SOLUTIONS MANUAL FOR

A First Course In
Machine Learning

(2Nd Edition)

Exercise Solutions

by

Simon Rogers and
Mark Girolami

K26591_SM_Cover.indd 2 05/04/16 3:37 pm

SOLUTIONS MANUAL FOR

A First Course In
Machine Learning

(2Nd Edition)

Exercise Solutions

by

Simon Rogers and
Mark Girolami

CRC Press
Taylor &Francis Group
oooooooooooooooooooooo

Taylor & Francis Group, an informa business

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20160404

International Standard Book Number-13: 978-1-4987-3859-0 (Ancillary)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and
information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission
to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or
retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact
the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides
licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment
has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation
without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

K26591_SM_Cover.indd 4 05/04/16 3:37 pm

K26591_SM_Cover.indd 5

Chapter 1

EX 1.1. A high positive value of wy and a small negative value for wy. These reflect the
high intercept on the ¢ axis (corresponding to the theoretical time winning time at

x = 0 and the small decrese in winning time over the years.

EX 1.2. The following would do the job:

% Attributes are stored in Nxl vector x
Targets are stored in Nxl vector t
xb = mean (x);

tb = mean(t);

x2b = mean (x.*Xx);

xtb = mean (x.x*t);

wl = (xtb — xtxxb)/ (x2b—xb"2);

w0 = tbh—wlxxb;

% Plot the data
plot(x,t, 'b."', 'markersize',25);

% Plot the model

hold on;

plot (x,w0+wlxx, 'r', "linewidth',2);

o°

© 0 N O U A W N H

o e e
w N o= O

EX 1.3. We need to find w'XTXw. We'll start with XTX. Multiplying X" by X gives:

N N
XTX — z]\;n:l T Zn:]\} Tn1Tn2
Zn:l Ln2Tnl Zn:l 1‘7212

Multiplying this by w gives:

N 2 N
Wo Zn:l Tp1 T W1 Zn:l Tn1Tn2

X Xw = W n
Wo Zn:l Tn2Tnl + w1 Zn:l Tn2

05/04/16 3:37 pm

K26591_SM_Cover.indd 6

CHAPTER 1.

Finally, pre-multiplying this by w' gives:

N N
T~ T _ 2
w X' Xw = wy | wp Ty +wp TpiZno | +
n=1 n=1
N N
2
wl [wo E Tpolnl + W1 g Tho
n=1 n=1

N N N

2 2 2 2

= wj E T, + 2wow; E Tp1Tn2 + W] E Tyo
n=1 n=1

n=1

as required.

EX 1.4. Let’s first work out Xw:

WoZ11 + W1T12
WoT21 + W1T22

Xw =
WOTN1 + W1TN2

Therefore

X T _

(Xw)' = [woz11 + wiT12, WoT21 + W1T22, ... , WoLN1 + WITN2)
Finally, work out w'XT:

TxT _
w = [wox11 + W1T12, WoT21 + W1T22, ... , WoLN1 + WITN2)

as required.

EX 1.5. Starting with) x,t,. The result of this is a column vector of the same size as x

(2 x 1). Now, using the definition of X,

xXT — T11,2215---,TN1
T12,T22,..-3TN2

(which is a 2 x N vector). Multiplying this by t gives a 2 X 1 vector that looks like
this:
XTt = l Zgzl Tutn]
2 n=1%n2tn

which is), x,t, as required. The second example, XTXw. We already know what
XTXw is (Exercise 1.3)

N 2 N
XTXw — Wo anl Ty Wi anl Tn1Tn2
w = R7 N
Wo Zn:l Tn2Tnl + w1 Zn:l Tn2

Now, x,x, is the following matrix:

2
x XT _ Tn1 Tn1Tn2
non Tpolnl T2

05/04/16 3:37 pm

K26591_SM_Cover.indd 7

EX 1.6.

EX 1.7.

EX 1.8.

EX 1.9.

Multiplying this by w gives:

2

T.. | Woxy +wWiTn1Tn2
XpX, W = 9

WOLp2Tp1 + W1T;,o

Summing over the N terms leads us to the matrix we derived previously.

Code below:

1 %% Women's 100m data

2 % Load all Olympic data

3 load olympics;

4 % Copy the necessary variables

5 x = femalelOO(:,1); % Olympic year
6 t = femalelOO(:,2); % Winning time
7 % Augment x

8 X = [repmat (1l,size(x)) x];

9 % Get solution

= inv (X'"*X) *X"xt;

H
o
=

The fitted model is:
t = 40.9242 — 0.0151x

Plugging 2012 and 2016 into the above expression yields winning times of 10.5997
and 10.5394 respectively.

The men’s model is:
t = 36.4165 — 0.0133x

The women’s model is:
t = 40.9242 — 0.0151x

The women’s time is decreasing faster than the men’s. Therefore, the women will
be faster at the first Olympics after the x that gives identical winning times:

40.9242 — 0.0151x = 36.4165 — 0.0133x
r = 2589

The next Olympic year after 2589 is (assuming they continue to be held every four
years) is the year 2592. The winning times are the unrealistically fast 1.8580 seconds
and 1.8628 seconds for women and men respectively.

Code below (synthdata_cv.m):

clear all;close all;
load synthdata

N

% Augment x
X = repmat (1,size(x));
for k 1:4
X [X x."k];
end

© w N o «

05/04/16 3:37 pm

K26591_SM_Cover.indd 8

4 CHAPTER 1.

10 % Fit the model

11 = inv (X'*X) *X"*+t;

=

12
13 % Randomise the data order

14 N = size(X,1);

15 order = randperm(N);

16 sizes = repmat (floor (N/10),1,10);

17 sizes(end) = sizes(end) + N—sum(sizes);
18 sizes = [0 cumsum(sizes)];

19
20 X = repmat (1l,size(x));
21

22 loss = zeros (4,10);

23 for poly-order = 1:4

24 % Augment x

25 X = [X x."poly._order];

26 for k = 1:10 % 10—fold CV

27 % Extract the train and test data

28 traindata = X (order, :);

29 traint = t (order);

30 testdata = X (order(sizes(k)+1l:sizes (k+1)),:);
31 testt = t(order(sizes(k)+l:sizes(k+1)));

32 traindata(sizes(k)+1l:sizes (k+1),:) = [];

33 traint (sizes(k)+l:sizes (k+1)) = [];

34

35 % Fit the model

36 w = inv (traindata'xtraindata)*traindata'=*traint;
37

38 % Compute loss on test data

39 predictions = testdatax*w;

40 loss (poly-order,k) = sum((predictions — testt)."2);
41 end

42 end

43
44 % Plot the loss
45 plot([l:4],mean(loss,2));

EX 1.10. The total loss is
N
L= Z(tn —w'x,)2
n=1
Writing this in matrix form, differentiating and solving gives us:

L = (t—Xw)'(t—Xw)
= tht—2w' X"t +w' X" Xw

oL _ —9XTt +2X"Xw =0
ow
w = (X'X)"'XTt.

This is identical to the value obtained for the average loss. It is not surprising as
all we are doing is multiplying the loss by a constant and this will not change the
value of w at the minimum.

05/04/16 3:37 pm

K26591_SM_Cover.indd 9

EX 1.11. The loss is given by

1 N
_ To \2
L= Nza”(t” - W 'Xp,)
n=1
If we define the matrix:
a1 0 0
0 [65) 0
A= .
0 0 QN

we can write the loss in vector/matrix form as:
1
—_— J— T —
L= N nil(t Xw)' At — Xw)

Multiplying out, differentiating, equating to zero and solving;:

1
L = N(tTAt—2wTXTAt+wTXTAXw)
oc 2 o7 2 o7 B

w (XTAX)'XTAt.

Try this out in Matlab (set some «,, very low and some very high) to see the effect

on the solution.

EX 1.12. Code below (regls100m.m):

clear all;close all;

load olympics;

% Extract men's 100m data
= malel00(:,1);

= malel00(:,2);

o

Choose number of folds
= 5;

© W N G A W N =
= (e

Randomise the data order

= size(x,1);

order = randperm(N) ;

sizes = repmat (floor (N/K),1,K);

sizes (end) = sizes(end) + N—sum(sizes);
sizes = [0 cumsum(sizes)];

e e e e
o vk W N R O
ZAE)

s Rescale x
=x — x(1);
= x./4;

(ST
S © w N
XX ol

¥
—

= [repmat (1,size(x)) x];
Comment out the following line for linear
= [X x.72 x."3 x.747];

NN
[N
Moo X

05/04/16 3:37 pm

K26591_SM_Cover.indd 10

28

CHAPTER 1.

% Scan a wide range of values of the regularisation perameter

reg

for

end

vals

r =
for k

end

= 10."[—12:1:12];

l:1length(regvals)

= 1:K

% Extract the train and test data

traindata = X (order, :);

traint = t (order);

testdata = X (order(sizes(k)+l:sizes(k+1)),:);
testt = t(order(sizes(k)+l:sizes(k+1)));
traindata (sizes (k)+1l:sizes(k+1),:) = [];
traint (sizes(k)+l:sizes (k+1)) = [];

% Fit the model

w = inv(traindata'*traindata + regvals(r)xeye(size(X,2)))*...
traindata'*traint;

% Compute loss on test data

predictions = testdatax*w;

loss(r,k) = sum((predictions — testt)."2);

05/04/16 3:37 pm

K26591_SM_Cover.indd 11

Chapter 2

EX 2.1.

EX 2.2.

EX 2.3.

EX 2.4.

The errors are real valued and hence a continuous random variable would be more
appropriate.

If all outcomes are equally likely, they have the same probability of occurring.
Defining Y to be the random variable taking the value shown on a die, we can state
the following;:

PY =y)=r,

where r is a constant. From the definition of probabilities, we know that:

Substituting r into this gives us the following:

6
Zrzl, 6r=1, r=1/6.
y=1

(a) Y is a discrete random variable that can take any value from 0 to inf. The
probability that Y < 4 is equal to the sum of all of the probabilities that satisfy
Y<4Y=0Y=1Y=2Y=3Y=4

4

P(Y <4)=> P(Y =y).
y=0

When A\ = 5, we can compute these probabilities as:
P(Y <4)=0.0067379 + 0.0336897 + 0.0842243 + 0.1403739 + 0.1754674 = 044049.

(b) Because Y has to satisfy either P(Y| < 4) or P(Y > 4), we know that P(Y >
4)=1-P(Y <4):
P(Y > 4) = 0.5591.

We require E,(,) {sin(y)} where p(y) = U(a,b). The uniform density is given by:

e a<y<b
0 otherwise

05/04/16 3:37 pm

8 CHAPTER 2.

The required expectation is given by:

Ep(y) {sm(y)} =

= sy,
_ cos(a) — cos(b)
b—a

When a = 0, b =1, this is equal to

— 1
E,«y) {sin(y)} = w = 0.45970.

