe disposal of
radioactive material when the reactor core is replaced. Even when the ura-
nium and plutonium are separated out and recycled, the remaining waste ma-
terial contains long-lived, highly radioactive isotopes that must be stored over
long time intervals in such a way that there is no chance of environmental con-
tamination. At present, sealing radioactive wastes in waterproof containers and
burying them in deep salt mines seems to be the most promising solution.

Transport of reactor fuel and reactor wastes poses additional safety risks.
Accidents during transport of nuclear fuel could expose the public to harmful
levels of radiation. To minimize these dangers, the Department of Energy
requires stringent crash tests of all containers used to transport nuclear mate-
rials. Container manufacturers must demonstrate that their containers will not
rupture even in high-speed collisions.

Despite these risks, there are advantages to the use of nuclear power to be
weighed against the risks. For example, nuclear power plants do not produce
air pollution and greenhouse gases as do fossil fuel plants, and the supply of
uranium on the Earth is predicted to last longer than the supply of fossil fuels.
For each source of energy, whether nuclear, hydroelectric, fossil fuel, wind, or
solar, the risks must be weighed against the benefits and the regional availabil-
ity of the energy source. Thus, thoughtful use of a variety of energy sources
and increased emphasis on energy conservation methods appear to be logical
components of a sensible energy policy.

14.6 NUCLEAR FUSION

In Chapter 13 we found that the binding energy for light nuclei (those having
mass numbers less than 20) is much smaller than the binding energy for heav-
ier nuclei. This suggests a process that is the reverse of fission, called nuclear
fusion. Fusion occurs when two light nuclei combine to form a heavier
nucleus. Because the mass of the final nucleus is less than the combined rest
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masses of the original nuclei, a loss of mass occurs, accompanied by a release
of energy. The following are examples of such energy-liberating fusion reac-
tions occuring in the Sun:

1
1H � 1

1H 9:
2
1H � 0

1e� � �

1
1H � 2

1H 9:
3
2He � �

(14.10)

This second reaction is followed by one of the following reactions:
1
1H � 3

2H 9:
4
2He � 0

1e� � �

3
2He � 3

2He 9:
4
2He � 1

1H � 1
1H

These are the basic reactions in what is called the proton–proton cycle, be-
lieved to be one of the basic cycles by which energy is generated in the Sun and
other stars that have an abundance of hydrogen. Most of the energy produc-
tion takes place in the Sun’s interior, where the temperature is approximately
1.5 � 107 K. As we will see later, such high temperatures are required to drive
these reactions that they are called thermonuclear fusion reactions. The
hydrogen (fusion) bomb, which was first exploded in 1952, is an example of an
uncontrolled thermonuclear fusion reaction. All of the reactions in the 
proton–proton cycle are exothermic—that is, they involve a release of energy.
An overall view of the proton–proton cycle is that four protons combine to
form an alpha particle and two positrons, with the release of 25 MeV of energy.

Fusion Reactions

The enormous amount of energy released in fusion reactions suggests the pos-
sibility of harnessing this energy for useful purposes here on Earth. A great
deal of effort is currently directed toward developing a sustained and control-
lable thermonuclear reactor—a fusion power reactor. Controlled fusion is of-
ten called the ultimate energy source because of the availability of its fuel
source: water. For example, if deuterium were used as the fuel, 0.12 g of it
could be extracted from 1 gal of water at a cost of about 4 cents. Such rates
would make the fuel costs of even an inefficient reactor almost insignificant.
An additional advantage of fusion reactors is that comparatively few radioac-
tive by-products are formed. For the proton–proton cycle described earlier in
this section, the end product of the fusion of hydrogen nuclei is safe, nonra-
dioactive helium. Unfortunately, a thermonuclear reactor that can deliver a
net power output spread out over a reasonable time interval is not yet a reality,
even though research has been in progress since the 1950s. Many difficulties
must be resolved before a successful device is constructed.

We have seen that the Sun’s energy is based, in part, upon a set of reactions
in which hydrogen is converted to helium. Unfortunately, the proton–proton
interaction is not suitable for use in a fusion reactor, because this reaction re-
quires very high pressures and densities. The process works in the Sun only be-
cause of the extremely high density of protons in the Sun’s interior.

The fusion reactions that appear most promising for a terrestrial fusion
power reactor involve deuterium (2

1H) and tritium (3
1H):

2
1H � 2

1H 9:
3
2He � 1

0n Q � 3.27 MeV
2
1H � 2

1H 9:
3
1H � 1

1H Q � 4.03 MeV (14.11)
2
1H � 3

1H 9:
4
2He � 1

0n Q � 17.59 MeV
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As noted earlier, deuterium is available in almost unlimited quantities from our
lakes and oceans and is very inexpensive to extract. Tritium, however, is
radioactive (T1/2 � 12.3 yr) and undergoes beta decay to 3He. As a result, tritium
does not occur naturally to any great extent and must be artificially produced.

One of the major problems in obtaining energy from any fusion reaction is
the fact that the Coulomb repulsion force between two charged nuclei must
be overcome before they can fuse. The potential energy as a function of parti-
cle separation for two deuterons (each with charge �e) is shown in Figure
14.11. The potential energy is positive in the region r � R, where the
Coulomb repulsive force dominates, and negative in the region r  R, where
the strong nuclear force dominates. The fundamental problem, then, is to
give the two nuclei enough kinetic energy to overcome this repulsive potential
barrier. This can be accomplished by heating the fuel to extremely high tem-
peratures (about 108 K, far greater than the interior temperature of the Sun).
At these high temperatures, the atoms are ionized and the system consists of a
collection of electrons and nuclei, commonly referred to as a plasma.
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(b) Estimate the effective temperature required for a
deuteron to overcome the potential barrier, assuming an
energy of kBT per deuteron (where kB is Boltzmann’s
constant).

Solution Since the total Coulomb energy of the pair
of deuterons is 0.14 MeV, the Coulomb energy per
deuteron is 0.07 MeV � 1.1 � 10�14 J. Setting this equal
to the average thermal energy per deuteron gives

where kB is equal to 1.38 � 10�23 J/K. Solving for T gives

T �
2 � (1.1 � 10�14 J)

3 � (1.38 � 10�23 J/K)
� 5.3 � 108 K

3
2 kBT � 1.1 � 10�14 J

3
2

EXAMPLE 14.6 The Fusion of Two Deuterons

The separation between two deuterons must be about
1.0 � 10�14 m for the attractive nuclear force to over-
come the repulsive Coulomb force. (a) Calculate the
height of the potential barrier due to the repulsive force.

Solution The potential energy associated with two
charges separated by a distance r is

where k is the Coulomb constant. For the case of two
deuterons, q1 � q 2 � �e , so

� 2.3 � 10�14 J � 0.14 MeV

U � k
e2

r
� �8.99 � 109 N�m2

C2 � (1.60 � 10�19 C)2

1.0 � 10�14 m

U � k
q1q2

r

Example 14.6 suggests that deuterons must be heated to about 5 � 108 K to
achieve fusion. This estimate of the required temperature is too high, how-
ever, because the particles in the plasma have a Maxwellian speed distribution,
and therefore some fusion reactions are caused by particles in the high-energy
“tail” of this distribution. Furthermore, even the particles without enough
energy to overcome the barrier have some probability of tunneling through
the barrier. When these effects are taken into account, a temperature of “only”
4 � 108 K appears adequate to fuse two deuterons.

The temperature at which the power generation rate exceeds the loss rate
(due to mechanisms such as radiation losses) is called the critical ignition
temperature. This temperature for the deuterium–deuterium (D–D) reac-
tion is 4 � 108 K. According to E � kBT, this temperature is equivalent to
approximately 35 keV. It turns out that the critical ignition temperature for
the deuterium– tritium (D–T) reaction is about 4.5 � 107 K, or only 4 keV.

High temperatures are

required to overcome the

large Coulomb barrier

Critical ignition temperature
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Figure 14.12 is a plot of the power generated by fusion, Pgen, versus tem-
perature for the two reactions. The straight line represents the power lost,
via the radiation mechanism known as bremsstrahlung, versus tempera-
ture. This is the principal mechanism of energy loss, in which radiation
(primarily x-ray) is emitted as the result of electron– ion collisions within the
plasma.2 The intersections of the Plost line with the Pgen curves give the critical
ignition temperatures.

In addition to the high temperature requirements, there are two other
critical parameters that determine whether or not a thermonuclear reactor
will be successful: the ion density, n, and confinement time, �. The
confinement time is the period for which the interacting ions are
maintained at a temperature equal to or greater than the ignition
temperature. The British physicist J. D. Lawson has shown that the ion
density and confinement time must both be large enough to ensure that
more fusion energy is released than is required to heat the plasma. In
particular, Lawson’s criterion states that a net energy output is possible
under the following conditions:

n� � 1014 s/cm3 (D–T)

n� � 1016 s/cm3 (D–D)
(14.12)

Figure 14.13 is a graph of n� versus the so-called kinetic temperature kBT for
the D–T and D–D reactions.

Lawson arrived at his criterion by comparing the energy required to
heat the plasma with the energy generated by the fusion process. The energy
Eh required to heat the plasma is proportional to the ion density n; that is,
Eh � D1n. The energy generated by the fusion process, Egen, is proportional to
n2�, or Egen � D2n2�. This can be understood by realizing that the fusion
energy released is proportional to both the rate at which interacting ions col-
lide, n2, and the confinement time, �. Net energy is produced when the energy
generated by fusion, Egen, exceeds Eh. When the constants D1 and D2 are
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Figure 14.12 Power generated (or lost) versus temperature for the deuterium–
deuterium and deuterium– tritium fusion reactions. When the generation rate Pgen
exceeds the loss rate P lost, ignition takes place.

2Cyclotron radiation is another loss mechanism; it is especially important in the case of the D–D
reaction.
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Figure 14.13 The Lawson
number n� at which net energy
output is possible versus tem-
perature for the D–T and D–D
fusion reactions. The regions
above the curves represent fa-
vorable conditions for fusion.
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calculated for different reactions, the condition that Egen � Eh leads to Law-
son’s criterion.3

In summary, the three basic requirements of a successful thermonuclear
power reactor are

• The plasma temperature must be very high—about 4.5 � 107 K for the
D–T reaction and about 4 � 108 K for the D–D reaction.

• The ion density must be high. A high density of interacting nuclei is nec-
essary to increase the collision rate between particles.

• The confinement time of the plasma must be long. To meet Lawson’s cri-
terion, the product n� must be large. For a given value of n, the probabil-
ity of fusion between two particles increases as � increases.

Current efforts are aimed at meeting Lawson’s criterion at temperatures
exceeding the critical ignition temperature. Although the minimum plasma
densities have been achieved, the problem of confinement time is more diffi-
cult. How can a plasma be confined at 108 K for 1 s? Two basic techniques for
confining plasmas are under investigation: magnetic field confinement and
inertial confinement.

Magnetic Field Confinement

Many fusion-related plasma experiments use magnetic field confinement to
contain the charged plasma. Figure 14.14a shows a device called a tokamak,
first developed in Russia. A combination of two magnetic fields is used to con-
fine and stabilize the plasma: (1) a strong toroidal field, produced by the cur-
rent in the windings, and (2) a weaker “poloidal” field, produced by the
toroidal current. The toroidal current heats the plasma in addition to confin-
ing it. The resultant helical field lines spiral around the plasma and keep it
from touching the walls of the vacuum chamber. If the plasma comes into con-
tact with the walls, its temperature is reduced and heavy impurities sputtered
from the walls “poison” it and lead to large power losses. One of the major
breakthroughs in the 1980s was in the area of auxiliary heating to reach igni-
tion temperatures. Experiments have shown that injecting a beam of energetic
neutral particles into the plasma is a very efficient method of heating the
plasma to ignition temperatures (5 to 10 keV). Radio-frequency heating will
probably be needed for reactor-size plasmas. Figure 14.14b shows a cutaway
view of the Princeton Tokamak Fusion Test Reactor. When it was in operation,
the Tokamak Fusion Test Reactor (TFTR) reported central ion temperatures
of 510 million degrees Celsius, more than 30 times hotter than the center
of the Sun. The n� values in the TFTR for the D–T reaction were well above
1013 s/cm3 and close to the value required by Lawson’s criterion. By the
late 1990s, tokamaks in England and Japan were reporting reaction rates of
1018 D–T fusions per second and n� values of 5 � 1013 s/cm3 at temperatures
of 30 keV. Direct measurements showed that the output energy slightly
exceeded the input energy to the plasma for brief periods.
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3Note that Lawson’s criterion neglects the energy needed to set up the strong magnetic field that
is used to confine the hot plasma. This energy is expected to be about 20 times greater than the
energy required to heat the plasma. Consequently, it is necessary to have a magnetic energy re-
covery system or to make use of superconducting magnets.

Requirements for a fusion

power reactor
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One of the new generation of fusion experiments is the National Spherical
Torus Experiment (NSTX), shown in Figure 14.15. Rather than the donut-
shaped plasma of a tokamak, the NSTX produces a spherical plasma that has a
hole through its center. The major advantage of the spherical configuration is
its ability to confine the plasma at a higher pressure in a given magnetic field.
This approach could lead to development of smaller, more economical fusion
reactors.
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Figure 14.14 (a) A schematic diagram of a tokamak used in magnetic confinement.
The total magnetic field B is the superposition of the toroidal field Bt and the poloidal
field Bp. The plasma is trapped within the spiraling field lines as shown. (Adapted from
McGraw-Hill Encyclopedia of Science and Technology, New York, McGraw-Hill Book Co.,
1987.) (b) A cutaway view of the TFTR. (Courtesy of Princeton Plasma Physics Laboratory)
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An international collaborative effort involving Canada, Europe, Japan, and
Russia is currently under way to build a fusion reactor called ITER (Interna-
tional Thermonuclear Experimental Reactor). China and the United States
began to participate in program activities in early 2003. This facility will ad-
dress the remaining technological and scientific issues concerning the feasibil-
ity of fusion power. The design is completed, and site and construction negoti-
ations are under way. If the planned device works as expected, the Lawson
number for ITER will be about six times greater than the current record
holder, the JT-60U tokamak in Japan. ITER will produce 1.5 GW of power, and
the energy content of the alpha particles inside the reactor will be so intense
that they will sustain the fusion reaction, allowing the auxiliary energy sources
to be turned off once the reaction is initiated.

Inertial Confinement

The second technique for confining a plasma, called inertial confinement,
makes use of a D–T target that has a very high particle density of 5 � 1025

particles/cm3, or a mass density of about 200 g/cm3. In this scheme, the con-
finement time is very short (typically 10�11 to 10�9 s), and so, because of their
own inertia, the particles do not have a chance to move appreciably from their
initial positions. Thus Lawson’s criterion can be satisfied by combining a high
particle density with a short confinement time.
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Figure 14.15 The National Spherical Torus Experiment (NSTX) that began opera-
tion in March 1999. (Courtesy of Princeton Plasma Physics Laboratory, Princeton University)
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Laser fusion is the most common form of inertial confinement. A small
D – T pellet about 1 mm in diameter is struck simultaneously by several
focused, symmetrically incident, high-intensity laser beams, resulting in
a large pulse of input energy that causes the surface of the fuel pellet to
evaporate (Fig. 14.16). The escaping particles produce a reaction force
on the core of the pellet, resulting in a strong, inwardly moving, com-
pressive shock wave. This shock wave increases the pressure and density of
the core and produces a corresponding increase in temperature. When the
temperature of the core reaches ignition temperature, fusion reactions
cause the pellet to explode. The process can be viewed as a miniature hy-
drogen bomb explosion.

Two of the leading laser fusion laboratories in the United States are the
Omega facility at the University of Rochester and the Nova facility at Lawrence
Livermore National Laboratory in California. Both facilities use neodymium
glass lasers. The Omega facility focuses 60 laser beams on a target chamber
about 3 m in diameter. Figure 14.17a shows the target at Omega, and Figure
14.17b shows the tiny, spherical D–T pellets used. Nova, operating at higher
input power levels than Omega, is capable of injecting a power of 200 kJ into a
0.5-mm D–T pellet in 1 ns. With these high input powers, Nova has achieved
n� � 5 � 1014 s/cm3 and ion temperatures of 5.0 keV, values close to those
required for D–T ignition.

Fusion Reactor Design

In the D–T fusion reaction
2
1H � 3

1H 9:
4
2He � 1

0n Q � 17.6 MeV
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Figure 14.16 In the inertial confinement scheme, a D–T fuel pellet fuses when
struck by several high-intensity laser beams simultaneously and symmetrically.
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the alpha particle carries 20% of the energy and the neutron carries 80%,
or about 14 MeV. While the charged alphas are primarily absorbed in
the plasma and produce desired additional plasma heating, the 14-MeV
neutrons pass through the plasma and must be absorbed in a surrounding
blanket material to extract their large kinetic energy and generate electric
power. A frequently proposed scheme is to use molten lithium metal as
the neutron-absorbing material and to circulate the lithium in a closed
heat-exchanging loop to produce steam and drive turbines, as in a conven-
tional power plant. Figure 14.18 is a diagram of such a fusion reactor
system. It is estimated that a blanket of lithium about 1 m thick would
capture nearly 100% of the neutrons from the fusion of a small D – T pellet,
not only absorbing the neutron kinetic energy but limiting the dangerous
neutron flux to nearby workers.

The capture of neutrons by lithium is described by the reaction
1
0n �

6
3Li 9:

3
1H �

4
2He

where the kinetic energies of the charged tritium and alpha particle products
are converted to heat in the lithium. An extra advantage of using lithium as
the energy transfer medium is the production of tritium, 3

1H, which may be
separated from the lithium and returned as fuel to the reactor. The process is
indicated in the generic fusion reactor shown in Figure 14.18.
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Advantages and Problems of Fusion

If fusion power can be harnessed, it will offer several advantages over fission-
generated power: (1) the low cost and abundance of the fuel (deuterium),
(2) the impossibility of runaway accidents, and (3) a lesser radiation hazard than
with fission. Some of the anticipated problem areas include (1) the as-yet-
unestablished feasibility of fusion reactors, (2) the very high proposed plant
costs, (3) the scarcity of lithium, (4) the limited supply of helium needed to cool
the superconducting magnets used to produce strong confining fields (this prob-
lem may be significantly reduced by the development of high-temperature super-
conductors), (5) structural damage and induced radioactivity caused by neutron
bombardment, and (6) the anticipated high degree of thermal pollution. If these
basic problems and the engineering design factors can be resolved, nuclear
fusion may become a feasible source of energy by the middle of the 21st century.

14.7 INTERACTION OF PARTICLES WITH MATTER

In this section we consider processes involving the interaction between ener-
getic particles and matter. We shall deal mainly with the interaction of charged
particles and photons with matter, since these are of primary importance in
such factors as shielding characteristics, the design of particle detectors, and
biological effects.

Heavy Charged Particles

A heavy charged particle, such as an alpha particle or a proton, moving through
a solid, liquid, or gas travels a well-defined distance before coming to rest. This
distance is called the range of the particle. As the particle passes through the
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Figure 14.18 A generic fusion reactor.
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medium, it loses energy, primarily through the excitation and ionization of
atoms in the medium. Some energy is also lost through elastic collisions with
nuclei. The highly energetic particle loses its energy in many small increments,
and to a good approximation one can treat the problem as a continuous loss of
energy. At the end of its range, the particle is left with just the average thermal
energy of its surroundings. The range depends on the charge, mass, and energy
of the particle, the density of the medium through which it travels, and the ion-
ization potential and atomic number of the atoms in the medium.

The ranges of � particles and protons in air as a function of their energy
are plotted in Figure 14.19. Note that for a given energy, the proton has
a range about 10 times that of the � particle. This is because the proton
has less charge and so does not interact with the medium as strongly as the
alpha particle. Furthermore, since the � particle is more massive, it travels at
a lower average speed for a given energy. As a result, the slower-moving �

particle loses its energy more readily, since it has more time to interact with
atoms in the medium.

Figure 14.20 shows the rate of energy loss per unit length (energy loss rate),
�dE/dx, versus the kinetic energy of the charged particle. This energy loss
rate (also called the stopping power) is approximately proportional to the
kinetic energy at low energies (v �� c) and reaches a maximum at some
point. At very high energies (as v : c), the energy loss per unit length is
approximately energy independent. At very low energies, the decrease in
energy loss is a result of the fact that the particle is moving too slowly to pro-
duce ionization and loses its energy mainly by elastic collisions.

The energy loss rate is approximately proportional to the density of the
medium through which the charged particles travel. This is explained by recog-
nizing that the primary energy loss mechanism (ionization) involves the excita-
tion of electrons in the medium, and the density of electrons increases with
increasing density of the medium. For example, the range in aluminum of pro-
tons having an energy of 1 to 10 MeV is about 1/1600 of their range in air.

Fission fragments with energies of about 80 MeV have a range of only about
0.02 m in air, which is about 1000 times smaller than the range of protons with
the same energy. This difference is due to the greater charge of the fission
fragments and to the fact that the energy loss rate is proportional to the
square of the charge.
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Figure 14.19 The range of al-
pha particles and protons in air
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(From E. Segre, ed., Experimental
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Electrons

When an electron of energy less than about 1 MeV passes through matter, it
loses its energy by the same processes that occur for heavy charged particles.
However, the range of the electron is not as well defined. Since an electron is
much smaller than a proton, there are large statistical variations in the elec-
tron’s path length as a result of a phenomenon called straggling. It takes only
a few large-deflection collisions to stop an electron in matter. Furthermore,
electrons scatter much more readily than heavy charged particles with the
same energy. As we mentioned earlier, a decelerated charged particle emits
electromagnetic radiation called bremsstrahlung. This energy loss process is
more important for electrons than for heavy charged particles, since low-mass
electrons undergo greater accelerations when passing through matter. For
example, the energy loss rate due to bremsstrahlung for 10-MeV electrons
passing through lead is about equal to the loss rate due to ionization.

Photons

Since photons are uncharged, they are not as effective as charged particles in
producing ionization or excitation in matter. Nevertheless, photons can be
removed from a beam by either scattering or absorption in the medium. Fig-
ure 14.21 illustrates the three important processes that contribute to the total
absorption of gamma rays in lead:
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Figure 14.21 The absorption of gamma rays in lead. Shown are the three important
absorption processes, which add up to the total absorption constant �, measured in cm�1.
(From W. Heitler, The Quantum Theory of Radiation, 3rd ed., Oxford, Clarendon Press, 1954)
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• At low photon energies (less than about 0.5 MeV), the predomi-
nant process that removes photons from a beam is the photoelectric
effect, in which a photon is absorbed and transfers all of its energy
to an electron.

• At intermediate photon energies, the predominant process is Compton
scattering, in which the photon transfers some of its energy to an elec-
tron. Both the photoelectric effect and Compton scattering were dis-
cussed in Chapter 3.

• At high energies, the predominant process is pair production, in which
an electron–positron pair is created as a photon passes near a nucleus
in the medium. Since the rest energy of an electron–positron pair is
2mec2 � 1.02 MeV (twice the rest energy of an electron), the gamma-ray
photon must have at least this much energy to produce a pair. Pair pro-
duction will be discussed further in Chapter 15.

If a beam of photons is incident on a medium, its intensity decreases expo-
nentially with increasing depth of penetration into the medium. This reduc-
tion in intensity is referred to as attenuation of the beam. As in the case of
neutrons (Eq. 14.5), the intensity in a medium varies according to the relation

(14.13)

where I0 is the incident photon intensity (measured in photons/m2 � s), x is
the distance the beam travels in the medium, I(x) is the intensity of the beam
after it travels a distance x, and � is a parameter called the linear absorption
coefficient of the medium. This coefficient depends on the energy of the
photon as well as on the properties of the medium. The variation of � with
energy is shown in Figure 14.21 for gamma rays in lead and in Tables 14.2 and
14.3 for x-rays and gamma rays in various media.

I(x) � I0e��x
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Gamma-ray absorption

Absorption of photons in a

medium

Table 14.2 Linear Absorption Coefficients for X-Rays 

in Various Media

Linear Absorption Coefficient (cm�1)

� (pm) Air Water Aluminum Copper Lead

10 0.16 0.43 3.2 43
20 0.18 0.76 13 55
30 0.29 1.3 38 158
40 0.44 3.0 87 350
50 8.6 � 10�4 0.66 5.4 170 610
60 1.3 � 10�3 1.0 9.2 286 1000
70 1.95 � 10�3 1.5 14 430 1600
80 2.73 � 10�3 2.1 20 625
90 3.64 � 10�3 2.8 30 875

100 4.94 � 10�3 3.8 41 1200
150 1.56 � 10�2 12 124
200 3.64 � 10�2 28 275
250 6.63 � 10�2 51 524

Linear absorption coefficient
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Table 14.3 Linear Absorption Coefficients for Gamma

Rays in Various Media

Linear Absorption Coefficient (cm�1)a

Photon Energy (MeV) Water Aluminum Iron Lead

0.1 0.167 0.432 2.69 59.8
0.15 0.149 0.359 1.43 20.8
0.2 0.139 0.324 1.08 10.1
0.3 0.118 0.278 0.833 3.79
0.4 0.106 0.249 0.722 2.35
0.5 0.0967 0.227 0.651 1.64
0.6 0.0894 0.210 0.598 1.29
0.8 0.0786 0.184 0.525 0.946
1.0 0.0706 0.166 0.468 0.772
1.5 0.0576 0.135 0.380 0.581
2.0 0.0493 0.166 0.332 0.510
3.0 0.0396 0.0953 0.282 0.463
4.0 0.0339 0.0837 0.259 0.470
5.0 0.0302 0.0767 0.247 0.486
6.0 0.0277 0.0718 0.240 0.514
8.0 0.0242 0.0656 0.234 0.532

10.0 0.0221 0.0626 0.236 0.568

aCalculated using data in I. Kaplan, Nuclear Physics, Reading, MA., Addison-
Wesley, 1962, Table 15.6.

14.8 RADIATION DAMAGE IN MATTER

Radiation passing through matter can cause severe damage. The degree and
type of damage depend upon several factors, including the type and energy of
the radiation and the properties of the matter. For example, the metals used

Taking the natural logarithm of both sides of this equa-
tion gives

or

Since � � 55 cm�1 for x rays in lead at a wavelength of
20 pm (Table 14.2),

Hence we conclude that lead is a very good absorber for
x-rays.

� 1.26 � 10�2 cm � 0.126 mm

x �
ln 2

55 cm�1 �
0.693

55 cm�1

x �
ln 2
�

�x � ln 2

EXAMPLE 14.7 Half-Value Thickness

The half-value thickness of an absorber is defined as
the thickness that will reduce the intensity of a beam
of particles by a factor of 2. Calculate the half-value
thickness for lead, assuming an x-ray beam of wavelength
20 pm (1 pm � 10�12 m � 10�3 nm).

Solution The intensity varies with distance traveled in
the medium according to Equation 14.13:

In this case, we are looking for a value of x such that
I(x) � I0/2. That is, we require that

or

e��x � 1
2

I 0

2
� I 0e��x

I(x) � I 0e��x
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in nuclear reactor structures can be severely weakened by high fluxes of ener-
getic neutrons, because these high fluxes often lead to metal fatigue. The
damage in such situations is in the form of atomic displacements, which often
result in major alterations in the material properties. Materials can also be
damaged by ionizing radiations, such as gamma rays and x-rays. For example,
defects called color centers can be produced in alkali halide crystals by irradi-
ating the crystals with x-rays. One extensively studied color center has been
identified as an electron trapped in a Cl� ion vacancy.

Radiation damage in biological organisms is due primarily to ionization ef-
fects in cells. The normal operation of a cell may be disrupted when highly re-
active ions or radicals form as the result of ionizing radiation. For example, hy-
drogen and hydroxyl radicals produced from water molecules can induce
chemical reactions that may break bonds in proteins and other vital mole-
cules. Furthermore, the ionizing radiation may directly affect vital molecules
by removing electrons from their structures. Large doses of radiation are espe-
cially dangerous, because damage to a great number of molecules in a cell
may kill the cell. Although the death of a single cell is usually not a problem,
the death of many cells may irreversibly damage the organism. Cells that di-
vide rapidly, such as those of the digestive tract, reproductive organs, and hair
follicles, are especially susceptible. Also, cells that do survive the radiation may
become defective. These defective cells can produce more defective cells when
they divide, leading to cancer.

In biological systems, it is common to separate radiation damage into two
categories: somatic and genetic. Somatic damage is the damage associated
with any body cell except the reproductive cells. At high dose rates, such dam-
age can lead to cancer or seriously alter the characteristics of specific organ-
isms. Genetic damage affects only reproductive cells. Damage to the genes in
reproductive cells can lead to defective offspring. Clearly, we must be con-
cerned about the effects of diagnostic treatments such as x rays and other
forms of radiation exposure.

Several units are used to quantify the amount, or dose, of any radiation that
interacts with a substance.
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The roentgen (R) is that amount of ionizing radiation that produces an
electric charge of 3.33 � 10�10 C in 1 cm3 of air under standard
conditions.

One rad is that amount of radiation that increases the energy of 1 kg of
absorbing material by 1 � 10�2 J.

Equivalently, the roentgen is that amount of radiation that deposits an energy
of 8.76 � 10�3 J into 1 kg of air. For most applications, the roentgen has been
replaced by the rad (which is an acronym for radiation absorbed dose):

Although the rad is a perfectly good physical unit, it is not the best unit for
measuring the degree of biological damage produced by radiation, because
damage depends not only on the dose but on the type of the radiation. For
example, a given dose of alpha particles causes about 10 times more biologi-
cal damage than an equal dose of x rays. The RBE (relative biological

The roentgen

The rad
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effectiveness) factor for a given type of radiation is the number of rads of
x radiation or gamma radiation that produces the same biological
damage as 1 rad of the radiation being used. Table 14.4 gives the RBE
factors for several types of radiation. The values are only approximate, because
they vary with particle energy and with the form of the damage. The RBE
factor should be considered only a first-approximation guide to the actual
effects of radiation.

Finally, the rem (radiation equivalent in man) is the product of the dose in
rad and the RBE factor:

Dose in rem � dose in rad � RBE (14.14)

According to this definition, 1 rem of any type of radiation produces the same
amount of biological damage as 1 rem of any other type. From Table 14.4 we
see that a dose of 1 rad of fast neutrons represents an effective dose of 10 rem.
On the other hand, 1 rad of gamma radiation is equivalent to a dose of 1 rem.

Low-level radiation from a natural source, such as cosmic rays or radioactive
rocks and soil, delivers to each of us a dose of about 0.13 rem/yr and is called
background radiation. It is important to note that background radiation varies
with geography. The upper limit of radiation dose (apart from background radia-
tion) recommended by the U.S. government is about 0.5 rem/yr. Many occu-
pations involve much higher radiation exposures, and so an upper limit of
5 rem/yr has been set for combined whole-body exposure. Higher upper limits
are permissible for certain parts of the body, such as the hands and forearms. A
dose of 400 to 500 rem results in a mortality rate of about 50% (which means
that half the people exposed to this radiation level die). The most dangerous
forms of exposure are ingestion and inhalation of radioactive isotopes, especially
those elements the body retains and concentrates, such as 90Sr. In some cases, a
dose of 1000 rem can result from ingesting only 1 mCi of radioactive material.

This discussion has focused on measurements of radiation dosage in units
such as rads and rems because these units are still widely used. These units,
however, have been formally replaced with new SI units. The rad has been
replaced with the gray (Gy), equal to 100 rad. The rem has been replaced
with the sievert (Sv), equal to 100 rem. Table 14.5 summarizes the older and
the current SI units of radiation dosage.

14.9 RADIATION DETECTORS

Various devices have been developed for detecting radiation. They are used for
a variety of purposes, including medical diagnoses, radioactive dating measure-
ments, measurement of background radiation, and measurement of the mass,
energy, and momentum of particles created in high-energy nuclear reactions.
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Table 14.4 RBEa for

Several Types of Radiation

Radiation RBE Factor

X-rays and
gamma rays 1.0
Beta particles 1.0–1.7
Alpha particles 10–20
Slow neutrons 4–5
Fast neutrons
and protons 10
Heavy ions 20

aRBE � relative biological effective-
ness.

Table 14.5 Units for Radiation Dosage

Relation to Older
Quantity SI Unit Symbol Other SI Units Unit Conversion

Absorbed dose gray Gy � 1 J/kg rad 1 Gy � 100 rad
Dose equivalent sievert Sv � 1 J/kg rem 1 Sv � 100 rem
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An ion chamber is a general class of detector that makes use of the
electron– ion pairs generated by the passage of radiation through a gas to pro-
duce an electrical signal. It consists basically of two charged plates maintained
at different potentials by a voltage supply (Fig. 14.22). The plates attract elec-
trons or ions, depending on plate polarity, and cause a current pulse i that is
proportional to the number of electron– ion pairs produced and to the parti-
cle energy if the particle comes to rest in the chamber. When an ion chamber
is used in this way, both to detect the presence of an energetic charged parti-
cle and to measure its energy, it is called a proportional counter.

The Geiger counter (Fig. 14.23) is perhaps the most common form of ion
chamber used to detect radiation. It can be considered the prototype of all
counters that use the ionization of a medium as the basic detection process. It
consists of a cylindrical metal tube filled with gas at low pressure and a long
wire along the axis of the tube. The wire is maintained at a high positive
potential (about 103 V) with respect to the tube. When a high-energy particle
or photon enters the tube through a thin window at one end, some of the
atoms of the gas are ionized. The electrons removed from these atoms are
attracted toward the positive wire, and in the process they ionize other atoms
in their path. This results in an avalanche of electrons that produces a current
pulse at the output of the tube. After the pulse is amplified, it can either be
used to trigger an electronic counter or be delivered to a loudspeaker that
clicks each time a particle is detected. While a Geiger counter easily detects
the presence of an energetic charged particle, the energy lost by the particle
in the counter is not proportional to the current pulse produced in the
avalanche process. Thus, although it is rugged, simple, and portable, a Geiger
counter cannot be used to measure the energy of a particle.

A semiconductor diode detector is essentially a reverse-bias p -n junction.
Recall from Chapter 12 that a p -n junction diode passes current readily when
forward-biased and prohibits a current under reverse-bias conditions. As an
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Figure 14.22 A schematic of an ion chamber. A charged particle stopping in the
chamber creates electron– ion pairs, which are collected by the plates. This sets up a
current i in the external circuit that is proportional to the particle’s kinetic energy.
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energetic particle passes through the junction, electrons are excited into the
conduction band and holes form in the valence band. The internal electric
field sweeps the electrons toward the positive (p) side of the junction and the
holes toward the negative (n) side. This movement of electrons and holes cre-
ates a pulse of current that is measured with an electronic counter. In a typical
device, the duration of the pulse is about 10�8 s.

A scintillation counter (Fig. 14.24) usually uses a solid or liquid material
whose atoms are easily excited by radiation. These excited atoms emit visible
light when they return to their ground state. Common materials used as scin-
tillators are transparent crystals of sodium iodide and certain plastics. If such a
material is attached to one end of a device called a photomultiplier (PM)
tube, the photons emitted by the scintillator can be converted to an electric
signal. The PM tube consists of numerous electrodes, called dynodes, whose
potentials increase in succession along the length of the tube, as shown in Fig-
ure 14.24. The top of the tube contains a photocathode, which emits electrons
by the photoelectric effect. As one of these emitted electrons strikes the first
dynode, the electron has sufficient kinetic energy to eject several other elec-
trons. When these electrons are accelerated to the second dynode, many more
electrons are ejected and a multiplication process occurs. The end result is 1
million or more electrons striking the last dynode. Hence one particle striking
the scintillator produces a sizable electric pulse at the output of the PM tube,
and in turn this pulse is sent to an electronic counter. Both the scintillator and
diode detector are much more sensitive than a Geiger counter, mainly because
of the higher density of the detecting medium. Both can also be used to mea-
sure particle energy if the particle stops in the detector.

Track detectors are devices that can be used to view the tracks of charged
particles directly. High-energy particles produced in particle accelerators may
have energies ranging from 109 to 1012 eV. Thus they cannot be stopped
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Figure 14.23 (a) A diagram of a Geiger counter. The voltage between the central
wire and the metal tube is usually about 1000 V. (b) The use of a Geiger counter to
measure the activity in a radioactive mineral. (Henry Leap and Jim Lehman)
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entirely, and their energy cannot be measured in the small detectors already
mentioned. Instead, the energy and momentum of these energetic particles
are found from the curvature of the path of the particle in a known magnetic
field, hence the necessity of track detectors.

A photographic emulsion is the simplest track detector. A charged particle
ionizes the atoms in an emulsion layer. The path of the particle corresponds to
a family of points at which chemical changes have occurred in the emulsion.
When the emulsion is developed, the particle’s track becomes visible.

A cloud chamber contains a vapor that has been supercooled to just below
its usual condensation point. An energetic particle passing through the cham-
ber ionizes the vapor along its path. These ions serve as centers for condensa-
tion of the supercooled vapor. The track can be seen with the naked eye and
can be photographed. A magnetic field can be applied to determine the
charges of the particles as well as their momentum and energy.

A device called a bubble chamber, invented in 1952 by Donald A. Glaser,
makes use of a liquid (usually liquid hydrogen) maintained near its boiling
point. Ions produced by incoming charged particles leave bubble tracks,
which can be photographed (Fig. 14.25). Because the density of the detecting
medium of a bubble chamber is much higher than the density of the gas in a
cloud chamber, the bubble chamber has a much higher sensitivity.

A spark chamber is a counting device that consists of an array of conducting
parallel plates and is capable of recording a three-dimensional track record.
Even-numbered plates are grounded, and odd-numbered plates are maintained
at a high potential (about 10 kV). The spaces between the plates contain a
noble gas at atmospheric pressure. When a charged particle passes through the
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Figure 14.24 A diagram of a scintillation counter connected to a photomultiplier tube.
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chamber, ionization occurs in the gas, resulting in a large surge of current and a
visible series of sparks along the particle path. These paths may be pho-
tographed or electronically detected and sent to a computer for path recon-
struction and the determination of particle mass, momentum, and energy.

Wire chambers or drift chambers are similar to spark chambers in their
ability to record 3-D tracks and provide fast electronic readout to a computer
for track reconstruction and display. A wire chamber consists of closely spaced
parallel wires that collect the electrons created by a passing ionizing particle. A
second grid, with its wires perpendicular to the first, allows the xy position of
the particle in the plane of the two sets of wires to be determined. Finally, sev-
eral such xy locating grids arranged parallel to each other along the z-axis can
be used to determine the particle’s trajectory in three dimensions.

Neutron detectors are a bit more difficult to construct than charged-
particle detectors, because neutrons do not interact electrically with atoms in
their passage through matter. Fast neutrons, however, can be detected by
filling an ion chamber with hydrogen gas and detecting the ionization
produced by high-speed recoiling protons produced in neutron–proton colli-
sions. Slow neutrons with energies less than 1 MeV do not transfer sufficient
energy to protons to be detected in this way but can be detected with an ion
chamber filled with BF3 gas. In this case, the boron nuclei disintegrate in a
slow neutron-capture process, emitting highly ionizing alphas that are easily
detected in the ion chamber.

14.10 USES OF RADIATION

Nuclear physics applications are extremely widespread in manufacturing,
medicine, and biology. Even a brief discussion of all the possibilities would fill
an entire book, and to keep such a book up-to-date would require frequent re-
visions. In this section we present a few of these applications and the underly-
ing theories supporting them.

Tracing

Radioactive tracers are used to track chemicals participating in various reac-
tions. One of the most valuable uses of radioactive tracers is in medicine. For
example, iodine, a nutrient needed by the human body, is obtained largely
through the intake of iodized salt and seafood. To evaluate the performance
of the thyroid, the patient drinks a very small amount of radioactive sodium
iodide containing 131I, an artificially produced isotope of iodine (the natural,
nonradioactive isotope is 127I). The amount of iodine in the thyroid gland is
determined as a function of time by measuring the radiation intensity at the
neck area. How much or how little 131I that is still in the thyroid is a measure
of how well that gland is functioning.

A second medical application is indicated in Figure 14.26. A solution con-
taining radioactive sodium is injected into a vein in the leg, and the time at
which the radioisotope arrives at another part of the body is detected with a
radiation counter. The elapsed time is a good indication of the presence or
absence of constrictions in the circulatory system.

Tracers are also useful in agricultural research. Suppose the best method of
fertilizing a plant is to be determined. A certain element in a fertilizer, such as
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nitrogen, can be tagged (identified) with one of its radioactive isotopes. The
fertilizer is then sprayed on one group of plants, sprinkled on the ground for
a second group, and raked into the soil for a third. A Geiger counter is then
used to track the nitrogen through the three groups.

Tracing techniques are as wide ranging as human ingenuity can devise. Pre-
sent applications range from checking how teeth absorb fluoride to monitor-
ing how cleansers contaminate food-processing equipment to studying deteri-
oration inside an automobile engine. In the latter case, a radioactive material
is used in the manufacture of the piston rings, and the oil is checked for ra-
dioactivity to determine the amount of wear on the rings.

Neutron Activation Analysis

For centuries, a standard method of identifying the elements in a sample
of material has been chemical analysis, which involves determining how
the material reacts with various chemicals. A second method is spectral
analysis, which uses the fact that, when excited, each element emits its
own characteristic set of electromagnetic wavelengths. These methods are
now supplemented by a third technique, neutron activation analy-
sis. Both chemical and spectral methods have the disadvantage that a fairly
large sample of the material must be destroyed for the analysis. In addition,
extremely small quantities of an element may go undetected by either
method. Neutron activation analysis has an advantage over the other two
methods in both respects.

When a material is irradiated with neutrons, nuclei in the material absorb
the neutrons and are changed to different isotopes, most of which are radioac-
tive. For example, 65Cu absorbs a neutron to become 66Cu, which undergoes
beta decay:

1
0n � 65

29Cu 9:
66
29Cu 9:

66
30Zn � e� � 	
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Figure 14.26 A tracer technique for determining the condition of the human circu-
latory system.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



The presence of the copper can be deduced because it is known that 66Cu has
a half-life of 5.1 min and decays with the emission of beta particles having
maximum energies of 2.63 and 1.59 MeV. Also emitted in the decay of 66Cu is
a 1.04-MeV gamma ray. By examining the radiation emitted by a substance af-
ter it has been exposed to neutron irradiation, one can detect extremely small
amounts of an element in that substance.

Neutron activation analysis is used routinely in a number of industries, for
example, in commercial aviation for the checking of airline luggage for hid-
den explosives. The following nonroutine use is of interest. Napoleon died on
the island of St. Helena in 1821, supposedly of natural causes. Over the years,
suspicion has existed that his death was not all that natural. After his death, his
head was shaved and locks of his hair were sold as souvenirs. In 1961, the
amount of arsenic in a sample of this hair was measured by neutron activation
analysis, and an unusually large quantity of arsenic was found. (Activation
analysis is so sensitive that very small pieces of a single hair could be analyzed.)
Results showed that the arsenic was fed to him irregularly. In fact, the arsenic
concentration patterns in the hair corresponded to the fluctuations in the
severity of Napoleon’s illness as determined from historical records.

Art historians use neutron activation analysis to detect forgeries. The pig-
ments used in paints have changed throughout history, and old and new pig-
ments react differently to neutron activation. The method can even reveal hid-
den works of art behind existing paintings because an older, hidden layer of
paint reacts differently than the surface layer to neutron activation.

Radiation Therapy

Radiation causes the most damage to rapidly dividing cells. Therefore, it is
useful in cancer treatment because tumor cells divide extremely rapidly.
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Figure 14.27 This large machine is being set to deliver a dose of radiation from 60Co
in an effort to destroy a cancerous tumor. Cancer cells are especially susceptible to this
type of therapy because they tend to divide more often than cells of healthy tissue
nearby. (Martin Dohrn/Science Photo Library/Photo Researchers, Inc.)
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Several mechanisms can be used to deliver radiation to a tumor. In some cases,
a narrow beam of x-rays or radiation from a source such as 60Co is used, as
shown in Figure 14.27. In other situations, thin radioactive needles called seeds
are implanted in the cancerous tissue.

Food Preservation

Radiation is finding increasing use as a means of preserving food because ex-
posure to high levels of radiation can destroy or incapacitate bacteria and
mold spores. Techniques include exposing foods to gamma rays, high-energy
electron beams, or x-rays. Food preserved this way can be placed in a sealed
container (to keep out new spoiling agents) and stored for long periods of
time. There is no evidence of adverse effect on the taste or nutritional value of
food from irradiation. The safety of irradiated foods has been endorsed by the
World Health Organization (WHO), the Centers for Disease Control and Pre-
vention (CDC), the U.S. Department of Agriculture (USDA), and the Food
and Drug Administration (FDA).

SUMMARY

A nuclear reaction can occur when a target nucleus X at rest is bombarded
by a particle a, resulting in a nucleus Y and a particle b:

a � X 9: Y � b or X(a, b)Y (14.1)

The energy released in such a reaction, called the reaction energy, Q , is

Q � (MX � Ma � MY � Mb)c2 (14.2)

If N0 beam particles are incident on a target of thickness x, the number N of
beam particles that emerge from the target is

N � N0e�n�x (14.5)

where n is the density of nuclei in the target and � is the cross section.
Nuclear cross sections have dimensions of area and are usually measured in
barns (b), where 1 b � 10�28 m2.

The probability that neutrons will be captured as they move through matter
generally increases with decreasing neutron energy. A thermal neutron is a
slow-moving neutron that has a high probability of being captured by a
nucleus according to the following neutron-capture process:

1
0n � A

ZX 9:
A�1

ZX � � (14.7)

Energetic neutrons are slowed down readily in materials called modera-
tors. These materials have small cross sections for neutron capture, and so
neutrons lose their energy mainly through elastic collisions.

Nuclear fission occurs when a very heavy nucleus, such as 235U, splits into
two main fragments. Thermal neutrons can create fission in 235U:

1
0n � 235

92U 9:
236

92U* 9: X � Y � neutrons (14.8)

where X and Y are the fission fragments and 236U* is a nucleus in an excited
state. On the average, 2.5 neutrons are released per fission event. The frag-
ments and neutrons have a great deal of kinetic energy after the fission event.
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The fragments then undergo a series of beta and gamma decays to various sta-
ble isotopes. The energy released per fission event is about 200 MeV.

The reproduction constant K is the average number of neutrons released
from each fission event that cause another event. In a power reactor, it is nec-
essary to maintain K slightly greater than 1. The value of K is affected by such
factors as reactor geometry, the mean neutron energy, and the probability of
neutron capture. Proper design of the reactor geometry is necessary to mini-
mize neutron leakage from the reactor core. Neutron energies are regulated
with a moderator material to slow down energetic neutrons and therefore
increase the probability of neutron capture by other 235U nuclei. The power
level of the reactor is adjusted with control rods made of a material that
absorbs neutrons very efficiently. The value of K can be adjusted by inserting
the rods into the reactor core at varied depths.

Nuclear fusion is a process in which two light nuclei fuse to form a heavier
nucleus. A great deal of energy is released in such a process. The major obsta-
cle to obtaining useful energy from fusion is the large Coulomb repulsive
force between the charged nuclei at close separations. Sufficient energy must
be supplied to the particles to overcome this Coulomb barrier. The tempera-
ture required to produce fusion is of the order of 108 K, and at this tempera-
ture all matter occurs as plasma.

In a fusion reactor, the plasma temperature must reach at least the critical
ignition temperature, the temperature at which the power generated by the
fusion reactions exceeds the power lost in the system. The most promising fu-
sion reaction is the D–T reaction, which has a critical ignition temperature of
approximately 4.5 � 107 K. Two important parameters involved in fusion reac-
tor design are ion density n and confinement time �. The confinement time
is the time period for which the interacting particles must be maintained at a
temperature equal to or greater than the critical ignition temperature. Law-
son’s criterion states that for the D–T reaction, n� � 1014 s/cm3.

When energetic particles interact with a medium, they lose their energy by
several processes. Heavy particles, such as alpha particles, lose most of their
energy by excitation and ionization of atoms in the medium. The particles
have a finite range in the medium, which depends on the energy, mass, and
charge of the particle as well as the properties of the medium. Energetic elec-
trons moving through a medium also lose their energy by excitation and ion-
ization. However, they scatter more readily than heavy particles and therefore
undergo fewer collisions before coming to rest.

Photons, or gamma rays, which have no charge, are not as effective as charged
particles in producing ionization or excitation. However, they can be absorbed in
a medium by several processes: (1) the photoelectric effect, predominant at low
photon energies; (2) Compton scattering, predominant at intermediate photon
energies; and (3) pair production, predominant at high photon energies.

If a beam of photons with intensity I 0 is incident on a medium, the intensity
of the beam decreases exponentially with increasing depth of penetration into
the medium, according to the relation

I(x) � I 0e��x (14.13)

where x is the distance traveled into the medium, I(x) is the intensity of the
beam after it travels a distance x in the medium, and � is the linear absorp-
tion coefficient of the medium.
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Devices used to detect radiation are the Geiger counter, the semiconductor
diode detector, the scintillation counter, the photographic emulsion, the bub-
ble chamber, the spark chamber, and the wire or drift chamber. Both the
spark chamber and the wire chamber can easily make three-dimensional track
measurements of charged particles, and both are interfaced to computers for
rapid data collection and trajectory reconstruction.
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QUESTIONS

1. Explain the functions of a moderator and a control rod
in a fission reactor.

2. Why is water a better shield against neutrons than lead
or steel?

3. Discuss the advantages and disadvantages of fission re-
actors from the standpoints of safety, pollution, and re-
sources. Make a comparison with power generated by
the burning of fossil fuels.

4. Why would a fusion reactor produce less radioactive
waste than a fission reactor?

5. Lawson’s criterion states that the product of ion density
and confinement time must exceed a certain number
before a break-even fusion reaction can occur. Why
should these two parameters determine the outcome?

6. Why is the temperature required for the D–T fusion
less than that for the D–D fusion? Estimate the relative
importance of Coulomb repulsion and nuclear attrac-
tion in each case.

7. What factors make a fusion reaction difficult to
achieve?

8. Discuss the similarities and differences between fusion
and fission.

9. Discuss the advantages and disadvantages of fusion
power from the standpoints of safety, pollution, and re-
sources.

10. Discuss three major problems associated with the devel-
opment of a controlled-fusion reactor.

11. Describe two techniques that are being pursued in an
effort to obtain power from nuclear fusion.

12. If two radioactive samples have the same activity mea-
sured in curies, will they necessarily create the same
damage to a medium? Explain.

13. One method of treating cancer of the thyroid is to in-
sert a small radioactive source directly into the tumor.
The radiation emitted by the source can destroy can-
cerous cells. Very often, the radioactive isotope 131

53I is
injected into the bloodstream in this treatment. Why
do you suppose iodine is used?

14. Why should a radiologist be extremely cautious about
x-ray doses when treating pregnant women?

15. The design of a PM tube might suggest that any num-
ber of dynodes may be used to amplify a weak signal.
What factors do you suppose would limit the amplifica-
tion in this device?

