


PRACTICAL APPLICATIONS

Some of the real-life applications covered in this book are listed in order of appearance.

	 • Applications of electrostatics (Section 4.1)
 • Electrostatic separation of solids (Example 4.3)
 • Electrostatic discharge (ESD) (Section 4.11)
 • Electrostatic shielding (Section 5.9B)
 • High dielectric constant materials (Section 5.10)
 • Graphene (Section 5.11) NEW
 • Electrohydrodynamic pump (Example 6.1)
 • Xerographic copying machine (Example 6.2)
 • Parallel-plate capacitor, coaxial capacitor, and spherical capacitor (Section 6.5)
 • RF MEMS (Section 6.8) (Chapter 12 opener) NEW
 • Ink-jet printer (Problem 6.52)
 • Microstrip lines (Sections 6.7, 11.8, and 14.6)
 • Applications of magnetostatics (Section 7.1)
 • Coaxial transmission line (Section 7.4C)
 • Lightning (Section 7.9)
 • Polywells (Section 7.10) NEW
 • Magnetic resonant imaging (MRI) (Chapter 8 opener)
 • Magnetic focusing of a beam of electrons (Example 8.2, Figure 8.2)
 • Velocity filter for charged particles (Example 8.3, Figure 8.3)
 • Inductance of common elements (Table 8.3)
 • Electromagnet (Example 8.16)
 • Magnetic levitation (Section 8.12)
 • Hall effect (Section 8.13) NEW
 • Direct current machine (Section 9.3B)
 • Memristor (Section 9.8) NEW
 • Optical nanocircuits (Section 9.9) NEW
 • Homopolar generator disk (Problem 9.14)
 • Microwaves (Section 10.11)
 • Radar (Sections 10.11 and 13.9)
 • 60 GHz technology (Section 10.12) NEW
 • Bioelectromagnetics (Chapter 11 opener)
 • Coaxial, two-line, and planar lines (Figure 11.1, Section 11.2)
 • Quarter-wave transformer (Section 11.6A)
 • Data cables (Section 11.8B)
 • Metamaterials (Section 11.9) NEW
 • Microwave imaging (Section 11.10) NEW
 • Optical fiber (Section 12.9)
 • Cloaking and invisibility (Section 12.10) NEW
 • Smart antenna (Chapter 13 opener)
 • Typical antennas (Section 13.1, Figure 13.2)
 • Electromagnetic interference and compatibility (Section 13.10)
 • Grounding and filtering (Section 13.10)
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 • Textile antennas and sensors (Section 13.11) NEW
 • RFID (Section 13.12) NEW
 • Commercial EM software—FEKO (Section 14.7) NEW
 • COMSOL Multiphysics (Section 14.8) NEW
 • CST Microwave Studio (Section 14.9) NEW

   Approximate 

  Best Experimental Value for Problem 

Quantity (Units) Symbol Value* Work

Permittivity of free space (F/m) eo 8.854  1012 
1029

36p

Permeability of free space (H/m) mo 4p  107 12.6  107

Intrinsic impedance of free space (V) ho 376.6 120p

Speed of light in vacuum (m/s) c 2.998  108 3  108

Electron charge (C) e 1.6022  1019 1.6  1019

Electron mass (kg) me 9.1093  1031 9.1  1031

Proton mass (kg) mp 1.6726  1027 1.67  1027

Neutron mass (kg) mn 1.6749  1027 1.67  1027

Boltzmann constant (J/K) k 1.38065  1023 1.38  1023

Avogadro number (/kg-mole) N 6.0221  1023 6  1023

Planck constant (J  s) h 6.626  1034 6.62  1034

Acceleration due to gravity (m/s2) g 9.80665 9.8
Universal constant of gravitation G 6.673  1011 6.66  1011

N (m/kg)2

Electron-volt (J) eV 1.602176  1019 1.6  1019

  *  Values recommended by CODATA (Committee on Data for Science and Technology, Paris).

PHYSICAL CONSTANTS
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xiii

This new edition is intended to provide an introduction to engineering electromagnetics 
(EM) at the junior or senior level. Although the new edition improves on the previous edi-
tions, the core of the subject of EM has not changed. The fundamental objective of the first 
edition has been retained: to present EM concepts in a clearer and more interesting manner 
than other texts. This objective is achieved in the following ways:

1. To avoid complicating matters by covering EM and mathematical concepts simultane-
ously, vector analysis is covered at the beginning of the text and applied gradually. This approach 
avoids breaking in repeatedly with more background on vector analysis, thereby creating 
discontinuity in the flow of thought. It also separates mathematical theorems from physical 
concepts and makes it easier for the student to grasp the generality of those theorems. Vector 
analysis is the backbone of the mathematical formulation of EM problems.

2. Each chapter opens either with a historical profile of some electromagnetic pioneers 
or with a discussion of a modern topic related to the chapter. The chapter starts with a brief 
introduction that serves as a guide to the whole chapter and also links the chapter to the rest 
of the book. The introduction helps the students see the need for the chapter and how it 
relates to the previous chapter. Key points are emphasized to draw the reader’s attention. A 
brief summary of the major concepts is discussed toward the end of the chapter.

3. To ensure that students clearly get the gist of the matter, key terms are defined and 
highlighted. Important formulas are boxed to help students identify essential formulas.

4. Each chapter includes a reasonable amount of solved examples. Since the examples 
are part of the text, they are clearly explained without asking the reader to fill in missing 
steps. In writing out the solution, we aim for clarity rather than efficiency. Thoroughly 
worked out examples give students confidence to solve problems themselves and to learn to 
apply concepts, which is an integral part of engineering education. Each illustrative example 
is followed by a problem in the form of a Practice Exercise, with the answer provided.

5. At the end of each chapter are ten review questions in the form of multiple-choice 
 objective items. Open-ended questions, although they are intended to be thought-provoking, 
are ignored by most students. Objective review questions with answers immediately following 
them provide encouragement for students to do the problems and gain immediate feedback.  
A large number of problems are provided and are presented in the same order as the material 
in the main text. Approximately 20 to 25 percent of the problems in this edition have been  
replaced. Problems of intermediate difficulty are identified by a single asterisk; the most diffi-
cult problems are marked with a double asterisk. Enough problems are provided to allow the 
instructor to choose some as examples and assign some as homework problems. Answers to 
odd-numbered problems are provided in Appendix E.

6. Since most practical applications involve time-varying fields, six chapters are 
devoted to such fields. However, static fields are given proper emphasis because they 
are special cases of dynamic fields. Ignorance of electrostatics is no longer acceptable 

PREFACE
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because there are large industries, such as copier and computer peripheral manufactur-
ing, that rely on a clear understanding of electrostatics.

7. The last section in each chapter is devoted to applications of the concepts covered in 
the chapter. This helps students see how concepts apply to real-life situations.

8. The last chapter covers numerical methods with practical applications and  
MATLAB programs. This chapter is of paramount importance because most practical prob-
lems are only solvable using numerical techniques. Since MATLAB is used throughout the 
book, an introduction to MATLAB is provided in Appendix C.

9. Over 130 illustrative examples and 300 figures are given in the text. Some additional 
learning aids such as basic mathematical formulas and identities are included in Appendix A. 
Another guide is a special note to students, which follows this preface.

NEW TO THE SIXTH EDITION
 •  Five new Application Notes designed to explain the real-world connections  

between the concepts discussed in the text.
 •  A revised Math Assessment test, for instructors to gauge their students’  

mathematical knowledge and preparedness for the course.
 •  New and updated end-of-chapter problems.

Solutions to the end-of-chapter problems and the Math Assessment, as well as 
PowerPoint slides of all figures in the text, can be found at the Oxford University Press 
Ancillary Resource Center. 

Students and professors can view Application Notes from previous editions of the text 
on the book’s companion website www.oup.com/us/sadiku.

Although this book is intended to be self-explanatory and useful for self-instruction, 
the personal contact that is always needed in teaching is not forgotten. The actual choice 
of course topics, as well as emphasis, depends on the preference of the individual instruc-
tor. For example, an instructor who feels that too much space is devoted to vector anal-
ysis or static fields may skip some of the materials; however, the students may use them 
as reference. Also, having covered Chapters 1 to 3, it is possible to explore Chapters 9 to 
14. Instructors who disagree with the vector-calculus-first approach may proceed with 
Chapters 1 and 2, then skip to Chapter 4, and refer to Chapter 3 as needed. Enough mate-
rial is covered for two-semester courses. If the text is to be covered in one semester, cover-
ing Chapters 1 to 9 is recommended; some sections may be skipped, explained briefly, or 
assigned as homework. Sections marked with the dagger sign ( † ) may be in this category.

ACKNOWLEDGMENTS
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Colleen Rowe, Production Editor Claudia Dukeshire, and Designer Michele Laseau at 
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xvi PREFACE
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A NOTE TO THE STUDENT

Electromagnetic theory is generally regarded by students as one of the most difficult cours-
es in physics or the electrical engineering curriculum. But this conception may be proved 
wrong if you take some precautions. From experience, the following ideas are provided to 
help you perform to the best of your ability with the aid of this textbook:

1. Pay particular attention to Part 1 on vector analysis, the mathematical tool for this 
course. Without a clear understanding of this section, you may have problems with the rest 
of the book.

2. Do not attempt to memorize too many formulas. Memorize only the basic ones, 
which are usually boxed, and try to derive others from these. Try to understand how formu-
las are related. There is nothing like a general formula for solving all problems. Each for-
mula has limitations owing to the assumptions made in obtaining it. Be aware of those as-
sumptions and use the formula accordingly.

3. Try to identify the key words or terms in a given definition or law. Knowing the 
meaning of these key words is essential for proper application of the definition or law.

4. Attempt to solve as many problems as you can. Practice is the best way to gain skill. 
The best way to understand the formulas and assimilate the material is by solving problems. 
It is recommended that you solve at least the problems in the Practice Exercise immediately 
following each illustrative example. Sketch a diagram illustrating the problem before 
 attempting to solve it mathematically. Sketching the diagram not only makes the problem 
easier to solve, but also helps you understand the problem by simplifying and organizing 
your thinking process. Note that unless otherwise stated, all distances are in meters. For 
example (2, 1, 5) actually means (2 m, 1 m, 5 m).

You may use MATLAB to do number crunching and plotting. A brief introduction to 
MATLAB is provided in Appendix C.

A list of the powers of 10 and Greek letters commonly used throughout this text is 
provided in the tables located on the inside cover. Important formulas in calculus, vectors, 
and complex analysis are provided in Appendix A. Answers to odd-numbered problems are 
in Appendix E.

xvii xvii
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MA-1

MATH ASSESSMENT

1.1  Let u be the angle between the vectors A and B. What can be said about u if  
(i) |A +B| , |A  B|, (ii) |A 1 B| 5 |A  B|, (iii) |A 1 B| . |A  B|?

1.2  Two sides of a parallelogram ABCD denoted as p = 5ax and q = 3ax + 4ay are shown 
in Figure MA-1 Let the diagonals intersect at O and make an angle a. Find the 
coordinates of O and the magnitude of a. Based on the value of a, what can we call 
ABCD?

B

O
α

A p = 5ax

CD

q = 3ax + 4ay

FIGURE MA-1 Parallelogram ABCD.

1.3  What is the distance R between the two points A(3, 5, 1) and B(5, 7, 2)? Also find 

its reciprocal, 
1
R

.

1.4  What is the distance vector RAB from A(3, 7, 1) to B(8, 19, 2) and a unit vector aAB 
in the direction of RAB?

1.5  Find the interval of values x takes so that a unit vector u satisfies |(x  2)u| , |3u|.
1.6  There are four charges in space at four points A, B, C, and D, each 1 m from every 

other. You are asked to make a selection of coordinates for these charges. How do 
you place them in space and select their coordinates? There is no unique way.

1.7  A man driving a car starts at point O, drives in the following pattern
15 km northeast to point A,
20 km southwest to point B,
25 km north to C,
10 km southeast to D,
15 km west to E, and stops.

How far is he from his starting point, and in what direction?
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1.8  A unit vector an makes angles a, , and  with the x-, y-, and z-axes, respectively. 
Express an in the rectangular coordinate system. Also express a nonunit vector OP

>
 

of length  parallel to an.
1.9  Three vectors p, q, and r sum to a zero vector and have the magnitude of 10, 11, 

and 15, respectively. Determine the value of p ? q 1 q ? r 1 r ? p.

1.10  An experiment revealed that the point Q(x, y, z) is 4 m from P(2, 1, 4) and that the 
vector QP

>
 makes 45.5225, 59.4003, and 60 with the x-, y-, and z-axes, respectively. 

Determine the location of Q.

1.11  In a certain frame of reference with x-, y-, and z-axes, imagine the first octant to be 
a room with a door. Suppose that the height of the door is h and its width is r. 
The top-right corner P of the door when it is shut has the rectangular coordinates 
(r, 0, h). Now if the door is turned by angle f, so we can enter the room, what are 
the coordinates of P? What is the length of its diagonal r 5 OP in terms of r and z? 
Suppose the vector OP

>
 makes an angle u with the z-axis; express r and h in terms 

of r and u.

1.12  Consider two vectors p 5 OP
>
 and q=OQ

>
 in Figure MA-2. Express the vector GR

>
 

in terms of p and q. Assume that /ORQ 5 90°.

MA-2 MATH ASSESSMENT

PR

Q

O

FIGURE MA-2 Orthogonal projection of one vector 
over another.

1.13  Consider the equations of two planes:

3x  2y  z 5 8
2x 1 y 1 4z 5 3

Let them intersect along the straight line . Obtain the coordinates of the points 
where  meets the xy– and the yz–planes. Also determine the angle between  and 
the xz-plane.

1.14  Given two vectors p 5 ax 1 ay and q 5 ay 1 az of equal length, find a third vector r such 
that it has the same length and the angle between any two of them is 60.

1.15  Given A 5 2xy ax 1 3zy ay 1 5z az and B 5 sin x ax 1 2y ay 1 5y az, find (i)  ? A, 
(ii)  3 A, (iii)  ?  3 A, and (iv)  ? (A 3 B).
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2.1  A triangular plate of base b 5 5 and height h 5 4 shown in Figure MA-3 is uni-
formly charged with a uniform surface charge density rs 5 10 C/m2. You are to cut 
a rectangular piece so that maximum amount of charge is taken out. What should 
be the dimensions x and y of the rectangle? What is the magnitude of the charge 
extracted out?

2.2  Consider two fixed points F1(c, 0) and F2(c, 0) in the xy-plane. Show that the 
locus of a point P(x, y) that satisfies the constraint that the sum PF1 +PF2 remains 
constant and is equal to 2a is an ellipse. The equipotential loci due to a uniform 
line charge of length 2c are family of ellipses in the plane containing the charge. 
This problem helps in proving it.

2.3  Show that the ordinary angle subtended by a closed curve lying in a plane at a 
point P is 2 radians if P is enclosed by the curve and zero if not.

MATH ASSESSMENT MA-3

x

y

M

M ′

O Aθ

F

FIGURE MA-3 A rectangular piece cut out 
from a triangular plate.

2.4  Show that the solid angle subtended by a closed surface at a point P is 4 steradians 
if P is enclosed by the closed surface and zero if not.

2.5  The electrostatic potential V(r) is known to obey the equation V(r) = 2V (2r) with 
the boundary condition V(5) 5 3 volts. Determine V(15).

2.6  Evaluate the indefinite integrals (i) 3cosec u du and (ii) 3sec u du. Ignore the arbi-
trary constant.

2.7  A liquid drop is in the form of an ellipsoid 
x2

a2 1
y2

b2 1
z2

c2 5 1 shown in Figure MA-4 

and is filled with a charge of nonuniform density ry 5 x2  C/m3. Find the total 
charge in the drop.

2.8  Two families of curves are said to be orthogonal to each other if they intersect at 
90. Given a family y2 5 cx3, find the equation for orthogonal trajectories and plot 
three to four members of each on the same graph.

2.9  Consider a vector given by E 5 (4xy 1 z)ax 1 2x2ay 1 x az. Find the line integral 

from A(3, 7, 1) to B(8, 9, 2) by (i) evaluating the line integral VAB 5  3
B

A
E ? dl along 

    the line joining A to B and (ii) evaluating e23
C

A
E # dl 2 3

D

C
E # dl 2 3

B

D
E # dl f ,  

where the stopovers C and D are C(8, 7, 1) and D(8, 9, 1). 
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2.10  Find the trigonometric Fourier series of a function f(x) 5 x 1 x2 defined over the 
interval  , x ,  .

2.11  In a certain electrostatic system, there are found an infinite set of image point 
charges. The field intensity at a point may be written as

E 5 A a
`

m51 
a
`

n5m

(21)(n21)

n2

Simplify the double summation.
 Hint: Integrating the following series term by term and substituting x 5 1 helps in 
finding the result.

1
1 1 x

5 12x 1 x2 2 x3 1 . . . 1 2 . . .

2.12  Solve the differential equation

d2V(x)
dx2 5

k

"V(x)

subject to the boundary conditions 
dV
dx

`
x50

5 0 and V(0) 5 0. Assume that k is a 

constant.

3.1  The location of a moving charge is given by the time-varying radius vector r 5 2 
cos t ax 1 2 sin t ay + 3taz. Describe the trajectory of motion. Find the velocity and 
acceleration vectors at any instant t. In particular, indicate their directions at the 
specific instants t 5 0 and t 5 / 2. Find their magnitudes at any instant.

3.2  The magnetic field strength H(z) at a point on the z-axis shown in Figure MA-5 is 
proportional to the sum of cosine of angles and is given by H 5 k(cos u1 1 cos u2). 

Find H(0). Also show that if a ≪ ,, H (6,) <
1
2

H(0). This helps in finding the 

magnetic field along the axis of a long solenoid.

a x

–c

y

b

S

–a

τ

–b

c
z

FIGURE MA-4 A non uniformly charged  
liquid drop.

MA-4 MATH ASSESSMENT
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3.3  Suppose it is suggested that B 5 r (k 3 r) is the magnetic flux density vector, where 
k is a constant vector and r 5 rar verify if it is solenoidal.

MATH ASSESSMENT MA-5

3.4  Evaluate the line integral 
IC

(x 1 y)dx 1 (x 2 y)dy

x2
1 y2  where C is the circle x2 1 y2 5 

a2 of constant radius a.

3.5  Evaluate the line integral 
I  C

xdy 2 ydx
x2 1 y2  where C is a closed curve (i) encircling the 

origin n times, (ii) not enclosing the origin.

4.1  Show that  ?  3 A 5 0.
4.2  Show that  3  5 0.

4.3  Given that the imaginary unit is j 5 "21 and that x 5 j j, could the value of x be 
real? If so, is it unique? Can x have one value in the interval (100, 120)?

4.4  Show that  ? A 3 B 5 B ?  3 A  A ?  3 B.
4.5  Use De Moivre's theorem to prove that cos 3u 5 cos3 u  3 cos u sin2u:

4.6  Determine "j.

4.7  Determine "j using the Euler formula.
4.8  Find the phasors for the following field quantities:

  (a) Ex(z, t) 5 Eo cos (t  z 1 f) (V/m)
  (b) Ey(z, t) 5 100e3z cos (t  5z 1 /4) (V/m)
  (c) Hx(z, t) 5 Ho cos (t 1 z) (A/m)
  (d) Hy(z, t) 5 120e5z cos (t 1 z 1 fh) (A/m)

4.9  Find the instantaneous time domain sinusoidal functions corresponding to the 
following phasors:

  (a) Ex(z) 5 Eoe jz (V/m)
  (b) Ey(z) 5 100e3zej5z (V/m)
  (c) Is(z) 5 5 1 j4 (A)
  (d) Vs(z) 5 j10e j / 3 (V)

4.10  Write the phasor expression ~I for the following current using a cosine reference.
  (a) i(t) 5 Io cos (t   /6)

  (b) i(t) 5 Io sin (t 1  /3)

z
z

a 0

θ1 θ2

2

a

FIGURE MA-5 Toward finding magnetic field along the axis of a solenoid.
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4.11  In a certain resonant cavity, the resonant modes are described by a triplet of 
 nonnegative integers m, n, and p. Find possible solutions under the inequality 
 constraints,

mn 1 np 1 pm 2 0

13
16

#
m2

4
1

n2

9
1 p2 #

5
4

4.12  A voltage source V (t) 5 100 cos (6109t  45) (V) is connected to a series RLC 
circuit, as shown in Figure MA-6. Given R 5 10 M, C 5 100 pF, and L 5 1 H, use 
phasor notation to find the following:

  (a) i(t)

  (b) Vc (t), the voltage across the capacitor
4.13  (i) Show that the locus of the points P(x, y) obeying the equation

x2 1 y2 1 2gx 1 2fy 1 c 5 0

 represents a circle. (ii) Express the coordinates of the center and the radius. Use the 
following equations of circles to find the centers and radii.

x2 1 y2 1 8x  4y 1 11 5 0
x2 1 y2  10x  6y 1 9 5 0

225x2 1 225y2 1 90x  300y 1 28 5 0

MA-6 MATH ASSESSMENT

FIGURE MA-6 A series RLC  
circuit for Problem 4.12.

+
+

–

Vs Vc

R jωL

1
jωC–

i(t)

4.14  Recall the vector identity  3 A   3 A 1  3 A, where  is a scalar function 

and A is a vector point function. Suppose A 5 Azaz, where Az 5 
e2 jkr

r  and k is a 
 constant. Simplify  3 A.

4.15  Between two points A and B on the brink of a circular water pond, a transmission 
line has to be run. It costs twice the money per meter length to install the cable 
through the water compared to installation on the edge. One might take the cable (a) 
completely around the arc on the surrounding land or (b) straight through in the 
water or (c) partly on the arc and for the remaining, straight in the water. (i) What 
path costs the maximum money? (ii) Suggest an arrangement that minimizes the 
cost. With some numerical values, plot the cost function.

4.16  Show the following series expansion assuming |x| , 1:

1
11 2 x 2 2 5 1 1 2x 1 3x2 1 4x3 1 . . .

00_Sadiku_FM.indd   6 16/11/17   3:36 PM



PA R T

1

VECTOR ANALYSIS

01_Sadiku_Ch01.indd   1 01/11/17   1:14 PM



CODES OF ETHICS

Engineering is a profession that makes significant contributions to the economic and social 
 well-being of people all over the world. As members of this important profession, engineers are 
expected to exhibit the highest standards of honesty and integrity. Unfortu nately, the engineering 
curriculum is so crowded that there is no room for a course on ethics in most schools. Although 
there are over 850 codes of ethics for different professions all over the world, the code of ethics 
of the Institute of Electrical and Electronics Engineers (IEEE) is presented here to give students a 
flavor of the importance of ethics in engineer ing professions.

We, the members of the IEEE, in recognition of the importance of our technologies in affecting 
the quality of life throughout the world, and in accepting a personal obligation to our profession, 
its members and the communities we serve, do hereby commit ourselves to the highest ethical and 
professional conduct and agree:

 1.  to accept responsibility in making engineering decisions consistent with the safety, health, 
and welfare of the public, and to disclose promptly factors that might endanger the public 
or the environment; 

 2.  to avoid real or perceived conflicts of interest whenever possible, and to disclose them to 
affected parties when they do exist; 

 3. to be honest and realistic in stating claims or estimates based on available data; 
 4. to reject bribery in all its forms; 
 5.  to improve the understanding of technology, its appropriate application, and po tential 

consequences; 
 6.  to maintain and improve our technical competence and to undertake technologi cal tasks 

for others only if qualified by training or experience, or after full disclo sure of pertinent 
limitations; 

 7.  to seek, accept, and offer honest criticism of technical work, to acknowledge and correct 
errors, and to credit properly the contributions of others; 

 8.  to treat fairly all persons regardless of such factors as race, religion, gender,  dis ability, age, or 
national origin; 

 9.  to avoid injuring others, their property, reputation, or employment by false or ma licious 
action; 

10.  to assist colleagues and co-workers in their professional development and to  sup port them 
in following this code of ethics.

—Courtesy of IEEE
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3

C H A P T E R

3

1.1 INTRODUCTION

Electromagnetics (EM) may be regarded as the study of the interactions between electric 
charges at rest and in motion. It entails the analysis, synthesis, physical interpretation, and 
application of electric and magnetic fields.

Electromagnetics (EM) is a branch of physics or electrical engineering in which  
electric and magnetic phenomena are studied.

EM principles find applications in various allied disciplines such as microwaves, antennas, 
electric machines, satellite communications, bioelectromagnetics, plasmas, nuclear research, 
fiber optics, electromagnetic interference and compatibility, electromechanical energy conver-
sion, radar meteorology, and remote sensing.1,2 In physical medicine, for example, EM power, 
in the form either of shortwaves or microwaves, is used to heat deep tissues and to stimulate 
certain physiological responses in order to relieve certain pathological conditions. EM fields 
are used in induction heaters for melting, forging, annealing, surface hardening, and soldering 
operations. Dielectric heating equipment uses shortwaves to join or seal thin sheets of plastic 
materials. EM energy offers many new and exciting possibilities in agriculture. It is used, for 
example, to change vegetable taste by reducing acidity.

EM devices include transformers, electric relays, radio/TV, telephones, electric motors, 
transmission lines, waveguides, antennas, optical fibers, radars, and lasers. The design of 
these devices requires thorough knowledge of the laws and principles of EM.

1For numerous applications of electrostatics, see J. M. Crowley, Fundamentals of Applied Electrostatics. New 
York: John Wiley & Sons, 1986.
2For other areas of applications of EM, see, for example, D. Teplitz, ed., Electromagnetism: Paths to Research. 
New York: Plenum Press, 1982.

VECTOR ALGEBRA

Books are the quietest and most constant friends; they are the most accessible and  

wisest of counselors, and most patient of teachers.
—CHARLES W. ELLIOT

1
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4 CHAPTER 1 VECTOR ALGEBRA

The subject of electromagnetic phenomena in this book can be summarized in Maxwell’s 
equations:

  = # D 5 rv  (1.1)

  = # B 5 0  (1.2)

  = 3 E 5 2
'B
't

 (1.3)

  = 3 H 5 J 1
'D
't

 (1.4)

where = 5 the vector differential operator
 D  5 the electric flux density
 B  5 the magnetic flux density
 E  5 the electric field intensity
 H  5 the magnetic field intensity
  v 5 the volume charge density
  J  5 the current density

Maxwell based these equations on previously known results, both experimental and theore-
tical. A quick look at these equations shows that we shall be dealing with vector quantities. It 
is consequently logical that we spend some time in Part 1 examining the mathematical tools 
required for this course. The derivation of eqs. (1.1) to (1.4) for time-invariant conditions 
and the physical significance of the quantities D, B, E, H, J, and v will be our aim in Parts 2 
and 3. In Part 4, we shall reexamine the equations for time-varying situations and apply 
them in our study of practical EM devices such as transmission lines, waveguides, antennas, 
fiber optics, and radar systems.

†1.2 A PREVIEW OF THE BOOK

1.3 SCALARS AND VECTORS

Vector analysis is a mathematical tool with which electromagnetic concepts are most con-
veniently expressed and best comprehended. We must learn its rules and techniques before 
we can confidently apply it. Since most students taking this course have little exposure to 
vector analysis, considerable attention is given to it in this and the next two chapters.3 This 
chapter introduces the basic concepts of vector algebra in Cartesian coordinates only. The 
next chapter builds on this and extends to other coordinate systems.

A quantity can be either a scalar or a vector. A scalar is a quantity that is completely 
specified by its magnitude.

†Indicates sections that may be skipped, explained briefly, or assigned as homework if the text is covered in one 
semester.
3The reader who feels no need for review of vector algebra can skip to the next chapter.
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1.4 Unit Vector 5

A scalar is a quantity that has only magnitude.

Quantities such as time, mass, distance, temperature, entropy, electric potential, and popu-
lation are scalars. A vector has not only magnitude, but direction in space.

A vector is a quantity that is described by both magnitude and direction.

Vector quantities include velocity, force, momentum, acceleration displacement, and electric 
field intensity. Another class of physical quantities is called tensors, of which scalars and vectors 
are special cases. For most of the time, we shall be concerned with scalars and vectors.4

To distinguish between a scalar and a vector it is customary to represent a vector by 
a letter with an arrow on top of it, such as A

>
 and B

>
, or by a letter in boldface type such as 

A and B. A scalar is represented simply by a letter—for example, A, B, U, and V.
EM theory is essentially a study of some particular fields.

A field is a function that specifies a particular quantity everywhere in a region.

A field may indicate variation of a quantity throughout space and perhaps with time. 
If the quantity is scalar (or vector), the field is said to be a scalar (or vector) field. Examples 
of scalar fields are temperature distribution in a building, sound intensity in a theater, electric 
potential in a region, and refractive index of a stratified medium. The gravitational force on 
a body in space and the velocity of raindrops in the atmosphere are examples of vector fields.

1.4 UNIT VECTOR

A vector A has both magnitude and direction. The magnitude of A is a scalar written as 
A or 0A 0 . A unit vector aA along A is defined as a vector whose magnitude is unity (i.e., 1) 
and its direction is along A; that is,

 aA 5
A
0A 0 5

A
A

 (1.5)

Note that 0 aA 0 5 1. Thus we may write A as

 A 5 AaA (1.6)

which completely specifies A in terms of its magnitude A and its direction aA.
A vector A in Cartesian (or rectangular) coordinates may be represented as

 1Ax, Ay, Az 2     or    Axax 1 Ayay 1 Azaz (1.7)

4For an elementary treatment of tensors, see, for example, A. I. Borisenko and I. E. Tarapor, Vector and Tensor 
Analysis with Applications. New York: Dover, 1979.
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6 CHAPTER 1 VECTOR ALGEBRA

where Ax, Ay, and Az are called the components of A in the x-, y-, and z-directions, respec- 
tively; ax, ay, and az are unit vectors in the x-, y-, and z-directions, respectively. For example,  
ax is a dimensionless vector of magnitude one in the direction of the increase of the x-axis. 
The unit vectors ax, ay, and az are illustrated in Figure 1.1(a), and the components of A along 
the coordinate axes are shown in Figure 1.1(b). The magnitude of vector A is given by

 A 5 "Ax
2 1 Ay

2 1 Az
2 (1.8)

and the unit vector along A is given by

 aA 5
Axax 1 Ayay 1 Azaz

"Ax
2 1 Ay

2 1 Az
2

 (1.9)

FIGURE 1.1 (a) Unit vectors ax, ay, and az, (b) components of A 
along ax, ay, and az.

1.5 VECTOR ADDITION AND SUBTRACTION

Two vectors A and B can be added together to give another vector C; that is,

 C 5 A 1 B (1.10)

The vector addition is carried out component by component. Thus, if A 5 1Ax, Ay, Az) 
and B 5 1Bx, By, Bz).

 C 5 1Ax 1 Bx 2ax 1 1Ay 1 By 2ay 1 1Az 1 Bz 2az (1.11)

Vector subtraction is similarly carried out as

 D 5 A 2 B 5 A 1 12B 2  
  5 1Ax 2 Bx 2ax 1 1Ay 2 By 2ay 1 1Az 2 Bz 2az 

(1.12)
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1.6 Position and Distance Vectors 7

Graphically, vector addition and subtraction are obtained by either the parallelogram rule 
or the head-to-tail rule as portrayed in Figures 1.2 and 1.3, respectively.

The three basic laws of algebra obeyed by any given vectors A, B, and C are summa-
rized as follows:

Law Addition Multiplication

Commutative A 1 B 5 B 1 A kA 5 Ak
Associative A 1 1B 1 C 2 5 1A 1 B 2 1 C k(,A) 5 (k,)A
Distributive k 1A 1 B 2 5 kA 1 kB

where k and , are scalars. Multiplication of a vector with another vector will be discussed 
in Section 1.7.

FIGURE 1.3 Vector subtraction  
D 5 A 2 B: (a) parallelogram rule,  
(b)  head-to-tail rule.

FIGURE 1.2 Vector addition C 5 A 1 B: (a) parallelogram rule,  
(b) head-to-tail rule.

1.6 POSITION AND DISTANCE VECTORS

A point P in Cartesian coordinates may be represented by (x, y, z).

The position vector rP (or radius vector) of point P is defined as the directed dis-
tance from the origin O to P; that is,

 rP 5 OP 5 xax 1 yay 1 zaz (1.13)
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8 CHAPTER 1 VECTOR ALGEBRA

The position vector of point P is useful in defining its position in space. Point (3, 4, 5), for 
example, and its position vector 3ax 1 4ay 1 5az are shown in Figure 1.4.

The distance vector is the displacement from one point to another.

If two points P and Q are given by (xP, yP, zP) and (xQ, yQ, zQ), the distance vector (or 
separation vector) is the displacement from P to Q as shown in Figure 1.5; that is,

 rPQ 5 rQ 2 rP

  5 1xQ 2 xP 2ax 1 1yQ 2 yP 2ay 1 1zQ 2 zP 2az (1.14)

The difference between a point P and a vector A should be noted. Though both P 
and A may be represented in the same manner as (x, y, z) and (Ax, Ay, Az), respectively, 
the point P is not a vector; only its position vector rP is a vector. Vector A may depend on 
point P, however. For example, if A 5 2xyax 1 y2ay 2 xz2az and P is 12, 21, 4 2 , then A at 
P would be 24ax 1 ay 2 32az. A vector field is said to be constant or uniform if it does 
not depend on space variables x, y, and z. For example, vector B 5 3ax 2 2ay 1 10az is a  
uniform vector while vector A 5 2xyax 1 y2ay 2 xz2az is not uniform because B is the 
same everywhere, whereas A varies from point to point.

O

FIGURE 1.4 Illustration of position vector 
rP 5 3ax 1 4ay 5 5az.

FIGURE 1.5 Distance vector rPQ.

EXAMPLE 1.1 If A 5 10ax 2 4ay 1 6az and B 5 2ax 1 ay, find (a) the component of A along ay, (b) the 
magnitude of 3A 2 B, (c) a unit vector along A 1 2B.
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1.6 Position and Distance Vectors 9

Solution:
(a) The component of A along ay is Ay 5 24.
(b) 3A 2 B 5 3 110, 24, 6 2 2 12, 1, 0 2
  5 130, 212, 18 2 2 12, 1, 0 2
  5 128, 213, 18 2

Hence,

 0 3A 2 B 0 5 "282 1 1213 2 2 1 118 2 2 5 "1277
 5 35.74

(c) Let C 5 A 1 2B 5 110, 24, 6 2  1  14, 2, 0 2 5 114, 22, 6 2 .
A unit vector along C is

ac 5
C
0C 0 5

114, 22, 6 2
"142 1 122 2 2 1 62

or

ac 5 0.9113ax 2 0.1302ay 1 0.3906az

Note that 0 ac 0 5 1 as expected.

PRACTICE EXERCISE 1.1

Given vectors A 5 ax 1 3az and B 5 5ax 1 2ay 2 6az, determine
(a) uA 1 Bu
(b) 5A 2 B
(c) The component of A along ay

(d) A unit vector parallel to 3A 1 B

Answer: (a) 7, (b) (0, 22, 21), (c) 0, (d) 6(0.9117, 0.2279, 0.3419).

Points P and Q are located at (0, 2, 4) and 123, 1, 5 2 . Calculate
(a) The position of vector rP

(b) The distance vector from P to Q
(c) The distance between P and Q
(d) A vector parallel to PQ with magnitude of 10

EXAMPLE 1.2
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Solution:
(a) rP 5 0ax 1 2ay 1 4az 5 2ay 1 4az

(b)  rPQ 5 rQ 2 rP 5 123, 1, 5 2 2 10, 2, 4 2 5 123, 21, 1 2   
or rPQ 5 23ax 2 ay 1 az

(c)  Since rPQ is the distance vector from P to Q, the distance between P and Q is the mag-
nitude of this vector; that is,

d 5 0 rPQ 0 5 "9 1 1 1 1 5 3.317

Alternatively:

 d 5 "1xQ 2 xP 2 2 1 1yQ 2 yP 2 2 1 1zQ 2 zP 2 2

 5 "9 1 1 1 1 5 3.317

(d) Let the required vector be A, then

A 5 AaA

where A 5 10 is the magnitude of A. Since A is parallel to PQ, it must have the same unit 
vector as rPQ or rQP. Hence,

aA 5 6
rPQ

0 rPQ 0
5 6

123, 21, 1 2
3.317

and

A 5 6
10 123, 21, 1 2

3.317
5 6 129.045ax 2 3.015ay 1 3.015az 2

PRACTICE EXERCISE 1.2

Given points P(1, 23, 5), Q(2, 4, 6), and R(0, 3, 8), find (a) the position vectors of P and 
R, (b) the distance vector rQR, (c) the distance between Q and R.

Answer: (a) ax 2 3ay 1 5az, 3ax 1 8az, (b) 22ax 2 ay 1 2az, (c) 3.

A river flows southeast at 10 km/hr and a boat floats upon it with its bow pointed in the 
direction of travel. A man walks upon the deck at 2 km/hr in a direction to the right and 
perpendicular to the direction of the boat’s movement. Find the velocity of the man with 
respect to the earth.

Solution:
Consider Figure 1.6 as illustrating the problem. The velocity of the boat is

        5 7.071ax 2 7.071ay km/hr

EXAMPLE 1.3

01_Sadiku_Ch01.indd   10 01/11/17   1:14 PM

 ub 5 10 1cos 45° ax 2 sin 45° ay 2



1.7 Vector Multiplication 11

PRACTICE EXERCISE 1.3

An airplane has a ground speed of 350 km/hr in the direction due west. If there is a wind 
blowing northwest at 40 km/hr, calculate the true air speed and heading of the airplane.

Answer: 379.3 km/hr, 4.275° north of west.

FIGURE 1.6 For Example 1.3.

1.7 VECTOR MULTIPLICATION

When two vectors A and B are multiplied, the result is either a scalar or a vector depending 
on how they are multiplied. Thus there are two types of vector multiplication:

1. Scalar (or dot) product: A # B
2. Vector (or cross) product: A 3 B

01_Sadiku_Ch01.indd   11 01/11/17   1:14 PM

t

 uab 5 um 1 ub 5 5.657ax 2 8.485ay

 0 uab 0 5 10.2l256.3°iii

that is, 10.2 km/hr at 56.3° south of east.

The velocity of the man with respect to the boat (relative velocity) is

 um 5 2 12 cos 45° ax 2 sin 45° ay 2
 5 21.414ax 2 1.414ay km /hr

Thus the absolute velocity of the man is
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Multiplication of three vectors A, B, and C can result in either:

3. Scalar triple product: A # 1B 3 C 2
or

4. Vector triple product: A 3 1B 3 C 2

A. Dot Product

The dot product of two vectors A and B, written as A ? B, is defined geometrically 
as the product of the magnitudes of A and B and the cosine of the smaller angle 
between them when they are drawn tail to tail.

Thus,

 A # B 5 AB cos uAB (1.15)

where uAB is the smaller angle between A and B. The result of A # B is called either the scalar 
product because it is scalar or the dot product due to the dot sign. If A 5 1Ax, Ay, Az 2  and 
B 5 1Bx, By, Bz), then

 A # B 5 AxBx 1 AyBy 1 AzBz (1.16)

which is obtained by multiplying A and B component by component. Two vectors A and B 
are said to be orthogonal (or perpendicular) with each other if A # B 5 0.

Note that dot product obeys the following:

    (i) Commutative law:

 A # B 5 B # A (1.17)

 (ii) Distributive law:

 A # 1B 1 C 2 5 A # B 1 A # C (1.18)

 (iii) 
  A # A 5 0A 0 2 5 A2 (1.19)

     Also note that

 ax
# ay 5 ay

# az 5 az
# ax 5 0 (1.20a)

 ax
# ax 5 ay

# ay 5 az
# az 5 1 (1.20b)

It is easy to prove the identities in eqs. (1.17) to (1.20) by applying eq. (1.15) or (1.16).
If A # B 5 0, the two vectors A and B are orthogonal or perpendicular.
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B. Cross Product

The cross product of two vectors A and B, written as A 3 B, is a vector quantity 
whose magnitude is the area of the parallelogram formed by A and B (see Figure 1.7) 
and is in the direction of advance of a right-handed screw as A is turned into B.

Thus,

 A 3 B 5 AB sin uABan (1.21)

where an is a unit vector normal to the plane containing A and B. The direction of an is 
taken as the direction of the right thumb when the fingers of the right hand rotate from 
A to B as shown in Figure 1.8(a). Alternatively, the direction of an is taken as that of the 
advance of a right-handed screw as A is turned into B as shown in Figure 1.8(b).

The vector multiplication of eq. (1.21) is called cross product owing to the cross 
sign; it is also called vector product because the result is a vector. If A 5 1Ax, Ay, Az) and  
B 5 1Bx, By, Bz), then

 A 3 B 5 3
ax ay az

Ax Ay Az

Bx By Bz

3  (1.22a)

 5 1AyBz 2 AzBy 2ax 1 1AzBx 2 AxBz 2ay 1 1AxBy 2 AyBx 2az (1.22b)

which is obtained by “crossing” terms in cyclic permutation, hence the name “cross  
product.”

A

A

 � B

B

FIGURE 1.7 The cross product of A and B is a vector with magnitude equal 
to the area of the parallelogram and direction as indicated.
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Note that the cross product has the following basic properties:

 (i) It is not commutative:

 A 3 B 2 B 3 A (1.23a)

    It is anticommutative:

 A 3 B 5 2B 3 A (1.23b)

 (ii) It is not associative:

 A 3 1B 3 C 2 2 1A 3 B 2 3 C (1.24)

(iii) It is distributive:

 A 3 1B 1 C 2 5 A 3 B 1 A 3 C (1.25)

(iv) Scaling:

 kA 3 B 5 A 3 kB 5 k 1A 3 B 2  (1.26)

 (v) 

 A 3 A 5 0 (1.27)

   Also note that

 ax 3 ay 5 az 
 ay 3 az 5 ax (1.28)
 az 3 ax 5 ay 

which are obtained in cyclic permutation and illustrated in Figure 1.9. The identities in eqs. 
(1.23) to (1.28) are easily verified by using eq. (1.21) or (1.22). It should be noted that in 
obtaining an, we have used the right-hand or right-handed-screw rule because we want to 

FIGURE 1.8 Direction of A 3 B and an using (a) the right-hand rule and (b) the 
right-handed-screw rule.
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1.7 Vector Multiplication 15

be consistent with our coordinate system illustrated in Figure 1.1, which is right-handed. 
A right-handed coordinate system is one in which the right-hand rule is satisfied: that is, 
ax 3 ay 5 az is obeyed. In a left-handed system, we follow the left-hand or left-handed 
screw rule and ax 3 ay 5 2az is satisfied. Throughout this book, we shall stick to right-
handed coordinate systems.

Just as multiplication of two vectors gives a scalar or vector result, multiplication of 
three vectors A, B, and C gives a scalar or vector result, depending on how the vectors are 
multiplied. Thus we have a scalar or vector triple product.

C. Scalar Triple Product
Given three vectors A, B, and C, we define the scalar triple product as

 A # 1B 3 C 2 5 B # 1C 3 A 2 5 C # 1A 3 B 2  (1.29)

obtained in cyclic permutation. If A 5 1Ax, Ay, Az), B 5 1Bx, By, Bz), and C 5 1Cx, Cy, Cz), 
then A # 1B 3 C 2  is the volume of a parallelepiped having A, B, and C as edges and is easily 
obtained by finding the determinant of the 3 3 3 matrix formed by A, B, and C; that is,

 A # 1B 3 C 2 5 3
Ax Ay Az

Bx By Bz

Cx Cy Cz

3  (1.30)

Since the result of this vector multiplication is scalar, eq. (1.29) or (1.30) is called the scalar 
triple product.

D. Vector Triple Product
For vectors A, B, and C, we define the vector triple product as

 A 3 1B 3 C 2 5 B 1A # C 2 2 C 1A # B 2  (1.31)

FIGURE 1.9 Cross product using cyclic permutation. (a) Moving 
clockwise leads to positive results. (b) Moving counterclockwise 
leads to negative results.
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which may be remembered as the “bac-cab” rule. It should be noted that

 1A # B 2C 2 A 1B # C 2  (1.32)

but

 1A # B 2C 5 C 1A # B 2  (1.33)

1.8 COMPONENTS OF A VECTOR

A direct application of scalar product is its use in determining the projection (or compo-
nent) of a vector in a given direction. The projection can be scalar or vector. Given a vector 
A, we define the scalar component AB of A along vector B as [see Figure 1.10(a)]

AB 5 A cos uAB 5 0A 0 0 aB 0  cos uAB

or

 AB 5 A # aB (1.34)

The vector component AB of A along B is simply the scalar component in eq. (1.34) multi-
plied by a unit vector along B; that is,

 AB 5 ABaB 5 1A # aB 2aB (1.35)

Both the scalar and vector components of A are illustrated in Figure 1.10. Notice from Figure 
1.10(b) that the vector can be resolved into two orthogonal components: one  component AB par-
allel to B, another 1A 2 AB 2  perpendicular to B. In fact, our Cartesian representation of a vector 
is essentially resolving the vector into three mutually orthogonal components as in Figure 1.1(b).

We have considered addition, subtraction, and multiplication of vectors. However, divi-
sion of vectors A/B has not been considered because it is undefined except when A and B are 
parallel so that A 5 kB, where k is a constant. Differentiation and integration of vectors will be 
considered in Chapter 3.

FIGURE 1.10 Components of A along B: (a) scalar component AB,  
(b) vector component AB.
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Given vectors A 5 3ax 1 4ay 1 az and B 5 2ay 2 5az, find the angle between A and B.

Solution:
The angle uAB can be found by using either dot product or cross product.

 A # B 5 13, 4, 1 2 # 10, 2, 25 2
 5 0 1 8 2 5 5 3

  0A 0 5 "32 1 42 1 12 5 "26

  0B 0 5 "02 1 22 1 125 2 2 5 "29

  cos uAB 5
A # B
0A 0 0B 0 5

3

"126 2 129 2
5 0.1092

 uAB 5 cos21

Alternatively:

  A 3 B 5 3
ax ay az

3 4 1
0 2 25

3

  5 1220 2 2 2ax 1 10 1 15 2ay 1 16 2 0 2az

  5 1222, 15, 6 2
  0A 3 B 0 5 "1222 2 2 1 152 1 62 5 "745

  sin uAB 5
0A 3 B 0
0A 0 0B 0 5

"745

"126 2 129 2
5 0.994

  uAB 5 sin21 0.994 5 83.73°

PRACTICE EXERCISE 1.4

If A 5 ax 1 3az and B 5 5ax 1 2ay 2 6az, find uAB.

Answer: 120.6°.

Three field quantities are given by

 P 5 2ax 2 az
   Q 5 2ax 2 ay 1 2az
  R 5 2ax 2 3ay 1 az

Determine
(a) 1P 1 Q 2 3 1P 2 Q 2
(b) Q # R 3 P
(c) P # Q 3 R

EXAMPLE 1.4

EXAMPLE 1.5
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(d) sin uQR

(e) P 3 1Q 3 R 2
(f) A unit vector perpendicular to both Q and R
(g) The component of P along Q

Solution:
(a) 
  1P 1 Q 2 3 1P 2 Q 2 5 P 3 1P 2 Q 2 1 Q 3 1P 2 Q 2
  5 P 3 P 2 P 3 Q 1 Q 3 P 2 Q 3 Q

  5 0 1 Q 3 P 1 Q 3 P 2 0
  5 2Q 3 P

 
 5 2 3

ax ay az

2 21 2
2 0 21

3  

  5 2 11 2 0 2  ax 1 2 14 1 2 2  ay 1 2 10 1 2 2  az

  5 2ax 1 12ay 1 4az

(b) The only way Q # R 3 P makes sense is

  Q # 1R 3 P 2 5 12, 21, 2 2 # 3
ax ay az

2 23 1
2 0 21

3  

  5 12, 21, 2 2 # 13, 4, 6 2
 5  6 2 4 1 12 5 14

Alternatively:

 Q # 1R 3 P 2 5
2 21 2
2 23 1
2 0 21
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3 3
To find the determinant of a 3 3 3 matrix, we repeat the first two rows and cross multiply; 
when the cross multiplication is from right to left, the result should be negated as shown 
diagrammatically here. This technique of finding a determinant applies only to a 3 3 3 
matrix. Hence,

  Q # 1R 3 P 2 5        5 2 21 2
2 23 1
2 0 21
2 21 2
2 23 1

5  
  5 16 1 0 2 2 1 12 2 0 2 2 
  5 14
as obtained before.

�
�
�

�
�
�
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(c) From eq. (1.29)

  P # 1Q 3 R 2 5 Q # 1R 3 P 2 5 14 

or

  P # 1Q 3 R 2 5 12, 0, 21 2 # 15, 2, 24 2  
 5 10 1 0 1 4
 5 14

(d)  sin uQR 5
0Q 3 R 0
0Q 0 0R 0 5

15, 2, 24 2 0
0 12, 21, 2 2 0 0 12, 23, 1 2 0

  5
"45

3"14
5

"5

"14
5 0.5976

(e)   P 3 1Q 3 R 2 5 12, 0, 21 2 3 15, 2, 24 2
  5 12, 3, 4 2

Alternatively, using the bac-cab rule,

 P 3 1Q 3 R 2 5 Q 1P # R 2 2 R 1P # Q 2
  5 12, 21, 2 2 14 1 0 2 1 2 2 12, 23, 1 2 14 1 0 2 2 2
  5 12, 3, 4 2

(f ) A unit vector perpendicular to both Q and R is given by

  a 5
6Q 3 R
0Q 3 R 0 5

6 15, 2, 24 2
"45

 

  5 6 10.745, 0.298, 20.596 2  

Note that 0 a 0 5 1, a # Q 5 0 5 a # R. Any of these can be used to check a.
(g) The component of P along Q is

  PQ 5 0P 0  cos uPQaQ

  5 1P # aQ 2aQ 5
1P # Q 2Q

0Q 0 2

  5
14 1 0 2 2 2 12, 21, 2 2

14 1 1 1 4 2 5
2
9
12, 21, 2 2

  5 0.4444ax 2 0.2222ay 1 0.4444a
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PRACTICE EXERCISE 1.5

Let E 5 3ay 1 4az and F 5 4ax 2 10ay 1 5az.

(a) Find the component of E along F.
(b) Determine a unit vector perpendicular to both E and F.

Answer: (a) (20.2837, 0.7092, 20.3546), (b) 6(0.9398, 0.2734, 20.205).

Derive the cosine formula

 a2 5 b2 1 c2 2 2bc cos A 

and the sine formula

 
sin A

a 5
sin B

b
5

sin C
c  

using dot product and cross product, respectively.

Solution:
Consider a triangle as shown in Figure 1.11. From the figure, we notice that

 a 1 b 1 c 5 0 

that is,

 b 1 c 5 2a 

Hence,

 a2 5 a # a 5 1b 1 c 2 # 1b 1 c 2
  5 b # b 1 c # c 1 2b # c
 a2 5 b2 1 c2 2 2bc cos A

where (p 2 A) is the angle between b and c.
The area of a triangle is half of the product of its height and base. Hence,

 ` 1
2

a 3 b ` 5 ` 1
2

b 3 c ` 5 ` 1
2

c 3 a `  

ab sin C 5 bc sin A 5 ca sin B

Dividing through by abc gives

 
sin A

a 5
sin B

b
5

sin C
c  

EXAMPLE 1.6
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EXAMPLE 1.7

FIGURE 1.11 For Example 1.6.

PRACTICE EXERCISE 1.6

Show that vectors a 5 (4, 0, 21), b 5 (1, 3, 4), and c 5 (25, 23, 23) form the sides 
of a triangle. Is this a right angle triangle? Calculate the area of the triangle.

Answer: Yes, 10.5.

Show that points P1 15, 2, 24 2 , P2 11, 1, 2 2 , and P3 123, 0, 8 2  all lie on a straight line. 
Determine the shortest distance between the line and point P4 13, 21, 0 2 .
Solution:
The distance vector rP1P2

 is given by

 rP1P2
5 rP2

2 rP1
5 11, 1, 2 2 2 15, 2, 24 2

  5 124, 21, 6 2

Similarly, 

rP1P3
5 rP3

2 rP1
5 123, 0, 8 2 2 15, 2, 24 2

  5 128, 22, 12 2
rP1P4

5 rP4
2 rP1

5 13, 21, 0 2 2 15, 2, 24 2
  5 122, 23, 4 2

 rP1P2
3 rP1P3

5 3
ax ay az

24 21 6
28 22 12

3

  5 10, 0, 0 2
showing that the angle between rP1P2

 and rP1P3
 is zero 1sin u 5 0 2 . This implies that P1, P2, 

and P3 lie on a straight line.
Alternatively, the vector equation of the straight line is easily determined from Figure 

1.12(a). For any point P on the line joining P1 and P2

 rP1P 5 lrP1P2
 

where λ is a constant. Hence the position vector rP of the point P must satisfy

 rP 2 rP1
5 l 1rP2

2 rP1
2  
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that is,

 rP 5 rP1
1 l 1rP2

2 rP1
2

 5 15, 2, 24 2 2 l 14, 1, 26 2
 rP 5 15 2 4l, 2 2 l, 24 1 6l 2

This is the vector equation of the straight line joining P1 and P2. If P3 is on this line, the 
position vector of P3 must satisfy the equation; r3 does satisfy the equation when l 5 2.

The shortest distance between the line and point P4 13, 21, 0 2  is the perpendicular 
distance from the point to the line. From Figure 1.12(b), it is clear that

 d 5 rP1P4
 sin u 5 0 rP1P4

3 aP1P2
0

 5
0 122, 23, 4 2 3 124, 21, 6 2 0

0 124, 21, 6 2 0

 5
"312

"53
5 2.426

Any point on the line may be used as a reference point. Thus, instead of using P1 as a reference 
point, we could use P3. If jP4P3 P2 5 u, then

d 5 0 rP3P4
0  sin u r 5 0 rP3P4

3 aP3P2
0

PRACTICE EXERCISE 1.7

If P1 is (1, 2, 23) and P2 is (24, 0, 5), find

(a) The distance P1P2

(b) The vector equation of the line P1P2

(c) The shortest distance between the line P1P2 and point P3 (7, 21, 2)

Answer: (a) 9.644, (b) (1 2 5l)ax 1 2(1 2 l)ay 1 (8l 2 3)az, (c) 8.2.

FIGURE 1.12 For Example 1.7.
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1. A field is a function that specifies a quantity in space. For example, A(x, y, z) is a vector 
field, whereas V(x, y, z) is a scalar field.

2. A vector A is uniquely specified by its magnitude and a unit vector along it, that is, A 5 AaA.
3. Multiplying two vectors A and B results in either a scalar A # B 5 AB cos uAB or a 

vector A 3 B 5 AB sin uAB an. Multiplying three vectors A, B, and C yields a scalar 
A # 1B 3 C 2  or a vector A 3 1B 3 C 2 .

4. The scalar projection (or component) of vector A onto B is AB 5 A # aB, whereas vector 
projection of A onto B is AB 5 ABaB.

5. The MATLAB commands dot(A,B) and cross(A,B) are used for dot and cross products, 
respectively.

% This script allows the user to input two vectors and 
% then compute their dot product, cross product, sum, 
% and difference
clear
vA = input(‵Enter vector A in the format [x y z]... \n >  ‵);
if isempty(vA); vA = [0 0 0]; end    % if the input is 
     % entered incorrectly set the vector to 0
vB = input(‵Enter vector B in the format [x y z]... \n >  ‵);
if isempty(vB); vB = [0 0 0]; end
disp(‵Magnitude of A:’)
disp(norm(vA))            % norm finds the magnitude of a 
         % multi-dimensional vector
disp(‵Magnitude of B:’)
disp(norm(vB))
disp(‵Unit vector in direction of A:’)
disp(vA/norm(vA))         % unit vector is the vector 
         % divided by its magnitude
disp(‵Unit vector in direction of B:’)
disp(vB/norm(vB))
disp(‵Sum A+B:’)
disp(vA+vB)
disp(‵Difference A-B:’)
disp(vA-vB)
disp(‵Dot product (A . B):’)
disp(dot(vA,vB))         % dot takes the dot product of vectors
disp(‵Cross product (A x B):’)
disp(cross(vA,vB))       % cross takes cross product of vectors

MATLAB 1.1

SUMMARY
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 1.1 Tell which of the following quantities is not a vector: (a) force, (b) momentum, (c) accelera-
tion, (d) work, (e) weight.

 1.2 Which of the following is not a scalar field?
(a) Displacement of a mosquito in space
(b) Light intensity in a drawing room
(c) Temperature distribution in your classroom
(d) Atmospheric pressure in a given region
(e) Humidity of a city

 1.3 Of the rectangular coordinate systems shown in Figure 1.13, which are not right handed?

 1.4 Which of these is correct?
(a) A 3 A 5 0A 0 2 (d) ax

# ay 5 az

(b) A 3 B 1 B 3 A 5 0 (e) ak 5 ax 2 ay , where ak is a unit vector
(c) A # B # C 5 B # C # A

 1.5 Which of the following identities is not valid?
(a) a 1b 1 c 2 5 ab 1 bc (d) c # 1a 3 b 2 5 2b # 1a 3 c 2
(b) a 3 1b 1 c 2 5 a 3 b 1 a 3 c (e) aA

# aB 5 cos uAB

(c) a # b 5 b # a

 1.6 Which of the following statements are meaningless?

(a) A # B 1 2A 5 0 (c) A 1A 1 B 2 1 2 5 0
(b) A # B 1 5 5 2A (d) A # A 1 B # B 5 0

 1.7 Let F 5 2ax 2 6ay 1 10az and G 5 ax 1 Gyay 1 5az. If F and G have the same unit  
vector, Gy is
(a) 6 (c) 0
(b) 23 (d) 6

 1.8 Given that A 5 ax 1 aay 1 az and B 5 aax 1 ay 1 az, if A and B are normal to each 
other, α is
(a) 22 (d) 1
(b) 21/2 (e) 2
(c) 0

 1.9 The component of 6ax 1 2ay 2 3az along 3ax 2 4ay is

(a) 212ax 2 9ay 2 3az (d) 2
(b) 30ax 2 40ay (e) 10
(c) 10/7

REVIEW
QUESTIONS
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1.10 Given A 5 26ax 1 3ay 1 2az, the projection of A along ay is

(a) 212 (d) 7
(b) 24 (e) 12
(c) 3

Answers: 1.1d, 1.2a, 1.3b,e, 1.4b, 1.5a, 1.6a,b,c, 1.7b, 1 .8b, 1.9d, 1.10c.

Section 1.4—Unit Vector

 1.1 Determine the unit vector along the direction OP, where O is the origin and P is 
point (4, 25, 1).

 1.2 Points A(4, 26, 2), B(22, 0, 3), and C(10, 1, 27) form a triangle. Show that rAB 1 rBC 1 
rCA = 0.

Sections 1.5–1.7—Vector Addition, Subtraction, and Multiplication

 1.3 If A 5 4ax 2 2ay 1 6az and B 5 12ax 1 18ay 2 8az, determine:

(a) A 2 3B
(b) 12A 1 5B 2 /|B|
(c) ax 3 A
(d) 1B 3 ax 2 # ay

 1.4 Let vectors A 5 10ax 2 6ay 1 8az and B 5 ax 1 2az. Find: (a) A ? B, (b) A 3 B,  
(c) 2A – 3B.

FIGURE 1.13 For Review Question 1.3.

PROBLEMS
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26 CHAPTER 1 VECTOR ALGEBRA

 1.5 Let A 5 22ax 1 5ay 1 az, B 5 ax 1 3az, and C 5 4ax 26ay 1 10az.

(a) Determine A 2 B 1 C
(b) Find A ? (B 3 C)
(c) Calculate the angle between A and B

 1.6 Let A 5 ax 2 az, B 5 ax 1 ay 1 az, C 5 ay 1 2az, find:

(a) A # 1B 3 C 2
(b) 1A 3 B 2 # C
(c) A 3 1B 3 C 2
(d) 1A 3 B 2 3 C

 1.7 Given that the position vectors of points T and S are 4ax 1 6ay 2 az and 10ax 1 12ay 1 
8az, respectively, find: (a) the coordinates of T and S, (b) the distance vector from T to 
S,  (c) the distance between T and S.

 1.8 Let A 5 4ax 1 2ay 2 az and B 5 aax 1 bay 1 3az

(a) If A and B are parallel, find a and b
(b) If A and B are perpendicular, find a and b

 1.9 Let A 5 10ax 1 5ay 2 2az. Find: (a) A 3 ay, (b) A ? az, (c) the angle between A and az.

  1.10 (a) Show that

1A # B 2 2 1 |A 3 B|2 5 1AB 2 2

(b) Show that

ax 5
ay 3 az

ax
# ay 3 az

,  ay 5
az 3 ax

ax
# ay 3 az

,  az 5
ax 3 ay

ax
# ay 3 az

  1.11 Given that

P 5 2ax 2 ay 2 2az

Q 5 4ax 1 3ay 1 2az

R 5 2ax 1 ay 1 2az

 find: (a) 0P 1 Q 2 R 0 , (b) P # Q 3 R, (c) Q 3 P # R, (d) 1P 3 Q 2 # 1Q 3 R 2 ,  
(e) 1P 3 Q 2 3 1Q 3 R 2 , (f) cos uPR, (g) sin uPQ.

  1.12 If A 5 4ax 2 6ay 1 az and B 5 2ax 1 5az , find:

(a) A ? B + 2|B|2

(b) a unit vector perpendicular to both A and B
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Problems 27

  1.13 Determine the dot product, cross product, and angle between

P 5 2ax 2 6ay 1 5az    and    Q 5 3ay 1 az

  1.14 Prove that vectors P 5 2ax 1 4ay 2 6az and Q 5 5ax 1 2ay 2 3az are orthogonal  vectors.

  1.15 Simplify the following expressions:

(a) A 3 1A 3 B 2
(b) A 3 3A 3 1A 3 B 2 4

  1.16 A right angle triangle has its corners located at P1(5, 23, 1), P2(1, 22, 4), and P3(3, 3, 5).  
(a) Which corner is a right angle? (b) Calculate the area of the triangle.

  1.17 Points P, Q, and R are located at 121, 4, 8 2 , 12, 21, 3 2 , and 121, 2, 3 2 , respectively. 
Determine (a) the distance between P and Q, (b) the distance vector from P to R,  
(c) the angle between QP and QR, (d) the area of triangle PQR, (e) the perimeter of 
triangle PQR.

  1.18 Two points P 12, 4, 21 2  and Q(12, 16, 9) form a straight line. Calculate the time taken for 
a sonar signal traveling at 300 m/s to get from the origin to the midpoint of PQ.

  1.19 Find the area of the parallelogram formed by the vectors D 5 4ax 1 ay 1 5az and 
  E 5 2ax 1 2ay 1 3az.

*1.20 (a)  Prove that P 5 cos u1ax 1 sin u1ay and Q 5 cos u2ax 1 sin u2ay are unit vectors in 
the xy-plane, respectively, making angles u1 and u2 with the x-axis.

(b)  By means of dot product, obtain the formula for cos 1u2 2 u1 2 . By similarly formu-
lating P and Q, obtain the formula for cos 1u2 1 u1 2 .

(c)  If u is the angle between P and Q, find 1
2 0P 2 Q 0  in terms of u.

  1.21 Consider a rigid body rotating with a constant angular velocity v radians per second 
about a fixed axis through O as in Figure 1.14. Let r be the distance vector from O to P, 
the position of a particle in the body. The magnitude of the velocity u of the body at P is 
0 u 0 5 d 0v 0 5  0 r 0  sin u 0v 0  or u 5 v 3 r. If the rigid body is rotating at 3 rad/s about 
an axis parallel to ax 2 2ay 1 2az and passing through point 12, 23, 1 2 , determine the 
velocity of the body at (1, 3, 4).

  1.22 A cube of side 1 m has one corner placed at the origin.  Determine the angle between the 
diagonals of the cube.

  1.23 Given vectors T 5 2ax 2 6ay 1 3az and S 5 ax 1 2ay 1 az, find (a) the scalar projection 
of T on S, (b) the vector projection of S on T, (c) the smaller angle between T and S.

*Single asterisks indicate problems of intermediate difficulty.
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28 CHAPTER 1 VECTOR ALGEBRA

FIGURE 1.14 For Problem 1.21.

Section 1.8—Components of a Vector

  1.24 Given two vectors A and B, show that the vector component of A perpendicular to B is

  C 5 A 2
A # B
B # B

 B 

  1.25 Let A 5 20ax 1 15ay 2 10az and B 5 ax 1 ay. Find: (a) A ? B, (b) A 3 B, (c) the compo-
nent of A along B.

  1.26 Figure 1.15 shows that A makes specific angles with respect to each axis. For  
A 5 2ax 2 4ay 1 6az, find the direction angles a, b, and g.

  1.27 If H 5 2xyax 2 1x 1 z 2ay 1 z2az, find:
(a) A unit vector parallel to H at P 11, 3, 22 2
(b) The equation of the surface on which 0H 0 5 10

  1.28 Let P 5 2ax 2 4ay 1 az and Q 5 ax 1 2ay. Find R which has magnitude 4 and is perpen-
dicular to both P and Q.

  1.29 Let G 5 x2ax 2 yay 1 2zaz and H 5 yzax 1 3ay 2 xzaz. At point (1, 22, 3),  (a) calculate 
the magnitude of G and H,  (b) determine G ? H, (c) find the angle between G and H.

  1.30 A vector field is given by H 5 10yz2ax 2 8xyzay 1 12y2az

(a) Evaluate H at P(21, 2, 4)
(b) Find the component of H along ax 2 ay at P.
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  1.31 E and F are vector fields given by E 5 2xax 1 ay 1 yzaz and F 5 xyax 2 y2ay1 xyzaz. 
Determine:

(a) 0 E 0  at (1, 2, 3)
(b) The component of E along F at (1, 2, 3)
(c) A vector perpendicular to both E and F at 10, 1, 23 2  whose magnitude is unity

  1.32 Given two vector fields

D 5 yzax 1 xzay 1 xyaz  and  E 5 5xyax 1 6(x2 1 3)ay 1 8z2az

(a) Evaluate C 5 D 1 E at point P(21, 2, 4). (b) Find the angle C makes with the x-axis at P.

z

x

y

A

α

β

γ

FIGURE 1.15 For Problem 1.26.

Problems 29
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The Accreditation Board for Engineering and Technology (ABET) establishes eleven criteria for 
accrediting engineering, technology, and computer science programs. The criteria are as follows:

A. Ability to apply mathematics science and engineering principles 
B. Ability to design and conduct experiments and interpret data 
C. Ability to design a system, component, or process to meet desired needs 
D. Ability to function on multidisciplinary teams 
E. Ability to identify, formulate, and solve engineering problems 
F. Ability to understand professional and ethical responsibility 
G. Ability to communicate effectively 
H. Ability to understand the impact of engineering solutions in a global context 
I. Ability to recognize the need for and to engage in lifelong learning 
J. Ability to know of contemporary issues 
K. Ability to use the techniques, skills, and modern engineering tools necessary for 

engineering practice 

Criterion A applies directly to electromagnetics. As students, you are expected to study math-
ematics, science, and engineering with the purpose of being able to apply that knowledge to the 
solution of engineering problems. The skill needed here is the ability to apply the fundamentals of 
EM in solving a problem.  The best approach is to attempt as many problems as you can. This will 
help you to understand how to use formulas and assimilate the material.  Keep nearly all your basic 
mathematics, science, and engineering textbooks. You may need to consult them from time to time.

ENHANCING YOUR SKILLS AND CAREER
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C H A P T E R

31

2.1 INTRODUCTION

In general, the physical quantities we shall be dealing with in EM are functions of space 
and time. In order to describe the spatial variations of the quantities, we must be able to 
 define all points uniquely in space in a suitable manner. This requires using an appropriate 
coordinate system.

A point or vector can be represented in any curvilinear coordinate system, which may 
be orthogonal or nonorthogonal.

An orthogonal system is one in which the coordinate surfaces are mutually perpendicular.

Nonorthogonal systems are hard to work with, and they are of little or no practical use. 
Examples of orthogonal coordinate systems include the Cartesian (or rectangular), the cir-
cular cylindrical, the spherical, the elliptic cylindrical, the parabolic cylindrical, the conical, 
the prolate spheroidal, the oblate spheroidal, and the ellipsoidal.1 A considerable amount of 
work and time may be saved by choosing a coordinate system that best fits a given problem. 
A hard problem in one coordinate system may turn out to be easy in another system.

In this text, we shall restrict ourselves to the three best-known coordinate systems: 
the Cartesian, the circular cylindrical, and the spherical. Although we have considered the 
Cartesian system in Chapter 1, we shall consider it in detail in this chapter. We should bear 
in mind that the concepts covered in Chapter 1 and demonstrated in Cartesian coordinates 
are equally applicable to other systems of coordinates. For example, the procedure for find-
ing the dot or cross product of two vectors in a cylindrical system is the same as that used 
in the Cartesian system in Chapter 1.

COORDINATE SYSTEMS 
AND TRANSFORMATION

History teaches us that man learns nothing from history.
—HEGEL

2

1For an introductory treatment of these coordinate systems, see M. R. Spiegel and J. Liu, Mathematical Handbook 
of Formulas and Tables. New York: McGraw-Hill, 2nd ed., 1999, pp. 126–130.
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32 CHAPTER 2 COORDINATE SYSTEMS AND TRANSFORMATION

Sometimes, it is necessary to transform points and vectors from one coordinate 
system to another. The techniques for doing this will be presented and illustrated with 
examples.

2.2 CARTESIAN COORDINATES (x, y, z)

2.3 CIRCULAR CYLINDRICAL COORDINATES (r, f, z)

As mentioned in Chapter 1, a point P can be represented as 1x, y, z 2  as illustrated in  
Figure 1.1. The ranges of the coordinate variables x, y, and z are

 2` , x , `

 2` , y , `  (2.1)

 2` , z , `

A vector A in Cartesian (otherwise known as rectangular) coordinates can be written as

 1Ax, Ay, Az 2  or  Axax 1 Ayay 1 Azaz (2.2)

where ax, ay, and az are unit vectors along the x-, y-, and z-directions as shown in Figure 1.1. 
The coordinate system may be either right-handed or left-handed. See Figure 1.13. It is cus-
tomary to use the right-handed system.

The circular cylindrical coordinate system is very convenient whenever we are dealing with 
problems having cylindrical symmetry, such as dealing with a coaxial transmission line.

A point P in cylindrical coordinates is represented as 1r, f, z 2  and is as shown in 
 Figure 2.1. Observe Figure 2.1 closely and note how we define each space variable: r is the 

z

ρ P aφ

aρ

az

z

y

x

φ

FIGURE 2.1 Point P and unit vectors in the  
cylindrical coordinate system.
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2.3 Circular Cylindrical Coordinates (r, , z) 33

radius of the cylinder passing through P or the radial distance from the z-axis; , called the 
azimuthal angle, is measured from the x-axis in the xy-plane; and z is the same as in the 
Cartesian system. The ranges of the variables are

0 # r , `

 0 # f , 2p (2.3)
 2` ,  z , `

A vector A in cylindrical coordinates can be written as

 1Ar, Af, Az 2  or  Arar 1 Afaf 1 Azaz (2.4)

where ar, a, and az are unit vectors in the r-, -, and z-directions as illustrated in  
Figure 2.1. Note that a is not in degrees; it assumes the units of A. For example, if a 
force of 10 N acts on a particle in a circular motion, the force may be represented as  
F 5 10af N. In this case, a is in newtons.

The magnitude of A is

 0A 0 5 1Ar
2 1 Af

2 1 Az
2 2 1/2  (2.5)

Notice that the unit vectors ar, a, and az are mutually perpendicular because our coor-
dinate system is orthogonal; ar points in the direction of increasing r, a in the direction 
of increasing , and az in the positive z-direction. Thus,

 ar
# ar 5 af

# af 5 az
# az 5 1 (2.6a)

 ar
# af 5 af

# az 5 az
# ar 5 0  (2.6b)

  ar 3 af 5 az  (2.6c)
 af 3 az 5 ar  (2.6d)
 az 3 ar 5 af  (2.6e)

where eqs. (2.6c) to (2.6e) are obtained in cyclic permutation (see Figure 1.9). They also show 
that the system is right-handed, following the cyclic ordering r S  f S  z S r S f S . . . .