Code to compute a sample-based approximation below (sampleexpect.m):

1 clear all;

2 close all;

3 % Compute a sample based approximation to the required expectation
4 u = rand(10000,1); % Take 10000 samples

5 su = sin(u);

6 % Plot how the approximation changes as more samples are used
7 ns = 10:100:10000;

8 stages = zeros(size(ns));

9 for i = 1l:length(ns)

10 stages (i) = mean(su(l:ns(i)));

11 end

—
)

plot (ns, stages)

% Plot the true value

hold on

plot ([0 ns(end)1,[0.4597 0.4597], 'k—")

[T
AW

-
12

EX 2.5. The multivariate Gaussian pdf is given by:
-~ 1 1 Ty—1
P(W)WWGXI’{Z(WW % (WH)}~

Setting 3 = o1 gives:
1 1 Ty-1
p(W)ZWeXP —E(W—N) I (w—p).

Because it only has elements on the diagonal, the determinant of o?I is given

by the product of these diagonal elements. As they are all the same, |(72I|1/2 =
1/2

(H(?:l 02) = (0?)P/2, T-! =T and multiplying a vector/matrix by I leaves the

matrix/vector unchanged. Therefore, the argument within the expectation can be

written as —51z (W —)" (w — p) and recalling that b™b = Y, b?, we can rewrite
the pdf as:

— 1 1 - 2
o) = GryaraEyrE | Tggm e)

K26591_SM_Cover.indd 12 05/04/16 3:37 pm

K26591_SM_Cover.indd 13

Where wy and pg are the dth elements of w and p respectively. The exponential of
a sum is the same as a product of exponentials. Hence,

D

1 1 9
plw) = W(UQ)D/QHGXP{—W(wd—Md)}
D
= H(2ﬂ_)11/20_exp{_%i2(wd_ﬂd)2}

Y
I

1

p(walpa, o?),

I
S

.
Il

1

where p(wql|pa, %) = N(pa,0?). Hence, the diagonal covariance is equivalent to as-

suming that the elements of w are distributed as independent, univariate Gaussians

with mean p4 and variance o2.

EX 2.6. Using the same methods as in the previous exercise, we see that the determinant of
the covariance matrix is given by HdD:1 o2 and we have the following:

D
1 1 (wq — p1a)?
p(W): 1/2 exp{_2za2

(2m)P/2 (T12, 03) =i
Changing the sum to a product leaves us with

1 o 1)
pw) = P (Hle oﬁ) 12 (11;[1 exp {—203(% 2 }

D
11 e {—l(wd - Md)Q} :
e (2m)1/20, 202

This is the product of D independent univariate Gaussian densities.

EX 2.7. The Hessian for a general model of our form is given by:

1
-—=X'X
o
For the linear model, X is defined as:
1 X
1 X2
X=)
1 N
Therefore —%XTX is:
N
XTX — N Zn:l Tn

N N
Zn:l Ln Zn:l l‘%

05/04/16 3:37 pm

K26591_SM_Cover.indd 14

10

EX 2.8.

CHAPTER 2.

The diagonal elements are —N/o? and —(1/sigma?) 25:1 22 which are equiva-
lent (they differ only by multiplication with a negative constant) the expressions
obtained in Chapter 1.

We have N values, x1,...,xy. Assuming that these values came from a Gaussian,
we want to find the maximum likelihood estimate of the G and want to find the
maximum likelihood estimates of the mean and variance of the Gaussian. The
Gaussian pdf is:

1 { 1 ()2}
expl ——=(x, —
V2o P 202 a

Assuming the IID assumption, the likelihood of all N points is given by a product

over the N objects:
N 1
H L _ R
n=1 2o P { 202 (mn ’u) } .

We’ll work with the log of the likelihood:

AR 1 o1)
log L = Z —§log(27r)) log(c”) — ﬁ(iﬁn — 1)

n=1

To find the maximum likelihood estimate for u, we differentiate with respect to p,
equate to zero and solve:

dlogL al
ou B Z

n=1
N N
T S
n=1 n=1
N
B S
n=1
1 X
o Ay
N n=1
Similarly, for o2,
N
Olog L 1 1 9
= _— n — = O
D02 Z < 252 T 2(02)2(3J 0)

No* = > (zn—p) (2.1)

05/04/16 3:37 pm

K26591_SM_Cover.indd 15

11
EX 2.9. The Bernoulli distribution is defined as:
P(X, =z|r) =r"(1 —r)'=®

where x is either 0 or 1. Using the IID assumption, we have:

N
L= H PP (1 —)l e
n=1
and the log likelihood is:
N
logL = Z Zp logr 4+ (1 — x,) log(1l —r)
n=1

Differentiating with respect to r gives us:

dlog L N T 1=z
or n Z(r_ l—r)_o

n=1
N N
I
= .
n=1 r n=1 r
N N N
E xnfrg T, = errE Ty,
n=1 n=1 n=1
N
1
r = N E LTy
n=1

EX 2.10. The Fisher information is defined as the expectation of the negative second deriva-
tive. From the above expression, we can see that the second derivative of the

Gaussian likelihood (assuming N observations, x1, ...,z is:
d*logL N
o2 o?

Hence the Fisher information is equal to N/o?.

EX 2.11. Starting from the second expression, we have
N N N

P Y2 S ()

n=1 n=1 n=1

05/04/16 3:37 pm

K26591_SM_Cover.indd 16

12

CHAPTER 2.

Concentrating on the final term,

N N
Z(){T\’fv)2 = ZXI\/I\VVAVTXH

n=1 n=1

\
—

r(Xww'X")
rX(XTX) IXTet TX(XTX)~1XT)

(Xw
(
Tr(XTX(XTX) ' XTttTX(XTX) 1)
(
(

Il
—

Il
_|

r(XTttTX(XTX)™ 1)
= Tr(tt"X(XTX)"1XT)
Tr(tTX(XTX)"1XTt)
tTX(XTX)"1XTt)
= t'Xw

N

= g tax W
n=1

Therefore,
N N
-3 e
n=1 n=1
Now, Zn 112 =Tt and we already know that Zn tnX, W = t"Xw. So,

0% = % (676 —tTXW],

as required.

EX 2.12. Code below (predvar.m):

clear all;close all;

% Relevant code extraced from predictive_variance_example.m
x = rand(50,1)*10-5;

X = sort (x);

% Compute true function values

f =5%xx."3 — x.72 + x;

s Generate some test locations

testx = [min(x) :0.2:max(x)]"';

% Add some noise

10 t = f+randn(50,1)*sqrt (1000);

11 % Remove all training data between —1.5 and 1.5
12 pos = find(x>-1.5 & x<1.5);

N

© 0 N o «
o0

13 x(pos) = [1;

14 f(pos) = [1;

15 t(pos) = [];

16

17 % Choose model order
18 K = 5;

19
20 X = repmat (l,size(x));
21 testX = repmat (l,size(testx));

05/04/16 3:37 pm

13

22 for k = 1:K

23 X = [X x.7k];

24 testX = [testX testx."k];

25 end

26

27

28 w_hat = inv(X'#*X)*X'*t;

29 ss_hat = mean((t — X*xw_hat)."2);

30 pred.va = ss_hatxdiag(testX*inv (X'xX)*xtestX');
31 % Make a plot

32 figure(l);hold off

33 plot(x,t,'b.");

34 hold on

35 errorbar (testx,testX+w_hat,pred.va,

e

EX 2.13. The Bernoulli distribution for a binary random variable z is:
plalf) =07 (1—0)'~*

The Fisher information is defined as the negative expected value of the second
derivative of the log density evaluated at some paramater value:

J

02 log p(x|6)
7 ="Epap { ok

Differentiating log p(x|0) twice gives:

dlogp(xzl0) = 1-=x

00 S0 1-0
O*logp(zld) T 1—x
92 2 (1-0)

The Fisher information is therefore:
1 1
Fo= @Ben o+ g =gaBeen {1 -2}

Substituing in the expectations (0 and 1 — 6 respectively gives:

F_ 0,120 1
I) P TE)

EX 2.14. The multivariate Gaussian pdf is given by:

ol ®) = gz o { 500 WTE k-).

Logging and removing terms not including p:

1
EYTAD Sy7A

log p(x|p,) o pT X% — o

K26591_SM_Cover.indd 17 05/04/16 3:37 pm

14 CHAPTER 2.

First and second derivatives are:

9log p(x|p, 2)

— oyl et
ou x H
Plogpxli®)
opouT '
Therefore, the Fisher information is:
F=x"

K26591_SM_Cover.indd 18 05/04/16 3:37 pm

K26591_SM_Cover.indd 19

Chapter 3

EX 3.1.

EX 3.2.

Our Beta prior (with a = 5 = 1) is defined as:
p(r)=1 (0<r<1)

The binomial likelihood is given by:

P =yl) = ()

We know that the posterior density for r is proportional to the likelihood multiplied
by the prior, and we also know, because our prior is a particular Beta density, and
the Beta prior is conjugate to the binomial likelihood that the posterior must also
be a Beta density:

p(r|Y,N) oc p(Y =ylr,N)p(r)

o (1 —r)NYx1

= ro‘/_l(l — r)B/_l
suggesting that the posterior is a Beta density with parameters o/ = y + 1 and
B =N-y+1.
Using the same steps as the previous exercise:
p(Y =y|r,N)p(r)
rY(1—r)N7Y x 2r
Y1 —)Ny

ro‘/_l(l - r)B/_l

p(r|Y,N)

R R R

which suggests a Beta density with parameters o =y +2 and 8/ = N —y + 1.
To find the prior parameters corresponding to the prior p(r) = 2r, consider the form
of the Beta density (ignoring the constant term):

p(r) o r"_l(l — 7,),3—1 o 2r

o« r(1—r)°

From this, it is clear that the parameters are a = 2,5 = 1.

15

05/04/16 3:37 pm

K26591_SM_Cover.indd 20

16 CHAPTER 3.

EX 3.3. Using the same steps as the previous exercise:

p(Y =ylr,N)p(r)
rY(1 —)N 7Y x 32
rYT2(1 —)Ny

’I“O/_l(l —7“)*8/_1

p(rlY,N)

R R R

which suggests a Beta density with parameters o’ =y +3 and /' = N —y + 1.
To find the prior parameters corresponding to the prior p(r) = 3r2, consider the
form of the Beta density (ignoring the constant term):

p(r) occre 1 =)t 3r2

o (1 —r)°
From this, it is clear that the parameters are a = 3,5 = 1.

EX 3.4. The effective sample size is & — 1 heads and § — 1 tails. In the first example, this is
0 of each. In the second, we have 1 head and 0 tails and in the third, 2 heads and
0 tails.

EX 3.5. From the definition of expectations,

E,n{r} = /;; rp(r) dr
_ T(a+p) r=1 o _
= F(a)F(,B)/T_O rXT 1(177“)ﬁ Ldr
_ F(O[—Fﬁ) =t feY -1
= T o, T
_ T(a+p) [T -
= TR o, T
where o =a+1.