3. The ITER is discussed in R. W. Conn, et al., “The Inter-
national Thermonuclear Experimental Reactor,” Sci.
Amer., 226:103, April 1992.

4. For an extensive bibliography and selected reprints on
medical applications of nuclear physics, see Medical
Physics, edited by Russel K. Hobbie, College Park, Md.,
American Association of Physics Teachers, 1986.

1. A popular history and overview of fusion are given in
R. Herman, Fusion: The Search for Endless Energy,
Cambridge, England, Cambridge University Press, 1990.

2. The history of the German and U.S. A-bomb projects
(including several interesting photographs) is given
in several articles in Physics Today, 48:8, August 1995,
Part 1.

SUGGESTIONS FOR FURTHER READING

PROBLEMS

14.1 Nuclear Reactions

1. (a) Calculate the Q value corresponding to the reac-
tion 18O(p, n)18F, and compare your result with the
measured value in Table 14.1. (b) Calculate the thresh-
old energy of the incident proton.

2. Supernova explosions are incredibly powerful nuclear
reactions that tear apart the cores of relatively massive

stars (greater than four times the Sun’s mass). These
blasts are produced by carbon fusion, which requires a
temperature of about 6 � 108 K to overcome the
strong Coulomb repulsion between carbon nuclei.
(a) Estimate the repulsive energy barrier to fusion,
using the required ignition temperature for carbon
fusion. (In other words, what is the kinetic energy for a
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carbon nucleus at 6 � 108 K?) (b) Calculate the energy
(in MeV) released in each of these “carbon-burning”
reactions:

(c) Calculate the energy (in kWh) given off when 2 kg of
carbon completely fuses according to the first reaction.

3. The following reaction, first observed in 1930, led to
the discovery of the neutron by Chadwick:

Calculate the Q value of this reaction.
4. The following is the first known reaction (achieved in

1934) in which the product nucleus is radioactive:

Calculate the Q value of this reaction.
5. There are a few nuclear reactions in which the emerg-

ing particle and the product nucleus are identical. One
example of this is the reaction

Calculate the Q value of this reaction.
6. Show that the following inverse reactions have the

same absolute value of Q :

7. (a) The first nuclear transmutation was achieved in
1919 by Rutherford, who bombarded nitrogen atoms
with alpha particles emitted by the isotope 214Bi. The
reaction is

What is the Q value of the reaction? What is the thresh-
old energy? (b) Cockroft and Walton performed the
first nuclear reaction utilizing particle accelerators. In
that case, accelerated protons were used to bombard
lithium nuclei, producing the reaction

Since the masses of the particles involved in the reac-
tion were well known, these results were used to obtain
an early proof of the Einstein mass–energy relation.
Calculate the Q value of the reaction.

8. (a) One method of producing neutrons for experimen-
tal use is based on the bombardment of light nuclei by
alpha particles. In one arrangement, alpha particles
emitted by plutonium are incident on beryllium nuclei,
and this results in the production of neutrons:

What is the Q value for this reaction? (b) Neutrons are
also often produced by small-particle accelerators. In

4
2He � 9

4Be 9:
12
6 C � 1

0n

1
1H � 7

3Li 9:
4
2 He � 4

2He

4
2He � 14

7N 9:
17
8 O � 1

1H

10
5 B(�, p)13

6 C  and  13
6 C(p, �)10

5B

7
3Li(p, �)4

2 He

27
13 Al(�, n)30

15P

9
4Be(�, n)12

6C

12C � 12C 9:
24Mg � �

12C � 12C 9:
20Ne � 4He

one design, deuterons (2H) that have been accelerated
in a Van de Graaff generator are used to bombard
other deuterium nuclei, resulting in the reaction

Is this reaction exothermic or endothermic? Calculate
its Q value.

9. When the nuclear reaction represented by Equation
14.2 is endothermic, the disintegration energy Q is neg-
ative. In order for the reaction to proceed, the incom-
ing particle must have a minimum kinetic energy,
called the threshold energy, Kth. (a) Show that for nonrel-
ativistic particles

by using the fact that K th �� Q in the CM frame and
by transforming this result for the CM frame back to
the laboratory frame. Note that in the CM frame, a and
X have equal and opposite momenta, p � Mav � MXV.
In the lab frame, a has momentum p lab � Ma(v � V )
and X is at rest. (b) Calculate the threshold energy of
the incident alpha particle in the reaction

14.2 Reaction Cross Section

10. Consider a slab consisting of two layers of material with
thicknesses x1 and x2 and target densities n1 and n2. If
N0 is the number of particles incident on the first layer
of the slab in some time interval, determine the num-
ber N that emerge from the second layer in that inter-
val. Assume that the cross section � is the same for each
material. What would you guess is the relationship for
three or more layers?

11. The density of the liquid hydrogen target in a bubble
chamber is 70 kg/m3. If 20% of a beam of slow neu-
trons incident on the bubble chamber has reacted with
the hydrogen by the time the beam has traveled 2 m
through the hydrogen, what is the cross section, in
barns, for the reaction of these slow neutrons with hy-
drogen atoms?

12. The density of lead is 11.35 g/cm3, and its atomic
weight is 207.2. Assume that 1.000 cm of lead reduces a
beam of 1-MeV gamma rays to 28.65% of its initial in-
tensity. (a) How much lead is required to reduce the
beam to 10�4 of its initial intensity? (b) What is the ef-
fective cross section of a lead atom for a 1-MeV photon?

13. Neutrons are captured by a cadmium foil. Using the
data in Figure 14.3, find (a) the ratio of 10-eV neutrons
captured to 1-eV neutrons captured, (b) the ratio of 
1-eV neutrons captured to 0.1-eV neutrons captured,
and (c) the ratio of 0.1-eV neutrons captured to 
0.01-eV neutrons captured. (d) In what range of ener-
gies can cadmium be used as an energy selector?

4
2He � 14

7N 9:
17
8O � 1

1H

K th � �Q �1 �
Ma

MX
�

2
1H � 2

1H 9:
3
2 He � 1

0n
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14. The atomic weight of cadmium is 112.41, and its den-
sity is 8.65 g/cm3. Using Figure 14.3, estimate the at-
tenuation distance of a thermal neutron beam in cad-
mium. (The attenuation distance is the distance
traveled after which the intensity of the beam is re-
duced to 1/e of its initial value, where e is the base of
the natural logarithms.)

15. A beam of 100-MeV protons from a Van de Graaff gen-
erator is incident on a gold foil 5.1 � 10�5 m thick.
The beam current is 0.1 �A, and the beam has a cross-
sectional area of 1 cm2. If the scattering cross section
is 500 b, calculate (a) the ratio N/N0, (b) the number
per second that pass through the foil, and (c) the num-
ber lost from the beam each second by scatter-
ing. (Gold has an atomic weight of 197 and a density of
19.3 g/cm3.)

16. A tiny sphere is made of a material that absorbs all the
photons incident on it. Many such spheres are embed-
ded randomly in a transparent medium. (a) If the radius
of one of these spheres is b, what is its cross section � in
terms of b for the absorption of photons? (b) If the ra-
dius of each sphere is b � 2 � 10�3 m, what is the cross
section? (c) If 3 � 104 of these spheres are uniformly
embedded in a cylinder of a transparent medium of
height 2 m and cross-sectional area 0.5 m2, and a light of
beam intensity 0.75 W/m2 is incident normally on one
end of the cylinder, what is the intensity of the beam of
light that emerges from the other end?

14.3 Interactions Involving Neutrons

17. The density of cadmium is 8.65 g/cm3, and its cross sec-
tion for thermal neutron absorption is 2450 b. Find the
ratio of neutron absorption to neutron decay in cad-
mium for thermal neutrons at a temperature of 27°C.
(Hint: The number of neutrons absorbed per second is

where v is the neutron speed and dN/dx is the number
of neutrons lost per meter of travel. The half-life of the
neutron is 636 s.)

18. In natural silver, the abundance of 107Ag is 51.35%, and
that of 109Ag is 48.65%. The neutron-absorption cross
section of 107Ag is 31 b, and that of 109Ag is 87 b. The
activation products 108Ag and 110Ag formed by neutron
absorption decay by beta emission with half-lives of
144 s and 24.5 s, respectively. A silver sample is removed
from a fission reactor, and after some delay it is found
that the ratio of 108Ag to 110Ag is 20:1. How long was the
delay? (Hint: Assume that the sample has been in the re-
actor for a time sufficiently long that the decay rate
equals the production rate for both 108Ag and 110Ag.)

19. A 1-MeV neutron is emitted in a fission reactor. If it
loses half of its kinetic energy in each collision with a

dN

dt
�

dN

dx

dx

dt
�

dN

dx
v

moderator atom, how many collisions must it undergo
in order to achieve thermal energy (0.039 eV)?

20. A particle cannot generally be localized to distances
much smaller than its de Broglie wavelength. This
means that a slow neutron appears to be larger to a
target particle than does a fast neutron, in the sense
that the slow neutron will probably be found over a
large volume of space. For a thermal neutron at room
temperature (300 K), find (a) the linear momentum
and (b) the de Broglie wavelength. Compare this
effective neutron size with both nuclear and atomic
dimensions.

14.4 Nuclear Fission

21. Find the energy released in the fission reaction

The required masses are

M(1
0n) � 1.008665 u

M(235
92U) � 235.043915 u

M(141
56Ba) � 140.9139 u

M(92
36Kr) � 91.8973 u

14.5 Nuclear Reactors

22. (a) How many grams of 235U must undergo fission to
operate a 1000-MW power plant for one day? (b) If the
density of 235U is 18.7 g/cm3, how large a sphere of
235U could you make from this much uranium?

23. In order to minimize neutron leakage from a reactor,
the surface-area-to-volume ratio should be a minimum
for a given shape. For a given volume V, calculate this
ratio for (a) a sphere, (b) a cube, and (c) a rectangular
parallelepiped of dimensions a � a � 2a. (d) Which of
these shapes would have the minimum leakage?
(e) Which would have the maximum leakage?

24. It has been estimated that there are 109 tons of natural
uranium (mainly 238U) at concentrations exceeding 100
parts per million, of which 0.7% is 235U. If all the world’s
power needs (7 � 1012 J/s) were to be supplied by 235U
fission, how long would this supply last? (This estimate
of uranium supply was taken from K. S. Deffeyes and 
I. D. MacGregor, Sci. Amer., January 1980, p. 66.)

25. An electrical power plant operates on the basis of ther-
mal energy generated in a pressurized-water reactor.
The electrical power output of the plant is 1 GW, and
its efficiency is 30%. (a) Find the total power generated
by the reactor. (b) How much power is discharged to
the environment as waste heat? (c) Calculate the rate
of fission events in the reactor core. (d) Calculate the
mass of 235U used up in one year. (e) Using the results
from (a), determine the rate at which fuel is converted
to energy (in kg/s) in the reactor core, and compare
your answer with the result from (d).

1
0n � 235

92U 9:
141
56Ba � 92

36 Kr � 3(1
0n)
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26. (a) Estimate the volume of space required to store the
radioactive wastes that would be produced in one year if
all the annual U.S. electricity production (which is about
2.2 � 1012 kWh/yr) came from uranium enriched to
3% 235U. (Assume that the conversion efficiency is 30%
and that the waste is in the form of a liquid with a den-
sity of 1 g/cm3.) (b) If the waste could be formed into a
cube, what would be the length of the cube’s sides?

14.6 Nuclear Fusion

27. Consider the deuterium– tritium fusion reaction with
the tritium nucleus at rest:

(a) From Equation 13.1, estimate the required distance
of closest approach. (b) What is the Coulomb potential
energy (in electron volts) at this distance? (c) If the
deuteron has just enough energy to reach the distance
of closest approach, what is the final velocity of the
combined deuterium and tritium nuclei in terms of the
initial deuteron velocity, v0? (d) Use energy methods to
estimate the minimum initial deuteron energy re-
quired to achieve fusion. (e) Why does the fusion reac-
tion occur at much lower deuteron energies than that
calculated in (d)?

28. The half-life of tritium is 12 yr. If the TFTR fusion
reactor contains 50 m3 of tritium at a density equal to
1.5 � 1014 particles/cm3, how many curies of tritium
are in the plasma? Compare this with a fission reactor
supply of 4 � 1010 Ci.

29. (a) Calculate the amounts of energy carried off by the
4
2He nucleus and the neutron in the D–T fusion reac-
tion. (Assume that the momentum is initially zero.)
(b) Does this explain why only 20% of the energy pro-
duced can be used for critical ignition?

30. The Sun radiates energy at the rate of 4 � 1023 kW.
Assuming that the reaction

accounts for all the energy released, calculate (a) the
number of protons fused per second and (b) the mass
transformed into energy per second.

31. Suppose the target in a laser fusion reactor is a sphere
of solid hydrogen with a diameter of 10�4 m and a den-
sity of 0.2 g/cm3. Also assume that half of the nuclei
are 2H and half are 3H. (a) If 1% of a 200-kJ laser pulse
goes into heating this sphere, what temperature will
the sphere reach? (b) If all of the hydrogen “burns”
according to the D–T reaction, how many joules of
energy will be released?

32. In a tokamak fusion reactor, suppose a 500-eV
deuteron moves at an angle of 30° to the toroidal mag-
netic field. Assume that B t � 1 T and Bp � 0 (see Fig.
14.14). (a) Calculate the components of velocity paral-
lel and perpendicular to Bt . (b) What is the radius of
the spiral motion for the deuteron? (c) How far does

4(1
1H) 9:

4
2He � 2e� � 2	 � �

2
1H � 3

1H 9:
4
2 He � 1

0 n

the deuteron travel along the magnetic field before it
completes one revolution around the magnetic field?

33. The carbon cycle, first proposed by Bethe in 1939, is
another cycle by which energy is released in stars and
hydrogen is converted to helium. The carbon cycle re-
quires higher temperatures than the proton–proton
cycle. The series of reactions is

12C � 1H 9:
13N � �

13N 9:
13C � e� � 	

13C � 1H 9:
14N � �

14N � 1H 9:
15O � �

15O 9:
15N � e� � 	

15N � 1H 9:
12C � 4He

(a) If the proton–proton cycle requires a temperature
of 1.5 � 107 K, estimate the temperature required for
the first step in the carbon cycle. (b) Calculate the Q
value for each step in the carbon cycle and the overall
energy released. (c) Do you think the energy carried
off by the neutrinos is deposited in the star? Explain.

34. (a) Calculate the energy (in kWh) released if 1 kg of
239Pu undergoes complete fission and the energy re-
leased per fission event is 200 MeV. (b) Calculate the
energy (in MeV) released in the D–T fusion:

(c) Calculate the energy (in kWh) released if 1 kg of
deuterium undergoes fusion. (d) Calculate the energy
(in kWh) released by the combustion of 1 kg of coal if
each C � O2 : CO2 reaction yields 4.2 eV. (e) List the
advantages and disadvantages of each of these methods
of energy generation.

35. The 6Li isotope is only about 7.5% naturally abundant.
The remaining 92.5% of lithium is 7Li. It is estimated
that about 2 � 1013 g of lithium is available. If 6Li is
used as a tritium source in fusion reactors, with an
energy release of 22 MeV per 6Li nucleus, estimate the
total energy available in D–T fusion. How does this
number compare with the world’s fossil fuel supply,
which is estimated to be about 2.5 � 1023 J?

36. Find the Q value for each of the reactions in the
proton–proton cycle (Eq. 14.10), and show that the
overall Q value for the cycle is 25.7 MeV.

37. (a) Estimate the net power output of a fusion reac-
tor that burns ten 50:50 3-mg D–T pellets every
second. Assume that 30% of the fuel ignites and that a
5 � 1014 W laser pulse lasting 10 ns is needed to initi-
ate burning. (b) What is the equivalent in liters of oil
for a day’s operation, if 2 L of oil gives off 100 MJ when
burned?

38. In a laser fusion reaction, a pellet containing a 50:50
mixture of D and T experiences a density increase of
1000 times when struck by a laser pulse. (a) Find the
particle density in the compressed state if the normal

2
1H � 3

1H 9:
4
2He � 1

0 n
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density is 0.20 g/cm3. (b) How long must the D and T
nuclei be confined at this density if the reaction is to
achieve a break-even condition?

39. Two nuclei with atomic numbers Z1 and Z 2 approach
each other with a total energy E. (a) If the mini-
mum distance of approach for fusion to occur is
r � 10�14 m, find E in terms of Z1 and Z2. (b) Calculate
the minimum energy for fusion for the D–D and D–T
reactions (the first and third reactions in Eq. 14.11).

40. To understand why containment of a plasma is neces-
sary, consider the rate at which a plasma would be lost
if it were not contained. (a) Estimate the rms speed of
deuterons in a plasma at 108 K. (b) Estimate the time
interval for which such a plasma would remain in a 
10-cm cube if no steps were taken to contain it.

41. Of all the hydrogen nuclei in the ocean, 0.0156% are
deuterium. The oceans have a volume of 317 million
cubic miles. (a) If all the deuterium in the oceans were
fused to , how many joules of energy would be re-
leased? (b) Current world energy consumption is about
7 � 1012 W. If consumption were 100 times greater,
how many years would the energy calculated in (a) last?

42. It has been pointed out that fusion reactors are safe
from explosion because there is never enough energy
in the plasma to do much damage. (a) Using a parti-
cle density of 1015 cm�3 and a kinetic temperature of
10 keV, calculate the amount of energy stored in the
plasma of the TFTR reactor. (b) How many kilograms
of water could be boiled by this much energy? (The
plasma volume of the TFTR reactor is about 50 m3.)

43. In order to confine a stable plasma, the magnetic en-
ergy density in the magnetic field must exceed the
pressure 2nkT of the plasma by a factor of at least 10.
In the following, assume a confinement time � � 1 s.
(a) Using Lawson’s criterion, determine the required
ion density. (b) From the ignition temperature crite-
rion for the D–T reaction, determine the required
plasma pressure. (c) Determine the magnitude of the
magnetic field that is required to contain the plasma.

14.7 Interaction of Particles with Matter

44. The densities and atomic weights of the materials in
Table 14.3 are as follows:

4
2 He

45. Three equally thick layers of aluminum, copper, and
lead are used to reduce the intensity of an x-ray beam
to one-third of its original intensity. The wavelength of
the beam is 50 pm. (a) Find the thickness of a layer of
material. (b) By what fraction would the initial beam
intensity be reduced by the lead alone?

46. X-rays of wavelength 25 pm and gamma rays of energy
0.1 MeV have approximately the same absorption coef-
ficient in lead. How do their energies compare?

47. What is the half-value thickness (Example 14.7) of water
to x-rays of wavelength 20 pm? Since the human body is
more than 90% water, what does your answer indicate
about the use of x-rays as a diagnostic technique?

48. In a large-scale nuclear attack, typical radiation inten-
sity from radioactive fallout might be 2000 rad in most
places. In the following calculations, assume that one-
third of the radiation is 10-MeV gamma radiation and
that the linear absorption coefficient is the same for
aluminum and concrete. (a) What thickness (in me-
ters) of concrete would be needed to reduce the radia-
tion intensity to 1 rad? (b) If a particular shelter were
located at a “hot spot” receiving 100,000 rad, what
thickness of concrete would be needed to reduce the
radiation intensity to 1 rad?

14.8 Radiation Damage in Matter

49. Assume that an x-ray technician takes an average of
eight x-rays per day and receives a dose of 5 rem/year
as a result. (a) Estimate the dose in rem per x-ray
taken. (b) How does this result compare with low-level
background radiation?

50. In terms of biological damage, how many rad of heavy
ions are equivalent to 100 rad of x-rays?

51. Two workers using an industrial x-ray machine acciden-
tally insert their hands in the x-ray beam for the same
length of time. The first worker inserts one hand in the
beam, and the second worker inserts both hands.
Which worker receives the larger dose in rad?

52. Calculate the radiation dose, in rad, supplied to 1 kg of
water such that the energy deposited equals (a) the rest
energy of the water and (b) its thermal energy. (As-
sume that each molecule has a thermal energy of kBT.)

53. A person whose mass is 75 kg is exposed to a dose of
25 rad. How many joules of energy are deposited in the
person’s body?

14.9 Radiation Detectors

54. In a Geiger tube, the voltage between the electrodes is
typically 1 kV and the current pulse generated by the
detection of a 
 particle fully charges a 5-pF capacitor.
(a) What is the energy amplification of this device for
a 0.5-MeV beta ray? (b) How many electrons are
avalanched by the initial electron?

55. In a PM tube, assume that there are seven dynodes with
potentials of 100 V, 200 V, 300 V, . . . , 700 V. The
average energy required to free an electron from the

Substance Density (g/cm3) Atomic Weight

H2O 1 18
Al 2.7 27
Fe 7.8 55.8
Pb 11.35 207.2

Compute the number of electrons per cubic centimeter
for each material, and plot the gamma-ray linear ab-
sorption coefficient versus electron density. Draw three
graphs corresponding to gamma-ray energies of 0.1, 1.0,
and 10 MeV. What do you conclude from your graphs?
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dynode surface is 10 eV. For each incident electron,
how many electrons are freed (a) at the first dynode
and (b) at the last dynode?

ADDITIONAL PROBLEMS

56. A fission reaction that has been considered as a source
of energy is the absorption of a proton by a boron-11
nucleus to produce three alpha particles,

This is an attractive possibility because large amounts of
boron are present in the Earth’s crust. A disadvantage is
that the protons and boron nuclei must have large ki-
netic energies in order for the reaction to take place.
This is in contrast to the initiation of uranium fission by
slow neutrons. Chemical explosives might provide the
high kinetic energies required. (a) What energy is re-
leased in each fission event here? (b) What is the reason
the reactant particles must have high kinetic energies?

57. Consider a nucleus at rest, which then spontaneously
splits into two fragments, of masses m1 and m2. Show
that the fraction of the total kinetic energy that is car-
ried by fragment m1 is

and the fraction carried by m2 is

assuming relativistic corrections can be ignored. (Note:
If the parent nucleus was moving before the decay,
then the fission products still divide the kinetic energy
as shown, if all velocities are measured in the center-of-
mass frame of reference, in which the total momentum
of the system is zero.)

58. A stationary 236
92 U nucleus fissions spontaneously into

two primary fragments, 87
35Br and 149

57La. (a) Calculate
the disintegration energy. The required atomic masses
are 86.920 710 u for 87

35Br, 148.934 370 u for 149
57La, and

236.045 562 u for 236
92 U. (b) How is the disintegration

energy split between the two primary fragments? You
may use the result of Problem 57. (c) Calculate the ini-
tial speed of each fragment.

59. The first nuclear bomb was a fissioning mass of pluto-
nium-239, exploded before dawn on July 16, 1945, at
Alamogordo, New Mexico. Enrico Fermi was 14 km
away, lying on the ground facing away from the bomb.
After the whole sky had flashed with unbelievable bright-
ness, Fermi stood up and began dropping bits of paper
to the ground. They first fell at his feet in the calm and
silent air. As the shock wave passed, about 40 s after the
explosion, the paper then in flight jumped about 5 cm
away from ground zero. (a) Assume that the shock wave

K2

K tot
�

m1

m1 � m2

K1

K tot
�

m2

m1 � m2

1
1 H � 11

5 B : 3 4
2 He

in air propagated equally in all directions without ab-
sorption. Find the change in volume of a hemisphere of
radius 14 km as it expands by 5 cm. (b) Find the work
P�V done by the air in this sphere on the next layer of
air farther from the center. (c) Assume the shock wave
carried on the order of one-tenth of the energy of the
explosion. Make an order-of-magnitude estimate of the
bomb yield. (d) One ton of exploding trinitrotoluene
(TNT) releases an energy of 4.2 GJ. What was the order
of magnitude of the energy of the first nuclear bomb in
equivalent tons of TNT? Fermi’s immediate knowledge
of the bomb yield agreed with that determined days later
by analysis of elaborate measurements.

60. At time t � 0 a sample of uranium is exposed to a neu-
tron source that causes N0 nuclei to undergo fission. The
sample is in a supercritical state, with a reproduction con-
stant K � 1. A chain reaction occurs that produces fission
throughout the mass of uranium. The chain reaction can
be thought of as a succession of generations. The N 0 fis-
sions produced initially are the zeroth generation of fis-
sions. From this generation, N0K neutrons go off to pro-
duce fission of new uranium nuclei. The N0K fissions
that occur subsequently are the first generation of fis-
sions, and from this generation, N0K 2 neutrons go in
search of uranium nuclei in which to cause fission. The
subsequent N0K 2 fissions are the second generation of
fissions. This process can continue until all the uranium
nuclei have fissioned. (a) Show that the cumulative total
of fissions, N , that have occurred up to and including the
nth generation after the zeroth generation is given by

(b) Consider a hypothetical uranium bomb made from
5.50 kg of isotopically pure 235U. The chain reaction has
a reproduction constant of 1.10 and starts with a zeroth
generation of 1.00 � 1020 fissions. The average time be-
tween one fission generation and the next is 10.0 ns.
How long after the zeroth generation does it take the
uranium in this bomb to fission completely? (c) Assume
that the bulk modulus of uranium is 150 GPa. Find the
speed of sound in uranium. You may ignore the density
difference between 235U and natural uranium. (d) Find
the time interval required for a compressional wave to
cross the radius of a 5.50-kg sphere of uranium. This
time indicates how quickly the motion of explosion be-
gins. (e) Fission must occur in a time interval that is
short compared to that in part (d), for otherwise most
of the uranium will disperse in small chunks without
having fissioned. Can the bomb considered in part (b)
release the explosive energy of all of its uranium? If so,
how much energy does it release, in equivalent tons of
TNT? Assume that 1 ton of TNT releases 4.20 GJ and
that each uranium fission releases 200 MeV of energy.

N � N 0 � K n�1 � 1
K � 1 �
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Chapter Outline

The word atom is from the Greek atomos , which means “indivisible.” At one
time, atoms were thought to be the indivisible constituents of matter; that is,
they were regarded as elementary particles. From as far back as the ancient
Greek philosopher Democritus to the relatively recent works of John Dalton
and Dmitri Mendeleev, the idea that everything consists of elementary atoms
has been quite successful in explaining many properties of matter. When dis-
coveries in the early part of the 20th century revealed that the atom is com-
posed of other constituents, another simplification occurred with Bohr’s
atomic model and the invention of quantum mechanics. The variety of physical
and chemical properties of approximately 100 elements has been explained in
terms of rules governing just three constituents: electrons, protons, and neu-
trons. With the exception of the free neutron, these particles are very stable.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



Beginning in about 1945, many new particles were discovered in experi-
ments involving high-energy collisions between known particles. Such particles
are highly unstable and have very short half-lives, ranging between 10�6 and
10�23 s. So far, more than 400 of these unstable, temporary particles have
been catalogued.

Since the early 1960s, many powerful particle accelerators have been con-
structed throughout the world, making it possible to observe collisions of
energetic particles under controlled laboratory conditions so as to reveal the
subatomic world in finer detail. Until the 1960s, physicists were puzzled by the
large number and variety of subatomic particles being discovered. They won-
dered whether the particles were like the varied animals in a zoo, with no sys-
tematic relationship connecting them, or whether a pattern was emerging that
would provide a better understanding of the elaborate structure of the subnu-
clear world. Since about 1970, physicists have tremendously advanced our
knowledge of the structure of matter by recognizing that all particles except
electrons, photons, and a few others are made of smaller particles called
quarks. Thus protons and neutrons, for example, are not truly elementary
but are systems of tightly bound quarks. The quark model has reduced the
array of particles to a manageable number and has successfully predicted new
quark combinations that have subsequently been observed in many experi-
ments. A kind of wave mechanics for quarks (quantum chromodynamics)
has also been developed. This theory, although mathematically difficult, has
deepened our understanding of elementary particles and has helped to tame
the particle “zoo.”

This chapter examines the properties and classifications of the known ele-
mentary particles, the interactions that govern their behavior, and the meth-
ods of producing elementary particles and measuring their properties. We also
discuss the current theory of elementary particles, the standard model, in
which elementary particles are divided into two catagories: particles of spin

—quarks and leptons—and force-carrying, or “field” particles with integral
spin like the photon and gluon.

15.1 THE FUNDAMENTAL FORCES IN NATURE

To understand the properties of elementary particles, we must be able to de-
scribe the forces between them. Particles in nature are subject to four funda-
mental forces; in order of decreasing strength, these are the strong force, the
electromagnetic force, the weak force, and the gravitational force.

The strong force is responsible for binding quarks tightly together to form
protons, neutrons, and other heavy particles. It is extremely short-range and is
negligible for separations greater than approximately 10�15 m. The nuclear
force that binds neutrons and protons in nuclei is currently believed to be a
residual effect of the more basic strong force between quarks, much as the
molecular force binding electrically neutral atoms together in molecules is a
residual electrical interaction.

The electromagnetic force, which binds electrons and protons within atoms
and molecules to form ordinary matter, is approximately two orders of magni-
tude weaker than the strong force. It is a long-range force that decreases in
strength as the inverse square of the separation between interacting particles.

1
2
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The weak force is a short-range force that accounts for the beta decay of
nuclei and the decay of heavier quarks and leptons. Its strength is only about
10�6 times that of the strong force. (As we shall discuss later, scientists now be-
lieve that the weak and electromagnetic forces are two manifestations of a uni-
fied force called the electroweak force.)

Finally, the gravitational force is a long-range force that has a strength
only about 10�43 times that of the strong force. Although this familiar interac-
tion holds the planets, stars, and galaxies together, its effect on elementary
particles is negligible.

Classically, the entity that is responsible for transmitting a force from one
particle to another is the field. For example, a positive electric charge produces
an electric field in space, which in turn exerts an attractive force on a nearby
negative charge. Furthermore, the field can carry energy and momentum from
one particle to the other. According to quantum field theories, the energy and
momentum of all fields are quantized, and the quantum that carries a “chunk”
of momentum and energy from one type of particle to another is called a field
particle. In particle physics, interactions between particles are described in
terms of the exchange of field particles, or quanta, which are all bosons. In the
case of the familiar electromagnetic interaction, for instance, the field particles
are photons. In the language of modern physics, one can say that the electro-
magnetic force is mediated, or carried, by photons and that photons are the
quanta of the electromagnetic field. Likewise, the strong force is mediated by
field particles called gluons, the weak force is mediated by particles called the
W� and Z0 bosons, and the gravitational force is carried by quanta of the gravita-
tional field called gravitons. These interactions, the particles they act on, their
ranges, their relative strengths, and the corresponding field particles, are sum-
marized in Table 15.1. Note that the fourth column of Table 15.1 presents an-
other way of classifying interactions—by means of the observed lifetime of a
decaying particle. In fact, with only a few exceptions, the lifetimes of decaying
particles are excellent indicators of what interaction has caused the decay, with
shorter lifetimes being associated with stronger forces. As shown in Table 15.1,
particles decaying via the strong force are usually the shortest-lived; next come
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Table 15.1 Particle Interactions

Typical
Lifetimes Force-

Particles for Decays Carrying
Interaction Acted on by Relative via a Given Range of Particle
(Force) Force Strengtha Interaction Force Exchanged

Strong Quarks, 1 �10�20 s Short (�1 fm) Gluon
hadrons

Electromagnetic Charged �10�2 �10�16 s Long (�) Photon
particles

Weak Quarks, �10�6 �10�10 s Short (�10�3 fm) W�, Z0 bosons
leptons

Gravitational All particles �10�43 ? Long (�) Gravitonb

aFor two u quarks at 3 � 10�17 m.

bNot experimentally detected.
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those decaying via electromagnetic forces; and finally, particles decaying by the
weak interaction have the longest observed lifetimes.

15.2 POSITRONS AND OTHER ANTIPARTICLES

In the 1920s the English theoretical physicist Paul Adrien Maurice Dirac
(1902–1984) developed a version of quantum mechanics that incorporated spe-
cial relativity. Dirac’s theory automatically explained the origin of the electron’s
spin and its magnetic moment. However, it also presented a major difficulty.
Dirac’s relativistic wave equation required solutions corresponding to both posi-
tive and negative energies for free electrons.1 We can easily see this from the ex-
pression for the total relativistic energy of an electron ,
which has both positive and negative roots. But if negative energy states existed,
one would expect an electron in a state of positive energy to make a rapid transi-
tion to one of these lower energy states, emitting a photon in the process. Even-
tually all electrons in the universe would end up locked in negative energy
states, contradicting the common observation of electrons with positive total en-
ergies. Dirac avoided this difficulty by postulating that all negative energy states
are filled. Electrons that occupy the negative energy states are called collectively
the “Dirac sea.” Electrons in the Dirac sea are not directly observable, because
the Pauli exclusion principle does not allow them to react to external forces—
there are no available states to which an electron can make a transition in re-
sponse to an external force. Therefore, an electron in such a state acts as an iso-
lated system, unless enough energy (�2m ec

2) is supplied to excite the electron
to a positive energy state. Such an excitation causes one of the negative energy
states to become vacant, as in Figure 15.1, leaving a hole in the sea of filled
states. The hole can react to external forces and is observable. The hole reacts in a way
similar to that of the electron, except that it has a positive charge—it is the an-
tiparticle to the electron. The electron’s antiparticle, the positron, has a rest
energy of 0.511 MeV and a positive charge of �1.60 � 10�19 C.

Carl Anderson (1905–1991) observed the positron experimentally in 1932,
and in 1936 he was awarded a Nobel prize for his achievement. Anderson dis-
covered the positron while examining tracks created in a cloud chamber by
electron-like particles of positive charge. (These early experiments used cos-
mic rays—mostly energetic protons passing through interstellar space—to
initiate high-energy reactions on the order of several GeV.) To discriminate
between positive and negative charges, Anderson placed the cloud chamber in
a magnetic field, causing moving charges to follow curved paths. He noted
that some of the electron-like tracks deflected in a direction corresponding to
a positively charged particle.

Since Anderson’s discovery, positrons have been observed in a number of
experiments. A common source of positrons is pair production. In this
process, a gamma-ray photon with sufficiently high energy interacts with a
nucleus, and an electron–positron pair is created from the photon. (The
presence of the nucleus allows the principle of conservation of momentum to
be satisfied.) Because the total rest energy of the electron–positron pair is

E � �√p2c2 � m2
ec4
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1P. A. M. Dirac, The Principles of Quantum Mechanics , 3rd ed., New York, Oxford University Press,
1947, Chapter 11.

Pair production

Figure 15.1 Dirac’s model for
the existence of antielectrons
(positrons). The states lower in
energy than �m ec

2 are filled
with electrons (the Dirac sea).
One of these electrons can make
a transition out of its state only if
it is provided with energy equal
to or larger than 2m ec

2. This
leaves a vacancy in the Dirac sea,
which can behave as a particle
identical to the electron except
for its positive charge.
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2mec2 � 1.02 MeV, the photon must have at least this much energy to create
an electron–positron pair. Therefore, the electromagnetic energy of a photon
is converted mainly to rest energy of the electron and positron in accordance
with Einstein’s relationship E � mc2. If the gamma-ray photon has energy in
excess of the rest energy of the electron–positron pair, the excess appears
as kinetic energy of the two particles. Figure 15.2 shows tracks of
electron–positron pairs created by 300-MeV gamma rays striking a lead sheet.

The reverse process can also occur. Under the proper conditions, an elec-
tron and a positron can annihilate each other to produce two gamma-ray pho-
tons with a combined energy of at least 1.02 MeV:

A practical application of electron–positron annihilation occurs in the med-
ical diagnostic technique called positron emission tomography (PET). The
patient is injected with a glucose solution containing a radioactive substance
that decays by positron emission, and the material is carried by the blood
throughout the body. A positron emitted during a decay event in one of the
radioactive nuclei in the glucose solution annihilates with an electron in the
surrounding tissue, resulting in two gamma-ray photons emitted in opposite
directions. A gamma detector surrounding the patient pinpoints the source of
the photons and, with the assistance of a computer, displays an image of the
sites at which the glucose accumulates. (Glucose is metabolized rapidly in
cancerous tumors and accumulates at those sites, providing a strong signal for
a PET detector system.) The images from a PET scan can indicate a wide
variety of disorders in the brain, including Alzheimer’s disease (Fig. 15.3). In
addition, because glucose metabolizes more rapidly in active areas of the
brain, a PET scan can indicate which areas of the brain are involved in
activities in which a patient is engaging at the time of the scan, such as lan-
guage use, music, and vision.

e� � e�
9: 2
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Figure 15.2

 (b) A sketch of the pertinent pair-production events. Note that the
positrons deflect upward while the electrons deflect downward in an applied magnetic
field directed into the page.
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Prior to 1955, on the basis of the Dirac theory, it was expected that every
particle had a corresponding antiparticle, but antiparticles such as the
antiproton and antineutron had not been detected experimentally. Since
the relativistic Dirac theory had had some failures (it predicted the wrong-
size magnetic moment for the proton) as well as many successes, it was
important to determine whether the antiproton really existed. In 1955 a
team led by Emilio Segrè (1905 – 1989, Italian-American physicist) and
Owen Chamberlain (b. 1920, American physicist) used the Bevatron parti-
cle accelerator at the University of California, Berkeley, to produce both
antiprotons and antineutrons. They thus established with certainty the exis-
tence of antiparticles. For this work Segrè and Chamberlain received the
Nobel prize in 1959. It is now accepted that every particle has a corre-
sponding antiparticle of equal mass and spin and of equal and oppo-
site charge, magnetic moment, and strangeness. (The property of
strangeness is explained in Section 15.6.) The only exceptions to these rules
for particles and antiparticles are the neutral photon, pion, and eta, each of
which is its own antiparticle.
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Figure 15.3 PET scans of the brain of a healthy older person (left) and that of a pa-
tient suffering from Alzheimer’s disease (right). (National Institute of Health)

momentum would not be conserved, because the total
momentum of the electron–positron system is approxi-
mately 0, whereas a single photon of energy 1.022 MeV
would have a very large momentum. On the other hand,
the two gamma-ray photons that are produced travel off
in opposite directions, so their total momentum is 0.

EXAMPLE 15.1 Pair Production

When an electron and a positron meet at low speeds in
free space, why are two 0.511-MeV gamma rays pro-
duced rather than one gamma ray with an energy of
1.022 MeV?

Reasoning Gamma rays are photons, and photons
carry momentum. If only one photon were produced,
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15.3 MESONS AND THE BEGINNING
OF PARTICLE PHYSICS

In the mid-1930s, physicists had a fairly simple view of the structure of matter.
The building blocks were the proton, the electron, and the neutron. Three
other particles were known or had been postulated at the time: the photon,
the neutrino, and the positron. These six particles were considered the funda-
mental constituents of matter. With this marvelously simple picture of the
world, however, no one could provide an answer to an important question:
Since the many protons close together in a nucleus should strongly repel each
other because of their like charges, what is the nature of the force that holds
the nucleus together? Scientists recognized that this mysterious force must be
much stronger than anything encountered in nature up to that time.

In 1935 the Japanese physicist Hideki Yukawa (1907–1981) proposed the
first theory to successfully explain the nature of the nuclear force, an effort
that later earned him the Nobel prize. To understand Yukawa’s theory, it is
useful to recall that in the modern view of electromagnetic interactions,
charged particles interact by exchanging photons. Yukawa used this idea to explain
the nuclear force by proposing a new particle whose exchange between nucle-
ons in the nucleus produces the nuclear force. Furthermore, he established
that the range of the force is inversely proportional to the mass of this particle
and predicted that the mass would be about 200 times the mass of the elec-
tron. Since the new particle would have a mass between that of the electron
and that of the proton, it was called a meson (from the Greek meso, “middle”).

In an effort to substantiate Yukawa’s predictions, physicists began an experi-
mental search for the meson by studying cosmic rays entering the Earth’s
atmosphere. In 1937 Carl Anderson and his collaborators discovered a particle
of mass 106 MeV/c2, about 207 times the mass of the electron. However,
subsequent experiments showed that the particle interacted very weakly
with matter and hence could not be the carrier of the strong force. The
puzzling situation inspired several theoreticians to propose that there were
two mesons with slightly different masses. This idea was confirmed by the
discovery in 1947 of the pi (�) meson, or simply pion, by Cecil Frank Powell
(1903–1969) and Giuseppe P. S. Occhialini (b. 1907). The particle discovered
by Anderson in 1937, the one thought to be a meson, is not really a meson.
Instead, it takes part in the weak and electromagnetic interactions only, and it
is now called the muon.

The pion, Yukawa’s carrier of the nuclear force, comes in three varieties,
corresponding to three charge states: ��, ��, and �0. The �� and �� parti-
cles have masses of 139.6 MeV/c2, and the �0 has a mass of 135.0 MeV/c2.
Both pions and muons are unstable particles. For example, the ��, which has
a mean lifetime of 2.6 � 10�8 s, first decays to a muon and a muon antineu-
trino. The muon, which has a mean lifetime of 2.2 �s, then decays to an elec-
tron, a neutrino, and an electron antineutrino:

(15.1)

The interaction between two particles can be represented in a useful
diagram called a Feynman diagram, developed by the American physicist
Richard P. Feynman (1918–1988). Figure 15.4 is such a diagram for the

��
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Hideki Yukawa (1907–1981), a
Japanese physicist, was awarded
the Nobel prize in 1949 for pre-
dicting the existence of mesons.
This photograph of Yukawa at
work was taken in 1950 in his
office at Columbia University.
(© Bettmann/CORBIS)

Figure 15.4 Feynman dia-
gram showing how a photon
carries the electromagnetic
force between two interacting
electrons. The blue arrow shows
the direction of increasing time.
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electromagnetic interaction between two electrons. A Feynman diagram is a
qualitative graph of time on the vertical axis versus space on the horizontal
axis. It is qualitative in the sense that actual values of time and space are not
important, but the overall appearance of the graph conveniently serves to
categorize different interaction processes. In this simple case, a photon is
the field particle that mediates the electromagnetic force between the elec-
trons. The photon transfers energy and momentum from one electron to the
other in this interaction. The photon is called a virtual photon because it is
emitted and reabsorbed without being detected. Virtual photons can violate
the law of conservation of energy by �E for a very short time, �t, provided that
�E �t � �/2 (from the minimum form of the uncertainty principle). Note
that such quantum violations of energy conservation take place only in the
short term and that system energy is conserved in the long run when the pho-
ton is reabsorbed by the other electron.

Now consider the pion exchange between a proton and a neutron that
transmits the nuclear force according to Yukawa (Fig. 15.5). We can reason
that the energy �E needed to create a pion of mass m� is given by Einstein’s
equation �E � m�c2. Again, the very existence of the pion would violate con-
servation of energy if it lasted for a time greater than �t � �/2 �E, where �E
is the energy of the pion and �t is the time it takes the pion to travel from one
nucleon to the other. Therefore,

(15.2)

Because the pion cannot travel faster than the speed of light, the maximum
distance d it can travel in a time �t is c�t . Using Equation 15.2 and d � c�t , we
find this maximum distance to be

(15.3)

We know that the range of the nuclear force is approximately 1.0 � 10�15 m.
Using this value for d in Equation 15.3, we calculate the rest energy of the
pion to be

This corresponds to a mass of 100 MeV/c2 (approximately 250 times the mass
of the electron), a value in reasonable agreement with the observed pion mass.

The concept we have just described is quite important. In effect, it says that
a proton can change into a proton plus a pion as long as it returns to its origi-
nal state in a very short time. Physicists often say that a nucleon undergoes
“fluctuations” as it emits and absorbs pions. As we have seen, these fluctua-
tions are a consequence of a combination of quantum mechanics (through
the uncertainty principle) and special relativity (through Einstein’s
energy–mass relationship, E � mc2). Also, as seen in Chapter 13, these virtual
fluctuations can become real particles in collision processes if the incident
particle can furnish the “missing” energy and momentum.
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Figure 15.5 Feynman dia-
gram representing a proton in-
teracting with a neutron via the
strong force. In this case, the
pion mediates the strong force.
The blue arrow shows the direc-
tion of increasing time.
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R
ichard Phillips Feynman was a
brilliant theoretical physicist
who shared the 1965 Nobel

Prize in Physics with Julian S.
Schwinger and Shinichiro Tomonaga
for their fundamental work in the
principles of quantum electrody-
namics. Feynman’s many important
contributions to physics include the
invention of simple diagrams to rep-
resent particle interactions graphi-
cally, the theory of the weak interac-
tion of subatomic particles, a
reformulation of quantum mechan-
ics, the theory of superfluid helium,
and his contribution to physics edu-
cation through the magnificent
three-volume text The Feynman Lec-

tures on Physics.
Feynman did his undergraduate

work at MIT and received his Ph.D.
in 1942 from Princeton University,
where he studied under John
Archibald Wheeler. During World
War II he worked on the Manhattan
Project at Princeton and at Los
Alamos, New Mexico. He then
joined the faculty at Cornell Univer-
sity in 1945 and in 1950 was ap-
pointed professor of physics at Cali-
fornia Institute of Technology,
where he remained for the rest of
his career.

It is well known that Feynman
had a passion for finding new and
better ways to formulate each prob-
lem or, as he would say, “turning it
around.” In the early part of his
career, he was fascinated with elec-
trodynamics and developed an intu-
itive view of quantum electrodynam-
ics. Convinced that the electron
could not interact with its own field,
he said, “That was the beginning,
and the idea seemed so obvious
to me that I fell deeply in love with
it. . . .” Often called the outstand-
ing intuitionist of our age, he said in
his Nobel acceptance speech, “Of-
ten, even in a physicist’s sense, I did
not have a demonstration of how to

get all of these rules and equations,
from conventional electrodynamics.
. . . I never really sat down, like Eu-
clid did for the geometers of Greece,
and made sure that you could get it
all from a single set of axioms.”

In 1986 Feynman was a member
of the presidential commission to in-
vestigate the explosion of the space
shuttle Challenger. In this capacity, he
performed a simple experiment for
the commission members that
showed that one of the shuttle’s O-
ring seals was the likely cause of the
disaster. After placing a seal in a
pitcher of ice water and squeezing it
with a clamp, he demonstrated that
the seal failed to spring back into
shape once the clamp was removed.1

Feynman worked in physics with
a style commensurate with his per-
sonality—that is, with energy, vital-
ity, and humor. The following quota-
tions from some of his colleagues
hint at the great impact he made on
the scientific community.2

Murray Gell-Mann: “A brilliant,
vital, and amusing neighbor,
Feynman was a stimulating (if some-
times exasperating) partner in dis-
cussions of profound issues—we
would exchange ideas and silly jokes

in between bouts of mathematical
calculation—we struck sparks off
each other, and it was exhilarating.”

David Pines: “Reading Feynman
is a joy and a delight, for in his pa-
pers, as in his talks, Feynman com-
municated very directly, as though
the reader were watching him derive
the results at the blackboard.”

David L. Goodstein: “He loved
puzzles and games. In fact, he saw
all the world as a sort of game,
whose progress of ‘behavior’ follows
certain rules, some known, some un-
known. . . . Find places or circum-
stances where the rules don’t work,
and invent new rules that do.”

Valentine L. Telegdi: “Feynman
was not a theorist’s theorist, but a
physicist’s physicist and a teacher’s
teacher.”

Laurie M. Brown, one of his grad-
uate students at Cornell, noted that
Feynman, a playful showman, was
“undervalued at first because of his
rough manners [but] in the end tri-
umphs through native cleverness,
psychological insight, common
sense and the famous Feynman hu-
mor. . . . Whatever else Dick Feyn-
man may have joked about, his love
for physics approached reverence.”

1Feynman’s own account of this inquiry
can be found in Physics Today, 4:26, Feb-
ruary 1988.
2For more on Feynman’s life and contri-
butions, see the articles in a special
memorial issue of Physics Today, 42, Feb-
ruary 1989. For a personal account of
Feynman, see his popular autobiographi-
cal books, Surely You’re Joking Mr. Feynman,
New York, Bantam Books, 1985, and
What Do You Care What Other People Think,
New York, W. W. Norton & Co., 1987.

(© Shelly Grazin/CORBIS)
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This section has dealt with early ideas about particles that carry the nu-
clear force, namely the pions, and the mediators of the electromagnetic
force, photons. Current ideas indicate that the nuclear force is more
accurately described as an average or residual effect of the strong
color force between quarks, as will be explained in Section 15.10. The
graviton, which is the mediator of the gravitational force, has yet to be
observed. The W� and Z0 particles that mediate the weak force were discov-
ered in 1983 by the Italian physicist Carlo Rubbia (b. 1934) and his associ-
ates, using a proton – antiproton collider. Rubbia and Simon van der Meer,
both at CERN near Geneva, Switzerland, shared the 1984 Nobel prize for
the discovery of the W� and Z0 particles and the development of the pro-
ton – antiproton collider. In this accelerator, protons and antiprotons that
have a momentum of 270 GeV/c undergo head-on collisions with each
other. In some of the collisions W� and Z0 particles are produced, which in
turn are identified by their decay products.

15.4 CLASSIFICATION OF PARTICLES

All particles other than field particles can be classified into two broad cate-
gories, hadrons and leptons, according to their interactions.

Hadrons

Particles that interact through the strong force are called hadrons. The two
classes of hadrons, mesons and baryons, are distinguished by their masses
and spins.

Mesons all have spin 0 or 1, with masses between that of the electron and
that of the proton. All mesons are known to decay finally into electrons,
positrons, neutrinos, and photons. The pion is the lightest of known
mesons; it has a mass of approximately 140 MeV/c 2 and a spin of 0.
Another is the K meson, with a mass of approximately 500 MeV/c 2 and
a spin of 0.

Baryons, the second class of hadrons, have masses equal to or greater than
the proton mass (baryon means “heavy” in Greek), and their spins are always
odd half-integer values ( , , , etc.). Protons and neutrons are baryons, as are
many other particles. With the exception of the proton, all baryons decay in
such a way that the end products include a proton. For example, the baryon
called the �� hyperon first decays to the �0 baryon and a �� in about 10�10 s.
The �0 then decays to a proton and a �� in approximately 3 � 10�10 s.

It is important to note that hadrons are composite particles, not point parti-
cles, and have a measurable size of about 1 fm (10�15 m). Hadrons are com-
posed of more elemental units called quarks, which are believed to be truly
structureless point particles. Mesons consist of two quarks and baryons of
three. For now, however, we defer discussion of the ultimate constituents of
hadrons to Section 15.9 and continue with our empirical classification of parti-
cles. Table 15.2 lists important properties of the leptons and some hadrons.
The symbols B, L e, L �, L �, and S stand for baryon, electron, muon, and
tau numbers and strangeness, respectively, and are explained in Sections
15.5 and 15.6.