The relationships between the variables 1x, y, z 2  of the Cartesian coordinate system 
and those of the cylindrical system 1r, f, z 2  are easily obtained from Figure 2.2 as

 r 5 "x2 1 y2,  f 5 tan21 
y
x,  z 5 z (2.7)

or

 x 5 r cos f,  y 5 r sin f,  z 5 z (2.8)

Whereas eq. (2.7) is for transforming a point from Cartesian 1x, y, z 2  to cylindrical 
1r, f, z 2  coordinates, eq. (2.8) is for 1r, f, z 2  S  1x, y, z 2  transformation.
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34 CHAPTER 2 COORDINATE SYSTEMS AND TRANSFORMATION

The relationships between 1ax, ay, az 2  and 1ar, af, az 2  are obtained geometrically from 
Figure 2.3:

ax 5 cos f ar 2 sin f af

 ay 5 sin f ar 1 cos f af (2.9)
az 5 az

or

ar 5 cos f ax 1 sin f ay

 af 5 2sin f ax 1 cos f ay (2.10)
az 5 az

Finally, the relationships between 1Ax, Ay, Az 2  and 1Ar, Af, Az 2  are obtained by simply 
substituting eq. (2.9) into eq. (2.2) and collecting terms. Thus,

FIGURE 2.2 Relationship between (x, y, z) and 
(r, , z). 

FIGURE 2.3 Unit vector transformation: (a) cylindrical components of ax, 
(b) cylindrical components of ay.
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2.4 Spherical Coordinates (r, , ) 35

 A 5 1Ax cos f 1 Ay sin f 2ar 1 12Ax sin f 1 Ay cos f 2af 1 Azaz (2.11)

or

Ar 5 Ax cos f 1 Ay sin f
 Af 5 2Ax sin f 1 Ay cos f (2.12)

Az 5 Az

In matrix form, we write the transformation of vector A from 1Ax, Ay, Az 2  to 
1Ar, Af, Az 2  as

 £
Ar

Af

Az

§ 5 £
cos f sin f 0

2sin f cos f 0
0 0 1

§ £
Ax

Ay
Az

§  (2.13)

The inverse of the transformation 1Ar, Af, Az 2  S  1Ax, Ay, Az 2  is obtained as

 £
Ax

Ay
Az

§ 5 £
cos f sin f 0

2sin f cos f 0
0 0 1

§
21

£
Ar

Af

Az

§  (2.14)

or directly from eqs. (2.4) and (2.10). Thus,

 £
Ax

Ay
Az

§ 5 £
cos f 2sin f 0
sin f cos f 0

0 0 1
§ £

Ar

Af

Az

§  (2.15)

An alternative way of obtaining eq. (2.13) or (2.15) is by using the dot product. For 
example,

 £
Ax

Ay
Az

§ 5 £
ax

# ar ax
# af ax

# az
ay

# ar ay
# af ay

# az
az

# ar az
# af az

# az

§ £
Ar

Af

Az

§  (2.16)

The derivation of this is left as an exercise.
Keep in mind that eqs. (2.7) and (2.8) are for point-to-point transformation, while eqs. 

(2.13) and (2.15) are for vector-to-vector transformation.

2.4 SPHERICAL COORDINATES (r, , f)

Although cylindrical coordinates are covered in calculus texts, the spherical coordinates 
are rarely covered. The spherical coordinate system is most appropriate when one is deal-
ing with problems having a degree of spherical symmetry. A point P can be represented 
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36 CHAPTER 2 COORDINATE SYSTEMS AND TRANSFORMATION

as 1r, u, f 2  and is illustrated in Figure 2.4. From Figure 2.4, we notice that r is defined as 
the distance from the origin to point P or the radius of a sphere centered at the origin and 
passing through P;  (called the colatitude) is the angle between the z-axis and the position 
vector of P; and  is measured from the x-axis (the same azimuthal angle in cylindrical 
coordinates). According to these definitions, the ranges of the variables are

0 # r , `

 0 # u # p  (2.17)
0 # f , 2p

A vector A in spherical coordinates may be written as

 1Ar, Au, Af 2  or  Arar 1 Auau 1 Afaf (2.18)

where ar, a, and a are unit vectors along the r-, -, and -directions. The magnitude of 
A is

 0A 0 5 1Ar
2 1 Au

2 1 Af
2 2 1/2 (2.19)

The unit vectors ar, a, and a are mutually orthogonal, ar being directed along the 
 radius or in the direction of increasing r, a in the direction of increasing , and a in the 
 direction of increasing . Thus,

ar
# ar 5 au

# au 5 af
# af 5 1

ar
# au 5 au

# af 5 af
# ar 5 0

 ar 3 au 5 af  (2.20)
au 3 af 5 ar

af 3 ar 5 au

FIGURE 2.4 Point P and unit 
vectors in spherical coordinates.
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2.4 Spherical Coordinates (r, , ) 37

Equation (2.20) shows that the coordinate system is orthogonal and right-handed. 
The space variables 1x, y, z 2  in Cartesian coordinates can be related to variables 

1r, u, f 2  of a spherical coordinate system. From Figure 2.5 it is easy to notice that

 r 5 "x2 1 y2 1 z2,  u 5 tan21 
"x2 1 y2

z ,  f 5 tan21 
y
x (2.21)

or

 x 5 r sin u cos f,  y 5 r sin u sin f,  z 5 r cos u (2.22)

In eq. (2.21), we have 1x, y, z 2  S  1r, u, f 2  point transformation and in eq. (2.22), it 
is 1r, u, f 2  S  1x, y, z 2  point transformation.

The unit vectors ax, ay, az and ar, a, a are related as follows:

ax 5 sin u cos f ar 1 cos u cos f au 2 sin f af

 ay 5 sin u sin f ar 1 cos u sin f au 1 cos f af  (2.23)
az 5 cos u ar 2 sin u au

or

ar 5 sin u cos f ax 1 sin u sin f ay 1 cos u az

 au 5 cos u cos f ax 1 cos u sin f ay 2 sin u az (2.24)
af 5 2sin f ax 1 cos f ay

The components of vector A 5 1Ax, Ay, Az 2  and A 5 1Ar, Au, Af 2  are related by  substituting 
eq. (2.23) into eq. (2.2) and collecting terms. Thus,

FIGURE 2.5 Relationships between space variables (x, y, z),  
(r, , ), and (r, , z,).

y

z

x

φ

θ

r

z

y = ρ sin φ

x = ρ cos φ

ρ = r sin θ

z = r cos θ

P (x, y, z) = P (r, θ, φ) = P (ρ, φ, z)

ρ
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38 CHAPTER 2 COORDINATE SYSTEMS AND TRANSFORMATION

A 5 1Ax sin u cos f 1 Ay sin u sin f 1 Az cos u 2ar 1 1Ax cos u cos f 
 1 Ay cos u sin f 2 Az sin u 2au 1 12Ax sin f 1 Ay cos f 2af 

(2.25)

and from this, we obtain

Ar 5 Ax sin u cos f 1 Ay sin u sin f 1 Az cos u
 Au 5 Ax cos u cos f 1 Ay cos u sin f 2 Az sin u (2.26)

Af 5 2Ax sin f 1 Ay cos f

In matrix form, the 1Ax, Ay, Az 2  S  1Ar, Au, Af 2  vector transformation is performed 
according to

 £
Ar

Au

Af

§ 5 £
sin u cos f sin u sin f cos u
cos u cos f cos u sin f 2sin u
2sin f cos f 0

§ £
Ax

Ay
Az

§  (2.27)

The inverse transformation 1Ar, Au, Af 2  S  1Ax, Ay, Az 2  is similarly obtained, or we obtain 
it from eq. (2.23). Thus,

 £
Ax

Ay
Az

§ 5 £
sin u cos f cos u cos f 2sin f
sin u sin f cos u sin f cos f
cos u 2sin u 0

§ £
Ar

Au

Af

§  (2.28)

Alternatively, we may obtain eqs. (2.27) and (2.28) by using the dot product. For  
example,

 £
Ar

Au

Af

§ 5 £
ar

# ax ar
# ay ar

# az
au

# ax au
# ay au

# az
af

# ax af
# ay af

# az

§ £
Ax

Ay
Az

§  (2.29)

For the sake of completeness, it may be instructive to obtain the point or vector 
transformation relationships between cylindrical and spherical coordinates. We shall use 
Figures 2.5 and 2.6 (where  is held constant, since it is common to both systems). This 
will be left as an exercise (see Problem 2.16). Note that in a point or vector transformation, 
the point or vector has not changed; it is only expressed differently. Thus, for example, the 
magnitude of a vector will remain the same after the transformation, and this may serve as 
a way of checking the result of the transformation.

The distance between two points is usually necessary in EM theory. The distance d 
 between two points with position vectors r1 and r2 is generally given by

 d 5 0 r2 2 r1 0  (2.30)
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2.4 Spherical Coordinates (r, , ) 39

or

 d2 5 1x2 2 x1 2 2 1 1y2 2 y1 2 2 1 1z2 2 z1 2 2 1Cartesian 2  (2.31)

 d2 5 r2
2 1 r1

2 2 2r1r2 cos 1f2 2 f1 2 1 1z2 2 z1 2 2 1cylindrical 2  (2.32)

 d2 5 r2
2 1 r1

2 2 2r1r2 cos u2 cos u1  
 2 2r1r2 sin u2 sin u1 cos 1f2 2 f1 2  1spherical 2  (2.33)

Given point P 122, 6, 3 2  and vector A 5 yax 1 1x 1 z 2ay, express P and A in cylindrical 
and spherical coordinates. Evaluate A at P in the Cartesian, cylindrical, and spherical  systems.

Solution:
At point P: x 5 22, y 5 6, z 5 3. Hence,

 r 5 "x2 1 y2 5 "4 1 36 5 6.32

 f 5 tan21y
x 5 tan21 6

22
5 108.43º

 z 5 3

 r 5 "x2 1 y2 1 z2 5 "4 1 36 1 9 5 7

 u 5 tan21 
"x2 1 y2

z 5 tan21 
"40

3
5 64.628

Thus,

P 122, 6, 3 2 5 P 16.32, 108.438, 3 2 5 P 17, 64.628, 108.438 2

In the Cartesian system, A at P is

A 5 6ax 1 ay

FIGURE 2.6 Unit vector transformations for 
 cylindrical and spherical coordinates.

EXAMPLE 2.1
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40 CHAPTER 2 COORDINATE SYSTEMS AND TRANSFORMATION

For vector A, Ax 5 y, Ay 5 x 1 z, Az 5 0. Hence, in the cylindrical system

£
Ar

Af

Az

§ 5 £
cos f sin f 0

2sin f cos f 0
0 0 1

§ £
y

x 1 z
0

§

or

 Ar 5 y cos f 1 1x 1 z 2  sin f
 Af 5 2y sin f 1 1x 1 z 2  cos f
 Az 5 0

But x 5 r cos f, y 5 r sin f, and substituting these yields

A 5 1Ar, Af, Az 2 5 3r cos f sin f 1 1r cos f 1 z 2  sin f 4ar 
              1 32r sin2f 1 1r cos f 1 z 2  cos f 4af  

At P

r 5 "40,  tan f 5
6

22

Hence,

 cos f 5
22

"40
,  sin f 5

6

"40

  A 5 c"40 # 22

"40
# 6

"40
1 a"40 # 22

"40
1 3b # 6

"40
d ar

  1 c2"40 # 36
40

1 a"40 # 22

"40
1 3b # 22

"40
d af

  5
26

"40
 ar 2

38

"40
 af 5 20.9487ar 2 6.008af

Similarly, in the spherical system

£
Ar

Au

Af

§ 5 £
sin u cos f sin u sin f  cos u
cos u cos f cos u sin f 2sin u
2sin f cos f 0

§ £
y

x 1 z
0

§

or

Ar 5 y sin u cos f 1 1x 1 z 2sin u sin f
Au 5 y cos u cos f 1 1x 1 z 2cos u sin f
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2.4 Spherical Coordinates (r, , ) 41

A 5 2y sin  1 (x 1 z) cos 

But x 5 r sin u cos f, y 5 r sin u sin f, and z 5 r cos u. Substituting these yields

 A 5 1Ar, Au, Af 2
 5 r 3sin2 u cos f sin f 1 1sin u cos f 1 cos u 2  sin u sin f 4ar

  1 r 3sin u cos u sin f cos f 1 1sin u cos f 1 cos u 2  cos u sin f 4au

  1 r 32sin u sin2 f 1 1sin u cos f 1 cos u 2  cos f 4af

At P

r 5 7,  tan f 5
6

22
,  tan u 5

"40
3

Hence,

 cos f 5
22

"40
,  sin f 5

6

"40
,  cos u 5

3
7

,  sin u 5
"40

7

  A 5 7 # c 40
49

# 22

"40
# 6

"40
1 a"40

7
# 22

"40
1

3
7
b # "40

7
# 6

"40
d ar

  1 7 # c"40
7

# 3
7

# 6

"40
# 22

"40
1 a"40

7
# 22

"40
1

3
7
b # 3

7
# 6

"40
d au

  1 7 # c2"40
7

# 36
40

1 a"40
7

# 22

"40
1

3
7
b # 22

"40
d af

  5
26
7

 ar 2
18

7"40
 au 2

38

"40
 af

  5 20.8571ar 2 0.4066au 2 6.008af

Note that 0A 0  is the same in the three systems; that is,

0A 1x, y, z 2 0 5 0A 1r, f, z 2 0 5 0A 1r, u, f 2 0 5 6.083

PRACTICE EXERCISE 2.1

(a)  Convert points P 11, 3, 5 2 , T 10, 24, 3 2 , and S 123, 24, 210 2  from Cartesian to 
cylindrical and spherical coordinates.

(b) Transform vector

Q 5
"x2 1 y2ax

"x2 1 y2 1 z2
2

yzaz

"x2 1 y2 1 z2

to cylindrical and spherical coordinates.

(c) Evaluate Q at T in the three coordinate systems.
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42 CHAPTER 2 COORDINATE SYSTEMS AND TRANSFORMATION

Express the vector

B 5
10
r  ar 1 r cos u au 1 af

in Cartesian and cylindrical coordinates. Find B 123, 4, 0 2  and B 15, p/2, 22 2.
Solution:
Using eq. (2.28):

£
Bx

By

Bz

§ 5 £
sin u cos f cos u cos f 2sin f
sin u sin f cos u sin f cos f
cos u 2sin u 0

§ D
10
r

r cos u
1

T

or

 Bx 5
10
r  sin u cos f 1 r cos2 u cos f 2 sin f

 By 5
10
r  sin u sin f 1 r cos2 u sin f 1 cos f

 Bz 5
10
r  cos u 2 r cos u sin u

But r 5 "x2 1 y2 1 z2, u 5 tan21 
"x2 1 y2

z , and f 5 tan21 
y
x

Hence,

 sin u 5
r

r 5
"x2 1 y2

"x2 1 y2 1 z2
,  cos u 5

z
r 5

z

"x2 1 y2 1 z2

 sin f 5
y
r

5
y

"x2 1 y2
,  cos f 5

x
r

5
x

"x2 1 y2

Answer: (a)  P 13.162, 71.56°, 5 2 , P 15.916, 32.31°, 71.56° 2 , T 14, 270°, 3 2 ,  
T 15, 53.13°, 270° 2 , S 15, 233.1°, 210 2 , S 111.18, 153.43°, 233.1° 2 .

(b)  
r

"r2 1 z2
 1cos f ar 2 sin f af 2 z sin f az 2 , sin u 1sin u cos f 2

r cos2 u sin f 2ar 1 sin u cos u 1cos f 1 r sin u sin f 2au 2 sin u sin f af.

(c) 0.8ax 1 2.4az, 0.8af 1 2.4az, 1.44ar 2 1.92au 1 0.8af.

EXAMPLE 2.2
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2.4 Spherical Coordinates (r, , ) 43

Substituting all these gives

Bx 5
10"x2 1 y2

1x2 1 y2 1 z2 2
# x

"x2 1 y2
1

"x2 1 y2 1 z2

1x2 1 y2 1 z2 2
# z2x

"x2 1 y2
2

y

"x2 1 y2

 5
10x

x2 1 y2 1 z2 1
xz2

"1x2 1 y2 2 1x2 1 y2 1 z2 2 2
y

"1x2 1 y2 2

By 5
10"x2 1 y2

1x2 1 y2 1 z2 2
#

y

"x2 1 y2
1

"x2 1 y2 1 z2

x2 1 y2 1 z2
#

z2y

"x2 1 y2
1

x

"x2 1 y2

 5
10y

x2 1 y2 1 z2 1
yz2

"1x2 1 y2 2 1x2 1 y2 1 z2 2 1
x

"x2 1 y2

Bz 5
10z

x2 1 y2 1 z2 2
z"x2 1 y2

"x2 1 y2 1 z2

B 5 Bx 
ax 1 By 

ay 1 Bz 
az

where Bx, By, and Bz are as just given.
At 123, 4, 0 2 , x 5 23, y 5 4, and z 5 0, so

Bx 5 2
30
25

1 0 2
4
5

5 22

By 5
40
25

1 0 2
3
5

5 1

Bz 5 0 2 0 5 0

Thus,

B 5 22ax 1 ay

For spherical to cylindrical vector transformation (see Problem 2.16),

£
Br

Bf

Bz

§ 5 £
sin u cos u 0

0 0 1
cos u 2sin u 0

§ D
10
r

r cos u
1

T

or

Br 5
10
r  sin u 1 r cos2 u

Bf 5 1

Bz 5
10
r  cos u 2 r sin u cos u

But r 5 "r2 1 z2 and u 5 tan21 
r

z

02_Sadiku_Ch02.indd   43 01/11/17   1:50 PM



44 CHAPTER 2 COORDINATE SYSTEMS AND TRANSFORMATION

Thus,

sin u 5
r

"r2 1 z2
,  cos u 5

z

"r2 1 z2

Br 5
10r

r2 1 z2 1 "r2 1 z2 # z2

r2 1 z2

Bz 5
10z

r2 1 z2 2 "r2 1 z2 #
rz

r2 1 z2

Hence,

B 5 a 10r

r2 1 z2 1
z2

"r2 1 z2
b  ar 1 af 1 a 10z

r2 1 z2 2
rz

"r2 1 z2
b  az

At 15, p/2, 22 2, r 5 5, f 5 p/2, and z 5 22, so

B 5 a50
29

1
4

"29
b  ar 1 af 1 a220

29
1

10

"29
b  az

 5 2.467ar 1 af 1 1.167az

Note that at 123, 4, 0 2 ,

0B 1x, y, z 2 0 5 0B 1r, f, z 2 0 5 0B 1r, u, f 2 0 5 2.907

This may be used to check the correctness of the result whenever possible.

PRACTICE EXERCISE 2.2

Express the following vectors in Cartesian coordinates:
(a) A 5 rz sin f ar 1 3r cos f af 1 r cos f sin f az

(b) B 5 r2 ar 1 sin u af

Answer: (a) A 5
1

"x2 1 y2
 3 1xyz 2 3xy 2ax 1 1zy2 1 3x2 2ay 1 xyaz 4.

(b) B 5
1

"x2 1 y2 1 z2
 5 3x 1x2 1 y2 1 z2 2 2 y 4ax 1

3y 1x2 1 y2 1 z2 2 1 x 4ay 1 z 1x2 1 y2 1 z2 2az6.

2.5 CONSTANT-COORDINATE SURFACES

Surfaces in Cartesian, cylindrical, or spherical coordinate systems are easily generated by 
keeping one of the coordinate variables constant and allowing the other two to vary. In the
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2.5 Constant-Coordinate Surfaces 45

Cartesian system, if we keep x constant and allow y and z to vary, an infinite plane is gener-
ated. Thus we could have infinite planes

x 5 constant
 y 5 constant (2.34)

z 5 constant

which are perpendicular to the x-, y-, and z-axes, respectively, as shown in Figure 2.7. The 
intersection of two planes is a line. For example,

 x 5 constant,  y 5 constant (2.35)

is the line RPQ parallel to the z-axis. The intersection of three planes is a point. For  example,

 x 5 constant,  y 5 constant,  z 5 constant (2.36)

is the point P 1x, y, z 2 . Thus we may define point P as the intersection of three orthogonal 
infinite planes. If P is 11, 25, 3 2 , then P is the intersection of planes x 5 1, y 5 25, and 
z 5 3.

Orthogonal surfaces in cylindrical coordinates can likewise be generated. The 
 surfaces

r 5 constant
 f 5 constant (2.37)

z 5 constant

are illustrated in Figure 2.8, where it is easy to observe that r 5 constant is a circular cylin-
der, f 5 constant is a semi-infinite plane with its edge along the z-axis, and z 5 constant 
is the same infinite plane as in a Cartesian system. Where two surfaces meet is either a line 
or a circle. Thus,

 z 5 constant,  r 5 constant (2.38)

FIGURE 2.7 Constant x, y, and z surfaces.
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46 CHAPTER 2 COORDINATE SYSTEMS AND TRANSFORMATION

is a circle QPR of radius r, whereas z 5 constant, f 5 constant is a semi-infinite line. A 
point is an intersection of the three surfaces in eq. (2.37). Thus,

 r 5 2,  f 5 608,  z 5 5 (2.39)

is the point P 12, 608, 5 2 .
The orthogonal nature of the spherical coordinate system is evident by considering 

the three surfaces

r 5 constant
 u 5 constant (2.40)

f 5 constant

which are shown in Figure 2.9, where we notice that r 5 constant is a sphere of radius r 
with its center at the origin; u 5 constant is a circular cone with the z-axis as its axis and 
the origin as its vertex; f 5 constant is the semi-infinite plane as in a cylindrical system. 
A line is formed by the intersection of two surfaces. For example,

 r 5 constant,  f 5 constant (2.41)

FIGURE 2.8 Constant r, f, and z surfaces.

FIGURE 2.9 Constant r, , and  surfaces.
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2.5 Constant-Coordinate Surfaces 47

is a semicircle passing through Q and P. The intersection of three surfaces gives a point. 
Thus,

 r 5 5,  u 5 308,  f 5 608 (2.42)

is the point P 15, 30°, 60° 2 . We notice that in general, a point in three-dimensional space can be 
identified as the intersection of three mutually orthogonal surfaces. Also, a unit normal vector 
to the surface n 5 constant is 6an, where n is x, y, z, r, , r, or . For example, to the plane 
x 5 5, a unit normal vector is 6ax and to the plane f 5 20°, a unit normal vector is a.

Two uniform vector fields are given by E 5 25ar 1 10af 1 3az and F 5 ar1 
2af 2 6az. Calculate
(a) 0E 3 F 0
(b) The vector component of E at P 15, p/2, 3 2 parallel to the line x 5 2, z 5 3
(c) The angle that E makes with the surface z 5 3 at P

Solution:

(a)  E 3 F 5 †
ar af az

25 10 3
1 2 26

†

 5 1260 2 6 2ar 1 13 2 30 2af 1 1210 2 10 2az

 5 1266, 227, 220 2
 0E 3 F 0 5 "662 1 272 1 202 5 74.06
(b)  Line x 5 2, z 5 3 is parallel to the y-axis, so the component of E parallel to the given 

line is

1E # ay 2ay

But at P 15, p/2, 3 2

ay 5 sin f ar 1 cos f af

 5 sin p/2 ar 1 cos p/2 af 5 ar

Therefore,

1E # ay 2ay 5 1E # ar 2ar 5 25ar  1or 25ay 2

(c) Since the z-axis is normal to the surface z 5 3, we can use the dot product to find the 
angle between the z-axis and E, as shown in Figure 2.10:

 E # az 5 0 E 0 11 2  cos uEz S  3 5 "134 cos uEz

 cos uEz 5
3

"134
5 0.2592 S  uEz 5 74.98°

EXAMPLE 2.3
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Hence, the angle between z 5 3 and E is

908 2 uEz 5 15.028

Given a vector field

D 5 r sin f ar 2
1
r  sin u cos f au 1 r2af

determine
(a) D at P 110, 1508, 3308 2
(b) The component of D tangential to the spherical surface r 5 10 at P
(c) A unit vector at P perpendicular to D and tangential to the cone u 5 1508

FIGURE 2.10 For Example 2.3(c).

PRACTICE EXERCISE 2.3

Given the vector field

H 5 rz cos f ar 1 e22 sin 
f

2
 af 1 r2az

at point 11, p/3, 0 2 , find

(a) H # ax

(b) H 3 au

(c) The vector component of H normal to surface r 5 1
(d) The scalar component of H tangential to the plane z 5 0

Answer: (a) 20.0586, (b) 20.06767 ar, (c) 0 ar, (d) 0.06767.

EXAMPLE 2.4
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Solution:
(a) At P, r 5 10, u 5 1508, and f 5 3308. Hence,

 D 5 10 sin 3308 ar 2
1

10
 sin 1508 cos 3308 au 1 100 af 5 125, 20.043, 100 2

(b) Any vector D can always be resolved into two orthogonal components:

D 5 Dt 1 Dn

where Dt is tangential to a given surface and Dn is normal to it. In our case, since ar is 
 normal to the surface r 5 10,

Dn 5 r sin f ar 5 25ar

Hence,

Dt 5 D 2 Dn 5 20.043au 1 100af

(c)  A vector at P perpendicular to D and tangential to the cone u 5 1508 is the same as the 

A unit vector along this is

a 5
2100ar 2 5af

1002 1 52
5 20.9988ar 2 0.0499af

PRACTICE EXERCISE 2.4

If A 5 3ar 1 2au 2 6af and B 5 4ar 1 3af, determine
(a) A # B
(b) 0A 3 B 0
(c) The vector component of A along az at 11, p/3, 5p/4 2

Answer: (a) 26, (b) 34.48, (c) 20.116ar 1 0.201au.
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 D 3 au 5 † ar au af

25 0.043 100
0 1 0

†
 5 2100ar 2 5af

"
2
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% This script allows the user to input a coordinate in either
% rectangular, cylindrical, or spherical coordinates and 
% retrieve the answer in the other coordinate systems
clear
% prompt the user for the coordinate system
disp(‘Enter the coordinate system of the input coordinate’);
coord_sys = input(‘ (r, c, or s)... \n >  ‘,’s’);
% if user entered something other than “r” “c” or “s” 
% set default as “r”
if isempty(coord_sys); coord_sys = ‘r’; end
if coord_sys == ‘r’;
    % prompt the user for the coordinate
    disp(‘Enter the rectangular coordinate in the ‘);
    crd = input(‘format [x y z]... \n >  ‘);
    % check input to see if empty and set to 0 if so
    if isempty(crd); crd = [0 0 0]; end   
    disp(‘Cylindrical coordinates [rho phi(rad) z]:’)
    % display the result... the [ ] and enclose a 
    % three-dimensional vector
    disp([sqrt(crd(1)^2+crd(2)^2) atan2(crd(2),crd(1)) crd(3)])
    disp(‘Spherical coordinates [r phi(rad) theta(rad]:’)
     disp([norm(crd) atan2(crd(2),crd(1)) acos(crd(3)/

norm(crd))])
elseif coord_sys == ‘c’;   % if not r but c execute this block
    disp(‘Enter the cylindrical coordinate in the format’);
    crd = input(‘ [\rho \phi z]... \n >  ‘);
    % check input to see if empty and set to 0 if so
    if isempty(crd); crd = [0 0 0]; end
    disp(‘Rectangular coordinates [x y z]:’)
    disp([crd(1)*cos(crd(2)) crd(1)*sin(crd(2)) crd(3)])
    disp(‘Spherical coordinates [r phi(rad) theta(rad]:’)
    disp([sqrt(crd(1)^2+crd(3)^2) crd(2) crd(3)*cos(crd(3))])
else coord_sys == ‘s’;  % if not r nor c but s execute this block
    disp(‘Enter the spherical coordinate in the’);
    crd = input(‘format [\rho \phi \theta]... \n >  ‘);
    if isempty(crd); crd = [0 0 0]; end
    disp(‘Rectangular coordinates [x y z]:’)
    disp([crd(1)*cos(crd(2))*sin(crd(3)) ...
    crd(1)*sin(crd(2))*sin(crd(3)) crd(1)*cos(crd(3))])
    disp(‘Cylindrical coordinates [r phi(rad) theta(rad]:’)
    disp([crd(1)*sin(crd(3)) crd(2) crd(1)*cos(crd(3))])
end

MATLAB 2.1

% This script allows the user to input a non-variable vector 
% in rectangular coordinates and obtain the cylindrical, or 
% spherical components. The user must also enter the point 
% location where this transformation occurs; the result 

MATLAB 2.1
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 Summary 51

1. The three common coordinate systems we shall use throughout the text are the 
 Cartesian (or rectangular), the circular cylindrical, and the spherical.

2. A point P is represented as P 1x, y, z 2 , P 1r, f, z 2 , and P 1r, u, f 2  in the Cartesian, cylin-
drical, and spherical systems, respectively. A vector field A is represented as 1Ax, Ay, Az 2  
or Axax 1 Ayay 1 Azaz in the Cartesian system, as 1Ar, Af, Az 2  or Arar 1 Afaf 1 Azaz 
in the cylindrical system, and as 1Ar, Au, Af 2  or Arar 1 Auau 1 Afaf in the spherical 
system. It is preferable that mathematical operations (addition, subtraction, product, 
etc.) be performed in the same coordinate system. Thus, point and vector transforma-
tions should be performed whenever necessary. A summary of point and vector trans-
formations is given in Table 2.1.

3. Fixing one space variable defines a surface; fixing two defines a line; fixing three defines 
a point.

4. A unit normal vector to surface n 5 constant is 6an.

% depends on the vector’s observation point 
clear
% prompt the user for the vectors and check to see if entered
% properly, else set to 0
disp(‘Enter the rectangular vector (in the ‘);
v = input(‘ format [x y z])... \n >  ‘);
if isempty(v); v = [0 0 0]; end
disp(‘Enter the location of the vector (in the ‘);
p = input(‘ format [x y z])... \n >  ‘);
if isempty(p); p = [0 0 0]; end
disp(‘Cylindrical components [rho phi(rad) z]:’)
phi = atan2(p(2),p(1));
% Create the transformation matrix
cyl_p=[cos(phi) sin(phi) 0; ...  % The ellipses allow a single 
            % command over multiple lines
       -sin(phi) cos(phi) 0; ...
       0 0 1];
disp((cyl_p*v’)’)   % the ’  denotes a transpose from a row 
         % vector to a column vector
                % The second transpose converts the column 
    % vector back to a row vector
disp(‘Spherical components [r phi(rad) theta(rad]:’)
phi = atan2(p(3),sqrt(p(1)^2+p(2)^2));
theta = atan2(p(2),p(1));
% Create the transformation matrix
sph_p=[sin(theta)*cos(phi) sin(theta)*sin(phi) cos(theta); ... 
       cos(theta)*cos(phi) cos(theta)*sin(phi) -sin(theta);...
       -sin(phi) cos(phi) 0];
disp((sph_p*v’)’)   

SUMMARY
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 2.1 The ranges of  and  as given by eq. (2.17) are not the only possible ones. The following 
are all alternative ranges of  and , except

(a) 0 # u , 2p, 0 # f # p 
(b) 0 # u , 2p, 0 # f , 2p 
(c) 2p # u # p, 0 # f # p

(d) 2p/2 # u # p/2, 0 # f , 2p

(e) 0 # u # p, 2p # f , p

(f) 2p # u , p, 2p # f , p

REVIEW
QUESTIONS

TABLE 2.1 Relationships between Rectangular, Cylindrical, and Spherical Coordinates

Rectangular to Cylindrical   Cylindrical to Rectangular

Rectangular to Spherical   Spherical to Rectangular

 

Variable 
change

Variable 
change

Component 
change

Variable 
change

Component 
change

c 
x 5 r cos f
y 5 r sin f
z 5 z

 

c 
Ap 

5 Ax cos f 1 Ay sin f
Af 5 2Ax sin f 1 Ay cos f
Az 5 Az

 

Variable 
change

d  

r 5 #x2 1 y2

f 5 tan21ay
x
b

z 5 z

d
sin f 5

y

#x2 1 y2

cos f 5
x

#x2 1 y2

Component 
change

e

Ax 5 Ar

x

#x2 1 y2
2 Af

y

#x2 1 y2

Ay 5 Ar

y

#x2 1 y2
1 Af

x

#x2 1 y2

Az 5 Az

Component 
change g

Ax 5
Arx

#x2 1 y2 1 z2
1

Auxz

#1x2 1 y2 2 1x2 1 y2 1 z2 2
2

Afy

#x2 1 y2

Ay 5
Ary

#x2 1 y2 1 z2
1

Auyz

#1x2 1 y2 2 1x2 1 y2 1 z2 2
1

Afx

#x2 1 y2

Az 5
Arz

#x2 1 y2 1 z2
2

Au#x2 1 y2

#x2 1 y2 1 z2

r 5 #x2 1 y2 1 z2

u 5 cos21 z

#x2 1 y2 1 z2
 e

cos u 5
z

#x2 1 y2 1 z2

sin u 5
#x2 1 y2

#x2 1 y2 1 z2

c 
x 5 r sin u cos f
y 5 r sin u sin f
z 5 r cos u

f 5 tan21ay
x
b d

cos f 5
x

#x2 1 y2

sin f 5
y

#x2 1 y2

e

Ar 5 Ax sin u cos f 1 Ay sin u sin f
         1 Az cos u
Au 5 Ax cos u cos f 1 Ay cos u sin f
         2 Az sin u
Af5 2Ax sin f 1 Ay cos f

h

Adopted with permission from G. F. Miner, Lines and Electromagnetic Fields for Engineers. New York: Oxford Univ. Press, 1996, p. 263.
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 2.2 At Cartesian point 123, 4, 21 2 , which of these is incorrect?

(a) r 5 25 (c) u 5 tan21 
5

21

(b) r 5 !26 (d) f 5 tan21 
4

23

 2.3 Which of these is not valid at point 10, 4, 0 2?
(a) af 5 2ax (c) ar 5 4ay

(b) au 5 2az (d) ar 5 ay

 2.4 A unit normal vector to the cone u 5 308 is:

(a) ar (c) af

(b) a (d) none of these

 2.5 At every point in space, af
# au 5 1.

(a) True (b) False

 2.6 If H 5 4ar 2 3af 1 5az, at 11, p/2, 0 2 the component of H parallel to surface  
r 5 1 is

(a) 4ar (d) 23af 1 5az

(b) 5az (e) 5af 1 3az

(c) 23af

 2.7 Given G 5 20ar 1 50au 1 40af, at 11, p/2, p/6 2 the component of G perpendicular to 
surface u 5 p/2 is

(a) 20ar (d) 20ar 1 40au

(b) 50a (e) 240ar 1 20af

(c) 40a

 2.8 Where surfaces r 5 2 and z 5 1 intersect is

(a) an infinite plane (d) a cylinder
(b) a semi-infinite plane (e) a cone
(c) a circle

 2.9 Match the items in the list at the left with those in the list at the right. Each answer can be 
used once, more than once, or not at all.

(a) u 5 p/4 (i)    infinite plane
(b) f 5 2p/3 (ii)   semi-infinite plane
(c) x 5 210 (iii)  circle
(d) r 5 1, u 5 p/3, f 5 p/2 (iv)   semicircle
(e) r 5 5 (v)    straight line
(f) r 5 3, f 5 5p/3 (vi)   cone
(g) r 5 10, z 5 1 (vii)   cylinder
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(h) r 5 4, f 5 p/6 (viii) sphere
(i) r 5 5, u 5 p/3 (ix)   cube
  (x)   point

2.10 A wedge is described by z 5 0, 308 , f , 608. Which of the following is  
incorrect?

(a) The wedge lies in the xy-plane.
(b) It is infinitely long.
(c) On the wedge, 0 , r , `.
(d) A unit normal to the wedge is 6az.
(e) The wedge includes neither the x-axis nor the y-axis.

Answers:  2.1b,f, 2.2a, 2.3c, 2.4b, 2.5b, 2.6d, 2.7b, 2.8c, 2.9a-(vi), b-(ii), c-(i), d-(x), e-(vii), f-(v), 
g-(iii), h-(iv), i-(iii), 2.10b.

Sections 2.3 and 2.4—Cylindrical and Spherical Coordinates

 2.1 Convert the following Cartesian points to cylindrical and spherical coordinates:

(a) P 12, 5, 1 2
(b) Q 123, 4, 0 2
(c) R 16, 2, 24 2

 2.2 Express the following points in Cartesian coordinates: 

(a) P1 12, 308, 5 2
(b) P2 11, 908, 23 2
(c) P3 110, p/4, p/3 2
(d) P4 14, 308, 608 2

 2.3 The rectangular coordinates at point P are (x 5 2, y 5 6, z 5 24). (a) What are its 
 cylindrical coordinates? (b) What are its spherical coordinates?

 2.4 The cylindrical coordinates of point Q are r 5 5,  5 120°, z 5 1. Express Q as  rectangular 
and spherical coordinates. 

 2.5 Given point T(10, 608, 308) in spherical coordinates, express T in Cartesian and cylindrical 
coordinates.

 2.6 (a) If V 5 xz 2 xy 1 yz, express V in cylindrical coordinates.
(b) If U 5 x2 1 2y2 1 3z2, express U in spherical coordinates.

 2.7 Convert the following vectors to cylindrical and spherical systems:

(a) F 5
xax 1 yay 1 4az

"x2 1 y2 1 z2

PROBLEMS
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(b) G 5 1x2 1 y2 2 c
xax

"x2 1 y2 1 z2
1

yay

"x2 1 y2 1 z2
1

zaz

"x2 1 y2 1 z2 d

 2.8 Let B 5 "x2 1 y2 ax 1 
y

"x2 1 y2
 ay 1 zaz . Transform B to cylindrical coordinates.

 2.9 Given vector A 5 2ar 1 3a 1 4az, convert A into Cartesian coordinates at point  
(2, /2, 21).

2.10 Express the following vectors in rectangular coordinates:

(a) A 5 r sin f ar 1 r cos f af 2 2z az

(b) B 5 4r cos f ar 1 r au

2.11  Given the vector field F 5
4ar

r2 , express F in rectangular coordinates.

2.12 If B 5 r sin ar 2 r2 cos a, (a) find B at (2, p/2, 3p/2), (b) convert B to Cartersian coordi-
nates.

2.13 Let B 5 xaz. Express B in

(a) cylindrical coordinates,
(b) spherical coordinates.

2.14 Prove the following:

(a)  ax 3 ar 5 cos f 
ax 3 af 5 2sin f 
ay 3 ar 5 sin f 
ay 3 af 5 cosf

(b)  ax 3 ar 5 sin u cos f 
ax 3 au 5 cos u cos f 
ay 3 ar 5 sin u sin f

(c)  ay 3 au 5 cos u sin f 
az 3 ar 5 cos u 
az 3 au 5 2sin u

2.15 Prove the following expressions:

(a)  ar 3 a 5 az 
az 3 ar 5 a 
a 3 az 5 ar

(b)  ar 3 a 5 a 
az 3 ar 5 a 
a 3 a 5 ar

2.16 (a)  Show that point transformation between cylindrical and spherical coordinates is 
 obtained using

r 5 "r2 1 z2,  u 5 tan21 
r

z ,  f 5 f
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or

r 5 r sin u,  z 5 r cos u,  f 5 f

(b)  Show that vector transformation between cylindrical and spherical coordinates is 
 obtained using

£
Ar

Au

Af

§ 5 £
sin u 0 cos u
cos u 0 2sin u

0 1 0
§ £

Ar

Af

Az

§

or

£
Ar

Af

Az

§ 5 £
sin u cos u 0

0 0 1
cos u 2sin u 0

§ £
Ar

Au

Af

§

(Hint: Make use of Figures 2.5 and 2.6.)

2.17 At point P(2,0,21), calculate the value of the following dot products:

(a) ar ? ax, (b)a ? ay, (c)ar ? az

2.18 Show that the vector fields

A 5 r sin  ar 1 r cos a 1 raz

B 5 r sin ar 1 r cos a 2 raz 

 are perpendicular to each other at any point.

2.19 Given that A 5 3ar 1 2a 1 az and B 5 5ar 2 8az , find:

(a) A 1 B,  (b) A ? B,  (c) A 3 B,  (d) the angle between A and B.

2.20 Given that G 5 3rar 1r cos a 2 z2az, find the component of G along ax at point 
Q(3,24,6).

2.21 Let G 5 yzax 1 xzay 1 xyaz. Transform G to cylindrical coordinates.

2.22 The transformation 1Ar, Af, Az 2  S  1Ax, Ay, Az 2 in eq. (2.15) is not complete. Complete it 
by expressing cos f and sin f in terms of x, y, and z. Do the same thing to the transforma-
tion 1Ar, Au, Af 2  S  1Ax, Ay, Az 2 in eq. (2.28).

2.23 In Practice Exercise 2.2, express A in spherical and B in cylindrical coordinates. Evaluate 
A at 110, p/2, 3p/4 2 and B at 12, p/6, 1 2.

2.24 Calculate the distance between the following pairs of points:

(a) 12, 1, 5 2  and 16, 21, 2 2
(b) 13, p/2, 21 2 and 15, 3p/2, 5 2
(c) 110, p/4, 3p/4 2 and 15, p/6, 7p/4 2

2.25 Calculate the distance between points P(4, 308, 08) and Q(6, 908, 1808).
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2.26 At point (0, 4, 21), express ar and a  in Cartesian coordinates.

2.27 Let A 5 (2z 2 sin )ar 1 (4r 1 2 cos )a 2 3rzaz and B 5 r cos ar 1 sin a 1 az. 

(a) Find the minimum angle between A and B at (1, 608, 21).
(b) Determine a unit vector normal to both A and B at (1, 908, 0).

2.28 Given vectors A 5 2ax 1 4ay 1 10az and B 5 25ar 1 af 2 3az, find

(a) A 1 B at P 10, 2, 25 2
(b) The angle between A and B at P
(c) The scalar component of A along B at P

2.29 Given that B 5 r2 sin ar 1 (z 2 1) cos a 1 z2az, find B ? ax at (4, /4, 21).

2.30 A vector field in “mixed” coordinate variables is given by

G 5
x cos f

r
 ax 1

2yz
r2  ay 1 a1 2

x2

r2b  az

Express G completely in the spherical system.

Section 2.5—Constant-Coordinate Surfaces

2.31 Describe the intersection of the following surfaces:

(a) x 5 2, y 5 5
(b) x 5 2, y 5 21,  z 5 10
(c) r 5 10, u 5 308

(d) r 5 5, f 5 408

(e) f 5 608, z 5 10
(f) r 5 5, f 5 908

2.32 If J 5 r sin u cos f ar 2 cos 2u sin f au 1 tan 
u

2
 ln r af at T 12, p/2, 3p/2 2, determine the 

vector component of J that is:

(a) Parallel to az

(b) Normal to surface f 5 3p/2

(c) Tangential to the spherical surface r 5 2

(d) Parallel to the line y 5 22, z 5 0

2.33 If H 5 r2 cos ar 2 r sin a, find H ? ax at point P(2, 60°, 21). 

2.34 If r 5 xax 1 yay 1 zaz, describe the surface defined by:

(a) r # ax 1 r # ay 5 5
(b) 0 r 3 az 0 5 10
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George Gabriel Stokes (1819–1903), mathematician and physicist, was one 
of Ireland’s preeminent scientists of all time. He made significant  contributions 
to the fields of fluid dynamics, optics, and mathematical physics.

Born in Sligo, Ireland, as the youngest son of the Reverend Gabriel 
Stokes, George Stokes was a religious man. In one of his books, he detailed 
his view of God and his relationship to the world.

Although Stokes’s basic field was physics, his most important contribu-
tion was in fluid mechanics, where he described the motion of viscous fluids. 
These equations are known today as the Navier–Stokes equations and are 

considered fundamental equations. Stokes was an applied mathematician working in physics, and like 
many of his predecessors, he branched out into other areas while continuing to develop his own spe-
cialty. His mathematical and physical papers were published in five volumes. Several discoveries were 
named for him. For example, the Stokes’s theorem, to be discussed in this chapter,  reduced selected 
surface integrals to line integrals.

Carl Friedrich Gauss (1777–1855), German mathematician, astronomer, 
and physicist, is considered to be one of the leading mathematicians of all 
time because of his wide range of contributions.

Born in Brunswick, Germany, as the only son of uneducated parents, 
Gauss was a prodigy of astounding depth. Gauss taught himself reading 
and arithmetic by the age of 3. Recognizing the youth’s talent, the Duke of 
Brunswick in 1792 provided him with a stipend to allow him to pursue his 
education. Before his 25th birthday, he was already famous for his work 
in mathematics and astronomy. At the age of 30 he went to Göttingen to 

become director of the observatory. From there, he worked for 47 years until his death at almost age 78.  
He found no fellow mathematical collaborators and worked alone for most of his life, engaging in an 
amazingly rich scientific activity. He carried on intensive empirical and theoretical research in many 
branches of science, including observational astronomy, celestial mechanics, surveying, geodesy, 
capillarity, geomagnetism, electromagnetism, actuarial science, and optics. In 1833 he constructed 
the first telegraph. He published over 150 works and did important work in almost every area of 
mathematics. For this reason, he is sometimes called the “prince of mathematics.” Among the discov-
eries of C. F. Gauss are the method of least squares, Gaussian  distribution, Gaussian quadrature, the 
 divergence theorem (to be discussed in this chapter), Gauss’s law (to be discussed in  Chapter 4), the 
Gauss–Markov theorem, and Gauss–Jordan elimination. Gauss was deeply religious and conserva-
tive. He dominated the mathematical community during and after his lifetime.
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3.1 INTRODUCTION

Chapter 1 has focused mainly on vector addition, subtraction, and multiplication in 
Cartesian coordinates, and Chapter 2 extended all these to other coordinate systems. This 
chapter deals with vector calculus—integration and differentiation of vectors.

The concepts introduced in this chapter provide a convenient language for expressing 
certain fundamental ideas in electromagnetics or mathematics in general. A student may 
feel uneasy about these concepts at first—not seeing what they are “good for.” Such a stu-
dent is advised to concentrate simply on learning the mathematical techniques and to wait 
for their applications in subsequent chapters.

VECTOR CALCULUS

This nation was founded by men of many nations and background. It was founded 
on the principle that all men are created equal, and that the rights of every man are 
diminished when the rights of one man are threatened.

—JOHN F. KENNEDY

3

3.2 DIFFERENTIAL LENGTH, AREA, AND VOLUME

Differential elements in length, area, and volume are useful in vector calculus. They are 
defined in the Cartesian, cylindrical, and spherical coordinate systems.

A. Cartesian Coordinate Systems
From Figure 3.1, we notice that the differential displacement dl at point S is the vector from 
point S(x, y, z) to point B(x  dx, y  dy, z  dz).
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60 CHAPTER 3 VECTOR CALCULUS

FIGURE 3.1 Differential elements in the 
right-handed Cartesian coordinate system.

a

a

a

FIGURE 3.2 Differential normal surface areas in Cartesian coordinates:  
(a) dS 5 dy dz ax, (b) dS 5 dx dz ay, (c) dS 5 dx dy az.

2. Differential normal surface area is given by

 
dS 5 dy dz ax

dx dz ay
dx dy az

 (3.2)

 and illustrated in Figure 3.2.

1. Differential displacement is given by

 d l 5 dx ax 1 dy ay 1 dz az (3.1)

3. Differential volume is given by

 dv 5 dx dy dz (3.3)
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These differential elements are very important as they will be referred to throughout 
the book. The student is encouraged not to memorize them, but to learn how to derive 
them from Figures 3.1 and 3.2. Notice from eqs. (3.1) to (3.3) that d l and dS are vectors, 
whereas dv is a scalar. Observe from Figure 3.1 that if we move from point P to Q (or Q to 
P), for example, d l 5 dy ay because we are moving in the y-direction, and if we move from 
Q to S (or S to Q), d l 5 dy ay 1 dz az because we have to move dy along y, dz along z, and 
dx 5 0 (no movement along x). Similarly, to move from D to Q (or Q to D) would mean 
that d l 5 dx ax 1 dy ay 1 dz az.

The way dS is defined is important. The differential surface (or area) element dS may 
generally be defined as

 dS 5 dS an (3.4)

where dS is the area of the surface element and an is a unit vector normal to the surface 
dS (and directed away from the volume if dS is part of the surface describing a volume). If 
we consider surface ABCD in Figure 3.1, for example, dS 5 dy dz ax, whereas for surface 
PQRS, dS 5 2dy dz ax because an 5 2ax is normal to PQRS.

What we have to remember at all times about differential elements is d l and how to get 
dS and dv from it. When d l is remembered, dS and dv can easily be found. For example, dS 
along ax can be obtained from d l in eq. (3.1) by multiplying the components of d l along ay 
and az; that is, dy dz ax. Similarly, dS along az is the product of the components of d l along 

x y z
components of d l, that is, dx dy dz. The idea developed here for Cartesian coordinates will 
now be extended to other coordinate systems.

B. Cylindrical Coordinate Systems
From Figure 3.3, the differential elements in cylindrical coordinates can be found as 
 follows:

1. Differential displacement is given by

 d l 5 dr ar 1 r df af 1 dz az (3.5)

2. Differential normal surface area is given by

 
dS 5 r df dz ar

dr dz af

r dr df az

 (3.6)

 and illustrated in Figure 3.4.
3. Differential volume is given by

 dv 5 r dr df dz (3.7)
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FIGURE 3.3 Differential elements in  
cylindrical coordinates.

ρ  dφ
dz

aρ

dρ

a z

dρ ρ  dφ

(a) (b) (c)

aφ

z

y

x

dz

FIGURE 3.4 Differential normal surface areas in cylindrical coordinates:  
(a) dS 5 r df dz ar, (b) dS 5 dr dz af, (c) dS 5 r dr df az.

As mentioned in the preceding section on Cartesian coordinates, we need only 
remember d l; dS and dv can easily be obtained from d l. For example, dS along az is the 

r f z
of the three components of d l, that is, dr r df dz.

C. Spherical Coordinate Systems
From Figure 3.5, the differential elements in spherical coordinates can be found as 
follows:

1. The differential displacement is

 d l 5 dr ar 1 r du au 1 r sin u df af (3.8)
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2. The differential normal surface area is

 
dS 5 r2 sin u du df ar

r sin u dr df au

r dr du af

 (3.9)

 and illustrated in Figure 3.6.

FIGURE 3.5 Differential elements 
in the spherical coordinate system.

ρ 

dθ

z

y

x

ar

dr

drr dθ

(a) (b) (c)

aθ

aφr sin θ dφr sin θ dφ

r dθ

FIGURE 3.6 Differential normal surface areas in spherical coordinates:  
(a) dS 5 r2 sin  d df ar, (b) dS 5 r sin  dr df a, (c) dS 5 r dr d af.

3. The differential volume is

 dv 5 r2 sin u dr du df (3.10)
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Again, we need to remember only d l, from which dS and dv are easily obtained. For 
example, dS along a is obtained as the product of the components of d l along ar and a, that is, 
dr # r sin u df; dv is the product of the three components of d l, that is, dr # r du # r sin u df.

EXAMPLE 3.1

O

FIGURE 3.7 For Example 3.1.

Consider the object shown in Figure 3.7. Calculate
(a) The length BC (d) The surface area ABO
(b) The length CD (e) The surface area AOFD
(c) The surface area ABCD (f) The volume ABDCFO

Solution:
Although points A, B, C, and D are given in Cartesian coordinates, it is obvious that the 
 object has cylindrical symmetry. Hence, we solve the problem in cylindrical coordinates. 
The points are transformed from Cartesian to cylindrical coordinates as follows:

  A 15, 0, 0 2  S  A 15, 08, 0 2

    B 10, 5, 0 2  S  Ba5, 
p

2
, 0b

    C 10, 5, 10 2  S  Ca5, 
p

2
, 10b

  D 15, 0, 10 2  S  D 15, 08, 10 2

(a) Along BC, dl 5 dz; hence,

BC 5 3
L
 dl 5 3

10

0
 dz 5 10

(b) Along CD, dl 5 r df and r 5 5, so

CD 5 3
p/2

0
 r df 5 5 f `

0

p/2

5 2.5p
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(c) For ABCD, dS 5 r df dz, r 5 5. Hence,

area ABCD 5 3
S
 dS 5 3

p/2

f50
 3

10

z50
 r df dz 5 5 3

p/2

0
 df 3

10

0
 dz `

r55
5 25p

(d) For ABO, dS 5 r df dr and z 5 08, so

area ABO 5 3
p/2

f50
 3

5

r50
 r df dr 5 3

p/2

0
 df 3

5

0
 r dr 5 6.25p

(e) For AOFD, dS 5 dr dz and f 5 0°, so

area AOFD 5 3
5

r50
 3

10

z50
 dr dz 5 50

(f) For volume ABDCFO, dv 5 r df dz dr. Hence,

v 5 3
v
 dv 5 3

5

r50
 3

p/2

f50
 3

10

z50
 r df dz dr 5 3

10

0
 dz 3

p/2

0
 df 3

5

0
 r dr 5 62.5p

FIGURE 3.8 For Practice Exercise 3.1 (and also 
Review Question 3.3).

r dθ

PRACTICE EXERCISE 3.1

Refer to Figure 3.8; disregard the differential lengths and imagine that the object is part 
of a spherical shell. It may be described as 3 # r # 5, 60° # u # 90°, 45° # f # 60° 
where surface r 5 3 is the same as AEHD, surface u 5 60° is AEFB, and surface f 5 45° 
is ABCD. Calculate
(a) The arc length DH (d) The surface area ABDC
(b) The arc length FG (e) The volume of the object
(c) The surface area AEHD

Answer: (a) 0.7854, (b) 2.618, (c) 1.179, (d) 4.189, (e) 4.276.
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The familiar concept of integration will now be extended to cases in which the integrand 
involves a vector. By “line” we mean the path along a curve in space. We shall use terms 
such as line, curve, and contour interchangeably.

The line integral 3
L
 A # d l is the integral of the tangential component of A along 

curve L.

Given a vector field A and a curve L, we define the integral

 3
L
 A # d l 5 3

b

a
 0A 0  cos u dl (3.11)

as the line integral of A around L (see Figure 3.9). If the path of integration is a closed curve 
such as abca in Figure 3.9, eq. (3.11) becomes a closed contour integral

 C
L
 A # d l (3.12)

which is called the circulation of A around L. A common example of a line integral is the 
work done on a particle. In this case A is the force F and 

3
Q

P
F # d1 5 3

XQ

XP

Fx dx 1 3
YQ

YP

Fy dy 1 3
ZQ

ZP

Fz dz

Given a vector field A, continuous in a region containing the smooth surface S, we 
 define the surface integral or the flux of A through S (see Figure 3.10) as

3.3 LINE, SURFACE, AND VOLUME INTEGRALS

P

FIGURE 3.9 Path of integration of vector field A.
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� 5 3
S
 0A 0  cos u dS 5 3

S
 A # an dS
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or simply

 

where, at any point on S, an is the unit normal to S. For a closed surface (defining a  volume), 
eq. (3.13) becomes

 

which is referred to as the net outward flux of A from S. Notice that a closed path defines 

We define the integral

 3
v
 rv dv (3.15)

as the volume integral of the scalar rv over the volume v. The physical meaning of a line, 
surface, or volume integral depends on the nature of the physical quantity represented by 
A or rv. Note that d l, dS, and dv are all as defined in Section 3.2.

FIGURE 3.10 The flux of a vector field A 
through surface S.

S

Given that F 5 x2ax 2 xzay 2 y2az, calculate the circulation of F around the (closed) path 
shown in Figure 3.11.

Solution:
The circulation of F around path L is given by

C
L
 F # d l 5 a 3

 1
1 3

 2
1 3

 3
1 3

 4
  
b  F # d l

where the path is broken into segments numbered 1 to 4 as shown in Figure 3.11.
For segment  1  , y 5 0 5 z

F 5 x2ax 2 xzay 2 y2az,  d l 5 dx ax

Notice that d l is always taken as along 1ax so that the direction on segment   1   is taken 
care of by the limits of integration. Also, since d l is in the ax-direction, only the ax compo-
nent of vector F will be integrated, owing to the definition of the dot product. Thus,

EXAMPLE 3.2
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� 5 3
S
 A # dS (3.13)

� 5 C
S
 A # dS (3.14)

an open surface, whereas a closed surface defines a volume (see Figures 3.12 and 3.17).
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3
1
 F # d l 5 3

0

1
 x2dx 5

x3

3
 `

0

1
5 2

1
3

For segment   2  , x 5 0 5 z, F 5 x2ax 2 xzay 2 az, d l 5 dy ay, F # d l 5 0. Hence,

3
 2

 F # d l 5 0

For segment   3  , y 5 1, F 5 x2ax 2 xzay 2 az, and d l 5 dx ax 1 dz az, so

3
 3

 F # d l 5 3  1x2dx 2 dz 2

But on   3  , z 5 x; that is, dx 5 dz. Hence,

3
 3

 F # d l 5 3
1

0
 1x2 2 1 2  dx 5

x3

3
2 x `

0

1

5 2
2
3

For segment   4  , x 5 1, so F 5 ax 2 zay 2 y2az, and d l 5 dy ay 1 dz az. Hence,

3
 4

 F # dl 5 3  12z dy 2 y2dz 2

But on   4  , z 5 y; that is, dz 5 dy, so

3
 4

 F # d l 5 3
0

1
 12y 2 y2 2  dy 5 2

y2

2
2

y3

3
 `

1

0

5
5
6

By putting all these together, we obtain

C
L
 F # d l 5 2

1
3

1 0 2
2
3

1
5
6

5 2
1
6

 

FIGURE 3.11 For Example 3.2.
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FIGURE 3.12 For Practice Exercise 3.2, L is a closed path.

x

y

L

20

60°

PRACTICE EXERCISE 3.2

Calculate the circulation of

A 5 r cos f ar 1 z sin f az

in Figure 3.12.

Answer: 1.

The del operator, written , is the vector differential operator. In Cartesian coordinates,

 = 5
'

'x
 ax 1

'

'y
 ay 1

'

'z
 az (3.16)

This vector differential operator, otherwise known as the gradient operator, is not a vector in 
itself, but when it operates on a scalar function, for example, a vector ensues. The operator 
is useful in defining

1. The gradient of a scalar V, written as V
2. The divergence of a vector A, written as = # A
3. The curl of a vector A, written as = 3 A
4. The Laplacian of a scalar V, written as 2V

Each of these will be defined in detail in the subsequent sections. Before we do that, it 
is appropriate to obtain expressions for the del operator  in cylindrical and spherical 
 coordinates. This is easily done by using the transformation formulas of Sections 2.3 
and 2.4.

3.4 DEL OPERATOR
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To obtain  in terms of r, f, and z, we recall from eq. (2.7) that1

r 5 "x2 1 y2,  tan f 5
y
x

Hence

  
'

'x
5 cos f 

'

'r
2

sin f
r

 
'

'f
 (3.17)

  
'

'y
5 sin f 

'

'r
1

cos f
r

 
'

'f
 (3.18)

Substituting eqs. (3.17) and (3.18) into eq. (3.16) and making use of eq. (2.9), we obtain  
in cylindrical coordinates as

 = 5 ar 
'

'r
1 af 

1
r

 
'

'f
1 az 

'

'z
 (3.19)

Similarly, to obtain  in terms of r, , and f, we use

 r 5 "x2 1 y2 1 z2,  tan u 5
"x2 1 y2

z ,  tan f 5
y
x

to obtain

 
'

'x
5 sin u cos f 

'

'r
1

cos u cos f
r  

'

'u
2

sin f
r

 
'

'f
 (3.20)

 
'

'y
5 sin u sin f 

'

'r
1

cos u sin f
r  

'

'u
1

cos f
r

 
'

'f
 (3.21)

 
'

'z
5 cos u 

'

'r
2

sin u
r  

'

'u
 (3.22)

Substituting eqs. (3.20) to (3.22) into eq. (3.16) and using eq. (2.23) results in  in spherical 
coordinates:

 = 5 ar 
'

'r
1 au 

1
r  

'

'u
1 af 

1
r sin u

 
'

'f
 (3.23)

Notice that in eqs. (3.19) and (3.23), the unit vectors are placed to the left of the differential 
operators because the unit vectors depend on the angles.

1 A more general way of deriving , = # A, = 3 A, V, and 2V is by using the curvilinear  coordinates.  
See, for example, M. R. Spiegel, Vector Analysis and an Introduction to Tensor Analysis. New York: McGraw-Hill, 
1959, pp. 135–165.
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The gradient of a scalar field at any point is the maximum rate of change of the field at 
that point.

The gradient of a scalar field V is a vector that represents both the magnitude and 
the direction of the maximum space rate of increase of V.

A mathematical expression for the gradient can be obtained by evaluating the difference in 
the field dV between points P1 and P2 of Figure 3.13, where V1, V2, and V3 are contours on 
which V is constant. From calculus,

 dV 5
'V
'x

 dx 1
'V
'y

 dy 1
'V
'z

 dz

 5 a'V
'x

 ax 1
'V
'y

 ay 1
'V
'z

 azb # 1dx ax 1 dy ay 1 dz az 2  
(3.24)

For convenience, let

 G 5
'V
'x

 ax 1
'V
'y

 ay 1
'V
'z

 az (3.25)

Then

dV 5 G # d l 5 G cos u dl

or

FIGURE 3.13 Gradient of a scalar.

3.5 GRADIENT OF A SCALAR
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dV
dl

5 G cos u (3.26)

where d l is the differential displacement from P1 to P2 and  is the angle between G and 
d l. From eq. (3.26), we notice that dV/dl is a maximum when u 5 0, that is, when d l is in 
the direction of G. Hence,

 
dV
dl

 `
max

5
dV
dn

5 G (3.27)

where dV/dn is the normal derivative. Thus G has its magnitude and direction as those of 
the maximum rate of change of V. By definition, G is the gradient of V. Therefore:

 grad V 5 =V 5
'V
'x

 ax 1
'V
'y

 ay 1
'V
'z

 az (3.28)

By using eq. (3.28) in conjunction with eqs. (3.16), (3.19), and (3.23), the gradient of V can 
be expressed in Cartesian, cylindrical, and spherical coordinates. For Cartesian  coordinates

=V 5
'V
'x

 ax 1
'V
'y

 ay 1
'V
'z

 az

for cylindrical coordinates,

 =V 5
'V
'r

 ar 1
1
r

 
'V
'f

 af 1
'V
'z

 az (3.29)

and for spherical coordinates,

 =V 5
'V
'r

 ar 1
1
r  
'V
'u

 au 1
1

r sin u
 
'V
'f

 af (3.30)

The following computation formulas on gradient, which are easily proved, should be 
noted:

 (i)   = 1V 1 U 2 5 =V 1 =U (3.31a)

 (ii)  = 1VU 2 5 V =U 1 U =V (3.31b)

(iii)  = cV
U
d 5

U =V 2 V =U
U2  (3.31c)

 (iv)  =V n 5 nV n21 =V (3.31d)

where U and V are scalars and n is an integer.
Also take note of the following fundamental properties of the gradient of a scalar  field V:

1. The magnitude of V equals the maximum rate of change in V per unit distance.
2. V points in the direction of the maximum rate of change in V.
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3. V at any point is perpendicular to the constant V surface that passes through that 
point (see points P and Q in Figure 3.13).

4. The projection (or component) of V in the direction of a unit vector a is =V # a 
and is called the directional derivative of V along a. This is the rate of change of V 
in the direction of a. For example, dV/dl in eq. (3.26) is the directional derivative 
of V along P1P2 in Figure 3.13. Thus the gradient of a scalar function V provides us 
with both the direction in which V changes most rapidly and the magnitude of the 
maximum directional derivative of V.

5. If A 5 =V , V is said to be the scalar potential of A.

Find the gradient of the following scalar fields:
(a) V 5 e2z sin 2x cosh y
(b) U 5 r2z cos 2f
(c) W 5 10r sin2 u cos f

Solution:

(a) =V 5
'V
'x

 ax 1
'V
'y

 ay 1
'V
'z

 az

  5 2e2z cos 2x cosh y ax 1 e2z sin 2x sinh y ay 2 e2z sin 2x cosh y az

(b) =U 5
'U
'r

 ar 1
1
r

 
'U
'f

 af 1
'U
'z

 az

  5 2rz cos 2f ar 2 2rz sin 2f af 1 r2 cos 2f az

(c) =W 5
'W
'r

 ar 1
1
r  
'W
'u

 au 1
1

r sin u
 
'W
'f

 af

  5 10 sin2 u cos f ar 1 10 sin 2u cos f au 2 10 sin u sin f af 

EXAMPLE 3.3

PRACTICE EXERCISE 3.3

Determine the gradient of the following scalar fields:
(a) U 5 x2y 1 xyz
(b) V 5 rz sin f 1 z2 cos2 f 1 r2

(c) f 5 cos u sin f ln r 1 r2f

Answer: (a) y 12x 1 z 2ax 1 x 1x 1 z 2ay 1 xyaz

(b) 1z sin f 1 2r 2ar 1 az cos f 2
z2

r
 sin 2fbaf 1

 1r sin f 1 2z cos2 f 2az

(c) acos u sin f
r 1 2rfbar 2

sin u sin f
r  ln r au 1

 acot u
r  cos f ln r 1 r csc ubaf
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Given W 5 x2y2 1 xyz, compute W and the directional derivative dW/dl in the direction 
3ax 1 4ay 1 12az at 12, 21, 0 2 .

Solution: =W 5
'W
'x

 ax 1
'W
'y

 ay 1
'W
'z

 az

  5 12xy2 1 yz 2ax 1 12x2y 1 xz 2ay 1 1xy 2az

At 12, 21, 0 2 : =W 5 4ax 2 8ay 2 2az
Hence,

dW
dl

5 =W # al 5 14, 28, 22 2 #
13, 4, 12 2

13
5 2

44
13

Find the angle at which line x 5 y 5 2z intersects the ellipsoid x2 1 y2 1 2z2 5 10.

Solution:
Let the line and the ellipsoid meet at angle  as shown in Figure 3.14. On line x 5 y 5 2z, for 
two unit increments along z, there is a unit increment along x and a unit increment along y. 
Thus, the line can be represented by

r 1l 2 5 2l ax 1 2l ay 1 l az

where l is a parameter. Where the line and the ellipsoid meet,

12l 2 2 1 12l 2 2 1 2l2 5 10 S  l 5 61

Taking l 5 1 (for the moment), the point of intersection is 1x, y, z 2 5 12, 2, 1 2 . At this 
point, r 5 2ax 1 2ay 1 az.

EXAMPLE 3.4

EXAMPLE 3.5

PRACTICE EXERCISE 3.4

Given  5 xy 1 yz 1 xz, find gradient  at point 11, 2, 3 2  and the directional deriva-
tive of  at the same point in the direction toward point 13, 4, 4 2 .
Answer: 5ax 1 4ay 1 3az, 7.

L

E

FIGURE 3.14 For Example 3.5; plane of intersection of a 
line with an ellipsoid.
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PRACTICE EXERCISE 3.5

Calculate the angle between the normals to the surfaces x2y 1 z 5 3 and 
x log z 2 y2 5 24 at the point of intersection 121, 2, 1 2 .
Answer: 73.4°.

The surface of the ellipsoid is defined by

f 1x, y, z 2 5 x2 1 y2 1 2z2 2 10

The gradient of f is

=f 5 2xax 1 2yay 1 4zaz

At 12, 2, 1 2 , =f 5 4ax 1 4ay 1 4az. Hence, a unit vector normal to the ellipsoid at the 
point of intersection is

an 5 6
=f
0=f 0 5 6

ax 1 ay 1 az

"3
Taking the positive sign (for the moment), the angle between an and r is given by

cos u 5
an

# r
0 an

# r 0 5
2 1 2 1 1

"3"9
5

5

3"3
5 sin c

n
possible angles, given by sin c 5 65/ 13"3 2 .

3.6 DIVERGENCE OF A VECTOR AND DIVERGENCE THEOREM

From Section 3.3, we have noticed that the net outflow of the flux of a vector field A from 
a closed surface S is obtained from the integral A A # dS. We now define the divergence of 
A as the net outward flow of flux per unit volume over a closed incremental surface.

The divergence of A at a given point P is the outward flux per unit volume as the volume 
shrinks about P.

Hence,

 div A 5 = # A 5 lim
DvS0

 
C

S
 A # dS

Dv
 (3.32)
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where Dv is the volume enclosed by the closed surface S in which P is located. Physically, we 
may regard the divergence of the vector field A at a given point as a measure of how much the 
field diverges or emanates or originates from that point. Figure 3.15(a) shows that the diver-
gence of a vector field at point P is positive because the vector diverges (or spreads out) at P. 
In Figure 3.15(b) a vector field has negative divergence (or convergence) at P, and in Figure 
3.15(c) a vector field has zero divergence at P. The divergence of a vector field can also be 
viewed as simply the limit of the field’s source strength per unit volume (or source density); 
it is positive at a source point in the field, and negative at a sink point, or zero where there is 
neither sink nor source.

We can obtain an expression for = # A in Cartesian coordinates from the definition 
in eq. (3.32). Suppose we wish to evaluate the divergence of a vector field A at point 
P 1xo, yo, zo 2 ; we let the point be enclosed by a differential volume as in Figure 3.16. The 
surface integral in eq. (3.32) is obtained from

 C
S
 A # dS 5 a33

front
1 33

back
1 33

left
1 33

right
1 33

top
1 33

bottom
b  A # dS (3.33)

A three-dimensional Taylor series expansion of Ax about P is

Ax 1x, y, z 2 5 Ax 1xo, yo, zo 2 1 1x 2 xo 2  
'Ax

'x
 `

P
1 1y 2 yo 2  

'Ax

'y
 `

P

  1 1z 2 zo 2
'Ax

'z
`
P

1 higher-order terms 
(3.34)

For the front side, x 5 xo 1 dx/2 and dS 5 dy dz ax. Then,

33
front

 A # dS 5 dy dz cAx 1xo, yo, zo 2 1
dx
2

 
'Ax

'x
 `

P
d 1 higher-order terms

For the back side, x 5 xo 2 dx/2 and dS 5 dy dz 12ax 2 . Then,

33
back

 A # dS 5 2dy dz cAx 1xo, yo, zo 2 2
dx
2

 
'Ax

'x
 `

P
d 1 higher-order terms

FIGURE 3.15 Illustration of the divergence of a vector field at P: (a) positive 
divergence, (b) negative divergence, (c) zero divergence.
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Hence,

 33
front

 A # dS 1 33
back

 A # dS 5 dx dy dz 
'Ax

'x
 `

P
1 higher-order terms (3.35)

By taking similar steps, we obtain

 33
left

 A # dS 1 33
right

 A # dS 5 dx dy dz 
'Ay

'y
 `

P
1 higher-order terms (3.36)

and

 33
top

 A # dS 1 33
bottom

 A # dS 5 dx dy dz 
'Az

'z
 `

P
1 higher-order terms (3.37)

Substituting eqs. (3.35) to (3.37) into eq. (3.33) and noting that Dv 5 dx dy dz, we get

 lim
DvS0

 AS A # dS
Dv

5 a'Ax

'x
1

'Ay

'y
1

'Az

'z
b  `

at P
 (3.38)

because the higher-order terms will vanish as Dv S 0. Thus, the divergence of A at point 
P 1xo, yo, zo 2  in a Cartesian system is given by

 = # A 5
'Ax

'x
1

'Ay

'y
1

'Az

'z
 (3.39)

Similar expressions for = # A in other coordinate systems can be obtained directly 
from eq. (3.32) or by transforming eq. (3.39) into the appropriate coordinate system. In 
cylindrical coordinates, substituting eqs. (2.15), (3.17), and (3.18) into eq. (3.39) yields

 = # A 5
1
r

 
'

'r
 1rAr 2 1

1
r

 
'Af

'f
1

'Az

'z
 (3.40)

T

F

R
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FIGURE 3.16 Evaluation of = # A at point 
P(xo, yo, zo).
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Substituting eqs. (2.28) and (3.20) to (3.22) into eq. (3.39), we obtain the divergence of A 
in spherical coordinates as

  = # A 5
1
r2 

'

'r
 1r2Ar 2 1

1
r sin u

 
'

'u
 1Au sin u 2 1

1
r sin u

 
'Af

'f
 (3.41)

Note the following properties of the divergence of a vector field:

1. It produces a scalar field (because scalar product is involved).
2. = # 1A 1 B 2 5 = # A 1 = # B
3. = # 1VA 2 5 V= # A 1 A # =V

From the definition of the divergence of A in eq. (3.32), it is not difficult to 
expect that

 C
S
 A # dS 5 3

v
 = # A dv (3.42)

This is called the divergence theorem, otherwise known as the Gauss–Otrogradsky  theorem.