Now, the integrand is an unnormalised Beta density so its integral must be the
inverse of the Beta normalisation constant. Therefore,

T+ 8) D(@)0()

B I} = Fa)T(5) T 1 5)
_ D(a+6) Ia+1I(B)
F(@)T(B) T(a+B+1)

Now we require the following Gamma identity, I'(n + 1) = nI'(n).

I(a+ 8) T(@I(F) o
B I} = F(@)T() Ta +) a 1 B
a+ B

05/04/16 3:37 pm

17

EX 3.6. We require
2
var{r} = By {r’} = (Bper) {r})"-

From the previous Exercise, the second term is

o 1 = (55

The first term is computed as follows:

E,m{r’} = /T: r2p(r) dr

_ @ B) B
= TT() /T 0 /s
_ D(a+pB) Pt (1 =)il
B F(O‘ F 6 r=0 : ar
_ F(+ﬁ o' —1 B—1 d
T(@)I(3) [_o R
where o =a+2.

As in the previous Exercise, the integrand is just an unnormalised Beta density.

Therefore,
2 I'(a+8) P(a)I(B)

B) = Rt T + 5)
_ T(a+p) Tla+1+ 1)
 T(I(B)T(a+B+1+1)
_ Ta+p) Mla+1)I(B) a+1
- T(@r@)T(a+pB+1) a+pB+1
_ T@+BAT@rB) atl a
D@ T(a+pf)a+B+1a+p

ala+1)

(a+B)(a+p+1)
where we used the Gamma identity twice. Combining this with the expression for

(Epir) {r}) 2 gives

)
o

B a+1) 3 a?
(@t P)la+ B+ (a+pB)?
a(a+1)(a+ B) o*la+p+1)

(a+B8)2(a+8+1) (a+B8)2(a+B+1)
ala+1)(a+B)—a?(a+B+1)
(a+B)*(a+pB+1)
ap
(a+ B2 (a+B+1)

K26591_SM_Cover.indd 21 05/04/16 3:37 pm

K26591_SM_Cover.indd 22

18

CHAPTER 3.

EX 3.7. Assuming that the probability of heads is given by 7, we observe y heads in N

tosses, and r has a Beta prior with parameters « and (3, the posterior density is a
Beta density with parameters § = a+y and v = S+ N —y. The marginal likelihood
is given by:

_(N\ TIla+p) Tla+yn)l'(B+ N —yn)
povies)= (o) T e 54
The probability of winning is given by:

Ynew=10

Ep(r\yzv) {P(Yoew <6|r)} =1~ Z Ep(r\yN) {P(Ynew = Ynew|T)}

Ynew="7

where

Nnew > F((S + 'Y) F((S + ynew)r(7 + Nnew - ynew)

Ep(rlyN) {P(}/new = ynewlr)} = (F(5)I‘(7) F(5 +v+ Nnew)

yn ew

From the question, yy =9, N = 20.

Scenario 1: a = 8 = 1. The posterior density has parameters § = o + yy = 10,
vy=p8+ N —ynx =1+20—9 =12, The marginal likelihood comes out as: 0.0476.
The probability of winning as: 0.84812.

Scenario 2: a = 8 = 50. The posterior density has parameters § = o + yny = 59,
vy=8+N—yy =50420—9 =61. The marginal likelihood comes out as: 0.1486.
The probability of winning as: 0.83162.

Scenario 3: a = 5,8 = 1. The posterior density has parameters § = a + yy = 14,
y=pB4+ N —yny =1+20—9 = 12. The marginal likelihood comes out as: 0.0135.
The probability of winning as: 0.7211.

EX 3.8. Code below (scenarios.m):

clear all;

close all;

% Define an array to hold the three scenarios
% Each row is alpha,beta for one scenario
hypers = [1,1;50,50;5,1];

scenario = 1; % Change this to look at different ones

© 0w N U A W N e

% Generate the 100 tosses
N = 100;

toss = rand(N,1)<0.7;
Nheads = sum(toss);
Ntails = N — Nheads;

P~ S~ S S S
L S =

% Compute the posterior
alpha = hypers(scenario,1l);
beta = hypers(scenario,?2);
postalpha = alpha + Nheads;
postbeta = beta + Ntails;

[S S
S ©vw ®w N o

05/04/16 3:37 pm

K26591_SM_Cover.indd 23

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

19

% Plot the posterior and prior

figure(l);hold off

x = [0:0.01:1];

plot (x,betapdf (x, hypers (scenario, 1), hypers (scenario,2)));
hold on

plot (x,betapdf (x, postalpha, postbeta), 'r")

legend('Prior', 'Posterior');

Compute the marginal likelihood (Equation 3.14 in book)
Note we do it in log space first, because of numerical issues
ml = log(factorial(N)/ (factorial (Nheads)+factorial (Ntails)))+...
gammaln (alpha+beta)—gammaln (alpha)—gammaln (beta) +. ..
gammaln (postalpha)+gammaln (postbeta) —gammaln (postalphat+postbeta+N) ;
ml = exp(ml);

o
S
o
S

Probability of winning
Compute prob of y=7,8,9,10

41 exp (...
42 log(factorial(10)/ (factorial (i) +«factorial(10—1))) +
43 gammaln (postalpha+postbeta) — gammaln (postalpha) — gammaln (postbe¢ta)
44 gammaln (postalpha+i) + gammaln (postbeta + 10 — i) —
45 gammaln (postalpha+tpostbeta+10) ...
46)
47 end
48
49 % Compute probability of winning
50 prob = 1 — tot;
EX 3.9. Firstly equate the two expressions and then re-arrange to find X:
1 L o —1 - T T 1T
g g
1 /1 ! 1
T -1 _ T -
02(02X X+ 3%) = (XX + NAI)
1 /1 !
(XTX + NAL) (2XTX+Z}01> =1
g g
T 1 Lot —1
g (o
1 NA 1 _
SXTX+—1 = SX'X+x;!
g (o g
2
g
o = —I 3.1
0o = (3.1)

EX 3.10. See figure below:

+

05/04/16 3:37 pm

K26591_SM_Cover.indd 24

20

Do

EX 3.11. Code below (marglike.m):

CHAPTER 3.

1 clear all;close all;

2 % Generate the data

3 N = 100;

4 x = rand(N,1)*10-5;

5 X = sort(x);

6 ss = 100;

7 f = 5%x."3 — x.72 + x;

8 t = f + randn(size(f)) *sgrt(ss);
9

10 % Choose \sigma.-0"2

11 ss0 = 0.3; % Try increasing this

)

13 % Loop over model orders
14 order = [1:7];

15 X = repmat (l,size(x));
16 for i = l:length(order)

17 mu0 = zeros(order(i)+1,1);

18 s0 = ssOxeye (order (i)+1);

19 X = [X x."order(i)];

20

21 mlmean = XxmuO;

22 mlcov = ssxeye (N) + XxsO0*X';

23

24 logml (i) = —(N/2)xlog(2xpi) — (N/2)+*log(det (mlcov)) —
25 0.5* (t—mlmean) '+inv (mlcov) * (t—mlmean) ;

05/04/16 3:37 pm

21

26

27 % Note that the non log value may be numerically instable.
28 ml (i) = exp(logml(i));
29 end

EX 3.12. Assuming w is fixed, and the following inverse gamma prior on o2

p(0?la, B) = rﬁ(:) (62~ exp {_fz} .

The likelihood is the standard Gaussian likelihood:

1 1
2y _ T
p(tlw, X, 0%) = TN exp {—202 (t—Xw)' (t— XW)}.

(2m)N/2(

The posterior density over o2 is therefore proportional to the product of these two
densities. Collecting similar terms:

o X, 0,8) o (%) b exp { = (5 L= X6 - X)) |

This is another inverse gamma with parameters o* and g* given by:

N
(0% = « -
2

8+ %(t —Xw)"(t — Xw).

=
*
Il

K26591_SM_Cover.indd 25 05/04/16 3:37 pm

22 CHAPTER 3.

K26591_SM_Cover.indd 26 05/04/16 3:37 pm

K26591_SM_Cover.indd 27

Chapter 4

EX 4.1. Assuming the following prior density for w:

p(w) =N(0,1Ip),

the posterior is:

N
p(wlti, ..., tn, X1, ..., xn) < N(0,Ip) Hp(tn|w,xn)

n=1

Combining all of the D—dimensional data objects into an N x D matrix X and
the labels into a vector t allows us to write this as the product of two multi-variate
Gaussians:

1 1
p(w|t, X) o exp {—QWTW} exp {_Q(t —Xw)T(t — XW)} .
Re-arranging and equating coeflicients gives the posterior:

1
p(w|t,X) o exp {—2 (ww+tt+w X Xw— WTXTt)}

= N(p.X)
» = X'X+1Ip)!
p o= XXt

The Laplace approximation approximates the posterior with a Gaussian with mean
equal to the posterior mode and a covariance matrix equal to the negative inverse
of the second derivate of the log posterior. Removing constants, the log posterior is
equal to:

1 1
g=—-w'w— i(t —Xw)T(t — Xw).

2
To find the maximum value, we take partial derivatives with respect to w:
99 1 T T
— =— 2I+X'X)w —2X't).
gw ~ 3 QI+ XTX)w)

Setting to zero and solving for w gives:

w=(T+X"X)"1XTt.

23

05/04/16 3:37 pm

K26591_SM_Cover.indd 28

24

EX 4.2.

EX 4.3.

CHAPTER 4.

This will be the mean of the Gaussian approximation and we can already see that
it is equal to p, the posterior mean.

To find the covariance matrix, we take second derivatives of g:
0?%g
owowT

The covariance of the Laplace approximation is therefore:

(I+XTX)"t

= —(Ip + XTX).

This is identical to the posterior covariance matrix thus confirming that the approx-
imation is, in this case, exact.

We are interested in the Laplace approximation to the posterior p(r|N,y, «,). The
first step is to find the MAP value of r. The log posterior is (removing constants):

g=(a—=1)logr+ (8—1)log(1 —r)+ylogr+ (N —y)log(l —r).
Taking partial derivatives with respect to r leaves:
99 _a+y—-1 p+N-y-—-1

or r 1—7r
Re-arranging this expression gives the MAP solution for r:
— a+y—1
"ot B+N-—-2

This will be the mean of the Gaussian approximation. The variance is given by:

o _(P9)
or?

a+y—1 B+N-y—1\"
(2 (=))

The plot below shows an example where « = 8 =2, y = 2, and N = 10.
3.5 r r

Exact posterior
- = = Laplace approximation

0 0.2 0.4 0.6 0.8 1

05/04/16 3:37 pm

K26591_SM_Cover.indd 29

EX 4.4.

EX 4.5.

EX 4.6.

25

This is a nice example to illustrate the power of sampling. Imagine sampling pairs
of values from uniform distributions between -0.5 and 0.5. These values would be
uniformly distributed in the square shown below:

The probability that one of these points lies within the circle must be equal to the
ratio of the area of the circle to the area of the square. We can obtain an empirical
estimate of this value by say generating N pairs (i.e. points) and then computing
the number of pairs that lie within the circle (s). Then:

S 7T'f’2

~ — 02
N Tx1 0.5°m.