5
2

3
2

1
2
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Leptons

Leptons (from the Greek leptos , meaning “small” or “light”) are a group
of particles that participate in the electromagnetic and weak interactions.
All leptons have spins of . Unlike hadrons, which have size and structure,
leptons appear to be truly elementary point-like particles with
no structure. Also unlike hadrons, the number of known leptons is small.
Currently, scientists believe there are only six leptons: the electron, the

1
2
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Table 15.2 Some Particles and Their Properties

Principal
Anti- Mass Lifetime Decay

Category Particle Name Symbol particle (MeV/c2) B Le L� L� S (s) Modesa

Leptons Electron e� e� 0.511 0 �1 0 0 0 Stable
Electron-neutrino e �2.8 � 10�6 0 �1 0 0 0 Stable
Muon �� �� 105.7 0 0 �1 0 0 2.19 � 10�6

Muon-neutrino � �3.5 � 10�6 0 0 �1 0 0 Stable
Tau �� �� 1784 0 0 0 �1 0 3.3 � 10�13

Tau-neutrino � �8.4 � 10�6 0 0 0 �1 0 Stable

Hadrons
Mesons Pion �� �� 139.6 0 0 0 0 0 2.60 � 10�8 ���

�0 Self 135.0 0 0 0 0 0 0.83 � 10�16 2

Kaon K� K� 493.7 0 0 0 0 �1 1.24 � 10�8 ���

���0

KS
0 497.7 0 0 0 0 �1 0.89 � 10�10 ����

2�0

KL
0 497.7 0 0 0 0 �1 5.2 � 10�8

3�0

Eta � Self 548.8 0 0 0 0 0 �10�18 2
, 3�0

�	 Self 958 0 0 0 0 0 2.2 � 10�21 �����

Baryons Proton p 938.3 �1 0 0 0 0 Stable
Neutron n 939.6 �1 0 0 0 0 624

Lambda �0 1115.6 �1 0 0 0 �1 2.6 � 10�10 p��, n�0

Sigma �� 1189.4 �1 0 0 0 �1 0.80 � 10�10 p�0, n��

�0 1192.5 �1 0 0 0 �1 6 � 10�20 �0

�� 1197.3 �1 0 0 0 �1 1.5 � 10�10 n��

Delta ��� 1230 �1 0 0 0 0 6 � 10�24 p��

�� 1231 �1 0 0 0 0 6 � 10�24 p�0, n��

�0 1232 �1 0 0 0 0 6 � 10�24 n�0, p��

�� 1234 �1 0 0 0 0 6 � 10�24 n��

Xi �0 1315 �1 0 0 0 �2 2.9 � 10�10 �0�0

�� �� 1321 �1 0 0 0 �2 1.64 � 10�10 �0��

Omega �� �� 1672 �1 0 0 0 �3 0.82 � 10�10 ���0, �0��,
�0K�

aNotations in this column such as p��, n�0 indicate two possible decay modes. In this case, the two possible decays are �0
: p � �� and

�0
: n � �0.

�0
��
�0
��
�
��
�0
��
�0

pe� en
p

�����

��e� eKL
0

KS
0

�

e� e�

�� ��,
�

e� e�

e
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muon, the tau, and — associated with each of these particles — three differ-
ent neutrinos, the electron neutrino (�e), the muon neutrino (��), and
the tau neutrino (��). We now classify the six known leptons into three pairs
called families:

Table 15.2 shows that the tau lepton is actually quite massive and has a mass
about twice that of the proton. Also note in the table that each lepton has
an antiparticle. It is quite unexpected and interesting that neutrinos and
antineutrinos each have a distinct helicity, or relation between linear mo-
mentum and spin directions. The spin of a neutrino is opposite to its direc-
tion of travel, and the spin of an antineutrino is parallel to its direction of
travel. Current evidence suggests that neutrinos have a small mass of several
eV/c 2 as shown in Table 15.2. Problem 23 investigates an interesting time-
of-flight method for setting an upper limit on neutrino mass. As we shall
see, a firm knowledge of the neutrino’s mass has great significance in physi-
cal models of energy production in stars and in grand unified theories of el-
ementary particles.

The Solar Neutrino Mystery and Neutrino Oscillations

Conclusive measurements of the ability of neutrinos to change from
one type or “flavor’’ to another, along with indirect measurements of
neutrino masses have recently been made at the Sudbury Neutrino Obser-
vatory (SNO) in Canada and the Super Kamiokanda detector in Japan.
These findings solve a puzzle over 40 years old and provide new confi-
dence that physicists really do understand how energy is produced in the
Sun’s core.

The warming sunlight we receive on Earth should be accompanied by bil-
lions of neutrinos per square centimeter per second. In particular, electron
neutrinos are produced in the Sun’s fusion engine by typical reactions like

p � p 9: 
2
1H � e� � �e � 0.42 MeV

and the boron decay
8
5B 9: 

8
4Be � e� � �e � 14.6 MeV

Measurements of the � e flux dating back to the 1960s have, however,
been consistently mysterious because only about one-third of the expected flux
has been observed . (The expected flux of solar electron neutrinos was cal-
culated using the trusted standard solar model of the Sun’s properties
and energy production.) One proposed explanation of the mystery is that
some �e’s have changed into ��’s or ��’s during the journey from the Sun
to the Earth, and these ��’s or ��’s would not show up in detectors designed
to spot �e’s.

The basic idea is that the change from �e to, say, �� would not be perma-
nent but would just be part of an ongoing oscillation between �e and ��.
The best part is that the frequency of oscillation would depend on
the masses. Thus measurement of neutrino oscillation frequencies could
indirectly determine neutrino masses, which are small and extremely

�e�

�e
�  ���

��
�  ���

��
�
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hard to measure directly. We can think of each flavor of neutrino — �e, ��,
�� — as a linear combination of three other neutrinos— �1, �2, �3 — each
having a different mass m1, m 2, and m 3 and different energy for a given
momentum. Since the time dependence of each state �1, �2, �3 is oscilla-
tory and of the form exp(�iEt/�), with time, the states �1, �2, �3 move out-
of-phase with each other and interfere, producing an oscillation between
flavors. Problem 15.22 explores how to calculate the probabilty that a ��

oscillates to a �� .
The latest findings from SNO scientists, who used a new detection tech-

nique equally sensitive to electron, muon, and tau neutrinos, conclusively
show that the missing electron neutrinos are accounted for by oscillation
of �e’s into ��’s and ��’s. Further, plans are under way at SNO to study how
neutrino oscillation depends on the passage of neutrinos through matter. This
can be done by observing day–night differences in neutrino flux from
the Sun, because at night neutrinos must penetrate the whole Earth to reach
the detector.

15.5 CONSERVATION LAWS

Conservation laws are important to an understanding of why certain decays
and reactions occur and others do not. In general, the laws of conservation of
energy, linear momentum, angular momentum, and electric charge provide
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(a) (b)

(a) Artist’s concept of the underground SNO detector showing the 12 m diameter spheri-
cal acrylic vessel containing 1000 tons of D2O. (b) A photo of the detector under construc-
tion. Photomultipliers mounted on the frame shown detect Cerenkov light flashes pro-
duced by neutrino reactions in the D2O. (Photos courtesy of Sudbury Neutrino Observatory)
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us with a set of rules that all processes must absolutely follow. For example,
conservation of electric charge requires that the total charge before a reaction
equals the total charge after the reaction.

Certain new conservation laws are important in the study of elementary par-
ticles. Two of these laws, concerning baryon number and lepton number, are
described in this section, and others will be discussed later in this chapter. Al-
though the two described here have no theoretical foundation, they are sup-
ported by abundant empirical evidence and serve to indicate probable reac-
tions, but do not absolutely hold 100% of the time.

Baryon Number

To apply conservation of baryon number, we assign a baryon number B � �1
for all baryons, B � �1 for all antibaryons, and B � 0 for all other particles.
The law of conservation of baryon number states that whenever a nuclear re-
action or decay occurs, the sum of the baryon numbers before the process must equal the
sum of the baryon numbers after the process. An equivalent statement is that the net
number of baryons remains constant in any process.

If baryon number is absolutely conserved, the proton must be absolutely
stable. If it were not for the law of conservation of baryon number, the proton
could decay to a positron and a neutral pion. However, such a decay has never
been observed. At present, we can say only that the proton has a half-life of at
least 1032 years (the estimated age of the Universe is only about 1010 years). In
one recent version of a grand unified theory, physicists predicted that the pro-
ton is unstable. According to this theory, baryon number is not absolutely or
perfectly conserved.

560 CHAPTER 15 ELEMENTARY PARTICLES

tion 1 gives a total baryon number of 1 � 1 � 2. The
right side of reaction 1 gives a total baryon number of
1 � 1 � 1 � (�1) � 2. Thus the reaction can occur, pro-
vided the incoming proton has sufficient energy.

The left side of reaction 2 gives a total baryon number
of 1 � 1 � 2. However, the right side gives 1 � 1 �
(�1) � 1. Because the baryon number is not conserved,
the reaction cannot occur or at most has a small proba-
bility of occurrence.

EXAMPLE 15.2 Checking Baryon Numbers

Determine whether or not each of the following reac-
tions can occur on the basis of the law of conservation of
baryon number.

Solution For reaction 1, recall that B � �1 for baryons
and B � �1 for antibaryons. Hence the left side of reac-

(2)  p � n 9: p � p � p

(1)  p � n 9: p � p � n � p

Conservation of baryon

number

Conservation of lepton

number

Lepton Number

From observations of commonly occurring decays of the muon and tau we
arrive at three conservation laws involving lepton numbers, one for each
variety of lepton. The law of conservation of electron-lepton number
(lepton flavor conservation) states that the sum of the electron-lepton numbers
before a reaction or decay must equal the sum of the electron-lepton numbers after the
reaction or decay.

The electron and the electron neutrino are assigned a positive lepton num-
ber, Le � �1; the antileptons e� and e are assigned a negative lepton num-v
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ber, Le � �1; all others (the muon and tau families) have Le � 0. For exam-
ple, consider the decay of the neutron

Before the decay the electron-lepton number is Le � 0; after the decay it is
0 � 1 � (�1) � 0. Thus the electron-lepton number is conserved, although
not perfectly in view of the proven neutrino oscillation previously mentioned.
It is important to recognize that the baryon number must also be conserved.
We can easily check this by noting that before the decay B � �1, and after the
decay B � �1 � 0 � 0 � �1.

Similarly, when a decay involves muons, the muon-lepton number, L�, is
conserved. The �� and the � are assigned positive numbers, L� � �1; the
antimuons �� and � are assigned negative numbers, L � � �1 and all oth-
ers have L � � 0. Finally, the tau-lepton number, L �, is conserved, and simi-
lar assignments can be made for the tau lepton and its neutrino. In all cases
it is important to keep in mind that lepton flavor conservation is not
absolute, and that lepton flavor-violating reactions have a small probability
of occurrence.



n 9: p � e� � e

15.6 STRANGE PARTICLES AND STRANGENESS 561

decay, L� � �1 and Le � 0. After the decay, L� � 0 �
0 � 1 � �1, and Le � �1 � 1 � 0 � 0. Thus both num-
bers are conserved, and on this basis the decay mode is
possible.

Before decay 2 occurs, L� � 0 and Le � 0. After the
decay, L� � �1 � 1 � 0 � 0, but Le � �1. Thus the de-
cay is not possible, because the electron-lepton number is
not conserved.

EXAMPLE 15.3 Checking Lepton Numbers

Determine which of the following decay schemes can occur
on the basis of conservation of electron-lepton number:

Solution Because decay 1 involves both a muon and an
electron, L� and Le must both be conserved. Before the

(2)  � �
9: � � � � � e

(1)  ��
9: e� � e � �

Exercise 1 Determine whether the decay ��
: e� � e can occur.

Answer No. The muon-lepton number is �1 before the decay and 0 after the decay.

15.6 STRANGE PARTICLES AND STRANGENESS

Many particles discovered in the 1950s were produced by the nuclear interac-
tion of pions with protons and neutrons in the atmosphere. Three of these
particles—namely, the kaon (K), lambda (�), and sigma (�) particles—
exhibited unusual properties in production and decay and hence were called
strange particles.

One unusual property of these particles is their production in pairs. For ex-
ample, when a pion collides with a proton, two neutral strange particles are
produced with high probability (Fig. 15.6):

�� � p 9: K0 � �0
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On the other hand, the reaction �� � p 9: K0 � n never occurred, even
though no known conservation laws would have been violated and the energy
of the pion was sufficient to initiate the reaction.

The second peculiar feature of strange particles is that although they
are produced by the strong interaction at a high rate, they do not decay into
particles that interact via the strong force at a very high rate. Instead, they
decay very slowly, which is characteristic of the weak interaction, as shown
in Table 15.1. Their half-lives are in the range 10�10 s to 10�8 s; most
other particles that interact via the strong force have lifetimes on the order of
10�20 s and less.

To codify these unusual properties of strange particles, a law called conser-
vation of strangeness was introduced with a new quantum number S , called
strangeness. The strangeness numbers for some particles are given in
Table 15.2. The production of strange particles in pairs is explained by assign-
ing S � �1 to one of the particles and S � �1 to the other. All nonstrange
particles are assigned strangeness S � 0. The law of conservation of strange-
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Conservation of strangeness

number
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ness states that whenever a nuclear reaction or decay occurs, the sum of the strange-
ness numbers before the process must equal the sum of the strangeness numbers after
the process.

The slow decay of strange particles can be explained by assuming that the
strong and electromagnetic interactions obey the law of conservation of
strangeness but the weak interaction does not. Because the decay reaction in-
volves the loss of one strange particle, it violates strangeness conservation and
hence proceeds slowly via the weak interaction.

15.7 HOW ARE ELEMENTARY PARTICLES PRODUCED AND PARTICLE PROPERTIES MEASURED? 563

(b) Show that the following reaction does not conserve
strangeness:

�� � p 9: �� � ��

Solution The initial state has strangeness S � 0 � 0 � 0,
and the final state has strangeness S � 0 � (�1) � �1.
Thus strangeness is not conserved.

EXAMPLE 15.4 Is Strangeness Conserved?

(a) Determine whether the following reaction occurs on
the basis of conservation of strangeness.

�0 � n 9: K� � ��

Solution The initial state has strangeness S � 0 � 0 � 0.
Because the strangeness of the K� is S � �1 and the
strangeness of the �� is S � �1, the strangeness of the fi-
nal state is �1 � 1 � 0. Thus strangeness is conserved and
the reaction is allowed.

Exercise 2 Show that the reaction p � ��
9: K0 � �0 obeys the law of conserva-

tion of strangeness.

15.7 HOW ARE ELEMENTARY PARTICLES
PRODUCED AND PARTICLE
PROPERTIES MEASURED?

Examination of the bewildering array of entries in Table 15.2 leaves one yearn-
ing for firm ground. It is natural to wonder about a particle that exists for
10�20 s and has a mass of 1192.5 MeV/c2. How is it possible to detect a particle
that exists for only 10�20 s? Furthermore, how can the mass be measured? If a
standard attribute of a particle is some type of permanence or stability, in what
sense is a fleeting entity that exists for 10�20 s a particle? In this section we at-
tempt to answer such questions and explain how elementary particles are pro-
duced and how their properties are measured.

Elementary particles, most of which are unstable and occur rarely naturally,
are created abundantly in man-made collisions of high-energy particles with a
suitable target. Since very high energy beams of incident particles are desir-
able, stable charged particles such as electrons or protons generally make up
the incident beam, because it takes considerable time to accelerate particles to
high energies with electromagnetic fields. Similarly, targets must be simple
and stable, and the simplest target, hydrogen, serves nicely as both a target
and a detector. In a liquid hydrogen bubble chamber, which is basically a large
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container filled with hydrogen near its boiling point, a charged particle tra-
versing the chamber ionizes the atoms along its path, and the ionization
causes a visible track of tiny bubbles. The liquid hydrogen also serves as an effi-
cient source of target protons, with a proton density sufficient to ensure many
incident particle– target collisions within a reasonable time.

Figure 15.6 shows a typical event in which a bubble chamber has served as
both target and detector. In this figure, many parallel tracks of negative pions
are visible entering the photograph from the bottom. One of the pions has hit
a stationary proton in the hydrogen and produced two strange particles, the
�0 and K0, according to the reaction

�� � p 9: �0 � K0

Neither neutral strange particle leaves a track, but their subsequent decays
into charged particles can be seen clearly, as indicated in Figure 15.6. A mag-
netic field directed into the plane of the photograph causes the track of each
charged particle to curve, and from the measured curvature the particle’s
charge and linear momentum can be determined. If the mass and momen-
tum of the incident particle are known, we can then usually calculate the
product particle mass, kinetic energy, and speed from conservation of
momentum and energy (see Section 1.10 and Example 1.18). Finally, combin-
ing a product particle’s speed with a measurable decay track length, we can
calculate the product particle’s lifetime. Figure 15.6 shows that sometimes
one can use this lifetime technique even for a neutral particle, which leaves
no track. As long as the particle speed and the start and finish of the missing
track are known, one can infer the missing track length and find the lifetime
of the neutral particle.

Resonance Particles

With clever experimental technique and much effort, decay track lengths as
short as 1 micron (10�6 m) can be measured. This means that lifetimes as short
as 10�16 s can be measured with this technique in the case of high-energy parti-

564 CHAPTER 15 ELEMENTARY PARTICLES

A colliding beam detector at CERN. (Philippe Plailly/Eurelios/Science Photo Library/Photo

Researchers, Inc.)
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cles traveling at about the speed of light. We arrive at this result by assuming
that a decaying particle travels 1 micron in the laboratory at a speed of 0.99c,
yielding a laboratory lifetime of � lab � 10�6 m/0.99c � 0.33 � 10�14 s. Now,
relativity helps us. Since the proper lifetime, as measured in the decaying parti-
cle’s rest frame, is shorter than � lab by a factor of , we can actually
measure lifetimes of duration:

Unfortunately, even with Einstein’s help, we are several orders of magnitude
away from minimum hadron lifetimes of 10�23 s with the best efforts of the
track-length method. How then, can we detect the presence of particles that
exist for as short a time as 10�23 s? As we shall see shortly, the masses, life-
times, and very existence of these very short-lived particles, known as reso-
nance particles, can be inferred from peaks (resonances) in the cross section
versus energy plots describing their decay products.

Let’s consider this in more detail by looking at the case of the resonance
particle called the delta plus (��), which has a mass of 1231 MeV/c2 and a
lifetime of about 6 � 10�24 s. The �� is produced in the reaction

e� � p 9: e� � �� (15.4)

which is followed in 6 � 10�24 s by the decay

��
9: �� � n (15.5)

�proper � �lab √1 �
2

c2 � (0.33 � 10�14 s) √1 �
(0.99c)2

c2 � 4 � 10�16 s

√1 � 2/c2
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Because the �� lifetime is so short, it leaves no measurable track, and it might
seem impossible to distinguish the reactions given in Equations 15.4 and 15.5
from the net direct reaction in which no �� is produced:

e� � p 9: e� � �� � n (15.6)

In fact, we can tell whether a �� was formed by measuring the momentum
and energy of the suspected decay products (pion and neutron) and using the
conservation of momentum and energy to see whether these values combine
to give a �� mass of 1231 MeV/c2.

To understand this in detail, consider the decay of the �� shown in Figure
15.7. The energy and momentum of the �� must satisfy the equation

E�
2 � (p�c)2 � (m�c2)2

or

(15.7)

where m� is the �� mass. Although we cannot directly measure E� and p�,
since the delta particle leaves no track, we can measure the energies and mo-
menta of the outgoing particles, E�, p� , En, and pn. Using conservation of
momentum and energy, we can then find an expression for m�c2 in terms of
these measured quantities. Thus we have E� � E� � En and p� � p� � pn,
and substituting into Equation 15.7,

(15.8)

Equation 15.8 holds for all events in which a �� particle actually formed and
decayed. That is, for many different measured values of E�, p�, En, and pn cor-
responding to many repeated experiments, we will always find the same value
of the quantity m�c2 � 1231 MeV within experimental uncertainty if the decay of
a �� is involved. On the other hand, if no �� is involved and the direct reac-
tion e� � p : e� � �� � n occurs, will not
equal 1231 MeV but will sweep over a broad range of values, some larger and
some smaller than m�c2, as the experiment is repeated. The typical method for
showing the existence of a resonance particle involves calculating the quantity

for a large number of events in which a ��Z � √(E� � En)2 � (p� � pn)2c2

√(E� � En)2 � (p� � pn)2c2

m�c2 � √(E� � En)2 � (p� � pn)2c2

m�c2 � √E�
2 � (p�c)2
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Figure 15.7 The decay of a �� particle into a positive pion and a neutron.
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and a neutron are produced and then drawing a histogram of those events. By
plotting the number of events with a given value of Z against this value of Z ,
we obtain a slowly varying curve with sharp peaks superimposed, the
peaks showing the existence of resonance particles. Figure 15.8 shows such an
experimental histogram for the �� particle. The broad background (dashed
curve) is produced by direct events in which no �� was created; the sharp peak
near Z � 1230 MeV, containing many events, was produced by all the events in
which a �� formed and decayed into a pion and neutron with just the right
energies and momenta to make up a delta particle. Peaks corresponding to two
other resonance particles of larger mass can also be seen in Figure 15.8.

Histograms like Figure 15.8 can tell us not only the mass of a short-lived
particle but also the lifetime of the particle from the full width at half
maximum of the resonance peak, denoted by � in Figure 15.8. Because � is
twice the uncertainty in energy of the delta, (� � 2 �E), we can use the
energy– time uncertainty relation, �E �t � �/2, to infer the lifetime of the
delta, �t :

(15.9)

The measured width of � � 115 MeV leads to a value for the lifetime of the
delta particle:

In this incredibly short lifetime, a delta particle moving at the highest possible
speed of c travels only 10�15 m, or about one nuclear diameter.

�t �
�

�
�

6.6 � 10�16 eV�s

115 � 106 eV
� 5.7 � 10�24 s

�t �
�

2�E
�

�

�
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Figure 15.8 Experimental evidence for the existence of the �� particle. The sharp
peak near 1230 MeV was produced by the events in which a �� formed and promptly
decayed into a �� and neutron.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



Energy Considerations in Particle Production

It is ironic that the highly sophisticated branch of physics known as elemen-
tary particle physics relies for its very existence on the most brutish of experi-
mental methods: smashing an incident particle moving at relativistic speed
into a stationary target particle and observing what pieces come flying out! Yet
this process is at the heart of experimental particle physics, and in this section
we shall determine the threshold energy that is required for the production of
new particles in a collision. Since the energy needed to manufacture new
particles comes from the kinetic energy of the incident particle, and incident
particle energies are quite large (the Fermi National Laboratory produces
1000-GeV protons), we must use relativistic equations in the calculation of
these threshold energies.

Consider the specific particle production process

m1 � m2 9: m3 � m4 � m5 (15.10)

Here m1 is the mass of the incident particle, m 2 is the mass of the target par-
ticle that is at rest in the laboratory, and m3, m4, and m 5 are product-particle
masses. Figure 15.9a shows such a particle reaction in the laboratory refer-
ence frame. The energies shown in Figure 15.9 —E 1, E 2, and so on — are
total energies (kinetic energy � rest energy) and the momenta are labeled
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LAB Frame

Before After

m2
p1, E1

p2 = 0, E2

(a)

m3

m4

m5

m1

p3, E3

p4, E4

p5, E5

CM Frame

Before After

(b)

m4

m5

(ptotal = 0)
m3

p′ E ′p3, E 3

p′ E ′p4, E 4

p′ E ′p5, E 5

m2

p′ E ′p2, E 2

m1

p′ E ′p1, E 1

Figure 15.9 (a) The reaction m1 � m2 : m3 � m4 � m5 viewed in the laboratory
frame, where m2 is initially at rest and the energies are total relativistic energies (ki-
netic plus rest energy). (b) The same reaction viewed from the center-of-mass (CM)
frame, in which the total momentum is always zero.
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p1, p2, and so on. At first glance it might seem that the total initial energy
of m 1 and m 2, E 1 � E 2, could be converted completely to rest energy of par-
ticles 3, 4, and 5. However, as we have already seen in the calculation of
nuclear reaction thresholds in Chapter 14, some of the initial energy must
go into energy of motion of the product particles in order to conserve
momentum in the collision. This means that not all of the initial energy can
go into creating new masses. The issue is to find out how much of the initial
energy can go toward creating masses m 3, m 4, and m 5. That is, we wish
to calculate the minimum or threshold kinetic energy Kth that m 1 must
have in order to create particles with masses of m 3, m 4, and m 5 and also
conserve momentum.

An important clue to finding K th comes from understanding that if we
could somehow arrange for a zero initial momentum, all of the initial energy
could be converted into new particles. What we can do is solve for K th in the
frame in which the initial momentum is zero—the center-of-mass frame—
and then transform that result back into the frame in which the experiment is
actually carried out, the laboratory frame. Here’s how it goes.

Figure 15.9b shows the same reaction as 15.9a but viewed from the center-
of-mass (CM) frame, in which, by definition, the total momentum is always
zero. Thus, in Figure 15.9b, m1 and m2 have equal and opposite momenta,
and the vector sum of the momenta of m3, m4, and m5 is zero. Actually, Figure
15.9b shows the case of an incident particle with more than threshold energy.
A moment’s reflection reveals that when m1 has the minimum, or thresh-
old, energy in the CM frame, all of the initial energy, E	1 � E 	2, should be
converted to the masses of particles 3, 4, and 5. This occurs when the product
particles are created at rest in the CM frame, which is now possible since
the total momentum is zero in the CM frame. Figure 15.10 shows the reaction
m1 � m2 : m3 � m4 � m5 in the CM frame when m1 has the threshold
kinetic energy and m3, m4, and m5 are created at rest.

To calculate a numerical expression for K th, we make use of the invariant
quantity E2 � p2c2, introduced in Chapter 2. Recall that E2 � p2c2 is called an in-
variant because it has the same numerical value for a system of particles in any in-
ertial frame (see Problem 16 in Chapter 2). Applying the invariance of E2 � p2c2

to the CM and laboratory frames, we have, for the period before the collision,

E2
CM � p2

CMc2 � E2
lab � p2

labc2 (15.11)
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(ptotal = 0)
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p′ E ′p1, E 1

p′ E ′p2, E 2

Figure 15.10 The reaction m1 � m2 : m3 � m4 � m5 in the CM frame when m1 has
the threshold kinetic energy required to produce m3, m4, and m5. For the threshold
condition, m3, m4, and m5 are created at rest.
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Here, ECM and E lab stand for the sum of the energies of particles m1 and m2 in
the CM and laboratory frames, respectively. Likewise, pCM and p lab stand for the
sum of the momenta of particles m1 and m2 in the CM and laboratory frames.
Because pCM � 0, E lab � E1 � m2c 2, and p lab � p1, Equation 15.11 becomes

E2
CM before � (E1 � m 2c2)2 � p1

2c2 (15.12)

We can eliminate p1 from Equation 15.12 by using E 1
2 � p1

2c2 � m1
2c4 to obtain

E2
CM before � 2E1m2c2 � (m2

2 � m1
2)c4 (15.13)

Observe that Equation 15.13 is in a useful form, since we can readily solve for
E1 or K th (E1 � K th � m1c2) in terms of all the masses if we can find an
expression for ECM before in terms of the product masses m3, m4, and m5. We
can find such an expression by conserving relativistic energy in the CM frame:

ECM before � ECM after � E	3 � E	4� E	5 � (m3 � m4� m5)c2 (15.14)

Substituting this expression into Equation 15.13 and using E1 � K th � m1c2,
after a bit of algebra we obtain our final result:

(15.15)

Equation 15.15 gives the threshold kinetic energy of an incident particle m1

colliding with a stationary target m2 required to produce three product parti-
cles of mass m3, m4, and m5. For more than three product particles, inspection
of our derivation shows that Equation 15.15 can be generalized as

(15.16)Kth �
(m3 � m4 � m5 � m6 � � � �)2c2 � (m1 � m2)2c2

2m2

Kth �
(m3 � m4 � m5)2c2 � (m1 � m2)2c2

2m2
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cording to the reaction given by Equation 15.17. The
neutral pion has a rest energy of 135 MeV.

Solution Use Equation 15.15 with m1 � m2 � m3 �
m4 � mp � 938.3 MeV/c2 and m5 � m� � 135 MeV/c2.
Equation 15.15 becomes

Thus, if stationary protons are bombarded with protons
of at least 280 MeV kinetic energy, particle accelerators
can produce neutral pion beams that can be used for ad-
ditional pion studies.

� 280 MeV

� 2(135 Mev/c2)c2 �
(135 MeV/c2)2c2

2(938.3 MeV/c2)

�
(4mpm� � m�

2)c2

2mp
� 2m�c2 �

m2
�c2

2mp

Kth �
(2mp � m�)2c2 � (2mp)2c2

2mp

EXAMPLE 15.5 How to Make a Virtual
Particle Real

Consider the scattering of two protons. Assume that the
protons interact by exchanging virtual field particles or
field quanta. Thus, if the protons are attracted gravitation-
ally, they exchange a graviton; if they are repelled electri-
cally, they exchange a photon. In the present case we wish
to consider the nuclear force between two protons that we
assume is carried by the field particle called the pi meson
or pion. When an incoming proton scatters from a station-
ary proton at low energy, a virtual pion with a mass of about
140 MeV/c2 can blink into existence, transport energy and
momentum from one proton to the other, and then blink
out of existence in a time so short that violation of energy
conservation is not observable. However, if an incident pro-
ton interacts with a stationary target at high enough en-
ergy, the incident proton may supply enough energy to
make a virtual pion real according to the reaction

p � p 9: p � p � �0 (15.17)

where �0 represents a neutral pion. In this example, we
wish to find the threshold energy for �0 production ac-
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Exercise 3 Since equally strong nuclear forces exist between proton and proton, neu-
tron and neutron, and proton and neutron, we might expect the pion to come in three
different charge states, �e , �e , and 0, and this is indeed the case. Three different pi-
ons exist—��, ��, and �0 —with masses m�� � 139.6 MeV/c2, m�� � 139.6 MeV/c2,
and m�0 � 135 MeV/c2. Two reactions involving the production of the �� and �� are

p � p 9: p � n � �� (15.18)

p � p 9: p � p � �� � �� (15.19)

Calculate the threshold energy for these reactions.

Answers K th � 292 MeV for Equation 15.18; K th � 600 MeV for Equation 15.19.

15.8 THE EIGHTFOLD WAY

One of the tools scientists use is the detection of patterns in data, patterns that
contribute to our understanding of nature. One of the best examples of
the use of this tool is the development of the periodic table, which provides
a fundamental understanding of the chemical behavior of the elements.
The periodic table explains how more than 100 elements can be formed
from three particles—the electron, the proton, and the neutron. The table
of nuclides contains hundreds of nuclides, but all can be built from protons
and neutrons.

The number of observed particles and resonances observed by particle
physicists is also in the hundreds. Is it possible that a small number of entities
exist from which all of these can be built? Taking a hint from the success of
the periodic table and the table of nuclides, let us explore the historical search
for patterns among the particles.

Many classification schemes have been proposed for grouping particles into
families. Consider, for instance, the baryons listed in Table 15.2 that have spins
of : p, n, �0, ��, �0, ��, �0, and ��. If we plot strangeness versus charge for1

2
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these baryons using a sloping coordinate system, as in Figure 15.11a, we
observe a fascinating pattern: Six of the baryons form a hexagon, and the
remaining two are at the hexagon’s center.

As a second example, consider the following nine spin-zero mesons listed in
Table 15.2: ��, �0, ��, K�, K0, K�, �, �	, and the antiparticle . Figure
15.11b is a plot of strangeness versus charge for this family. Again, a hexagonal
pattern emerges. In this case, each particle on the perimeter of the hexagon
lies opposite its antiparticle, and the remaining three (which form their own
antiparticles) are at the center of the hexagon. These and related symmetric
patterns were developed independently in 1961 by Murray Gell-Mann and
Yuval Ne’eman (b. 1925). Gell-Mann called the patterns the eightfold way, af-
ter the eightfold path to nirvana in Buddhism.

Groups of baryons and mesons can be displayed in many other symmetric
patterns within the framework of the eightfold way. For example, the family
of spin- baryons known in 1961 contained nine particles arranged in a
pattern like that of the pins in a bowling alley, as in Figure 15.12. (The parti-
cles �*�, �*0, �*�, �*0, and �*� are excited states of the particles ��, �0, ��,
�0, and ��. In these higher-energy states, the spins of the three quarks
making up the particle are aligned so that the total spin of the particle is .
When this pattern was proposed, an empty spot occurred in it (at the bottom
position), corresponding to a particle that had never been observed. Gell-
Mann predicted that the missing particle, which he called the omega minus
(��), should have spin , charge �1, strangeness �3, and rest energy of
approximately 1680 MeV. Shortly thereafter, in 1964, scientists at the
Brookhaven National Laboratory found the missing particle through careful
analyses of bubble-chamber photographs (Fig. 15.13) and confirmed all its
predicted properties.

3
2

3
2

3
2

K0
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Figure 15.11 (a) The hexagonal eightfold-way pattern for the eight spin- baryons.
This strangeness-versus-charge plot uses a sloping axis for the charge number Q but a
horizontal axis for the strangeness (S) values. (b) The eightfold-way pattern for the
nine spin-0 mesons.
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The prediction of the missing particle in the eightfold way has much in
common with the prediction of missing elements in the periodic table. When-
ever a vacancy occurs in an organized pattern of information, experimentalists
have a guide for their investigations.
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Figure 15.13 Discovery of the �� particle. The photograph on the left shows the orig-
inal bubble-chamber tracks. The drawing on the right isolates the tracks of the impor-
tant events. The K� particle at the bottom collides with a proton to produce the first de-
tected �� particle plus a K0 and a K�. (Courtesy of Brookhaven National Laboratory)

Figure 15.12 The pattern for the higher-mass, spin- baryons known at the time the

pattern was proposed. The three �* and two �* particles are excited states of the corre-

sponding spin- particles in Figure 15.11. These excited states have higher mass and

spin . The absence of a particle in the bottom position was evidence of a new particle

yet to be discovered, the ��.
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15.9 QUARKS

As we have noted, leptons appear to be truly elementary particles because they
have no measurable size or internal structure, are limited in number, and do
not seem to break down into smaller constituents. Hadrons, on the other
hand, are complex particles having size and structure. The existence of the
eightfold-way patterns suggests that baryons and mesons—in other words,
hadrons—have a more elemental substructure. Furthermore, we know that
hadrons decay into other hadrons and are many in number. Table 15.2 lists
only the hadrons that are stable against hadronic decay; hundreds of others
have been discovered. These facts strongly suggest that hadrons cannot be
truly elementary. In this section we show that the complexity of hadrons can
be explained by a simpler substructure.

The Original Quark Model

In 1963 Gell-Mann and George Zweig independently proposed that hadrons
have a more elemental substructure. According to their model, all hadrons are
composite systems of two or three fundamental constituents called quarks
(pronounced to rhyme with forks). (Zweig called them “aces.” Gell-Mann bor-
rowed the word quark from the passage “Three quarks for Muster Mark” in
James Joyce’s Finnegan’s Wake.) In the original quark model, there were three
types of quarks designated by the symbols u, d, and s. These were given the ar-
bitrary names up, down, and sideways or, now more commonly, strange.

574 CHAPTER 15 ELEMENTARY PARTICLES

Table 15.3 Properties of Quarks and Antiquarks

Quarks

Baryon
Name Symbol Spin Charge Number Strangeness Charm Bottomness Topness

Up u � e 0 0 0 0

Down d � e 0 0 0 0

Strange s � e �1 0 0 0

Charmed c � e 0 �1 0 0

Bottom b � e 0 0 �1 0

Top t � e 0 0 0 �1

Antiquarks

Baryon
Name Symbol Spin Charge Number Strangeness Charm Bottomness Topness

Anti-up � e � 0 0 0 0

Anti-down � e � 0 0 0 0

Anti-strange � e � �1 0 0 0

Anti-charmed � e � 0 �1 0 0

Anti-bottom � e � 0 0 �1 0

Anti-top � e � 0 0 0 �11
3

2
3

1
2t

1
3

1
3

1
2b

1
3

2
3

1
2c

1
3

1
3

1
2s

1
3

1
3

1
2d

1
3

2
3

1
2u

1
3

2
3

1
2

1
3

1
3

1
2

1
3

2
3

1
2

1
3

1
3

1
2

1
3

1
3

1
2

1
3

2
3

1
2

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



An unusual property of quarks is that they had to be assigned fractional
electronic charges. The u, d, and s quarks have charges of �2e/3, �e/3, and
�e/3, respectively, where e is the charge of a positron. Each quark has a
baryon number of and a spin of . The u and d quarks have strangeness 0,
and the s quark has strangeness �1. Associated with each quark is an anti-
quark of opposite charge, baryon number, and strangeness. Table 15.3 gives
other properties of quarks and antiquarks. 

The compositions of all hadrons that were known when Gell-Mann and Zweig
presented their models could be completely specified by three simple rules:

• A meson consists of one quark and one antiquark, which gives it a baryon
number of 0, as required. Mesons are thus quark–antiquark combina-
tions (quarkonium) bound together by a swarm of gluons, which are the
field particles that transmit the strong force between quarks.

• A baryon consists of three quarks and is a sort of quark “molecule” held
together by gluons.

• An antibaryon consists of three antiquarks.

Table 15.4 lists the quark compositions of several mesons and baryons. Note
that just two of the quarks, u and d, are contained in all hadrons encountered
in ordinary matter (protons and neutrons). The third quark, s, is needed only
to construct strange particles with a strangeness number of either �1 or �1.
Figure 15.14 is a pictorial representation of the quark compositions of several
particles.

Charm and Other Developments

Although the original quark model was highly successful in classifying particles
into families, some discrepancies occurred between predictions of the model and
certain experimental decay rates. Consequently, several physicists proposed a
fourth quark in 1967. The fourth quark, denoted by c, was given a property

1
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1
3
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Table 15.4 Quark

Compositions of Several

Hadrons

Quark
Particle Composition

Mesons
��

��

K�

K�

K0

Baryons
p uud
n udd
�0 uds
�� uus
�0 uds
�� dds
�0 uss
�� dss
�� sss

ds
us
us
ud
ud

Baryons

p

u u

d

n

u d

d

Mesons

+π

u

K
_

u s

d

Figure 15.14 Quark compositions of two mesons and two baryons. Note that each me-
son on the left contains two quarks, while each baryon on the right contains three quarks.
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charm. A charmed quark would have charge �2e/3, but its charm would distin-
guish it from the other three quarks. The new quark would have a charm of
C � �1, its antiquark would have a charm of C � �1, and all other quarks would
have C � 0, as indicated in Table 15.3. Charm, like strangeness, would be con-
served in strong and electromagnetic interactions but not in weak interactions.

Evidence that the charmed quark exists began to accumulate in 1974 when a
new heavy particle called the J/� particle (or simply �) was discovered indepen-
dently by two groups, one led by Burton Richter at the Stanford Linear
Accelerator (SLAC) and the other led by Samuel Ting at the Brookhaven
National Laboratory. Richter and Ting were awarded the Nobel prize in 1976 for
this work. Although massive, the J/� particle was not a three-quark baryon but
had the properties of a combination of a charmed quark and its antiquark (c ).
It was much more massive (�3100 MeV/c2) than the other known mesons, and
its lifetime was much longer than those that decay via the strong force. Soon,
related charmed mesons were discovered that corresponded to such quark com-
binations as d and c , all of which have large masses and long lifetimes. The ex-
istence of these new mesons provided firm evidence for the fourth quark flavor.

In 1975 researchers at Stanford University reported strong evidence for the
tau (�) lepton, with a mass of 1784 MeV/c2. This was the fifth type of lepton to
be discovered, which led physicists to propose that two new quarks, top (t) and
bottom (b), might exist. (Some physicists prefer the designators truth and
beauty.) To distinguish these quarks from the old ones, quantum numbers
called topness and bottomness (with allowed values �1, 0, �1) were assigned
to all quarks and antiquarks (see Table 15.3). In 1977 researchers at the Fermi
National Laboratory, under the direction of Leon Lederman, reported the dis-
covery of a very massive new meson, Y, whose composition is considered to be
b . In March 1995 researchers at the Fermi National Laboratory announced
the discovery of the top quark (supposedly the last of the quarks), with a mass
of 173 GeV/c2. The researchers identified t pairs from their decay into W
bosons and bottom quarks and the subsequent decay of those particles into lep-
tons, neutrinos, and hadrons. The original t pairs were produced by the colli-
sion of 0.9 TeV protons with 0.9 TeV antiprotons. An interesting essay by
Melissa Franklin and David Kestenbaum at the end of this chapter explains the
operation of the accelerator and the particle detectors used to find the “top.”

You are probably wondering whether such discoveries will ever end. How
many “building blocks” of matter really exist? At the present, physicists believe
that the fundamental particles in nature are 12 fermions, including 6 quarks
and 6 leptons (together with their antiparticles) and the field particles listed
in Table 15.1. Table 15.5 lists properties of these 12 fermions as well as proper-
ties of the field particles excepting the graviton.

t

t

b

dc

c
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Despite extensive experimental efforts, no isolated quark has ever been
observed. Physicists now believe that quarks are permanently confined
inside hadrons because of an exceptionally strong force that prevents them
from escaping. This force, called the strong or “color” force, increases with
separation distance, eventually approaching a constant value—implying a
potential energy that grows linearly with quark separation and the require-
ment of infinite energy to produce two truly free quarks
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15.10 COLORED QUARKS, OR QUANTUM
CHROMODYNAMICS

Shortly after the concept of quarks was proposed, scientists recognized that
certain particles had quark compositions that violated the Pauli exclusion
principle. Because quarks are fermions with spins of , they are expected to
follow the exclusion principle. One example of a particle that violates the ex-
clusion principle is the �� (s s s) baryon, which contains three s quarks with
parallel spins, giving it a total spin of . Other examples of baryons that have
identical quarks with parallel spins are the ��� (u u u) and the �� (d d d).
To resolve this problem, Moo-Young Han and Yoichiro Nambu suggested in
1965 that quarks possess a new property, called color or color charge. This
property is similar in many respects to electric charge except that it occurs in
three varieties, called red, green, and blue. (The antiquarks have the colors
antired, antigreen, and antiblue.) To satisfy the exclusion principle, all three
quarks in a baryon must have different colors. Just as a combination of actual
colors of light can produce the neutral color white, a combination of three
quarks with different colors is said to be white, or colorless. A meson consists
of a quark of one color and an antiquark of the corresponding anticolor. The
result is that both baryons and mesons are always colorless (or white).

Although the concept of color in the quark model was originally conceived to
satisfy the exclusion principle, it also provided an improved theory for explaining
certain experimental results. For example, the modified theory correctly predicts
the lifetime of the �0 meson. The general theory of how quarks interact with
each other is called quantum chromodynamics (QCD), to parallel quantum

3
2

1
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Table 15.5 Properties of the Fundamental Point Particles

Approximate Rest Mass Electric
in Terms of Proton Interactions Interaction Charge in Color

Particle Massa Experiencedb Mediated Units of �e � Charge

e�, �, � , , 1.9 EM, W None �1 NoLeptons
e, �, � �3 � 10�9, �4 � 10�9, W None 0 No

�9 � 10�9

Quarks
u, c, t , 1.6, 185 EM, W, S None � Yes

d, s, b , , 5.3 EM, W, S None � Yes

All are fermions with spin .

Field Particles

Photon 
 0 EM EM 0 No

Intermediate W� 86 W, EM W �1 No
bosons Z0 97 W W 0 No

Gluons g 0 S S 0 Yes
All are bosons with spin 1.

aFor quarks these are inferred values because free quarks have never been observed.

bEM � electromagnetic, W � weak, S � strong
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1
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1
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2
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electrodynamics, the theory of interaction between electric charges. In QCD the
quark is said to carry a color charge, in analogy with electric charge, and the
color charge is responsible for the strong force between quarks. The strong force
between quarks is often called the color force. The color force between quarks is
analogous to the electric force between charges; like colors repel and opposite
colors attract. Therefore, two red quarks repel each other, but a red quark is at-
tracted to an antired quark. The attraction between quarks of opposite color to
form a meson (q ) is indicated in Figure 15.15a. Differently colored quarks also
attract each other, but with less intensity than the oppositely colored quark and
antiquark. For example, the red, blue, and green quarks in a cluster all attract
each other to form baryons, as indicated in Figure 15.15b. Thus every baryon
contains three quarks of three different colors.

As stated earlier, the strong force between quarks is carried by massless
particles that travel at the speed of light called gluons (g). According to
QCD, there are eight gluons, all carrying two color charges, a color and an
anticolor, such as a “blue-antired” gluon. When a quark emits or absorbs a
gluon, its color changes. For example, a blue quark that emits a blue-antired
gluon becomes a red quark, and a red quark that absorbs this gluon becomes
a blue quark. Because gluons carry color charge, they should clump together
to form entities called glue-balls, but no glue-ball particles have yet been
experimentally detected.

Experimental Evidence for Quarks

As already mentioned, an isolated quark has never been observed and proba-
bly never will be, according to QCD. This leaves us with the question of how
quarks can be detected and what experimental evidence we have for the exis-
tence of quarks.

Experiments at the Stanford Linear Accelerator (SLAC) in the late 1960s
established two important results concerning quarks. (1) The recoils of high-
energy electrons scattered from protons could be completely modeled by as-
suming three point-like quarks within the proton. (2) Although gluons were
not directly detected, it was found that the incident electrons (which carry no
color charge) interacted with only about half the mass making up the proton.
This is exactly what is expected if approximately half the material in a proton
consists of gluons that are electrically neutral and do not interact electromag-
netically with the electron (see Table 15.5).

It is interesting to consider what happens to a quark–antiquark pair (q )
formed in a high-energy collision as the pair attempts to separate. Because the
color force is so strong, all quarks must form colorless baryons (three quarks)
or mesons (two quarks). The process goes like this. As two quarks separate,
the increase in energy of the color field between them is so large that addi-
tional quark–antiquark pairs are created in streams (or jets) following
the original (q ) pair. When all the available energy is used up, the quarks
cluster into color-neutral or colorless combinations, which continue to sepa-
rate indefinitely as two jets of hadrons, as in Figure 15.16a. Figure 15.16b
shows actual experimental data corresponding to three jets of hadrons emerg-
ing from a collision in which a quark and antiquark were produced and
a gluon was radiated. Because gluons carry color charge, they, like quarks,

q

q

q
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Figure 15.15 (a) A red quark
is attracted to an antired quark.
This forms a meson whose quark
structure is (q ). (b) Three dif-
ferently colored quarks attract
each other to form a baryon.
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must also appear as a jet of hadrons. Thus experimental signatures of quarks
and gluons are narrow “jets” of hadrons.

Explanation of Nuclear Force in Terms of Quarks

Although the color force between two color-neutral hadrons is negligible
at large separations, the strong color force between their constituent quarks
does not exactly cancel at small separations. This residual strong force is,
in fact, the short-range nuclear force that binds protons and neutrons to form
nuclei. In Section 15.3 we explained the nuclear interaction of a proton with a
neutron using Yukawa’s early theory of pion exchange. According to QCD, a
more basic explanation of nuclear force can be given in terms of quarks and
gluons, as shown by contrasting Feynman diagrams of the same process in Fig-
ure 15.17. Each quark within the neutron and proton is continually emitting
and absorbing virtual gluons and creating and annihilating virtual (q ) pairs.
When the neutron and proton approach within 1 fm of each other, these vir-
tual gluons and quarks can be exchanged between the two nucleons, and such
exchanges produce the nuclear force. Figure 15.17b depicts one likely possi-
bility or contribution to the general process shown in Figure 15.17a. A down
quark emits a virtual gluon (represented by a wavy line, g), which creates, a lit-
tle later, a u pair. Both the recoiling d quark and the are transmitted to the
proton, where the annihilates a proton u quark (with the creation of a
gluon) and the d is captured.

u
uu

q
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(a)

qq

M MBM M B

(b)

Figure 15.16 (a) As the quark–antiquark pair separates, the potential energy in the
color field is transformed into additional q pairs, which quickly condense into color-
less mesons (M) and baryons (B). These separate as jets of hadrons. (b) Three jets of
hadrons produced by a quark, an antiquark, and a gluon. This figure is from the JADE
detector at the German laboratory DESY in Hamburg. (Adapted from Gordon Kane, The
Particle Garden, Figure 6.2, p. 100)
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Figure 15.17 (a) A nuclear in-
teraction between a proton and
a neutron explained in terms of
Yukawa’s pion-exchange model.
(b) The same interaction as in
(a), explained in terms of quarks
and gluons. Note that the ex-
changed d quark pair makes up
a �

� meson.
u
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15.11 ELECTROWEAK THEORY AND
THE STANDARD MODEL

Recall that the weak interaction is an extremely short-range force with an inter-
action distance of approximately 10�18 m. Such a short-range interaction im-
plies that the quantized particles that carry the weak field (the spin-1 W�, W�,
and Z0 bosons) are quite massive, as is indeed the case (see Table 15.5). These
bosons are especially amazing when we realize they are structureless, point-like
particles as massive as krypton atoms! As mentioned earlier, the weak interac-
tion is responsible for neutron decay and the beta decay of other, heavier
baryons. More important, the weak interaction is responsible for the decay of
the c, s, b, and t quarks into lighter, more stable u and d quarks as well as the
decay of the massive � and � leptons into (lighter) electrons. Thus, the weak in-
teraction is very important because it governs the stability of the basic matter particles.

A mysterious feature of the weak interaction is its lack of symmetry, especially
in comparison with the high degree of symmetry shown by the strong, electro-
magnetic, and gravitational interactions. For example, the weak interaction, un-
like the strong interaction, is not symmetric under mirror reflection or charge
exchange. (Mirror reflection means that all the quantities in a given particle
reaction are exchanged as in a mirror reflection—left for right, an inward
motion toward the mirror for an outward motion. Charge exchange means that
all the electric charges in a particle reaction are converted to their opposites—all
positives to negatives and vice versa.) When we say that the weak interaction is
not symmetric, we mean that the reaction with all quantities changed occurs less
frequently than the direct reaction. For example, the decay of the K0, which is
governed by the weak interaction, is not symmetric under charge exchange, since

K0
9: �� � e� � e

occurs much more frequently than

K0
9: �� � e� � e

In 1979 Sheldon Glashow, Abdus Salam, and Steven Weinberg won a Nobel
prize for developing a theory that unifies the electromagnetic and weak inter-
actions. This electroweak theory postulates that the weak and electromagnetic in-
teractions have the same strength at very high particle energies. Thus the two interac-
tions are viewed as two different manifestations of a single, unifying
electroweak interaction. The photon and the three massive bosons (W� and
Z0) play key roles in the electroweak theory. Perhaps the most spectacular of
the theory’s many concrete predictions was the prediction of the masses of the
W and Z particles at about 80 GeV/c2 and 91 GeV/c2, respectively. The 1984
Nobel prize was awarded to Carlo Rubbia and Simon van der Meer for their
work leading to the discovery of these particles with just those masses at CERN.

