Design of Two-Way Slabs

_LEARNING OUTCOMES
After reading this chapter, you should be able to
o describe the key features of reinforced concrete two-way slabs
o design two-way slabs for flexure in accordance with the CSA A23.3 gy,
procedures g
o evaluate shear resistance of two-way slabs considering one-way and two-way gy
effects

o estimate immediate and long-term deflections in two-way slabs according to (54
A23.3 requirements

INTRODUCTION

This chapter builds on the fundamentals presented in Chapters 10 and 11, which explained
how multiple span slabs and beams can be designed as continuous structures by the strle-
gic placement of reinforcing steel in the top and bottom regions. Conlinuous reinforvsl
concrete structures that span over several supports are characterized by greater Nexural sifl-
ness than single span structures with the same overall length. This could result in reduced
member dimensions and gives reinforced concrete a significant economic advantage 0
other materials. The same advantage can apply to two-way slabs, which are continuos
structures spanning in two directions. Two-way slabs arc unique to reinforced concretea
arc considered to be an advanced design topic for students and inexperienced cngineen.
Two-way slabs offer an cconomical design solution, characterized by minimal slab thick:
ness and reduced building height, which is casy 1o form and [ast to construct. As nrlcsull.
two-way slabs are the most popular Noor system (or multi-storey building construction it
Canada.

The intent of this chapler is to explain behaviour of two-way slab systems and ussi!
readers in deriving simple, practical, and economical design solutions. .

The design of two-way slabs encompasses the following four key sicps (note 3¢
tion numbers referenced in the brackets):

1. Sclecting the slab thickness (Section 12.5.2)
2. Designing the slab lor flexure according 10 one of lollowing three procedurcs:
a) Direct Design Method (Section 12.6)
b) Equivalent Frame Method (Section 12.7.2) or
¢) Three-Dimensional Elastic Analysis (Seetion 12.7.3)
3. Designing the slab for shear (Section 12.9), and
4. Performing a deflection check, when required by CSA A23.3 (Section 1210
This chapter is divided into cleven sections. Section 12.2 provides an overview of mv
two-wiy slab systems and describes their main features, The key factors inﬂueljc“’{_i
structural behaviour of wo-way slabs subjected 10 fexure are discussed in Sectio® ™
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informed choice of the mofsf:ﬂhod. It 1s expected that the reader will be gble to make an
tion 12.9 describes con appropriate method for a specific design application. Sec-
Section 12.10 diﬁc.l.lssc c:p(l‘ls and procedures related to design of two-way slabs for shear.
way slabs. Finally, st $ Ceflection control and the relevant calculation procedures lor two-
tion 12.1 l. Y, structural drawings and detailing of two-way slabs are discussed in Sec-

TYPES OF TWO-WAY SLABS

Background

Most two-way slab systems in reinforced concrete buildings are floor und roof slabs sup-
ported by columns and/or walls. Various floor and roof systems typical in reinforced con-
crete construction were introduced in Section 1.3.1. These systems included both onc-way
and two-way slabs. Onc-way slabs transter gravity loads in one direction, while two-way
slabs are characterized by significant bending in twe directions. The following two-way slab
systems will be discussed in this chapter:

+ Flat plates

+ Flat slabs

» Waffle slabs

« Slabs with beams

The first two-way slabin reinforeed concrete was 8 ﬂm_slub c0n§lruclcd in 1906 by C..A.l’.
Turner for the C.A. Bovey Building in Minneapolis, Minnesota in 1996 (Sozen _n.nd Siess,
1963). A significant amount of controversy and ul;gull\lcnls accompanied the .lmlm] lf?_p‘ll-
cations of the Nat slabs. This was mostly duc to their unique kl)udlpmh. and suucll{ml rlbhlbr.l,
which appeared strange 10 cngineers who were used to designing umt.\cr l‘lnd .\lcc"s(f\ul-.
(ures with one-way load paths. In spitc of these challenges, flat slabs with column capitals

nd drop panels were widely used in the [irst half of the 20 century for industrial buildings
it

i ] S capitals are illustrated in
i ely long spans (drop pancls and copital r
w.“h heavy Ion;i : L&irﬁl&ruy munby huildings were built for lighter I()lldln;. such as res-
Fdlf ” ]IZZCZJ‘:“:; \hus drop panels und capilals were not needed. The resulting system 1
idential oc \ p :
istinguish il from flat slab- ) .

called ﬂi.ll plas 1_0 ’dlsuli')ogrul:';-lwny slabs were introduced in North Amencan codes in 1941,

Des,gglp;\éﬂ??: the USA. Flat platc and Nat slab systems are currently the most pop-
through A : :

tenual and office buildings in
ular floor syser: used wed as cconomical light-weight so-
Canada. Waffle slabsan

. . aparti jcalion depends on scv-
on forlarge Sp iale § stem for a particulur application

. . h hlnbsz::c bclwccp:nuhe Suppurts) and live loads. Eco-
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{or construction of multi-storey
d slabs with beams cun alsobe u
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eral factors, including span }cnﬁ“d'szo(rl sll
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foor system. Concretc material. and ?ls placipg and .ﬁnishing, ac‘-:ounl lor 30g, of
while the remaining 20% of the cost 1§ ass_ocmlcd with the nmlclrml and PIHCing Co“ccm
reinforcing steel. Hence, labour and mulcr_lal costs are key cons.ldcrﬂli()ns for CoSl-élTor'
design of two-way slabs. For a detailed discussion on economic aspects of 1Wong vlc)gm
the reader is referred to PCA (2000). ¥ Slaby
In most residential and commiercial building designs, the slab sclf-w
cant proportion of the total load. Hence, a potential increase in the overall
due 10 2 live load increasc from 2.5 to 5.0 kPa may be only 510 10%.

cight is Signi
Constructig, oy

Flat Plates

A flat plate is a (loor system that consists of solid slabs reinlorced in two dircetigng andg,
ported dircctly by the columns or walls, as shown in Figure 12.1a. This system i cconon
cal for short and medium spans ranging [rom 6 10 9 m (20 o 30 {1). The slab thickpegs usu.11|l\.
ranges from 160 to 250 mm (6.5 10 10 inches). Flat plates arc suitable for light loggg fle
loads up to 5.0 kPa), and the slab thickness is usually controlled by long-term deflections,

A slab layout is defined by column locations. Parallel column lines (gridlines) iy W
pendicular directions form a rectangular slab panel (or a bay), as shown in Figure 12,1y 5
slab panel is defined by the span lengihs /, and /,. and the ratio of span lengths (R
called the aspect ratio. The simplest and most optimal design uscs a column layout gy
square grid (corresponding to the aspect ratio of 1.0).

In some cases, both {lat plates and flat slabs can have shallow beams along the perime.
ter of the slab. These beams are called spandrel beams (or edge beams). These spandr)
beams are effective in increasing the slab stifncss at the edges and thereby reducing slab
deflections. A typical spandrel beam scction is shown in Figure 12.1c.

A lew important advantages ol a flal plate system arc outlined below:

1. Due 1o the relatively thin structure, a (lat plate system permits the construction of t
maximum number of foors for a given building height. An additional benefit assoct
ated with the reduced (loor height is an overall reduction in the building envelope (v
terior walls) and partitions, utility shafts, and a significant reduction in seismic
wind loads.

2. Flat plate systems can be designed (o satisfy most of the [ire resistance requirements of
the National Building Code of Canada without the need for additional fire protection.
This is a significant advantage compared to Moor systems in other malerials, sucha
steel and wood.

3. Flat plate systems can be adapted to a non-uniform column layout, usually witoa?
significant cost premium, This is a significant advantage as it can efliciently acco™
modate {lexibility in architectural design. Flat plates require simple formwork, resule
ing in minimal construction effort in terms of time, labour, and cost. Flat plates ®
high-risc buildings are usually construcied using prefabricated formwork sysies y
forms) that can be transported and lifted for reuse at the next floor level. In a bigh™
building with Qat plates, a construction crew can form, reinforce, and place conerete [of
each floor in very short (threc- 10 four-day) cycles.

In conclusion, a flat plate system is very efficient and economical, and lor that rcaS_"“ l,l i

the most widely used floor system for high-risc building construction in Canada. 'WP“-'“I_JP

plications include residential buildings, ofTices, hotels, hospitals, and parking gm?gc)“
parking garage and a residential building, are shown in Figure 12.1d and ¢, respccuvel,\-
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Figure 12.1 (cont.)

12.2.3 Flat Slabs

The span-to-thickness ratio [or a (lat plate is usually limited by permitted long-tem &
flections. Thin slabs could also have punching shear issues in column regions. The pu
ing shear capacity can be increased by thickening the slab locally around the columns, ®
way of drop panels. A llat plate sysiem with drop panels is called a flar slab, as shos
Figure 12.2a. Drop pancls cause an increase in the slab stiffness in regions subjected to
ative bending moments, and therefore help 1o control deflections in midspan regions. A
smaller amount of top reinforcement is required in slabs with drop panels than in Mat plates

Drop panels are usually square in plan, with plan dimensions typically one-third 0["...‘.3
span length in cach direction of the slab. Thickness of a drop panel is often governed by &%
formwork dimensions (e.g. 89 mm thickness can be specified when 2" x 4" plank s used
on the edge). In some flat slab designs, column capitals are provided with o without
pancls. A capital is an upper portion of the column, usually of conical shape and with i<t
cross-scctional dimensions than the remaining portion of the column, as shown in FIs&

ot

12.,_7_b. Rectangular-shaped capitals (also known as shear caps) are used in S,L'},
designs as they are easier 1o form. The designer may use capitals, drop panels, of bo_m 1]0»_:
d capitals =

dr-c-ss punching shear and deflection issues in floor slabs. Both drop pancls an
clfective in providing additional punching shear capacity of the slab. Typical b
plications are shown in Figure 12.2¢ and d.

uilding

12.2.4 Waffle Slabs

A waffle slab is a floor system that meets requirements for larger spans an
duced slab weight, while also providing an aesthetically pleasing ceiling. Wall
tems consist of evenly spaced concrele joists spanning in 1wo directions — thi
also known as 4 wo-way joist system. The joists are commonly (ormed by usin

d loads 237
rafile slab &

s §)
1{
p stane®

: ) s L oameee”
pans or domes installed in the forms to produce a coflered soffit in the slab: The pt?}:“’
ol emrony - . . ids "
cular orientation of the joists results in cvenly spaced rcctangular-shﬂp"d voids 0; AT

al , &

dgrsldc ol the slub — this is the reason why the system is referred to as wallle s!
view and a vertical section of wallle slab are shown in Figure 12.32.

-
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Figure 12.3 Waffle slab system:
a) plan and a vertical section,
and b) en example of a building
application.
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4 Slab with beams:
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C
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Beam-/ Girder
Girde
Section
a) Section

onomical design solution for spans in the range of 1010 12
m, depending on the availability of forming pans ;u!d rclc.\l‘unl L‘unslmcllion skills. Slab thick-
ness varies from 75 to 130 mm based on cither [ire rcslsu:ncc rcq_ulrcm}:ms or s:lruc(urul
considerations. Note that a 130 mm slab is needed lu_mccl’.-huur fire rating rct]glrcnutnls.
Joist width is 150 or 200 mm, and the depth Gnges lro!n ..00_ 10 600 mm undcr.xl_dc ol the
. aine ol JOISS 1S gcn'erm:d by the dome dimensions and c9dc rgqu!rcmcms.
5lﬂb'.Thc 5?".““_3 0~'J s 750 mm. Solid slab portions (heads) are provided for increased
Maximum jois SPM.N;,UH,“ Jocations. For design purposes. waille slabs are considered ns
shear slrcngllh atthe L:]) heads acting 35 drop panels. Walfle slab construction allows a con-
flat slabs with the sl “ vompﬂ[\:d 10 conventional Nat slab construction since the vol-
siderable dead 10ad rzti\;lllt"’:;inimi,_cd duc 1o the short span between the joists.

ume of conerete Use

Wallle slabs could oflier ec
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WafTle slabs are particularly advantageous when the usc ol long span ang;
loads is desired without the use of deepened drop pancls, Capl.lals T suppory bca:,; hea\,
cal applications include parking garagcs or warehouscs. A parking garage with Wam i
system is shown in Figure 12.3b. ] o £5la

High formwork and labour costs arc the main reasons for limited applicationg

oi i of
fle slabs in contemporary concrete construction practice. Waf.

Slabs with Beams

In slab with beams system a solid slab panel is supporied by beams on all foyr side
this system, when the ratio of the span Iengths is 1wo or more, load is prcdominalﬂy a
ferred by bending in the short dircetion and the pancl essentially acts as a one-way g, -\s
the panel approaches a squarc shape, a significant load is transferred by bending in bﬁlh.-ws
thogonal directions, and the panel should be treated as a two-way slab. Plan views ﬂﬂd\cr:
lical sections for slab with beams are shown in Figure 12.4a. The presence of beams g,
require a greater storey height. A typical application of the slab with bcams sysiem (pak.
ing garage) is shown in Figure 12.4b.

S. Wi

BEHAVIOUR OF TWO-WAY SLABS SUBJECTED
TO FLEXURE

Background

Before we proceed with explaining different design approaches for two-way slabs, itisin-
portant for the reader 1o understand how these sysiems behave under gravity loads. Flexurl
behaviour of two-way slabs is significantly influenced by the support conditions. The fol-
lowing three cases will be considered:

1) Flauplate/slab panels supported only by columns at the corners; note the supports show
with arrows (sce Figure 12.5a).

2) Slab panels supported cither by still beams or walls (slabs on stilT supports) have cor
tinuous supports along the edges, as shown in Figure 12.5b; note fixed supports on all
sides.

3) Slab with beamns on all sides - an intermediate case between 1) and 2), where a slabis S
ported by columns (shown with arrows) and beams (shown as spring supports), & i
lustrated in Figure 12.5¢.

It is important 1o discuss the influence of support conditions upon the magnitude of deflex:
tions in two-way slabs for the three above described cases. The total slab deflection il
span is the sum of the slab deflection at the edges plus the relative slab dellection betwect
the edges and the midspan. Figure 12.5a shows a [1at plate supported only by four colut™
The midspan deflections are largest in this case since the dellections along the unrestra®
edges between the columns will cause an increase in the slab defection at midspa Ont¥
other hand, deflections in the slab supported along all four edges by stilf beams or'“a“‘
(Figure 12.5b) are smallest since the deflection is equal to zero along the edges: Fmgﬁ;
when a slab is supported by beams on all four sides (Figure 12.5¢), the deflecto™ -
midspan regions fall in between the other two cases, because the beams are cchwd.m S
flect, but less than in the case of a Nat plate. A conceptual diagram showing deflected
for the above discussed cases is presented in Figure 12.5d. i
Consider (wo slabs characterized by the same thickness (180 mm) and span 1‘i;lETﬂ'
(5m §qyare) that are subjected to the same uniform gravity load of 9.5 kPa. The only -lnnl\
ence is in the support conditions: one of the slabs is supported by columns at thec n .
(fat slab), while another is continuously supported at the edges by walls. In the ﬁﬁl.wit
placements are restrained by the columns (which act like sticks with pinned connectio™

—
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2.5 Two-way slabs with

1 .
!f:r;nt support conditions:
ﬂa“lab/plate; b) siab on stiff
ports ¢) slab with beams on
p;ide& and d) deflected shapes
wo-way slabs. a) A
Support (column) at
each comer
B
|“|||| Stiff beam or wall

Support {column)

b) A

Beam modelied as
equivalent springs

c) A
Slab with beams (Case 3)

d) - sy B

Slab on

stiff supports Flat plate/siab (Case 1)

(Case 2)

.  nple supports in beams), thereby allowing displacements and rotations at the

top, similar 10 S ¥ y ppocw‘ walls provide restraints both for displacements and rotations

four s latter
L?,Zr:ﬁiigg;;:lns?ppons. These are fwo extreme suppart conditions: the most flexible und

i 4 s (regions wi displacements) are shown in
: Jgi displacement contours (regions with equal disp

lh‘b Y nﬁg l%wﬂ:u;:um displacements Yor the Nat slab supported only by the columns and
Figure 12 f ed suppons ar: 15 mmand | mm, respectively. The values can be scen ﬁ"nm the
:he Sk(ljh c(:,III-;‘:I:pon{,ling [} displuccmcnl conlours, (Note that the approuches for deflection cal-
cgend ¢ ! 0

cuglmjons in two-way slabs will be discus:

<ed in detail in Section 12.10).
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It can be seen [rom the above examples that two-way slabs deflee due | be
0 bop:

two perpendicular diree
ness, the support condi

slabs, the deMected shape also depends on the properties of adjacent spans in ca
When subjected to uniform gravity load, a slab with several panels deformg ;
: ) S il

ries of shaliow hills at

leys at the center of cach panel (positive or convex curvature). The sign of cunvagy
. : . . N alure
or negative) determines the placement ol {lexural reinforcement. Tor example (

placed in regions ol ne

curvature. Note that positive curvature corresponds o positive bending momeng
= and sy,

a)

b)
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Figure 12.6 Displacements in two-way slabs: a)
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qure 12.7  One-way slab system
amprised of parallel timber planks
sported by two beams.
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versa. Due to the .
forcement must hcd;:slizcjl:’:ﬂl:lrc I 1Wo-way slabs, both top and bottom flexural rein-
lines). This makes o 0 orthogonal directions (usually in line with column grid-

slab and beam design, ay slab design significanily more complex compared to one-way

Gravity Load Paths in Two-Way Slabs

B:l:ll'f]:_r]l'lcm.tccdmg with the design of a two-way slab, the designer must understand its load
path. The concept of load path was first imroduced in Section 1.3.3. Gravity load path in this
which the gravity load is transferred from the
slabs, gravity load can be transferred to sup-
. oad paths. "One-way™ refers (o a pre-determined
pu(h‘m one direction of the slab panel. Load distribution in one-way slabs is explained in
Section 3.6. The concept of onc-way load path can be explained by an cxample of a timber
{loor system consisting of parallel planks supported by the beams shown in Figure 12.7.
When gravity load is applied on the floor, a plank (1) carries the load along its span and
transfers it to the beams (2). These beams in tun transfer the plank reactions (2) onto the
supporting columns (3). In this sysiem, both the planks and the beams arc treated as simply
supportcd at their ends and the load transfer is achieved through a pre-determined one-way

% %

context denotes the manner (or “the path”) in
slab to the supports. In reinforced concrele
ports through cither one-way or two-way |

ized by load paths in two orthogonal
are characterized by load pat :
c $12 3 rs. The
i e load paths simultancously ransfet load (rom the sl..\h to the ?l:ml)-:;rncss he
e ion me:doirrf d {n cach direction will depend on the n:l-.mv;L ncgur: s iflness of
. on ¢ of a timber floor sys
Pr0p0ﬂ19n Or'lh direction. To explain this conf:epl, an exinpk“x\v:)ﬁ:l ::'cmc li ;ns. y
o Sisub;[;:fs patt will be expance 0 idc;l'll:rlofg Q’:.ul? system of timber plunks laid in
one- i~ ) o in Fig | _ planks lid
i, ot us delice thesab PR igi s. Consider load distribution
forspm oplanks (A a0 5) which are P pi o ied at the intersection ol these
for a system of l?o p;gm . The point "oad P is applied at
the intersection (sce Il 2.

p . Both p! ointly sul po 'y S,
wo lanks. Both lanks j intly SUP] rt the load, that 1

Reinforced concrete Iwo-way slabs

i he
Pehit P and B, respectively. The planks have t
ads esised by planks A nm de ¢ their spans arc
s P b e
same crossseciony dlm;z:tcr span (I) while plank B has a long )
e . Ahasas A
different; plank

. jank A (/
span of p nio,n

bility at the point ©

=) ricd by cach plank can be determincd [rom the deflection
1 load suppe
y f intersect

hat is, the deflections of the two planks al the
ion, ! g

compati
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point of intersection must be cqual. The (.icl'lcclion for plank A at the il'llcrsccuo

be determined by treating the plank as a simply supported beam subjected (o Poin | “d“ﬂ
. bad p

that is, v

5= fali
48-E-1,
where E is the modulus of clasticity for timber, and [, is the moment of inerja fo
(refer to Table A.16 for deflection equation [or a beam subjected (o point load),
The maximum dellection for plank B at the intersection, &,. can be determineg f,
the same equalion as plank A, that is, om

I plan 4

8y = jﬂi,
48-E-Ig
These defections need to be cqual based on compatibility requircments, thus

8= ¢

A (]
and

PA'[:: - Pﬂ"}‘l

A E1, 48-E-ly
Since the planks have the same modulus of clasticity, £, and the same moment of inerta
(I, = 1,), the above equation can be simplified as [ollows

b_l
P I

Since I, = 2/, it [ollows that

L)
Py

=8

Since

P=PA+PB=§PA

It can be concluded that 8/9 (approximately 89%) of the total load P is supported by plark
A, that is,
8

Po=gP

while the remaining 11% of the load P is supported by plank B. B
This can be explained by a difference in flexural stilfness between P“mks".\ ﬂne l\‘
Flexural stilfness is directly proportional to the moment of inertia (/ ), however itis m\-e‘r‘sé‘
proportional to the third power of the span length (). In this cxample, both planks hﬂ“m
same moment of inertia, however plank A has one-half of the span length of Planl-( B”-iﬂ-
result, plank A has eight times larger stifTness compured to plank B, and thus carmes #°2
nificant portion (about 90 %) of the total load P. Eah
Also, note that that the resulting load on each plank support is quite different jank
plank A support camies approximately 45 % of the wtal load P, while the supports for?
B carry only 5% each. ' wh
Next, let us consider a modified version of the same example. Let us rotaté plank ’ sk-“
that the longer cross-sectional dimension is placed in the vertical direction, ¥ e P17

|
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Plank A —

= il
i-#-\
a)

b)

Figure 12.8 Two-way load path example: ti
i - , . . .
e 3 by isometr v ple: timber planks with the same stiffness on rigid supports: a) plan

rcr:allns (.hc same as in the ﬁr§l cxample (sec Figure 12.9). Planks A and B are now going
to have different moments of inertia for bending about the horizontal axis (x-x), as follows

250-50°
[, = =226-10" mm®
A " 2.6-10" mm
and

250"
5= 51250=65.0-l0" mm’

thatis, [y = 251,

Let us estimate a {raction of the 1otal load P resisted by each plank by Jollowing the same
approach as in the previous example. As shown carlier, deflections at the point of intersec-
tion have to be equal due to the compatibility requirement, that is.

5= 16

In this case, the planks have the same modulus of elasticity, E, however their moments

of incrtia and the spans are different, hence

Since I, = 2, and/, = 251, 1t follows that

Aom

Py

Therefore

P= P+ P, = 1.32P,
Hence,

P,= 0.24P

and

PB = 076P
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Plank A
Plank B

50
Plank B

Figure 12.9 Two-way load path example: timber planks with rigid supports and different stiffness.

It can be concluded that only 24% of the total load P is supported by plank A, whif;
the major portion of the load (76%) is supported by plank B. Plank B has 3 times higher fler.
ural stiffness compared to plank A. As a result, plank B carrics a major portion of the 1ol
load. Plank A now only supports 24% ol the total load; this is a large decrease from 8%
(sce the previous example). The changes in support reactions are also significant, since 3%
of the total load is transferred to each plank B support, and only 12% is trans(crred to e
plank A support.

The above two examples show that, although planks A and B have equal spans, it
support reactions are signilicantly dilferent due to a change in relative plank stiffnessesis
the two examples. The above examples have also shown that in structural systems wih
multiple load paths such as two-way slabs, the “stiffer” load path will always attraclalug
fraction of the total load. For example, in two-way slabs with uniform thickness and differem
span lengths in two directions, a larger fraction of the total load will be supported byasla!\.
panel in the shorter direction duc to larger (lexural stiffness in that direction, as discussd
in the first example,

12.3.3 Distribution of Bending Moments in Two-Way Slabs
Statics-Based Approach for Estimating Bending Moments in Two-Way Sabs

When two-way slabs were [irst introduced in concrete construction practice at the bcglﬂ“"{ﬁ
of the 20" century, initial design solutions were based solely on the statics-based sppo
which was originally proposed by I.R. Nichols in 1914 (Sozen and Siess, 1963). m‘;’r
proach may be useful to provide an insight into key parameters which influence momert £
Lribution in (wo-way slabs, and it will be used in the following two cxumPlcs'. 2108
Let us consider a two-way [lat slab panel supported at the corners shown in Figare 1> ui
The panel has rectangular shape (span /, is longer than span /,), and it is subjected ©°
formly distributed live area load, w. The four support reactions (R) are the same. that

R=W_'IL'{,1,
4

. . V[‘m\
chl, let us idealize the slab as a beam with the span /,. The beam is suhjccwd (4 “.rgn‘l']
line loaLl (w - {,) which corresponds 1o the tributary width /,. Bending moment of Sca;’ 1t
al r;udspan can be determined from a free-body diagram of the slab shown in Figure ™=
as follows

M, CEY
8

- |



o Bending moments
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a free-body diagram at
and ¢) a free-body
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Note that M, is cqual to the maximum bending moment for a simply supported beam with
the span I, subjected to unilorm load w - [,. It is important to note that M, is a total bending
moment which corresponds to the width [,.

The same cxercise can be performed to determine bending moment at Section 2-2 in
other direction (see Figure 12.10¢), as follows

-4 )8
M, =———(“ 8)) -

where M, is equal 10 the maximum bending moment in a simply supported beam with span

[, and subjected to load w - I,. )
*" The ratio of moments M, and M; is equal 1o

M _L
My

The above cquation shows \hat bending moments at {he midspan of a slab panel are pro-

i + catio of span lengths. o )
poruonal. EO L:;zl::,:::f:h wiugbe also used 1o illustrute an approximate dlslnl-n:mon ol

sumw 1s in different slab regions. Consider a square siab panet ABDE “'mh span
i rr:iolim:o:umns shown in Figure 12.11a. The structural action _of the slab with u uni-
lsuPPOrlZ y mulated by 8 grid of simply supported beams carTying the same umlon:\
form foac * & 12.11b. The interior beams FG and JH simulate the mldSPnl.l re-
load, as showL 1 R e eler beams simulate regions closc 10 column gridlines.

: g i rm 0
gions of the slab, “:lll: ‘hd:epi?uerior beams deflect the same amount at fidspan. .
Because of comPet s ! pending moment in an interior beam FG of unit width shown
nt for a simply supported beam subjected

irst, let us consider the T :
in Fil;‘\::c 12.11c. The maximum bending mome!

{0 uniform load is equal 10
wel?
Mi="g"
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Figure 12.11 Flat plate/slab
modelled as a beam grid:

a) an actual slab panel showing
idealized beam strips;

b) an idealized beam grid;

c) moment distribution in
interior beam FG, and

d) moment distribution in
perimeter beam AB.

CHAPTER 12

Beam FG is supported by perimeter beams of unit width AB and DL, which areiy

ported by the columns at cach corner. In addition to supporting tributary loag ffnmlﬁ.lmsu
these perimeter beams also support the reactions [rom the beam FG, thyg i is, e sl
Ro= wel

a2

Load distribution for a typical perimeter beam AB is shown in Figure 12.11¢, 1, Canbeg
that the beam is subjected to uniform load w in addition to the point foad R,. The fcsul

. - . Il
maximum bending moment is equal to

2 AR

Cowldt Red (...1‘
=ML RE o0 -
M=+ s J

E
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. ! ]
| ho— a) -
’ Rl
w W
I
EQ o Te] A F B
R} ! %RF [ -
2
i 5
P
) Mro 1 M
2N T 0




12.3.4

DESIGN OF TWO-way SLABS

595
The ratio of mayj
. mum bendin, .
2.0, thatis, 8 moments for a perimeter and an interior beam is equal 10
M
=20
Mg
This exampl, .
than the cos;::f;:g:} :::::nd'm'g moments in perimeter beams arc significantly higher
column gridlines in . 1S 10 interior bcams: As a result, bending moments along the

lml'gcr dcsilgn ll)cndilng moments for column strips (perimeter beam in this cxample) than
middle strips (intcrior beam in this example).

The key points from the above discussion are summarized below:

1. Bcndir}g momgms al midspan of a column-supported slab are directly proportional to
the ratio of their spans: farger bending moments occur in the longer span.

2. Bt_:nding moments along column gridlines are always higher than bending moments at
midspan regions of the slab,

Bending Moments in Slabs with Beams Relative beam-to-slab stiffness ratio is one
of the key factors that influences moment distribution in two-way slabs with beams. The case
of a slab with beams is an intermediate case, and the moment distribution falls in between
the two extreme cases. In the first case, the slab does not have beams at support lines, thus
the beam stiffness is equal 1o zero. As a result, the slab behaves similar to a {lat slab, that
is, the slab carries the entire load and resists bending moments. In the second case, where
the slab has stiff supports on all sides, the stiffness of idealized beams along the support lines
is extremely large and the behaviour is similar to slabs on stiff supports. )
A parametric study on the distribution of bending moments between !?cams and _slnb lor
slabs with beams was performed by Park and Gamble (2000). Charts showing a b_cndmg mo-
ment distribution in slabs with beams depending on the relative beam-to-slab stiffness ratio
(expressed through the & factor which is discussed in Section 12.4.51 and the span l_c-nglh
ratio | /I, are prescnted in Figure 12.12. Two different span anglh ratios (I,/1,), that is, _1.0
and 2.10,-wcre considered in the study. It can be seen from Figure 12.12a that the ncgl::‘\::
bending moment at the support is distributed bclwecn-lhe s!ub and the beam. thn‘ eam
stifiness exceeds 3.0, 8 major portion of the moment is resisied by the bcnr'r}: (bl::mms o
50%). Also, there is 2 more significant sharing of bending moments bcuy:e;:/[ et s o
the slab for square column grid (/= 1.0) compared to WC[‘““E_“_‘: i:)m(c:'l L midspan
same tendency was observed as related to the distribution of positt N

as illustrated in Figure 12.12b.

Redistribution in Cracked Two-Way Slabs

Moment .
inf ural members. two-way slabs arc expected to
Similar (o ot reinforeed Conm::drsle’);’hc effect of cracking and reinforcement distribu-

; ing under service | ) A J in Section
Pencnc;;“ﬁ::g. our of continuous reinforced concrete members is discusse
tion on vl

i g acking on the behaviour of two-way Nat slabs,
10, Twe Bs;rc lio:n(:;;:isjsess;:fe:zfiu‘:fl;;ir beh%lviour is more complex than beams and
which are also ¢ o .
one-way slebs, way slab shows lincar elastic hcl.mvi_our, which is Chm:lhzl;edn‘:iy
Before crw‘_“ng. a '& in concrete and stecl. Cracking in the slab dx:ccu:) uhen benc:
linear stress-sirain rclatl kin‘:g moment (M, ) (sce Section 4.2 for more hl:l 9. In conini.
ing moments reach the cTac! i ing imitially takes place in Lhendv_xcn myomcnls P
S Slﬂb‘nndg:;::;ym :y;:ically chanl:lerilid tl’ly'le:':r?se leti’;niﬁlzsm drop in flexural
supparts, St Once the slab cracks.

happen 10 be negalive momenis).
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07 T Total support negative moment

0.66

06 +
Slab moment L4, =20

/ .

04 [- T

05+

Total midspan positive momen:

0.33

03 T 03 + Slab moment| Il <3

9
Lil =1
0.2 1 / Beam 0.2 b e — G

moment
/ Beam

01 0.1 moment
} —Y— —— t —> t + t } —
1 2 3 4 5 o, 1 2 3 4 5

a) b)

Figure 12.12 Bending moments versus relative beam-to-slab stiffress ratio in slabs with beams: a) negative bending
moments at the supports, and b) positive bending moments at midspan.

stillness in the cracked regions. This results in an increase in positive bending moments inde
uncracked regions, which could cause cracking in the midspan regions and lead to further -
distribution of bending moments within the slab. This phenomenon is known as moment
distribution: bending moments will redistribute from cracked to uncracked regions
continuous reinforced concrete beams and slabs. The concept of moment redistribution ¥
introduced in Section 10.9 in relation to continuous beams and onc-way slabs.

A significant moment redistribution in two-way slabs subjected to gravity loads WS
ported by Rangan and Hall (1984). They tested a few half-scale models of the end pﬂ"ﬂ_‘f'
4 flat plate system, as illustrated in Figure 12.13a. The models were subjected 10 proge*
sively increasing gravity loads, and the behaviour was monitored at three load levels: ser\l'
ice load (5.4 kPa), factored design load (9.0 kPa), and ultimate load/lailure (22-5. LP-‘
Transverse moment distribution in the vicinity of column A (Section 1-1) is shown It l";[
ure 12.13b. The ultimate moment at the column (M) was upproximzucly 2.61imes 1‘"$ .
than the design moment (M,,,.). This indicates a significant rescrve in bending mome
pacity beyond the design load level,

It can be also seen that the moment magnitudes are highest at the cotumn
there is a significant drop in moment values just beyond. Moment redistributio Iy
served in the perpendicular span due 1o redistribution of bending moments it the ‘Tn 1iﬂ"
span. Along Section 2-2 parallel with column line AB (see Figure 2.13¢), 8 Sigmma‘rrlnf“'
crease in bending moments was observed in columns A and B relative to the 1018 rr:; bt
(moment gradient) M. Bending moment at the column location was originally 0'3.3 e
it }ncrcascd 10 0.50M, aficr the onset of cracking. A reverse tendency was obseft ckine:
midspan - bending moment decreased from 0.66 M, 10 0.47M, after the onset of e

: !

face, 8
n was a0

|
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Figure 12,13 Moment redistribution in flat stabs: 2 mlgym‘g;:)f;:c:ion 22
 the column A, and ¢) moment distribution \? longitu! O mors i)

dapted from Rangan and Hall, 1984 with the permission of the
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It can be concluded that, duc (o signilicant redistribution off bending mg, et
¢ designer has to ensurc that the total flexural capacity betwee NS in

way slabs, th signe | VAR, e
and midspan sections is equal 10 the total moment M, This is one of the ey Tules "
10 the design of continuous flexural members and two-way slabs and wil} e discumlw

SCUsgey:

Section 12.6. The actual distribution ol bending moments and reinforcemen, bog
column and midspan sections is a secondary consideration. and it depends g dcs‘i"ccnl
tices and standards followed in a specilic design. Hence, when ttal moment .rgn P,
cific slab span is given, the designer can select a number of different reinforee Fasp,,
for midspan and column regions, which would result in the same ultimang |o
the span.

o
ment “"’“Unl;
ad Capaciyy f,

Design for Flexure According to (SA A23.3

According to CSA A23.3 CL13.5.1, a1wo-way slab system can be designed using any
cedure which satisfies conditions of equilibrium and compatibility, provided that the Slf'frﬂh
and serviceability requirements have been met. The following design procedures are oulieg
in CSA A 23.3 (Clauses 13.6 10 13.9):

» Direct Design Method

« Elastic Frame Method (also known as the Equivalent Frame Method)
= Elastic Plaic Theory, and

s+ Theorems of Plasticity (c.g. the Yield Line Method).

The design of two-way slab systems must be performed considering both gravity and
lateral loads. Some of the CSA A23.3 design procedures, like the Direct Design Method. cn
be used for gravity load analysis only, while others can be used both [or gravity and luerl
load analysis. Common design procedures will be explained in detail and iltustrated byde
sign examples later in this chapter.

DEFINITIONS
Design Strip

A design strip is the portion of a slab system bound laterally by the centrelines of the pai
els on each side of the column (CSA A23.3 C1.13.9.2.1). This concept is illustrated in Fig
ure 12.14, which shows a partial plan of a two-way floor slab without beams (flet platcl-A
typical slab panel is enclosed by four columns (e.g. panel ABEF shown in Figure 13-“’."_
A portion of the slab at cach [oor level may be modelled as an cquivalent beam, ‘_‘“d“’
width is referred (o as a design sirip. Equivalent beams at each [loor level along “’lﬂ‘}'}i
supporting columns constitute a [rame. In a general design scenario, several l'mmf?.”;
both directions, cast-west (E-W) and north-south (N-S), need Lo be cunsidered.!\‘)I'l":;e
frame ABC in the E-W dircction is shown in Figure 12.14a, and the [rame DBFin )
N-S direction is shown in Figurc 12.14b. The design strips in cach direction are h
hatched in the (igure. ¢
According lo the CSA A23.3 notation, the longitudinal direction of the fmmgh;
refermed 1o as direction 1, and the span in this direction is denoted as [, (see Figur 121 .
other (ransverse) direction is referred to as direction 2 and the corresponding g l\sidﬁl
noted as {,. Both /, and /, are measured centre 10 centre of the support (column)- el\ thy
of the design strip is denoted as /, . In many instances, slab span lengths arc vane>
case, the width of design strip 1,, needs 1o be determined by considering average ’;
the two slab spans adjacent to the gridline under consideration. P
In flat slab and flat plate systems, the design sirip is divided into the coluft? 5“:1133“"
the middle strip. The column strip is defined as having a width equal (o one-hall the 8 .
span length (/, or 1), as shown hatched in Figure 12.15. Note the following (%0 e
158) anl
150

el

1) Forl < L,an .inlcr§0r column strip width is equal to 1,/ 2 (see Figure 12
2) For!l 2 1, an interior column strip width is equal to [,/ 2 (se¢ Figure 12
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Figure 12
) *15 Design strip, column strip, and middte strip: a) {, < L and bzl

urtey,
¥ of the Portland Cement Association).
The width of a column strip is determined using the smaller f’f _l,or 1,, 1o nccount for the
tendency for bending moment 1o concentrute about the column gridline when the span length
of the design sirip is smaller than its wndth.l . . . .
The middle strip is a portion of the design sinp outside the column strip. Each middle
strip is d by two column strips: _ . .
smp; ml::elmi are two Lypes of design strips. depending on the (rame location within
ole fiown in Figure 12.15. An interior de-

S O or and guerior design sirips. 858 " ninter
B_bUlldlf‘gcl’l::i';:';"W 0 and two half-middle strips. while un exterior strip con-
sign stnp €0

sists of a column siip

{ a column sip
:p and onc b

alf-middle strip.
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12.4.2 Band Width (b,)

A23.3C1.23 | The band width, b, is used for detailing of concentrated reinforcement near ol Tt
23.3Cl2. . iy

portion of the column sirip in two-way slabs without beams. which exiends bya distan
. . - ¢l ek pece C

1.5h_past the sides of the column (where #, denotes slab thickness), ag shown j i i

.

12.16a and b. In slabs with capitals and drop panels, b, should extend a distange 154 me:l':\x
S b
&,

column capital, where 1 is the overall slab depth at drop panel location (see Figure 17,

_wj.

1.5k J

[ 1 Drop panel

a) b) c)

Figure 12.16 Band width b;: a) flat plate; b) fat slab with drop panels, and c) flat slab with capitals and drop paneks.

12.4.3 Clear Span

A233CL13.9.23 | Span denotes centre-to-centre distance between supports (e.g. /, span in Figure 12.17), whil:

clear span denotes clear distance between supports (e.g. /, span in Figure [2.17). G584
A23.3 C1.13.9.2.3 requires that /> 0.65/,. In some cases, slabs are supported by circularor
polygonal-shaped columns. In this case, it is recommended that the supports are treated 2
square scctions with equivalent cross-sectional arca.

Figure 12,17 Clear span 0.89D
{, for slabs supported by b
circular and polygonal
columns

(adapted from CAC, 2005 with
the permission of the Cement
Association of Canada).

0.93h
. 1.>0.65/, .

T

A

12.4.4 Effective Beam Section

In two-way slabs with beams, a portion of the slab acts together with the bcﬂ{“ as on Ld(l:
a T-section, as shown in Figure 12.18 (note that the concept of T-beams was mlmdur\:hilr
Section 3.7). L-sections are found in end spans (edge beam shown in Figure 12.18_8)-}:1.“““
T-sections arc characteristic for typical interior spans (interior beam shown ";_m;,tnl
12.18b). The effective lange width for two-way slabs (noted as b, inhe ﬁg“m).ls ; )
from the effective Nange width for T-beams in one-way slabs discussed in ?eclfon 28

The efliective beam section for the two-way slab design is shown shaded i Figure

where

h, = slab thickness

h = overall beam depth

h, =hbcam web depth (below the slab soffit)
b, = cffective flange width

b, = beam web width
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18 Effective b=b+h<p +
\l:r:esection: a) edge b 4h,

i, and b) interior j}
|
. - =

b=b +2h <bh +8h
p——

b, -
B
a) )

12.4.5 Beam-to-Slab Stiffness Ratio (c:)

Consider an clevati " i
cectional dir::cn;l(::: :::bl:\htl)t:ay slab with bel.ams as sl.mwn in Figure 12.19a. Beam cross-
mive st inoms g 'h‘ s ickness, and spacing of adjacent beams will influence the rel-
. st " ss distribution for beams un_d the slab. This is relevant for the design of two-way
slabs with beams. Thc effect of beam stiffness on deflections and moment distribution in the
slal? can be taken into account through the beam-to-slab stiffness ratio, cc This scction ex-
plmns‘a procedure for finding a value for the design of two-way slabs with beams.

F_xrsl, let us identily equivalent T- and L-beam sections, consisting of a beam web and
a portion of the slab (note the sections shown shaded in the ligure). These beams span be-
ween the column centers (in the direction perpendicular to the plane of the drawing). Flex-
ural stiffness (or a beam (k) can be determined from the [ollowing cquation

P

L §PR)]
where L denotes the beam span, E denotes the modulus of clasticity of concrete, and /
denotes the moment of inertia for the beam section.

Next, let us divide the slab into sections, where section width is defined by adjacent
panel centrelines and its depth is cqual to the slab thickness. Slab sections for an end span
and a typical interior span are shown shaded in Figure 12.19b. Fiexural stilTness for a slab
section can be determined [rom Egn 12.1, by compuling the moment of inertia for a rec-
tangular section as shown in Figure [2.15¢. In cast-in-place concrete conslruqion. beams
and slabs are placed monolithically, thus their E and L values are equal (provided that lhc
same CONCTEIC Mix was used for the beam and slab pour, otherwise the £ value could be dil-
result, Eqn 12.1 can be simplified as follows

ferent). Asa
a =z’h [12.2]

f inerti denotes the slab moment ol inertia. The
‘| the beam moment of inertia and /, ' lome
“_hffc l'b dc":;‘; elTective beam section can be determined as shown in Figure 12.18. l\.lolc
dlmcnSll(‘)ﬂs tion is used O determine the moment ol incni_a for the edge hcum. 1, while a
that an L-sc¢ used for a typical interior bearn (moment of inertia /). as shown in Figure 12.192.
T-se(f{,‘l:: is ient of inertia for a slab section can be determined as follows (see Figure
mo

12.19¢)

by Xk

L="1

where i foran €nd P31 (corresponding 1© {he moment of incrtia )
b for !
idi ¢ span (corresponding t0 th

b =1, section ¥ ¢ moment of inertin /)
!

b =1 _section width for an interio!
s ki
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Figure 12.19 Beam and slab properties for an end span and an interior span: a) beam sections; b) slab properties, and

¢) a typical slab cross-section,

A23.3Eq. 134

12.5.1

A233ClL2.2

The beam moment of incrtia, 1,, can be determined from the (irst principles, or ang

proximate value can be delermined [rom the following simplified cquation (CSA AL
Cl.13.2.5)

2]e(-2)

T
The corresponding @ value can be determined by substituting the /, expressiot inie
Egn 12.1 as lollows

223

b\ A
Alternatively, the beam moment of inertia can be determined from charts included in ¢
Concrete Design Handbook (CAC, 2005).