Re-arranging this expression will give an approximate value of 7:

- S
T 052N

For example, one random sample of 100 points yields a value of:
w ~ 3.240.

As we would expect, this approximation will, on average, get better as we take more
samples. An example after 10000 is:

T~ 3.129.
Re-arrange as follows:

P(Tnew = 1‘XneW7 ‘/7‘7)

1 ~
Il + eXp(—waneW)

05 = % = %1 + exp(—vAvTxneW)
2 = 1+ exp(—v?/TxneW)
1 = exp(0) = exp(—F Xpen)
therefore W Xpew = 0.

Assuming a Gaussian prior:

p(w) = N(0,1p),

and:
vp = exp{w'x,}
the log posterior is proportional to:
1
g= —§WTW + zﬂ: (tn log v, — vy) .

The gradient is obtained by taking partial derivatives with respect to w:

dg t, Ov,, Ov,

05/04/16 3:37 pm

K26591_SM_Cover.indd 30

26

EX 4.7.

EX 4.8.

CHAPTER 4.

Now,
I _
ow "
and therefore:
@:—W—FZX (tn — vn)

n

The Hessian is obtained by differentiating a second time. You might find it worth-
while to work out each element of the matrix individually for (say) D = 2 if this
step appears difficult:

329 T
FwowT = 1 2 v,
n

Given some initial value of w, the optimisation scheme repeatadly updates w as
follows until it converges to a maximum:

1
W W — fIvanxnxl waern(tnfvn)
n n

Given the result of the previous exercise, this is straightforward. The Laplace ap-
proximation is a Gaussian with mean p and covariance X where p = w, the maxi-
mum obtained using the Newton-Raphson scheme derived in the previous exercise
and the covariance is:

—1
—~ T
=- —I—g UpXnX, ,
n

where:
Oy = exp{W'x,}.

Example code below (poisscount.m):

% Laplace and Metropolis—Hastings for a Poisson Counts model
¥ Simon Rogers, August 2011

clear all;

close all;

o

o\

% Generate the 'true' data.

= 200; % Number of data objects
[repmat (1,N, 1) randn(N,1)];
randn (2,1);

© 0 N O U A W N

[
= o
5 X =2
I

temp = exp (x*w);

=
w N

t = poissrnd(temp);

-
IS
o

15 ruew = w;
16 % Newton Raphson
17 Initialise w

18 w = rand(2,1)*5;

19 wall = [];

o° o

05/04/16 3:38 pm

27

20 change = inf;

21 temp = exp (x*w);

22 11 = —0.5%w'xw + sum(t.xlog(temp) — temp);

23 while change > le—3

24 % Compute gradient

25 temp = exp (x*w);

26 gra = —w + sum(repmat (t,1,2).*x — repmat (temp,1,2).*x,1)";
27 % Compute Hessian

28 hess = —eye (2) — x'x(x.*repmat (temp,1,2));

29 % Update w

30 neww = w — inv (hess) xgra;

31 % Compute change

32 change = sum((neww—w) ."2);

33 W = Nneww;

34

35 % Store all of the w

36 wall = [wall;w'];

37 % Compute the likelihood (should always increase)
38 temp = exp (x*w);

39 11 = [11;-0.5*w'xw + sum(t.xlog(temp) — temp)];
40 end

41

42 % Metropolis—Hastings

o° oP

43 Initialise w
44 wm = randn(2,1);
45 temp = exp (x*wm);

46 wallm = [];

47 % Compute old log posterior

48 01dll = —0.5%xwm'*wm + sum(t.*log(temp) — temp);

49 for s = 1:10000 % Generate 10000 samples

50 % Propose a new candidate

51 wnew = wm + randn(2,1)x0.1; % Gaussian proposal, std = 0.1
52 % Compute new log likelihood

53 temp = exp (x*wnew);

54 newll = —0.5xwnew'xwnew + sum(t.xlog(temp) — temp);
55 % Accept of reject

56 if rand<exp (newll—oldll)

57 wWm = wnew;

58 0ldll = newll;

59 end

60 % Store all w

61 wallm = [wall.m;wm'];

62 end

63

64 Plot samples

o
s
o
e

65 No thinning or ignoring of burn—in

66 figure(l);

67 hold off

68 plot(wallm(:,1),wallm(:,2),'k.","'color',[0.6 0.6 0.6])
69
70
71
72

% Plot the approximate posterior
Compute posterior (negative inverse of Hessian)

o
S
o
S

73 gcov = —inv(—eye(2) — x'x (x.xrepmat (temp,1,2)));

74 % Evaluate over a set of points

75 [W1,W2] = meshgrid([—1:0.01:1],[—1:0.01:11);

76 gli = 1./ (sqrt (2+pi)+det (gcov)) .+ repmat (1,size(Wl));
77 for 1 = l:size(Wl,1)

78 for j = l:size (W1, 2)

K26591_SM_Cover.indd 31 05/04/16 3:38 pm

K26591_SM_Cover.indd 32

28

79
80
81
82
83
84
85
86
87
88
89

CHAPTER 4.

wv = [Wl(i,3]);W2(i,3)1;
gli(i,j) = gli(i,) . exp(—0.5% (wv—w) '+xinv (gcov) *x (wv—w)) ;
end
end
% Plot the contours
hold on

contour (W1,W2,gli, 'k")

% Plot the true value
plot (truew(l),truew(2), 'ko'

, 'markersize',20, 'linewidth', 2)

05/04/16 3:38 pm

K26591_SM_Cover.indd 33

Chapter 5

EX 5.1. The class conditional density is given by:
P(Xnltn = ¢, e, Be) = N(pe, Ze)-

Assuming a Gaussian prior on p,:

Pkl po, o),
the posterior density for p is given by:
Nc
Plprelxas - X, 1o, Do, Be) o N(pg, Zo) [[p(xnltn = ¢, p, Ze).
n=1

Removing constant terms and re-arranging:

Ne

DO =

Pt - .) ocexp {—;(uc — 1) " Zq (pe — uo)} exp {—

n=1

Keeping only terms dependent on g,

N,
. . . .
p(pel...) o< exp {2 (HIEO Yo+ Neplpe — 2755 g — 207 xn> } :
n=1

Therefore, the posterior is a Gaussian:

p(/'l’c| .o) = N(III, S)»
where:

s = (4N

N
m = S (201% +ZX"> :
n=1
EX 5.2. This requires the expectation of a Gaussian with respect to another Gaussian:

p(xnew|Tnew =c, X, t) = Ep(/,zc|m,S) {p(xnew‘/'l'cv EC)}
[o (SN (105

29

S — o) (30 — uc)} .

05/04/16 3:38 pm

K26591_SM_Cover.indd 34

30

EX 5.3.

CHAPTER 5.

We now make use of the following standard result:
Nx(a, A)Nx(b,B) = KNx(d, D),

where:
K = Na(b, A +B).

The quantities d and D are not important as this density will disappear in our
integral. Therefore, our expectation becomes:

P(Xnew|Thew = ¢, X, t) = anew(m, S+ 3X,).

The total likelihood for class ¢ is:

N
T 1 1 Ty —1
e~ g oo { g™ 0

As normal, it is easiest to maximise the log likelihood. Logging and multiplying out
gives:

N
DN, N, 1
log £ = — 5 = 1og(27r)—7c log |EC|—§ 321 (xn 2 %y — 20 B % + S)

Taking the partial derivative with respect to p., equating to zero and solving gives
a solution for p,:

N,
dlog L 1 1
=0 = X Xn — NXJ 1,
o, ;
N
2;1 an = chgluc
n=1
— 1 NC
M. = N, X
n=1
Similarly, for X.:
dlog L N, 1 e
_ _ -1 -1 Tg—1
820 =0 = 7?2c + 520 ;(Xﬂ *,U/C)(Xn *,U/C) 2c)

where we have used the following two results (for symmetric A):

0log |A]

oA~ A
% = —Alaa’A"L

Re-arranging gives the expression for X.:

N,
1 T
3. = FC ;(Xn - Mc)(xn - Mc)

where p, is the maximum likelihood estimate derived above.

05/04/16 3:38 pm

K26591_SM_Cover.indd 35

31

EX 5.4. The data consists of N. M-dimensional vectors of integer counts. The multinomial
likelihood for the N, data objects is:

N. M
D(X1, -y XN ety - -y Gerr) = L X H H g

n=1m=1

(where the constant that does not depend on ¢, has been omitted for brevity).
Once again, we work with the log likelihood and take partial derivatives with respect
t0 gem- We must also add a Lagrangian term due to the constraing that >, gem = 1.
Calling this new objective function g gives:

Ne M
IOg L = Z Z Lnm 1Og Gem
1

I\z mj\jl
g = Z Z ZTnm 10g Gem — A (chm — 1)
n=1m=1 m
N
Tnm

dlog L
Odem ngl Gcm
Ne
_ 2one1%nm
q{:m -)\ M

To compute A we sum both sides over m:

em = 1 Tnm
> >
m m,n
1
1= 2
A m,n o

1
> nm Tnm

Therefore, the maximum likelihood estimate of ¢, is:

- § :n Lnm
dem = < -
E :n,m’ Tnm/

EX 5.5. The likelihood (ignoring terms not involving q..,) is:

Ne M
p(X1, ., XN, |Qe) X H H gonm.

n=1m=1

The prior over q. is a Dirichlet with constant parameter « (again, ignoring terms
not involving gem,):

M
placle) o< [T a5
m=1

05/04/16 3:38 pm

K26591_SM_Cover.indd 36

32

EX 5.6.

EX 5.7.

EX 5.8.

CHAPTER 5.

The Dirichlet is the conjugate prior to the multinomial likelihood. Therefore, we
know the posterior will be another Dirichlet. Multiplying the prior and likelihood
together and combing q.,, terms gives:

paelo, x1, ..., xN,) H a1+, T

This is the form of a Dirichlet, where the mth parameter is 8, = @« +), Tnm.

The required expectation is:

p(xnew|Tnew =X, t) = Ep(qc|XC,o¢) {p(xnew‘qc} .

Writing out the expectation in full gives:

H F ﬂm (xnewm

_ (X Trew,m)! T (D, Bim) Brm+Tnew,m—1
=TT e H Fﬁm)/ H" aa
H (‘Tnew m') Hm F(ﬁm) (Zm 57774 +xnew,m)

m Tnew z
p(xnew‘Tnew:QX,t) = /[Z ﬂ Hqﬁ’" 1‘| [Z hd m Hq new,m dqe

m

The MAP estimate is obtained by maximising the likelihood multiplied by the prior.
Extracting only the terms that include ¢.,,, and logging give us:

log £ o Z o — 1 IOgQCm + Z (Z xnm) log gem.-

m

Introducing the necessary Lagrangian (to ensure) gem = 1) we end up with the
following objective function:

9=>_ (;xnm-&-a—l) 10g Gem — A (%:qcm—1> :

m

Taking partial derivatives, equating to zero and solving gives:

a -]- nm
9 g - 2l aTem)
8(]cm Gcm
B a—14+> Tnm
dem = M(a—1)+ me, Trm!

where we summed both sides over m to obtain the value for \.