The combination of the electroweak theory and QCD for the strong interac-
tion is called the Standard Model in high-energy physics. It includes almost
all the constituents of matter—six leptons, six quarks, and three forces and
their field particles—but not the gravitational force at this time. Physicists, in
continuing pursuit of unification, hope that string theory, mentioned in the
next section, will provide the unification of gravity with the Standard Model.

The Standard Model does not answer all questions. It requires as input pa-
rameters over a dozen measured numbers such as the lepton and quark
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masses. Further, it does not explain the mysterious ratios of these masses, why
there are only six types of leptons, or why there are six types of both leptons
and quarks. A specific question regarding field particles is why the photon has
no mass while the W and Z bosons do have mass. Because of this difference,
the electromagnetic and weak forces are quite distinct at low energies but be-
come similar, or symmetric, at very high energies, where the rest energies of
the W and Z bosons are insignificant fractions of their total energies. This be-
havior in the transition from high to low energies is called symmetry break-
ing. In 1964 Peter Higgs (b. 1929, Scottish physicist) introduced a mechanism
for electroweak symmetry breaking by proposing a new field, called the Higgs
field, which permeates all of space and gives particles their mass. Roughly, the
Higgs field may be viewed as causing a kind of drag force on particles as they
interact with it, giving particles their characteristic inertia. As with all other
classical fields, quantization of the Higgs field results in a force-carrying parti-
cle called the Higgs boson. The Standard Model, including the Higgs mecha-
nism, provides a logically consistent explanation of the massive nature of the
W and Z bosons. Unfortunately, the Higgs boson has not yet been found, but
physicists think its mass should be less than 1 TeV (1012 eV).

To determine whether the Higgs boson exists, two quarks of at least 1 TeV of
energy must collide, but calculations show that this requires injecting 40 TeV of
energy within the volume of a proton. Scientists are convinced that because of
the limited energy available in conventional accelerators using fixed targets, it is
necessary to build colliding-beam accelerators called colliders. The concept of
colliders is straightforward. Particles with equal masses and kinetic energies,
traveling in opposite directions in an accelerator ring, collide head-on to pro-
duce the required reaction and form new particles. Because the total momen-
tum of the interacting particles is zero, all of their kinetic energy is available for
the reaction. The Large Electron–Positron Collider (LEP) at CERN and the
Stanford Linear Collider in California collide electrons and positrons. The
Super Proton Synchrotron at CERN accelerates protons and antiprotons to
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energies of 270 GeV, while the world’s highest-energy proton accelerator, the
Tevatron, at the Fermi National Laboratory in Illinois produces protons at
almost 1000 GeV (1 TeV). CERN expects a 2007 completion of the Large
Hadron Collider (LHC), a proton–proton collider that will provide a center-of-
mass energy of 14 TeV and allow an exploration of Higgs boson physics. The
accelerator is being constructed in the same 27-km-circumference tunnel as
CERN’s LEP Collider, and many countries are participating in the project.

15.12 BEYOND THE STANDARD MODEL

Grand Unification Theory and Supersymmetry

Following the success of the electroweak theory, scientists attempted to com-
bine it with QCD in a grand unification theory, or GUT. In this model, the
next step is taken of merging the electroweak force with the strong color force
to form a grand unified force. GUT considers leptons and quarks to be spe-
cific states of a single particle called a leptoquark and it is this identity that leads
to the same number of flavors for leptons and quarks. Also, because leptons
and quarks are states of the same particle, GUT predicts that quarks and lep-
tons should be able to change into each other given sufficient time. Thus
GUT predicts that quark-filled protons are unstable and will decay with a life-
time of about 1032 years to a positron, which is a lepton, and other non-
baryons. Attempts to detect such proton decays have so far been unsuccessful.

The search for unification has also led to another beautiful symmetry prin-
ciple, Supersymmetry (SUSY). According to this principle the fundamental
equations of nature are unchanged by the exchange of a fermion for a boson
in these equations. SUSY suggests that every elementary particle has a super-
partner, called a sparticle, although no sparticle has yet been observed. It is
believed that supersymmetry is a broken symmetry (like the broken elec-
troweak symmetry at low energies) and that the masses of the superpartners
are too large to be produced in current accelerators. Continuing with the fun
and whimsey in naming particles and their properties, superpartners are given
the names squarks and sleptons (the boson superpartners of quarks and lep-
tons) and photinos, winos, and gluinos (the fermion superpartners of the field
bosons—photons, W� s, and gluons).

String Theory—A New Perspective

String theory is an effort to unify the four fundamental forces by modeling all
particles as various vibrational modes of a single entity—an incredibly small
string. The typical length of such a string is on the order of 10�35 m, called
the Planck length. In string theory each quantized mode of vibration of the
string corresponds to a different elementary particle in the Standard Model.

One of the complicating factors in string theory is that it requires space-
time to have 10 dimensions. Despite the theoretical and conceptual difficulties
in dealing with 10 dimensions, string theory holds promise in incorporating
gravity with the other forces. Four of the 10 dimensions are visible to us—3 space
dimensions and 1 time dimension—and the other 6 are said to be compactified.
That is, the 6 dimensions are curled up so tightly that they are not visible in
the macroscopic world.
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As an analogy, consider a soda straw. We can build a soda straw by cutting a
rectangular piece of paper (Fig. 15.18a), which clearly has two dimensions,
and rolling it up into a small tube (Fig. 15.18b). From far away, the soda straw
looks like a one-dimensional straight line. The second dimension has been
curled up and is not visible. String theory claims that 6 space-time dimensions
are curled up in an analogous way, with the curling being on the size of the
Planck length—impossible to see from our viewpoint.

Another complicating factor with string theory is that it is difficult for string
theorists to guide experimentalists as to what to look for in an experiment.
The Planck length is so small that direct experimentation on strings is impossi-
ble. Until the theory has been further developed, string theorists are restricted
to applying the theory to known results and testing for consistency.

Other theorists are working on M-theory, which is an 11-dimensional the-
ory based on membranes rather than strings. In a way reminiscent of the cor-
respondence principle, M-theory is claimed to reduce to string theory if one
compactifies from 11 dimensions to 10 dimensions.

SUMMARY

The strong, electromagnetic, weak, and gravitational forces are the four funda-
mental forces in nature. All the interactions in which these forces take part are
mediated by field particles. The electromagnetic interaction is mediated by the
photon; the weak interaction is mediated by the W� and Z0 bosons; the grav-
itational interaction is mediated by gravitons; the strong interaction is mediated
by gluons.

A charged particle and its antiparticle have the same mass but opposite
charge, and other properties may have opposite values, such as lepton number
and baryon number. It is possible to produce particle–antiparticle pairs in nu-
clear reactions if the available energy is greater than 2mc2, where m is the mass
of the particle (or antiparticle).

Particles other than field particles are classified as hadrons or leptons.
Hadrons interact via all four fundamental forces. They have size and structure
and are not elementary particles. There are two types—baryons and mesons.
Baryons, which generally are the most massive particles, have nonzero baryon
number and a spin of or . Mesons have baryon number zero and either
zero or integral spin.

Leptons have no structure or size and are considered truly elementary.
They interact only via the weak, gravitational, and electromagnetic forces. Six
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Figure 15.18 (a) A piece of paper is cut into a rectangular shape. As a rectangle, the
shape has two dimensions. (b) The paper is rolled up into a soda straw. From far away,
it appears to be one-dimensional. The curled-up second dimension is not visible when
viewed from a distance large compared to the diameter of the straw.
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types of leptons exist: the electron e�, the muon ��, the tau ��; and their neu-
trinos e, �, and �.

In reactions and decays, quantities such as energy, linear momentum, angu-
lar momentum, electric charge, baryon number, and lepton number are gen-
erally conserved. Conservation of relativistic energy and momentum yields the
following expression for the threshold energy for particle production:

Here, K th is the kinetic energy of the incident particle of mass m1, m2 is
the mass of the stationary target particle, and the remaining m’s are product-
particle masses.

Certain particles have properties called strangeness and charm. These un-
usual properties are conserved only in the decays and nuclear reactions that
occur via the strong force.

Theorists in elementary particle physics have postulated that all hadrons
are composed of smaller units known as quarks, and experimental evidence
agrees with this model. Quarks have fractional electric charge and come in six
flavors: up (u), down (d), strange (s), charmed (c), top (t), and bottom
(b). Each baryon contains three quarks, and each meson contains one quark
and one antiquark.

According to the theory of quantum chromodynamics, quarks have a
property called color charge, and the force between quarks is referred to as
the strong force or the color force. The strong force is now considered to be
a fundamental force. The nuclear force, which was originally considered to be
fundamental, is now understood to be a secondary effect of the strong force,
due to gluon exchanges between hadrons.

The electromagnetic and weak forces are now considered to be manifestations
of a single force called the electroweak force. The combination of quantum
chromodynamics and the electroweak theory is called the Standard Model.

K th �
(m3 � m4 � m5 � � � �)2c2 � (m1 � m2)2c2

2m2
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PROBLEMS 585

QUESTIONS

1. Name the four fundamental interactions and the field
particle that mediates each.

2. Describe the quark model of hadrons, including the
properties of quarks.

3. What are the differences between hadrons and leptons?
4. Describe the properties of baryons and mesons and the

important differences between them.
5. Particles known as resonances have very short lifetimes,

of the order of 10�23 s. From this information, would
you guess they are hadrons or leptons? Explain.

6. Kaons all decay into final states that contain no protons
or neutrons. What is the baryon number of kaons?

7. The �0 particle decays by the weak interaction accord-
ing to the decay mode �0

: �0 � �0. Would you ex-
pect this decay to be fast or slow? Explain.

8. Identify the particle decays listed in Table 15.2 that oc-
cur by the weak interaction. Justify your answers.

9. Identify the particle decays listed in Table 15.2 that occur
by the electromagnetic interaction. Justify your answers.

10. Two protons in a nucleus interact via the strong inter-
action. Are they also subject to the weak interaction?

11. Discuss the following conservation laws: energy, linear
momentum, angular momentum, electric charge,

baryon number, lepton number, and strangeness. Are
all of these laws based on fundamental properties of
nature? Explain.

12. An antibaryon interacts with a meson. Can a baryon be
produced in such an interaction? Explain.

13. Describe the essential features of the Standard Model
of particle physics.

14. How many quarks are in (a) a baryon? (b) an an-
tibaryon? (c) a meson? (d) an antimeson? How do you
account for the fact that baryons have half-integral
spins while mesons have spins of 0 or 1? (Hint: Quarks
have spin .)

15. In the theory of quantum chromodynamics, quarks
come in three colors. How would you justify the state-
ment that “all baryons and mesons are colorless”?

16. Which baryon did Murray Gell-Mann predict in 1961?
What is the quark composition of this particle?

17. What is the quark composition of the �� particle? (See
Table 15.4.)

18. The W� and Z bosons were first produced at CERN in
1983 (by the collision of a beam of protons and a beam
of antiprotons at high energy). Why was this an impor-
tant discovery?
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PROBLEMS

15.1 The Fundamental Forces in Nature

1. When a high-energy proton or pion traveling near the
speed of light collides with a nucleus, it travels an aver-
age distance of 3 � 10�15 m before interacting. From
this information, estimate the time required for the
strong interaction to occur.

2. The neutral �0 meson decays by the strong interaction
into two pions according to �0

: �� � ��, with a half-
life of about 10�23 s. The neutral K0 meson also decays
into two pions according to K0

: �� � �� but with a
much longer half-life, about 10�10 s. How do you ex-
plain these observations?

15.2 Positrons and Other Antiparticles

3. Two photons are produced when a proton and an an-
tiproton annihilate each other. What are the minimum
frequency and the corresponding wavelength of each
photon?

4. A photon produces a proton–antiproton pair at rest
according to the reaction 
 : p � . If a nearby nu-
cleus of mass 100 u (initially at rest) carries off the pho-

p

ton’s momentum, what is the frequency of the photon?
What is its wavelength?

15.3 Mesons and the Beginning of Particle Physics

5. One of the mediators of the weak interaction is the Z0

boson, which has a mass of 91 GeV/c2. Use this infor-
mation to find an approximate value for the range of
the weak interaction.

15.5 Conservation Laws

6. High-energy muons occasionally collide with electrons
and produce two neutrinos according to the reaction
�� � e�

: 2. What kind of neutrinos are these?
7. (a) Show that baryon number and charge are con-

served in the following reactions of a pion with a
proton.

�� � p 9: K� � �� (1)

�� � p 9: �� � �� (2)

(b) The first reaction is observed, but the second never
occurs. Explain these observations.
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8. The following reactions or decays involve one or more
neutrinos. Supply the missing neutrinos (e, �, or �).
(a) ��

: �� � ?
(b) K�

: �� � ?
(c) ? � p : n � e�

(d) ? � n : p � e�

(e) ? � n : p � ��

(f) ��
: e� � ? � ?

9. Determine which of the following reactions can occur.
For those that cannot occur, determine the conserva-
tion law (or laws) that is violated.
(a) p : �� � �0

(b) p � p : p � p � �0

(c) p � p : p � ��

(d) ��
: �� � �

(e) n : p � e� � 
(f) ��

: �� � n

15.6 Strange Particles and Strangeness

10. Determine whether strangeness is conserved in each of
the following decays and reactions:
(a) �0

: p � ��

(b) �� � p : �0 � K0

(c) � p : � �0

(d) �� � p : �� � ��

(e) ��
: �0 � ��

(f) �0
: p � ��

11. The following decays are forbidden. Determine a con-
servation law that each violates.
(a) ��

: e� � 

(b) n : p � e� � e

(c) �0
: p � �0

(d) p : e� � �0

(e) �0
: n � �0

12. The following reactions are forbidden. Determine a
conservation law that each violates.
(a) p � : �� � e�

(b) �� � p : p � ��

(c) p � p : p � ��

(d) p � p : p � p � n
(e) 
 � p : n � �0

15.7 How Are Elementary Particles Produced and
Particle Properties Measured?

13. In 1959 Emilio Segrè and Owen Chamberlain were
awarded the Nobel prize for demonstrating the exis-
tence of the antiproton. In a series of experiments
started in 1955, using the Bevatron accelerator at
Berkeley, they produced both antiprotons and antineu-
trons in the reactions

p � p 9: p � p � n � n

p � p 9: p � p � p � p

p

�0p

e

(a) Calculate the threshold kinetic energy of the
incident proton (fixed-target proton) required
for the production of an antiproton, . (b) For the
same initial conditions, calculate the threshold
kinetic energy needed for the production of an anti-
neutron, .

14. Calculate the threshold for production of strange parti-
cles in the following reactions. Assume that the first
particle is moving and the second is at rest.

(a) p � p 9: n � �� � K0 � ��

(b) �� � p 9: �0 � K0

15. Efficiency of fixed-target accelerators vs. colliding-beam

accelerators. The efficiency is the percentage of the
initial kinetic energy that is converted to the mass of
new product particles in a given reaction. Calculate
the efficiencies of the reactions in Example 15.5,
Exercise 3, and Problem 13. If one could arrange
these experiments so that the two colliding pro-
tons approached each other with equal speed at
threshold, the total momentum would be zero and
none of the initial kinetic energy would go into
kinetic energy of the products. All of the initial
kinetic energy would then go into creating new mass,
and the efficiency would be 100%. That is why most
current experiments involving the production
of heavy particles are carried out with colliding-beam
accelerators. Although there are formidable exp-
erimental difficulties in storing, focusing, and caus-
ing two oppositely circulating low-density beams of
particles to collide, the great gain in efficiency makes
colliders worthwhile.

16. Consider the reaction p � p : p � p � X. (a) For
a fixed-target accelerator capable of producing
incident protons with a kinetic energy of 1000 GeV,
find the heaviest particle X that can be produced.
(b) If colliding protons, each with a kinetic energy of
500 GeV, are available in a collider, what is the mass of
the heaviest particle X that can be produced in the
same reaction?

15.9 Quarks

17. A �0 particle traveling through matter strikes a proton,
and a �� and a gamma ray, as well as a third parti-
cle, emerge. Use the quark models of the �� and
the gamma ray to determine the identity of the third
particle.

18. The quark compositions of the K0 and �0 particles
are d and uds, respectively. Show that the charge,
baryon number, and strangeness of these particles
equal the sums of these numbers for the quark
constituents.

s

n

p
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19. Neglecting binding energies, estimate the masses of the
u and d quarks from the masses of the proton and neu-
tron.

20. Figure P15.20 shows a neutron–proton interaction in
which a virtual �� is exchanged. Draw a Feynman dia-
gram showing this interaction in terms of quarks and
gluons.

21. A neutron undergoing beta decay is believed to emit a
virtual W� that decays into an e� and an antielectron
neutrino, . Draw a Feynman diagram showing this de-
cay in terms of quarks, the W�, the e�, and the .e

e

ADDITIONAL PROBLEMS

22. Neutrino flavor oscillation Neutrino oscillation is based
on the idea that the e, �, and � neutrinos are mix-
tures of three other neutrinos called 1, 2, and 3. For
example,

� � U�11 � U� 22 � U� 33

where each of the neutrinos 1, 2, and 3 is repre-
sented as a stationary state solution to the Schro-
dinger equation and each has a different mass m1, m2,
and m3. For algebraic simplicity consider only oscilla-
tions of the �, � system. We limit the nonzero U

coefficients to those connecting 2 and 3 and write
the Us in terms of a single variable �, called the mix-
ing angle:

� � cos�2 � sin�3

� � sin�2 � cos�3

The mixing angle controls the amount of 2 and 3

present in � and � . Note that there is no mixing for
� � 0. In a typical experiment a � (beam) with a given
momentum, p, is created at t � 0. The time evolution
of the � as it moves downstream is given by

where 2 and 3 are stationary states with energies E2

and E3 respectively.
(a) Write a similar expression for �(t).
(b) Express, mathematically, the initial condition that
the neutrino created at t � 0 is entirely a � neutrino.
(Hint: one condition is ��(0) �2 � 0)
(c) Show that the probability of finding a � neutrino at
time t (or that the � neutrino has oscillated into a �
neutrino) is

P(�9: �) �
sin22�

2 �1 � cos
E2 � E3

�
t�

�(t) � cos�2e�iE2t/� � sin�3e�iE3t/�

(d) Show that for a fixed momentum p and small
masses m2 and m3(m2c, m3c ��p)

The results of (c) and (d) show that observation of
neutrino oscillation fixes the difference of the squared
masses and determines the mixing angle.

23. The most recent naked-eye supernova was Supernova
Shelton 1987A (Fig. P15.23). It was 170,000 ly away in
the next galaxy to ours, the Large Magellanic Cloud.
About 3 h before its optical brightening was noticed,
two continuously running neutrino detection experi-
ments simultaneously registered the first neutrinos
from an identified source other than the Sun. The
Irvine-Michigan-Brookhaven experiment in a salt mine
in Ohio registered eight neutrinos over a 6-second pe-
riod, and the Kamiokande II experiment in a zinc mine
in Japan counted 11 neutrinos in 13 s. (Because the su-
pernova is far south in the sky, these neutrinos entered
the detectors from below. They passed through the
Earth before they were by chance absorbed by nuclei in
the detectors.) The neutrino energies were between
about 8 MeV and 40 MeV. If neutrinos have no mass,
then neutrinos of all energies should travel together at
the speed of light—the data are consistent with this
possibility. The arrival times could show scatter simply
because neutrinos were created at different moments
as the core of the star collapsed into a neutron star. If
neutrinos have nonzero mass, then lower-energy neu-
trinos should move comparatively slowly. The data are
consistent with a 10-MeV neutrino requiring at most
about 10 s more than a photon would require to travel
from the supernova to us. Find the upper limit that this
observation sets on the mass of a neutrino. (Other evi-
dence sets an even tighter limit.)

E2 � E3 �
(m2

2
� m3

2)c3

2p

+π

p

Time

n

n

p

Figure P15.20
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588 CHAPTER 15 ELEMENTARY PARTICLES

28. A pi meson at rest decays according to ��
: �� � �.

What is the energy carried off by the neutrino? (As-
sume that the neutrino moves off with the speed of
light.) m�c2 � 139.5 MeV, m�c2 � 105.7 MeV, m � 0.

29. Two protons approach each other with 70.4 MeV of ki-
netic energy and engage in a reaction in which a pro-
ton and positive pion emerge at rest. What third parti-
cle, obviously uncharged and therefore difficult to
detect, must have been created?

30. What processes are described by the Feynman diagrams
in Figure P15.30? What is the exchanged particle in
each process?



24. An unstable particle, initially at rest, decays into a pro-
ton (rest energy 938.3 MeV) and a negative pion (rest
energy 139.5 MeV). A uniform magnetic field of
0.250 T exists perpendicular to the velocities of the cre-
ated particles. The radius of curvature of each track is
found to be 1.33 m. What is the rest mass of the origi-
nal unstable particle?

25. Calculate the kinetic energies of the proton and pion
resulting from the decay of a �0 at rest:

�0
9: p� � ��

26. A �0 particle at rest decays according to

�0
9: �0 � 


Find the gamma-ray energy.
27. If a K0 meson at rest decays in 0.90 � 10�10 s, how far

will a K0 meson travel if it is moving at 0.96c through a
bubble chamber?

Figure P15.23 The giant star Sanduleak �69° 202 in the
“before” picture became Supernova Shelton 1987A in the
“after picture.” (Anglo-Australian Telescope Board)

(a)

(b)

d
d
d

u

u
u

e+

e–

γ

γ

µ
_νµ

Figure P15.30

31. Identify the mediators for the two interactions de-
scribed in the Feynman diagrams in Figure P15.31.

(a) (b)

ν

e–

ν

e–

–
d

d s

–s

Figure P15.31

32. The �0 is an unstable particle that decays into a proton
and a negatively charged pion. Determine the kinetic
energies of the proton and pion if the �0 is at
rest when it decays. The rest mass of the �0 is
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1115.7 MeV/c2, the mass of the �� is 139.5 MeV/c2,
and the mass of the proton is 938.3 MeV/c2.

33. A free neutron beta-decays by creating a proton, an
electron, and an antineutrino according to the reac-
tion n : p � e� � . For simplicity assume that a free
neutron beta-decays by creating a proton and electron
according to the reaction

n 9: p � e�

and assume that the neutron is initially at rest in the
laboratory. (a) Determine the energy released in this
reaction. (b) Determine the speeds of the proton and
electron after the reaction. (Energy and momentum
are conserved in the reaction.) (c) Are any of these
particles moving at relativistic speeds? Explain.

34. The quark composition of the proton is uud, while that
of the neutron is udd. Show that the charge, baryon
number, and strangeness of these particles equal the
sums of those same numbers for their quark con-
stituents.

35. The particle decay ��
: �� � n is observed in a bub-

ble chamber. Figure P15.35 represents the curved
tracks of the particles �� and �� and the invisible track
of the neutron, in the presence of a uniform magnetic
field of 1.15 T directed out of the page. The measured
radii of curvature are 1.99 m for the �� particle and
0.580 m for the �� particle. (a) Find the momenta of
the �� and the �� particles, in units of MeV/c.
(b) The angle between the momenta of the �� and the
�� particles at the moment of decay is 64.5°. Find the
momentum of the neutron. (c) Calculate the total en-
ergy of the �� particle, and of the neutron, from their
known masses (m� � 139.6 MeV/c2, mn � 939.6
MeV/c2) and the relativistic energy–momentum rela-
tion. What is the total energy of the �� particle?
(d) Calculate the mass and speed of the �� particle.



36. Supernova 1987A, located about 170,000 ly from the
Earth, is estimated to have emitted a burst of neutrinos
carrying energy �1046 J (Fig. P15.23). Suppose the av-
erage neutrino energy was 6 MeV and your body pre-
sented cross-sectional area 5000 cm2. To an order of
magnitude, how many of these neutrinos passed
through you?

37. A rocket engine for space travel using photon drive
and matter–antimatter annihilation has been sug-
gested. Suppose the fuel for a short-duration burn con-
sists of N protons and N antiprotons, each with mass m.
(a) Assume all of the fuel is annihilated to produce
photons. When the photons are ejected from the
rocket, what momentum can be imparted to it? (b) If
half of the protons and antiprotons annihilate each
other and the energy released is used to eject the re-
maining particles, what momentum could be given to
the rocket? Which scheme results in the greatest
change in speed for the rocket?

n
64.5°

Σ+

π+

Figure P15.35
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I
n 1932 Carl Andersen observed a new particle in his cosmic ray experiment at
Pike’s Peak. This was the muon, the first in a second generation of leptons. “Who
ordered that?,” exclaimed the Nobel prize winner I. I. Rabi. Nature had spoken,

and the theory had to listen. The Standard Model was expanded to include a second
lepton generation.

In 1977 when the discovery of the bottom quark ushered in the addition of a third
family of quarks, the Standard Model demanded a “top” quark to balance it. This time
the new addition had been “ordered,” but would nature deliver? In 1994, when the top
quark was finally sighted, it marked not only a great triumph for the theory, but also a
remarkable achievement for modern detectors and accelerators. This is the story of the
accelerator and detector at Fermi National Accelerator Laboratory (“Fermilab”) that
brought you the top quark.

THE ACCELERATOR

In quantum mechanics a particle is described as a wave with wavelength inversely pro-
portional to the particle momentum. Using waves with smaller and smaller wavelengths
enables scientists to probe smaller and smaller structures. Therefore, being able to
accelerate particles up to large momenta enables us to probe small structures such as
the proton. In order to create new high-mass particles in the laboratory, we need high-
energy particle beams, since the available energy to create new states is approximately

in a fixed target experiment, or 2E for a collider experiment, where E is the
energy of the particle beam and m is the mass of the target particle. For these two rea-
sons it is necessary to understand techniques used to accelerate charged particles.

A particle accelerator has two main elements, the beam and the accelerating struc-
ture. All acceleration techniques use only electromagnetic fields. Particles are usually
accelerated in evacuated pipes to reduce scattering. The accelerating fields must be
carefully controlled, and methods for aligning the beam are necessary. Finally, since
the magnets get very hot, they need to be cooled.

There are different types of accelerating techniques. One uses a DC electric field,
and another uses either standing or traveling radio frequency (RF) waves to accelerate
particles. The DC technique is limited by arcing. It is used for initial acceleration of
particles, followed by the RF wave technique, which leads to bunched beams.

The source of charged particles for the beam is either a hot metal filament for elec-
trons or a bottle of hydrogen for protons. The particles must be guided down the beam
pipe. This involves steering or bending the beam, focusing it, and breaking it up to
form bunches of particles rather than a continuous beam.

The proton accelerator at Fermilab consists of many parts (Fig. 1). First, hydrogen is
ionized to form H� ions which are then introduced into an accelerating structure
(“PreAcc” in Fig. 1) which produces a DC electric field of 750 kV. After the ions are accel-
erated in this field, they enter a linear accelerator (LINAC) which uses 201 MHz–
805 MHz RF waves supplied to accelerating cavities. The RF signal produces an alternat-
ing electric field in a cavity pointed first along the beam and then opposite to it. The ions
are accelerated in the forward direction by shielding them from the RF signal in drift
tubes while the E field is of the wrong sign. The ions are accelerated down the 145-m
long LINAC to an energy of 400 MeV. The particles introduced into the first accelerating
cavity do not all arrive simultaneously and have a spread of energies. A particle arriving
with exactly the right energy and at the right time will be accelerated to the desired en-
ergy. Because of the alternating nature of the electric field, particles arriving slightly after
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or before the “ideal” particle will be accelerated in such a way that they tend toward the
ideal particle trajectory. This feature is called phase stability and is a necessary feature for
our accelerators. Both electrons in the H� ion are then stripped off by a foil, and the pro-
tons are introduced into a circular accelerator called the Synchrotron Booster.

The Booster’s structure also uses RF electromagnetic fields to accelerate the protons
by 550 keV per turn. The protons, kept inside the ring by magnetic fields, are now trav-
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Figure 1 Fermilab accelerator complex.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

Image not available due to copyright restrictions

 



eling at a speed of 0.37c. Each time around the ring, the protons pass through acceler-
ating cavities and pick up energy. Dipole magnets (shown schematically in Fig. 2) are
used to bend the particles in a circle. The magnetic fields in these magnets are in-
creased from 0.05 to 0.7 T as the particles change energy from 400 MeV to 8 GeV in
such a way that the protons stay in the same orbit in the circular beam pipe. When
their energy reaches 8 GeV, the protons are extracted using fast-rising magnetic fields
and introduced into the 2000-m diameter main proton synchrotron. The 6000-m tun-
nel houses two accelerating structures, one atop the other. The first, called the Main
Ring, built in 1969 with conventional dipole magnets whose field ranges from 0.04 to
0.67 T, can accelerate protons up to 400 GeV.

The superconducting magnet accelerator, the Tevatron, built in 1979, makes use of
superconducting magnets that produce strong, uniform magnetic fields. The field in
the superconducting dipole magnets ranges from 0.66 to 4.4 T, thus enabling the Teva-
tron to accelerate particles to 900 GeV in the same radius as the Main Ring. In general,
we can describe the relationship between accelerator radius, energy achieved, and
magnetic field as follows:

This assumes that 75% of the ring is filled with dipole magnets. In the case of the Teva-
tron, there are 774 dipoles, each 6 m long, comprising 74% of the Tevatron circumfer-
ence. This shows that the limitation for accelerators is either building magnets with a

Radius � 44
E (GeV)

B (kG)
m
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Figure 2 A dipole magnet in the synchrotron exerts a force on the proton toward the
center of the ring. A quadrupole magnet exerts a force on protons traveling off axis.
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high uniform magnetic field or having enough money to make an accelerator with a
huge radius.

The synchrotron would be unable to keep the protons inside the beampipe during
acceleration without a method of focusing the beam. The concept of Strong Focusing
developed in 1952 is crucial. Quadrupole magnets shown in Figure 2 have zero field on
axis, but have a field gradient off axis. As a particle wanders away from the axis in the x
direction, it experiences a force that pushes it back toward the axis. A particle that wan-
ders off in the y direction experiences a force away from the axis. Strong Focusing re-
lies on a series of focusing and defocusing magnets that have an overall effect of focus-
ing the beam, provided the magnets are spaced sufficiently closely together, as shown
in Figure 3. The field gradients in the quadrupoles in the Tevatron reach as high as 67
T/m. The synchrotron consists of strings of magnets, something like F-B-B-B-B-D-B-B-B-
B-F etc., where F stands for focusing, B stands for bending, and D stands for defocusing
magnets.

Particles in the Tevatron are accelerated by RF cavities driven at 53 MHz. The pro-
tons are accelerated through a beampipe maintained at a vacuum of 10�9 torr to a fi-
nal energy of 900 � 0.72 GeV.

The top quark was discovered at a proton–antiproton collider. The antiprotons are
produced by extracting the proton beam at 120 GeV and shining it on a copper target.
Approximately 2.5 � 1012 protons are extracted from the Main Ring every 2.4 s, and
3 � 107 antiprotons are produced with a distribution of energy peaked at 8.9 GeV. A
smaller 250-m radius ring first debunches the antiprotons into a continuous beam and
then “cools” the antiprotons until they form an intense, monoenergetic and focused
beam. The method used, called stochastic cooling, was invented by Simon Van der
Meer in 1972. The antiprotons are cooled and stored in the accumulator, a ring con-
centric with the debuncher held at a vacuum of 2 � 10�10 torr for a few hours until
enough antiprotons are accumulated for reentry into the Main Ring.

The antiprotons are introduced into the Main Ring in bunches approximately
50 cm long and are accelerated to 900 GeV in the same accelerating structure used for
accelerating the protons. Bunches of roughly 3 � 1011 protons and 1 � 1011 antipro-
tons circulating in opposite directions in the Tevatron collide at two interaction regions
containing the particle detectors every 3.5 �s.

THE DETECTOR

Because the mass of the top quark is almost 200 times the mass of a proton, it is very
rarely produced, even in collisions where the center of mass energy is 1.8 TeV. Only a
few top quark pairs are produced from a typical 50 billion collisions per day. The
Standard Model predicts that the top quark (with a lifetime of 10�24 s) should decay
in a manner similar to the familiar �-decay which converts a neutron to a proton by
emitting a W boson which then decays to an electron and neutrino. Each top quark
decays to a W and a b-quark. We focus on the case where one W decays either to a
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Figure 3 Strong focusing using quadrupole magnets separated by a distance s and ro-
tated 90° in series. Quadrupole magnets in series with equal and opposite focal lengths
f have a total focal length given by 1/f12 � s/f 2.
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� � or e e and the other W decays to a quark and an antiquark, for example, an up
quark and an anti-down quark (Fig. 4). Quarks are confined to hadronic bound
states; hence the outgoing quarks in this interaction manifest themselves as colli-
mated “jets” of hadrons.

To find the top quark pairs produced, the detector must then be able to identify
electrons, muons, neutrinos, light quark jets, and b-quark jets and to measure their mo-
mentum and energy.

All detectors function by registering the effects of energy lost by particles as they
pass through matter. Fortunately electrons, hadrons, jets, neutrinos, and muons all be-
have quite differently, which allows us to identify each type.
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Figure 4 Schematic of top quark pair production and subsequent top quark decays.
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The experiment that first observed the production of top quarks, called the Collider
Detector at Fermilab (CDF), was designed for a variety of physics measurements. The
detector surrounds the point where the protons and antiprotons collide (called the in-
teraction point), and measures the momentum, energy, and identity of the particles
produced in the collision. Figure 5 is a schematic view of one quadrant of the CDF de-
tector. To measure the momentum of high-energy particles, we require a large region
with a B field to measure their curvature. To measure their energy, we use a calorime-
ter that contains enough material to bring the particles to rest. Hence, detectors must
be large and heavy; CDF, which weighs over 6000 tons, is 12 m high and 32 m long.
From each collision, it records over 50 000 pieces of information. CDF, like most col-
lider detectors, surrounds the collision point with tracking chambers, followed by
calorimeters and muon chambers.

Charged Particle Tracking The momentum of charged particles emerging from a
collision can be measured in a drift chamber. In its simplest form, a drift chamber is a
gas-filled rectangular tube with a high-voltage wire running along its axis, similar to a
Geiger counter. The wire (called a “sense” wire) is held at a high potential relative to
the tube to create an electric field. By adding wires of different voltages, the field can
be made roughly constant over the width of the tube. When a charged particle passes
through the tube, it ionizes some of the atoms in the gas. The electrons from ioniza-
tion drift in the field toward the sense wire (Fig. 6). With a suitably chosen electric field
strength and gas, the drift velocity can be made roughly constant. Near the wire, the
electric field strength increases proportional to 1/r. In this region the electrons gain
enough energy to ionize more atoms in the gas. This process continues, producing an
“avalanche” of electrons that appears as a small electronic pulse.

By measuring the drift time, we can determine the position of the original particle.
Drift velocities are typically 5 cm/�s, and although the drift time can be measured to
less than 1 ns, the position resolution (typically 250 �m) is dominated by variations in
the arrival time of the avalanche as a result of collisions with the gas molecules. A single
planar drift chamber measures position in one dimension, but if a drift chamber with
two planes of wires is used (one, for example, with its sense wire along the x direction,
the other along the y direction) the particle’s position can be reconstructed in two di-
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Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



mensions. If a series of drift chambers are placed in a magnetic field, the particle’s mo-
mentum can be determined by measuring the curvature of its track.

CDF uses a 1-m-radius, 3-m-long cylindrical drift chamber surrounding the collision
point, containing over 4000 sense wires. The wires are grouped into nine layers. Five
layers run parallel to the beam line and alternate with the other four, which are tilted
at �3 degrees to the beam line to provide 3D position information. Another 30 000
wires along the length of the cylinder create drift fields (of about 1 kV/cm) around
each sense wire. The entire chamber is immersed in a 1.4-T magnetic field, which is di-
rected parallel to the beam line and is generated by a superconducting solenoid. Mo-
mentum is measured more accurately for low-momentum tracks with large curvatures
than for high-momentum tracks which bend only a few degrees in the field. A 20-
GeV/c particle traveling in the radial direction can be measured to about 4%, but a 
1-GeV/c particle’s momentum can be determined to 0.2%.

For extremely short-lived particles, we need a detector with higher resolution than
the drift chamber can provide. Although b-hadrons have a lifetime of only 1.5 ps, they
can often be identified by the short distance they travel from the collision before decay-
ing. B-hadrons from top decays that have an average momentum of 40 GeV/c trans-
verse to the beam and travel an average of 3.4 mm before decaying. B-hadrons can be
identified by tracing back the tracks from the decay to a vertex which is displaced from
the collision point (Fig. 7). We use a high-precision silicon microstrip detector (an 
8-cm-radius, 60-cm-long cylindrical device) which is placed inside the drift chamber
and immediately surrounds the beampipe.

Strips of silicon separated by about 20 �m provide the necessary resolution for find-
ing displaced vertices. The semiconducting strips are reverse-biased with voltages ap-
plied to the n and p sides. This produces an electric field in the depletion region, while
preventing much current flow. A charged particle passing through the detector can
create electron–hole pairs that move in the electric field and appear as small pulses on
the n and p electrodes. The CDF microstrip detector uses four layers of silicon strips
placed at small radii inside the main drift chamber. The combination of the two track-
ing devices provides enough resolution to pick out tracks and identify displaced ver-
tices from b-hadron decays. For a b-hadron traveling in the radial direction, the posi-
tion of the displaced vertex can be resolved to about 130 �m.
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Calorimetry: Measuring the Energy of Particles We now have a snapshot of the
event which tells us the direction and momentum of many of the particles. Outside the
tracking chambers and the solenoid coil are calorimeters designed to measure particle en-
ergies. The energy of the hadron jets is crucial to the determination of the top quark
mass. Most particles lose energy in the calorimeters by producing a shower of lower-energy
particles. Figure 8 illustrates the various effects of these particles in the detector. Calorime-
ters contain alternate layers of an “absorber” like lead or iron, with “active” layers of detec-
tors for sampling the particles in the shower as it develops. Since we would like to contain
the entire shower, high-energy particles require deep calorimeters, and since we want to
know roughly where the energy was deposited, the calorimeters are segmented into hun-
dreds of read-out towers. Unlike tracking chambers which are sensitive only to charged
particles, calorimeters can also provide information about neutral particles like photons
and neutrons. As we will see, they also aid in distinguishing electrons from hadrons.

Electrons, because of their low mass, are accelerated by the protons in the lead nu-
clei, and lose much of their energy through bremsstrahlung, or “braking radiation.” Be-
cause energy loss due to bremsstrahlung radiation for a particle falls as M�2, this
process is neglible for the heavy particles. Hadrons, instead, lose most of their energy
through inelastic collisions with the lead nuclei, producing secondary hadrons.

In both these cases, the loss of energy results in the production of other, lower-
energy particles. Photons from bremsstrahlung will subsequently convert to
electron–positron pairs which continue in the same manner. Hadrons also shower,
producing lower-energy hadrons. Eventually, all the particles in the “shower” will come
to rest. By measuring the energy deposited in the active layers of the calorimeter, a
good measurement of the energy of the particle is made. The more times we sample
the shower the better our estimate of the energy of the incident particle.

In practice, although we use the same method to measure both electron and
hadron energies, we often use two separate devices, an “electromagnetic” calorimeter
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(in our case containing about 7.5 cm of lead) followed by a “hadronic” calorimeter
with much more material (about 80 cm of steel). Each uses about 30 active layers to
sample the number of particles in the shower. The sampling layers are slabs of plastic
scintillator. The scintillation light they produce is converted to electronic pulses by
photomultiplier tubes. By summing these pulses, we obtain a measure of the total en-
ergy deposited in the region.

In the CDF, electrons traverse 18 radiation lengths of lead in the electromagnetic
calorimeter. A pion traverses about 5 nuclear absorption lengths of iron in the
hadronic calorimeter. Electron and hadron showers are distinguishable by the fact that
electrons shower early. In lead a radiation length is 0.56 cm while an absorption length
is about 10 cm. As a result, an electron will lose most of its energy in a very short
amount of material compared to a pion or a proton.

Identifying Muons and Neutrinos We have discussed some of the ways in which
jets, b-hadrons and electrons can be identified and are left now with the problem of
finding muons and neutrinos. A muon is just a heavy version of the electron. Recall
that high-energy electrons lose energy mostly through bremsstrahlung, a process which
is negligible for the heavier muons. As a result, muons lose energy almost entirely
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through the relatively slow process of ionization. A 20-GeV muon from a top quark de-
cay will travel through the drift chamber, leaving a track, but then pass through the
calorimeters depositing only a few GeV of energy. To identify muons, we place small
drift chambers outside the calorimeters and look for the track of a particle. Because
most other particles stop in the calorimeter, a track in the muon drift chambers estab-
lishes the particle as a muon candidate. We already know the muon’s momentum from
the track it left in the main drift chamber.

Neutrinos are like muons without charge and little or no mass. Because they have
no charge, they cannot lose energy through ionization. Neutrinos interact only
through the weak interaction. Only one out of a billion neutrinos from a top quark de-
cay will interact in the detector. Neutrinos can be detected only by measuring the miss-
ing momentum in the collision.

Top quark pairs are produced predominantly by quark–antiquark interactions. Al-
though proton–antiproton collisions take place at the CDF in their center-of-mass
frame, the quarks inside them carry only a fraction of their momentum. As a result, the
top quark system is typically boosted along the beamline. Fortunately, the quarks and
antiquarks collide with very little momentum transverse to the beam direction. Conser-
vation of momentum requires that the final transverse momentum should then also be
near zero. If a large imbalance is detected, we can infer the presence of a neutrino and
estimate its momentum transverse to the beam. Since undetected particles also result
in such an imbalance, this technique requires a “hermetic” detector with few cracks, in-
tercepting most of the particles from the collision.

RECONSTRUCTING THE TOP

For over two years, this process continued, beginning with a bottle of hydrogen, and
ending with a few thousand magnetic tapes full of data. After a long period of analyz-
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ing the data, selecting electrons, muons, and b-hadrons, a small pool of 50 events were
identified containing about 28 top quark pairs. Using the measured momentum and
energies, the mass of the top was reconstructed to be 176 � 13 GeV/c2 (Fig. 9). The
top quark is the heaviest known fundamental particle; why it is so heavy is one of the
fundamental questions remaining to be answered.

Suggestions for Further Reading

D. A. Edwards and M. J. Syphers, An Introduction to the Physics of High Energy Accelerators,
New York, John Wiley & Sons, 1993.
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Chapter Outline

One of the most exciting and rapidly developing areas in all of physics is
cosmology, the study of the origin, content, form, and time evolution of the
Universe. Initial cosmological speculations of a homogeneous, eternal, static
Universe with constant average separation of clumps of matter on a very large
scale were rather staid and dull. Now, however, proof has accumulated of a sur-
prising expanding Universe with a distinct origin in time 14 billion years ago!
In the past 50 years interesting and important refinements in the expansion
rate (recession rate of all galaxies from each other) have been confirmed: a
very rapid early expansion (inflation) filling the Universe with an extremely
uniform distribution of radiation and matter, a decelerating period of expan-
sion dominated by gravitational attraction in which galaxies had time to form
yet still moved apart from each other, and finally, a preposterous application
of the accelerator to the cosmic car about 5 billion years ago so that galaxies
are currently accelerating away from each other again. In this chapter we ex-
plore the experimental evidence for these ideas. We also speculate on the
causes of a slower or faster expansion rate. These include familiar forms of
matter and energy as well as unusual forms like dark cold matter and dark en-
ergy, which produces gravitational repulsion.
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16.1 EPOCHS OF THE BIG BANG

In this chapter we describe one of the most fascinating theories in all of
science—the Big Bang theory of the creation of the Universe—and the ex-
perimental evidence that supports it. This theory of cosmology states that the
Universe had a beginning and erupted from an extremely dense, pointlike sin-
gularity about 14 billion years ago.1 Such an extreme of energy occurred in
the first few instants after the Big Bang that it is believed that all four interac-
tions of physics were unified and that all matter melted down into an undiffer-
entiated “quark-gluon primordial soup.”

Figure 16.1 shows the evolution of the four fundamental forces from the Big
Bang to the present. During the first 10�43 s (the ultrahot epoch during which
T � 1032 K), it is presumed that the strong, electroweak, and gravitational
forces were joined to form a completely unified force. In the first 10�35 s fol-
lowing the Big Bang (the hot epoch, T � 1029 K), gravity broke free of this uni-
fication while the strong and electroweak forces remained joined. This was a
period when particle energies were so great (�1016 GeV) that very massive par-
ticles such as those predicted by Supersymmetry (see Section 15.12) as well as
quarks, leptons, and their antiparticles existed. Then, after 10�35 s, the Uni-
verse rapidly expanded and cooled (the warm epoch, T � 1029 to 1015 K) and
the strong and electroweak forces parted company. As the Universe continued
to cool, the electroweak force split into the weak force and the electromagnetic
force about 10�10 s after the Big Bang. After a few more minutes, protons and
neutrons condensed out of the cooling quark-gluon plasma.

During the first half-hour of creation, the temperature was probably about
1010 K and the Universe could be viewed as a cosmic thermonuclear bomb fus-
ing protons and neutrons into deuterium and then helium, producing most of

2 CHAPTER 16 COSMOLOGY

10–40 10–30 10–20 10–10 100 1010 1020

Quarks and leptons
Protons and

neutrons
can form Atoms can form

Nuclei can form

Unified
force

Two
forces

Three
forces Four forces

Age of the Universe (s) Present age
of Universe

Big Bang

Gravitation

Strong force

Weak force

Electromagnetic force

Gravitational

Strong and
electroweak

Electroweak

Figure 16.1 A brief history of the Universe from the Big Bang to the present. The
four forces became distinguishable during the first nanosecond. Following this, all the
quarks combined to form particles that interact via the nuclear force. However, the lep-
tons remained separate and to this day exist as individual, observable particles.

1Data from the Wilkinson Microwave Anisotropy Probe in 2003 pinpointed the age of the
Universe at 13.7 � 0.2 billion years (“WMAP Spacecraft Maps the Entire Cosmic Microwave Sky
with Unprecedented Precision,” Physics Today, April 2003, 56(4): pp. 21–24.)
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the helium nuclei that now exist. (See Fig. 16.2.) Until about 400,000 years
after the Big Bang, the Universe was dominated by radiation. Energetic pho-
tons prevented matter from forming clumps, or even single hydrogen and he-
lium atoms, because photon-atom collisions would instantly ionize any atoms
that happened to form. In addition, photons experienced continuous Comp-
ton scattering from vast numbers of free electrons, resulting in a universe that
was opaque to electromagnetic radiation. By the time the Universe was about
400,000 years old— it had expanded to one-thousandth of its current size and
cooled to about 3000 K—electrons could bind to protons and helium nuclei
to form atoms. Because of the drastic reduction in free charged particles, far
fewer photons were absorbed or scattered, and the Universe suddenly became
transparent to photons. Radiation no longer dominated the Universe, and
clumps of neutral matter steadily grew—first atoms, then molecules, gas
clouds, stars, and finally galaxies. The state of affairs for radiation- and matter-
dominated periods is shown in Figure 16.3.

16.2 OBSERVATION OF RADIATION FROM THE
PRIMORDIAL FIREBALL

In 1965, Arno A. Penzias and Robert W. Wilson of Bell Laboratories were
testing a sensitive microwave receiver and made an amazing discovery. A pesky

16.2 OBSERVATION OF RADIATION FROM THE PRIMORDIAL FIREBALL 3

Figure 16.2 George Gamow,
1904–1968, Russian-American
physicist. Gamow and two of his
students, Ralph Alpher and
Robert Herman, were the first
to take the first half-hour of the
Universe seriously. In a mostly
overlooked paper published in
1948, they made truly remark-
able cosmological predictions.
They correctly calculated the
abundances of hydrogen and
helium after the first half-hour
(75% H and 25% He) and pre-
dicted that radiation from the
Big Bang should still be pre-
sent, with an apparent tempera-
ture of about 5 K. In Gamow’s
own words, the Universe’s sup-
ply of hydrogen and helium
were created very quickly, “in
less time than it takes to cook a
dish of duck and roast pota-
toes.” The comment is charac-
teristic of this interesting physi-
cist, who is known as much for
his explanation of alpha decay
and his theories of cosmology
as for his delightful popular
books, his cartoons, and his
wonderful sense of humor. A
classic Gamow story holds that,
having coauthored a paper with
Alpher, he made Hans Bethe an
honorary author so that the
credits would read “Alpher,
Bethe, and Gamow” (to resem-
ble the Greek letters �, �, and
	). (AIP Emilio Segre Visual
Archives)
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Figure 16.3 Radiation- and matter-dominated stages in the evolution of the Universe.
(a) The radiation-dominated stage (T � 3000 K, age 
 400,000 years) is an expanding
Universe filled with protons, electrons, neutrons, photons, and neutrinos. Charged par-
ticles continually scatter photons, ensuring thermal equilibrium of radiation and mat-
ter. (b) The matter-dominated state (T 
 3000 K, age � 400,000 years). Hydrogen
atoms form, making the Universe transparent to photons. Photons emitted from an ex-
panding ion shell at R ≈ 14 billion lightyears are currently seen on Earth enormously
Doppler-shifted to the red.
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signal that produced a faint background hiss was interfering with their satellite
communications experiments. Despite their valiant efforts, the signal
remained. Ultimately it became clear that they were detecting microwave back-
ground radiation (at a wavelength of 7.35 cm) that represented some of the
leftover electromagnetic “glow” from the Big Bang.

The microwave horn that served as their receiving antenna is shown in
Figure 16.4. The intensity of the detected signal remained unchanged as the
antenna was pointed in different directions. The fact that the radiation had
equal strengths in all directions suggested that the entire Universe was the
source of this radiation. Booting a flock of pigeons from the 20-foot horn and
cooling the microwave detector both failed to remove the “spurious” signal.
Through a casual conversation, Penzias and Wilson discovered that a group at
Princeton had predicted the residual radiation from the Big Bang and were
planning an experiment to confirm their theory. The excitement in the scien-
tific community was high when Penzias and Wilson announced that they had
already observed an excess microwave background of a 3-K blackbody source,
which was the predicted temperature of the cooled, residual Big Bang radia-
tion at the present time.

Because Penzias and Wilson took their measurements at a single wave-
length, they did not completely confirm the radiation as 3-K blackbody radia-
tion. One can imagine the excitement in the late 1960s and 1970s as experi-
mentalists fought obscuring atmospheric absorption and, point by point,
added intensity data at different wavelengths. The results shown in Figure
16.5, which include precise measurements taken around the maximum inten-
sity wavelength of 0.1 cm by the Cosmic Background Explorer Satellite
(COBE), unambiguously confirm that the radiation is that of a black body at
2.7 K. Figure 16.5 is probably the most clear- cut evidence that the Big Bang
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Figure 16.4 Robert W. Wilson (left) and Arno A. Penzias with the Bell Telephone
Laboratories horn-reflector antenna. (AIP Emilio Segre Visual Archives/Physics Today
Collection)
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occurred. It also presents the earliest view of the Universe, a much earlier
view than that available with the largest optical and radio telescopes. The
1978 Nobel Prize was awarded to Penzias and Wilson for their important
discovery.