The divergence theorem states that the total outward flux of a vector field A through 
the closed surface S is the same as the volume integral of the divergence of A.

To prove the divergence theorem, subdivide volume v into a large number of small 
cells. If the kth cell has volume Dvk and is bounded by surface Sk

 C
S
 A # dS 5 a

k
 C

Sk

 A # dS 5 a
k

 
C

Sk

 A # dS

Dvk
 Dvk (3.43)

Since the outward flux to one cell is inward to some neighboring cells, there is cancellation 
on every interior surface, so the sum of the surface integrals over the Sk’s is the same as the 
surface integral over the surface S. Taking the limit of the right-hand side of eq. (3.43) and 
incorporating eq. (3.32) gives

 C
S
 A # dS 5 3

v
 = # A dv (3.44)

which is the divergence theorem. The theorem applies to any volume v bounded by the 
closed surface S such as that shown in Figure 3.17 provided that A and = # A are con-
tinuous in the region. With a little experience, one comes to understand that the vol-
ume  integral on the right-hand side of eq. (3.42) is easier to evaluate than the surface 
integral(s) on the left-hand side of the equation. For this reason, to determine the flux 
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of A through a closed surface, we simply find the right-hand side of eq. (3.42) instead 
of the left-hand side of the equation.

surface S

FIGURE 3.17 Volume v enclosed by surface S.

EXAMPLE 3.6 Determine the divergence of these vector fields:
(a) P 5 x2yzax 1 xzaz

(b) Q 5 r sin f ar 1 r2z af 1 z cos f az

(c) T 5
1
r2 cos u ar 1 r sin u cos f au 1 cos u af

Solution:

(a) = # P 5
'

'x
Px 1

'

'y
Py 1

'

'z
Pz

  5
'

'x
 1x2yz 2 1

'

'y
 10 2 1

'

'z
 1xz 2

  5 2xyz 1 x

(b) = # Q 5
1
r

 
'

'r
 1rQr 2 1

1
r

 
'

'f
 Qf 1

'

'z
 Qz

  5
1
r

 
'

'r
 1r2 sin f 2 1

1
r

 
'

'f
 1r2z 2 1

'

'z
 1z cos f 2

  5 2 sin f 1 cos f

(c) = # T 5
1
r2 

'

'r
 1r2Tr 2 1

1
r sin u

 
'

'u
 1Tu sin u 2 1

1
r sin u

 
'

'f
 1Tf 2

  5
1
r2 

'

'r
 1cos u 2 1

1
r sin u

 
'

'u
 1r sin2 u cos f 2 1

1
r sin u

 
'

'f
 1cos u 2

  5 0 1
1

r sin u
 2r sin u cos u cos f 1 0

  5 2 cos u cos f
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PRACTICE EXERCISE 3.6

Determine the divergence of the following vector fields and evaluate them at the speci-
fied points.
(a) A 5 yzax 1 4xyay 1 yaz at 11, 22, 3 2
(b) B 5 rz sin f ar 1 3rz2 cos f af at 15, p/2, 1 2
(c) C 5 2r cos u cos f ar 1 r1/2af at 11, p/6, p/3 2
Answer: (a) 4x, 4, (b) 12 2 3z 2z sin f, 21, (c) 6 cos u cos f, 2.598.

If G 1r 2 5 10e22z 1rar 1 az 2 , determine the flux of G out of the entire surface of the cylin-
der r 5 1, 0 # z # 1. Confirm the result by using the divergence theorem.

Solution:
If  is the flux of G through the given surface, shown in Figure 3.18, then

where t, b, and s are the fluxes through the top, bottom, and sides (curved surface) of 
the cylinder as in Figure 3.18.

For t, z 5 1, dS 5 r dr df az. Hence,

5 10pe22

EXAMPLE 3.7

Ψ

Ψ

FIGURE 3.18 For Example 3.7.
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� 5 C
s
 G # dS 5 �t 1 �b 1 �s

�t 5 33G # dS 5 3
1

r50
 3

2p

f50
 10e22r dr df 5 10e22 12p 2  r2

2
`
0

1
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PRACTICE EXERCISE 3.7

Determine the flux of D 5 r2 cos2 f ar 1 z sin f af over the closed surface of the cyl-
inder 0 # z # 1, r 5 4. Verify the divergence theorem for this case.

Answer: 64p.
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For �b, z 5 0 and dS 5 r dr df 12az 2 . Hence,

�b 5 3
b
 G # dS 5 3

1

r50
 3

2p

f50
 10e0r dr df 5 210 12p 2  r2

2
 `

0

1

  5 210p

For �s, r 5 1 and dS 5 r dz df ar. Hence,

�s 5 3
s
 G # dS 5 3

1

z50
 3

2p

f50
 10e22zr2 dz df 5 10 11 2 2 12p 2  e22z

22
 `

0

1

 5 10p 11 2 e22 2
Thus,

� 5 �t 1 �b 1 �s 5 10pe22 2 10p 1 10p 11 2 e22 2 5 0

lternatively, since S is a closed surface, we can apply the divergence theorem:

� 5 C
S
G # dS 5 3

v
 1= # G 2  dv

But

  = # G 5
1
r

 
'
'r

 1rGr 2 1
1
r

 
'
'f

 Gf 1
'
'z

 Gz

  5
1
r

 
'
'r

 1r210e22z 2 2 20e22z

  5
1
r
120re22z 2220e22z 5 0

showing that G has no outward flux. Hence,

� 5 3
v
 1= # G 2  dv 5 0

A
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In Section 3.3, we defined the circulation of a vector field A around a closed path L as the 
integral ALA # dl.

The curl of A is an axial (or rotational) vector whose magnitude is the maximum cir-
culation of A per unit area as the area tends to zero and whose direction is the normal 
direction of the area when the area is oriented to make the circulation maximum.2

That is,

 curl A 5 = 3 A 5 a lim
DSS0

 AL A # d l
DS

b
max

an (3.45)

where the area DS is bounded by the curve L and an is the unit vector normal to the surface 
DS and is determined by using the right-hand rule.

To obtain an expression for = 3 A from the definition in eq. (3.45), consider the dif-
ferential area in the yz-plane as in Figure 3.19. The line integral in eq. (3.45) is obtained as

 C
L
 A # d l 5 a3

ab
1 3

bc
1 3

cd
1 3

da
b  A # d l (3.46)

We expand the field components in a Taylor series expansion about the center point P 1xo, yo, zo 2 as 
in eq. (3.34) and evaluate eq. (3.46). On side ab, d l 5 dy ay and z 5 zo 2 dz/2, so

 3
ab

 A # d l 5 dy cAy 1xo, yo, zo 2 2
dz
2

 
'Ay

'z
 `

P
d  (3.47)

On side bc, d l 5 dz az and y 5 yo 1 dy/2, so

 3
bc

 A # d l 5 dz cAz 1xo, yo, zo 2 1
dy
2

 
'Az

'y
 `

P
d  (3.48)

3.7 CURL OF A VECTOR AND STOKES’S THEOREM

2 Because of its rotational nature, some authors use rot A instead of curl A.
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FIGURE 3.19 Contour used in evaluating the 
x-component of   A at point P(xo, yo, zo).
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On side cd, d l 5 dy ay and z 5 zo 1 dz/2, so

 3
cd

 A # d l 5 2dy cAy 1xo, yo, zo 2 1
dz
2

 
'Ay

'z
 `

P
d  (3.49)

On side da, d l 5 dz az and y 5 yo 2 dy/2, so

 3
da

 A # d l 5 2dz cAz 1xo, yo, zo 2 2
dy
2

 
'Az

'y
 `

P
d  (3.50)

Substituting eqs. (3.47) to (3.50) into eq. (3.46) and noting that DS 5 dy dz, we have

lim
DSS0

 C
L
 
A # d l

DS
5

'Az

'y
2

'Ay

'z

or

 1curl A 2 x 5
'Az

'y
2

'Ay

'z
 (3.51)

The y- and x-components of the curl of A can be found in the same way. We obtain

 1curl A 2 y 5
'Ax

'z
2

'Az

'x
 (3.52a)

 1curl A 2 z 5
'Ay

'x
2

'Ax

'y
 (3.52b)

The definition of = 3 A in eq. (3.45) is independent of the coordinate system. In 
Cartesian coordinates the curl of A is easily found using

 = 3 A 5 ∞
ax ay az
'

'x
'

'y
'

'z
Ax Ay Az

∞  (3.53)

or

 
= 3 A 5 c'Az

'y 2
'Ay

'z d  ax 1 c'Ax

'z 2
'Az

'x d ay

1 c'Ay

'x 2
'Ax

'y
d  az

 (3.54)

By transforming eq. (3.54) using point and vector transformation techniques used in 
 Chapter 2, we obtain the curl of A in cylindrical coordinates as

03_Sadiku_Ch03.indd   83 22/09/17   1:25 PM



84 CHAPTER 3 VECTOR CALCULUS

= 3 A 5
1
r

 ∞
ar

r af az

'

'r

'

'f

'

'z
Ar rAf Az

∞

or

 
= 3 A 5 c 1

r
 
'Az

'f 2
'Af

'z d  ar 1 c
'Ar

'z 2
'Az

'r
d  af

1 1
r

 c
' 1rAf 2
'r

2
'Ar

'f
d  az

 (3.55)

and in spherical coordinates as

= 3 A 5
1

r2 sin u
 ∞

ar r au r sin u af

'

'r
'

'u
'

'f
Ar rAu r sin u Af

∞

or

 

= 3 A 5
1

r sin u c
' 1Af sin u 2

'u
2

'Au

'f
d  ar

1 1r c
1

sin u  
'Ar

'f
2

' 1rAf 2
'r d  au 1

1
r  c' 1rAu 2

'r 2
'Ar

'u
d  af

 (3.56)

Note the following properties of the curl:

1. The curl of a vector field is another vector field.
2. = 3 1A 1 B 2 5 = 3 A 1 = 3 B
3. = 3 1A 3 B 2 5 A 1= # B 2 2 B 1= # A 2 1 1B # = 2A 2 1A # = 2B
4. = 3 1VA 2 5 V= 3 A 1 =V 3 A
5. The divergence of the curl of a vector field vanishes; that is, = # 1= 3 A 2 5 0.
6. The curl of the gradient of a scalar field vanishes; that is, = 3 =V 5 0 or 

= 3 = 5 0.

Other properties of the curl are given in Appendix A.10.
The physical significance of the curl of a vector field is evident in eq. (3.45); the curl 

provides the maximum value of the circulation of the field per unit area (or circulation 
density) and indicates the direction along which this maximum value occurs. The curl of 
a vector field A at a point P may be regarded as a measure of the circulation or how much 
the field curls around P. For example, Figure 3.20(a) shows that the curl of a vector field 
around P is directed out of the page. Figure 3.20(b) shows a vector field with zero curl.
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Also, from the definition of the curl of A in eq. (3.45), we may expect that

 C
L
 A # d l 5 3

S
 1= 3 A 2 # dS (3.57)

This is called Stokes’s theorem.

Stokes’s theorem states that the circulation of a vector field A around a (closed) path 
L is equal to the surface integral of the curl of A over the open surface S  bounded by L 
(see Figure 3.21), provided A and   A are continuous on S.

The proof of Stokes’s theorem is similar to that of the divergence theorem. The surface 
S is subdivided into a large number of cells as in Figure 3.22. If the kth cell has surface area 
DSk and is bounded by path Lk,

 C
L
 A # d l 5 a

k
 C

Lk

 A # d l 5 a
k

 
C

Lk

 A # d l

DSk
 DSk (3.58)

As shown in Figure 3.22, there is cancellation on every interior path, so the sum of the 
line integrals around the Lk’s is the same as the line integral around the bounding curve L. 
Therefore, taking the limit of the right-hand side of eq. (3.58) as DSk S  0 and incorporat-
ing eq. (3.45) leads to

C
L
 A # d l 5 3

S
 1= 3 A 2 # dS

which is Stokes’s theorem.

FIGURE 3.20 Illustration of a curl: (a) curl at P points 
out of the page, (b) curl at P is zero.

FIGURE 3.21 Determining the sense of 
dl and dS involved in Stokes’s theorem.

path L
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The direction of d l and dS in eq. (3.57) must be chosen using the right-hand rule or 
right-handed-screw rule. Using the right-hand rule, if we let the fingers point in the direc-
tion of d l, the thumb will indicate the direction of dS (see Figure 3.21). Note that whereas 
the divergence theorem relates a surface integral to a volume integral, Stokes’s theorem 
relates a line integral (circulation) to  suface integral.

FIGURE 3.22 Illustration of Stokes’s theorem.

Determine the curl of each of the vector fields in Example 3.6.

Solution:

(a) = 3 P 5 a'Pz

'y
2

'Py

'z
b  ax 1 a'Px

'z
2

'Pz

'x
b  ay 1 a

'Py

'x
2

'Px

'y
b  az

  5 10 2 0 2ax 1 1x2y 2 z 2ay 1 10 2 x2z 2az

  5 1x2y 2 z 2ay 2 x2zaz

(b) = 3 Q 5 c 1
r

 
'Qz

'f
2

'Qf

'z
d  ar 1 c

'Qr

'z
2

'Qz

'r
d  af 1

1
r

 c '
'r

 1rQf 2 2
'Qr

'f
d  az

  5 a2z
r

 sin f 2 r2b  ar 1 10 2 0 2af 1
1
r

 13r2z 2 r cos f 2az

  5 2
1
r

 1z sin f 1 r3 2ar 1 13rz 2 cos f 2az

(c) = 3 T 5
1

r sin u
 c '
'u

 1Tfsin u 2 2
'

'f
 Tu d  ar

 1 
1
r  c 1

sin u
 
'

'f
 Tr 2

'

'r
 1rTf 2 d  au 1

1
r  c '

'r
 1rTu 2 2

'

'u
 Tr d  af

 5
1

r sin u
 c '
'u

 1cos u sin u 2 2
'

'f
 1r sin u cos f 2 d  ar

 1 
1
r  c 1

sin u
 
'

'f
 
1cos u 2

r2 2
'

'r
 1r cos u 2 d  au

EXAMPLE 3.8
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 1 
1
r  c '

'r
 1r2 sin u cos f 2 2

'

'u
 
1cos u 2

r2 d  af

 5
1

r sin u
 1cos 2u 1 r sin u sin f 2ar 1

1
r  10 2 cos u 2au

 1 
1
r  a2r sin u cos f 1

sin u
r2 b  af

 5 acos 2u

r sin u
1 sin fb  ar 2

cos u
r  au 1 a2 cos f 1

1
r3b  sin u af 

EXAMPLE 3.9

PRACTICE EXERCISE 3.8

Determine the curl of each of the vector fields in Practice Exercise 3.6 and evaluate 
the curls at the specified points.
Answer: (a) ax 1 yay 1 14y 2 z 2az, ax 2 2ay 2 11az

(b) 26rz cos f ar 1 r sin f af 1 16z 2 1 2z cos f az, 5af

(c) 
cot u
r1/2  ar 2 a2 cot u sin f 1

3
2r1/2bau 1 2 sin u cos f af,

      1.732ar 2 4.5au 1 0.5af.

If A 5 r cos f ar 1 sin f af, evaluate A A # d l around the path shown in Figure 3.23. 
Confirm this by using Stokes’s theorem.

Solution:
Let

C
L
 A # dl 5 c3

b

a
1 3

c

b
1 3

d

c
1 3

a

d
dA # dl

where path L has been divided into segments ab, bc, cd, and da as in Figure 3.23.

FIGURE 3.23 For Example 3.9.
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Along ab, r 5 2 and d l 5 r df af. Hence,

3
b

a
A # dl 5 3

30°

f560°
r sin f df 5 2 12cos f 2  `

60°

30°

5 2 1"3 2 1 2

Along bc, f 5 30° and d l 5 dr ar. Hence,

3
c

b
 A # d l 5 3

5

r52
 r cos f dr 5 cos 30° 

r2

2
 `

2

5

5
21"3

4

Along cd, r 5 5 and d l 5 r df af. Hence,

3
d

c
 A # d l 5 3

60°

f530°
 r sin f df 5 5 12cos f 2  `

30°

60°

5
5
2

 1"3 2 1 2

Along da, f 5 60° and d l 5 dr ar. Hence,

3
a

d
 A # d l 5 3

2

r55
 r cos f dr 5 cos 60° 

r2

2
 `

5

2

5 2
21
4

Putting all these together results in

C
L
 A # d l 5 2"3 1 1 1

21"3
4

1
5"3

2
2

5
2

2
21
4

  5
27
4

 1"3 2 1 2 5 4.941

From Stokes’s theorem (because L is a closed path),

C
L
 A # d l 5 3

S
 1= 3 A 2 # dS

But dS 5 r df dr az and

= 3 A 5 ar c 1
r

 
'Az

'f
2
'Af

'z
d 1 af c'Ar

'z
2
'Az

'r
d 1 az 

1
r

 c '
'r

 1rAf 2 2
'Ar

'f
d

  5 10 2 0 2ar 1 10 2 0 2af 1
1
r

 11 1 r 2  sin f az

Hence:

3
S

 1= 3 A 2 # dS 5 3
60°

f530°
 3

5

r52
 
1
r

 11 1 r 2  sin f r dr df
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PRACTICE EXERCISE 3.9

Use Stokes’s theorem to confirm your result in Practice Exercise 3.2.

Answer: 1.

PRACTICE EXERCISE 3.10

For a scalar field V, show that   V 5 0; that is, the curl of the gradient of any scalar 
field vanishes.

Answer: Proof.

EXAMPLE 3.10 For a vector field A, show explicitly that = # = 3 A 5 0; that is, the divergence of the curl 
of any vector field is zero.
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Solution:
This vector identity, along with the one in Practice Exercise 3.10, is very useful in EM. For 
simplicity, assume that A is in Cartesian coordinates.

= # = 3 A 5 a '
'x

, 
'
'y

, 
'
'z
b # ∞

ax ay az

'
'x

'
'y

'
'z

Ax Ay Az

∞

 5 a '
'x

, 
'
'y

, 
'
'z

b # c a'Az

'y
2
'Ay

'z
b , 2a'Az

'x
2
'Ax

'z
b , a'Ay

'x
2
'Ax

'y
b d

  5
'
'x

 a'Az

'y
2
'Ay

'z
b 2

'
'y

 a'Az

'x
2
'Ax

'z
b 1

'
'z

 a'Ay

'x
2
'Ax

'y
b

  5
'2Az

'x 'y
2
'2Ay

'x 'z
2
'2Az

'y 'x
1
'2Ax

'y 'z
1
'2Ay

'z 'x
2
'2Ax

'z 'y
  5 0

because 
'2Az

'x 'y
5
'2Az

'y 'x
, and so on.

      
 5 3

60°

30°
 sin f df 3

5

2
 11 1 r 2dr

  5 2cos f `
30°

60°

 ar 1
r2

2
b  `

2

5

     5
27
4

 1"3 2 1 2 5 4.941
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For practical reasons, it is expedient to introduce a single operator that is the composite of 
gradient and divergence operators. This operator is known as the Laplacian.

The Laplacian of a scalar field V, written as 2V, is the divergence of the gradient of V.

Thus, in Cartesian coordinates,
Laplacian V 5 = # =V 5 =2V

 5 c '
'x

 ax 1
'

'y
 ay 1

'

'z
 az d # c'V

'x
 ax 1

'V
'y

 ay 1
'V
'z

 az d  (3.59)

that is,

 =2V 5
'2V
'x2 1

'2V
'y2 1

'2V
'z2  (3.60)

Notice that the Laplacian of a scalar field is another scalar field.
The Laplacian of V in other coordinate systems can be obtained from eq. (3.60) by 

transformation. In cylindrical coordinates,

 =2V 5
1
r

 
'

'r
 ar 

'V
'r

b 1
1
r2 

'2V
'f2 1

'2V
'z2  (3.61)

and in spherical coordinates,

 =2V 5
1
r2 

'

'r
 ar2'V

'r
b 1

1
r2 sin u

 
'

'u
 asin u 

'V
'u

b 1
1

r2 sin2 u
 
'2V
'f2 (3.62)

A scalar field V is said to be harmonic in a given region if its Laplacian vanishes in that 
region. In other words, if

 =2V 5 0 (3.63)

is satisfied in the region, the solution for V in eq. (3.63) is harmonic (it is of the form of 
sine or cosine). Equation (3.63) is called Laplace’s equation. This equation will be solved 
in Chapter 6.

We have considered only the Laplacian of a scalar. Since the Laplacian operator 2 is 
a scalar operator, it is also possible to define the Laplacian of a vector A. In this context, 
2A should not be viewed as the divergence of the gradient of A. Rather, 2A is defined 
as the gradient of the divergence of A minus the curl of the curl of A. That is,

 =2A 5 = 1= # A 2 2 = 3 = 3 A (3.64)

This equation can be applied in finding 2A in any coordinate system. In the Cartesian 

3.8 LAPLACIAN OF A SCALAR
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    913.8 Laplacian of a Scalar 91

 system (and only in that system), eq. (3.64) becomes3

 =2A 5 =2Axax 1 =2Ayay 1 =2Azaz (3.65)

EXAMPLE 3.11 Find the Laplacian of the scalar fields of Example 3.3; that is,
(a) V 5 e2z sin 2x cosh y
(b) U 5 r2z cos 2f
(c) W 5 10r sin2 u cos f

Solution:
The Laplacian in the Cartesian system can be found by taking the first derivative and later 
the second derivative.

(a) =2V 5
'2V
'x2 1

'2V
'y2 1

'2V
'z2

  5
'

'x
 12e2z cos 2x cosh y 2 1

'

'y
 1e2z sin 2x sinh y 2

 1 
'

'z
 12e2z sin 2x cosh y 2

  5 24e2z sin 2x cosh y 1 e2z sin 2x cosh y 1 e2z sin 2x cosh y
  5 22e2z sin 2x cosh y

(b) =2U 5
1
r

 
'

'r
 ar

'U
'r

b 1
1
r2 

'2U
'f2 1

'2U
'z2

  5
1
r

 
'

'r
 12r2z cos 2f 2 2

1
r2 4r2z cos 2f 1 0

  5 4z cos 2f 2 4z cos 2f
  5 0

(c) =2W 5
1
r2 

'

'r
 ar2'W

'r
b 1

1
r2 sin u

 
'

'u
 asin u 

'W
'u

b 1
1

r2 sin2 u
 
'2W
'f2

  5
1
r2 

'

'r
 110r2 sin2 u cos f 2 1

1
r2 sinu

 
'

'u
 110r sin 2u sin u cos f 2

 2 
10r sin2 u cos f

r2 sin2 u

  5
20 sin2 u cos f

r 1
20r cos 2u sin u cos f

r2 sin u

 1 
10r sin 2u cos u cos f

r2 sin u
2

10 cos f
r

 5
10 cos f

r  12 sin2 u 1 2 cos 2u 1 2 cos2 u 2 1 2

 5
10 cos f

r  11 1 2 cos 2u 2

3 For explicit formulas for 2A in cylindrical and spherical coordinates, see M. N. O. Sadiku, Numerical Techniques 
in Electromagnetics with MATLAB, 3rd ed. Boca Raton, FL: CRC Press, 2009, p. 647.
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92 CHAPTER 3 VECTOR CALCULUS

PRACTICE EXERCISE 3.11

Determine the Laplacian of the scalar fields of Practice Exercise 3.3, that is,
(a) U 5 x2y 1 xyz
(b) V 5 rz sin f 1 z2 cos2 f 1 r2

(c) f 5 cos u sin f ln r 1 r2 f

Answer:  (a) 2y, (b) 4 1 2 cos2 f 2
2z2

r2  cos 2f, (c) 
1
r2 cos u sin f 11 2 2 ln r

csc2 u ln r 2 1 6f.

A vector field is uniquely characterized by its divergence and curl. Neither the  divergence 
nor the curl of a vector field is sufficient to completely describe the field. All vector 
fields can be classified in terms of their vanishing or nonvanishing divergence or curl 
as  follows:

(a) = # A 5 0, = 3 A 5 0
(b) = # A 2 0, = 3 A 5 0
(c) = # A 5 0, = 3 A 2 0
(d) = # A 2 0, = 3 A 2 0

Figure 3.24 illustrates typical fields in these four categories.

A vector field A is said to be solenoidal (or divergenceless) if  = # A 5 0

†3.9 CLASSIFICATION OF VECTOR FIELDS

(a) (b) (c) (d)

FIGURE 3.24 Typical fields with vanishing and nonvanishing divergence or curl.

(a) A 5 kax, = # A 5 0, = 3 A 5 0,
(b) A 5 kr, = # A 5 3k, = 3 A 5 0,
(c) A 5 k 3 r, = # A 5 0, = 3 A 5 2k,
(d) A 5 k 3 r 1 cr, = # A 5 3c, = 3 A 5 2k.
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3.9 Classification of Vector Fields  93

Such a field has neither source nor sink of flux. From the divergence theorem,

 C
S
 A # dS 5 3

v
 = # A dv 5 0 (3.66)

Hence, flux lines of A entering any closed surface must also leave it. Examples of sole-
noidal fields are incompressible fluids, magnetic fields, and conduction current density 
under steady-state conditions. In general, the field of curl F (for any F) is purely solenoidal 
because = # 1= 3 F 2 5 0, as shown in Example 3.10. Thus, a solenoidal field A can always 
be expressed in terms of another vector F; that is,

if 

then
 = # A 5 0

C
S

 A # dS 5 0   and   A 5 = 3 F
 (3.67)

A vector field A is said to be irrotational (or potential) if  = 3 A 5 0.

That is, a curl-free vector is irrotational.4 From Stokes’s theorem

 3
S
 1= 3 A 2 # dS 5 C

L
 A # d l 5 0 (3.68)

Thus in an irrotational field A, the circulation of A around a closed path is identically 
zero. This implies that the line integral of A is independent of the chosen path. Therefore, 
an irrotational field is also known as a conservative field. Examples of irrotational fields 
include the electrostatic field and the gravitational field. In general, the field of gradient V 
(for any scalar V) is purely irrotational, since (see Practice Exercise 3.10)

 = 3 1=V 2 5 0 (3.69)

Thus, an irrotational field A can always be expressed in terms of a scalar field V; that is,

if 

then
 = 3 A 5 0

C
L
 A # d l 5 0   and   A 5 2=V

 (3.70)

For this reason, A may be called a potential field and V the scalar potential of A. The nega-
tive sign in eq. (3.70) has been inserted for physical reasons that will become evident in 
Chapter 4.

4 In fact, curl was once known as rotation, and curl A is written as rot A in some textbooks. This is one reason 
to use the term irrotational.
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94 CHAPTER 3 VECTOR CALCULUS

A vector A is uniquely prescribed within a region by its divergence and its curl. If we let

 = # A 5 rv (3.71a)

and

 = 3 A 5 rS (3.71b)

rv can be regarded as the source density of A and rS its circulation density. Any vector A 
satisfying eq. (3.71) with both rv and rS vanishing at infinity can be written as the sum 
of two vectors: one irrotational (zero curl), the other solenoidal (zero divergence). This is 
called Helmholtz’s theorem. Thus we may write

 A 5 2=V 1 = 3 B (3.72)

If we let Ai 5 2=V and As 5 = 3 B, it is evident from Example 3.10 and Practice 
 Exercise 3.10 that = 3 Ai 5 0 and = # As 5 0, showing that Ai is irrotational and As is 
solenoidal. Finally, it is evident from eqs. (3.64) and (3.71) that any vector field has a 
Laplacian that satisfies

 =2A 5 =rv 2 = 3 rS (3.73)

EXAMPLE 3.12 Show that the vector field A is conservative if A possesses one of these two properties:
(a)  The line integral of the tangential component of A along a path extending from a point 

P to a point Q is independent of the path.
(b) The line integral of the tangential component of A around any closed path is zero.

Solution:
(a) If A is conservative, = 3 A 5 0, so there exists a potential V such that

A 5 2=V 5 2 c'V
'x

 ax 1
'V
'y

 ay 1
'V
'z

 az d

Hence,

  3
Q

P
 A # d l 5 23

Q

P
 c'V
'x

 dx 1
'V
'y

 dy 1
'V
'z

 dz d

  5 23
Q

P
 c'V
'x

 
dx
ds

1
'V
'y

 
dy
ds

1
'V
'z

 
dz
ds

d  ds

  5 23
Q

P
 
dV
ds

 ds 5 23
Q

P
 dV

or

3
Q

P
 A # dl 5 V 1P 2 2 V 1Q 2
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3.9 Classification of Vector Fields  95

showing that the line integral depends only on the end points of the curve. Thus, for a 
conservative field, e

Q
P  A # d l is simply the difference in potential at the end points.

(b) If the path is closed, that is, if P and Q coincide, then

C A # dl 5 V 1P 2 2 V 1P 2 5 0

PRACTICE EXERCISE 3.12

Show that B 5 (y  z cos xz)ax  xay  x cos xz az is conservative, without computing 
any integrals.

Answer: Proof.

% This script allows the user to compute the integral of 
% a function using two different methods:
%   1. the built-in matlab ‘quad’ function
%   2. user-defined summation
%
%  The user must first create a separate file for the function
%      y = (–1/20)*x^3+(3/5)*x.^2–(21/10)*x+4;
%  The file should be named fun.m and stored in the same 
%  directory as this file, and it should contain the following 
%  two lines:
%        function y = fun(x) 
%        y = (-1/20)*x.^3+(3/5)*x.^2–2.1*x+4;
%  
% We will determine the integral of this function from x = 0
% to x = 8
clear

% First we’ll plot the function, creating a vector x and y
x=0:0.01:8;
y=fun(x);
figure(1)   % create a figure
plot(x,y, ‘LineWidth’, 2)      % plot x versus y
axis([0 10 0 4]) % sets the axis appropriately
xlabel(‘x variable’)    % axes labels
ylabel(‘y variable’)    % axes labels

% Next we’ll use the built-in Matlab function to find the 
% quadrature integral

Q = quad(@fun,0,8);   % The @ is an address operator to 
              % point to fun.m

% Finally we’ll create a custom summation to compute the 
% integral quadrature integral

MATLAB 3.1
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96 CHAPTER 3 VECTOR CALCULUS

disp(‘Enter a increment size for the integral, recommended ’);
disp(‘ 0.1 to 1 (the smaller the better, but’);
dx=input(‘smaller requires more computation time)! ... >’);

sum=0; % set initial total sum to zero
for x=0:dx:8,
    sum=sum+fun(x)*dx;  % add the partial sums to the total sum
end

disp(‘’)
disp(‘The computed integrals of the function y(x) between’);
disp(‘ x = 0 and x = 8 are’)
% The tab %f outputs the floating point number given in the 
% variables Q and sum, similar to C/C++
disp(sprintf(‘ quad integral =’);
disp(sprintf(‘ %f\n custom summation integral = %f’, Q, sum))

% Now plot the function with the sub-areas used in the 
% approximation create rectangular patches for each sub-area
figure(2)   % create another figure number 2
for x=0:dx:8,
    patch([x–dx/2; x–dx/2; x+dx/2; x+dx/2], ...
     [0; fun(x); fun(x); 0], [0.5 0.5 0.5])
end
% now plot original function
hold on
x=0:0.01:8;
y=fun(x);
h=plot(x,y, ‘LineWidth’, 2)      % plot x versus y
axis([0 10 0 4]) % sets the axis appropriately
xlabel(‘x variable’)    % axes labels
ylabel(‘y variable’)    % axes labels
function y = fun(x) 
y = (–1/20)*x.^3+(3/5)*x.^2–2.1*x+4;

% This script allows the user to find the divergence and curl 
% of a vector field given in symbolic form
% It uses the built-in symbolic derivative function 
% called diff() to compute the derivatives
clear
syms x y z   % declare x,y,z to be symbols (variables)

% Prompt the user to enter the symbolic vector
%    For example the user could enter [y*z 4*x*y y]
disp(‘Enter the symbolic vector (in the format ‘);
A = input(‘[ fx(x,y,z) fy(x,y,z) fz(x,y,z)])... \n >  ‘);

% The divergence of A 
% e.g. diff(A(2),z) means the derivative of the 

MATLAB 3.2
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% y-component of vector A with respect to z
divA=diff(A(1),x)+...
    diff(A(2),y)+...
    diff(A(3),z)
% evaluate divergence at point (x,y,z) = (1, –2, 3)
subs(divA,{x,y,z},{1, –2, 3})

% The curl of A 
% e.g. diff(A(2),z) means the derivative of the 
% y-component of vector A with respect to z
curlA=[diff(A(3),y)–diff(A(2),z),...
    –diff(A(3),x)+diff(A(1),z),...
    diff(A(2),x)–diff(A(1),y)]
% evaluate curl at point (x,y,z) = (1, –2, 3)
subs(curlA,{x,y,z},{1, –2, 3})

SUMMARY 1. The differential displacements in the Cartesian, cylindrical, and spherical systems are, 
respectively,

  d l 5 dx ax 1 dy ay 1 dz az
  d l 5 dr ar 1 r df af 1 dz az
  d l 5 dr ar 1 r du au 1 r sin u df af

 Note that d l is always taken to be in the positive direction; the direction of the displace-
ment is taken care of by the limits of integration.

2. The differential normal areas in the three systems are, respectively,

dS 5 dy dz ax 
dx dz ay 
dx dy az

dS 5 r df dz ar 
dr dz af 

r dr df az

dS 5 r2 sin u du df ar 
r sin u dr df au 

r dr du af

 Note that dS can be in the positive or negative direction depending on the surface 
under consideration.

3. The differential volumes in the three systems are

   dv 5 dx dy dz
  dv 5 r dr df dz
  dv 5 r2 sin u dr du df
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 4.  The line integral of vector A along a path L is given by eL A # dl. If the path is closed, 
the line integral becomes the circulation of A around L, that is, AL A # dl.

 5.  The flux or surface integral of a vector A across a surface S is defined as eS A # dS. 
When the surface S is closed, the surface integral becomes the net outward flux of A 
across S, that is, AS A # dS.

 6. The volume integral of a scalar rv over a volume v is defined as ev rv dv.
 7.  Vector differentiation is performed by using the vector differential operator . The 

gradient of a scalar field V is denoted by V, the divergence of a vector field A by 
= # A, the curl of A by = 3 A, and the Laplacian of V by 2V. All of these are point 
functions since differentiation is always at a point.

 8.  The divergence theorem, AS A # dS 5 ev = # A dv, relates a surface integral over a 
closed surface to a volume integral.

 9.  Stokes’s theorem, AL A # d l 5 eS 1= 3 A 2 # dS, relates a line integral over a closed 
path to a surface integral.

10.  If Laplace’s equation, =2V 5 0, is satisfied by a scalar field V in a given region, V is 
said to be harmonic in that region.

11.  A vector field is solenoidal if = # A 5 0; it is irrotational or conservative if = 3 A 5 0.
12.  A summary of the vector calculus operations in the three coordinate systems is pro-

vided on the inside back cover of the text.
13.  The vector identities = # = 3 A 5 0 and = 3 =V 5 0 are very useful in EM. Other 

vector identities are in Appendix A.10.

REVIEW
QUESTIONS  3.1 Consider the differential volume of Figure 3.25. Match the items in the left-hand column 

with those on the right.

(a) d l from A to B    (i) dy dz ax

(b) d l from A to D   (ii) 2dx dz ay

(c) d l from A to E  (iii) dx dy az

(d) dS for face ABCD  (iv) 2dx dy az

(e) dS for face AEHD   (v) dx ax

(f) dS for face DCGH  (vi) dy ay

(g) dS for face ABFE (vii) dz az

FIGURE 3.25 For Review Question 3.1.
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 3.2 For the differential volume in Figure 3.26, match the items in the left-hand list with those 
on the right.

(a) d l from E to A    (i) 2r df dz ar

(b) d l from B to A   (ii) 2dr dz af

(c) d l from D to A  (iii) 2r dr df az

(d) dS for face ABCD  (iv) r dr df az

(e) dS for face AEHD   (v) dr ar

(f) dS for face ABFE  (vi) r df af

(g) dS for face DCGH (vii) dz az

 3.3 Consider the object shown in Figure 3.8. For the volume element, match the items in the 
left-hand column with those on the right.

(a) d l from A to D   (i) 2r2 sin u du df ar

(b) d l from E to A  (ii) 2r sin u dr df au

(c) d l from A to B (iii) r dr du af

(d) dS for face EFGH (iv) dr ar

(e) dS for face AEHD  (v) r du au

(f) dS for face ABFE (vi) r sin u df af

 3.4 If r 5 xax 1 yay 1 zaz, the position vector of point 1x, y, z 2  and r 5 0 r 0 , which of the 
 following is incorrect?

(a) =r 5 r/r (c) =2 1r # r 2 5 6
(b) = # r 5 1 (d) = 3 r 5 0

(a)    ? A (c)  (V)
(b)  ? ( ? A) (d)  ( ? A)

 3.6 Which of the following is zero?

(a) grad div (c) curl grad
(b) div grad (d) curl curl

 3.7 Given field A 5 3x2yzax 1 x3zay 1 1x3y 2 2z 2az, it can be said that A is

(a) Harmonic (d) Rotational
(b) Divergenceless (e) Conservative
(c) Solenoidal

FIGURE 3.26 For Review Question 3.2.

ρ dφ

03_Sadiku_Ch03.indd   99 22/09/17   1:26 PM

 3.5 Which of the following is mathematically defined?
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 3.8 The surface current density J in a rectangular waveguide is plotted in Figure 3.27. It is evi-
dent from the figure that J diverges at the top wall of the guide, whereas it is divergenceless 
at the side wall.

(a) True (b) False

 3.9 Stokes’s theorem is applicable only when a closed path exists and the vector field and its 
derivatives are continuous within the path.

(a) True (c) Not necessarily
(b) False

3.10 If a vector field Q is solenoidal, which of these is true?

(a) AL Q # d l 5 0 (d) = 3 Q 2 0
(b) AS Q # dS 5 0 (e) =2Q 5 0
(c) = 3 Q 5 0

Answers:  3.1a-(vi), b-(vii), c-(v), d-(i), e-(ii), f-(iv), g-(iii), 3.2a-(vi), b-(v), c-(vii), d-(ii), e-(i), 
f-(iv), g-(iii), 3.3a-(v), b-(vi), c-(iv), d-(iii), e-(i), f-(ii), 3.4b, 3.5d, 3.6c, 3.7e, 3.8a, 
3.9a, 3.10b.

PROBLEMS

FIGURE 3.27 For Review Question 3.8.

Section 3.2—Differential Length, Area, and Volume
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   3.1 Using the differential length dl, find the length of each of the following curves:

(a) r 5 3, p/4 , f , p/2, z 5 constant
(b) r 5 1, u 5 30°, 0 , f , 60°
(c) r 5 4, 30° , u , 90°, f 5 constant

   3.2 Calculate the areas of the following surfaces using the differential surface area dS:

(a) r 5 2, 0 , z , 5, p/3 , f , p/2
(b) z 5 1, 1 , r , 3, 0 , f , p/4
(c) r 5 10, p/4 , u , 2p/3, 0 , f , 2p

(d) 0 , r , 4, 60° , u , 90°, f 5 constant
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    3.3 Use the differential volume dv to determine the volumes of the following regions:

(a) 0 , x , 1, 1 , y , 2, 23 , z , 3
(b) 2 , r , 5, p/3 , f , p, 21 , z , 4
(c) 1 , r , 3, p/2 , u , 2p/3, p/6 , f , p/2

    3.4 Find the length of a path from P1(4, 08, 0) to P2(4, 308, 0).

   3.5 Calculate the area of the surface defined by r = 5, 0 ,  , p/4, 0 , f , p/2.

   3.6 Calculate the volume defined by 2 , r , 5, 0 , f , 308, 0 , z , 10.

Section 3.3—Line, Surface, and Volume Integrals

   3.7 Let H 5 xy2ax
  x2yay. Evaluate the line integral along the parabola x 5 y2 joining point 

P(1, 1, 0) to point Q(16, 4, 0).

  3.8 Evaluate the line integral eL (2x2 2 4xy)dx  3xy 2 2x2y)dy over the straight path L joining 
point P(1,21, 2) to Q(3, 1, 2).

   3.9 If the integral e
B
A F # d l is regarded as the work done in moving a particle from A to B, 

find the work done by the force field

F 5 2xyax 1 1x2 2 z2 2ay 2 3xz2az

  on a particle that travels from A 10, 0, 0 2  to B 12, 1, 3 2  along

(a) The segment 10, 0, 0 2  S  10, 1, 0 2  S  12, 1, 0 2  S  12, 1, 3 2
(b) The straight line 10, 0, 0 2  to 12, 1, 3 2

   3.10 A vector field is represented by F 5 r2ar 1 zaf 1 cos faz Newtons. Evaluate 
the work done or eL  F # dl, where L is from P(2, 0°, 0) to Q 12, p/4, 3 2 . Assume 
that L consists of the arc r 5 2, 0 , f , p/4, z 5 0, followed by the line 
r 5 2, f 5 p/4, 0 , z , 3.

    3.11 If

H 5 1x 2 y 2ax 1 1x2 1 zy 2ay 1 5yzaz

  evaluate eL  H # dl along the contour of Figure 3.28.

z

y

x

1

1

0 1 2

FIGURE 3.28 For Problem 3.11. FIGURE 3.29 For Problem 3.12.

z

x = 1

L

1

1

0 x
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   3.12 Determine the circulation of B 5 xyax 2 yzay  xzaz around the path L on the x 5 1 
plane, shown in Figure 3.29.

   3.13 Let A 5 yax  zay  xaz. Find the flux of A through surface y 5 1, 0 , x , 1, 0 , z , 2.

   3.14 If D 5 x2zax  y3ay  yz2az, calculate the flux of D passing through the volume bounded 
by planes x 5 21, x 5 1, y 5 0, y 5 4, z 5 1, and z 5 3.

   3.15 A vector field is specified as A 5 rar 2 3a  5faf. Find the flux of the field out of the 
closed surface defined by 0 , r , 4, 0 ,  , p/2, 0 , f , 3 , p/2.

   3.16 (a) Evaluate 3
v
xy dv, where v is defined by 0 , x , 1, 0 , y , 1, 0 , z , 2.

(b) Determine 3
v
rz dv, where v is bounded by r 5 1, r 5 3, f 5 0, f 5 p, z 5 0, and z 5 2.

Section 3.5—Gradient of a Scalar

    3.17 Calculate the gradient of:

(a) V1 5 6xy 2 2xz 1 z
(b) V2 5 10r cos f 2 rz

(c) V3 5
2
r

 cos f

    3.18 Find the gradient of the following scalar fields and evaluate the gradient at the specified 
point.

(a) V(x, y, z) 5 10xyz 2 2x2z at P(21, 4, 3) 
(b) U(r, f, z) 5 2r sin f  rz at Q(2, 908, 21)

(c) W(r, , f) 5 
4
r

 sin  cos f at R(1, p/6, p/2) 

    3.19 If r 5 xax 1 yay 1  zaz is the position vector of point (x, y, z), r = |r|, and n is an integer, 
show that =rn 5 nrn22r.

    3.20 The temperature in an auditorium is given by T 5 x2 1 y2 2 z. A mosquito located at 
11, 1, 2 2  in the auditorium desires to fly in such a direction that it will get warm as soon 
as possible. In what direction must it fly?

    3.21 A family of planes is described by F 5 x 2 2y 1 z. Find a unit normal an to the planes.

    3.22 Consider the scalar function T 5 r sin  cos f. Determine the magnitude and direction 
of the maximum rate of change of T at P(2, 68, 308).

    3.23 Let f 5 x2y 2 2xy2  z3. Find the directional derivative of f at point (2, 4, 23) in the 
direction of ax  2ay 2 az.

    3.24 (a) Using the gradient concept, prove that the angle between two planes

  ax  by  cz 5 d
    ax  by  gz 5 d

is

   5 cos21 
aa 1 bb 1 cg

"1a2 1 b2 1 c2 2 1a2 1 b2 1 g2 2
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(b) Calculate the angle between two planes x  2y  3z 5 5 and x  y 5 0.

   3.25 Let V(x, y, z) 5 4xyez. Find the maximum rate of change of V at (3, 1, 22) and the direc-
tion in which it occurs.

   3.26 (a) Prove that for scalar fields V and U,

(UV) 5 UV  V U

(b) Verify part (a) by assuming that V 5 5x2y  2yz and U 5 3xyz.

Section 3.6—Divergence of a Vector and Divergence Theorem

    3.27 Evaluate the divergence of the following vector fields:

(a) A 5 xyax 1 y2ay 2 xzaz

(b) B 5 rz2ar 1 r sin2 f af 1 2rz sin2 f az

(c) C 5 rar 1 r cos2 u af

    3.28 (a) If A 5 x2yax  xay  2yzaz, find  ? A at point (23, 4, 2).
(b) Given that B 5 3r sin far 2 5r2zaf  8z cos2 faz, find  ? B at point (5, 308, 1).
(c) Let C 5 r2 cos far  2raf, find  ? C at point (2, p/3, p/2).

    3.29 The heat flow vector H 5 k=T, where T is the temperature and k is the thermal con-
ductivity. Show that if

T 5 50 sin 
px
2

 cosh 
py
2

  then = # H 5 0.

    3.30 (a) Prove that

= # 1VA 2 5 V= # A 1 A # =V

 where V is a scalar field and A is a vector field.
(b) Evaluate = # 1VA 2  when A 5 2xax 1 3yay 2 4zaz and V 5 xyz.

    3.31 If r 5 xax 1 yay 1 zaz and T 5 2zyax 1 xy2ay 1 x2yzaz, determine

(a) 1= # r 2T
(b) 1r # = 2T
(c) = # r 1r # T 2
(d) 1r # = 2r2

    3.32 If A 5 2xax 2 z2ay 1 3xyaz, find the flux of A through a surface defined by r 5 2,
0 , f , p/2, 0 , z , 1.

    3.33 Let D 5 2rz2ar 1 r cos2 f az. Evaluate

(a) AS D # dS

(b) ev = # D dv

  over the region defined by 2 # r # 5, 21 # z # 1, 0 , f , 2p.
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104 CHAPTER 3 VECTOR CALCULUS

    3.34 If H 5 10 cos uar, evaluate eS H # dS over a hemisphere defined by 
r 5 1, 0 , f , 2p, 0 , u , p/2.

    3.35 Evaluate both sides of the divergence theorem for the vector field

H 5 2xyax 1 x2 1 z2 2ay 1 2yzaz

  and the rectangular region defined by 0 , x , 1, 1 , y , 2, 21 , z , 3. 
    3.36 Let H 5 4r2ar 2 2zaz. Verify the divergence theorem for the cylindrical region defined 

by r = 10, 0 , f , 2p, 0 , z , 3.

  *3.37 Apply the divergence theorem to evaluate C
S
A # dS, where A 5 x2ax  y2ay  z2az and S 

is the surface of the solid bounded by the cylinder r 5 1 and planes z 5 2 and z 5 4.

    3.38 Verify the divergence theorem for the function A 5 r2ar 1 r sin u cos f au over the   
surface of a quarter of a hemisphere defined by 0 , r , 3, 0 , f , p/2, 0 , u , p/2.

    3.39 Calculate the total outward flux of vector

F 5 r2 sin f ar 1 z cos f af 1 rzaz

  through the hollow cylinder defined by 2 # r # 3, 0 # z # 5.

Section 3.7—Curl of a Vector and Stokes’s Theorem

    3.40 Evaluate the curl of the following vector fields:

(a) A 5 xyax 1 y2ay 2 xzaz

(b) B 5 rz2ar 1 r sin2 f af 1 2rz sin2 f az

(c) C 5 rar 1 r cos2 u af

    3.41 Evaluate = 3 A and = # 1= 3 A 2  if:
(a) A 5 x2yax 1 y2zay 2 2xzaz

(b) A 5 r2zar 1 r3af 1 3rz2az

(c) A 5
sin f

r2  ar 2
cos f

r2  au

    3.42 Let H 5 r sin far  r cos faf 2 raz ; find   H and     H.

    3.43 Let A 5 
xax 1 yay 1 zaz

1x2 1 y2 1 z2 2 3/2 ; show that   A 5 0.

   *3.44 Given that F 5 x2yax 2 yay, find

(a) AL F # d l, where L is shown in Figure 3.30.

(b) eS 1= 3 F 2 # dS, where S is the area bounded by L.

(c) Is Stokes’s theorem satisfied?
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    3.45 Let A 5 r sin f ar 1 r2af; evaluate AL A # dl if L is the contour of Figure 3.31.

    3.46 If F 5 2rzar 1 3z sin f af 2 4r cos f az, verify Stokes’s theorem for the open surface 
defined by z 5 1, 0 , r , 2, 0 , f , 45°.

    3.47 Let A 5 4x2e2yax 2 8xe2yay. Determine = 3 3= 1= # A 2 4.

    3.48 Let V 5
sin u cos f

r . Determine:

(a) =V,    (b) = 3 =V,    (c) = # =V

**3.49 A vector field is given by

Q 5
"x2 1 y2 1 z2

"x2 1 y2
 3 1x 2 y 2ax 1 1x 1 y 2ay 4

FIGURE 3.30 For Problem 3.44.

y

x

1

2

0 1 2

L

FIGURE 3.31 For Problem 3.45.

**Double asterisks indicate problems of highest difficulty.

FIGURE 3.32 Volume in form of ice 
cream cone for Problem 3.49.
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  Evaluate the following integrals:

(a)  eL Q # d l, where L is the circular edge of the volume in the form of an ice cream cone 
shown in Figure 3.32.

(b) eS1
 1= 3 Q 2 # dS, where S1 is the top surface of the volume

(c) eS2
 1= 3 Q 2 # dS, where S2 is the slanting surface of the volume

(d) eS1
 Q # dS

(e) eS2
 Q # dS

(f) ev = # Q dv

  How do your results in parts (a) to (f ) compare?

   *3.50 A rigid body spins about a fixed axis through its center with angular velocity . If u is 
the velocity at any point in the body, show that v 5 1/2 = 3 u.

     3.51 Given that H 5 2xzax  5xyzay  8(y + z)az, find (a)  ? H (b)   H.

    3.52 Let B 5 r2ar  4r cos 2a. Find the divergence and curl of B.

    3.53 For a vector field A and a scalar field V, show in Cartesian coordinates that

(a) = # 1V = V 2 5 V =2 V 1 0= V 0 2
(b) = 3 1VA 2 5 V = 3 A 1 =V 3 A

    3.54 If B 5 x2yax  (2x2  y)ay 2 (y 2 z)az, find

(a)  ? B
(b)   B
(c)  ( ? B)
(d)     B

Section 3.8—Laplacian of a Scalar

    3.55 Find 2V for each of the following scalar fields:

(a) V1 5 x3 1 y3 1 z3

(b) V2 5 rz2 sin 2f

(c) V3 5 r2 11 1 cos u sin f 2

    3.56 Find the Laplacian of the following scalar fields and compute the value at the specified 
point.

(a) U 5 x3y2exz, 11, 21, 1 2
(b) V 5 r2z 1cos f 1 sin f 2 , 15, p/6, 22 2
(c) W 5 e2r sin u cos f, 11, p/3, p/6 2
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    3.57 If r 5 xax 1 yay 1 zaz is the position vector of point 1x, y, z 2 , r 5 0 r 0 , show that:

(a) = 1 ln r 2 5
r
r2

(b) =2 1 ln r 2 5
1
r2

    3.58 

(a) If U(x, y, z) 5 xy2z3, find U and 2U.

(b) If V(r, f, z) 5
sin f

r
, find V and 2V.

(c) If W(r, , f,) 5 r2 sin  cos f, find W and 2W.

    3.59 Given that V 5 r2z cos f, find V and 2V.

    3.60 If V 5
5 cos f

r2 , find: (a) =V , (b) = # =V , (c) = 3 =V .

    3.61 Let U 5 4xyz2  10yz. Show that 2U 5  ? U.

   *3.62 In cylindrical coordinates,

  If G 5 2r sin far 1 4r cos faf 1 1z2 1 1 2raz, find =2G.

    3.63 According to eq. (3.64),   (  A) 5  ( ? A) 2 2A. Show that

A 5 xzax  z2ay  yzaz satisfies this vector identity.

Section 3.9—Classification of Vector Fields

    3.64 Consider the following vector fields:
A 5 xax  yay  zaz

B 5 2r cos far 2 4r sin faf  3az

C 5 sin ar  r sin af

Which of these fields are (a) solenoidal and (b) irrotational?

    3.65 Given the vector field

G 5 116xy 2 z 2ax 1 8x2ay 2 xaz

(a) Is G irrotational (or conservative)?
(b) Find the net flux of G over the cube 0 , x, y, z , 1.
(c) Determine the circulation of G around the edge of the square z 5 0, 0 , x, y , 1.

  Assume anticlockwise direction.
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   3.66 The electric field due to a line charge is given by

E 5
l

2pPr
 ar

where l is a constant. Show that E is solenoidal. Show that it is also conservative.

   3.67 A vector field is given by H 5
10
r2

 ar. Show that C
L

H #  dI = 0 for any closed path L.

   3.68 Show that the vector field B = (3x2z  y2)ax  2xyay + x3az is conservative.

   3.69 Show that the vector field D = (3r  1) sin faz is solenoidal.

   3.70 The field of an electric dipole is given by

E 5 k 
(2cosuar 1 sinuau 2

r3

  where k is a constant. Show that E is conservative.
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Charles Augustin de Coulomb (1736–1806), a French physicist, was 
famous for his discoveries in the field of electricity and magnetism. He 
formulated Coulomb’s law, to be discussed in this chapter.

Coulomb was born in Angoulême, France, to a family of wealth and 

and his mother’s family was also quite wealthy. Coulomb was educated in 
Paris and chose the profession of military  engineer. Upon his retirement in 
1789, Coulomb turned his attention to physics and  published seven papers 
on electricity and magnetism. He was known for his work on electricity, 
magnetism, and mechanics. He invented a magnetoscope, a magnetometer, 

and a torsion balance that he employed in establishing Coulomb’s law—the law of force  between two 
charged bodies. Coulomb may be said to have extended Newtonian  mechanics to a new realm of 
physics. The unit of electric charge, the coulomb, is named after him.
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4.1 INTRODUCTION

Having mastered some essential mathematical tools needed for this course, we are now pre-
pared to study the basic concepts of EM. We shall begin with those fundamental concepts 
that are applicable to static (or time-invariant) electric fields in free space (or  vacuum). An 
electrostatic field is produced by a static charge distribution. A typical example of such a 
field is found in a cathode-ray tube.

Before we commence our study of electrostatics, it might be helpful to examine briefly 
the importance of such a study. Electrostatics is a fascinating subject that has grown up 
in diverse areas of application. Electric power transmission, X-ray machines, and light-
ning protection are associated with strong electric fields and will require a knowledge of 
electrostatics to understand and design suitable equipment. The devices used in solid-
state electronics are based on electrostatics. These include resistors, capacitors, and active 
devices such as bipolar and field effect transistors, which are based on control of electron 
motion by electrostatic fields. Almost all computer peripheral devices, with the exception 
of magnetic memory, are based on electrostatic fields. Touch pads, capacitance keyboards, 
cathode-ray tubes, liquid crystal displays, and electrostatic printers are typical examples. In 
medical work, diagnosis is often carried out with the aid of electrostatics, as incorporated 
in electrocardiograms, electroencephalograms, and other recordings of the electrical activ-
ity of organs including eyes, ears, and the stomach. In industry, electrostatics is applied in 
a variety of forms such as paint spraying, electrodeposition, electrochemical machining, 
and separation of fine particles. Electrostatics is used in agriculture to sort seeds, for direct 
spraying of plants, to measure the moisture content of crops, to spin cotton, and for speed-
baking bread and smoking meat.1,2

ELECTROSTATIC FIELDS

Who is wise? He that learns from every one. Who is powerful? He that governs his 

passions. Who is rich? He that is content. Who is that? Nobody.
—BENJAMIN FRANKLIN

4

1 For various applications of electrostatics, see J. M. Crowley, Fundamentals of Applied Electrostatics. New York: 
John Wiley & Sons, 1999; A. D. Moore, ed., Electrostatics and Its Applications. New York: John Wiley & Sons, 
1973; and C. E. Jowett, Electrostatics in the Electronics Environment. New York: John Wiley & Sons, 1976.
2 An interesting story on the magic of electrostatics is found in B. Bolton, Electromagnetism and Its Applications: 
An Introduction. London: Van Nostrand, 1980, p. 2.
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We begin our study of electrostatics by investigating the two fundamental laws gov-

based on experimental studies, and they are interdependent. Although Coulomb’s law is 
applicable in finding the electric field due to any charge configuration, it is easier to use 
Gauss’s law when charge distribution is symmetrical. Based on Coulomb’s law, the concept 
of electric field intensity will be introduced and applied to cases involving point, line, 
surface, and volume charges. Special problems that can be solved with much effort using 
Coulomb’s law will be solved with ease by applying Gauss’s law. Throughout our discussion 
in this chapter, we will assume that the electric field is in a vacuum or free space. Electric 
fields in material space will be covered in the next chapter.

4.2 COULOMB’S LAW AND FIELD INTENSITY

Coulomb’s law is an experimental law formulated in 1785 by Charles Augustin de Coulomb, 
then a colonel in the French army. It deals with the force a point charge exerts on another point 
charge. By a point charge we mean a charge that is located on a body whose dimensions are 
much smaller than other relevant dimensions. For example, a collection of electric charges on a 
pinhead may be regarded as a point charge. Electrons are regarded as point charges. The polarity 
of charges may be positive or negative; like charges repel, while unlike charges attract. Charges 
are generally measured in coulombs (C). One coulomb is approximately equivalent to 6 3 1018 
electrons; it is a very large unit of charge because one electron charge e 5 21.6019 3 10219 C.

Coulomb’s law states that the force F between two point charges Q1 and Q2 is:

1. Along the line joining them
2. Directly proportional to the product Q1Q2 of the charges
3. Inversely proportional to the square of the distance R between them.3

Expressed mathematically,

 F 5
k Q1Q2

R2  (4.1)

where k is the proportionality constant whose value depends on the choice of system of 
units. In SI units, charges Q1 and Q2 are in coulombs (C), the distance R is in meters (m), 
and the force F is in newtons (N) so that k 5 1/4peo. The constant o is known as the 
 permittivity of free space (in farads per meter) and has the value

 or
eo 5 8.854 3 10212 .  1029

36p
 F/m

    k 5
1

4peo
 .  9 3 109 m/F

 (4.2)

3 Further details of experimental verification of Coulomb’s law can be found in W. F. Magie, A Source Book in 
Physics. Cambridge, MA: Harvard Univ. Press, 1963, pp. 408–420.
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Thus eq. (4.1) becomes

 F 5
Q1Q2

4peoR2 (4.3)

If point charges Q1 and Q2 are located at points having position vectors r1 and r2, then 
the force F12 on Q2 due to Q1, shown in Figure 4.1, is given by

 F12 5
Q1Q2

4peoR2 aR12
 (4.4)

where

 R12 5 r2 2 r1 (4.5a)

 R 5 0R12 0   (4.5b)

 aR12
5

R12

R
  (4.5c)

By substituting eq. (4.5) into eq. (4.4), we may write eq. (4.4) as

 F12 5
Q1Q2

4peoR3 R12 (4.6a)

or

 F12 5
Q1Q2 1r2 2 r1 2
4peo 0 r2 2 r1 0 3

 (4.6b)

It is worthwhile to note that

1. As shown in Figure 4.1, the force F21 on Q1 due to Q2 is given by

F21 5 0 F12 0 aR21
5 0 F12 0 12aR12

2

or

 F21 5 2F12 (4.7)

since

aR21
5 2aR12

2. Like charges (charges of the same sign) repel each other, while unlike charges 
 attract. This is illustrated in Figure 4.2.

FIGURE 4.1 Coulomb vector force on point 
charges Q1 and Q2.
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3. The distance R between the charged bodies Q1 and Q2 must be large compared 
with the linear dimensions of the bodies; that is, Q1 and Q2 must be point charges.

4. Q1 and Q2 must be static (at rest).
5. The signs of Q1 and Q2 must be taken into account in eq. (4.4). For like charges, 

Q1 Q2  0. For unlike charges, Q1 Q2  0.

constant.

If we have more than two point charges, we can use the principle of superposition to 
determine the force on a particular charge. The principle states that if there are N charges 
Q1, Q2, . . . , QN located, respectively, at points with position vectors r1, r2, . . . , rN, the 
resultant force F on a charge Q located at point r is the vector sum of the forces exerted on 
Q by each of the charges Q1, Q2, . . . , QN. Hence,

F 5 F1 1 F2 1 F3 1 . . . 1 FN

or

 F 5
Q

4peo
 a

N

k51
 
Qk 1r 2 rk 2
0 r 2 rk 0 3

 (4.8)

We can now introduce the concept of electric field intensity.

The electric field intensity (or electric field strength) E is the force that a unit 
positive charge experiences when placed in an electric field. 

Thus

 E 5 lim
QS0

 
F
Q

 (4.9)
or simply

 
E 5

F
Q

 (4.10)

For Q  0, the electric field intensity E is obviously in the direction of the force F and is 
measured in newtons per coulomb or volts per meter. The electric field intensity at point r 
due to a point charge located at r is readily obtained from eqs. (4.6) and (4.10) as

 E 5
Q

4peoR2 aR 5
Q 1r 2 r9 2

4peo 0 r 2 r9 0 3 (4.11a)

or simply

 E 5
Q

4peor2 ar (4.11b)

FIGURE 4.2 (a), (b) Like charges repel.  
(c) Unlike charges attract.
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6. Charges cannot be created or destroyed; the quantity of total charge remains 

5
QQ1 1r 2 r1 2
4peo 0 r 2 r1 0 3 1

QQ2 1r 2 r2 2
4peo 0 r 2 r2 0 3 1 . . . 1

QQN 1r 2 rN 2
4peo 0 r 2 rN 0 3
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For N point charges Q1, Q2, . . . , QN located at r1, r2, . . . , rN, the electric field inten-
sity at point r is obtained from eqs. (4.8) and (4.10) as

E 5 E1 1 E2 1 E3 1 . . . 1 EN

 

or

 E 5
1

4peo
 a

N

k51
 
Qk 1r 2 rk 2
0 r 2 rk 0 3

 (4.12)

Point charges 1 mC and 22 mC are located at 13, 2, 21 2  and 121, 21, 4 2 , respectively. 
Calculate the electric force on a 10 nC charge located at 10, 3, 1 2  and the electric field 
intensity at that point.

Solution:

 F 5 a
k51,2

 
QQk

4peoR2 aR 5 a
k51,2

 
QQk 1r 2 rk 2

4peo 0 r 2 rk 0 3

 5
Q

4peo
 e 1023 3 10, 3, 1 2 2 13, 2, 21 2 4

0 10, 3, 1 2 2 13, 2, 21 2 0 3 2
2 # 1023 3 10, 3, 1 2 2 121, 21, 4 2 4

0 10, 3, 1 2 2 121, 21, 4 2 0 3 f

 5
1023 # 10 # 1029

4p # 1029

36p

 c 123, 1, 2 2
19 1 1 1 4 2 3/2 2

2 11, 4, 23 2
11 1 16 1 9 2 3/2 d

 5 9 # 1022 c 123, 1, 2 2
14"14

1
122, 28, 6 2

26"26
d

 F 5 26.512ax 2 3.713ay 1 7.509az mN

At that point,

 E 5
F
Q

 5 126.512, 23.713, 7.509 2 # 1023

10 # 1029

 E 5 2651.2ax 2 371.3ay 1 750.9az kV/m

PRACTICE EXERCISE 4.1

Point charges 5 nC and 22 nC are located at 12, 0, 4 2  and 123, 0, 5 2 , respectively.

(a) Determine the force on a 1 nC point charge located at 11, 23, 7 2 .
(b) Find the electric field E at 11, 23, 7 2 .
Answer:  (a) 21.004ax 2 1.284ay 1 1.4az nN.
  (b) 21.004ax 2 1.284ay 1 1.4azV/m.

EXAMPLE 4.1
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5
Q1 1r 2 r1 2

4peo 0 r 2 r1 0 3 1
Q2 1r 2 r2 2

4peo 0 r 2 r2 0 3 1 . . . 1
QN 1r 2 rN 2

4peo 0 r 2 rN 0 3
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Two point charges of equal mass m and charge Q are suspended at a common point by two 
threads of negligible mass and length ,. Show that at equilibrium the inclination angle a of 
each thread to the vertical is given by

Q2 5 16p eomg,2 sin2 a tan a

If a is very small, show that

a 5 Å
3 Q2

16peomg,2

Solution:
Consider the system of charges as shown in Figure 4.3, where Fe is the electric or Coulomb 
force, T is the tension in each thread, and mg is the weight of each charge. At A or B

T sin a 5 Fe
 T cos a 5 mg

Hence,

sin a
cos a 5

Fe

mg 5
1

mg
# Q2

4peor2

r 5 2, sin a

Hence,

Q2 cos a 5 16peomg,2 sin3 a

or

Q2 5 16peomg,2 sin2 a tan a

as required. When a is very small

mg mg

FIGURE 4.3 Suspended charged particles;  
for Example 4.2.

EXAMPLE 14.2
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But r 5 AB is given by
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tan a .  a .  sin a

and so

Q2 5 16peomg,2a3

or

a 5 Å
3 Q2

16peomg,2 

PRACTICE EXERCISE 4.2

Three identical small spheres of mass m are suspended from a common point by threads 
of negligible masses and equal length ,. A charge Q is divided equally among the spheres, 
and they come to equilibrium at the corners of a horizontal equilateral tri angle whose 
sides are d. Show that

Q2 5 12peomgd3 c,2 2
d2

3
d

21/2

where g 5 acceleration due to gravity.

Answer: Proof.

A practical application of electrostatics is in electrostatic separation of solids. For example, 
Florida phosphate ore, consisting of small particles of quartz and phosphate rock, can 
be separated into its components by applying a uniform electric field as in Figure 4.4. 
Assuming zero initial velocity and displacement, determine the separation between the 
particles after falling 80 cm. Take E 5 500 kV/m and Q/m 5 9 mC/kg for both positively 
and negatively charged particles.

EXAMPLE 4.3

FIGURE 4.4 Electrostatic separation of solids; 
for Example 4.3.
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Solution:
Ignoring the coulombic force between particles, the electrostatic force is acting horizontally 
while the gravitational force (weight) is acting vertically on the particles. Thus,

QE 5 m 
d2x
dt2  ax

or

d2x
dt2 5

Q
m E

Integrating twice gives

x 5
Q

2m
 Et2 1 c1t 1 c2

where c1 and c2 are integration constants. Similarly,

2mg 5 m 
d2y
dt2

or

d2y
dt2 5 2g

Integrating twice, we get

y 5 21/2gt2 1 c3t 1 c4

Since the initial displacement is zero,

 x 1 t 5 0 2 5 0 S  c2 5 0
 y 1 t 5 0 2 5 0 S  c4 5 0

Also, because of zero initial velocity,

 
dx
dt

 `
t50

5 0 S  c1 5 0

 
dy
dt

 `
t50

5 0 S  c3 5 0

Thus

x 5
QE
2m

 t2,  y 5 2
1
2

 gt2
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When y 5 280 cm 5 20.8 m

t2 5
0.8 3 2

9.8
5 0.1633

and

x 5 1/2 3 9 3 1026 3 5 3 105 3 0.1633 5 0.3673 m

The separation between the particles is 2x 5 73.47 cm.

PRACTICE EXERCISE 4.3

An ion rocket emits positive cesium ions from a wedge-shaped electrode into the region 
described by x . 0 y 0 . The electric field is E 5 2400ax 1 200ay kV/m. The ions have 
single electronic charges e 5 21.6019 3 10219 C and mass m 5 2.22 3 10225 kg, 
and they travel in a vacuum with zero initial velocity. If the emission is confined to 
240 cm , y , 40 cm, find the largest value of x that can be reached.

Answer: 0.8 m.

4.3  ELECTRIC FIELDS DUE TO CONTINUOUS  
CHARGE DISTRIBUTIONS

So far we have considered only forces and electric fields due to point charges, which are 
essentially charges occupying very small physical space. It is also possible to have continuous 
charge distribution along a line, on a surface, or in a volume, as illustrated in Figure 4.5.

It is customary to denote the line charge density, surface charge density, and volume charge 
density by rL (in C/m), rS (in C/m2), and rv (in C/m3), respectively. These must not be confused 
with r (without subscript), used for radial distance in cylindrical coordinates.

The charge element dQ and the total charge Q due to these charge distributions are 
obtained from Figure 4.5 as

 dQ 5 rL dl S Q 5 3
L
rL dl   1 line charge 2  (4.13a)

FIGURE 4.5 Various charge distributions 
and charge elements.
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 dQ 5 rS dS S  Q 5 3
S
 rS dS   1surface charge 2   (4.13b)

 dQ 5 rv dv S  Q 5 3
v
 rv dv   1volume charge 2   (4.13c)

The electric field intensity due to each of the charge distributions rL, rS, and rv may be 
regarded as the summation of the field contributed by the numerous point charges making 

with charge element dQ 5 rL dl, rS dS, or rv dv and integrating, we get

 E 5 3
L

rL dl
4peoR2 aR  1 line charge 2  (4.14)

 E 5 3
S

rS dS
4peoR2 aR  1surface charge 2  (4.15)

 E 5 3
v

rv dv
4peoR2 aR  1volume charge 2  (4.16)

It should be noted that R2 and aR vary as the integrals in eqs. (4.14) to (4.16) are evaluated. 
We shall now apply these formulas to some specific charge distributions.

A. A Line Charge
Consider a line charge with uniform charge density rL extending from A to B along the  
z-axis as shown in Figure 4.6. The charge element dQ associated with element dl 5 dz of 
the line is

dQ 5 rL dl 5 rL dz

FIGURE 4.6 Evaluation of the E field due 
to a line charge. 
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up the charge distribution. We treat dQ as a point charge. Thus by replacing Q in eq. (4.11) 
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and hence the total charge Q is

 Q 5 3
zB

zA

 rL dz (4.17)

The electric field intensity E at an arbitrary point P 1x, y, z 2  can be found by using  
eq. (4.14). It is important that we learn to derive and substitute each term in eqs. (4.14) to 
(4.16) for a given charge distribution. It is customary to denote the field point4 by 1x, y, z 2  
and the source point by 1x r, y r, z r 2 . Thus from Figure 4.6,

 dl 5 dz r

 R 5 1x, y, z 2 2 10, 0, z r 2 5 xax 1 yay 1 1z 2 z r 2az

or

 R 5 rar 1 1z 2 z r 2az

 R2 5 0R 0 2 5 x2 1 y2 1 1z 2 z r 2 2 5 r2 1 1z 2 z r 2 2

 
aR

R2 5
R
0R 0 3 5

rar 1 1z 2 z r 2az

3r2 1 1z 2 z r 2 2 43/2 

Substituting all this into eq. (4.14), we get

 E 5
rL

4peo
 3

rar 1 1z 2 z r 2az

3r2 1 1z 2 z r 2 2 43/2 dz r (4.18)

To evaluate this, it is convenient that we define a, a1, and a2 as in Figure 4.6.