1

_h

h

PR

GENERAL CSA A23.3 DESIGN PROVISIONS

Regular Two-Way Slab Systems .
the DY
s )
an

Some of the CSA A23.3 design methods, namely the Equivalent Frame Method a0 i
rect Design Method, can be applicd only to regular two-way slab systems. The reaso? "
most provisions related to these design methods are based on rescarch studies PerfoTni“l‘"
regular slab sysiems. A regular lwo-way slab system consists ol ilPPm’“.mﬂlely et

panels and carrics primarily uniform gravity loading,

g
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According to CSA
. Accord A3,
limitations iflustrated in Figurcal;cgtl;.lar slab sysiem should meet the following geometric
(#a) within a : -
pancl, the raij
greater than 2.0 (g 0 of longer to shorter span, centre-to-centre of supports, is not

L/, <20

(#b) for slab systems with beams between supports,

ams i . the ratio of relativi ive sti
of beams in the (wo directions is restricted as follo e effective sifnesses

WS,
02< “",{ <50

20

:vl:::‘rl(.:va]I and g, dcrlmc.lhc beam-10-slab stiffness ratio for beams in dircctions 1 and 2 re-
spectively (refer to Section 12.4.5 for an cxplanation of the beam-to-slab sti(fness ratio)

({#c) c()lumn offsets are not greater than 20% of the span (in the direction of the offsct) (rom
cither axis between the cenirelines of successive columns; and

(#d) Mexural reinforcement is placed on an orthogonal grid.

y Note lha_l the requirements #a, #c, and #d apply to flat plates and flat slabs, while an ad-
ditional requircment (#b) applies o slabs with beams.

figure 12,20 A summary of the (SA A23.

12.5.2

A2).3CL13.2

inforcement
::: ?#d) 02 < (@, L)@, ) <50
(#b)

3 requirements for regular two-way slab systems (#a to #d).

Minimum CSA A23.3 Slab Thickness Requirements for

Control .
Deﬂemon abs under normal loading con-

The thickness of two-way sl ng ¢
Minimum 5“3 ""ﬁﬁ'lﬁfy seflecton consideraions, CSA AZ3.3 CL13.2 proscribes the
ditions is often C_lL: ss. h, for the different types of two-way slabs -(wuh~nn i out
minimum S?ab thic ned'r:cu;scd in this section. These minimum slab lhl.cknfssl.s.p.an‘ o ios
beams), which will be L'd detailed deflection calculations in routine dcsngn.s, this is sm\; .
enable the desigrer 01+ . | in Nexural members discussed in Section 4.5.2.

" h [or deflection control X dent of design loading and
| approac . 1 s are independent O B .
to the indirect 89 3.3 minimum thickness valucs are Incepe jgn solutions in some

A2 C ative des
Note that the CSA ), and may lead to conserv solu .
concrele COmP“’“”;:‘;?;::, !;,)ﬂy be able to reduce thickness for slabs subjected to light
. xample, the des . forming
cases. Fore cpsidcmiul occupancies) by per lculations
loading (&8 T N iled deflection calc
CSA A23.3 approt®

detniled deflection calculations.
are outlined in Section 12.10.

hes for detal
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CSA A23.3 CL.13.2.1 states that the minimum slab thickness, & _ shall he ba
iccability requircments but should not be less than !20 mm. NBCC (jre rcSiSlal;c gy,
[ments also limit the minimum slab thickness dcpcndlrxg on the firc rating (sec chieorcqui,t‘
For example, a minimum 130 mm thickness is required for a two-hour fire Faling (ﬂl\lx )
dix D of NBCC 2015). Anper,

A233C11323 | Flat Plates The minimum thickness, /1, for the slab without drop panels depends
5 on

slab span and the steel yield strength, [ The minimum thickness can be determj
following equation:

1,06+ £, 1000)
bz 5 fizg

where

f. = steel yield strength (MPa)

Red from

[ =longer clear span

Two-way slabs usually have same or similar spans in two orthogonal directions. Howyy,
in somc cases these spans are dilferent, as illustrated in Figure 12.21. The clear span,

. . . i
slab thickness calculations (longer clear span) can be determined as follows

[ = max(l , 1,

For example, the clear span can be determined for the slab panel shown in Figure 12215
Since

When Grade 400 steel is used, which is standard in Canada, f, = 400 MPa, and the abose
equation can be simplificd as [oflows: )

h 2 L [124]
30
ES F
s * T
| | 5
A i LY I
= | N i i 2
W N . .
A l / A I i8
A
— 2 _
I )
Direction 1
a) b)

Figure 12.21 A typical two-way slab panel: a) elevation, and b) plan.
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» ge beam i ‘
creased by 10 % for pancls wilhls

not provided, the minimum i
, slab thi i
at Jeast L1k, where 4 it

discont:
1Scontinuous edge(s), that is, the slab thickness should be

= , is determi
Figure 2,22, rmined from Eqn 12.4. Thesc requirements are illustrated in
hy
i >11h,
a
) b)

Additional requirements for end spans: a) a slab with edge beam, and b) a slab without

Flat _Slab; (Slabs With Drop Panels) Flas slabs have drop panels, which arc formed
by thickening the bottom of the siab around the columns, as shown in Figure 12.23. Drop
_pancls are eflfective in increasing slab stilTness in the areas around the columas; this -rcsulls
in s_maller deflections compared to flat plates. For that reason, the minimum slni) thickness,
h., is somewhat reduced and it can be determined from the following equation

1,(0.6+ f,.1000) (2,
h 3 € ,BLO,_)_(%] A, [12.6]

where

A, = additional thickness of the drop panel undemeath the slab, and

x, =drop panel overhang (dimension from the face of the column to the edge of drop pancl).
The smaller of the values determined in Lhe (wo directions should be used for the slab thick-

ness calculation, that is, X, = min(x,, Tp) (se€ Figure 12.23).
The following dimensional Jimits should be met

A, Sh,

and

hsgﬁ

Note that the maximum x, value results in a decrease in slab depth by approximately
45 mm. ss a1 discontinuous cdges is the same as that

Additional requirement for slab thickne
related to flat plates (see Figure 12.22).

with All Supports The minimum thickness for slnbipancls
Slabs Beams Bemherd ppcl aspect ratio and the relative stiffness of beams

all sides depends on the par

with be:_ms ?:ns The minimom {hickness, h,, for slabs with beams betwceen all supports is
in two directions-
equal 10
12.7
1,(0.6+ /:/1000) 2l
(0.6% e 2

h 2 30 +4p0n

directions; for cxample. B =i 1, for a punel

where
= ratio of clear spa
shown in Figure 1221

ns in long and short
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Figure 12.23 Drop panel dimensions.
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Column
Slab
- ht V
=
{ L—I__ %
<
X,
et Drop panel
Elevation

Drop panel T~

Column — L
X, = min (x,,x,)

Plan
a_ = average beam-to-slab stiflness ratio.
Note that
1.0 € B <2.0, otherwise the slab should be treated as a one-way slab.

The beam-to-slab stiffness ratio, &, is an average value obtained considering all beams along
the panel edges, and it can be determined using (he procedures outlined in Section 12.4:3. For
the given A_value, the required ¢, value can be determined [rom the [ollowing cquation

a, = 1| Q8+ £:/1000) 4,
4 h,

Relative stiffness of beams in the two orthogonal directions is an important Pﬂf“mc_w
influencing the deflections in two-way slabs. For example, when beams in one directio?
are significantly stiller, the slab tends 10 acl as a one-way slab spanning between the ;u’ﬂer
beams (even il columns arc located on an essentially square grid). Note that CSAAD-
gives the following upper bound value for o :

a <20

. . ) eters
Minimum slab thicknesses [or various slab types and different values ol the key l?"“""“ll
Pand a are summarized in Table 12.1.

Table 12.1  Minimum Thickness for Two-Way Slab Systems (Grade 400 Reinforcement)

Two-way Slab System a, Y] Mlnlmllm!'[ o
Flat plate with edge beams - <20 V -
Flat plate without edge beams - <20 -
10 1.0
Slab with beams between all supports - 20 -
$20 1.0

o 20 MR
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This section descri .
Meihod (DDMS)CT;T;‘.M underlying concepis and design provisions far the Direct Design
3 1cs-based method for the design of wo-way slabs adopted by CSA

A23.3 and other coq icati B
sign cxamplos 5. The application of this method will be demonstrated through two de-

12.6.1 Llimitations

CSA A23.3 prescribes thar |

S he DDM can be used when the following requirements have
been met (see Figure 12.24):

#1 A slab must be regular
slabs).
#2 There must be at Icast three continuous spans in each direction.

#3  The successive span lengths (centre-to-centre of supports) in cach direction must not
differ by more than one-third of the longer span.

#4 The DDM can be used only for gravity load analysis; gravity loads must be uniformiy
distributed over the entire slab panel.

#5 The factored live load must not exceed two times the factored dead load.

(refer to Section 12.5.1 for more details on regular two-way

Uniform load (#4) X Wy, 52 Wy, (#5)

A :
O R C
LTI [T T L TITT

/ Column
Slab L

l NS Y B h 4
—r

—_

> Three spans

#2)

Figure 12,24 Limitations of the Direct Design Method.

L sed only for gravity load analysis. The de-
Requiremen M'ST:‘cs:: :.k::fc[l)xlr?::;d:ft:z: design 'su-ip for the slab at a specific [!(:lor
sign considers a partial frd d below that level, as shown in Figure 12.25 (the concept -tlth Zx
level and colurpns nbovedﬂ_n Section 12.4.1). A similar mode! can be used to design slal lm
sign sirip W> incode® mml {ateral swaying of the [rame is prevented by o rullerfsuppo:, :
the top floor lrc‘:‘. E‘;lckca-,r 10 Section 12.7.2 for discussion on frame models for gravity
the far end of the slab.

joad analysis.

12.6.2 The Concept a two-way slab according 10 the DDM will be ex-

. s in R R sadinal direc-
-<ribution of beading moments ain moment distribution in the longiuuding dM(i's

A233C1139.2 | Thedistn Je. Letus first expl in Figure 12.26a. The DDM
plﬂined by an exampie- AB of a it plate system shoyln beam with a width equal to the
tion. Consider the Spa:nodel and treats the slab as I" ::d.e, w:iuh necds to be transformed
n plane (rame uniform area load w, WHIED 12258 o 2 26b, A
zﬂs?;nowgp Cledlhleo design strip width 1,), os shown 1o Figure

es! "

into lincas loa

b is subje
The sla sl on

dW":n




Figure 12.25 A gravity frame
model for the DDM.

A213Eq. 13.23
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conceptual diagram illustrating moment distribution (or span AB can be seen in Figyre 1226
End moments M, and M, arc negative duc to the restraints (columns) at points A gy B.
while the midspan moment M_. is positive. Moment distribution is similar to that forcon:
tinuous beams and slabs discussed in Section 10.2.2. According 10 DDM, magnitudes f
bending moments at points A, B, and C depend on several factors, including the end gip.
port conditions and the type of slab system (slab on beams or Mat plate/slab). However, m
magnitude of moment gradient M_ is always cqual to the sum of average value for bending
moments at the supporls A and B and the moment at the midspan C, as shown helow

+ M,

However, M, is also equal to the maximum moment of an cquivalent simply supporié
beam AB with the span [, subjected 1o uniform load w x /, , (hat is,

_ (wx[:,,)x 4
; 3

o

Note that bending moments arc determined based on the clear span { (instead of the cer
tre-to-centre span /). This is similar to the design approach [or continuous beams and shibs
presented in Chapter 10. »

The above statement can be proven by considering a [ree-body diagram shown it
Figure 12.26d. The beam support reaction at point A, R, is equal 10

Ry=(wxb,)xl,/2
and the bending moment at point C is equal to

M, = Ryx1, /2= (wxb, )1/2 Y, /4)= (ﬁi[lgu)xﬁ,

’ 8

which is equal to the moment gradient M . "

Note that the DDM provisions refer 10 moment gradient M, as the Iomlf“cm.m{S
moment (CSA A23.3 CI.13.9.2). M, can be determined [rom the {ollowing eqution:

alic

M = Wy Xl X,I’; [l”]
A 8

where

w, = factored load per unit area of the slab

1,, = width of the design strip ity
i !

{, =clear span, that is, length of span mcasured lace-to-face of supports (columns. of

brackets, or walls),

|
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wel,,
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Figure 12.26 Bending moment distribution within a slab span: a) an isometric (3-D) model of the
slab span; b) a linear (2-D) model; c) bending moment distribution, and d) a free-body diagram.

Next, let us discuss the transverse distribution ol bending moments. Figure 12.272
shows the variation of bending moments in the transverse direction. Note that points A and
B denote the column \ocations, however columns have been omitted [rom the drawing for
clarity. It can be seen {rom the figure that bending moments at the support B are largest ot
the column location (moment M,). and that the vulucsl dn;p lQu'm.ds the cnds_. that is, moment
M. is the smallest of ull, It should be no(_..-d that the distribution is symmetrical w1.|h “'F'““l;"
© l(hc column gridline. Moment variation at the support B in the wransverse dlrcchn is
shown in Figure 12.27h. It can be seen 1hat the bending m9lncnls Vun,.f]!n a nnnhn?:ur

but average bending moments can be I'JSC(l for design. Two different bcm..lmg
mane ‘alues are assigned: the larger value is assigned to a region close 10 the column lines
:‘;?(:nn:::\: :A‘::; and the smaller value is assigned 1o a portion of the slab close to the panel

centreline (moml{nldN:]_\;‘l’-smb systems, these regions are called “column strip” and "r‘nid-
In Nat plate and Figure 1227 Note that, in slab sysicms with beams, 1hcs_e regions

dle strip”, as shown iR 115 ad of “column stiip”) and wslab strip” (insiead of “middle
(inste ding momet distribution in two-wuy slabs secording

are called “beam Strip

" isions for bem
strip”)- CSA A23.3 provist e following cetions.

10 the DDM are outlined in
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% Middle sy,

Column strip

= Column grig,,

2 Middle strip

Actual distribution
Approximate distribution

2 Middle c % Middle
i olumn strip stri
strip 4 | p Y
| . b, !
= 1
b)
-
¥z Middle
strip
& _._Column
strip
¥ Middle
4 strip
¢
Figure 12.27 Transverse distribution of bending moments in a flat plate: a) an isometric view showing variation f

bending moments; b) transverse distribution at support B, and ¢) column strip and middle strip.

12.6.3 Bending Moment Distribution in Flat Plates and Flat Slabs

A23.3CL139.3and 13.11 I ‘This section discusses distribution of the total factored moment, M, within & speciic: ¥
of a two-way slab, which is performed in the following 1wo steps:

J 10
1) Distribute M, between critical locations (supports and midspan) - this i refert®

distribution in longitudinal direction, and
2)  For cach critical location, distribute the moment obtained in the P"‘f‘”o"H siep?
umn strip and middle strip — this is referred to as transverse distribution-

|
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Exterior

N

nd span Interior spans End span

—_—
Longitudinal direction

e Ber}ding moment distribution within a specific span of a fat slab depends on several
actors, including the type of end supports (restrained/unrestrained), the type of slab (Nat slab
or !'lzn plfﬂc), location of the span within a building (end span or interior span), and the lo-
cation within a span (support or midspan). The sign of a bending moment depends on the
Iocauon'wilhin aspan — bending moments at the supports are negative, while the moments
at the midspan are positive. Bending values are ized in Tables 12.210 12.4,
Note that most values refer to flat plates, while the values tor [lat slabs (where they are dif-
{erent) arc shown in the notes beneath each table.

Table 12.2 shows a lypical case: a tlat plate supported by columns at all points of sup-
port (including the exterior supports). Note the labelling for moments at critical sections, e.g.
M, denotes the bending moment al the exterior suppart. The same labeiling scheme is used
in all tables.

Note that the moment distribution in the end span depends on the type ol exterior sup-
port. The slab may be cast with a continuously reinforced concrete wall — this is referred to
as 2 “fully restrained exterior edge” (see Table 12.3). Alternatively, a slab end span may be
supported by a support which enables rotation - this is referred 1o as an “unrestrained exie-
rior edge™ (sce Table 12.4). N . -

These tables show the bending morments values at critical sections within a span (sup-

rts and midspan), that is, in longitudinal direction. Moment values are expressed os a
?:;Cﬁon ol M_(according to CSA A23.3CL13.9.3). Subsequcnll?'. each ?l these moments
ds to be distributed transversely o the column strip and the middle strip; the correspon-
needs 1 values arc also included in the tables. CSA A23.3 C1.13.11 prescribes a range
d}nﬁ(ﬁ?lesnlues for column and middle strips as a fraction of the bending moment ata crit-
0

ical section (Sl-‘PP‘"""‘El:ls ic )suppol‘l may be different for two edjacent slab spans, but the
Bending mome! the larger of the two moments (C1.13.9.3.4). For ex-

:on slab sections for . N
r should dmi:i;l:bmomem at the first interior support (Section Je) is equal 10 -0.70

spondi interi Section 3i) is

¢ support corresponding 1o an interior span (
l;wusl?imw l:zc moment with the larger absoluie value (-0.70 M)
: Zn- an alternative would be 1o udjust spans so that the end span

designe
ample, 8 negative be
M_ while the moment &t
065 M,. The designer Sh
for the design at this localt
is shorter.
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Note that C1.9.3.3 permits an increase or decrease in negative or POSitive
ments by 15%, provided that the total static moment M_for a span in the direct
sideration is not less than that required by Eqn 12.8. This is known as *mop
and it will be illustrated through Example 12.1. Note that the sum of posiij
moments within a span must remain cqual 0 M.

According to C1.13.11.2, a major portion of lhe transverse bending mom,
ical section (support/midspan) is assigned 1o the column strip. The rem
distributed 10 slab sections on both sides of the column strip, also kno
strips. The column strip and two hall middle sirips constitute the desi

in Figure 12.15.

Transverse distribution of bending moments according to the DDM w
by the [oliowing cxample. Consider a typical interior span ol a two-way ]
Figure 12.29a. The distribution of bending moments at the critical sections in the |

© facor n

i0n ugy -
eny halancing;
Ve and negy,
. cm"“ﬂcm.
aining POrion
0 85 half gy,
&N Strips, ag Showy

ill be Mlusigareg
At plate shoup,

. . . . . . . . . ongitg.
dinal direction for an interior span is illustrated in Figure 12.29b. The positjve bcnfili:;
Table 12.2 Flat slab or flat plate supported directly by columns (partially restrained exterior edge)
M M M
1
End span I Interior span
Positive : M
moment M, ! 4
i /|-\ Negative
moment
1
My My, Ms
_ Typeolspan End Span Interfor Span
Section ) (2) (3e) @b (@) Y
Location  Exterior Midspan First Interior Interior Midspan Inerof
Support Support Support Supper
M, M, M, M, M, H,
Sign Negative 7P Ogi‘i"‘; 7 7§¢Emivc ) Neéali;é ) 77Poisirli\7/z;,ﬁ Negal®
Longitudinal  Towl . T T T R e
ongitudin,; otal My
Moment ~026M, +052M -070M, -0.65 M, 035 M, R
Transverse Column )
Stip - 026M,  H0291003H)M, ~(049100.63)M, ~(046100.59)M, +0.19100.29) M, ~04800N
Moment N o
_ o I
Middle
Strip 0 = Total Moment - Column Strip Moment
Moment .
Note

" =-(0.49 to 0.59) M, for flat slabs (with drop panels)
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at slab or flat plate with , f ;
e 12'3 Fl =% WIth a fully restraineg exterior edge
- Reinforced
concrete wal
End span Intsrior span

®®®®®©

Type of span P

R Intertor Span
Scction ) ®) (e T —
) Leri . ) (3i) @
Location  Exterior . . ) (5)
Locatio Suppon Midspan First Interior Interior Midspan Interior
M M Supon Suppon Suppon
A A s
o e O SO S
Sign Negative ) VPosmvc -\fcgf“i"c Negative Positive Negative
engitudinal — Total _ : e - - R
" Moment 0.65 M, +035 M, 065 M, ~065M, +035M, 065 M,
asverse  Column T T e -
Strip -0.65M,  +(0.19100.23) M, (04610059 M, ~(0.4610 0.59) M® 401910 0.2) M, ~(0.46 10 0,59) M,
Moment
Middle T T e
Strip 0 = Total Moment - Column Strip Moment
Moment
(=3
=-{0.49 t0 0.59) M, for flat slabs (with drop panels)
ftble 12.4  Flat slab or flat plate with an unrestrained exterior edge
Masonry Roof level |
wall L S
Jﬂ End span l l Interior span l l
) ST Interlor Span
Type of span EMSP‘} U ST
B @) O )
Sopeps 2) Ge) R : Mi Interior
Sculpn y M';s n First Interior Interior Midspan Sumport
Location  Exterior idspa Su Support Ppo!
Support Fpor M M
uppe M M, Moo M
M, o f’}k,,,,” H’#\l . i“i,\:;— - M;;\; T Positive Nfg,n,“,vc, B
Sign Negative Positive B R R 065M
Longiuginy o, oo 075M 065M, H0.35M, 65 M,
Total 0 +0.66M, M, I
Momem e T 059 M e
LLEN, Column o 05310068 M, ~(@4610059) M2 +0.1910 0.23) M 04610059 M,
Strip 0 +0.3610 049 M, Y- L
Moment e e T
Middle o = Total Moment - Column Strip Moment

Surip 0 T T
- MW
e -

-0,
o 0.59) M, for Rat slabs (with drop panels)
~
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Figure 12.29 Transverse distribu-
tion of bending moments in a flat
plate: a) a typical interior span;

b) the moment distribution at
critical sections (supports and
midspan); ¢) column strip and half

middle strips, and d) the transverse

moment distribution at midspan -
an isometric view.

CHAPTER 12

moment at the midspan (column 4 in Table 12.2) is equal 10 +0.35 M . Trangy,
tion of the midspan momenl is shown in Figure 12.29d.
First, (he designer needs to set the column strip moment. Let us se( the va]
M,; this is within the permitied range +(0.19 to 0.23) M according (o Tﬂhleu]czm’o'l
remaining portion of the transverse bending moment is equal 10 the difference h.ez_ .
the column strip moment (+0.2 M,) and the tolal moment for that section (+0.35 Mlu-eer.
is, (+0.15 M ). This bending moment is resisted by the two hall middle SUrips, a i
in Figure 12.29c. S, s
CSA A23.3 prescribes (he (ollowing requirements regarding the bending mop,
column locations: ents 5

Crse dise,

- Mg
huu;

a) Interior columns: according o C1.13.11.2.7, slab band b, should be designed g gy,
at least one-third of the total factored negative moment at the column locaion c‘ll::‘.“
-0.65 M (note that the band b, was introduced in Scction 12.4.2). This is illusmuedff
Figure 12.30a. The total moment lor an interior column scction (M) is cqual t‘n

a) 1
b)
""""""" ~===-0.65M,
Support  Midspan Support

4 Middle strip

c) <W m’ Column strip
% Middle strip

2 Middle strip
d)

= 0.35“An

|

Total moment
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Figu istributi
qure 12,30 Moment distribution at columns: a) an interior column, and b) an exterior col
. r column.

12.6.4

(-0.65M,) (see Table 12.2). One-third of that moi i i
22).0 ment is assigned to band b c
at 1hc column_. The moment for the columa strip is equal 1o -(0.46 10 0‘59)MD ccTr::md
nl:mmng bending moment, equal o the differcnce between the column strip m&.ncm ar:;i
the moment at band b, should be resisted by the remaining portion ‘
: fthe ¢ i
outside band b, #F orhecolumn anp
b) Exterior columns: according to CL13.10.3, the total factored negative moment at an
exterior column (M,) equal to -0.26 M should be resisted by the band b,. This is illus-

trated in Figure 12.30b.

Bending Moment Distribution in Slabs With Beams

Between all Supports
rransverse bending moments in slabs with beams between ull of their sup-
that in flat slabs and at plates. The design strip is divided into 8 beam

The distribugion of
proximity of column lines, similar to

ports is different than
stripand a slab strip.
the columa strips it flat plates and I
fective Mange Wi b, shownin !:IgUI'.t 12.
is called the slab surip, and it i divided into two hal

The beam strip i$ located in the
cs and flat slabs. The width of the beam strip is cqual to the el-

18. The remaining portion of the design strip
[-strips, as shown in Figure 12.318.
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34—-] A
- el T T T T T T -
I glo
BE
« 3 Beam ; Column
2 +
= [ T
= |
& 5 WCITTIITITITIE L __________
a) 2] Qe M---emememem e eSS Al
a
4l )
°\2
DG
X
pu 5y _J
b)
c)
Section B-B
) isometric ¥ie*
Figure 12.31  Design strip in a two-way slabs with beams: a) a plan view; b) an lsoI:: distribv’
showing beam and slab strips and the c

orresponding bending moments, and c) momé!
tion at the exterior column,
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First, the bendin,
Lo g Momen (M) i i -
dircction (at the SUPPOTts of the .-m)sls determined at the critical section in the longitudinal

factored moment, M . Next, a bend:’")- and the value is expressed as a fraction of the total
beam and slab Strips i transverse g 8 moment a1 each crilical section is distributed 10 the

irection (sce Figure 12.31 .
M= Mb+ M' g b), that is,

where M is the moment for th

¢ slab stri i ;
be determined from the follo 4D strip, and M, is the moment for the beam strip M, can

wing equation (CL13.12.2.1):

o I
My = Voo
’ [0.3+ al( ¥ ]]"M [129]

where

1, and /,=slab spans in the direction | (longitudinal direction in the plane of the frame) and
2 (transverse direction) respectively, and

@, = the beam-to-slab sillness ratio in direction 1 (corresponding 1o 1,). as discussed in
Section 12.4.5,

The above equations apply to all slab locations (supports and midspan). except lor the
exterior column, where 100% of the negative bending moment (M,) is assigned to the beam
strip, as shown in Figure 12.31¢ (C1.13.12.2.2). Note that the beam should be designed to
resist its sell-weight and 100% of the concentrated or distributed loads applied directly to
the beam (c.g. load due to a partition wall) (C1.13.12.2.3).

Table 12.5 izes the bendi values a1 critical sections (or slabs with
beams.

dle 12.5 A slab with beams between all supports

End span Dr Intarior span

o o ® © o ©

§ Interior Span o
‘Type of span lglET,,p,T,,,, e T
o ” ) &) @ )
Section (U- |-L; an First Interior Interior Midspan Interior
Location Exterior Midsps Suppon Support Support
Support M M,
M, M, M, [
M, M. . Ei/li\/c —
e T ive Negative Neguive ~ Posive ~ FPRR
Sign Negatve  FORT . — [
Wi o B 065 M,
Languudln:xl Total L059M 0.70M, 065 M, +0.35M,
59M,
Moment —0.16 M, [ [
M — e l
. Bcu;n M, = o |_.‘]]xM 129
Sui pElo3+a\ 3
uip ~0.16M, L
Moment IS
M, e
Tnn““sc - T T M=M-M,
Slab Strip -
Moment 0 _

~ M
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Bending moment distribution [or the sclcc(c_d values of @, (0.5 and |
(0.5. 1.0, and 2.0) has been summarized in the following tables, It can be
12.6 that the bending moment in the beam strip signilicantly decreases with
1, /1, ratio; a similar trend can be observed in Table 12.7. This is illustraied

Table 12.6 Transverse distribution of

bending momen

) ang Lt
Seen frop,
N increage in
In Figyre 123

ts in slabs with beams; o =05
e =0,

1 iy

Taby,

1, / I Beam strip (M,) Slab strlp ™,) ~
0.5 0.52x M 0.48 x Af
1.0 042xM 0.58 x A
2.0 020xM 0.80 x A1
- —_—

Table 12.7 Transverse distribution of bending moments in slabs with beams: a=19

II/I| Beam strip (M,) Slab strip (M)
0.5 0.64 x M 0.36 x At
1.0 0.51 xM 0.49 x At
20 0.26 x M 0.74 x M
11 11 R T [P PO R S -1
024MT T - 04M
7’ 77 777
0.52M /J,,/,/,'é 0.2M .
7707 : i
0.24 M . 'H :
o n 0.4M N
W--oooooo-a =t i
/
Ll=05 ¥ ettt fututeieits B
bty =20
a)

b)

Figure 12.32  Variation in the transverse distribution of bending moment between the beam strip and the slab stip

a,=0.5:2)L/l,=05,and b) {,/1, = 2.0.

12,6.5 Unbalanced Moments

. con
A23.3CL13.9.4 | Onc of the key issues associated with two-way slab systems is safety of slab-column ¢

et

nectons. All loads carried by the slab converge on the column. This section exP ains unesel
n

culation procedure for unbalanced bending moments which occur due 10 8
distribution of live loads in adjacent slab spans. inad
) Unbalanccq moments in the slab are caused by an uneven distribution of liv.e ]ondll..‘-“
Jacent spans. This concept is illustrated in Figure 12.33, Slab span AB shown in Fig

|
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is subjected 1o bot i

only. Bendig molr;it:lz::l and ln‘/c lo:?d, while the adjacent span BC is subjected to dead load

and My e e i;] i'l:l.lhc Interior column B due 10 loading in spans AB and BC (M
18ure 12.33b, The unbalanced bending moment M. shown ?;

Figure 12.33¢ i ¢ .
S equal 1o 1 "
BC. that s, 0 the difference between the slab bending moments for spans AB and

A4“ = Alm.— AJHR

The unbalanced moment s [

esisted by the connection and the
below the slab, as follows ( Folumn orwall sbove and

see Figure 12.33c)
M, =M, + My,

where Mj, and Mp, are bending moments in the column above and below the connection due
to the unbalanced moment, Note that M_ hat is distributed 1o the column in proportion to
‘h‘f Nexural stiffness (4£1: k), where E is modulus of elasticily, / is moment of incrtia, and
A is column height (centre-to-centre distance between the floor slabs). The column seg-
ments shown in Figure 12.33¢ have difTerent heights (#,, and k,,) and moments of incrtia
(T, qnd 1,); this will result in different lexural stiffnesses and bending moments. When the
column segments above and below the connection have the same height and corresponding
stifTness, cach segment will resist one-half of the unbalanced moment M. Transfer of un-
balanced moments through the connection will be discussed in Section 12.9.3.

The unbalanced moments are intended to account for uneven live load in adjacent spans
when the design is performed according to the DDM. This is not required [or the EFM, be-
cause it is possible to apply pattem loading which considers the effect of uneven live load
(scc Scction 12.7.2 (or a discussion on pattern loading).

w,+ 0.5w,

_ A lw,-l Bl-‘ﬁ-l (:lwf-l N
8)

Column
‘1— 1
o L1,
< 1 sab
1 MEL(‘ - )M"‘
s I,
-
1

c)
b)
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Figure 12.34 Unbalanced
moment according to CSA A23.3:
a) loading pattern causing an
unbalanced moment at interior
support 8, b) plan length defini-
tions, and c) free-body diagrams.

CHAPTER 12

Interior Columns

The unbalanced moment, M, for an interior colunn} is computed assuming thy

span adjacent (o the column (1) is subjected 10 the laclprcd dead load ang half (he F longy,
live load, while the shorter span (1) is subjected to the factored dead loagd only. Ty, Aclorgy
unbalanced moment at an interior column is cqual to the difference between “;c hc:dr_ﬂclmcd
ments at adjacent spans with different lengths, that is. g ;.

M, =007[ Gty +0 5w el = wiylea '] g

where

W= l'ac}orcd ldcm! load per upil le'clil for the Jonger span corresponding (o clear s
longitudinal direction and design strip /,,

wd’r=. fac}omd .dead. load per ur.m area for the shorter span corresponding 1o ¢lear spanl'y
longitudinal dircction and design strip /;, .
w,,= factored live load per unit arca (longer span only)

Pan{ i,

The cocflicient 0.07 in Eqn 12.10 is approximately cqual to 0.65 times 178 (nae 1y
0.65 is the multiplier used in the DDM to obtain the bending moment at the interior Suppon
location, and 1/8 is multiplicr in Eqn 12.8).

The notation used in the above equation is presented in Figures 12.34a and b. Bendie
moments at the support are shown in Figure [2.34c. Note that i

My, =0.07[ vy +0.5wilsl7 |

w,+ 0.5w,
T ' 'VL w'y "f‘[
gﬂ [HIIII LITIY ,
. -
IR
[ o | ["'.l

a)

_‘-
E

-~ M, = Mg, - Mar
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and

Mye=0.07] iy, wy

When adjacent span len

same i R ths aj \
same intensity. Eqn 12,10 ¢ &1 are cqual and subjected to the same design live load of the

an be simplified as follows
M,=007[(0 Swiht?)

Exterior Columns

The mome i :

exteri su;:)gﬁnslgcu"ﬁ: ;llci::'cxlrc:or.cnlumn is equal to the negative factored moment at the

eral, the slab ca[;aci(v o mml;'c h:dmg moment can be considered as unbalanced. In gen-
lirited ability of the ’ sfer | nding moments to the exterior columns is limited due to
b y ¢ slab top reinforcement to develop flexural capacity at the edge. It is

therelore recommended (o reduce the design moments at the exterior columns (o a minimum.

CSA A23.3 Reinforcement Requirements for Two-Way Slabs

It should be noted that the CSA A23.3 reinlorcement requircments presented in this section
apply to two-way slabs designed according 1o all design procedures.

Design of Flexural Reinforcement The amount of lop and botom reinforcement is
determined considering the slab scetion with the width (b) and depth (d). The width de-
pends on the location: it could be a column width. a slab width, or a band (b,).

The design bending moment (M,) corresponds to the section under consideration, and
it is determined according to the procedures discussed carlier in this section. The required
reinforcement area (A) can be found by applying the Direct Procedure discussed in Section
5.5.1 and Eqn 5.4 as follows

A, =0.0015ﬂ;[d— d:_}-ij_’:L/] 154}

The required bar spacing (s) can be determined from the following equation

L [12.11]
sSA A

where A, denoles the bar area.

Reinforcement Requirements for Flat Slabs and Flat Plates
Minimum reinforcement area (CL13.10.1)
the same minimum reinforcement area for two-way and one-way

A?23.3 prescribes
i : ), that is (CL7.8.1.

slabs (see Section 571

[5.16]
A= 0.002 A,
and
=b-h .
Y o ab scction, h, is the slab thickness, and b is

cli a of asl an
-(s:;uz;\:l”:l‘: strip or middle stip in flat plates). The minimum

where A_is the Bross Cross: o .
tended 10 control shrinkage and temperature eflects in slabs.

the widlf\ of the slab stnip @
amount ol reinforcement 18 11

amoun orcement (CL105.2) _
Maxmus tof ok (lexural members (sce Section 5.6.1).

forcement ratio () should not exceed

tnl {{
other reinforced concret
trolled failure, the rein
) prese!

o B same as for
This check is the S e seehcon

er 1o achicv .
::cotrilmced reinforcement 78110 ®,

ned in Table A4, that is,
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XY A

where

p=t
b-d
. . - 3
Note that the flexural reinforcement in two-way slabs is often closer to the minimym m
Oy

prescribed by CSA A23.3.
Reinforcement spacing

Maximum permitted reinforcement spacing (s,,,,) depends on the slab thickness, |
within the slab (support or midspan), and the sign of bending moment (positive or e
A summary of the key CSA A23.3 reinforcement spacing requirements for (wo-,

0Caligy
Eﬂli\'c]

. ) ay slabs
is presented in Table 12.8.
Table 12.8 CSA A23.3 Reinforcement Spacing Limits for Two-Way Slabs
Localion Symbol Maximum spacing*  Code Ch;
(G
General requirement - all locations s < 5h, 781
<500 mm
Negative (lexural reinforcement - band b, s, < 1.5h, 13.104
<250 mm
Negative [Texural reinforcement - outside 5 < 3h, 13.104
the band b, < 500 mm
Positive flexural reinforcement 5 < 3h, 13.104
< 500 mm
Note
~ = lesser of the alternative values
| Column strip | Middle strip
T T
s b
|'_'| II=; R £ J|
\ —
J? . . e 0 ¢ o . o o . .
| . . . . 0 [] ° e o ] ) . [ L] L
s+ s+ s*
b — —
- 3h 15h + 3h
e s 5h. i
A—{ 500 mm SaS[zso,;,m §'= ) 500 mm
General ¢ { 5h,
(all locations) — | 500 mm
Figure 12.35 Reinforcement distribution at column locations.
Reinforcement anchorage and curtailment (C1.13.10.5 and 13.10.8) r
. . s cluded !
The requircments regarding the anchorage of the reinforcement #re inclu ot

C1.13.10.5. The top reinforcing bars with either 90 or 180" hooks are placed 8t s~:n du;“‘

to control cracking in the slab. The bottom reinforcement, placed 1o resist €'

|



iqure 12,36 Shear failure of
 flat plate showing integrity
siaforcement (hanger bars).

A23.3 Eq. 13.26
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posilive moments, ; i
. 5418 Straight and congi
top rc"lforcing bars continuous between the columns. At interior columns,

are distr; i P
near one-third spans op ¢, s;rlt-’mm In cach direction. These bars are generally cut off
ments. At the top ﬂ;)or or iy ls-ldc of columns in regions where there are no negative mo-
are placed at the top of [hcr:?agcv"I:(:“’Ode dowels matching the column reinforcement
G i - Luldance regarding reinforcement lengths nd arrange-
TENLS In two-way slabs s provigeq iy CLiz0g, g andamenge

Structural integrity reinforcemen (CL13.10.6)

t[::‘:mnri:z‘l:l':ﬁsl;:(};]:ulrlla:,?cl;ldﬁmal overload of a column supporting a [lat slab structure
lapse. This phenomenon is k 0! Sirueture and pOSS‘lhly Ic.ad (0 a building col-
realife . nown as progressive collapse and it was l}luslmlct_i _lhrough a
‘ case st y at the beginning of this chapter. CSA A23.3 prescribes additional con-
tinuous hqllom reinforcement at slab-to-column interface in flat slabs 1o help enhance the
slruc.lural integrity in the event of accidental overload of an individual column, These rein-
ff)rcmg bars, known as integriry reinforcement, are intended to provide additional tension re-
sistance in the slab after the failure (akes place at the column location. The failure
mechanism and conceptual layout of integrity reinforcement are illustrated in Figure 12.36.

F_ Hanger bars
» z

According (o CL13.10.6.1, the tolal area of integrity reinforcement (3. A,) connecting
e slab or drop panel to the column or column capital can be calculated from the follow-
the sla

ing equation

Vee
Ta=t

¥

(12.12]

o ol $ C-
the sheer lorce transmitted to the column or column capital duc to spe
es e ! :
whers Vy denet .37), which can be determined as follows

ified loads (see Figure 12
v,=w-A

and
w=DL+LL Jab arca for two-way shear calcululionsl (shown shaded in the [ig-
. ibutary s T o tively.
where A is the wibw e specilied dead and live load, respec! ldLCZ)ﬂSiSl of ut least two bol-
and DLand LL - eprity reinforcement shoul ! > b
ure). rding to Cl 13.10.6.2, integnty r column capital region in cuc
Accordi "

column core o
through the colum A . column and
tom reinforcing bars hat msll-duﬂs miiforccmcnl 10 be continuous through the
jrection.
span direct

Tis essential l(;xcrnge as been provided. The following altemative amange-
uate 8¢ ee Figure 12.38):
{0 ensure uﬁ:ﬁ:ﬁby CL13.10.6.3 {see Figure 12
ments are p
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Figure 12.37 Tributary area A for ¢ @
the design of integrity reinforce- i : ; :
ment. _ _.‘ _____ ,_ _____ - ..... + ..... !._ -
i : I ‘ i
A ! i L
------ R EETe e
. . A .
| 1 |
—— M- b= . ..... Lo - !,_ =
! ! !
1 ] b
______ T 1 ' 1 t
i P E '
el e | TR e -
I

a)  bottom reinforcement can be extended through the column, and a Class A tension jp
splice discussed in Section 9.9 can be used (C1.13.10.6.3a); '

b) additional bottom reinforcement can be placed over a column or column capital, sy
that an overlap of 2/, is provided with the bottom reinforcement in adjacent spans,
where [, is bar development length discussed in Section 9.3 (C1.13.10.6.3b), and

¢) atdiscontinuous edges (end spans in the slab), bouom reinforcement needs to be oy
tended and bent, hooked, or otherwise anchored over the supports such that the vield
stress can develop at the face of column or column capital (C1.13.10.6.3¢).

Figure 12.38 (SA A23.3 provi- I |

sions for integrity reinforcement: [ | A

a) bottom reinforcement lap A, Tl ‘b

spliced through the column; === == —

b) additional bottom reinforcement

placed over a column, and === == o,
c)_ bottl?m reinforcement at a : :/AJ,,

discontinuous edge h |

(adapted from CAC, 2005 with the

permission of the Cement Association EA“"= 8A"’
of Canada). Plan
- A
¥
>, > 2/ lap 2 1,01 hook
f—
1 |
-
Sectlon
4
a) b) )
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Reinforcement pe,

beams mus comply

Naslabs and 1z pl
d g  aslab strip resis i

the reinforcemen, i e ey s

When beams

quitements for
with

are relatively stiff, glaps
ners ata 45” angle 10 (ye edges. These mo
bottom of the slab, The resultj
further details on torsig
Gamble (2000)).

Special corner reinforcement needs 1o e provided 1o resist these twisting moments in
slabs with beams (CLI3.12.5). The reinforcement should be designed to resist the maxi-
mum positive bending moment per unit width of the slab pancl. The reinforcement should
be provided within 4 hang parallel o the diagonal in the top of' the slab and a band perpen-
dicular o the diagonal in the hottom of the slab (see Figure 12.39b). Alternatively, the rc-
inforcement may he placed in two lavers parallel o the edges of the slab in both the top and
bottom of the slab, Th

¢ reinforcement must extend
cach direction from the comer.

will develop torsional momens auexterior cor-

ments will cause tension both in the top and the
pattern in the slab is shawn in Figure 12.39a. For
Wo-way slabs the reader is referred to Park and

ng cracking
nal moments in |

at least one-1ifth of the shorter span in

squre 12,39 Corner reinforce-
522 in slabs with beams:

» ¢racking pattern, and

i comner reinforcement.

[Hook at ends of top stesl

- 78— Y
K

Top steel
-

Bottomn steel

A
¥

-

a) b)

. g pp i i f i Des'gn Method
12.6.7 DeS.I 1A llcahons 0 the Direct . N
. ¢ design wo-wiy slal X i C was discussed in detail in
b [ Y he DDM was dis
he desi [ sy slabs [or exure according to 4 : ] : in detail v
The desig Ol?l n\ Ol-l 'h,“\"l\.'n steps are outlined in Chcckllsl. 120 :\llhOULEl .lfll, \‘le‘\ .‘hd:lll'l
B S . e nce, it is not necessary o {follow the same sequence in
seguence, 1013 Y

E N id plate an 1 slab with
CS situations. Two designexamples ustratng the design ol a (lat plat a

ds Two des A th (

1N siuatic

« presented next.
beams aceording 1o the DDM are presented ne

i Direct Design Method
thecklist 12.1  Design of Two-Way Slabs for Flexure According to the
St 12, esign -

sction 12.6.1).
1 Afethod can be used (sec Sectio
Check whether the Direct Design Method can

13.2

N jrements
s njmum thickness requi
Select slab thickness — use the CSA A23 miniy

. rence.
outlined in Section 12.5.2 s a refe

<ol in Section 12,41
erpion as outlined in
; y i sirip for frame under consideration . 13.1.2 Commentary
‘ Wentify the design strip for iddle strips.
) \he columa and m
idths for
¢ the widths

Flat plates and (lat slabs: determin

(Continued )
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Step Deseription

Checklist 12.1 Continued

$labs with beams: determine the widths {or the beam and slab strips.
The width of the beam strip is equal to the flange width of the eltective beam
section (sce Section 12.4.4).

and midspan) within the span.

Sa Flat plates and flat slabs: refer to Tables 12.2 to 12.4 (see Section 12.6.3).
5b Slabs with beams: refer to Table 12.5 (see Section 12.6.4).
6 Perlorm a transverse distribution of the bending moment for each critical

section obtained in Step 5.

Design and detail fiexural reinforcement for the slab. Determine the area ol 1op
and bottom reinforcement for various slab sections. Refer to the design procedures
for rectangular beam seetions outlined in Section 5.5.

8 Slabs with beams and (Tat plates/slabs with edge beams: design the beams according
to the CSA A23.3 design provisions for flexural members explained in Chapter 5.

CHAPTER 12

Code Clayg,

4 Compute the total factored static moment M, for the span. Dclcfminc the lactored 1392
load for the span by treating the slab as a wide beam with the width equal to the
design strip (see Section 12.6.2).

5 Distribute M. in the Jongitudinal dircetion between critical sections (supports 13.9.3

61 Flat plates and flat slabs: find bending moments for the column and middie 13.11
strips (sce Tables 12.2 10 12.4).

6b Slabs with beams: find bending moments for the beam strip and the slab 13.12
strip (see Table 12.5).