The starting point is:
N
argv{,nm SW W +C Z &n
n

05/04/16 3:38 pm

K26591_SM_Cover.indd 37

33

subject to:
£ >0, ta(Wix, +b)>1—¢&,.

Adding the constraints as Lagrangian terms gives:
L+ T
§W W+O;§n_;an(tn(w xn+b)_1+§n)_;fn7n

subject to a,, > 0, 7, > 0, which must be minimised with respect to w, b and &,
and maximised with respect to «, and ~,. At the solution:

8% = W—Zantn:O

% = fZantn:()
9
9n

Substituing the first and third of these expressions back into the objective function
and re-arranging gives:

= C—-oay,—v, =0.

1
_5 Z anamtntmxlxm + Z Oy,
n,m n

which must be maximised with respect to o subject to:

Zantn = 0, 0 <a,< C.

Where the first constraint comes from the partial derivative with respect to b and
the second from the partial derivative with respect to £, and the fact that ~, > 0.

05/04/16 3:38 pm

34 CHAPTER 5.

K26591_SM_Cover.indd 38 05/04/16 3:38 pm

K26591_SM_Cover.indd 39

Chapter 6

EX 6.1. The log likelihood for all N data objects is:
£=> log> m |[p(@nalira o3a)-
n k d

Insersting a set of variational parameters, g, such that Y, gnr = 1 and g, > 0
and subsequently applying Jensen’s inequality results in:

Ank
L = ZlomeHqZ—kp(wnd|Mkd70id)
n k d

D> Gnklog Tk + quk Y108 D(Tnal ik, 07a) = Gk 108 Gk
n k d

v

Only the second term involves o2,. Writing this term out in full leaves:

1 1 1
Y 0w Y (_2 log 27 — L log o, — (0 — W) |
n k d

kd

Taking partial derivatives with respect to a,% 4 results in:

2 = 2
00y 207,

0 Zn dnk + Z dnk

= (Tna — pra)®.
2(‘713(1)2

Equating to zero and re-arranging results in:

o2 = Zn an(!End - Mkd)2
kd Zn dnk

EX 6.2. Starting from the log likelihood above and applying Jensen’s inequality:
L = Z IOgZ Tk H qup(l“nded, k)
n X 4 dnk

> Z Z Gnk 10g T + Qnk Z 10g P(Tnalftkds 0%) — Gnk 108 G-
% d

n

o? only appears in the second term. Expanding:

D D 1
Zz’;%k (—2 log 27 — — log o7 — 352 zd:(xnd - ukd)2> .

2
n k

35

05/04/16 3:38 pm

K26591_SM_Cover.indd 40

36

EX 6.3.

EX 6.4.

CHAPTER 6.

Taking partial derivatives with respect to ai gives:
ao_k = 2 2 ank + 2 ; Tnd — Mkd

Equating to zero and re-arranging gives:

o2 = >0 Gk 2og(Tnd — pika)®
F D Zn qnk

The log likelihood is given by:
L= Z log Z Tk szgd(l — pkd)l_w”d.
n k d

Applying Jensen’s inequality gives:

L= Nguelog Tk + guk Y (€0a 108 pra + (1 = 2na) 10g(1 = pra)) = Gnik 108 g
n k d

Taking partial derivatives with respect to prq setting to zero and solving gives:

i:() = Zan@fzanlimnd

Opka Dkd
Tnd 1—=z d
Z dnk . = Z an: “
n Pkd — Pkd
Z AnkTnd — Pkd Z dnkTnd = Pkd Z qnk — Pkd Z qnkTnd
n n n n
Zn qnkTnd
Pkda = ——=
Zn dnk

This proceeds in exactly the same manner as the previous exercise except that after
applying Jensen’s inequality, the bound will also include a term from the Beta prior.
Including only terms that involve g, (and removing summations over k and d):

(= 1)1og pa+ (B—1)1og(1 = pra) + Y _ dnk (¥na10g pra + (1 — na) log(1 — pra)) -

Taking partial derivatives with respect to pgq, equating to zero and solving gives:

0 =0 = o1 +ank Zan

Opra Dkd 1 — Pkd — Dkd
Tnd a—1 1—=x d -1
ani + = Z dnk L ﬁ
" Pkd Dkd 1 — pra 1 — Dkd
(@ —1) = prala —1) + Z(Jnkxnd = Pra(B—1) + Pra Zan
n n
a—1 + Zn AnkTnd
Dkd =

a+5—2+znan'

05/04/16 3:38 pm

K26591_SM_Cover.indd 41

EX 6.5.

EX 6.6.

37

The log likelihood (after applying Jensen’s ineuqality and omitting terms not fea-
turing pgq) is:

1 1
L> *272(#1«1 —m)? - ZZanZ 272(%(1 — pa)® + -
5 n k d Thd

Taking partial derivatives with respect to piq, equating to zero and re-arranging
gives:

oL 1 1
= —= -—m)+ —— Tnd — =0
Brien = (Bka) + =y zn:%k(nd — Hid)
S%m + T%d En dnkTnd
Kkd =
s% + %}zd Zn qnk

The log likelihood is given by:

Ezzlogzmm
n k

T,

Incorporating variational parameteres g, and applying Jensen’s inequality gives:

L= ZZanlogﬂ'k‘FZZanlOg%{'_)\k} =) k108 g
n k n k n n k

We shall first derive an update for m;. The relevant terms in the bound, incorpo-
rating a Lagrangian term to ensure), m, = 1 are:

qunklogﬂ'k - A <Z7Tk — 1) .
n k k

Taking partial derivatives with respect to 7 gives:
0 1
— = -\
aﬂ'k T ; dnk

Equating to zero:

Ak = dnk-

To compute A\ we sum both sides over k:

AN me o= D> gk
k n k
A = N.

Therefore: 1
T = N ; dnk-

05/04/16 3:38 pm

K26591_SM_Cover.indd 42

38

CHAPTER 6.

Now gnk. Each term is relevant, and adding the Lagrangian:

ZZan log 7y, + qunk log p(zn|Ak) ZZan 108 gnk — <Zan> :
k

Taking partial derivatives with respect to gnx:

= log 7 + log p(an| i) — (10g Gnr + 1) — A.
aan

Equating to zero, taking exponetials and grouping all constants into ~:

Vnk = TrP(Tp | k).

To find ~, we sum both sides over k:

VY gk = Y mkp(al M)
k k
o= Zﬂ'kp(xn‘/\k)-
k

Therefore:
7Tkp(xn |)‘k)

nk = = - 7. 1y
Zj ij(lin‘)\j)

Finally, the update for A\x. Expanding the relevant component of the bound:

SO gnkrnlog A = > > quie
n k n k

Taking partial derivatives with respext to Ax:

8)% Z(Jnkxn ank

Equating to zero and solving for A\ gives:

Zn qnkTn
Zn dnk

Example code to run this mixture is given below (poissmix.m):

Ak =

clear all;close all;

o

Generate data from 3 poissons
20;

poissrnd (10, [N 11]);
[x;poissrnd (2, [N,1])1;
[x;poissrnd (20, [N, 1]1)1;

Fit a two component mixture

= 3;

Initialise

© 0 N e G oA W N e
XX X =2

,_.
)
o0 =X oo

05/04/16 3:38 pm

K26591_SM_Cover.indd 43

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

pr =
mu
N =

repmat (1/K,1,K);
rand (K, 1);
size(x,1);

allmu = [];

% Do
for

end

100 iterations
it = 1:100

o

% Update g

temp = poisspdf (repmat (x,1,K), repmat (mu',N,1));

q = temp.x*repmat (pr,N,1);
g = g./repmat (sum(q,2),1,K);

o

Update pr
pr = mean(q,1);

% Update means

mu = (sum(repmat (x,1,K).*xq,1)./sum(qg,1))"';

allmu = [allmu;mu'];

% Plot the evolution of the means,
subplot (121) ;plot (allmu);

subplot (122) ; imagesc (q) ; drawnow

and show the g

39

05/04/16 3:38 pm

40 CHAPTER 6.

K26591_SM_Cover.indd 44 05/04/16 3:38 pm

Chapter 7

EX 7.1. The bound is given by:

p(Y,0)
Q(0)

log p(Y) > / Q(0)log d.

To show that the bound is maximised if Q(8) is the true posterior, we will substitute
the posterior p(0]Y) for Q(#) and re-arrange the right hand side such that the
inequality becomes an equality. Firstly, substituting and expanding:

logp(V) = [p(601Y)logp(Y0) 40~ [p(6]Y)logp(e]Y) db.

Next we expand the joint density: p(Y,0) = p(0]Y)p(Y):

log p(Y) > / p(0]Y) log p(6]Y) df + / p(6]Y) log p(Y) d6 / p(6]Y) log p(8]Y') do.

The first and third terms cancel. The second term is an expectation of a constant
and hence the expectation disappears:

[por)0gp(y) o =10 () [p(6IY) a8 =logp(y).
EX 7.2. We shall go through each term in the order they are given in Section 7.5.5 starting
with Eq_(;) {logp(7|a,b)}:

Eq, () {logp(7|a,b)} = Eq (- {alogb—logT'(a)+ (a—1)logT —br}
= alogb—1logl(a)+ (a—1) (logT) — b (7).

Now > Eq, (x,) {logp(xn)}. Recall that p(x,) = N(0,1) and Qx,, (x,) = N (px, , Zx,):

D 1
> Eq., xn {logp(xn)} = > Eq, (x.) {_2 log 27 — 5 (x;xn)}

ND 1
- log 27 — 5 Z (Tr(Bx,) + b, B,) -

n

(Note that Ex,(m,s) {a'Ba} = Tr(SB) + m'Bm).

41

K26591_SM_Cover.indd 45 05/04/16 3:38 pm

K26591_SM_Cover.indd 46

42

EX 7.3.

CHAPTER 7.

The expression for Y Eq, (w,){logp(W,,)} is arrived at in exactly the same
manner as that for) Eq, (x,) {logp(x,)}-

Next, >, >, Eo) {10g p(Ynm|Xn, Wi, T)} (where the expectation is over all pa-
rameters):

1 1 1 T 2
En Em EQ(.){ 510g27r+ 510g7— iT(ynm W, Xn) }
NM NM
= log 2w + —— (log7) — = E E ynm w Xn)2>~

Now, we shall look at E¢_(;) {log Q-(7)}. Q(7) is Gamma with parameters e and f

(see Equation 7.12). Therefore it follows exactly the same form as Eq_(;) {log p(7|a, b)}:

Eq. (r) {log Q- (1)} = elog f —logT'(e) 4+ (e — 1) (log 7) — f (7).