R 5 3r2 1 1z 2 z r 2 2 41/2 5 r sec a

z r 5 OT 2 r tan a,  dz r 5 2r sec2 a da 

Hence, eq. (4.18) becomes

E 5
2rL

4peo
 3

a2

a1

 
r sec2 a 3cos a ar 1 sin a az 4 da

r2 sec2 a
 

  5 2
rL

4peor
 3

a2

a1

 3cos a ar 1 sin a az 4 da (4.19)

Thus for a finite line charge,

 E 5
rL

4peor
 32 1sin a2 2 sin a1 2ar 1 1cos a2 2 cos a1 2az 4 (4.20)

4 The field point is the point at which the field is to be evaluated.
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122 CHAPTER 4 ELECTROSTATIC FIELDS

As a special case, for an infinite line charge, point B is at 10, 0, ` 2  and A at 10, 0, 2` 2  so 
that a1 5 p/2, a2 5 2p/2; the z-component vanishes and eq. (4.20) becomes

 E 5
rL

2peor
 ar (4.21)

Bear in mind that eq. (4.21) is obtained for an infinite line charge along the z-axis so that 
r and ar have their usual meaning. If the line is not along the z-axis, r is the perpendicular 
distance from the line to the point of interest, and ar is a unit vector along that distance 
 directed from the line charge to the field point.

B. A Surface Charge
Consider an infinite sheet of charge in the xy-plane with uniform charge density rS. The 
charge associated with an elemental area dS is

 dQ 5 rS dS (4.22)

From eq. (4.15), the contribution to the E field at point P 10, 0, h 2  by the charge dQ on the 
elemental surface 1 shown in Figure 4.7 is

 dE 5
dQ

4peoR2 aR (4.23)

From Figure 4.7,

 R 5 r 12ar 2 1 haz,  R 5 |R| 5 3r2 1 h2 41/2

 

FIGURE 4.7 Evaluation of the E field due to an infinite sheet of charge.
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aR 5
R
R

,  dQ 5 rS dS 5 rS r df dr 
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Substitution of these terms into eq. (4.23) gives

 dE 5
rS r df dr 32rar 1 haz 4

4peo 3r2 1 h2 43/2  (4.24)

Owing to the symmetry of the charge distribution, for every element 1, there is a corre-
sponding element 2 whose contribution along ar cancels that of element 1, as illustrated in 
Figure 4.7. Thus the contributions to Er add up to zero so that E has only z-component. This 
can also be shown mathematically by replacing ar with cos f ax 1 sin f ay. Integration of 
cos f or sin f over 0 , f , 2p gives zero. Therefore,

E 5 3
S
 dEz 5

rS

4peo
 3

2p

f50
 3

`

r50
 

hr dr df

3r2 1 h2 43/2 az

 5
rSh

4peo
 2p 3

`

0
 3r2 1 h2 423/2 

1
2

 d 1r2 2az

 5
rSh
2eo

 e2 3r2 1 h2 421/2 f
0

`

 az

 E 5
rS

2eo
 az  (4.25)

that is, E has only z-component if the charge is in the xy-plane. Equation (4.25) is valid for 
h  0; for h  0, we would need to replace az with az. In general, for an infinite sheet of 
charge

 E 5
rS

2eo
 an (4.26)

where an is a unit vector normal to the sheet. From eq. (4.25) or (4.26), we notice that 
the electric field is normal to the sheet and it is surprisingly independent of the distance 
between the sheet and the point of observation P. In a parallel-plate capacitor, the electric 
field existing between the two plates having equal and opposite charges is given by

 E 5
rS

2eo
 an 1

2rS

2eo
 12an 2 5

rS

eo
 an (4.27)

C. A Volume Charge
Next, let us consider a sphere of radius a centered at the origin. Let the volume of the 
sphere be filled uniformly with a volume-charge density rv (in C/m3) as shown in  
 Figure 4.8. The charge dQ associated with the elemental volume dv chosen at (r, , ) is

dQ 5 rv dv
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and hence the total charge in a sphere of radius a is

 Q 5 3
v
 rv dv 5 rv 3

v
dv (4.28)

  5 rv 
4pa3

3

The electric field dE outside the sphere at P 10, 0, z 2  due to the elementary volume charge is

dE 5
rv dv

4peoR2 aR

where aR 5 cos a az 1 sin a ar. Owing to the symmetry of the charge distribution, the 
contributions to Ex or Ey add up to zero. We are left with only Ez, given by

 Ez 5 E # az 5 3
v
 dE cos a 5

rv

4peo
 3

v
 
dv cos a

R2  (4.29)

Again, we need to derive expressions for dv, R2, and cos a:

 dv 5 r r2 sin u r dr r du r df r (4.30)

Applying the cosine rule to Figure 4.8, we have

  R2 5 z2 1 r r2 2 2zr r cos u r

r r2 5 z2 1 R2 2 2zR cos a 

FIGURE 4.8 Evaluation of the E field due to a volume charge  
distribution.
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It is convenient to evaluate the integral in eq. (4.29) in terms of R and r. Hence we express 
cos u r, cos a, and sin u r du r in terms of R and r, that is,

  cos a 5
z2 1 R2 2 r r2

2zR
 (4.31a)

 cos u r 5
z2 1 r r2 2 R2

2zr r
  (4.31b)

Differentiating eq. (4.31b) with respect to  and keeping z and r fixed, we obtain

 sin u r du r 5
R dR
z r r

 (4.32)

As  varies from 0 to , R varies from (z  r) to (z 1 r) if P is outside the sphere. 
Substituting eqs. (4.30) to (4.32) into eq. (4.29) yields

Ez 5
rv

4peo
 3

2p

fr50
 df r 3

a

rr50
 3

z1rr

R5z2rr
 r r2 

R dR
zr r

 dr r 
z2 1 R2 2 r r2

2zR
 

1
R2 

  5
rv2p

8peoz2 3
a

rr50
 3

z1rr

R5z2rr
 r r c1 1

z2 2 r r2

R2 d  dR dr r

 
 5

rvp

4peoz2 3
a

0
 r r cR 2

1z2 2 r r2 2
R

d
z2rr

z1rr

dr r

  5
rvp

4peoz2 3
a

0
 4r r2 dr r 5

1
4peo

 
1
z2 a4

3
 pa3rvb

or

 E 5
Q

4peoz2 az (4.33)

This result is obtained for E at P 10, 0, z 2 . Owing to the symmetry of the charge distribu-
tion, the electric field at P 1r, u, f 2  is readily obtained from eq. (4.33) as

 E 5
Q

4peor2 ar (4.34)

which is identical to the electric field at the same point due to a point charge Q located at 
the origin or the center of the spherical charge distribution. The reason for this will become 
obvious as we cover Gauss’s law in Section 4.5.

A circular ring of radius a carries a uniform charge rL C/m and is placed on the xy-plane 
with axis the same as the z-axis.

(a) Show that

E 10, 0, h 2 5
rLah

2eo 3h2 1 a2 43/2 az

EXAMPLE 4.4
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(b) What values of h give the maximum value of E?
(c) If the total charge on the ring is Q, find E as a S  0.

Solution:
(a) Consider the system as shown in Figure 4.9. Again the trick in finding E by using  
eq. (4.14) is deriving each term in the equation. In this case,

 dl 5 a df,  R 5 a 12ar 2 1 haz 

 R 5 0R 0 5 3a2 1 h2 41/2,  aR 5
R
R

or

aR

R2 5
R
0R 0 3 5

2aar 1 haz

3a2 1 h2 43/2

Hence

E 5
rL

4peo
 3

2p

f50
 
12aar 1 haz 2
3a2 1 h2 43/2  a df

By symmetry, the contributions along ar add up to zero. This is evident from the fact that 
for every element dl there is a corresponding element diametrically opposite that gives an 
equal but opposite dEr so that the two contributions cancel each other. Thus we are left 
with the z-component. That is,

E 5
rLahaz

4peo 3h2 1 a2 43/2 3
2p

0
 df 5

rLahaz

2eo 3h2 1 a2 43/2

as required.

FIGURE 4.9 Charged ring; for  
Example 4.4.
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(b)

 

For maximum E, 
d 0E 0
dh

5 0, which implies that

3h2 1 a2 41/2 3h2 1 a2 2 3h2 4 5 0

a2 2 2h2 5 0  or  h 5 6
a

"2
(c) Since the charge is uniformly distributed, the line charge density is

rL 5
Q

2pa

so that

E 5
Qh

4peo 3h2 1 a2 43/2 az

As a S  0

E 5
Q

4peoh2 az

or in general

E 5
Q

4peor2 aR

which is the same as that of a point charge, as one would expect.

PRACTICE EXERCISE 4.4

A circular disk of radius a is uniformly charged with rS C/m2. The disk lies on the z 5 0 
plane with its axis along the z-axis.
(a) Show that at point 10, 0, h 2  

E 5
rS

2eo
 e 1 2

h
3h2 1 a2 41/2 f az

(b) From this, derive the E field due to an infinite sheet of charge on the z 5 0 plane.
(c) If a V h, show that E is similar to the field due to a point charge.

Answer: (a) Proof, (b) 
rS

2eo
 az, (c) Proof.
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d 0E 0
dh

5
rLa
2eo

 •
3h2 1 a2 43/2 11 2 2

3
2

 1h 22h 3h2 1 a2 41/2

3h2 1 a2 43
¶
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The finite sheet 0 # x # 1, 0 # y # 1 on the z 5 0 plane has a charge density 
rS 5 xy 1x2 1 y2 1 25 2 3/2 nC/m2. Find

(a) The total charge on the sheet
(b) The electric field at 10, 0, 5 2
(c) The force experienced by a 21 mC charge located at 10, 0, 5 2
Solution:

(a) Q 5 3
S
 rS dS 5 3

1

0
3

1

0
 xy 1x2 1 y2 1 25 2 3/2 dx dy nC

Since x dx 5 1/2 d 1x2 2 , we now integrate with respect to x2 (or change variables: x2 5 u 
so that x dx 5 du/2).

Q 5
1
2

 3
1

0
 y 3

1

0
 1x2 1 y2 1 25 2 3/2 d 1x2 2  dy nC 

 
 5

1
2

 3
1

0
 y 

2
5

 1x2 1 y2 1 25 2 5/2 `
0

1

 dy

 
 5

1
5

 3
1

0
 
1
2

 3 1y2 1 26 2 5/2 2 1y2 1 25 2 5/2 4 d 1y2 2

 
 5

1
10

# 2
7

 3 1y2 1 26 2 7/2 2 1y2 1 25 2 7/2 4 `
0

1

 
 5

1
35

 3 127 2 7/2 1 125 2 7/2 2 2 126 2 7/2 4

 Q 5 33.15 nC 

(b) E 5 3
S
 
rS dS aR

4peor2 5 3
S
 
rS dS 1 r 2 r r 2
4peo 0 r 2 r r 0 3

where r 2 r r 5 10, 0, 5 2 2 1x, y, 0 2 5 12x, 2y, 5 2 . Hence,

E 5 3
1

0
3

1

0
 
1029xy 1x2 1 y2 1 25 2 3/2 12xax 2 yay 1 5az 2dx dy

4p # 1029

36p
 1x2 1 y2 1 25 2 3/2

 

  5 9 c23
1

0
 x2 dx 3

1

0
 y dy ax 2 3

1

0
 x dx 3

1

0
 y2dy ay 1 5 3

1

0
 x dx 3

1

0
 y dy az d

  5 9a21
6

, 
21
6

, 
5
4
b

  5 121.5, 21.5, 11.25 2  V/m

(c) F 5 qE 5 11.5, 1.5, 211.25 2  mN

EXAMPLE 4.5
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PRACTICE EXERCISE 4.5

A square plate described by 22 # x # 2, 22 # y # 2, z 5 0 carries a charge 
12 0 y 0  mC/m2. Find the total charge on the plate and the electric field intensity at 10, 0, 10 2 .

Answer: 192 mC, 16.6 az MV/m.

Planes x 5 2 and y 5 23, respectively, carry charges 10 nC/m2 and 15 nC/m2. If the line 
x 5 0, z 5 2 carries charge 10p nC/m, calculate E at 11, 1, 21 2  due to the three charge 
 distributions.

Solution:
Let

E 5 E1 1 E2 1 E3

where E1, E2, and E3 are, respectively, the contributions to E at point 11, 1, 21 2  due to the 
infinite sheet 1, infinite sheet 2, and infinite line 3 as shown in Figure 4.10(a). Applying 
eqs. (4.26) and (4.21) gives

E1 5
rS1

2eo
 12ax 2  5 2

10 # 1029

2 # 1029

36p

 ax 5 2180pax 

 E2 5
rS2

2eo
 ay  5

15 # 1029

2 # 1029

36p

 ay  5 270pay 

FIGURE 4.10 For Example 4.6: (a) three charge distributions,  
(b) finding r and ar on plane y 5 1.

EXAMPLE 4.6
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and

 E3 5
rL

2peor
 ar

where ar (not regular ar but with a similar meaning) is a unit vector along LP perpen-
dicular to the line charge and r is the length LP to be determined from Figure 4.10(b).  
Figure 4.10(b) results from Figure 4.10(a) if we consider plane y 5 1 on which E3 lies. 
From Figure 4.10(b), the distance vector from L to P is

  R 5 23az 1 ax

r 5 0R 0 5 "10,  ar 5
R
0R 0 5

1

"10
 ax 2

3

"10
 az 

Hence,

 E3 5
10p # 1029

2p # 1029

36p

# 1
10

 1ax 2 3az 2  

     5 18p 1ax 2 3az 2

Thus by adding E1, E2, and E3, we obtain the total field as

E 5 2162pax 1 270pay 2 54paz V/m

Note that to obtain ar, ar, or an, which we always need for finding F or E, we must go 
from the charge (at position vector r r) to the field point (at position vector r); hence ar, ar, 
or an is a unit vector along r 2 r r. In addition, r and r r are defined locally, not globally. 
 Observe this carefully in Figures 4.6 to 4.10.

PRACTICE EXERCISE 4.6

In Example 4.6 if the line x 5 0, z 5 2 is rotated through 90 about the point 10, 2, 2 2  
so that it becomes x 5 0, y 5 2, find E at 11, 1, 21 2 .
Answer:  2282.7ax 1 565.5ay V/m.

The flux due to the electric field E can be calculated by using the general definition of flux 
in eq. (3.13). For practical reasons, however, this quantity is not usually considered to be 
the most useful flux in electrostatics. Also, eqs. (4.11) to (4.16) show that the electric field 
intensity is dependent on the medium in which the charge is placed (free space in this 
 chapter). Suppose a new vector field D is defined by

 D 5 eoE (4.35)
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We use eq. (3.13) to define electric flux  in terms of D, namely,

 

In SI units, one line of electric flux emanates from 11 C and terminates on 21 C. 
Therefore, the electric flux is measured in coulombs. Hence, the vector field D is called the 
electric flux density and is measured in coulombs per square meter. For historical reasons, 
the electric flux density is also called electric displacement.

From eq. (4.35), it is apparent that all the formulas derived for E from Coulomb’s law 
in Sections 4.2 and 4.3 can be used in calculating D, except that we have to multiply those 
formulas by o. For example, for an infinite sheet of charge, eqs. (4.26) and (4.35) give

 D 5
rS

2
 an (4.37)

and for a volume charge distribution, eqs. (4.16) and (4.35) give

 D 5 3
v
 
rv dv
4pR2 aR (4.38)

Note from eqs. (4.37) and (4.38) that D is a function of charge and position only; it is 
independent of the medium.

Determine D at 14, 0, 3 2  if there is a point charge 25p mC at 14, 0, 0 2  and a line charge 
3p mC/m along the y-axis.

Solution:
Let D 5 DQ 1 DL, where DQ and DL are flux densities due to the point charge and line 
charge, respectively, as shown in Figure 4.11:

DQ 5 eoE 5
Q

4pR2 aR 5
Q 1r 2 r r 2
4p 0 r 2 r r 0 3

where r 2 r r 5 14, 0, 3 2 2 14, 0, 0 2 5 10, 0, 3 2 . Hence,

DQ 5
25p # 1023 10, 0, 3 2

4p 0 10, 0, 3 2 0 3 5 20.139 az mC/m2

Also

DL 5
rL

2pr
 ar

In this case

 ar 5
14, 0, 3 2 2 10, 0, 0 2
0 14, 0, 3 2 2 10, 0, 0 2 0 5

14, 0, 3 2
5

 r 5 0 14, 0, 3 2 2 10, 0, 0 2 0 5 5

EXAMPLE 4.7
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� 5 3
S
D # dS (4.36)
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Hence,

DL 5
3p

2p 125 2  14ax 1 3az 2 5 0.24ax 1 0.18az mC/m2

Thus

 D 5 DQ 1 DL

 5 240ax 1 41.1az mC/m2

PRACTICE EXERCISE 4.7

A point charge of 30 nC is located at the origin, while plane y 5 3 carries charge  
10 nC/m2. Find D at 10, 4, 3 2 .
Answer:  5.076ay 1 0.0573az nC/m2.

FIGURE 4.11 Flux density D 
due to a point charge and an 
 infinite line charge.

Gauss’s5 law constitutes one of the fundamental laws of electromagnetism.

Gauss’s law states that the total electric flux c through any closed surface is equal 
to the total charge enclosed by that surface.

5 The German mathematician Carl Friedrich Gauss (see Chapter 3 opening) developed the di vergence theo-
rem of Section 3.6, popularly known by his name. He was the first physicist to measure electric and magnetic 
quantities in absolute units. For details on Gauss’s measurements, see W. F. Magie, A Source Book in Physics. 
Cambridge, MA: Harvard Univ. Press, 1963, pp. 519–524.
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 5 total charge enclosed Q 5 3
v
 rv dv (4.40)

or

 Q 5 C
S
 D # dS 5 3

v
 rv dv (4.41)

By applying divergence theorem to the middle term in eq. (4.41), we have

 C
S
 D # dS 5 3

v
 = # D dv (4.42)

Comparing the two volume integrals in eqs. (4.41) and (4.42) results in

 rv 5 = # D (4.43)

which is the first of the four Maxwell’s equations to be derived. Equation (4.43) states that 
the volume charge density is the same as the divergence of the electric flux density.6 It is 
equivalent to Coulomb’s law of force between point charges.

Note that:

1. Equations (4.41) and (4.43) are basically stating Gauss’s law in different ways; 
eq. (4.41) is the integral form, whereas eq. (4.43) is the differential or point form of 
Gauss’s law. Equation (4.43) is sometimes called the source equation.

2. Gauss’s law is an alternative statement of Coulomb’s law; proper application of the 
divergence theorem to Coulomb’s law results in Gauss’s law.

3. Gauss’s law provides an easy means of finding E or D for symmetrical charge 
distributions such as a point charge, an infinite line charge, an infinite cylindri-
cal surface charge, and a spherical distribution of charge. A continuous charge 
distribution has rectangular symmetry if it depends only on x (or y or z), cylindri-
cal symmetry if it depends only on r, or spherical symmetry if it depends only on 
r (independent of  and ). It must be stressed that whether the charge distribution 
is symmetric or not, Gauss’s law always holds. For example, consider the charge 

6This should not be surprising to us from the way we defined divergence of a vector in eq. (3.32):

 = # D 5 lim 
DvSf

  A
 D # dS
Dv

, which reduces to 
DQ
Dv

5 rv.
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Thus

 � 5 Qenc (4.39)

that is,

  � 5 C
S
 d� 5 C

S
 D # dS
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FIGURE 4.12 Illustration of 
Gauss’s law: flux leaving v1 is 5 nC 
and that leaving v2 is 0 C.

The procedure for applying Gauss’s law to calculate the electric field involves first know-
ing whether symmetry exists. Once it has been found that symmetric charge distribution 
exists, we construct a mathematical closed surface (known as a Gaussian surface). The 
surface is chosen such that D is normal or tangential to the Gaussian surface. When D is 
normal to the surface, D # dS 5 D dS because D is perpendicular to the surface. When D 
is tangential to the surface, D # dS 5 0. Thus we must choose a surface that has some of 
the symmetry exhibited by the charge distribution. The choice of an appropriate Gaussian 
surface, where there is symmetry in the charge distribution comes from intuitive reason-
ing and a slight degree of maturity in the application of Coulomb’s law. We shall now apply 
these basic ideas to the following cases.

A. Point Charge
Suppose a point charge Q is located at the origin. To determine D at a point P, it is easy to 
see that choosing a spherical surface containing P will satisfy symmetry conditions. Thus, 
a spherical surface centered at the origin is the Gaussian surface in this case and is shown 
in Figure 4.13.

 
Q 5 C

S
 D # dS 5 Dr C

S
 dS 5 Dr 4pr2 (4.44)
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distribution in Figure 4.12 where v1 and v2 are closed surfaces (or volumes). Th e 
total fl ux leaving v1 is 10 2 5 5 5 nC because only 10 nC and 25 nC charges are 
enclosed by v1. Although charges 20 nC and 15 nC outside v1 do contribute to the 
fl ux crossing v1, the net fl ux crossing v1, according to Gauss’s law, is irrespective 
of those charges outside v1. Similarly, the total fl ux leaving v2 is zero  because no 
charge is enclosed by v2. Th us we see that Gauss’s law, � 5 Qenc, is still obeyed even 
though the charge distribution is not symmetric. However, we cannot use the law to 
determine E or D when the charge distribution is not symmetric; we must resort to 
Coulomb’s law to determine E or D in that case.

Since D is everywhere normal to the Gaussian surface, that is, D 5 Drar, applying 
Gauss’s law (� 5 Qenc) gives

4.6 APPLICATIONS OF GAUSS’S LAW
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where AdS 5 e
2p

f50 e
p

u50r
2 sin u du df 5 4pr2 is the surface area of the Gaussian surface. Thus

 D 5
Q

4pr2 ar (4.45)

as expected from eqs. (4.11) and (4.35).

B. Infinite Line Charge
Suppose the infinite line of uniform charge rL C/m lies along the z-axis. To determine D 
at a point P, we choose a cylindrical surface containing P to satisfy the symmetry condi-
tion as shown in Figure 4.14. The electric flux density D is constant on and normal to the 
cylindrical Gaussian surface; that is, D 5 Drar. If we apply Gauss’s law to an arbitrary 
length , of the line

 
rL, 5 Q 5 3

S
 D # dS 5 Dr 3

S
 dS 5 Dr 2pr, (4.46)

where e  dS 5 2pr, is the surface area of the Gaussian surface. Note that eD # dS evalu-
ated on the top and bottom surfaces of the cylinder is zero, since D has no z-component; 
that means that D is tangential to those surfaces. Thus

FIGURE 4.13 Gaussian surface about a point charge.

Line

FIGURE 4.14 Gaussian surface about an infinite line 
charge.
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 D 5
rL

2pr
 ar (4.47)

as expected from eqs. (4.21) and (4.35).

C.  Infinite Sheet of Charge
Consider an infinite sheet of uniform charge rS C/m2 lying on the z 5 0 plane. To deter-
mine D at point P, we choose a rectangular box that is cut symmetrically by the sheet of 
charge and has two of its faces parallel to the sheet as shown in Figure 4.15. As D is normal 
to the sheet, D 5 Dzaz, and applying Gauss’s law gives

 
rS 3

S
 dS 5 Q 5 C

S
 D # dS 5 Dz c3

top
 dS 1 3

bottom
 dS d  (4.48)

Note that D # dS evaluated on the sides of the box is zero because D has no components 
x y

 rSA 5 Dz 1A 1 A 2  (4.49)

and thus

D 5
rS

2
 az

or

 E 5
D
eo

5
rS

2eo
 az (4.50)

as expected from eq. (4.25).

FIGURE 4.15 Gaussian surface about 
an infinite line sheet of charge.
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along a  and a . If the top and bottom area of the box each has area A,  eq. (4.48)  becomes
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D. Uniformly Charged Sphere
Consider a sphere of radius a with a uniform charge ro C/m3. To determine D everywhere, 
we construct Gaussian surfaces for cases r # a and r $ a separately. Since the charge has 
spherical symmetry, it is obvious that a spherical surface is an appropriate Gaussian  surface.

For r # a, the total charge enclosed by the spherical surface of radius r, as shown in 
Figure 4.16(a), is

  Qenc 5 3
v
 rvdv 5 ro 3

v
 dv 5 ro 3

2p

f50
 3

p

u50
 3

r

r50
 r2 sin u dr du df (4.51)

 5 ro 
4
3

 pr3

Dr 4pr2 5
4pr3

3
 ro

or

 D 5
r
3

 ro ar  0 , r #  a (4.53)

For r $ a, the Gaussian surface is shown in Figure 4.16(b). The charge enclosed by the 
surface is the entire charge in this case, that is,

 Qenc 5 3
v
 rv  dv 5 ro 3

v
 dv 5 ro 3

2p

f50
 3

p

u50
 3

a

r50
 r2 sin u dr du df

  5 ro 
4
3

 pa3  (4.54)

FIGURE 4.16 Gaussian surface for a uniformly 
charged sphere when (a) r  a and (b) r  a.
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and

� 5 C
S
 D # dS 5 Dr C

S
 dS 5 Dr 3

2p

f50
 3

p

u50
 r2 sin u du df 

  5 Dr 4pr2  (4.52)

Hence, � 5 Qenc gives
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while

 
c 5 C

S
 D # dS 5 Dr 4pr2 (4.55)

just as in eq. (4.52). Hence,

Dr 4pr2 5
4
3

 pa3ro

or

 D 5
a3

3r2 ro ar,        r $  a (4.56)

Thus from eqs. (4.53) and (4.56), D everywhere is given by

 D 5 µ
r
3

 roar, 0 , r # a

a3

3r2 roar, r $ a
 (4.57)

and 0D 0  is as sketched in Figure 4.17.
Notice from eqs. (4.44), (4.46), (4.48), and (4.52) that the ability to take D out of the 

integral sign is the key to finding D using Gauss’s law. In other words, D must be constant 
on the Gaussan surface.

Given that D 5 zr cos2f az C/m2, calculate the charge density at 11, p/4, 3 2  and the total 
charge enclosed by the cylinder of radius 1 m with 22 # z # 2 m.

Solution:

rv 5 = # D 5
'Dz

'z
5 r cos2 f

o

o

o

r

FIGURE 4.17 Sketch of D against r for a uniformly 
charged sphere.

EXAMPLE 4.8
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At 11, p/4, 3 2 , rv 5 1 # cos2 1p/4 2 5 0.5 C/m3. The total charge enclosed by the cylinder 
can be found in two different ways.

Method 1: This method is based directly on the definition of the total volume charge.

 Q 5 3
v
 rv dv 5 3

v
 r cos2 f r df dr dz

 5 3
2

z522
 dz 3

2p

f50
 cos2 f df 3

1

r50
 r2 dr 5 4 1p 2 11/3 2

 5
4p

3
 C

04_Sadiku_Ch04.indd   139 23/09/17   2:27 PM

Method 2: Alternatively, we can use Gauss’s law

  Q 5 � 5 C
S
 D # dS 5 c3

S
1 3

t
1 3

b
d  D # dS

  5 �s 1 �t 1 �b

where �s, �t, and �b are the flux through the sides (curved surface), the top surface, and 
the bottom surface of the cylinder, respectively (see Figure 3.18). Since D does not have 
component along a�, �s 5 0, for �t, dS 5 r df dr az so

 �t 5 3
1

r50
 3

2p

f50
 zr cos2 f r df dr `

z52
5 2 3

1

0
 r2 dr 3

2p

0
 cos2 f df

 5 2a1
3
bp 5

2p

3

and for �b, dS 5 2r df dr az, so

 �b 5 2 3
1

r50
 3

2p

f50
 zr cos2 f r df dr `

z522
5 2 3

1

0
 r2 dr 3

2p

0
 cos2 f df

 5
2p

3

Thus

Q 5 � 5 0 1
2p

3
1

2p

3
5

4p

3
 C

as obtained earlier.
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PRACTICE EXERCISE 4.8

If D 5 12y2 1 z 2ax 1 4xyay 1 xaz C/m2, find

(a) The volume charge density at 121, 0, 3 2
(b) The flux through the cube defined by 0 # x # 1, 0 # y # 1, 0 # z # 1
(c) The total charge enclosed by the cube

Answer:  (a) 24 C/m3, (b) 2 C, (c) 2 C.

Solution:
The charge distribution is similar to that in Figure 4.16. Since symmetry exists, we can 
apply Gauss’s law to find E.

eo C
S
 E # dS 5 Qenc 5 3

v
 rv dv

(a) For r , R

 eoEr 4pr2 5 Qenc 5 3
r

0
3

p

0
3

2p

0
 rvr2 sin u df du dr

 5 3
r

0
 4pr2 

ror
R

 dr 5
ropr4

R

or

E 5
ror2

4eoR
 ar

(b) For r . R,

 eoEr4pr2 5 Qenc 5 3
r

0
3

p

0
3

2p

0
 rvr2 sin u df du dr

 5 3
R

0
 
ror
R

 4pr2 dr 1 3
r

R
 0 # 4pr2 dr

 5 proR3

EXAMPLE 4.9
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A charge distribution with spherical symmetry has density

rv 5 •
ror
R

, 0 # r # R

0, r . R

Determine E everywhere.
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or

E 5
roR3

4eor2 ar 

PRACTICE EXERCISE 4.9

A charge distribution in free space has rv 5 2r nC/m3 for 0 # r # 10 m and zero  
otherwise. Determine E at r 5 2 m and r 5 12 m.

Answer:  226ar V/m, 3.927ar kV/m.

From our discussions in the preceding sections, we can obtain the electric field intensity E 
due to a charge distribution from Coulomb’s law in general or, when the charge distribu-
tion is symmetric, from Gauss’s law. Another way of obtaining E is from the electric scalar 
potential V, to be defined in this section. In a sense, this way of finding E is easier because 
it is easier to handle scalars than vectors.

Suppose we wish to move a point charge Q from point A to point B in an electric field 
E as shown in Figure 4.18. From Coulomb’s law, the force on Q is F 5 QE so that the work 
done in displacing the charge by d l is

 dW 5 2F # d l 5 2QE # d l (4.58)

The negative sign indicates that the work is being done by an external agent. Thus the total 
work done, or the potential energy required, in moving Q from A to B, is

 W 5 2Q 3
B

A
 E # d l (4.59)

Dividing W by Q in eq. (4.59) gives the potential energy per unit charge. This quantity, 
denoted by VAB, is known as the potential difference between points A and B. Thus

 VAB 5
W
Q

5 23
B

A
 E # d l (4.60)

Note that

1. In determining VAB, A is the initial point while B is the final point.
2. If VAB is negative, there is a loss in potential energy in moving Q from A to B; this 

implies that the work is being done by the field. However, if VAB is positive, there is 
a gain in potential energy in the movement; an external agent performs the work.

3. VAB is independent of the path taken (to be shown a little later).
4. VAB is measured in joules per coulomb, commonly referred to as volts (V).
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As an example, if the E field in Figure 4.18 is due to a point charge Q located at the 
origin, then

 E 5
Q

4peor2 ar (4.61)

so eq. (4.60) becomes

 VAB 5 23
rB

rA

 
Q

4peor2 ar
# dr ar  (4.62a)

  5
Q

4peo
 c 1

rB
2

1
rA
d

or

 VAB 5 VB 2 VA (4.62b)

where VB and VA are the potentials (or absolute potentials) at B and A, respectively. Thus 
the potential difference VAB may be regarded as the potential at B with reference to A. In 
problems involving point charges, it is customary to choose infinity as reference; that is, 
we assume the potential at infinity is zero. Thus if VA 5 0 as rA S  ` in eq. (4.62), the 
potential at any point 1rB S  r 2  due to a point charge Q located at the origin is

 V 5
Q

4peor
 (4.63)

Note from eq. (4.62a) that because E points in the radial direction, any contribution from a dis-
placement in the  or  direction is wiped out by the dot product E # d l 5 E cos a dl 5 E dr, 
where  is the angle between E and d l. Hence the potential difference VAB is independent of 
the path as asserted earlier. In general, vectors whose line integral does not depend on the path 
of integration are called conservative. Thus, E is conservative.

The potential at any point is the potential difference between that point and a 
chosen point (or reference point) at which the potential is zero.

FIGURE 4.18 Displacement of point charge 
Q in an electrostatic field E.
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In other words, if one assumes zero potential at infinity, the potential at a distance r from 
the point charge is the work done per unit charge by an external agent in transferring a test 
charge from infinity to that point. Thus

 V 5 23
r

`

 E # d l (4.64)

If the point charge Q in eq. (4.63) is not located at the origin but at a point whose posi-
tion vector is r, the potential V(x, y, z) or simply V(r) at r becomes

 V 1r 2 5
Q

4peo 0 r 2 r r 0  (4.65)

We have considered the electric potential due to a point charge. The same basic ideas 
apply to other types of charge distribution because any charge distribution can be regarded 
as consisting of point charges. The superposition principle, which we applied to electric 
fields, applies to potentials also. For n point charges Q1, Q2, . . . , Qn located at points with 
position vectors r1, r2, . . . , rn, the potential at r is

V 1r 2 5
Q1

4peo 0 r 2 r1 0
1

Q2

4peo 0 r 2 r2 0
 1 . . . 1

Qn

4peo 0 r 2 rn 0

or

 V 1r 2 5
1

4peo
 a

n

k51
 

Qk

0 r 2 rk 0
  1point charges 2  (4.66)

For continuous charge distributions, we replace Qk in eq. (4.66) with charge element rL dl, 
rS dS, or rv dv and the summation becomes an integration, so the potential at r becomes

 V 1r 2 5
1

4peo
 3

L
 
rL 1r r 2dl r
0 r 2 r r 0    1 line charge 2   (4.67)

 V 1r 2 5
1

4peo
 3

S
 
rS 1r r 2dS r
0 r 2 r r 0    1surface charge 2   (4.68)

 V 1r 2 5
1

4peo
 3

v
 
rv 1r r 2dv r
0 r 2 r r 0    1volume charge 2   (4.69)

where the primed coordinates are used customarily to denote source point location and 
the unprimed coordinates refer to field point (the point at which V is to be determined).

The following points should be noted:

1. We recall that in obtaining eqs. (4.63) to (4.69), the zero potential (reference) 
point has been chosen arbitrarily to be at infinity. If any other point is chosen as 
 reference, eq. (4.63), for example, becomes
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 V 5
Q

4peor
1 C (4.70)

where C is a constant that is determined at the chosen point of reference. The same idea 
applies to eqs. (4.65) to (4.69).

2. The potential at a point can be determined in two ways depending on whether the 
charge distribution or E is known. If the charge distribution is known, we use one of 
eqs. (4.65) to (4.70) depending on the charge distribution. If E is known, we simply use

 V 5 23  E # d l 1 C (4.71)

The potential difference VAB can be found generally from

 VAB 5 VB 2 VA 5 23
B

A
 E # d l 5

W
Q

 (4.72)

Two point charges 24 mC and 5 mC are located at 12, 21, 3 2  and 10, 4, 22 2 , respectively. 
Find the potential at 11, 0, 1 2 , assuming zero potential at infinity.

Solution:
Let

 Q1 5 24 mC,  Q2 5 5 mC

V 1r 2 5
Q1

4peo 0 r 2 r1 0
1

Q2

4peo 0 r 2 r2 0
1 Co 

If V 1` 2 5 0, Co 5 0,

0 r 2 r1 0 5 0 11, 0, 1 2 2 12, 21, 3 2 0 5 0 121, 1, 22 2 0 5 "6 

 0 r 2 r2 0 5 0 11, 0, 1 2 2 10, 4, 22 2 0 5 0 11, 24, 3 2 0 5 "26

Hence

V 11, 0, 1 2 5
1026

4p 3
1029

36p

c 24

"6
1

5

"26
d  

 5 9 3 103 121.633 1 0.9806 2
                                        5 25.872 kV

PRACTICE EXERCISE 4.10

If point charge 3 mC is located at the origin in addition to the two charges of Example 
4.10, find the potential at 121, 5, 2 2 , assuming V 1` 2 5 0.

Answer:  10.23 kV.

EXAMPLE 4.10
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A point charge of 5 nC is located at 123, 4, 0 2 , while line y 5 1, z 5 1 carries uniform 
charge 2 nC/m.
(a) If V 5 0 V at O 10, 0, 0 2 , find V at A 15, 0, 1 2 .
(b) If V 5 100 V at B 11, 2, 1 2 , find V at C 122, 5, 3 2 .
(c) If V 5 25 V at O, find VBC.

Solution:
Let the potential at any point be

V 5 VQ 1 VL

where VQ and VL are the contributions to V at that point due to the point charge and the 
line charge, respectively. For the point charge,

 VQ 5 2e  E # d l 5 23  
Q

4peor2 ar
# dr ar

 5
Q

4peor
1 C1

For the infinite line charge,

 VL 5 23  E # d l 5 23  
rL

2peor
 ar

# dr ar

                                         5 2
rL

2peo
 ln r 1 C2

Hence,

V 5 2
rL

2peo
 ln r 1

Q
4peor

1 C

where C 5 C1 1 C2 5 constant, r is the perpendicular distance from the line y 5 1, 
z 5 1 to the field point, and r is the distance from the point charge to the field point.
(a) If V 5 0 at O 10, 0, 0 2 , and V at A 15, 0, 1 2  is to be determined, we must first determine 
the values of r and r at O and A. Finding r is easy; we use eq. (2.31). To find r for any point 
1x, y, z 2 , we utilize the fact that r is the perpendicular distance from 1x, y, z 2  to line y 5 1, 
z 5 1, which is parallel to the x-axis. Hence r is the distance between 1x, y, z 2  and 1x, 1, 1 2  
because the distance vector between the two points is perpendicular to ax. Thus

Applying this for r and eq. (2.31) for r at points O and A, we obtain

 rO 5 0 10, 0, 0 2 2 10, 1, 1 2 0 5 "2
 rO 5 0 10, 0, 0 2 2 123, 4, 0 2 0 5 5

EXAMPLE 4.11
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 rA 5 0 15, 0, 1 2 2 15, 1, 1 2 0 5 1
 rA 5 0 15, 0, 1 2 2 123, 4, 0 2 0 5 9

Hence,

 VO 2 VA 5 2
rL

2peo
 ln 

rO

rA
1

Q
4peo

 c 1
rO

2
1
rA
d

 5
22 # 1029

2p # 1029

36p

 ln 
"2

1
1

5 # 1029

4p # 1029

36p

 c 1
5

2
1
9
d

 0 2 VA 5 236 ln "2 1 45 a1
5

2
1
9
b

or

VA 5 36 ln "2 2 4 5 8.477 V

Notice that we have avoided calculating the constant C by subtracting one potential from 
another and that it does not matter which one is subtracted from which.
(b) If V 5 100 at B 11, 2, 1 2  and V at C 122, 5, 3 2  is to be determined, we find

 rB 5 0 11, 2, 1 2 2 11, 1, 1 2 0 5 1

 rB 5 0 11, 2, 1 2 2 123, 4, 0 2 0 5 "21

 rC 5 0 122, 5, 3 2 2 122, 1, 1 2 0 5 "20

 rC 5 0 122, 5, 3 2 2 123, 4, 0 2 0 5 "11

 VC 2 VB 5 2
rL

2peo
 ln 

rC

rB
1

Q
4peo

 c 1
rC

2
1
rB
d

VC 2 100 5 236 ln 
"20

1
1 45 # c 1

"11
2

1

"21
d  

 5 250.175 V

or

 VC 5 49.825 V

(c) To find the potential difference between two points, we do not need a potential refer-
ence if a common reference is assumed.

 VBC 5 VC 2 VB 5 49.825 2 100

 5 250.175 V
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PRACTICE EXERCISE 4.11

A point charge of 5 nC is located at the origin. If V 5 2 V at 10, 6, 28 2 , find

(a) The potential at A 123, 2, 6 2
(b) The potential at B 11, 5, 7 2
(c) The potential difference VAB

Answer:  (a) 3.929 V, (b) 2.696 V, (c) 1.233 V.

As shown in the preceding section, the potential difference between points A and B is 
independent of the path taken. Hence,

VBA 5 2VAB

that is, VBA 1 VAB 5 AL E # d l 5 0
or

 C
L
 E # d l 5 0 (4.73)

This shows that the line integral of E along a closed path as shown in Figure 4.19 must be 
zero. Physically, this implies that no net work is done in moving a charge along a closed 
path in an electrostatic field. Applying Stokes’s theorem to eq. (4.73) gives

C
L
 E # d l 5 3

S
 1= 3 E 2 # dS 5 0

or

 = 3 E 5 0 (4.74)

Any vector field that satisfies eq. (4.73) or (4.74) is said to be conservative, or irrotational, 
as discussed in Section 3.9. In other words, vectors whose line integral does not depend on 

FIGURE 4.19 The conservative nature of an 
electrostatic field.
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the path of integration are called conservative vector fields. Thus an electrostatic field is a 
conservative field. Equation (4.73) or (4.74) is referred to as Maxwell’s equation (the second 
Maxwell’s equation to be derived) for static electric fields. Equation (4.73) is the integral 
form, and eq. (4.74) is the differential form; they both depict the conservative nature of an 
electrostatic field.

From the way we defined potential, V 5 2eE # d l, it follows that

dV 5 2E # d l 5 2Ex dx 2 Ey dy 2 Ez dz

But from calculus of multivariables, a total change in V(x, y, z) is the sum of partial changes 
with respect to x, y, z variables:

dV 5
'V
'x

 dx 1
'V
'y

 dy 1
'V
'z

 dz

Comparing the two expressions for dV, we obtain

 Ex 5 2
'V
'x

,  Ey 5 2
'V
'y

,  Ez 5 2
'V
'z

 (4.75)

Thus,

 E 5 2= V (4.76)

that is, the electric field intensity is the gradient of V. The negative sign shows that the 
direction of E is opposite to the direction in which V increases; E is directed from higher 
to lower levels of V. Since the curl of the gradient of a scalar function is always zero  
(= 3 =V 5 0), eq. (4.74) obviously implies that E must be a gradient of some scalar func-
tion. Thus eq. (4.76) could have been obtained from eq. (4.74).

Equation (4.76) shows another way to obtain the E field apart from using Coulomb’s or 
Gauss’s law. That is, if the potential field V is known, the E can be found by using eq. (4.76). 
One may wonder how one function V can possibly contain all the information that the three 
components of E carry. The three components of E are not independent of one another: they 
are explicitly interrelated by the condition = 3 E 5 0. The potential  formulation exploits 
this feature to maximum advantage, reducing a vector problem to a scalar one.

Given the potential V 5
10
r2  sin u cos f,

(a) Find the electric flux density D at 12, p/2, 0 2 .
(b)  Calculate the work done in moving a 10 mC charge from point A 11, 30°, 120° 2  to 

B 14, 90°, 60° 2 .

Solution:
(a) D 5 eoE

EXAMPLE 4.12
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But

 E 5 2=V 5 2 c'V
'r

 ar 1
1
r  
'V
'u

 au 1
1

r sin u
 
'V
'f

 af d

 5
20
r3  sin u cos f ar 2

10
r3  cos u cos f au 1

10
r3  sin f af

At 12, p/2, 0 2 ,

 D 5 eoE 1r 5 2, u 5 p/2, f 5 0 2 5 eoa20
8

 ar 2 0au 1 0afb

 5 2.5eoar C/m2 5 22.1 ar pC/m2

(b) The work done can be found in two ways, using either E or V.
Method 1:

W 5 2Q3
L
 E # d l  or  2

W
Q

5 3
L
 E # d l

and because the electrostatic field is conservative, the path of integration is immaterial. 
Hence the work done in moving Q from A 11, 30°, 120° 2  to B 14, 90°, 60° 2  is the same as that 
in moving Q from A to A r, from A r to B r, and from B r to B, where

A 11, 30°, 120° 2  B 14, 90°, 60° 2
T d l 5 dr ar d l 5 r du au c d l 5 r sin u df af

A r 14, 30°, 120° 2  S  B r 14, 90°, 120° 2

That is, instead of being moved directly from A to B, Q is moved from A S  A r, A r S  B r, 
B r S  B, so that only one variable is changed at a time. This makes the line integral much 
easier to evaluate. Thus
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2W

Q
5 2

1
Q

 1WAAr 1 WArBr 1 WBrB 2

 5 a3
AAr

1 3
ArBr

1 3
BrB
b  E # d l

 5 3
4

r51
 
20 sin u cos f

r3  dr `
u530º, f5120º

  1 3
90º

u530º
 
210 cos u cos f

r3 r du `
r54, f5120º

  1 3
60º

f5120º
 
10 sin f

r3  r sin u df `
r54, u590º
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  5 20 a1
2
b a21

2
b c2 1

2r2 `
r51

4

d

  2
10
16

 
121 2

2
 sin u `

30°

90°

1
10
16

 11 2 c2 cos f `
120°

60°

d

 2
W
Q

5
275
32

1
5

32
2

10
16

 

or

W 5
45
16

 Q 5 28.125 mJ

Method 2:
Since V is known, this method is much easier.

 W 5 2Q3
B

A
 E # d l 5 QVAB

 5 Q 1VB 2 VA 2

 5 10 a10
16

 sin 90° cos 60° 2
10
1

 sin 30° cos 120°b # 1026

 5 10 a10
32

2
25
2
b # 1026

 5 28.125 mJ as obtained before

PRACTICE EXERCISE 4.12

Given that E 5 13x2 1 y 2ax 1 xay kV/m, find the work done in moving a  22 mC 
charge from 10, 5, 0 2  to 12, 21, 0 2  by taking the straight-line pat

(a) 10, 5, 0 2  S  12, 5, 0 2  S  12, 21, 0 2
(b) y 5 5 2 3x

Answer:  (a) 12 mJ, (b) 12 mJ.

An electric dipole is formed when two point charges of equal magnitude but oppo-
site sign are separated by a small distance.

The importance of the field due to a dipole will be evident in the subsequent chapters.
Consider the dipole shown in Figure 4.20. The potential at point P 1r, u, f 2  is given by 
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 V 5
Q

4peo
 c 1

r1
2

1
r2
d 5

Q
4peo

 c r2 2 r1

r1r2
d  (4.77)

where r1 and r2 are the distances between P and 1Q and P and 2Q, respectively. If r W d, 
r2 2 r1 .  d cos u, r2r1 . r2, and eq. (4.77) becomes

 V 5
Q

4peo
 
d cos u

r2  (4.78)

Since d cos u 5 d # ar, where d 5 daz, if we define

 p 5 Qd (4.79)

as the dipole moment, eq. (4.78) may be written as

 V 5
p # ar

4peor2 (4.80)

Note that the dipole moment p is directed from 2Q to 1Q. If the dipole center is not at 
the origin but at r, eq. (4.80) becomes

 V 1r 2 5
p # 1r 2 r9 2

4peo 0 r 2 r9 0 3 (4.81)

The electric field due to the dipole with center at the origin, shown in Figure 4.20, can 
be obtained readily from eqs. (4.76) and (4.78) as

 E 5 2=V 5 2 c'V
'r

 ar 1
1
r  
'V
'u

 au d

 5
Qd cos u
2peor3  ar 1

Qd sin u
4peor3  au

FIGURE 4.20 An electric dipole.
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or

 E 5
p

4peor3 12 cos u ar 1 sin u au 2  (4.82)

where p 5 0 p 0 5 Qd.
Notice that a point charge is a monopole and its electric field varies inversely as r2 while 

its potential field varies inversely as r [see eqs. (4.61) and (4.63)]. From eqs. (4.80) and (4.82), 
we notice that the electric field due to a dipole varies inversely as r3, while its  potential varies 
inversely as r2. The electric fields due to successive higher-order multipoles (such as a quad-
rupole consisting of two dipoles or an octupole consisting of two quadrupoles) vary inversely 
as r4, r5, r6, . . . , while their corresponding potentials vary  inversely as r3, r4, r5, . . . .

The idea of electric flux lines (or electric lines of force as they are sometimes called) was 
introduced by Michael Faraday (1791–1867) in his experimental investigation as a way of 
visualizing the electric field.

An electric flux line is an imaginary path or line drawn in such a way that its direction 
at any point is the direction of the electric field at that point.

In other words, they are the lines to which the electric flux density D is tangential at 
every point.

Any surface on which the potential is the same throughout is known as an equipoten-
tial surface. The intersection of an equipotential surface and a plane results in a path or 
line known as an equipotential line. No work is done in moving a charge from one point to 
another along an equipotential line or surface 1VA 2 VB 5 0 2  and hence

 3
L
 E # d l 5 0 (4.83)

on the line or surface. From eq. (4.83), we may conclude that the lines of force or flux 
lines (or the direction of E) are always normal to equipotential surfaces. Examples of 
equipotential surfaces for point charge and a dipole are shown in Figure 4.21. Note from 

Flux line

Flux line

FIGURE 4.21 Equipotential surfaces for (a) a point charge and (b) an electric dipole.
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these examples that the direction of E is everywhere normal to the equipotential lines. We 
shall see the importance of equipotential surfaces when we discuss conducting bodies in 
electric fields; it will suffice to say at this point that such bodies are equipotential volumes.

A typical application of field mapping (flux lines and equipotential surfaces) is found 
in the study of the human heart. The human heart beats in response to an electric field 
potential difference across it. The heart can be characterized as a dipole with the field map 
similar to that of Figure 4.21(b). Such a field map is useful in detecting abnormal heart 
position.7 In Section 14.2, we will discuss a numerical technique for field mapping.

Two dipoles with dipole moments 25az nC # m and 9az nC # m are located at points 
10, 0, 22 2  and 10, 0, 3 2 , respectively. Find the potential at the origin.

Solution:

 V 5 a
2

k51
 

pk
# rk

4peork
3

 5
1

4peo
 cp1

# r1

r1
3 1

p2
# r2

r2
3 d

where

 p1 5 25az,   r1 5 10, 0, 0 2 2 10, 0, 22 2 5 2az,   r1 5 0 r1 0 5 2

 p2 5 9az,   r2 5 10, 0, 0 2 2 10, 0, 3 2 5 23az,   r2 5 0 r2 0 5 3

Hence,

 V 5
1

4p # 1029

36p

 c210
23 2

27
33 d # 1029

 5 220.25 V

PRACTICE EXERCISE 4.13

An electric dipole of 100 az pC # m is located at the origin. Find V and E at points

(a) 10, 0, 10 2
(b) 11, p/3, p/2 2
Answer:  (a) 9 mV, 1.8ar mV/m, (b) 0.45 V, 0.9ar 1 0.7794au V/m.

EXAMPLE 4.13

7For more information on this, see R. Plonsey, Bioelectric Phenomena, New York: McGraw-Hill, 1969.
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4.10 ENERGY DENSITY IN ELECTROSTATIC FIELDS

To determine the energy present in an assembly of charges, we must first determine the 
amount of work necessary to assemble them. Suppose we wish to position three point charges 
Q1, Q2, and Q3 in an initially empty space shown shaded in Figure 4.22. No work is required 
to transfer Q1 from infinity to P1 because the space is initially charge free and there is no 
electric field [from eq. (4.59), W 5 0]. The work done in transferring Q2 from infinity to P2 
is equal to the product of Q2 and the potential V21 at P2 due to Q1. Similarly, the work done 
in positioning Q3 at P3 is equal to Q3 1V32 1 V31 2 , where V32 and V31 are the potentials at P3 
due to Q2 and Q1, respectively. Hence the total work done in positioning the three charges is

 WE 5 W1 1 W2 1 W3

  5 0 1 Q2V21 1 Q3 1V31 1 V32 2  (4.84)

If the charges were positioned in reverse order,

 WE 5 W3 1 W2 1 W1

  5 0 1 Q2V23 1 Q1 1V12 1 V13 2  (4.85)

where V23 is the potential at P2 due to Q3, V12 and V13 are, respectively, the potentials at P1 
due to Q2 and Q3. Adding eqs. (4.84) and (4.85) gives

 2WE 5 Q1 1V12 1 V13 2 1 Q2 1V21 1 V23 2 1 Q3 1V31 1 V32 2  
  5 Q1V1 1 Q2V2 1 Q3V3

or

 WE 5
1
2

 1Q1V1 1 Q2V2 1 Q3V3 2  (4.86)

where V1, V2, and V3 are total potentials at P1, P2, and P3, respectively. In general, if there 
are n point charges, eq. (4.86) becomes

 WE 5
1
2

 a
n

k51
 QkVk    (in joules) (4.87)

FIGURE 4.22 Assembling of 
charges.
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If, instead of point charges, the region has a continuous charge distribution, the sum-
mation in eq. (4.87) becomes integration; that is,

 WE 5
1
2

 3
L
 rLV dl    1 line charge 2   (4.88)

 WE 5
1
2

 3
S
 rSV dS   1surface charge 2   (4.89)

 WE 5
1
2

 3
v
 rvV dv   1volume charge 2   (4.90)

Since rv 5 = # D, eq. (4.90) can be further developed to yield

 WE 5
1
2

 3
v
 1= # D 2  V dv (4.91)

But for any vector A and scalar V, the identity

= # VA 5 A # =V 1 V 1= # A 2

or

 1= # A 2V 5 = # VA 2 A # =V (4.92)

holds. Applying the identity in eqs. (4.92) to (4.91), we get

 WE 5
1
2

 3
v
 1= # VD 2  dv 2

1
2

 3
v
 1D # =V 2  dv (4.93)

By applying divergence theorem to the first term on the right-hand side of this equation, 
we have

 WE 5
1
2

 C
S
 1VD 2 # dS 2

1
2

 3
v
 1D # =V 2  dv (4.94)

From Section 4.9, we recall that V varies as 1/r and D as 1/r2 for point charges; V varies as 
1/r2 and D as 1/r3 for dipoles; and so on. Hence, VD in the first term on the right-hand side 
of eq. (4.94) must vary at least as 1/r3 while dS varies as r2. Consequently, the first integral 
in eq. (4.94) must tend to zero as the surface S becomes large. Hence, eq. (4.94) reduces to

 WE 5 2
1
2

 3
v
 1D # =V 2  dv 5

1
2

 3
v
 1D # E 2  dv (4.95)

and since E 5 2=V  and D 5 eoE, the electrostatic energy is
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 WE 5
1
2

 3
v
 D # E dv 5

1
2

 3
v
 eoE2 dv (4.96)

From this, we can define electrostatic energy density wE (in J/m3) as

 wE 5
dWE

dv
5

1
2

 D # E 5
1
2

 eoE2 5
D2

2eo
 (4.97)

so eq. (4.95) may be written as

 WE 5 3
v
 wE dv (4.98)

The point charges 21 nC, 4 nC, and 3 nC are located at 10, 0, 0 2 , 10, 0, 1 2 , and 11, 0, 0 2 , 
 respectively. Find the energy in the system.

Solution:
Method 1:

  W 5 W1 1 W2 1 W3
 5 0 1 Q2V21 1 Q3 1V31 1 V32 2

 5 Q2
#

Q1

4peo 0 10, 0, 1 2 2 10, 0, 0 2 0

  1 
Q3

4peo
 c Q1

0 11,0,0 2 2 10,0,0 2 0 1
Q2

0 11,0,0 2 2 10,0,1 2 0 d

 5
1

4peo
 aQ1Q2 1 Q1Q3 1

Q2Q3

"2
b

 5
1

4p # 1029

36p

 a24 2 3 1
12

"2
b # 10218

 5 9a 12

"2
2 7b  nJ 5 13.37 nJ

Method 2:

 W 5
1
2

 a
3

k51
 QkVk 5

1
2

 1Q1V1 1 Q2V2 1 Q3V3 2

 5
Q1

2
 c Q2

4peo 11 2
1

Q3

4peo 11 2 d
1

Q2

2
 c Q1

4peo 11 2
1

Q3

4peo 1"2 2
d

EXAMPLE 4.14
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  1 
Q3

2
 c Q1

4peo 11 2
1

Q2

4peo 1"2 2
d

 5
1

4peo
 aQ1Q2 1 Q1Q3 1

Q2Q3

"2
b

 5 9a 12

"2
2 7b  nJ 5 13.37 nJ

PRACTICE EXERCISE 4.14

Point charges Q1 5 1 nC, Q2 5 22 nC, Q3 5 3 nC, and Q4 5 24 nC are posi-
tioned one at a time and in that order at 10, 0, 0 2 , 11, 0, 0 2 , 10, 0, 21 2 , and 10, 0, 1 2 , 
 respectively. Calculate the energy in the system after each charge is positioned.

Answer:   0, 218 nJ, 229.18 nJ, 268.27 nJ.

A charge distribution with spherical symmetry has density

rv 5 cro,
0,
      

0 # r # R
r . R

Determine V everywhere and the energy stored in region r , R.

Solution:
The D field has already been found in Section 4.6D using Gauss’s law.

(a) For r $  R, E 5
roR3

3eor2 ar.

Once E is known, V is determined as

V 5 23  E # d l 5 2
roR3

3eo
 3  

1
r2 dr 

 5
roR3

3eor
1 C1,  r $  R

Since V 1r 5 ` 2 5 0, C1 5 0.

(b) For r #  R, E 5
ror
3eo

 ar.

EXAMPLE 4.15
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Hence,

 V 5 23  E # d l 5 2
ro

3eo
 3  r dr

 5 2
ror2

6eo
1 C2

From part (a) V 1r 5 R 2 5
roR2

3eo
. Hence,

R2ro

3eo
5 2

R2ro

6eo
1 C2 S  C2 5

R2ro

2eo

and

V 5
ro

6eo
 13R2 2 r2 2

Thus from parts (a) and (b)

V 5 ≥
roR3

3eor
, r $ R

ro

6eo
 13R2 2 r2 2 , r # R

(c) The energy stored is given by

W 5
1
2

 3
v
 D # E dv 5

1
2

 eo 3
v
 E2 dv

For r #  R,

E 5
ror
3eo

 ar

Hence,

 W 5
1
2

 eo
ro

2

9eo
2 3

R

r50
 3

p

u50
 3

2p

f50
 r2 # r2 sin u df du dr

 5
ro

2

18eo
 4p # r5

5
 `

0

R

5
2pro

2 R5

45eo
 J

PRACTICE EXERCISE 4.15

If V 5 x 2 y 1 xy 1 2z V, find E at 11, 2, 3 2  and the electrostatic energy stored in a 
cube of side 2 m centered at the origin.

Answer:   23ax 2 2az V/m, 0.2358 nJ.
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†4.11 APPLICATION NOTE—ELECTROSTATIC DISCHARGE

Electrostatic discharge (ESD) (or static electricity, as it is commonly known) refers to the 
sudden transfer (discharge) of static charge between objects at different electrostatic poten-
tials. A good example is the “zap” one feels after walking on a synthetic carpet and then 
touching a metal doorknob.

ESD belongs to a family of electrical problems known as electrical overstress (EOS). 
Other members of the EOS family include lightning and electromagnetic pulses (EMPs). 
ESD poses a serious threat to electronic devices and affects the operation of the systems 
that contain those devices. An ESD can destroy an integrated circuit (IC), shut down a 
computer system, cause a fuel tank to explode, and so on. ESD is a rapid-discharge event 
that transfers a finite amount of charge between two bodies at different potentials. ESD 
costs industry many billions of dollars annually. The damage to an IC depends on the 
current densities and voltage gradients developed during the event. The harmful effects 
of ESD are now recognized as a major contributor to poor product yield and long-term 
unreliability in many electronic assemblies. Most electronics companies now regard all 
semiconductor devices as ESD sensitive. For this reason, a good understanding of ESD is 
required in industry. It is considered the responsibility of the design engineer to ensure that 
electronic systems are designed and protected against damage from ESD.

What causes ESD? Static charge is a result of an unbalanced electrical charge at rest. For 
example, it is created by insulator surfaces rubbing together or pulling apart. One surface 
gains electrons, while the other loses electrons. If the charge transfer causes an excess of 
electrons on an object, the charge is negative. On the other hand, a deficiency of electrons on 
the object makes the static charge positive. When a static charge moves from one surface to 
another, it becomes ESD. ESD events occur to balance the charge between two objects. The 
movement of these charges often occurs rapidly and randomly, leading to high currents.

ESD can occur in one of the following four ways:

• A charged body touches a device such as an IC.
• A charged device touches a grounded surface.
• A charged machine touches a device.
• An electrostatic field induces a voltage across a dielectric that is sufficient to cause 

breakdown.

There are two sources of ESD-generated events: people and equipment. ESD from a 
person can vary depending on footwear, posture (standing or sitting), and what the person 
has in his or her hand (metal or dielectric). The capacitance of a person could double if 
the individual were sitting instead of standing. The generated voltage is the driving force 
behind the ESD event. For example, walking across a synthetic carpet on a dry day may 
generate a potential of 20 kV on the person’s body.

An ESD event takes place in the following four stages.

1. Charge generation: This could be triboelectricity, induction, or conduction. 
Triboelectricity requires physical contact between two different materials or the rubbing 
 together of two materials. For example, a person who walks across a synthetic carpet 
becomes charged by the process of triboelectrification. Fundamental electrostatics tells us 
that some materials tend to charge positively, while others tend to charge negatively. The 
triboelectric series (see Table 4.1) summarizes this propensity. A material near the top of 
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160 CHAPTER 4 ELECTROSTATIC FIELDS

Material Polarity of Charge

Air �

Human hands
Rabbit fur
Glass
Mica 
Human hair
Fur
Lead
Silk
Aluminum
Paper
Cotton
Steel
Wood
Amber
Wax
Hard rubber
Nickel, copper
Gold
Polyester
Polyethylene
PVC (vinyl)
Silicon
Te�on �

TABLE 4.1 The Triboelectric Series

Table 4.1 is charged positively when rubbed by a material below it. For example, comb-
ing your hair with a hard rubber comb leaves your hair positively charged and the comb 
negatively charged. Inductive charging takes place when a conducting object comes close 
to a charged object and is then removed. Conductive charging, which involves the physical 
contact and balancing of voltage between two objects at different potentials, often occurs 
during automated testing.

2. Charge transfer: This is the second stage in an ESD event. Charge transfers from the 
higher potential body to the lower potential body until the potentials between them are 
equal. Charge transfer is characterized by the capacitance of the two bodies involved and 
the impedance between them.

3. Device response: At this stage, we analyze how a circuit responds to a pulse and 
how it withstands the redistribution of charge. When an ESD event begins, charge starts to 
redistribute, and this movement of charge generates currents and induces voltages. 

4. Device failure: The last stage involves assessing the kind of failure, if any. This is 
when we determine whether the device survived. There are three kinds of failure: hard 
failure (i.e., physical destruction), soft failure, and latent failure.

The importance of ESD has led standards organizations to develop guidelines for 
control and prevention of ESD. The ESD Association has developed a standard known as 
ANSI/ESD S20.20 (2007) to establish and maintain ESD control. The standard identifies 
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4.11 Application Note—Electrostatic Discharge 161

and describes key measurement processes to qualify a company’s ESD control program. 
Here is a short list of dos and don’ts.

 • Treat everything as static sensitive.
 • Touch something grounded before handling electronic assemblies or components.
 • Wear a grounded wrist strap whenever possible (see Figure 4.23).

Power
receptacle

Power
receptacle

Electrical
equipment

Workbench

ESD-protective
floor mat
(optional)

ESD-protective
work surface

Ground point
Common point

ground bus

Ground
point

R3

R2

R1
Wrist strap

G2 Earth ground

G1
Surface

equipment
ground

Equipment ground
(green wire)

FIGURE 4.24 A typical ESD-protected workstation.

(b)(a)

FIGURE 4.23 (a) Wrist strap. (b) Foot grounders.
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162 CHAPTER 4 ELECTROSTATIC FIELDS

 • Keep the relative humidity at 40% or greater.
 • Don’t touch any leads, pins, or traces when handling charged devices.
 • Don’t move around a lot.
 • Don’t touch electronic devices if you are getting static discharges.

A static-control wrist strap is an inexpensive way to minimize the risk of ESD. Use of 
garments designed to protect electronic component assembly operations from damage due 
to static electricity has increased dramatically.

Today, design for ESD protection is critical but difficult owing to the reduction in 
device sizes, high operating speeds, factory automation, and uncontrolled user environ-
ments. ESD protection of devices involves minimizing the environmental exposure by 
providing means to minimize charge generation and charge transfer. It is applied dur-
ing production,  transportation, and handling of most electronic products. A typical 
ESD-protected workstation is portrayed in Figure 4.24. Electronic devices are protected 
against ESD by a strategy to discharge ESD events that may occur when the device is 
exposed to ESD.

% This script allows the user to input a number of charges 
% and compute the electric field at a particular coordinate
% observation point due to these charges
clear

n = input(‛Enter number of charges in the system... \n >  ‛);
if isempty(n); n = 1; end
Q=zeros(n,4);     % create a matrix of zeros, with n rows 
           % and 4 columns

r=input(‛Enter observation location [x y z]... \n >  ‛);
if isempty(r); r = [0 0 0]; end

% loop through all the charges that the user input
% and collect the observation points for each charge
for index=1:n,
    disp(sprintf(‛Enter position of charge number ‛));
    disp(sprintf(‛%d in the format [x y z]...‛,index));
    Q(index,1:3) = input(‛>  ‛);
    disp(sprintf(‛Enter the charge value of charge ‛));
    disp(sprintf(‛number %d...‛,index));
    Q(index,4) = input(‛>  ‛);
end

% add the E-field at the observation point due to all charges
Etotal=0;   % set the initial total field sum to zero
for index=1:n,
  rtemp=r-Q(index,1:3);
  rtemp_unitvector = rtemp/norm(rtemp);

MATLAB 4.1
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% This script computes the results of example 4.5 by 
% numerical integration 
clear
format short   % prints only 6 decimal places

% Part (a) Computation of total charge
% prompt user for the integration increment used by the 
% summation loop
dx = input(‛Enter the integration increment dx... \n > ‛);  
dy = input(‛Enter the integration increment dy... \n > ‛);  

% perform the double integral
total_charge=0;
for x=0:dx:1,  % loop through 0 <= x <= 1
    for y=0:dy:1,   % loop through 0 <= x <= 1
        total_charge=rho_s_fun(x,y)*dx*dy+total_charge;
    end
end
% Display results
disp(sprintf(‛The total charge computed by manual double‛));
disp(sprintf(‛ integration is %d nC‛,total_charge))
% Double integral evaluation using the built-in 
% function dblquad
% The user must write the integrand function as a 
% separate file, in this case rho_s_fun
total_charge=dblquad(@rho_s_fun, 0, 1, 0, 1);
disp(sprintf(‛The total charge computed by the functional‛))
disp(sprintf(‛ double integration is %d nC‛,total_charge))
% Part (b) Evaluation of electric field
% perform the double integral
Etotal=0;   % initial sum
for x=0:dx:1,
    for y=0:dy:1,
        rminusrprime=[-x -y 5];   % | r - rprime |
        numerator=rho_s_fun(x,y)*1e-9*dx*dy*rminusrprime;   
             % the 1e-9 is because the charge is in nC

  % electric field due to a charge 
  Etemp=Q(index,4)/(4*pi*8.86e-12*(norm(rtemp))^2)*rtemp_unit-
vector;
  Etotal=Etemp+Etotal; % add the partial sums to the total
end
% Display output
disp(sprintf(‛The total electric field at point [x y z] ‛))
disp(sprintf(‛ = [%d %d %d] is ‛, r(1), r(2), r(3)))
Etotal

MATLAB 4.2
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164 CHAPTER 4 ELECTROSTATIC FIELDS

        denominator=4*pi*1e-9/(36*pi)*norm(rminusrprime)^3;  
             % | r - rprime | ^ 3
        Etotal=Etotal+numerator/denominator;  
          % add partial sum to initial sum
    end
end
% Display results
disp(sprintf(‛The electric field computed by manual double‛));
disp(sprintf(‛ integration is (%d, %d, %d) V/m‛,...
    Etotal(1), Etotal(2), Etotal(3)))

 1. The two fundamental laws for electrostatic fields (Coulomb’s and Gauss’s) are pre-
sented in this chapter. Coulomb’s law of force states that

F 5
Q1Q2

4peoR2 aR

 2.  Based on Coulomb’s law, we define the electric field intensity E as the force per unit 
charge; that is,

E 5
Q

4peoR2 aR 5
Q R

4peoR3  1point charge only 2

 3. For a continuous charge distribution, the total charge is given by

  Q 5 3
L

 rL dl  for line charge

 Q 5 3
S

 rS dS  for surface charge

 Q 5 3
v
 rv dv  for volume charge

 The E field due to a continuous charge distribution is obtained from the formula for 
point charge by replacing Q with dQ 5 rL dl, dQ 5 rS dS or dQ 5 rv dv and inte-
grating over the line, surface, or volume, respectively.

 4. For an infinite line charge,

E 5
rL

2peor
 ar

SUMMARY
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 and for an infinite sheet of charge,

E 5
rS

2eo
 an

 5. The electric flux density D is related to the electric field intensity (in free space) as

D 5 eoE

 or

rv 5 = # D  1 first Maxwell equation to be derived 2

   When charge distribution is symmetric, so that a Gaussian surface (where D 5 Dnan 
is constant) can be found, Gauss’s law is useful in determining D; that is,

Dn C
S
 dS 5 Qenc  or  Dn 5

Qenc

S

 7.  The total work done, or the electric potential energy, to move a point charge Q from 
point A to B in an electric field E is

W 5 2Q 3
B

A
 E # d l

 8. The potential at r due to a point charge Q at r is

V 1r 2 5
Q

4peo 0 r 2 r9 0 1 C

   where C is evaluated at a given reference potential point; for example, C 5 0 if 
V 1r S  ` 2 5 0. To determine the potential due to a continuous charge distribu-
tion, we replace Q in the formula for point charge by dQ 5 rL dl, dQ 5 rS dS, or 
dQ 5 rv dv and integrate over the line, surface, or volume, respectively.
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 Th e electric fl ux through a surface S is

� 5 3
S
 D # dS

 6.  Gauss’s law states that the net electric flux penetrating a closed surface is equal to the 
total charge enclosed, that is, � 5 Qenc. Hence,

� 5 C
S
 D # dS 5 Qenc 5 3

v
 rv dv
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 9.  If the charge distribution is not known, but the field intensity E is given, we find the 
potential by using

V 5 23
L
 E # d l 1 C

10. The potential difference VAB, the potential at B with reference to A, is

VAB 5 23
B

A
 E # d l 5

W
Q

5 VB 2 VA

11.  Since an electrostatic field is conservative (the net work done along a closed path in a 
static E field is zero),

C
L
 E # d l 5 0

  or

= 3 E 5 0  1second Maxwell equation to be derived 2

12. Given the potential field, the corresponding electric field is found by using

E 5 2=V

13.  For an electric dipole centered at r with dipole moment p, the potential at r is 
given by

V 1r 2 5
p # 1r 2 r9 2

4peo 0 r 2 r9 0 3

14.  The flux density D is tangential to the electric flux lines at every point. An equipoten-
tial surface (or line) is one on which V 5 constant. At every point, the equipotential 
line is orthogonal to the electric flux line.

15. The electrostatic energy due to n point charges is

WE 5
1
2

 a
n

k51
 QkVk

  For a continuous volume charge distribution,

WE 5
1
2

 3
v
 D # E dv 5

1
2

 3
v
 eo 0E 0 2 dv
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16.  Electrostatic discharge (ESD) refers to the sudden transfer of static charge 
between objects at different electrostatic potentials. Since all semiconductor 
devices are regarded as ESD sensitive, a good understandng of ESD is required 
in industry. 

4.1 Point charges Q1 5 1 nC and Q2 5 2 nC are at a distance apart. Which of the following 
statements are incorrect?

(a) The force on Q1 is repulsive.
(b) The force on Q2 is the same in magnitude as that on Q1.
(c) As the distance between them decreases, the force on Q1 increases linearly.
(d) The force on Q2 is along the line joining them.
(e)  A point charge Q3 5 23 nC located at the midpoint between Q1 and Q2 experiences 

no net force.