Ta Flat plates and flat slabs: distribute the reinforcement according to the CSA A23.3 13.10
reinforcement requirements summarized in Section 12,6.6 (in particular Table 12.8).

7h Slabs with beams: refer 1o additional reinforcement requirements summarized in 13.12
Section 12.6.6.

p— ]

Example 12.1

Two-Way Flat
Plate - Direct
Design Method

Given:

Consider a floor plan of a two-way slab system without beams (flat plat
the following figure. The plan shows an intermediate Moor level, and 2 ty|

height is 3.0 m. Column dimensions are 300 mm by 600 mm, except for (::;i
beams ™.

columns (300 mm by 300 mm), as shown in the figure. Edge (spandrel)
provided. The slab is subjected to specified live load (LL) of 3.6 kP8,

posed dead load (DL ) of 1.44 kPa, in addition to its self-weight. Consider (I)mll' s

fect of gravity loads for this design - lateral loads are 1o be resisted by ¥

which are omitted from the drawing. Use 15M bars for slab relnforcement: s a1
enty

Use the CSA A23.3 Direct Design Method to determine design bending moit

¢) shown

amount and distribution of reinforcement for an interior frame along gridline =

£=30 MPy
£ =400 MPa
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t {comer) |  300xg00
i */ (typica)

SOLUTION: 1. Check whether the criteria for the CSA A23.3 Direct Design Method are
satisfied (see Section 12.6.1):
CSA A23.3 Cl. 13.9.1 prescribes that the DDM can be used when the following re-
quircments have been met:
#1 A slab is regular (sce Section 12.5.1).
#2  There are (hree continuous spans in cach direction.
#3 The successive span lengths, centre-to-centre of supports, in each direction must
not differ more than one-third of the longer span.
E-W dircction: Span 2 -Span 1 =60m-50m=1m<60m/3=20m
N-S direction: all span lengths are equal (4.8 m)
#4  The slabis subjected to uniformly distributed gravity loads,
#5 The factored live load does not exceed two times the factored dead load (this will
be confirmed in Step 3).
2. Determine (he required slab thickness based on deflection control requirements.
For two-way slab systems without beams, the minimum overall thickness (k) can be
determined according o CSA A23.3 C1.13.2.3 as follows (when Grade 400 reinforce-

ment is used)

|
e
“30 o
i 5 J consideration. Since [ denoles
ecd to determine the clear span for ench span under consi 3
l\Z: :lc::;:: clc::' span, (w0 clear span values need 1o be considered [or cach slab panel
along gridline 2:
Span | (end span AB)

i 03, 06 _455m
E-W direction: [, = 3.0~ (7 + ,2,) 5

03,06,-435m
N-S direction: £, = 48 - (_2_ + 5 )
The longer span EW direction) governs, that is,

[, =455m
The required slab thickness 1

b _ 4530 152 mm

h 3 ¥
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Since the design docs not anticipate the provision ol edge beams, CSAA

. . 233
ab thickness to be increased by 10 %, that is, 33 (]-13,1_3

requires the sl
ho>11x152= 167 mm
Span 2 (interior span BC)

E-W direction: [, = 6.0 —( .

0.6, 0.6)_5 4y
2

N-S direction: [ = 4.8 — (07'3 + 0;’ y=45m

Therefore, the span in E-W dircction governs, that is.

[,=54m
The required slab thickness is
Bzt o 3490 150 mm

30 30

In this case. the required thickness is larger for Span 2 (180 mm) than for Span 1 (152
In practice the slab thickness should be uniform and the higher value should be g
that is,

h, =180 mm

Find the factored design loads.

a) Calculate the dead load acting on the slab.
First, calculate the slab’s setl-weight:

DL, =hx 7. =0.18 mx24 kN/m* = 4.32 kPa

where 7, =24 KN/m’” is the unit weight for normal-density concrele.
The following superimposed dead load was given:

DLs =1.44 kPa

Finally, the wotal factored dead load is equal 10

Wy = 1L.25(DL, +DL)=125(4.32+1.44)= 7.2 kPa
b) Calculaie the (actored live load:

wip = 15X LL, =1.5%3.6 kPa=5.4kPa

¢) The total (actored load is
Wy =y oty =72+454=12.0kPa

; i . . <o cod dead I
Note that the lactored live load wy; , = 5.4 kPa is less than twice the factored dead &

2%y, = 2x 7.2 kPPa =144 kPa. Therefore, the requirement #5 lor the :lpPl'“"‘m‘[
DDM has been met.

Determine the widths for design strip, column strip, and middle strip-

a)  Design strip

The frame under consideration is laid along gridline 2; this is referred
1, while the transverse direction is referred 10 as Direction 2. The corres
are illustrated on the following sketch, that is,

(0 s DIt

ponding

{, =6 m(let us consider the longer span)
and
l=4%m
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The desi .
SIER Strip is de,
determingd by yggir e o 25 by, (Directi
) Y takin 2 tion 2). The wi " .
consideration, Ip lhif ‘::::V'::gc value for the two sp:ll:l;:j:i;:: :)c:lgﬂ S_Idl'lp b
) » e Spans in Diregyj ) ¢ gridline und
l,= L=48m Pans in Direction 2 are cqual, thus e

Direction 2

Direction 1
—

b)  Column strip and middle strip

Thc w_ullh ol_lhc column strip can now be determined, (ollowing the guidelines pro-
vided in Section 12.4.1. First, we need to compare the spans in both directions (1 and
2). For span BC, ;=48 m and/, = 6 m, hence

1<l

According to CSA A21.3, the shorter span (1,) is used 1o find the width of the column
strip. Note that the same conclusion would apply to span AB in E-W direction (, = 5 m
and [, = 4.8 m; hence !, <1,).

As a result, the width of the column strip (1) is equal 10

| =4,2=48/2=24m

Nole that the smaller of two spans is considercd for the column strip width.
The middle strip (/,) is a portion of the design strip outside the column strip, that is,

[ =1yl =48-24= 24m
ps are illustrated on the sketch below. Note that the middle

The column and middle stri
hatched on the following sketch.

strip is divided into two hall-strips. shown cross-

Flnd the factored bending moments in the slab.

¢ :nd the total [actored static moment M. '
dT)hc E::lorcd siatic moment can be determined from Eqn 12.8 as follows (see Section

12.6.2)
kX (12

M, = 8

where )
W= 12.6 kPu is |
L =4.8m isthe Wi
2

the total factored lond )
dth of the design srip
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_____ -—-——me— -
] !
1 i
600 /,=5400mm _ 600
=T T

{_is the clear span in the longitudinal dircction (along gridline 2). Since the spans 2
different, this calculation needs 1o be performed lor cach span.
Span I (end span AB).

1=50- (0-3 + ”"” =455m
L 2 2 !

wy X by %17

M, =
8

12.6 kPa x4.8m x(4.55m)’

= - S 2 =156 KNm
8
Span 2 (interior span BC):
1=60- (":6 + 06)=54m
) 2 2
XXl

o 8

12,6 kPax4.8mx(5.4 m)
= - 8 - -- 7 =220 kNm

dinal &

b) Distribute the total factored static moment to critical locations in the longité )
SVerey

rection, and subsequently distribute the moment at each critical location tran
to column strip and middle strip. —

Distribution ol bending moments in the longitudinal direction will be Pc'l.“_n ‘-.'-
according 10 CL.13.9.3, while the transverse distribution ol hending moments & I:J
formed according 10 CL13.11; these requirements are summarized in Table 12 dspn’
ing moments at critical locations in the longitudinal direction (supports and I'ml i
arc expressed in terms of (he total factored moment M , as shown on the oI
sketch, The caleulations are summarized in the I'nllowin;,; tables.
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Interior span

© o @ ¢ o o

MO
0.52 M, r7M°\
/ 0.35M
0.26 M, V / T °
T |0TOM
el 0.65 M,
ble 12,9 lfaftored bending moments for Span 1 (End Span AB)
M, =156 kNm
A Midspan B
angitudinal Bending Negative moment Positive moment Negative moment
moments at (kNm) (kNm) (kNm)
critical sections -0.26M, 0.52M, - -0.70)71;
=(-0.26)x 156 =(+0.52) x 156 =(-0.70) x 156
==41 =+81 =109
e CAATS 0.26M, 02910034, -(049 10 0.6,
ol 1 T Tt - N
P Proposed value -0.26M, 40.29M, 063,
Design moment 41 +0.29 % 136 = +I5 -0.63 % (156)=-98
Tansverse
Design moment 0 =81-45=+36 =—109—(-98) =11
niddle strip
- Confirm that the sum of bending moments within a span is equal to M_;:
|.  Average negalive bending moment = (=+1-109)2= -75 kNm
2. Sum of absolute values for positive and negative bending moments = 81+75 =
156 kNm =M_

I'hle 12,10 Factored bending moments for Span 2 (Interior Span 8C)

M, =20 kNm B o o
T g Midspan c
. Posilive moment Negative moment
s I ¢ moment ;
Lcnglludln'.\l Bending hcgm(l:Nm' (kNm) , o 7(L:Nm)7 o )
moments at e s ST Sy —0.65M
+0.35M s
critical sections -0.65M, = (+0.3%)x 220 = (-0.65)x 220
08X 20 = (+0.35) %
- 143 =+77 ) =>'”J B
L T T 191000, 04610 0.59M,
nm\k‘rsc CSA A23.4 (04610 0.59M, +0.1910 : i
isi T a -0.59M
Sy g : Provisions .- +0.19M, M,
rip proposed value 9—(1.25296\)‘.. g0 uIx@=Hz 08x@0= 130
x == b e
b Design moment . ‘g’ e o130 1)
storsy o T _42= 435 = 1d3(- 1=
e -13 =772
= 143--130)=
J Gi nt . _
f’ﬂdlu stip Design mome! o

. -
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Confirm that the sum of bending moments within a span is equal 1o M
1. Average negative bending moment for Span 2 = (~I43—l43)/2=_143 KN
2. Sum of absolutc values for positive and negative bending momenys = 5

=220 kNm =M

Ty

o

Bending moment diagrams for the total moment in Span | and Span 2

i i ip. are show 8wl g
the moments in column strip and middle strip, are shown below. I
Span 1 Span 2
+
98 +86

LN

A B Total moment
.26 4 M (kNm)
116 -160 -160
/H-T\ +60
A B B m C  Beam strip
o5/ M (kNm)
B -112
+ +
+24 +26
A /T\ B B /‘l\ c Siab stip
wm M (kNm)
48 -48

It can be seen that the negative bending moment at support B has dilferent \ﬂlu‘l’l
for Span | (=109 kNmn) and Span 2 (~143 kNm). [n practice, the top rCinr""'c"‘f"_l_r,
support B would need to be designed for the greater ol the two moments from d"J“‘T‘L
spans. ‘The solution will proceed by lollowing that approach. However, 2 mm_ﬂ-L[:}w
tive solution can be obtained il these 1wo moments are made equal by incn‘ﬂ’.‘"‘-“lm
moment [or Span 1 and/or decreasing the moment for Span 2; this pmccduw.‘l-S"mwA
referred to as “balancing” of bending momients. Since the balancing approach 53T
what more complex, it will be discussed in Step 10 (at the end of the cxample)-

6. Design the flexural reinforcement.
The dimensions of the column strip and middle strip were found in SlCP’J' l it
sign, the column sirip and the middle strip have the same width (24 m). The¢
slab depth is

1 this &
e

d=180-25-15 =140 mm

> tha S i i { age concr
Nole that the o value was determined considering a 25 mm average conc o e

: VO G v H 3 ars ¢
plus un average diameter (or the two perpendicular layers of 15M brs. Ind aLre
tice, this approach may be used (o obtain a reasonable estimate of the mo™
ance in cach direction with an error in d value equal to hall bar diameter:

el
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The flexy, i
ral rejn forge,
: ment caley|a R
cquations are SUmMarized bo ulation can be presented in a tabular form. The key
3 The required rejnfy

. ccment ar. ; .
ton 5.5.1) ang Eqn5.4 45 folloi:nc:n be found using the Dirccr Procedure (see Sec-

l
A =0'm'5,ﬁ77[d— m
I [5.4] I

Note that A, =200 mm? for 15M bars,

) Maximum reinforcement spacing (s,) within the band width b,

Thclrcinforccmcnl spacing requirements for ne
oullined in Section 12.6.6. It follows that, witl
(5,) is limited (o the lesser of (C1.13.10.4)

5, < 1.5h = 1.5 % 180 =270 mm

gative reinforcement in column strips are
hin band width b,, reinforcement spacing

or
5, $250 mm

In this case,

5, S 250 mm govemns.

d) Maximum reinlorcement spacing - outside the band width b,

Spacing lor the reinforcement resisting negative bending moments in the column strip
outside the band b, is limited to the lesser of (C1.13.10.4)

5"£3h =3 x 180 =540 mm

or

5~ £ 500 mm

In this case, s~ $ 500 mm governs.

Maximum spacing lor the reinforcement resisting positive bending moments in the slab
is the same as (or the negative bending moments (C1.13.10.:4), that is, s~ < 500 mm.

¢) 'The mini reinforee requi (€1.7.8.1)

A, =0.0024 -

N, " that the orea A_refers 1o th gross cross-sectional arca (or the section under con-
ote c arca A, relers

sideration.

Column Strip Calculations

i i ' in the column strip of un ex-
1.10.3 requires that the bending momen ) p ol ¥

CS_A A233CLI13 .l:liqu esisted by the sirip b, ccnlcycd at the cglumr: (.M.C Flﬁ:::
terior column be enife Jun. the band b, should be designed to resist at least om-z ;
12.16). Foran mlcnol‘c tzli\'c hc nding moment for the entire design stnp (CL13.1 lnl ‘r;;
of the o mwm'l nTgbh: 12.11, For exterior column A, dcsxl{" h‘-“‘]'ngl mo"?l('B and
“This is illustrated in d:e wml-mo"wm (~41 KNm). However, [or interior co ﬁn; B
the band b, 18 equ;:l\(z(hin ine band b, is designed u_s:‘:g ku};::,;-lluf(] of the t

i n ; i 48 KNm.
Q). rcmlrc(m:]zﬂ;cmm)l hat i, the design moment is
moment (-~

Find the width ‘
i) Exterior column (A

= 2
~j40mms!
b, =600+ 3% 1801

for band b

00 mm
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where 600 mm is the column cross-sectional dimension in UANSVETSC dipees
- Cliop
L

180 mim is the slab thickness.

ii) Interior columns (B and C):

b, = 300 + 3 % 180 = 840 mm = 900 mm

where 300 mm is the column cross-section

180 mm is the slab thickness.

Note that the reinforcement calculations have been performed considering two i,
e lic;

ent slab scctions;

a)  The scction with the width &, and the overall depth A (For the colump Tocation

b) The scction with the remaining width (column strip minus the band 5 ) and
b i1

only). and

overall depth #r..

Table 12.11 Column strip - factored bending moments and flexural reinforcement calculations

Within b,

Outside b,

Steel location

Total bending moment (kNm)

Bending monent - column strip (kNm)

Column strip width (mm)

Band widilh b,
Design moment M/ (kKNm)

Required reinforcement arca A, (mm?)

Required spacing s (mm)
Max spacing (mm)

Design reinforcement (area in mm?)
(mm?)

Min reinforcement arca A

Sun

Strip width (mm)
Design moment Ml (kNm)

Required reinforcement area A, (mmy?)

Reguired spacing s (mm)
Max spacing (mm)

Design reinforcement (area in mm?)
(mm?)

Min reinforcement area A

samn

Design reinforcement - summary

Exterior column (A)
Top
—41

41
2400

1200

-41

900

267

250

6-15M @250 (1200)
4m

0
0
0

0
432

0~15M @250
(centered over column
within 1200 mm)

Midspan

Botiom

+81*
15
2400

2400

+45

958

500

500

6-15M @400 (1200)
864

15M @400
(2400)

Notes:

° - Larger midspan moment selected (+81 kNm for Span 1 versus +77 kNm for Span 2)
** - Larger negative moment for support B selected (~143 kNm for Span 2 versus ~109 kNm for Span 1)

Note that the maximum reinforcement requirement check has been of
the table, since it does not gavern duc to the small amount of flexural s
Lop reinforcement at exterior column A within the band b, (1200 mm W

10 6-15M. The corresponding reinforcement ratio is

A

This s significantly less than the balanced reinforcement ratio (7

s

6-200

P = o = 0007

1200140

£/ =30 MPu presented in Tuble A 4, thus P<D,

al dimension in t ansverse dj
SVCrse direey;
tion, ang

Interior columns (B and ¢, 7
Top
143

=130
2400

900

=-143/3=—48

1088

165

250

6-15M @150 (1200)
324

=2400-900=1500
=—130-(—48)=-82
1880

158

250

11-15M@150 (2209)
540

15M @ 150 (uniform spnu:in_z
for the entire column strip!

-

nitied frem “
1ccl. For examplt |
idth) is e

[],ll

) o 0027

el
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Middle Strip Caleulationg

Nole thag there i
isnon ide rei
i acconding CSAOT;; 3pgmde reinforcement in the middle Strip at an exterior col
-3CL1310.3. The calculations are summarized in Table llcrl-

12 Middle strip - factored bendj
e 12’ T T "3 moments and ﬂexural reinforce "._

Exterior column (A)

ﬁ‘ﬂldipﬂﬂ Intertor columns (B and C)
el location Top Bort T e e
«ign bending moment - middle sirip M, (kNm) 0o T o Top _
“alle srip widih (zmm) 2400 e Tia o
_-4uircd reinforcement arca A (mny’) 0 2400 2400
wpied spacing § (mm) 762 m
x spacing (mm) 500 830 1774
fn reinforeement arca AL 864 g gg ;‘

wign reinforcement (arca in mm?) 0 [EQ@MIM 77}57777 o
! M@400 (2400)

- Larger midspan moment selected (+36 kNm for Span 1 versus <35 kNm for Span 2)
+. Larger niegative moment for support B selected (13 kNm for Span 2 versus —11 kNm for Span 1)

7. Find the factored moments for the columns.
a) Interior column (B)
f['hc purpose of this calculation is 10 find unbalanced moments, which were explaincd
in Section 12.6.5. Unbalanced moment for an interior column can be determined from
the following equation

M,=007 [(“'J/ +0.5w, )ali - n'j,I:'_,(l:):] [1210]

A23.3Eq. 13.24

Since both Span 1 and Span 2 need to be considered, it is necessary Lo idenify the
jonger and the shorter span in the plane of the frame. Based on the calculation from Step
2, it follows that Span 2 is longer, that is,

| = 5.4 m (longer span) and /,, = 4.8 m (corresponding transverse span)
whereas
[ =4.55 m (shorter span) and £, = 4.8 m (corresponding transverse span)
In this case, factored dead load is equal [or both spans, that is,

. zw' =12k
W= Wy 7.2kPa
and the factored live load is
w,= 5.4 kPa
thus
M,=007

(12 RsB mx (4 35y ]= de9

moment is transferred w the column scgments above and
css. If column segments huve the same geo-
one-hall of the moment

1
[(7.2 (Pa +0.5(5.4 kP (48 m(54 m) -

Note that this unbalanced

rtional to their stifT .
belm.w m‘:\bicgr(ocﬁss-secﬁonnl dimension and storey height),
metric :

is transferred to each scgment.

Exterior column (A)
o 1.13.103 requircs that the
' lumns.

factored moment be ransferred

entire exterior '
support is

csAA23C Bendiog moment at the facc of the
{rom the slab
equal to

M= 41 KN

directly W the co
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8.

A233Lq. 13.26

£ !

@ ! !

- ! (5m + B6m)/2 1
©_..L._. ........... - - —— e — .*.._

Determine the slab integrity reinforcement.
The purpose of integrity reinforcement is discussed mn Section 12.0.6, A
CSA A23.3 CL13.10.6.1. the total arca ol bottom reinforcement (A
slab. drop panel, or slab band 10 the column or column capital on
riphery of the column or column capital shall be at least equal 10

Z 4= 2V,

¥

Ceordip, y

W .cnnncclingy

all Taceg of the
I

M

where V_is (he shear lorce transmitted to the column or column capital due (4
B

fied loads, but should not be less than the shear corresponding to twice the sl “p“;"

) : . LS Sell-weig,

of the slab. In this case, the tributary arca for the shear design is determingg fori”

. nie.
rior column B (see the sketch below)

P om ¥ ©

5 .
A=(48 m)x( "‘;6 ”‘):2().4 '’

Consider the following loads:

Total specificd load w) = 4.32 kPa+ 1.44 kPa + 3.6 kPa=9.36 kPa

‘Twice the self-weight w =12 x4.32 kPa = 8.64 kPa

In this case, the wtal specified load is larger and it governs. Next, the shear force &0
be determined as lollows

V,=wxA=936kPax264m?=247 kN

Finally, the required arca of integrity reinforcement can be determined as Tollows

2x247x10° N ,
Z 5= =1235 mm-"
4(00) MPa ‘

. . i . et
1tis required to provide 8-15M bars (total area 1600 mm?), that is, 4-15M bat inel
direction.

Present a design summary,
A drawing summarizing the design solution is presented below. Note €
forcement should be laid out such that it is easy 10 construct. Rebar spacing . -
specified using simple rounded numbers and it should preferably be ,—cpclllll“;“ e
same spacing should be used in both orthogonal directions to avoid C"“rusu.)nuuion
construction site. A good judgement is required 1o minimize potential consif
errors and strike balance between labour, material usage, and cost.

In this design, the original calculations (omited from this examp
ISM@400 mm o.c. botlom steel for column strips and 15M @500 mm 0-t-
dle strips. It may be simpler 1o place 15M @400 mm in cach direction thro

at the "
g should

o) shove?
for it
ghott

|
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®

615M  16-15M |

i
i/

i ) )
Ji 15M @ 400 i 15M @ 400 H
! ! 1

10. An alternative soluti balancing of bendling
Balancing is achieved when bending moments at the sup,
spans are made equal by increasing the moment for onc span and/or decreasing the mo-
ment for other span. Balancing of bending moments is permitted by CSA A23.3
C1.13.9.3.3 (see Section 12.6.3). To demonstrate the balancing process, let us increase
the negative moment at support B in Span | by [5%, and decrease the negative moment
at the same location in Span 2 by 15%. The balancing process is illustrated in the fol-
lowing table. Note that CSA A23.3 requires that the sum of positive and negative bend-
ing moments within a span must remain equal to M

at supports,
port between two adjacent

‘ble 12.13  Balancing of bending moments for Spans 1 and 2

Span 1 =End Span AB Span 2 = Interlor Span BC
pu:\in: 156 kNm M, =220 kNm -
Support A Midspan Support B Suppﬁori l} Midpsan Supp:)n F -
aive | Poshe | Neguve v sitive Negative
v Positive Negative Negalive Pusitive
i\?:el:ne moment moment moment moment moment
(kNm) (kNm) (kNm) (kNm) (kNm) (kNm)
) ) [&)] [CY] 15) (61) ~
. T T T T T e +77 -143
Original valyes (a) 41 +81 o 109 e ) -
Yo i T T J9x 115 -HVLLS LS
Mloments varied ()] s e -
b 15% =iz =l 7 o
Bt - -124 20- -12
binced moments (©) A1 (1::; - . 125 126+ 12002
e =496
g T A T (12414
Y - SN (96U ~124V(-
T Ty ; F125)+109) (=120 14 v
Halanml/uriginal W) (~4y (+73)+81) (_ l g s12s 087
iy (1) ~090 =1.
o =10 o) 5% - ~13%) ] (*EST)JSI,H. o
, differencey (095-7)#177 ,,(;l,j': T R -}‘.’26—85 +71&_15) -132
®ised balane T 156~ 2 o oy
Moy, lanced (e) —41 @+ 12512 N
=47 e T e SRV L3N
B e It UL e Thor
1:3?."““”‘""@1:1! 0 41y e oL =082
) (—-Ilo) - 55 -8%) (+14%) (-8%)
= + S —

. |
'\' dlfﬁ:runce) (0%) (-10%)
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It can be scen that the positive bending moment in Span 2 (colump 5
15% limit, since the balanced value is 95 kNm compared 10 the otiginal valyo o7y
Therefore, the moments need 1o be balanced once again. Let us set the Positive kNp,.
in Span 2 to (he upper limit, that is, a 15% incrcase (88 kNm), as shown in r()“vf:lon'mm
corresponding negative moment is equal to -132 KNm. based on the 1ota] raancz: he
moment of 220 kNmi. The moment values in Span T are also slightly revised, o ql:mnc
in row (¢). The negative moment at support B is -125 kNm, which Concspﬂn(‘lg.l ntxn
maximum increase of 15 The corresponding positive moment is calculated l]‘lc (») e
manner as before, and the resulting value is +73 kNm. All balanced momen, vl samg
within the 15% limit prescribed by CSA A23.3, as shown in row ([). Diagrams ¢
the original and halanced bending moments are shown below,

) excory e

ues g
hovwing

:81. ===~ Origing
AN .
4 A
A —3—8 M (kNm)
-41 73\
\‘ -109
-125
Span 1 Span 2
Example 12.2 Consider a loor plan of a two-way slab system with beams shown in the following fig
ure. Typical beam dimensions are 400 mm width by 600 mm overall depth. The Plﬂf‘
T\.vo-Way Slab shows an intermediate floor level, and a typical storey height is 3.0 m. Column di
with Beams - mensions are 400 mm by 400 mm. The slab is subjected to a specified live load (Lllll‘Jl
Direct Design 3.6 kPa, and superimposed dead load (DL, ) of 1.44 kPa, in addition 10 its self-wﬂg'l“-
Method Consider only the effect of gravity loads for this design - lateral loads are to be resss:

ted by shear walls (not shown on the drawing). "
Use the CSA A23.3 Direct Design Method to determine design bending moments for a
interior frame along gridline 2.
Given:  f'=30MPa
j; =
SOLUTION: 1.

400 MPa

Check whether the criteria for the CSA A23.3 Direct Design Method are
satisfied. e
CSA A23.3 Cl. 13.9.1 prescribes that the DDM can be used when the foltowing ®
quircments have been met (see Section 12.6.1):

#1 A slab is regular (sce Section 12.5.1).
Requirement b): for slab systems with beams between supports, the f
clfective stiffnesses of beams in the directions | and 2 should be restricted

atio of relativé
as follews

02 * <50

N - o : jrection®
where @, and @, denole the beam-o-slab stiffness ratio for beams in the dir

and 2, respectively. This requirement will be checked in Step 2.

el
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A233Eq. 133

2. Determine the required slab thic!

#2 There arc three continuous spans in cach direction.

#3 The successive span lengths, centre-to-centre of supports, in cach direction must
not differ more than one-third of the longer span.
E-W direction: Span 2 - Span 1 =6.0m - 50m=1m<603=20m
N-§ direction: all span lengths are cqual (4.8 m)

#4 The slab is subjected to uniformly distributed gravity loads.

#5 The factored live load does not exceed two times the Tactored dead load (this will
be confirmed in Step .

Kkness based on deflection control requirements.

with beams, the minimum overall thickness (h,) can be de-

For two-way slub sysiems
A23.3CL13.2.5 as follows

\ermined according 1o CSA

e
+4fa.

We need 1o determine clear span 1. Since

only interior span BC:

E-W direction: [ =60~ (

2

the longes clear span governs, let us consider

Q"+ Q"!):S.ﬁm
2 2

04,04,
N-S direction: [ =a8-1" + 5 y=44m

400 mm wide beams.

pan wos determined considering

Note that the clears
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Thercfore, the span in E-W direction governs, that is,
I.,=56m

2

Next, let us lind A for interior slab pancl 23BC, that is,

\ =6.() m_ |9
, 48m

I
A=

Note that /, and [, denote long and short span dircctions lor the pancl under Consider,
) Stleratiy,

Next, let us assume &, value of 2.0, since the actual value cannot be determineg ul
i is oi ]
the slab thickness is given, thus 5

a = 2.0 (ihis is the maximum permitted value per C1L13.2.5)
The required slab thickness is

S 1,(0.6+ Vj;:l()()()) _ 5600(0.6+ 400/1000)

30+ 4fa,, 30+4-(1.25)-(2.0)
Let us round up the slab thickness, that is,

h =160 mm

=140 mm

. 2

Note that a smaller thickness (say 150 mm) could have been used based on the sigy
thickness requircments.

Next, find the a;, value [or the panc! 23BC uvsing the selected slab thickness. The
simplified equation presented in Section 12.4.5 will be used for this purpose. We nee
10 [ind the & value for both directions (1 and 2). Diflerent slab section widths (/, and
1,,) will be used for directions | and 2 respectively.

For Direction I; {,, = 5000;6000 = 5500 mm (an average value lor spans AB and BG:
thus
Sh(hY 25 ’
a= 256, ( h (I_I)J _ 2.5-400( 600 - 160 =70 (123
[FERNE h 5500 \ 160 600
For Direction 2: [, = 4800 mm
thus
1 Al
@ 250 ( h) [1— h) 25400600V, 160)_ A
o I 4800 160 600

. . . . o skewh
The beam and slab dimensions used in the above cquation are shown on the skew

below.

l,,=5500or /,, = 4800 .

¥

—

h, =160

=600

b, =400
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The aVcragc t
follows; 71oslab Siffness fatio for the entire pancl can be calculated
calculated as
o, = 200480)
3 =7.
Since

@ =15520

We are goi
Finall§' gl(c“lnil:ous; a =20 for the remaining calculations,
s S Confirm that the CSA A233 requirement #1 b) for regular slabs with

beams has bee
N nmet. We need 1o e effect ] !
follows find the effective beam stiffness in 1wo dircctions, as

al_T008)
ol 8,0.((,,())-‘— h
Since

ak
<

02 3
a.ly

=054<50

Find the factored design loads.

a) Calculate the dead load acting on the siab.
First, calculate the slab self-weight, based on the 160 mm slab thickness and 400 min x
600 mm beams along gridline 2 that will be carricd by the 4.8 m wide design strip:
DL, = (0. 16ms 2 (‘%‘!‘j 0-}@)))(24 KN/m'= 472 kPa

.8 M

where 7, =24 KN/ m" is the unit weight of concrete.
The following superimposed dead load was given:
DLs= 1. H LkPa

Finally, the total factored dead load is equal lo

Wouy = 12S(DL, + DL) = 125472+ 14 =77 kPa
b) Calculate the factored live load. us follows

Wiy = 1.5xLL, =1.5%x3.6 kPa= 5.4KkPn

¢) The total fuctored foad is

=77+54=131kPa

Ni actored 1i is less tha ice the lactored dead load.
ed tive load w, = 5.4 kPu is less than twice the lactore

hg:e lhi’\l)l(h;f li”‘:( 17“; kPa= llL5!.4 kPu. Therelore, requirement #5 has been met.

thatis, 2% wp, =X/

Determine the widths for design strip, beam strip, snd slab strip.

a) Design sirip
The frame under cons

wy = Wpiys + Wi

line 2: this is nefermed to as Direction 1,
n 2. The corresponding spans are

iderution is lnid along gridline
while transverse direction is ml’cn’cd'lul f“ Directio
illustrated on the following sketch, thatis,

I= 6 m (letus consider the lurgest span)

and
I,= 48m
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The design strip is denoted as 1, (Direction 2.)' The design strip widh ig detern;
taking an average value [or the two spans adjacent to the gridline under C(’n%idmc \
In this casc, the spans in Direction 2 arc cqual, thus Meratigy

o

@.. -

I
i
I
Direction 1
«—>

by  Beam strip and slab strip

The width of the beam strip is determined based on the elfective lange width b (s
Section 12.4.3), that is,

b =b_+2h =400+2-440 = 1280 mm
but

b <b +8h =400+8- 160 = 1680 mm
hence

b =1280mm=13m

Dimensions of the equivalent beam scction are shown on the (ollowing sketch.

L b, = 1300 |

— 4

L :
e
(=]
3
n

b, = 400

‘The width of the slab sirip is equal to
lw=1y =, =48-13=35m

e e ‘ psiin®
Blcﬁnn and slab strips are illustrated on the following sketch. Note that the si2
divided into two half-strips, shown cross-hatched on the sketch.

|
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b

029,90,

iy,
s
o

Islabi2 rheam 1

1,2 5600 mm

;.__m___,

5. Find the factored bending moments in the slab.

{
a) Find the total factored static moment M . 1
The factored static moment can be determined (rom the following equation (see Sec-
tion 12.6.2) 4

M= XJB:"*XE (12.8) t

where
w, = 13.1 kPa total factored load
[,=48m width of the design strip

{ is the clear span in the longitudinal direction (along gridline 2). Since the spans are

different, this calculation needs to be performed for each span.
Span I (end span AB)

[ =50-0F+ 0 =d6m

" 22

wy Xl Xl |
0= 8 ‘é;
13.1 kPaxd 8 E‘j‘g‘f{[‘): - 166 KNin
= 8
Span 2 (interior span BC)
4, 04y
1 =60- (0_2, + &h=s6m

wy Xy X
M= 7
3.1 kPaxa8mx(38 1) _o46 kNm
MEELLe

udinsl

¢ moment at the critical locations in longit

b) Distributé the towl factored stati
direction
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Table 12.14

Longitudinal
direction

Transverse
distribution

CHAPTER 12

Interior support
Exleno Slab
suppon \

Factored bending moments for Span 1 (End Span AB)

The distribution of hending moments in longitudinal dircction will he perfo
cording 10 CSA A23.3CL 13.9.3; (hese requirements arc summarized in Idhlt'r;‘l‘d @
sented carlier in this chapter. Bending moments at critical locations ip ! Sy
direction (supports and midspan) are cxpressed in terms of the otal [
M, as shown on the sketeh below.

ongiy UL,M
actoreq p, Mo

A B c

0.59 M

To.ss M,

0.65M,

Distribution of bending moments in the transverse direction is performed according i
C1.13.12 (sce Table 12.5). The beam strip moment can be calculated from the folios-
ing equation:

‘ a - 2
03+m 3,
For this design (considering interior span BC):
=170

1=60m

l,=48m

M, = xM [129)

Therefore,
M, =070xM

The slab strip moment is obtained as a difference between the total design moi
a particular location and the beam strip moment. The calculations arc summart
Tables 12.14 and 12.15.

ent 107
jred 1

Location

Bending
moments at
critical sections M

Beam strip moment
M, =070«M

Slab strip moment

! o -
M, = 166 KNm
A Midspan C
Negative moment Positive moment Negative moment
(kNm) (kNmy) (kNm) )
-0.16M, +).59M ~(.70M,
= (=0.16) % 166 = (+0.59) X 166 = (~0.70)x 166
=-20 =498 =-116
-0.16M, = 0.70 X (+98) = 0.70%(-116)
=-20 = +69 =-8! i
-1
0 = 98-69 =+29 - 11680 ="

(total for the two halves)
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Confi

! Average negative heng

Sum of absolute values
Nm= M,

(Interior Span B

for positive an,

ding momepys within a span is

cqualto M :
"8 moment = (~26-116)12=-71 kN

d negative bending moments = 98+71 = 169
0)

catlon M ﬁ\
B . [
. L Midspan c
T Bending Negariv .
ng]md”“] mtvmcnzs a cg.“(‘lzi’mnmcm Positive moment Negative moment
o m (kNm) (kN
critical sections M . Nm)
_ -0.65M, +0.35M, -0.65M
=065 x 246 = (+0.35) % 46 = (-0.65) x 246
=-160 =486 =160
meverse BBeam strip moment = 0.70X (-160) - 070x (+86)7 - 00X 160) -
M, =070x M =-102 .
5 =-102 =+60 =-102
Slab strip moment =-160-(-112)= 8 =86—60;+26 =-160-(-112)= 48 )
(total lor the two halves)

Confirm that the sum of bending moments within a span is equal 1o M :

1. Average negative bending moment = (~160-160)72=—160 kNm
2. Sum of absolute values for positive and negative bending moments = 86+160

=2M6kNm=M,

|
Bending moment diagrams lor the total moment in Span 1 and Span 2, as well as the !

moments [or beam and slab strips, are shown next.
Span 1 Span 2
+98 +86
A B B m— C  Total moment
N
26 v M (kNm)
-118 160 160
+69 +60
B B /‘I\ C  Beamstrip
A T M (kNm)
-26
81 112 112
+
+
+26
2 c 4!
Slab strip
8B M (kNm)
A 48
] 48
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CHAPTER 12

ELASTIC ANALYSIS ]

Background

This section presents design approaches which are based on elastic behaviour of rein;
concrele structures. hence the name Elastic Analysis. CSA A23.3 permits (he i 1o

> ! ollowip
clastic analysis approaches [or design of reinforeed concrele two-way slab systems; Mo

+ Equivalent Frame Method (referred to as “siab systems as elastic frames™ by Cli3g

« ‘Three-Dimensional Elastic Analysis (C1.13.6). ).ang

According to the Equivalent Frame Method (EFM). an actual three-dimensiong|
structure consisting of slabs (with/without beams) and columns is divided into 5
parallel frames in longitudinal and transverse dircctions of the building, Each framg ;
modelled as a two-dimensional (2-D) structure called an equivalent frame. The design :[
two-way slab systems is based on the analysis ol these equivalent frames in each Principy
direction, and the results are combined to create a design solution [or an entire slab at
foor level.

According to the Three-Dimensional (3-D) Elastic Analysis, a floor system is igey.
ized as a 3-D model, which 1akes into account propertics of horizontal components (sl
and slab-column connections) and vertical components (columns and walls). This js ;
computer-based analysis procedure, and it is readily available due to the afflordability of cor.
puter hardware and specialized software packages. In design practice, the use of 3-D el
analysis [or the design of two-way slabs is gaining popularity, especially lor complex sl
with irregular (non-rectangular) plan shapes, or slabs characterized by large columnand
wall offsets relative to a rectangular grid.

Tt should be noted that the Elastic Analysis approaches presented in this section are
based on the assumption of lincar clastic behaviour of reinforced concrete structures, aad
that reinforced concrete is treated as a homogeneous material. Results of such analysesdo
not accurately simulate the behaviour of cracked slabs at service and ultimate load levels.

The Elastic Analysis approaches will be explained and illustrated by a few design
examples.

building
series of

Equivalent Frame Method

Features A comparison of key features for the Equivalent Frame Method and the Direct
Design Method is outlined in Table 12.16.

Table 12.16 Key Features of the Equivalent Frame Method and the Direct Design Method

Equlivalent Frame Method (EFM)

1. Reinforced concrete is treated as a homogeneous material with linear elastic

Direct Design Method (DDM)
- P

Same as the EFM.

stress-strain relationship. As discussed in Section 12.3.4, reinforced concrete
structures show inclastic (nonlinear) behaviour once cracking has been

3.

initiated. Therefore, the results of an elastic analysis represent an approximation
of actual structural behavior.

The slab must meet the requirements for regular two-way slabs outlined in
CSA A23.3Cl. 2.2 (see Section 12.5.1)

There are no restrictions with regards to the span dimensions between adjacent
slab spans.

Variations in slab thickness (moment of inertia) along the span have to be
considered.

Bending moments in the frame are determined using an elastic analysis procedure.

Same as the EFM.

DDM contains constraints reluted

to adjacent span lengths.

DDM considers only constast

slab thickness. .

DDM does not require analysis ‘:s

be performed; empirical ':cluﬁl“’ls

are used 1o find bending moments- .
(coni™

el
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,1e12-16 {Continued)
— Equlvalent Frame Method (EFM)

“————__ Direct Desgn Method 0DV

There arc o restrictions regarding the loa;n;ag;'li de. b —
lude, however
Pattem loadin
g

have to be considered when a live-to-deag load

Tatip FR
he sum ol avera alt s largc_ DDM does nol dimly consider
The su avers gc negative bending moments ang patern loadings.
moment for a typical span should not exceeq he ‘:m l:n; maximum positive S

S al facty ame.
The EFM can be used to perform lateral joag analysis, ored momemt M, as EFM.
DDM cannot be used
sed for the

J——
A23.3CL138.1 | Equivaly
ent Fr; s
ames: Concept  According to CSA 233 C1. 13.8, a 1w fab
-3 €1 13.8, a two-way slab system

can be idealized as 3 seri
‘ - . series of pasallel 2.D or - N
db(l:liclcuons of a building. CSA A23.3 m.m(:r :lane frames in longitudinal and transverse
ieve that the term “equiv; 'ers 10 these [rames as “clastic frames”
equivalent frame” js - rames”. The authors
(the same term is used in ACI 318 co Mmore appropriate and it will be used in this text
CSAAZ33 CLIZ8! oulines e oesign sandard in the U.S.)
lent frame iy 13.8. _oumnes provisions related 1o the frame eom‘ i
! composed of line members intersecting at col geometry. Each cquiva-
xs. modelled as a wide beam (referred 10 as s) b- . - a_nd Sl'ab cenurelines. The slab
tributary portion of the slab extending on each“'db“;n ). and its width corresponds to the
jacent frames, side of the column midway between the ad-
One of the first chalienges a desi i i i
how (o isolate a 2-D frame 1’rgom a J-Sin?{dl's faced with th " l!'nplemenling the EFM is
ample. Figure [2.40a shows a floor planmf a:r;gu:lzcmm'. s il b st by an .
. = ) o
isometric view of the equivalent frame on gridli:\c ‘:‘%svsv:h . l\_VOI-:‘fVﬂy S sy An
is defined by columns laid along gridline 2. The s|:1b is mll? dlgum 1?.4%. The inme
slab-beam), which comprises a portion of the slab defined by \fcrlcic;::scilll:';,:ldc ?:nnv:n ‘(Ca“\:
midway belwc?.n the adjacent cglumn gridlines !-2 and 2-3. Gravity load nc%spoversu:cs?:lb-
:::mrlll:l A Z-D.wew of lhe'fmmc is shown in Figure 12.40c. A notation related to frame span
; ngths was 1rflroduccd in Section lZ.f.l._For example, span lengths in the plane of the
rame are Ia‘bc.llgd a I, (sce span BC in Figure 12.40b), and the slab-beam width in the
transverse direction is referred to as /,; this is the same as slab design strip [, for the DDM
as discussed in Section [2.4.1. B '
A basic assumption ol the equivalent frame model is that the width of the slab-beam is
bounded by imagir!ary vertical cutting plaries located midway between adjacent column
gridlines on cach side of the frame. In slab systems with unilorm spans, the locations of
these cutting planes generally correspond 10 the locations of zero shear forces and torsional
moments. As a result, cach cquivalent frame in the transverse direction is comprised of a col-
umn strip bounded by two half-middle strips. However, this assumption carries some er- ‘
rors, especially for end spans, wherc the zero shear is focated at more than hal(-way distance
from the cnd column in the perpendicular dircction.
Structural analysis is performed to determine bending moment distribation in the frame.
These frames are statically indeterminate systems, and intcrnal forces can be obtained using
cstablished analysis procedures such as the moment distribution method or the Direct Stiff-

ness Mcthod. .
Gross cross-séctional properics

of slab-beams and columns are used (or the frame
) Jabs with drop panels or slab bands, siab-beam propertics necd to reflect the
nloielcrzz;;momj dimensions of thesc members, including any vanations along the span.
e The results of clastic analysis are used 10 find bending moments and shear forces in lon-
itudinal direction of the frame. However, transverse moment distribution is performed by
:g.:ul) .I;g cmpirical coeflicients to find moments in the column strip and the middic strip
plyi

(similar 10 the DDM)-
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I
1} 300 x 300
; (comer)

valent

Figure 12.40 Defining an equivalent frame: 2) a partial floor plan; b) isometric view of an equi
frame on Gridline 2, and c) 2 2-D frame for gravity load analysis.




Figure 12,40
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(cont.)

Each frame is analyzed separately, and the results for individual frames are superim-
posed to creale the final design solution for building under consideration. .

For gravity load analysis. cach floor and roof slab can be anmalyzed separately. Far ends
of the columns must be restrained by providing a roller support which pre\'cnls'sidc sway
of the (rame (CSA A23.3 CL13.8.1.2). A frame mode} suitable for gravity load analysis is
shown in Figure 12.40c. o

Modelling of Equivalent Frame Members An equivalent 2-D frame consists ol slab-
beam and column members. The EFM assumes nigid beam-column connections, that is, all
members joined at a conncetion undergo the same rotation. A partial view of an equivalent
2-D frame is shown in Figure 12.41a. It can be seen from the figure that slab-beams look
like beam elements in a regular beam and column frame, however these beams are very
wide (their width is equal to the tributary slab width ).