The final two expressions are derived in exactly the same way and we will only show
the one for x,,, Y, Eq, (x,) 1108 Qx, (xn)}. Recall that Qx, (xn) = N (s, Ex,,):

ND 1
ZEan(x”) {log Qx, (xp)} = ——log2r —— Zlog 2, | — .-

5 Z Qxy (Xn) { ,u’xn 711 (Xn - uxn)} .

To progress further, we need the following identity:
En,bc){(a—d)'E(a—d)} = (b—d)"E(b—d) + Tr(EC).

Matching this to our expression, we can see that b = d = u, and so the first
term on the RHS is zero. The second term is Tr(Z;ijn) = Tr(I) = D (for D-
dimensional x,,. Therefore, our expectation becomes:

ND
D Eq., (x) {108 Qx, (xn)} = === log 2m — —= — = Zlog 12|
The expression for) Eq_ (w,,) {10g Qw,, (W)} follows in exactly the same way.

Starting with Qx, (x5):

an (Xn X exp (EQW(W Q- (1) {logp(Y W X T|Z)})

exp | Equ w)q.(T>{10gp Xn) + > Znm 108 P(Ynm X, Wi,)})

m

'—l

exp

m

1
eXP< 3%n ZZ"mEQw(W)Q) {7 (Ynm — wy, xn)2}>

X)Xy — = <T> Z Znm (X} <wmw;> Xp — 2YnmX, <Wm>)> .

05/04/16 3:38 pm

43

This has the form of a Gaussian, Qx,, (xn) = N(y,,Xx,). Equating coefficients,
we get the following:

Zlxn (I + <7'> Z Znm <WmW;I;L>>
(T) B > ZnmYnm (W) -

m

M,

The expression for Qw,, (Wy,) follows an almost identical argument so we omit it
here. Finally, the expression for Q. (7):

Q-(1) o exp (EQw(W)Qx(X) {logp(Y,W7X,T|Z)})

o« exp (EQw(W)Qx(X) {log I'(a,b) + Z Znm 10g P(Ynm |Xn, Wi, T)})

n,m

m Znm

2o 1
X exp <—b7’ +(a—1)logT — —5 log T — 57’2 ZnmBQw (W)Qx (X) {(ynm - WTTan)2)}

Zn m Znm 1 T 2
o exp <b7' +(a—1)logT — —5 log T — 577;12,”” <(ynm — W, Xn) > .
This has the form of another Gamma distribution, with parameters:
1
e = a-+ 5 Z Znm

n,m

1
n,m

K26591_SM_Cover.indd 47 05/04/16 3:38 pm

44 CHAPTER 7.

K26591_SM_Cover.indd 48 05/04/16 3:38 pm

K26591_SM_Cover.indd 49

Chapter 8

EX 8.1. The following code would do it:

1 x = [0:0.01:17];

2 gam = 10.0;

3 N = length(x);

4 K = zeros(N);

5 % Create the kernel matrix

6 for n = 1:N

7 for m = 1:N

8 K(n,m) = exp(—gamx (x(n)—x(m)) " "2);
9 end

end

Add a small constant to the diagonal for numerical stability
= K + le—6xeye (N);

Generate 10 samples

f_samps = gausssamp (repmat (0,N,1),K,10)

plot (x, f_samps)

[S
AW N = O
a0 X oo

—
o

EX 8.2. Use the code above, adding a linear term to K.

EX 8.3. The following code gives a function to compute the marginal likelihood. Note that
we optimise the log of the parameters to avoid having to use a constrained optimi-
sation:

function ML = marg-like (hyp,y,x)

Function to compute the marginal likelihood

hyp contains log of the hyperparameters

= length (x);

Compute covariance function

CSS = exp(—exp (hyp(l)) * (repmat (x,1,N) — repmat (x',N,1))."2);
CSS = CSS + exp(hyp(2)) *xeye (N);

% Compute marginal likelihood

ML = —(N/2)*log(2+pi) — 0.5xlog(det (CSS)) — 0.5xy'*inv (CSS) *y;

% Return negative as optimiser minimises
ML = —ML;

© 0w N o oA W N R
do Z de oe

=
= o

and the following code calls Matlab’s fminunc function for some generated data:

1 x = [0:0.05:17];

45

05/04/16 3:38 pm

K26591_SM_Cover.indd 50

46

EX 8.4.

CHAPTER 8.

gam = 10.0;
N = length(x);
K = zeros (N);
% Create the kernel matrix
for n = 1:N

for m = 1:N

K(n,m) = exp(—gamx (x(n)—x(m)) "2);

end

end

© 0 N e oA W N

=R e e
w N = O

K = K + le—6xeye (N);
% Generate a sample
f_samps = gausssamp (repmat (0,N,1),K, 1)

= e
SRS

% Add some noise

o e
© w 3
9}

»
|
o
=
N

true.f = f_samps(l,:) + randn(l,N)=*xsgrt(ss);

[VENSEN)
N o= O

true.f = true_f';
x = x';

[VEN]
oW

o

% Initial hyperparameters
inithyp = [0;0]

[N
N o o

o

% Call optimisation code
hyp = fminunc (@ (h) marg_-like (h,true_f,x),inithyp)

[CENY)
©

The function value at the nth data point if f,. This function is then exponentiated
to give the rate of a Poisson \,, = exp(f,). The integer count sampled from the
Poisson is z,. The gradient of the log posterior is given by:

5 -1
Efzfexp(f)fc f
52 .
SESET ¢ -E

where E is a matrix with zeros everywhere except the diagonal where the nth
diagonal value is exp(f,). This is demonstrated with the following code:

o

Generate some data
= [0:0.01:17];

am = 10.0;

= length (x);

= zeros (N);

Qz29 X

% Create the kernel matrix
for n = 1:N
for m = 1:N
C(n,m) = exp(—gamx (x(n)—x(m)) " "2);
end
end

© 0 N ;A W N R

e e
I U S

C = C + le—6*eye (N);

05/04/16 3:38 pm

K26591_SM_Cover.indd 51

EX 8.5.

47

15 % Generate a sample

16 f_samps = gausssamp (repmat (0,N,1),C,1)
17

18 % Plot the function

19 figure(1);

20 hold off

21 plot (x, f_samps) ;

22

23 % Generate the counts

24 rate = exp(f_samps);

25 n = poissrnd(rate)';

26 hold on

27 plot(x,n, 'ro')

28

29 % Use Newton—Raphson to optimise f
30 f = zeros(N,1);

31 iK = inv (C);

32 oldf = £;

33 for it = 1:100

34 gr = n — exp(f) — iK«f;
35 he = —iK — diag(exp(f));
36 f = £ — inv(he) xgr;

37 ch = sum((f — oldf)."2);
38 oldf = f;

39 if ch < le—6

40 break

41 end

42 end

43

44 plot(x,£f,"'g")

The following code generates some data, uses M-H to sample from the posterior and
uses the posterior samples to compute the predictions on a grid, in order to show
the predictive contours.

o

GP classification using M—H
[randn (20,2) —repmat (4,20, 2) ;randn (20, 2) +repmat (4,20,2)];
[repmat (0,20,1); repmat (1,20,1)];

X
I

= size(x,1);

o

Compute the covariance matrix
gam = l;alp = 5;
C = zeros (N);
for n = 1:N
for m = 1:N
C(n,m) = alpxexp(—gamx* (sum((x(n,:)—x(m,:))."2)));
end
end

© W N e G oA W N e
=
I

[o S~ S S S S
o oA W N = O

iC = inv (C);

=
© =

nSamps = 10000;
pos0 = find(t==0);
posl = find(t==1);

ISR IR R
N o= O ©

% Initialise with f being —3 for the —ve class and +3 for the positive

05/04/16 3:38 pm

48

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

K26591_SM_Cover.indd 52

CHAPTER 8.

%\ Could use anything, but this gets us to a good place a bit faster!

f = [repmat (—3,20,1); repmat (3,20,1)];
0ldProb = —0.5xf'xiCxf — sum(t.*log(l+exp(—£f)));
oldProb = oldProb + sum((l—t).*(—f — log(l+exp(—£f))));

% Make a grid of prediction points and compute the
% test covariance matrix
[

X,Y] = meshgrid(min(x(:,1))—0.5:0.1mmax(x(:,1)),...
min(x(:,2))—0.5:0.1:max(x(:,2)));

testData = [X(:),Y(:)];

n_test = size(testData,l);

testC = zeros(n-test,size(x,1));

for n = l:n_test
for m = l:size(x,1)

testC(n,m) = alprexp(—gamx (sum((testData(n,:)—x(m,:))."2)));

end

end

This term is used for predictions and doesn't change so we can just
compute it once
testCovTerm = diag(testCxiCxtestC');

o
S
o
S

o

% Run the sampler
testProbs = zeros(n_test,1l);
allf = zeros (N,nSamps/100);

for s = l:nSamps
% Propose a new sample for each observation
% Note that we could do this for all samples at once, but
% it becomes very hard to get a sample accepted
order = randperm(N);
for n = 1:N
newf = f;
newf (order (n)) = f(order(n)) + randn(l,1)*0.1;
newProb = —0.5xnewf'xiCxnewf — sum(t.*log(l+exp(—newf)));
newProb = newProb + sum((l—t).*(—newf — log(l+exp(—newf))));
u = rand;
if u <= exp(newProb — oldProb)
f = newf;
oldProb = newProb;
end
end

o

% Do the predictions
testVar = alp — testCovTerm;
testMu = testCxiCxf;

f_samp = randn(n_test,l).xsqgrt (testVar) + testMu;
testProbs = testProbs + 1./ (l+exp(—f_samp));

end

% Plot the output

figure (4)

hold off

pos = find(t==0);

plot (x(pos,1l),x(pos,2),'ko");
pos = find(t==1);

05/04/16 3:38 pm

49

82 hold on

83 plot (x(pos,1l),x(pos,2), 'ko', 'markerfacecolor', 'k")
84 testContour = reshape (testProbs./nSamps,size(X));
85 contour (X,Y,testContour, 5);

K26591_SM_Cover.indd 53 05/04/16 3:38 pm

50 CHAPTER 8.

K26591_SM_Cover.indd 54 05/04/16 3:38 pm

K26591_SM_Cover.indd 55

Chapter 9

EX 9.1. The following code does both methods of sampling and then plots the autocorrela-

tion:

1 % Generate some points data in 1-D
2 x = [0:0.1:17];

3 alp = 5;gam = 1;
4

5 N = length(x);

6 C = zeros (N);

7 for n = 1:N

8 for m = 1:N

9 C(n,m) = alp*exp(—gam=* (x(n)—x(m))"2);
10 end

11 end

13 C = C + le—6xeye(N);

15 nSamps = 10000;

18 % Sample 1000 values from the Gaussian
19 f_full = gausssamp(zeros(N,1),C,nSamps);

21 % Samples using Gibbs sampling

22 f = zeros(N,1);

23

24 all_f = zeros(nSamps,N);

25

26 for s = l:nSamps

27 for n = 1:N

28 % Compute the conditional mean and covariance
29 subC = C;

30 subC(n,:) = [];

31 subC(:,n) = [];

32 subc = C(n,:);

33 subc(n) = [];

34 subf = £;

35 subf(n) = [];

36 % Note that the mean is zero so these
37 % expressions are a bit simpler than in
38 % the book

39

o1

05/04/16 3:38 pm

K26591_SM_Cover.indd 56

52

EX 9.2.