 4.2 Plane z 5 10 m carries charge 20 nC/m2. The electric field intensity at the origin is

(a) 210 az V/m (c) 272p az V/m
(b) 218p az V/m (d) 2360p az V/m

 4.3 Point charges 30 nC, 220 nC, and 10 nC are located at 121, 0, 2 2 , 10, 0, 0 2 , and 11, 5, 21 2 , 
respectively. The total flux leaving a cube of side 6 m centered at the origin is

(a) 220 nC (d) 30 nC
(b) 10 nC (e) 60 nC
(c) 20 nC

 4.4 The electric flux density on a spherical surface r 5 b is the same for a point charge Q 
 located at the origin and for charge Q uniformly distributed on surface r 5 a 1a , b 2 .
(a) Yes (c) Not necessarily
(b) No

 4.5 The work done by the force F 5 4ax 2 3ay 1 2az N in giving a 1 nC charge a displace-
ment of 10ax 1 2ay 2 7az m is

(a) 103 nJ (c) 64 nJ
(b) 60 nJ (d) 20 nJ

 4.6 By saying that the electrostatic field is conservative, we do not mean that

(a) It is the gradient of a scalar potential.
(b) Its circulation is identically zero.
(c) Its curl is identically zero.
(d) The work done in a closed path inside the field is zero.
(e) The potential difference between any two points is zero.

REVIEW
QUESTIONS
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168 CHAPTER 4 ELECTROSTATIC FIELDS

 4.7 Suppose a uniform electric field exists in the room in which you are working, such that 
the lines of force are horizontal and at right angles to one wall. As you walk toward the 
wall from which the lines of force emerge into the room, are you walking toward

(a) points of higher potential?
(b) points of lower potential?
(c) points of the same potential (equipotential line)?

 4.8 A charge Q is uniformly distributed throughout a sphere of radius a. Taking the potential 
at infinity as zero, the potential at r 5 b , a is

(a) 23
b

`

 
Qr

4peoa3 dr

(b) 23
b

`

 
Q

4peor2 dr

(c) 23
a

`

 
Q

4peor2 dr 2 3
b

a
 

Qr
4peoa3 dr

(d) 23
a

`

 
Q

4peor3 dr

 4.9 A potential field is given by V 5 3x2y 2 yz. Which of the following is not true?

(a) At point 11, 0, 21 2 , V and E vanish.
(b) x2y 5 1 is an equipotential line on the xy-plane.
(c) The equipotential surface V 5 28 passes through point P2, 21, 4 2 .
(d) The electric field at P is 12ax 2 8ay 2 az V/m.
(e)  A unit normal to the equipotential surface V 5 28 at P is 20.83ax 1 0.55ay1 

0.07az.

4.10 An electric potential field is produced by point charges 1 mC and 4 mC located at 
122, 1, 5 2  and 11, 3, 21 2 , respectively. The energy stored in the field is

(a) 2.57 mJ (c) 10.28 mJ
(b) 5.14 mJ (d) None of the above

Answers:  4.1c,e, 4.2d, 4.3b, 4.4a, 4.5d, 4.6e, 4.7a, 4.8c, 4.9a, 4.10b.

Section 4.2—Coulomb’s Law and Field Intensity

   4.1 Point charges Q1 5 5 mC and Q2 5 24 mC are placed at 13, 2, 1 2  and 124, 0, 6 2 , 
 respectively. Determine the force on Q1.

   4.2 Point charges Q1 and Q2 are, respectively, located at 14, 0, 23 2  and 12, 0, 1 2 . If 
Q2 5 4 nC, find Q1 such that

(a) The E at 15, 0, 6 2  has no z-compone
(b) The force on a test charge at 15, 0, 6 2  has no x-component.

PROBLEMS
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Problems 169

   4.3 A point Q is located at (a, 0, 0), while another charge Q is at (a, 0, 0). Find E at:  
(a) (0, 0, 0) (b) (0, a, 0), (c) (a, 0, a).

   4.4 Determine the electric field intensity required to levitate a body 2 kg in mass and 
charged with 4 mC.

Section 4.3— Electric Fields due to Continuous Charge Distributions

   4.5 Determine the total charge

(a) On line 0 , x , 5 m if rL 5 12x2 mC/m

(b) On the cylinder r 5 3, 0 , z , 4 m if rS 5 rz2 nC/m2

(c) Within the sphere r 5 4 m if rv 5
10

r sin u
 C/m3

   4.6 A cube is defined by 0  x  a, 0  y  a, and 0  z  a. If it is charged with  

rv 5
rox
a

, where ro is a constant, calculate the total charge in the cube.

   4.7 A volume charge with density rv 5 5r2z mC/m3 exists in a region defined by 0  r  
2, 0  z  1, 30    90. Calculate the total charge in the region.

   4.8 Given that rs 5 6xy C/m2, calculate the total charge on the triangular region in  
Figure 4.25.

   4.9 A wedge-shaped surface has its corners located at (0, 0, 4), (2, 0, 4), and (2, 3, 4). If the 
surface has charge distribution with rs 5 10x2 yz   mC/m2, find the total charge on the 
surface.

 4.10 Given that rv 5 4r2 z cos f nC/m3, find the total charge contained in a wedge defined 
by 0  r  2, 0    /4, 0  z  1.

 4.11 Line 0  x  1 m is charged with density 12x2 nC/m. (a) Find the total charge.  
(b) Determine the electric field intensity at (0, 0, 1000 m).

  4.12 A uniform charge 12 mC/m is formed on a loop described by x2 1 y2 5 9 on the z 5 0  
plane. Determine the force exerted on a 4 mC point charge at (0, 0, 4).

  4.13 An annular disk of inner radius a and outer radius b is placed on the xy-plane and 
centered at the origin. If the disk carries uniform charge with density rs, find E at 
(0, 0, h).

FIGURE 4.25 For Problem 4.8.

y

x
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0 42

04_Sadiku_Ch04.indd   169 02/11/17   2:05 PM



170 CHAPTER 4 ELECTROSTATIC FIELDS

  4.14 (a)  An infinite sheet at z 5 0 has a uniform charge density 12 nC/m2. Find E on both 
sides of the planar sheet. 

  (b)  A second sheet at z 5 4 has a uniform charge density of –12 nC/m2. Show that E 
exists only between the planar sheets. Find E.

  4.15 Plane x 1 2y 5 5 carries charge rS 5 6 nC/m2. Determine E at 121, 0, 1 2 .
  4.16 Plane x 5 0 has a uniform charge density rs, while plane x 5 a has 2 rs. Determine the 

electric field intensity in regions (a) x , 0, (b) 0 , x , a, (c) x . a.

  4.17 Three surface charge distributions are located in free space as follows: 10 mC/m2 at 
x 5 2, 220 mC/m2 at y 5 23, and 30 mC/m2 at z 5 5. Determine E at (a) P (5, 1, 4), 
(b) R(0, 2, 1), (c) Q (3, 4, 10).

  4.18 The gravitation force between two bodies of masses m1 and m2 is

Fg 5
Gm1m2

r2 ar

  where G 5 6.67 3 10211 N 1m/kg 2 2. Find the ratio of the electrostatic and gravitational 
forces between two electrons.

Section 4.4—Electric Flux Density

*4.19 State Gauss’s law. Deduce Coulomb’s law from Gauss’s law, thereby affirming that Gauss’s 
law is an alternative statement of Coulomb’s law and that Coulomb’s law is implicit in 
Maxwell’s equation = # D 5 rv.

  4.20 Three point charges are located in the z 5 0 plane: a charge 1Q at point (1, 0), a 
charge 1Q at point (1, 0), and a charge 2Q at point (0, 1). Determine the electric flux 
density at (0, 0).

  4.21 A ring placed along y2 1 z2 5 4, x 5 0 carries a uniform charge of 5 mC/m.

(a) Find D at P 13, 0, 0 2 .
(b)  If two identical point charges Q are placed at 10, 23, 0 2  and 10, 3, 0 2  in addition to 

the ring, find the value of Q such that D 5 0 at P.

 4.22 The electric flux density in free space is given by D 5 y2ax 1 2xyay 2 4zaz   nC/m2(a). 
Find the volume charge density. (b) Determine the flux through surface x 5 3, 0  y  6, 0  
 z  5.

 4.23 In free space, E 5 12rzcos far 2 6rzsin faf 1 6r2cos faz V/m. Find the electric flux 
through surface  5 90  0r2, 0z5.

 4.24 If D 5 sinusinfar 1 cosusinfau 1 cos faf nC/m2, find: (a) the charge density at  
(2, 30 , 60 ), (b) the flux through r = 2, 0  u  30 , 0    60 .
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Sections 4.5 and 4.6—Gauss’s Law and Applications

  4.25 Determine the charge density due to each of the following electric flux densities:

(a) D 5 8xy ax 1 4x2 ay C/m2

(b) D 5 4r sin f ar 1 2r cos f af 1 2z2az C/m2

(c) D 5
2 cos u

r3  ar 1
sin u

r3  au C/m2

 4.26 A cube with 2 m sides (0  x, y, z  2 m) carries a charge with density rv 5 12xyz mC/m3. 
(a) Calculate the total charge. (b) Find the total outward flux from the cube.

  4.27 If spherical surfaces r 5 1 m and r 5 2 m, respectively, carry uniform surface charge 
densities 8 nC/m2 and 6 mC/m2, find D at r 5 3 m.

  4.28 A sphere of radius a is centered at the origin. If  rv 5 e 5r1/2,
0,
    

0 , r , a
otherwise

.
  Determine E everywhere.
  4.29 Let D 5 2xy ax 1 x2 ay C/m2 and find

(a) The volume charge density rv.
(b) The flux through surface 0 , x , 1, 0 , z , 1, y 5 1.
(c) The total charge contained in the region 0 , x , 1, 0 , y , 1, 0 , z , 1.

  4.30 In a certain region, the electric field is given by

D 5 2r 1z 1 1 2cos f ar 2 r 1z 1 1 2sin f af 1 r2 cos f az  mC/m2

(a) Find the charge density.
(b)  Calculate the total charge enclosed by the volume 0 , r , 2, 0 , f , p/2, 

0 , z , 4.
(c)  Confirm Gauss’s law by finding the net flux through the surface of the volume in (b).

*4.31 The Thomson model of a hydrogen atom is a sphere of positive charge with an electron 
(a point charge) at its center. The total positive charge equals the electronic charge e. 
Prove that when the electron is at a distance r from the center of the sphere of positive 
charge, it is attracted with a force

F 5
e2 r

4peoR3

  where R is the radius of the sphere.

4.32 A long coaxial cable has an inner conductor with radius a and outer conductor with 
radius b. If the inner conductor has rs 5 ro/r , where ro is a constant, determine E 
everywhere.
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 4.33 Let

(a) Find the net flux crossing surface r 5 2 m and r 5 6 m.

(b) Determine D at r 5 1 m and r 5 5 m.

  4.34 A spherical region of radius a has total charge Q. If the charge is uniformly distributed, 
apply Gauss's law to find D both inside and outside the sphere.

Sections 4.7 and 4.8—Electric Potential and Relationship with E

  4.35 Two point charges Q 5 2 nC and Q 5 24 nC are located at (1, 0, 3) and 122, 1, 5 2 , 
 respectively. Determine the potential at P 11, 22, 3 2 .

  4.36 A charge of 8 nC is placed at each of the four corners of a square of sides 4 cm long.  
Calculate the electrical potential at the point 3 cm above the center of the square.

  4.37 (a)  A total charge Q 5 60 mC is split into two equal charges located at 180 intervals 
around a circular loop of radius 4 m. Find the potential at the center of the loop.

(b)  If Q is split into three equal charges spaced at 120 intervals around the loop, find 
the potential at the center.

(c) If in the limit rL 5
Q

8p
, find the potential at the center.

  4.38 Three point charges Q1 5 1 mC, Q2 5 22 mC, and Q3 5 3 mC are, respectively, 
 located at 10, 0, 4 2 , 122, 5, 1 2 , and 13, 24, 6 2 .
(a) Find the potential VP at P 121, 1, 2 2 .
(b) Calculate the potential difference VPQ if Q is 11, 2, 3 2 .

 4.39 The potential distribution in free space is given by

  V 5 r2e2z sin f V

  Calculate the electric field strength at (4, /4, –1).

  4.40 V 5 x2y 1z 1 3 2  V. Find

(a) E at 13, 4, 26 2
(b) the charge within the cube 0 , x , 1, 0 , y , 1, 0 , z , 1.

  4.41 The volume charge density inside an atomic nucleus of radius a is rv 5 roa1 2 r2

a2 b     

where ro is a constant.

  (a) Calculate the total charge.
  (b) Determine E and V outside the nucleus.
  (c) Determine E and V inside the nucleus.
  (d) Prove that E is maximum at r 5 0.745a.
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  4.42 Let charge Q be uniformly distributed on a circular ring defined by a , r , b and 
shown in Figure 4.26. Find D at (0, 0, h).

  4.43 If D 5 4xax210y2ay 1 z2az C/m2, find the charge density at P(1, 2, 3).

  4.44 A 10 nC charge is uniformly distributed over a spherical shell r 5 3 cm, and a 5 nC 
charge is uniformly distributed over another spherical shell r 5 5 cm. Find D for regions 
r , 3 cm, 3 cm , r , 5 cm, r . 5 cm.

  4.45 In free space, an electric field is given by

E 5 cE0Ar/aBar,  0 , r , a
0,  otherwise

  Calculate the volume charge density.

  4.46 The electric field intensity in free space is given by

E 5 2 xyz ax 1 x2z ay 1 x2y az V/m

  Calculate the amount of work necessary to move a 2 mC charge from (2, 1, 1) to (5, 1, 2).

  4.47 Given that E 5 12rzcosfar 2 6rzsinfaf 1 6r2cosfaz (a) find the volume charge 
density at A(2, 180º, –1), (b) calculate the work done in transferring a 10 mC charge 
from A to B(2, 0º, –1).

  4.48 In an electric field E 5 20r sin u ar 1 10r cos u au V/m, calculate the energy expended 
in transferring a 10 nC charge

(a) From A 15, 30°, 0° 2  to B 15, 90°, 0° 2
(b) From A to C 110, 30°, 0° 2
(c) From A to D 15, 30°, 60° 2
(d) From A to E 110, 90°, 60° 2

y

x

a

b

FIGURE 4.26 For Problem 4.42.
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  4.49 Let E 5
10
r2 a2 V/m. Find VAB, where A is (1, p/4, p/2) and B is (5, p, 0).

  4.50 In free space, E 5 20xax 1 40yay  10zaz V/m. Calculate the work done in transferring 
a 2 mC charge along the arc r 5 2, 0    /2 in the z 5 0 plane.

  4.51 A sheet of charge with density rs 5 40 nC/m2 occupies the x 5 0 plane. Determine the 
work done in moving a 10 mC charge from point A(3, 4, 1) to point B(1, 2, 6).

  4.52 For each of the following potential distributions, find the electric field intensity and the 
volume charge distribution:
(a) V 5 2x2 1 4y2

(b) V 5 10r2 sin f 1 6rz
(c) V 5 5r2 cos u sin f

  4.53 Let V 5 re2zsin f. (a) Find E. (b) Show that E is conservative.

  4.54 In free space, V 5
1
r3 sin u cos f. Find D at (1, 30, 60).

  4.55 Each of two concentric spherical shells has inner radius a and outer radius b. If the inner 
shell carries charge Q, while the outer shell carries charge Q, determine the potential 
difference Vab between the shells.

  4.56 A uniform surface charge with density rs exists on a hemispherical surface with r 5 a 
and u #  p/2. Calculate the electric potential at the center.

  4.57 If D 5 2r sin far2
cos f

2r
af C/m2, determine whether D is a genuine electric flux 

 density. Determine the flux crossing r 5 1, 0 # f # p/4, 0 , z , 1.

*4.58 (a)  Prove that when a particle of constant mass and charge is accelerated from rest in 
an electric field, its final velocity is proportional to the square root of the potential 
difference through which it is accelerated.

(b) Find the magnitude of the proportionality constant if the particle is an electron.
(c)  Through what voltage must an electron be accelerated, assuming no change in its mass, 

to require a velocity one-tenth that of light? (At such velocities, the mass of a body 
becomes appreciably larger than its “rest mass” and cannot be considered  constant.)

*4.59 An electron is projected with an initial velocity uo 5 107 m/s into the uniform field 
between the parallel plates of Figure 4.27. It enters the field midway between the plates. 
If the electron just misses the upper plate as it emerges from the field,

(a) find the electric field intensity.
(b) calculate the electron,s velocity as it emerges from the field. Neglect edge effects.

FIGURE 4.27 For Problem 4.59.
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Section 4.9—Electric Dipole and Flux Lines

  4.60 An electric dipole with p 5 paz C # m is placed at 1x, z 2 5 10, 0 2 . If the potential at  
(0, 1 nm) is 9 V, find the potential at (1 nm, 1 nm).

  4.61 Point charges Q and 2Q are located at 10, d/2, 0 2  and 10, 2d/2, 0 2 . Show that at point 
1r, u, f 2 , where r W d, 

V 5
Qd sin u sin f

4peor2

  Find the corresponding E field.

  4.62 A dipole has dipole moment p 5 2ax 1 6ay 2 4az  mC # m. If the dipole is located in 
free space at (2, 3, –1), find the potential at (4, 0, 1).

  4.63 A z-directed dipole has E in eq. (4.82). Determine the values of  that will make E have 
no z-component.

Section 4.10—Energy Density

  4.64 Determine the amount of work needed to transfer two charges of 40 nC and –50 nC 
from infinity to locations (0, 0, 1) and (2, 0, 0), respectively.

  4.65 If V 5 2x2 1 6y2 V in free space, find the energy stored in a volume defined by 
21 # x # 1, 21 # y # 1, and 21 # z # 1.

  4.66 Find the energy stored in the hemispherical region r # 2 m, 0 , u , p, 0 , f ,  p
where

E 5 2r sin u cos f ar 1 r cos u cos f au 2 r sin f af V/m

  exists.

  4.67 A spherical conductor of radius a carries a surface charge with density ro. Determine the 
potential energy in terms of a.

  4.68 In free space, E 5 y2ax 1 2xyay 2 4zaz  V/m. Determine the energy stored in the 
region defined by  0  x  2,  –1  y  1,  0  z  4.

  4.69 In free space, V 5 rez sin . (a) Find E. (b) Determine the energy stored in the region 
0  r  1, 0    2, 0  z  2.
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Electromagnetics is the branch of electrical engineering (or physics) that deals with the analysis and 
application of electric and magnetic fields. It is necessary for the understanding of all forms of light. 
Without an understanding of electromagnetics, there would be no radios, televisions, telephones, 
computers, or CD players.

The principles of electromagnetics (EM) are applied in various allied disciplines, such as 
electric machines, electromechanical energy conversion, radar meteorology, remote sensing, satellite 
communications, bioelectromagnetics, electromagnetic interference and compatibility, plasmas, 
and fiber optics. EM devices include electric motors and generators, transformers, electromagnets, 
magnetic levitation systems, antennas, radars, microwave ovens, microwave dishes, superconductors, 
and  electrocardiograms. The design of these devices requires a thorough knowledge of the laws and 
principles of EM.

EM is regarded as one of the more difficult disciplines in electrical engineering. One reason is 
that EM phenomena are rather abstract. But those who enjoy working with mathematics and are able 
to visualize the invisible should consider careers in EM, since few electrical engineers specialize in 
this area. To specialize in EM, one should consider taking courses such as Antennas, Microwaves, 
Wave Propagation, Electromagnetic Compatibility, and Computational Electromagnetics. Electrical 
engineers who specialize in EM are needed in the microwave industry, radio/TV broadcasting 
stations, electromagnetic research laboratories, and the communications industry.

CAREERS IN ELECTROMAGNETICS
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5.1 INTRODUCTION

5.2 PROPERTIES OF MATERIALS

In the last chapter, we considered electrostatic fields in free space or a space that has no 
materials in it. Thus what we have developed so far under electrostatics may be regarded as 
the “vacuum” field theory. By the same token, what we shall develop in this chapter may be 
regarded as the theory of electric phenomena in material space. As will soon be evident, most of 
the formulas derived in Chapter 4 are still applicable, though some may require modification.

Just as electric fields can exist in free space, they can exist in material media. Materials 
are broadly classified in terms of their electrical properties as conductors and nonconduc-
tors. Nonconducting materials are usually referred to as insulators or dielectrics. A brief 
discussion of the electrical properties of materials in general will be given to provide a basis 
for  understanding the concepts of conduction, electric current, and polarization. Further 
discussion will be on some properties of dielectric materials such as susceptibility, permit-
tivity, linearity, isotropy, homogeneity, dielectric strength, and relaxation time. The concept 
of boundary conditions for electric fields existing in two different media will be  introduced.

In a broad sense, materials may be classified in terms of their conductivity s, in mhos per 
meter (



/m) or, more usually siemens per meter (S/m), as conductors and nonconductors, 
or technically as metals and insulators (or dielectrics). The conductivity of a material usually 

ELECTRIC FIELDS IN 
MATERIAL SPACE

Knowledge will forever govern ignorance:  and a people who mean to be their own 

Governors, must arm themselves with the power which knowledge gives.
—JAMES MADISON

5
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A discussion of the electrical properties of materials may seem out of place in a text of this 
kind. But questions such as why an electron does not leave a conductor surface, why a cur-
rent-carrying wire remains uncharged, why materials behave differently in an electric field, 
and why waves travel with less speed in conductors than in dielectrics are easily answered 
by considering the electrical properties of materials. A thorough discussion of this subject is 
usually found in texts on physical electronics. Here, a brief discussion will suffice to help us 
understand the mechanism by which materials influence an electric field.
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depends on temperature and frequency. A material with high conductivity 1s W 1 2  is referred 
to as a metal, whereas one with low conductivity 1s V 1 2  is referred to as an insulator. A 
material whose conductivity lies somewhere between those of metals and insulators is called a 
semiconductor. The values of conductivity of some common materials are shown in Table B.1 in 
Appendix B. From this table, it is clear that materials such as  copper and aluminum are metals, 
silicon and germanium are semiconductors, and glass and rubber are insulators.

The conductivity of metals generally increases with decrease in temperature. At tem-
peratures near absolute zero 1T 5 0 K 2 , some conductors exhibit infinite conductivity and 
are called superconductors. Lead and aluminum are typical examples of such metals. The 
conductivity of lead at 4 K is of the order of 1020 S/m. The interested reader is referred to 
the literature on superconductivity.1

We shall be concerned only with metals and insulators in this text. Microscopically, the 
major difference between a metal and an insulator lies in the number of electrons available 
for conduction of current. Dielectric materials have few electrons available for conduction 
of current, whereas metals have an abundance of free electrons. Further discussion on the 
behavior of conductors and dielectrics in an electric field will be given in subsequent sections.

5.3 CONVECTION AND CONDUCTION CURRENTS

Electric voltage (or potential difference) and current are two fundamental quantities in 
electrical engineering. We considered potential in the last chapter. Before examining how 
the electric field behaves in a conductor or dielectric, it is appropriate to consider electric 
current. Electric current is generally caused by the motion of electric charges.

The current (in amperes) through a given area is the electric charge passing through 
the area per unit time.

That is,

 I 5
dQ
dt

 (5.1)

Thus in a current of one ampere, charge is being transferred at a rate of one coulomb per 
second.

We now introduce the concept of current density J. If current DI flows through a  planar 
surface DS, the current density is

J 5
DI
DS

1 The August 1989 issue of the Proceedings of IEEE was devoted to “Applications of Superconductivity.”
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or

 DI 5 JDS (5.2)

assuming that the current density is perpendicular to the surface. If the current density is 
not normal to the surface,

 DI 5 J # DS (5.3)

Thus, the total current flowing through a surface S is

 I 5 3
S
 J # dS (5.4)

Depending on how I is produced, there are different kinds of current density: convection 
current density, conduction current density, and displacement current density. We will 
consider convection and conduction current densities here; displacement current density 
will be considered in Chapter 9. What we need to keep in mind is that eq. (5.4) applies to 
any kind of current density. Compared with the general definition of flux in eq. (3.13), eq. 
(5.4) shows that the current I through S is merely the flux of the current density J.

CASE A: CONVECTION CURRENT
Convection current, as distinct from conduction current, does not involve conductors and 
consequently does not satisfy Ohm’s law. It occurs when current flows through an insulat-
ing medium such as liquid, rarefied gas, or a vacuum. A beam of electrons in a vacuum 
tube, for example, is a convection current.

Consider a filament of Figure 5.1. If there is a flow of charge, of density rv, at velocity 
u 5 uyay, from eq. (5.1), the current through the filament is

 DI 5
DQ
Dt

5 rv DS 
Dy
Dt

5 rv DS uy (5.5)

The current density at a given point is the current through a unit normal area at that point.

The y-directed current density Jy is given by

 Jy 5
DI
DS

5 rvuy (5.6)

z

y

x
y

u

FIGURE 5.1 Current in a filament.
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Hence, in general

 J 5 rvu (5.7)

The current I is the convection current and J is the convection current density in amperes 
per square meter (A/m2).

CASE B: CONDUCTION CURRENT
Conduction current requires a conductor. A conductor is characterized by a large number 
of free electrons that provide conduction current due to an impressed electric field. When 
an electric field E is applied, the force on an electron with charge 2e is

 F 5 2eE (5.8)

Since the electron is not in free space, it will not experience an average acceleration 
under the influence of the electric field. Rather, it suffers constant collisions with 
the atomic lattice and drifts from one atom to another. If an electron with mass m is 
moving in an electric field E with an average drift velocity u, according to Newton’s 
law, the average change in momentum of the free electron must match the applied 
force. Thus,

 
mu
t

5 2eE (5.9a)

or

 u 5 2
et

m  E (5.9b)

where t is the average time interval between collisions. This indicates that the drift velocity 
of the electron is directly proportional to the applied field. If there are n electrons per unit 
volume, the electronic charge density is given by

 rv 5 2ne (5.10)

Thus the conduction current density is

J 5 rvu 5
ne2t

m  E 5 sE

or

 J 5 sE (5.11)

where s 5 ne2t/m is the conductivity of the conductor. As mentioned earlier, the values 
of s for common materials are provided in Table B.1 in Appendix B. The relationship in 
eq. (5.11) is known as the point form of Ohm’s law.
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CASE A: ISOLATED CONDUCTOR 
Consider an isolated conductor, such as shown in Figure 5.2(a). When an external electric 
field Ee is applied, the  positive free charges are pushed along the same direction as the 
applied field, while the negative free charges move in the opposite direction. This charge 
migration takes place very quickly. The free charges do two things. First, they accumulate 
on the surface of the conductor and form an induced surface charge. Second, the induced 
charges set up an internal induced field Ei, which cancels the externally applied field Ee. The 
result is illustrated in Figure 5.2(b). This leads to an important property of a conductor:

A perfect conductor (s  ) cannot contain an electrostatic field within it.

A conductor is called an equipotential body, implying that the potential is the same every-
where in the conductor. This is based on the fact that E 5 2=V 5 0.

Another way of looking at this is to consider Ohm’s law, J 5 sE. To maintain a finite 
current density J, in a perfect conductor 1s S  ` 2 , requires that the electric field inside 
the conductor s 5 ` vanish. In other words, E S  0 because s S  ` in a perfect con-
ductor. If some charges are introduced in the interior of such a conductor, the charges will 
move to the surface and redistribute themselves quickly in such a manner that the field 
inside the conductor vanishes. According to Gauss’s law, if E 5 0, the charge density rv 
must be zero. We conclude again that a perfect conductor cannot contain an electrostatic 
field within it. Under static conditions,

 E 5 0,  rv 5 0,  Vab 5 0 inside a conductor (5.12)

ρv  = 0

E = 0

Ee

Ee

Ee

Ei

� �

�

� �

� �

� �

�

� �

(a)

Ei

Ee

Ee

Ee� �

�

� �

�

� �

(b)

FIGURE 5.2 (a) An isolated conductor under the influence of an applied field. (b) A conductor 
has zero electric field under static conditions.

5.4 CONDUCTORS

05_Sadiku_Ch05.indd   181 23/09/17   1:15 PM

A conductor has an abundance of charge that is free to move. We will consider two cases 
involving a conductor. 
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where Vab is the potential difference between points a and b in the conductor. This implies 
that a conductor is equipotential medium since the electric potential is the same at every point.

CASE B: CONDUCTOR MAINTAINED AT A POTENTIAL 
We now consider a conductor whose ends are maintained at a potential difference V, as 
shown in Figure 5.3. Note that in this case, E 2 0 inside the conductor, as in Figure 5.2. 
What is the difference? There is no static equilibrium in Figure 5.3, since the conductor is 
not isolated but is wired to a source of electromotive force, which compels the free charges 
to move and prevents the eventual establishment of electrostatic equilibrium. Thus in the 
case of Figure 5.3, an electric field must exist inside the conductor to sustain the flow of 
current. As the electrons move, they encounter some damping forces called resistance. 
Based on Ohm’s law in eq. (5.11), we will derive the resistance of the conducting mate-
rial. Suppose the conductor has a uniform cross  section of area S and is of length . The 
direction of the electric field E produced is the same as the direction of the flow of positive 
charges or current I. This direction is opposite to the direction of the flow of electrons. The 

 E 5
V
,

 (5.13)

Since the conductor has a uniform cross section,

 J 5
I
S

 (5.14)

Substituting eqs. (5.11) and (5.13) into eq. (5.14) gives

 
I
S

5 sE 5
sV
,

 (5.15)

Hence,

 R 5
V
I

5
,

sS
 (5.16)

or

 R 5
rc,

S
 

S

FIGURE 5.3 A conductor of uniform cross 
 section under an applied E field.
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electric field applied is uniform, and its magnitude is given by
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where rc 5 1/s is the resistivity of the material. Equation (5.16) is useful in determining the 
resistance of any conductor of uniform cross section. If the cross section of the  conductor 
is not uniform, eq. (5.16) is not applicable. However, the basic definition of resistance R as 
the ratio of the potential difference V between the two ends of the conductor to the current 
I through the conductor still applies. Therefore, applying eqs. (4.60) and (5.4) gives the 
 resistance of a conductor of nonuniform cross section; that is,

 R 5
V
I

5
eL E # d l

eS sE # dS
 (5.17)

Note that the negative sign before V 5 2eE # d l is dropped in eq. (5.17) because 
eE # d l , 0 if I . 0. Equation (5.17) will not be utilized until we get to Section 6.5.

Power P (in watts) is defined as the rate of change of energy W (in joules) or force 
times velocity. Hence,

P 5 3
v
 rv dv E # u 5 3

v
 E # rvu dv

or

 P 5 3
v
 E # J dv (5.18)

which is known as Joule’s law. The power density wP (in W/m3) is given by the integrand 
in eq. (5.18); that is,

 wP 5
dP
dv

5 E # J 5 s 0E 0 2 (5.19)

For a conductor with uniform cross section, dv 5 dS dl, so eq. (5.18) becomes

P 5 3
L
 E dl 3

S
 J dS 5 VI

or

 P 5 I2R (5.20)

which is the more common form of Joule’s law in electric circuit theory.

If J 5
1
r3 12 cos u ar 1 sin u au 2  A/m2, calculate the current passing through

(a) A hemispherical shell of radius 20 cm, 0 , u , p/2, 0 , f , 2p
(b) A spherical shell of radius 10 cm

Solution:

EXAMPLE 5.1
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I 5 eS
 J # dS,  

  
where dS 5 r 2 sin u df du ar in this case.
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(a) I 5 3
p/2

u50
 3

2p

f50
 
1
r3 2 cos u r2 sin u df du `

r50.2

  5
2
r  2p 3

p/2

u50
 sin u d 1sin u 2 `

r50.2

  5
4p

0.2
 
sin2 u

2
`
p/2

0
5 10p 5 31.4 A

(b)  The only difference here is that we have 0 # u # p instead of 0 # u # p/2 and 
r 5 0.1 m. Hence,

I 5
4p

0.1
 
sin2 u

2
`
p

0
5 0

Alternatively, for this case

since = # J 5 0. We can show this:

= # J 5
1
r2 

'

'r
 c 2

r  cos u d 1
1

r sin u
 
'

'u
 c 1

r3 sin2 u d 5
22
r4  cos u 1

2
r4 cos u 5 0

PRACTICE EXERCISE 5.1

For the current density J  10z sin2 f ar A/m2, find the current through the cylindrical 
surface r  2, 1  z  5 m.

Answer: 754 A.

A typical example of convective charge transport is found in the Van de Graaff genera-
tor, where charge is transported on a moving belt from the base to the dome as shown in  
Figure 5.4. If a surface charge density 1027 C/m2 is transported by the belt at a velocity of  
2 m/s, calculate the charge collected in 5 s. Take the width of the belt as 10 cm.

Solution:
If rS 5 surface charge density, u 5 speed of the belt, and w 5 width of the belt, the 
 current on the dome is

I 5 rSuw

The total charge collected in t 5 5 s is

Q 5 It 5 rSuwt 5 1027 3 2 3 0.1 3 5

 5 100 nC

EXAMPLE 5.2
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I 5 AS
 J # dS 5 ev= # J dv 5 0
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PRACTICE EXERCISE 5.2

In a Van de Graaff generator, w  0.1 m, u  10 m/s, and from the dome to the 
ground there are leakage paths having a total resistance of 1014 . If the belt car-
ries charge 0.5 mC/m2, find the potential difference between the dome and the base.  
Note: In the steady state, the current through the leakage path is equal to the charge 
transported per unit time by the belt.

Answer: 50 mV. 

A wire of diameter 1 mm and conductivity 5 3 107 S/m has 1029 free electrons per cubic 
meter when an electric field of 10 mV/m is applied. Determine
(a) The charge density of free electrons
(b) The current density
(c) The current in the wire
(d) The drift velocity of the electrons (take the electronic charge as e 5 21.6 3 10219 C)

Solution:
(In this particular problem, convection and conduction currents are the same.)
(a) rv 5 ne 5 11029 2 121.6 3 10219 2 5 21.6 3 1010 C/m3

(b) J 5 sE 5 15 3 107 2 110 3 1023 2 5 500 kA/m2

(c) I 5 JS 5 15 3 105 2 apd2

4
b 5

5p

4
3 1026 3 105 5 0.393 A

(d) Since J 5 rvu, u 5
J

rv
5

5 3 105

1.6 3 1010 5 3.125 3 1025 m/s

EXAMPLE 5.3

C
C

C

C

I

M

FIGURE 5.4 Van de Graaff generator; for 
Example 5.2.
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PRACTICE EXERCISE 5.3

The free charge density in copper is 1.81  1010 C/m3. For a current density of 8  106 
A/m2, find the electric field intensity and the drift velocity. Hint: Refer to Table B.1 in 
Appendix B.

Answer: 0.138 V/m, 4.42  104 m/s.

A lead 1s 5 5 3 106 S/m 2  bar of square cross section has a hole bored along its length of 
4 m so that its cross section becomes that of Figure 5.5. Find the resistance between the 
square ends.

EXAMPLE 5.4

Solution:
Since the cross section of the bar is uniform, we may apply eq. (5.16); that is,

R 5
,

sS

where S 5 d2 2 pr2 5 32 2 pa1
2
b

2

5 a9 2
p

4
 b  cm2.

Hence,

R 5
4

5 3 106 19 2 p/4 2 3 1024 5 974 mV 

PRACTICE EXERCISE 5.4

If the hole in the lead bar of Example 5.4 is completely filled with copper 
(s  5.8  107 S/m), determine the resistance of the composite bar.

Answer: 461.7 m.

FIGURE 5.5 Cross section of the lead bar of Example 5.4.

05_Sadiku_Ch05.indd   186 20/11/17   7:48 PM



5.5 Polarization in Dielectrics 187

In Section 5.2, we noticed that the main difference between a conductor and a dielectric 
lies in the availability of free electrons in the outermost atomic shells to conduct current. 
Although the charges in a dielectric are not able to move about freely, they are bound by 
 finite forces, and we may certainly expect a displacement when an external force is applied.

To understand the macroscopic effect of an electric field on a dielectric, consider an 
atom of the dielectric as consisting of a negative charge 2Q (electron cloud) and a positive 
charge 1Q (nucleus) as in Figure 5.6(a). A similar picture can be adopted for a dielectric 
molecule; we can treat the nuclei in molecules as point charges and the electronic structure 
as a single cloud of negative charge. Since we have equal amounts of positive and nega-
tive charge, the whole atom or molecule is electrically neutral. When an electric field E 
is applied, the positive charge is displaced from its equilibrium position in the direction 
of E by the force F1 5 QE, while the negative charge is displaced in the opposite direc-
tion by the force F2 5 QE. A dipole results from the displacement of the charges, and the 
dielectric is said to be polarized. In the polarized state, the electron cloud is distorted by the 
applied electric field E. This distorted charge distribution is equivalent, by the principle of 
superposition, to the original distribution plus a dipole whose moment is

 p 5 Qd (5.21)

where d is the distance vector from 2Q to 1Q of the dipole as in Figure 5.6(b). If there are 
N dipoles in a volume Dv of the dielectric, the total dipole moment due to the electric field is

 Q1d1 1 Q2d2 1 . . . 1 QN dN 5 a
N

k51
 Qk dk (5.22)

As a measure of intensity of the polarization, we define polarization P (in coulombs per 
meter squared) as the dipole moment per unit volume of the dielectric; that is,

 P 5 lim
DvS0 

a
N

k51
 Qk dk

Dv
 (5.23)

Thus we conclude that the major effect of the electric field E on a dielectric is the cre-
ation of dipole moments that align themselves in the direction of E. This type of dielectric 

5.5 POLARIZATION IN DIELECTRICS

FIGURE 5.6 Polarization of a nonpolar atom or molecule.
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is said to be nonpolar. Examples of such dielectrics are hydrogen, oxygen, nitrogen, and the 
rare gases. Nonpolar dielectric molecules do not possess dipoles until the application of 
the electric field as we have noticed. Other types of molecule such as water, sulfur dioxide, 
hydrochloric acid, and polystyrene have built-in permanent dipoles that are randomly ori-
ented as shown in Figure 5.7(a) and are said to be polar. When an electric field E is applied 
to a polar molecule, the permanent dipole experiences a torque tending to align its dipole 
moment parallel with E as in Figure 5.7(b).

Let us now calculate the field due to a polarized dielectric. Consider the dielectric material 
shown in Figure 5.8 as consisting of dipoles with dipole moment P per unit volume. According 
to eq. (4.80), the potential dV at an exterior point O due to the dipole moment P dv is

 dV 5
P # aR dv r
4peoR2  (5.24)

where R2 5 1x 2 x r 2 2 1 1 y 2 y r 2 2 1 1z 2 z r 2 2 and R is the distance between the volume 
element dv at 1x r, y r, z r 2  and the field point O (x, y, z). We can transform eq. (5.24) into 
a form that facilitates physical interpretation. It is readily shown (see Section 7.7) that the 
gradient of 1/R with respect to the primed coordinates is

= r a 1
R
b 5

aR

R2

where = r is the del operator with respect to 1x r, y r, z r 2 . Thus,

P # aR

R2 5 P # = ra 1
R
b

FIGURE 5.7 Polarization of a polar molecule:  
(a) permanent dipole (E  0), (b) alignment 
of permanent dipole (E  0).

FIGURE 5.8 A block of dielectric material 
with dipole moment P per unit volume.
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5.5 Polarization in Dielectrics 189

Applying the vector identity = r # f A 5 f= r # A 1 A # = rf ,

 
P # aR

R2 5 = r # aP
R
b 2

= r # P
R

 (5.25)

Substituting this into eq. (5.24) and integrating over the entire volume v of the dielectric, 
we obtain

V 5 3
vr

 
1

4peo
c= r # P

R
2

1
R

= r # P ddv r

Applying divergence theorem to the first term leads finally to

 
V 5 C

Sr
 

P # a rn
4peoR

 dS r 1 3
vr

 
2= r # P
4peoR

 dv r (5.26)

where a rn is the outward unit normal to surface S of the dielectric. Comparing the two 
terms on the right side of eq. (5.26) with eqs. (4.68) and (4.69) shows that the two terms 
denote the potential due to surface and volume charge distributions with densities (upon 
dropping the primes):

 
rps 5 P # an

rpv 5 2= # P
 

15.27a 2
15.27b 2

In other words, eq. (5.26) reveals that where polarization occurs, an equivalent volume 
charge density rpv is formed throughout the dielectric, while an equivalent surface charge 
density rps is formed over the surface of the dielectric. We refer to rps and rpv as bound 
(or polarization) surface and volume charge densities, respectively, as distinct from free 
surface and volume charge densities rS and rv. Bound charges are those that are not free to 
move within the dielectric material; they are caused by the displacement that occurs on a 
molecular scale during polarization. Free charges are those that are capable of moving over 
macroscopic distance, as do electrons in a conductor; they are the stuff we control. The 
total positive bound charge on surface S bounding the dielectric is

 Qb 5 C P # dS 5 C rps dS (5.28a)

while the charge that remains inside S is

 2Qb 5 3
v
 rpv dv 5 23

v
 = # P dv (5.28b)

If the entire dielectric were electrically neutral prior to application of the electric field and 
if we have not added any free charge, the dielectric will remain electrically neutral. Thus 
the total charge of the dielectric material remains zero, that is,
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190 CHAPTER 5 ELECTRIC FIELDS IN MATERIAL SPACE

total charge 5 C
S
 rps dS 1 3

v
 rpv dv 5 Qb 2 Qb 5 0

We now consider the case in which the dielectric region contains free charge. If rv is the 
volume density of free charge, the total volume charge density rt is given by

 rt 5 rv 1 rpv 5 = # eoE (5.29)

Hence,

rv 5 = # eoE 2 rpv 

  5 = # 1eoE 1 P 2  (5.30)
 5 = # D

where

 D 5 eoE 1 P (5.31)

We conclude that the net effect of the dielectric on the electric field E is to increase D 
inside it by the amount P. In other words, the application of E to the dielectric material 
causes the flux density to be greater than it would be in free space. It should be noted that 
the definition of D in eq. (4.35) for free space is a special case of that in eq. (5.31) because 
P 5 0 in free space.

For some dielectrics, P is proportional to the applied electric field E, and we have

 P 5 xeeoE (5.32)

where xe, known as the electric susceptibility of the material, is more or less a measure of 
how susceptible (or sensitive) a given dielectric is to electric fields.

5.6 DIELECTRIC CONSTANT AND STRENGTH

By substituting eq. (5.32) into eq. (5.31), we obtain

 D 5 eo 11 1 xe 2  E 5 eoerE (5.33)

or

 D 5 eE (5.34)

where

 e 5 eoer (5.35)
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5.7 Linear, Isotropic, and Homogeneous Dielectrics 191

and

 er 5 1 1 xe 5
e

eo
 (5.36)

In eqs. (5.33) to (5.36),  is called the permittivity of the dielectric, o is the permittiv-
ity of free space, defined in eq. (4.2) as approximately 1029/36p F/m, and r is called the 
dielectric constant or relatve permittivity.

The dielectric constant (or relative permittivity) r is the ratio of the permittivity of 
the dielectric to that of free space.

r e o
per meter. The approximate values of the dielectric constants of some common materials 
are given in Table B.2 in Appendix B. The values given in Table B.2 are for static or low-
frequency 1,1000 Hz 2  fields; the values may change at high frequencies. Note from the 
table that r is always greater than or equal to unity. For free space er 5 1.

The theory of dielectrics we have discussed so far assumes ideal dielectrics. Practically 
speaking, no dielectric is ideal. When the electric field in a dielectric is sufficiently large, 
it begins to pull electrons completely out of the molecules, and the dielectric becomes 
conducting. Dielectric breakdown is said to have occurred when a dielectric becomes con-
ducting. Dielectric breakdown occurs in all kinds of dielectric materials (gases, liquids, or 
solids) and depends on the nature of the material, temperature, humidity, and the amount 
of time that the field is applied. The minimum value of the electric field at which dielectric 
breakdown occurs is called the dielectric strength of the dielectric material.

The dielectric strength is the maximum electric field that a dielectric can tolerate or 
withstand without electrical breakdown.

Table B.2 also lists the dielectric strength of some common dielectrics. Since our theory 
of dielectrics does not apply after dielectric breakdown has taken place, we shall always 
assume ideal dielectric and avoid dielectric breakdown.

†5.7 LINEAR, ISOTROPIC, AND HOMOGENEOUS DIELECTRICS

A material is said to be linear if D varies linearly with E and nonlinear otherwise. Materials 
for which  (or s) does not vary in the region being considered and is therefore the same 
at all points (i.e., independent of x, y, z) are said to be homogeneous. They are said to be 
 inhomogeneous (or nonhomogeneous) when  is dependent on the space coordinates. The 
atmosphere is a typical example of an inhomogeneous medium; its permittivity varies with 
altitude. Materials for which D and E are in the same direction are said to be isotropic. That is, 
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(or nonisotropic) materials, D, E, and P are not parallel;  or xe has nine  components that are 
collectively referred to as a tensor. For example, instead of eq. (5.34), we have

 £
Dx

Dy
Dz

§ 5 £
exx exy exz
eyz eyy eyz
ezx ezy ezz

§ £
Ex

Ey
Ez

§  (5.37)

for anisotropic materials. Crystalline materials and magnetized plasma are anisotropic.

A dielectric material (in which D  E applies) is linear if  does not change with the 
applied E field, homogeneous if  does not change from point to point, and isotropic 
if  does not change with direction. Although eqs. (5.24) to (5.31) are for  dielectric 
materials in general, eqs. (5.32) to (5.34) are only for linear, isotropic  materials. 

The same idea holds for a conducting material in which J 5 sE applies. The material is 
linear if s does not vary with E, homogeneous if s is the same at all points, and isotropic 
if s does not vary with direction.

For most of the time, we will be concerned only with linear, isotropic, and homoge-
neous media. Such media are called simple materials. For such media, all formulas derived 
in Chapter 4 for free space can be applied by merely replacing o with or. Thus Coulomb’s 
law of eq. (4.4), for example, becomes

 F 5
Q1Q2

4peoerR2 aR (5.38)

and eq. (4.96) becomes

 
W 5

1
23v

 eoerE2 dv (5.39)

when applied to a dielectric medium.

A dielectric cube of side L and center at the origin has a radial polarization given by 
P 5 a r, where a is a constant and r 5 xax 1 yay 1 zaz. Find all bound charge densities 
and show explicitly that the total bound charge vanishes.

Solution:
For each of the six faces of the cube, there is a surface charge density rps. For the face located 
at x 5 L/2, for example,

rps 5 P # ax `
x5L/2

5 ax `
x5L/2

5
aL
2

The total bound surface charge is

EXAMPLE 5.5
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Qs 5 3
S
 rps dS 5 6 3

L/2

2L/2
 3

L/2

2L/2
 rps dy dz 5

6aL
2

 L2 

 5 3aL3

The bound volume charge density is given by

rpv 5 2= # P 5 2 1a 1 a 1 a 2 5 23a

and the total bound volume charge is

Hence, the total charge is

Qt 5 Qs 1 Qv 5 3aL3 2 3aL3 5 0

PRACTICE EXERCISE 5.5

A thin rod of cross-sectional area A extends along the x-axis from x  0 to x  L. The 
polarization of the rod is along its length and is given by Px  ax2  b. Calculate rpv and 
rps at each end. Show explicitly that the total bound charge vanishes in this case.

Answer: 0, 2aL, b, aL2  b, proof.

The electric field intensity in polystyrene (er 5 2.55) filling the space between the 
plates of a parallel-plate capacitor is 10 kV/m. The distance between the plates is 1.5 mm. 
Calculate:
(a) D
(b) P
(c) The surface charge density of free charge on the plates
(d) The surface density of polarization charge
(e) The potential difference between the plates

Solution:

(a) D 5 eoerE 5
1029

36p
3 12.55 2 3 104 5 225.4 nC/m2

(b) P 5 xeeoE 5 11.55 2 3
1029

36p
3 104 5 137 nC/m2

(c) rS 5 D # an 5 6 Dn 5 6 225.4 nC/m2

(d) rps 5 P # an 5 6 Pn 5 6 137 nC/m2

(e) V 5 Ed 5 104 11.5 3 1023 2 5 15 V

EXAMPLE 5.6
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PRACTICE EXERCISE 5.6

A parallel-plate capacitor with plate separation of 2 mm has a 1 kV voltage applied to 
its plates. If the space between its plates is filled with polystyrene (r  2.55), find E, P, 
and rps. Assume that the plates are located at x  0 and x  2 mm.

Answer: 500ax kV/m, 6.853ax mC/m2, 6.853 mC/m2.

A dielectric sphere 1er 5 5.7 2  of radius 10 cm has a point charge of 2 pC placed at its 
 center. Calculate:
(a) The surface density of polarization charge on the surface of the sphere
(b) The force exerted by the charge on a24 pC point charge placed on the sphere

Solution:
(a) Assuming that the point charge is located at the origin, we apply Coulomb’s or Gauss’s 
law to obtain

 E 5
Q

4peoerr2 ar

 P 5 xeeoE 5
xeQ

4perr2 ar

rps 5 P # ar 5
1er 2 1 2Q

4perr2 5
14.7 2  2 3 10212

4p 15.7 2  100 3 1024 

 5 13.12 pC/m2

(b) From Coulomb’s law, we have

F 5
Q1Q2

4peoerr2 ar 5
124 2 12 2 3 10224

4p 3
1029

36p
 15.7 2  100 3 1024

 ar 

 5 21.263ar pN

PRACTICE EXERCISE 5.7

In a dielectric material, Ex 5 5 V/m and P 5
1

10p
 13ax 2 ay 1 4az 2  nC/m2.

Calculate:
(a) xe
(b) E
(c) D

Answer:  (a) 2.16, (b) 5ax 2 1.67ay 1 6.67az V/m, (c) 139.7ax 2 46.6ay 1 
186.3az pC/m2.

EXAMPLE 5.7
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Find the force with which the plates of a parallel-plate capacitor attract each other. Also 
determine the pressure on the surface of the plate due to the field.

Solution:
From eq. (4.26), the electric field intensity on the surface of each plate is

E 5
rS

2e
 an

where an is a unit normal to the plate and rS is the surface charge density. The total force 
on each plate is

F 5 QE 5 rSS #
rS

2e
 an 5

rS
2 S

2eoer
 an

or

F 5
rS

2 S
2e

5
Q2

2eS

The pressure of force per area is 
r2

S

2eoer
. Notice that the dielectric affects the force or  pressure.

PRACTICE EXERCISE 5.8

Shown in Figure 5.9 is a potential-measuring device known as an electrometer. It is basi-
cally a parallel-plate capacitor with the guarded plate being suspended from a balance 
arm so that the force F on it is measurable in terms of weight. If S is the area of each 
plate, show that

V1 2 V2 5 c 2 Fd2

eoS
d

1/2

Answer:  Proof.

EXAMPLE 5.8

FIGURE 5.9 An electrometer; for Practice 
Exercise 5.8.
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5.8 CONTINUITY EQUATION AND RELAXATION TIME

From the principle of charge conservation, the time rate of decrease of charge within a 
given volume must be equal to the net outward current flow through the surface of the 
 volume. Thus current Iout coming out of the closed surface is

 
Iout 5 C J # dS 5

2dQin

dt
 (5.40)

where Qin is the total charge enclosed by the closed surface. Invoking the divergence 
 theorem, we write

 C
S
 J # dS 5 3

v
 = # J dv (5.41)

But

 
2dQin

dt
5 2

d
dt

 3
v
 rv dv 5 23

v
 
'rv

't
 dv (5.42)

Substituting eqs. (5.41) and (5.42) into eq. (5.40) gives

3
v
 = # J dv 5 23

v
 
'rv

't
 dv

or

 = # J 5 2
'rv

't
 (5.43)

which is called the continuity of current equation or just continuity equation. It must be 
kept in mind that the continuity equation is derived from the principle of conservation 
of charge and essentially states that there can be no accumulation of charge at any point. 
For steady currents, 'rv /'t 5 0, and hence = # J 5 0, showing that the total charge leav-
ing a volume is the same as the total charge entering it. Kirchhoff ’s current law follows 
from this.

Having discussed the continuity equation and the properties s and  of materials, 
it is appropriate to consider the effect of introducing charge at some interior point of a 
given material (conductor or dielectric). We make use of eq. (5.43) in conjunction with 
Ohm’s law

 J 5 s E (5.44)

and Gauss’s law
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 = # E 5
rv

e
 (5.45)

Substituting eqs. (5.44) and (5.45) into eq. (5.43) yields

= # sE 5
srv

e
5 2

'rv

't

or

 
'rv

't
1

s

e
rv 5 0 (5.46)

This is a homogeneous linear ordinary differential equation. By separating variables in  
eq. (5.46), we get

 
'rv

rv
5 2

s

e
't (5.47)

and integrating both sides gives

ln rv 5 2
st
e

1 ln rvo

where ln rvo is a constant of integration. Thus

 rv 5 rvoe2t/Tr (5.48)

where

 Tr 5
e

s
 (5.49)

and Tr is the time constant in seconds.
In eq. (5.48), rvo is the initial charge density (i.e., rv at t 5 0). The equation shows 

that the introduction of charge at some interior point of the material results in a decay of 
volume charge density rv. Associated with the decay is charge movement from the interior 
point at which it was introduced to the surface of the material. The time constant Tr is 
known as the relaxation time or rearrangement time.

Relaxation time is the time it takes a charge placed in the interior of a material to 
drop to e1 ( 36.8%) of its initial value.

Relaxation time is short for good conductors and long for good dielectrics. For example, 
for copper s 5 5.8 3 107 S/m, er 5 1, and
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Tr 5
ereo

s
5 1 3

1029

36p
3

1
5.8 3 107 

  5 1.53 3 10219 s  (5.50)

showing a rapid decay of charge placed inside copper. This implies that for good conduc-
tors, the relaxation time is so short that most of the charge will vanish from any interior 
point and appear at the surface (as surface charge) almost instantaneously. On the other 
hand, for fused quartz, for instance, s 5 10217 S/m, er 5 5.0,

Tr 5 5 3
1029

36p
3

1
10217 

  5 51.2 days  
(5.51)

showing a very large relaxation time. Thus for good dielectrics, one may consider the 
 introduced charge to remain wherever placed for times up to days.

5.9 BOUNDARY CONDITIONS

So far, we have considered the existence of the electric field in a homogeneous medium. If 
the field exists in a region consisting of two different media, the conditions that the field 
must satisfy at the interface separating the media are called boundary conditions. These 
conditions are helpful in determining the field on one side of the boundary if the field on 
the other side is known. Obviously, the conditions will be dictated by the types of material 
the media are made of. We shall consider the boundary conditions at an interface separating

• Dielectric 1er1 2  and dielectric 1er2 2
 Conductor and dielectric

• Conductor and free space

To determine the boundary conditions, we need to use Maxwell’s equations:

  (5.52)

and

 C
S
D # dS 5 Qenc (5.53)

where Qenc is the free charge enclosed by the surface S. Also we need to decompose the 
electric field intensity E into two orthogonal components:

 E 5 Et 1 En (5.54)

where Et and En are, respectively, the tangential and normal components of E to the 
 interface of interest. A similar decomposition can be done for the electric flux density D.
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A.  Dielectric–Dielectric Boundary Conditions
Consider the E field existing in a region that consists of two different dielectrics character-
ized by e1 5 eoer1 and e2 5 eoer2 as shown in Figure 5.10(a). The fields E1 and E2 in media 
1 and 2, respectively, can be decomposed as

  E1 5 E1t 1 E1n (5.55a)
 E2 5 E2t 1 E2n  (5.55b)

We apply eq. (5.52) to the closed path abcda of Figure 5.10(a), assuming that the path is 
very small with respect to the spatial variation of E. We obtain

 0 5 E1t Dw 2 E1n
Dh
2

2 E2n
Dh
2

2 E2t Dw 1 E2n
Dh
2

1 E1n
Dh
2

 (5.56)

where Et 5 0Et 0  and En 5 0En 0 . The 
Dh
2

 terms cancel, and eq. (5.56) becomes

0 5 1E1t 2 E2t 2Dw

or

 E1t 5 E2t (5.57)

Thus the tangential components of E are the same on the two sides of the boundary. In 
other words, Et undergoes no change on the boundary and it is said to be continuous across 
the boundary. Since D 5 eE 5 Dt 1 Dn, eq. (5.57) can be written as

D1t

e1
5 E1t 5 E2t 5

D2t

e2

or

 
D1t

e1
5

D2t

e2
 (5.58)

FIGURE 5.10 Dielectric–dielectric boundary: (a) determining E1t  E2t, (b) determining D1n  D2n.
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200 CHAPTER 5 ELECTRIC FIELDS IN MATERIAL SPACE

that is, Dt undergoes some change across the interface. Hence Dt is said to be discontinuous 
across the interface.

Similarly, we apply eq. (5.53) to the pillbox (cylindrical Gaussian surface) of 
 Figure 5.10(b). The contribution due to the sides vanishes. Allowing Dh S  0 gives

DQ 5 rS DS 5 D1n DS 2 D2n DS

or

 D1n 2 D2n 5 rS (5.59)

where rS is the free charge density placed deliberately at the boundary. It should be borne in 
mind that eq. (5.59) is based on the assumption that D is directed from region 2 to region 
1 and eq. (5.59) must be applied accordingly. If no free charges exist at the interface (i.e., 
charges are not deliberately placed there), rS 5 0 and eq. (5.59) becomes

 D1n 5 D2n (5.60)

Thus the normal component of D is continuous across the interface; that is, Dn undergoes 
no change at the boundary. Since D 5 eE, eq. (5.60) can be written as

 e1E1n 5 e2E2n (5.61)

showing that the normal component of E is discontinuous at the boundary. Equations 
(5.57) and (5.59) or (5.60) are collectively referred to as boundary conditions; they must be 
satisfied by an electric field at the boundary separating two different dielectrics.

As mentioned earlier, the boundary conditions are usually applied in finding the elec-
tric field on one side of the boundary given the field on the other side. Besides this, we can 
use the boundary conditions to determine the “refraction” of the electric field across the 
interface. Consider D1 or E1 and D2 or E2 making angles 1 and 2 with the normal to the 
interface as illustrated in Figure 5.11. Using eq. (5.57), we have

E1 sin u1 5 E1t 5 E2t 5 E2 sin u2

FIGURE 5.11 Refraction of D or E 
at a dielectric–dielectric boundary.
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or

 E1 sin u1 5 E2 sin u2 (5.62)

Similarly, by applying eq. (5.60) or (5.61), we get

e1E1 cos u1 5 D1n 5 D2n 5 e2E2 cos u2

or

 e1E1 cos u1 5 e2E2 cos u2 (5.63)

Dividing eq. (5.62) by eq. (5.63) gives

 
tan u1

e1
5

tan u2

e2
 (5.64)

Since e1 5 eoer1 and e2 5 eoer2, eq. (5.64) becomes

 
tan u1

tan u2
5

er1

er2
 (5.65)

This is the law of refraction of the electric field at a boundary free of charge (since rS 5 0 is 
assumed at the interface). Thus, in general, an interface between two dielectrics produces 
bending of the flux lines as a result of unequal polarization charges that accumulate on the 
opposite sides of the interface.

B. Conductor–Dielectric Boundary Conditions
Figure 5.12 shows the case of conductor–dielectric boundary conditions. The conductor is 
assumed to be perfect (i.e., s S  ` or rc S  0). Although such a conductor is not realiz-
able for most practical purposes, we may regard conductors such as copper and silver as 
though they were perfect conductors.

FIGURE 5.12 Conductor–dielectric boundary.

D

0 0

D

CC CC
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To determine the boundary conditions for a conductor–dielectric interface, we follow 
the same procedure used for the dielectric–dielectric interface except that we incorporate 
the fact that E 5 0 inside the conductor. Applying eq. (5.52) to the closed path abcda of 
Figure 5.12(a) gives

 0 5 0 # Dw 1 0 # Dh
2

1 En
# Dh

2
2 Et

# Dw 2 En
# Dh

2
2 0 # Dh

2
 (5.66)

As Dh S  0,

 Et 5 0 (5.67)

Similarly, by applying eq. (5.53) to the cylindrical pillbox of Figure 5.12(b) and letting 
Dh S  0, we get

 DQ 5 Dn
# DS 2 0 # DS (5.68)

because D 5 eE 5 0 inside the conductor. Equation (5.68) may be written as

Dn 5
DQ
DS

5 rS

or

 Dn 5 rS (5.69)

Thus under static conditions, the following conclusions can be made about a perfect 
conductor:

1. No electric field may exist within a conductor; that is, considering our conclusion 
in Sectio

 rv 5 0,  E 5 0 (5.70)

2. Since E 5 2=V 5 0, there can be no potential difference between any two points 
in the conductor; that is, a conductor is an equipotential body.

3. An electric field E must be external to the conductor and must be normal to its 
surface; that is,

 Dt 5 eoerEt 5 0,  Dn 5 eoerEn 5 rS (5.71)

An important application of the fact that E 5 0 inside a conductor is in electrostatic screen-
ing or shielding. If conductor A kept at zero potential surrounds conductor B as shown in 
Figure 5.13, B is said to be electrically screened by A from other electric circuits, such as 
conductor C, outside A. Similarly, conductor C outside A is screened by A from B. Thus 
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5.9 Boundary Conditions 203

conductor A acts like a screen or shield, and the electrical conditions inside and outside the 
screen are completely independent of each other.

C. Conductor–Free Space Boundary Conditions
The conductor–free space boundary conditions, illustrated in Figure 5.14, comprise a 
special case of conductor–dielectric conditions. The boundary conditions at the interface 
between a conductor and free space can be obtained from eq. (5.71) by replacing r by 1 
(because free space may be regarded as a special dielectric for which er 5 1). The electric 
field E must be external to the conductor and normal to its surface. Thus the boundary 
conditions are

 Dt 5 eoEt 5 0,  Dn 5 eoEn 5 rS (5.72)

It should be noted again that eq. (5.72) implies that the E field must approach the conducting 
 surface normally.

FIGURE 5.13 Electrostatic screening.

FIGURE 5.14 Conductor–free space boundary.

Conductor (E = 0)

05_Sadiku_Ch05.indd   203 23/09/17   1:15 PM



204 CHAPTER 5 ELECTRIC FIELDS IN MATERIAL SPACE

Two extensive homogeneous isotropic dielectrics meet on plane z 5 0. For z . 0, er1 5 4 
and for z , 0, er2 5 3. A uniform electric field E1 5 5ax 2 2ay 1 3az kV/m exists for 
z $ 0. Find
(a) E2 for z # 0
(b) The angles E1 and E2 make with the interface
(c) The energy densities (in J/m3) in both dielectrics
(d) The energy within a cube of side 2 m centered at 13, 4, 25 2
Solution:
Let the problem be as illustrated in Figure 5.15.
(a) Since az is normal to the boundary plane, we obtain the normal components as

 E1n 5 E1
# an 5 E1

# az 5 3
 E1n 5 3az

E2n 5 1E2
# az 2 az 

Also

E 5 En 1 Et

Hence,

E1t 5 E1 2 E1n 5 5ax 2 2ay

Thus

E2t 5 E1t 5 5ax 2 2ay

EXAMPLE 5.9

FIGURE 5.15 For Example 5.9.
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Similarly,

D2n 5 D1n  S   er2 
E2n 5 er1 

E1n

or

E2n 5
er1

er2
 E1n 5

4
3

 13az 2 5 4az

Thus

 E2 5 E2t 1 E2n

 5 5ax 2 2ay 1 4az kV/m

(b) Let a1 and a2 be the angles E1 and E2 they make with the interface while 1 and 2 are 
the angles they make with the normal to the interface as shown in Figure 5.15; that is,

 a1 5 90 2 u1

 a2 5 90 2 u2

Since E1n 5 3 and E1t 5 "25 1 4 5 "29

tan u1 5
E1t

E1n
5

"29
3

5 1.795 S  u1 5 60.9°

Hence,

a1 5 29.1°

Alternatively,

E1
# an 5 0E1 0 # 1 # cos u1

or

cos u1 5
3

"38
5 0.4867 S  u1 5 60.9°

Similarly,

  E2n 5 4,  E2t 5 E1t 5 "29

 tan u2 5
E2t

E2n
5

"29
4

5 1.346 S  u2 5 53.4°

Hence,

a2 5 36.6°

05_Sadiku_Ch05.indd   205 23/09/17   1:15 PM



206 CHAPTER 5 ELECTRIC FIELDS IN MATERIAL SPACE

Note that  
tan u1

tan u2
5

er1

er2
 is satisfied.

(c) The energy densities are given by

 wE1 5
1
2

 e1 0E1 0 2 5
1
2

3 4 3
1029

36p
3 125 1 4 1 9 2 3 106

 5 672 mJ/m3

wE2 5
1
2

 e2 0E2 0 2 5
1
2

3 3 3
1029

36p
 125 1 4 1 16 2 3 106 

 5 597 mJ/m3

(d) At the center 13, 4, 25 2  of the cube of side 2 m, z 5 25 , 0; that is, the cube is in 
 region 2 with 2 # x # 4, 3 # y # 5, 26 # z # 24. Hence

WE 5 3  wE2 dv 5 3
4

x52
 3

5

y53
 3

24

z526
 wE2 dz dy dz 5 wE2 12 2 12 2 12 2  

 5 597 3 8 mJ 5 4.776 mJ

PRACTICE EXERCISE 5.9

A homogeneous dielectric 1er 5 2.5 2  fills region 1 1x , 0 2  while region 2 1x . 0 2  is 
free space.
(a) If D1 5 12 ax 2 10 ay 1 4 az nC/m2, find D2 and 2.
(b)  If E2 5 12 V/m and u2 5 60°, find E1 and 1. Take 1 and 2 as defined in   

Example 5.9.

Answer: (a) 12 ax 2 4 ay 1 1.6 az nC/m2, 19.75°, (b) 10.67 V/m, 77°.

Region y , 0 consists of a perfect conductor while region y . 0 is a dielectric medium 
1e1r 5 2 2  as in Figure 5.16. If there is a surface charge of 2 nC/m2 on the conductor, deter-
mine E and D at
(a) A 13, 22, 2 2
(b) B 124, 1, 5 2
Solution:
(a) Point A 13, 22, 2 2  is in the conductor since y 5 22 , 0 at A. Hence,

E 5 0 5 D

(b) Point B 124, 1, 5 2  is in the dielectric medium since y 5 1 . 0 at B.

Dn 5 rS 5 2 nC/m2

EXAMPLE 5.10
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Hence,

D 5 2ay nC/m2

and

 E 5
D

eoer
5 2 3 1029 3

36p

2
3 109 ay 5 36p ay

 5 113.1ay V/m

PRACTICE EXERCISE 5.10

It is found that E 5 60ax 1 20ay 2 30az mV/m at a particular point on the interface 
between air and a conducting surface. Find D and rS at that point.

Answer: 0.531ax 1 0.177ay 2 0.265az pC/m2, 0.619 pC/m2.

C D

FIGURE 5.16 For Example 5.10.

†5.10 APPLICATION NOTE—MATERIALS WITH HIGH  
DIELECTRIC CONSTANT

This section is included in recognition of the growing importance of high dielectric 
constant materials to the semiconductor industry. As we noticed earlier in this chapter, 
the dielectric constant of a material is a property that determines its ability to become 
electrically  polarized. The higher the dielectric constant, the more charge you can store, 
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208 CHAPTER 5 ELECTRIC FIELDS IN MATERIAL SPACE

and the smaller you can make electronic circuits. High dielectric constant materials are 
increasingly  important for pushing the state of the art in semiconductor integrated circuits. 
These materials, which find  numerous technological applications, are necessary when high 
capacitance values are required. For example, to reduce the size of a dielectric resonator 
it is necessary to increase the dielectric constant of the material used. This is because at  
a fixed frequency, the diameter of the resonator is inversely proportional to the square root 
of the dielectric constant. Unfortunately, the higher the dielectric constant of a material, the 
higher its dielectric loss, as will be shown in Chapter 10.

High dielectric constants have been discovered in oxides of the type ACu3Ti4O12. The 
most exceptional behavior is exhibited by a perovskite-related oxide containing calcium 
(Ca), copper (Cu), titanium (Ti), and oxygen (O) in the formula CaCu3Ti4O12. This material 
is unusual in that it has an extremely high dielectric constant—about 11,000 (measured at 
100 kHz). In addition, unlike most dielectric materials, this one retains its enormously high 
dielectric constant over a wide range of temperatures, from 100 to 600 degrees kelvin (K) 

High dielectric constant materials are of great interest for other high-performance 
electric devices as well. One technology currently under development uses barium stron-
tium titanate (BST), planned for use in dynamic random access memories (DRAMs). 
 Although the dielectric constants are considerable, one disadvantage is the need for plati-
num electrodes. Another example occurs in radio frequency identification (RFID) chips, 
which require high capacitance to store charge. Frequently these use separate discrete 
devices, which are undesirably high in cost and low in yield.2

5.11 APPLICATION NOTE—GRAPHENE

All solid materials are supposed to have three dimensions. But graphene is a 
two-dimensional material made up of a single planar array of carbon atoms densely 
packed in a honeycomb or chicken-wire fashion, as shown in Figure 5.17. It has the small-
est thickness and yet is one of the strongest of solids. Both the electrical conductivity and 

transparent, yet so dense that even the smallest atom, helium, cannot pass through it. 
Graphene has drawn enormous curiosity on account of its unusual properties, which have 
many potential applications.

Every pencil lead has graphite, and a line drawn by a pencil is a primitive form of 
 graphene. Around 1947 Philip Wallace first studied the theoretical aspects of graphite as 
its thickness was reduced. The name graphene was first coined in 1987 by S. Mouras and 
coworkers to describe the graphite layers that had various compounds inserted between 
them. In a sense, carbon nanotubes are rolled-up graphene sheets.

Originally, graphene was thought to be unstable in its free form; but in 2003, Andre 
Geim and Kostya Novoselov at the University of Manchester succeeded in producing the 

2 For more information about high dielectric constant materials, see H. S. Nalwa, Handbook of Low and High 
Dielectric Constant Materials and Their Applications. San Diego, CA: Academic Press, 1999, vols. 1 and 2.
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(or 173 to 327°C), making it ideal for a wide range of applications.

the thermal conductivity of graphene are very, very high. Graphene is almost completely 
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first isolated graphene flakes, and their work was published in 2004. Their groundbreak-
ing experiments, for which they received the 2010 Nobel Prize for Physics, showed how 
isolated graphene can be put to use in real-life applications. After the 2004 publication by 
Geim and Novoselov, other researchers began studying the properties of graphene. The 
Manchester group further showed that graphene at room temperature exhibits the quan-
tum Hall effect, which had not been seen in other materials. The carrier mobility of gra-
phene is very high, and this property can be exploited in making fast electronic devices. 

its carbon–carbon bond length of about 0.142 nm, graphene can also be considered as an 
indefinitely large aromatic molecule, the limiting case of the family of polycyclic aromatic 
hydrocarbons.

Electrodes with a very high surface area and very low electrical resistance can be made 
from graphene. Adding graphene to epoxy composites may result in stronger/stiffer com-
ponents than can be made from epoxy composites containing a similar weight of carbon 
nanotubes. Graphene appears to bond better to the polymers in the epoxy, allowing more 
effective coupling of the graphene into the structure of the composite. This property could 
result in the manufacture of components with high strength-to-weight ratio for such uses 
as windmill blades or aircraft components.