Column members are more comphex due 10 the presence ol atrached torsional members,
that is, imaginary linear members which extend from the column in transverse direction, as
12.41b, The purpose of thes members is lo take into account reduced flex-

shown in Figure . !
[ beam-column connections. This concept

ural stifness of the columns at the locations o
will be discussed in more detail later in this section. o
Note that Direction | ix along the plane of the frame. while Direction 2 denotes trans-
verse dircetion (see Figure 12.41b). ) n ) _
An initial step in the frame analysis is lo determine I‘Iexur'nl stiffnesses for Fqun‘n]cnl
frame members. Appropriate stiffacsses must be cstimated 10 simulate the behaviour of the
Sy "SA AL 1.13.8.1.5). Flexural stiffness is proportional to EJ, which
actual slab system (CSA A23.3 ClL13. ¢ aontia ()
is a product of the modulus of clasticity (E)al.md ﬂn_mofnenlru mcm.f ( be e deten
(Geometic propertics (cmss-scclfonn.l _dlmenslons) (.rf :}116 mLCn; A: zt_:\r; e ;e "
mined using either non-prismatic or prismatic ﬂPPf_“_‘"-‘h }'f‘llo‘ “"El ‘:1‘ A -
tion 3.2 for the definition of prismatic and non-prismatic uh.‘ura‘ ;mlen; h Whﬁ cymm:
- maric refiers to constant cross-sectional properties along the mefmoet i gh. while iom
prismatic fe(crs ariable cross-sectional properties. Both approaches use gross cross-
prismatic refers 10 vi ¢ (rame members (the effect of cracking is not mke:n into .nccuum).
sectional properies 0 o his used in conjunction with the moment distribution method.
A non-prismaric ap p'w;e EFM was first introduced in North Amenican design codes
which has mﬁ'“um!ﬂ:z&dc\:a_q suitable for the analysis of simple cquivalent [rames by dig-
in the 1960s. This m ’

et with variable cross-sectional
< aric slab and column member with varia
ial caleulatom Each onpr merber (CSA A23.3 C1.13.8.2).
ics along the span ¢
properties o

an be modelled as 2 single
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Slab-beam

Torsional
member Column
above
Column ,/
above
A Torsional
member
Slab-beam
Column
below
Direction 1
—
a) b)

Figure 12,41 An equivalent frame: a) a 2-D view, and b) an isometric view.

Correclion factors are applicd to modify member stilfnesses, carry-over [actors, and fixed
end bending moments for cach frame member. Once the adjusted propertics for all (ran:
members have been determined, the moment distribution method can be used to derive
bending moments at each joint of the cquivalent frame. A detailed discussion on moment
distribution method is beyond the scope of this book, however the reader is refemred o Mae-
Gregor and Bartlett (2000) for more information.

A prismatic approach considers members with constant cross-sectional properties (€54
A23.3 C1.13.8.3). This approach is used in conjunction with the Direct Stiffness Mclht*_d
which is applied through computer-based [rame analysis. Since the prismatic approach i
currenily more widely used in design practice, it will be explained in the next section.

Let us illustrate modelling of slab-beam members for the EFM applications. Considst
a typical span of a [lat slab shown in Figure 12.42a, For modelling purposc, span le_ﬂL"l‘ i
is equal 1o distance between the column centrelines (AB). Cross-sectional dimenspns of.l.
typical siab section (1-1) are shown in Figure 12.42b. The slab-bcam scction has lhmk"f"\;
h,, and its width [, is equal 10 design strip width shown in Figure 12.40b. The correspondiné
moment of inertia is equal to /,. -

A slab-beam could be modelled as a single prismatic member provided that cot”
and slab-beam dimensions arc relatively small. However, member dimensions in W‘“f""::l_'
concrete structures are significant and should be considered in the structaral model The "
fore, moment of inertia of the slab-beam member between the column face and the co”?is
centreline must be modified to account for the column and slab-beam dimensions- Thll_—“
reflected by the moment of inertia /, which corresponds to slab section 2-2 shuwn.;:d "
ure 12.42b. Nolc that /, is obtained by modifying /, value by the multiplier pl‘tfsc_"‘ﬁgmc
CSA A23.3 C1.13.8.2.3. A variation in the E/ value along the slab span is show? " oo
12.42¢. For the non-prismatic approach, a slab span is modelled as a single mcmbelrsn i
in Figure 12.42d, and E/ variation along the slab span is taken into account by d"s'g“ il
(tables) used in conjunction with the moment distribution method. Altemﬂ‘}"ely' 242
beam can be modelled as a serics of connected prismatic segments shown in Figure ™

el
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Each poni
Portion of (he slab-beam with variab|
‘anable cross.

Scgment; in this
P S Case, th Sect .
T Cre are ional :
he above descri p lcg‘hr:?mc segments (1, 2 and 3)I'Jropcrl.lcs is treated as a scparate

columns with cap; que can ;
Capitals; however, the be ".PPhed to lat slabs with d| panels an
'model will become more compl b::np pels andlor
X because it needs 1o

Section 1-1

d)
I, A.——.I| BIZ
® ® ®
e)

perties - elevation view: a) a typical slab span; b) cross-

Figure 12.42 Modelling of slab-beam pro
prismatic model, and e) non-prismatic model.

sections; ¢) variation of stiffness along the span; d)

Figure 12.43 illustrates modelling of column properties (or the EFM analysis. Figure
12.43a shows a typical column spanning between (at slabs at two adjacent foor levels.
Column stiffacss is determined using the column height / mensured between the slab cen-
trelines, as shown in the figure. Moment of incrtia of the column outside the slab-column
based on the gross cross-sectional arca of concrete (/) shown in Figure 12.43b.
moment of incrtia is considered to be infinitc in the slab-column con-
extends from the face of the slab-beam 1o the slab centreline ot each
along the column height s shown in Figure 12.43¢. According to the
h, a column is modelled as a single member, us shown in Figure
olumn properties is accounted for by design aids used in con-
\ribution method. Alternatively, & prismatic approuch can be
ss Methad, s shown in Figure 12.43¢. ltcan be
lumn scgments (1, 2 and 3). The end scgments

connection is
Note that the column
nection region, which
end. A variation of El
non-prismatic approac
12.43d, and the variation of ¢
junction with the moment dis! : '
used in conjunction with the Direct Stiffne:
seen [rom the figure that there are three ¢o
(1 and 3) are assigned signiﬁcamly \arger (€8,

tig values compared 0 /.

by an order of magnitude) moment of iner-
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a)

/lc /l>> Ie
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Ry
Section 1-1 Section 2-2
b)

Figure 12.43 Modelling of column properties - an elevation view: a) a typical column; b) cross-sections;
¢) variation of stiffness along the column length; d) prismatic model, and e) non-prismatic model.

Y slub-bc-l-‘“

The equivalent frame models for slabs without beams are characterized b sl

members with signilicantly larger width compared to the columns; this has implicat
the load transfer [rom the slab to the column, Jion
Figure 12.44a shows gravity load path in the vicinity of a slab-10-column CO“M_C‘C[I‘
The load in the vicinity of the column is transferred from the slab to the commn:elfrllim;v
through bending. However, load further away [rom the column centreline is ransfe ot
the column by twisting ol a slab strip on cach side of the column. This has the cmdﬂl\sia'
ducing Mlexural stiffness of the column relative 1o Mexural stifTness of the slab. Fof Nr]si(:
purposes, slab strip ABC (shown shaded in the figure) is considered as an '-‘““c_hed o 4t
member, which accounts [or a reduction in the column [lexural stiffness. Figur® :4“‘!
shows an isometric view of the attached torsional member ABC which has the lenglh‘ s b
to the slab-beam widih 1,. The rotation at the support (column) at point B is labellc ofio?
It can be scen that the rotations at points A and C located at far ends of the st

|
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(8,and g
l()Alhc rncri rl;spcaivcly) are signific
secti at the colum a.nlly larger tha .
clion, n has a mipi N rolation @, a
mal effect on slab rotagy column lace. This is due

! 10ns at {ar en ds
of the slab

pre 12,44 Loads and deforma-
s in the slab-column connec-

1 region: a) load transfer from

o slab t0 the column, and

woration of the attached

wional member.

b)

The above discussion is useful for understanding wransfer of bending moments [rom
the slab to the column. Ina sjab-and-column frame, bending moments (rom the lab are
transferred directly to the column only over a rather narrow stoip approximately cqual to the
column width, as shown in Figure 12.350. The remaining bending moments in the slab must
be transterred to the columa attached torsional member, as shown in

Figure 12.45b.

The rotational stiffness of the slab-lo-column connection is a function of the torsional
stifTness of the atiched \arsional member and the flexural stifiness of the columns [raming
into the connection from ubove and below. For analysis purposes, a colurmn und the attached
{orsional members cal be considered as an equivalent cohamn, us shown in Figure 12.44b
(CSA A23.3 C1.13.8.2.5). The qifiness of an equivalent column (K, ) can be determined

[rom the following A233CLI3B.2.6)

hrough torsion ol the

equation (CSA

1

1
oA
EEEDNENN Bons YA
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a)

CHAPTER 12

Torsional momenis

Bending Mg

b)

Figure 12,45 Transfer of moments from the slab to the column: a) bending moments at the column location, and b) torsions
moments acting on the attached torsional member.

A23.3C113.83

where Z K. is the sum of {lexural stiffness values for columns above and below the slab,

and K is the stiffness ol the torsional member. CSA A23.3 contains provisions for estima-
ing the stiflness of attached torsional members (C1.13.8.2.8 10 13.8.2.10).

Prismatic Approach for Modelling Frame Sections A prismatic approach considers
members with constant cross-sectional properties. Variation in slab properties withinaspn
can be accounted for by considering prismatic segments with different gross cross-scctiond
propertics. This approach is used in conjunction with the Dircct Stiffness Method and itis
suitable for computer applications.

A slab span is divided into several (usually 10 1o 20) slab-bcam scgments which are
joined 1ogether. Each segment has constan! cross-sectional propertics, and it simulates the
stiffness ol a specilic slab section. This approach can take into account the cffect of dropp
cls by considering scgments with appropriate cross-sectional properties at drop panel locations.

A column is usually modelled as a single member. A column capital can be modelled
as an additional segment both in the slab and the column with appropriate stiffness PPt
ties. CSA 23.3 Cl. 13.8.3.3 accounts for a reduction in column stilTness due 10 the uttache
torsional member through the column stiflness modification factor (), which can be ot
tained from the expressions presented in Table 12.17.

Table 12.17 Column Stiffness Modification Factor y (CSA A23.3 C1.13.8.3.3)

Span Ratio Slabs without beams (a; = 0) Slabs with beams
L1510 p=03 w=03+0.7 "T’[
| ak
[2 I ; 6Ii =
L/ >1.0 ![/:0.6[7—0.5) W=()~6(’f"0-5)+ 1.3-0 I k
| 1
Notes:

N i i €S ¢
I, and {, - slab spans in the plane of the frame (Direction 1) and transverse direction (Directio 2). ¥
tively a, - beam-to-slab stiffness ratio in Direction 1.

> |
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CSA A233 ¢

follows 113833 SE1S a range [or the stiffness modification factor values, as

03< ys<ig
also

ol <
<10
4

For Mat slabs ang fat plates, ¥ values va
(when I, /1, =2.0). The ¥ factor increases whe
significantly larger than the
stilTness is more significant

To account for the effec

ry between 0.3 (when I, /1,5 1.0) and 0._9
1 the slab span in the transverse direction is
span in the longitudinal direction, because the column ﬂextllral
and it attracts larger negative moments over the column strips.
tof column flexural stiflness, the designer should use the pl?od-
uct - [ (instead of { ) for columns in an cquivalent frame model. For example, consider
the equivalent frame discussed earlier in this section (see Figure 12.40). Gross _cros;-s&;c-
tional propertics, that is, column moment of inertia (/ ) and slgh-bcam moment pf lnc?;n;ﬁﬁ,
dre presented in Figure 12,462, while modified frame properties are shown ln_F}gurc " 01-‘
Each slab-beam span is divided into several segments with the same properties (momef
incrtia 1). but column properties need to be modified by the ¥ factor.

iqure 12,46 Equivalent fran'-le
iizh prismatic member properties: | [ ) .
| actual frame properties: and . l ; . .
J, modified frame properties used oL LI P
‘or design. a) W —— ——
I I,
l] : I
1 .
50m |
. 50m 3 60m 4 -
[ T
¥, vl | I,
k4! 0 L ‘ ,

[ ivalent frame span
bers ol an equivalent 5o
e onding o ] s s obtained
_— Design Bending Moments antss;'l:epr:mrc, bending moments af\‘dc :h;:lz]xrr:'::uni:ly oo
A23.3CL13.85 ¢ betieen SUPPOTES. ard 4

centerlines, H v ) ing mo-
ccnue-lo-Ce;M nalysis are given ot mcmbcl:a:c finite dimensions. hcntcdt_‘:f“in% ¢ be-
al ) structure e a significant diffe
from the E! inforced concrete istic. There may be 3 sig Jomn.
in a reintorc salistic. y [acc of the colu
. s) in a rer X not be rel ] : and the [ac L
(wlum‘;")ived B e m:z‘cm atthe colurth Lc:'uc“r?;)mcms at the fuce of suPP‘uln
ments jve bending m [ reduced bending o ferred to us crif-
e negative its the use 0l 1€ " s reduced are refe

lwwn;;; 3 gl 13851 P°m.":,. where bending moments aré
CSA A2J. L% The locaio

. SC.
for design purP

ical sections by

CSA AD33.
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Figure 12.47 Bending moment
diagram at the critical section at
the face of an interior column:
a) critical sections at the column
face, and b) bending moment
diagram.

CHAPTER 12

An example illustrating the reduction of bending moments at (he face of o -
column is shown in Figure 12.47. Critical sections at the (ace of a colump are sh an lplcn'.,
ure 12.47a. Note that a critical section should be taken at the column [yce, hu} (:Wn.m F.
should not exceed 0.175 1, [rom the column centreline (this limitis set for culunmc d!slance
tangular cross-sections where one dimension is signilicant compared 1o the slab : Wit .
tual bending moment values for the slab at the support (M, and M,) are Shnwr; Pan). z,.
12.47b; note that these values are different because the balance of these bendip I
is translerred to the column. Reduced bending moments at the critical sccli()nf
M,,) should be used to design the flexural reinforcement. The reduced m(’mcm_gj
of the column can be calculated from the equation presented in Section 10.4.3,

For exterior columns with column capitals Cl. 13.8.5.2 permits the critical seclion
located at a distance equal to onc-hall of the capital projection from the face of i ot

as shown in Figure 12.48. ¢ columy,

n Figm
mnmcnu
(Mm_ ang

Al the e

1 Vi Interior column
Critical section !
1
! Siab
1
1 ! / |
1
a) * 1 +
|
m : 1
[} 11
T
1
1
|
1
AL

) Design moment diagram

RR

J"I\//I\— Actual moment diagram

R

Arrangement of Live Load (Load Patterns) Live loads are transicnt Joads, and?

o0k : . . . ponl
variation in their magnitude and arrangement may significantly influence bending MM

and shear forces in reinforeed concrete structures. Therefore, bending moments an b ;
envelopes obtained by considering variations in live load patterns musl be taken lancn'
count by design (refer 10 Section 10.3 for more details on load paterns and momcﬂ.“m_
velopes). However, two-way reinforced conerete slabs usually have a significant 3 st
thus dead load often accounts for a major portion of the total factored 10ad- Inthest
variations in the live load arrangement may not have a signilicant elfect on th
bending moments and shear forces in the slab.

CSA A23.3 provisions related 1o the live load arrangement for design of tw
according 10 the EFM consider the following three cases:

0-Way s

|




ure 12.48 Bending moment
! ram at the critical section at
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Exterior column 1

aface of an exterior column with
:Capital: a) critical section, and
yending moment diagram. R Critical section
Slab
a)
i
1
1
Design moment
1 dia
b) 7 Mer agram
'M“k Actual moment
diagram

1) When the loading patiern is given, the irame should be analyzcd considering that pat-
tern (C1.13.8.4.1). For example, in a warchouse with moving crane loads on the slab,
the crane load should be considered with or without the occupancy live loads to deter-
mine the maximum bending moments and shear forces.

2) When the specified live load is uniformly distributed and does not exceed three-
quarters (75%) of the specilied dead load, the designer only needs to consider the full fac-
tored load on all spans (Cl. 13.8.4.2). This should apply to most two-way slab building
applications with residential, office, and/or retail occupancy.

3)  When the specified live-to-dead load ratio in the slab exceeds 75%, several live load

onsidered 1o determine the maximum factored bending moments

LP1 to LP4) ke into account partial factored live

way slab in Figures 12,492 10 d. However, the

less than those developed due to full loc-

\his is illustrated by load pattern LPS in Fig-

patterns need 10 be ¢
(CL.13.8.4.3). These load patterns (
loads, as shown on an example of a two-
factored moments should not be taken as
tored live loads on all panels (CL13.8.4.4)
ure 12.49¢.
Note that, when the specified live-to-dead load .mliu exceeds 75%, the dcsig‘ncr may wish
{0 increase the design dead load o bring the ratio dQ\vn 10 bclpw 75%. In lhI.s mun?cr_ the
designer avoids the need 10 consider pattern loading in the design. The .'“5“1““.!% design so-
lution uses a higher than required load and it is slightly more conservative, which may be s

good practical approach.
with Two-Way Stab Syste

si inforced concre
structural analysis of a rein wildi
rformed by modelling 4 3-Dstrucure v 2 series o
Hirect as discus: earlier in this section- Key co iderutions
dll'b‘Cfuon' for grav cral loads will be discussed in this
2-D frames [0l )
quired to perform the gravity
combined (Cl- 13.5.3).

ms: Gravity and Lateral Load Analysis A
te building with a two-way floor system can be
{ idealized purallel 2-D frames in cach
nsiderations related to the analysis of
section. Notc that it is re-

and the results should be

Buildings

ity and lat

and lateral load analyscs separutely,
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Figure 12.49 Load patterns for
gravity load analysis of equivalent
frames: a) positive design moment
in span AB; b) positive design
moment in span BC; ¢) negative
design moment at support A;

d) negative design moment at
support B, and e) full factored load
in all spans.
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Load pattern for negative design moment in support B
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Load pattern for design moments in all spans when L< 34 0

. . . . * o (e
For gravity load analysis, the designer necds 1o consider only a portion of the (™

which consists of a slab at the floor level under consideration and (he column chmf:iJ
above and below that level. Consider a 2-D frame shown in Figure 12.50a. It is not rlcq“{ ]
to perform analysis of the entire frame for gravity loads - a partial frame can be “S,cd ms{vl,, in
An example of a partial frame for the slab at level 3 and the adjoining columns 18 Shn?j ;
Figure 12.50b. Note that a lateral restraint in the form of a roller support need 10 bc P ool
atthe far end of the [rame at the slab level to prevent lateral movements. Also, It eﬂu;‘im'
ll“lC columns are restrained by fixed supports. Gravity load analysis can be pcrfnrmt‘d -
cither the Direct Design Method or the Equivalent Frame Method.
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LLAbLddy
Ll
IR ] (R
(RN ) INRAY,

Vi /77/77/77/7;1

a)
b)

jgure 12,50 Frame mod i e
g el for gravity load analysis: a) a complete frame, and b) a partial frame used for gravity load an lysi
alysis.

The lateral load model will be explai : ! iidi i
a {lat plate floor systcm shown in Figgzl?;flst:r; a;h tcx;‘r:r;i:nof :u:\[)&-sm:y h:ll(:!mg w.uh
of four (rames in N-S direction and three frames in the E-W digrcclion. _[f;(c:;:nmﬂ;ﬂn:::zs
Bl Nest-con s i slon i m EAW distion whih 5 shown
batched in Figl.'lm 251 AE o t. t:v‘ong g;'lh m.u-2 in E-W dxrc;uor_\ (which is shown
frame geometry is dc-ﬁncd.b ric view of the frame is shown in Figure 12,516, The

by culump and slab properties. A 2-D view of the [rame with the
actual sl:olumn and slab thicknesses is shown in Figure 12.51¢; note that column and slab
centrelines are shown dashed in the figure. Finally, a 2-D model ol the {rame used [or the
analysis is shown in Figure 12.51d.

When frames constitute the lateral load-resisting system, lateral load needs 1o be dis-
wributed between [rames aligned in the same direction. For example, consider three (rames
in E-W direction (along gridiines 1,2, und 3). The two exterior frames are supported by the
walls long gridlines 1 and 3, while the interior [rame along gridline 2 is supported by the
columns. As a result, (rames | and 3 will resist most of the lateral loads since their lateral
stiffnesses are significantly larger than frume 2. Distribution of lateral loads in proportion
10 frame stiffness is approgpriate when floors and the roof are relatively rigid compared 1o
the vertical clements (columns or wails). In that case, a linked frame model can be used for
Jateral load analysis. An example of a linked {rame model for E-W direction of the build-
ing is shown in Figure 12.5}¢. The model copsisls of three 2-D [rames (gltidlines' 1,2,and
3) which are conncted by rigid pin-cnflcld links. Thc_cnlmc lateral load is n_pplwd to the
linked (rame. Distribution of loeds 10 individua! frames is usually performed using structural
unalysis software.

The EFM can be

tems, however
s e s
stiffness ol rmme membl::s or Ml slabs supporied by columns are rarcly designed as the

In a building. ﬂﬂl‘P_ Jing system, and their application is not permitted in regions ol
primary lateral o8- TESISUMS BCp o 2015, in most cases,reinforced conervte shear walls
high scismicilyl n«.‘_conhns © ents of the seismic force-resisting system in buildings with
are Usfd us l:m[']:ll sl::; ﬂ;]P:or systems. However, Jateral swaying of floor und roof
flat plate ©

used to perform lateral load analysis (or buildings with a two-way

the DDM cannot be used [or that purpose. C1.13.5.2 states that the
he elfects of cracking and reinforcement on
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Figure 12.51 Frame models for lateral load analysis of two-way slabs: a) a typical building plan; b) an jsometric vie oafl;siﬁ,
2-D frame model; c) a 2-D frame showing actual column and slab dimensions: d) a 2-D model used for the ateral load 2
and e) a linked frame model for lateral load analysis.
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gy

systems duc 1o seismic or wind lpad
capacity of g slap Sysiem, When
will cause addition,
the effects of syeh [
slabs,

The difference in lacra| displacemens between adjacent Moors is calied “inter-storey
drift™, Inlcr-slorcy drift for a frame is shown in Figure 12.52a. Note that inter-storey drift

for Mloor levels ¢ and fis denoted g5 A, and the drift (o floor levels j and & is denoted as A
The wtal lateral dri (tfora building i cqual to the lateral displacement at the roof level rel-
ative 10 the base of the buildj i i

differential displacements equal 10 inter-storey drift values at ad-

11001 el e e P e 12.5%,

Jacent floor levels, as shown in Figure 12.52p, . o e due
The designer needs 10 combine internal forees due 1o inter-storey drift with those

i i i i g ildings eral loads is outside the :
1o gravity loading. Analysis of reinforced conerete buildings for lateral loa :
scope ol this book.

e

t
—— -—;'_ll
L
i
- i =
—>-
’ l -
a)
A A M

Al/
B A, Fl'l H
'fg.u,e 1252 Lateral load analysis: H

.” m.te"smfey drift in the frame 518' b)

;‘”“lned fom lateral load analysis,

biu 3 partial frame subjected to

erg| dj

SPlacements at the supports.
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Guidelines for Effective Modelling of Equivalent Frames Designers
derstand that an equivalent frame model is an approximation ol the actual ;lr:ccd oy,
havior. The EFM is an clastic analysis approach and it does not accouny rnr‘crac‘l}}ral .
inclastic behaviour of reinforced concrete structures, hence the use of an over skm
cquivalent frame model may not be justified. Designers may keep in ming th acey
guidelines related to effective modelling of cquivalent framcs:

faye
c follm\-inx

i. Bending momenls are typically negative in support regions and Positive ip
gions of the slab. For a slab span subjected o uniformly distributed load, thy
solutc values for positive bending moment at the midspan and average neg
moment at the supports is equal to the moment gradient M_ (as discuss
12.6.2).

2. Itis important to ¢stimate a reasonable range for maximum negative moments ap,
supports and maximum positive moments in midspan regions of the slab, ang Provie
an adequate amount of reinforcement in these regions. A balance beiween the negaiy,
(10p) reinforcement and the positive (botlom) reinforcement is required (o minimz,
Nexural cracking, a key design consideration for continuously reinforeed congrege sl
struclures.

3. Continuously reinforced concrele slabs represent a cost-cllective structural System.
discussed in Chapter 10. It is important lo ensure an appropriatc placement of ey,
forcement in order 1o take advantage of structural elficiency for a continuous span sig.
ture. The effective design of continuous slabs is also critical 10 minimize deflection;.
Section 10.2 discusses general concepts of continuously reinforced concrete structures;
these concepts should be considered when optimizing a two-way slab system which hus
continuous spans in (wo directions.

midsl"an .
IC Sum of g

ative hcﬂding
ed in Seey

The designer should keep in mind that two-way slabs arc continuous structures, that s, st
ically indetcrminate and redundant systems. Conscquently, there may be several acceptable
design solutions. For that rcason, the designer may wish to perform a sensitivity analysisby
varying positive and negative bending moments in cach span to identify the most appropr-
ate solution.

Furthermiore, the designer can influence bending moment distribution in the slabeither
by increasing or decreasing column stilfness for modelling purposes. Two extreme solu:
tions will be discussed below.

The first solution involves a model in which column stiffness is disregarded (equd 0
zero). The frame is modelled as a continuous beam system where the slab is suPP"“ed,m
pin or roller supports instead of rigidly connccted columns. In this case, positive bending
moments in the slab and the corresponding amount of bottom reinforcement are expec
10 be larger compared to an altemative solution where column stilfness is considered inte
analysis. This is due 10 the fact that the presence ol rigidly connected columns increases (¢
slab stiffness at the suppons resulting in an increase in negative bending moments, ““d“lm:
responding decrease in the posilive bending moments at midspan regions. Hence, the SNL
tion where Column stiffness is ignored may result in an increase in positive bending mﬂ“}f"ns
at midspan regions and a decrease in negative bending moments at the slab SUI_’P"" i .
This type of analysis is considered an acceptable approximation in design practice 8 8
ticularly suitable for simple hand calculations. . hs

A more appropriate solution is 10 account for column stiffness by considering leng .
and cross-sectional dimensions of columns above and below the floor slab under C.onﬂ
ation. This solution would result in more realistic negative bending moment ""l"ebu:umn
consequent amount of (op reinforcement in the support regions. Howevet, losge *
stiffness could also attract larger unbalanced bending moments that would need 10 m sind
ferred by the slab into the columns by means of wo-way shear. This may be 8 cO“‘_elerfi*"'
flat slabs Lypically have limited two-way shear capacity al the slab-to-colum? l:e il
When the two-way shear capacity in the slab is exceeded, cracking will 0ccur n colum?
ity 91’ the slab-to-column interface resulting in a reduction in the stiffness of the s n;duffd
region. Hence, in many cases it may be more appropriate to model the slab Wi ‘:Jalm,;ed
column stiffness by arbitrarily increasing the column length, such that (e
moment in the slab is reduced to match the slab shear capacity.

un

|
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Design Applicati

. ons
15 10 demonstrarg ¢ of the Equivalent frg,
design cxamples,

me Method  The purpose of this section

€3ign of wy i
0-Way slabs withoy, beams according (o the EFM by three

(ample 12.3

yo-Way Flat

ate (Slab

ithout Beams) -
quivalent Given:
rame Method

SOLUTION:

Consider a foor
Plan of g twe.
12.1. The Noor height is 3 way slab system without beams designed in Example

Usethe CSA A23 3 E,
reinforcement Joran

L':
£, =400 MPa
1.

. Determine the required slab thickness.

q.un'a.lenl Frame Method 10 determine the design bending moments and
interior frame along gridline 2.

30MPa

Check whether the criteria
(EFM) are satisfled,

The EFM ca.n‘bc applied when a slab is regular, that is, when the following CSA A23.3
Cl. 2.2 provisions have been met (see Scction 12.5.1 for discussion on regular slabs):

for the CSA A23.3 Equivalent Frame Method

(#a) Within a panel, the ratio of longer 1o shorter span. centre-to-centre of supports, !
15 not greater than 2.0. In this case, [, 1, = 6.0 m 4.8 m=1.25< 2.0. :
(#h) For slab systems with beams between supports, the relative elTective stifffiess of l
beams in the two directions is not less than 0.2 or greater than 5.0. This is not ap- %
plicable, since this is a slab without beams. )
(#c)  Column offsets are nol greater than 20% of the span (in the direction of the olY-
set) from cither axis between centerlines ol successive columns. There are no J
column offsets in this case. |
(#d) The reinforcement is placed in an orthogonal grid. The reinforcement will be !
placed in an orthogonal grid.

This is a regular slab according to CSA A23.3 C1.2.2, therefore the EFM can be used
[or this design.

The slab thickness is the same as in Example 12.1, that is,
h =180 mm

Calculate the factored design loads.
a) Calculate the dead load acu'r!g on the slab.
First, calculate the stab’s sell-weight:
DL.= h,x7,=0.18 mx24 kN/m'=4.32 kP

=24 kN/m’ is the unit weight of concretc.

where Y. iven, that is.

The superimposed dead load is B
DL =144 kPa

the total factored dead load is
=1.25(4.32+1.4) = 12kPa

Finally,
=125DL. +DL)
red live load:

kPa=5.4 kPa

Wot.f
b) Calculate the facto
=1.5xLL. =1.5%3.6

Wit

¢) The 1o

1al factored load i
12454=126KP8

w,“ =Wy t WL
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d) Check whether the pattern loading needs to be considered according 1
C1.13.8.4, that is, cheek the ratio ol specilied live load and deag load,
The wotal specilied dead load is

CSA’\Z}\‘,

Wy = Dl + DL, = 4324144 = 5.76 kPa
The specificd live load is

w,, =3.0kPa

The ratio of the specilied live and dead load:

wy _ 3.6KkPa

= =0.63<0.75
wy,  3.76kPa

Since the ratio is less than 0.75, patern loading does not need (o be considereg, The
frame needs to be designed lor the effects ol totl lactored dead and live Jogg g
spans. Hence. the design load is

w*=12.6 kPa
k
This is a uniformly distributed arca load which could be used for 3-D analysis. Hoy.

cever, we need 10 find the design load for 2-D frame analysis, which can be obgine
when the tributary slab width (/,=4.8 m) is taken into account, as (ollows

W=y *x =126 kPax4.8 m= 60.5kN/m

4. Develop a frame model.
a) Determine the frame geometry.
In order to model an actual 3-D building as a serics ol parallel 2-1) frames. the &-
signer first needs 1o find the [rame width. In this casc, the width (1,) is 4.8 m, asdis-
cussed above. This is shown on the sketch, for a rame along gridline 2.

B r ppyp— e~ ——— Py~ —JyEpy— j‘ .
®_ "300 mm x i 600 mmx "
E ./ 600mm ;/300mm | :
X N o X 3
= b
i
.. ———rm—e - .- o —-——— _.
1 i 1 I
; : I, :
b
Direclion 1
—>
. Iunl.\l
Next, it is necessary (o sketch (he frame and identify beam spans in the hﬂl:c
direction and column heights in the vertical direction. Note that the [rame g;‘o\ol i

defined by slab and column centrelines. The following sketch shows Section )
frame (note that actual dimensions of frame members are shown on the skete™
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30m

e =

30m

3.0m

30m
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| Typical frame

|
I slab

Interior /_\J Exterior
column colurmn

7 Za

Section X-X

.Finally. the designer needs 1o prepare a linear (wire) drawing ol the (rame. For
gravity load analysis, CSA A23.3 permits the designer to consider one floor level plus
adjacent columns above and below the floor. The sketch below shows frame geometry
(bcam and column spans). The frame axes correspond to the centrelines of slabs and
columns. The column ends are shown fixed (no rotation). Note that the sketch also
shows uniform design load 5+,) on the slab.

(O N
T

K A\\\Y
6.0m 50m

l_____é‘_gln,__—«{————' +

Frame Model

& =

me menibers.

i i ¢ (ral
«ectional properties for the .
o e e s and columns) are illustrated on

ine Cross-
by Dewerit? (or (rame members (slab-bearn

Typical cross-sections
\he lollowing sketch.
: Sli‘b'b‘:“m;'d 1, the slab is

model, the s
In .lll;zn;]m;:)pcnicﬁz 48m \vid@ (s dlm{
zf:b thickness)- Momentol inertid for the §

as a wide b i following gross cross-
sated 15 & wide beam with the [o

b ssed above) and 180 mm depth (equal to the
1ab about axis x-x (sec the sketeh) is equal to

\
4800 mmx (130 {““‘l =23x10° mu*

L="""}2
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4800 mm

600 mm

£ i
EI\'- - Y
o P
i [=] )
i 5} I
; 600 mm
300'mm
p—
Columns Aand D Columns B and C
(1) ()

For prismatic modelling, cach span can be divided into ten or more segmers.
where cach segment has the same moment off inertia (7). -
ii) Columns
Column gross cross-scctional dimensions are the same (300 mm by 600 mm). Howeses,
note that the layout is different for exterior columns (A and D) and interior columns
(B and C). For the [ramc along gridline B bending in the columing occurs about the avis
y-y (as shown on the sketch), therefore moment ol inertia values [or the columss i
different.
Columns A and D (moment of inertia [,):

J _600 mm X(B()(] mm)i

\ =1.35% 10" mm*
12

Columns B and C (moment of inertia /,):

! _3})0 mmx(600 mm)‘

5 2 =54x10"mm’

For prismatic modelling, C1.13.8.3.3 requires that the column moment of inertia ¢
modified by the factor . Since this is a slab without beams, @, =0and L fl, =430
6m=0.8<1.0, hence

w=03

Therefore, the column moment of inertia values arc 0.3 - /, and 031,

¢) Skeich the final frame geometry and member propertics. Nok
A sketch showing the final frame geometry and section propertics is shown next- ;]lhf
that the [rame has 11 members. Slab-beam members are labelled as 3, 6, and . B.nm 13
remaining members are columns. For analysis purposes, the designer can Chou?t.urﬂf" .
vide the slab-beam into 10 to 20 segments, depending on the desired Jevel of 1¢° i
Keep in mind that the EFM is an approximate method, hence it is not necessaly

vide slab-beam members into too many segments.
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S. ?::1::;;; ,l;ht, ;r:clox be:dir:g moments (M_r).
resulting bend S periormed using a commercially available soliware package. The
. g g moment and shear diagrams are shown next — notc that the diagrams
show onlylbcndmg moments and shear lorces in the slab-beam members.

Negative bending moments wransferred from the slab into the columns are higher at
end supports A and D (38 kNm) than at interior supports B and C. Negative moment at
co!umns B and C is equal 10 7 kNm, that is, the difference in bending moments between
adjacent spans (181 kNm and -174 kNm). In this design. the spans seem to be rea-
sonably balanced and one would cxpect small unbalanced moments at the interior sup-
ports (shared equally between the columns above and below the slab).

6. Calculate the reduced negative bending moments at the supports (CSA A23.3
CL13.8.5.1).
First. let us calculate a reduced moment at the face of the support B for span AB. The
procedurc outlined in Section 10.4.3 will be followed (see Figure 10.13).

®> o o _ o

4 -174
g BT -181

+181 +178

+124

V (kN)

-124

AT8 -181

e e
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Reduced moment at the Face ol the support (M) will be caleulareq I
. : ‘ (¥ .
Jowing equation M the 1y,

a
My =M =Ver % 5

2) Moment at support B lor span AB (sce the sketeh below):
Support width: @ = 60X} mm

Moment at point B: M, = =174 kNm

Shear force at point B: V,, =178 kN

The reduced moment is equal 1o

0.6
M, = M, =V X ) = =174 (178X 27)==120 kNm

b) Moment at support B for span BC (sce the sketeh below):
Support width: ¢ = 600 mm

Moment at point B: M, ==181 kNm

Shear [orce at point B: V= 181 kN

The reduced moment is equal o

My = Moy = Ve, X = =181 = (<181 0;’)= ~127 kNm

Span AB |

; ~— ¢ =600 mm

ar
P Wa2y

Reduced Momenl Reduced Moment
Span AB Span BC

- . . R . : chts

Below is a revised bending moment diagram with the reduced bending mome .

4 . < H - P H ¢ Ol ¢
at the supports. Alternatively, bending moments at the critical sections could ¥
tained dircctly from the analysis software by placing nodes at the critical scction
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7. Design the slab flexnpg) relnforcemery.

) Determine the effective depth (4)

The elfective de, i
Pth will be deger; .
Slab thickness: 180 mm e basedon e Polowing parameters

Concrete cover: 20 mm (
Bar diameter; (5 mm (as
For a Mai slgp, reinforcey
An average effective dej

d=180-20-15

see Table A.2)
Sume 15M bars)

ment is proviz!cd intwo directions at the top and at the bottom.
Pth can be estimated as (ollows

=145 mm

Howev 2 ;

lbrcct;lcr.l nolc that a 25 mm conereqe cover is ofien requirced (or the bottom slab rein-

oree cn»ls.»mu: most slabs require a minimum two-hour fire rating. For that reason, let
.cu.«scu::’:l s llgh(ly reduced average effective depth for both top and bottom reinforce-

menl, that is,

d= 140 mm

b) The mquired area of reinforcement can be found according to the Direct Procedure
(sce Section 5.5.1) by using the following equation

’ v 3.85M,
=0.0015 = - &
A, =0.001 f"b(d o » ] [5.4]

For this case,

b=1,=4800 mm

¢)  The minimum area of reinforcement is calculated [rom the [oliowing equation
(CSA A23.3CL78.D)

A,y = 00024,

+min

d) Thecheck for the maximum reinforcement rutio has been omitted from this design
because the minimum reinforcement governs in most cases. If _lhc check was to be
performed, it would need to confirm that the reinforcement ratio [or the slab-beam
section under consideration is less than the balanced reinforvement ratio (see Table
Ad), hat is,

psp,

¢) The spacing ol boitom
C1.13.10.4) (see Table 12.8)

reinforcement is limited to the lesser of (CSA A23.3

553I1‘=3x180=540mm

or

5 <500 mm

. o oVems. - . 3

Inthis e 5[')_0m":: gesi;n calculations are summarized in T:ablt:~ :fél:'-u;r:?l“t‘
The N§Ulls:-nce i is sufficient to perform calcul.allu.ns IU(;' lSP""b: designed 10 re-

is symmetrical, hence qteel al interior column locations necds 0 For cxample. the
The 1P mm[lloh[fl(n\fn slab moments on ither side of ll:‘c column. For ¢ of 127

. J desi i c bending -

sist “::eiy:;lz;l for support B smu:i,ebfnome;l of r_u lr 2l0 kNm for span AB.

1op S| o o ) . by [ol-

k(;‘:m {span BC), which is lﬂi;l:i:nmbule the top reinforcement over col\:\mnl.slt;):sli(;ln
The designer Y Chu;.:s:uuincd in Section 12.6 in relation to the Dircc

. e proce

lowing the sam

R
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Table 12.18 Factored bending moments and the flexural reinforcement

AB nC T

Span

Location Top Bottom Top Top Botiom Top

M, (kNm) _20 +90 ~120 -127 +92 o

AmmY) [5.4] 415 1917 2744 2744 1961 a4

Top reinforcement 3-15M 14-15M 14-15y

Bottom reinforcement (required) 15M@500 15M @490

Bottom reinforcement (design) 15M@400 15M @400
Mecthod. However, in practice it may not be required to place the top reinforcemep
middle strip regions ol two-way slabs with similar span lengths in cach direciiop 11:.
within 10 Lo 15%. In that case, it may be more ¢lfective to place the entire 1op h.;
forcement in each direction within the column strip regions. )

8. Provide a design summary.

The design summary is presented below. Note that the spacing of bottom reinforcemey;
is 400 mm, although 500 mm spacing is adequate according 1o the design calculations,
In this case, it is deemed appropriate to use 400 mm spacing for bottom reinforcemen,
1o satisly the spacing requirements (or both spans (AB and BC), and provide a resere
strength to allow (or construction errors. For that reason, it is reccommended o place re-
inforcing steel spaced in increments ol 100 mm.

Note that this example does not include the calculation of cut-off points for the -
inforccment, which is an important part of the design. Refer to Chapter 11 for exam-
ples related to detailing of (lexural reinforcement in continuous slabs.

i i i [
i /3-15M 14-15M\ ; H /14.15M
LI N " |
1 ! |
| ) | M |
1 1 15 400 I
4| 1M @400 ! e ! 15M @ 400
!
p—1
—
Exam ple 12.4 Consider the same slab discussed in Example 12.3, but ignore the columad suff
: that is, treat the slab as a continuous beam.

'0- . . i ) tlon
Two-Way [_Tlm' . Determine bending moments and design the flexural reinforcement for the frame ¢
Plate - A Simplified gridline 2.

Solution Ignoring
Column Stiffness

on the follo¥"

SOLUTION:  In this case, we are going 10 treat the slab as a continuous beam, as shown g0
in

sketch. This system is casier o analyze than the [rame sysiem. The beam is go
subjected to the same factored load as the frame in Example 12.3, that is,

w, =60.5 kN/m



DESIGN oF TWO-way SLags

Actual siructure

T T e '
P yo Lol sl LTI TTLITT]
]

50m
6.0m 50
Oom

Continuous beam model

The bendi d shy e
. lng nomen| C. fore i
s a1 shoun e :]:m shear force diagrams obtained from the structural analy.
. ced moments at the supports are also shown on the dia, an '
d below. Reduced also s ¢ diagram.

? © w @

+ 114

V (kN)

114

-181

-188
1 are summarized in Table 12.19.
reinforcement as in Example 12.3.
arrapgement is shown on the next

area and amount of reinforcemen
dure was used 10 design the
howing the reinforcerment

The required
Note that the same proce
A design summary §

‘;\ comparison o nts ot?lz‘lincd in this example Yvilh the values ob-
rained in Example 123 indicates that the posiive bending moment in the ‘_:ml span in-
0 1o 108 kNm (approximately 209). However, the positive bending

creased from 720 ° has decrensed by 3% Note that there are no negative moments
moment ot the v initial unul'ysis assumption {zer0 column stillness). Theee

attheend supports

age.
pag | the bending mome

due to the
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Table 12.19 Factored bending moments and the flexural reinforcement
e e

Span AB BC .
Location Top Botiom Top Top Botom Top
M, (kNm) 0 +108 -128 130 +88 3
Al(mm-‘) 0 2316 2812 1873 28}"7
Top reinforcement 16-15M 16-15
Botom reinforcement (required) I5M @400 1 _?_\1 @500
Bottom reinforcement (design) 15M @400 13M @400

i i i

i 16-15M\ ; i /16-15M

! ! Q !

[l | 1

] J i i \

i 1 15M @ 400 |

i 1SM@400 : e ! 15M @ 400

is a minimal increase in bending moment values at the interior columns. These obser-
vations are in line with the discussion presented earlier in this section: when columns
stiffness is ignored, bending moments in the slab will be higher than those obtained
from the EFM analysis which takes into account column propertics.

It can be seen that the amount of reinforcement is very similar to that obiired
from the EI'M analysis presented in Example 12.3. In both examples, the required ber
tom reinforcement is 15M @ 500. However, 15M @400 specilication has been used for
the design solution 1o achieve uniformity and avoid chances ol construction et
Therefore, the only difference between these examples is in the amount of top rein-
forcement: 16-15M for this example versus 14-15M for Example 12.3.

Both designs could be used in practice. This discussion is intended 1o illusirs
variety of available reinforcement arrangements for continuous slabs. Several solutions
for top and bottom reinforcement are possible, and all of them should result in the 3¢
1otal factored moment M.

[t can be concluded that the designs which take into account colum
sult in higher negative moments at the interior supports and lower positive
dellections in midspan regions.