EX 9.3.
EX 9.4.
EX 9.5.

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

CHAPTER 9.

o

Also — the following expression is
% much more accurate than subc*inv (subC) *xsubc'

co = C(n,n) — subc/subCxsubc';
mu = subcxinv (subC) *subf;
f(n) = randn.xsqgrt (co) + mu;
end
all f(s,:) = f';

% Compute the autocorrelation of the nth point

n = 5;
k_vals = [0:1:200];
ac = zeros (length(k-vals),2);

N = nSamps;

full vals = f£f_full(:,n);

full vals = full_vals — mean(full_vals);

allvals = all_f(:,n);

allvals = allvals — mean(all_vals);

ss = [var(full_vals), var(all_vals)];

for k = 1l:length(k_vals)
ac(k,1l) = sum(full_vals(l:end—k_-vals(k)).xfull_vals(l+k_vals (k) :end)
ac(k,1) = ac(k,1)/(ss(1l)* (N—k_vals(k)));
ac(k,2) = sum(all_vals(l:end—k_vals(k)).xall_vals(l+k_vals (k) :end))
ac(k,2) = ac(k,2)/(ss(2)* (N—k-vals (k)));

end

figure (1)

plot (ac)

xlabel ('Lag'");
ylabel ('Autocorrelation');

See the solution to Exercise 8.5. The only difference is changing the sigmoid likeli-
hood to the probit likelihood.

Code available on accompanying website.

Code available on accompanying website.

The following code will sample a regression dataset and then obtain an approximate
posterior via ABC:

N

© w N o «

% ABC for GP regression

x = [0:0.1:1];
alp = 5;
gam = 1;

N = length(x);
C = zeros (N);

05/04/16 3:38 pm

K26591_SM_Cover.indd 57

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

93

for n = 1:N
for m = 1:N
C(n,m) = alprexp(—gam# (x(n)—x(m)) "2);
end
end

C = C + le—6*eye (N);

noise_var = 0.1;
t = gausssamp (repmat (O,N,1),C,1)"' + randn(N,1).x*sgrt (noise_var);
% ABC

nSamps = 5000;
accepted.samps = [];

err_thresh = 5.0;
figure(l);hold off
plot(x,t, 'k', "linewidth', 2);hold on

for s = l:nSamps
% Propose a value
proposal = gausssamp (repmat (O,N,1),C,1)"' + randn(N,1).*sgrt (noise_vatz
err = sum((proposal — t)."2);

if err < err_thresh

accepted.samps = [accepted-samps proposall;

plot (x,proposal, 'k', 'color',[0.6 0.6 0.6]);drawnow
end

end
plot(x,t, 'k',"linewidth"',2);
%% Compare with the true posterior

postCov = inv((eye(n)*(l/noise_var) + inv(C)));
postMu = (1/noise_var) x postCov * t;

% Generate samples

samp-f = gausssamp (postMu,postCov,1000) ;
figure (2);hold off

plot (x,samp-f', 'k', '"color',[0.6 0.6 0.6]1);
hold on

plot(x,t, 'k', 'linewidth',2);

r) ;

05/04/16 3:38 pm

o4 CHAPTER 9.

K26591_SM_Cover.indd 58 05/04/16 3:38 pm

K26591_SM_Cover.indd 59

Chapter 10

EX 10.1.

EX 10.2.

We have N observations, x1,...,zy. Our model is defined as a set of K Gaussian
components, with means p; and unit variances (O']% = 1). At any point within the
Gibbs sampling procedure, each of the IV observations is assigned to one of these
components (zpx = 1, z,; = 0 Vj # k). Each mean value has a Gaussian prior
density with its own mean and variance pg,o3. The conditional density for u can
therefore be computed as:

Znk

N
Pl -) o< plpklio, op) H (n|pe)]

N
1 1
X exp {_%‘_(Q)(/"Lk - ,UO)Q} exp {_2 Z Znk (T — ’uk)z}

n=1
= N(aab2)
Bi M 33
b2 - 0_2 /’Lk: Znk
0 n
-1
2 <ao—z+zznk>
af p Y
k klo
w0, S
n=1
N
. - (+zznkxn>
n=1

The following code performs Gibbs sampling for the one-dimensional Gaussian mix-
ture with fixed known variance:

1 % 1D Gaussian mixture

2 x = [randn(20,1);randn (20,1)+3];
3 X = sort(x);

4

5 N = length(x);

6

7

o\

Define the prior parameters

95

05/04/16 3:38 pm

K26591_SM_Cover.indd 60

56

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

57
58
59
60
61
62
63
64
65
66

mu0 = 0;
ss0 1;

% Component variance
s = 1;

[0}

% Number of components
K = 2;

nSamps = 1000;

% Parameters for the prior Dirichlet
alp = repmat (1,K,1);

prk = gamrnd(alp,1);

prk = prk./sum(prk);

Z = zeros (N,K);

% Structures to hold the output
allzZz = zeros (N);

allMu = zeros (nSamps,K);

allPrk = zeros (nSamps,K);

% Outer loop to run multiple chains for computing Rhat
nChain = 5;

samps = zeros (nSamps,nChain);

for chain = 1l:nChain
% Randomly initialise the means
mu = randn(K, 1) .xsqgrt(ss0) + mu0;
for s = l:nSamps

% Update the Z
for n = 1:N
like = —0.5%x(x(n) — mu) . 2;
like = like + log(prk);
prob = exp(like — max(like));
prob = prob./sum(prob);
pos = find(rand<=cumsum(prob),1);
Z(n,:) = 0;
Z(n,pos) = 1;
end

% Update the mu

for k = 1:K
ssk = 1/(1/ss0 + sum(Z(:,k)));
muk = ssk x (mu0/ss0 + sum(Z(:,k).*x));
mu (k) = randn=xsqgrt (ssk) + muk;

end

o

% Update the prior

prk = gamrnd(alp + sum(Z,1)',1);
prk = prk./sum(prk);

allPrk(s,:) = prk';
allMu(s,:) = mu';

CHAPTER 10.

05/04/16 3:38 pm

K26591_SM_Cover.indd 61

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

103
104
105
106
107
108

110
111
112
113
114
115
116
117
118
119
120
121

o7

allzz = allZzz + Z*Z';
end

figure(1l);
plot (allMu) ;
figure(2);
plot (allPrk);

allzz = allzZ./nSamps;
figure(3);
imagesc(allzz);

% Compute the autocorrelation of the kth mu

lag-vals = [0:1:200];

ac = zeros(length(lag.vals),1l);

k =1;

fullvals = allMu(:,k);

full vals = full_vals — mean(full_vals);
samp-ss = var (full_vals);

sum(full_-vals(l:end—lag-vals(1l)).xfull_vals(l+lag-vals (1l

for 1 = 1l:length(lag-vals)
)
) = ac(l)/ (samp.ss* (nSamps—lag_vals (1)));

end

figure (4);
plot (lag.vals,ac, 'ro'");drawnow

% Store the values of the lower mean (they switch in different

instances)
m = mean (allMu) ;
pos = find(m==min (m));
samps (:,chain) = allMu(:,pos);

end

)

% Compute Rhat

muc = zeros (nSamps,nChain);
vc = zeros (nSamps,nChain);
for s = l:nSamps
muc (s, :) = mean(samps(l:s,:),1);
vc(s,:) = var(samps(l:s,:),1);
end
W = mean(vc,2);
count = [l:nSamps]';
B = (count./(nChain—1)).*sum((muc — repmat (mean (muc,?2),1,nChain))."2,2);
V = ((count—1)./count) .+W + (1./count).=xB;

Rhat = sqrt(V./W);

figure (5);
plot (count,Rhat) ;

EX 10.3. We observe N binary vectors, each of which has D dimensions. We model them as
a mixture model with K components, each of which is parameterised by a a vector

rend))

05/04/16 3:38 pm

K26591_SM_Cover.indd 62

o8

EX 10.4.

CHAPTER 10.

of D probabilities, pr, = [pg1,. - - ,ka}T. For each component of these vectors we
assume a Beta prior with parameters a and :
Do+ ﬁ) —1
p(praler, B) = = —==pia (1 — pra)’ .
T(a)T(3)"*
The vector of prior probabilities for each component w = [rq,...,7x|7 is given a

uniform Dirichlet prior with parameter . The likelihood of an observation x,, =
[Tn1,- -, 7np]T being in component k is:

Xn|pk H pwnd 1— pkd)l_xnd.

The posterior over all parameters is given by:

K N K
p(zaﬂ-,pla . .,pK|X,C¥7ﬁ,’7) O(p(ﬂ-h/) [H p(pk|04, ‘| [H Z ﬂ-kp Xn‘pk Zﬂk‘| .

k=1

To create a Gibbs sampler we require the conditional distributions for z,x, prq and
7. The conditional density for 7y is the same as in the Gaussian case — a Dirichlet
with parameters v + 22;1 Znk:

N N
p(w|...) = Dir <7+Zzn1,...,y+Zan>.
n=1

n=1

The conditional distribution for z,,; is:

P(zpr = 1] ...) < mep(xn|Pk),

where the normalisation constant will be the sum of these terms over j = 1... K.
Finally, the conditional distribution for pgq is derived as follows:

N
p(pral ...) o< Py t(L—pra)® H (i3 (1 — pra)t—=me) ™™

n=1
x pori(1— pra)’™ 1pkzd FnkTnd (]) S Fk(1=na)

a— 1+Zn, Z"kajnd(l)571+Zn Z7Lk(17mnd)

X Pga — Pkd

which is a Beta density with parameters o* = o +) zu%nq and * = +

Zn an(]. — xnd)'

The conditional density of the mean parameter given in the book is:

p(uyl...) = N(a,B)

o]

where:

B-—

05/04/16 3:38 pm

K26591_SM_Cover.indd 63

EX 10.5.

99

and

a=B

E(TIH’O + Z znan] .
n

We are interested in computing the conditional probability of z,; = 1 with the mean
parameter g, collapsed. The posterior over p;, not including the nth observation
is identical to that given above, with the summations omitting the nth component.
From now on, assume that a and B do not include the contribution from the nth
observation. The likelihood is given by:

p(x|pg) = N(py, I).

We therefore need to compute the following:

pxl-) = [N Dplosela, B) di.
As both components are Gaussian, this is another Gaussian:
p(x|...) =N(a,B+1I).

Therefore, the conditional probability for z,, = 1 is proportional to this term
multiplied by the term derived in the book from collapsing 7r. It is normalised by
dividing by the same term summed over j =1... K.

The following code will perform collapsed Gibbs sampling for a Gaussian mixture
with 1-dimensional data.