Today, materials used in making solar cells are expensive, and the required manufac-
turing techniques are complicated. But if graphene is used as an electrode, while buckyballs 
and carbon nanotubes are employed to absorb light and generate electrons, it is possible 
to make solar cells more efficiently and at lower cost. Other potential applications of 
graphene include making high-speed electronic transistors, integrated circuits, and low-
cost display screens for mobile devices. Lithography techniques can be used to fabricate 
integrated circuits based on graphene. It is also forecast that graphene can replace indium-

device display screens that require low power consumption. The use of graphene instead 

FIGURE 5.17 The structure of graphene.
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Also, graphene could be used as a chemical sensor to detect molecules of adsorption. With 

based electrodes in organic light-emitting diodes (OLEDs), which are used in electronic 
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of indium not only reduces the cost but eliminates the use of metals in the OLED, which 
may make devices easier to recycle. In yet another application, graphene layers are used to 
increase the binding energy of hydrogen to the graphene surface in a fuel tank, resulting in 
more hydrogen storage and therefore a lighter weight fuel tank. Such a component could 
be useful in the development of practical hydrogen-fueled cars.

†5.12 APPLICATION NOTE—PIEZOELECTRICS

The surfaces of many crystals acquire charge upon deformation. While the total charge in 
the material cannot change merely by deformation, charges of opposite sign whose total 
is zero appear at different parts of the surface as a result of mechanical stimulus applied 
to them. Such materials are called piezoelectrics. Examples include quartz, Rochelle salt, 
tourmaline, and many other crystalline materials. Experiments conducted with mechani-
cal inputs in various directions reveal that only in certain fixed directions called polar axes 

the surface perpendicular to these polar axes. On the surfaces opposing the polar axes, 
charges of opposite polarity are found under uniform strain. Further, it is found that if the 

vice versa, the polarities of the induced charges also get reversed. The direction of the force 
need not be in the direction of the polar axes, but if the resulting stress has a component 
along the polar axes, one finds the accumulation of the charges on the surfaces.

Since different directions along a polar axis are not equivalent, if a crystal is rotated 
through 180 around an axis perpendicular to the polar axis, the latter coincides with 
itself but the crystal will not. As a result, crystals having a center of symmetry cannot 
be piezoelectrics. The necessary condition for the piezoelectric effect to manifest upon 
application of uniform deformation is therefore the absence of a center of symmetry in the 
given crystal. The symmetry properties of the crystal lattice are determined by the polar 
axes. Generally, a crystal has multiple polar axes. The piezoelectric effect was discovered 
by Pierre and Jacques Curie in 1880.

Piezoelectric properties depend on temperature. If at a certain temperature the crystal 
lattice is rearranged so that a center of symmetry is formed, piezoelectric properties of the 
crystal vanish at this temperature. If a material were to exhibit strong electromechanical 
coupling, the polarized atoms and molecules must be aligned well. The dipoles are oriented 
with respect to one another through a process called poling. Poling is usually brought about 
by heating the piezoelectric material up above its Curie temperature and then placing it in 
a strong electric field (typically, 2000 V/mm). The combination of heating and electric field 
produces motion of the electronic dipoles. Since the material is softer at higher tempera-
tures, heating permits the dipoles to rotate freely. The electric field produces an alignment 
of the dipoles along the direction of the electric field. What resembles annealing to some 
extent, a quick reduction in the temperature and removal of the electric field produces a 
material whose electric dipoles are oriented in the same direction. This direction is referred 
to as the poling direction of the material. Ionic crystals are found to possess piezoelectric 
properties. There exists some difference in the deformation of sublattice of positive ions 
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the effect is pronounced to a maximal degree, with charges being induced on the parts of 

deformation is reversed, that is, if the deformation is compression instead of expansion, or 



compared to that of negative ions causing crystal polarization and consequential surface 
charge distribution. To a first approximation, the polarization is directly proportional to 
the strain and in turn to the external force. The electric potential difference between the 
oppositely charged faces is therefore proportional to the applied force, which is exploited in 

and remote event detection.
Just as mechanical force applied to the piezoelectric crystal causes charges and hence 

potential to appear across the faces as per the direct piezoelectric effect, application of 
external electric field can bring about deformation of the crystal, and this is the inverse 
piezoelectric effect. When a piezoelectric body is deformed, work is expended to raise the 
energy of elastic deformation and also the energy of the electric field appearing as a result 
of the piezoelectric effect. In this event, it is necessary to overcome an additional force 
besides the elastic force of the crystal, which impedes the deformation. This is responsible 
for the inverse piezoelectric effect. As a compensatory measure, we should apply an exter-
nal electric field opposite to that arising from the direct piezoelectric effect. This establishes 
that, to deform the piezoelectric in a given dimension by an external field, this field must 
be equal and opposite to the field that would appear under the given deformation due to 
the direct piezoelectric effect. If a certain potential difference appears between the faces of a 
piezoelectric, which are perpendicular to its polar axis, upon a deformation along this axis, 
a potential difference of the same magnitude but of opposite sign must be applied to these 
faces to attain the same deformation without applying mechanical forces. The mechanism 
of the inverse piezoelectric effect is similar to that of the direct effect: under the action of an 
external field, the crystal sublattices of positive and negative ions are deformed differently, 
which causes physical deformation of the crystal. The inverse piezoelectric effect also has 
numerous practical applications. For instance, quartz ultrasonic vibrators are widely used.

Two of the most popular piezoelectric materials are lead-zirconate-titanate (PZT) 
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numerous transducer applications such as pressure transducers, microphones, automation, 

which is a ceramic, and polyvinylidene fluoride (PVDF), which is a polymer. In addition 
to the piezoelectric effect, piezoelectric materials exhibit a pyroelectric effect, according to 
which electric charges begin to appear when the material is subjected to temperature. This 
effect is used as the underlying principle of several thermal sensors. A sublattice of positive 
ions in some piezoelectrics turns out to be displaced relative to the sublattice of negative 
ions in the state of thermodynamic equilibrium. As a result, such crystals are polarized in 
the absence of an external electric field. Thus, these crystals possess a spontaneous electric 
polarization. Usually, the presence of such a spontaneous polarization is masked by free 
surface charges induced on the surface of the crystal from the surrounding medium by 
the electric field due to spontaneous polarization. This process occurs until the electric 
field is completely neutralized, that is, until the presence of spontaneous polarization is 
totally masked. However, as the temperature of the sample changes, for example, as a result 
of heating, the ionic sublattices become displaced relative to one another, which causes 
a change in spontaneous polarization, and electric charges appear on the surface of the 
crystal. The appearance of these charges is called the direct pyroelectric effect, and the 
corresponding crystals are called pyroelectrics. Every pyroelectric is a piezoelectric, but 
the converse is not true. This is due to the fact that a pyroelectric has a preferred direction 
along which spontaneous polarization takes place, while a piezoelectric generally does not 
have such a direction. The inverse pyroelectric effect is also known to exist: a variation of 
the electric field in an adiabatically isolated pyroelectric is accompanied by a change in its 
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temperature. The existence of the inverse effect can be proved on the basis of a thermody-
namic analysis of the process and be demonstrated experimentally. When conditions are 
suitable for spontaneous polarlzation, a dielectric tends to go over to such a state in which, 

mum. Under these conditions, domains are formed. The factors that weaken the interac-
tion of dipole moments of molecules cause the disappearance of spontaneous polarization 
and the transition from the ferroelectric state to the state of a polar dielectric. Piezoelectric 
materials are used widely in transducers such as ultrasonic transmitters and receivers, in 
sonar for underwater applications, and as actuators for precision positioning devices.

% This script computes parts (a) and (b) for Example 5.1
% using discrete summation approximation for the integration
clear
% the parameters of the shell
r = 0.2;
% Part (a)
sum=0;         % set initial total sum to zero
theta_inc=1/10;  % choose a suitably small increment 
          % for the integral
phi_inc=1/10;    % choose a suitably small increment 
            % for the integral
dtheta=theta_inc*pi/2;
dphi=phi_inc*2*pi;
for theta=0:dtheta:pi/2, % outer integral loop
  for phi=0:dphi:2*pi,  % inner integral loop
      % add the partial sums to the total sum
    sum=sum + 1/r^3*2*cos(theta)*r^2*sin(theta)*dtheta*dphi;  
  end
end
% display the output
disp(‛’)
disp(sprintf(‛The total current through the ‘))
disp(sprintf(‛ hemispherical shell is %f A’, sum))
% Part (b)
sum=0;         % set initial total sum to zero
r = 0.1;
dtheta=theta_inc*pi;
dphi=phi_inc*2*pi;
for theta=0:dtheta:pi, % outer integral loop
  for phi=0:dphi:2*pi,  % inner integral loop
    % add the partial sums to the total sum
    sum=sum + 1/r^3*2*cos(theta)*r^2*sin(theta)*dtheta*dphi;  
  end
end
% display the output
disp(‛’)
disp(sprintf(‛The total current through the’))
disp(sprintf(‛ spherical shell is %f A’, sum))

MATLAB 5.1
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on the one hand, spontaneous polarization exists and, on the other, the field energy is mini-



MATLAB 5.2 % This script allows the user to enter an electric field 
% on either side of a dielectric boundary and compute the 
% electric field on the other side of the boundary
%
% The boundary is assumed to be the plane z=0, with E1 the 
% field in 
% the region z >=0 and E2 the field in the region z <= 0
% 
% inputs: E1 or E2, er1 and er2 (the relative permittivities 
% of both media outputs: E1 or E2, the field not input by 
% the user
clear
% prompt user for input materials
disp(‛Enter the relative permittivity in the region ‛);
er1 = input(‛ z > 0... \n >  ‛);
if isempty(er1); er1 = 1; elseif er1 < 1; er1 = 1; end    
       % check if dielectric is physical 
disp(‛Enter the relative permittivity in the region ‛);
er2 = input(‛ z < 0... \n >  ‛);
if isempty(er2); er2 = 1; elseif er2 < 1; er2 = 1; end    
       % check if dielectric is physical
% prompt the user for the region
disp(‛Enter the side of the interface where the electric‛);
side = input(‛field is known (given)... \n >  ‛);
% if user entered something other than ‟r” ‟c” or ‟s” 
% set default as ‟r”
if isempty(side); side = 1; elseif side > 2; side = 2; end    
       % check if dielectric is physical 
if side == 1;
    % prompt the user for the field
    disp(‛Enter the electric field in side 1 in the ‛);
    E1 = input(‛ form [Ex Ey Ez]... \n >’);
    E1n = E1(3)*[0 0 1];   % normal direction is +z
    E2n = E1n*er1/er2;  % e-field boundary condition 
             % for normal component
    E1t = E1 - E1n;   % tangential component of E1
    E2t = E1t;        % e-field boundary condition for 
                 % tangential component
    E2 = E2t + E2n;
elseif side == 2;
    % prompt the user for the field
    disp(‛Enter the electric field in side 2 in the ‛);    
    E2 = input(‛ form [Ex Ey Ez]... \n >’);
    E2n = E2(3)*[0 0 1];     % normal direction is +z
    E1n = E2n*er2/er1;  % e-field boundary condition 
             % for normal component
    E2t = E2 - E2n;   % tangential component of E2

5.12 Application Note—Piezoelectrics 213
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    E1t = E2t;       % e-field boundary condition for 
             %tangential component
    E1 = E1t + E1n;
else
    disp(‛Invalid specification, please re-try \n’);
end
% Display results
disp(sprintf(‘The electric fields are ‘));
disp(sprintf(‘\n E1 = (%d, %d, %d) V/m’,E1(1), E1(2), E1(3)));
disp(sprintf(‘\n E2 = (%d, %d, %d) V/m’,E2(1), E2(2), E2(3)));

 1.  Materials can be classified roughly as conductors 1s W 1, er 5 1 2  and dielectrics 
1s V 1, er $ 1 2  in terms of their electrical properties s and r, where s is the con-
ductivity and r is the dielectric constant or relative permittivity.

 2. Electric current is the flux of electric current density through a surface; that is,

I 5 3  J # dS

 3. The resistance of a conductor of uniform cross section is

R 5
,

sS

 4.  The macroscopic effect of polarization on a given volume of a dielectric material is to 
“paint” its surface with a bound charge Qb 5 AS rps dS and leave within it an accumu-
lation of bound charge Qb 5 ev rpv dv, where rps 5 P # an and rpv 5 2= # P.

 5.  In a dielectric medium, the D and E fields are related as D 5 eE, where e 5 eoer is 
the permittivity of the medium while E and P are related as P 5 xe eoE.

 6.  The electric susceptibility xe 15 er 2 1 2  of a dielectric measures the sensitivity of the 
material to an electric field.

 7.  A dielectric material is linear if D 5 eE holds, that is, if  is independent of E. It is 
homogeneous if  is independent of position. It is isotropic if  is a scalar.

 8.  The principle of charge conservation, the basis of Kirchhoff ’s current law, is stated in 
the continuity equation

= # J 1
'rv

't
5 0

 9.  The relaxation time, Tr 5 e/s, of a material is the time taken by a charge placed in its 
interior to decrease by a factor of e21 or to .37% of its original magnitude.

10.  Boundary conditions must be satisfied by an electric field existing in two different 
media separated by an interface. For a dielectric–dielectric interface

 E1t 5 E2t

D1n 2 D2n 5 rS  or  D1n 5 D2n  if  rS 5 0 

SUMMARY

05_Sadiku_Ch05.indd   214 23/09/17   1:15 PM



Review Questions 215

  For a dielectric–conductor interface,

Et 5 0,  Dn 5 eEn 5 rS

  because E 5 0 inside the conductor.
11.  Materials of high dielectric constant are of great interest for high-performance elec-

tronic devices.

5.1 Which is not an example of convection current?

(a) A moving charged belt

(b) Electronic movement in a vacuum tube

(c) An electron beam in a television tube

(d) Electric current flowing in a copper wire

5.2 What happens when a steady potential difference is applied across the ends of a conduct-
ing wire?

(a) All electrons move with a constant velocity.

(b) All electrons move with a constant acceleration.

(c)  The random electronic motion will, on the average, be equivalent to a constant veloc-
ity of each electron.

(d)  The random electronic motion will, on the average, be equivalent to a nonzero con-
stant acceleration of each electron.

5.3 The formula R 5 ,/ 1sS 2  is for thin wires.

(a) True (c) Not necessarily

(b) False

5.4 Seawater has er 5 80. Its permittivity is

(a) 81 (c) 5.162 3 10210 F/m

(b) 79 (d) 7.074 3 10210 F/m

5.5 Both o and xe are dimensionless.

(a) True (b) False

5.6 If = # D 5 e= # E and = # J 5 s= # E in a given material, the material is said to be

(a) Linear (d) Linear and homogeneous

(b) Homogeneous (e) Linear and isotropic

(c) Isotropic (f ) Isotropic and homogeneous

REVIEW
QUESTIONS
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5.7 The relaxation time of mica 1s 5 10215 S/m, er 5 6 2  is
(a) 5 3 10210 s (d) 10 hr
(b) 1026 s (e) 15 hr
(c) 5 hr

5.8 The uniform fields shown in Figure 5.18 are near a dielectric–dielectric boundary but on 
opposite sides of it. Which configurations are correct? Assume that the boundary is charge 
free and that 2 > 1.

5.9 Which of the following statements are incorrect?

(a)  The conductivities of conductors and insulators vary with temperature and frequency.
(b)  A conductor is an equipotential body in steady state, and E is always tangential to the 

conductor.
(c) Nonpolar molecules have no permanent dipoles.
(d) In a linear dielectric, P varies linearly with E.

FIGURE 5.18 For Review Question 5.8.
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5.10 The electric conditions (charge and potential) inside and outside an electric screening are 
completely independent of one another.

(a) True (b) False

Answers: 5.1d, 5.2c, 5.3c, 5.4d, 5.5b, 5.6d, 5.7e, 5.8e, 5.9b, 5.10a.

Section 5.3—Convection and Conduction Currents

 5.1 Let the current density be J 5 e2x cos 4 yax 1 e2x sin 4 yay A/m2. Determine the current 
crossing the surface x  2, 0  y  p/3, 0  z  4.

 5.2 In a certain region, J 5
10
r

 e2103tar A/m2 . Determine how much current is crossing 
surface r  4 m at t  2 ms.

 5.3 Given that J 5
10
r

 sin f ar A/m2, determine the current flowing through the surface 
r 5 2, 0 , f , p, 0 , z , 5 m.

 5.4 In a cylindrical conductor of radius 4 mm, the current density is J 5 5e210raz A/m2. 
Find the current through the conductor.

 5.5 The current density is 

J 5
20 cosu 
r 1 3

ar  A/m2

   Determine the current through the surface r  3, p/4    p/2, 0  f  2p.

Section 5.4—Conductors

 5.6 A 1 MV resistor is formed by a cylinder of graphite–clay mixture having a length of 2 cm 
and a radius of 4 mm. Determine the conductivity of the resistor.

 5.7 If the ends of a cylindrical bar of carbon 1s 5 3 3 104 S/m 2  of radius 5 mm and length 
8 cm are maintained at a potential difference of 9 V, find (a) the resistance of the bar, 
(b) the current through the bar, (c) the power dissipated in the bar.

 5.8 A conducting wire is 2 mm in radius and 100 m in length. When a dc voltage of 9 V  
is applied to the wire, it results in a current of 0.3 A. Find: (a) the E-field in the wire,  
(b) the conductivity of the wire.

 5.9 Two wires have the same diameter and same resistance. If one is made of copper, and the 
other is of silver, which wire is longer?

5.10 A long wire with circular cross section has a diameter of 4 mm. The wire is 5 m long and 
it carries 2 A when a 12 V voltage is applied across its ends. Determine the conductivity 
of the wire.

PROBLEMS
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FIGURE 5.19 For Problem 5.12.a

b

c

ρ1

ρ2

5.11 A composite conductor 10 m long consists of an inner core of steel of radius 1.5 cm and 
an outer sheath of copper whose thickness is 0.5 cm. Take the resistivities of copper and 
steel as 1.77 3 1028 and 11.8 3 1028 V # m, respectively.

(a) Determine the resistance of the conductor.
(b) If the total current in the conductor is 60 A, what current flows in each metal?
(c)  Find the resistance of a solid copper conductor of the same length and cross-sectional 

areas as the sheath.

5.12 The cross section of a conductor made with two materials with resistivities r1 and r2 is 
shown in Figure 5.19. Find the resistance of length  of the conductor.

5.13 A 12 V voltage is applied across the ends of a silver wire of length 12.4 m and radius  
0.84 mm. Determine the current through the wire.

Sections 5.5–5.7—Polarization and Dielectric Constant

5.14 At a particular temperature and pressure, a helium gas contains 5 3 1025 atoms/m3. If a 
10 kV/m field applied to the gas causes an average electron cloud shift of 10218 m, find 
the dielectric constant of helium.

5.15 A dielectric material contains 2 3 1019 polar molecules/m3, each of dipole moment 
1.8 3 10227 C # m. Assuming that all the dipoles are aligned in the direction of the elec-
tric field E 5 105ax V/m, find P and r.

5.16 A 10 mC point charge is embedded in wood, which has e 5 4.0. Assuming that the 
charge is located at the origin, find P at r = 1 m.

5.17 In a certain dielectric for which er 5 3.5, given that P 5
100
r

ar nC/m2, find E and D at 
r 5 2 m.

5.18 A cylindrical slab has a polarization given by P  po rar. Find the polarization charge 
density rpv inside the slab and its surface charge density rps.

5.19 A spherical shell has r  1.2 cm and r  2.6 cm as inner and outer radii, respectively. If 
P  4rar pC/m2, determine (a) the total bound surface charge on the inner surface, (b) 
the total bound surface charge on the outer surface, (c) the total bound volume charge.
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FIGURE 5.20 For Problem 5.23.

ε = ε0

ε = 5ε0

ε = 2ε0

ε = ε0

a

b
c

5.20 In a slab of Teflon 1e 5 2.1 eo 2 , E 5 6ax 1 12ay 2 20az V/m, find D and P.

5.21 The potential distribution in a dielectric material (e 5 8eo 2  is V 5 4x2 yz3 V. Find V, E, 
and P at point (–2, 5, 3).

5.22 In a dielectric material 1e 5 5eo 2 , the potential field V 5 10x2yz 2 5z2 V, determine  
(a) E, (b) D, (c) P, (d) rv.

5.23 Concentric spheres r  a, r  b, and r  c have charges 4 C, 6 C, and 10 C, respec-
tively, placed on them. If the regions separating them are filled with different dielectrics 
as shown in Figure 5.20, find E, D, and P everywhere.

5.24 Consider Figure 5.21 as a spherical dielectric shell so that e 5 eoer for a , r , b and 
e 5 eo for 0 , r , a. If a charge Q is placed at the center of the shell, find

(a) P for a , r , b
(b) rpv for a , r , b
(c) rps at r 5 a and r 5 b

  5.25 Two point charges in free space are separated by distance d and exert a force 2.6 nN on 
each other. The force becomes 1.5 nN when the free space is replaced by a homogeneous 
dielectric material. Calculate the dielectric constant of the material.

*5.26 A conducting sphere of radius a has a total charge Q uniformly distributed on its surface. 

(a) If the sphere is embedded in a medium with permittivity , find the energy stored.

(b) Repeat part (a) if the permittivity varies as   o a1 1
a
r b

2

.
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  5.27 A solid sphere of radius a and dielectric constant r has a uniform volume charge 
 density of ro.

(a) At the center of the sphere, show that

V 5
roa2

6eoer
 12er 1 1 2

(b) Find the potential at the surface of the sphere.

  5.28 In an anisotropic medium, D is related to E as

£
Dx
Dy
Dz

§ 5 eo £
4 1 1
1 3 1
1 1 2

§ £
Ex
Ey
Ez

§

  Find D due to E 5 Eo 1ax 1 ay 2 az 2  V/m.

Section 5.8—Continuity Equation and Relaxation Time

5.29 For static (time-independent) fields, which of the following current densities are 
 possible?

(a) J 5 2x3yax 1 4x2z2ay 2 6x2yzaz (b) J 5 xyax 1 y 1z 1 1 2ay 1 2yaz

(c) J 5
z2

r
 ar 1 z cos f az (d) J 5

sin u
r2  ar

5.30 If J  e2y sin 2xax  e2y cos 2xay  zaz A/m2, find the rate of change of the electric 
charge density.

5.31 If J 5
100
r2  ar A/m2, find (a) the time rate of increase in the volume charge density, (b) the 

total current passing through surface defined by r 5 2, 0 , z , 1, 0 , f , 2p.

5.32  An excess charge placed within a conducting medium becomes one-half of its initial 
value in 80 ms. Calculate the conductivity of the medium and the relaxation time. 
Assume that its dielectric constant is 7.5.

FIGURE 5.21 For Problem 5.24.
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5.33 Let rv be the volume charge density of charges in motion. If u is their velocity, show that

  (u # = 2rv 1 rv= # u 1
'rv

't
5 0.

5.34 The current density is given by J  0.5 sin pxax A/m2. Determine the time rate of 
increase of the charge density (i.e., drv/dt) at point (2, 4, 3).

5.35 Determine the relaxation time for each of the following media:

(a) Hard rubber 1s 5 10215 S/m, e 5 3.1eo 2
(b) Mica 1s 5 10215 S/m, e 5 6eo 2
(c) Distilled water 1s 5 1024 S/m, e 5 80eo 2

5.36 Lightning strikes a dielectric sphere of radius 20 mm for which er 5 2.5, s 5
5 3 1026 S/m and deposits uniformly a charge of 1 C. Determine the initial volume 
charge density and the volume charge density 2 ms later.

Section 5.9—Boundary Conditions

5.37 Show that the normal and tangential components of the current density J at the interface 
between two media with conductivities s1 and s2 satisfy

  J1n 5 J2n,    
J1t

J2t
5

s
1

s
2

5.38 Let z < 0 be region 1 with dielectric constant er1 5 4, while z  0 is region 2 with 
er2 5 7.5. Given that E1 5 60ax 2 100ay 1 40az V/m, (a) find P1, (b) calculate D2.

5.39 Region 1 is x  0 with, e1 5 4eo, while region 2 is x  0 with e 5 2eo. If 
E2 5 6ax 2 10ay 1 8az V/m, (a) find P1, and P2, (b) calculate the energy densities in 
both regions.

5.40 A dielectric interface is defined by 4x 1 3y 5 10 m. The region including the origin is 
free space, where D1 5 2ax 2 4ay 1 6.5az nC/m2. In the other region, er2 5 2.5. Find D2 
and the angle u2 that D2 makes with the normal.

5.41 Regions 1 and 2 have permittivities e1 5 2eo and e2 5 5eo. The regions are separated 
by a plane whose equation is x + 2y + z = 1 such that x + 2y + z  1 is region 1. If 
E1 5 20ax 2 10ay 1 40az V/m, find: (a) the normal and tangential components of E1, 
(b) E2.

5.42 Given that E1 5 10ax 2 6ay 1 12az V/m in Figure 5.22, find (a) P1, (b) E2 and the angle 
E2 makes with the y-axis, (c) the energy density in each region.

5.43 Two homogeneous dielectric regions 1 1r # 4 cm 2  and 2 1r $ 4 cm 2  have dielectric 
constants 3.5 and 1.5, respectively. If D2 5 12ar 2 6af 1 9az nC/m2, calculate (a) E1 
and D1, (b) P2 and rpv2, (c) the energy density for each region.
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5.44 A conducting sphere of radius a is half-embedded in a liquid dielectric medium of 
permittivity 1 as in Figure 5.23. The region above the liquid is a gas of permittivity 
2. If the total free charge on the sphere is Q, determine the electric field intensity 
everywhere.

5.45 A dielectric sphere e1 5 2eo is buried in a medium with e2 5 6eo. Given that 
E2 5 10sinuar 1 5cosuau in the medium, calculate E1 and D1 in the dielectric 
sphere.

*5.46 Two parallel sheets of glass 1er 5 8.5 2  mounted vertically are separated by a uniform 
air gap between their inner surface. The sheets, properly sealed, are immersed in oil 
1er 5 3.0 2  as shown in Figure 5.24. A uniform electric field of strength 2 kV/m in 
the horizontal direction exists in the oil. Calculate the magnitude and direction of the 
electric field in the glass and in the enclosed air gap when (a) the field is normal to the 
glass surfaces and (b) the field in the oil makes an angle of 75° with a normal to the glass 
surfaces. Ignore edge effects.

ε2 = 4.5ε0

x

y

2

1
ε1 = 3ε0

FIGURE 5.22 For Problem 5.42.

FIGURE 5.23 For Problem 5.44.
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z

E0

30°

ε0

ε0

ε1 = 2ε0

ε2 = 3ε0

FIGURE 5.25 For Problem 5.49.

Glass

Oil Oil

Air

FIGURE 5.24 For Problem 5.46.

5.47 At a point on a conducting surface, E  30ax  40ay  20az mV/m. Calculate the surface 
charge density at that point.

5.48 (a)  Given that E 5 15ax 2 8az V/m at a point on a conductor surface, what is the 
 surface charge density at that point? Assume e 5 eo.

(b)  Region y $ 2 is occupied by a conductor. If the surface charge on the conductor  
is 220 nC/m2, find D just outside the conductor.

5.49 Two planar slabs of equal thickness but with different dielectric constants are shown in 
Figure 5.25. Eo in air makes an angle of 30° with the z-axis. Calculate the angle that E 
makes with the z-axis in each of the two dielectric layers.
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Pierre-Simon de Laplace (1749–1827), a French  astronomer and math-
ematician, discovered the Laplace transform and Laplace’s equation, to be 
discussed in this chapter. He believed the world was entirely deterministic. 
To Laplace, the universe was nothing but a giant problem in calculus.

Born of humble origins in Beaumont-en-Auge, Normandy, Laplace 
became a  professor of mathematics at the age of 20. His mathematical 
abilities inspired the famous mathematician Siméon Poisson, who called 
Laplace the Isaac Newton of France. Laplace made important contributions 
in potential theory, probability theory, astronomy, and celestial  mechanics. 

He was widely known for his work Traité de Mécanique Céleste (Celestial Mechanics), which 
 supplemented the work of Newton on astronomy. Laplace is one of the few giants in the history of 
probability and statistics. He was born and died a Catholic.

Siméon-Denis Poisson (1781–1840), a French mathematical physicist 
whose name is attached to a wide area of ideas: Poisson’s integral, Poisson’s 
equation in potential theory (to be discussed in this chapter), Poisson 
brackets in differential equations, Poisson’s ratio in elasticity, the Poisson 
distribution in probability theory, and Poisson’s  constant in  electricity. 

Born at Pithviers, south of Paris, the son of a retired soldier, Siméon 
Poisson was originally forced to study medicine by his family, but he began 
to study mathematics in 1798 at the École Polytechnique at the age of 17. 
His abilities excited the interest of his teachers Lagrange and Laplace, whose 
friendship he retained to the end of their lives. A paper on finite differences, written when Poisson 
was 18, attracted the attention of  Legendre. Poisson’s chief interest lay in the application of mathemat-
ics to physics,  especially in electrostatics and magnetism. Poisson made important contributions to 
 mechanics, theory of elasticity, optics, calculus, differential geometry, and probability  theory. He 
published between 300 and 400  mathematical works.
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6.1 INTRODUCTION

The procedure for determining the electric field E in the preceding chapters has generally 
been to use either Coulomb’s law or Gauss’s law when the charge distribution is known, or 
E 5 2=V when the potential V is known throughout the region. In most practical situ-
ations, however, neither the charge distribution nor the potential distribution is known.

In this chapter, we shall consider practical electrostatic problems where only electro-
static conditions (charge and potential) at some boundaries are known and it is desired to 
find E and V throughout the region. Such problems are usually tackled using Poisson’s or 
Laplace’s equation or the method of images, and they are usually referred to as boundary-
value problems. The concepts of resistance and capacitance will be covered. We shall use 
Laplace’s equation in deriving the resistance of an object and the capacitance of a capaci-
tor. Example 6.5 should be given special attention because we will refer to it often in the 
remaining part of the text.

ELECTROSTATIC BOUNDARY-
VALUE PROBLEMS

Wise men profit more from fools than fools from wise men; for the wise men shun the  

mistakes of the fools, but fools do not imitate the successes of the wise. 
—MARCUS P. CATO

6

6.2 POISSON’S AND LAPLACE’S EQUATIONS

Poisson’s and Laplace’s equations are easily derived from Gauss’s law (for a linear, isotropic 
material medium):

 = # D 5 = # eE 5 rv (6.1)

and

 E 5 2=V (6.2)
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226 CHAPTER 6 ELECTROSTATIC BOUNDARY-VALUE PROBLEMS

Substituting eq. (6.2) into eq. (6.1) gives

 = # 12e=V 2 5 rv (6.3)

for an inhomogeneous medium. For a homogeneous medium, eq. (6.3) becomes

 =2V 5 2
rv

e
 (6.4)

This is known as Poisson’s equation. A special case of this equation occurs when rv 5 0 
(i.e., for a charge-free region). Equation (6.4) then becomes

 =2V 5 0 (6.5)

which is known as Laplace’s equation. Note that in taking « out of the left-hand side 
of eq. (6.3) to obtain eq. (6.4), we have assumed that « is constant throughout the 
 region in which V is defined; for an inhomogeneous region, « is not constant and 
eq. (6.4) does not follow eq. (6.3). Equation (6.3) is Poisson’s equation for an inho-
mogeneous medium; it becomes Laplace’s equation for an inhomogeneous medium 
when rv 5 0.

Recall that the Laplacian operator 2 was derived in Section 3.8. Thus Laplace’s equa-
tion in Cartesian, cylindrical, or spherical coordinates, respectively, is given by

 
'2V
'x2 1

'2V
'y2 1

'2V
'z2 5 0 (6.6)

 

1
r

 
'

'r
 ar

'V
'r

b 1
1
r2 

'2V
'f2 1

'2V
'z2 5 0 (6.7)

 
1
r2 

'

'r
 ar2 

'V
'r

b 1
1

r2sin u
 
'

'u
 asin u 

'V
'u

b 1
1

r2sin2 u
 
'2V
'f2 5 0 (6.8)

depending on the coordinate variables used to express V, that is, V 1x, y, z 2 , V 1r, f, z 2 , 
or V 1r, u, f 2 . Poisson’s equation in those coordinate systems may be obtained by simply 
 replacing zero on the right-hand side of eqs. (6.6), (6.7), and (6.8) with 2rv /e.

Laplace’s equation is of primary importance in solving electrostatic problems involv-
ing a set of conductors maintained at different potentials. Examples of such problems 
include capacitors and vacuum tube diodes. Laplace’s and Poisson’s equations are not 
only useful in solving electrostatic field problem; they are used in various other field 
problems. For example, V would be interpreted as magnetic potential in magnetostatics, 
as temperature in heat conduction, as stress function in fluid flow, and as pressure head 
in seepage.
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Since there are several methods (analytical, graphical, numerical, experimental, etc.) of 
solving a given problem, we may wonder whether solving Laplace’s equation in differ-
ent ways gives different solutions. Therefore, before we begin to solve Laplace’s equation, 
we should answer this question: if a solution of Laplace’s equation satisfies a given set of 
boundary conditions, is this the only possible solution? The answer is yes: there is only one 
solution. We say that the solution is unique. Thus any solution of Laplace’s equation that 
satisfies the same boundary conditions must be the only solution regardless of the method 
used. This is known as the uniqueness theorem. The theorem applies to any solution of 
Poisson’s or Laplace’s equation in a given region or closed surface.

The theorem is proved by contradiction. We assume that there are two solutions V1 and 
V2 of Laplace’s equation, both of which satisfy the prescribed boundary conditions. Thus

 =2V1 5 0,    =2V2 5 0 (6.9a)

                  V1 5 V2   on the boundary (6.9b)

We consider their difference

 Vd 5 V2 2 V1 (6.10)

which obeys

 =2Vd 5 =2V2 2 =2V1 5 0  (6.11a)

 Vd 5 0  on the boundary (6.11b)

according to eq. (6.9). From the divergence theorem

 3
v
 = # A dv 5 C

S
 A # dS (6.12)

where S is the surface surrounding volume v and is the boundary of the original problem. 
We let A 5 Vd =Vd and use a vector identity

= # A 5 = # 1Vd=Vd 2 5 Vd=
2Vd 1 =Vd

# =Vd

But =2Vd 5 0 according to eq. (6.11a), so

 = # A 5 =Vd
# =Vd (6.13)

Substituting eq. (6.13) into eq. (6.12) gives

 3
v
 =Vd

# =Vd dv 5 C
S
 Vd =Vd

# dS (6.14)

From eqs. (6.9) and (6.11), it is evident that the right-hand side of eq. (6.14) vanishes. 

†6.3 UNIQUENESS THEOREM
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Hence,

3
v
0  =Vd 0 2 dv 5 0

Since the integrand is everywhere positive,

 0=V 0 d 5 0 (6.15a)

or

 Vd 5 V2 2 V1 5 constant everywhere in v (6.15b)

But eq. (6.15) must be consistent with eq. (6.9b). Hence, Vd 5 0 or V1 5 V2  everywhere, 
showing that V1 and V2 cannot be different solutions of the same problem.

This is the uniqueness theorem: If a solution to Laplace’s equation can be found that 
satisfies the boundary conditions, then the solution is unique.

Similar steps can be taken to show that the theorem applies to Poisson’s equation and to 
prove the theorem for the case where the electric field (potential gradient) is specified on 
the boundary.

Before we begin to solve boundary-value problems, we should bear in mind the three 
things that uniquely describe a problem:

1. The appropriate differential equation (Laplace’s or Poisson’s equation in this 
 chapter)

2. The solution region
3. The prescribed boundary conditions

A problem does not have a unique solution and cannot be solved completely if any of the 
three items is missing.

6.4 GENERAL PROCEDURES FOR SOLVING POISSON’S OR 
LAPLACE’S EQUATION

The following general procedure may be taken in solving a given boundary-value problem 
involving Poisson’s or Laplace’s equation:

1. Solve Laplace’s (if rv 5 0) or Poisson’s (if rv 2 0) equation using either (a) direct 
integration when V is a function of one variable or (b) separation of variables if V 
is a function of more than one variable. The solution at this point is not unique but 
is expressed in terms of unknown integration constants to be determined.

2. Apply the boundary conditions to determine a unique solution for V. Imposing 
the given boundary conditions makes the solution unique.

3. Having obtained V, find E using E 5 2=V, D from D 5 eE, and J from J 5 sE.
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4. If required, find the charge Q induced on a conductor using Q 5 e
S
 rS dS, where 

rS 5 Dn and Dn is the component of D normal to the conductor. If necessary, the 
capacitance of two conductors can be found using C 5 Q/V or the resistance of an 
object can be found by using R 5 V/I, where I 5 e

S
 J # dS.

Solving Laplace’s (or Poisson’s) equation, as in step 1, is not always as complicated as 
it may seem. In some cases, the solution may be obtained by mere inspection of the prob-
lem. Also a solution may be checked by going backward and finding out if it satisfies both 
Laplace’s (or Poisson’s) equation and the prescribed boundary condition.

EXAMPLE 6.1 Current-carrying components in high-voltage power equipment can be cooled to carry 
away the heat caused by ohmic losses. A means of pumping is based on the force transmit-
ted to the cooling fluid by charges in an electric field. Electrohydrodynamic (EHD) pump-
ing is modeled in Figure 6.1. The region between the electrodes contains a uniform charge 
ro, which is generated at the left electrode and collected at the right electrode. Calculate the 
pressure of the pump if ro 5 25 mC/m3 and Vo 5 22 kV.

Solution:
Since rv 2 0, we apply Poisson’s equation

=2V 5 2
rv

e

The boundary conditions V 1z 5 0 2 5 Vo and V 1z 5 d 2 5 0 show that V depends only on 
z (there is no r or f dependence). Hence,

d2V
dz2 5

2ro

e

Integrating once gives

dV
dz

5
2roz

e
1 A

Integrating again yields

V 5 2
roz2

2e
1 Az 1 B

0 V
FIGURE 6.1 An electrohydrodynamic pump; for 
Example 6.1.
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where A and B are integration constants to be determined by applying the boundary condi-
tions. When z 5 0, V 5 Vo,

Vo 5 20 1 0 1 B S  B 5 Vo

When z 5 d, V 5 0,

0 5 2
rod2

2e
1 Ad 1 Vo

or

A 5
rod
2e

2
Vo

d

The electric field is given by

E 5 2=V 5 2
dV
dz

 az 5 aroz
e

2 Abaz

 5 cVo

d
1

ro

e
 az 2

d
2
b d az

The net force is

 F 5 3
v
 rvE dv 5 ro 3  dS 3

d

z50
 E dz

   5 roS cVoz
d

1
ro

2e
 1z2 2 dz 2 d `

0

d

 az

 F 5 roSVoaz

The force per unit area or pressure is

r 5
F
S

5 roVo 5 25 3 1023 3 22 3 103 5 550 N/m2

PRACTICE EXERCISE 6.1

In a one-dimensional device, the charge density is given by rv 5 rox/a. If E 5 0 at 
x 5 0 and V 5 0 at x 5 a, find V and E.

Answer:  
ro

6ea
 1a3 2 x3 2 , rox2

2ae
 ax.
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EXAMPLE 6.2

Recombination

L

A

P

FIGURE 6.2 For Example 6.2.

The xerographic copying machine is an important application of electrostatics. The surface 
of the photoconductor is initially charged uniformly as in Figure 6.2(a). When light from 
the  document to be copied is focused on the photoconductor, the charges on the lower 
surface combine with those on the upper surface to neutralize each other. The image is 
developed by pouring a charged black powder over the surface of the photoconductor. The 
electric field attracts the charged powder, which is later transferred to paper and melted 
to form a permanent image. We want to determine the electric field below and above the 
surface of the photoconductor.

Solution:
Consider the modeled version of Figure 6.2(a) shown in Figure 6.2(b). Since rv 5 0 in this 
case, we apply Laplace’s equation. Also the potential depends only on x. Thus

=2V 5
d2V
dx2 5 0

Integrating twice gives

V 5 Ax 1 B

Let the potentials above and below x 5 a be V1 and V2, respectively:

 V1 5 A1x 1 B1,  x . a (6.2.1a)

 V2 5 A2x 1 B2,  x , a (6.2.1b)
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The boundary conditions at the grounded electrodes are

 V1 1x 5 d 2 5 0 (6.2.2a)

 V2 1x 5 0 2 5 0 (6.2.2b)
At the surface of the photoconductor,

 V1 1x 5 a 2 5 V2 1x 5 a 2  (6.2.3a)

 D1n 2 D2n 5 rS `
x5a

 (6.2.3b)

We use the four conditions in eqs. (6.2.2) and (6.2.3) to determine the four unknown con-
stants A1, A2, B1, and B2. From eqs. (6.2.1) and (6.2.2),

 0 5 A1d 1 B1 S  B1 5 2A1d (6.2.4a)

 0 5 0 1 B2 S  B2  5 0  (6.2.4b)

From eqs. (6.2.1) and (6.2.3a),

 A1a 1 B1 5 A2a (6.2.5)

To apply eq. (6.2.3b), recall that D 5 eE 5 2e=V so that

rS 5 D1n 2 D2n 5 e1E1n 2 e2E2n 5 2e1 
dV1

dx
1 e2 

dV2

dx
or
 rS 5 2e1A1 1 e2A2 (6.2.6)

Solving for A1 and A2 in eqs. (6.2.4) to (6.2.6), we obtain

E1 5 2A1ax 5
rSax

e1 c1 1
e2

e1
 
d
a 2

e2

e1
d

,  a # x # d

  E2 5 2A2ax 5

2rSad
a 2 1b  ax

e1 c1 1
e2

e1
 
d
a 2

e2

e1
d

,  0 # x # a

PRACTICE EXERCISE 6.2

For the model of Figure 6.2(b), if rS 5 0 and the upper electrode is maintained at Vo 
while the lower electrode is grounded, show that

 E1 5
2Vo ax

d 2 a 1
e1

e2
 a

,  E2 5
2Vo ax

a 1
e2

e1
 d 2

e2

e1
 a

Answer: Proof.
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EXAMPLE 6.3 Semi-infinite conducting planes at f 5 0 and f 5 p/6 are separated by an infinitesimal 
 insulating gap as shown in Figure 6.3. If V 1f 5 0 2 5 0 and V 1f 5 p/6 2 5 100 V, calcu-
late V and E in the region between the planes.

Solution:
Since V depends only on f, Laplace’s equation in cylindrical coordinates becomes

=2V 5
1
r2 

d2V
df2 5 0

Since r 5 0 is excluded owing to the insulating gap, we can multiply by r2 to obtain

d2V
df2 5 0

which is integrated twice to give

V 5 Af 1 B

We apply the boundary conditions to determine constants A and B. When f 5 0, V 5 0,

0 5 0 1 B S  B 5 0

When f 5 fo, V 5 Vo,

Vo 5 Afo S  A 5
Vo

fo

Hence,

V 5
Vo

fo
 f

G
FIGURE 6.3 Potential V 1f 2  due to 
semi-infinite conducting planes.
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and

E 5 2=V 5 2
1
r

 
dV
df

 af 5 2
Vo

rfo
 af

Substituting Vo 5 100 and fo 5 p/6 gives

V 5
600
p

 f  and  E 5
2600

pr
 af

Check: =2V 5 0, V 1f 5 0 2 5 0, V 1f 5 p/6 2 5 100.

EXAMPLE 6.4

PRACTICE EXERCISE 6.3

Two conducting plates of size 1 3 5 m are inclined at 45 to each other with a gap of 
width 4 mm separating them as shown in Figure 6.4. Determine an approximate value 
of the charge per plate if the plates are maintained at a potential difference of 50 V. 
Assume that the medium between them has er 5 1.5.

Answer:  22.2 nC.

Two conducting cones 1u 5 p/10 and u 5 p/6 2  of infinite extent are separated by an 
infinitesimal gap at r 5 0. If V 1u 5 p/10 2 5 0 and V 1u 5 p/6 2 5 50 V, find V and E 
between the cones.

Solution:
Consider the coaxial cone of Figure 6.5, where the gap serves as an insulator between the 
two conducting cones. Here V depends only on , so Laplace’s equation in spherical coor-
dinates becomes

=2V 5
1

r2 sin u
 

d
du

 csin u 
dV
du

d 5 0

G

FIGURE 6.4 For Practice Exercise 6.3.
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Since r 5 0 and u 5 0, p are excluded, we can multiply by r2 sin u to get

d
du

 csin u 
dV
du

d 5 0

Integrating once gives

sin u 
dV
du

5 A

or
dV
du

5
A

sin u
Integrating this results in

V 5 A 3  
du

sin u
5 A 3  

du

2 cos u/2 sin u/2

 5 A 3  
1/2 sec2 u/2 du

tan u/2

 5 A 3  
d 1 tan u/2 2

tan u/2

 5 A ln 1 tan u/2 2 1 B

We now apply the boundary conditions to determine the integration constants A and B.

V 1u 5 u1 2 5 0 S  0 5 A ln 1 tan u1/2 2 1 B

or
B 5 2A ln 1 tan u1/2 2

Gap

FIGURE 6.5 Potential V() due to conducting cones; for 
Example 6.4.

06_Sadiku_Ch06.indd   235 23/09/17   1:39 PM



236 CHAPTER 6 ELECTROSTATIC BOUNDARY-VALUE PROBLEMS

Hence,

V 5 A ln c tan u/2
tan u1/2

d

Also

V 1u 5 u2 2 5 Vo S  Vo 5 A ln c tan u2/2
tan u1/2

d

or

A 5
Vo

ln c tan u2/2
tan u1/2

d

Thus

 V 5

Vo ln c tan u/2
tan u1/2

d

ln c tan u2/2
tan u1/2

d

 E 5 2=V 5 2
1
r  

dV
du

 au 5 2
A

r sin u
 au 

 5 2
Vo

r sin u ln c tan u2/2
tan u1/2

d
 au

Taking u1 5 p/10, u2 5 p/6, and Vo 5 50 gives

V 5

50 ln c tan u/2
tan p/20

d

ln c tan p/12
tan p/20

d
5 95.1 ln c tan u/2

0.1584
d  V

and

E 5 2
95.1

r sin u
 au V/m

Check: =2V 5 0, V 1u 5 p/10 2 5 0, V 1u 5 p/6 2 5 Vo.
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Gap

FIGURE 6.6 For Practice Exercise 6.4.

EXAMPLE 6.5

PRACTICE EXERCISE 6.4

A large conducting cone 1u 5 45° 2  is placed on a conducting plane with a tiny gap 
separating it from the plane as shown in Figure 6.6. If the cone is connected to a 50 V 
source, find V and E at 123, 4, 2 2 .
Answer: 27.87 V, 11.35a V/m.

(a) Determine the potential function for the region inside the rectangular trough of infi-
nite length whose cross section is shown in Figure 6.7.
(b) For Vo 5 100 V and b 5 2a, find the potential at x 5 a/2, y 5 3a/4.

Solution:
(a) The potential V in this case depends on x and y. Laplace’s equation becomes

 =2V 5
'2V
'x2 1

'2V
'y2 5 0 (6.5.1)

GG

FIGURE 6.7 Potential V 1x, y 2  due to 
a conducting rectangular trough; for 
Example 6.5.
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We have to solve this equation subject to the following boundary conditions:

 V 1x 5 0, 0 # y , a 2 5 0 (6.5.2a)
 V 1x 5 b, 0 # y , a 2 5 0 (6.5.2b)
 V 10 # x # b, y 5 0 2 5 0 (6.5.2c)
 V 10 , x , b, y 5 a 2 5 Vo (6.5.2d)

We solve eq. (6.5.1) by the method of separation of variables; that is, we seek a product 
solution of V. Let

 V 1x, y 2 5 X 1x 2  Y 1y 2  (6.5.3)

where X is a function of x only and Y is a function of y only. Substituting eq. (6.5.3) into  
eq. (6.5.1) yields

XsY 1 YsX 5 0

Dividing through by XY and separating X from Y gives

 2
Xs
X

5
Ys
Y

 (6.5.4a)

Since the left-hand side of this equation is a function of x only and the right-hand side is a 
function of y only, for the equality to hold, both sides must be equal to a constant l; that is,

 2
Xs
X

5
Ys
Y

5 l (6.5.4b)

The constant l is known as the separation constant. From eq. (6.5.4b), we obtain

 Xs 1 lX 5 0 (6.5.5a)

and

 Ys 2 lY 5 0 (6.5.5b)

Thus the variables have been separated at this point and we refer to eq. (6.5.5) as separated 
equations. We can solve for X(x) and Y(y) separately and then substitute our solutions into 
eq. (6.5.3). To do this requires that the boundary conditions in eq. (6.5.2) be separated, if 
possible. We separate them as follows:

 V 10, y 2 5 X 10 2Y 1y 2 5 0 S  X 10 2 5 0 (6.5.6a)

 V 1b, y 2 5 X 1b 2Y 1y 2 5 0 S  X 1b 2 5 0 (6.5.6b)

 V 1x, 0 2 5 X 1x 2Y 10 2 5 0 S  Y 10 2 5 0 (6.5.6c)

 V 1x, a 2 5 X 1x 2Y 1a 2 5 Vo 1 inseparable 2  (6.5.6d)

To solve for X(x) and Y(y) in eq. (6.5.5), we impose the boundary conditions in eq. (6.5.6). 
We consider possible values of l that will satisfy both the separated equations in eq. (6.5.5) 
and the conditions in eq. (6.5.6).
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CASE 1.
If l 5 0, then eq. (6.5.5a) becomes

Xs 5 0  or  
d2X
dx2 5 0

which, upon integrating twice, yields

 X 5 Ax 1 B (6.5.7)

The boundary conditions in eqs. (6.5.6a) and (6.5.6b) imply that

X 1x 5 0 2 5 0 S  0 5 0 1 B  or  B 5 0

and

X 1x 5 b 2 5 0 S  0 5 A # b 1 0  or  A 5 0

because b 2 0. Hence our solution for X in eq. (6.5.7) becomes

X 1x 2 5 0

which makes V 5 0 in eq. (6.5.3). Thus we regard X 1x 2 5 0 as a trivial solution and we 
conclude that l 2 0.

CASE 2.
If l , 0, say l 5 2a2, then eq. (6.5.5a) becomes

Xs 2 a2X 5 0  or  1D2 2 a2 2X 5 0

where D 5
d

dx
, that is,

 DX 5 6aX (6.5.8)

showing that we have two possible solutions corresponding to the plus and minus signs. 
For the plus sign, eq. (6.5.8) becomes

dX
dx

5 aX  or  
dX
X

5 a dx

Hence,

3  
dX
X

5 3  a dx  or  ln X 5 ax 1 ln A1

where ln A1 is a constant of integration. Thus

 X 5 A1eax (6.5.9a)
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Similarly, for the minus sign, solving eq. (6.5.8) gives

 X 5 A2e2ax (6.5.9b)

The total solution consists of what we have in eqs. (6.5.9a) and (6.5.9b); that is,

 X 1x 2 5 A1eax 1 A2e2ax (6.5.10)

Since cosh ax 5 1eax 1 e2ax 2 /2 and sinh ax 5 1eax 2 e2ax 2 /2 or eax 5 cosh ax 1 
sinh ax and e2ax 5 cosh ax 2 sinh ax, eq. (6.5.10) can be written as

 X 1x 2 5 B1 cosh ax 1 B2 sinh ax (6.5.11)

where B1 5 A1 1 A2 and B2 5 A1 2 A2. In view of the given boundary conditions, we pre-
fer eq. (6.5.11) to eq. (6.5.10) as the solution. Again, eqs. (6.5.6a) and (6.5.6b) require that

X 1x 5 0 2 5 0 S  0 5 B1
# 11 2 1 B2

# 10 2  or  B1 5 0

and

X 1x 5 b 2 5 0 S  0 5 0 1 B2 sinh ab

Since a 2 0 and b 2 0, sinh ab cannot be zero. This is due to the fact that sinh x 5 0 if 
and only if x 5 0 as shown in Figure 6.8. Hence B2 5 0 and

X 1x 2 5 0

This is also a trivial solution and we conclude that l cannot be less than zero.

CASE 3.
If l . 0, say l 5 b2, then eq. (6.5.5a) becomes

Xs 1 b2X 5 0

FIGURE 6.8 Sketch of cosh x and 
sinh x showing that sinh x 5 0 if and 
only if x 5 0; for Case 2 of Example 6.5.
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that is,

 1D2 1 b2 2X 5 0  or  DX 5 6jbX (6.5.12)

where j 5 !21. From eqs. (6.5.8) and (6.5.12), we notice that the difference between 
Cases 2 and 3 is the replacement of a by jb. By taking the same procedure as in Case 2, we 
obtain the solution as

 X 1x 2 5 Coe jbx 1 C1e2jbx (6.5.13a)

Since e jbx 5 cos bx 1 j sin bx and e2jbx 5 cos bx 2 j sin bx, eq. (6.5.13a) can be written as

 X 1x 2 5 go cos bx 1 g1 sin bx (6.5.13b)

where go 5 Co 1 C1 and g1 5 j 1Co 2 C1 2 .

In view of the given boundary conditions, we prefer to use eq. (6.5.13b). Imposing the 
conditions in eqs. (6.5.6a) and (6.5.6b) yields

X 1x 5 0 2 5 0 S  0 5 go
# 11 2 1 0  or  go 5 0

and

X 1x 5 b 2 5 0 S  0 5 0 1 g1 sin bb

Suppose g1 2 0 (otherwise we get a trivial solution), then

sin bb 5 0 5 sin np S  bb 5 np

 b 5
np

b
,  n 5 1, 2, 3, 4, . . . (6.5.14)

Note that, unlike sinh x, which is zero only when x 5 0, sin x is zero at an infinite  number 
of points as shown in Figure 6.9. It should also be noted that n 2 0 because b 2 0; we 
have already considered the possibility b 5 0 in Case 1, where we ended up with a triv-
ial solution. Also we do not need to consider n 5 21, 22, 23, 24,  .  .  . because l 5 b2

FIGURE 6.9 Sketch of sin x showing that sin x 5 0 at infinite 
number of points; for Case 3 of Example 6.5.
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would remain the same for positive and negative integer values of n. Thus for a given n,  
eq. (6.5.13b) becomes

 Xn 1x 2 5 gn sin 
npx

b
 (6.5.15)

Having found X(x) and

 l 5 b2 5
n2p2

b2  (6.5.16)

we solve eq. (6.5.5b), which is now

Ys 2 b2Y 5 0

Y 1y 2 5 ho cosh by 1 h1 sinh by

The boundary condition in eq. (6.5.6c) implies that

Y 1y 5 0 2 5 0 S  0 5 ho
# 11 2 1 0  or  ho 5 0

Hence our solution for Y(y) becomes

 Yn 1y 2 5 hn sinh 
npy

b
 (6.5.17)

Substituting eqs. (6.5.15) and (6.5.17), which are the solutions to the separated equations 
in eq. (6.5.5), into the product solution in eq. (6.5.3) gives

Vn 1x, y 2 5 gnhn sin 
npx

b
 sinh 

npy
b

This shows that there are many possible solutions V1, V2, V3, V4, and so on, for n 5
1, 2, 3, 4, and so on.

By the superposition theorem, if V1, V2, V3, . . . , Vn are solutions of Laplace’s equation, 
the linear combination

V 5 c1V1 1 c2V2 1 c3V3 1 . . . 1 cnVn

(where c1, c2, c3, . . . , cn are constants) is also a solution of Laplace’s equation. Thus the 
solution to eq. (6.5.1) is

 V 1x, y 2 5 a
`

n51
 cn sin 

npx
b

 sinh 
npy

b
 (6.5.18)

where cn 5 gnhn are the coefficients to be determined from the boundary condition in  
eq. (6.5.6d). Imposing this condition gives

 V 1x, y 5 a 2 5 Vo 5 a
`

n51
 cn sin 

npx
b

 sinh 
npa

b
 (6.5.19)
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which is a Fourier series expansion of Vo. Multiplying both sides of eq. (6.5.19) by 
sin mpx/b and integrating over 0 , x , b gives

 3
b

0
 Vo sin 

mpx
b

 dx 5 a
`

n51
 cn sinh 

npa
b

 3
b

0
 sin 

mpx
b

 sin 
npx

b
 dx (6.5.20)

By the orthogonality property of the sine or cosine function (see Appendix A.9).

3
p

0
 sin mx sin nx dx 5 c0, m 2 n

p/2, m 5 n

Incorporating this property in eq. (6.5.20) means that all terms on the right-hand side of  
eq. (6.5.20) will vanish except one term in which m 5 n. Thus eq. (6.5.20) reduces to

 3
b

0
 Vo sin 

npx
b

 dx 5 cn sinh 
npa

b
 3

b

0
 sin2 

npx
b

 dx

2Vo 
b

np
 cos 

npx
b

`
0

b

5 cn sinh 
npa

b
 
1
2

 3
b

0
 a1 2 cos 

2npx
b

b  dx

 
Vob
np

 11 2 cos np 2 5 cn sinh 
npa

b
# b

2

or

cn sinh 
npa

b
5

2Vo

np
 11 2 cos np 2

 5 •
4Vo

np
, n 5 1, 3, 5, . . .

0, n 5 2, 4, 6, . . .

that is,

 

cn 5 µ
4Vo

np sinh npa
b

, n 5 odd

0, n 5 even 
(6.5.21)

Substituting this into eq. (6.5.18) gives the complete solution as

 V 1x, y 2 5
4Vo

p
 a

`

n51,3,5, . . .
 
sin 

npx
b

 sinh 
npy

b

n sinh 
npa

b

 (6.5.22)

Check: =2V 5 0, V 1x 5 0, y 2 5 0 5 V 1x 5 b, y 2 5 V 1x, y 5 0 2 , V 1x, y 5 a 2 5 Vo. The 
solution in eq. (6.5.22) should not be a surprise; it can be guessed by mere observation  
of the potential system in Figure 6.7. From this figure, we notice that along x, V varies 
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from 0 1at x 5 0 2  to 0 1at x 5 b 2  and only a sine function can satisfy this requirement. 
Similarly, along y, V varies from 0 1at y 5 0 2  to Vo 1at y 5 a 2  and only a hyperbolic sine 
function can satisfy this. Thus we should expect the solution as in eq. (6.5.22).

To determine the potential for each point 1x, y 2  in the trough, we take the first few terms 
of the convergent infinite series in eq. (6.5.22). Taking four or five terms may be sufficient.

(b) For x 5 a/2 and y 5 3a/4, where b 5 2a, we have

  Vaa
2

, 
3a
4
b 5

4Vo

p
 a

`

n51,3,5, . . .
 
sin np/4 sinh 3np/8

n sinh np/2

   5
4Vo

p
  c sin p/4 sinh 3p/8

sinh p/2
1

sin 3p/4 sinh 9p/8
3 sinh 3p/2

   1
sin 5p/4 sinh 15p/8

5 sinh 5p/2
1 . . . d

   5
4Vo

p
 10.4517 1 0.0725 2 0.01985 2 0.00645 1 0.00229 1 . . . 2

   5 0.6374Vo

It is instructive to consider a special case of a 5 b 5 1 m and Vo 5 100 V. The potentials 
at some specific points are calculated by using eq. (6.5.22), and the result is displayed in 
Figure 6.10(a). The corresponding flux lines and equipotential lines are shown in Figure 
6.10(b). A simple MATLAB program based on eq. (6.5.22) is displayed in Figure 6.11. This 
self-explanatory program can be used to calculate V 1x, y 2  at any point within the trough. 
In Figure 6.11, V 1x 5 b/4, y 5 3a/4 2  is typically calculated and found to be 43.2 V.

FIGURE 6.10 For Example 6.5: (a) V 1x, y 2  calculated at some points, (b) sketch of 
flux lines and equipotential lines.
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h=0.1;
vo=100;
a=1.0;
b=a;
c=4*vo/pi;
IMAX = a/h;
JMAX = b/h;
NMAX = 13;
for I=1:IMAX
    x=h*I;
    for J=1:JMAX
        y=h*J;
        sum=0.0;
        for n =1:2:NMAX
            a1=sin(n*pi*x/b);
            a2=sinh(n*pi*y/b);
            a3=n*sinh(n*pi*a/b);
            sum= sum + c*a1*a2/a3;
        end
        V(I,J)=sum;
    end
end
mesh(V);

PRACTICE EXERCISE 6.5

For the problem in Example 6.5, take Vo 5 100 V, b 5 2a 5 2 m, and find V and E at

(a) 1x, y 2 5 1a, a/2 2
(b) 1x, y 2 5 13a/2, a/4 2
Answer: (a) 44.51 V, 299.25ay V/m, (b) 16.5 V, 20.6ax 2 70.34ay V/m.

10
8

6
4

2
00

5

80

0

20

40

60

100

120

(b)

10

FIGURE 6.11 (a) MATLAB program for Example 6.5, (b) the output of the MATLAB program.

(a)
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 V 1x, y 2 5 a
`

n51
 cn sin 

npx
b

 sinh 
npy

b
 (6.6.1)

in accordance with eq. (6.5.18). But instead of eq. (6.5.19), we now have

V 1y 5 a 2 5 Vo 5 10 sin 
3px

b
5 a

`

n51
 cn sin 

npx
b

 sinh 
npa

b

By equating the coefficients of the sine terms on both sides, we obtain

cn 5 0,  n 2 3

For n 5 3,

10 5 c3 sinh 
3pa

b
or

c3 5
10

sinh 
3pa

b
Thus the solution in eq. (6.6.1) becomes

V 1x, y 2 5 10 sin 
3px

b
 
sinh 

3py
b

sinh 
3pa

b
(b) Similarly, instead of eq. (6.5.19), we have

Vo 5 V 1y 5 a 2
or

2 sin 
px
b

1
1

10
 sin 

5px
b

5 a
`

n51
 cn sin 

npx
b

 sinh 
npa

b

Equating the coefficient of the sine terms:

cn 5 0,  n 2 1, 5

EXAMPLE 6.6 Find the potential distribution in Example 6.5 if Vo is not constant but
(a) Vo 5 10 sin 3px/b, y 5 a, 0 # x # b

(b) Vo 5 2 sin 
px
b

1
1

10
 sin 

5px
b

, y 5 a, 0 # x # b

Solution:
(a) In Example 6.5, every step before eq. (6.5.19) remains the same; that is, the solution is 
of the form
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For n 5 1,

2 5 c1 sinh 
pa
b
  or  c1 5

2

sinh 
pa
b

For n 5 5,

1
10

5 c5 sinh 
5pa

b
  or  c5 5

1

10 sinh 
5pa

b

Hence,

V 1x, y 2 5

2 sin 
px
b

 sinh 
py
b

sinh 
pa
b

1

sin 
5px

b
 sinh 

5py
b

10 sinh 
5pa

b

PRACTICE EXERCISE 6.6

In Example 6.5, suppose everything remains the same except that Vo is replaced by 

Vo sin 
7px

b
, 0 # x # b, y 5 a. Find V 1x, y 2 .

Answer: 
Vo sin 

7px
b

 sinh 
7py

b

sinh 
7pa

b

.

EXAMPLE 6.7 Obtain the separated differential equations for potential distribution V 1r, f, z 2  in a 
charge-free region.

Solution:
This example, like Example 6.5, further illustrates the method of separation of variables. 
Since the region is free of charge, we need to solve Laplace’s equation in cylindrical coor-
dinates; that is,

 =2V 5
1
r

 
'

'r
 ar 

'V
'r

b 1
1
r2 

'2V
'f2 1

'2V
'z2 5 0 (6.7.1)

We let

 V 1r, f, z 2 5 R 1r 2  F 1f 2  Z 1z 2  (6.7.2)
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where R, 
, and Z are, respectively, functions of �, �, and z. Substituting eq. (6.7.2) into 
eq. (6.7.1) gives

 

Z
r

 
d

dr
 ar dR

dr
b 1

RZ
r2  

d2


df2 1 R
 d2Z
dz2 5 0 (6.7.3)

We divide through by RFZ to obtain

 
1

rR
 

d
dr

 ar dR
dr

b 1
1

r2

 
d2


df2 5 2
1
Z

 
d2Z
dz2  (6.7.4)

The right-hand side of this equation is solely a function of z, whereas the left-hand side 
does not depend on z. For the two sides to be equal, they must be constant; that is,

 
1

rR
 

d
dr

 ar dR
dr

b 1
1

r2

 
d2


df2 5 2
1
Z

 
d2Z
dz2 5 2l2 (6.7.5)

where 2l2 is a separation constant. Equation (6.7.5) can be separated into two parts:

 
1
Z

 
d2Z
dz2 5 l2 (6.7.6)

or

 Z s 2 l2Z 5 0 (6.7.7)

and

 
r

R
 

d
dr

 ar dR
dr

b 1 l2r2 1
1



 
d2


df2 5 0 (6.7.8)

Equation (6.7.8) can be written as

 
r2

R
 
d2R
dr2 1

r

R
 
dR
dr

1 l2r2 5 2
1



 
d2


df2 5 m2 (6.7.9)

where �2 is another separation constant. Equation (6.7.9) is separated as

 
s 1 m2
 5 0 (6.7.10)

and

 r2Rs 1 rR r 1 1r2l2 2 m2 2R 5 0 (6.7.11)
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Equations (6.7.7), (6.7.10), and (6.7.11) are the required separated differential equations. 
Equation (6.7.7) has a solution similar to the solution obtained in Case 2 of Example 6.5; 
that is,

 Z 1z 2 5 c1 cosh lz 1 c2 sinh lz (6.7.12)

The solution to eq. (6.7.10) is similar to the solution obtained in Case 3 of Example 6.5; 
that is,

 F 1f 2 5 c3 cos mf 1 c4 sin mf (6.7.13)

Equation (6.7.11) is known as the Bessel differential equation and its solution is beyond the 
scope of this text.1

6.5 RESISTANCE AND CAPACITANCE

In Section 5.4 the concept of resistance was covered and we derived eq. (5.16) for finding 
the resistance of a conductor of uniform cross section. If the cross section of the conductor 
is not uniform, eq. (5.16) becomes invalid and the resistance is obtained from eq. (5.17):

 R 5
V
I

5
eL E # d l

eS  sE # dS
 (6.16)

The problem of finding the resistance of a conductor of nonuniform cross section can be 
treated as a boundary-value problem. Using eq. (6.16), the resistance R (or conductance 
G 5 1/R) of a given conducting material can be found by following these steps:

1. Choose a suitable coordinate system.
2. Assume Vo as the potential difference between conductor terminals.
3. Solve Laplace’s equation 2V 5 0 to obtain V. Then determine E from E 5 2=V 

and find I from I 5 eS sE # dS.
4. Finally, obtain R as Vo/I.

In essence, we assume Vo, find I, and determine R 5 Vo /I. Alternatively, it is possible 
to assume current Io, find the corresponding potential difference V, and determine R from 

1 For a complete solution of Laplace’s equation in cylindrical or spherical coordinates, see, for  example, 
D. T. Paris and F. K. Hurd, Basic Electromagnetic Theory. New York: McGraw-Hill, 1969, pp. 150–159.
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PRACTICE EXERCISE 6.7

Repeat Example 6.7 for V 1r, u, f 2 .
Answer:  If V 1r, u, f 2 5 R 1r 2  F 1u 2  
 1f 2 , 
 s 1 l2
 5 0, Rs 1

2
rR r 2

m2

r2 R 5 0, 
Fs 1 cos u F r 1 1m2 sin u 2 l2 csc u 2  F 5 0.
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R 5 V/Io. As will be discussed shortly, the capacitance of a capacitor is obtained using a 
similar technique.

Generally speaking, to have a capacitor we must have two (or more) conductors car-
rying equal but opposite charges. This implies that all the flux lines leaving one conduc-
tor must necessarily terminate at the surface of the other conductor. The conductors are 
sometimes referred to as the plates of the capacitor. The plates may be separated by free 
space or a dielectric.

Consider the two-conductor capacitor of Figure 6.12. The conductors are maintained 
at a potential difference V given by

 V 5 V1 2 V2 5 23
1

2
E # d l (6.17)

where E is the electric field existing between the conductors and conductor 1 is assumed to 
carry a positive charge. (Note that the E field is always normal to the conducting surfaces.)

We define the capacitance C of the capacitor as the ratio of the magnitude of the charge 
on one of the plates to the potential difference between them; that is,

 C 5
Q
V

5
e eS E # dS

eL E # d l
 (6.18)

The negative sign before V 5 2eL E # dl has been dropped because we are interested in 
the absolute value of V. The capacitance C is a physical property of the capacitor and is 

are specified in microfarads (mF) or picofarads (pF). We can use eq. (6.18) to obtain C for 
any given two-conductor capacitance by following either of these methods:

1. Assuming Q and determining V in terms of Q (involving Gauss’s law)

C 5
Q
V

 

2. Assuming V and determining Q in terms of V (involving solving Laplace’s equation)

C 5
Q
V

 

(assume)
(find)

(find)
(assume)

FIGURE 6.12 A two-conductor 
 capacitor.
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measured in farads (F). Most capacitances are practically much smaller than a farad and 
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We shall use the former method here, and the latter method will be illustrated in  
Examples 6.10 and 6.11. The former method involves taking the following steps:

1. Choose a suitable coordinate system.
2. Let the two conducting plates carry charges 1Q and 2Q.
3. Determine E by using Coulomb’s or Gauss’s law and find V from V 5 2eL E # dl. The 

negative sign may be ignored in this case because we are interested in the absolute 
value of V.

4. Finally, obtain C from C 5 Q/V.

We will now apply this mathematically attractive procedure to determine the capaci-
tance of some important two-conductor configurations.

A. Parallel-Plate Capacitor
Consider the parallel-plate capacitor of Figure 6.13(a). Suppose that each of the plates has 
an area S and they are separated by a distance d. We assume that plates 1 and 2, respectively, 
carry charges 1Q and 2Q uniformly distributed on them so that

 rS 5
Q
S

 (6.19)

FIGURE 6.13 (a) Parallel-plate 
capacitor. (b) Fringing effect due 
to a parallel-plate capacitor.

D P
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An ideal parallel-plate capacitor is one in which the plate separation d is very small com-
pared with the dimensions of the plate. Assuming such an ideal case, the fringing field 
at the edge of the plates, as illustrated in Figure 6.13(b), can be ignored so that the field 
between them is considered uniform. If the space between the plates is filled with a homo-
geneous dielectric with permittivity « and we ignore flux fringing at the edges of the plates, 
from eq. (4.27), D 5 2rSax or

E 5
rS

e
 12ax 2

  5 2
Q
eS

 ax (6.20)

Hence,

 V 5 23
1

2
 E # d l 5 23

d

0
 c2 Q

eS
 ax d # dx ax 5

Qd
eS

 (6.21)

and thus for a parallel-plate capacitor

 C 5
Q
V

5
eS
d

 (6.22)

This formula offers a means of measuring the dielectric constant «r of a given dielectric. 
By measuring the capacitance C of a parallel-plate capacitor with the space between the 
plates filled with the dielectric and the capacitance Co with air between the plates, we 
find «r from

 er 5
C
Co

 (6.23)

Using eq. (4.96), it can be shown that the energy stored in a capacitor is given by 

 WE 5
1
2

 CV2 5
1
2

 QV 5
Q2

2C
 (6.24)

To verify this for a parallel-plate capacitor, we substitute eq. (6.20) into eq. (4.96) and  obtain

WE 5
1
2

 3
v
 e 

Q2

e2S2 dv 5
eQ2Sd
2e2S2

 5
Q2

2
 a d

eS
b 5

Q2

2C
5

1
2

 QV

as expected.
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B. Coaxial Capacitor
A coaxial capacitor is essentially a coaxial cable or coaxial cylindrical capacitor. Consider 
length L of two coaxial conductors of inner radius a and outer radius b 1b . a 2  as shown in 
Figure 6.14. Let the space between the conductors be filled with a homogeneous dielectric 
with permittivity «. We assume that conductors 1 and 2, respectively, carry 1Q and 2Q 
uniformly distributed on them. By applying Gauss’s law to an arbitrary Gaussian cylindrical 
surface of radius r 1a , r , b 2 , we obtain

 Q 5 e C
S
 E # dS 5 eEr2prL (6.25)

Hence,

 E 5
Q

2perL
 ar (6.26)

Neglecting flux fringing at the cylinder ends,

 V 5 23
1

2
 E # d l 5 23

a

b
 c Q

2perL
 ar d # dr ar (6.27a)

  5
Q

2peL
 ln 

b
a (6.27b)

Thus the capacitance of a coaxial cylinder is given by

 C 5
Q
V

5
2peL

ln 
b
a

 (6.28)

C. Spherical Capacitor
A spherical capacitor is the case of two concentric spherical conductors. Consider the inner 
sphere of radius a and outer sphere of radius b 1b . a 2  separated by a dielectric medium 
with permittivity « as shown in Figure 6.15. We assume charges 1Q and 2Q on the inner 

D

FIGURE 6.14 A coaxial capacitor.
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and outer spheres, respectively. By applying Gauss’s law to an arbitrary Gaussian spherical 
surface of radius r 1a , r , b 2 , we have

 Q 5 e C
S
E # dS 5 eEr4pr2 (6.29)

that is,

 E 5
Q

4per2 ar (6.30)

The potential difference between the conductors is

V 5 23
1

2
 E # d l 5 23

a

b
 c Q

4per2 ar d # dr ar

  5
Q

4pe
 c 1

a 2
1
b
d  (6.31)

Thus the capacitance of the spherical capacitor is

 C 5
Q
V

5
4pe

1
a 2

1
b

 (6.32)

By letting b S  `, C 5 4pea, which is the capacitance of a spherical capacitor whose 
outer plate is infinitely large. Such is the case of a spherical conductor at a large distance 
from other conducting bodies—the isolated sphere. Even an irregularly shaped object of 
about the same size as the sphere will have nearly the same capacitance. This fact is useful 
in estimating the stray capacitance of an isolated body or piece of equipment.