16.3 SPECTRUM EMITTED BY A RECEDING BLACKBODY

Since the observed 3-K blackbody spectrum is the single strongest piece of evi-
dence for the Big Bang theory of the Universe, it is important to examine this
topic in more detail. In particular, we want to show what happens to a black-
body spectrum in an expanding Universe.

Consider blackbody radiation from the Big Bang at the time when the Uni-
verse first became transparent to photons, 400,000 years after the Big Bang
(ABB). Recall from Chapter 3 that the wavelength distribution for blackbody
radiation is

(3.20)

where u(�,T )d� is the energy per unit volume of the radiation with wave-
length between � and � � d� emitted by a blackbody at temperature T. Sup-
pose that between then (400,000 years ABB) and now (14,000,000,000 years
ABB), the Universe has expanded and a photon of original wavelength � is

u(�,T )d� �
8hc

�5 �
1

ehc/�k BT � 1 �
d�
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now Doppler-shifted to ��, where �� is longer than �. Our question is: What
happens to the form of the original wavelength distribution u(�,T) d�?

Let f (��,T �) d�� be the current energy per unit volume of the residual Big
Bang radiation as measured from the Earth. Since the shell of charged parti-
cles that emitted the radiation is moving away from the Earth at extremely rel-
ativistic speed (Fig. 16.3), we must use the relativistic Doppler shift for light
from a receding source to relate �� to �. As shown in Chapter 1, Example 1.6,
this connection is

(16.1)

where v is the speed of recession of the charged shell. For our purposes, Equa-
tion 16.1 may be written more simply as

(16.2)

which shows that the present wavelength �� is greater than the original wave-
length � by the factor . (Equation 16.2 may be
generalized to mean that all distances in the Universe have grown by a factor
of F since 400,000 years ABB.) To find the relation between the currently 
observed spectrum f (��,T �)d�� and the original blackbody distribution
u(�,T )d�, we substitute � � ��/F into the expression for u(�,T )d�:

or

(16.3)

where T � � T/F. We can identify the right side of Equation 16.3 as a (current)
blackbody spectrum f(��,T �)d�� because it has the standard functional form of
a blackbody spectrum with wavelength �� and temperature T �. Thus we can
write Equation 16.3 as

(16.4)

where f (��,T �)d�� has the explicit form

(16.5)

with T � � T/F. Equation 16.4 shows that the radiation from a receding blackbody still
has the same spectral distribution, but its temperature T � drops by a factor of F and its
energy per unit volume decreases by a factor of F 4. In a frame of reference moving
with the charged particles that last scattered the radiation, the characteristic
temperature of the radiation is about 3000 K. Using the current observation of
a 3-K cosmic background from Earth, and substituting into F � T/T �, we find
F � 3000 K/3 K � 1000. This means distances in the Universe have grown by a
factor of 1000 since 400,000 years ABB and that the speed of recession from the
Earth of the charged shell which emitted the radiation is very high. 

f(��,T �)d�� �
8hc

(��)5 �
1

ehc/��kBT � � 1 �
d��

u(�,T )d�

F 4 � f (��,T �)d��

u(�,T )d�

F 4 �
8hc

(��)5 �
1

ehc/��kBT � � 1 �
d��

u(�,T )d� �
8hc

�5 �
1

ehc/�kBT � 1 �
d� �

8hc

(��/F )5 �
1

ehc/(���F )kBT � 1 �
d��

F

F � √1 � (v/c)/√1 � (v/c)

�� � F �

�� �
√1 � (v/c)
√1 � (v/c)

�
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Exercise 1 Find the speed of recession from the Earth of the charged shell that emit-
ted the cosmic background radiation.

Answer 0.999998 c

16.4 RIPPLES IN THE MICROWAVE BATH

The discovery of the cosmic microwave background (CMB) radiation bathing
the Earth brought with it a problem, however— the radiation was too uniform.
Scientists believed that slight fluctuations in the temperature of the CMB from
spot to spot in the sky had to occur in order to act as nucleation sites for the for-
mation of the galaxies, stars, and planets that now exist. In 1992, George Smoot
(b. 1945), an American astronomer at the Lawrence Berkeley Laboratory,
found, by carefully analyzing data collected by COBE, that the background was
not perfectly uniform as was first thought, but instead contained irregularities
that corresponded to temperature variations of 1 part in 100,000. While varia-
tions of this size may seem insignificant, temperature variations of just this size
have been shown by computer simulation to lead to the galaxy clusters we see to-
day.2 The Wilkinson Microwave Anisotropy Probe (WMAP), launched in June
2001, has provided the most definitive data to date showing that distinct hot and
cold spots in the CMB have angular sizes precisely predicted by cosmological
theory. (See Fig. 16.6.) Additionally, WMAP has confirmed the composition of
the Universe at different epochs as well as the geometry of the Universe.

What Caused the CMB Ripples?

The hot and cold spots in the CMB are believed to correspond, respectively, to
density compressions and rarefactions (sound waves) in the gaslike system of
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2See “Reading the Blueprints of Creation,” by Michael A. Strauss, Sci. Am., February 2004.

Figure 16.6 A “baby picture” of
the Universe taken when it was
only 380,000 years old. The Earth
is at the center of this celestial
sphere and red corresponds to
warmer regions and blue to colder.
(NASA/WMAP SCIENCE TEAM)
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photons, electrons, protons, and neutrons of the radiation-dominated era
when radiation was trapped by matter. About 380,000 years ABB, the Universe
became transparent to radiation, and photons could travel in straight lines for
billions of lightyears without scattering. Photons emitted from compressed hot
areas were more energetic than those from rarified cooler areas, and when
these photons reached the Earth, after a straight-line trip of 45 billion
lightyears, they preserved the information about the hot and cold spots pro-
duced by sound waves in the early Universe. This explanation, however, just
pushes the cause of the CMB ripples back one step, since it is natural to ask
what produced the sound waves in the first place. Here, we must invoke the
concept of inflation, already introduced in 1981 by Alan H. Guth (b. 1947,
American physicist) to explain an important difficulty with the Big Bang the-
ory called the horizon problem.

The Horizon Problem. The horizon problem is the issue of the causal con-
nectedness shown by the uniform temperature of the entire CMB when, in
fact, any two points in the sky separated by more than 1 degree (about twice
the Moon’s diameter) contain CMB radiation from regions of the universe that
were causally disconnected at 380,000 years ABB. That is, extrapolating the
paths of photons from points 2 degrees apart in the sky backwards, using the
known expansion rate of the Universe, results in a separation of the photons’
points of origin such that a signal would have to travel at about 10 times the
speed of light to correlate the behavior of the two regions. This dilemma is
called the horizon problem since the limit of the region we can observe—our
horizon— is defined by signals traveling at the speed of light. Thus it is diffi-
cult to understand the uniform temperature of the CMB to 1 part in 100,000
on the basis of the standard Big Bang theory. What we are left with is that by
sheer coincidence all the causally disconnected regions of the early universe
happen to have a homogeneous density and temperature.

Inflation

In 1981, Guth proposed a more natural solution to this problem, the theory of
inflation.3 The theory of inflation states that at about 10�35 s ABB the Universe
went through a period of rapidly accelerating expansion for about 10�32 s and
exponentially increased in size with time. It is thought that after inflation the
volume of the Universe had increased about 10100 times more than it would
have if it had expanded at the standard expansion rate. This solves the hori-
zon problem because before inflation, the matter and radiation were so
closely packed together that collision processes would easily keep matter and
radiation in equilibrium, producing uniform density and temperature in the
CMB-emitting postinflation early Universe. It is most interesting that inflation
occurred so rapidly it actually outpaced the speed of light, and sections of the
Universe grew out of contact with each other during inflation. When inflation
ended, the expansion decelerated, and regions of the Universe came back
into each other’s view. This situation is shown schematically in Figure 16.7 in
terms of a space-time diagram (introduced in Section 1.7). Figure 16.7 shows
the plasma of photons and charged particles of the radiation-dominated era

8 CHAPTER 16 COSMOLOGY

3See “The Inflationary Universe,” by Alan H. Guth and Paul J. Steinhardt, Sci. Am., May 1984.
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expanding far beyond the horizon (lightcone) during inflation, with different
regions dropping out of each others’ view. Note that after inflation ended and
the expansion decelerated, some of these regions came back into view. Finally,
the current accelerating expansion is also suggested by showing some present
galaxies moving past the horizon and out of each others’ view again.

The full predictive power of the theory of inflation is really only seen, how-
ever, when it is realized that it also provides answers to several other deep
problems that had been troubling cosmologists. One unsolved mystery was the
observation that the present Universe seemed to obey Euclidean geometry
(sum of the angles of a triangle is 180°— one says the Universe is “flat”) over
immense distances, which meant that at about 1 s ABB the Universe had to be
exquisitely flat, precariously balanced in mass to a precision of about 1 part in
1015. While standard Big Bang theory gives no reason why the Universe started
off in such an unusual way, inflationary theory does— inflation drives an arbi-
trarily curved Universe to such a flat state that the presently observed Universe
would still appear flat. This occurs in much the same way that blowing up a
balloon (enough) causes a fixed area on the balloon’s surface to approach
flatness to any desired degree. Another puzzle facing physicists was the failure
to detect magnetic monopoles in spite of extensive experimental searches.
(There is strong theoretical evidence that these very massive stable particles
should have been abundantly produced in the Big Bang.) Inflation solves this
dilemma by showing that magnetic monopoles were so thinly spread out by
the enormous inflationary expansion that their calculated density in the part
of the Universe we can presently observe is below detectable limits. 

The cause of inflation is believed to be a new kind of quantum field, the in-
flaton, which carried the potential energy needed to cause the rapid expan-
sion and trigger sound waves in the early Universe. Furthermore, a consistent
theory has been developed that directly relates microscopic quantum fluctua-
tions in the inflaton field to observed macroscopic CMB temperature varia-
tions. This is a theory that essentially shows that inflation magnified quantum
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Figure 16.7 A schematic diagram of the inflationary expanding universe. The space-
time diagram shows periods of deceleration and acceleration in the cosmic expansion
during which some galaxies move in and out of the observable region of the universe.
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fluctuations into the temperature variations we see in the CMB today. Al-
though describing this theory in detail is beyond the scope of this chapter, we
can describe in a crude way how the pattern of sound waves inferred from the
temperature variations in the CMB fit into inflationary theory.

Sound Waves in the Early Universe

Because inflation triggered sound waves with different frequencies all at the
same time of 10�35 s ABB, the waves are believed to have all started out in
phase and oscillated throughout the radiation-dominated era for 380,000
years. If this was the case, astronomers should be able to measure the
strengths of the fundamental and overtones— the power spectrum— in the
acoustic oscillations of the early Universe in a process similar to that of mea-
suring the sound spectrum of a musical instrument. In the case of the CMB,
cosmologists measure the magnitude of temperature variations versus the an-
gular size of hot and cold spots to get the power spectrum. When these mea-
surements are made, a series of peaks with different strengths are found,
agreeing with the predictions of inflationary theory in strength and fre-
quency and confirming that all sound waves were indeed generated at the
same moment by inflation.

Another success of inflationary theory applied to the radiation-dominated
era is proof that the Universe obeys Euclidean geometry. Since cosmologists
can precisely calculate the length of the fundamental sound wave in the early
Universe ( f0 is measured, the velocity of sound v in the plasma is known, and
� � v/f0), and the distance CMB photons have traveled to the Earth from op-
posite ends of the fundamental is known, the sides of a triangle, literally as big
as all outdoors, are known, and the sum of its angles can essentially be
checked. When this is done, it is found that space is indeed quite flat or Eu-
clidean, in agreement with other types of measurement.

16.5 OTHER EVIDENCE FOR THE EXPANDING UNIVERSE

Evidence from Observational Astronomy

Most of the key discoveries supporting the theory of an expanding Universe,
and indirectly the Big Bang theory of cosmology, were made in the 20th cen-
tury. In 1913, Vesto Melvin Slipher (1875–1969), an American astronomer
working at the Lowell Observatory, reported that most spiral galaxies4 were re-
ceding from the Earth at speeds up to several million miles per hour. Slipher
was one of the first to use the methods of Doppler shifts in spectral lines to
measure velocities. The key to this method is to locate in galactic spectra the
characteristic lines of some element whose wavelengths have been measured
on Earth. The speed of the receding galaxy (for recession speeds small com-
pared to c) is then directly proportional to the wavelength shift to the red, as
shown in Figure 16.8. The symbol Z is used by astronomers to denote the

10 CHAPTER 16 COSMOLOGY

4This was before Hubble had figured out what galaxies really were, very distant “island universes”
consisting of billions of stars. In Slipher’s time, galaxies with spiral arms were called spiral nebu-
lae (nebulae are glowing clouds of gas and dust), since individual stars in the glowing clouds
could not be distinguished.
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measured redshift of receding astronomical objects, where 

(16.6)

�0 is the emission wavelength of a particular line measured in the lab, and � is
the measured wavelength of the same line in a receding galaxy. Slipher found
that the number Z was positive in most cases and had the same value for all
lines in the spectrum of a particular galaxy. In general, redshift Z is related to
galaxy recession velocity v by the relativistic Doppler shift expression (Eq.
16.1), which is frequently written in the form 

(16.7)

v can be explicitly given in terms of Z as

(16.8)v � c �
Z 2 � 2Z

Z 2 � 2Z � 2 �

Z � √
c � v

c � v
� 1

Z � 

��

�
�

� � �0

�0
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Figure 16.8 Redshift of the H and K lines of calcium for five galaxies. Redshifts are
expressed as speeds c(��/�). Calibration spectra taken in the laboratory appear above
and below each galaxy’s spectrum.
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Slipher’s measurements of galactic speeds were quite accurate, but the
distances to the galaxies were virtually unknown, although there was some
indication that more-distant objects had higher recessional speeds. 

Shortly after Slipher’s discovery, a flowering of ideas occurred in theoretical
cosmology. In 1916, Einstein published his general theory of relativity (a new
theory of gravity replacing Newton’s), in which he formulated the differential
equations connecting the distribution of matter in the Universe with the cur-
vature of space-time. Einstein solved these equations and found that in order
to have a Universe static in time,5 he had to add a “cosmic repulsion” force be-
tween galaxies characterized by a cosmological constant, �. This was a rather
unusual force, since it was independent of mass and grew stronger with in-
creasing galaxy separation. In the same year, the Dutch mathematician and as-
tronomer Willem de Sitter found another static solution to Einstein’s equa-
tions. This solution predicted an increasing redshift for lines emitted by
more-distant objects. De Sitter’s solution stirred much interest because it
seemed capable of being confirmed experimentally.

Major breakthroughs in the cosmological problem came in 1922 and 1924
when Alexander Friedmann,6 (1888–1925, Russian mathematician), showed
that two nonstatic models were predicted by Einstein’s field equations of general
relativity: an expanding Universe, called an open Universe and a contracting
Universe, called a closed Universe. At first Einstein found it difficult to ex-
change the eternal, steady, static Universe for an expanding, dynamic Universe
that presumably had a beginning in time. He wrote to de Sitter, “This circum-
stance of an expanding Universe irritates me” and “to admit such possibilities
seems senseless.”7 However, by 1933 Einstein was finally convinced of the im-
peccable logic of Friedmann’s arguments. Any remaining doubt about the non-
static nature of the Universe was erased by the powerful experimental results of
American astronomers Edwin P. Hubble (1889–1953) and Milton Humason
(1891–1972) on the redshifts of distant nebulae (see Figs. 16.9 and 16.10). We
return to a consideration of Freidmann’s important work, the foundation of
current cosmology theory based on general relativity, in Section 16.6.

Hubble and Company Observe Galaxies
Hubble first established that spiral nebulae (distant clouds of glowing gas and
dust) were actually composed of billions of stars, and then went on to measure

12 CHAPTER 16 COSMOLOGY

5The average distance between clumps of matter on a large scale is constant with time.
6Freidmann was an amateur meteorologist and balloonist who taught Gamow relativity theory.
Gamow reported that meteorology killed Freidmann, since he died of a severe chill and pneumo-
nia following one of his meteorological balloon flights.

7There has been much scientific irritation over expanding Universe theories. Presumably the irri-
tation derives from the fact that the Big Bang theory places the cause of creation beyond the
reach of physical investigation. Fred Hoyle (b. 1915, an English astronomer) has never accepted
the Big Bang theory and prefers instead a steady-state model of the Universe in which matter is
created out of nothing at a rate necessary to compensate for the increasing distances between vis-
ible galaxies. Others have expressed their irritation as follows:

Sir Arthur Eddington: “I have no axe to grind in this discussion but the notion of a beginning
is repugnant to me . . . I simply do not believe that the present order of things started off with
a bang . . . The expanding Universe is preposterous and incredible; it leaves me cold.”

Walter Nernst: “To deny the infinite duration of time would be to betray the very foundation
of science.”

Phillip Morrison: “I find it hard to accept the big bang theory. I would like to reject it.”

Allan Sandage: “It is such a strange conclusion. . . . It cannot really be true.”

Figure 16.9 Milton L. Huma-
son (1891–1972). He and Ed-
win Hubble did the most to
demonstrate the expanding
Universe experimentally. The
two astronomers present an in-
teresting contrast. Humason
was originally a mule-team 
driver and janitor at Mount Wil-
son. He taught himself astron-
omy and became a consummate
experimentalist. (Photo by Mar-
garet/AIP Emilio Segre Visual
Archives)
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their distances. By 1923, he had already determined that the Andromeda neb-
ula was more than 1 million lightyears distant, well beyond the 100,000-
lightyear extent of our own Milky Way galaxy. Hubble measured the distances
to nearby galaxies, or “island universes,” by observing the brightness of stars
with fluctuating intensity, called cepheid variables. Since the intrinsic luminosity,
L, the total electromagnetic energy radiated per second, was known from the
period of light fluctuations, Hubble used the observed intensity flux, f, the en-
ergy per second per unit area in some frequency band received at the detec-
tor, and energy conservation to find the distance, R :

(16.9)

In the late 1920s, Hubble made the bold assertion that the entire Universe
was expanding. From 1928 to 1936, he and Humason toiled at Mount Wilson
to prove this assertion until they reached the limits of the 100-inch telescope.
The results of their work and its continuation on a 200-inch telescope in the
1940s showed that the recession velocity, v, of a galaxy increases in direct pro-
portion to its distance R from us (Fig. 16.11). This linear relationship, known
as Hubble’s law, may be written

(16.10)

where H0, Hubble’s constant, has the currently accepted value

H0 � 23 � 10�6 (km/s)/lightyear

v � H0R

f �
L

4R2
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Figure 16.10 Edwin P. Hubble (1889–1953). Hubble was born to wealth, graduated
from the University of Chicago, and was a Rhodes Scholar, lawyer, athlete, soldier, and
astronomer with an unerring eye for important problems in astronomy. 
(© Bettmann/CORBIS)

Hubble’s law
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with an uncertainty of about 25%. This large uncertainty is produced by the
great difficulty of measuring distances to far-off galaxies and galaxy clusters.
The amazingly simple form of Hubble’s law follows from the cosmological
principle, which states that the Universe is isotropic (has the same average fea-
tures—mass density, expansion factor, and so on— in any direction) and ho-
mogeneous (has the same average features at any position) when large enough
volumes of the Universe are sampled. If we consider several equally spaced
galaxies in a line moving at nonrelativistic velocities away from us in an ex-
panding Universe, we easily find Hubble’s law. (See Problem 2.) So, Hubble’s
law is a direct and expected consequence of an expanding homogeneous
Universe.

The use of the term Hubble’s constant for H0 is a bit misleading since H0 is
constant with distance but varies slowly with time because gravity or other
forces (so-called vacuum repulsion or dark energy), respectively, slow down or
speed up the expansion of the Universe as time progresses. We can gain more
insight into the meaning of Hubble’s law and show that Hubble’s “constant” is
a function of time by introducing the universal expansion scaling factor, a(t ),
which is the same anywhere in the Universe. a(t ) is defined by the equation

(16.11)

where R(t ) is the distance from Earth to some receding galaxy, R0 is the cur-
rent separation in some appropriate length unit, and a(t) is the dimensionless
scaling factor with the present time denoted t0, and a(t0) � 1. Differentiating

R(t) � R0a(t)
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Figure 16.11 Hubble’s law: The recession velocity of a galaxy is directly proportional
to distance out to at least 5 billion lightyears. The five galaxies shown in Figure 16.8 are
plotted here.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  



Equation 16.11 with respect to time and substituting for R0 from 16.11, we
find

(16.12)

where v, R, a, and are all functions of time. Finally, comparing 16.12 to the
general form of Hubble’s law written as

v(t ) � H(t )R(t ) (16.13)

we find

(16.14)

Equation 16.14 shows that H is the time derivative of ln a and that a generally
depends on time except in the case of exponential expansion (inflation),
a(t ) = Ae bt. (See Problem 4.) Further, 16.14 shows that H is proportional to the
first derivative with respect to time of a. Another parameter, q(t), the decelera-
tion parameter, determines the second derivative of a and tells whether the ex-
pansion is slowing down or speeding up with time.8 H and q can be used to
construct a first-order approximation to the function a(t ), but in general one
needs to measure an infinite set of time derivatives of a(t ) or the function it-
self to fully characterize a(t ). We will further discuss this important scaling
function, which describes the expansion of the Universe, in Section 16.6.

H(t) �
ȧ(t)
a(t)

ȧ

v � Ṙ � R0ȧ �
R

a
ȧ
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EXAMPLE 16.1

The basic form of Hubble’s law, v � H0R, follows from as-
suming that the Universe is undergoing a nonrelativistic
uniform expansion and is homogeneous. (See Problem
2.) Thus this law in its basic form will begin to fail at
some maximum distance, R max, at which the recessional

velocity is an appreciable fraction of the speed of light.
Estimate the maximum distance at which Hubble’s law
applies without relativistic correction by assuming that it
fails when v � c/4.

Hubble’s law can be corrected for relativistic effects, so
that interesting departures from this law can be observed

such as accelerations and decelerations in the expansion
of the Universe at different epochs.

Solution

lightyearsR max �
v

H0
�

c

4H0
�

3.0 � 105 km/s
80 � 10�6 km/s/lightyear

� 4 � 109

New Evidence from Exploding Stars
Telescopes look farther back in time as they view more distant stars and galax-
ies, so by looking at objects over as great a range of distances as possible we can
establish the entire history of the expansion of the Universe. In particular, mea-
suring the velocity (from redshift) and distance (from apparent brightness or
flux) of astronomical objects over a wide range of distances gives the history of
the expansion of the Universe. One can tell if the Universe departed from the

8The exact form of q is given by , where q � 0 indicates the expansion is slowing
down and q 
 0 indicates the expansion is speeding up.

q � �a(ä/ȧ)2
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uniform expansion of space predicted by Hubble’s law and if the expansion
accelerated or decelerated at different times by comparing the measured values
of velocity and distance of astronomical objects to those predicted by Hubble’s
law. For example, if the Universe is currently decelerating, the velocity of a very
distant galaxy, determined from the redshift of light emitted by this galaxy in
the early Universe, would be somewhat greater than the velocity predicted by
Hubble’s law; see Figure 16.12. As can be seen from the figure, an equally valid
signature of deceleration is that a galaxy with a given velocity will be closer and
brighter than expected from Hubble’s law. Similarly, an accelerating expansion
would cause galaxies in the early Universe to be more distant and dimmer than
predicted by Hubble’s law, as shown in Figure 16.12.

Attempts to measure the distance to very distant galaxies and groups of
galaxies in the second half of the 20th century in order to detect departures
from Hubble’s law proved very uncertain, with great statistical scatter in data
points. The failure of galaxies to act as standardized light sources at large dis-
tances is now known to be caused by evolutionary changes in galaxies—early
galaxies formed at 2–5 billion years ABB have been shown to have different
shapes and sizes compared to more current galaxies 9–14 billion years ABB.
Thus, galaxies are too variable in structure and intrinsic brightness over very
long periods of time to serve as uniform markers of the expansion. However, a
particular class of exploding stars undergoing “standardized” thermonuclear
detonation are so bright, so uniformly luminous, and so well understood phys-
ically that they serve as excellent tracers of the Universe’s expansion. These
objects, as bright as 10 billion suns for a time, are called type Ia supernovae
(SNe Ia) and are formed after the collapse of white dwarf stars. Since spectra
from high-Z (Z � 1) supernova are shifted into the near IR where obscuring
emission from the Earth is high, supernovae chasers have had to use the
Hubble Space Telescope (HST) to accumulate the best results on the history
of cosmic expansion. 
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Two teams, one led by Saul Perlmutter (Supernova Cosmology Project)9

and one by Adam Riess (Space Telescope Institute Baltimore) have discovered
most of the distant new Ia supernovae by surveying large sections of sky to lo-
cate and measure the rising and falling light curves characteristic of SNe Ia.
Figure 16.13a shows as-measured light curves (flux versus time) of SNe Ia with
different Z ’s, describing SNe located at different distances and having differ-
ent recession velocities. Note that the width and peak values of the light curves
are all greatly different. When the light curves are corrected for cosmic expan-
sion, relativistic time dilation, intervening dust absorption, and instrumental
effects, the light curves coalesce and show the same intrinsic peak luminosity
and light curve width (Fig. 16.13b). This universal light curve shows that

16.5 OTHER EVIDENCE FOR THE EXPANDING UNIVERSE 17

Figure 16.13 (a) Light curves for SNe Ia at different distances moving with different
recession speeds. (b) Universal light curve resulting from correction of the data shown
in (a) for various factors, including cosmic expansion and time dilation. (Courtesy the
Supernova Cosmology Project, supported by the Director, Office of Science, High Energy Physics,
U.S. Department of Energy under Contract No. DE-AC03-76SF00098)

9See the article by Saul Perlmutter, Physics Today, April 2003, p. 53.
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individual type Ia supernovae explosions are incredibly uniform and that SNe Ia are ex-
cellent probes of cosmic history, resulting in distance and lookback time measurements
with uncertainties of only about 5%. The correction to the light curve for cosmic
expansion is made because the distance to the SN was 1/(1 � Z ) of its present
value at the time of emission of light now seen as redshifted by Z . (So for a
Z � 1 SN, the SN was half its current distance when the light was emitted or
the Universe was half its present linear size.) The relativistic time correction
involves the same factor of 1 � Z . Because the SN was receding from us at
high velocity at the time its light was emitted, we see the detonation slowed
down by a factor of 1 � Z, which means that for a Z � 1 supernova, an explo-
sion lasting 40 days in its rest frame appears to us to take 80.

What HST Found. The first results in 1998 showed that the light from SNe
which had exploded around 9 billion years ABB was fainter than predicted by
Hubble’s law. Consequently these objects were thought to be farther away than
expected and that the expansion of the Universe was currently speeding up.
Such a controversial finding immediately led to suggestions of other causes of
the dimming, such as intergalactic dust, which would make the SNe seem far-
ther away than they actually were. In 2002, a new imaging instrument installed
on the HST called the Advanced Camera for Surveys greatly boosted Hubble’s
ability to find supernovae. Many more ancient SNe that exploded from 5 to 7
billion years ABB were located and measured, a real trick since there is only
about one SN explosion per century in a large galaxy and such ancient SNe
are very dim. The results conclusively show that the current acceleration is
real, and that prior to about 9 billion years ABB, the expansion of the
Universe was actually decelerating! Because dust filling intergalactic space
would make more-distant (higher redshift) SNe dimmer yet, and the more-
distant SNe are actually much brighter than the results predicted for dust and
not dimmer, the latest results rule out dust. Figure 16.14 shows a plot of the
departure of measured brightness of supernovae from what is expected at a
specific redshift for a Universe governed by the freely expanding Hubble
model. (Note that increasing redshift corresponds to decreasing time after the
Big Bang, with Z = 0.5 corresponding to 9 billion years ABB and Z = 2 to about
3 billion years ABB.) The data points are averages of several measured SNe
with the same redshift, and the curve through the points shows a transition
from recent acceleration to past deceleration at about Z � 0.5. Model curves
showing constant acceleration (positive slope) and deceleration (negative
slope) over the age of the Universe are seen to be definitely ruled out by the
new high-Z measurements.

Big Bang Nucleosynthesis

Another important confirmation of Big Bang theory comes from the predic-
tions of cosmic abundances of light elements made in the first half-hour after
the Big Bang. When the equations of the hot Big Bang are combined with the
well-understood physics of low-energy nuclear reactions, detailed predictions
of the abundances of certain light elements emerge that are in good agree-
ment with observed values. In addition, considerations of nucleosynthesis de-
termine the amount of neutrons and protons in the Universe. Let’s investigate
this in a little more detail.

18 CHAPTER 16 COSMOLOGY
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George Gamow and his collaborators were the first to make serious calcula-
tions of the production of elements following a hot Big Bang. In a series of pa-
pers starting in 1946, they predicted that 75% of the observable mass in the
Universe was hydrogen and about 25% was helium, cooked up in a Big Bang
that they predicted should show residual blackbody radiation at a temperature
of 5 K. They also calculated the changing neutron-to-proton ratio as a func-
tion of time (this ratio is crucial in determining what reactions occur) but
were stymied in their attempts to show that all the elements from H to U were
made in the Big Bang by the occurrence of a mass 5 bottleneck. This means
that at the temperature, pressure, and density calculated for the expanding
Universe in the first few minutes, there were no mass number A � 5 nuclei
formed for long enough times to allow A � 6 and heavier nuclei to be formed
by combination with a neutron, proton, or other synthesized nuclei. It is now
known that 98% of the observable mass in the cosmos in the form of hydro-
gen, helium, and trace amounts of lithium was produced in the first few min-
utes of the Universe. All heavier elements formed later in stellar interiors (ear-
liest stars �0.3 billion years ABB) and were spit into interstellar space by
supernovae detonations.10 Although helium can indeed be produced in stars,
calculations first made by Fred Hoyle and Roger Taylor in 1964 showed that if
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Figure 16.14 Observed brightness (flux) of supernovae relative to the brightness pre-
dicted by Hubble’s law. The relative brightness is measured in terms of astronomical
magnitude, which is smaller for brighter objects. Constant acceleration and decelera-
tion of the cosmic expansion are indicated by the red and blue curves, respectively.
The observed data points are best fit by the green curve, showing a transition from cur-
rent acceleration to past deceleration at Z � 0.5 and with cosmological parameters
�m � 0.3, �� � 0.7. The freely expanding Hubble line has �m � 0, �� � 0.

10The answer to the mass 5 puzzle was found in 1952 by E. E. Salpeter, who showed that in the hot,
dense cores of red giant stars there is an unstable A � 5 state which lasts barely long enough to
make A � 6 nuclei.
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all the helium were made in stars, galaxies would be 10 to 100 times brighter
than they are observed to be— thus confirming the primordial origin of
cosmic helium.

The most important reactions considered in helium production at the tem-
peratures and densities of the first few minutes ABB are

Current calculations of all the elements made in the first few minutes are
quite sophisticated, involving shifting numbers of protons, neutrons, and
other synthesized nuclei and hundreds of interdependent nuclear reactions of
nuclei with As as high as 23. Figure 16.15 shows the results of such calcula-
tions, starting from thermal equilibrium values of neutrons and protons and
showing the production of hydrogen, helium, deuterium, lithium, and beryl-
lium as a function of time and temperature in the early Universe. In particu-
lar, most of the helium, deuterium, and lithium in the Universe today was pro-
duced shortly after the Big Bang, and the observed abundances agree with the
calculations shown in Figure 16.15.
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Critical Density, �m, and Dark Matter

A final point on nucleosynthesis involves the strong dependence of calcu-
lated abundances of deuterium, helium-3, and lithium-7 on the density of
neutrons and protons at the time of formation of these three elements in
the early Universe. Since the density of n � p in the early Universe may be
extrapolated forward by using the expansion factor of the Universe, we can
obtain an estimate of the present cosmic mass density of neutrons and pro-
tons, which is difficult to measure directly. When this is done, one finds a
value of 

Cosmologists designate the ratio of the observed effective mass density (mass
density � energy density/c2) of the Universe to the calculated critical mass
density, �c, by �m � �obs/�c. The critical density, �c, is the calculated mass
density of the Universe needed to gravitationally halt the recession of one
galaxy from another at infinite separation. �c depends on the somewhat uncer-
tain value of H0 (see Example 16.2 below) and has the value

Thus the Big Bang model of nucleosynthesis predicts that the density of
neutrons and protons (making up stars, black holes, intergalactic dust and
gas — ordinary matter) is only 1% – 10% of the critical density. Even the ef-
fective gravitational mass of all the photons and neutrinos in the Universe
adds only another 1% at most to the mass of the Universe. The largest con-
tribution to the mass of the Universe is believed to come from cold dark
matter, which is inferred to exist from studies of the motion of outlying
stars orbiting galaxies, the motion of galaxy clusters, and from images
formed by gravitational lenses (composed of clusters of galaxies) of back-
ground galaxies. All these cases show a massive halo of invisible matter ex-
tending well beyond the visible material in galaxies and contributing a fac-
tor of around 5 to 10 times the visible mass density to the mass of the
Universe. Adding in dark matter makes the current value of the ratio of the
observed to critical mass density, �m, about 0.3. The actual nature of cold
dark matter is uncertain, but it is not composed of ordinary atoms or ele-
mentary particles, which interact with photons as described by the standard
model (Chapter 15). Most likely, dark matter consists of stable, massive,
slow-moving exotic particles created at high energy in the first moments of
the Big Bang and predicted by grand unified theories like Supersymmetry.
The neutralino is the most likely dark matter candidate predicted by Super-
symmetry. The neutralino is the lightest supersymmetric particle, hence the
most stable, and has no electric charge, so it is not affected by photons and
only weakly interacts with ordinary matter. Unfortunately, this makes neu-
tralinos hard to detect, and no conclusive detection of dark matter in earth-
borne detectors has been reported to date.11

�c � (1.1 � 0.7) � 10�29 g/cm3

�p�n � (3 � 1) � 10�31 g/cm3
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Dark Matter

11For more information on the detection of dark matter, see “The Search for Dark Matter,” by
David B. Cline, Sci. Am., March 2003, p. 50.
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16.6 FREIDMANN MODELS AND THE AGE 
OF THE UNIVERSE

Freidmann’s work established the foundation for describing the time evolu-
tion of the Universe based on general relativity. General relativity must be
used in cosmological calculations because it correctly describes gravity, the
most important force determining the Universe’s structure, over immense cos-
mological distances. Newtonian theory can lead to errors when applied to the
Universe as a whole because it assumes that the force of gravity is always attrac-
tive and is instantaneously transmitted. Although Freidmann did consider
models both with and without Einstein’s repulsive form of gravity (cosmologi-
cal constant), it is easiest to see the general form of Big Bang behavior without
introducing repulsive gravitational forces at this point.

Freidmann found three types of time-dependent universes, which may be
described in terms of the universal expansion scaling factor a(t). Figure 16.17
shows a(t )(the separation between galaxies) as a function of time for the
three cases labeled open universe, flat universe, and closed universe. Note that
a(t) alone has a value of zero at the lower-left corner of the graph, not t, and
that the three curves start at different times in the past in order to give the
same scaling factor at the present time, denoted t0. Open universes have less
mass and energy than that needed to halt the expansion. They start with a scale
factor of zero and grow without limit, any given galaxy approaching a limiting

22 CHAPTER 16 COSMOLOGY

EXAMPLE 16.2 Critical Density of 
the Universe

We can estimate the critical mass density of the Universe,
�c, using classical energy considerations. The result turns
out to be in agreement with the rigorous predictions of
general relativity because of the simplifying assumption
that the mass of the Universe is uniformly distributed.

Solution Figure 16.16 shows a large section of the Uni-
verse with radius R with the critical density, containing a
total mass M, where M consists of the total mass of matter
plus the effective mass of radiation with energy E, E/c2. A
galaxy of mass m and speed v at R will just escape to infin-
ity with zero speed if the sum of its kinetic energy and
gravitational potential energy is zero. Thus,

Because the galaxy of mass m obeys the Hubble law,
v � HR, the preceding equation becomes

or �c �
3H 2

8G
H 2 �

8G

3
�c

  v2 �
8G

3
R2�c

1
2 mv2 �

Gm
4
3R3�c

R

Etotal � 0 � K � U � 1
2 mv2 �

GmM

R

Using H � 23 � 10�3 m/(s · lightyear), where 1 light-
year � 9.46 � 1015 m and G � 6.67 � 10�11 N · m2/kg2,
yields a present value of the critical density �c � 1.1 �

10�26 kg/m3. As the mass of a hydrogen atom is 1.67 �
10�27 kg, �c corresponds to about 7 hydrogen atoms per
cubic meter, an incredibly low density.

R

v

m

Figure 16.16 (Example 16.2) A galaxy escaping from a
large cluster contained within radius R. Only the mass
within R slows the mass m.
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velocity that is higher the lower the mass-energy density within the universe.
Thus, the curve labeled open universe shows a typical case and really stands
for a set of curves describing universes with different densities, all less than the
critical density. Closed universes have so much gravitationally attractive 
mass-energy that the expansion is actually stopped and the recessional motion
of all the galaxies reversed so that the universe collapses and returns to the
state a(t ) � 0. Again the figure shows a single closed-universe curve, which
stands for a set of curves describing universes with densities greater than the
critical density. Both open and closed universes satisfy non-Euclidean geome-
tries. In between these two cases is the case of the flat universe. A flat universe
has precisely the critical mass-energy density, and the recessional velocity of
any two galaxies approaches zero with increasing time. A flat universe is 
Euclidean.

The connection between Freidmann models and the age of the Universe is
easiest to see in the simple hypothetical case shown by the straight line, which is
the tangent to the a(t) curves at the present moment, t0 (Fig. 16.18). This line
shows the behavior of a(t ) for the case where there is no gravity in the universe
to slow the expansion. Since the slope of this line is (da/dt)t 0

� a(t0)/� and Hub-
ble’s constant H(t0) � (t0)/a(t0), � � 1/H is the age of the Universe in this no-
gravity case. � is called the Hubble time, and we will show in the next section that
a flat universe with gravity has an age of (2/3)� or 2/3H. Since the effect of grav-
ity is to slow the expansion, as shown in Figure 16.18, an open universe has an
age between � and (2/3)�, and a closed universe has an age less than (2/3)�.

In order to treat accelerations (current epoch) and decelerations (previous
epoch) of the expansion most generally, and to get a flavor of the equations of
general relativity describing an expanding Universe, we turn to the equations
themselves. One can show that general relativity requires the universal scaling
factor a(t) to obey the differential equations:12

a�
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Flat

Open

Closed

t 0 (Now)

Start of
closed universe

Start of
open universe

0

a(t)

t

Figure 16.17 Time-dependent Freidmann universes. The figure shows the time de-
pendence of the universal expansion scaling factor a(t ) (proportional to the distance
between galaxies) for the three cases of open, closed, and flat universes. It also shows
that the Big Bang occurred at different times in the past for the different cases.

12See P. J. E. Peebles, Principles of Physical Cosmology, Princeton, NJ, Princeton University Press,
1993, pp. 75 and 76.
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(16.15)

(16.16)

In these equations, a and � are functions of time, where � is the effective mass
density of the Universe; that is, � includes the density of ordinary matter like
hydrogen as well as the effective mass density of fields with energy density u,
u/c 2. k is a parameter that determines whether the Universe is closed 
(k � �1), open (k � �1), or flat (k � 0, also called the Einstein–de Sitter
case), P is the internal pressure, and the other symbols have their usual mean-
ings. The first equation comes from the conservation of energy, and the sec-
ond is a sort of Newton’s second law, giving the rate of change of the expan-
sion in terms of the effective mass density within the Universe. The unusual
part of Equation 16.16 is the appearance of the internal pressure P of a sub-
stance that apparently adds to the attractive mass density of matter in the Uni-
verse. P appears because general relativity treats matter in the Universe on the
average as an extremely dilute gas characterized by a mass density and an in-
ternal pressure, a measure of the gas’s kinetic energy. The amount of effective
mass density that P adds is much smaller than the contribution of the actual
mass density of a substance under ordinary conditions since P is divided by c2.
For example, the contribution of the internal pressure of 1 cubic meter of air
at standard temperature and pressure is about 10�12 of that of the mass den-
sity of the air. But it gets even more interesting. Freidmann considered the
Universe to have P � 0 on average, which would be the case for a universe
filled with cold, pressure-free dust particles. In extreme cases, P can be posi-
tive and very large (inside stars and in the Big Bang) or even negative (for
dark energy) and swamp out � to actually produce an acceleration of the ex-
pansion, as shown by Equation 16.16. We will return to the dizzying subject of

d2a

dt2 � �
4aG

3 �� �
3P

c2 �

�
da

dt �

2
�

8G�a2

3
� kc2
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Freely expanding
Hubble case

Open
Flat
Closed

t 0

a(t 0)

0

a(t)

t�

Figure 16.18 The straight line is the tangent to the Freidmann a(t ) curves at the pre-
sent moment and models the case where there is no gravitational attraction in the Uni-
verse. For this case, the age of the Universe is 1/H. All the curves have steeper slopes than
the tangent, indicating that these cases including gravity expanded at faster rates in the
past and so reached the current size of the Universe more quickly. Consequently, open,
flat, and closed universes have younger ages than the freely expanding Hubble case.
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the connection of mass density and internal pressure of different substances in
the next section, but for now it suffices to realize that the term 
allows us to consider both attractive and repulsive forms of gravity in the
Universe.

Equation 16.15 can be immediately solved for Hubble’s constant in terms of
fundamental parameters. Since , 16.15 gives

(16.17)

Equation 16.15 also may be used to show that the scale factor in the simple
case of an Einstein–de Sitter Universe is proportional to t 2/3, where t is the
time since the Big Bang. For this case, Equation 16.15 becomes 

(16.18)

In order to separate variables and integrate this equation, we need to express
�(t ) as a function of a. We take t � 0 at the singularity a : 0 and � : � and
assume a finite effective mass M in the first instants of the Universe. If the Uni-
verse simply expanded and no matter left or entered through its surface

or
(16.19)

where are the density and scaling factor at time t. Substituting
16.19 into 16.18 gives 

(16.20)

where . Integrating 16.20 gives 

and finally,

(16.21)

where . Since , using 16.21 we find that the Einstein–

de Sitter Universe has an age of 2/3H, as claimed.
Although we have mentioned that light emitted from astronomical objects

at increasingly distant time epochs means the light is increasingly redshifted as
we see it now, Equation 16.21 gives the exact connection between redshift and
past epoch for the Einstein–de Sitter model. The expansion of the universe
between now (t0) and the time of emission (te) of radiation now seen to be
redshifted by Z is described by 

(16.22)

For the Einstein–de Sitter model, this equation becomes

(16.23)1 � Z �
t0

2/3

te
2/3

1 � Z �
a(t0)
a(te)

H �
a�

a
C � �

3B

2 �

2/3

a � Ct2/3

�

a

a�0

a1/2da � B�

t

t�0

dt

B � √2GM

da

dt
� Ba�1/2

�(t) and a(t)

�(t) � 3M/4a3(t)

M � �(t)
4a3(t)

3

da

dt
� √

8G�

3
a

H 2(t0) �
8G�(t0)

3
�

kc 2

a2(t0)

H 2(t0) � aB2(t0)/a2(t0)

(� � 3P/c2)
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Thus, when we observe a supernova with a high Z of 2 in an Einstein–de Sitter
universe, we are looking at historical conditions in a universe which was 1/3 of
its present size and about 20% of its present age when the supernova deto-
nated.

16.7 WILL THE UNIVERSE EXPAND FOREVER?

In a current mythology the ultimate fate of the Universe may be viewed as a
cosmic struggle between two titans: the attractive gravitational force of matter
and the repulsive force of dark energy spread uniformly through the vacuum.
The specific nature of dark energy or vacuum energy and its variation with
time are unknown except that it has a negative pressure in our general relativ-
ity Equation 16.16 and so acts as a repulsive gravitational force. In fact, the
term (� � 3P/c2) in Equation 16.16 can be used to categorize the attractive or
repulsive gravitational nature of substances both common and exotic, which
are summed in this term:

• For an ordinary gas at STP, the mass density term is 1012 times larger than
the internal pressure term, both terms are positive, so the effect of gases
is to produce gravitational attraction.

• For photons, which are mass 0 particles, it is convenient to write 
(� � 3P/c2) � 1/c2(u � 3P ), where u is the energy density or energy per
unit volume of the photons. As the internal pressure of a photon gas is
given by P � u/3, 1/c2(u � 3P ) � 2u/c2, a positive term, so that photons
also exert a force tending to hold the Universe together.

• For cold dark matter, P � 0, and only the mass density of these exotic par-
ticles contributes to the attractive gravitational force.

• For all forms of dark energy, P 
 0, and if P is sufficiently negative it will
dominate all positive contributions and produce a net repulsive gravita-
tional force in the Universe, which is believed to be the case now. For a
“substance” called the quantum vacuum (to be discussed shortly) with an
energy density uqv, P � �uqv , so 1/c2(u � 3P) � �2uqv/c2. The quan-
tum vacuum produces a strongly repulsive force term that may dominate
all attractive terms provided the quantum vacuum energy density is large
enough. In fact, examination of Equation 16.16 shows that observation of
accelerated expansion means dark energy exists. Denoting the energy
density and pressure of dark energy by ude and Pde, an observed accelera-
tion of the expansion means (� � 1/c2(ude � 3Pde)) 
 0 or Pde 
 �ude/3
for any form of dark energy. Different models of dark energy predict dif-
ferent time variations for ude and different values for Pde, where Pde is
limited as �ude � Pde � �ude/3.13

It is very interesting that current observations show that dark energy actu-
ally exists and the effective mass density of dark energy, ude/c2, dominates the
observed attractive mass density of the Universe �m by a factor of about 2:1.
The normalized dark energy density is expressed by writing �� � ude/uc,
where ude and uc stand, respectively, for the observed dark energy and critical
energy (mass) densities. When the constraint �� � �m � 1 from inflationary
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13See the article by Bertram Schwarzchild, Physics Today, June 2004, p. 19.

Dark Energy
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theory is imposed on the most recent SN1e data, the best-fit values of 
�m � 0.29 � 0.04 and �� � 0.71 are found.14

The existence of dark energy had been suspected for several years, as well
as a transition from an earlier epoch of deceleration to the current period of
acceleration of the expansion. The transition was expected because the effec-
tive mass density term � falls as 1/a3(t) as the Universe expands, and the
3P/c 2 dark energy term is believed to be constant or more slowly decreasing
than �. The actual observation of this expected switchover point provides con-
clusive evidence of the existence of dark energy and some information on how
it changes with time. The latest results show that the transition from decelera-
tion to acceleration occurred about 9 billion years ABB, or in terms of model-
independent redshift, at a time corresponding to Z transition � 0.46 � 0.13. The
time dependence of the dark energy is described by the Z dependence of the
dimensionless parameter w, the ratio of the dark energy’s pressure to its en-
ergy density.

(16.24)

Writing 

(16.25)

the best-fit values to the new supernovae data have 

(16.26)

To place these results in context, Einstein’s cosmological constant has 
w0 � �1 and dw/dZ � 0. If the current large value of w � �1.31 remains con-
stant or becomes more negative with time, the Universe will not only continue
to expand but the eventual unhappy fate of galaxies, solar systems, atoms, and
nuclei will be to be ripped apart.

16.8 PROBLEMS AND PERSPECTIVES

While particle physicists have been exploring the realm of the very small, cos-
mologists have been exploring cosmic history back to the first moments of the
Big Bang. Observation of events that occur when two particles collide in an ac-
celerator is important for understanding the early moments in cosmic history,
but perhaps the key to understanding the early Universe is to find a unified
theory of quantum mechanics and gravity. Such a theory is urgently needed to
adequately describe the first instants of the Big Bang. Cosmologists and parti-
cle physicists now find that they have many common goals and are joining
hands to attempt to understand the physical world at its most fundamental
level.

Lest the reader be fooled by our simplified overview of cosmology, it is im-
portant to realize that understanding is far from complete. There are many
questions remaining concerning our incredible Universe so finely tuned that
it has allowed the fragile and intricate complexities of life to arise 10 billion

w(Z) � �1.31 � 1.48Z

w(Z) � w0 �
dw

dZ �
t 0

Z

w �
Pde

ude
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14The latest SN1e results are from A. G. Riess et al., Astrophys. J. (in press), available at
http://arXiv.org/abs/astro-ph/0402512
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years ABB. The deepest questions concern the origin and observed size of the
dark energy described by ��. Current observations show that the dark energy
density is surprisingly small, but exquisitely adjusted to just barely dominate
the attractive mass density of the Universe—permitting stars, galaxies, planets,
and people to form. Why surprisingly small? According to the most successful
elementary particle model, the Standard Model, the quantum vacuum ought
to be seething with fields and virtual particles constantly erupting into and dis-
appearing from existence. All the associated energy and momentum of these
fields and particles should produce a huge negative pressure or repulsive grav-
itation, yielding a dark energy density calculated to be as much as 10120 times
the observed dark energy density. Leading physicists have identified this prob-
lem of dark energy as the most important one for 21st-century physics, liken-
ing it in importance to the problem of blackbody radiation in the 20th cen-
tury. Just as joint efforts of experimentalists and theorists were needed to solve
the blackbody problem, both new observations and theoretical insights will be
needed to unravel the secret of dark energy. We end with the words of Nobel
laureate Steven Weinberg concerning the importance of discovering the na-
ture of dark energy:

The task of discovering the nature of the “dark energy” is of obvious importance to
cosmology. The apparent acceleration of the expansion of the universe is attributed
to a dark energy residing in space itself, which also balances the kinetic energy of
the expansion so as to give the universe zero spatial curvature, as observed in map-
ping fluctuations in the cosmic microwave radiation background. If the dark energy
is a constant (the so-called cosmological constant) or growing, then the fate of the
universe is sealed: it will continue expanding forever. If the dark energy is decreas-
ing (as in some “quintessence” theories) then it was even more important in the
past, and may have played a part in limiting the formation of the largest gravitation-
ally bound structures. In any case, through its effect on the expansion of the uni-
verse, the dark energy affects all observations of astronomical objects at large red-
shift.

The problem of the dark energy is also central to today’s physics. Our best at-
tempts at a fundamental theory suggest the presence of a cosmological constant
that is many (perhaps as many as 120) orders of magnitude greater than the upper
bound set by astronomical observations. For decades the problem seemed to be to
find a symmetry or cancellation mechanism of some sort that would make the cos-
mological constant precisely zero. The single greatest failure of our most promising
theories (such as string theories) is that they do not satisfy this requirement. Now
that a dark energy has apparently been found, the problem is even harder: not just
to explain why the dark energy is so tiny compared with what would have been ex-
pected theoretically, but also to explain why it happens to be of the same order of
magnitude (roughly twice) as the energy in matter at the present moment in the
history of the universe. It is difficult for physicists to attack this problem without
knowing just what it is that needs to be explained—a cosmological constant or a
dark energy that changes with time as the universe evolves—and for this they must
rely on new observations by astronomers. Until it is solved, the problem of the dark
energy will be a roadblock on our path to a comprehensive fundamental physical
theory.