Siraw d

n stillness v
noments and

p—_]
—"
1 1
Exam ple 12.5 Consider the same slab as discussed in Example 12.3, but consider drop panels®l
Two-Way Flat Slab interior column locations, as shown on the following floor plan sketch. Use drop
; Yy a els with square plan dimensions (2 m X 2 m), and 150 mm thickness. sl
Wllh' Drop P fmels - Use the CSA A23.3 Equivalent Frame Method to determine the design bending mon
Equivalent Frame size and spacing of reinforcement for an interior frame along gridline 2.
Method
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el [ T ET R TT=
@ .~
¥ 2m x 2m x 150mm
@.._ - thick drop panel
el [T - .| typical at
© ! -i-.. LT _interior columns
v-l ‘ r-!-_l -|, :
(RO D [ =,
! RERER Al TSP y !
1 f emm -
el bl SR
I N N
- | bt
—————— Bl - 1 [}
! -IL+ |l ""‘['*--I- _______ ! _
=== (.

SOLUTION: 1.

’Rlelermine the slab thickness
c dimensi i .
imensions of a typical drop panel are shown on the sketch below:

~
h,=150] ‘
wee] T T b
=
. %=700 | 800
-
J_—¢—d-
. 2000

Span BC is characterized by the largest length
[ = 5400 mm

and it governs. Drop panc] plan dimensions are 2
CSAA23.3CLI32A requirement has been met

m square. Let us conlirm that the

Xo SL' =§4(')0 =1350 mn
T4

Since

x,= 700 mm < 1350 mm OK

‘The proposed drop panci thickness is 150 mm, therefore

A, = 150 mm

Note that CSA A233CL1324 requires (hat

ess [or o slab with drop panels is cqual to

A, Sh

According 10 Cl 13.2.4, th
o8£I (2

27T

¢ minimum thickn
)A,, (A233Eq.13.2)

h,
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='54}00(0.p+4(}§);l(1)9) - 2'700)-150: 141 mm
30 5400

Therefore. the slab thickness will be sclected as (ollows
h =150 mm

Note that the total slab thickness at drop panel locations is

ho=h +A =150+ 150=300mm
dp s 0

Note that the slab thickness (150 mm) is less than the thickness useqd for [y
i cls (180 mm) — see Example 12.3, This is a ¢ ™ plag
without drop panels ( m) [ VIS 1S & COmmon pragice ¢
slab designs where drop panels arc provided at the columns. ¢l
2. Calculate the factored design loads.
a) Calculaie the dead load acting on the slab.
IFirst, calculate the slab scll-weight:
DL, =h,X ¥, =0.15mx24 kN/m' = 3.6 kPa
where 7, =24 kN/nt' is the unit weight of concrete.
Next, let us calculate the additional dead load duc to drop panels. The self-weigh fy
a 150 mm thick drop panel is as [ollows:
W, = (A X %)@ mx2 m)=(0.15 mx24 kN/m')(2 mx2 m) =14.4 kN

For simplicity, the load due to drop panels is distributed over a [rame arca. For exan-
ple, the equivalent frame along the gridline 2 has 16 m length and 4.8 m width, and there
arc two drop panels in total. Therelore, dead load due Lo drop panels can be calcolaied
as follows

2Wy,

DL, =-—
16 mx4.8m

“dp =

=0.38 kPa

The superimposed dead load is given, that is,

DL =144 kPa

Finally, the total lactored dead load is

wpyy =1.25(DL, + DLy, + DL) =1.25(3.6+0.38 +1.44) = 6.8 kPa

b) Calculate the lactored live load:

wiy, =1.5%XLL,=1.5%3.6 kPa=5.4kPa ‘

¢) The total factored area load is

wek=wp ptwy  =68+54=122kPa

The total specified dead load is equal Lo

wp, =3.6+0.38+1.44 =542 kPa

The specified live load is

w,, =3.6 kPa

The ratio between specified live and dead load is
wi, _ 3.6 kPa

= - =0.66<0.
wp  5.42 kPa <075

Since the ratio is Jess than 0.75, patiern loading docs not need o be conﬂdﬂrgad ondl

frame needs 10 be designed considering only Lotal factored dead and live
spans.

el
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d i
) The o1 factoreq load o (e {rame ig y
W =122 kpy i
This ig 5 unifom arca jogd e L
10 find the design ooy ]_02! which could e used for 3.D analysis. However, we need
tary sab wid{h } oad for 2.'D lrame analysis, which can be obtained when the triby-
§ =48 m) is taken into account, as foljows
WE WXL =120 kpaxg g m=586 kN/m
K} Develop a lrame model,
a) _Dclcrminc the [rame gcomerry,
A p_ns'smau.c model is going 1 he used for the frame analysis. In this case, cach slab span
18 divided into 10 segments. For example, span BC contains 4 segments modelling drop
panels and 6 Segments for the slab-beam, Noge that different lengths can be used for slab
and drop panel segmients.
® © © |
]
2 drop pane! 6 slab segments '
segments Iy, , Iy interior span i
each span ‘
( T | 1
8 slab segments RtYPiCal/ 3
14, end spans nodes 4
il
. erti rame members [
b)  Determine cross-sectional properties for frame mem : . b
Typical cross-sections for frame members (slab-beams and columns) are illustrated on l}
the sketch below. t
4800 mm — ‘
. -
150 mm Slab-beam (/)
%
y i
4800 mm — i
150 mm 2000 mm !
Drop panel ([J,.)
Y i
£ o
£ e R
£ ‘- -x § -
[=] mm
2 ,,__sﬂg___q
300'mm

CoumnsAandD i




676

CHAPTER 12

i)  Slab-bcams ) )

The slab is treated as a wide beam with the following gross Cross-sectiong)

4.8 m width and 150 mm depth, Moment ol inertia lor the slab about axig xp'”‘f’tnm\:
. XIS X (g

sketch) is cqual to (see gy,

; :{8()0 lxllpx(IS() mm) = 13510 mar

) 12
i) Drop panels
A drop panel is modelled as a T-section. The centroid can be determined g5 Toll
O
0.15
0'15+2.0-0.|5-[().15+ j
2 2

4.8-0.15-

Y=o —

- =012 m=120
4.8-0.15+2.0-0.15 i

and the moment of inertia about axis x-x is cqual 10

_48:045)  20-0.15) s @soasy "5 g p]:+
a 12 12 SOR) T, 70

(2.0-0.15)(i'—2'!5 —0.12] =67x107 m'= 6.7x 10" mm

ii) Columns
Column propertics are identical 1o those in Example 12.3.
Columns A and D (moment ol inentia /)):

I 600 mmx(300 mm)‘

, =1.35% 10" mm*
12

Columns B and C (moment ol inertia /,):

3
X ’
1, =3’90 mm (6'09'"“) =54%10"mm’

CSA A23.3 C1.13.8.3.3 requires that a column's moment of inertia should be modiied
by the factor, ¥, which was determined in Example 12.3, as [ollows,

y=03
Therelore, the column moment of inertia values are 0.3 - £, and 0.3 - 1y

4. Determine the factored bending moments (M,). o
Bending moment and shear {orce diagrams (or gridline 2 are shown on the following
sketch. ‘

The results show that the positive moments are signilicantly lower in both sp .
however the negative moments in the slab and the columns are higher compared ©FY
ample 12.3.

ans.

5. Design fexural reinforcement for the slab.
From the bending moment diagrams it is possible 10 determine the requir
reinforcing steel for the slab. The calculation procedure is outlined below-

ed amourt®

a) Determine the clfective depth (d).

The effective depth will be determined based on the [ollowing parameters:
Slab thickness: 150 mm

Concrete cover: 20 mm (see Tablc A.2)

Bar diameter: 15 mum (assume 15M bars)

The average ellective depth can be estimated as (oflows:
d=150~20-15=115mm

‘The linal effective depth for the slab (rounded down):

d=110mm
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+45 - :
M
.35q-51 (kNm)
15047 -140
-1
-200
+167
+106 +168
V (kN)
-106
-168 16

Note that the lasger effective thickness needs 1o be considered at drop panel locations,
since the overall thickness is 300 mm (slab plus drop panel). Therelore,

d,,=300-20-15=265 mm

The linal rounded ctlective depth for drop panel locations:

d,, =260 mm

b) The required area of reinforcement can be found from the Direct Procedure using
Eqn 5.4 as follows

3.85M,
= ! P e 1541
A, =0.001 Sj‘.'h[d d b ]

For this case,

b=/, =4800 mm

)y The minimum area ol teinforcement was calculated from the lollowing equation
c e

(CSAAR3CLIED
A =00024

d) The spacing of bottom reinforcement is limited 10 the lesser of (CSA A23.3
y Thes

C1.13.10.4) (see Tuble 12.8)

x53h,=3x150=450mm

or
5 < 500 mm
In this case, 5 = 450

mm governs.
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Table 12.20 Factored bending moments and the flexural reinforcement

AB BC

Span
Location Top Bottom Top Top Bottom Top
dmm 115 15 265 205 15 28
M, (kNm) -35 56 -140 -150 45 :] %
A_(mm?) [5.4] 895 1448 1578 1695 1157 1695
A i (mm?) 1440 1440 1440 1440 1440 1446
Top reinforcement (required) 5-15M 8-15M 9-15M 9-15M
Top reinforcement (design) 8-15M 10-15M 10-15M 10-15y
Bottom reinforcement (required) 15M @450 15M @450
Bottom reinforcement (design) 15M @400 15M @400
6. Provide a design surnmary.
i i i i
i /8-15M 10-15M N i 10-15M P
| - | hd !|i
. ) - e ;
1 i
i 15M @ 400 \ i
13 M@ e 1sM@400 |}

Learning from Examples

The previous examples were useful 1o evaluate the effect of column stiffness (Examples
12.3 and 12.4) and drop panels (Examples 12.3 and 12.5) on the design of two-way slabs
without beams according to the EFM using the prismatic modelling approach.

12.4):

1.

The cffect ol drop panels is discussed below (based on Examples 12.3 and 12.5%

1.

The effect of column stiffness is discussed below (based on Examples 12.3 and

For slabs with relatively balanced spans, where interior spans are very similar and
end spans arc shorter than interior spans (70 to 90% of interior spans), bending ™"
ment values arc usually not sensitive 1o column slil{ness. .

As a consequence ol ignoring the column stiffness, the positive bending moﬂ“‘““’f
the end span would increase. 11 the unbalanced moments at the interior columns®®
small, it may be reasonable o ignore column stiffness in the EFM analysis.

In general, a slab analysis where the effect of column stiflness is ignorﬁd gener: I
leads (o a design solution with Jarger amount of bottom reinforcement.

There is a general decrease in reinforcing steel required in at slab design with de
pancls (Example 12.5) in comparison with flat plate design (Example 12.9 i
amount of bottom reinforcement is governed by the maximum bar spacing req
ments (CSA A23.3 C1.13.10.4) - see Scction 12.6.6 for more details.

The slab design with drop panels leads 1o an overall reduction in concret® N it
by almost 20% compared to the flat plate design. Although some of the (P ment
forcement is reduced by 40%, an overall reduction in the amount of reinforc®

olume
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is approximatey 10%. The,
and materig| Tequired 1 fy,
construction js Taster 10 fg

5¢ potential cogy
™ drop panels
™, thus it cuts d

savings are offset by additional labour
around each interior column, Flat plate
: . P lown the construction time. The choice of
of & particular —— pends on 'lhc relative labour versus material cosis
drop panclsy i oltow i l;cglon. The choice of design solution (flat plate versus
well a5 exiy o T by contractor’s expertise, experience, and preference, as

Onstruction costs v i
Struction schedyy. CrSus savings due to chances for a reduced con-

12.7.3 Three-Dimensiona| Elastic Analysis

The Concept CSA A233 restrices 5
way slabs

¥ which are in compliance
Neither of these methods can be u

Pplicalions of the DDM and 2-D EFM to regular two-
;e:“h (Ljhe requirements of C1.2.2 (see Section 12.5.1).
i sed 10 design [lat slabs with irregular shapes and non-
Li:i[;nagli"‘;ar;o'um" and/or wall Bl'idsv. duc_ to potentially significant errors asspoecialcd with
! g 1T termal fqrclcs end deflections in these structures. Irregular slab systems can be
analyzed using the Finite Element Method (FEM), a numerical structural analysis method
which enables a realistic determination of internal forces and deflections in complex 3-D
structures. The FEM is a matrix method which idealizes the structure by modelling slabs and
columns as a [inite element mesh. Ina typical FEM model of a building with two-way slabs,
columns arc modelled as linear (1-D) [inite clements, while slabs are modelled as 2-D fi-
nite elements (called plate elements). Displacements within cach clement are cxpressed in
terms of one or more degrees of freedom (displacements or slopes) specificd at elcment
nodal points. The clement stifTness matrix is formed based on a displacement function and
given stress-strain relationship for concrete and/or steel, The stiffness matrix of an entire slab
is then assembled. The analysis is performed using standard matrix techniques for solving
cquilibrium equations. The results are in the form of displacements and internal forces
(bending moments and shear forces), which can be used to proportion and detail the rein-
forcement. The FEM is based on the Elastic Plate Theory, and relevant provisions are out-
lined in CSA A23.3 Cl.13.6. Detailed covernge of the FEM is beyond the scope of this book,
however the reader is referred to Zienkiewicz, Taylor and Zhu (2005); Bathe (1995); and
. 1) for more information.
Cool;;l :,:aggg ;en‘ormcd using the Finite Element Method will be referred 1o as the Fi- p
nite Element Analysis (FEA) in this section. The basic terms assocml.cd with th;: FEA WI:;
be explained by an example of a flat pla.lc/slnb system consisting or u smglg p:lx:nc sljﬁgﬂ;l;
by [our columns at the corners and such‘cled to uniform load w. as shown m‘ }:un. i .Fi n-.
F;)r analysis purposes, the panel is subdivided into a mesh of finite Llcmcnls.. a: hs t;wa:c nw ( ?n
ure 12.53b. Note that gridlines in the mesh are parallel with x and y axes whic 8
twe onhogc;nralr:l x‘I:lC; l;tss?:l:tz:l::cxurnincd on a small rectangular clement cut l'.mm the
Internal " lel with column centrelines shown in Figure 12.54. Note that internal
slab by plaes pare d axial forces (P, snd P} in the plane of the slab are known as
shear forces (V,, and N‘,,.) an 12 54a). The cffect of membranc forces is disrcgarded in the
membrane forces (m,Flgmslaias. Therefore, in this discussion we are going o focus on
fexural nalysis Of WOV S F00 & e 12.54b. Along with bending moments, tor-
bending moments 7, and m\’ ,ho»;; resent. A plan view of the same clement in (.hc Xy
sional moments /., and m,, are ﬂnlohz with the bending and torsional moments. It is con-
planc is shown in Figure 12,54‘-:. Jane for the design of orthogonal reinforcement meshes.
venient 1o use moments inthe x ycgnsidcr {he maximum bending moments in the slab, called
However, it may be of mm-edsl wm and ), as shown in Figure 12.54d. due t
principal moments (dencte asuxe'r-busu; upplicutions, and it has become T?u::aé,\u;r:
FEA is suitable fof Com': ¢ hordware and software in the last few decades.
rapid advancements 1n computel

an i S ysi ¢ commercially

s, both gencrd purpose d SPCCiBlllcd for slab ﬂl’m.! SiS, m, 4

¢ p ol s are based on linear elastic analysis, however a few peck
&

ic (or nonlincar) behaviour of reinforced concrete flat slabs
nzl;sli‘\DAFl' (2010) and SAFE (CSI).

available. Most of these packog

Je to simulate
are bl king SIBge.

ges
in the post-cTec
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a) b)
Figure 12.53 Flat plate/slab system: a) an isometric view, and b) a plan view
(courtesy of Gelacio Judrez Luna).
Figure 12.54 Internal forces and
moments on a typical slab element:
a) internal shear and axial forces
(membrane forces); b) internal
bending and torsional moments -
an isometric view; c) a plan view
in x-y plane, and d) principal
moments.
\
I
“—m,, f { m-—» —x
m
' o4e—m, / \‘
T m, m,
m_\v-
c) d)
) ) ¢ ecn“"‘l
Design of two-way slabs according to the 3-D Elastic Analysis must consldef:t‘logpn‘
of bc_nding moments and torsional effects. When reinforcement is placed as an ") must &
mat in the x- and y-dircetion, factored design bending moments () and (, For

adjusted Lo account for the effect of torsional moment (m )(CSA A233CLI3E n-nd G-

ther details on 1orsional moments in Iwo-way slabs (he reader is relerred 10 Park
ble (200K},

el
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A

Fixa S
_ Foxample I2.6‘|lluslralcs M 2pplication of a 3.D FEA 104 regular slab system and com.-
pares the results wigpy the 2-D Epy, —

p——

xample 12.6

wo-Way Slab

jthout Beams: lo ?“lll’eﬁmw-' d . ive load of 3.6 kPa, In addition to Its self.
lastic weight, .
D Hf? Use 3-D Elastic Analysis (FEA) to derermine the design bending moments and the rein-
l‘lfll."“‘l‘S Sorcement layour along gridline 2.
SOLUTION:  First, the slab system is modelled as a fin
ample uses rectangular-shaped finitc ¢

density, which is rel

ated 1o the number and size of finite elements, can affect the accuracy
ol numerical results

[or the model under consideration. For slabs with more complex gecom-

i i s may i ¢ the accuracy
etry, a fincer mesh with a larger number of smaller finite clcmcm.a may improve the ac v
of calculated bending moments and shear forces in critical regions.

I

O——F

®

[\

NN

AR
XTLJ11

ISR

1

e 15,4
el of 5 two-

Finite element G
way slab.
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Figure 12.56 Bending moment contours for a regular slab: a) moment m, and b) moment m . ;
x ¥

CHAPTER 12

This FEA was carried oul using a commercial software package widely used
practice. The resulting bending moment diSlltthlll()n in cach orthogonal dircéu(;n igln dcsign
Figure 12.56. The diagrams represent bending moment contours, which shoy, 4 o
and magnitude of bending moments in the slab. Bending moment contours are ;
different colours, and their magnitudes arc indicated on the legend bar. Note thy
bending moments about the x-axis, which are used (o design reinforeg
direction. For example, reinforcement along gridline B must be proportioned ys;
shown in Figure 12.56a. Cumulative (positive/negative) bending moments along gridi;
shown on the diagram are cqual to the sum of moments across the tributary slah wid ';EB
tween centrelines of spans AB and BC. Similarly, moments n, about y-axis shown inlich‘_
12.56h are used 1o design reinforcement in x-dircction, for example along gridline ) 12ure

Tt can be scen from the diagrams that negative moments are concentrated in (he c.nlu
regions. Two-dimensional moment gradient profile is illustrated by a color C"""’"fding[:'“
Tt can be seen that the region of negative bending moments extends (o approximaiely n:‘
third of the span [rom the column centroid in each direction. It can also be seen tha m;dsp:;
regions along the column lines are characterized by very low or non-existent negative beyg,
ing moment values. Note that the distribution of positive bending moments (marked by v,
low-coloured contours) is uniform. .

Aggregaie bending moments shown in Figure 12.56 can be used to perform a compy.
ison with other design methods, such as the 2-D EFM discussed in Section 12.7.2. Cop.
sider the moment distribution along gridline 2 shown in Figure 12.56b. The maximun
aggregate negative bending moment is 181 kNm (column 2-B); this is equal to the value ob-
tained from the EFM analysis (see Example 12.3). The maximum positive moment value fo
span AB is equal to 91.8 kNm (this is very closc to the valuc ol 90 kNm obtained from e
EFM). Finally, the maximum aggregate positive moment for span BC is 91.1 kNm, whica
is very similar 10 the value of 92 kNm obtained [rom the EFM. Since both methods a
based on an clastic analysis, the total bending moment values across a span width obtained
[rom these two methods should be equal, subject only 1o minor deviations due 1o a slightdii-
ference in the models. This shows that the EFM can be considered as an acceplable desiga
method for regular two-way slabs.
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%2 12,57 Moment and reinforcement distribution for colume 2-8:3)
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Momen
A Contoyr ¢j.
ndin ur diagramg ghya;
on the .E'- moment valyes iy, hgri;smmnCd from the 3-D FEA show a comi
SC Mmomenys, Ag with the EFanal planbec.A fonforcrmentlayo e o
P . the bending moments cn: b:‘ct:ln I et e
' : Culated at face of th
The values of design moments should be lhz

FEA. Thi i

is Cl)ncm:rla);z (-)f Teinforcement layout s known as*™ i

s cone in the column re o e a mat reinforcement™, The reinforcement

cach side of the column, and ilsgs :_“"‘fcqundmg tothe negative moment disuibulio“‘n

approximate middle half of lh-‘ P oy unifonn incach direction. Rcinfurc;:men( i :n

c;()scly spaced, that is, rebar s;a:::lg ib‘::;ﬂpml\]d:’ng o ool colam region. i I:‘:’r:

the imat, Usually, the i 813 re uced by one-hall compared 10 the ainde

The aggregale n{omcn:ltf;nzzri:r - ln»lmmg bars is rounded up mc next ur\cnmnar::(rlr:t:::-[

total moment across the ncga“;:;]mo: cl:[c rl:g:u in c:ch direction should not be iess than lhc-
ion ohtained by the 3-D FEA.
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Concentrated
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3.5

b)

a)

gridtine 2, and b) gridline B.

cognize that negative bending moments in midspan regions along
her very low or nonexisient, thus it is acceptable 1o omit the top
ons (as shown in Figure 12.57). CSA A23.3 CLI3.11.2.2 pre-
bending moment ot un interior column can
the widih ol n top mat is alwuys
forcement is placed within

It is important to re
cach column line are cit
reinforcement in thos regi
scribes that a maxim
be resisted by the co
Jarger than \he colum
the middle s&ip-

um 90% of the total negative

Jumn strip.
n sirip, and a sma

To satisly this requirement,
1 fraction of the mat rein
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The design based on the FEA requires a provision ol larger amoun o lops
columns 10 suit higher negative moments. while the amount of reinforcemeny can ;:cl iy
or eliminated altogether in midspan regions due 10 low or nonexisten hendin Tedugy
values. The bottom slab reinforcement can be unitormly distributed. Some g
to provide additional bottom reinforcement at column centrelines 1o satisly
requirement which states that 55% of the positive reinforcement should be
the column strip (C1.13.11.2.2). Since the required amount of reinforeemen
the maximum bar spacing or the minimum arca ol reinforcement governs. As 5 resul
possible to specily uniform spacing for the bottom reinforcement, which is the C:L;c il-]l}li
example. The final reinforcement layout for this slab is shown in Figure 12,58 iy
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Figure 12.58 Reinforcement layout for the slab example based on the FEA.

—

jned
As illustrated in Example 12.6, the 10tal bending moments across each SR“"df’[:::cn;c
from the FEA should be comparable 0 other methods (EFM and DDM). The main <! while?
is that a 3-D FEA model provides a moment variation jn the slab in two direcions: e
2-D EI'M model gives a variation in bending moment values in the plane of -.|'u|1il'l"111
however, the EFM assumes that the transverse distribution of bending moments

el
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across the slab wigyy This assumptio j i
cro . This ion is no i
SenTean o T PHiOn is not applicable o thin 15 Plates and could lead to

In. conclusion, differen, design solutions will be obtain
analysis used (o determine bending moments. A design soly
likely resul in the top steel concentrated only over the col
EEM will require (o the top reinfy

rcement to be provided
3-D Finite Element Analysis of Iregular Two-Way Slabs e behaviour of ir-
regular IWo-way siabs is expecied to he significantly affected by three-dimensional effects.
For that reason, 3-p FEA should be use,

d as a design 100l 10 ensure 2 realistic prediction of
actual moments in the slab. Thi

cd depending on the method of
tion based on the 3-D FEA will
umns, while both the DDM and
throughout the span.

H 1 eside:
Jective exercise duc 1o irregular slab shape and an xm:gu}ar cnlurrlm fmd wa:_g:d.i«:: l;z
that, there is an additional column around the large opening on gridline 9 which makes
task of defining cquivalent frames even more challenging.

~ © _. 6 ®-@*Q@

n grid-
o jregular colum!
Hgure 12,59 Flgor plan of a building with an ireg
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SRR
’ 2K S SR < -
l . .
Moment M, Moment M,
a) b)

Figure 12.62 Bending moment contours for an irregular slab: a) moment m,, and b) moment m .

—_U_— - R "’7 e A — — [

./ o i ——'
wat e WAT ' g“

MAI WAT B’

Figure 12.63 Reinforcement layout for the irregular flat slab example.

referred to as the Tent Analogy. Imagine that the floor structure is very fiexiblc. fke

tent placed on top of the columns and walls. The tent material is resilient 1 wnsw" slf

is not going 1o tear apart under heavy load. The tent is expected o deform due 10 l:n

weight in the most efficient shape, that is, in the form of (wo-way catenaries PetY*

supports and volcano-like dellection contours around the supports. The Tent A nﬂlog)

be used to obtain qualilative deflection patterns for two-way slabs with a comP lex 8% .m\‘
Figure 12.61b shows contour lines of negative moments for this design: i the o

moments need 10 be resisted by Lop steel at the supports, which can be plac

of reinforcement mats,
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Jure 12,64 Yield pattern for
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DESIGN of TWO-way SLABS

obiained from the FEA

Figure 13 62531'\10 momen ( m,) region
as seen (ro, = 02b). The corresponding 1op siee]
m the reinforcemen lay € [op stee] exte

out shown in Figure 12,63,

for short slab 5|

Bcnding moment diagrapg
or shy pans |
direction (sce b

are shown in Figure 12,62, Note that
S could extend to midspan in (he y-
nds through adjacent spans,

YIELD LINE METHOD
Background

e ) ct the ultimate load capagity of slab: the Y iller-
borg's stri pacity of a s LM and the Hiller.
Vdrfmd b;’ "‘“S;‘:::hgg:; m{m&l m;d h::lowcrl-hour\d eslimate respecively. The YLM was de-

The YLM is able 10 cstim;uc‘a0 S‘fn i ek wnl[bc Chscusset intis scton
the onset of Mexural failure characlcm'seg b ml':w lﬂﬂfd o o 3y 'SIab be)_’Ond
0.0035 and yielding in the tension sll"c o i s otion. a5 demed by e U 9f

andy sion steel at a specific slab location, as defined by the Ului-
maie Limil States (ULS) design approach. [n two-way slabs, the slab will not fail immedi-
ately after the initial onset of failure at the location of maximum bending moment as there
are redundant load paths that would continue to support additional load. The YLM is able
to determine the ultimate load-carrying capacity of a Iwo-way slab prior to failure.

The intent of this section is to expose the reader tounderlying concepts of the YLM and
demonstrate its application through a design example. A detailed coverage of the YLM is
beyond the scope of this book, however the reader is referred to other resources, such as
Kennedy and Goodchild (2003) and Park and Gamble (2000).

The Concept

The YLM can morc accurately predict ultimate load capacity lor the two-way slabs with a
ductile flexural behaviour subjected to gravity loading than the ULS design appmach.
According to the conventional ULS design approach, slccl-cumrfvllcd fexura! failure at a
specilic location takes place at the bending moment cqncspondmg to the concrete com-
pression sirain of 0.0035, when steel reinforcement is ldclulrmcd well beyond the yield point.
As a result, plastic hinges will form at such Iocz}!iuns in reinforced concrete beams nn.d f)nc-
way slabs - this is considered the ultimate (faifure) stage. However, two-way sl:}?s carry
load in two orthogonal directions and bending moments vary in .“f‘:_h dII‘C.CUOI‘l. 'l;ldlh :rmquz
characteristics allows for redundant load paths. Thc s'lab \Ylll |muuili' ::rrv lo .rz "::;gw
the stiflest load path until yielding causes 3 drop m.slulTnc.ss .md ‘(:ﬁ o ud 1».‘ Llrnax:t:L e 10
other (stiffer) load paths. Hence,a localized ﬂcx.uml fajlure that initi y‘oruu'n  he g-lnb

i st bending moments is not considered the actual failure for a two-way s .
w".h ! he lorgest et ol [ailure, and the slab can continuc to support load through t-)lhcr kx{d
This is ol o e oad u st the bending moments in the yielded regions will remain
paths. Upon l briher lo‘.l.d-muj;l‘suppon increasing bending moments until yic!ding_ takes
constant, while other regions +d. As the loading continues (o increase, cracks in adjacent
place and plnsuu hinges m flf:'"l“";ﬂ e limely & vield pttem s ormed by interconnect
plastic hinges join 10 form yield e will be reached when interconnected yicld lines
ing yicld lines. \he mininum slab load-carrying capacity. Fur-
form the yield pattern whi

The slab’s ultimate capacily
ich corresponds 0

a"
N
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ther load increase would cause the slab to collapse duc to the loss of stabiliy
across the yield lines. A yicld pattern for a two-way slab simply supponeq on l_iln failu,e
shown in Figure 12.64; note the yicld lines that separate regions A, B, C, and DDur Sidey
A yicld pattern can be understood as a failure scenario for a particular sig, I
there may be several vield patterns for a part icular configuration of slab ang Ioa&i: .
pattern that gives the least load at the ultimate stage (failure) governs and it i knmg\f bu
yield line solution. Nas th
The ultimate slab capacity is detenmined using the Virtual Work Methog,
is based on the underlying principle that the work done externally and imerng
ance. At failure, the encrgy exerted by external loads is equal 10 the interng]
pated by rotations about the yicld lines. The method states that the intern
the external work (EW) arc cqual, as (ollows

IW=EW

This Melhyg
My mug g
Chergy disg;.
Al work (1) g

(1243
Internal work (JW) is the work dissipated by internal moments on rotations along the vied
lines, that is, :

IW=Z(m-1-6) [y
while cxternal work (EW) is induced by applied external loads on the slab. as (ollows
EW=X(P-6) (12
where

P =load(s) acting within a particular region

&= the vertical displacement of the load(s) P on cach region expressed as a fraction of
unity

m = internal moment per unit length of yield line

! =length of the yield linc

& =1he rotation ol a region about its axis of rotation

It is impontant 10 note that the summation sign in the above equations denotes that bolh ev
\ernal and internal work are calculated for all regions of the slab under consideration.
The Virtual Work Method is illustrated by an example of a slab panel subjected o
formly distributed load. .
Figure 12.65a shows the slab which has developed a mechanism where the yielding®
reinforcement and plastic rotations have occurred along the yield lines both at the supports
and at the midspan. )
Figure 12.65b shows a slab model which will be used lor the design according h‘l
the YLM. Note that P, and P, are resultants of the uniform load w used for the exterm?

Column C°':""“

P ox, |

Yield lines

Yield lines

a) b)

Figure 12.65 Plastic mechanism in a two-way slab: a) actual slab span, showing locations where the reinforcernent has
yielded and the plastic rotations have occurred, and b) a slab model.

|
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t
work calculatipng, i
. S, and r an .
supports, 180d x, denote the distances of these resultants from adjacent
1t should be noted ‘
requires the leas amoq ll:?l- the g("'er"'"’g.yield pattern for a slab under consideration :
consists of identiying intemal workl Prior o failure. The design according to the YLM !
determine the gnvcmiig nieclzr more valid yic!d patterns and performing calculations 1o i
following cxample, Yield patiern. An application of the YLM will be illustrated by the
———
xample 12.7 SOI}SIder 8 Mloor plan of  Nat plate slab system designed in Example 12.3. The factored }F
wWay Flat esign load (w ) is 12.6 kP,
[wo- Y¥ " Deller'mme the ultimate logd capacity for the slab by the YLM: q) for slab strip between
Yate .1 l|l(; o gridiines I and 2, gnd b) for stab strip between gridlines 2 and 3.
Jine Me

SOLUTION: 1. Determine possible vield patterns.

Several yield paterns are postulated 1o form and should be considered for design. Note
that the positive bending yield lines at the end spans are not expected to form exactly
at midspan due 1 lack of negative moment capacity at the slab edges. These yield lines
tend 1o form closer towards the slab edge, away {rom the midspan. !
Let us consider the lollowing three yield patierns: i
Yield Pattern 1 (YP1) - Positive bending yicld lines are formed within each span,
while negative bending yield iines arc formed along interior gridlines; note that four pat-
terns are shown on the diagram below, and they need to be checked individuaily.

O .60 . 0.6




692

© . QO .

CHAPTER 12

Yield Pattern 2 (YP2) - Parallel straight yicld lines are formed in hotl,
regions and along the gridlines, as shown on the diagram below: nole th,
terns could be identified in the perpendicular dircetion (two panerng
diagram, and cach nceds 10 be checked individually).

O .0 . 0 ®

M the midipan

HI| Smli];u y

are Shuwn n ;
ik

Yicld Pattern 3 (YP3) — The largest rectangular yield pattern is formed within 25
ol interior columns, as shown on the diagram below.

©.0.0
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The yield ;
governs )1'_0 ME:S“"’:’}:‘ that requires lhc largest moment resistance along the yield lines
woing . imr(xj S the Teserve capacity for the previously designed slab areas,
al Work (IWAEE:VIM ratio of ll'_le Available Internal Work (IWA) 10 the applicd i
reinfone ). Thfs fatio is greater than 1.0 for yield patterns that contain more K

;)rccmcnl than required 1o satisfy the equal work principle.

n- gcnclrnl, all possible yield patterns should be considered (o determine the
IWA/EW ratio. For this

S ¢ example, calculations revealed that the governing yield pattern
1S pattern YP?2 discussed above, Although this example shows only yield patiems for

Sllﬂh slripls between gridlines | and 2and 2 and 3, similar yield patierns in the perpen-
dicular direction also need to be considered.
Based on the above discussion, we are going to proceed using the pattern YP2. In

i
many cascs it is not obvious which yield pattem produces the least JWA/EW ratio, hence '[
this process may need to be repeated for cach possible yield pattern. :

Find the ultimate load capacity for the siab strip between gridlines 1 and 2.
a)  Determine relevant dimensions for the yicld pattern.

For the end span 1-2, it is assumed that the positive steel yield line oceurs at 04L from
the slab edge (gridline 1), as shown on the diagram below. Howcvcr.lu can .hc ‘shqwn that
if the vield line is taken at midspan, the error is only about 3%, which is insignificant.

» .60 0,0 ‘4

wc are
Exiter-

_0._Q

(YP2) between gridlines 1 and 2 is shown below.

e om
A vertical section of yield patte
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b) Compuite the External Work (EW).
Let us first calculate rotations (8) along the yield lines. as shown op the

i i ; . s
Note that the displacement (8) is assigned a unit value for case 0|~Ca]cmﬂ:<iucha ,
\ations can be found [rom the above sketch. as follows: 00 The 1,
[ 1
6= " =
04L 04L

é 1
6, = = =
©06L 0.6L
i
B=0+6:= 001
The design load is equal to
w,=12.6 kPa

The load resultants for regions 1 and 2 can be determined as a product of the sla aa
and load (w,), that i,

P,=(0AL-a)-w,

P, =(0.6L-q)- w,

Finally, the external work can be calculated as follows:

EW=3(P- ¢ {1213

5. .8
Po+po
P

D04 +06)L anw, = B
2

- 48m- (16 ";A)_'ME"D= 484 kNm

¢) Compute the Available Internal Work (/WA).

In order 1o calculate the /WA, it is required to find the moment resisiance along
yield lines.

i) Find the moment M,
The section considered for this calculation uses the total slab width, that s,

b=16m
and the effective depth based on average depth ol two 15M bar layers, 2 follows
d =180 mm - 20 mm — {5 mm = 145 mm

- . . . R . . ss 1he
The reinforcement design (omitted from this example) requires four mats acre

cntire slab width between gridlines A and D: two interior mats with lBﬂ5M b::_'ﬁ_\l
two cdge mats with 10-15M bars. In total, the top reinforcement consists of 30
bars. Hence,

A, =56x200 mm? = 11200 mm?

"The (actored moment resistance for a rectangular slab section will be dete
the procedure presented in Section 3.5, as [ollows

T,= gAF, = 0.85(11200 mim?)(400 MPa) = 3808 kN
C,=¢ -f a-b=0.6530MPa) (16000 mm) (a)

From the equation of equilibrium

rmiined

T =C,
it can be found that
a=1222 mm
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thus .ﬁ

k.
My=T (d S H

3 | =3808kN (l45mm - &@’J =529kNm |
1;;] ) Find the moment by 2
IS Momen js calculalcﬁ consideri

16 m s e el considering the bouom reinforcement 15M@400 mm across

A = 6000mm ,
" 200mm X200mm? = 8000 mem?

T= - =

‘e O F, =085 6000 mmy400 MPay = 2720
=0 fa-b=065 (30 MPa) (16000 mm) (a)

thus

a=9mm
and
M,y = 2720kN[145mm - 9i“i“)= 382kNm
2
iii) Finally, ava.ilnblc internal work (IWA) at the supponts and the midspan can be cal-
culated as [ollows
IWA=IW=Z(m-| §) [1214]
=1\rl‘9I+H:9.‘+M,‘_9” “ i

where
M, =0athe slab edge : ‘
and '
{= 1 (assume unit length for the yicid line) :
thus

IWA=0,6,+M,6,.

1. 1 7) |
=M: ( oL ) M [o.uL |
06(¢8m) 024(48m)

d) Find the IWA/EW rutio.

WA SI5kNm _ 106

EW 484 kNm lines | & 2, there is @ 6% reserve capacity as
clore end span between gridlines | & ..l,l e is a 6% reserve y a5-

’.mcl:do(nh:'nr:;:cr: is apzcro negative moment capacity at lhg [our edge columns. This re-

w:\‘:;ncgupucixy \ranslates 1o the actual ultimate load capacity. as ollows

L =1.06-12.6= 13.4kPa
!

w,= 1.06 - w
te load capacity for the stab strip between gridiines 2 and 3.

ons for the yicld patern. o

above (YP2), and 2 vertical section is shown on next page.

3, Find the uitima \
) Findthe relevant dimiens!
The yield paem is the same as
b) Compute the External Work (FW). ke
lr: (his case. the maximum deflection Soceurs

s .1
8,26 =5, " 0sL

midspan, hence
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and

1

0y, =6, +0; =
- s 0.25L
The load resultants can be determined in the same manner as before, that s,

p=pP= (0.5L-a)- w,
EW=X(P - §) (1213

[ 1

Shyth = ;(0.5+ 0.5)L -a-w; = 484kNm

¢) Compute the Available Intcrnal Work (IWA).
The same top and bottom reinforcement is used here as for the previous slab sciion
hence

M,=M,=529 kNm

M, =M, ,=382kNm

and

/=1 (assume unit length for the yield line)

IWA=IW=Xm-|-6) e
=M,0,+M,6,+M,60,=2M,6,+M,8,

:2-M,( L +M,,(#
osL 2o2sL

= 2529) 382 = 759 kNm
0.54.8) 0.25(4.8)

d) Find the IWAZEW ratio.
IWA _ 759 kNm _ |

EW 484 kNm
The ultimate load capacity is equal 10
w =157 w=157-12.6=19.8kPa

- ! ity of §7% ™
The above calculation shows a significant reserve in the load capacity of 5 poth U
rior span 2-3, This is due to the flexural capacity provided by the top SI€¢ A i
port Jines, compared to only one support line for end span 1-2, ther
._s'igniﬁcunlly smaller reserve capacity of 6%. This example illustrates {
in two-way slabs designed in accordance with an clastic analysis I"""ccd“rc

nilicant reserve in the load capacity.

Ll
;nterior s
hat inter™ G

|
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DESIGN OF TWO-way SLABS

Practical Des;
l Design According to the Yield Line Method

Although the YLM i
L ! 1S most com i
existing slabs, it is also oo s monly applied for evaluatj i
of the advanlagcs of T)hcb?[(_)mmg more popular as a Pﬁmat:lzgl Lrhc :cl“‘mm toad capaciy of
’ or
. TheYiMof M compared to elastic analysis methods al:!iz;::;iﬂilﬁm
: M offers a moy . ) ’ ow:

reserve capacity hcy:n:jc?}?omlcal design solution, since it takes into consideration a
methods, ¢ onset of flexural failure as defined by C(-)nvcnlional

2. The reinforce i
ment solution is si
] {l(-;] rm and regularly amanged impler. and the placement of steel tends to be more uni-
3 e YLM is a v i ;
i gives the dcsi‘;)’c:?;z{:::l:njeslgn lo'ol for slabs with complex configurations, and
wre mechanism. erstanding of the overall structural capacity and fail-
The YL

M can be uscd f i i

performed by hand calc‘;‘;i?::\g:ﬂ:&t::;hdreglular n'nd |nc;ular slabs.. The design is usually
basic principles, S esigner is required (o derive a solution from the
ncc(]lgnlfzncml. applrlcau_on olf the Y!‘M i_s a trial and error approach. The designer usually
" harlry ?m afew iterations using d!fl'crcm yield paiterns to identify the one which re-
sults in l. ¢ lowest load capacity for a particular slab panel. The complexity of yield patterns
may 1nma|ly. present a challenge, and novice designers may not be confident in the resulting
df:sxgn solution. However, experienced designers may be able to intuitively eliminate the
yield patterns that do not govern and consider only a few patterns that are likely to govern.

DESIGN FOR SHEAR
Background

Shear stresses in two-way slabs occur due to gravity loads and bending moments. These
bending moments are caused by gravity Joads (unbalanced moments) and/or lateral loads,
and need 10 be transferred from the slab to the columns through slab-column connections.
Slab areas in the vicinity of 2 slab-column connection are subjected o the highest shear
stresses. Shear failure in two-way slabs is sudden, and it must be carefully considered in the
design to avoid potcntially catastrophic conseguences of shear fai!urc. pm‘lix.:ularly in flat
slabs and [at plates. The slab shear resistance in two-way sl.ahs \V{lh bcu_ms is usually not
critical, but the beams must still be designed for shear. 1.1“5 section builds on the back-
ground knowledge (rom Chapter 6 rcla(cdllo the shear design _ol' bez_lms and onlc-w?y slabs,
and it also provides new information spclc\ﬁc 1o the shear f!csxgn of two-\?'ay sluh5:

The main objective of shear design in IWO-Way slabs is to check lhu? Lonfmc shc‘ar re-
sistance for one-way and 1wo-way shcar._thn 1hc. factored sh_cnr sl.‘ress exceeds oldh"" co;‘\-
crete shear resistance. iL is required to cither provide shear reinforcement or m ily the
design (-8 provide drop panels)-

Way Slabs without Beams

r Design for Two . .
hes : jrements The main CSA A23.3 shear design require-

n Requ . g g
CSA A23.3 Sheaflf::lglhc strength requirement. The maximurn factored shear STESS.
ment for lwmva'\:ihmc factored shear stress TESISIEnce: ¥, (CL13.3.1), us follows:
chould not excee [12.16]
v,SY,
and
v =V, +V,
where shear struss, and

+ is the factored conerel
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)

A few cast-in-place reinforced concrete buildings with Mat plate floor sysiep,
during construction in the last 50 years. The causcs of failure were usually ¢
could be attributed 1o several factors, but it appears that these collapses we
triggered by punching shear failures ol Mat plate floor slabs. For example,
reinforced concrete building at 2000 Commonwealth Avenue in Boston, Us
during its construction in January ol 1971, killing 4 and injuring 30 constr
ers (King and Delatic, 2004). Floor and roof systems consisted of cast-in-place (at ply,
supporied by columns, and the siab thickness ranged from 190 to 230 mm, Firs, 1hc“
was a punching shear failure in the roof slab at onc ol the column locations, Thc‘\\-m;c
ers (clt a drop in the roof slab of about 100 mm within a [ew seconds, which wag followc‘i
by the complete collapse of the slab. This was lollowed by the total progressive collapse
of the cast side of the building. which lelt the {loor plates stacked in the basemen; of the
structure (sce Figure 12.66). The most significant construction deliciencies were the fack
of shoring under the roof slab, and low concrele strength. At the time of collapse, the con-
crete strength was reported Lo be in the range from 11 to 13 MPa (compared 10 20 Mp,
design strength). No testing was done to confirm the strength hefore the shoring wag .
moved. Also, actual loads on the rool were approximately 6.2 kPa, whilc structural plans
specified allowable construction loading of only 1.4 kPa (note that increased loads were
due 1o construction equipment and boilers stored on the roof), One of the main lessons
from the collapse is thal redundancy within structural design is esscntial to prevent pro-
gressive collapse. Slabs in the collapsed building did not have shear reinforcement or
continuous integrity reinforcement through the columns, which is prescribed by CSA
A23.3 and other codes 1o mitigate punching shear failure and prevent progressive collapse
in these systems.