Recall from network theory that if two capacitors with capacitance C1 and C2 are in series 
(i.e., they have the same charge on them) as shown in Figure 6.16(a), the total capacitance is

1
C

5
1

C1
1

1
C2

D

FIGURE 6.15 A spherical capacitor.
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or

 C 5
C1 C2

C1 1 C2
 (6.33)

If the capacitors are in parallel (i.e., if they have the same voltage across their plates) as 
shown in Figure 6.16(b), the total capacitance is

 C 5 C1 1 C2 (6.34)

Let us reconsider the expressions for finding the resistance R and the capacitance C of 
an electrical system. The expressions were given in eqs. (6.16) and (6.18):

 R 5
V
I

5
eLE # dl

eS sE # dS
 (6.16)

 C 5
Q
V

5
e AS E # dS

eLE # dl
 (6.18)

The product of these expressions yields

 RC 5
e

s
 (6.35)

which is the relaxation time Tr of the medium separating the conductors. It should be 
remarked that eq. (6.35) is valid only when the medium is homogeneous; this is easily 
 inferred from eqs. (6.16) and (6.18). Assuming homogeneous media, the resistance of vari-
ous capacitors mentioned earlier can be readily obtained using eq. (6.35). The following 
examples are provided to illustrate this idea.

For a parallel-plate capacitor,

 C 5
eS
d

,  R 5
d

sS
 (6.36)

FIGURE 6.16 Capacitors (a) in series 
and (b) in parallel.
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For a cylindrical capacitor,

 C 5
2 peL

ln 
b
a

,  R 5

ln 
b
a

2 psL
 (6.37)

For a spherical capacitor,

 C 5
4pe

1
a 2

1
b

,  R 5

1
a 2

1
b

4ps
 (6.38)

And finally for an isolated spherical conductor,

 C 5 4pea,  R 5
1

4psa 
(6.39)

It should be noted that the resistance R in each of eqs. (6.35) to (6.39) is not the resistance 
of the capacitor plate but the leakage resistance between the plates; therefore,  in those 
equations is the conductivity of the dielectric medium separating the plates.

EXAMPLE 6.8 A metal bar of conductivity  is bent to form a flat 90 sector of inner radius a, outer radius 
b, and thickness t as shown in Figure 6.17. Show that (a) the resistance of the bar between 
the vertical curved surfaces at r 5 a and r 5 b is

R 5

2 ln 
b
a

spt

and (b) the resistance between the two horizontal surfaces at z 5 0 and z 5 t is

R r 5
4t

sp 1b2 2 a2 2

FIGURE 6.17 Bent metal bar 
for Exam ple 6.8.
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Solution:
(a) Between the vertical curved ends located at r 5 a and r 5 b, the bar has a nonuniform 
cross section and hence eq. (5.16) does not apply. We have to use eq. (6.16). Let a poten-
tial difference Vo be maintained between the curved surfaces at r 5 a and r 5 b so that 
V 1r 5 a 2 5 0 and V 1r 5 b 2 5 Vo. We solve for V in Laplace’s equation =2V 5 0 in 
cylindrical coordinates. Since V 5 V 1r 2 ,

=2V 5
1
r

 
d

dr
 ar 

dV
dr

b 5 0

As r 5 0 is excluded, upon multiplying by r and integrating once, this becomes

r 
dV
dr

5 A

or

dV
dr

5
A
r

Integrating once again yields

V 5 A ln r 1 B

where A and B are constants of integration to be determined from the boundary conditions.

 V 1r 5 a 2 5 0 S  0 5 A ln a 1 B  or  B 5 2A ln a

 V 1r 5 b 2 5 Vo S  Vo 5 A ln b 1 B 5 A ln b 2 A ln a 5 A ln 
b
a  or  A 5

Vo

ln 
b
a

Hence,

V 5 A ln r 2 A ln a 5 A ln 
r

a 5
Vo

ln 
b
a

 ln 
r

a

E 5 2=V 5 2
dV
dr

 ar 5 2
A
r

 ar 5 2
Vo

r ln 
b
a

 ar

J 5 sE,  dS 5 2r df dz ar

I 5 3
S
 J # dS 5 3

p/2

f50
 3

t

z50
 

Vos

r ln 
b
a

 dz r df 5
p

2
 
tVos

ln 
b
a
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Thus

R 5
Vo

I
5

2 ln 
b
a

spt

as required.

(b) Let Vo be the potential difference between the two horizontal surfaces so that 
V 1z 5 0 2 5 0 and V 1z 5 t 2 5 Vo. V 5 V 1z 2 , so Laplace’s equation =2V 5 0 becomes

d2V
dz2 5 0

Integrating twice gives

V 5 Az 1 B

We apply the boundary conditions to determine A and B:

V 1 z 50 2 50  S 0 50 1B  or  B 50

V 1 z 5 t 2 5Vo S Vo 5At  or  A 5
Vo

t

Hence,

V 5
Vo

t
 z

E 5 2=V 5 2
dV
dz

 az 5 2
Vo

t
 az

J 5 sE 5 2
sVo

t
 az,  dS 5 2r df dr az

I  5 3
S

 J # dS 5 3
b

r50
 3

p/2

f50

V0s

t
 r df dr

 5
Vos

t
# p

2
 
r2

2
`
a

b

5
Vo s p 1b2 2 a2 2

4t

Thus

R r 5
Vo

I
5

4t
sp 1b2 2 a2 2

Alternatively, for this case, the cross section of the bar is uniform between the horizon-
tal surfaces at z 5 0 and z 5 t and eq. (5.16) holds. Hence,
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 R r 5
,

sS
5

t

s
p

4
1b2 2 a2 2

 5
4t

sp 1b2 2 a2 2

as required.

PRACTICE EXERCISE 6.8

A disk of thickness t has radius b and a central hole of radius a. Taking the conductivity 
of the disk as , find the resistance between

(a) The hole and the rim of the disk
(b) The two flat sides of the disk

Answer: (a) 
ln 

b
a

2pts
, (b) 

t
sp 1b2 2 a2 2 .

EXAMPLE 6.9 A coaxial cable contains an insulating material of conductivity . If the radius of the central 
wire is a and that of the sheath is b, show that the conductance of the cable per unit length 
is [see eq. (6.37)]

G 5
2ps

ln 
b
a

Solution:
Consider length L of the coaxial cable as shown in Figure 6.14. Let Vo be the potential differ-
ence between the inner and outer conductors so that V 1r 5 a 2 5 0 and V 1r 5 b 2 5 Vo, 
which allows V and E to be found just as in part (a) of Example 6.8. Hence,

J 5 sE 5
2sVo

r ln 
b
a

 ar,  dS 5 2r df dz ar

I 5 3
S
 J # dS 5 3

2p

f50
 3

L

z50
 

Vos

r ln 
b
a

 r dz df

 5
2pLsVo

ln 
b
a
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The resistance of the cable of length is given by

R 5
Vo

I
# 

L
5

lnb
a

ps

and the conductance per unit length is

G 5
1
R

5
2ps

ln 1 b
a 2

as required.

PRACTICE EXERCISE 6.9

A coaxial cable contains an insulating material of conductivity 1 in its upper half and 
another material of conductivity 2 in its lower half (similar to the situation shown later 
in Figure 6.19b). If the radius of the central wire is a and that of the sheath is b, show 
that the leakage resistance of length  of the cable is

R 5
1

p, 1s1 1 s2 2
 ln 

b
a

Answer: Proof.

EXAMPLE 6.10 Conducting spherical shells with radii a 5 10 cm and b 5 30 cm are maintained at a 
potential difference of 100 V such that V 1r 5 b 2 5 0 and V 1r 5 a 2 5 100 V. Determine 
V and E in the region between the shells. If er 5 2.5 in the region, determine the total 
charge induced on the shells and the capacitance of the capacitor.

Solution:
Consider the spherical shells shown in Figure 6.18 and assume that V depends only on r. 
Hence Laplace’s equation becomes

FIGURE 6.18 Potential V(r) due to conducting 
spherical shells.
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=2V 5
1
r2 

d
dr

 cr2 
dV
dr

d 5 0

Since r 2 0 in the region of interest, we multiply through by r2 to obtain

d
dr

 cr2 
dV
dr

d 5 0

Integrating once gives

r2 
dV
dr

5 A

or

dV
dr

5
A
r2

Integrating again gives

V 5 2
A
r 1 B

As usual, constants A and B are determined from the boundary conditions.

When r 5 b, V 5 0 S  0 5 2
A
b

1 B  or  B 5
A
b

Hence,

V 5 A c 1
b

2
1
r d

Also when r 5 a, V 5 Vo S  Vo 5 A c 1
b

2
1
a d

or

A 5
Vo

1
b

2
1
a

Thus

        V 5 Vo 
c 1

r 2
1
b
d

1
a 2

1
b
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 E 5 2=V 5 2
dV
dr

 ar 5 2
A
r2 ar

 5
Vo

r2 c 1
a 2

1
b
d

 ar

 Q 5 3
S
 eE # dS 5 3

p

u50
 3

2p

f50

eoerVo

r2 c 1
a 2

1
b
d

 r2 sin u df du

 5
4peoerVo

1
a 2

1
b

Alternatively,

rs 5 Dn 5 eEr,     Q 5 3
s
rs dS 

The capacitance is easily determined as

C 5
Q
Vo

5
4pe

1
a 2

1
b

which is the same as we obtained in eq. (6.32); there in Section 6.5, we assumed Q and 
found the corresponding Vo, but here we assumed Vo and found the corresponding Q to 
 determine C. Substituting a 5 0.1 m, b 5 0.3 m, Vo 5 100 V yields

V 5 100 
c 1

r 2
10
3
d

10 2 10/3
5 15 c 1

r 2
10
3
d  V

Check: =2V 5 0, V 1r 5 0.3 m 2 5 0, V 1r 5 0.1 m 2 5 100.

E 5
100

r2 310 2 10/3 4  ar 5
15
r2  ar V/m

Q 5 64p # 1029

36p
#
12.5 2 # 1100 2
10 2 10/3

 5 64.167 nC

The positive charge is induced on the inner shell; the negative charge is induced on the 
outer shell. Also

C 5
0Q 0
Vo

5
4.167 3 1029

100
5 41.67 pF
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FIGURE 6.19 For Practice 
Exercises 6.9, 6.10, and 6.12.

PRACTICE EXERCISE 6.10

If Figure 6.19 represents the cross sections of two spherical capacitors, determine their 
capacitances. Let a 5 1 mm, b 5 3 mm, c 5 2 mm, er1 5 2.5, and er2 5 3.5.

Answer: (a) 0.53 pF, (b) 0.5 pF.

EXAMPLE 6.11 In Section 6.5, it was mentioned that the capacitance C 5 Q/V of a capacitor can be found 
by either assuming Q and finding V, as in Section 6.5, or by assuming V and finding Q, as 
in Example 6.10. Use the latter method to derive eq. (6.22).

Solution:
Assume that the parallel plates in Figure 6.13 are maintained at a potential difference 
Vo so that V 1x 5 0 2  and V 1x 5 d 2 5 Vo. This necessitates solving a one-dimensional 
boundary-value problem; that is, we solve Laplace’s equation

=2V 5
d2V
dx2 5 0

Integrating twice gives

V 5 Ax 1 B

where A and B are integration constants to be determined from the boundary conditions. 
At x 5 0, V 5 0 S  0 5 0 1 B, or B 5 0, and at x 5 d, V 5 Vo S  Vo 5 Ad 1 0 or 
A 5 Vo/d.
Hence,

V 5
Vo

d
 x

Notice that this solution satisfies Laplace’s equation and the boundary conditions.
We have assumed the potential difference between the plates to be Vo. Our goal is to 

find the charge Q on either plate so that we can eventually find the capacitance C 5 Q/Vo. 
The charge on either plate is
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Q 5 3
S
 rS dS

But rS 5 D # an 5 eE # an, where

E 5 2=V 5 2
dV
dx

 ax 5 2Aax 5 2
Vo

d
 ax

On the lower plate, an 5 ax, so

rS 5 2
eVo

d
  and  Q 5 2

eVoS
d

On the upper plate, an 5 2ax, so

rS 5
eVo

d
  and  Q 5

eVoS
d

As expected, Q is equal but opposite on each plate. Thus

C 5
0Q 0
Vo

5
eS
d

which is in agreement with eq. (6.22).

EXAMPLE 6.12

PRACTICE EXERCISE 6.11

Derive the formula for the capacitance C 5 Q/Vo of a cylindrical capacitor in eq. (6.28) 
by assuming Vo and finding Q.

Determine the capacitance of each of the capacitors in Figure 6.20. Take er1 5 4, er2 5 6, 
d 5 5 mm, S 5 30 cm2.

Solution:
(a) Since D and E are normal to the dielectric interface, the capacitor in Figure 6.20(a) can 
be treated as consisting of two capacitors C1 and C2 in series as in Figure 6.16(a).

C1 5
eoer1S

d/2
5

2eoer1S
d

,  C2 5
2eoer2S

d

The total capacitor C is given by

C 5
C1C2

C1 1 C2
5

2eoS
d

 
1er1er2 2

er1 1 er2
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 5 2 # 1029

36p
# 30 3 1024

5 3 1023
# 4 3 6

10
 (6.12.1)

C 5 25.46 pF

(b) In this case, D and E are parallel to the dielectric interface. We may treat the capacitor 
as consisting of two capacitors C1 and C2 in parallel (the same voltage across C1 and C2) as 
in Figure 6.16(b).

C1 5
eoer1S/2

d
5

eoer1S
2d

,  C2 5
eoer2S

2d

The total capacitance is

C 5 C1 1 C2 5
eoS
2d

 1er1 1 er2 2

  5
1029

36p
# 30 3 1024

2 # 15 3 1023 2
# 10  (6.12.2)

C 5 26.53 pF

Notice that when er1 5 er2 5 er, eqs. (6.12.1) and (6.12.2) agree with eq. (6.22) as  expected.

FIGURE 6.20 For Example 6.12.

PRACTICE EXERCISE 6.12

Determine the capacitance of 10 m length of the cylindrical capacitors shown in  Figure 6.19. 
Take a 5 1 mm, b 5 3 mm, c 5 2 mm, er1 5 2.5, and er2 5 3.5.

Answer: (a) 1.54 F, (b) 1.52 nF.

EXAMPLE 6.13 A cylindrical capacitor has radii a 5 1 cm and b 5 2.5 cm. If the space between the plates 
is filled with an inhomogeneous dielectric with er 5 110 1 r 2 /r, where r is in centimeters, 
find the capacitance per meter of the capacitor.
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Solution:
The procedure is the same as that taken in Section 6.5 except that eq. (6.27a) now becomes

V 5 23
a

b
 

Q
2peoerrL

 dr 5 2
Q

2peoL
 3

a

b
 

dr

ra10 1 r

r
b

 5
2Q

2peoL
 3

a

b
 

dr

10 1 r
5

2Q
2peoL

 ln 110 1 r 2 `
b

a

 5
Q

2peoL
 ln 

10 1 b
10 1 a

Thus the capacitance per meter is 1L 5 1 m 2

C 5
Q
V

5
2peo

ln 
10 1 b
10 1 a

5 2p # 1029

36p
# 1

ln 
12.5
11.0

C 5 434.6 pF/m

PRACTICE EXERCISE 6.13

A spherical capacitor with a 5 1.5 cm, b 5 4 cm has an inhomogeneous dielectric of 
e 5 10eo/r. Calculate the capacitance of the capacitor.

Answer: 1.13 nF.

6.6 METHOD OF IMAGES

The method of images, introduced by Lord Kelvin in 1848, is commonly used to determine 
V, E, D, and rS due to charges in the presence of conductors. By this method, we avoid 
solving Poisson’s or Laplace’s equation but rather utilize the fact that a conducting surface 
is an equipotential. Although the method does not apply to all electrostatic problems, it can 
reduce a formidable problem to a simple one.

The image theory states that a given charge configuration above an infinite ground-
ed perfect conducting plane may be replaced by the charge configuration itself, its 
image, and an equipotential surface in place of the conducting plane.

Typical examples of point, line, and volume charge configurations are portrayed in Figure 
6.21(a), and their corresponding image configurations are in Figure 6.21(b).
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In applying the image method, two conditions must always be satisfied:

1. The image charge(s) must be located in the conducting region.
2. The image charge(s) must be located such that on the conducting surface(s) the 

 potential is zero or constant.

The first condition is necessary to satisfy Poisson’s equation, and the second condition 
ensures that the boundary conditions are satisfied. Let us now apply the image theory to 
two specific problems.

A. A Point Charge above a Grounded Conducting Plane

Consider a point charge Q placed at a distance h from a perfect conducting plane of infinite 
extent as in Figure 6.22(a). The image configuration is in Figure 6.22(b). The electric field 
in the region above the plane at point P 1x, y, z 2  is given by

FIGURE 6.21 Image system: (a) charge configurations above a perfectly conducting plane,  
(b) image configuration with the conducting plane replaced by equipotential surface.

FIGURE 6.22 (a) Point charge and grounded conducting plane. (b) Image configuration 
and field lines.
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  E 5 E1 1 E2 (6.40)

  5
Q r1

4peor1
3 1

2Q r2

4peor2
3 (6.41)

The distance vectors r1 and r2 are given by

 r1 5 1x, y, z 2 2 10, 0, h 2 5 1x, y, z 2 h 2  (6.42)
 r2 5 1x, y, z 2 2 10, 0, 2h 2 5 1x, y, z 1 h 2  (6.43)

so eq. (6.41) becomes

 E 5
Q

4peo
 c

xax 1 yay 1 1z 2 h 2az

3x2 1 y2 1 1z 2 h 2 2 43/2 2
xax 1 yay 1 1z 1 h 2az

3x2 1 y2 1 1z 1 h 2 2 43/2 d  (6.44)

It should be noted that when z 5 0, E has only the z-component, confirming that E is 
normal to the conducting surface.

The potential at P is easily obtained from eq. (6.41) or (6.44) using V 5 2eL E # dl. 
Thus

 V 5 V1 1 V2

  5
Q

4peor1
1

2Q
4peor2

 (6.45)

 V 5
Q

4peo
 e 1

3x2 1 y2 1 1z 2 h 2 2 41/2 2
1

3x2 1 y2 1 1z 1 h 2 2 41/2 f

for z $ 0 and V 5 0 for z # 0. Note that V 1z 5 0 2 5 0.
The surface charge density of the induced charge can also be obtained from eq. (6.44) as

 rS 5 Dn 5 eoEn `
z50

  5
2Qh

2p 3x2 1 y2 1 h2 43/2 
(6.46)

The total induced charge on the conducting plane is

 Qi 5 3  rS dS 5 3
`

2`

 3
`

2`

 
2Qh dx dy

2p 3x2 1 y2 1 h2 43/2 (6.47)

By changing variables, r2 5 x2 1 y2, dx dy 5 r dr df, and we have

 Qi 5 2
Qh
2p

 3
2p

0
 3

`

0
 

r dr df

3r2 1 h2 43/2 (6.48)
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Integrating over f gives 2p, and letting r dr 5
1
2

d 1r2 2 , we obtain

Qi 5 2
Qh
2p

 2p 3
`

0
 3r2 1 h2 423/2 

1
2

 d 1r2 2

  5
Qh

3r2 1 h2 41/2 `
0

`

 (6.49)

 5 2Q

as expected, because all flux lines terminating on the conductor would have terminated on 
the image charge if the conductor were absent.

B. A Line Charge above a Grounded Conducting Plane
Consider an infinite line charge with density rL C/m located at a distance h from the 
grounded conducting plane at z 5 0. This may be regarded as a problem of a long conduc-
tor over the earth. The image system of Figure 6.22(b) applies to the line charge except that 
Q is replaced by rL. The infinite line charge rL may be assumed to be at x 5 0, z 5 h, and 
the image 2rL at x 5 0, z 5 2h so that the two are parallel to the y-axis. The electric field 
at point P is given (from eq. 4.21) by

 E 5 E1 1 E2 (6.50)

  5
rL

2peor1
 ar1 1

2rL

2peor2
 ar2 (6.51)

The distance vectors 1 and 2 are given by

  r1 5 1x, y, z 2 2 10, y, h 2 5 1x, 0, z 2 h 2  (6.52)

  r2 5 1x, y, z 2 2 10, y, 2h 2 5 1x, 0, z 1 h 2  (6.53)

so eq. (6.51) becomes

 E 5
rL

2peo
 c xax 1 1z 2 h 2az

x2 1 1z 2 h 2 2 2
xax 1 1z 1 h 2az

x2 1 1z 1 h 2 2 d  (6.54)

Again, notice that when z 5 0, E has only the z-component, confirming that E is normal 
to the conducting surface.

The potential at P is obtained from eq. (6.51) or (6.54) using V 5 2eL E # dl. Thus

 V 5 V1 1 V2

 5 2
rL

2peo
 ln r1 2

2rL

2peo
 ln r2

  5 2
rL

2peo
 ln 

r1

r2
 (6.55)
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Substituting r1 5 0r1 0  and r2 5 0r2 0  in eqs. (6.52) and (6.53) into eq. (6.55) gives

 V 5 2
rL

2peo
 ln c x2 1 1z 2 h 2 2

x2 1 1z 1 h 2 2 d
1/2

 (6.56)

for z $ 0 and V 5 0 for z # 0. Note that V 1z 5 0 2 5 0.
The surface charge induced on the conducting plane is given by

 rS 5 Dn 5 eoEz `
z50

5
2rLh

p 1x2 1 h2 2  (6.57)

The induced charge per length on the conducting plane is

 ri 5 3
L
 rS dx 5 2

rLh
p

 3
`

2`

 
dx

x2 1 h2 (6.58)

By letting x 5 h tan a, eq. (6.58) becomes

ri 5 2
rLh
p

 3
p/2

2p/2
 
da

h
  5 2rL 

(6.59)

as expected.

EXAMPLE 6.14 A point charge Q is located at point 1a, 0, b 2  between two semi-infinite conducting planes 
intersecting at right angles as in Figure 6.23. Determine the potential at point P 1x, y, z 2  in 
region z $ 0 and x $ 0 and the force on Q.

Solution:
The image configuration is shown in Figure 6.24. Three image charges are necessary to 
 satisfy the two conditions listed at the beginning of this section. From Figure 6.24(a), the 
potential at point P 1x, y, z 2  is the superposition of the potentials at P due to the four point 
charges; that is,

V 5
Q

4peo
 c 1

r1
2

1
r2

1
1
r3

2
1
r4
d

where

r1 5 3 1x 2 a 2 2 1 y2 1 1z 2 b 2 2 41/2

r2 5 3 1x 1 a 2 2 1 y2 1 1z 2 b 2 2 41/2

r3 5 3 1x 1 a 2 2 1 y2 1 1z 1 b 2 2 41/2

r4 5 3 1x 2 a 2 2 1 y2 1 1z 1 b 2 2 41/2
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From Figure 6.24(b), the net force on Q is

 F 5 F1 1 F2 1 F3

  5 2
Q2

4peo 12b 2 2 az 2
Q2

4peo 12a 2 2 ax 1
Q2 12aax 1 2baz 2

4peo 3 12a 2 2 1 12b 2 2 43/2

  5
Q2

16peo
 e c a

1a2 1 b2 2 3/2 2
1
a2 d  ax 1 c b

1a2 1 b2 2 3/2 2
1
b2 d  az f

The electric field due to this system can be determined similarly, and the charge induced 
on the planes can also be found.

In general, when the method of images is used for a system consisting of a point charge 
between two semi-infinite conducting planes inclined at an angle f (in degrees), the number 
of images is given by

N 5 a360°
f

2 b

FIGURE 6.23 Point charge between two semi-infinite 
conducting planes.

FIGURE 6.24 Determining (a) the potential at P and (b) the force on charge Q.
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because the charge and its images all lie on a circle. For example, when f 5 180, N 5 1 as 
in the case of Figure 6.22; for f 5 90, N 5 3 as in the case of Figure 6.23; and for f 5 60, 
we expect N 5 5 as shown in Figure 6.25.

FIGURE 6.25 Point charge between two semi-
infinite conducting walls inclined at f 5 60 to 
each other.

PRACTICE EXERCISE 6.14

If the point charge Q 5 10 nC in Figure 6.25 is 10 cm away from point O and along the 
line bisecting f 5 60, find the magnitude of the force on Q due to the charge induced 
on the conducting walls.

Answer: 60.54 mN.

†6.7 APPLICATION NOTE—CAPACITANCE OF MICROSTRIP LINES

The increasing application of integrated circuits at microwave frequencies has generated 
interest in the use of rectangular and circular microstrip disk capacitors as lumped-element 
circuits. The fringing field effects of such capacitors were first observed in 1877 by Kirchhoff, 
who used conformal mapping to account for the fringing. But his analysis was limited by 
the assumption that the capacitor is air filled. In microstrip applications, the capacitor plates 
are separated by a dielectric material instead of free space. Lately, others have come up with 
better approximate closed-form solutions to the problem taking into account the presence of 
the dielectric material and fringing. We consider only the circular disk  capacitor.

The geometry of the circular microstrip capacitor, with radius r and separation dis-
tance d, is shown in Figure 6.26. Again, if disk area S 1S 5 pr2 2  is very large compared 
with the separation distance (i.e., !S W d), then fringing is minimal and the capacitance 
is given by

 C 5
eoerpr2

d
 (6.60)
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Several researchers have attempted to account for the effect of fringing and to obtain a 
closed-form solution. We consider the following cases.

CASE 1.

According to Kirchhoff,2 the fringing capacitance is

 DC 5 eoerr alog 
16pr

d
2 1b  (6.61)

so that the total capacitance is

 CT 5
eoerpr2

d
1 eoerr alog 

16pr
d

2 1b  (6.62)

It should be noted that Kirchhoff ’s approximation is valid only for er 5 1.

CASE 2.

According to Chew and Kong,3 the total capacitance including fringing is

CT 5
eoerpr2

d
e 1 1

2d
perr

c lna r
2d

b 1 11.41er 1 1.77 2 1
d
r  10.268er 1 1.65 2 d f  (6.63)

CASE 3.

Wheeler used interpolation to match the three cases of small, medium, and large disk sizes. 
According to Wheeler,4 we first define the following

 
Cks 5 eor c4 11 1 er 2 1

erpr
d

d  (6.64)

d 

r

FIGURE 6.26 Circular microstrip capacitor.

2 L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media. Oxford: Pergamon Press, 1960, p. 20.
3 W. C. Chew and J. A. Kong, “Effects of fringing fields on the capacitance of circular microstrip disk,” IEEE 
Transactions on Microwave Theory and Techniques, vol. 28, no. 2, Feb. 1980, pp. 98–103.
4 H. A. Wheeler, “A simple formula for the capacitance of a disc on dielectric on a plane,” IEEE Transactions on 
Microwave Theory and Techniques, vol. 30, no. 11, Nov. 1982, pp. 2050–2054.

06_Sadiku_Ch06.indd   273 23/09/17   1:40 PM



274 CHAPTER 6 ELECTROSTATIC BOUNDARY-VALUE PROBLEMS

where k 5 er. When k 5 1, eq. (6.64) becomes

 
C1s 5 eor c8 1

pr
d
d  (6.65)

The total capacitance is

 
 CT 5

Cks

kcC1s
 C1 1 a1 2

1
kc
bC2Cks (6.66)

where

 
 C1 5 eor c8 1

pr
d

1
2
3

  ln a1 1 0.8 1r/d 2 2 1 10.31r/d 2 4

1 1 0.9 1r/d 2 b d  (6.67)

 
 C2 5 1 2

1

4 1 2.6 

r
d

1 2.9 

d
r

  (6.68)

  kc 5 0.37 1 0.63er (6.69)

A MATLAB program was developed by using eqs. (6.62) to (6.69). With specific values 
of d 5 10 mil and er 5 74.04, the values of C and CT for 10 , r , 200 mil are plotted in 
Figure 6.27 for the three cases. The curve for Kirchhoff ’s approximation coincides with the 
case without fringing.
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FIGURE 6.27 Capacitance of the circular microstrip capacitor.
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Radio-frequency microelectromechanical systems (RF MEMS) are electronic devices with 
a submillimeter-sized moving part in the form of a beam, comb, disk, or ring, capable of 
providing RF functionality. Figure 6.28 shows one example. Another class consists of bulk 
or surface micromachined devices, such as thin-film bulk acoustic resonators (FBARs), 
which rely on energy transduction from the electrical energy domain to the acoustic energy 
domain and vice versa to provide RF functionality. A myriad of devices can be made using 
RF MEMS. Examples include RF MEMS switches, switched capacitors, varactors, and 
vibrating RF MEMS resonators. Several national laboratories and universities are actively 
engaged in developing these devices. Most notably, IBM Research Laboratory, Hughes 
Research Laboratories, Northeastern University in cooperation with Analog Devices, 
Raytheon, Rockwell Science, Westinghouse Research Laboratories, and the University of 
Michigan, Ann Arbor, and a few others are known to pioneer in this area of research.

Modeling RF MEMS devices is a challenge because they exhibit nonlinear behavior 
and hysteresis. The electrostatic force in MEMS, which depends on the square of the drive 
voltage, causes electrostatic force strengthening. This results in pull-in of the electrodes 
and limits the linearity of these devices. Also, residual charge at the interfaces influences 
the switching times. The Verilog-A hardware description language (HDL) is well suited for 
RF MEMS device modeling by means of nonlinear-physics-based equations. In addition, 
simplified empirical equations or model-order-reduced equations can be used to trade 

based equations are referred to as compact models.

6.8 APPLICATION NOTE—RF MEMS

FIGURE 6.28 RF MEMS device.
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accuracy for feasibility. Device models that use empirical equations in addition to physics-
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RF MEMS have a deflecting cantilever or fixed-fixed beam and can be classified further 
by actuation method (electrostatic, electrothermal, magnetostatic, or piezoelectric), axis of 
deflection (lateral or vertical), circuit configuration (series or shunt), suspension (cantilever 
or fixed-fixed), or contact interface (capacitive or ohmic). Electrostatically actuated RF 
MEMS switches offer low insertion loss and high isolation, good linearity, greater power 
handling, and a higher electrical quality factor Qe. A capacitive fixed-fixed beam RF MEMS 
switch is a micromachined capacitor with a moving top electrode called the beam. The 
beam, which is sometimes perforated, is suspended by springs over a lower electrode, sepa-
rated by an air gap and a dielectric. It is generally connected in shunt with the transmission 
line. This type of switch is generally used for the X- to W-band, which lies in the range of 8 
to 110 GHz. An ohmic cantilever RF MEMS switch is capacitive in the up-state but makes an 
ohmic contact in the down-state. It is an asymmetrical device with the clamp designated as 
source, the bias electrode designated as gate, and the contact electrode designated as drain, 
analogous to the field effect transistor. An ohmic cantilever switch is generally connected 
in series with the transmission line and is used from dc to about 40 GHz into the Ka-band.

A vibrating RF MEMS resonator has a vibrating beam, comb, disk, or ring (wine 
glass), which is sufficiently isolated from the surroundings to obtain a high mechanical 
quality factor Qm. Vacuum encapsulation with an ambient pressure P , 105 mbar results 
in  negligible air damping. The vibrating RF MEMS resonator is often driven into a weakly 
nonlinear regime to increase the energy storage, taking advantage of the reduction in 
stored energy that occurs as the size is reduced. Vibrating RF MEMS resonators have a pre-
cise self-referenced oscillation frequency. Reference oscillators are used in local  oscillators, 
which are implemented as voltage-controlled oscillators (VCOs). RF MEMS are extensively 

capacitors, and varactors are applied in electronically scanned arrays, software-defined 
radios, reconfigurable antennas, and tunable bandpass filters.

The opening vignette of Chapter 12 provides an additional discussion of RF MEMS.

†6.9 APPLICATION NOTE —SUPERCAPACITORS
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used in broadband wireless radio communications. Also, RF MEMS switches, switched 

Historically, capacitors came in the range of picofarads and microfarads. Electrolytic capac-
itors had higher values of capacitance. But today, we find capacitors even of few kilofarads 
capacitance. They are called supercapacitors (SCs), ultracapacitors, or electric double-layer 
capacitors and are becoming more popular due to their growing use in electric vehicles. 
The internal structure of a typical SC is shown in Figure 6.29. SCs have a lower voltage rat-
ing. They are supposed to bridge the gap between electrolytic capacitors and batteries. As 
they store more energy per unit volume or mass than electrolytic capacitors, they seem to 
gain more prominence than batteries.

The charging and discharging times of SCs are very, very short compared to recharge-
able batteries. For applications requiring long-term compact energy storage and regen-
erative braking in electric vehicles, SCs prove to be a good choice. Even in cranes and 
elevators,  with short-term energy storage or burst-mode power delivery, these units can 
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be used. The higher value of capacitance of SCs is contributed from one or a combination 
of more than one source such as faradic electron charge-transfer or formation of electro-
static double layer. The inner surface of each electrode in these devices is not smooth, but 
rather padded with activated porous carbon resulting in a surface area that is about 100,000 
times as large as the surface area of an ordinary capacitor. The large surface area is not the 
only key feature. Charges in the form of ions stick to the inner surfaces of the electrodes. 
Thereby, the effective distance between the positive and the negative charges at each elec-
trode is of the order of nanometers. Large surface area and small distance of separation are 
among the prime reasons for high nominal values of capacitance of SCs.

A third source of increasing the value of capacitance is by choosing high value of per-
mittivity for the film that separates the electrodes. Barium titanate and its composites, such 
as barium strontium titanate, have recently been fabricated in nanometer-sized crystals 
and thin films. If such nanometer-sized crystals are deposited on the internal surface of 
the activated carbon electrode, this will result in a very substantial increase in the overall 
dielectric constant of the capacitor because the spacing between the electrolyte and the 
surface of the electrode will essentially remain a few nanometers thick, while the relative 
permittivity is increased substantially. The dielectric constant of powdered BaSrTiO3, for 
example, is typically 12,000 to 15,000 at room temperature, whereas, many electrolytes have 
it in the range of 37–65.

Although research in the field of the electrochemical double-layer capacitors (EDLCs) 
began in early 1950s, it was only after the late 1970s that the technology of SCs appeared 
on the market. Compared to the rechargeable batteries, EDLCs have the additional advan-
tage that they have a relatively low internal resistance and can store and deliver energy at 
higher power rating. As for their constructional details, the double-layer capacitors usually 
are made of two carbon electrodes isolated from one another through a porous membrane. 
The entire assembly is immersed in an electrolyte, which allows the ionic flow between the 
electrodes. The membrane under ideal conditions precludes the possibility of any electri-
cal short circuit between the electrodes. A current-collecting plate is connected with each 
of the electrodes with the intent of minimizing the internal resistance. Most of the energy 
is stored in a polarized liquid, which is formed when a voltage is applied to the capacitor 
terminals. Thus, a double layer of negative and positive charges is generated on the contact 
surface between the electrode and the electrolyte, whence comes the name, EDLC. The 
separation of charge is of the order of a few angstrom units, much smaller than in a con-
ventional capacitor. 

Pseudocapacitance is established by faradic electron charge transfer with redox reac-
tions, intercalation, or electrosorption. Electrochemical pseudocapacitors use metal oxide 
or conducting polymer electrodes with a high amount of electrochemical pseudocapaci-
tance in addition to the double-layer capacitance. Another category is the hybrid capacitor, 
such as the lithium-ion capacitor, that uses electrodes with differing characteristics: one 
exhibiting mostly electrostatic capacitance and the other mostly electrochemical capaci-
tance. Between the two electrodes, the electrolyte such as manganese dioxide or a conduct-
ing polymer serves as an ionic conductive pathway. This is part of the second electrode 
and is a feature that distinguishes them from the conventional electrolytic capacitors.  
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FIGURE 6.29 Cross-sectional view of a supercapacitor.
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Consider a trace of thickness t 5 15 mm, length l 5 8 mm, and with exponentially increasing 
width from w1 5 0.2 mm to w2 5 2.5 mm connected to a 10 V source by perfect electric conductor 
(PEC) slabs at the ends. Such a shape is commonly encountered around via pads or near impedance 
transformers. The trace has conductivity s 5 6.5 3 105 S/m. Determine the total resistance of the 
trace by  integrating the incremental cross-sectional resistance.
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Supercapacitors are polarized by design with asymmetric electrodes or, for symmetric  
electrodes, by a potential applied during manufacture.



To simplify, we can place the origin between the PEC–trace junction on the wide side of the 
trace, at the center of the bottom side.

The incremental resistance is a slab of length dz in the xy-plane given by

dR 5
dz

stw 1z 2

We must determine the function w(z). Since the trace tapers according to a known expression, 
we can determine the coefficients a, b:

w 1z 2
2

5 x 1z 2 5 aebz

We know that

x 1z 5 0 2 5
w2

2
, x 1z 5 l 2 5

w1

2

So,

x 1z 5 0 2 5 a 5
w2

2

And

x 1z 5 l 2 5 aebl 5
w2

2
ebl 5

w1

2
w2ebl 5 w1

This integral can be solved as

R 5 3
l

0
dR 5 3

l

0

dz
stw 1 z 2 5 3

l

0

dz
st2x 1 z 2 5

1
2st3

l

0

dz
x 1 z 2

5
1

w2st3
l

0
 e

2
1
l
 ln w1

w2

 z  

dz

Plugging in numbers for the geometric parameters, R 5 1.49 .

% This script computes the integral of an exponential trace
% a function using two different methods:
%   1. the built-in matlab ‘quad’ function
%   2. user-defined summation
%
% The user must first create a separate file for the function
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b 5
1

 ln 
w1

w2,
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%      y = (-1/20)*x^3+(3/5)*x.^2-(21/10)*x+4;
% The file should be named fun.m and stored in the same directory 
% as this file, and it should contain the following two lines:
%        function y = fun(x) 
%        y = (-1/20)*x.^3+(3/5)*x.^2-2.1*x+4;
%  

% x = 0 to x = 8
clear

% the parameters of the trace
w1 = 0.2e-3;
w2 = 2.5e-3;
cond =  6.5e5; % conductivity
t = 15e-6; % thickness
l = 8e-3;  % length

sum=0; % set initial total sum to zero
dz=l/1000;
for z=0:dz:l,
    sum=sum+1/(w2*cond*t)*exp(-1/l*log(w1/w2)*z)*dz;  
               % add the partial sums to the total sum
end

disp(‛’)
disp(sprintf(‘The total resistance of the trace is %f’, sum))

SUMMARY 1. Boundary-value problems are those in which the potentials or their derivatives at the 
boundaries of a region are specified and we are to determine the potential field within 
the region. They are solved by using Poisson’s equation if rv 2 0 or Laplace’s equation if 
rv 5 0.

2. In a nonhomogeneous region, Poisson’s equation is

= # e =V 5 2rv

 For a homogeneous region, « is independent of space variables. Poisson’s equation 
 becomes

=2V 5 2
rv

e

 In a charge-free region 1rv 5 0 2 , Poisson’s equation becomes Laplace’s equation;  
that is,

=2V 5 0

3. We solve the differential equation resulting from Poisson’s or Laplace’s equation by 
 integrating twice if V depends on one variable or by the method of separation of 
 variables if V is a function of more than one variable. We then apply the prescribed 
boundary conditions to obtain a unique solution.

06_Sadiku_Ch06.indd   280 23/09/17   1:40 PM

% We will determine the integral of this function from 
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4. The uniqueness theorem states that if V satisfies Poisson’s or Laplace’s equation and the 
prescribed boundary condition, V is the only possible solution for that problem. This 
 enables us to find the solution to a given problem via any expedient means because we 
are assured of one, and only one, solution.

5. The problem of finding the resistance R of an object or the capacitance C of a 
 capacitor may be treated as a boundary-value problem. To determine R, we assume a 
 potential difference Vo between the ends of the object, solve Laplace’s equation, find 
I 5 eS sE # dS, and obtain R 5 Vo/I. Similarly, to determine C, we assume a poten-
tial difference of Vo between the plates of the capacitor, solve Laplace’s equation, find 
Q 5 eS eE # dS, and obtain C 5 Q/Vo.

6. A boundary-value problem involving an infinite conducting plane or wedge may 
be solved by using the method of images. This basically entails replacing the charge 
 configuration by itself, its image, and an equipotential surface in place of the conduct-
ing plane. Thus the original problem is replaced by “an image problem,” which is solved 
by using techniques covered in Chapters 4 and 5.

7. The computation of the capacitance of microstrip lines has become important because 
such lines are used in microwave devices. Three formulas for finding the capacitance of 
a circular microstrip line have been presented.

REVIEW
QUESTIONS  6.1 Equation = # 12e=V 2 5 rv may be regarded as Poisson’s equation for an inhomogeneous 

medium.

(a) True (b) False

 6.2 In cylindrical coordinates, the equation

'2c

'r2 1
1 'c

r 'r
1

'2c

'z2 1 10 5 0

is called

(a) Maxwell’s equation (d) Helmholtz’s equation
(b) Laplace’s equation (e) Lorentz’s equation
(c) Poisson’s equation

 6.3 Two potential functions V1 and V2 satisfy Laplace’s equation within a closed region and 
assume the same values on its surface. V1 must be equal to V2.

(a) True (c) Not necessarily
(b) False

 6.4 Which of the following potentials does not satisfy Laplace’s equation?

(a) V 5 2x 1 5 (d) V 5
10
r

(b) V 5 10 xy (e) V 5 r cos f 1 10
(c) V 5 r cos f
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 6.5 Which of the following is not true?

(a) 25 cos 3x is a solution to fs 1x 2 1 9f 1x 2 5 0
(b) 10 sin 2x is a solution to fs 1x 2 2 4f 1x 2 5 0
(c) 24 cosh 3y is a solution to Rs 1y 2 2 9R 1y 2 5 0
(d) sinh 2y is a solution to Rs 1y 2 2 4R 1y 2 5 0

(e) 
gs 1x 2
g 1x 2 5 2

hs 1y 2
h 1y 2 5 f 1z 2 5 21 where g 1x 2 5 sin x and h 1y 2 5 sinh y

 6.6 If V1 5 X1Y1 is a product solution of Laplace’s equation, which of these are not solutions 
of Laplace’s equation?

(a) 210X1Y1 (d) X1 1 Y1

(b) X1Y1 1 2xy (e) 1X1 2 2 2 1Y1 1 3 2
(c) X1Y1 2 x 1 y

 6.7 The capacitance of a capacitor filled by a linear dielectric is independent of the charge on 
the plates and the potential difference between the plates.

(a) True (b) False

 6.8 A parallel-plate capacitor connected to a battery stores twice as much charge with a 
given dielectric as it does with air as dielectric. The susceptibility of the dielectric is

(a) 0 (d) 3
(b) 1 (e) 4
(c) 2

 6.9 A potential difference Vo is applied to a mercury column in a cylindrical container. 
The mercury is now poured into another cylindrical container of half the radius and the 
same potential difference Vo applied across the ends. As a result of this change of space, 
the resistance will be increased

(a) 2 times (c) 8 times
(b) 4 times (d) 16 times

6.10 Two conducting plates are inclined at an angle 30 to each other with a point charge 
between them. The number of image charges is

(a) 12 (d) 5
(b) 11 (e) 3
(c) 6

Answers: 6.1a, 6.2c, 6.3a, 6.4c, 6.5b, 6.6d,e, 6.7a, 6.8b, 6.9d, 6.10b.

PROBLEMS
Section 6.2—Poisson’s and Laplace’s Equations

 6.1 Given V 5 5x3y2z and e 5 2.25eo, find (a) E at point P 123, 1, 2 2 , (b) rv at P.

 6.2 Let V 5 
10 cos u sin f

r2  and « 5 «o. (a) Find E at point P(1, 60, 30). (b) Determine rv at P.
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 6.3 Conducting sheets are located at y 5 1 and y 5 3 planes. The space between them is 

filled with a nonuniform charge distribution rv 5
y

4p
 nC/m3 and e 5 4eo. Assuming that 

V 1y 5 1 2 5 0 and V 1y 5 3 2 5 50 V, find V 1y 5 2 2 .
 6.4 In free space, V 5 10r0.8 V. Find E and the volume charge density at r = 0.6 m.

 6.5 A certain material occupies the space between two conducting slabs located at y 562 cm. 
When heated, the material emits electrons such that rv 5 50 11 2 y2 2  mC/m3. If the slabs 
are both held at 30 kV, find the potential distribution within the slabs. Take e 5 3eo.

 6.6 Two large flat metal sheets are located at z 5 0 and z 5 d and are maintained at 0 and Vo, 
respectively. The charge density between the sheets is rv(z) 5 roz/d, where ro is a constant. 
Determine the potential at all points between the plates.

 6.7 In cylindrical coordinates, V 5 0 at r 5 2 m and V 5 60 V at r 5 5 m due to charge 

distribution rv 5
10
r

 pC/m3. If «r 5 3.6, find E.

 6.8 The region between two cylinders r 5 a and r 5 b has charge density ro. Determine the 
potential distribution V.

 6.9 The dielectric region (e 5 6eo) between a pair of concentric spheres r 5 1 and r 5 4 has 

charge distribution rv 5
10
r

nC/m3. If V(r 5 1 2 5 0 and V(r 5 4 2 5 50 V, determine 

V(r 5 2).

6.10 Determine whether each of the following potentials satisfies Laplace’s equation.

  (a) V1 5 3xyz 1 y 2 z2

  (b) V2 5
10sinf

r

  (c) V3 5
5sinf

r

6.11 Given V 5 x3y 1 yz 1 cz2, find c such that V satifies Laplace’s equation.

6.12 The potential field V 5 2x2yz 2 y3z exists in a dielectric medium having e 5 2eo.  
(a) Does V satisfy Laplace’s equation? (b) Calculate the total charge within the unit cube 
0 , x , 1 m, 0 , y , 1 m, 0 , z , 1 m.

6.13 Two conducting coaxial cylinders are located at r 5 1 cm and r 5 1.5 cm. The inner  conductor 
is maintained at 50 V while the outer one is grounded.  If the cylinders are separated by a 
dielectric material with e 5 4eo, find the surface charge density on the inner conductor.

6.14 Consider the conducting plates shown in Figure 6.30. If V 1z 5 0 2 5 0 and 
V 1z 5 2 mm 2 5 50 V, determine V, E, and D in the dielectric region 1er 5 1.5 2  between 
the plates and rS on the plates.

6.15 The cylindrical structure whose cross section is in Figure 6.31 has inner and outer radii 
of 5 mm and 15 mm, respectively. If V 1r 5 5 mm 2 5 100 V and V 1r 5 15 mm 2 5 0 V, 
calculate V, E, and D at r 5 10 mm and rS on each plate. Take er 5 2.0.
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284 CHAPTER 6 ELECTROSTATIC BOUNDARY-VALUE PROBLEMS

  6.16 In cylindrical coordinates, V 5 50 V on plane f 5 p/2 and V 5 0 on plane f 5 0.  
Assuming that the planes are insulated along the z-axis, determine E between the planes.

*6.17 (a) Show that V 5 Vo(1a2/r2) r sin f (where Vo is constant) satisfies Laplace’s equation.
  (b) Determine E for r2 .. a2.

  6.18 Two conducting planes are located at x 5 0 and x 5 50 mm. The zero voltage reference 
is at x 5 20 mm. Given that E 5 110ax V/m, calculate the conductor voltages.

  6.19 The region between concentric spherical conducting shells r 5 0.5 m and r 5 1 m is 
charge free. If V 1r 5 0.5 2 5 250 V and V 1r 5 1 2 5 50 V, determine the potential 
 distribution and the electric field strength in the region between the shells.

  6.20 Find V and E at 13, 0, 4 2  due to the two conducting cones of infinite extent shown in 
 Figure 6.32.

*6.21 The inner and outer electrodes of a diode are coaxial cylinders of radii a 5 0.6 mm and 
b 5 30 mm, respectively. The inner electrode is maintained at 70 V, while the outer elec-
trode is grounded. (a) Assuming that the length of the electrodes , W a, b and ignoring 
the effects of space charge, calculate the potential at r 5 15 mm. (b) If an electron is 
 injected radially through a small hole in the inner electrode with velocity 107 m/s, find its 
velocity at r 5 15 mm.

o

FIGURE 6.30 For Problem 6.14.

FIGURE 6.31 Cylindrical capacitor of 
Problem 6.15.

FIGURE 6.32 Conducting cones of  
Problem 6.20.
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  6.22 An electrode with a hyperbolic shape 1xy 5 4 2  is placed above a grounded right-angle 
corner as in Figure 6.33. Calculate V and E at point 11, 2, 0 2  when the electrode is con-
nected to a 20 V source.

*6.23 Solve Laplace’s equation for the two-dimensional electrostatic systems of Figure 6.34 and 
find the potential V 1x, y 2 .

*6.24 Find the potential V 1x, y 2  due to the two-dimensional systems of Figure 6.35.
  6.25 A conducting strip is defined as shown in Figure 6.35(b). The potential distribution is 

V 1x,y 2 5
4Vo

p
 a

`

n5odd
 
sinanpy

a b
n

 exp 12 npx/a 2

  Find the electric field E.

  6.26 Figure 6.36 shows the cross-sectional view of an infinitely long rectangular slot. Find the 
potential distribution in the slot.

FIGURE 6.33 For Problem 6.22.

FIGURE 6.34 For Problem 6.23.
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V = V2

V = V1

V = 0

V = 0

FIGURE 6.35 For Problems 6.24 and 6.25.

FIGURE 6.36 For Problem 6.26.

b

a

y + x = 0 V = 0

V = 0

y = b
y = 0

V = Vo

V = 0
Slot

x

x = a

sin
b

π y
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6.27 By letting V 1r, f 2 5 R 1r 2
 1f 2  be the solution of Laplace’s equation in a region where 
r 2 0, show that the separated differential equations for R and 
 are

Rs 1
R r
r

2
l

r2 R 5 0

  and

s 1 l
 5 0

  where � is the separation constant.
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  6.28 A potential in spherical coordinates is a function of r and  but not f. Assuming that 
V 1r, u 2 5 R 1r 2F 1u 2 , obtain the separated differential equations for R and F in a region 
for which rv 5 0.

Section 6.5—Resistance and Capacitance

  6.29 Show that the resistance of the bar of Figure 6.17 between the vertical ends located at 
f 5 0 and f 5 p/2 is

R 5
p

2st ln 
b
a

*6.30 Show that the resistance of the sector of a spherical shell of conductivity , with cross 
section shown in Figure 6.37 1where 0 # f , 2p 2 , between its base (i.e., from r 5 a to 
r 5 b) is

R 5
1

2ps 11 2 cos a 2  c
1
a

2
1
b
d

  6.31 A spherical shell has inner and outer radii a and b, respectively. Assume that the shell has 
a uniform conductivity  and that it has copper electrodes plated on the inner and outer 
surfaces. Show that

R 5
1

4ps
a1

a 2
1
b
b  

*6.32 A hollow conducting hemisphere of radius a is buried with its flat face lying flush with 
the earth’s surface, thereby serving as an earthing electrode. If the conductivity of earth 
is , show that the leakage conductance between the electrode and earth is 2pa.

FIGURE 6.37 For Problem 6.30.
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6.33 Another method of finding the capacitance of a capacitor is by using energy consider-
ations, that is,

C 5
2WE

Vo
2 5

1
Vo

2 3  e 0 E 0 2 dv

  Using this approach, derive eqs. (6.22), (6.28), and (6.32).

6.34 A cylindrical capacitor has inner radius a and outer radius b. The region between the 
cylinders has conductivity . Determine the conductance per unit length of the capacitor.

6.35 A coaxial cable with inner radius a and outer radius b has a steady-state voltage V across 
it.  Determine the power loss per unit length. Assume that the conductivity of the region 
between the cylinders is .

6.36 In an integrated circuit, a capacitor is formed by growing a silicon dioxide layer 1er 5 4 2  
of thickness 1 mm over the conducting silicon substrate and covering it with a metal elec-
trode of area S. Determine S if a capacitance of 2 nF is desired.

6.37 Calculate the capacitance of the parallel-plate capacitor shown in Figure 6.38.

Depth = 15 cm

20 cm 20 cm 20 cm

2 mmr3 = 8r2 = 5r1 = 3

FIGURE 6.38 For Problem 6.37.

FIGURE 6.40 For Problem 6.39.

FIGURE 6.39 For Problem 6.38.

ε0 ε0ε0εr

0 a 2a 3a x
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  6.38 A capacitor consists of two infinitely large plates of area A and 3a apart as shown in Figure 
6.39. If a dielectric slab of thickness a is located midway between the plates, determine the 
capacitance.

  6.39 The parallel-plate capacitor of Figure 6.40 is quarter-filled with mica 1er 5 6 2 . Find the 
capacitance of the capacitor.

  6.40 To appreciate the physical size of 1 F capacitor, consider a parallel-plate capacitor filled 
with air and with separation distance of 1 mm. Find the area of the plates to provide a 
capacitance of 1 F.

*6.41 An air-filled parallel plate capacitor of length L, width a, and plate separation d has its plates 
maintained at constant potential difference Vo. If a dielectric slab of dielectric  constant «r is 
slid between the plates and is withdrawn until only a length x remains between the plates 
as in Figure 6.41, show that the force tending to restore the slab to its original position is

F 5
eo 1er 2 1 2  a Vo

2

2d

  6.42 A parallel-plate capacitor has plate area 200 cm2 and plate separation of 3 mm. The 
charge density is 1 mC/m2 and air is the dielectric. Find

(a) The capacitance of the capacitor
(b) The voltage between the plates
(c) The force with which the plates attract each other

  6.43 The capacitance of a parallel-plate capacitor is 56 mF when the dielectric material is in 
place. The capacitance drops to 32 mF when the dielectric material is removed. Calculate 
the dielectric constant «r of the material.

  6.44 A parallel-plate capacitor has a 4 mm plate separation, 0.5 m2 surface area per plate, and 
a dielectric with «r 5 6.8. If the plates are maintained at 9 V potential difference, calculate 
(a) the capacitance, (b) the charge density on each plate.

  6.45 A parallel-plate capacitor remains connected to a voltage source while the separation 
between the plates changes from d to 3d. Express new values of C, Q, E, and W in terms 
of the old values C0, Q0, E0, and W0.

  6.46 A parallel-plate capacitor has plate area 40 cm2. The  dielectric has two layers with permit-
tivity  e1 5 4eo and e2 5 6eo, and each layer is 2 mm thick. If the capacitor is connected 
to a voltage 12 V, calculate:  (a) the capacitance of the capacitor, (b) the total charge on 
each plate, (c) the values of E, D, and P.

  6.47 The space between spherical conducting shells r 5 5 cm and r 5 10 cm is filled with a 
dielectric material for which e 5 2.25eo. The two shells are maintained at a potential dif-
ference of 80 V. (a) Find the capacitance of the system. (b) Calculate the charge density 
on shell r 5 5 cm.

FIGURE 6.41 For Problem 6.41.

06_Sadiku_Ch06.indd   289 02/11/17   2:43 PM



290 CHAPTER 6 ELECTROSTATIC BOUNDARY-VALUE PROBLEMS

  6.48 A spherical capacitor has inner radius d and outer radius a. Concentric with the spherical 
conductors and lying between them is a spherical shell of outer radius c and inner radius 
b. If the regions d , r , c, c , r , b, and b , r , a are filled with materials with per-
mittivities «1, «2, and «3, respectively, determine the capacitance of the system.

  6.49 Determine the capacitance of a conducting sphere surrounded by a thick spherical shell 
as shown in Figure 6.42.

  6.50 The coaxial cable in Figure 6.14 has two dielectrics with «r1 for a , r , c and «r2 for  
c , r , b where a , c , b. Determine the capacitance of the system.

 6.51 A coaxial cable has inner radius of 5 mm and outer radius of 8 mm. If the cable is 3 km 
long, calculate its capacitance. Assume « 5 2.5«o.

  6.52 A capacitor consists of two plates with equal width (b  a), and a length L in the 
z-direction. The plates are separated by f 5 p/4, as shown in Figure 6.43. Assume that 
the plates are separated by a dielectric material (« 5 «o«r) and ignore fringing. Determine 
the capacitance.

  6.53 A segment of the cylindrical capacitor is defined by r1 , r , r2,  0 , f , a. If 
V(f 5 0 2 5 0 and V(f 5 a 2 5 Vo , show that the capacitance of the segment is 

C 5
eL
a

lnar
2

r1
b , where L is the length and « is the permittivity of the dielectric.

*6.54 In an ink-jet printer the drops are charged by surrounding the jet of radius 20 mm with a 
concentric cylinder of radius 600 mm as in Figure 6.44. Calculate the minimum voltage 
required to generate a charge 50 fC on the drop if the length of the jet inside the cylinder 
is 100 mm. Take e 5 eo.

  6.55 The cross section of a cable is shown in Figure 6.45. Determine the capacitance per unit 
length.

c

b

a

FIGURE 6.42 For Problem 6.49.

0 b xa

π/4

y

FIGURE 6.43 For Problem 6.52.
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  6.56 A spherical capacitor has inner radius of a = 2 cm and outer radius of b = 4 cm. The inte-
rior is a dielectric material with «o «r . The outer conductor is grounded while the inner 
one is maintained at 100 V. (a) Determine «r if the surface charge density on the inner 
conductor is 400 nC/m2. (b) Find the capacitance of the structure.

  6.57 One half of the dielectric region of a spherical capacitor has permittivity «1 while the other 
half has «2 as shown in Figure 6.46. Show that the capacitance of the system is given by

C 5
2p(e1 1 e2)ab

b 2 a

*6.58 A spherical capacitor has an inner conductor of radius a carrying charge Q and is main-
tained at zero potential. If the outer conductor contracts from a radius b to c under internal 
forces, prove that the work performed by the electric field as a result of the contraction is

W 5
Q2 1b 2 c 2

8pebc

D

L

oir

FIGURE 6.44 Simplified geometry of an 
ink-jet printer; for Problem 6.54. FIGURE 6.45 For Problem 6.55.

c

b

a

ε2

ε1

ε1

ε2

a

b

FIGURE 6.46 For Problem 6.57.
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*6.59 A parallel-plate capacitor has its plates at x 5 0, d and the space between the plates is 

filled with an inhomogeneous material with permittivity e 5 eoa1 1
x
d
b . If the plate at 

x 5 d is maintained at Vo while the plate at x 5 0 is grounded, find:

(a) V and E
(b) P
(c) rPs at x 5 0, d
(d) the capacitance, assuming that each plate has area S

  6.60 Two parallel conducting plates are located at x 5 d and x 5 d. The plate at x 5 d is held 
at Vo, while the plate at x 5 d is grounded. If the space between the plates is filled with 
an inhomogeneous dielectric medium with

e 5
2eo

1 1 ax
d
b

2

  find the capacitance. Assume that each plate has an area S.

  6.61 A spherical capacitor has inner radius a and outer radius b and is filled with an inhomo-
geneous dielectric with e 5 eok/r2. Show that the capacitance of the capacitor is

C 5
4peok
b 2 a

  6.62 If the earth is regarded as a spherical capacitor, what is its capacitance? Assume the radius 
of the earth to be approximately 6370 km.

  6.63 A capacitor is formed by two coaxial metal cylinders of radii a 5 1 mm and b 5 5 mm. If 
the space between the cylinders is filled with a dielectric having er 5 3 11 1 r 2 , a , r , b, 
and r is in millimeters, determine the capacitance per meter.

  6.64 A two-wire transmission line is formed with two identical wires which are widely sepa-
rated. If the radius of each wire is a and the center-to-center spacing is D, the approximate 
formula for the capacitance per unit length is

C 5
pe

lnaD 2 a
a b

  where D .. a. For « = 4«o and D/a = 12, calculate C.
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Section 6.6—Method of Images

  6.65 A 10-nC point charge is located at point (0, 0, 10 m) above a grounded conducting plane 
z 5 0. (a) Find the surface charge density at point (2, –4, 0). (b) Calculate the total charge 
on the plate.

  6.66 Two point charges of 3 nC and 24 nC are placed, respectively, at 10, 0, 1 m 2  and 
10, 0, 2 m 2  while an infinite conducting plane is at z 5 0. Determine

(a) The total charge induced on the plane
(b) The magnitude of the force of attraction between the charges and the plane

*6.67 A point charge of 10 mC is located at 11, 1, 1 2  and the positive portions of the coordinate 
planes are occupied by three mutually perpendicular plane conductors maintained at zero 
potential. Find the force on the charge due to the conductors.

  6.68 A point charge Q is placed between two earthed intersecting conducting planes that are 
inclined at 45 to each other. Determine the number of image charges and their locations.

  6.69 Infinite line x 5 3, z 5 4 carries 16 nC/m and is located in free space above the 
 conducting plane z 5 0. (a) Find E at 12, 22, 3 2 . (b) Calculate the induced surface charge 
density on the conducting plane at 15, 26, 0 2 .

  6.70 In free space, infinite planes y 5 4 and y 5 8 carry charges 20 nC/m2 and 30 nC/m2, 
 respectively. If plane y 5 2 is grounded, calculate E at P 10, 0, 0 2  and Q 124, 6, 2 2 .
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Jean-Baptiste Biot (1774–1862), a French physicist and mathematician, 
made advances in geometry, astronomy, elasticity, electricity, magnetism, 
heat, and optics.

Born in Paris, he studied at the École Polytechnique in Paris, where 
he realized his potential. Biot studied a wide range of mathematical topics, 
mostly on the applied mathematics. Biot, together with the French physicist 
Felix Savart, discovered that the magnetic field intensity of a current flowing 
through a wire varies inversely with the distance from the wire. This rela-
tion, now known as Biot–Savart’s law, will be covered in this chapter. Biot 

discovered that when light passes through some substances, including sugar solutions, the plane of 
polarization of the light is rotated by an amount that depends on the color of the light. In addition to 
his scientific pursuits, Biot was a prolific writer. He completed over 250 works of various types, the 
most renowned of which is his Elementary Treatise on Physical Astronomy (1805).

André-Marie Ampère (1775–1836), a French physicist, mathematician, 
and natural philosopher, is best known for defining a way to measure the 
flow of current. He has been called the Newton of electricity.

Born at Polemieux, near Lyons, Ampère took a passionate delight in 
the pursuit of knowledge from his very infancy. Although André never 
attended school, he received an excellent education. His father taught him 
Latin, which enabled him to master the works of Euler and Bernouilli. 
André poured over his studies of mathematics and soon began to create 
his own theories and ideas. His reading embraced a wide range of knowl-
edge—history, travels, poetry, philosophy, metaphysics, and the natural sciences. As an adult, Ampère 
was notoriously absent-minded. He became a professor of mathematics at the École Polytechnique, 
and later at the Collège de France. He developed Oersted’s discovery of the link between electric 
and magnetic fields and introduced the concepts of current element and the force between current 
 elements. Ampère made several contributions to electromagnetism, including the formulation of the 
law that bears his name, which will be discussed in this chapter. The ampere unit of electric current 
is named after him.
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7.1 INTRODUCTION

In Chapters 4 to 6, we limited our discussions to static electric fields characterized by E or 
D. We now focus our attention on static magnetic fields, which are characterized by H or 
B. There are similarities and dissimilarities between electric and magnetic fields. As E and 
D are related according to D 5 eE for linear, isotropic material space, H and B are related 
according to B 5 mH. Table 7.1 further shows the analogy between electric and  magnetic 
field quantities. Some of the magnetic field quantities will be introduced later in this 
 chapter, and others will be presented in the next. The analogy is presented here to show 
that most of the equations we have derived for the electric fields may be  readily used to 
obtain corresponding equations for magnetic fields if the equivalent analogous quantities 
are substituted. This way it does not appear as if we are learning new concepts.

A definite link between electric and magnetic fields was established by Oersted1 in 
1820. As we have noticed, an electrostatic field is produced by static or stationary charges. 
If the charges are moving with constant velocity, a static magnetic (or magnetostatic) field 
is produced. A magnetostatic field is produced by a constant current flow (or direct cur-
rent). This current flow may be due to magnetization currents as in permanent magnets, 
electron-beam currents as in vacuum tubes, or conduction currents as in current-carrying 
wires. In this chapter, we consider magnetic fields in free space due to direct current. 
Magnetostatic fields in material space are covered in Chapter 8.

Our study of magnetostatics is not a dispensable luxury but an indispensable necessity. 
Motors, transformers, microphones, compasses, telephone bell ringers, television focusing 
controls, advertising displays, magnetically levitated high-speed vehicles, memory stores, 
magnetic separators, and so on, which play an important role in our everyday life,2 could 
not have been developed without an understanding of magnetic phenomena.

MAGNETOSTATIC FIELDS

The highest happiness on earth is in marriage. Every man who is happily married is a 

successful man even if he has failed in everything else.
—WILLIAM L. PHELPS

7

1Hans Christian Oersted (1777–1851), a Danish professor of physics, after 13 years of frustrating efforts discov-
ered that electricity could produce magnetism.
2Various applications of magnetism can be found in J. K. Watson, Applications of Magnetism. New York: John 
Wiley & Sons, 1980.
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There are two major laws governing magnetostatic fields: (1) Biot–Savart’s law,3 and (2) 
Ampère’s circuit law. Like Coulomb’s law, Biot–Savart’s law is the general law of magnetostatics. 
Just as Gauss’s law is a special case of Coulomb’s law, Ampère’s law is a special case of Biot–Savart’s 
law and is easily applied in problems involving symmetrical current distribution. The two laws of 
magnetostatics are stated and applied first, with their derivations provided later in the chapter.

TABLE 7.1 Analogy between Electric and Magnetic Fields*

Term Electric Magnetic

Basic laws
F 5

Q1Q2

4peR2 aR dB 5
moI dl 3 aR

4pR2

C D # dS 5 Qenc C H # d l 5 Ienc

Force law F 5 QE F 5 Qu 3 B

Source element dQ dQu 5 Id l

Field intensity E 5
V
,

 1V/m 2 H 5
I
,

 1A/m 2

Flux density
D 5

c

S
 1C/m2 2 B 5

c

S
 1Wb/m2 2

Relationship between fields D 5 eE B 5 mH

Potentials E 5 2=V H 5 2=Vm 1J 5 0 2

V 5 3
L
 

rLdl
4peR

A 5 3
L
 

Flux c 5 e  D # dS c 5 e
S
 B # dS

c 5 Q 5 CV c 5 LI

I 5 C 
dV
dt

V 5 L 
dI
dt

Energy density wE 5
1
2

 D # E wm 5
1
2

 B # H

Poisson’s equation
=2V 5 2

rv

e
=2A 5 2mJ

*A similar analogy can be found in R. S. Elliot, “Electromagnetic theory: a simplified representation,”  
IEEE Transactions on Education, vol. E-24, no. 4, Nov. 1981, pp. 294–296.

7.2 BIOT–SAVART’S LAW

Biot–Savart’s law states that the differential magnetic field intensity dH produced at a 
point P, as shown in Figure 7.1, by the differential current element I dl is proportional 
to the product I dl and the sine of the angle a between the element and the line joining 
P to the element and is inversely proportional to the square of the distance R between 
P and the element. 

3The experiments and analyses of the effect of a current element were carried out by Ampère and by 
Jean-Baptiste Biot and Felix Savart around 1820.
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That is,

 dH ~  
I dl sin a

R2  (7.1)

or

 dH 5
kI dl sin a

R2  (7.2)

where k is the constant of proportionality. In SI units, k 5 1/4p, so eq. (7.2) becomes

 dH 5
I dl sin a

4pR2  (7.3)

From the definition of cross product in eq. (1.21), it is easy to notice that eq. (7.3) is 
better put in vector form as

 dH 5
I dl 3 aR

4pR2 5
I dl 3 R

4pR3  (7.4)

where R 5 0R 0  and aR 5 R/R; R and d l are illustrated in Figure 7.1. Thus the direction 
of dH can be determined by the right-hand rule with the right-hand thumb pointing in 
the  direction of the current and the right-hand fingers encircling the wire in the direction 
of dH as shown in Figure 7.2(a). Alternatively, we can use the right-handed-screw rule to 
 determine the direction of dH: with the screw placed along the wire and pointed in the 
 direction of current flow, the direction of rotation of the screw is the direction of dH as in 
Figure 7.2(b).

It is customary to represent the direction of the magnetic field intensity H (or current I) 
by a small circle with a dot or cross sign depending on whether H (or I) is out of the page, 
or into it respectively, as illustrated in Figure 7.3.

Just as we can have different charge configurations (see Figure 4.5), we can have dif-
ferent current distributions: line current, surface current, and volume current as shown in 
Figure 7.4. If we define K as the surface current density in amperes per meter and J as the 
volume current density in amperes per meter squared, the source elements are related as

 I dl ; K dS ; J dv (7.5)

FIGURE 7.1 Magnetic field dH at P due to 
current element I d l.
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 H 5 3
L
 
I dl 3 aR

4pR2   1 line current 2  (7.6)

 H 5 3
S
 
K dS 3 aR

4pR2   1surface current 2  (7.7)

 H 5 3  
J dv 3 aR

4pR2   1volume current 2  (7.8)

where aR is a unit vector pointing from the differential element of current to the point of 
 interest.

As an example, let us apply eq. (7.6) to determine the field due to a straight current- 
carrying filamentary conductor of finite length AB as in Figure 7.5. We assume that the 

FIGURE 7.2 Determining the direction of 
dH using (a) the right-hand rule or (b) the 
right-handed-screw rule.

FIGURE 7.3 Conventional repre-
sentation of H (or I) (a) out of the 
page and (b) into the page.