— Steven Weinberg
Department of Physics

University of Texas at Austin
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PROBLEMS

1. is the symbol used by astronomers 

to denote the measured redshift of receding astronomi-
cal objects where �0 is the emission wavelength of a par-
ticular line measured in the lab and � is the wavelength
of the same line measured for a receding source. For
example, type Ia supernovae used as distance markers
in expansion rate studies have Z’s as high as 2, galaxies
have been observed with Z’s in excess of 3, and quasars
(star-like objects formed early in the Universe with
enormous energy output) take the cake with Z’s greater
than 5. (a) Use the relativistic Doppler shift Equation
16.1 to show that the relation between red shift and re-
cession velocity v, valid at all velocities, is

where

.

(b) Plot a graph of Z versus � for values of Z ranging
from zero to five.

2. Show that the relative velocity of galaxies is directly
proportional to their separation in a homogeneous,
uniformly expanding Universe. Consider three
collinear, equally spaced galaxies G0, G1, G 2, which are
adjacent galaxies spaced L apart. An observer situated
on the leftmost galaxy G0 will observe the distances to
G1 and G2 to be L and 2L and, for an expanding uni-
verse, G1 and G2 will have instantaneous velocities v1
and v2 away from G0. At a time �t later, G1 will be a dis-

� �
v

c

Z � √
1 � �

1 � �
� 1

Z � 

��

�
�

� � �0

�
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“The Cosmic Symphony,” pp. 44–53; M. A. Strauss,
“Reading the Blueprints of Creation,” pp. 54–61; A. G.
Riess and M. S. Turner, “From Slowdown to Speedup,”
pp. 62–67; and G. Dvali, “Out of Darkness,” pp. 68–73.

2. Several good nonmathematical books are:
J. M. Pasachoff, Astronomy: From the Earth to the Universe,
6th ed., Brooks/Cole-Thomson Learning, Belmont, CA,
2002.
A. H. Guth, The Inflationary Universe, Helix Books, Addi-
son-Wesley, Reading, MA, 1997.
L. Krauss, Quintessence, Basic Books, New York, 2000.
M. Rees, Just Six Numbers, Basic Books, New York, 2000.

3. Two books at the advanced undergraduate level are:
P. J. E. Peebles, Principles of Physical Cosmology, Princeton
University Press, Princeton, NJ, 1993.
E. V. Linder, First Principles of Cosmology, Prentice Hall,
1997.

1. In addition to the magazine articles cited in the foot-
notes the following articles are interesting, but note the
dates for the most current results:
G. Gamow, “The Evolutionary Universe,” Sci. Amer., Sep-
tember 1956.
G. Gamow, “Gravity,” Sci. Amer., March 1961.
A. R. Sandage, “The Red-Shift,” Sci. Amer., September
1956.
C. Sagan and F. Drake, “The Search for Extraterrestrial
Intelligence,” Sci. Amer., May 1975.
F. Wilczek, “The Cosmic Asymmetry Between Matter and
Anti-Matter,” Sci. Amer., December 1980.
G. Veneziano, “The Myth of the Beginning of Time,” Sci.
Amer., May 2004, pp. 54–65.
J. D. Bekenstein, “Information in the Holographic Uni-
verse,” Sci. Amer., August 2003, pp. 58–65.
A special report of four articles on cosmology in the
February 2004 Scientific American: W. Hu and M. White,

SUGGESTIONS FOR FURTHER READING

tance L � v1�t away from G0 and G2 a distance 2L �

v2�t. If the Universe is to remain homogeneous, all dis-
tances between galaxies must retain the same propor-
tions as expansion proceeds. This means we require
the distance G 0G 2 to remain twice as large as G0G1 at
time �t. Thus, 2L � v2�t � 2(L � v1�t) or v2 � 2v1.
Show that Hubble’s law results from generalizing to p
collinear galaxies with adjacent distance L , provided
that all velocities are much less than c.

3. A quasar (believed to be a galaxy in formation with a
super-massive black hole at its center) is a pointlike ob-
ject that has tremendous energy output, is very distant
from the Earth, and has a large redshift. Its speed can
be measured from Doppler-shift measurements of the
light it emits. A certain quasar recedes from the Earth
at a speed of 0.55c. (a) How far away is it? (b) Assuming
that the quasar has moved with the speed 0.55c ever
since the Big Bang, estimate the age of the Universe.

4. (a) Show that if Hubble’s constant H is truly constant
in time, the universe is undergoing inflationary expan-
sion, that is a(t ) � Ae bt.
(b) Find H as a function of time for the case of an 
Einstein–de Sitter Universe.

5. Find the size and age of an Einstein–de Sitter Universe
probed by Z � 5 quasars.

6. Using Hubble’s law, estimate the wavelength of the 590-
nm sodium line emitted from galaxies (a) 2 � 106

lightyears away from Earth, (b) 2 � 108 lightyears away,
and (c) 2 � 109 lightyears away. (Hint: Use the relativis-
tic Doppler formula for light emitted from a receding
source):
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(16.1)

7. A distant quasar is moving away from Earth at such
high speed that the blue 434-nm hydrogen line is ob-
served at 650 nm, in the red portion of the spectrum.
(a) How fast is the quasar receding? (b) Using Hub-
ble’s law, determine the distance from Earth to this
quasar.

8. Hubble’s law can be stated in vector form as v � HR:
Outside the local group of galaxies, all objects are mov-
ing away from us with velocities proportional to their
displacements from us. In this form, it sounds as if our
location in the Universe is specially privileged. Prove
that Hubble’s law would be equally true for an observer
elsewhere in the Universe. Proceed as follows: Assume
that we are at the origin of coordinates, that one galaxy
cluster is at location R1 and has velocity v1 � HR1 rela-
tive to us, and that another galaxy cluster has radius
vector R2 and velocity v2 � HR2. Suppose the speeds
are nonrelativistic. Consider the frame of reference of
an observer in the first of these galaxy clusters. Show
that our velocity relative to her, together with the dis-
placement vector of our galaxy cluster from hers, satis-
fies Hubble’s law. Show that the displacement and ve-
locity of cluster 2 relative to cluster 1 satisfy Hubble’s
law.

9. Use the Boltzmann distribution function to cal-
culate the temperature at which 1% of a population of
photons will have energy greater than 1.00 eV. The en-
ergy required to excite an atom is on the order of 1 eV.
Thus, as the temperature of the Universe fell below the
value you calculate, neutral atoms could form from
plasma, and the Universe became transparent. The cos-
mic background radiation represents our vastly red-
shifted view of the opaque fireball of the Big Bang as it
was at this time and temperature. The fireball sur-
rounds us; we are embers.

10. The cosmic background radiation is blackbody radia-
tion at a temperature of 2.73 K. (a) Use Wien’s law to
determine the wavelength at which this radiation has
its maximum intensity. (b) In what part of the electro-
magnetic spectrum is the peak of the distribution?

11. It is mostly your roommate’s fault. Nosy astronomers
have discovered enough junk and clutter in your dorm
room to constitute the missing mass required to close
the Universe. After observing your floor, closet, bed,
and computer files, they extrapolate to slobs in other
galaxies and calculate the average density of the observ-
able Universe as 1.20�c. How many times larger will the
Universe become before it begins to collapse? That is,
by what factor will the distance between remote galax-
ies increase in the future?

12. The early Universe was dense with gamma-ray photons
of energy �kBT and at such a high temperature that

e�E/kBT

�� �
√1 � (v/c)

√1 � (v/c)
�

protons and antiprotons were created by the process
	 : p � as rapidly as they annihilated each other. As
the Universe cooled in adiabatic expansion, its temper-
ature fell below a certain value, and proton pair pro-
duction became rare. At that time slightly more pro-
tons than antiprotons existed, and essentially all of the
protons in the Universe today date from that time. 
(a) Estimate the order of magnitude of the tempera-
ture of the Universe when protons condensed out. (b)
Estimate the order of magnitude of the temperature of
the Universe when electrons condensed out.

13. If the average density of the Universe is small compared
to the critical density, the expansion of the Universe de-
scribed by Hubble’s law proceeds with speeds that are
nearly constant over time. (a) Prove that in this case the
age of the Universe is given by the inverse of Hubble’s
constant. (b) Calculate 1/H and express it in years.

14. The gravitational self-energy of an object is the energy
needed to assemble the object from individual ele-
ments initially spaced an infinite distance apart. The
energy needed is the work done by an external force in
an equilibrium process, that is an element of mass is
moved so that the external force is equal and opposite
to the gravitational force of attraction. Because the ex-
ternal force is opposite to the element’s displacement,
the work done or the gravitational self-energy is a nega-
tive quantity. The gravitational self-energy of N discrete
mass elements is given by the sum of the potential en-
ergy of all pairs of elements and may be written

An equivalent form is

where we count each pair twice but correct with the
factor of 1/2. (a) Use this expression to calculate the
self-energy of the Milky Way Galaxy. Our Galaxy con-
sists of N � 2 � 1011 stars with an average separation of
ri j � 1021 m and mass mi � 2 � 1030 kg.
(b) In the first part of this problem we did not consider
the self-energy of individual stars. Remedy this problem
by showing that the gravitational self-energy of a uni-
form sphere of mass m and radius r is

(Hint: assemble the sphere from infinitesimal shells of
thickness dr surrounding a solid spherical core of ra-
dius r.)
(c) Find the self-energy of the Sun if m s � 2 � 1030 kg
and rs � 7 � 108 m.

Usphere � �
3Gm2

5r

U � �
1
2

G 	

N

i �1
i� j

   	

N

j�1

m im j

rij

U � �G 	
all pairs

i� j

m im j

rij

p
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SOLUTION FOR PROBLEMS 16 31

15. Finding the temperature inside the Sun with the virial theo-
rem. The virial theorem is a powerful result which ap-
plies to the time average of the kinetic and potential
energies of a group of particles confined within a finite
volume by mutual inverse-square forces. The virial the-
orem may be written

where the brackets indicate time averages over suffi-
ciently long times. This result holds even if all particle
masses are not the same and if some of the particles si-
multaneously experience repulsive electric forces. The
theorem basically says that a gravitationally bound sys-
tem of particles, even a system starting with all particles
at rest, ultimately develops a KE equal to one half of
the absolute value of its PE.

In a typical star like the Sun, the average distance
between atomic nuclei is usually greater than 10�12 m,
so attractive nuclear forces (range � 10�15 m) do not
hold the Sun together. Rather, all stars are held to-
gether by gravity so the virial theorem applies. (a) Find
an expression for the average temperature inside the
Sun from the virial theorem using 
KE of a particle� �

3/2 kBT and 
PE Sun� � �3GmS
2/5rS as shown in prob-

lem 14. Let mS and rS stand for the mass and radius of
the Sun. Let N be the number of atoms in the Sun and
m � mS/N be an average particle mass in the Sun.
(b) Find Tav for the Sun assuming m s � 2 � 1030 kg,
rs � 7 � 108 m, and that 60% of the Sun’s mass is hy-
drogen, the rest helium.

�KEtotal � �
1
2

�PE total

16. Collapse of a dust ball under Newtonian gravity. Suppose
that a spherical ball of dust with no internal pressure
and with an initial radius R0 and total mass M gravita-
tionally collapses from rest. (a) Show that the outer
shell of the collapsing dust ball obeys the equation of
motion

(b) Solve this equation of motion and show that the
time to collapse is given by

Hint: Write Newton’s law as . Let
and multiply both sides of

by . The resulting equation may be imme-
diately integrated with respect to time by recognizing

that . Integrating again with respect to

time, this general technique yields t as a function of R

where and C and C1 are

constants determined by the initial conditions.

(c) Find the time of collapse of a dust ball with a mass
and radius equal to that of the Sun.
(RS � 6.96 � 1010 cm, MS � 1.99 � 1033 g, G � 6.67 �

10�8 cgs units)
(d) What prevents the Sun from collapsing in this way?

t � ��
dR

√2(F(R) � C)
� C1

R̈RB �
d

dt �
RB 2

2 �

R
�

R̈ � dF/dR
f(R) � dF(R)/dR

R̈ � f (R)

tc �


2 √
R0

3

2GM

R̈ � �
GM

R 2
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A.1

There is an uncertainty in the last digit, typically of 1 to 7 parts.

speed of light, c 299 792 458 m/s (exact)

gravitational constant, G 6.672 6 � 10�11 N � m2 � kg�2

Planck’s constant, h 6.626 068 76 � 10�34 J � s

Boltzmann constant, kB 1.380 650 3 � 10�23 J � K�1

Stefan-Boltzmann constant, � 5.670 400 � 10�8 W � m�2 � K�4

Rydberg constant, R 10 973 731.568 549 m�1

fine-structure constant, � 1/137.035 989

Bohr radius, a0 5.291 772 083 � 10�11 m

Avogadro’s number, NA 6.022 141 99 � 1023 mol�1

mass of neutron, mn 1.674 927 16 � 10�27 kg
939.565 330 MeV/c2

mass of proton, mp 1.672 621 58 � 10�27 kg
938.271 998 MeV/c2

mass of electron, me 9.109 381 88 � 10�31 kg
0.510 998 902 MeV/c2

elementary charge, e 1.602 176 462 � 10�19 C

permeability of vacuum, �0 4� � 10�7 N/A2 (exact)
12.566 370 6 � 10�7 N/A2

permittivity of vacuum, �0 1/�0c2C2/N � m2 (exact)
8.854 187 817 � 10�12 C2/N � m2

Coulomb constant, k 1/(4��0) (exact)
8.987 551 78 � 109 N � m2/C2

Bohr magneton, �B 9.274 008 99 � 10�24 J/T
5.788 381 749 � 10�5 eV/T

Nuclear magneton, �n 5.050 783 17 � 10�27 J/T
3.152 451 238 � 10�8 eV/T

Atomic mass unit, u 931.494 013 MeV/c2

1.660 538 73 � 10�27 kg

Values based on 1998 CODATA recommended values.

Best Known Values for
Physical Constants
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A.2

Table of Selected 
Atomic Masses*

1 u 	 931.494 013 MeV/c2 	 1.660 538 73 � 10�27 kg

Percent
Abundance,

Atomic Mass or Decay
Number Number Atomic Mode (if Half-Life

Z Element Symbol A Mass** (u) radioactive)† (if radioactive)

0 (Neutron) n 1 1.008665 
� 10.6 min
1 Hydrogen H 1 1.007825 99.985

Deuterium D 2 2.014102 0.015
Tritium T 3 3.016049 
� 12.33 yr

2 Helium He 3 3.016029 0.00014
4 4.002603 �100

3 Lithium Li 6 6.015122 7.5
7 7.016004 92.5

4 Beryllium Be 7 7.016929 EC, � 53.3 days
8 8.005305 2� 6.7 � 10�17 s
9 9.012182 100

5 Boron B 10 10.012937 19.8
11 11.009306 80.2

6 Carbon C 11 11.011433 
�, EC 20.4 min
12 12.000000 98.89
13 13.003355 1.11
14 14.003242 
� 5730 yr

7 Nitrogen N 13 13.005739 
� 9.96 min
14 14.003074 99.63
15 15.000109 0.37

8 Oxygen O 15 15.003066 
�, EC 122 s
16 15.994915 99.76
18 17.999160 0.204

9 Fluorine F 19 18.998403 100
10 Neon Ne 20 19.992440 90.51

22 21.991386 9.22
11 Sodium Na 22 21.994437 
�, EC, � 2.602 yr

23 22.989770 100
24 23.990964 
�, � 15.0 h

12 Magnesium Mg 24 23.985042 78.99
13 Aluminum Al 27 26.981538 100
14 Silicon Si 28 27.976926 92.23 2.62 h

31 30.975363 
�, �

15 Phosphorus P 31 30.973761 100
32 31.973907 
� 14.28 days
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Percent
Abundance,

Atomic Mass or Decay
Number Number Atomic Mode (if Half-Life

Z Element Symbol A Mass** (u) radioactive)† (if radioactive)

16 Sulfur S 32 31.972071 95.0
35 34.969032 
� 87.4 days

17 Chlorine Cl 35 34.968853 75.77
37 36.965903

18 Argon Ar 40 39.962383 99.60
19 Potassium K 39 38.963707 93.26

40 39.963999 
�, EC, �, 
� 1.28 � 109 yr
20 Calcium Ca 40 39.962591 96.94
21 Scandium Sc 45 44.955910 100
22 Titanium Ti 48 47.947947 73.7
23 Vanadium V 51 50.943964 99.75
24 Chromium Cr 52 51.940512 83.79
25 Manganese Mn 55 54.938049 100
26 Iron Fe 56 55.934942 91.8
27 Cobalt Co 59 58.933200 100

60 59.933822 
�, � 5.271 yr
28 Nickel Ni 58 57.935348 68.3

60 59.930790 26.1
64 63.927969 0.91

29 Copper Cu 63 62.929601 69.2
64 63.929766 
�, 
� 12.7 h
65 64.927794 30.8

30 Zinc Zn 64 63.929146 48.6
66 65.926036 27.9

31 Gallium Ga 69 68.925581 60.1
32 Germanium Ge 72 71.922076 27.4

74 73.921178 36.5
33 Arsenic As 75 74.921597 100
34 Selenium Se 80 79.916522 49.8
35 Bromine Br 79 78.918338 50.69
36 Krypton Kr 84 83.911508 57.0

89 88.917563 
� 3.2 min
37 Rubidium Rb 85 84.911792 72.17
38 Strontium Sr 86 85.909265 9.8

88 87.905617 82.6 28.8 yr
90 89.907738 
�

39 Yttrium Y 89 88.905849 100
40 Zirconium Zr 90 89.904702 51.5
41 Niobium Nb 93 92.906376 100
42 Molybdenum Mo 98 97.905407 24.1
43 Technetium Te 97 96.906364 2.6 � 106 yr

98 97.907215 
�, � 4.2 � 106 yr
44 Ruthenium Ru 102 101.904349 31.6
45 Rhodium Rh 103 102.905504 100
46 Palladium Pd 106 105.903484 27.3
47 Silver Ag 107 106.905093 51.83

109 108.904756 48.17
48 Cadmium Cd 114 113.903359 28.7
49 Indium In 115 114.903879 95.7; 
� 5.1 � 1014 yr
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Percent
Abundance,

Atomic Mass or Decay
Number Number Atomic Mode (if Half-Life

Z Element Symbol A Mass** (u) radioactive)† (if radioactive)

50 Tin Sn 120 119.902199 32.4
51 Antimony Sb 121 120.903822 57.3
52 Tellurium Te 130 129.906223 34.5; 
� 2 � 1021 yr
53 Iodine I 127 126.904468 100

131 130.906118 
�, � 8.04 days
54 Xenon Xe 132 131.904155 26.9

136 135.907220 8.9
55 Cesium Cs 133 132.905447 100
56 Barium Ba 137 136.905822 11.2

138 137.905242 71.7
144 143.922845 
� 11.9 s

57 Lanthanum La 139 138.906349 99.911
58 Cerium Ce 140 139.905435 88.5
59 Praseodymium Pr 141 140.907648 100
60 Neodymium Nd 142 141.907719 27.2
61 Promethium Pm 145 144.912743 EC, �, 
� 17.7 yr

146 145.914708 5.53 yr
62 Samarium Sm 152 151.919729 26.6
63 Europium Eu 153 152.921227 52.1
64 Gadolinium Gd 158 157.924101 24.8
65 Terbium Tb 159 158.925343 100
66 Dysprosium Dy 164 163.929171 28.1
67 Holmium Ho 165 164.930319 100
68 Erbium Er 166 165.930290 33.4
69 Thulium Tm 169 168.934211 100
70 Ytterbium Yb 174 173.938858 31.6
71 Lutecium Lu 175 174.940768 97.39
72 Hafnium Hf 180 179.946549 35.2
73 Tantalum Ta 181 180.947996 99.988
74 Tungsten W 184 183.950932 30.7

(wolfram)
75 Rhenium Re 187 186.955750 62.60, 
� 4 � 1010 yr
76 Osmium Os 191 190.960928 
�, � 15.4 days

192 191.961479 41.0
77 Iridium Ir 191 190.960591 37.3

193 192.962923 62.7
78 Platinum Pt 195 194.964774 33.8
79 Gold Au 197 196.966551 100
80 Mercury Hg 202 201.970625 29.8
81 Thallium Tl 205 204.974412 70.5
82 Lead Pb 203 202.973375 
� 51.9 h

204 203.973028 
�, 1.48 1.4 � 1017 yr
206 205.974449 24.1
207 206.975880 22.1
208 207.976636 52.3 22.3 yr
210 209.984163 �, 
�, � 36.1 min
211 210.988735 
�, �

212 211.991871 
�, � 10.64 h
214 213.999798 
�, � 26.8 min
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Percent
Abundance,

Atomic Mass or Decay
Number Number Atomic Mode (if Half-Life

Z Element Symbol A Mass** (u) radioactive)† (if radioactive)

83 Bismuth Bi 209 208.980384 100
211 210.987258 �, 
�, � 2.15 min

84 Polonium Po 207 206.981570 
� 5.8 h
208 207.981222 � 2.9 yr
209 208.982404 �, � 102 yr
210 209.982848 �, � 138.38 days
214 213.995176 � 164 �s
218 218.008966 3.11 min

85 Astatine At 210 209.987131 
� 8.1 h
211 210.987470 EC, � 7.21 h

86 Radon Rn 211 210.990575 �, 
� 14.6 h
220 220.011368 �, � 55.6 s
222 222.017570 �, � 3.8235 days

87 Francium Fr 223 223.019731 �, 
�, � 22.0 min
88 Radium Ra 223 223.018501 � 11.43 d

224 224.020186 � 3.66 d
225 225.023604 
� 14.8 days
226 226.025402 �, � 1.599 � 103 yr
228 228.031064 
� 5.75 yr

89 Actinium Ac 227 227.027747 �, 
�, � 21.773 yr
90 Thorium Th 228 228.028715 �, � 1.91 yr

230 230.033128 �, � 7.54 � 104 yr
232 232.038051 100, �, � 1.40 � 1010 yr

91 Protactinium Pa 231 231.035880 �, � 3.25 � 104 yr
233 233.040242 
� 27.0 days

92 Uranium U 231 231.036264 EC 4.2 days
232 232.037129 �, � 68.9 yr
233 233.039628 �, � 1.592 � 105 yr
234 234.040947 0.006, �, � 2.45 � 105 yr
235 235.043924 0.72; �, � 7.038 � 108 yr
236 236.045563 �, � 2.342 � 107 yr
238 238.050785 99.275; �, � 4.468 � 109 yr
239 239.054289 
� 23.5 min 

93 Neptunium Np 237 237.048168 � 2.14 � 106 yr
239 239.052933 
�, � 2.36 days

94 Plutonium Pu 239 239.052158 �, � 2.41 � 104 yr
242 242.058737 � 3.75 � 105 yr
244 244.064198 � 8.00 � 107 yr

95 Americium Am 241 241.056824 � 432.7 yr
243 243.061372 �, � 7.37 � 103 yr

96 Curium Cm 243 243.0614 29.1 yr
244 244.0627 18.1 yr
245 245.0655 8.48 � 103 yr
246 246.0672 4.76 � 103 yr
247 247.070346 � 15.6 � 106 yr
248 248.072343 � 3.48 � 105 yr

97 Berkelium Bk 247 247.070298 �, � 1.4 � 103 yr
248 248.073107 � 9 yr
249 249.0750 3.26 � 102 yr
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Percent
Abundance,

Atomic Mass or Decay
Number Number Atomic Mode (if Half-Life

Z Element Symbol A Mass** (u) radioactive)† (if radioactive)

98 Californium Cf 249 249.074845 � 351 yr
251 251.079579 � 9.0 � 102 yr

99 Einsteinium Es 252 252.082945 �, �� 472 days
254 254.088019 �, ��, � 276 days

100 Fermium Fm 253 253.085173 EC, �, � 3.0 days
257 257.095099 � 100 days

101 Mendelevium Md 258 258.098572 � 51.5 days
260 260.1037 27.8 days

102 Nobelium No 255 255.093258 �, �� 3.1 min
259 259.100932 EC, � 58 min

103 Lawrencium Lr 260 260.105314 EC, � 180 s
104 Rutherfordium Rf 261 261.108685 EC, � 65 s
105 Dubnium Db 262 262.113763 EC, � 34 s
106 Seaborgium Sg 266 266.121955 � ~21 s
107 Bohrium Bh 262 262.123028 � 102 ms

264 264.124746 � 0.44 sec
108 Hassium Hs 269 269.134086 � 9 s

277 16.5 min 
109 Meitnerium Mt 266 266.137950 � 0.8 ms

268 268.138809 � 70 ms
110 Darmstadtium Ds 271 271.146081 � 1.1 ms
111 Unununium‡ Uuu 272 272.1535 1.5 � 10�3 s
112 Ununbium‡ Uub 285 15.4 min
114 Ununquadium‡ Uuq 289 30.4 s
116 Ununhexium‡ Uuh 289 0.60 � 10�3 s

*Data are taken from Chart of the Nuclides, 12th ed., General Electric, 1977, from C. M. Lederer and V. S. Shirley, eds., Table of Isotopes, 7th
ed., John Wiley & Sons, Inc., New York, 1979, and from G. Audi and H. Wapstra, “The 1993 Atomic Mass Evaluation,” Nuclear Physics A565,
1, 1993, the International Union of Pure and Applied Chemistry (IUPAC), and Nuclear Wallet Cards on the Web at http://www.nndc.
bnl.gov/wallet.

**The masses given are those for the neutral atom, including the Z electrons.

†The abbreviation EC stands for “electron capture.”

‡Elements 111, 112, 114, and 116 have not yet been named. The IUPAC provisional names are shown.
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A.7

All Nobel Prizes in physics are listed (and marked with a P), as well as relevant Nobel

Prizes in Chemistry (C). The key dates for some of the scientific work are supplied;

they often antedate the prize considerably.

1901 (P) Wilhelm Roentgen for discovering x-rays (1895).

1902 (P) Hendrik A. Lorentz for predicting the Zeeman effect and Pieter Zeeman for

discovering the Zeeman effect, the splitting of spectral lines in magnetic fields.

1903 (P) Antoine-Henri Becquerel for discovering radioactivity (1896) and Pierre and

Marie Curie for studying radioactivity.

1904 (P) Lord Rayleigh for studying the density of gases and discovering argon.

(C) William Ramsay for discovering the inert gas elements helium, neon, xenon,

and krypton, and placing them in the periodic table.

1905 (P) Philipp Lenard for studying cathode rays, electrons (1898–1899).

1906 (P) J. J. Thomson for studying electrical discharge through gases and discover-

ing the electron (1897).

1907 (P) Albert A. Michelson for inventing optical instruments and measuring the

speed of light (1880s).

1908 (P) Gabriel Lippmann for making the first color photographic plate, using in-

terference methods (1891).

(C) Ernest Rutherford for discovering that atoms can be broken apart by alpha

rays and for studying radioactivity.

1909 (P) Guglielmo Marconi and Carl Ferdinand Braun for developing wireless telegra-

phy.

1910 (P) Johannes D. van der Waals for studying the equation of state for gases and

liquids (1881).

1911 (P) Wilhelm Wien for discovering Wien’s law giving the peak of a blackbody

spectrum (1893).

(C) Marie Curie for discovering radium and polonium (1898) and isolating ra-

dium.

1912 (P) Nils Dalén for inventing automatic gas regulators for lighthouses.

1913 (P) Heike Kamerlingh Onnes for the discovery of superconductivity and liquefy-

ing helium (1908).

1914 (P) Max T. F. von Laue for studying x-rays from their diffraction by crystals,

showing that x-rays are electromagnetic waves (1912).

(C) Theodore W. Richards for determining the atomic weights of sixty elements,

indicating the existence of isotopes.

1915 (P) William Henry Bragg and William Lawrence Bragg, his son, for studying the

diffraction of x-rays in crystals.

1917 (P) Charles Barkla for studying atoms by x-ray scattering (1906).

1918 (P) Max Planck for discovering energy quanta (1900).

1919 (P) Johannes Stark, for discovering the Stark effect, the splitting of spectral

lines in electric fields (1913).
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1920 (P) Charles-Édouard Guillaume for discovering invar, a nickel-steel alloy with low

coefficient of expansion.

(C) Walther Nernst for studying heat changes in chemical reactions and formu-

lating the third law of thermodynamics (1918).

1921 (P) Albert Einstein for explaining the photoelectric effect and for his services

to theoretical physics (1905).

(C) Frederick Soddy for studying the chemistry of radioactive substances and

discovering isotopes (1912).

1922 (P) Niels Bohr for his model of the atom and its radiation (1913).

(C) Francis W. Aston for using the mass spectrograph to study atomic weights,

thus discovering 212 of the 287 naturally occurring isotopes.

1923 (P) Robert A. Millikan for measuring the charge on an electron (1911) and for

studying the photoelectric effect experimentally (1914).

1924 (P) Karl M. G. Siegbahn for his work in x-ray spectroscopy.

1925 (P) James Franck and Gustav Hertz for discovering the Franck-Hertz effect in

electron-atom collisions.

1926 (P) Jean-Baptiste Perrin for studying Brownian motion to validate the discontin-

uous structure of matter and measure the size of atoms.

1927 (P) Arthur Holly Compton for discovering the Compton effect on x-rays, their

change in wavelength when they collide with matter (1922), and Charles T. R.

Wilson for inventing the cloud chamber, used to study charged particles (1906).

1928 (P) Owen W. Richardson for studying the thermionic effect and electrons emit-

ted by hot metals (1911).

1929 (P) Louis Victor de Broglie for discovering the wave nature of electrons (1923).

1930 (P) Chandrasekhara Venkata Raman for studying Raman scattering, the scatter-

ing of light by atoms and molecules with a change in wavelength (1928).

1932 (P) Werner Heisenberg for creating quantum mechanics (1925).

1933 (P) Erwin Schrödinger and Paul A. M. Dirac for developing wave mechanics

(1925) and relativistic quantum mechanics (1927).

(C) Harold Urey for discovering heavy hydrogen, deuterium (1931).

1935 (P) James Chadwick for discovering the neutron (1932).

(C) Irène and Frédéric Joliot-Curie for synthesizing new radioactive elements.

1936 (P) Carl D. Anderson for discovering the positron in particular and antimatter

in general (1932) and Victor F. Hess for discovering cosmic rays.

(C) Peter J. W. Debye for studying dipole moments and diffraction of x-rays and

electrons in gases.

1937 (P) Clinton Davisson and George Thomson for discovering the diffraction of elec-

trons by crystals, confirming de Broglie’s hypothesis (1927).

1938 (P) Enrico Fermi for producing the transuranic radioactive elements by neu-

tron irradiation (1934–1937).

1939 (P) Ernest O. Lawrence for inventing the cyclotron.

1943 (P) Otto Stern for developing molecular-beam studies (1923), and using them

to discover the magnetic moment of the proton (1933).

1944 (P) Isidor I. Rabi for discovering nuclear magnetic resonance in atomic and

molecular beams.

(C) Otto Hahn for discovering nuclear fission (1938).

1945 (P) Wolfgang Pauli for discovering the exclusion principle (1924).

1946 (P) Percy W. Bridgman for studying physics at high pressures.

1947 (P) Edward V. Appleton for studying the ionosphere.
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1948 (P) Patrick M. S. Blackett for studying nuclear physics with cloud-chamber pho-

tographs of cosmic-ray interactions.

1949 (P) Hideki Yukawa for predicting the existence of mesons (1935).

1950 (P) Cecil F. Powell for developing the method of studying cosmic rays with pho-

tographic emulsions and discovering new mesons.

1951 (P) John D. Cockcroft and Ernest T. S. Walton for transmuting nuclei in an accel-

erator (1932).

(C) Edwin M. McMillan for producing neptunium (1940) and Glenn T. Seaborg

for producing plutonium (1941) and further transuranic elements.

1952 (P) Felix Bloch and Edward Mills Purcell for discovering nuclear magnetic reso-

nance in liquids and gases (1946).

1953 (P) Frits Zernike for inventing the phase-contrast microscope, which uses inter-

ference to provide high contrast.

1954 (P) Max Born for interpreting the wave function as a probability (1926) and

other quantum-mechanical discoveries and Walther Bothe for developing the

coincidence method to study subatomic particles (1930–1931), producing, in

particular, the particle interpreted by Chadwick as the neutron.

1955 (P) Willis E. Lamb, Jr. for discovering the Lamb shift in the hydrogen spectrum

(1947) and Polykarp Kusch for determining the magnetic moment of the elec-

tron (1947).

1956 (P) John Bardeen, Walter H. Brattain, and William Shockley for inventing the tran-

sistor (1956).

1957 (P) T.-D. Lee and C.-N. Yang for predicting that parity is not conserved in beta

decay (1956).

1958 (P) Pavel A. Čerenkov for discovering Čerenkov radiation (1935) and Ilya M.

Frank and Igor Tamm for interpreting it (1937).

1959 (P) Emilio G. Segrè and Owen Chamberlain for discovering the antiproton (1955).

1960 (P) Donald A. Glaser for inventing the bubble chamber to study elementary

particles (1952).

(C) Willard Libby for developing radiocarbon dating (1947).

1961 (P) Robert Hofstadter for discovering internal structure in protons and neu-

trons and Rudolf L. Mössbauer for discovering the Mössbauer effect of recoil-

less gamma-ray emission (1957).

1962 (P) Lev Davidovich Landau for studying liquid helium and other condensed

matter theoretically.

1963 (P) Eugene P. Wigner for applying symmetry principles to elementary-particle

theory and Maria Goeppert Mayer and J. Hans D. Jensen for studying the shell

model of nuclei (1947).

1964 (P) Charles H. Townes, Nikolai G. Basov, and Alexandr M. Prokhorov for develop-

ing masers (1951–1952) and lasers.

1965 (P) Sin-itiro Tomonaga, Julian S. Schwinger, and Richard P. Feynman for develop-

ing quantum electrodynamics (1948).

1966 (P) Alfred Kastler for his optical methods of studying atomic energy levels.

1967 (P) Hans Albrecht Bethe for discovering the routes of energy production in stars

(1939).

1968 (P) Luis W. Alvarez for discovering resonance states of elementary particles.

1969 (P) Murray Gell-Mann for classifying elementary particles (1963).

1970 (P) Hannes Alfvén for developing magnetohydrodynamic theory and Louis Eu-

gène Félis Néel for discovering antiferromagnetism and ferrimagnetism (1930s).
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1971 (P) Dennis Gabor for developing holography (1947).

(C) Gerhard Herzberg for studying the structure of molecules spectroscopically.

1972 (P) John Bardeen, Leon N. Cooper, and John Robert Schrieffer for explaining super-

conductivity (1957).

1973 (P) Leo Esaki for discovering tunneling in semiconductors, Ivar Giaever for dis-

covering tunneling in superconductors, and Brian D. Josephson for predicting

the Josephson effect, which involves tunneling of paired electrons

(1958–1962).

1974 (P) Anthony Hewish for discovering pulsars and Martin Ryle for developing ra-

dio interferometry.

1975 (P) Aage N. Bohr, Ben R. Mottelson, and James Rainwater for discovering why

some nuclei take asymmetric shapes.

1976 (P) Burton Richter and Samuel C. C. Ting for discovering the J/psi particle, the

first charmed particle (1974).

1977 (P) John H. Van Vleck, Nevill F. Mott, and Philip W. Anderson for studying solids

quantum-mechanically.

(C) Ilya Prigogine for extending thermodynamics to show how life could arise

in the face of the second law.

1978 (P) Arno A. Penzias and Robert W. Wilson for discovering the cosmic back-

ground radiation (1965) and Pyotr Kapitsa for his studies of liquid helium.

1979 (P) Sheldon L. Glashow, Abdus Salam, and Steven Weinberg for developing the

theory that unified the weak and electromagnetic forces (1958–1971).

1980 (P) Val Fitch and James W. Cronin for discovering CP (charge-parity) violation

(1964), which possibly explains the cosmological dominance of matter over

antimatter.

1981 (P) Nicolaas Bloembergen and Arthur L. Schawlow for developing laser spec-

troscopy and Kai M. Siegbahn for developing high-resolution electron spec-

troscopy (1958).

1982 (P) Kenneth G. Wilson for developing a method of constructing theories of

phase transitions to analyze critical phenomena.

1983 (P) William A. Fowler for theoretical studies of astrophysical nucleosynthesis and

Subramanyan Chandrasekhar for studying physical processes of importance to

stellar structure and evolution, including the prediction of white dwarf stars

(1930).

1984 (P) Carlo Rubbia for discovering the W and Z particles, verifying the elec-

troweak unification, and Simon van der Meer, for developing the method of sto-

chastic cooling of the CERN beam that allowed the discovery (1982–1983).

1985 (P) Klaus von Klitzing for the quantized Hall effect, relating to conductivity in

the presence of a magnetic field (1980).

1986 (P) Ernst Ruska for inventing the electron microscope (1931), and Gerd Binnig

and Heinrich Rohrer for inventing the scanning-tunneling electron microscope

(1981).

1987 (P) J. Georg Bednorz and Karl Alex Müller for the discovery of high temperature

superconductivity (1986).

1988 (P) Leon M. Lederman, Melvin Schwartz, and Jack Steinberger for a collaborative

experiment that led to the development of a new tool for studying the weak

nuclear force, which affects the radioactive decay of atoms.

1989 (P) Norman Ramsay for various techniques in atomic physics; and Hans Dehmelt

and Wolfgang Paul for the development of techniques for trapping single

charge particles.
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1990 (P) Jerome Friedman, Henry Kendall, and Richard Taylor for experiments impor-

tant to the development of the quark model.

1991 (P) Pierre-Gilles de Gennes for discovering that methods developed for studying

order phenomena in simple systems can be generalized to more complex

forms of matter, in particular to liquid crystals and polymers.

1992 (P) George Charpak for developing detectors that trace the paths of evanescent

subatomic particles produced in particle accelerators.

1993 (P) Russell Hulse and Joseph Taylor for discovering evidence of gravitational

waves.

1994 (P) Bertram N. Brockhouse and Clifford G. Schull for pioneering work in neutron

scattering.

1995 (P) Martin L. Perl for discovery of the tau particle, and Frederick Reines for first

detection of a neutrino.

1996 (P) David M. Lee, Douglas C. Osheroff, and Robert C. Richardson for developing a

superfluid using helium-3.

1997 (P) Steven Chu, Claude Cohen-Tannoudji, and William D. Phillips for developing

methods to cool and trap atoms with laser light.

1998 (P) Robert B. Laughlin, Horst L. Störmer, and Daniel C. Tsui for discovering a new

form of quantum fluid with fractionally charged excitations.

1999 (P) Gerardus ’t Hooft and Martinus J. G. Veltman for studies in the quantum

structure of electroweak interactions in physics.

2000 (P) Zhores I. Alferov and Herbert Kroemer for developing semiconductor het-

erostructures used in high-speed electronics and optoelectronics and Jack St.

Clair Kilby for participating in the invention of the integrated circuit.

2001 (P) Eric A. Cornell, Wolfgang Ketterle, and Carl E. Wieman for the achievement of

Bose–Einstein condensation in dilute gases of alkali atoms.

2002 (P) Raymond Davis Jr. and Masatoshi Koshiba for the detection of cosmic neutri-

nos and Riccardo Giaconni for contributions to astrophysics that led to the dis-

covery of cosmic x-ray sources.

2003 (P) Alexei Abrikosov, Anthony Leggett, and Vitaly Ginzburg for their contributions

to the study of superconductivity and superfluidity, which shed light on the

outlandish properties of matter at extremely low temperatures.
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CHAPTER 1

3. In the rest frame, pi � pf � 0.9 kg � m/s. In the moving
frame, p�i � p�f � 1.9 kg � m/s.

5. 0.866c

7. 0.048c � 1.44 � 106 m/s
9. 0.436L

11. Moving clock runs slower by � 3.2 ns.
13. (a) � 7.1 �s (b) � 1.1 � 104 muons
15. (c) 1.5 � 107 m/s
17. (a) Galaxy A is approaching at v � 0.198c.

(b) Galaxy B is receding at v � 0.237c.
19. �0.41c and �0.41c

21. �0.50c

23. (a) �0.33 �s (b) 140 m (c) No. Event 2 occurs 
0.33 �s earlier than event 1.

25. (a) 39.2 �s (b) Accurate to one digit. More precisely, he
aged 1.78 �s less on each orbit.

27. 0.789c

29. (a) (b) 

33. (a) Yes (b) Yes 
35. 5.45 yr; Goslo 
37. B occurred 4.44 � 10�7 s before A.
39. (a) 26.6 Mm (b) 3.87 km/s (c) �8.34 � 10�11

(d) 5.29 � 10�10 (e) �4.46 � 10�10

CHAPTER 2

1. (a) 5.01 � 10�21 kg m/s (b) 2.89 � 10�19 kg m/s
(c) 1.03 � 10�18 kg m/s (d) for a, 9.38 MeV/c ; for b,
540 MeV/c ; for c, 1930 MeV/c

9. (a) 3.07 MeV (b) 0.986c

11. (a) 2.71 � 10�17 kg m/s (b) 2.9995 � 108 m/s
13. (a) 0.999997c (b) 3.744 � 105 MeV
15. (a) � 0.412c (b) 0.422c

17. 4.9 MeV
19. 7.42 MeV
21. 1.011 MeV, 1.422 MeV/c, 	 � 45.3


23. 2.51 � 10�28 kg and 8.84 � 10�28 kg
27. 1.47 km

3v � v3/c2

1 � 3v2/c2
2v

1 � v2/c2

29. (a) 3.65 MeV/c2 (b) 0.589c

31.

33. 6.28 � 107 kg

CHAPTER 3

1. (c) �� � 8.8 � 1010 rad/s; ��/� � 2.3 � 10�5

(d) If the electron’s plane of rotation is parallel to B, the
magnetic flux B is always zero so that E and F are zero and
there is no �v for the electron.

3. (a) E total � 2.0 J; f � 0.56 Hz (b) 5.4 � 1033

(c) 3.7 � 10�34 J
5. (a) x � 5(1 � e�x), where x � hc/�maxkBT

(b) Solution to (a) is x � 4.965 or �maxT � 2.90 � 10�3 mK
7. (a) 10 modes (b) 0.5 cm�2 (c) Yes (d) For short

wavelengths, n is almost a continuous function of �.
9. (a) � � 600 nm (b) � � 0.03 m (c) � � 10 m

11. 9.45 � 1044 photons/s
13. 2.04 eV
15. (a) 1.0 � 1015 Hz (b) 2.0 V
17. (a) lithium and beryllium (b) lithium � 1.83 eV, 

beryllium � 0.23 eV
19. 1.55 V
21. (a) 1.6 eV (b) 4.0 � 10�15 V � s (c) 775 nm

(d) 3%
23. E � 2.48 eV, p � 1.32 � 10�27 kg m/s
25. (a) 3.25 � 10 �4 nm (b) 2.78 � 105 eV (c) � 22 keV
29. (a) 	 � 41.5
 (b) 0.679 MeV
31. (a) 9.11 � 104 eV (b) 8.90 keV (c) 55.4


35. (a) 17.4 keV (b) 0.0760 nm (c) 16.3 keV
(d) 1.1 keV

37. 4.49
, 9.00
, 13.6


39. (a) d � 2.80 � 10�8 cm (b) 6.13 � 1023 formula
units/mole

41. (a) 1500 m (b) 1.1 � 1017

43. (a) 3.77 � 10�5 eV (b) 3.10 eV (c) No, because the
maximum energy transferred (	 � 180
) is  insufficient.

45. h � 6.5 � 10�34 J � S

M �
2m

3 √ 4 � (u2/c2)
1 � (u2/c2)

Answers to Odd Problems
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CHAPTER 4

1. 1.60 � 10�19 C
3. (a) 9.58 � 107 C/kg (b) proton

(c) 2.19 � 106 m/s �0.01c

(d) For a speed of 0.01c there is no need to use relativity.
5. (b) speed � 2.39 � 108 m/s � 0.795c. Using p � mv gives

r � 0.0769 m and y � 0.00408 m. Using p � �mv gives
r � 0.1267 m and y � 0.00243 m.

7. mass � 8.418 � 10�11 g, mg/E � 25.96 � 10�19 C,

9. 6.00 � 10�15 m
11. 656.112 nm, 486.009 nm, 433.937 nm
13. (a) 3 (b) no
15. (a) En � (�13.6 eV) Z 2/n2 � (�54.4 eV)/n2

(b) 54.4 eV
17. , ,

19. (a) 1.89 eV (b) 658 nm (c) 4.56 � 1014 Hz
21. (a) �max � 1874.606 nm, �min � 820.140 nm

(b) Emin � 0.6627 eV, Emax � 1.515 eV
23. (a) 0.0529 nm (b) 1.99 � 10�24 kg � m/s

(c) 1.05 � 10�34 kg � m2/s � (d) 13.6 eV
(e) �27.2 eV (f ) �13.6 eV

25. (a) 1.60 � 1014 Hz (b) For n � 3,
f � 2.44 � 1014 Hz. For n � 4, f � 1.03 � 1014 Hz.

29. (b) 3.23 � 10�8 %
33. (a) 3.1 � 10�15 m (b) �18.9 MeV
35.

39. (a) 4.9000134 eV (b) 1.31 � 106 m/s � 4.38 � 10�3c

(c) 3.60 m/s (d) 3.68 � 10�11 eV
41. � � 634 nm, red
43. (a)� �106 m/s2 (b) �1 m

CHAPTER 5

1. 3.97 � 10�13 m
3. 1.79 � 10�36 m
5. For electrons: (a) 0.0150 eV (b) 150 eV

(c) 1240 MeV. For alphas: (a) 2.06 � 10�6 eV
(b) 0.0206 eV (c) 201 MeV.

7. 9.05 fm = 9.1 � 10�15 m
9. 1.1 � 10�34 m

11. (a) ~100 MeV (b) The kinetic energy is too large to ex-
pect that the electron could be confined to a region the size
of the nucleus.

13. 50th plane
17. vp � c(1 � me/�2h2)1/2

vg � c(1 � me/�2h2)�1/2;
vpvg � c2. If vp � c, vg � c.

19. 4.6 � 10�14 m
21.
23. (a) �v � 0.5 m/s (b) 3.5 m
25. The intrinsic energy width, �E, is given by

�E � 3.29 � 10�6 eV. It can’t be measured with a 
gamma detector that has a resolution of �5 eV.

27. 550 eV

�x � √�/2m �
4
√H/2g � 1.8 � 10�16 m.

rpositronium � 2rhydrogen, Epositronium � 1
2 Ehydrogen

�

rBe3� � 0.0132 nm
rLi2� � 0.0177 nmrHe� � 0.0265 nm

q � 1.661 � 10�19 C

29. 2.25 to 1
31. 9.5 � 1027 m
33. �m/m � 5.6 � 10�8

35. (a)

(b) (c) 

37. 2.27 pA 

CHAPTER 6

1. (a) Not acceptable—diverges as x : �.
(b) Acceptable. (c) Acceptable. (d) Not accept-
able—not single-valued. (e) Not acceptable—wavefunc-
tion is discontinuous (as is its slope).

3. (a) 0.126 nm (b) 5.26 � 10�24 kg �m/s (c) 95 eV

5. is a parabola opening upward 

with its vertex at .

9. � � 2.02 � 10�4 nm, E � 6.14 MeV. This is the gamma-ray
region of the electromagnetic spectrum.

11. �1(x) � cos(�x/L), P1(x) � (2/L)cos2 (�x/L);
�2(x) � sin(2�x/L), P2(x) � (2/L)sin2 (2�x/L);
�3(x) � cos(3�x/L), P3(x) � (2/L)cos2(3�x/L)

13. (a) 5.13 � 10�3 eV (b) 9.40 eV
(c) Much smaller electron mass

15. (a) (b) 

(c)

(d) Lithium spacing � a � 0.28 nm
17. (b) P1 � 0.200 (c) P2 � 0.351

(d) E1 � 0.377 eV; E2 � 1.51 eV
19. n � 4.27 � 1028; excitation energy � 4.69 � 10�32 J
21.

d �
�2

42mke2 � 0.050 nm

�2

36md2U � �
7
3

ke2

d

√2/L

√2/L

√2/L

�0,�
3�2

mL2 �

U(x) �
�2

2mL2 �
4x2

L2 � 6�

�k �
1

2�
Re f(x) �

A

�√2
e�x 2/4�2

cos k0x

f(x) �
A

�√2
e�x2/4�2

eik0x
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0 L

0 L

(x)�

�2�

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



(c) �113 � A sin(�x/L)sin(�y/L)sin(3�z/L)
�131 � A sin(�x/L)sin(3�y/L)sin(�z/L)
�311 � A sin(3�x/L)sin(�y/L) sin(�z/L)

5. (a) E111 � 1.54 MeV (b) The states �211, �121, �112 have
the same energy � 2E111 � 3.08 MeV. The states �221, �122,
and �212 have the same energy E � 3E111 � 4.63 MeV.
(c) Both states are threefold degenerate.

7. , where V � L1L2L3 is the volume of the box.
9. � � 4

11. (a) � � 4.58 � 1065 (b) �L/L � 1/� � 2.18 � 10�66

13. (a) For n � 3, � can have the values of 0, 1, or 2. For � � 0,
m� � 0; for � � 1, m� � 1, 0, �1; for � � 2, m� � 2, 1, 0, 
�1, �2. (b) E � �6.04 eV

15. (b) helium � 164.1 nm (ultraviolet), positronium �

1312.6 nm (infrared)
17. (a) 2.58 � 10�34 J � s (b) 3.65 � 10�34 J � s
21. (a) 9.88 � 1014 m�3/2 (b) 9.75 � 1029 m�3

(c) 3.43 � 1010 m�1

23. (a) 137.036 (b) 2� � 137 (c) 137/2�

(d) 4�(137)
25. (3 	 )a0 � 5.236a0 for 2s state and 4a0 for 2p state.
27. 13.1a0 for 3s; 12.0a0 for 3p; 9.00a0 for 3d. Bohr theory 

predicts 9a0 .

29. �r � 0.866a0, more than half the average itself.

31. �(0) � 0;

33. E � 4.3123 MeV, � � 1 for 1st excited state (degeneracy 3),
E � 7.0797 MeV, � � 2 for 2nd excited state (degeneracy 5),
E � 8.3882 MeV, � � 0 for 3rd excited state (non-degenerate).

CHAPTER 9

1. f � 9.79 � 109 Hz
3. (a) 2 (b) 8 (c) 18 (d) 32 (e) 50

5.