N Collapsw
OMplex gny
re Primj,
a 16<slorc\,
A .COHQPSEl]
Uction work.

Figure 12.66 A view of the
collapsed building with flat
plate floor system in Boston,
USA in 1971.

(from Boston Globe. January 26,
1971 republished with permission,
counesy of Getting Images/Boston
Globe).

. . . L - orcements 58V
v, is Lhe factored shear stress in shear reinforcement (design of shear reinforceme

cussed in Section 12.9.4). e
Note that the strength requirement is presented in the stress form, that is, itis f“‘l:;“\,',is
compare stresses rather than forces. For example, the factored shear stress “’s'ﬁmn‘. ;c&il
expressed in stress unils (e.g. MPa) while the factored shear force resistance, v, 15 P ¢
in force units (e.g. kN). The stress approach is suitable for checking the i
resistance, whereas the force approach can be used (o check the Onc-wuyls et “:ﬂ .
this is similar 1o the shear checks for beams and one-way slabs discussed in Chap®'

shear resistances, v and V,, will be determined (rom CSA A23.3 equations 21
later in this section,




DESIGN oF TWO-way Stags

According 10A233 Cl1332, 1w diflerent shear mechanisms must be considered in
1W0-way slabs Wwithoul beams;

One-way shear (Cl.13.3.6) and
. Two-wny shear €CL1333 0 1335).
One-Way Shear (Beam Shear) T One-way shear resistance for wo-way slabs (often
referred 10 as beam shegr resistance) is determined in the Same manner as for beams, one-
Way slabs, and footings specificd in CSA A233CL11. 10 | 1.3 (see Scction 6.5.4), Note that

the One-way shear resistance usually does not govem in the design of Nt plates or fat slabs,
however, it should still be checked,

When the slab has s,

ullicient thickness, shear reinforcement is not required (CI.1 1.2.8.1),
that is,

VsV

- .
The fzclored shear [orce, V’ is delermined by considering the slab spapn;:r!g as nlglg;:ahc’:ll_r:’;
with the width corresponding to design strip b_and span 1. asshown in _ 1{;:;; - o
critical section is located at g distance d, from the column face, as sl:;:\:/n;nd Vg oy
The design shear envelope is shown in Figure 12.67_c. Note lha;l\’(:olal ﬁcsign Islrip e,
termined based on a unit slab width (equal 1o | ml). instead of t |L~ o
b,.. The unit shear forces are denoled as V/and V', and the final conclus

/Tn'butary area

\ ’
. nel centrelines
.~—Pa

Shear erwelope

i ; b) slab
j w showing the tributary area; )

. 2 -
) a plan vie b cross-section for one-way

. -way slabs: 8 d) a typical sla
hear design of two ¢ force envelope, and d)
Figure 12.67 One-way :-i:al section; ¢) shea
g L bhe
elevation showing

shear design.
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same, irrespective of whether the forces are calculated based on the unjt Widih o b
i ip wi the pp.:
design strip width. ‘ X ey
In two-way slabs with beamns, the one-way shear resistance is provideg by th
(sce Scction 12.9.5 for more details). ey
- < i 8 Ay . .
The factored concrete shear resistance, V. can be determined from the foly
equation ing

Vo=b-A-fNf bed

where f# = 0.21 (for slabs where h, <350 mm, A233ClL11.3.6.2)
A typical cross-scction is shown in Figure 12.67d. Note that b, is the widyh of
sign strip, and d_ is the clfective shear depth taken as the greater 0.9 of and 0,724
When /> 350 mm, it is required to lake into account the cffect of depth t;n shes
strength, thus /7 should be determined from A23.3 Eq.11.9 (reler to Table 6.1) w
For corner columns, V_is determined from Eqn 6.12 considering

b.=b,

161y
the .

where b_ denotes perimeter of the critical scction. It can be scen from Figure 12.68 tha g
critical section for a corner column may be extended into the slab overhang (cantilevery
portion beyond the column) for a length not exceeding d(Cl13.3.6.2).

>

_._.'- ....... ,/// .- T A
B m

N

//
Panel _J :

centrelines .
12
] d
EXEE [ERETESETEEIES -|-- vd
: : Critical section
a) b)

Figure 12.68 Tributary area for one-way shear design of corner columns.

A233CLI3331013.35

Two-Way Shear (Punching Shear)
The mechanism

A two-way shear (punching shcar) mechanism results in failure along the surface of?"l‘:i
cated pyramid (or a truncated cone) around the column. This failure mechanism @kes?
due 10 excessive gravity loads transmitted [rom the slab into the supporting “’l".mn;,.»\-
mechanism develops when shear stresses on the area in the vicinity of column peri®
ceed the concrete shear strength. . and ¥
The punching shear mechanism is ilustrated in Figure 12.69a. Initially, C‘rcu:zing mr
dial cracks develop on the top slab surface — these cracks are due to negati*e be omT
ments; the slab area in the vicinity of the column is subjected to significant bending "; it
which cause exural stresses, as discussed earlier in this chapter. With 8 furthe? pas
crease, diagonal tension cracks develop near the mid-depth of the slab and late? Pr‘° oxd
to the surface. It should be noted that these cracks first form at about one-he ‘:mll'ol"f‘
corresponding to the punching shear failure, at a distance of approximately ones

|




¢ 12.69 punching shear
e a)a vertical slab section
0ing the crackiqg pattern
Jdapted from Ghah‘aqd Hammill,
992 with the permission of the
;nerican concrete Institute), and
) gn isometric view of the slab-
é,[umn connection showing cracks
+the top of the slab observed in
o experimental study (courtesy of
4in-Yuan Cheng, Gustavo Parra-
{ontesinos, and Carol K. Shield).
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Flexural cracks

A23.3C1L133.3

slab depth from the column perimeter. A cracking pattern on the top slab surface charac-
teristic of the punching shear mechanism is shown on an experimental specimen in Figure
12.69b.

The two-way shear mechanism is illustrated in Figure 12.70. Consider a two-way flat
plate subjected to uniformly distributed gravity load, w. The slab wnds o move uniformly
downward duc 1o the load, while the column (or other type ol support) resists this moverment.
Shear (diagonal wension) stresses along the inclined plancs are shown on slab clement ABC
in Figure 12.70a. Tensile stress. f, acts perpendicular to the inclined surface AC, while the
shear stress, v, acts paratiel with surfaces AB und BC. The cracking takes place when ten-
sile stress in the slab reaches the concrele tensile resistance. ‘l?-\c l}nilcd shape is in the form
of a truncated pyramid, as shown on the isumclmc d_l;fgmm in Figurc lZ.?()u. Fu‘r (.!legn
purposes, CSA A23.3 permits the use ofa simPllll'wd l'.u}un:_ shape. gcomclflcully similr to
the column, as shown in Figure 12.70b. The cnucx.nl s;;clmn is I()Culcd".\l a (llSlunCl? LI/? lrpm
the face ol the column (R0t \hut d denotes the eflective slab depth). The stress distribution

is shown on slab clement ABCD. Shear stress, v, u€ts downward, and it is transfecred across
l;b do o :, shear surface with arcd b - d, where b is the perimetcr of the critical section
the design she A .,
o : 270b).

(see isometric diagram in Figure 12.70b)
The critical section for two-way shest N
ar al an interior column is defined by four vertical sides,
on should be taken at distance d/2 from the penimeter
1.1), as shown on an example of a Nat plate v
dicular w the plane of the slab und Tocated so
they the eritical section is shown with Jashed

The critical section for two-wily .\hn.: .
as shown in Figure 12.70b. The .smuCl o
of the conccnuﬂlcd l"‘,’q or colu‘mn .(. | n
Figure 12.712- The clnucul sc;l{unu; mr\‘,t
that ils perimeter b isatd minimum.
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v
—

A8
TV f.“/cTu

Perimeter 5,

Design shear

a2 area

LSRN NE S

Shear
stress v

T

b) —c P by ;
LA L]

b

- e —————
Figure 12.70 Two-way punching shear failure mechanism: a) actual failure surface (truncated pyramid), and
b) a simplified failure surface model consisting of the vertical sides.

lines, and the tributary slab area for the factored shear force calculation is show™ pache!
on the drawing. et
When a slab has variable thickness (for cxample, a [lat slab with drop Pa“elsl)"lmu“

failure can occur either through the thickened portion of the slab near the colunln.n. or ~1i0;1='
the slab portion outside the drop pamel. As a result, there arc IwO cr'“c?l s‘Tis I
(C1.13.3.3.2), as illustrated on an example shown in Figure 12.71b. Critical sed:;: column
cated within the thicker portion (drop panel), at a distance d, /2 (rom the fuce of i
(as shown with dashed lines in the figure). Critical section 2 is located in the slabatd 0
d, /2 from the end of drop panel (as shown with dashed and dotted lines in the figure .'lhnul
that 4, and d, denote the effective depth of thickened slab with drop pane! dsla on shov?
drop panel, respectively. Figure 12.71c shows the notation related to the critical sect! or Wi
in Figure 12.71a. Note that ¢, is column dimension in the direction of the 5 lartocr
moments are determined, and ¢, is column dimension in the direction PCFPe“d'cu
perimeter of the critical section, b, can be determined as follows

b,=2c,+d)+2(c,+d)
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Tributary area Column  Panel centrelines
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! Cftcal secton 1

!

! : N B b
I 1 H H Ir__‘
: ! il .
I : i| (MW TF i Crifical section 2
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ectigm
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]
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o 1
(IIZM
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A+_

a) ’

Critical section
(perimeter b,) di2

r=l
L

d— 0=
ey
o)

fi -
iure 12,71 Critical section for two-way shear: a) a flat plate: b) 3 flat slab, and ¢) dimension notation.

the critical section depend on the location ol the volumn within
a building (CL. 13.3.3.3). Fora typical interior column of rectangular shape. critical section
may be assumed to have four vertical sides. while for corer and edge columns this section

may be assumed 10 Rave WO or three vertical sides, respectively (see Figure 12.72).
The shape of a critical section also depends on the cross-sectional shape of the sup-
found in many buildings. In theory, it

porting column. Circular column sections may be .
ritical section 10 have a circular shape, as shown in Figure 12.73a.

d be possible for thec ) ! : i
;:O:,Icver Plohe intent of Cl- 13.3.3.3 is that 8 critical section has straight surfaces. Experi-
o ! 1h for circular columns exceeds the

ics have shown {hat punching shear streng! s
memathssmfglrcsquam ross-sectional ares. Therelore, it is conserva:
streng!

columns with the same ¢ l s o
i i ;mpler to idealize circular columns @s square €0 umns with the same
tve end m‘wjn);ﬂuca:l:: (SII\CY gure 12730 Critical sections for some
cross-seclio 5

1988); this is shown in Fi
irregular column shapes &7 shown

The shape and size of

in Figure 12.73band c.
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Figure 12,72 Critical sections for
different column locations within a
building.

Figure 12,73  Critical section
for different column shapes:
a) circular; b) L-shaped, and
¢) cross-shaped

(courtesy of the American Concrete
Institute).
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Comer column
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At edge and corner columns, where the slab cantilevers beyond the exterior face of ¢
support, critical scclion may be assumed to have three siraight sides and extend in0 _lhe
cantilevered portion of the slab (overhang), as shown in Figurc 12.74. The critical serll“‘“
can be assumed Lo extend into the cantilevered portion of the slab for a distance 1Ot w
ceeding d ( C1.13.3.3.3). The objective of this provision is to conservatively determiné
perimeter of the critical section, b .

Designers often need to deal with openings or slab edges locate
(or other supports) in two-way slabs. One of the concerns regarding the ope
shear flow in the slab is interrupted, hence the resulting shear capacity of the ¢
reduced. This must be taken into account in the design. ined 11

Design provisions related to the critical perimeter at slab openings 8¢ oummh
C1.13.3.3.4. Mechanical and clectrical systems are often required to penetrat® lhmugm- j
slab. Openings or holes placed in the vicinity of columns are often required due o Lot
u_wmfal constraints. This presents an additional challenge 10 structural engineers whe(: 3
sidering punching shear in critical regions around the columns. Vertical

d close to the colv™®
nings 1*
onnection®

OP"'mng Jut
passing through the slab reduce shear strength when located within the intersecting® o
§lrips or at a distance closer than 104 10 the column (where /, denotes slab miCkf'ess ool
izontal openings (ducts) are often needed to provide space for electrical condutts:
fect of these openings can be disregarded, when their distance to the colum? cxee

|
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Figure 12,75
Moway shear
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Critical section

dge depending on
length and the

e
CAC, 2005 with the
f the Cement Association

Tributary area for
design for an
edge column.

DESIGN oF TWO-way SLABS

""" Effective
critical
saclion

Also, idth ¢ imi i

'l(_]::; Clhc WK::h shou!d be limited to slab thickness h,.and the depth 10 /i /3. Holes located
“de nt 1o all (our sides ol_'cnlumns are not permitted. Note that CSA A'23.3 does not in-
clude any olthe aforementioncd provisions relaied to slab openings,

Factored shear stress )

The facmrcd.shca: siress, 1., is determined by dividing the factored shear force, V,. by the
arca over which the shear stresses are acting (b, xd), that is,

v,

/

b, %

fr= (12.18)
Note that b, x  denotes the total area of vertical sides forming the critical section, as shown
in Figure 12.70b.
The factored shear force. V,. is the resultant of the factored gravity load, w, acting on
the slab area, A, tributary to a column, that is,
V, =w A
Tributary arca is shown in Figure 12.75. Note that the arca for an interior column is shown
witha h;uchcd pattern and the area for an edge column is shown with a cross-hatched pat-
tern. Note that the area enclosed by the perimeter of the critical section is not included in
the tributary area, because load acting over thal area is transferred dir.ccllyl Lo the column.
Note that the tributary area is bound by lines ol zero shL.Lr For interior ?ancls, these
lines are assumed to pass through the centre of the panel, while for edge panels in flat plates,

istanc | erior colurn, as shown
the tines of zero shear comespond W adistance of 0.45(, from an exterior column

| At ! !

Panel
centrelines
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A23.3CL13.34

A233Eq. 135

Figure 12.76 The effect of
column shape: a) regular column,
and b) imegular column (courtesy
of the Cement Association of
Canada).

o o

CHAPTER 12

in Figure 12.75 (note that [, denoles the clear span). Most designers consider
shear that coincide with the pancl centrelines.

Note that v, should be determined considering the full load on al| Sp
other loading patterns which might result in larger stresses (C1.13.3.3, 1

the lingg Oy

ans, as we)) &

Factored shear resistance of concrete (v ) for slabs without shear reinfm-c.e,ne
0
When a Nat slab or (lat plate is subjected 1o moderate gravity loads such that
vy,
the entire shear resistance can be provided by the concrele, that is,
V' = \"_
According to C1.13.3.4.1, the lactored shear resistance ol concrete (v ) should be takey
the smallest value obtained from the three equations outlined below. 8

i) The eflect of column shape
\,,=(1+Bl]0.191¢r J. (MPa) (121

where

f.=h/b s the ratio of the long-side dimension (h) to the short-side dimension (b) of the ol
umn, the concentrated load, or reaction area (see Figure 12.76a). The A23.3 Eq. 135 ules
into account the reduced shear strength in columns with clongated cross-scctional shay
(where £ 2 2). As the column becomes more clongated, shear is mostly resisted along the
short side, while the ultimate shear stress on the long side approaches the strength limit foc
beams or one-way slabs, that is, 0.19A¢,y 7 . Figure 12.76b provides guidance on howto
determine 4, for columns with irregular shapes.

Critical shear perimeter Actual loaded area
Fo————— -=
- Ldi2
h ! =X
= —_— | c =
= Bc b H /I B y
! /
| ’
: /
b /" Effective
beem - loaded area
di2
a) b)

ii) 'The effect of column location within a building
where

a, =4 for an interior column (see column A in Figure 12.72)
=3 for an edge column (sce¢ column B in Figure 12.72)
=2 for a comer column (see column C in Figure 12.72)
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A233CL13.10.2 and 13.3.5
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The A23.3Eq, 136 ma

all
ample, this equation goy © Bovern when columps or

verns fo

n whe capitals become very large. For ex-
T an interior column when b /d>20.
iii) Shear strength of plain concrete

Ve =038R0,/ £ (MPa)

[12.21}
Note that the A23.3
servative estimate of
concrete (4

Eq. 13.7is related to the shear strength of plain concrete. It gives a con-

i f v for inu':rior and square-shaped columns. Note that, for normal density
=1.0), this equation can be simplificd as follows

v =025/ (MPa) [12.22]

Tl‘hc following two additional CSA A23.3 requirements, concrete compressive strength and
size effect, need 10 be checked at this stage. as described below.

a) Concreie compressive strength () limi

It can be scen (rom above equations that v, depends on \/f_’ . This is due to the fact that the

tensile strength of concrete (modulus of rupture) is proportional to  f7 , and shear (ailure
is primarily controlled by the concrete tensile srength, as illustrated in Figure 12.70a. Note
that CSA A23.3 C1.13.3.4.2 sets a limit for £, that is.

7 <8 (MPy)

b) Size effect »
When d > 300 mm, C1.13.3.4.3 requires that the v value needs 1o be modified to account
for the size effect, as {ollows

1300

)X ——
Y X 000+d

Combined Moment and Shear Transfer at Slab-Column Connections

cs e L through the slob-
N sferred from the slab to the column
need moments need to be translerree . : hro
Uf:bﬂlu :nnncclion (see Section 12.6.5 for discussion on unbalunced nt:mmms). The trans:
column S ¢ ! " -
¢ -hanism is somewhat complex, and involves bolh ﬂcxym t_md‘sl o o shown i
e idi ‘ riion of a two-way slub in the vicinity of an interior ¢o umn s -
: M Ty o o v an
Cﬂﬂ:';,f J’I%oc slab-column connection needs o transter the fuL.wm! mmlm‘nlllh fand
Figure 12708 el «¢ V. acting along the column oxis. The wransfer takes place g
the [actored shear force ¥

i 0 mechanisms:
the [ollowing Lwo fmec ) ‘ -
fraction of the unbalanced moment (¥, % A\!;; is l‘rjnnsﬁ.rrcd through flexu
;8 oment (7, 7
- chun‘lah along the strip b, s shown in Figure 12.7 :un ot ransfered by
in the § ning [raction of the unbalunced moment L7, X 3.} 1 ulered 2y
2. Sher 08 I‘Cmnlnl:lzscc Figute 12.77b). This stress is combined with puching s
vertical shear SUres

s cal in Figure 12.77¢.

55 C shear force Vo shown in Figure

stre: uscd hy the shear 1 ‘ . |
The mt - plier 7, f n,qu'rcd 1o find 0 fruction of the un?ulanl.ed .momcln: trns| c)m:d by
gl : be determined {rom the following equaton (C1L133.53
and it can

shear (7, %M (12231

1
w
*3yn

where
bl =, +d
b, =6 +d
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Note that b, denotes length of the critical section and ¢, is the dimensigp

along the span for which moments are determined (planc of the frame), ang bol;l the Clup,
mmensions in the perpendicular direction (see Figure 12.77a). 2ande, ang,
The multiplier 7, determines the remaining portion of the unbalanced Momen
which is 1o be transfcrred through flexure, that is, l(‘/‘,x,\”
G_'\(\Q
<
a) 00\\)
+—>
Span direction
M
/NM, Transferred
Shear stress on /_ by flexure
critical section
due to Y, M,
b) Vm
I___U
v
Punching shear
stress due to V,
c) v

mn conned™"

Figure 12.77 Shear and moment transfer: a) a portion of the slab at the slab-columnt .
ching she?

showing the critical section; b) flexure and shear due to the moment M, and c) pun
stresses due to the shear force V/.

> |
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and

or (1224

[12-15]
Anincre Sed amount o lE‘IOCQl‘cr within the s po, &

Tl ased Lol |t t within the st b 18 prescribed to resi

moments at coly n loc;

) ations (C|
explanation of sirip (Clauses13.3.5.6 and 13.10.2); refer o Section 12.4.2 for an

It can be s i
unbalanced mo:::n{f:”m. the abm:c equations that for square column shapes, 60 % of the
(%, X M) while he rlcraz:lsnllr:n:?:;cd by conventional bending stresses at the column face
X M) ; & 40 % Is transmitted by vertical sh ‘ : thi
rauosr;ay vary depending on the column ang slab gc);smclry e (s
mmncnf:—;lfc]s-sc; at the slal?-column connection due to gravity load and the unbalanced
calculated according to C1.13.3.5.5. The total factored sheer stress a1 the perime-

ter of a critical slab section, Yoy €20 be determined as follows (see Figure 12.78a)

[12.26]

whl::r]c v, 1sdlhc two-way (punching) shear stress due to V.. and v, is the shear stress due o

unbalanced bendi ¢ i ’ i

bend" nce hu‘nd{ng morpunl M, about axis ¥y It sh_nuld be noted that, in a general case,
: Ing moments may simultaneously occur in two directions (about axes X-x and y-y). In

this case, the total shear stress needs to be expanded to account lor an additional term, as

[ollows

Vinay =¥y T ¥y

=y vy, ), [12.27]

,
Viataty

where (v,), and (v,)), refer to vertical shear stresses due to bending moments about axes
x-x and y-y respectively. Note that the designer needs to consider multiple moment dircctions
for edge and corner columns.

Distribution of shear stresses at an interior and an exterior column is illustrated in Fig-
ure 12.78.

Unilormly distributed punching shear stress (1) at the centroid of critical section can
be calculated from Eqn. 12.18. . B

Shear stress, v, due lo the tending moment (¥, X M) lrunslu{ncd by the eecentricity
of shear varies lincarly about the centroid of eritical scction (sce Figure 12.78), which can
be determined from the following equation (C1.13.3.5.4):

(o x M, )xe {1228}
o = MY R
M j
where By _ . . -,
distance of the centroidal axis of the critical section perimeter 1o the poinl where shear
o=
ssses are being computed, and i o
SITeSses a:v of lﬁc critical shear section analogous to the polar mommnl.or incrtia, tquu!l I(T
J =prope r'momems of inertia lor the faces perpendicular t the centroidal u.\.l.a CC((:: ﬁ l:\
e ol alle! faces (imes Lhe square of the distance from those faces 10 uxis C-C. Note
the arca Or_ P‘“;ﬂ: its principal axes x-X and y-y; this is illustrated on on example ol the Jace
that cach lace
‘BB’ (see Fi 12.79a).
AA'BB’ (see Figure L om
J value foran interior calumn can be determine

hown in Figure 12.792)

the following equation (using the

notation s

! ] nY (12291
20, 248,260 2
2 » . ents of incatia lor the taces AA'BB' and
ond term denote momu; ;sod Fn e uared dane
lculated in this manner s

d sec

Note that the first and ol o e
£ DD’ respectively. THe thi i o
:Eu? B&i: (;?écfor the faces AN DD’ and BB'EE
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Figure 12.78 Shear
stresses at the critical
section: a) interior col-
umn, and b) exterior
column,

yc
(A
1
—
1
X mrmim _._.ll.._i._._:._b. x
| I !
| f 1
"""—l—-!"‘—l
1hy!
1 N

b}
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ni

valid for bendin i

B about axis .

the Perpendicylar axis. CAs
The J valye

the interipr colu

imilar equation could be derived for (he bending about

Or an exte for/ed ¢ colum C manncr as for
B lumn can be determi in a simi
s i oy y i rmined in a similar

IS,
g2 b L 2db})

: b ¥
2 7y +2(”’")(2l"f) +(b:d)e? (12.30]

The first ang (e 5
term denotes the

:::;d lcmr\ i: Eqn 12.30 are the same as for the interior column. The third
o uct of the arca for the faces AA'BB’ and EE'DD’ and the squared
distance (b, /2 - ¢) between their respective cemtroids and axis C-C. The last term is equal
1o the product of the 4

o rea of the face BR*EE" angd Squared distance (e) from that face (o axis

) The axis C-C rups through the shear centre of the column perimeter. In case of an in- s
terior column shown ip Figure 12.79a, shear ccnier coincides with the geometric centre of |
the area ABED. Ay g result, the distance () from axis C-C to the faces AA'DD’ and BB'EE’
is equal 10 (b,/2).

The location of the shear center for an exterior/edge column and its distance from the
face BB'CC’ can be found as acentroid of the arcas for faces of the critical column perime-
ter. with the reference axis running along BE. Distance (¢) from the face BB'EE" to axis C-
C can be determined as follows (see Figure 12.79b):

oo A6 2)

by + (b:d)

The derivation of an equation (or J for a comer column is beyond the scope of this book
(refer to MacGregor and Bartlett, 2000 for more details).

e -'Q"
DX ©

A /'/ b &
e A °
a)

¢

i an exterior column.
ction property J a) an inteniof column, and b)
e
lation of the &
figure 12.79 (Calcu
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Shear Reinforcement

CSA A23.3 Reinforcement Requirements  Shear reinforcement js

. : CQuire y
total factored shear stress, v, .o exceeds the shear resistance of concrete, h

A
Vo that s,

!
Vi > Ve

Before proceeding with the design of shear reinforcement, the designer may wish,
alicrnative approaches for increasing the concrele shear resistance, Vo Suchas; j l,':)cc)(lllvm!
the slab thickness, ii) providing drop panels, iii) increasing the column size (this Wilrlmn
in an increase in the perimeter of the critical section), and/or iv) increasing (ho . Tesyy
compressive strength . Ofcre,
When shear reinforcement is provided, the slab shear resistance is determined

lows (C1.13.3.7.3) as fo.

vo=v 4

where v_ is the [actored shear stress in shear reinforcement. Note that CSA A233 Tequir
that a reduced concrete shear resistance be used f(or slabs with shear reinforcemen, '

The shear reinforcement nceds to resist the shear stress beyond the concrete shegy .
sistance, that is,

v

> _
Ve Z Ve T Ve

Note that CSA A23.3 scts the upper stress limit for shear resistance of two-way slabs wijy
shear reinforcement, that is,

vEvy
¢ = Y

where v
m

o 18 the maximum allowed faclored shear stress in accordance with CL13.374.

Vertical shear reinforcement can effectively increase the shear strength of slab-column
connections in two-way slabs. CSA A23.3 C1.13.3.7.1 permits the usc of the following
three types of shear reinlorcement for slabs:

1. Headed shear reinforcement (shear studs), in the form of large headed studs weldedto
steel strips (see Figure 12,80a). )

2. Siirrup reinforcement, usually in the form of closed vertical stirrups enclosing hor
zontal bars radiating outwards in two perpendicular directions [rom the support (s
Figure 12.80b). .

3. Shearheads, that is, cross-shaped clements construcied by welding rolled stecl st
(W or channel scctions) into a rigid unit embedded in the slab (sce Figure 12.80c).

Shear studs are the most common type of shear reinforcement used [or (wo-way slab eoe
struction in Canada, and the design will be discussed later in this section. Design °Irs""“p
reinforcement is covered in C1.13.3.9 and the proccdure is similar to shear stud d.esn;n.‘
sign provisions for shearheads are not included in CSA A23.3, but the designer ST
o ACI 318M-02/ACI 318RM-02. . cntion

Anchorage of shear reinforcement in shallow slabs is critical for effecuve Pm\cnﬁ.
of punching shear failure. Shear reinforcement controls the size of diagonal shedf C‘T:I'ull
as shown in Figure 12.81. In order for a bar to be fully cllective, it nceds to d“’cloﬁé it
yield strength, £, at the intersection with the crack. Due 1o a shallow slab depth l|in¢din
forcement needs to be effectively hooked at the ends. Anchorage provisions 47¢ ol
Clauses 7.1.2 and 12.13.
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Figure 12.81 Shear reinforce- Too short to
ment in a cracked slab section Shear studs\ be effective
(adapted from Ghali and Hammill, 1992 1

with the permission of the American
Concrete Institute).

Design of Slabs with Shear Stud Reinforcement Shcar studs (headed shegy
rem.

forcement) consist of vertical rods with anchor heads at the top, and they are welded
steel strip (also known as or stud rail) at the bottom, as shown in Figure 12.823 Mull!n!a
stud rails are arranged in two perpendicular directions for square and rccmngul:lr-cqun:Fl:E
or in radial direction lor circular columns. The stud rails are secured in position hcforct}i
lop and botiom {lexural reinforcement is placed. The stud rail rests on bar chairs 1o main.
la{n concrete cover. Figure 12.82b shows a two-way slab under construction with shear sug
reinforcement arranged at a column location.

Figure 12.82 Shear stud reinforcement: a) stud rail : : ion
(Svetiana Breey). ) ails, and b) shear studs installed in a flat plate under construct!
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A =the sum of arcas of all studs along the perimeter of a critical sectjon (
culatedasa product of the total number of stud rails around a column ang g

arca of one stud.

b ); it ¢,
o) 1t ca
he crms_s%h::::

Eqn 12.33 can be presented in an alternative form:

where
0. fuAnd

RY

| =
is the resultant for stecl shear resistance, corresponding 1o the reinforcement wj
and spacing s (similar 1o Eqn. 6.9 when 8 = 457).

Critical sections

The shear stress needs to be checked both inside and outside the reinforced Zone, thus ther,
are the [ollowing two critical sections:

th areg )

« Critical section 1 inside the reinforced zone at distance d/2 Irom the column face {
as for slabs without shear reinforcement), as per C1.13.3.3.1, and

« Critical section 2 outside the shear-reinforced zone at distance d/2 from the outermoy
shear reinforcement.

samg

Length of reinforced zone

The reinforcement needs to be extended at least by a distance 2d rom the face of the col
umn. At the section where reinforcement is discontinued, it is required that vm,/is less than
the following limit:

Vi S 0.1919, Jf_ [123y

Spacing requirements
The following stud spacing requirements need to be followed:

a) Fory, < O.SGM,\/—fr’—
s, < 04d

and

s £ 0.75d

where s, denotes distance of the first stud {from the column face.

b) For \r,>0.56}.¢r\/f,_f
s, < 04d

and

5 < 0.5d

n 50

¢) The distance between adjacent stud rails in the direction parallel to the co(l:l;"(‘2 ‘

& S 2d. This is not a CSA A23.3 requirement, but it is recommended by A N

Note that 1 sat

e provi
ac0™

along L fori

Stud layout and spacing requirements are illustrated in Figure 12.83-
rails are placed at the column corners, and additional rails may need 10
pending on column dimensions. When more than two stud rails are placed
face, they should be eventy spaced. The minimum number of stud rails iS 8,6,
terior, edge, and comner columns, respectively (DECON, 2009). ping 9

Detailing of shear studs is critical for their eflectiveness in providing the ancﬂf.nﬂ“"'l'\j
resistance in two-way slabs. Detailed recommendations for shear studs 8 v
below (see Figure 12.84):

e



Critical i
Section 1,

[y
X7
’
e -~

z

Figure 12.83  Stud arrangement for an interior column location: a) critical sections, and b) stud spacing.

]
Wre 12.84  Location of shear

Stug ra;
Ureinforcement relative to

®ural reinforcement

ag,
et ftom Ghali and Hammil, 1992
e permission of the American

(
Mtrete Institute)
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AN
NN Critical
\ : :
\\\/_Sectionz i
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AN
]
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OO O \ toI 9
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[::"337&' I
| ) K " O s
F= ‘v 5, <04d-L o T4
di 7,0 <04d
7 4 » ®
4 -
e o o
’ s
’// Outermost I of ol
+ peripheral Ll
line of shear y<2d
reinforcement gsead
b)

1. Shear swd reinforcement should be located along concentric lines parallel to the perime-
ter ol the column cross-section (C1.13.3.8.4). Bottom stud rails should be aligned with
the column faces in squarc or rectangular columns.

Shear studs must be mechanicaily anchored at each end by a plate or a head bearing
against the concrete to develop bar yield strength (CL13.3.8.1). An ellfective anchorage
can be achieved when the area of the top plate or the head is at least wen times the cross-

1o

sectional arca of the bar. B

3. The minimum conerete cover over the stud heads should be the same as the minimum
cover for the Nexural reinforcement (CL1 3.3.8.7). The concrete cover should not exceed
the minimum cover plus one-hall the bar diameter of the {lexural reinforcement.

Stud rails with different specifications are commerciaily available (in terms o_l' the nun}hcr
of studs per rail and the stud size), Overall stud height depends on the slab thickness. Swd

Anchor head area
= 10 limas cross
Flexural section area of stud
reinlorcent F‘é St nen
d diameter
S o] Stud
cove Stud strip
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Figure 12.85 Tributary areas
and loading in a two-way slab
with beams: a) tributary area for
an interior beam; b) beam loading
when a, [,/l, 2 1.0, and c) beam
loading when 0 < &, [, /I, < 1.0.

CHAPTER 12

diameter ranges from 9.5 mm (3/8") to 19.1 mm (3/4"), and the raj| thickness
4.8 mm (3/16") 10 9.5 mm (3/8"). It has been lound that 3/8" or 172" studs a:angcsfr
nomical solutions for standard slabs. It is usually a good idea to keep the Samcc m sl
eter throughout the project, unless there is a wide range of slab lhickncsscis(l];ddlam_
2009). > ECOX_

Shear Design of Two-Way Slabs with Beams

Both beams and slab participate in transferring shear Irom slab 1o the columns i y,

slabs with beams. The [raction of load to be transferred by the beams depends j) :ua)
beam-to-slab stifiness ratio for the beam under consideration, @, and ii) on the ranoop :he
pancl lengths, 1, /1. The following three scenarios need 1o be considered: s

1. When, a1, /I, 2 1.0 bcams arc assumed o trans(er the entire vertical load from
into the columns, that is, shear is resisted solely by the beams (CL13.4.0). 1t
quired 10 evaluate two-way shear resistance [or the slab.

the siay
S ot re.

The beam shear resistance nceds to be checked for all loads applied dircctly to the pegy,
plus the slab area enclosed by lines extending at 45° angle outward [rom the corners oflh;
panel and the centrelines of adjacent pancls on cach side of the beam, as shown in Figures
12.85a and b. The beam shear resistance needs 10 be checked according 1o the design pr.
visions for flexural members (beams and one-way slabs) prescribed by CSA A233 L)1
(see Scction 6.5 lor more details).

a) — =

A

b}

2(a, L1 )(wa)

ol
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2. Whe

n0<a Ji
mined by 12 < 10 the load distribug
for Zdrby linear interpolagion of:d distribution be
Or a fraction of g 1, (C1L13.4.2). A4
Figure 12850, e 1o,

tween the beams and the slab is deter-

ypical interior he; N
20w, - a), expressed as o m:;:: ecds o be designed

V*= Vv

7=Vl -q L) 234

where v deno

: 1¢s the sh Co . u]

i usscr i S e car force correspondi ar

- Section 1.9 sponding 1o the two-way s in the slab,

discussed on 12.9.2, Two-way shear resistance fora sl’:\gs";lr:f\;ldltr:cl ; Sl: d' "

stab s checked at

the critical sectj
Section with perj
tersect perimeter b , which nee
cting beams, as shown in Figure 12 ;‘: needs 10 be reduced to account for the in-

———{  Panel
r— cenlrelines

a) b)

Figure 12.86 Distribution of load in a two-wa L
. y slab when 0 < & {,/, < 1.0: a) b iti
section for two-way shear. s )peam oad, ané ) e

12.9.6

3. Whenal, o= 0, there are no beams, and the siab should be designed lor shear as a
hout beams discussed in Section 12.9.2.

stance for two-way slabs with bewmns should be checked in the same
abs and Nat plates discussed in Section 12.9.2.

Lwo-way slab wit
One-way shear resi
manner as for flat sk

Design of Two-Way Slabs for Shear According to CSA A23.3: Summary

and Design Examples
ts related o \he desig!

he key steps ure out
it is not necessary to foll
| be presented 10 illustrate

n of two-way slabs for shear have been presenicd in this
lined in Checklist 12.2. Although the sieps are presented
ow the same sequence in all design siluations.
the application of the CSA A23.3 shear

Key concep!
section, and |
in a certain sequencc, LIS
Throe design examples wil
design provisions.
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Checklist 12.2 Design of Two-Way Slabs for Shear

19

1SS

3a

Check one-way shear resistance (Scction 12.9.2.2).

Determine the factored shear force (Vf) by treating the slab as a wide beam
(sce Figure 12.67).

Determine the factored concrete shear resistance:

V=g A pf b l6.12]

Shear reinforcement is not required when V, < V.
Check two-way (punching) shear resistance (sce Section 12,9.2).

Dctermine the location and properties of the critical section with perimeter b, .
The section should be taken at distance d/2 [rom the perimeter of the concentrated
load or suppon (sce Figure 12.71).
Find the factored shear stress:
\Z
o= [12.18]
b, xd

Find the concrete shear resistance based on the following three criteria
(the smallest value govems):

i) The effect of column shape

\'{=(l+ﬂl]0.l9l¢( £ (MPa) [12.19]

ii)  The effect of column location within a building

. =(»‘3’b’f’-+o. w]m Jir oy izaoy

iii) Shear strength of plain concrele

v, = 03849, f7 (MP3) {12.21)

Determine the shear stress. v, due to the a fraction of unbalanced bending
moment (7 % M ) translemmed through the slab-column connection
tsee Section 12.9.3)

- (n xm,)xe

[12.28]
J
Find the total faciored shear stress:
Viway = Vo T ¥y [12.26]

Design the slab shear reinforcement. Shear reinforcement is required when

VoL

Design the stud reinforcement (when required) - see Section 12.9.4.
The shear studs can be used when the 1otal factored shear stress is limited 10

Viewr S Vi = 075404 [ (1231)

11.3.4

1334

13.10.2
13.35

13.3.7

1338

o
((‘uuuﬂ““‘

el
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(recklist 12.2 Continued

Find the concrete she.

ar resistance for slabs wiyh g stud r e
B ith shear inforcem, ni

shea cinfore .

1

i
v = 02820,y f
11237 i
semine the requi J
% Determine the required slecl shear resistance (v, ): i
¥, b4 Vot 7 V. H
Al Find the total reguired arcq of stg reinforcement (A | from the foilowing .
- 2 cquation
—_—— :
ATV p = 0y i
LAzt el bs 11233} !
e Checek the following spacing requirements; \"}
]
»  stud spacing (s) I3

*  distancce of the first stud from the column face (s)
« stud rail spacing (g) 7‘

4 Cheek the two-way shear resistance for slabs with beams isee Section 12.9.5), 134
al When @, 1, /1, 2 1.0. beams provide the entire shear resistance for the floor
system (refer to Section 6.7 for shear design of beams).
Ib When 0 < @ 1/, < O, shear is resisted both by the beams and the siab
(use linear interpolation 10 find the design shear fofees and stresses). I
i
i
r
)
Exam ple 12. 8 Consider a plan view of a two-way fat plate Noor system designed in Extlmple 12.1,
shown in the skelch below. Use the slub thickness of 180 mm und the efective depth of
T“VO-Wa-V Flat 140 mm. The factored area lond is w = 12.6 kPa. ‘ o o
Plate - Shear Design the slab for shear according 10 the CSA A23.3 requirements. C fm,sulr:r only an mteror
Design colamn at the intersection of gridlines 2 and B. Disregan! the ¢ffect of unbalanced moments.
]
@ 50m , 60m 50m
| s TN
@--1" H """"" ' . !
£ i 300 x 300 ; -
® | (corner) ! Column 28 ;
- 1 o e em=
& Al S -
|
! i 400 mm
1 .
,E;, R | _300x600 !
<L [ ypical) _ g oo
O . ,
E ! : i
q ) ] -
<« PR e
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Given: f'=30 MPa

f, =400 MPa

). = 1.0 (normal-density concretc)
0 =0.65

9=085

SOLUTION: 1. Check the one-way shear resistance (A23.3 C1.13.3.6).

a) First, locate critical scctions for the one-way shear design. The following
tions will be considered: 1-1 and 2-2 (one section in cach horizontg] d]‘[cl“ﬁxe
the building). Note that the critical sections are located at a distance ¢f rmm;‘}lem:. Ef

of the column, as shown on the sketch below. Since = 140 mm (gi\'fcn) lﬂwlse

tenmine d, which was previously defined as the clfective shear depth 1a‘kc 5z
greater of 0.9d and 0.72/1, that is.

d =09d=09x 140 mm = 126 mm

Mas e

or
d =0.72h=0.72 x 180 mm = 130 mm
The larger value governs, that is,

d =130 mm

®
; 5.0m : 6.0m
D= _*.. ............. _*._ .........
el i i
| 1
@ -+ _.._._._._._2.__._*_%?3_.

b) Find the factored shear [orce V!.

R he colum?
ance d, from

V[ is a design shear force at the critical section located at a dist "
hown on!

face. Let us consider Section 1-1 for the slab span AB along gridline 2,ass
following sketch. The span is modelled as a wide beam with the width

b =48m ‘

The clear span for span AB is

[ =50m-06m/2-03m/2=4.55m

. . el ¥
The factored area load w, = 12.6 kPa needs to be wransformed into the Linear ¥

acting on the wide beam, that is,

w/ =w, b, =126 kPa-4.55m =573 kN/m «
. sup

Next, the design shear force can be calculated as an internal shear fore al the

of a continuous beam, that is,

- _2.
v, =w [ 22"%]=57.3 kN,‘m(“'Sif 0"3)5123 kN
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Since Sectj
Jection -] ¢
Torc OTespond; .
orce per 1 m [y widlhﬁ;:l ?510 the ributary widih of 4.8 we can find the sh
' i v shear

Vi=123kN +8m=26p kN.m

=48m

b

]

Plan
| m
- m h,= 180 mm i
—— |
! 1
| .
M Section d.=130 mm
1 1| :
v, ‘
1
Shear Envelope
1
Calculations can be performed in a similar manner for Section 2-2. [n this case, we are

going 10 consider span 1-2 along gridline B. The clear span is

[ =48m- 20.3m/2)=45m

and
= §9n1+60n\ =55m
b

hence
W =Wy b, =126 kPa-5.5 m=69.3KkN/m
r lorce can be calculated as an internal shear Jorce at the support

Next, the design sheal ;
that 13,

of a continuous bean,

~2.013
[l-:%):w_; kN,m[."s' : 0. ]s 147 kN
9 -

V=W, 0

ary width of §.5 m)

d the corresponding unit shear foree is (based on the iribut
ant

v; =147 Wys.sm=27 kN/m
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The larger value governs. that is,

=27 kN/m

¢) Find the factored shear resistance V.

The lactored shear resistance (equal to the conerete shear resisiance) should be
mined from the following equation deyg

=9.Af \/7 b,

61y
where i

b, = 1000 mm unit slab width (because V was determined based on the same g

dh
£ =0.21 because /1, = 180 mm £350 mm (CL11.3.6.2) ‘
Finally,

v, = 0.65%1.0% 0.214/30 MPa (1000 mm) (30 mm) =97 kN m

Since

V; =27kN m<V'= 97 kN'm

it can be concluded that the one-way shear resistance is satisfactory.
2. Check the two-way shear resistance (CSA A23.3 CL13.3.4).

a) Find the critical section.

The critical section is located at a distance /2 = 70 mm from the lace of the column.
as shown on the sketch below. The perimeter of the critical section, b, is equal to:

b, =2(300 mm + 140 mm) + 2(600 mm + 140 mm) = 2360 mm

Tributary

areaA di2 =70 mm
AN

Critical
section

-

b)  Find the factored shear lorce (V) and the factored shear stress (%))-

"
A, shor
V, is determined as a product of the lactored load, v, and the iributary arcd:

hdltht,d on the sketch, that is,

V,=w,-A =126 kPa x [[5'0 "’;9'0 "'Jx (“8m)-

(0.3m+0.14 my0.6 m+0.14m) [ =329 kN
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Next, ind the Ted shear
» facto d v
¥ § Slress, 28 follows
V= T =__%7 l, ,‘I 2,18
X o ~ =096 MPa 1121 )

¢ o .
) Find the concrete shear Tesistance, y

Confirm lh;\lﬁ' satisfics the re,

JFSB(MP&)

Since

quirements of CSA A233CL13342;

V30 =5.5MPa <8 M,

Use the following three crileria;

i) The effect of column shape:

b
=+ T 0194 o
‘ [+ﬁf]0|940' s 12191

where
B = b - 6()()mp1
b 300mm

dimension.
Therefore,

2.0 is the ratio ol longer and shorter column cross-sectional

2
= (1 + ;]o. 19-1.0-0.65-y30 =1.35 MPa

il) The effect of column location within a building:

y =[°";"+().19Jlo‘\/}f— 112.20]

where @, = 4 (interior column)

o = 7"HO+().19)-l.()-0.65-v56=|.52 MPa
200

iii) Shear strength ol plain concrete:

Since normal-censity concrete is used, let us use Eqn 12.22, that is,

v, = 0.25J}{- = 0'25m= 1.37 MPa .

stallest v, value governs, hence
The smallest v, value govern

v = 1.35MPa

{fect of unbalanced moments is disregarded in this cxample, it follows that
clied!