% 1D Gaussian mixture with collapsed Gibbs sampling
x = [randn(20,1);randn(20,1)+3];
x = sort (x);

N = length(x);
% Define the prior parameters
mu0 = 0;
ss0 = 1;

© 0 N e A W N e

=
= o

% Component variance
s = 1;

=R e
W
(]

% Number of components
15 K = 2;
16
17
18 nSamps = 1000;
19
20 % Parameters for the prior Dirichlet
21 alp = repmat(l,1,K);
22 prk = gamrnd(alp,1);
23 prk = prk./sum(prk);
24
% Randomly initialise 7
26 Z = rand(N,K);

05/04/16 3:38 pm

K26591_SM_Cover.indd 64

60

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

76
77
78
79
80
81
82
83
84
85

7Z = (Z == repmat (max(Z,[1,2),1,K));

% Structures to hold the output
allzZz = zeros (N);

allMu = zeros (nSamps,K);

allbPrk = zeros (nSamps,K);

% Outer loop to run multiple chains for computing Rhat
nChain = 5;

samps = zeros (nSamps,nChain) ;
for chain = 1l:nChain
for s = l:nSamps

% Update the Z
for n = 1:N
Z(n,:) = 0;

sumZ = sum(Z,1);
sumXZ = sum(Z.*repmat (x,1,K),1);
postvar = (1./ss0 + sumZ)." (—1);

postmean = postvar.* (mu0/ss0 + sumXZ);
predvar = postvar + ss;

like = —(1./(2xpostvar)) . (x(n) — postmean)
like = like — 0.5xlog(2*pixpostvar);

% Add the collapsed prior term
like = like + log(sumZ + alp);

prob = exp(like — max(like));
prob = prob./sum(prob) ;
pos = find(rand<=cumsum (prob),1);
Z(n,pos) = 1;

end

% Sample the mu (even though we don't need it)

for k = 1:K
ssk = 1/(1/ss0 + sum(Z(:,k)));

muk = ssk x (mu0/ss0O + sum(Z(:,k).xx));
mu (k) = randn=xsqgrt (ssk) + muk;

end

allMu(s,:) = mu';

Z = 1.0%Z;

allzz = allZzz + Z*Z';
end

figure(1l);
plot (allMu) ;
figure(2);
plot (allPrk);

allzz = allzZ./nSamps;
figure(3);
imagesc(allzz);

CHAPTER 10.

.72;

05/04/16 3:38 pm

K26591_SM_Cover.indd 65

110
111
112
113
114
115
116
117

119

61

% Compute the autocorrelation of the kth mu

lag.vals = [0:1:200];

ac = zeros (length(lag-vals),1l);

k=1

full_vals = allMu(:,k);

full_vals = full_vals — mean(full_vals);

samp-ss = var (full_vals);

for 1 = l:length(lag-vals)
ac(l) = sum(full_vals(l:end—lag-vals(l)).xfull_vals(l+lag-vals (1l
ac(l) = ac(l)/ (samp-ss* (nSamps—lag-vals(1l)));

end

figure (4);
plot (lag-vals,ac, 'ro');drawnow

Store the values of the lower mean (they switch in different

o
)
o
°

instances)
m = mean (allMu);
pos = find(m==min (m));
samps (:,chain) = allMu(:,pos);

end

o

% Compute Rhat

muc = zeros (nSamps,nChain);
vc = zeros (nSamps,nChain);
for s = l:nSamps
muc(s,:) = mean(samps(l:s,:),1);
vc(s,:) = var(samps(l:s,:),1);
end
W = mean(vc,2);
count = [l:nSamps]’';
B = (count./(nChain—1)).*sum((muc — repmat (mean (muc,?2),1,nChain))."2,2);
V = ((count—1)./count) .*W + (1./count).xB;

Rhat = sqgrt (V./W);

figure (5);
plot (count,Rhat) ;

EX 10.6. The following code samples from a CRP. Vary alpha to see the effect to the his-

togram:
1 % Sample from a CRP
2 N = 100; % 100 customers
3
4 Z = ones(N,1); % Initialise with all customers at one table
5
6 nSamps = 1000;
7
8 alp = 0.1; % Concentration parameter to vary
9 nK = zeros(nSamps,1l);
10
11 for s = l:nSamps

rend))

05/04/16 3:38 pm

K26591_SM_Cover.indd 66

62

CHAPTER 10.

12 for n = 1:N

13 thistable = find(Z(n,:));
14 Z(n,:) = 0;

15 sumZ = sum(Z,1);

16 if sumZ(thistable) == 0

17 sumZ (thistable) = [];
18 Z(:,thistable) = [];
19 end

20 probs = [sumZ alpl];

21 probs = probs./sum(probs);
22 pos = find(rand<=cumsum (probs),1l);
23 Z(n,pos) = 1;

24 end

25 nK(s) = size(Z,2);

26 end

27
28 hist (nK,unique (nK));

EX 10.7. Tt will be most efficient to use a collapsed Gibbs sampling scheme for this by

marginalising the probabilities prq. As shown above, the conditional posterior den-
sity over these parameters is a Beta distribution with parameters:

a* :a+zznkxnda B* :B+Zznk(1_x7Ld)~
n n

(remember that when considering the collapsed update for the nth observation we
would omit the nth data point from the summation). The update for z, is:

Pz =1]...) o< (> zi) [] /P(xnd\znk = 1, pra)p(Prdl - - -) dpra-
d=1

m#n

Because of the conjugacy of the Beta prior and the binomial likelihood, we can
analytically evaluate the integral:

- o L@+ 8%) - .
= /pkgd(l — D)t x"dwpkd Y1 = pra)® 7t dpra

o +ng—1

Pra (1 — Pkd

)
)

D(a* + %) I'(a* + 2,)T (8" 4+ (1 — zpa))
) L(a*+B*+1)

)B*Jr(l*xnd)*l dpra

3
Q
N
=
)
*

0 e e
a* + 6* :

Where in the final step we have used the identity I'(z + 1) = 2zI'(z). This completes
the definition of the sampler. The update for z,; is proportional to the product
of these terms over the dimensions (D) multiplied by the number of objects in the
cluster k. The probability of a new cluster is proportional to the concentration
parameter multiplied by the product of these terms where a* = a and §* = .

EX 10.8. The following code samples from a DP with a Gaussian base distribution:

05/04/16 3:38 pm

K26591_SM_Cover.indd 67

63

1 % DP sample

2 basemu = 0;

3 basess = 1;

4 alp = 10; % Concentration parameter

5

6 N = 100; % Number of samples to draw

7

8 samples = [];

9

10 for n = 1:N

11 if n==

12 samples = randn.x*sqrt (basess) + basemu;
13 else

14 if rand < alp/(alp + n—1)

15 % Sample a new value

16 samples (end+1) = randn.=*sqrt (basess) + basemu;
17 else

18 % Copy a previous one

19 samples (end+1) = samples (randi (length (samples)));
20 end

21 end

22 end

EX 10.9. See script on accompanying webpage.

EX 10.10. We will derive the collapsed sampler. Assume that we observe m = 1... M datasets,

each of which has n = 1... N, observations, z]'. There are k£ = 1... K top-level
components and the top-level concentration parameter is . The concentration
parameter in the mth file is ~,,. In the mth file there are v =1...V,, components,
each associated with one of the top-level components. Let 2]} = 1 if the nth
observation in the mth file is associated with the vth component in that file. Let
wy;, = 1 if the vth component in the mth file is associated with the kth top-level
component.

For the collapsed sampler, we require the distributions for re-sampling 2]7}. When
we re-sample this assignment, there are three possibilities. 1: We put it into a
current component in file m. 2: We put it into a new component that uses a pre-
existing top-level component. 3: We put it into a new component that has a new
top-level component. We will consider each of these in turn. Firstly, though we
need the posterior density over u (the mean of the kth top-level component). This
is Gaussian and given by:

M N, Vp
il = Nuo,od) I] N (@, 0?5 (10.1)
m=1n=1v=1
= N(a,b?)
-1
v o= !
03 + % Zm,n,’u Zﬁw:ﬁc
2 [AR o
02 o3

05/04/16 3:38 pm

K26591_SM_Cover.indd 68

64

EX 10.11.

CHAPTER 10.

The predictive density is therefore (where summations will not include the data
point in question):

m

plat |z, = 1w, = 1) = N(a,b* + 0®) = L(}'[k)
Note that the expression for a brand new top-level component is identical but all
the summations will equate to zero.

The probability of placing the object in component v is therefore proportional to:

P =1wh =1,...) < L(z™|k) (Z zfy>

To compute the probability of placing the point in a new component in file m we
have to marginalise over the top level components (admitting the possibility of a
new one). Let s; be the number of components across all files that are assigned to
top-level component k:

P 1 (L Do)

at;s;

We can therefore use these two probabilities to decide if the nth object ought to
go into one of the current components in the mth file, or a new component. If
we choose a new component, we then need to choose which top-level component it
ought to be associated with (or a new one). The probability of it being a current
one is proportional to s;L(«|l) and the probability of a new one is proportional to
aL(x™l*).

This completes the sampler, although it might not be particularly efficient. To
improve its efficiency, one could re-sample the w;) for each file-level component.
It is fairly straightforward to compute the required distribution but, be careful:
if, as in this case, the mean parameters have all been marginalised, the joint
density of all of the objects assigned to this component cannot be assumed to
be independent in the standard way (they are all dependent via the marginalisa-
tion of the mean parameters). This can be overcome by, for example, computing
p(xr, o, 3, ... |...) =pla1]..)p(ze|x1, ..)p(x3|21, 22, .. .) etc.

The equation we are trying to obtain is the probability that the ith word in the nth
document comes from topic k. This will be the product of two components: the
probability of the kth topic in document n multiplied by the probability of word w
(assuming that the ith word is word w) in topic k. Based on the definitions in the
text, in the un-collapsed world, this would be given by:

P(an = k‘xnz = waﬂkun enk) = enkﬁkw'

To obtain the collapsed version, we need to marginalise the parameters 6, and
B Both are multinomials and have Dirichlet priors with parameters o and -~y
respectively. We know from our work in mixture models that if we have one sample
from a multinomial (say the kth value has been sampled) whose parameters are
Dirichlet distributed, the probability of that sample is equal to the kth Dirichlet

05/04/16 3:38 pm

K26591_SM_Cover.indd 69

65

parameter divided by the sum of the parameters. We also know that the posterior
Dirichlet for a Dirichlet prior and multinomial likelihood has parameters equal to
the prior parameters plus the observation counts. Therefore, defining ¢, as the
count of the number of words (excluding the ith one) in the nth document currently
assigned to topic k, we know that the term associated with the marginalisation of
0,, is: ,

C;]z + ag

j C;; +aj
and the term associated with the marginalisation of 3, is:

Vkw + Yw
Zw/ Vgw! + VY’

Multiplying the two together gives the update given in the text.

05/04/16 3:38 pm