7. v/c � 278.6

9. , 
 � 140.8�, 105.0�, 75.0�, 39.2�. �� does

obey the Pauli exclusion principle.
11. , and ,

13. (a) n � 4, � � 3, (b) 

(c) Jz � mj, where 

15. �Ecalc � 3.18 � 10�5 eV; �Emeas � 5 � 10�5 eV
17. (a) 394.8 eV, (n1, n2, n3) � (1, 1, 1), (1, 1, 2), 

(1, 2, 1), and (2, 1, 1)
(b) All eight particles go into the (n1, n2, n3) � (1, 1, 1) state,
and so the energy is 8 � E111 � 225.6 eV.

19. 6s wavefunction has five nodes and E � �8.64 eV. Ionization
energy is 8.64 eV vs. 9.22 eV from Table 9.2. Most probable
distance is 1.37a0 compared with 1.00a0 for the (outermost)
electron in hydrogen, suggesting that the gold atom is not
much larger even though it has 79 electrons.

21. (a) 1s22s22p4 (b) (1, 0, 0, ), (2, 0, 0, ),
(2, 1, 0, ), (2, 1, �1, )�1

2�1
2

�1
2�1

2

m j � �5
2, �3

2, �1
2

� J � �
√35

2
j � 5

2

m j � �3
2, �1

2 ( j � 3
2)

m j � �5
2, �3

2, �1
2 ( j � 5

2)j � 5
2, 3

2

� s � �
√15

2


dBz

dz
� 0.387 T/m

En � �
mA2

22 � 1
n2 �  (n � 1, 2, . . .)

√5

A � √8/V

A.14 ANSWERS TO ODD PROBLEMS

23. �(x) � A sin kx for 0 � x � L and �(x) � Ce��x for

x � L, where and . Allowed 

energies satisfy , which has 

solutions only if .

29. (a) 121/2 nm�1/2 (b) 0.693 nm
(c) �x � � 13/12 nm, �x � is somewhat greater than the most
probable position.

31. �x� � 0, �x2� � x0
2/2, , � 0.757

33. (a) �p� � 0 (b) 

(c)

35. c and d, with eigenvalue k

37. , where

E1, E2 are the ground- and first excited-state energies,
respectively.

CHAPTER 7

1. (b) k2 � 2mE/2 to the left and k2 � 2m(U � E)/2 to the
right of the step. E/U � . (c) 1.44 fm

3. R � 0.146, T � 0.854 for both, provided their energies are
the same.

5. (b) (1) 0.90 (2) 0.36 (3) 0.41 (4) � 0
9. T � 0.33552, R � 0.66448, T(E ) � 0.333596 (exact value),

Thickness � 0.02334 Å for protons.
11. (a) The matter wave reflected from the front of the well 

(x � 0) suffers a 180� change in phase; that reflected from
the rear is not phase shifted.
(b) �(x1, t) � �(x) e�i�t, where

�(x) � Ae ik�x 	 Be�ik�x (region 1)
� Ce�ikx 	 Deikx (region 2)
� Fe ik�x 	 Ge�ik�x (region 3)

with

and G � 0 for particle incident from the left.

13. ; ; with 

17. 9.35 � 1020 Hz
19. The first transmission resonance occurs at about E � 0.08293

eV, where T(E ) is nearly unity. Transmission drops to about
50% at E � 0.08254 eV and again at E � 0.08332 eV, for a
width of about 0.0008 eV.

CHAPTER 8

1. E/E0 � 6, 9, 9, 12, 14, 14, where 

3. (a) (b) n1, n2, n3 can have values (1, 1, 3); 

(1, 3, 1); (3, 1, 1).

E �
11�22

2mL2

E0 �
�22

8mL2

E0 � �
mS2

22T � 	1 �
E0

E 

�1

R � �
E0

E 	1 �
E0

E 

�1

k� � √2m(E � U)/2

k � √2mE/2

1
2

�(x, t) �
1

√2
[�1(x)e�iE1t/ 	 �2(x)e�iE2t/]

�p � 	 m�

2 

1/2

�p2� �
m�

2

P � 1 � e�√2�x � x0/√2

2mUL2

2 � 1

kL

sin(kL)
� � 2mUL2

2 �
1/2

�2 �
2m(U � E)

2k2 �
2mE

2
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23. [Kr] 4d10 has the lesser energy, but [Kr] 4d 95s1 has two
more unpaired spins. Thus, Hund’s rule is violated in this
case (since filled subshells are especially stable). The ele-
ment is Pd.

25. Between 104 K and 105 K

27. (a)

(b) Theoretical: slope � 0.214 � 108 Hz1/2, intercept � 7
Experimental: slope � 0.21 � 108 Hz1/2, intercept � 6.3
(c) Z � I � Z � 6.3.

CHAPTER 10

3. � 1.58 cm, srms � 1.45 cm, smp � 1.78 cm
5. P(E) � 0.385 e�(0.408 E/E1)

7. (b) (c) T � 2.83 K

(d) (e) 

(f) C is a maximum at 2p�/kBT � 2.65 or T � 0.055 K
9. � 1.51 � 103 m/s, so the classical Doppler shift formula

can be used:

11. (0E) through (5E) � 2, (6E) � 1.89, (7E) � 1.78,
(8E) � 1.55, (9E ) � 1.22, (10E) � 0.777,
(11E) � 0.444, (12E) = 0.222, (13E) � 0.111, and
(14E) � 0, EF(0) � 9E

13. (b) TE(lead) � 100 K, TE(aluminum) � 300 K, and 
TE(silicon) � 500 K

15. (a) 1.80 � 1029 free electrons/m3 (b) 3
17. EF � 33.4 MeV, � 20 MeV
19. 93.8%
21. (a) 2.54 � 1028 electrons/m3 (b) 3.15 eV

(c) 1.05 � 106 m/s
23. 3.40 � 1017 electrons

CHAPTER 11

1. (a) 1.28 eV (b) � � 0.272 nm, � � 4.65 eV
(c) 6.55 nN

3. R0 � (I/�)1/2 � 1.13 Å, same as Example 11.1
5. (a) 8.10 cm, 3.70 GHz, (b) 4.53 � 10�45 kg � m2

7. 5.69 � 1012 rad/s
� � 0 E rot � 0
� � 1 E rot � 2.62 � 10�3 eV

9. (a) � � 2 E rot � 7.86 � 10�3 eV
� � 3 E rot � 1.57 � 10�3 eV

(b) K � 480 N/m, f � 8.66 � 1013 Hz
(c) E0 � 0.179 eV, A0 � 0.0109 nm, E1 � 0.538 eV,
A1 � 0.0189 nm (d) rotational: 473 �m;
vibrational 3.46 �m

11. Erot � 	2/mR0
2{�(� 
 1)}, � � 0, 1, 2, . . .

13. (a) R� � R 0 
 [�(� 
 1)	2/(��0)2]/R 0
3

(b) U0 � �(� 
 1)	2/2�R0
2,

��
2 � �0

2 + 3[�(� 
 1)	2]/�2R 0
4

E

n

nnn

nnn

nnnn

�f

f0
� 1.01 � 10�5

v

ETOTAL � NEE �
2p�

1 
 1
2e2p�/kBT

2e�2p�/kBT

sv

√f � √ 5
36 � 13.6 eV

h �(Z � 7)

15. �E � 	�[1 � (v 
 1)	�/2U0], ,

17. When the energy of the rotation-vibration ground state 
(v � 0, 1 � 0) is taken into account (E � 0.268 eV from
Problem 16), the numerical results for 1 � 1, 2 agree with 

the predictions of Equation 11.10 with . 

Discrepancies do arise for larger values of 1. E � 0.283 eV 
(v � 0, � � 1) and E � 0.313 eV (v � 0, � � 2)

19. Ground state: E � (2x2	2/mL2), where x is the smallest root
of the equation tan x � �(2	2/mSL)x. First excited state: 
E � (22	2/mL2). As S : �, x :  and the two energies co-
incide; as S : 0, x : /2, and the energies reduce to the
ground and first excited states of an infinite well with no 
barrier.

21. (a) R0 � 1.44 bohrs
(b) K � 1.03 Ry/bohr2 � 801 N/m

23. The crossing takes about 6.1 fs (� 6.1 � 10�15 s) for a cross-
ing frequency of 1.64 � 1014 Hz. The bonding and antibond-
ing states have energies E � 6.379 eV and E � 6.718 eV, re-
spectively, for a splitting �E � 0.339 eV and a characteristic
frequency �E/h � 8.20 � 1013 Hz, or about half the crossing
frequency.

CHAPTER 12

3. 7.84 eV/ion pair
7. (a) 7.12 eV/ion pair (b) 6.39 eV/atom pair

11. (c) 3.9 � 105 cm/s (d) 0.36 �m
13. (a) 3.80 � 10�14 s (b) 52.7 nm (c) L/d � 200
15. (a) 2.75 � 1014 Hz (b) 1090 nm (IR)
19. (b) 0.36 nm (c) 6.7 � 10�4 nm. The controlling factor is

cavity length.
21. (b) 10.7 kA
25. (a) 2.98 mA (b) 67.1 � (c) 8.39 �

CHAPTER 13

1. (a) 1.9 fm (b) 7.44 fm (c) 3.92
3. 8.57 � 1013

5. (a) 4.55 � 10�13 m (b) 6.03 � 106 m/s
7. 2.2 � 10�6 eV
9. 30% 63Cu

11. 2.657 MeV/nucleon
13. (a) 139Cs with N/Z � 1.53

(b) 139La, with 8.353 MeV/nucleon
(c) 139Cs, with a mass of 138.913 u

15. (a) 8.03 MeV/nucleon (b) 8.55 MeV/nucleon
(c) 8.66 MeV/nucleon (d) 7.92 MeV/nucleon

17. 160 MeV

19. (a) (b) 2.88 � 10�14 (A5/3) J

(c) 52.1 MeV
21. (a) 0.805 h�1 (b) 0.861 h
23. (a) � � 1.55 � 10�5 s�1; T1/2 � 12.4 h

(b) 2.39 � 1013 atoms (c) 1.87 mCi

U � 3k
(Ze)2

5R

h2

ICM

h2

ICM
eV

EMAX � U0 �
(	�)2

16U0

v MAX �
2U0

	�
� 1
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39. (a) 2.3 � 10�19 Z1Z 2 J (b) 0.14 MeV
41. (a) 2.63 � 1033 J (b) 119 billion years
43. (a) 1014/cm3 (b) 2.2 � 105 J/m3 (c) 2.35 T
45. (a) 1.4 � 10�3 cm (b) I/I 0 � 0.426
47. 3.85 cm
49. (a) 0.0025 rem (b) 38 times background of 0.13 rem/yr
51. The two workers receive the same dose in rad.
53. 18.8 J
55. (a) 10 (b) 108

59. (a) �1 � 108 m3 (b) �1 � 1013 J (c) � 1014 J
(d) � 10 kilotons

CHAPTER 15

1. 10�23 s
3. fmin � 2.26 � 1023 Hz, �max � 1.32 � 10�15 m
5. 2.2 � 10�18 m
9. (a) Does not occur (violates baryon number)

(b) Occurs
(c) Does not occur (violates baryon number)
(d) Occurs
(e) Occurs
(f) Does not occur (violates baryon number and muon–
lepton number)

11. (a) Electron and muon–lepton number
(b) Electron– lepton number
(c) Strangeness and charge
(d) Baryon number
(e) Strangeness

13. (a) 5.63 GeV (b) 5.64 GeV
15. For Example 15.5, E � 48%; for Exercise 3, E � 48%,

E � 46%; for Problem 13, E � 33%.
17. A neutron, udd
19. mu � 312.3 MeV/c2, md � 313.6 MeV/c2

21.

25. 36.3 � 10�6 g
27. 0.055 mCi
29. 9.46 � 109

31. (b) � � 0.25 h�1; T1/2 � 2.77 h (c) 4 � 103 counts/min
(d) 9.59 � 106

33. (a) 18.3 counts/min
35. 11.8 decays/min � g
41. 2.26 MeV
43. (b) 4.79 MeV (c) 0.08 MeV (d) The Po daughter 

carries off about 3 � 10�6 of the kinetic energy in the beta
decay.

45. (a) Q � �1.82 MeV, so reaction cannot occur.
(b) Q � �1.68 MeV, so reaction cannot occur.
(c) Q � 1.86 MeV, so reaction can occur.

47. Using the uncertainty principle, electrons in a nucleus are
found to have an energy of about 100 MeV. Since the most
energetic electrons emitted in beta decay have energies less
than 10 MeV, electrons are not present in the nucleus.

51. 18.6 keV
53. (a) 3.96 � 109 yr (b) It could be no older. The rock could

be younger if some Sr were initially present.
55. (b) R/�

57. 2.66 d
59. 5400 yr to 6800 yr
61. (a) 4.00 Gyr (b) 0.0199 and 4.60

CHAPTER 14

1. (a) �2.4386 MeV (b) 2.5751 MeV
3. 5.70 MeV
5. 17.35 MeV
7. (a) Q �� 1.19 MeV, Kth � 1.53 MeV (b) 17.35 MeV
9. (b) 1.53 MeV

11. 0.0266 b
13. (a) 0.0373 (b) 0.0663 (c) � 1 (d) 0.1 to 10 eV
15. (a) 0.86 (b) 6.1 � 1011 protons/s

(c) 8.7 � 1010 protons/s
17. 2.25 � 1012

19. 25
21. 200.6 MeV
23. (a) 4.84 V �1/3 (b) 6 V �1/3 (c) 6.30 V �1/3

(d) Sphere (e) Parallelepiped
25. (a) 3333 MW (b) 2333 MW (c) 1.04 � 1020 events/s

(d) 1.34 � 103 kg (e) 3.7 � 10�8 kg/s
27. (a) 2.70 � 10�15 m (b) 720 keV

(c) vF � v0mD/(mD � mT) (d) 1.2 MeV
(e) Possibly by tunneling

29. (a) Kn � 14.1 MeV, K� � 3.45 MeV (b) Yes; since the
neutron is uncharged, it is not confined by the B field, and
only K� contributes directly to achieving critical ignition.

31. (a) 1.9 � 109 K (b) 355 kJ
33. (a) 52 � 106 K (b) 1.943 � 1.709 � 7.551 � 7.297 �

2.242 � 4.966 � 25.75 MeV
(c) Most energy is lost, since neutrinos have such low cross
sections for interaction with matter.

35. 5.3 � 1023 J
37. (a) 3000 MW (b) 5.2 � 106 L

A.16 ANSWERS TO ODD PROBLEMS

u d d

u d u

e–

νe

W–W

23. 19 eV/c2

25. Kp � 5.4 MeV, K	 � 32.3 MeV
27. 9.3 cm
29. A neutron
31. (a) A Z0 boson (b) A gluon
33. (a) 0.782 MeV (b) Proton speed � 0.001266c � 380

km/s, electron speed � 0.9185c � 2.76 � 108 m/s (c) The
electron is relativistic, the proton is not.

35. (a) p
�

� 686 MeV/c , p	 � 200 MeV/c (b) 627 MeV/c
(c) E	 � 244 MeV, En � 1 130 MeV, E

�
� 1 370 MeV

(d) 1 190 MeV/c2, 0.500c

37. (a) 2Nmc (b) 31/2Nmc (c) Method (a)
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A proton, 466–467
Absorber, half-value thickness of, 530
Absorption

Einstein’s coefficient of, 456
of radiation, 447–448
spectrum of, 386

of HCl molecule, 386, 387f
transition of, 387f

Absorption spectroscopy, 127–129
Acceleration

inertial frames for, 5
relative, 54–55

Acceptor, 434
Actinide series, 323
Actinium radioactivity, 492
Activation energy, 374
Agricultural research, radioactive tracers in,

536–537
Air

linear absorption coefficients of gamma rays
in, 530t

linear absorption coefficients of x-rays in, 529
Allowed energy

for hydrogenlike atoms, 279
for molecular rotation, 379–380
for Morse oscillator, 384
for vibration, 382–383

Allowed region, 232
Allowed transition, selection rule for, 281
Alloy, 409

quaternary, 454
� decay, 242–245, 484–487, 492t, 496

probability of, 487
� emitter, characteristics of, 242t
� particle, 466, 480

penetrating power of, 480–481
proton collision with, 121–122
range of, 527
scattering of, 120–121, 125, 144

large-scale, 122
theoretical versus experimental, 123

of unstable nucleus, transmission coefficient
for, 243–244

� particle-nucleus system, potential energy of, 486
Aluminum

linear absorption coefficients of gamma rays
in, 530t

linear absorption coefficients of x-rays in, 529
neutron capture by, 509
nucleus of, estimating radius of, 124

Ammonia
inversion of, 245–247, 249

molecule of, double oscillator potential for,
245–246

Ammonia maser, 247
Amorphous solid, 404–405

bonding in, 410–413
radial distribution function of, 412–413
technological applications of, 413

Anderson, Carl, 287–288, 550, 553, 590
Ångström, Anders, 129
Angular momentum, 584

in Bohr atom model, 140, 271
central force and, 267–271
conservation of, 280–281, 504, 559–560
nuclear, 469–470
orbital, 302–303, 328
orientations of, 271–272
quantization of, 139–141, 153–154, 270,

273–277
quantum number integer of, 305
of rotation, 306–307
rotational energy and, 378–379
total, 309–310, 329
uncertainty principle for, 267
vector model for, 310f

Angular momentum operators, 275
Angular separation, 181
Anharmonic effect, 384
Annihilation, decay products with, 288–289
Antibaryon, 575
Antibonding, 400
Antibonding orbital, 393, 394–395

total molecular energy for, 396f
Anticolor, 578
Antielectron, 287–288. See also Positron
Antihydrogen, 287–289

detection of, 288–289
Antilepton, 560–561
Antimuon, 561
Antineutrino, 488, 496
Antiparticle, 550–552, 583

for every particle, 552
of hydrogen atom, 287–289

Antiproton, 288, 575
cooling of, 593

Antiquark, 576
color of, 577
properties of, 575t

Antisymmetric electron, 315
Approach-to-equilibrium problem, 335–336
Argon, cohesive energy of, 410
Associated Legendre polynomial, 269, 

276

Atom force microscope (AFM), gold cluster
images of, 164f

Atom trapping, 368–371, 370–371
Atomic absorption spectroscopy, 129
Atomic cohesive energy, 407
Atomic electron, 67

space quantization for, 272–273
Atomic energy level, direct confirmation of,

141–143, 141–145
Atomic force microscope (AFM), 163
Atomic fountain, 368
Atomic hydrogen ion, 277–287
Atomic mass, 465–466

discovery of, 119
unit of, 465, 466

Atomic moment, 300–301
Atomic number, 464, 495

values of, 123
Atomic resonance frequency, 368–369
Atomic separation, potential energy of, 381f
Atomic shell, 291

configuration of, 320–322
spectroscopic notation for, 280t
volume of, 282

Atomic spectral line, fine structure doubling of,
309, 329

Atomic structure theory, 119–120
Atomic subshell, 291

configuration of, 320–322
spectroscopic notation for, 280t

Atomic transition, upward and downward, 449
Atomic volume, 324–325
Atomic wavefunction

antisymmetric form of, 392–394
molecular orbitals from, 391–392
symmetric combination of, 392, 394

Atom(s)
Bohr, 125–139
catastrophic collapse of, 131
chemical properties of, 319–320
composition of, 108–125
constituents of, 547
definition of, 547
discovery of, 107
discrete energy levels of, 142–143, 145
distribution of in space, 412–413
electron affinity of, 374
electron configurations of, 320–321
electron microscopic examination of, 163
electrostatic forces between, 373
emission and absorption of radiation by,

447–448

Index

I.1

Page numbers followed by “f” indicate figures; page numbers followed by “n” indicate footnotes; page numbers followed by “t” indicate
tables.
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Atom(s) (Continued)

energy to ionize, 133–134
internuclear separation distance between,

373–374
laser manipulation of, 366–371
light absorption by, 366
in matter, 106–108
model of, 203
nuclear model of, 108, 110
orbital magnetism and normal Zeeman effect

of, 296–302
“plum-pudding” model of, 119
quantitized energy of, 145
quantum model of, 130–139
Rutherford’s model of, 119–125
structure of, 295–330
in successive planes, 87–88

Attenuation, 529
Avogadro, 107
Avogadro’s number, 108

B-hadron decay, 596
Background radiation, 532
Baker, C. P., 507n
Balmer, Johann Jakob, 129–130

empirical relation of, 134
hydrogen series for, 136, 137

Band theory, 455
isolated-atom approach to, 425–426
of solids, 425–433

Bardeen, John, 437–438, 445
Barium

electrolysis of, 109
kinetic energy of, 511

Barn, 507, 539
Barrier

coefficients of, 248–249
field emission microscopy and, 239–241
joining conditions at, 234–235
penetration depth of, 234
penetration of, 238–249 (See also Tunneling)
reflection coefficient of, 233, 237
square, 231–238
transmission coefficient of, 233–234

approximating, 238
Barrier potential energy, 231–232
Barrier wave, without propagation, 237–238
Barrier wavefunction, 236–237
Baryon, 556–557, 572, 575, 583

characteristics of, 571–572
color of, 577
patterns of, 571–572
properties of, 557t
quark compositions of, 575f
symbol of, 557

Baryon number, 583, 584
checking, 560
conservation law of, 560

BCS theory, 446, 456
Beat, 165
Becquerel, Henri, 463
Becquerel (Bq), 482
Bednorz, J. Georg, 446–447
Beryllium, electron configuration of, 320
� decay, 487–489, 492t, 496, 580, 593–594
� particle, 467

penetrating power of, 480–481

Bevatron particle accelerator, 552
Big Bang, black holes formed at, 248
Binding energy, 472–476, 495
Binnig, Gerd, 254, 255
Biological organisms, radiation damage in,

531–532
Biomedical techniques, fluorescence, 390
Black hole, 56, 97f

decay of, 247–248, 249
gravitational attraction from, 96–98

Blackbody
definition of, 68–69
emission curves of, theoretical versus

experimental, 73f
maximum power emission of, 69–70
spectral energy density of, 70–72

Blackbody cavity radiation, 76–77
spectral distribution for, 66
thermal equilibrium of, 77–78

Blackbody formula, 71–73, 80, 352
Blackbody law

Planck’s, 79–80
Rayleigh-Jeans, 77–79

Blackbody radiation, 68–77, 80, 351–352
apparatus for measuring, 71f
formula for, 99, 215
law of, 449
Planck’s experiments on, 72–77

Bohm model, quantization in, 153–154
Bohr, Niels, 125f

correspondence principle of, 139–141
Bohr atom

angular momentum quantization in, 271
classical limit of, 140f

Bohr atomic model, 547
Bohr atomic theory, 125–139

assumptions of, 132
postulates of, 144

Bohr magneton, 297, 328, 467
Bohr orbit, 153–154
Bohr radius, 133, 243–244
Boltzmann, Ludwig, 66, 335f, 365f
Boltzmann distribution, 137, 449–450
Boltzmann relation, 448
Boltzmann’s constant, 341, 435
Bond

chemical, 372
covalent, 374–376, 390–397, 399

energy of, 394
Bonding, 400

in complex molecules, 397–399
in hydrogen molecule, 396–397
molecular mechanisms of, 373–374

covalent, 374–375
hydrogen, 377
ionic, 374
van der Waals, 375–377

in solids, 405–413
Bonding-antibonding orbital pair, 397, 400
Bonding orbital, 393

of hydrogen ion, 394
total molecular energy for, 395f, 396f

Born, Max, 94, 191–192
Born interpretation, 191–194
Boron, electron configuration of, 320
Bose, Satyendranath, 350f
Bose condensate, 370

Bose-Einstein condensate, 371
Bose-Einstein condensation, 346, 347, 350,

370–371
Bose-Einstein distribution, 347–351, 354, 361, 424
Bose-Einstein statistics, 370

applications of, 351–356
Boson, 330, 346–347, 549, 575

exchange symmetry for, 314–316
Higgs, 581–582
integral spin of, 446
massive, 581
properties of, 577t
W and Z, 581

Bottomness, 576
Bound electron, 211
Box, particles in, 200–209
Box potential, 209
Box wavefunction, normalizing, 263–264
Bragg, William Henry, 87
Bragg, William Lawrence, 87
Bragg crystal x-ray spectrometer, 89f
Bragg equation, 87
Bragg scattering, 87–88
Brain, PET scan of, 552f
Brattain, Walter, 437–438
Bremsstrahlung, 88–89, 520, 528, 597, 598–599
Brookhaven National Laboratory, 576
Brown, Laurie M., 555
Brownian motion, 11, 108
Bubble chamber, 52, 535, 541

particle detection in, 563–564
photograph of, 562f

Bubble-chamber tracks, 551f

Cadmium, 322
neutron-capture cross section for, 508f

Calcium, electron configuration of, 320
Calorimetry, 597–598
Cancer, radiation therapy for, 538–539
Carbon

activity of, 483
Compton shift for, 93
electron configuration of, 320

Carbon-14 nucleus, radioactivity of, 482–483
Carbon atom

bonds in, 398–399
in diamond, 408f
frequency of vibration of, 356
on graphite surface, 258

Carbon dating, 489–491
Carbon dioxide, atmospheric, 388
Carbon monoxide molecule

rotational energy of, 380–381
vibration of, 383

Cartesian coordinates, 266
Cathode ray tube (CRT), 162

development of, 159
Cathode rays, identification of, 108, 110–112
Causality, 31–35
Cavity resonator, Planck’s hypothesis for, 215
Center-of-mass frame, 569, 570
Central force, 266–271, 290

of hydrogen atoms, 278
particle energy degeneracy of, 270

Cerium, 322
CERN

colliding-beam areas at, 564f

I.2 INDEX
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INDEX I.3

Large Electron-Positron Collider (LEP) at,
581–582

Cesium, 126
Chadwick, James, 125, 467
Chain reaction, self-sustained, 513–514
Chamberlain, Owen, 552
Charge, 571

atomicity of, 115
conservation of, 504
exchange of, 580–581

Charge-coupled device (CCD), 205–209
advantages of, 206–209
sensor of, 208f
single picture element in, 206f

Charge-coupled device (CCD) chip, 208f
Charge-to-mass ratio, 144
Charged-particle accelerator, 503
Charged particle tracking, 595–596
Charm, 575–576, 584
Chemical bond, 372
Chemical compound, basic unit of. See Molecule
Chernobyl reactor, 516–517
Chip technology, 442–443
Chlorine, electrolysis of, 109
Chromium, electron configuration of, 321
Chu, Steven, 350, 366, 367
Clausius, Rudolf, 335

on statistical mechanics, 66
Clocks

Earth-based versus moving, 17–18
moving, 16–17
synchronized, 13

Cloud chamber, 535
in magnetic field, 550

Cobalt
gamma rays from, 93
in medical therapy, 538–539

Cohen-Tannoudji, Claude, 367
Coherent photon, 447
Coherent population trapping, 367–368
Cohesive energy

atomic, 407
ionic, 406f, 407
of solid gas crystals, 410

Collective nuclear model, 479, 496
Collector-base junction, 438
Collider Detector (CDF), Fermilab, 595–599
Colliders, 581–582
Collision, conservation of mass-energy in, 

48–50
Color, 577
Color centers, 531
Color charge, 577, 578, 584

of gluons, 578–579
Color force, 578, 584
Compactified dimensions, 582
Complementarity, 180
Complementary error function, 215
Compton, Arthur Holly, 86, 89
Compton effect, 66, 86, 89–93

equation for, 90
Compton scattering, 540
Compton shift

for carbon, 93
formula for, 93, 100

Computer, integrated circuits in, 441
Condon, E. U., 242, 486

Conduction
in insulators, 427, 428f
in metals, 426–427
in semiconductors, 428–429

Conduction band, 427
Conduction electron, 454

density of states for, 357–358
Conductivity, 454

free electron model of, 418
free electron theory of, 418–420

Confinement time, 521, 540
in nuclear reaction, 520

Conservation
laws of, 559–561

of strangeness number, 562–563
of linear momentum, 6
of relativistic energy and momentum, 584

Constructive interference, 430–431
Continuous distribution functions, 348–349
Convergence limit, 129–130
Cooper, Leon N., 445
Cooper pair, 445, 456
Coordinates, Galilean transformation of, 4–5
Copper

linear absorption coefficients of x-rays in, 529
resistivity of, 419f

Cornell, Eric, 370
Correlation diagram, 391

for hydrogen molecular ion, 392f
Correspondence principle, 139–141, 145, 203
Coulomb attraction, 390–391
Coulomb barrier, 124, 243, 540

overcoming, 519
Coulomb constant, 132f, 406
Coulomb energy, 394
Coulomb force, 266, 295, 468

of attraction, 132, 446n
repulsive, 474

Coulomb interaction, in ionic bonding, 405–406
Coulomb potential, 478
Coulomb repulsion, 316–317, 394

effect of, 477
energy of, 242–243

Coulomb repulsive energy, 486
Coulomb repulsive force, 495

in fusion reaction, 518f
Coulombic attraction, 203
Coulomb’s law, 122, 125
Covalent bond, 374–375, 399

classical orbit model for, 375f, 376f
electron sharing and, 390–397
quantum origins of, 393
spatial arrangement of, 376f
spatial electron distribution of, 375

Covalent crystal, 408–409
Covalent solid, 408–409, 454
Covariant physics laws, 3
Covariants, 5–6
CPT invariance, 289
Creation story, rewriting of, 65
Critical ignition temperature, 519–520, 540
Critical temperature, 443
Cross section, reaction, 506–508
Crystal

atoms in, 410f
color centers in, 531
covalent, 408–409

elastic scattering from, 155–156
formation of, 410
imperfections of, 455
ionic bonding in, 405–407
ions of, 407
metallic, 409
molecular, 409–410
potential energy of, 406–407
regularity of, 414

Crystal lattice
with atomic separation, 432f
electron wave scattering by, 429–433

Crystalline germanium, 412f
Crystalline gold, 253f
Crystalline iron, 411f
Crystalline platinum alloy, 241f
Crystalline solid, 405, 454

symmetry and regularity of, 404
Cubic box, 265t
Curie, Joliot and Irene, 464
Curie, Marie, 479–480
Curie, Pierre, 479–480
Curie (Ci), 482
Current density, 416–417
Current oscillation, frequency of, 66
Current-voltage relation, 435
Curved spacetime, 55–56
Cyclotron radiation, 520n
Cygnus X-1 black hole, 97–98

D-T fuel pellets, 524f
D-T fusion reaction, 524–525
Dalibard, Jean, 367
Dalton, John, 107, 547
Dark D-lines, 127–128
Darwin, Charles, 493–494
Data, detecting patterns in, 571
Daughter nucleus, 484–485
Davisson, Clinton J., 151, 154–155, 186
Davisson-Germer apparatus, 156f
Davisson-Germer experiment, 154–163
DC electric field, 590
DC technique, 590
de Broglie, Count Louis, 151, 152

pilot waves of, 152–154
de Broglie formula, 157, 254
de Broglie relation, 186
de Broglie wave, transmission resonances of,

236–237
de Broglie wavelength, 152–153, 209
Dead Sea Scrolls, dating of, 490
Debye, Peter, 86, 355
Decay, 580, 584

of leptons, 560–561
processes of, 484–492
rate of, 482, 496

for carbon, 483
for radium, 483

of strange particles, 562, 563
of top quarks, 593–594

Decay constant, 481, 496
Decay equation, 52–53
Decay track length, 564–566
Deep water waves, 168
Degeneracy, 339
Degeneration, 290
Delta particle, lifetime of, 567
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Delta plus particle
decay of, 565–567
momentum and energy of, 566

Democritus, 107, 547
Density of states, 339
Depletion region, 434–435, 439–440
Deuterium, 464

fusion reaction with, 518–519
nuclei fusion of, 51

Deuterium-deuterium reaction, 519–520
Deuterium-tritium reaction, 519–520

criteria for, 521
Deuteron

binding energy of, 473
fusion of, 519

Diamond
specific heat of, 356
structure of, 408

Diatomic molecule
potential energy of versus atomic separation,

381f
rotation of, 378f
vibrational frequencies and effective force

constants for, 382
Diffraction, 154

of neutrons, 158
Dimensions, in string theory, 582–583
Diode, 456

characteristic curve for, 436f
current-voltage relation for, 435
forward and reverse currents in, 436
junction, 439
light-emitting and -absorbing, 436–437

Dipole-dipole attraction, fluctuation-induced,
410

Dipole-dipole force, 376, 454
Dipole-induced force, 376
Dipole magnet, 592f
Dirac, Paul Adrien Maurice, 287n, 307, 351f, 550
Dirac sea, 550
Dirac theory, 551–552
Disintegration energy Q, 50, 485, 512
Dispersion force, 376–377
Dispersive media, 168
Displacement law, Wien’s, 70–72
Dissociation energy, 374

for hydrogen ions, 394
Distribution function, 360–361
Donor atom, 433–434
Doping, 433
Doppler, Christian Johann, 25
Doppler formula, nonrelativistic, 178
Doppler shift, 22–23, 366

average, 366–367
double, 89n
formula for, 24–25
relativistic, 22–25, 36

Double-slit electron diffraction experiment,
180–181, 183f

view of, 184–185
Drag force, 117, 118
Drift chamber, 536, 541, 596
Drift speed, 415–417
Drift time measurement, 595–596
Drift velocity, 595–596
Drude, 413–414
Dynamic equilibrium, 448

Earth
cooling of core of, 493
determining age of, 493–495
measuring movement of, 7

Effective moment, 307
Effective one-dimensional wavefunction, 291
Effective spring, 381
Eigenfunction, 223

of momentum operator, 223–224
Eigenvalue

property of, 223
of sharp observables, 224

Eightfold way, 571–573
Einstein, Albert, 10, 66, 81f, 108, 125, 131, 350

biography of, 11
general relativity theory of, 54–59
light quantum theory of, 99
light speed and, 8
photoelectric effect theory of, 80–85
relativity theory, 1
revolutionary papers of, 80
special theory of relativity of, 1, 2–3
specific heat theory of, 352–355
time relativity theory of, 14–15
twins paradox of, 21–25

Einstein temperature, 354–355
Einstein’s coefficient, 448, 456

of absorption, 447
Einstein’s equation, 554
Elastic collision, momentum changes with, 

261f
Elastic scattering, 155–156
Electric charge, 584

conservation laws of, 559–560
positive, 549

Electric field, 549
applied to metals, 427
estimating strength of, 429
negative particle deflection by, 111f
net effect of, 415–416
zero, 443–444

Electrical conductivity
of metals, 417–418
of selected substances, 414t
variation in, 426–429

Electrolysis, law of, 108–109, 143
Electromagnetic disturbance, 66
Electromagnetic field, 549
Electromagnetic force, 548, 583

mediation of, 549
Electromagnetic interaction, 549, 553–554, 580

between leptons, 557–558
Electromagnetic radiation, 383

absorbed by blackbody, 68–69
of decelerated charged particles, 528
transitions in, 385
travel of, 2

Electromagnetic spectrum, infrared portion of,
388

Electromagnetic wave detector, 57f
Electromagnetic waves

versus gravitational waves, 56–57
properties of, 66
radiation of, 67
relativistic Doppler shift for, 36
standing polarized, 78

Electromagnetism, theory of, 11

Electron, 547, 558
accelerated charges of, 131
antisymmetric, 315, 316
average distance of from nucleus, 293
charge of, 82, 109
colliding with photon, 176–177
collision of with photons, 91–93
configurations of, 320–321, 323t
de Broglie wavelength for, 154
diffraction lines from, 158
in double-slit experiment, 184–185
dual article-wave nature of, 152
electromagnetic interaction between, 553–554
energetic, 540
energy levels from bombardment of, 142–143
energy loss of, 598–599
energy of, 47
exclusion principle of, 312–314
force binding, 548
g factor of, 329
high-energy, collected by scanning electron

microscope, 162
identification of, 110, 594
indistinguishability of, 313–314, 315
inelastic collisions of, 141–142
interactions of

in detector, 598f
with matter, 528
screening effects and, 316–319

jump of, 137
lepton numbers of, 560–561
mass of, 465, 467
matter waves of, 153–154
maximum speed of, 82
momentum of, 44
mutual repulsion of, 313f
in negative energy states, 550
within nucleus, 178
orbital angular momentum of, 132f
orbital motion of, 132
orbits of

Bohr’s sketches of, 138f
large, 140

particle properties of, 179–180, 186
in positive energy state, 550
probability for in hydrogen, 284
properties of, 557t
quantum mean free path of, 423–425
random successive displacements of, 415f
spin and magnetic moment of, 467t
spin angular momentum of, 306–307
spin of, 295

properties of, 305
semiclassical model for, 307–308

spin quantum number for, 305
spin resonance of, 470–471
spinning, 303–309
stable orbits of, 132, 144
in superposition state, 183
symbol of, 557
total magnetic moment of, 307
transport bottleneck of in metals, 421
velocity of, 143–144
velocity of in cathode tube, 110–112
wave nature of, 154–163
wavelength of, 181
x-ray scattering from, 90f
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Electron affinity, 374
Electron-atom collision, 88
Electron beam

bombardment of, 145
deflection of, 112–113, 143–144
in food preservation, 539

Electron capture, 489, 492t, 496
Electron charge, 465

determination of, 144
measurement of, 108, 113–119

Electron diffraction
description of, 179–183
experiments of, 151
pattern of in amorphous and crystalline iron,

411f
Electron-electron repulsion, 397
Electron jumps, 132
Electron-lepton number, 560–561
Electron microscope, 159–163
Electron-neutrino, 558

lepton numbers of, 560–561
properties of, 557t

Electron-positron annihilation, 551
Electron-positron pair, 550–551

bubble-chamber tracks of, 551f
Electron probability distribution, 286f
Electron-proton pair, 467
Electron-proton separation, 284
Electron sharing, 390–397
Electron volts, 47
Electron wavelengths, Davisson-Germer

experiments on, 154–163
Electron waves

out-of-phase, 430–431
probability densities of, 432f
reflections of, 429–433
strong reflections of, 423

Electronic energy, molecular, 377–378
Electronic heat capacity, 359–360
Electronic shell theory, 138
Electronic spectrum, 389
Electronic states, 400
Electronic transition, 330

of hydrogen, 135
Electrostatic force, 373
Electroweak force, 549, 584
Electroweak theory, 580–582
Elementary particles. See also specific particles

classification of, 556–559
current theory of, 548
discoveries of, 547–548
energetic, recording paths of, 207
fundamental forces binding, 548–550
measuring properties of, 564–571
production of, 563–564
properties of, 557t
stability of, 563
types of, 550–600

Elements
electron configurations of, 320–323
ionization energies of, 323–325
periodic table of, 319–325
spectroscopic analysis of, 126–130

Elsasser, Walter, 154–155
Emission, radiation, 447–448
Emission lines

splitting of, 302–304

from stellar hydrogen, 340
Emission spectroscopy, 128
Emission wavelengths, 134
Endothermic reaction, 504
Energy, 584

activation, 374
carried from particle to particle, 549
conservation of

laws of, 504, 559–560, 584
of photons, 95–96
of scattered photons, 91–93

continuous distribution of, 360–361
density of, 78, 351
discrete, for particle in three-dimensional box,

263
disintegration, 50
dissociation, 374
equipartition of, 343–344
in fusion reaction, 51
ionization, 323–325
kinetic, 44–46, 45f, 47, 50–53, 59, 82, 84,

132–133, 278, 372, 488, 504–505,
568–569

loss of
electrons in, 528
photons in, 528–530
rate of, 527

mass as measure of, 48–52
measurement of, 597–598
molecular absorption of, 372
for particle in box, 202
in particle production, 568–570
photon of, 552
potential, 132
quantization of, 225
quantization of for macroscopic object,

202–203
quantum of, 74–77
relativistic, 44–47

conservation of, 52–53
rest, 45–46, 47, 59
threshold, 504
total, 46, 47, 60
versus wavenumber, 430

Energy band
continuous, 426
electrical conductivity of metals, insulators,

and semiconductors and, 426–429
from electron wave reflections, 429–433
3s, 427f
in semiconductors, 451–453
of solids, 425–433
splitting of, 426

Energy-conserving optical transition, 280–281
Energy gap, 427, 455

values of, for semiconductors, 428t
Energy level

degeneration of, 264
degeneration of in hydrogenlike atoms, 287
quantum numbers and degeneracies of, 

265t
for quantum oscillators, 215–217
3s band of, 426

Energy-mass relationship, 554
Energy-momentum relation, 46–47
Energy operator, 221–222, 223

eigenvalue condition for, 276

Energy state
density of, 339
negative, 287n, 550
positive, 550

Energy-time uncertainty principle, 175, 476
Energy-time uncertainty relation, 567
Equilibrium

in ammonia molecule, 245–246
potential energy at, 212–213
ratio of, 448
stable, 212
unstable, 212–213

Equilibrium separation, 374
Equipartition of energy, 343–344
Equipartition theorem, 415
Equivalence principle, 60, 95
Eta particles, 557t
Ether, 6–7

velocity of, 7
Ether frame, 6–7, 8
Ether wind, 7
Euler’s identity, 431
Exchange force model, 475–476
Exchange particle, mass of, 476
Exchange symmetry, 312, 314–316
Excitation energy, 378n
Excited state, 202

first, 285
of hydrogenlike atoms, 284–287
second, 264–265, 285
splitting of, 300–301

Exclusion principle, 295, 312–314, 315, 321f,
330, 346–347, 358, 361, 375, 397

nuclear energy level and, 478
Exothermic reaction, 504
Expectation value, 216–220, 224
Exponential decay, 481

Fairchild Camera and Instrument, 441
Falling-photon experiment, 95f
Faraday, Michael, 108–109
Faraday’s law of electrolysis, 143
Faraday’s law of induction, 443–444
Fermi, Enrico, 350f, 351, 466, 489
Fermi-Dirac distribution, 347–351, 359, 361,

421, 455
function of, 356–357

Fermi-Dirac probability, 427f
Fermi-Dirac statistics, 370

application of, 356–360
Fermi energy, 349, 350, 358, 361, 421

of gold, 360
of metals, 427

Fermi National Accelerator Laboratory, 568
accelerator at, 590–593, 594f
aerial view of, 591f
research of, 576
Tevatron accelerator at, 582

Fermi speed, 357, 421–422, 455
Fermi sphere displaced, 421f
Fermi temperature, 358–359
Fermi velocity, 414
Fermion, 314–315, 330, 346, 347, 348, 397, 576

half-integer spins of, 446
Fermion superpartner, 582
Fermtometer, 466
Ferromagnetic substance, 444f
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Fertilizer tag, 536–537
FET. See Field-effect transistor
Feynman, Richard P., 307n, 553–554, 555, 

576f
Feynman diagram, 553–554, 579
Field, 549. See also specific fields

Field-effect, 440
Field-effect transistor, 439–440
Field emission, 239–241

transmission coefficient for, 240–241
Field emission microscopy, 239–241
Field particle, 549, 583. See also Force-carrying

particle
properties of, 577t

Fine structure doubling, 309, 329
Finite square well, 209–212

energy quantization for, 211–212
First excited state, 133–134

hydrogen in, 137
Fission, 503, 539–540

distribution of products of, 511f
rough mechanism for, 513
steps leading to, 478f
of 235uranium isotope, 513–515

Fission fragments, 510–511
converting kinetic energy of, 516
energies of, 527
mass number and, 511–512

Fission reaction, 50–51, 60
Fitzgerald, George F., 10
Fluorescence, 389–390, 400
Fluorescent probe, 390
Food preservation, 539
Forbidden energy region, 426
Forbidden region, 232, 238

classic, 249
Forbidden transition, 281
Force. See also specific forces

wavefunctions in presence of, 197–200
Force-carrying particle, 548
Fourier, Jean Baptiste Joseph, 493
Fourier integrals, 170–173
Fourier transform, 412
Franck, James, 141–145
Franck-Hertz apparatus, 141, 141f
Franck-Hertz experiment, 141–145
Franklin, Melissa, 576, 590f
Fraunhofer, Joseph, 127–128
Fraunhofer D-line, 127–129
Free electron model, 454

of conductivity in solids, 418
of metals, 413–420

Free electron theory
of gas, 356–360
of heat conduction, 418–420

Free particle
plane wave representation for, 194–195
wavefunction of, 194–197

Free pat, 415
Freedman, Roger A., 253–259
Frequency, continuously varying set of, 170
Fringe pattern, 7–8, 10
Frisch, Otto, 510
Frustrated total internal reflection, 238
Fundamental force, 548–550
Fusion, 503, 517–526

advantages and problems of, 526

Fusion power reactor
design of, 524–525
generic, 526f
requirements for, 521

Fusion reaction, 51–52, 518–521
thermonuclear, 518

Fuzzy observable, 216, 223, 225
angular momentum and, 267

Fuzzy operator, 224
g factor, 329
Galaxy, rapidly receding, 25
Galilean addition law for velocities, 5, 6–7, 12
Galilean transformation, 4–5, 10, 12, 25, 35

covariant under, 6
versus Lorentz transformation, 28
velocity, 29, 30

Galileo, 4
Gallium arsenide p-n junction laser, 452
Gamma decay, 491–492, 492t, 496
Gamma detector, 551
Gamma radiation

damage from, 532
in food preservation, 539

Gamma ray, 480, 552
absorption of in lead, 528–529
damage from, 531
in ionization, 540
linear absorption coefficients of, 530t
nucleus-photon interaction of, 550–551
penetrating power of, 481
speed of, 12

Gamow, George, 242, 486
Gas

atoms in, 410f
molecules of

energy of, 399
Maxwell speed distribution for, 341–344

Gaussian wave packet, 196–197
Gaussian wavefunction, 174–175
Geiger, Hans, 108, 119, 120, 122, 463
Geiger counter, 533, 541

diagram of, 534f
Gell-Mann, Murray, 555, 571f, 572–573
Genetic radiation damage, 531
Gerlach, Walter, 303, 304
Germanium, radial distribution function of, 412f
Germer, Lester H., 151, 154–155, 186
Gibbs, Josiah Willard, 66, 335, 336f
Glaser, Donald A., 535
Glashow, Sheldon, 580
Glass

atoms in, 410f
metallic, 410–411

Global positioning system (GPS) units, 3
Global warming, 388
Glucose, metabolism of, 551
Glue-ball, 578
Gluino, 582
Gluon, 548, 549, 578

blue-antired, 578
color charge of, 578–579
properties of, 577t
virtual, 579

Goeppert-Mayer, Maria, 478
Gold

Fermi energy of, 360
� particle scattering from atoms of, 144

Goudsmit, Samuel, 304
Grand unification theory (GUT), 582
Graphite surface atom, 258

STM image of, 259f
Gravitational attraction, 53–55, 96–98
Gravitational field, 60, 549

redshifted, 55
transformed away, 55

Gravitational force, 549, 583
mediator of, 556

Gravitational interaction, 583
Gravitational photon mass, 94
Gravitational radiation, 56–59
Gravitational redshift, 96–99
Gravitational theory

Newton’s versus Einstein’s, 55
universal, 1

Gravitational torque, 297–298
Gravitational wave, 60

detection of, 57–58
Graviton, 549, 556, 583
Gravity, 11

light and, 95–98
Gravity imaging, 56f
Gray (Gy), 532
Greenhouse effect, 388
Greytak, Tom, 370
Ground quantum state, 370
Ground state, 133, 142–143, 202

of helium atoms, 316
of hydrogenlike atoms, 282–284
for three-dimensional box, 264
wavefunction for, 214f

Group velocity, 167
in deep water waves, 168
in dispersive medium, 168

Gurney, R. W., 242, 486
Gyromagnetic ratio, 297, 328

Hadron, 556–557, 576, 583
compositions of, 574–576
energy of, 597–598
identification of, 594
properties of, 557t
quark compositions of, 575f
substructure of, 573–576

Hadronic calorimeter, 597–598
Hafele, J. C., 18n
Hahn, Otto, 510
Half integral spin, 347
Half-life, 482, 496

of � emitters, 242
of strange particles, 562
for thorium and polonium, 244

Half-value thickness, 530
Hamiltonian energy operator, 222, 223, 276–277
Hänsch, Theodore, 366
Hansma, Paul K., 253–259
Harmonic approximation, 213

to molecular vibration, 381
Harmonic oscillator, 225

energy levels for, 215–217
Harmonic waves, infinite number of, 170
Hartree-Fock methods, 319
Hartree theory, 318–319
Hartree’s self-consistent fields, 319
Hau, Lene Vestergaard, 371
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Hawking, Stephen, 247, 248f
Hawking radiation, 248, 249
He-Ne gas laser, 450–451
Heat conduction, free electron theory of,

418–420
Heated body

intensity versus wavelength for, 126f
universal character of, 68

Heisenberg, Werner, 173–174, 175
Heisenberg microscope, 176f
Heisenberg uncertainty principle, 173–178, 368
Helium

atoms of, ground state in, 316
electron configuration of, 320
ions of, 278
nucleus stability in, 469
wavefunction of, 315

Hertz, Gustav, 141–145
Hertz, Heinrich, 67–68, 80–82

experiments of, 66–68
Hertzian wave, 67
Heschel, William, 493
Hess, Harold, 370
Heteronuclear molecule bonding, 397–398
Hexagonal pattern, 572, 572f
Higgs, Peter, 581
Higgs boson, 581–582
Higgs field, 581
High-energy particle collisions, 563–564
Hole, 429, 456
Holloway, M. G., 507n
Homonuclear molecule, 400

bonding in, 397
Hubble, Edwin, 25
Hubble Space Telescope, Advanced Camera for

Surveys technology of, 206f
Hulse, Russell, 58, 59f
Hund’s rule, 316, 320, 321f
Hydra galaxy, speed of recession of, 25
Hydrocarbon bond, 398–399
Hydrogen

Balmer series for, 136, 137
electron configuration of, 320
electron-proton separation in, 284
electronic transition of, 135
electrons of

magnetic energy of, 300
wavefunctions of, 291

emission spectrum of, 129
emission wavelengths of, 134
energy-level diagram of, 134f
energy levels of, 133
in first excited state, 137
ground state of, 395
ions of, electrolysis of, 112
Maxwell-Boltzmann statistics valid for, 345
n = 2 level of, 281–282
nucleus of, 464

fusion of, 518
probability for electron in, 284
stellar, 340
Zeeman spectrum of, 308–309

Hydrogen atom
Bohr’s model of, 132f
central force problem of, 278
spectral series for, 130t
structure of, 295

wave mechanics of, 277–287
wave pattern of, 153
Zeeman spectra of, 301–302

Hydrogen bond, 377, 399, 410
Hydrogen chloride molecule, 386, 387f
Hydrogen difluoride ion bond, 377
Hydrogen molecular ion, 390–395

antibonding orbital of, 395
bond energy of, 394
bonding and antibonding orbitals of, 393–395
correlation diagram for, 391, 392f

Hydrogen molecule
bond of, 396–397
bonding and antibonding orbitals of, 396f

Hydrogenlike atom
excited states of, 284–287
ground state of, 282–284
probability density for, 286f
radial probability density for, 285f