Since the

Vionatr = V1

and

v =096MPa<y,
wialf .

that the two-way shear resis
it is required to ¢l

[ unbalanced moments.

= 1.IMPa

wince is adequate based on the punch-
heck the total shear stresses duc 10
This will be performed in the

be concluded
Itcan remeat. However,

and the ransfer ©

ing shear requi
punching shear
next example.
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If the two-way shear resistance is not satisfied. the designer can fing
depth. d. which satisfics the two-way shear resistance requirements usin ll:hc Cfle,
outlined in Section 14.4.1 related to the two-way shear design nrsprcagd rc p_roc g
ternatively. the designer can assume a higher d value and repeat the Calcu;)m_mgi,A[
all requirements have been satisfied. Aiong g,

il

——
——
F_xample 12.9 Consider the same slab-column connection as discussed in Example 12,8,
Design the slab for nro-way shear according to the CSA A23.3 requiremenys, bitt conys
Two-Way Flat the effect of unbalanced moments in the design. Onsider
Plate - Shear and
Moment Transfer
SOLUTION: The objective of this example is to lind the total shear stress due (o the combined of
. . ffex
of punching shear and the unbalanced bending moment at the column (CSA .4\’?:

C1.13.3.5.5).
The total shear stress at the perimeter of a critical slab section, v, can be du;

. ol i
mined as follows
Veoatr = vy + vy
where v, = 0.96 MPa is the punching shear stress determined in the previous siep. 2
v,, is the shear stress due to unbalanced bending moment, M. An unbalanced momex
for the interior column under consideration was determined in Example 12.1 (Siep™.
as follows
M =469 kNm

ufu
The procedure for finding the v, value is outlined below.

1. Find the portion of unbalanced moment transferred from the slab by
flexure (Ef X -”..ﬁ)'

CSA A23.3C1.13.3.5 requires that a fraction of the unbalanced moment be transfemad
from the slab to the column by flexure. The corresponding moment is equal 1o

¥, XMy,

Note that 7, depends on the dimensions of the critical section at the specific columt
location, that is,

1 1
v T o
42 b2 10
3\ b, 3V 440

where (see the sketch below)

(124

lo b‘ |

b— 4

Fommmmmmememoe -

' I

! 1 o

1 , ©
o 1 o

= by

1 : 5
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! !

I
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300 x 600 column

127

b1=cl+d=60()+|40=740mm
b:=cz+d=300+ ]40=44Ornm
Thercfore,

T ML =054 x 409 < 255,

Find the required reinforcemen; corres|
15M bar. it follows that

M. =0.0.1.(094)

Nm

ponding to the bending moment above. For cach

=085x200 mm® x 400 MPa x (0.9 140)=8.6 kNm
The required number of 15M bars is
253 kNm
. =30
8.6 kNm

Use 3-15M bars. This is flexural reinforcement and it should be provided over the column
within the band width b,. However, the required flexural reinforcement provided at that
location was previously determined as 615M@ 150 (sce Example 12.1, Table 12.11),
which is larger than the 3-15M bars determined from this caleulation, In conclusion,
there is no need to provide additional flexural reinforcement bars 1o cnsure moment
transler from the slab to the columns. Note that this calculation should be performed
as a part of the flexural design,

Find the portion of unbalanced moment transferred from the slab by
shear (7, x .\I.f_).

The remaining portion of unbalanced moment is transferred from the slab by shear.
Since

Vo=l-7=21-054 =04
Therefore,

= = 21.6 kNm
Ve XM, = 046x 46,9 = 21.6 k!

Find the section property, J, for the interior column.
The underlying equations were presented in Section 12.9.3, and the werms are illus-
trated on the sketch below.

Bending moment . ¢

e
440 mm

i,

~
<

“

o= rs
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_2Abd 2(db1 " )( ):
J= 12 + (; 5 [llz\)]

where
by=c +d= 600 + 2- 70 = 740 mm
by=c,+d= 300 + 2 - 70 = 440 mm

Therelore.
2740 - 5 140)- 3
_ -(74(:214() )+ _(I40I 7740 )+~,(440 14())( 740 ] = 267107

iii) FFind the shear stress v, due to unbalanced moment y, x M.
ufo
Since this is a symmetrical section, the cceentricity is equal to
b 740
e="1="--=370mm
2 2

Therefore,

(yl xM/,,)Xe (71 6 10{'Nmm)("570 mm)

=0.3 MPa )
J 2.67-10" mm’ ' f2
iv) Finally, find the total shear stress. v, ., that is.
Viwary =V F Vi = 0.96 + 0.3 = 1.26 MPa (1226

Since
= 1.26MPa < v_ = 1.35 MPa

Viraly =

it follows that the two-way shear stress requirement has been satislied.

Example 12.10

Two-Way Flat
Plate - Design
of Shear Stud
Reinforcement

SOLUTION:

Consider a scenario where after the slab design discussed in Example 12 9 was o
pleted, the total factored load had to be increased by 25%. Assume 8 prop«.»ruom!l -
crease in the (otal factored shear stress (v, ) , which was originally equal to 1.2 26 MPe
Perform shear design calculations using the same 180 mm slab thickness, 81 € ective
depth of 140 mm, and the same material properties. Use steel stud reinforcement (0 ’.“.
isfy the shear resistance requirements if needed. Steel yield strength for stud rel®
forcement is f,_= 345 MPa. Disregard the effect of unbalanced moments.

. . . s cheched B
Nole that one-way shear will not be considered in this design. since il was che¢

Example 12.9 and 1t did not govern the shear design.

1. Find the critical sections for two-way shear design (CSA A233 11337
] o . L see PR
In two-way slabs will shear reinforcement, there are 1wo critical sections (¢
12.83): I
. ¢0
i) Critical section 1 inside the reinforced zone al the distance d/2 from the
B face (same as for slabs without shear reinforcement), and
i) Critical section 2 outside the shear-reinforced zone at a distance
ermost shear reinforcement.

dj2 from the o
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Atihis point, crifi
s > Critical segy [
teris cqual o Section | has becn defined in Examplc 12.9 and the critical perime % )
b, = 2360 mm ‘

) . .
Propentics dlentical secy w later in this exa ple
scction 2 will be discussed i

Find the factored

shear stress . )
Assume a 25% increase in th (v,) at critical section 1.
that is, the toual factored shear siress from Example 12.9 (1.26 MPa),

Vi = 1.2501.26 MPaj = 1 .56 MPa
and

V,= 125029 kNj = 411 kN

Check whether shear reinforcement is required for this design.

We nee: el wl N N i .
— Lt.d 10 cheek whether the slab shear resistance is still adequate, considering a 25%
stress increase. The concrete shear resistance was determined in Example 12.9. as (ollows:

v = 135MPa
Since

v, = 156 MPa > v,

4. Confirm that stud reinforcement can be used (CSA A23.3 C113.3.8.2).

Stud reinforcement can be used when the maximur total shear stress at eritical section

It follows that shear reinforcement is required. Let us try o use stud reinforcement. ]
1 is below the limit prescribed by CSA A23.3, that is,

¥y € v = 0752, J}_ 20.75-1.0-0.65430 =2.7 MPa (1231 3;
Since i

U 163 MPa < 27 MPa

it lollows that stud reinforcement cin be used for this design. )

5. Findthe reduced concrete shear resistance for slabs with stud reinforcement i

according to CSA ADICLI3ISD.

= 0_23}.0‘,\[]? Z028.10-065430 =1.0 MPa [12.231

Note that this v, valu¢ should be used in the next steps. 'l'hcl\-r»vuluc of 1.35 MPa dis-
0(:cd in Slt.;p 3 can only be used for slabs without shear reinforcement.
cuss k y

6. Designthe stud reinforcement.

Find the required stecl shear resistance:

~10=05% MPa

a)
Vo=V v o= 1.56
d stud spacing (Cl.lJ.J.B.b):

. © require: .
by Find the requl i sha S 5 ollows:

First, letus check the Jevel of

,, = 156 MPa
_ ) -0.0_65ﬁ_=2.0MP0
v, $0.5638. JT =061

thus
= 156 MPa < 20MP2
!
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CSA A23.3 stud spacing requirciients [or this stress level are outlined beloy,
Distance of the first stud [rom the column face is equal to
5, < 04d = 0.4 - 140 = 56 mm

Typical stud spacing s

5 <€ 0754 = 0.75 - 140 = 105 mm

Let us proceed with the following values:

s, = 55mm

and

s = 105 mm

¢) Find the required arca of stud reinforcement.

Since

L Ofut

= b (123

it follows that the required area of stud reinforcement is equal o
v, b,-s _ 0.56 MPa-2360 mm-105 mm

R - =473 mm®
O S 0.85-345 MPa

Aw =
Let us assurne 9.5 mm (3/8 inch) studs (the smallest size), and the corresponding arz
perstudis A, =71 mmZ. The required number of studs (1) along the perimeter of i
critical scction is

n= Aa 473 =66=7
A, 71
Develop a preliminary layout of stud reinforcement which meets the area and

spacing requirements.

‘The layout will be developed based on the spacing determined in the previous step s
Figure 12.82). First, we need to determine the layout of stud rails, based on the &
ommended spacing between rails (g), as follows:

g <2d =2 -140 = 280 mm

Since the column dimensions arc 300 mm by 600 mum, let us use 3 stud rails Pcﬂw'zdlz
cular 1o the long side, and 2 rails perpendicular to the short side of the column. Ther
fore, we will have 10 stud rails in total, as shown on the sketch below.

AT

o]

of fof e
of fo| |o
of fo] e
of fo] e
| SO — O |
SN S—— T |
of Jo[ Te

L
T Stud rail

—~Stud

=
=
4
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Check Whether (e shear resistance is g,
adequate,

The sel
ccied sty Parameters are g follow
"t = 10and A, S

thus

=71 mm?

A =p. =
W THA = 10-7l=7|0mm3>473mm:
Itcan be congl
uded that the propos -
the actugl shear Tesistance, asfnﬁ::f stud layout is satisfactory. However, let us find

VS 4y
Since
Vo= 0ol = 0.85-345 MPa- 710 mm?
bus D0mm10smn 0 MPa 11233
and
v. = LOMPa
thus

vo= 10+ 084 = 184 MPa
Let us perform the checks (o confirm that v, is adequate:
v, = L84 MPa> v, = 1.56 MPa
and
v=184MPa<v  =27MPa
Therelore, it can be concluded that the design is adequate.
9. Find the required length for stud rails (CSA A23.3 CL13.3.7.4.

a) Estimate the required stud rail length.

CSA A23.3 prescribes that the reinforcement needs to be extended al least by a distance
4 from the face of the column. Therefore. the minimum length tor a stud rail (/) is
equal to

[22=2" 140 = 280 mm

Let us assume that a typical stud rail has 6 studs at 105 mm spacing. and 35 mm end

spacing. that is.

| =5s+2s = 5. 105 mm + 2 - 35 mm = 635 mm

A ypical stud rail is shown on the sketch below.

Chevk the shear stress requirement. .
" <ed stud length is adequate. CSA A23.3 requires that

We nced toconfrm hak 0 PR C o he design shear stress is below the (ol

the reinforcement should be extende
Jowing limit:
<0900 £ = 0.19-1.0-0.65v/30 =0.68 MP
vy s N J |
. - oment will be confirmed by linding the towl shear stress (due to gravity
1:‘3:)“:!::::“; section 2, 8s shown on \he (ollowing sketch.
1 a

n 2,
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E
E // \\
ol o T} N
- ~y AN
s | N
7 AY
4 N
€ . ‘ A
E 4 :
E , Critical N
I 4 tion 1 A
9 // L seclion \
Vd i - -1 *
L | A
g o ——— 1 !
t
El | Ldi2=70mm 1
|53 1 T—_ij Cal
Mp 8 1 N /I
N d2=70mm] | | =
N ST 580mm o /¢ =T0mr
£ 70 mm~ ’
€ N 4
o \\ ’
wn
© \\ //(
l \\\ ,7 “Critical section 2
EI\\ * . ; //
o N e s
650 mm 600 mm 650 mm .
— + ' ’
€
9.5 mm g
(3/8") 3
55mm 5 @ 105mm Somm
—t T
" 635 mm S

Typical stud rail

i)  Find the properties for critical section 2.

First. let us find the dimensions of critical section. The critical se
tance d/2 from the outermost shear reinforcement (the furthest stud W

i ad
ction 18 Jocated :u_J. .
jthin inardt

shown on the sketch above. The perimeter of critical section 2 is cqual (€

b= 2(600 mm + 300 mm) + 4 - 920 mm = 5480 mm

ii) Find the factored shear stress v due 10 the shear force V,:

v 411x10'N
! o= N .54 MPa

Vo= - = =
! b, xd 5480 mmx 140 mm

[l’,lS]
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i) Confirm tha [
t the siress ic with: !
Since ©55 15 within the permited limits,

1, = 0.54 MPa < 0,68 MPa

It Tollows thal
S that the proposed stud length i
s¢d stud length is ad, .
moment was consid ud length is adequate. Hawever, if the effect
e, 1 ;:cd. lhilfaclorcd Shear siress might exceed the s::a,ori‘slins?:lngceld
along the 600 mm colup;is(lji © 10 increase the total stud area by adding one more m:;
from 1010 12 mension, and the total number of stud rails would increase

- Allernatively,
o ™ y. longer stud rail b .
crease in the critical shear perimeter. s could be used: this would result in an in-

Provide a design summary.

Based sign peri’
on the design performed above, the following stud specification can be used:

l(J}z"l)(()J.smd rails with n\'cm!l height of 140 mm, 4.8 mm thickness, with 6-9.5 mm
iameter studs. The typical spacing is 105 mm on centre, and 55 mm end spacing. g

DEFLECTIONS

12.10.1 Background

Serviceability limit states ensure that the intended use and occupancy of a building are main-
1ained, and include deflections, cracking. vibrations etc. Serviceability considerations for re-
inforced concrete flexural members are covered in Chapter 4. The discussion presented in
this scction is focused on dellections in two-way slabs. Deflections duc to service loads
must be limited (o a tolerable amount. Excessive deflections can cause damage 10 non-struc-
wral clements such as partitions and glazing. Noticeable dellections appear unsaf¢ and are
not acsthetically pleasing.

The key (actors influencing defections in two-way slabs, such as concrete propertics,
creep and shrinkage. cracking. construction procedures and loads, and the placement of 1op
reinforcement, will be discussed in this section. Other factors, such as slab geometry
(span/thickness ratio), continuity, and support restraints, also influence deflections, and they
are accounted (or in deflection calculation procedures.

Concrete properties
ries which influence deflections include the moduius of cl_mic'uy
(f). Stiffness of on uncracked member increases in pro-
which is in wm directly proportional with the syuare root
ol the characteristic concrele compressive strength (f '), as dlsc_u_sscd in Section 2.3:4. K“-Y
factors inlluencing the E value include aggregates, cement, silica l’um_c. and udrr'uxlum.
or waler/cement ratio, @ lower slump. and changes in concrete mix propon}(.:.ns can
Lower ncrease in the modulus of elasticity (AC1 435R-95). Modulus of elasticity is 8
cause an 1 . ) er ime
a dependent property: and its value increases over time. o heonssl
time-depe s of rupwe (f) denoles the concrete 1ensile strength, uf\d it Inﬂut.n{_::.\l od ‘:,d
Modulus of he cracking moment M8 directly proportional o S e .s‘mlil‘ rd
of crucking 0 i the modulus of rupture rellects lahorutory conditions, since
approach for determining al specimens prepared and tested in @ controllcd envaron-
alue is ined from ST 72 e e ure ot variable weather
£, value is detertt wo-way shabs are constructed over large arcas. f"‘d" van
ment. [0 practice: the quality of workmanship- ftiscx

pected that the in-situ
conditions an! ariable comparcd 10 \he laboratory conditions (Scanlon,
£, values &€ s

1999).

The key concrete prope
(E) and the modulus ol rupture

po}lion 10 its modulus of clasticity,

4 with a variation in
gnificantly more ¥
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Creep and shrinkage

Time-dependent deflections in slabs are caused by creep and shrinkg
reduction in concrete volume over time duc 10 the cement hydration, 1o
other [lactors, and it occurs independently ol applied loading. Differen;
were discussed in Scction 2.3.6. Shrinkage cracking in two-way slah,
external and/or internal restraints. External supports, ¢.g. columns or wy]
horizontal movement in the slab. When shrinkage occurs, it can cause random gryp:
thereby decreasing slab stifTness in cracked regions. Internal restrainis are providcdrstkm .
ural reinforcement. As the slab trics o shorten duc to shrinkage, reinforcemeny pla: ey,
one side of the slab (top or bottom) shows a tendency to restrain the movemen,, m:don
causing localized warping. This cffect increases gradually and can cause prngressi;'e c,reh!
ing in the slab over time. CSA A23.3-14 prescribes a reduced modulus of Tupture fu:tl:;
cracking moment (M, ) calculation in order to account lor the effect of restrain( shring
and other factors that causc cracking in two-way slabs at scrvice load level (©L1323, gt

Creep is demonstrated by an increase in concrele strains under sustained Stresses, a g,
cussed in Scction 2.3.5. The effects of creep arc more pronounced in reinforced concre
structures loaded at an carly age, such as two-way [lat slabs loaded at the construction stage
Crecp-induced strains in concrete causc a signilicant increase in deflections due 1o susuiryg
loads over time (by a factor of 2 or 3).

2C. Shrip

55 ol mojgy,
1YPes of gp
S is Mostly dug
Is, TeStrain thy free

Beis,
e,
Vitlag,

Cracking

Cracking is one ol the key lactors influencing deflections in two-way slabs. Slab deflections
are sensitive 1o the cxtent of cracking, since two-way slabs are typically lightly reinfored
(often requiring only minimum reinforcement for flexural strength). Scanlon (1999) con-
cluded that slab sections with low [Texural reinforcement ratios close to the minimum CS3
A23.3 requirements arc characterized by a significant difTerence between their cracked and
gross stiffness. The cracked transformed moment of inertia, /_, is considerably lowertha
the gross moment of inertia, /; ofien in the range of 1, =/, /3. Nole that cracking is not
uniform through the slab due 10 2 variation in the bending moments. Regions with low bend-
ing moments remain uncracked and are characterized by significantly higher stiffness tin
the cracked regions. N

This section outlines key methods for deflection calculations and their application sl
lustrated by a few examples.

CSA A23.3 Deflection Control Requirements

Deflections in two-way slabs are required 10 remain within acceptable limits. CsA A2_3-3
prescribes two approaches for deflection control: indirect approach and detailed defloch®”
calculations. i

According 1o the indirect approach, the designer is permitted to select the mmlm{ -
slab thickness that results in a robust design, thus detailed deflection calculations ¢ 1 i
quired (Cl.13.2.2). The minimum CSA A23.3 slab thickness requirements ar¢ e)(plzunSI _
Section 12.5.2. Note that the indirect approach can be applied only to regular two-¥e¥
discussed in Section 12.5.1. . and>

Detailed deflection calculations must be performed for slabs with uj'e Sps al!

thickness ratio below the CSA A23.3 limit. According to C1.13.2.7, the deflections -
be computed by taking into account the size and the shape of a slab panel, the supPe
ditions, and the nature of restraints at the panel edges. o, It

Both immediate and long-term deflections need to be considered in the desig! -andlhf
diate deflections are initial deflections that occur as soon as the slab is construct aused
shoring is removed, while long-rerm deflections occur over time and may be c,[jns i
creep, shrinkage, and temperaturc strains. The CSA A23.3 procedures for esum
mediale and long-term deflections are discussed in Section 4.4.
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The deflections in tw

Table 9.3, Note that CSA

0-Way slabs must be wi
way slabs, A23.3 prescribes the sa

ithin the limits prescribed by CSA A23.3
me deflection limits for onc-way and two-

Immediate slap

slab deflecti

L The Crossing g cctions can be calculaied using onc of the following three methods:

way sysll.:m.g lh:: :{IMe'rhM is based on treating a two-way slab as an orthogonal one

The Equivalens pro ow:ng the defection caleulations by beam analogy. ] _

is discussed in dﬂai’I"ien L S’ ;’l'flfl L:S;S alincar clastic analysis of 2-D frames. This methed
io ; i

for the effect of cracking. N 12.7.2. An cffective moment of inertia is used to account

The Finit i

o bot'l hEI;'(vL:Ia A]‘f’rﬂhﬂd (FEM)is explained in Section 12.7.3, and it can be used to

method, and dcpcndinorccs ;md df:l'lccllons irln two-way slabs. It is a computer-based

o o ot g onvllc sollwnrlc capabilities it can be uscd either for linear clas- -
ar analysis which takes into account the effect of cracking. 4

For some types of | conditions. it i |
for dcl'lcclf pe N slabs and support conditions, it is possible to obtain closed-form solutions
1ons based on the Elastic Plate Theory, which uses a partial differential i
for load-defection respons i R ormal onding
e ents and s sponslc. The approach can be used to determine internal bending
S shear forees. It is rarely used in practice due to the availability of ct-
based methods such as the FEM. iy o comeer
. Lon_g-lcrrn .dcﬂcclinns in (wo-way slabs can be estimated in the same manner as ex-
plmn_cd in Sccu_on 4.4.3. According 1o C1.9.8.2.5, long-term deflections are obtained by
mubtiplying the immediate deflection due 0 a sustained load by the factor £, given by

§ Lelt sy (4.15]

Where s is the time-dependent factor for crecp deflection under sustained load (see Table
4.1, and p'is the compression reinforcement ratio (usually 1aken as 0 for two-way slabs).
For practical applications in slabs without compression steel, the ¢, [actor ranges from 1.0
(load sustained for 3 months) to 3.0 (load sustained for at least S years).

12.10.3 The Crossing Beam Method for Deflection Calculations

The Concept The Crossing Beam Method (also knuwp as lhc.\\"idc Beam Method) is- an
approximate method for caleulating deflections in compll.ancc with the CSA A23.3 require-
ments. The method will be cxplained on an cxample of a slab p;?nc_l wnhl spans I and [,
supported by the columns shown in Figure 12.37. The c«?lumn strip in K-d.ln:Cll(_]n and the
middle strip in y-dircction are considered as continuous wide beams. The Wldllhs for column
and middle strips are denoted as | and L. respectively (see Section 12.4.1 for an explana-
i g iddle strips).
o '.}‘[hm:::::::rl\r:l]:llldclclinnpl'or the column strip in the x-direction is dcnolgd as A, o

; Figure 12.88a. Similarly, the maximum delNection lor m'!ddlc sirip in lh.c y-
shown in Figure LI S 00 i Figure 12.88. Thesb detieeion (8,0 5 obuined
e e 'mummdcﬂccd()ns for the column strip and the middle strip. us shownn
by adding ¢ mmuﬂ rocedure can be applied by considering dellections for the column
Figur® 1288 The S0 4nd the middle strip in the x-direction (8,,).

e )’-dil:';z:-i";:i(?l;“)"cl* (where [ /I, = 1.0}, the maximuni slab deflcction can be de-
For squarc } pancls (where L%

rerined [rom (he following cquation: .
A #b, =8, 0

A\'IIL\ - AII + -y a

where the column siip deliections for x- and y-directions. rcspccxi.vcly, and

bt N iddle swip deliections for X and y-directions, respectively.

A undA,,,m‘hcm'
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l, {

1
L
b—

-
—

a) b)

Figure 12.87 A slab panel for deflection calculations: a) column strip in x-direction, and b) middle strip in y-girectiy,

For rectangular pancls, or for panels that have difTerent propenics in the two directions. =
average maximum deflection is calculated by considering the maximum deflections inbot:
directions, as follows:

NSRS o

The calculated deflcctions should be compared with the deflection limits specified in (34
A23.3 Table 9.3. Note that the CSA A23.3 deflection limits for a slab panel shouldbcr:_\l-
culated by considering the span length (/,) measured diagonally between columns, thatis.

= Jl,’,, +12,

Deflection Calculations for Column Strip and Middle Strip The column stripa
the middle strip deflections can be determined according 1o the procedure for c.oﬂl“‘““.“‘_
beams explained in Section 4.6.3. A typical slab span considered [or the deflection cal»u“
lations is shown in Figure 12.89a. Note that the deflections are restraincd at the suppr
this is a simplifying assumption which does not reflect actual behaviour of a CO]“-‘“{’}'::Z
ported slab. The span is modelled as a continuous beam with span I, (clear SPa").'“s"

in Figure 12.89b. The deflection (A) can be calculated from the following equalion-

A= k(i)—M”'l"2 e
48" Ed,

where the coelficient & can be determined as follows

k-lZ—OZ& l””

M, i

N . ¢ ml

Deflection for a specific span depends on the end moments (M, and M) “nd::,ding m

moment (M), as shown in Figure 12.89c. Moment gradient (M) depends o1

ments at the supports and the midspan, that is, il

(1

M, =M, + (M +M)2
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figure 12.88 Thg Crossing Beam

yathod for deflection calculations:

2 Jeflections in the column strip
tion; by deflections in the

1 x-direc

Liddle strip in y-direction, and

‘[\‘ combined deflections (courtesy

e american Concrete

stitute): a)
b)

<)
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Note that the bending moments are obtained from the flexural design caley) atio

ther the DDM or the EFM. The design for flexure is performed using the raClOrc:;S Using ;.
the corresponding bending moments. However, bending moments for the dcﬂcq,l at
lations are based on service level loads. Since the flexural design js Pe ion ¢y)
clastic analysis, il is appropriate 10 perform a simple scaling of factored

v
rlormeq Using
10 reduce them to the service load level.

hcnding “’“fﬂenu

Figure 12.89  Bending moments -
for a slab strip: a) an elevation

showing the slab geometry;

b) deflected shape of a column }
strip or middle strip section, and a) <
¢) a bending moment distribution.

Colump

Slab
.

l,
I,
b
b) —_———T
Mo M.
)

The modulus of elasticity for concrete (E ) can be determined {rom the following &=
tion (sce Section 2.3.4):/, = ,[1}“4. I

9]
F, = 4500, Cur a

. . . . . arl
The effective moment of inertia (/,) is determined in the same manner as for fle
members discussed in Section 4.3.5, that is,

3
’ il
A23.3Eq.9.] /,=l(,+(l,—l,,{ﬂl] <l [

M,
where
1, =1he moment of inertia of a gross concrete section
1 = the moment of inertia of the cracked section "
Note that the moments of inertia /, and / are determined based on 2 wide bea st

ote th derlité
using cither column strip or middle strip dimensions, as discussed above. The ur
equations are outlined in Sections 4.3.3 and 4.3.4.

. n St
The cracking moment (M) is determined in the same manner as P“’Se"md ‘
4.2, that is,
. i
M, = Lt I
yl
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L=05p =034F7 (Mpy)

where f denotes jhe modulus of py

" plure discussed i i
ive momen, scussed in Section 2.3.2.

of inertj i
nertia, I,m. for continuous spans 1akes into account

at the Supj i 98.24 Section :
. ¢ Ports and the mids i i i ;
Tollow; tons il X f":ll Svpan (Cls.l 32 ), as explained in Sectiof 3

For spans with twe continuous ends (interior spans)
L o, + 0.I5(1, + 1)

; | [4.18)
Or spans with one continuous end (end spans): J
I,_m =075 +025

[12.39) ;

b N was propased by CAC (2005) for column-supported end spans !
;:Zri f;“:[';‘] T;:)’ul; zr:_)‘\::c:;cdnl:v an exterior column; this equation is different from A‘;S.J
) S I clion caleulations in continuous reinforced conerete Mex- .
ural members (see Eqn 4,19 in Chapter 4), §
‘The designer is permitied 1o use other 1, values provided that the computed deflections i

are in reasonable agreement with the results of comprehensive tests (C1.13.2.7).

The bending moment (M) is determined at the service load level, and its value de-
pends on the load for which Lhe deflection has been computed: dead load moment (M), live
load moment (M, ), or dead plus live load moment (M, , ). In the absence of detailed cal-
culations, the bending moment due 1o the construction load (M) can be taken as 2.0 1o
2.2 times the slab dead load for dellection calculations in multi-storey buildings.

Aliernatively, the designer is referred to ACI435R-95 (2003) for more details on con-
struction load calculations, and also Scanlon and Supernant (201 1) for a practical deflection
calculation procedure which takes into account the construction loading history, time-de-
pendent concrete properties, and the effect of'cracking.

The elfective moment of inertia (/) is a significant factor inlluencing the detlection
magnitudes, therefore it is critical to use realistic /, values for deflection calvulations. The
elfective moment of inertia should be calculated based on the load level under considera-
tion. For example, the dead load defiection (4;) should be calculalcd_ using the /, vn!ue
the dead load moment (M), while the dellection due to combined dead plus live
load (&,.,) should be calculated using the /, value based on l!'lc total lmu.! mo.mc-r!( (;\»Im O
As a result, two different /, values need to be used for deflection calculations, as x_lihf.\L‘n}lcd
in Figure 12.90z; this approach will be referred to as the Slnpdanl Pmccdurcl in this .scf.uon.
However, construction Joads usually govern over the combined dead ull‘ld hvc‘ l(luld lo‘r :c
flection calculations in multi-storey fat slabs. It is L‘Kpcclcc'\ that crugkmg takes .plwf." "."_

<ruction loads and its effect should be accounted for in dcﬂcg:lmn calculations. This
10 construction | dhed by using the 1, value corresponding to the bending moment at the con-
can bc uc;:;ﬂ[;::cltw ’ yfor immédinlc defection caleulations, us shown in Figure 12.50b;
struction s

1 i Terred 1o us the Alternative Procedure. o
e ::Pp:n;il;: :lf:crlfo':ls [or atypical span of aLwo-way slub can be computed nccording
mme

1 the following procedure: | |
|. Caiculate the dead load deflection (8,) using the /, valu
. i ent (M) . .
dead load benjlnrfel:l;’omn": ;( Lo))duc 1o the combined dead and live lond using the /,
g Cnllcum:iu?co:rcsponds lODll.lc 1otal bending moment (M, ).
value whic

Note that the latter cquation was

based on

¢ which corresponds 1a (he
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M Ef g
Actual Eg
ctua ,
stifiress o
const =N mTmm s mm oo e , Ecl
! o
M. fenfNommmmmo; 7 i
Has!
7
Mp |-Lr -5 S
v
- -
7 ' I
A o
4 H o
(4 ) .
4 : : i
a l IR
A :
PA—D‘I l-——Dﬁl
I__AD'L—.[ Ap.
Aeonsl
a) b)

Figure 12.90  EFfective moment of inertia for deflection calculations: a) Standard Procedure for flexural members, and

b) Alternative Procedure for multi-storey flat slab construction
(adapted from ACI 435,1991 with the permissian of the American Concrete Institute).

3.

The live load deflection (4,) is calculated as [ollows:

=B — By

Aliemnatively, the procedure can take into account the effect of construction loading, &
follows:

1. Calculate the effective moment of inertia (7,
at the construction load level (M, ). ’ '

2. Calculate the dead load deflection (A,)) due to bending moment (M) using the /, v
calculated in Step 1. -

3. Calculate the deflection (A, _, ) duc to combined dead and live loads using the bendité
moment (M, _,) and the /, valuc calculated in Step 1.

4. The live load deflection (4, ) is calculated as follows:

A =4, -4

) corresponding to the bending momet!

N onding
Note that both procedures use service (specified) bending moments, and not rfluotfd be
moments which are used for the strength design (¢.g. moment and shear rcslsm'f“)‘( s1c0
Once the immediate deflections have been determined, a long-term deflection’
be determined from the following equation: 4l
13
&,=6 - 4,+4 l
. a I‘Ill-d'
where the first term denotes deflection due to a sustained load which is mngmﬁed by
tiplier, £, and the second term denotes the deflection due to a live load; nt® 1hxl1l jise®
be calculated from Eqn. 4.15. This is the most basic case, where only ihe “donsidﬁgdl‘

sidered as a sustained Joad. In reality, a fraction of the live load should also hec
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A sustained 1o,
- and the lopg., i
Procedure: ong-term defection js ined accord; i
.- determineq according to the l'ollnwmg
[

Tind the deflection due

; o i
(g, instal Sustained Joaq shortly

ation of nOR-Structyra| clements):

alier the construction is completed

BEGY
o ‘\m'
I [[' .
= Find the deNection
! due 10 the sy o . .
elfects. stained load corresponding 1o the maximum creep
A.'; = BRE TR
! n
k3

Finally. calculate
ally. ¢ ¢ the tor 2 lecti .
P < total long-term deflection due 10 e sustained load and the tran-
stent live Jougl:
A=A -A -
e T T -y [12.41}

where notes defect; N N . .
; ere AI‘.(ILHK‘FLS deflection due 10 the sustained live load: this is usually expressed as a
mg.lmn of l!]c live load. e.e. 20% of the live load could be sustained (this depends on the
projectrequirements). See Section 4.4.3 for more details on long-term deflections.

The Crossing Beam Method for deflection caleulations of two-way skibs is summa-
rized in Checklist 123 and its application will be iltustrated by two examples.

thecklist 12.3  Deflection Calculations for Two-Way Slabs According to the Crossing Beam Method

Vor aslab panel under consideration. select a column strip in one direction and a
middle strip in the perpendicular direction ra flat plaedstaba. or a beam strip in one
direction and 2 slab strip in the perpendicular direction G slab with beams . Perform
the Jollowing caleulations (steps 2 1o 33 for cach strip.
2 Find the moment of inertia values.
Gross moment of inertia:
beh 142]
T
Cracked moment of inertia:
3 4.10}
byt " [
Lo=" " +nA, -(d—_\)
R) Lyan
Determine the cracking monent:
£ [EAY]
M, =
A
where {75 iy a reduced modulus ot ruplure:
v [1238)
T : A Mba)
L =05 f, =034 40
! ! ! 9.8.23
. o y inertia:
1 Compule the effective moment of incrt .
M, sl (411]
=],+ (l 'l.v v N
(Contetied)
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Checklist 12.3 Continued

Sa

Sc

Tb

Tc

Determine the immediate dellections due to service loads:

RN L 14.12]
18 Ed,
where
k=12-02 14.17]
M,
and
Moo= M= M+ M2 [12.37]

Find the dead load deficction (3,)) using hending moments (M) and (M).
and the cflective moment of inertia /, due to dead load ().

Find the 1otal (dead plus live) load deflection (A, ) using bending moments
(M) and (M), and the elfective moment of inertia 7, due ta the total load (1 = 1.).
Finally. the live load deflection (4, ) is calculated as follows:

A =4, -4,

Calculate immediate deflections for the slab panel by combining the column strip
and the middle strip live load deflections (sce Figure 12.88):

A=A A=A A [12.35]

nuan
Calculate the maximum long-term deflections.

Find the deflection due to sustained load shortly alter the construction has been
completed (e.g. after installation of non-structural clements):

A:: = ;v. ) (Au + A(\)

Find the deflection due to sustained load corresponding 10 the maximum creep effects:

A,= :u By + A

Calceulate the tota) long-term deflection due to sustained load and transient live load:

A= -+, +4,) (12.41]

Check whether deflections are within the limits prescribed by CSA A23.3.

9.8.25

9853
(Table 9.3)
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p— I
12.11 “onsi
fxam P le ;0"15Ider 2 floor plan of -
R N esign 0w, Y
Two-Way F Iut' designed| for Nexure i Ex,.mpleﬂly ;Inb System without beams (flat plate :
4te - Deflection 180 With 160 mm sia, gy 1 (DDM) and Exampl Pty oach s 3
pla " thickness) thickness (note gy ple 12.3 (EFM). Consider a
(alculations Use the Cr;m' B 8t the previous examples used 180 mm slab
. - 55ing Beam pf,
Acwrdmg to the coltumn griglings 1 ""d‘ .e!hod loﬁnd the immediate deflect;
Cross‘ing Beam whether immed, 1 2inN-§ direction, and gridli mlu[(fr an end panel benveen
e and fong-term delectione s ines B and C in E-W direction. Check

re within the limits prescribed by CSA A243

Consider Ij
stder iive loag ion fimits r ural elements are
{Ieﬂt’(‘ll(}l imi T Sir a
1
imits for an occupancy where non-struct:
3 § ents

\lethod Using
A y I} T
(e Stan dard 10! h[.k.el.\ to be damaged by large deflection
i 15,
or long-term deflections, consider lh{:

Proccd
uf!t‘l one month, and thy, 206 of the live load ain
ure 1S sustained.

Use the effect;
) ve moment of inert, 4 ]
it} the dead plus live loaqd level. Yineriaathe ol sl e dea ool

Given: £ =30MPa

" non-structural elements have been installed

1 300x300 1
!(comer) 1 300 x 600

i *./ {typical)

1. Check the slab thickness requirements (CSA A23.3 C1.13.2.3).
Example 12.1, and it was concluded that the minimum
indircet approach for deflection

SOLUTION:
This check was performed in

180 mm thickness is required in order 1o satisfy the

control, that is, deflection calculations are not required provided that the thickness exceeds

180 mm. However, the slab thickness is reduced to 160 1 in this example and detiled

slab satistics the CSA A23.3 requirements

1 calewlations are required. Since the .
2, it is possible 1o use the Crossing Beam

dellectio
y CSAA23.ACL2

for regular slabs spucified b
Method.

Identify the deslign strips for defl
It is necessary 10 calculate the d.cn.c
land2inN-S direction, and gridline
umn strip along gridline 2 (span BC),
and 2, us shown on the following sketch.

ectlon calculations.

ctions for an end pancl between column gridlines
s B and C in E-W direction. Let us consider col-
and a middle strip spanning between gridlines 1
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7= .5 m

Column strip Middle strip

_=31m

The width of column strip for gridline 2 is cqual 1o
[ =24m (as discussed in Example 12.1).

The width of middle strip for slab panel 23BC spanning between gridlines B and Cex:
be determined as [ollows (see Figure 12.15):

[/ =48m

I, = (6.0 + 5.0)/2 = 5.5 m design sirip

Since /| < 1, it follows that the column strip width is equal 10
[ =1/2=48m/2=24m

thus the width of middle strip is

[ =0,-1=55-24=31m

Determine the factored bending moments for the column strip and the
middle strip.

This step is based on Example 12.1, where the design was performed according ¢
DDM. However, the moments need 10 be recalculated due 1o differcnt loads.

othe |

a) Perform the load analysis:

The slab’s sell-weight:

DL, =l y, =0.16m x 24 kN/m* = 3.84 kPa
The superimposed dead load:

DL, =144 kPa
Live load:
LL =3.6kPa

The 101al factored load:

w, = 125(DL_+ DL) + 1.5 x LL_= 12.0kPa
+ w et

12.1 (12.6kPﬂ)

Note that the factored load is smaller than (hat used in Example nichs Joss
ic! i

a reduced slab thickness (slab thickness in this example is 160 mm, W
the 180 mm thickness used in Example 12.1).
b) Caleulate the factored bending moments for the column strip-

The moments are going to be calculated according 10 the DDM. Refer
Example 12.1.

(o 5P '

|
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l :
Clear span;

l,=60-(06 06
3 *2'7) =54m

Total factoreq slatic momen;:

M, =YXl 120 kPaxg gy (s.amy
8 s 0k

N 3 Nm [12.8] :

Note that the ¢ in thi .

ined in b r:lpi::: fz]\c’lrl)r;::i;gomcm in lh)ls example is slighily less than the moment ob- .

. < (220kNm) - again, this is due to the smaller slab thickness.

sble 12.21  Factored bending moments for the columg strip

(Interior Span BO)

Interior Span BC: M =210kNm

B Mids,
) ) o Midspan C

ngitadinal Bending Negative moment Positive moment Negative moment
rection moments at M, (kNm) M_ (kNm) M, (kNm) R

critical secti T o : N |

itical sections -065M, 065\
=(-0.651x 210 =(+0.35)x 210 =(~0.65)x 210
=-137 =+ =-137

Tansserse CSAA213 ) i
daibation - Provisions -(04d610 0.59)M +H0.19 10 0.230M —0.4610 0.59)\
colutnn stri .
cowimn sirip Proposcd value ~0.59M +0.23M -0.59M,

Design moment 059 x Q1012 -124 0.23x210= +48 -0.59x (210 = -124
Transverse 7 i
stribution -
middle strip

Design moment =—137-(~124) = ~13 =7348=+25 =137-(-124) = -13

c) Calculate factored bending moments for the middle strip,
Clear span:

[=48-03: 0N u5m
,. 2 g

Total (actored static moment:

LA {:4 X l’: = 1,:'0 “’a)f 575ml<7(415nl= 167 kNm
H, = 8 S
Tble 12.22  Factored bending moments for the middle strip (Span 1-2)
o End Span 1-2: .\l“=161k.Nm
B Midspan - c l
i itive moment cgalive momen
Longitudtin , Negative moment e M, (kNm)
‘ 2ituding) Bending . (o M, (Nm) . )
Siection moments al ! - 052 “o70M,
critical sections _0‘:((;31;) 167 ! (+0.52“) et 0T 167
o o =47 R LA
| | —{0.4910 0.6
T . \ 102910 0.30M,
uism“b:'.‘c CSA A2 —0.26M, - o,
) tion - Provisions -0.26M, |6.7 * 50 D8 (16 =84
Unin sirip Proposcd value n 03 167 =43
Design moment I
' =11 7-(-8h = -1
T_fﬂns\L.M 0 =87-50=+37 17-(
b Design moment I
Mldle gy \—/'/'/,‘/ﬂ
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4. Perform deflection calculations for the column strip and the middle g
rip,

The deflection calculation procedure as presented in this example can be
a tabular form. The key cquations arc summarized below. Preseneg in

a) Matcrial propertics
The modulus of clasticity of concrete (£ ):

E. = 45007 = 450030 = 24650 MPa

(2
Modular ratio:
E, _ 200000
n= "'= - =8.1
E. 24648 4
Reduced modulus of rupture )
[T =05 f =034Jf =03-1.0-J30 = 1.64 MPa (12

b) Cross-scctional dimensions (sec the sketch below)
Column strip:
b = 2400 mm

Middle strip:
b = 3100 mm
Slab thickness:
I =160 mm
Effective depth (based on a 25 mm average cover and 15M rebar size):
= 120mm
)
o
n I i
] b =
- = 2400 1
Column strip
cross-section
A
1 | S — ]
. b =3100 __,//
b—

Middle strip
cross-section

b) Section properties for deflection calculations (sec Section 4.3)

Gross moment of inertia Jor a rectangular section:
I
/ = b-h} i

T2
. Cracked section propertics:
i) Reinforcement ratio:

A,

P ha



A23.3Eq. 9.1

Bs
147
i) Neutrg axs depth for the cracked
section
y=d( (npf +2np -np)
- (4.9
1) Momeny of inertia for the crackeq secti |
3 " S on:
1,="% i
CE Ay
1 [4.10]
he cracking moment (v )3
M, =5l
i 4.1

where v is the dj
bAL 1stance from the centroi i
) roid of the section to the ¢ i
“ . . o
arectangular slab section it follows thay s ension ore For

y = 160

773 =80 mm

The effective moment of inertia (1 ):
e

|l
1=1,+( - M.
L+, I;V{" <1, ]

M
.

Average clfective moment of inertia
1) For an interior span (e.g. column strip for span BC):

Ly =071 40151 + 1) [4.18]
i) For an end span (¢.g. middle stip for span 1-2):
1,y =075 _+025I {12391

¢) Deflection calculation equations

The deflections need to be caleulated for the dead load and the combined dead plus
live Joad. The maximum deflection for a column sirip or a middie strip can be deter-
mined [rom the following equation:

5 M2
=k [4.12]
A (JB)E(I,
where

o, [4.1m
=17=-02-%
k=12-02 0"
and

112371

Mo=M_+ Mt M2
ments for column strips and middie strips were cal-

lated in Step 3 Since the service load moments are required for dellection caleula-
cu - .

f |
: i ire ate the factored b 2 In this p lku
:!Iﬂ';!s' llll:oudn‘qcl:::«‘:-:l ul:: E:)‘:ld ;m dead load and the dead plus live load. The following
ifferen sed

aling factors are used to find service fevel bending moments:
5¢
Dead load deflection: (DL, + DLW = 5.28 kPo/12.0kPa = 0.4
o phus live load deflection: [(DL, + DL) + LL J/w, = 8.8 KkPu/12.0 kPa= 0.74
Dead plus

ection calculation procedu

Note that the {aciored bending mo!

re is as follows:
) due (o the dend load hending moment (M)

The defl .
1. Calculate the dead load deflection (&,
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9. Calculate the deflection (8, ) due to the combined de

ad and [jy,
. ; (!
sponding 1o the total bending moment (M) ). loag o,

1. Find the immediate live load deflection () :
A=A A

Deflection calculations are presented in the table below (sce the sketch showy,
related o the bending moments). Note that the design of (fexural reinforcer,
omitted from this example (reler to Example 12.1 Tor the reinforeemen e

ng n()lgm N
et hag begr
culaiign,

© % ®

1 (mm)
M, (x10* Nmm)
A, (mm?)
Y
¥ (mm})
1, (x10" mm*)
1, (10> mm*)
M, (x10% Nmm)
M, (x10° Nmm)
A, (x10* Nmm)
B
" (x10" mm*)
o (<10 mm*)
3, (mm)
M, (x10" Nmm)
Mo, (x10° Nmm)
et
1., ., (<1 mm*)
= lavy (<10 mm’)
A, (mm)
A (mm)

Column strip Middle strip
Table 12.23 Immediate deflection calculations for the column strip and the middle strip
Column Strip Middle Strip
Support B Midspan Support C Support | Midspan Support 2
5400 4500
124.0 8.0 124.0 0 37.0 no
3200 1200 3200 3200 1200 3200
0011 0.004 0.011 0.009 0.003 008
41 27 41 37 24 k)
207 100 217 231 104 B
819 819 819 1060 1060 1060
168 16.8 16.8 217 217 £
54.6 211 5456 0 163 14-5
75.7 75.7 75.7 25 235 n
0.48 0.48 0.48 091 091 %:l)
230 460 230 0 1060 ! o
390 390 390 1060 1060 l
32 1.2
0
92.0 36.0 92,0 0 270 ﬁz(,
1270 127.0 127.0 9.6 396 7
91
0.48 0.48 0.48 091 091 [:10
220 180 220 0 580 60
190 190 190 640 640
1.2 34
8.0 22




5. Check whether immedia

—

DESIGN o TWO-way SLags

749

te d i
CSAAZY 3 limits immegiay I_‘"“'"Ons are within the CSA A23.3 limits.
{loor construction i supy ® e load deflections for an occupancy where the foof
7 00l or

likely 10 be g POrting or is attached
J amaged by large ° icd to non-structural elements which
L B¢ deflections (CSA A23.3Table 9.3): 1 /360. iehare not

ive load deflecj i owing c:
1008 are determined by the followin i
b qualion (sec Step 4):
-L D

The check is
s performed for the colu 1

- mn s i ol
length for the siab panel is (.lclcrminccl.;I ;:r}ziI:‘::‘Iddlc P endthe gt S

L=\ (5.-1 m):+(4.5 rn): =70m

The dellection calculations are summarized below.

nple 12.24  Immediate deflections: summary calculations

(mm)
EN (mm)
3 (mm)
3 (mm)

(SA A.23.3 deflection (mm)
fimit: 1,360

Delection check (mm)

I

Column Strip Middle Strip Stab Panel
5400 1500 7000
a2 1.2 ;J.ZH.::J.J
1.2 34 =11.2+34=146
80 22 =14.6.4=10.2
5400°360= 15 500,360 = 12 7000/360 = 19
8.0<15.00K 2<1200K 10.2<19.0 0K

Check whether long-term deflections are within the CSA A233 limits.
Long-term deflections will be calculated separately for the column strip and the mid-
dle strip. It is assumed that 20%% of the live load is sustained, and the corresponding
deflection is
2,=02,
The procedure has the three SIps, and it is presented in Table 12.25. A sample caleu-
Jation for the column strip is shown below.
a) Find the sustained deflections after 1 month.
Calculate 5 = 0.5by interpolation from Table 4.1. Thercfore,

05 _ [4.15]

1.5

5

=le o 0
1+50p 1+0 . -
+ = () since there is no compression reinforcement. Finally,

o
SIA-H'

where p

A =;.-(An+l_\u)=1.5(3.2+0.2-8-0)=7-3“““
11 A

r 5 years

1aincd deflections uftel .
N = 3 from equation {4.15]. Finally,

4.1, and calculate [
0.2-8.0)= 144 mm

p) Findthes
= 2 from Table

+A5)= 30032+

Use s
Ap= gl'(A"

9] Find the jinal long-icrm deflection.

0-02-800= 136 mm 11241

)= (14 =72+

A =(A.1-A..1+(AL‘A”
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Table 12.25 Long-term deflecti

Sustained deflections
after 1 month

s=05¢ =135
A= {Kl A+ A

Susiained dellections
after 5 years
ld

£, =3
4= ;: (A, A0

s=2

A=A, - )+ + A

CSA A23.3 deflection
limit: { /240

Deflection check

CHAPTER 12

Once the column strip and middle strip detlections have been caleulated h
deflections for the slab panel can be caleulated by summing up these wo \valong.%
ey,

ons: summary calculations

Column Strip Middle Strip Slab Pa;n;l\
(mm) 5400 4500 7000
(mm) 32 1.2
(mm) 8.0 22
(mm) 7.2 2.8
{mm) 4.4 4.9
(mm}) 13.6 4.2 =13.6-12=17%
(mm) 5400240 =22 4500240=19 7000 240=29
(mm) 17.8<29 OK

13.6<22 0K 4.2<19 OK

Note that the CSA A23.3 limits for immediate and long-term deflections may be i
ferent. In this example, the limit for immediate live load deflection is {, /360, while e
long-term deflection limit which includes the effect of sustained and transicnt loads is
1./240. Both limits apply to roof or [loor construction supporting or attached to noz-
structural elements not likely to be damaged by large deflections.

Example 12.12

Two-Way Flat Plate -
Deflection Calculations
According to the
Crossing Beam Method
and the Alternative
Procedure to Account
for the Effect of
Construction Loads

SOLUTION:

Consider a floor plan of a two-way slab system without beams (flat plate) from
Example 12.11.

: . . i the !
Use the Crossing Beam Method to calculate immediate and long-term deflections Jor )
. . . v r G
slab panel, however use the effecrive moment of inertia at the construction load lev lef;”m
deflection components. Assume that the construction load is equal to fwice the ded

, ) . ith ¢
The approach for solving this problem is similar to that taken in Example 1211

following exceptions:

ass®
] val
1l

was found

1) The effective moment of inertia for construction dead load. [, o
¢ a

ing that the moment due 1o construction dead load, M, , i$ 1Wice th mome™
(M,,). This calculation is illustrated below, for a column surip (bending
support B):

M, =2-M =2 (546-10° = 109.2 - 10°Nmm
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eamn = 1t (1,1, f M ]
\ M, 411}

=710+ §19.10° - 168:10° |
SAT)

) 109‘2_105] =220-10° mm*
Note that the deflections due 10
(cqual to 54.6x10F Nmm for the
2)

dead load are calculated using the actual M, value !
column strip at support B).

}'hc cIchl.ivc moment of inertia for the total dead plus live load, I, , , is cqual to
o, 88 discussed above (note that two different values were used in F.xainple 12.1).

Thc d‘cﬂccnon calculation procedurc was revised to take into account the effect of con-
struction loads by considering the effective moment of inertia corresponding 1o the as-
sumed cracked value. as shown in Figure 12.90.

Tble 12,26 Immediate deflection calculations for the column strip and the middle strip considering the
effect of construction loads

B
Column Strip Middle Strip E R
Suppon B Midspan Suppont C Support | Midspan Support 2 |
i, (mm) 5400 4500 |i .
M. (x10" Nmm) 1240 480 1240 0 370 330 |
2
A (mm-) 3200 1200 3200 3200 1200 3200 ' )
ﬂv 0.011 0.004 001! 0.009 0.003 0.009 .
¥ (mm) 41 27 4 37 2 Ry ,‘
2 100 217 M 104 m i
| (x10° mm*) N7 - o 060 1060 b
I, (x10* mm*) 819 819 819 " l
8 na M 11
" G0 oom) 168 o l:xo 0 163 145 0
v O107 N e o 7 235 235 ns E
2. - R v
v, (<107 Nmm) 757 57 ; _
0.8 084 . '
k ' ;
’ 150 20 0 386 576 i
L (x10" mm*) 20 170 170 430 430 0w ‘
ey (X10° mm*) 170 29 i
) 15 !
4, (mm) . 0 1.0 240 '
920 360 20 196 |
A, (x10f Nmm) 920 0 1270 96 96 6 |
b - - - '
Mo x10° Nmm) (£ 091 o '
by . O,'w . 0 186 576
Targ 150 - 430 430
Ly (x10° mm?) 220 0 0 40 40 w0 |
I g (x10* mm*) 1707 ) 19 ;
3 B 126 20 i
et (mm) 5. /’4 I
4 (mm) //

ive moment of in-
v i this example, the same elTective Mo cn
rosct PMfN:d :l'::all:‘slond drﬂcclion A, and the dcltletuon ldl\ltc!
3 |‘ °-0u|d have lound (&) directly by finding ul'ne.dl ©
N The dellection calculations arc summarized

i the app!
According lOus gsed 10 caleulat

crtit g W A . cretore,
AN olving for (8;)-

A, and 8
momer! 41228,

Tables 1227 an




752 CHAPTER 12

Table 12.27 Immediate deflections: summary calculations

Column Strip Middle Strip Slab Pangg
i (mm) 3300 4500 000
X tmm) 7S =9 2734292104
A, (mm) 12.6 19 126000 ,s
A, (mm) 5.1 2.0 175 104e7
CSA A23.3 deflection  (mm) S400 360 = |5 45007360 = 12 000 360 = 16

limit: 1 360

Deflection check (mm) 5.1<15.00K 2.0<12.00K T 1<19.0 0K

Table 12.28 Long-term deflections: summary calculations

Column Strip Middle Strip Slab Panel
[ (mm) 5400 4500 7000
3, (mm) 7.3 29
3, (mm) 5.1 20

Sustained deflections

after | month

s=05 7 =15 (mm) 12.8 50
A= @80

Sustained deflections

alter 5 years

s=2 (mm) 25.6 10.0

A =3,

A=, -A T, ) (mm) 169 6.6 =16.9+6.6=235
CSA A23.3 deflection (mm) 5400240 =22 4500/240 =19 7000,240=29
limjt: /240

Deflection check (mm} 16.9<22 OK 6.6<19 OK 23.5<29 OK

12.10.4 Deflection Calculations Using the Computer-Aided Iterative
Procedure and 2-D Equivalent Frames

‘The computer-aided iterative procedure uses structural analysis of 2-D cquivalent rrml.t‘;ﬁ
determine deflections in two-way slabs. Each member is divided into several chmcnls“ e
acterized by dilTerent section propenties. Cracked section propertics arc used “"_l‘m, .
bending moment exceeds the cracking moment, while gross section propertics & e L,L-;
where along the span. The procedure is described in Section 4.6 as related 10 rcmm-lcm
concrete flexural members. An application of this procedure to a (wo-way [at plate 2
is illustrated through the lollowing example.
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Example 12.13 Consider the faq !
o Plate floor system discussed j Y
[wo-Way Flat Compute i in Example 12.11. :
|ate - Deflection \pute immediate deflections ysin
plate - U8 5ing the computer-aided iterative procedur 3
Caleulations Using - i
The 2-D Computer- o
Aided [terative -
dure . "
Proce Given:  f'=30MPa
E = 24650 MPa
SOLUTION: | ‘¢ this
n order 1o solve this problem. it is required 10 perform an analysis of two 2-D equivalent

frame models: i) an equiv:

Ir st quivalent frame along gridline 2 idli \

iy 3 e : fra gridline 2 (between gridlines B and C), and )

A t';[:lwl;\¥cnilfr4mc a}nng gridline B (hetween gridlines | and 2). The iterative anz'llysis ;
plained in detail for the equivalent frame along gridline 2. N

1. Fi : . . 5
Find the cross-sectionsl propertie required for the analysis. i
a) Determine cross-sectional dimensions for the slab. I
C O " c < . . 1
:ch;n:ili:?}l,cm ‘_fmmu has the same properties as discusscd in Example 12.3. The slab- !
¢ width equal to the design strip. that is, ,
b = 4800 mm v
and .
h = 160 mm I,
. E
b) Find the gross moment of inertia for the frame section. K
il 1
I.= blf‘ = 4—8(?0—}1—6'0—) =16.4-10* mm’ {421
¢) Find the cracking moment (M)
. ¥
M, = f I = 1;6{(,16;4,10,) =33.5kNm (4.1
Y 80 .
where the reduced modulus ol rupturc is £* = 05 f = L64MPa and y, = 80 mm 5
d) Find the cracked moment of inertia:
L =%‘i—+n-.4,-(d—_\-f (4.10]
[inertia i incd in the same manner as in Example 12.11. "
racked moment ol inertia is determined in U " :
-S::LC |h:nbl values are different along the slab span. depending on the amount of 1op l
and bollOl'I; reinjorcement. H
5. Perform an elastic analysis of the frame using gross eross-sectional properties.

tic slab-beam clements. Each span can be di-
nts. Initially. all segments are n§sngncd a
cinerti “Jastjc analysis is performed. The resulting bend-

nertia (I)andund:nlu analy pet cd. -

di |rl‘u:1 for Ll;c equivalent frame along gndlm_c 2 is shown on ll‘!t follow

ing moment di28 {hat the cracking moment value is superimposed on the diagram 10
ing sketch. Nz‘l]ﬂ il ent exceeds the cracking moment, that is.
dentify cracked reg!
M>M,

i All be lled using prisma
The frame will b mod-.ll;_ using prismatic *
vided into 100f 20 equal ngidly joined segme

gross moment ¢

ons where bending mom
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3. Perform an iterative analysis using cracked and gross cross-sectiona)

properties.
The regions where bending moments exceed the cracking moment need 1o pe identifieg,
and the cracked moment of inertia needs to be assigned 1o those scgments, The e
cross-sectional properties are used 1o perform an analysis and 1o find bending momez
A subsequent analysis may identily new scgmems where bending momems hase
exceeded the cracking moment. As a result. cracked moment of inertia should
assigned to those segments. The analysis continues until there is no change in the ga-
tus (cracked/uncracked) for slab segments. Note that, once the cracked slab reeion;
have been identified by the analysis, those segments must be assigned cracked s
tional properties for all subsequent analyses.

In this example, three iterations were performed before convergence was reache.
The final bending moment distribution (shown with dashed lines) superimposed onthe
original bending moment diagram is shown below.

4. Determine the slab deflections.
Short-termn deflections:

a) The equivalent frame along gridline 2, between gridlines B and (&
Dcad load: A, = 6 mm

Total dead+live load: A, , = 10 mm

Liveload:A = A, , - A,=10-6 =4mm

b) The equivalent frame along gridline B, between gridlines | and Z
Dead load: A, = 3 mm

Total dead+live load: A, , = 5 mm

Liveload: &, =4,, ~A,=5-3 =2mm
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¢) Total deflections
Dcadlnad:Au=6+3 =9mm

Total dead+live load: B, =104+5 = 15mp
Live load: A =442 =6mm

|
|
12.10.5 Deflection Calculations Usin i i }
the Computer-Aided Iterative I

Procedure and 3-D Finite Ele?-nent Anal';/sis ' N

The underlying concept of this approach is similar to the 2. iterative analysis, except that
the siab sysiem is modelfed as a 3-D structure. The slab is modelled as a mesh of finite ¢l-
cments, as described in Section 12.7.3. The analysis is initially performed using gross cross-
sectional properties, and the regions where eracking has 1aken place can be identified by the
analysis software. depending on the cracking moment. A few soltware packages are capa-
ble of performing an itcrative 3-D analysis and deflection predictions for cracked two-way
slabs. Belore the solution is ubtained, the reinforcement detailing of a slab system must be .
finalized. This method enables a more accurate prediction of long-term deflections compared ¥
10 other methods. [t is especially suitable for deflection predictions in slabs with a non-rec-

tangular column grid, like the one discussed in 12.7.3. The corresponding deflection con-

tour diagram is shown in Figure 12.91.

figure 12,91  Deflection contours
for an irregular two-way slab.

le 12.11
xample 12.11.
Exam pl 12.14 Conslder the same fat plate floor system discussed In Exampl
e . i
) . Ivsis procedure.
Two-Way Flat Plat lculate the immediate deflections using the 2-D Finite Elemert Andlysis p
-yvay rla ate - Calculate

Deflection Calculations

' Using The 3-D Finite

lement Analysis lyzed using u finite

o Gpite clements and analy7ed us .

. Aled as a mesh of finite ¢ -1 of cracking by perforn-
The slab o beee m‘\’::\d'. which s able 10 consider the cq;ul:;‘:l;!:s ln:. Prcscmcd in
clement SOl pnum gsl.rucluml snalysis. The results of the analy’
K jcal iterattve §
inga numer

Figuf that the maxi ad lod flection for the slab
‘ . een from the fig I . maximum dead load def! r i
it : een o ﬁ(u d :“atu;Z 84, = 6.7 mm und the deud plus live load
d C an s p!

SOLUTION:

. : sction is equal 100
nel betwesd gridlln‘;flg “l:m Finally, the immedinte live Joad deflection 1s ¢g
nisAy, . .
deflection 15 ‘;L— 173-67= 10.6 mm
-8, =11

AL = ADvL
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a) b)

Figure 12.92 Deflection contours for a regular two-way flat slab: a) deflections due to dead load, and b) deflections die
to the total load.

Learning from Examples
Previous examples (12.11 10 12.14) were useful to evaluate the results of different de-
flection calculation procedures. A summary of the results is presented in Table 1229.4
few conclusions are presented below:

1) Both immediate and long-term deflections are within the CSA A23.3 limils accqrdlﬂg
to all calculation procedures, thus the general conclusion is the same irrespective®
the method used.

2) Similar immediate live load deflection values are obtained for the Crossing B”";
Method (Example 12.11) and the 3-D Finite Element Method (Example 12.14) (102
versus 10.6 mm). The value obtained from the Computer-Aided Iterative Procedu®
(Example 12.13) is the smallest of all (6.0 mm).

3) The results obtained from the Crossing Beam Method depend on whe .
of construction load has been taken into account. For immediate live load deﬂec“oni
the standard procedure used in Example 12.11 gives larger values (10:2 mm) Co-r;n
pared lo the alternative procedure which takes into account the effect OfCO“SWC;
load (7.1 mm). However, note that the dead load deflection obtained by the sar the
procedure (4.4 mm) is significantly less than the value of 10.4 mm obtained ﬁ'onz:liw
alternative procedure. As a resull, long-term deflections obtained from the allcﬂ:1 ”
procedure (23.5 mm) are significantly higher (more conservative) that those @
by the standard procedure (17.8 mm). pethe

4) The 3-D FEA takes into account the effect of cracking and it is considered 1° mate
most accurate of all methods, However, it is still appropriale to use an appr,oxsluhi-
method such as the Crossing Beam Method to estimate deflections in reg4 o

ther the effee!
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This comparicon :
L Parnison ilyg,
tion could be | Strates that the marg;
rge and 81n of error associ . .
d it depends on the procedure uscsn;l::e:c:::edcnem;-,on caleuta:
R signer must have a good

understandin
8 of Ihe i
ciples behind various deflection calculation

procedures, Boverning prin

Deflection calculati
Table 12.29 100 procedures: a summ,
Rt a1y of the results for £y,
! ——— am

Crossing Beam ples 12.11 to 12.14

Crossing Beam

Method - Standard  y Computer -
Method - ’ piter 3D Fini
Procedure l’rocedun;\mma“‘e alded leratve Flem:::‘e gsg AUDJ
. \ ] ellection
(Example 12.11) (Example 12,12) ;‘;“Eedurc 2-Dy Analysis Limlts
Xample 12,13) (Example 12.14)
Immediat i V 7 L
N (mm) 44 104 late dcﬂccuons9 6 I’
L, (mm) 14.6 17.5 1s o ;
(mm) 10.2 0 173 1,/360 =19 &
N 11 6.0 10.6 ’
Long-term deflections N )
N (mm) 17.8 235 - * 1,/240=29
.- ﬂ/- - |
Yote ‘
+ . The long-term deflections were not calculated for Examples 12.13 and 12.1¢. :

12.10.6 Practical Guidelines for Deflection and Cracking Control

Dellection control is one of the key design considerations for two-way slabs. Several
construction- or design-related options are available to ensure that deflections are within
the CSA A23.3 allowable limits, and that the cracking is not excessive. The designer can
control deflections in two-way slabs by means of some ol the following construction
procedurcs:

1. Specify additional construction procedures, such as delay strips and control joints, o
allow the slab to shrink more frecly during construction.
2. Specify a delayed formwork stripping and reshoring procedure to reduce the elfect of
creep duc to cracking of carly age concrete. i
3. Perform cambering of the slab by adjusting the formwork o have a camber ord "crlown
at midspan regions. The purpose of cambering is to reduce the appearance of sag in the
slab. The amount of camber is somewhat subjective, und»can be as high as lhc m.ml an-
ticipated long-term deflection due to sustained lo_uds. Thls strategy can be clll?cuvc R_xr
reducing visual and functional eITcFls of deflections in thin slabs, and particularly in
ith ¢ dead/live load ratio.
4 i::’q:fr:,v ll?nilrfl; ((IJ:::;I:'CIlions are likely to inlducc signiﬁcn»nl_ slruins.in ur%'hi'lc'clur:'ll
- building covmponcms. the problem can be mitigated by pr_ovldmg \'cruc.ul s:l.lpJ:lnlf :1
p:nilions and window walls. This measure does not restrict the dellections in the slab,

but it prevents damage in non-structural clements.

some of the most common causes of excessive slab de-

ssign-related errors, i ; C
Apart from desIE® relaed tion practices. Relevant construction considerations for

[lections are due 10 poor constru pructes
Lwo-way slabs ar discussed in the nex .

CONSTRUCTION CONSIDERATIONS AND DRAWINGS

way slabs !
onstruction cost associate

considered to be among the most cost-¢flective strue-
i J with two-way slabs is influcnced by

designed two-
The overall®

Efficiently
(ura! systems:
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the amount of concrete and slccl,_labour and material costs associated with
and shoring and reshoring. The labour costs are a significant componeny o c rmmm
construction, thus a design that minimizes labour usage by taking inig Cnns,‘dwo.‘.v »
plicity and specd of the formwork crection and rebar placement ofien rcSullSClrauon i,
cost-efficient solution. An optimal design strikes (he balance between m‘“Cria;n the oy
labour efficiency. To produce a safe and a cost-clfective design solution, (he desi Usage 5y
to consider a few important constructability issucs, such as i) simpliry FOnnwof:”"".”d‘
ments to speed up the construction process, ii) consider the shoring a "G,

nd Teshorin :
. . . . . & n
sign, and ii) produce a simple reinforcement layout. These issucs are discusgeq ncflln de.

Formwork When the design results in a labour-intensive formwork, the .
process is less efficient and the formwork cost is higher. Flat plates are casy o
cver forming the slabs with beams or drop panels/capitals is morc diff;
consuming. When construction speed is important, the designer could atef
the formwork by designing a flat plate instead of a [at slab or a slab with be;
be done at the expense of a thicker slab and a larger amount of stecl,

Onstrugigy
form, .
cult and lime.
PLLO simpj,
ams. This migy

Shoring and reshoring Alter the concrete has been placed in the forms, formwar w
shoring are required to support the slab belore the concrete gains sulficient strength gt
able to support the slab sell-weight. Shoring must be adequately designed by consideri,
the deflection and/or settlement tolerances in order 10 avoid additional stresses in the Slih

In multi-storey high-rise construction, contractors usually wish to pour one floor every
few days, thus the formwork and the shoring need to be stripped once the concrete al aspé.
cific floor level has gained sufficient strength. The same process is repeated at cach oy
level. As the building construction progresses, a temporary construction load on each (loor
slab may exceed the permanent service (specified) design load. The problem is often con-
pounded by the fact that the temporary construction load is placed on a partially cured slzb.

The most vulnerable stage in the slab construction is after the shoring is removed and
before the reshoring is installed, because young concrete hasn't reached sufficient design
strength while being subjected to loads sometimes beyond the design service loads. Earl
age construction loading can lead to excessive immediate and long-term deflections in flu
plates and flat slabs.

Construction sequencing must be considered in the design of fat slabs for mult-sior}
buildings. The designer may need to specily the maximum construction loads and wﬁ
with the contractor to ensure that a proper amount of shoring and reshoring is in plact
order to avoid overloading of slab during construction. An example of a concrete building
under construction is shown in Figure 12.93. The concrete is being placed onto the {lyfom
on the top [loor, while partially cured slabs below have reshoring to help support e ot
from the young (wet) concrele.

Reinforcement placement and detailing Two-way slabs, especially slabs with complff
geometry, are often designed using sophisticated computer-based analysis tools. Rez
less of the analysis method used, the designer needs to exercise judgment while U8
analysis results to prepare design drawings and specifications. The designer must us‘c:ﬂl
judgment by taking into account the underlying assumptions, and also ,ecognlugca
approximalions associated with the structural model. The designer can take uqvnnlﬂn.l_ 2
moment redistribution, discussed carlier in this chapter, to help even out negative rf"‘
moments in different spans. This could help produce similar bending mOmenlsflmshuuld
forcement for different spans. The resulting design solution and reinforcement de(.nl s,,.ns
be simple, repetitive, and uniform as much as possible. One of the key objectives s l"fusivﬂ‘
that the construction crew can easily understand the design drawings withou! t:ozwr
For example, it is a good idea o specify reinforcement mats that are symmetric®
columns. A repeated use of similar mats in both orthogonal directions is 4 8%
m.'mimizing placement errors. In many cascs, an optimal design solution include
ation of practical construction constraints.

 consh
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e 12.93 A concrete e
Giding under construction :
g shoring and reshoring j
Jilat siab floors @ v !, i
‘ i

pao’-
L

. An cx;m.nplc ol a reinforcement plan for a flat plate designed in Examples 12.1 and 12.3
is presented in Figure 1294, -

1t can be seen from the drawing that four different mats have been specitied (A e D)
Note that Mat A has been spccil'lcd over all of the interior columns. The mat is svmmclri-l
cal with regards to @ column. ’

Additional relevant information concerning the reinforcement placement is provided on
d diagrams, such as the one shown in Figure 12.95. Note that the information
is contained in the notes. For example. Note 6 specilies details ol top
d spans, which is usually hooked at one ¢nd (H1E).

1 under construction is shown in Figure 12.96.

[t is important 10 ensure i T sonably accurate placement of reinforcement in compli-
ance with the spcciﬁcd olerances. Misplacement ol reinforcement might have significant
on the steuctural performante. For example. the placement ol top rein-
evel than specified by the design may lead 1o excessive
due w high bending moments, thereby resulting in in-

the noles an
related 1o anchorag:
reinlorcement aten

A flat plate floor systet

consequences up
forcement over columns at a lower 1
cracking and rotation at the supports

creased midspan deflections. .
The designer also ™ \he requircments related to the curing ol
Conformance 10 spec
assure an adeyu
formwork might res
d deflections.

ceds to be famitiar with

ified ficld curing a5
ate carly strength gain.
uitin a significant e

defined in the CSA A23.| Tabies 2 and
An insulficient early strength goin
duction in the slab Nexural stilf-

conerele.
2018 essential ©
prior 10 siripping
ness and increase
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Figure 12.94 Reinforcement plan for a regular flat plate system.
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[DCATIONS. AND  SLAB EDGE LOCATIONS.

FER TO DWG. S3.1 FOR FOOTING,
2. RETUMN_ SCHEDULES. WAL anp
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RELER 7O DWG. S3.3 FOR MAT DETALS,
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4 SPLICE BOTTOM REINF. WITH 3'-0° SPLICE AT
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3-BAR STAGGERS SHOWN ON PLAN ARE 24* UN..

6. EDGE TOP HOOKE]
T D REINF.
1SMOT'04 ©12%06 HiE Ung O P

7.00 NOT USE MAIN SLAB
REINF. AS DROPPED
CAR
CAR:YY BARSt ADD EXTRA REINF., FOR DROPPED

8. CRANK BARS SHOWN
SUIT SLAB SLomte ON PLAN AS NEEDED TO

9. DENOTES PUNCHING SHEAR REINFORCI
@ SEE DWG. $3.3a . NG

SLAB BAR PLACEMENT ORDER 5

UPPER LAYER TOP
(NORTH-SOUTH DIRECTION)
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INTEGRITY REINFORCING:
|
|
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NOTES;
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figure 12.95  Notes related to reinforcement in two-wa
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DESIGN oF TWO-way SLABS
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[

Most lwWo-way slah g inrei

porcd by aglms any:ll;;n\iallnl re_ll;]forccd concrete buildings are floor and roof slabs sup-
slabs depending on the in et
fcr gravity loads in one
n two directions, Two-
popular floor system fo

manner in \vhichy:}:cms can be diVifjed into one-way and two-way :

direction, while cy transfer gravity ltl)ads. One-way slabs trans- *

way Slal;q o 0-way slabs are continuous structures spanning

s S asy 1o form anq construct, and they are the most .
I-storey building construction in Canada. L

Types of two-way slabs The four main types of two-way slab sysiems arc as follows:

Flar i ; .
Colur’;lggf}:t’vﬁ::‘ﬁr‘;‘::ll: slabs reinforced in wo directions and supported directly by
ness is usually c(-)mm»“»c{]- bcn'; is cconomical l'(ll.' short and mcdium spans. The slab thick-
Flat slab is a column- o ¥ Oll;g-lcnn deflections and purnchmg shear.
cned regions of the Slabf‘ft wal ;Jsupponcd slab system with drop panclls. that is, thick-
he punchiné e e lu.nl;E at the columns. Drop panels are pll‘()\'l(..icd to incr.cnsc }
Wagie sab C;mi‘ : pacn'(y of the slab and help {oponlml dciﬂec!.mns in mldspan regions.
i sts of evenly spaced concrete joists spanning in two dircctions — this
system is also known as a two-way joist sysiem, The joists are formed by using standard
pans or domes installed in the forms to produce a colfered soffit in the slab. WalTle slabs
olfer an economical design solution for longer spans, and are particularly advantageous
when the use of heavy loads is desired without the use of decpened drop pancls, capitals,
or support beams.
Slab with beams consists of solid slab panels supported by beams on all lour sides. When
the ratio of the span lengths for a panel approaches 2.0, load is predominately transferred
by bending in the short dircction and the pane! essentially acts as a one-way slab. As the
panel approaches a squarc shape, 2 significant load is translerred by bending in both
orthogonal directions, and the panc! should be treated as a two-way slab,

Design of two-way slabs for The lollowing four procedures can be used lor flexural design of two-way slabs according i
Mlexure to CSA A23.3:
1. Direct Design Method (DDM) is 2 statics-based method which can be used 1o design )

repular two-way slabs for flexure (C1.13.9). The method reats & ﬁlub as a wif]c beam
\vi‘lh a width equal 10 the wibutary portion between col_umn centrelines. l?r.cscnhcd mo-
ment coelficient values can be used to determine bending moments a cnucnl_ Iocfnmlns
within a slab span (supports and midspan). The moment at each critical location is dis-
tributed Iransversely between column and middle strips in fat slabs and {Tat plates, or
g n and slab strips in slabs with bearns. - -
bCI“{Ctln blﬂll:mmc Method (EFM) idealizes a 3-D building structure lcopsnsun_g ol.nl.nb{
Eauivi e s ol p:mlllcl 2-D equivalent frames in cach principal dll’cCllU.I'I o(:
; rame is analyzes arately, and the results are combine

ildi -h cquivalent [rame 1 analyzed scparaf ed
o bm:m:ﬁfii; so‘}mion {or an entire slab at the floor level, CSA A23.3CLI38 refers

to creale d En S
; ~eglgh systems as elastic frames .
to this mclhodllu o hk{t? ?i\bl;]m:is idealizes a structurc as a 3-D madel, where slabs are
3 Thmc-Dimcnslonﬂl Elml'L . -)l/c;nlcnls and columns arc modelicd as linear clements.
modelled a5 2D (o) . t ical an;;lysis procedure based on the Elastic Plate The-
This is 3 cgn\puler-buSCU n.umt,m lex slabs with irregutar (non-

oty (C1.13:). This method 0008

riate lor design of comp
i  haracterized by large column and
: Jabs with regular plans characlerize
shapes, OF slabs will
rectangular) plan 8
wall offsets relative

10 4 rectangular grid.
4, Theorems of Plasticily

Cl.13.7):m:ublc to predict the e
d Line Method ((YLM) and Hillerborg's strip method give un up
the Yield Lan vl
bound estimaic n:spc(,lm,ly. T

he YLM can predict the ultimate lond (load cup‘.:ci'ly) lglor
c is is performe jing the
s i e T e
a slab panel V! h(x:[f, compare possible yield patierns (Fuilure scenarios

gl Work Methoe 955 :
vll;u;:nb The governing yicld pattern
ular slab.

is the one that gives the least load capacity at the
i ad capacily
stage. When {he ultimute joad capacity
ultimate SWEE

[ad

and columns s & seric

predict the uitimate load capacity of a siab:
per- und o lower-

in the slab hos been reuched. plastic
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Design of two-way slabs for
shear

Deflections in (wo-way slabs

CHAPTER 12

rotation occurs along yield lines, straight cracks across which the einforg;
yielded, while regions between these yicld lines act like rigid bodics, ng bay hag

Shear failure in two-way slabs is sudden and must be carefully considereq
1wo main CSA A23.3 shear design considerations are related (o

+ one-way shear (C1.13.3.6) and
 (wo way shear (C1.13.3.3 10 13.3.5).

N the d"Sign.]h

The two-way shear (or punching shear) resislance is particularly critical for
Mat slabs, duc to chances ol potentially catastrophic collapse associated wi
mechanism. Shear stresses in two-way slabs are due to the combined effecy o
and unbalanced bending moments transferred through slab-column connecyj
of the bending moment at the slab-column conncction is transferred throy
resisted by the flexural reinforcement, while the remainder is transferred through shey,
stresses at the critical perimeter. Shear resistance in two-way slabs is provided by conery
and reinforcement. Shear stresses in a slab with beams may be rcsis(cdjoinlly by the sigy
and the supporting beams.

.nm Plates ang
Wh this failur
I graviy load,
005. A fracig,
h Nexure

Dc(lection control is one of the key design considerations [or two-way slabs. Excessive de-
fections can cause damage 1o non-structural elements such as partitions and glazing, ang
noticeable deflections appear unsafe. Immediate and long-term deflections due to senvic
loads must remain within the limits prescribed by CSA A23.3 Table 9.3.

CSA A23.3 prescribes the [ollowing two approaches for deflection control:

1. Indirect approach permits the use of minimum slab thickness which results in a b
design, thus detailed dellection calculations are not required (Cl1.13.2.2). This approach
can be applied only to regular iwo-way slabs.

2. Detailed deflection calculations must be performed for slabs with span-to-thickness ratio
below the CSA A23.3 limit.

Deflections in two-way slabs can be eslimated by applying one the following three methods:

1. The Crossing Beam Method is based on treating a two-way slab as an orthogonal on-
way system, thus allowing the deflection calculations by beam analogy. )

2. The Equivalent Frame Method uses a linear elastic analysis of 2-D frames. An effectie
moment of inertia is calculated across the full width to account for cracking. )

3, The Finite Element Method is a computer-based method which can be used 10 obian
both internal (orces and deflections in two-way slabs. Depending on the software i
bilities, it can be used either for linear elastic or nonlincar analysis which takes 0%
count the effect of cracking.
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Crless noted otherwisc. the lollowing mayer;
qould be used: conerele f° = 30 Mp, (no
Y ete) and steel f, = 400 MPa.

al propertics
rmal density
conere
21 Consider a 300 mm thick fla plate pane| supported
by walls on all sides shown in the figure. The siah i
subjected Lo a 1000 kN point load g midspan,(poim
P). Estimate the reactions at points A and C, Assume
that imaginary 300 mm wide strips AB and CD carry
the load simultancously.

F&_"
A
-
f’—BOOmm TN
Wall
3 P
al C O D
© 300mm
Jl_
B

122, The slab of Problem 12.1 has been modified to in-
cludc beam AB in the longitudinal direction, as shown
in the (igure. The slab is subjected (o the same point
load (1000 kN) as in Problem 12.1. Find lh?: reac-
tions at points A and C, by using the same stnps AB
and CD of Problem 12.1.

l,___:ﬁ)l——-{
A
- T N
Wall
E;_ C 2] D
i It g 4 .
+
600 mn
300 mm
()

Section 1-1
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123, Consider the flat plate system from Example 12.1.

Il;J::dl'hc Direct Design Mclhod 1o determine design

Ing moments and reinforcement for an interior
frame along gridline B. Use the same slab thickness
(180 mm) as in Example 12.1, Consider unbalanced
mnrncnlls and moment transfer through slab-column
connections in the design.

124, Redesign the slab of Problem 12.3 using the Equiva-
lent Frame Method. Compare the bending moments
and reinforcement obtained using the Equivalent
Frame Method and the Direct Design Method.

125, Atypical floor plan of a hospital building is shown in
the figure. The Noor system is a flat plate and it is sub-
jected 1o specified live load (LL) of 3.6 kPa, and su-
perimposed dead load (DL‘) ol 1.5kPa, in addition 1o
its self-weight. Design a typical inerior panel for
flexure. Consider unbalanced moments and moment
transer through slab-column connections in the de-
sign. Select the slab thickness such that a deflection
check is not required according to CSA A23.3. As-
sume that edge beams are not provided.

a) Use the Direct Design Method.

b) Use the Equivalent Frame Method.

¢) Compare the results (bending moments and
reinloreement).

@._.

1500 mm x 500 mm

E
al | columns (typcal)
© !

@_..

60m

80m

Problem 12.5 by cunsidcn'lng

Jurn locations only. Use min-
. . A AT

imum drop pancl dimensions permitted by CSA’ ;\.3 :

ise the slab thickness based on the CSAVA-. 3

o | slabs. The slub plan dimensions

12.6. Redesign the slab _l'mm
drop panels at interior ¢o

quircments for (la
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12.7.

80m

6.0m

80m

12.8,

CHAPTER 12

and loading are the same as in Problem 12.5. Design a

typical interior pane] for flexure.

a) Use the Direct Design Method.

b) Usec the Equivalent Frame Method.

¢) Compare the results (bending moments and
reinforcement).

Design of the (loor system from Problem 12.5 nceds

to be modified due to architectural constraints.

Columns 2-A and 3-B need to be moved and are off-

set by | m relative to the gridlines, as shown in the

figure. The slab dimensions and loading arc the same

as those in Problem 12.5. Design an interior panel for

flexure.

a) Use the Direct Design Method.

b) Use the Equivalent Frame Method.

¢) Compare the results (bending moments and
reinforcement).

. 80m 60m - 80m
1 1 ! N

.-ﬁ" ............. (e L B = T
i ' i i
i 1 i i
i | 1 i
i i i i
t i i i
i 1om i i !
P A G Womimmemiee A m i m e a
] i i i
’ i i i
‘ o i i i
i 1.0m, | i t
i p a i
[ PO [ SR B &
1 ) 1 '
i i ' |
i i 1 1
' i 1 i
i 1 I 1
a i : -
R I e i
' ! ! !

Consider the floor plan from Problem 12.5. The design
needs to be modified by providing beams on all sides.
Assume 400 mm square columns and beam webs
matching the column width. The beam depth should
be selected such that the reinforcement ratio is ap-
proximately equal to 40% of the balanced ratio (0.4
p,)- Revise slab thickness based on the CSA A23.3
requirements for slabs without beams. The plan di-

12.9.

12.10.

12.11.

’

C as jp PTO
lor Nexure

mensions and loading are the sam
12.5. Design a typical interior panel
a) Use the Direct Design Methog,
b) Usc the Equivalent Frame Mecthog
¢) Comparc the results (bendin '
reinforcement).

Blen,

2 Momepg ag

Consider a two-way flat plate Noor .

in Problem 12.5. Usc the slab lhick?l):slscr:rdzmgn

and an cffective depth of 160 mm. The slab ]00:_ mm

the same as in Problem 12.5, resulting inlhcra 2

arca load w, = 12.6kPa. Design the slap [oarm;wd

according 1o the CSA A23.3 requiremens, Co: _:&r

only an interior column at the intersection orgrid?: .

2and C. s

a) Perform the design by disregarding (he elfectof
unbalanced moments.

b) Consider the effect of unbalanced momens, 34
also shear and moment transfer at (he slab-columy
connection. Use unbalanced momenis calcylyeg
in Problem 12.5.

Consider the slab-column connection of Problen
12.9. Design shear stud reinforcement assuming thy
the 10tal factored load had to be increased by 30%.
but the slab thickness needs to remain unchanged.
Consider the flat plate system shown in Problem 125.
A change in the building function took place afier he
design was performed, and the building is going o
have a residential occupancy. The floor s subjectedto
specified live load (LL) of 1.9 kPa and superimposed
dead load (DL) of 1.5 kPa, in addition to its self
weight. The owner requires 200 mm slab thickns
for this design.

a) Caiculate deflection for an interior slab panel &
cording to the Crossing Beam Method. Usether
inforcement designed in Problem 12.5. Consider
both immediate and long-term deflections. C}’“‘
sider 20% of the specified live load (o be Susi
for long-term deflection calculations.

b) Check whether deflections are within the (54
A233 limits, Note that, according (o he &5
requircments, the underside of each CO";“I
floor slab serves as the ceiling for the -[::s
below. Consequently, non-structural e'lf"“
are likely 10 be damaged by large deﬂecuun;sid_
that should be 1aken into account when ¢
ering CSA A23.3 deflection limits.




Walls

LEARNING OUTCOMES

After reading this chapter, you should pe able to

. i .

: ;(:tht‘z.lthé:]ght main ty_pes of reinforced concrete walls

: dESigyn bzaﬁn A233 requxren?ean for detailing of wall reinforcement
. g walls for gravity load effects

. desTgn basement walls subjected to lateral earth pressure

* design shear walls for flexure and shear effects

INTRODUCTION

Walls are vertical structural members used 1o enclose or separate spaces. In addition, walls may
be used to retain carth and liquids or resist wind pressures or to contain bulk matcrials in storage
containers. Bearing walls can be designed like columns to support gravity loads or like beams to
carry concentrated and uniformly distributed gravity loads and transler them down (0 the foun-
dations. Walls also have an important role in resisting lateral loads duc to winds and earthquakes.
This chapter is focused on the conceptual design ol bearing walls, basement walls, and
shear walls. Different types of walls are outlined in Scction 13.2. General CSA A23.3 design
and detailing requirements are discussed in Section 13,3, The design of bearing walls is dis-
cussed in Section 134, whereas the design ol basement walls is discussed in Section 13.5.
Basic concepts related to the design of shear walls are discussed in Section 13.6. §1rucluml
drawings and details [or reinforeed concrete walls are discusscd in Section 13.7. Bricl cover-
age ol'jboinls in reinforced concrete walls is included in Sccli.un 1.3'8' ) 3
Advanced topics related to wall design, such as seismic design and detailing, are

beyond the scope of this book. For more details on the seismic design ol walls, the reader

is referred to Paulay and Pricstiey (1992).

TYPES OF WALLS

n. reinforced conerete walls can be classified as follows:

Based on their functio
retaining walls
bascment walls

o grade beams

+ bearing walls

o shear walls

o wall pancls

o [ire walls

o tilt-up walls
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