Hydrogenlike energy, 315
Hydrogenlike ion, 277–287

wavefunctions of, 291

IBM Zurich Research Laboratory, 446
Ice man, dating of, 490
Ideal gas, Maxwell speed distribution for, 341
Incompatible observable, 273n
Independent-particle model, 396, 496
Independent-particle nuclear model, 478–479
Induction, Faraday’s law of, 443–444
Inelastic collision

energy of, 141–142
between equal mass particles, 41–42
kinetic energy lost in, 48–49

Inelastic scattering, cross sections for, 507–508
Inert gas, van der Waals forces in, 375–376
Inert gas crystal, 410
Inertia, 53–55
Inertial confinement, 523–524
Inertial frame of reference, 3, 4–5, 10, 19–20, 41

different, 21–22
Inertial mass, effective, 95
Infinite square well, 201
Infinite wave, 164–165
Infrared radiation, 388
Injection laser, 456
Injection pumping, 452
Insulator, conduction in, 427, 428f
Inteference patterns, 184
Integral spin, 347
Integrated circuit, 441–443, 456
Intel microprocessor, 442–443
Interference effects, 180–182
Interference fringe

accumulation of, 181f
schematic of, 9f

Interference pattern, 7–8
in double-slit experiment, 184–185
of matter waves, 187

Interferometer, 7–8, 9, 178
atom, 368

International Thermonuclear Experimental
Reactor (ITER), 523

Internuclear separation distance, 373–374
Invariants, 5–6
Iodine

inelastic scattering of neutrons from, 507

radioactive isotope of, 484
Ion chamber, 533
Ionic bond, 374, 399
Ionic cohesive energy, 406f, 407
Ionic crystal, 407
Ionic solid, 454

bonding in, 405–407
Ionization, 540

electrons in producing, 528
in energy loss, 527
energy of, 133–134, 323–325
of potential, 138

Ions
concentrations of in living cells, 390
density of, 521, 540

in nuclear reaction, 520
electrostatic forces between, 373
equilibrium separation between, 406–407
separation of, 406–407
thermal displacements of, 454–455

Iron
electron diffraction patterns of, 411f
linear absorption coefficients of gamma rays

in, 530t
photoelectric effect of, 85

Isolated-atom approach, 425–426
Isotope, 464, 495

properties of, 465

Jeans, James, 77
Jensen, Hans, 478
Jets

identification of, 594
interacting in detector, 598f

Joining conditions
at square barrier, 234–235
transmission resonance and, 236

Jordan, Pascual, 174
JT-60U tokamak, 523
Junction transistor, 437–439

K capture, 489
K shell, 330
K shell electron, 325–326, 489
Kaon (K), 561

properties of, 557t
Keating, R. E., 18n
Kelvin, Lord, 494
Kestenbaum, David, 576, 590f
Kilby, Jack, 439, 441
Kinetic energy, 132–133

of beta decay, 488
calculation of, 47
for emitted electrons, 84
of fission fragments, 516
in fission reaction, 50
in fusion reaction, 51
of hydrogen ions, 278
loss of in subatomic reactions, 52–53
lost in inelastic collision, 48–49
of low-energy nuclear reactions, 504–505
nonrelativistic form of, 45f
in particle production, 568–569
of photoelectrons, 82
relativistic, 44, 45–46, 45f, 59
of rigid rotating molecule, 378
of rotation, 372
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Kinetic energy operator, 221, 277
in three dimensions, 261

Kinetic temperature, in nuclear reaction, 520–521
Kinetic theory, 1
Kirchhoff, Gustav Robert, 68, 126

spectroscopic studies of, 127–128
Kirchhoff theorem, 69–70
Kleppner, Dan, 370
Knoll, Max, 159, 161
Krypton, kinetic energy of, 511
Kunsman, C. H., 154–155
Kurlbaum, Ferdinand, 71, 72

L shell, 330
Lambda particle, 561

properties of, 557t
Lanthanide series, 322
Laplace, Pierre Simon de, 493
Laplace-Herschel theory, 493
Laplacian, 261, 267–268

spherical form of, 277
Large Electron-Positron Collider (LEP),

581–582
Larmor frequency, 298–299, 301–302, 309, 328
Larmor precession, 298, 299
Larmor precessional frequency, 470
Laser

absorption, spontaneous emission, and
stimulated emission of, 447–448

applications of, 447
cavity modes in, 450f
low-intensity, 369
low-power gas, 450–452
population inversion and, 449–451
semiconductor, 451–454

Laser beam, counterpropagating, 367
Laser cooling, 366–368, 370–371
Laser fusion, 524
Laser-interferometric gravitational-wave

observatories (LIGO), 58
Lavoisier, Antoine, 107
Lawsin, J. D., 520
Lawson’s criterion, 520–521, 523, 540
Layered material, 257
Lead

gamma ray absorption in, 528–529
linear absorption coefficients of gamma rays

in, 530t
linear absorption coefficients of x-rays in, 529

Lederman, Leon, 576
Legendre polynomials, associated, 269, 276
Lenard, Philip, 82, 84, 119
Length contraction, 18–21, 36

equations for, 19
examples of, 20–21
Lorentz transformation in, 29

Lepton, 548, 557–558, 573, 576, 583–584
properties of, 557t, 577t

Lepton flavor conservation, 560–561
Lepton flavor-violating reaction, 561
Lepton number, 584

checking, 561
conservation law of, 560–561
positive and negative, 560–561

Leptoquark, 582
Leucippus, 107
Lewis, G. N., 138f

Light
absorption of by atoms, 366–367
amplification of, 456
complementary view of, 100
dual nature of, 94
frequency of, 82
in gravitational field, 55
gravity effect on, 95–98
intensity of, 82
momentum of, 86
photoelectric effect and quantization of, 80–85
polarization, reflection, and interference of,

100
quantum theory of, 65–100
speed of, 6–7, 12

constancy of, 10
detecting small changes in, 7–10

understanding of, 8
wavelengths of, 9–10

Light-absorbing diode, 436–437
Light beam

horizontal and vertical speed of, 8–9
Light-emitting diode (LED), 436–437, 456
Light quantum, 80–85

localized, 80–85
theory of, 99

Light wave
electromagnetic waves and, 67
frequencies of, 23–24, 131
photon picture of, 84f
versus sound waves, 23
speed of, 2–3
traveling, classical view of, 83, 84f

Line spectra, 119–120
Linear absorption coefficient, 529, 540

of gamma rays, 530t
Linear accelerator (LINAC), 590–593
Linear momentum, 584

conservation laws of, 559–560
conservation of, 6, 504

Linear restoring force, 211–212
Liquid-drop model, 495–496
Liquid-drop nuclear model, 476–477, 478f
Liquid hydrogen bubble chamber, 563–564
Lithium

atoms of, electron loss of, 138–139
electron configuration of, 320
ions of, 278
neutron capture by, 525

Lorentz, Hendrik A., 10, 25, 413–414
Lorentz coordinate transformation, 26

inverse, 26
Lorentz number, 420, 422
Lorentz transformation, 12, 25–28, 35

calculations of, 27–28, 29–31
derivative of, 26
inverse, 28, 29–30
relative particle speeds in, 43
time dilation in, 28

Lorentz velocity transformation, 26–27, 42
Lummer, Otto, 71
Lutetium, 322
Lyman series, high-energy, 137

M-theory, 583
Macroscopic object, energy quantization for,

202–203

Madelung constant, 406
Magic numbers, 469, 495
Magnet

effects of, 309–311
properties of, 295
Stern-Gerlach, 304–305, 307

Magnetic dipole moment, t296
Magnetic energy, 300
Magnetic field, 296f

confinement of, 521–523
external, 471f
in Fermilab accelerator, 591–592
gradient in, 471–472
magnetic moment in, 297–298
magnitude of, 444–445
nonuniform, 304
orientation in, 299
spherical quadrupole, 369f
of superconductor surface current, 445

Magnetic field line, 456
Magnetic flux, 444
Magnetic lens, electronic microscope, 159–161
Magnetic moment, 297–298, 328, 467t, 469–470

energy of, 299
of orbiting charge, 297
of rotation, 302–304
total, 307

Magnetic potential energy, 299, 329
Magnetic quantum number, 268, 275–276, 279,

290, 297, 329
Magnetic resonance imaging, 471–472
Magnetic torque, 328
Magnetism, orbital, 296–302
Magnetization, ferromagnetic, 444f
Manhattan Project, 555
Marsden, Ernest, 108, 119, 120, 122, 463
Mass

dual properties of, 53–55
energy in creation of, 569
as measure of energy, 48–52
moment of inertia about, 379
nuclear, 467
offspring versus parent, 50
total energy of, 60

Mass-energy conservation, 48–49, 52–53, 60
Mass number, 464, 495

conservation of, 504
Matter

atomic nature of, 106–108
constituents of, 581
particle interaction with, 526–530
particle nature of, 106–145
radiation damage in, 530–532
wave-particle duality of, 151
wave properties of, 151–187

Matter wave
dispersion of, 197
effective one-dimensional, 278–279
group velocity of, 167
groups and dispersion of, 164–170
interference patterns of, 187
representing particle with, 164f
wave equation for, 200
wavelength and frequency of, 152–153
wavelengths of, 186–187

Matter wave packet, 169, 172–173
moving, 173
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Matthiessen’s rule, 424–425
Maxwell, James Clerk, 99, 107–108, 130–131,

335f
classical theory of, 83
light speed measurement of, 6
proving theory of, 67
on statistical mechanics, 66
velocity distribution of, 70

Maxwell-Boltzmann distribution, 335–344, 348,
350f, 361, 370, 455

assumptions of, 336
conditions for, 344–345
law of, 78

Maxwell-Boltzmann rms thermal speed, 414, 417
Maxwell-Boltzmann statistics, 421

applications of, 345
criteria for validity of, 344–345

Maxwell law of radiation, 140–141
Maxwell speed distribution, 335–336

for gas molecules, 341–344
Maxwell’s equations, 25
Maxwell’s theory, 1
Mean free path, 415

of electrons, 423–425
Mean free time, 415
Medicine

radiation therapy in, 538–539
radioactive tracers in, 536, 537f

Meissner, W. Hans, 444
Meissner effect, 443, 444–445, 456
Meitner, Lise, 510
Melt spinning, 411
Mendeleev, Dmitri, 547
Mercury, 322

visible light from, 93
Meson, 553, 556–557, 573, 574, 575, 583

charmed, 576
colorless, 577
measuring mass of, 52–53
patterns of, 571–572
properties of, 557t
quark compositions of, 575f
spin-zero, 571

Mesos, 53
Metal

calculated values of parameters for, 359t
causes of resistance in, 423
classical free electron model of, 413–420
conductivity of, 426–427, 454
electrical conductivity of, 417–418
field emission from surface of, 240f
free electron gas theory of, 356–360
free electron model of, 409f, 454
interatomic distance of, 455
quantum theory of, 420–425
radiation damage to, 530–531
resistivity of, 424–425
thermal conductivity of, 414
undergoing photoelectric effect, 83–85

Metal crystal
particle interaction with, 186
properties of, 409t

Metal-oxide-semiconductor field-effect transistor,
439–440

Metallic cylinder, aligned, 232f
Metallic glass, 410–411
Metallic solid, 409, 454

Methane
bonds in, 398–399
solid, 410

Michelson, Albert A., 7, 9
Michelson-Morley experiment, 7–10, 12
Microprocessor, 442–443

single-chip 64-bit, 441f
Microstate, 336

distinguishable, 337–338
Maxwell-Boltzmann number of, 336–337

Microwave frequency range, 380
Millikan, Robert, 85, 108, 116f, 144

electron charge experiments of, 113–119
Minimum energy principle, 319
Minkowski, Hermann, 31–32

diagrams of, 32, 33–34
Mirror reflection, 580
Mobile charge carrier, 434–435
Moderator, 509, 539
Molecular crystal, 454

bonding in, 409–410
Molecular orbital, 391–392
Molecule

activation energy of, 374
bonding mechanisms of, 372, 373–377
bonds between, 375–377
bonds within, 373–375
complex, bonding in, 397–399, 400
complex stable, 375
definition of, 372
diatomic, 374–375
electron sharing and covalent bond of,

390–397
in gaseous phase, 377–378
reduced mass of, 379
rotation of, 372, 377–381
spectra of, 372, 385–390
vibration of, 372, 377, 381–384

Molybdenum, x-rays from, 93
Moment of inertia, 379
Momentum

angular, quantitation of, 139–141
average, 220
carried from particle to particle, 549
changes in with elastic collisions, 261f
conservation laws of, 559–560, 584
conservation of, 42–43, 49, 50, 52–53, 504, 569
energy and, 46–47
of gamma-ray photons, 552
of light, 86
linear, 59
of photons, 91–93
relativistic, 41–44, 152–153
in three-dimensional box, 262–263
total energy and, 60
of x-ray photons, 89–93

Momentum operator, 222t
eigenfunctions of, 223–224

Momentum-position uncertainty principle,
174–175

Moore, Gordon, 443
Moore’s law, 443
Morley, Edward W., 7, 9
Morse potential, 384
Moseley, Henry G. J., 326f, 328
Moseley plot, 328
Moseley’s law, 326–328, 330

MOSFET devices, 439–441
Motion

covariant, 3
Newton’s laws of, 1

Motion constants, classical, 273
Müller, K. Alex, 446
Multielectron atom, 295
Muon, 553, 558

decay curves for, 17
decay of, 561
decaying, 19–20
identification of, 594
identifying, 598–599
interacting in detector, 598f
mass and momentum of, 52–53
properties of, 557t
symbol of, 557

Muon-lepton number, 561
Muon-neutrino, 558

properties of, 557t

Nagaoka, Hantaro, 125n
National Spherical Torus Experiment (NSTX),

522, 523f
Nature, fundamental forces in, 548–550
Ne’eman, Yuval, 572
Negative charge, 550
Neptunium

production of, 513–514
radioactivity of, 492

Nernst, Hermann, 355
Neutrino, 52, 496, 576

flavors of, 559
identification of, 594
identifying, 598–599
oscillations of, 558–559
properties of, 488
types of, 558

Neutron, 467, 495, 547
decay of, 580
diffraction patterns of, 158
discovery of, 464
inelastic scattering for, 507–508
interactions involving, 508–509
leakage of, 515
mass of, 465, 467t
momentum and energy of, 566–567
monochromatic, 159
nuclear interactions of, 561–563
properties of, 557t
regulating energies of, 515
spin and magnetic moment of, 467t
thermal, 158–159, 539

Neutron activation analysis, 537–538
Neutron capture, 515

by lithium, 525
process of, 508–509, 539

Neutron-capture cross section, 508f
Neutron detector, 536
Neutron number, 464, 469f, 495
Neutron-proton system, 474f
Neutron velocity selector, 159f
Newtonian mechanics, 2, 13, 194
Newtonian relativity, 3–7
Newton’s gravitational theory, 55
Newton’s laws

of mechanics, 12
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Newton’s laws (Continued)

of motion, 1
relativistic form of, 41–44

Nitrogen
atoms of

in equilibrium in ammonia molecule,
245–246

vibration amplitude of, 247
sigma bond in molecules of, 397, 398f

Nobelium, 323
Nondispersive media, 168
Noninertial frame, 3n
Normalization, 209

condition of, 224
of oscillator ground state wavefunctions, 

214
of three-dimensional box wavefunctions,

263–264
Normalization coefficient, 339

of Maxwell speed distribution for gas
molecules, 341–342

Normalization constant, 339
Nova facility, Lawrence Livermore National

Laboratory, 524
Noyce, Robert, 439, 441
npn transistor, 438
Nuclear atom, classical model of, 131f
Nuclear charge, intensity of, 323–325
Nuclear cross section, 539
Nuclear energy, release of, 50–51
Nuclear fission, 60, 510–513, 539–540

discovery of, 464
stages in, 512f

Nuclear force, 463, 468–469, 495, 556, 583
attractive, 474
binding energy and, 472–476
charge independence of, 475
mesons in, 52–53
saturation of, 474–475
in terms of quarks, 579

Nuclear fusion, 517–526, 540
advantages and problems of, 526
magnetic field confinement in, 521–523

Nuclear ground state, low-energy, 479
Nuclear interaction, 580f

producing strange particles, 561–563
Nuclear magnetic resonance, 470–472

experimental arrangement for, 471f
Nuclear magneton, 467, 470, 495
Nuclear model, 119–120, 476–479
Nuclear physics

applications of, 503–541
birth of, 463
milestones in, 463–464

Nuclear potential energy, 486–487
Nuclear reaction, 503–505, 584

confinement time in, 520
critical ignition temperature in, 519–520
cross section of, 506–508
energy from, 503
formula for, 504
kinetic temperature of, 520–521
low-energy, 504–505
observation of, 464
probability of, 506–507
Q values of, 504, 505t
rate of, 506

Nuclear reactor, 513–517, 539
control of power level in, 515–516
first, 514f
inertial confinement in, 523–524
main components of, 516f
neutron leakage from, 515
safety and waste disposal for, 516–517
thermal neutrons in, 158–159

Nuclear spin, 469–470
Nuclear spin-orbit effects, 479
Nuclear-spin quantum number, 495
Nuclear structure models, 495–496
Nuclear surface effect, 477
Nuclear volume effect, 477
Nucleon, 468

binding energy per, 473–474
energy of, 472
fluctuations of, 554
orbital state of, 478
in square-well potential, 479f
surface of, 477

Nucleus
average distance of electron from, 293
binding energy of, 472–476, 477, 495–496
charge and mass of, 465–466
Coulombic attraction of, 203
decay processes of, 484–492, 496
electrons within, 178
interaction with gamma-ray photon, 550
light and heavy, 517–518
parent and daughter, 484–485
positive and negative charges of, 124–125
properties of, 464–472
radius of, 467–468
size and structure of, 466–468
stability of, 468–469, 495
structure of, 463–496
unstable, transmission coefficient for,

243–244
volume and density of, 468

Object brightness, 206
Observables, 221–222, 225

plane waves and, 223–224
quantum uncertainty for, 222–223
sharp, 260

Occhialini, Guiseppe P. S., 553
Ochsenfeld, Robert, 444
Ohm’s law, 414–418, 443, 454
Oil-droplet experiments, 113–117
Omega, 557t
Omega facility, 524
Omega minus particle, 572–573
Omega target bay, 525f
Operand, 221
Operator, 221–222

plane waves and, 223–224
Optical pumping, 449
Optical transition, 280–281, 385, 399–400

selection rules for, 385–386
selection rules of, 400

Orbital angular momentum, 328
projections of, 272f

Orbital magnetic moment, 298f
Orbital magnetism, 296–302
Orbital moment, Larmor precession of, 298
Orbital motion frequency, 140–141

Orbital quantum number, 269, 276, 279, 290
for stone, 270–271

Orbiting charge, magnetic moment of, 297
Oscillating electric current, 67
Oscillation

at barrier, 235
wavenumber of, 201–202

Oscillator
double, 245–246
energies of

of carbon atoms, 356
continuous distribution of, 77–79, 99
discrete, 77, 99

frequency of, 67
quantum, 74–77

frequency of motion of, 66
ground state wavefunctions of, 225

normalizing, 214
Morse, 384
one-dimensional, 78, 354
quantum, 212–217

versus classical, 75–76
vibration limits for, 214

Oxide layer
transmission coefficient for, 235
tunneling current through, 236

p-n junction, 405, 433–436, 456
converting electrical input to light output,

436–437
physical arrangement of, 435f

p-n junction laser, 451–452
Pair annihilation, 288
Pair generation, 453
Pair production, 529, 540, 550–551, 552

of strange particles, 561–562
Parabola, 4f
Parallel-plate capacitor, tunneling in, 241
Parent nucleus, 484–485
Partial differential equations, 199n
Particle exchange model, 475–476
Particle in box, 224–225

location of, 219–220
sharp observables for, 223–224

Particle-matter interaction, 526–530
Particle physics, 553–556
Particle-wave complementarity, 94
Particle(s)

average momentum of, 220
average position of, 218–220
in box, 200–209
classification of, 556–559
decaying of, 549–550

in black holes, 247–248
diffraction and size of, 154
distinguishable, 336, 337f, 346–347
energies of

with conservative central force, 266–267
in finite well, 211–212
quantization of, 273–277
in well of finite height, 209–210

heavy charged, 526–527
hypothetical positions of, 217t
indistinguishable, 336, 337f, 346, 348–349
interactions of, 549
measuring energy of, 597–598
numbers of, 571–572
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patterns of, 571–573
positively versus negatively charged, 550
production of

energy considerations in, 568–570
process of, 568–569

range of, 526–527
of spin, 548
standard deviation of data points for, 

219
in three-dimensional box, 260–266
uncertainty in position of, 344–345
wave properties of, 151–187
zigzag movement of, 108

Paschen, Friedrich, 70–71
Paschen-Back effect, 309
Patterson, Clair Cameron, 494, 495f
Pauli, Wolfgang, 312, 351, 488
Pauli exclusion principle, 446, 550. See Exclusion

principle
Pendulum

frequency of, 75–76
period of, 18

Penetration depth, 210
for square barrier, 234

Periodic table, 319–325, 571
Perrin, Jean, 108
Phase stability, 591
Phase velocity, 165–167

of matter waves, 169
Phillips, William, 367
Phonon, 349, 424
Phosphorescence, 389, 400
Photino, 582
Photocurrent, instantaneous response of, 

82–83
Photoelectric effect, 540

discovery of, 68
light quantization and, 80–85

Photoelectron
kinetic energy of, 82
threshold frequency of, 82–83

Photoelectron effect, 99–100
Photoemission, time lag for, 83
Photographic emulsion, 535, 541
Photomultiplier, 534
Photon, 548, 549

absorption of, 528–529, 540
in box, 352
CCD detection of, 206–209
coherent, 447
concept of, 131
containing within laser, 450
electron collision with, 176–177
energy density of, 351
energy of, 540, 597

conservation of, 95–96
loss of, 388–389

exchange of, 553
exchange symmetry for, 314–315
frequencies of, 385–386
high-energy, 480
interaction of with matter, 528–530
in ionization, 540
kinetic and potential energy of, 96
momentum of, 86, 95, 552
properties of, 577t
resonance between, 385

scattering of, 388, 400
energy from, 92f

virtual, 554
wave and particle characteristics of, 152
wavelength of, 142–143
x-ray versus visible, 93

Photon beam, 540
attenuation of, 529

Photon cascade, 247
Photon-electron collision, 91–93
Photon-electron pair momentum, 86
Photon-particle collision, 86
Photon theory, 100
Photovoltaic device, 437
Physical laws, covariance of, 5–6
Physical processes, observed from moving

reference frame, 16–17
Physics

pillars of, 65–66
statistical, 334–371

Pi bond, 397
Pi meson. See Pion
Pilot wave, 152–154
Pines, David, 555
Pion, 288, 553

with annihilation, 288–289
decay of, 52–53
mass of, 554
momentum and energy of, 566–567
nuclear interactions of, 561–563
properties of, 557t
proton and, 554
rest energy of, 554
virtual, 570

Pion-exchange model, 580f
Pion exchange theory, 579
Pixel, 208

cross section of, 208f
Planar drift chamber, 596f
Planck, 1, 131

blackbody solution of, 68
versus Rayleigh-Jeans law, 77–79

Planck, Max, 66, 73f
blackbody formula of, 71–73

Planck distribution, 80
Planck formula, 352
Planck length, 582, 583
Planck’s blackbody radiation law, 449
Planck’s cavity resonator theory, 215
Planck’s constant, 99, 131
Planck’s law, 79–80
Plane wave, 225

representation of for free particle, 194–195
sharp observables and, 224
superposition of, 195f

Plasma, 519, 540
fusion-related, 521–523
temperature of, 521

Plutonium, 513–514
pnp transistor, 438
Point particle, 577t
Polarization gradient, 367f
Polonium, 244
Population inversion, 449–451, 457
Position-momentum uncertainty principle,

186–187
Position operator, 222t

Positive charge, 550
Positron, 287–288, 480, 550–552

discovery of, 550
Positron emission tomography (PET) scan, 551

of brain, 552f
Potassium electron configuration, 320
Potential energy

for alpha particle-nucleus system, 486
of crystal versus ion pair, 406–407
curve for, 255
at equilibrium, 212–213
in hydrogen molecular ion, 390–391
for Morse oscillator, 384
for neutron-proton, 474f
in square barrier, 231–232
of two-atom system, 373–374

Potential energy diagram, 209f
Potential energy operator, 221
Potential function, general, 212–213
Powell, Cecil Frank, 553
Princeton Tokamak Fusion Test Reactor, 521
Principal quantum number, 279–280, 290–291

in hydrogenlike atoms in excited states, 284
Pringsheim, Ernst, 71
Probability

calculation of, 193
for particle in box, 204–205
static, 200
wavefunction and, 191–192

Probability density, 192, 205, 224
for ground-state particle, 214f
for hydrogenlike atoms, 285f, 286f
for low-energy wavefunctions, 210f
for oscillator states, 215–216
for particle in three-dimensional box, 265f
for particle positions, 217–218
radial, 282–283, 291
of standing waves, 432f

Proportional counter, 533
Proton, 547

Coulomb energy and repulsion of, 394
energy of, 47
force binding, 548
mass of, 465, 467t
nuclear interactions of, 561–563
� particle collision with, 121–122
plus pion, 554
positive charge of, 465
properties of, 557t
range of, 527
repulsive force between, 468
separation of, 391
spin and magnetic moment of, 467t

Proton accelerator, Fermilab, 590–593
Proton-antiproton collider, 556
Proton-antiproton collision, 575
Proton-electron combination, 467
Proton-neutron force, 53
Proton-neutron interaction, 580f
Proton-proton cycle, 518
Proton-proton system, 474f
Pulses, uncertainty or reciprocity relations of, 167
Pythagorean theorem, 16

Q values
calculation of, 505
of nuclear reaction, 504, 505t
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Quadrupole magnet, 593f
Quanta, 84
Quantum chromodynamics, 548, 577–579, 584
Quantum defect, 318
Quantum electrodynamics, 307n, 555
Quantum field theories, 549
Quantum mean free path, 423–425
Quantum mechanics, 11, 547

of hydrogen and hydrogenlike ions, 277–287
observables and operators in, 221–222
in one dimension, 191–225
in three dimensions, 260–291

Quantum number, 133–134, 290
Quantum of energy, 74–77
Quantum oscillator, 212–217

versus classical oscillator, 75–76
energies of, 77
in nonclassical region, 214–215

Quantum statistics, 346–351
Quantum theory

of light, 65–100
light quantization in, 80–85
of metals, 420–425
particle-wave complementarity in, 94
predictions of, 139–141, 145

Quantum uncertainty, 222–224
Quark, 548, 574–576, 584

bottom, 576
charmed, 575–576
colored, 577–579
compositions of, 575f
decay of, 575
experimental evidence for, 578–579
flavors of, 584
in hadrons, 556
nuclear force in terms of, 579
original model of, 574–575
properties of, 574t, 577t
strong color force between, 556
strong force binding, 548
top, 575, 590–600
up, down, and strange, 574

Quark-antiquark pair, 578–579
Quark pairs, 580f
Quasar, quadruply lensed, 208f

Rabi, I. I., 590
Rad, 531
Radial distribution function (RDF), 412–413
Radial probability density, 291

for any state, 282–283
for hydrogenlike atoms, 285f

Radial wave, 279
Radial wave equation, 270, 276–277, 278–279
Radial wavefunction, 280t
Radiation. See also Gamma ray; X-ray

blackbody problem of, 68–77
damage to matter from, 530–532
dosage units of, 531, 532t
with electron jumps, 132
emission and absorption of, 447–448
in food preservation, 539
law of, 140–141
thermal equilibrium with, 68n
types of, 480–481
uses of, 536–539

Radiation detectors, 532–536, 541

Radiation-emitting oscillator, 66
Radiation equivalent in man (rem), 

532
Radiation therapy, 538–539
Radio wave, 67f
Radioactive dating, 489–491
Radioactive element decay, 242–245
Radioactive isotope

in fertilizer, 536–537
of iodine, 484

Radioactive material
activity of, 496
decay processes of, 484–492

Radioactive nucleus
activity of, 482
beta decay of, 487–489
decay of, 50
� decay of, 242–244
radiation emitted by, 463

Radioactive series, 492–493
Radioactive tracers, 536–537
Radioactivity, 479–484

artificial, 464, 492
natural, 492–495
phenomenon of, 464

Radiofrequency signals, 472
Radium

activity of, 483
energy liberated with decay of, 486

Radium-226 decay, 484–485
Raman, Chandrasekhara V., 388
Raman effect, 388
Raman scattering, 388–389, 400
Raman shift, 389
Ramsauer-Townsend effect, 237
Random successive displacements, 415f
Rare earth, 322
Rayleigh, Lord. See Strutt, John William
Rayleigh-Jeans law, 77–79, 99
Rayleigh scattering, 388
Reaction energy, 539
Reactor core, 515–516
Reactor fuel, transport of, 517
Recession, speed of, 25, 31
Rectangular box, quantization in, 266
Red quark, 578f
Redshift, 25, 55

from high-density star, 96f
Reference frame, 3–4

inertial, 21–22
length contraction and, 19–20
moving, 16–17
in relative acceleration, 54–55
in relativistic momentum, 41–44
for special relativity, 13
in time interval measurement, 14–15

Reflection coefficient
of barriers, 248–249
of square barriers, 233

Relative biological effectiveness (RBE) factor,
531–532

Relativistic energy, 44–47, 152–153
conservation of, 52–53

Relativistic momentum, 41–44
conservation of, 52–53
definition of, 43

Relativistic theory of electron, 287n

Relativity. See also Special relativity
general theory of, 53–59, 60

momentum and energy conservation and,
52–53

postulates of, 55, 60
practical applications of, 3
principle of, 3–7, 10, 12
reference frame for, 13
of simultaneity, 36
special, 1, 2–3
theory of, 11
of time, simultaneity and, 14–15

Reproduction constant, 514–515, 540
Repulsive force

between atoms, 373
at equilibrium separation distance, 374
between protons, 468

Resistance, in metal, 423
Resistivity

classical expression for, 417–418
of copper, as function of temperature, 

419f
for insulators, 427
temperature-dependent, 424–425

Resonance, numbers of, 571
Resonance particle, 564–567
Resonator, 66

total energy of, 74
Response time-bandwidth formula, 167
Rest energy, 45–46, 59

in particle production, 568–569
subtracted from total energy, 47

RF electromagnetic fields, 591–592
RF signal, 590
Richter, Burton, 576
Roentgen, 531
Roentgen, Wilhelm, 86–87
Rohrer, Heinrich, 254, 255
Rotation

allowed energies for, 379–380
angular momentum of, 306–307, 378–379
magnetic moments of, 302–304
spacing between levels of, 380

Rotation-vibration spectrum, 385–386
Rotation-vibration transition, 399–400
Rotational energy, 372, 377

of molecule, 378–381
Rotational quantum number, 379–380, 399
Rubbia, Carlo, 556, 580
Rubens, Heinrich, 71–72
Rubidium

discovery of, 126
electron configuration of, 321
velocity distribution of atoms of, 370, 371f

Ruska, Ernst, 159
Rutherford, Ernest, 108, 110, 119, 131, 144, 463,

464f, 466, 493, 494
atomic model of, 119–125
observation of nuclear reaction by, 503
� scattering apparatus of, 120f
scattering experiments in, 467–468

Rydberg constant, 125–126, 130, 134, 135

s-p bond, 398–399
s-p hybridization, 398–399
Salam, Abdus, 580
Salt, electrolysis of, 108–109
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Scanning electron microscope (SEM), 161–162
blood cell micrograph of, 162f
working parts of, 163f

Scanning tunneling microscope (STM), 239
applications and function of, 253–259
commercially available, 258–259
constant current mode of, 256–257
constant height mode of, 257
crystalline gold image of, 253f
designs of, 254–255
images of, 257–258
modes of operation for, 256–257
resolution of, 254, 256

Scanning tunneling microscopy (STM), 163
Scatter radiation, 388
Scattering

intensity versus angle of, 156f
by potential step, 237

Schardt, B., 258
Schawlow, Arthur, 366
Schreiffer, J. Robert, 445
Schrödinger, Erwin, 198
Schrödinger equation, 194, 224, 278–279

for barrier transmission coefficient, 238
describing quantum oscillator, 212–213
energy operators in, 221–222
equation solutions to, 225
indistinguishability of electrons in, 314
for molecular rotation and vibration, 383–384
separating variables in, 267–268
for stationary states in three dimensions,

261–262
for time-dependent waveform, 244–245
time-independent, 209, 224, 234, 262,

276–277, 289
Schrödinger wave equation, 197–200
Schwinger, Julian S., 555
Scintillation counter, 534, 541

diagram of, 535f
Screening effect, 316–319, 323–325
Segré, Emilio, 552
Selection rule, 281, 400
Self-consistent field, 319
Semiconductor, 405, 455

conduction in, 428–429
containing acceptor atom, 434f
double-heterojunction, 454
energy band in, 451–453
extrinsic, 434
impurity, 434
injection pumping in, 452
intrinsic, 429
n-type, 434, 439–440, 456
p-type, 434, 439–440, 456
population inversion in, 453f
two-dimensional representation of, 433f

Semiconductor devices, 433–443
Semiconductor diode detector, 533–534, 541
Semiconductor laser, 451–454
Semiempirical binding energy formula, 477, 496
Separated atom limit, 391
Separation constant, 262, 268–269
Separation of variables, 199n
Sharp momentum value, 289–290
Sharp observable, 224, 225, 260

in angular momentum quantization, 275–276
classical motion constants as, 273

for particle in box, 224
plane waves and, 223–224

Sharp variable, 216
angular momentum and, 267

Shell, 279–280, 291
configuration of, 320–322
electronic transitions in, 330
quasi-periodic recurrence of structure of,

319–320
spectroscopic notation for, 280t
volume of, 282

Shell model, 478–479, 496
Shock wave, compressive, 524
Shockley, William, 437–438
Sievert (Sv), 532
Sigma bond, 398f
Sigma particle, 561

properties of, 557t
Sigma-type molecular bond, 397
Silicon, 452–453
Silicon chip, 442
Silver, resistivity of, 424f
Simultaneity

relativity of, 36
relativity of time and, 14–15

Sinusoidal wave, 164
infinite and truncated, 170–172

Sisyphus cooling, 370
Slar cell, 436–437
Slepton, 582
Soddy, Frederick, 494
Sodium

atoms of
condensate of, 371
quantum defects for, 318

D lines of, 309
doublet of, 311
energy bands of, 426
idealized wavefunctions of, 426f
photoemission from, 83
3s band of, 427f
Zeff for electrons of, 317–319

Sodium chloride (NaCl)
crystal

ionic bonding of, 405–406
structure of, 405f

ions of, total energy versus internuclear
separation for, 374, 375f

Solar cell, 456
Solar electron neutrino, flux of, 558–559
Solar neutrino mystery, 558–559
Solar spectrum, dark D-lines in, 127–128
Solar System, origin of, 493–494
Solid

amorphous, 410–413
band theory of, 425–433, 455
bonding in, 405–413
origin of energy bands in, 429–433

Solid elements, specific heat of, 353–354
Solid solution, 409
Solid state, 404
Somatic radiation damage, 531
Sonnenfeld, R., 258
Sound wave, analysis of, 23–25
Space quantization, 271–273, 290

Stern-Gerlach experiment to detect, 
304–305

Spacetime
causality and, 31–35
curvature of, 55–56
one-dimensional, 33–34
pairs of events in, 34–35

Spacetime diagrams, 32, 33–34
Spacetime interval, 33

invariant, 33
timelike and lightlike, 35

Spark chamber, 535–536, 541
Spark gap oscillator, 67
Spark gap transmitter, 67–68
Sparticle, 582
Special relativity, 554

consequences of, 13–25, 36
inertial frames of reference in, 21–22
postulates of, 10–12, 35
second postulate of, 15–18

Specific heat
dependence of on temperature, 353–354
of diamond, 356
theory of, 352–355

Spectra, Bohr’s quantum theory of, 125
Spectral content, harmonic wave, 170–171
Spectral energy density

of blackbody, 70–72
calculation of, 79

Spectral lines
sequences of in minerals, 126–130
from star, 135
width of, 178

Spectral quantum series, 126–130
Spectroscopic notation, 280t, 311
Spectroscopy, 126–130
Spherical coordinate, 274
Spherical harmonics, 269, 277, 290
Spherical quadrupole magnetic field, 369f
Spherical symmetry, 270
Spin

angular momentum of, 306–307
of neutron, 467
nuclear, 469–470
patterns of, 572f
Zeeman spectrum of, 308–309

Spin-down state, 305
Spin magnetic moment, 303, 304, 306–307
Spin magnetic quantum number, 329
Spin moment, 329
Spin-orbit interaction, 309–311
Spin quantum number, 305, 329
Spin-spin correlation, 316
Spin-up state, 305
Spinning electron, 303–309
Spontaneous transition, 448
Square barrier, 231–238

joining conditions at, 234–235
penetration depth of, 234
reflection coefficient for, 233
transmission coefficient for, 233–234

Squark, 582
Standard Model, 580–582, 584, 590
Stanford Linear Accelerator (SLAC), 576

experiments at, 578
Stanford Linear Collider, 581–582
Stanford University research, 576
Star

gravitational redshift from, 96f
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Star (Continued)

spectral lines from, 135
Starlight deflection, 56f
Stationary state, 131, 144, 200, 224, 289

for particle in box, 204
for particle in three-dimensional box, 263
in three dimensions, 261–262
wavefunctions in, 209, 276

separation of variables for, 267–268
waves of

attributes of, 225
in presence of square barrier, 233f

Statistical mechanics, 65–66
postulates of, 338

Statistical physics, 334–362
Statistical weight, 339
Statistics

Bose-Einstein, 351–356
Fermi-Dirac, 356–360
Maxwell-Boltzmann, 341–345, 421
quantum, 346–351

Stefan, Josef, 69
Stefan-Boltzmann constant, 69
Stefan’s law, 69

derivation of from Planck distribution, 80
Stellar hydrogen, emission lines from, 340
Stern, Otto, 303, 304
Stern-Gerlach experiment, 304–305, 307
Stimulated emission, Einstein’s coefficient of,

456
Stimulated Raman cooling, 367–368
Stoke’s law, 113–114, 117, 118–119
Stoke’s shift, 389, 390f
Stone, orbital quantum number for, 270–271
Straggling, 528
Strange particle, 561–563
Strangeness, 552, 562–563, 571, 584
Strangeness number, 562–563
Strassmann, Fritz, 510
String theory, 582–583
Strong color force, 556
Strong force, 548, 584

particles interacting through, 556–557
Strutt, John William, 77
Subatomic particle, 52–53

charge of, 109
identification of, 110–112
weak interaction between, 555

Subshell, 280, 291
ordering of by energy, 321–322
spectroscopic notation for, 280t
structure of, 319–320

Sudbury Neutrino Observatory, 558, 559
Sum rule, 233–234, 249
Sun

flux of electron neutrinos of, 558–559
hydrogen reactions in, 518
mass of, 56
spectrum of, 128f
Stefan’s law applied to, 69

Super Kamiokanda detector, 558
Super Proton Synchrotron, 581–582
Superconducting magnet accelerator, 

592–593
Superconductivity, 405, 443–446, 456
Superconductor, 443, 444f

copper oxide-based, 445–446

critical temperatures for, 443t
magnetic flux in, 444
surface current of, 445

Superpartner, 582
Superposition state, 183
Supersymmetry (SUSY), 582
Symmetric pattern, 572
Symmetry breaking, 581
Symmetry condition, 213–214
Synchronization, 13
Synchrotron, 593
Synchrotron Booster, 591–592

Tantalum disulfide, surface atoms of, 257f
Tau, 558

properties of, 557t
symbol of, 557

Tau-neutrino, 558
properties of, 557t

Taylor, Joseph, 58, 59f
Telegdi, Valentine L., 555
Telescope, with eyepiece scale, 115f
Tersoff, J., 255
Tetrahedral structure, 408
Tevatron accelerator, 582, 592–593
Texas Instruments, 441
Thermal conductivity

free electron theory of, 418–420
of metals, 414

Thermal energy, 359
of oscillator, 354

Thermal equilibrium, 68n, 77–78, 334, 339
Maxwell speed distribution for gas molecules

in, 341–344
particles in, 344–345
radiation and oscillators in, 449

Thermal neutron, 158–159, 508–509, 539
Thermal vibration, 423
Thermodynamic bulk properties, 334
Thermodynamics, 65–66, 334

laws of, 1
Maxwell-Boltzmann distribution in, 335–344

Thermonuclear reaction, 518
critical parameters in, 519–521

Thomas-Fermi atom, 317–318
Thomas-Fermi screening, 317–318
Thompson, William (Lord Kelvin), 494
Thomson, George P., 155
Thomson, J. J., 82, 108, 110–112, 125n, 131,

143–144
apparatus of, 114f
“plum-pudding” model of, 119

Thomson’s free electron theory, 413–414
Thorium

estimating half-life of, 244
radioactivity of, 492–493

Three-dimensional box, particle in, 260–266
Three Mile Island accident, 516
Threshold energy, 82–83, 504

kinetic, 569–570
in particle production, 568

Time
dilation of, 15–18, 36

definition of, 16
equation for, 16
in Lorentz transformation, 28
reference frame and, 19

evolution of, nonstationary state, 244–245
relativity of, 14–15

Time-independent Schrödinger equation, 200
Time interval measurement, 14–16
Ting, Samuel, 576
Tokamak Fusion Test Reactor (TFTR), 521

diagram of, 522f
Tomonaga, Shinichiro, 555
Top quark

detector of, 593–599
how to find, 590–600
mass distribution of, 599f
mass of, 593–594
pair production of, 594f
reconstructing, 599–600

Topness, 576
Total energy operator, 220
Tracing technique, radiation in, 536–537
Track detector, 534–535
Transformation, 4–5
Transformation equations, 5–6
Transistor, 437–439, 456

base of, 438
emitter of, 438
field-effect, 439–441

Transition probability, 449
Transition series, 321–322
Translational energy, 377–378
Transmission coefficient

approximation of, 238–239
of barrier, 248–249
for field emission, 240–241
for oxide layer, 235
for � particles of unstable nucleus, 243–244
for square barrier, 233–234

Transmission electron micrograph (TEM), of
tuberculosis bacteria, 161f

Transmission electron microscopy (TEM), 159,
161

schematic drawing of, 160f
Transmission resonance, 235

at square barrier, 236–237
Tritium, 464

fusion reaction with, 518–519
production of, 525

Tu-lepton number, 561
Tunneling

ammonia inversion and, 245–247
at barrier, 238–249
� decay in, 242–245
definition of, 231
for field emission, 239–241
of hydrogen ion, 391–392
in parallel-plate capacitor, 241
phenomena of, 231–259
through Coulomb barrier, 243
through square barrier, 232–238

Tunneling current
density of, 255
monitoring of, 255–256
through oxide layer, 236

Twins paradox, 21–22
relativistic Doppler shift and, 22–25

Uhlenbeck, George, 304
Ultraviolet catastrophe, 77
Uncertainty, 222–224, 225

I.14 INDEX
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Uncertainty principle, 173–178, 225, 368, 554
for angular momentum, 267
energy-time, 476
origin of, 175–177
in particle position, 344–345
physical properties leading to, 177
for position and momentum, 186–187
violation of, 185

Uncertainty relationships, 170
Uniform gravitational field, 54f
Uniform speed, 21
United atom limit, 391
Universe, expanding, 25
Uranium

energy released in fission of, 513
fission of, 510–511, 512
fission reaction of, 50–51
radioactivity of, 492–493

Uranium-258 decay of, 484–485
Uranium-235 isotope, fission of, 513–515

Vacuum tube, 110
Valence band, 427, 429, 434, 455
van der Meer, Simon, 556, 580
van der Waals bond, 375–377, 399
van der Waals force, 375–376, 409–410

dipole-dipole, 376
dipole-induced, 376
dispersion, 376–377

Velocity
of ether wind, 7
Galilean addition law for, 5, 6–7, 12
relative, 30

Velocity selector, 110–111
Velocity space, 341
Velocity transformation, 35, 42

Galilean, 5
Lorentz, 29–31

inverse, 28, 29–30
Vibration

energy of, 372, 377
quantization of, 216

frequencies of for diatomic molecules, 382
molecular, 381–384

allowed energies for, 382–383
harmonic approximation to, 381
longitudinal, 381
as radial waves, 383–384

Vibration-rotation spectrum, 372
Vibrational quantum number, 382, 399
Vibrational state, 387f
Vibrational transition, 385–386
Virtual particle, 475–476

making real, 570–572
von Bunsen, Robert Wilhelm, 126, 127f
von Helmholtz, Hermann, 493
von Laue, Max, 87
von Weizsächer, C. F., 476

W boson, 575, 581, 593–594
Waste disposal, nuclear reactor, 

516–517
Water

linear absorption coefficients of gamma rays
in, 530t

linear absorption coefficients of x-rays in, 529

Wave
classic propagation of, 237
high-frequency, 166
superposition of, 166f

Wave group, 164–170, 225
presenting particle, 195
time duration of, 167
velocity of, 167

Wave mechanics. See Quantum mechanics
Wave packet, 225

changing shape with propagation, 195–196
constructing, 196
spectral content of, 196

Wave-particle duality, 151, 179–185
Wavefunction, 178–179, 187, 191

antisymmetric two-electron, 315, 316
of atomic electrons, 299
Born interpretation of, 191–194
Bose-Einstein condensation and Pauli

exclusion principle for, 346–347
in box, 225
in determining interference effects, 180–181
on different sides of square barrier, 232–233
effective one-dimensional, 291
exchange symmetry of, 314
expectation values of, 216–220
for free particle, 194–197
Gaussian, 196–197
hydrogen-like, 391
interior and exterior, 211–212
for low-energy states, 210f
mathematical expression for, 199
normalizing, 193
normalizing in three-dimensional box,

263–264
for particle ground state, 214f
in presence of forces, 197–200
probabilities and, 191–192
smooth, 192, 200
in square barrier, 234
in stationary states, 209
of surface electron, 255f
symmetric, 193, 330
in three dimensions, 261
time-independent, 200, 201–202

Wavelength
de Broglie, 152–153
of matter waves, 186–187
redshift of, 25
of spectral line, 178

Wavenumber, 430
Weak force, 549, 583
Weak interaction

between leptons, 557–558
of strange particles, 562

Weber, Joseph, 57
Weber bar detector, 57–58
Wedgwood, Thomas, 68
Weinberg, Steven, 580
Weisskopf, Victor, 303, 312
Weizsächer semiempirical binding energy

formula, 477
Wheeler, John, 55
White dwarf, gravitational redshift for, 96–98
Wiedemann-Franz law, 419–420, 420, 455

quantum form of, 422

Wiedemann-Franz relation, 414
Wieman, Carl, 370
Wien’s displacement law, 70–71
Wien’s exponential law, 71

Planck’s blackbody formula and, 71–73
Wilson, Charles, 113
Wino, 582
Wire chamber, 536, 541
Work-energy theorem, 44–45
Work function, 82–83

of selected metals, 84t

X-ray, 86–89
biological damage from, 532
collected by scanning electron microscope,

162
damage from, 531
in food preservation, 539
linear absorption coefficients of, 529
production of, 87f
scattering of, 87–89, 90f

angle of, 91
intensity and wavelength of, 89–93

spectra of, 325–328
origin of, 325f

X-ray electron scattering, 100
X-ray emission spectrum, 88
X-ray photon

behavior of, 89–93
versus visible photons, 93

X-ray spectrometer, 89f
Xenon, 507
Xi particle, 557t

Y meson, 575
Yttrium, 322
Yukawa, Kideki, 553

Z boson, 581
Z electron, 124, 317

mass of, 472–473
Z elements, 328

inner electrons of, 325
Z proton, 466–467, 495

mass of, 124
Zeeman, Pieter, 67, 301
Zeeman effect, 67, 329

anomalous, 302–303, 307
internal, 309
normal, 296–302

Zeeman energy, 367, 369
Zeeman spectral lines, 301f
Zeeman spectrum, 308–309
Zeeman splitting, 301–302

anomalous, 303
Zeeman state, 370
Zeff, 317–319
Zero energy level, 347

fermions in, 348
Zero magnetic field, 299n
Zero-point energy, 202
Zinc, photoelectric effect of, 85
Zweig, George, 574–575
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Some Fundamental Constants*

QUANTITY SYMBOL VALUE

Atomic mass unit u 1.6605 � 10�27 kg
931.49 MeV/c2

Avogadro’s number NA 6.022 � 1023 particles/mole

Bohr magneton 9.274 � 10�24 J/T
5.788 � 10�5 eV/T

Bohr radius 0.5292 � 10�10 m

Boltzmann’s constant kB 1.381 � 10�23 J/K
8.617 � 10�5 eV/K

Coulomb constant k � 1/(4��0) 8.988 � 109 N � m2/C2

Electron charge e 1.602 � 10�19 C

Electron mass me 9.109 � 10�31 kg
5.486 � 10�4 u
0.5110 MeV/c 2

Gravitational constant G 6.673 � 10�11 N � m2/kg2

Hydrogen ground state �13.61 eV
energy

Neutron mass mn 1.675 � 10�27 kg
1.009 u
939.6 MeV/c2

Nuclear magneton 5.051 � 10�27 J/T
3.152 � 10�8 eV/T

Permeability of free �0 4� � 10�7 N/A2

space
Permittivity of free �0 8.854 � 10�12 C2/N � m2

space
Planck’s constant h 6.626 � 10�34 J � s

4.136 � 10�15 eV � s
	 � h/2� 1.055 � 10�34 J � s

6.582 � 10�16 eV � s

Proton mass mp 1.673 � 10�27 kg
1.007 u
938.3 MeV/c2

Rydberg constant 1.097 � 107 m�1

Speed of light in vacuum c 2.998 � 108 m/s
Stefan-Boltzmann constant 
 5.6705 � 10�8 W/m2 K4

*More precise values of physical constants are provided in Appendix A.

R �
mek

2e4

4�c	3

�n �
e 	

2m p

E0 � �
mee

4k2

2	2

a0 �
	2

mee2k

�B �
e 	

2me
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Useful Conversions and Combinations

1 MeV/c � 5.344 � 10�22 kg�m/s

1 curie � 3.7 � 1010 decays/s

1 barn � 10�28 m2

ke2 � e2/4��0 � 1.440 eV�nm

kBT � 0.02525 eV at T � 300 K

	c � 1.973 � 102 eV�nm � 3.162 � 10�26 J�m

hc � 1.240 � 103 eV�nm � 1.986 � 10�25 J�m

1 mi � 1609 m

1 in � 2.540 cm

1 fm � 10�15 m

1 Å � 10�10 m � 0.1 nm

1 MeV/c2 � 1.073 � 10�3 u � 1.783 � 10�30 kg

1 u � 931.5 MeV/c2

1 cal � 4.184 J

1 eV � 1.602 � 10�19 J
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