FIGURE 7.4 Current distributions: (a) line current,  
(b) surface current, (c) volume current.
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Thus in terms of the distributed current sources, the Biot–Savart’s law as in eq. (7.4)  becomes

v
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 conductor is along the z-axis with its upper and lower ends, respectively, subtending angles 
a2 and a1 at P, the point at which H is to be determined. Particular note should be taken of 
this assumption, as the formula to be derived will have to be applied accordingly. Note that 
current flows from point A, where a 5 a1, to point B, where a 5 a2. If we consider the 
contribution dH at P due to an element d l at 10, 0, z 2 ,

 dH 5
I dl 3 R

4pR3  (7.9)

But dl 5 dz az and R 5 rar 2 zaz, so

 dl 3 R 5 r dz af (7.10)

Hence,

 H 5 3  
Ir dz

4p 3r2 1 z2 43/2 af (7.11)

Letting z 5 r cot a, dz 5 2r csc2 a da, 3r2 1 z2 43/2 5 r3 csc a3, and eq. (7.11) becomes

H 5 2
1

4p
 3

a2

a1

 
r2 csc2 a da

r3 csc3 a
 af

 5 2
I

4pr
 af 3

a2

a1

 sin a da

or

 H 5
I

4pr
 1cos a2 2 cos a1 2af (7.12)

FIGURE 7.5 Field at point P due to a straight fila-
mentary conductor.
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This expression is generally applicable for any straight filamentary conductor. The 
 conductor need not lie on the z-axis, but it must be straight. Notice from eq. (7.12) that 
H is always along the unit vector af (i.e., along concentric circular paths) irrespective of 
the length of the wire or the point of interest P. As a special case, when the conductor is 
semi-infinite (with respect to P) so that point A is now at O 10, 0, 0 2  while B is at 10, 0, ` 2 , 
a1 5 90°, a2 5 0°, and eq. (7.12) becomes

 H 5
I

4pr
 af (7.13)

Another special case is found when the conductor is infinite in length. For this case, point 
A is at 10, 0, 2` 2  while B is at 10, 0, ` 2 ; a1 5 180°, a2 5 0°, and eq. (7.12) reduces to 

 H 5
I

2pr
 af (7.14)

To find unit vector af in eqs. (7.12) to (7.14) is not always easy. A simple approach is to 
determine af from

 af 5 a, 3 ar (7.15)

where a is a unit vector along the line current and ar is a unit vector along the perpendicu-
lar line from the line current to the field point.

The conducting triangular loop in Figure 7.6(a) carries a current of 10 A. Find H at 
10, 0, 5 2  due to side 1 of the loop.

Solution:
This example illustrates how eq. (7.12) is applied to any straight, thin, current-carrying 
conductor. The key point to keep in mind in applying eq. (7.12) is figuring out a1, a2, r, and 
af. To find H at 10, 0, 5 2  due to side 1 of the loop in Figure 7.6(a), consider Figure 7.6(b), 
where side 1 is treated as a straight conductor. Notice that we join the point of interest 
10, 0, 5 2  to the beginning and end of the line current. Observe that a1, a2, and r are assigned 
in the same manner as in Figure 7.5 on which eq. (7.12) is based:

cos a1 5 cos 90° 5 0,  cos a2 5
2

"29
,  r 5 5

To determine af is often the hardest part of applying eq. (7.12). According to eq. (7.15), 
a, 5 ax and ar 5 az, so

af 5 ax 3 az 5 2ay

EXAMPLE 7.1
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Hence,

H1 5
I

4pr
1cos a2 2 cos a1 2af 5

10
4p 15 2 a

2

"29
2 0b 12ay 2  

                          5 259.1ay mA/m

PRACTICE EXERCISE 7.1

Find H at 10, 0, 5 2  due to side 3 of the triangular loop in Figure 7.6(a).

Answer:  230.63ax 1 30.63ay mA/m.

Find H at 123, 4, 0 2  due to the current filament shown in Figure 7.7(a).

Solution:
Let H 5 H1 1 H2, where H1 and H2 are the contributions to the magnetic field intensity at 
P 123, 4, 0 2  due to the portions of the filament along x and z, respectively.

H2 5
I

4pr
1cos a2 2 cos a1 2af

x

y

20 1

1

3 2

110 A

(a)

x

z

20 10 A

5

ρ

aρ

a
α2α1

(b)

FIGURE 7.6 For Example 7.1: (a) conducting triangular loop, (b) side 1 of the loop.

EXAMPLE 7.2
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At PA23, 4, 0B, r 5 A9 1 16B1/2 5 5, a1 5 90°, a2 5 0°, and af is obtained as a unit vector 
along the circular path through P on plane z 5 0 as in Figure 7.7(b). The direction of af  
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is determined using the right-handed-screw rule or the right-hand rule. From the geom-
etry in Figure 7.7(b),

af 5 sin u ax 1 cos u ay 5
4
5

 ax 1
3
5

 ay

Alternatively, we can determine af from eq. (7.15). At point P, a and ar are as illustrated 
in Figure 7.7(a) for H2. Hence,

af 5 2az 3 a2
3
5

 ax 1
4
5

 ayb 5
4
5

 ax 1
3
5

 ay

as obtained before. Thus

H2 5
3

4p 15 2 11 2 0 2  
14ax 1 3ay 2

5

 5 38.2ax 1 28.65ay mA/m

It should be noted that in this case af happens to be the negative of the regular af of cylin-
drical coordinates. H2 could have also been obtained in cylindrical coordinates as

H2 5
3

4p 15 2 11 2 0 2 12af 2

 5 247.75af mA/m

Similarly, for H1 at P, r 5 4, a2 5 0°, cos a1 5 3/5, and af 5 az or af 5 a, 3
ar 5 ax 3 ay 5 az. Hence,

H1 5
3

4p 14 2  a1 2
3
5
b  az

                                                    5 23.87az mA/m

3 A

3 A

P

FIGURE 7.7 For Example 7.2: (a) current filament along semi-infinite  
x- and z-axes, a and ar for H2 only; (b) determining ar for H2.
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Thus

H 5 H1 1 H2 5 38.2ax 1 28.65ay 1 23.87az mA/m

or

H 5 247.75af 1 23.87az mA/m

Notice that although the current filaments appear to be semi-infinite (they occupy 
the positive z- and x-axes), it is only the filament along the z-axis that is semi-infinite with 
respect to point P. Thus H2 could have been found by using eq. (7.13), but the equation 
could not have been used to find H1 because the filament along the x-axis is not semi- 
infinite with respect to P.

PRACTICE EXERCISE 7.2

The positive y-axis (semi-infinite line with respect to the origin) carries a filamentary 
current of 2 A in the 2ay direction. Assume it is part of a large circuit. Find H at
(a) A 12, 3, 0 2
(b) B 13, 12, 24 2
Answer:  (a) 145.8az mA/m, (b) 48.97ax 1 36.73az mA/m.

A circular loop located on x2 1 y2 5 9, z 5 0 carries a direct current of 10 A along af. 
Determine H at 10, 0, 4 2  and 10, 0, 24 2 .

Solution:
Consider the circular loop shown in Figure 7.8(a). The magnetic field intensity dH at point 
P 10, 0, h 2  contributed by current element I d l is given by Biot–Savart’s law:

d H 5
I d l 3 R

4pR3

where d l 5 r df af, R 5 10, 0, h 2 2 1x, y, 0 2 5 2rar 1 haz, and

Hence,

d H 5
I

4p 3r2 1 h2 43/2 1rh df ar 1 r2 df az 2 5 dHr ar 1 dHz az

EXAMPLE 7.3
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d l 3 R 5 † ar af az
0 r df 0
2r 0 h

† 5 rh df ar 1 r2 df az
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By symmetry, the contributions along ar add up to zero because the radial components pro-
duced by current element pairs 180° apart cancel. This may also be shown mathematically 
by writing ar in rectangular coordinate systems (i.e., ar 5 cos f ax 1 sin f ay). Integrating 
cos f or sin f over 0 # f # 2p gives zero, thereby showing that Hr  0. Thus

H 5 3  dHz az 5 3
2p

0
 

Ir2 df az

4p 3r2 1 h2 43/2 5
Ir22paz

4p 3r2 1 h2 43/2

or

H 5
Ir2az

2 3r2 1 h2 43/2

(a) Substituting I 5 10 A, r 5 3, h 5 4 gives

H 10, 0, 4 2 5
10 13 2 2az

2 39 1 16 43/2 5 0.36az A/m

(b) Notice from d l 3 R in the Biot–Savart law that if h is replaced by 2h, the  z-component 
of dH remains the same while the r-component still adds up to zero due to the axial sym-
metry of the loop. Hence

H 10, 0, 24 2 5 H 10, 0, 4 2 5 0.36az A/m

The flux lines due to the circular current loop are sketched in Figure 7.8(b). 

FIGURE 7.8 For Example 7.3: (a) circular current loop, (b) flux lines 
due to the current loop.
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PRACTICE EXERCISE 7.3

A thin ring of radius 5 cm is placed on plane z 5 1 cm so that its center is at 10, 0, 1 cm 2 . 
If the ring carries 50 mA along af, find H at
(a) 10, 0, 21 cm 2
(b) 10, 0, 10 cm 2
Answer: (a) 400az mA/m, (b) 57.3az mA/m.

A solenoid of length  and radius a consists of N turns of wire carrying current I. Show 
that at point P along its axis,

H 5
nI
2
1cos u2 2 cos u1 2az

where n 5 N/,, u1 and u2 are the angles subtended at P by the end turns as illustrated in 
Figure 7.9. Also show that if , W a, at the center of the solenoid,

H 5 nIaz

Solution:
Consider the cross section of the solenoid as shown in Figure 7.9. Since the solenoid con-
sists of circular loops, we apply the result of Example 7.3. The contribution to the magnetic 
field H at P by an element of the solenoid of length dz is

dHz 5
I dl a2

2 3a2 1 z2 43/2 5
Ia2n dz

2 3a2 1 z2 43/2

where dl 5 n dz 5 1N/, 2  dz. From Figure 7.9, tan u 5 a/z; that is,

dz 5 2a csc2 u du 5 2
3z2 1 a2 43/2

a2  sin u du

FIGURE 7.9 For Example 7.4; cross 
section of a solenoid.

EXAMPLE 7.4
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Hence,

dHz 5 2
nI
2

 sin u du

or

Hz 5 2
nI
2

 3
u2

u1

 sin u du

Thus

H 5
nI
2

 1cos u2 2 cos u1 2az

as required. Substituting n 5 N/, gives

H 5
NI
2,

1cos u2 2 cos u1 2az

At the center of the solenoid,

cos u2 5
,/2

3a2 1 ,2/4 41/2 5 2cos u1

and

H 5
In,

2 3a2 1 ,2/4 41/2 az

If , W a or u2 . 0°, u1 . 180°,

H 5 nI az 5
NI
,

 az 

PRACTICE EXERCISE 7.4

The solenoid of Figure 7.9 has 2000 turns, a length of 75 cm, and a radius of 5 cm. If it 
carries a current of 50 mA along af, find H at
(a) 10, 0, 0 2
(b) 10, 0, 75 cm 2
(c) 10, 0, 50 cm 2
Answer: (a) 66.52az A/m, (b) 66.52az A/m, (c) 131.7az A/m.
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Ampère’s circuit law states that the line integral of H around a closed path is the 
same as the net current Ienc enclosed by the path.

In other words, the circulation of H equals Ienc; that is,

 C
L
 H # d l 5 Ienc (7.16)

By applying Stokes’s theorem to the left-hand side of eq. (7.16), we obtain

 Ienc 5 C
L
 H # d l 5 3

S
 1= 3 H 2 # dS (7.17)

But

 Ienc 5 3
S
 J # dS (7.18)

Comparing the surface integrals in eqs. (7.17) and (7.18) clearly reveals that

 = 3 H 5 J (7.19)

7.3 AMPÈRE’S CIRCUIT LAW—MAXWELL’S EQUATION

7.4 APPLICATIONS OF AMPÈRE’S LAW

We now apply Ampère’s circuit law to determine H for some symmetrical current distri-
butions as we did for Gauss’s law. We will consider an infinite line current, an infinite   
sheet of current, and an infinitely long coaxial transmission line. In each case, we apply 
ALH # d l 5 Ienc. For symmetrical current distribution, H is either parallel or perpendicular 
to dl. When H is parallel to dl, 0H 0 5 constant.
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Ampère’s law is similar to Gauss’s law, since Ampère’s law is easily applied to determine 
H when the current distribution is symmetrical. It should be noted that eq. (7.16) always 
holds regardless of whether the current distribution is symmetrical or not, but we can use 
the equation to determine H only when a symmetrical current distribution exists. Ampère’s 
law is a special case of Biot–Savart’s law; the former may be derived from the latter.

This is the third Maxwell’s equation to be derived; it is essentially Ampère’s law in differ-
ential (or point) form, whereas eq. (7.16) is the integral form. From eq. (7.19), we should 
observe that = 3 H 5 J 2 0; that is, a magnetostatic field is not conservative.
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A. Infinite Line Current
Consider an infinitely long filamentary current I along the z-axis as in Figure 7.10. To 
determine H at an observation point P, we allow a closed path to pass through P. This path, 
on which Ampère’s law is to be applied, is known as an Amperian path (analogous to the 
term “Gaussian surface”). We choose a concentric circle as the Amperian path in view of  
eq. (7.14), which shows that H is constant provided r is constant. Since this path encloses 
the whole current I, according to Ampère’s law,

or

 H 5
I

2pr
 af (7.20)

as expected from eq. (7.14).

B. Infinite Sheet of Current
Consider an infinite current sheet in the z 5 0 plane. If the sheet has a uniform current 
density K 5 Kyay A/m as shown in Figure 7.11, applying Ampère’s law to the rectangular 
closed path 1-2-3-4-1 (Amperian path) gives

 C H # d l 5 Ienc 5 Kyb (7.21a)

FIGURE 7.10 Ampère’s law applied to an infinite fila-
mentary line current.

07_Sadiku_Ch07.indd   310 23/09/17   2:38 PM

To evaluate the integral, we first need to have an idea of what H is like. To achieve this, we 
regard the infinite sheet as comprising filaments; dH above or below the sheet due to a pair 
of filamentary currents can be found by using eqs. (7.14) and (7.15). As evident in Figure 
7.11(b), the resultant dH has only an x-component. Also, H on one side of the sheet is the 
negative of that on the other side. Owing to the infinite extent of the sheet, the sheet can be 

I 5 3  Hfaf
# r df af 5 Hf 3  r df 5 Hf

# 2pr
L L
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 H 5 eHoax z . 0
2Hoax z , 0 (7.21b)

where Ho is yet to be determined. Evaluating the line integral of H in eq. (7.21a) along the 
closed path in Figure 7.11(a) gives

C H # d l 5 a3
2

1
1 3

3

2
1 3

4

3
1 3

1

4
b  H # d l

  5 0 12a 2 1 12Ho 2 12b 2 1 0 1a 2 1 Ho 1b 2  (7.21c)

 5 2Hob

From eqs. (7.21a) and (7.21c), we obtain Ho 5
1
2

 Ky. Substituting Ho in eq. (7.21b) gives

 H 5 µ
1
2

 Kyax, z . 0

2
1
2

 Kyax, z , 0
 (7.22)

In general, for an infinite sheet of current density K A/m,

 H 5
1
2

 K 3 an (7.23)

where an is a unit normal vector directed from the current sheet to the point of interest.

y

z

K = Kyay

x

b

a

Amperian path

(a)

x

z
dH1

dH2

dH

dH

dH1

dH2

h

h

1 2

(b)

1

2

3

4

FIGURE 7.11 Application of Ampère’s law to an infinite sheet: (a) closed path 1-2-3-4-1, (b) 
symmetrical pair of current filaments with current along ay.
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regarded as consisting of such filamentary pairs so that the characteristics of H for a pair 
are the same for the infinite current sheet, that is,
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C. Infinitely Long Coaxial Transmission Line
Consider an infinitely long transmission line consisting of two concentric cylinders hav-
ing their axes along the z-axis. The cross section of the line is shown in Figure 7.12, where 
the z-axis is out of the page. The inner conductor has radius a and carries current I, while 
the outer conductor has inner radius b and thickness t and carries return current I. 
We want to determine H everywhere, assuming that current is uniformly distributed in 
both conductors. Since the current distribution is symmetrical, we apply Ampère’s law 
along the  Amperian path for each of the four possible regions: 0 # r # a, a # r # b, 
b # r # b 1 t, and r $ b 1 t.

For region 0 # r # a, we apply Ampère’s law to path L1, giving

 C
L1

 H # d l 5 Ienc 5 3
S
 J # dS (7.24)

Since the current is uniformly distributed over the cross section,

J 5
I

pa2 az,  dS 5 r df dr az

Ienc 5 3
S
 J # dS 5

I
pa2 3

2p

f50
3

r

r50
 r df dr 5  

I
pa2 pr2 5

Ir2

a2

Hence eq. (7.24) becomes

Hf 3
L1

dl 5 Hf 2pr 5
Ir2

a2

or

 Hf 5
Ir

2pa2 (7.25)

FIGURE 7.12 Cross section of 
the transmission line; the positive 
 z-direction is out of the page.
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For region a # r # b, we use path L2 as the Amperian path,

C
L2

 H # d l 5 Ienc 5 I

Hf2pr 5 I

or

 Hf 5
I

2pr
 (7.26)

since the whole current I is enclosed by L2. Notice that eq. (7.26) is the same as eq. (7.14), 
and it is independent of a. For region b # r # b 1 t, we use path L3, getting

 C
L3

 H # d l 5 Hf
# 2pr 5 Ienc (7.27a)

where

Ienc 5 I 1 3  J # dS

and J in this case is the current density (current per unit area) of the outer conductor and 
is along 2az, that is,

J 5 2
I

p 3 1b 1 t 2 2 2 b2 4  az

Thus

Ienc 5 I 2
I

p 3 1b 1 t 2 2 2 b2 4  3
2p

f50
 3

r

r5b
 r dr df

 5 I c1 2
r2 2 b2

t2 1 2bt
d

Substituting this in eq. (7.27a), we have

 Hf 5
I

2pr
 c1 2

r2 2 b2

t2 1 2bt
d  (7.27b)

For region r $ b 1 t, we use path L4, getting

C
L4

 H # dI 5 I 2 I 5 0
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or

 Hf 5 0 (7.28)

Putting eqs. (7.25) to (7.28) together gives

H 5 g

Ir
2pa2 af, 0 # r # a

I
2pr

 af, a # r # b

                   

I
2pr

 c1 2
r2 2 b2

t2 1 2bt
d  af, b # r # b 1 t

0, r $ b 1 t  

(7.29)

The magnitude of H is sketched in Figure 7.13.
From these examples, it can be observed that the ability to take H from under the 

integral sign is the key to using Ampère’s law to determine H. In other words, Ampère’s law 
can be used to find H only due to symmetric current distributions for which it is possible 
to find a closed path over which H is constant in magnitude.

Planes z 5 0 and z 5 4 carry current K 5 210ax A/m and K 5 10ax A/m, respectively. 
Determine H at

(a) 11, 1, 1 2
(b) 10, 23, 10 2  

Solution:
The parallel current sheets are shown in Figure 7.14. Let

H 5 Ho 1 H4

b

FIGURE 7.13 Plot of Hf against r.

EXAMPLE 7.5
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EXAMPLE 7.6

where Ho and H4 are the contributions due to the current sheets z 5 0 and z 5 4, respec-
tively. We make use of eq. (7.23).

(a) At 11, 1, 1 2 , which is between the plates 10 , z 5 1 , 4 2 ,

Ho 5 1/2 K 3 an 5 1/2 1210ax 2 3 az 5 5ay A/m

H4 5 1/2 K 3 an 5 1/2 110ax 2 3 12az 2 5 5ay A/m

Hence,
H 5 10ay A/m

(b) At 10, 23, 10 2 , which is above the two sheets 1z 5 10 . 4 . 0 2 ,

Ho 5 1/2 1210ax 2 3 az 5 5ay A/m

H4 5 1/2 110ax 2 3 az 5 25ay A/m

Hence,
H 5 0 A/m 

PRACTICE EXERCISE 7.5

Plane y 5 1 carries current K 5 50az mA/m. Find H at
(a) 10, 0, 0 2
(b) 11, 5, 23 2
Answer:  (a) 25ax mA/m, (b) 225ax mA/m.

A toroid whose dimensions are shown in Figure 7.15 has N turns and carries current I. 
 Determine H inside and outside the toroid.

Solution:
We apply Ampère’s circuit law to the Amperian path, which is a circle of radius r shown 
dashed in Figure 7.15. Since N wires cut through this path each carrying current I, the net 
current enclosed by the Amperian path is NI. Hence,

FIGURE 7.14 For Example 7.5: par-
allel infinite current sheets.

07_Sadiku_Ch07.indd   315 23/09/17   2:38 PM



316 CHAPTER 7 MAGNETOSTATIC FIELDS

C H # d l 5 Ienc S  H # 2pr 5 NI

or

H 5
NI

2pr
,  for  ro 2 a , r , ro 1 a

where ro is the mean radius of the toroid as shown in Figure 7.15. An approximate value of H is

Happrox 5
NI

2pro
5

NI
,

Notice that this is the same as the formula obtained for H for points well inside a very 
long solenoid 1, W a 2 . Thus a straight solenoid may be regarded as a special toroidal 
coil for which ro S  `. Outside the toroid, the current enclosed by an Amperian path is 
NI 2 NI 5 0 and hence H 5 0. 

PRACTICE EXERCISE 7.6

A toroid of circular cross section whose center is at the origin and axis the same as the 
z-axis has 1000 turns with ro 5 10 cm, a 5 1 cm. If the toroid carries a 100 mA cur-
rent, find 0H 0  at
(a) 13 cm, 24 cm, 0 2
(b) 16 cm, 9 cm, 0 2
Answer:  (a) 0, (b) 147.1 A/m.

FIGURE 7.15 For Example 7.6: a toroid with a circular cross 
section.
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The magnetic flux density B is similar to the electric flux density D. As D 5 eoE in free 
space, the magnetic flux density B is related to the magnetic field intensity H according to

 B 5 moH (7.30)

o
per meter (H/m) and has the value of

 mo 5 4p 3 1027 H/m (7.31)

The precise definition of the magnetic flux density B, in terms of the magnetic force, will 
be given in the next chapter.

The magnetic flux through a surface S is given by

 

where the magnetic flux Ψ is in webers (Wb) and the magnetic flux density is in webers per 
square meter (Wb/m2) or teslas (T).

A magnetic flux line is a path to which B is tangential at every point on the line. It is 
a line along which the needle of a magnetic compass will orient itself if placed in the pres-
ence of a magnetic field. For example, the magnetic flux lines due to a straight long wire are 
shown in Figure 7.16. The flux lines are determined by using the same principle followed 
in Section 4.10 for the electric flux lines. The direction of B is taken as that indicated as 
“north” by the needle of the magnetic compass. Notice that each flux line is closed and has 
no beginning or end. Though Figure 7.16 is for a straight, current-carrying conductor, it is 
generally true that magnetic flux lines are closed and do not cross each other regardless of 
the current distribution.

7.5 MAGNETIC FLUX DENSITY—MAXWELL’S EQUATION

FIGURE 7.16 Magnetic flux lines due to a 
straight wire with current coming out of the page.
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� 5 3
S
 B # dS (7.32)

where m  is a constant known as the permeability of free space. The constant is in Henrys 
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sarily closed. Unlike electric flux lines, magnetic flux lines always close upon themselves 
as in Figure 7.17(b). This is because it is not possible to have isolated magnetic poles (or 
magnetic charges). For example, if we desire to have an isolated magnetic pole by dividing 
a magnetic bar successively into two, we end up with pieces each having north and south 
poles as illustrated in Figure 7.18. We find it impossible to separate the north pole from 
the south pole.

An isolated magnetic charge does not exist. 

Thus the total flux through a closed surface in a magnetic field must be zero; that is,

 C
S
 B # dS 5 0 (7.33)

C

C

FIGURE 7.17 Flux leaving a closed surface due to (a) isolated electric 
charge c 5 AS D # dS 5 Q, (b) magnetic charge, c 5 AS B # dS 5 0.

FIGURE 7.18 Successive division of a bar magnet results in pieces 
with north and south poles, showing that magnetic poles cannot 
be isolated.
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In an electrostatic field, the flux passing through a closed surface is the same as the 
charge enclosed; that is, 5 AS

 D # dS 5 Q. Thus it is possible to have an isolated electric 
charge as shown in Figure 7.17(a), which also reveals that electric flux lines are not neces-

�
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This equation is referred to as the law of conservation of magnetic flux or Gauss’s law for 
magnetostatic fields, just as  is Gauss’s law for electrostatic fields. Although 
the magnetostatic field is not conservative, magnetic flux is conserved.

By applying the divergence theorem to eq. (7.33), we obtain

C
S
 B # dS 5 3

v
 = # B dv 5 0

or

 = # B 5 0 (7.34)

This equation is the fourth Maxwell’s equation to be derived. Equation (7.33) or (7.34) 
shows that magnetostatic fields have no sources or sinks. Equation (7.34) suggests that 
magnetic field lines are always continuous.

7.6 MAXWELL’S EQUATIONS FOR STATIC FIELDS

Having derived Maxwell’s four equations for static fields, we may take a moment to put 
them together as in Table 7.2. From the table, we notice that the order in which the equa-
tions are presented differs from the order in which they were derived. This was done for 
the sake of clarity.

The choice between differential and integral forms of the equations depends on a given 
problem. It is evident from Table 7.2 that a vector field is defined completely by specify-
ing its curl and its divergence. A field can be electric or magnetic only if it satisfies the 
corresponding Maxwell equations (see Problems 7.  and 7. ). It should be noted that 
Maxwell’s equations as in Table 7.2 are only for static electric and magnetic fields. As will 
be discussed in Chapter 9, the divergence equations will remain the same for time-varying 
EM fields, but the curl equations will have to be modified.

TABLE 7.2 Maxwell’s Equations for Static Electric and Magnetic Fields

Differential (or Point) Form Integral Form Remarks

= # D 5 rv C
S
 D # dS 5 3

v
 rv dv Gauss’s law

= # B 5 0 C
S
 B # dS 5 0 Nonexistence of magnetic monopole

= 3 E 5 0 C
L
 E # d l 5 0 Conservative nature of electrostatic field

= 3 H 5 J C
L
 H # d l 5 3

S
 J # dS Ampère’s law
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 D # dS 5 Q
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We recall that some electrostatic field problems were simplified by relating the electric 
potential V to the electric field intensity E 1E 5 2=V 2 . Similarly, we can define a potential 
associated with magnetostatic field B. In fact, the magnetic potential could be scalar Vm or 
vector A. To define Vm and A involves recalling two important identities (see Example 3.10 
and Practice Exercise 3.10):

  = 3 1=V 2 5 0 (7.35a)

 = # 1= 3 A 2 5 0 (7.35b)

which must always hold for any scalar field V and vector field A.
Just as E 5 2=V, we define the magnetic scalar potential Vm (in amperes) as related 

to H according to

 H 5 2=Vm   if J 5 0 (7.36)

The condition attached to this equation is important and will be explained. Combining 
eq. (7.36) and eq. (7.19) gives

 J 5 = 3 H 5 = 3 12=Vm 2 5 0 (7.37)

since Vm must satisfy the condition in eq. (7.35a). Thus the magnetic scalar potential Vm is 
only defined in a region where J 5 0 as in eq. (7.36). We should also note that Vm satisfies 
Laplace’s equation just as V does for electrostatic fields; hence,

 =2Vm 5 0,  1J 5 0 2  (7.38)

We know that for a magnetostatic field, = # B 5 0 as stated in eq. (7.34). To satisfy 

Wb/m) such that

 B 5 = 3 A (7.39)

Just as we defined

 V 5 3  
dQ

4peoR
 (7.40)

we can define

 A 5 3
L
 
moI d l
4pR

   for line current (7.41)

7.7 MAGNETIC SCALAR AND VECTOR POTENTIALS
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eqs. (7.34) and (7.35b) simultaneously, we can define the magnetic vector potential A (in 
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 A 5 3
S
 
moK dS

4pR
   for surface current (7.42)

 A 5 3
v
 
moJ dv
4pR

   for volume current (7.43)

Rather than obtaining eqs. (7.41) to (7.43) from eq. (7.40), an alternative approach 
would be to obtain eqs. (7.41) to (7.43) from eqs. (7.6) to (7.8). For example, we can derive 
eq. (7.41) from eq. (7.6) in conjunction with eq. (7.39). To do this, we write eq. (7.6) as 

 B 5
mo

4p
 3

L
 
I d l r 3 R

R3  (7.44)

where R is the distance vector from the line element dl at the source point 1x r, y r, z r 2  to 
the field point 1x, y, z 2  as shown in Figure 7.19 and R 5 0R 0 , that is,

 R 5 0 r 2 r9 0 5 3 1x 2 x r 2 2 1 1y 2 y r 2 2 1 1z 2 z r 2 2 41/2 (7.45)

Hence,

 =a 1
R
b 5 2

1x 2 x r 2ax 1 1y 2 y r 2ay 1 1z 2 z r 2az

3 1x 2 x r 2 2 1 1y 2 y r 2 2 1 1z 2 z r 2 2 43/2 5 2
R
R3

or

 
R
R3 5 2=a 1

R
b  a5 

aR

R2b  (7.46)

where the differentiation is with respect to x, y, and z. Substituting this into eq. (7.44), we 
obtain

 B 5 2
mo

4p
 3

L
 I d l r 3 =a 1

R
b  (7.47)

FIGURE 7.19 Illustration of the source point  
(x, y, z) and the field point (x, y, z).
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We apply the vector identity

 = 3 1 f F 2 5 f = 3 F 1 1=f 2 3 F (7.48)

where f is a scalar field and F is a vector field. Taking f 5 1/R and F 5 d l r, we have

d l r 3 =a 1
R
b 5

1
R

= 3 d l r 2 = 3 ad l r
R

b

Since  operates with respect to 1x, y, z 2  while d l is a function of 1x r, y r, z r 2 , = 3 d l r 5 0. 
Hence,

 d l r 3 =a 1
R
b 5 2= 3

d l r
R

 (7.49)

With this equation, eq. (7.47) reduces to

 B 5 = 3 3
L
 
moI d l r

4pR
 (7.50)

Comparing eq. (7.50) with eq. (7.39) shows that

A 5 3
L
 
moI d l r

4pR

Thus the magnetic flux through a given area can be found by using either eq. (7.32) 
or (7.51). Also, the magnetic field can be determined by using either Vm or A; the 
choice is dictated by the nature of the given problem except that Vm can be used only 
in a source-free region. The use of the magnetic vector potential provides a powerful, 
elegant approach to solving EM problems, particularly those relating to antennas. As we 
shall notice in Chapter 13, it is more convenient to find B by first finding A in antenna 
problems .
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verifying eq. (7.41).
By substituting eq. (7.39) into eq. (7.32) and applying Stokes’s theorem, we obtain

� 5 3
S
 B # dS 5 3

S
 1= 3 A 2 # dS 5 C

L
 A # d l

or

 � 5 C
L
 A # d l (7.51)
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Given the magnetic vector potential A 5 2r2/4 az Wb/m, calculate the total magnetic flux 
crossing the surface f 5 p/2, 1 # r # 2 m, 0 # z # 5 m.

Solution:
We can solve this problem in two different ways: using eq. (7.32) or eq. (7.51).

Method 1:

B 5 = 3 A 5 2
'Az

'r
 af 5

r

2
 af,  dS 5 dr dz af

FIGURE 7.20 For Example 7.7.

EXAMPLE 7.7
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Hence,

 � 5 3
S
 B # dS 5

1
2

 3
5

z50
 3

2

r51
 r dr dz 5

1
4

 r2 `
2

1 15 2 5
15
4

 � 5 3.75 Wb

Method 2:
We use

 � 5 C
L
 A # d l 5 �1 1 �2 1 �3 1 �4

where L is the path bounding surface S; Ψ1, Ψ2, Ψ3, and Ψ4 are, respectively, the evalua-
tions of eLA # d l along the segments of L labeled 1 to 4 in Figure 7.20. Since A has only a 
z-component,

�1 5 0 5 �3
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That is,

as obtained by Method 1. Note that the direction of the path L must agree with that of dS. 

PRACTICE EXERCISE 7.7

A current distribution gives rise to the vector magnetic potential A 5 x2yax 1
y2x ay 2 4xyz az Wb/m. Calculate the following:

(a) B at 121, 2, 5 2
(b) The flux through the surface defined by z 5 1, 0 # x # 1, 21 # y # 4

Answer: (a) 20ax 1 40ay 1 3az Wb/m2, (b) 20 Wb.

If plane z 5 0 carries uniform current K 5 Kyay,

H 5 e 1/2 Kyax, z . 0
21/2 Kyax, z , 0

This was obtained in Section 7.4 by using Ampère’s law. Obtain this by using the concept 
of vector magnetic potential.

Solution:
Consider the current sheet as in Figure 7.21. From eq. (7.42),

dA 5
moK dS

4pR

In this problem, K 5 Kyay, dS 5 dx r dy r, and for z . 0,

R 5 0R 0 5 0 10, 0, z 2 2 1x r, y r, 0 2 0

  5 3 1x r 2 2 1 1y r 2 2 1 z2 41/2  (7.8.1)

where the primed coordinates are for the source point while the unprimed coordinates 
are for the field point. It is necessary (and customary) to distinguish between the two 
points to avoid confusion (see Figure 7.19). Hence

EXAMPLE 7.8

07_Sadiku_Ch07.indd   324 23/09/17   2:38 PM

� 5 �2 1 �4 5 2
1
4

  c 11 2 2 3
5

0
 dz 1 12 2 2 3

0

5
 dz d

  5 2
1
4

 11 2 4 2 15 2 5
15
4

  5 3.75 Wb
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 dA 5
moKy dx r dy r ay

4p 3 1x r 2 2 1 1y r 2 2 1 z2 41/2

 dB 5 = 3 dA 5 2
'

'z
 d Ay ax

  5
moKyz dx r dy r ax

4p 3 1x r 2 2 1 1y r 2 2 1 z2 43/2

 B 5
moKyzax

4p
 3

`

2`

 3
`

2`

 
dx r dy r

3 1x r 2 2 1 1y r 2 2 1 z2 43/2 (7.8.2)

In the integrand, we may change coordinates from Cartesian to cylindrical for convenience 
so that

 B 5
moKyzax

4p
 3

`

rr50
 3

2p

fr50
 

r r df r dr r
3 1r r 2 2 1 z2 43/2

 5
moKyzax

4p
 2p 3

`

0
 3 1r r 2 2 1 z2 423/2 1/2 d 3 1r r 2 2 4

 5
moKyzax

2
 

21
3 1r r 2 2 1 z2 41/2 `

rr50

`

 5
moKyax

2

Hence

H 5
B
mo

5
Ky

2
 ax,  for z . 0

By simply replacing z by 2z in eq. (7.8.2) and following the same procedure, we obtain

H 5 2
Ky

2
 ax,  for z , 0 

FIGURE 7.21 For Example 7.8: infi-
nite current sheet.
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PRACTICE EXERCISE 7.8

Repeat Example 7.8 by using Biot–Savart’s law to determine H at points 10, 0, h 2  and 
10, 0, 2h 2 .

†7.8 DERIVATION OF BIOT–SAVART’S LAW AND AMPÈRE’S LAW

Both Biot–Savart’s law and Ampère’s law may be derived by using the concept of magnetic 
vector potential. The derivation will involve the use of the vector identities in eq. (7.48) and

 = 3 = 3 A 5 = 1= # A 2 2 =2A (7.52)

Since Biot–Savart’s law as given in eq. (7.4) is defined in terms of line current, we begin our 
derivation with eqs. (7.39) and (7.41); that is,

 B 5 = 3 C
L
 
moI d l r

4pR
5

moI
4p

 C
L
 = 3

1
R

 d l r (7.53)

where R is as defined in eq. (7.45). If the vector identity in eq. (7.48) is applied by letting 
F 5 d l r and f 5 1/R, eq. (7.53) becomes

 B 5
moI
4p

 C
L
 c 1

R
= 3 d l r 1 a=

1
R
b 3 d l r d  (7.54)

Since  operates with respect to 1x, y, z 2  and d l is a function of 1x r, y r, z r 2 , = 3 d l r 5 0. 
Also

 
1
R

5 3 1x 2 x r 2 2 1 1y 2 y r 2 2 1 1z 2 z r 2 2 421/2 (7.55)

 = c 1
R
d 5 2

1x 2 x r 2ax 1 1y 2 y r 2ay 1 1z 2 z r 2az

3 1x 2 x r 2 2 1 1y 2 y r 2 2 1 1z 2 z r 2 2 43/2 5 2
aR

R2 (7.56)

where aR is a unit vector from the source point to the field point. Thus eq. (7.54) (upon 
dropping the prime in d l) becomes

 B 5
moI
4p

 C
L
 
d l 3 aR

R2  (7.57)

which is Biot–Savart’s law.
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Using the identity in eq. (7.52) with eq. (7.39), we obtain

 = 3 B 5 = 1= # A 2 2 =2A (7.58)

For reasons that will be obvious in Chapter 9, we choose

 = # A 5 0 (7.59)

which is called Coulomb’s gauge. Upon replacing B with moH and using eq. (7.19), 
eq. (7.58) becomes

=2A 5 2mo= 3 H

or

 =2A 5 2moJ (7.60)

which is called the vector Poisson equation. It is similar to Poisson’s equation 1=2V 5 2rv /e 2  
in electrostatics. In Cartesian coordinates, eq. (7.60) may be decomposed into three scalar 
equations:

=2Ax 5 2moJx

 =2Ay 5 2moJy (7.61)

=2Az 5 2moJz

which may be regarded as the scalar Poisson equations.
It can also be shown that Ampère’s circuit law is consistent with our definition of the 

magnetic vector potential. From Stokes’s theorem and eq. (7.39),

 C
L
H # d l 5 3

S
 = 3 H # dS

  5
1

mo
 3

S
 = 3 1= 3 A 2 # dS 

(7.62)

From eqs. (7.52), (7.59), and (7.60),

= 3 = 3 A 5 2=2 A 5 moJ

Substituting this into eq. (7.62) yields

C
L
 H # d l 5 3

S
 J # dS 5 I

which is Ampère’s circuit law.
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Lightning is the discharge of static electricity generated in clouds by natural processes.

Lightning may also be regarded as a transient, high-current electric discharge. It is a major 
natural source of electromagnetic radiation that interferes with modern electronics and 
communication systems. Lightning strikes somewhere on the surface of the earth about 100 
times every second. Lightning, the thunderbolt from mythology, has long been feared as an 
atmospheric flash of supernatural origins: the great weapon of the gods. Today, scientific 
rather than mystical techniques are used to explain lightning, with experimental procedures 
replacing intuitive concepts. Yet, we remain in awe of lightning, which still shines with its 
mystery, and rightly so. Deaths and injuries to livestock and other animals,  thousands of 
forest and brush fires, and millions of dollars in damage to buildings, communications sys-
tems, power lines, and electrical systems are among the results of lightning.

Since lightning can reach from clouds to the ground or to other clouds, lightning may 
be classified into two types: (1) cloud-to-cloud and (2) cloud-to-ground. A typical cloud-to-

is important for aircraft in flight. However, cloud-to-ground lightning has been studied more 
extensively because of its practical interest (e.g., as the cause of injuries and death or disturbanc-
es in power and communication systems). A typical cloud-to-ground lightning carries about 10 
C to 20 C at an average height of 5 km above the ground. The portion of the cloud-to-ground 
discharge that produces physical damage at ground level by virtue of its high current is called 
the return stroke. The current in a return stroke is typically 10 kA but can be as high as 200 kA.

Under good weather conditions, an electric field of the order 100 V/m exists near 
the earth’s surface. Movements inside a cloud cause the cloud to become an electric 
dipole, with negative charges in the lower part and positive charges in the upper part. 

†7.9 APPLICATION NOTE—LIGHTNING

FIGURE 7.22 A cloud-to-ground lightning.

07_Sadiku_Ch07.indd   328 23/09/17   2:38 PM

ground lighting is shown in Figure 7.22. The cloud-to-cloud discharge is more common and 
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A polywell is a polyhedral group of metal rings; inside each ring is a coil, which produces 
a magnetic field. As schematically illustrated in Figure 7.23, the position of each of the 
rings and the direction of current flow in each coil are set to create a null magnetic field at 

The approach of the negatively charged particles to the ground induces more positive 
charges, especially on tall, sharp structures. A lightning bolt follows the path of least 
resistance at the moment of initiation; this is rarely a straight line, and it is unique for 
each strike. However, if we  assume that lightning strokes arrive in the vertical direction, 
we can estimate the striking distance as a function of the amplitude of the current of the 
return stroke. The base striking distance D in meters, and the current I, in kiloamperes, 
are related as

 D 5 10I0.65 (7.63)

Humans and animals within the striking distance may be hurt.
A common way to protect people, buildings, and other structures from lightning is to 

use lightning rods. Originally developed by Benjamin Franklin, a lightning rod is a pointed 
metal rod attached to the roof of a building. It is connected to a copper or aluminum wire, 
and the wire is connected to a conductive grid buried in the ground nearby. Lightning rods 
provide a low-resistance path to ground that can be used to conduct the enormous  electrical 
currents when lightning strikes occur. When lightning strikes, the system attempts to carry 
the harmful electrical current away from the structure and safely to ground.

7.10 APPLICATION NOTE—POLYWELLS

FIGURE 7.23 Coils in a polywell.
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x

y = x2

P(–0.5, 0.5, 0)

I

y

 

MATLAB 7.1

the center of the cube. On two opposing sides of the cube a stream of electrons is injected 
through the rings. These injected electrons are pushed by the magnetic field toward the 
(magnetically null) center of the cube, forming a cloud of electrons. When this cloud of 
electrons is large enough, it will create what is known as an electrostatic potential well. 

produces.
In a nuclear fusion reactor two lighter atomic particles fuse together to form a heavier 

particle, releasing large amounts of energy. The normal activity inside a nuclear fusion 

field that acts as an electrostatic potential well. Then the radial electric field accelerates ions 
to fusion-revelant energies and confines them in the central grid region.

The fusion reactor system, however, suffers from substantial energy loss due to colli-
sions between the grid itself and the ions. The polywell overcomes this problem by replac-
ing the physical cathode with a virtual cathode, the electron cloud. In the polywell the ion 
streams are injected into the polyhedron through the remaining four rings. These ions are 
attracted to the electron cloud and are accelerated to the energy at which fusion can occur.

All these parts—the polywell and the electron and ion guns—are encapsulated in a 
collection sphere, with all of this inside a vacuum chamber. This collection sphere captures 
the energy released from the fusion process in the form of alpha particles, which come 
from the fusion, inside the electron cloud, of boron and hydrogen ions. The use of boron 
and hydrogen in nuclear fusion is becoming more popular than the use of deuterium 
and tritium as fuel. Unlike the fusion of deuterium and tritium, the fusion of boron and 
hydrogen produces little to no radiation and, since the only by-product is helium, there is 
no radioactive waste.
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The polywell’s name comes from its polyhedral shape and the electrostatic potential well 

reactor is as follows: Two spherically concentric, gridded electrodes create a radial electric 

 
Suppose a 0.5 mA segment of current travels along the parabola y 5 x2 between a 5 10, 0, 0 2  and 
b 5 11, 1, 0 2  cm. Using the Biot–Savart law, determine the magnetic field at point P(–0.5, 0.5, 0) due 
to the segment.
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H 5 3
L

Idl 3 aR

4pR2

The unit vector from the incremental current filament at 1x r, y r, 0 2  to the observation point P  
(x, y, z) is

aR 5
1x 2 x r 2ax 1 1y 2 y r 2ay 1 zaz

R

R 5 "1x 2 x r 2 2 1 1y 2 y r 2 2 1 z2

IdL 5 I 1dx rax 1 dy ray 2
The cross product is

IdL 3 aR 5 I 1dx ray 1 dy ray 2 3
1x 2 x r 2ax 1 1y 2 y r 2ay 1 zaz

"1x 2 x r 2 2 1 1y 2 y r 2 2 1 1z 2 z r 2 2

Thus

H 5 3
L

IdL 3 aR

4pR2 5
I

4p
3

b

a

3 1y 2 y r 2dx r 2 1x 2 x r 2dy r 4az 2 z dx ray 1 z dy rax

3 1x 2 x r 2 2 1 1y 2 y r 2 2 1 z2 41.5

This integral is numerically evaluated as 0.85I; thus the magnetic field at P is given by:

H 5 1.9437az 

mA
m

clear
I=0.5e-3;   % the current value

% prompt for observation point
disp(‛Enter the observation point (in the ‛);
p0 = input(‛format [x y z])... \n >  ‛);

if isempty(p0); p0 = [0 0 0]; end

xpstart = 0; xpend = 1e-2;   % start and end points for 
       %integration variable x prime
dxp=1e-7;   % integration variable increment dx

H = [0, 0, 0]; % initial field values before integration sum
zp = 0;        % current lies only in the xy-plane

for xp=xpstart:dxp:xpend,   % begin integration loop
    yp=xp^2*1e2;   % make substitution for y prime in terms 
              % of x prime
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to obtain the magnetic field at point P:

The incremental current element is given by
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                   % the 1e2 is to offset the 1e-2 squared 
                   % term which relates x prime and y prime 
                   % in space
    dyp=2*3*dxp;    % make substitution for dy prime in terms 
               % of dx prime

    num = [(p0(3)-zp)*dyp,-(p0(3)-zp)*dxp,((p0(2)-yp)*dxp-...
    (p0(1)-xp)*dyp)];   % numerator
    den = ((p0(1)-xp)^2+(p0(2)-yp)^2)^(3/2);   % denominator

    H = H + num/den; % total field including all three coordinates

end

H=H*I/(4*pi);

% display the output
disp(‛’)
disp(‛The magnetic field at‛);
disp(sprintf(‛ (%f, %f, %f) cm \nis (%f %f %f) A/m’, ...
    p0(1), p0(2), p0(2), H(1), H(2), H(3)))

% This script allows the user to specify a current 
% directed out of the page (+z direction) that lies on the origin,
% is assumed infinite, and points in the z direction
% and plot the vector magnetic field in the xy-plane
%
% 
% inputs: I (value of the current), x and y limits of the plot
% outputs: the magnetic field vector plot
clear

% prompt user for input materials
disp(‛Enter the graph limits ‛);
plotlim = input(‛ [xmin xmax ymin ymax]... \n >  ‛);
if isempty(plotlim); plotlim = [-1 1 -1 1]; end    
            % check if entered 
correctly 
I = input(‛Enter the current in Amperes... \n >  ‛);
if isempty(I); I = 1; end    % check if current is entered

dx=(plotlim(2)-plotlim(1))/10;
dy=(plotlim(4)-plotlim(3))/10;
xrange=plotlim(1):dx:plotlim(2);
yrange=plotlim(3):dy:plotlim(4);

[X,Y]=meshgrid(xrange,yrange);
U=zeros(length(xrange), length(yrange));
V=zeros(length(xrange), length(yrange));
for x=1:length(xrange)

MATLAB 7.2
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    for y=1:length(yrange)
        r=sqrt(xrange(x)^2+yrange(y)^2);        
            % the distance from the current 
        phiuvector=[-yrange(y),xrange(x)]/r;    
            % the unit vector in the phi direction
        H=I/(2*pi*r)*phiuvector;                
            % Ampere’s law for an infinite current
           % fill matrices which contain the vector 
           % components in x and y direction
        U(y, x)=H(1);   % vector x corresponds to columns
        V(y, x)=H(2);   % vector x corresponds to columns
    end

end

% Display results
figure
quiver(xrange,yrange,U,V)
axis square
axis(plotlim)
xlabel(‛X location (m)’)
ylabel(‛Y location (m)’)
disp(‛Value of first vector to the right of’);
disp(sprintf(‛ origin = %f A/m’,I/(2*pi*dx)))

1. The basic laws (Biot–Savart’s and Ampère’s) that govern magnetostatic fields are discussed. 
Biot–Savart’s law, which is similar to Coulomb’s law, states that the magnetic field intensity 
dH at r due to current element I d l at r is

dH 5
I d l 3 R

4pR3   (in A/m)

 where R 5 r 2 r r and R 5 0R 0 . For surface or volume current distribution, we replace 
I d l with K dS or J dv, respectively; that is,

I d l ; K dS ; J dv

2. Ampère’s circuit law, which is similar to Gauss’s law, states that the circulation of H 
around a closed path is equal to the current enclosed by the path; that is,

C
L
 H # d l 5 Ienc 5 3

S
 J # dS

SUMMARY
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 or

= 3 H 5 J  (third Maxwell equation to be derived)

 When current distribution is symmetric so that an Amperian path (on which H 5 Hfaf 
is constant) can be found, Ampère’s law is useful in determining H; that is,

Hf C
L
 dl 5 Ienc  or  Hf 5

Ienc

,

 where B is the magnetic flux density (in Wb/m2). In free space,

B 5 moH

 where mo 5 4p 3 1027 H/m 5 permeability of free space.
4. Since an isolated or free magnetic monopole does not exist, the net magnetic flux 

through a closed surface is zero:

 or

= # B 5 0  (fourth Maxwell equation to be derived)

5. At this point, all four Maxwell equations for static EM fields have been derived, namely:

= # D 5 rv

 = # B 5 0
 = 3 E 5 0
= 3 H 5 J

6. The magnetic scalar potential Vm is defined as

H 5 2=Vm,  if J 5 0

 and the magnetic vector potential A as

B 5 = 3 A

 where = # A 5 0. With the definition of A, the magnetic flux through a surface S can 
be found from
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3. Th e magnetic fl ux through a surface S is given by

� 5 3
S
 B # dS  (in Wb)

� 5 C
S
 B # dS 5 0

� 5 C
L
 A # d l



 where L is the closed path defining surface S (see Figure 3.21). Rather than using Biot–
Savart’s law, the magnetic field due to a current distribution may be found by using A, a 
powerful approach that is particularly useful in antenna theory. For a current element I 
d l at r, the magnetic vector potential at r is

A 5 3  
moI d l
4pR

,  R 5 0 r 2 r r 0

7. Elements of similarity between electric and magnetic fields exist. Some of these are 
listed in Table 7.1. Corresponding to Poisson’s equation =2V 5 2rv /e, for example, is

=2A 5 2moJ

8. Lightning may be regarded as a transient, high-current electric discharge. A common way 
to protect people, buildings, and other structures from lightning is to use lightning rods.

 7.1 One of the following is not a source of magnetostatic fields:

(a) A dc current in a wire
(b) A permanent magnet
(c) An accelerated charge
(d) An electric field linearly changing with time
(e) A charged disk rotating at uniform speed

 7.2 Identify the configuration in Figure 7.24 that is not a correct representation of I  
and H.

 7.3 Consider points A, B, C, D, and E on a circle of radius 2 as shown in Figure 7.25. The items 
in the right-hand list are the values of af at different points on the circle. Match these items 
with the points in the list on the left.

(a) A  (i) ax

(b) B  (ii) 2ax

(c) C  (iii) ay

(d) D  (iv) 2ay

REVIEW
QUESTIONS

FIGURE 7.24 For Review Question 7.2.
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(e) E  (v) 
ax 1 ay

"2

  (vi) 
2ax 2 ay

"2

  (vii) 
2ax 1 ay

"2

  (viii) 
ax 2 ay

"2

 7.4 The z-axis carries filamentary current of 10p A along az. Which of these is incorrect?

(a) H 5 2ax A/m at 10, 5, 0 2
(b) H 5 af A/m at 15, p/4, 0 2
(c) H 5 20.8ax 2 0.6ay at 123, 4, 0 2
(d) H 5 2af at 15, 3p/2, 0 2

 7.5 Plane y 5 0 carries a uniform current of 30az mA/m. At 11, 10, 22 2 , the magnetic field 
intensity is

(a) 215ax mA/m (d) 18.85ay nA/m
(b) 15ax mA/m (e) None of the above
(c) 477.5ay mA/m

 7.6 For the currents and closed paths of Figure 7.26, calculate the value of AL H # d l.

 7.7 Which of these statements is not characteristic of a static magnetic field?

(a) It is solenoidal.
(b) It is conservative.
(c) It has no sinks or sources.
(d) Magnetic flux lines are always closed.
(e)  The total number of flux lines entering a given region is equal to the total number of 

flux lines leaving the region.

FIGURE 7.25 For Review Question 7.3.
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 7.8 Two identical coaxial circular coils carry the same current I but in opposite directions. The 
magnitude of the magnetic field B at a point on the axis midway between the coils is

(a) Zero
(b) The same as that produced by one coil
(c) Twice that produced by one coil
(d) Half that produced by one coil.

 7.9 Which one of these equations is not Maxwell’s equation for a static electromagnetic field 
in a linear homogeneous medium?

(a) = # B 5 0 (d) AS D # dS 5 Q
(b) = 3 D 5 0 (e) =2A 5 moJ
(c) AL B # d l 5 moI

7.10 Two bar magnets with their north poles having strength Qm1 5  A # m and 
Qm2 5 10 A # m (magnetic charges) are placed inside a volume as shown in Figure 7.27. 
The magnetic flux leaving the  volume is

(a) 200 Wb (d) 0 Wb
(b) 30 Wb (e) 210 Wb
(c) 10 Wb

Answers:  7.1c, 7.2c, 7.3 (a)-(ii), (b)-(vi), (c)-(i), (d)-(v), (e)-(iii), 7.4d, 7.5a, 7.6 (a) 10 A, (b) 
220 A, (c) 0, (d) 210 A, 7.7b, 7.8a, 7.9e, 7.10d.

FIGURE 7.26 For Review Question 7.6.

FIGURE 7.27 For Review Question 7.10.
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Section 7.2—Biot–Savart’s Law

 7.1 (a) State Biot–Savart’s law.
(b)  The y- and z-axes, respectively, carry filamentary currents 10 A along ay and 20 A 

along 2az. Find H at 123, 4, 5 2 .
 7.2 A long, straight wire carries current 2A. Calculate the distance from the wire when the 

magnetic field strength is 10 mA/m.

 7.3 Two infinitely long wires, placed parallel to the z-axis, carry currents 10 A in opposite 
directions as shown in Figure 7.28. Find H at point P.

 7.4 Two current elements I1dl1 5 4 3 1025 ax A.m at (0, 0, 0) and I2dl2 5 6 3 1025 ay A.m 
at (0, 0, 1) are in free space. Find H at (3, 1, –2).

 7.5 A conducting filament carries current I from point A 10, 0, a 2  to point B 10, 0, b 2 . Show 
that at point P 1x, y, 0 2 ,

H 5
I

4p"x2 1 y3
c b

"x2 1 y2 1 b2
2

a

"x2 1 y2 1 a2
d  af

 7.6 Consider AB in Figure 7.29 as part of an electric circuit. Find H at the origin due  to AB.

 7.7 Line x 5 0, y 5 0, 0 # z # 10 m carries current 2 A along az. Calculate H at points

(a) 15, 0, 0 2  (c) 15, 15, 0 2
(b) 15, 5, 0 2  (d) 15, 215, 0 2

 *7.8 (a) Find H at 10, 0, 5 2  due to side 2 of the triangular loop in Figure 7.6(a).
(b)  Find H at 10, 0, 5 2  due to the entire loop.

PROBLEMS

y

5 10 A

4

3

2

1
 P

10 A 1 2 3 4 5            x
•

X

FIGURE 7.28 For Problem 7.3.

x

y

A

B

6 A

0

1

1

FIGURE 7.29 For Problem 7.6.
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 7.9 An infinitely long conductor is bent into an L shape as shown in Figure 7.30. If a direct 
current of 5 A flows in the conductor, find the magnetic field intensity at (a) 12, 2, 0 2 , (b) 
10, 22, 0 2 , and (c) 10, 0, 2 2 .

7.10 Find H at the center C of an equilateral triangular loop of side 4 m carrying 5 A of current 
as in Figure 7.31.

7.11 A rectangular loop carrying 10 A of current is placed on z 5 0 plane as shown in 
Figure 7.32. Evaluate H at

(a) 12, 2, 0 2  (b) 14, 2, 0 2  
(c) 14, 8, 0 2  (d) 10, 0, 2 2

7.12 A square conducting loop of side 4 cm lies on the z  0 plane and is centered at the 
 origin. If it carries a current 5 mA in the counterclockwise direction, find H at the center 
of the loop.

*7.13 (a)  A filamentary loop carrying current I is bent to assume the shape of a regular  polygon 
of n sides. Show that at the center of the polygon

H 5
nI

2pr
 sin 

p

n
    where r is the radius of the circle circumscribed by the polygon.

(b)  Apply this for the cases of n 5 3 and n 5 4 and see if your results agree with those for 
the  triangular loop of Problem 7.10.

FIGURE 7.30 Current filament for Problem 7.9.

x

y

5 A

5 A

FIGURE 7.31 Equilateral triangular 
loop for Problem 7.10.

FIGURE 7.32 Rectangular loop 
of Problem 7.11.
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FIGURE 7.33 Filamentary loop of Problem 7.14 (not drawn to scale).
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(c)  As n becomes large, show that the result of part (a) becomes that of the circular loop 
of Example 7.3.

7.14 For the filamentary loop shown in Figure 7.33, find the magnetic field strength at O.

7.15 Figure 7.34 shows a portion of a circular loop. Find H at the origin.

7.16 Two identical loops are parallel and separated by distance d as shown in Figure 7.35.  
Calculate H at (0, 0, d) assuming that a  3 cm, d  4 cm, and I  10 A.

7.17 A solenoid of radius 4 mm and length 2 cm has 150 turns/m and carries a current of 
500 mA. Find (a) 0H 0  at the center, (b) 0H 0  at the ends of the solenoid.

7.18 Plane x 5 10 carries a current of 100 mA/m along az, while line x 5 1, y 5 22 carries a 
filamentary current of 20p mA along az. Determine H at 14, 3, 2 2 .

φo

ρ1 ρ2

I

0

y

x

FIGURE 7.34 Problem 7.15.
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Section 7.3—Ampère’s Circuit Law

7.19 (a) State Ampère’s circuit law.
 (b)  A hollow conducting cylinder has inner radius a and outer radius b and carries cur-

rent I along the positive z-direction. Find H everywhere.

7.20 Current sheets of 20ax A/m and 220ax A/m are located at y  1 and y 5 21, respectively. 
Find H in region 21 , y , 1.

7.21 The z 5 0 plane carries current K 5 10ax A/m, while current filament situated at 
y 5 0, z 5 6 carries current I along ax. Find I such that H 10, 0, 3 2 5 0.

7.22 A conducting cylinder of radius a carries current I along 1az. (a) Use Ampère’s law to find 
H for r  a and r . a. (b) Find J.

7.23 An infinitely long cylindrical conductor of radius a is placed along the z-axis. If the 

 current density is J 5
Jo

r
 az, where Jo is constant, find H everywhere.

7.24 Let H 5 y2ax 1 x2ay A/m. (a) Find J. (b) Determine the current through the strip  
z 1, 0  x  2, 1  y < 5.

7.25 Let H 5 koa
r

abaf, r , a, where ko is a constant. (a) Find J for r , a. (b) Find H for r . a.

7.26 Let H  y2ax 1 x2ay A/m. Find J at (1, 24, 7).

7.27 Assume a conductor, H  103ρ2af A/m. (a) Find J. (b) Calculate the current through the 
surface  0  ρ  2, 0  f  2, z  0.

y
a

d

a
I

Loop 1

Loop 2

I

z

x

FIGURE 7.35 Problem 7.16.
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7.28 A cylindrical conductor of radius a  1 cm carries current I which produces H  4ρaf 
A/m. Find I.

7.29 An infinitely long filamentary wire carries a current of 2 A along the z-axis in the 
1z-direction. Calculate the following:

(a) B at 123, 4, 7 2
(b)  The flux through the square loop described by 2 # r # 6, 0 # z # 4, f 5 90°.

7.30 Consider the two-wire transmission line whose cross section is illustrated in Figure 7.36. Each 
wire is of radius 2 cm, and the wires are separated 10 cm. The wire centered at 10, 0 2  carries a 
current of 5 A, while the other centered at 110 cm, 0 2  carries the return current. Find H at

  (a) 15 cm, 0 2
 (b) 110 cm, 5 cm 2

7.31 An electron beam forms a current of density

J 5 e Jo 112r2
@a2 2az

0,           r . a
,     r , a

(a) Determine the total current.
(b) Find the magnetic field intensity everywhere.

Section 7.5—Magnetic Flux Density

7.32 Determine the magnetic flux through a rectangular loop 1a 3 b 2  due to an infinitely long 
conductor carrying current I as shown in Figure 7.37. The loop and the straight conduc-
tors are separated by distance d.

7.33 A semicircular loop of radius a in free space carries a current I. Determine the magnetic 
flux density at the center of the loop.

FIGURE 7.36 Two-wire line of Problem 7.30.
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FIGURE 7.38 Cross section of a brass ring enclosing a long straight wire; for Problem 7.35.

z

d

b

a

I

FIGURE 7.37 For Problem 7.32.

7.34 In free space, the magnetic flux density is 

B 5 y2ax 1 z2ay 1 x2az Wb/m2

(a) Show that B is a magnetic field
(b) Find the magnetic flux through x 5 1, 0 , y , 1, 1 , z , 4.
(c) Calculate J.
(d) Determine the total magnetic flux through the surface of a cube defined by 0 < x  

< 2, 0  y  2, 0  z  2.

*7.35 A brass ring with triangular cross section encircles a very long straight wire concentrically 
as in Figure 7.38. If the wire carries a current I, show that the total number of magnetic 
flux lines in the ring is

C 5
moIh
2pb

 cb 2 a ln 
a 1 b

b
d

  Calculate C if a 5 30 cm, b 5 10 cm, h 5 5 cm, and I 5 10 A.
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7.36 The electric motor shown in Figure 7.39 has field

H 5
106

r
 sin 2f ar A/m

  Calculate the flux per pole passing through the air gap if the axial length of the pole is 20 cm.

7.37 In free space, B 5
20
r

 sin2 faz Wb/m2. Determine the magnetic flux crossing the strip  

z = 0, 1  r  2 m, 0  f  /4.

7.38 If B 5
2
r3  cos uar 1

1
r3

 sin uau Wb/m2, find the magnetic flux through the spherical cap   

r  1,   /3.

7.39 In a hydrogen atom, an electron revolves at velocity 2.2 3 106 m/s. Calculate the magnetic 
flux density at the center of the electron’s orbit. Assume that the radius of the orbit is 
R  5.3 3 10211 m.

Section 7.6—Maxwell’s Equations

7.40 Consider the following arbitrary fields. Find out which of them can possibly represent an 
electrostatic or magnetostatic field in free space.

(a) A 5 y cos axax 1 1y 1 e2x 2az

(b) B 5
20
r

 ar

(c) C 5 r2 sin u af

P

A

FIGURE 7.39 Electric motor pole of Problem 7.36.
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7.41 Reconsider Problem 7.40 for the following fields.

(a) D 5 y2zax 1 2 1x 1 1 2yzay 2 1x 1 1 2z2az

(b) E 5
1z 1 1 2

r
 cos f ar 1

sin f
r

 az

(c) F 5
1
r2 12 cos u ar 1 sin u au 2

Section 7.7—Magnetic Scalar and Vector Potentials

7.42 A current element of length L carries current I in the z direction. Show that at a very 
 distant point,

A 5
moIL
4pr

 az

  Find B.

7.43 In free space, A  10 sin p yax 1 (4 1 cos p x)az Wb/m. Find H and J.

7.44 Given that A 5
2cosu

r3 ar 1
sinu

r3 au  Wb/m exists in free space.

(a) show that = ? A  0
(b) Find B at point T(1, 30°, 60°)

7.45 For a current distribution in free space,

A 5 12x2y 1 yz 2ax 1 1xy2 2 xz3 2ay 2 16xyz 2 2x2y2 2az Wb/m

(a) Calculate B.
(b) Find the magnetic flux through a loop described by x 5 1, 0 , y , 2, 0 , z , 2.
(c) Show that = # A 5 0 and = # B 5 0.

7.46 In free space, a small circular loop of current produces 

A 5
k
r2 sinuaf

  where k is a constant. Find B.

7.47 The magnetic vector potential of a current distribution in free space is given by

A 5 15e2r sin f az Wb/m

  Find H at 13, p/4, 210 2 . Calculate the flux through r 5 5, 0 # f # p/2, 0 # z # 10.

Problems 345
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7.48 Given that A 5
10
r

 sin uaf Wb/m, find H at point (4, 60o, 30o).

7.49 An infinitely long conductor of radius a carries a uniform current with J 5 Jo az. Show that 
the magnetic vector potential for r , a is

A 5 2
1
4

 moJor
2az

7.50 Find the B field corresponding to the magnetic vector potential

A 5 sin 
px
2

 cos 
py
2

 az

7.51 The magnetic vector potential at a distant point from a small circular loop is given by

A 5
Ao

r2  sin u  af Wb/m

  where Ao is a constant.  Determine the magnetic flux density B.

7.52 The magnetic field intensity in a certain conducting medium is

H 5 xy2ax 1 x2zay 2 y2zaz A/m

(a)  Calculate the current density at point P 12, 21, 3 2.
(b) What is 

'rv

't
 at P?

   7.53 Let A 5 10r2az mWb/m. 

(a) Find H and J.
(b) Determine the total current crossing the surface z 5 1, 0  r  2, 0  f  2.

   7.54 Prove that the magnetic scalar potential at 10, 0, z 2  due to a circular loop of radius a 
shown in Figure 7.8(a) is

Vm 5
I
2

 c1 2
z

3z2 1 a2 41/2 d

   7.55 The z-axis carries a filamentary current 12 A along az. Calculate Vm at (4, 30°, 2) 
if Vm  0 at (10, 60°, 7).

   7.56 Plane z 5 22 carries a current of 50ay A/m. If Vm 5 0 at the origin, find Vm at

(a) 122, 0, 5 2
(b) 110, 3, 1 2

346 CHAPTER 7 MAGNETOSTATIC FIELDS
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    7.57 Prove in cylindrical coordinates that

(a) = 3 1=V 2 5 0
(b) = # 1= 3 A 2 5 0

*7.58 If R 5 r 2 r r and R 5 0R 0 , show that

=
1
R

5 2= r
1
R

5 2
R
R3

  where  and  are del operators with respect to 1x, y, z 2  and 1x r, y r, z r 2 , respectively.
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Magnetic resonance imaging (MRI), an exciting technique for probing the human body, was intro-
duced into clinical practice by the early 1980s. In less than 10 years, it became a primary diagnostic 
tool in several clinical areas such as neurology and orthopedics. Improvements in MRI technology 
and in computer technology have led to continued growth in the clinical capabilities of the technique. 
No other technique has proven to be so uniquely flexible and dynamic.

What is MRI? When placed in a static magnetic field, certain atomic nuclei assume one of two states: 
one has a higher energy level and the other has a lower energy level. The energy difference between the 
two states is linearly proportional to the strength of the applied magnetic field. (This is called the Zeeman 
effect.) Thus, the MRI signals received by a probe can be analyzed to study the properties of the nuclei 
and their environment. MRI stems from the application of nuclear magnetic resonance (NMR) to radio-
logical imaging. Unlike other imaging techniques, such as X-ray computed tomography, MRI does not 
require exposure of the subject to ionizing radiation and hence is considered safe. It provides more infor-
mation than other imaging techniques because MRI signals are sensitive to several tissue parameters.

An MRI machine consists of a magnet and a giant cube 7 feet tall by 7 feet wide by 10 feet long 
(2 m  2 m  3 m), although new models are rapidly shrinking. There is a horizontal tube running 
through the magnet from front to back. The magnets in use today in MRI machines are in the range 
of 0.5 T to 2 T. (There is no scientific evidence that fields in that range produce harmful effects in 
humans.) The patient, lying on his or her back, slides into the tube on a special table. Once the body 
part to be scanned is in the exact center of the magnetic field, the scan can begin.

MRI has changed from a curiosity to the technique of choice for a wide variety of diseases in 
various regions of the human body. It has been lauded as a technique that represents a breakthrough 
in medical diagnosis. Today, an estimated 60 million MRI scans are performed annually to visualize 
patients’ internal structures and diagnose a number of conditions including tumors, stroke damage, 
heart and brain diseases, and back problems.

MAGNETIC RESONANCE IMAGING (MRI)
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8.1 INTRODUCTION

8.2 FORCES DUE TO MAGNETIC FIELDS

Having considered the basic laws and techniques commonly used in calculating magnetic 
field B due to current-carrying elements, we are prepared to study the force a magnetic 
field exerts on charged particles, current elements, and loops. Such a study is important to 
problems on electrical devices such as ammeters, voltmeters, galvanometers, cyclotrons, 
plasmas, motors, and magnetohydrodynamic generators. The precise definition of the 
magnetic field, deliberately sidestepped in the preceding chapter, will be given here. The 
concepts of magnetic moments and dipole will also be considered.

Furthermore, we will consider magnetic fields in material media, as opposed to the mag-
netic fields in vacuum or free space examined in the preceding chapter. The results of Chapter 
7 need only some modification to account for the presence of materials in a magnetic field. 
Further discussions will cover inductors, inductances, magnetic energy, and magnetic circuits.

There are at least three ways in which force due to magnetic fields can be experienced. The 
force can be (a) due to a moving charged particle in a B field, (b) on a current element in 
an external B field, or (c) between two current elements.

A. Force on a Charged Particle
According to our discussion in Chapter 4, the electric force Fe on a stationary or moving 
electric charge Q in an electric field is given by Coulomb’s experimental law and is related 
to the electric field intensity E as

 Fe 5 QE (8.1)

This shows that if Q is positive, Fe and E have the same direction.

MAGNETIC FORCES, MATERIALS, 
AND DEVICES

Always be kind to your A and B students.  Someday one of them will return to your 
campus as a good professor. And also be kind to your C students. Someday one of 
them will return and build you a two-million dollar science laboratory.  

—YALE UNIVERSITY PRESIDENT

8
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350 CHAPTER 8 MAGNETIC FORCES, MATERIALS, AND DEVICES

A magnetic field can exert force only on a moving charge. From experiments, it is 
found that the magnetic force Fm experienced by a charge Q moving with a velocity u in a 
magnetic field B is

 Fm 5 Qu 3 B (8.2)

This clearly shows that Fm is perpendicular to both u and B.
From eqs. (8.1) and (8.2), a comparison between the electric force Fe and the magnetic 

force Fm can be made. We see that Fe is independent of the velocity of the charge and can 
perform work on the charge and change its kinetic energy. Unlike Fe, Fm depends on the 
charge velocity and is normal to it. However, Fm cannot perform work because it is at right 
angles to the direction of motion of the charge 1Fm

# d l 5 0 2 ; it does not cause an increase 
in kinetic energy of the charge. The magnitude of Fm is generally small in comparison to 
Fe except at high velocities.

For a moving charge Q in the presence of both electric and magnetic fields, the total 
force on the charge is given by,

F 5 Fe 1 Fm

or

 F 5 Q 1E 1 u 3 B 2  (8.3)

This is known as the Lorentz force equation.1 It relates mechanical force to electrical 
force. If the mass of the charged particle moving in E and B fields is m, by Newton’s  second 
law of motion.

 F 5 m
du
dt

5 Q 1E 1 u 3 B 2  (8.4)

The solution to this equation is important in determining the motion of charged particles 
in E and B fields. We should bear in mind that in such fields, energy can be transferred 
only by means of the electric field. A summary on the force exerted on a charged particle 
is given in Table 8.1.

Since eq. (8.2) is closely parallel to eq. (8.1), which defines the electric field, some 
authors and instructors prefer to begin their discussions on magnetostatics from eq. (8.2), 
just as discussions on electrostatics usually begin with Coulomb’s force law.

B. Force on a Current Element
To determine the force on a current element I dl of a current-carrying conductor due to the 
magnetic field B, we modify eq. (8.2) using the fact that for convection current [see eq. (5.7)]:

 J 5 rnu (8.5)

1 After Hendrik Lorentz (1853–1928), who first applied the equation of motion in electric fields.
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From eq. (7.5), we recall the relationship between current elements:

 I d l 5 K dS 5 J dv (8.6)

Combining eqs. (8.5) and (8.6) yields

I d l 5 rnu dv 5 dQ u

Alternatively, I d l 5
dQ
dt

d l 5 dQ
d l
dt

5 dQ u

Hence,

 I d l 5 dQ u (8.7)

This shows that an elemental charge dQ moving with velocity u (thereby producing con-
vection current element dQ u) is equivalent to a conduction current element I d l. Thus 
the force on a current element I d l in a magnetic field B is found from eq. (8.2) by merely 
replacing Qu by I d l; that is,

 dF 5 I d l 3 B (8.8)

If the current I is through a closed path L or circuit, the force on the circuit is given by

 F 5 C
L
 I d l 3 B (8.9)

In using eq. (8.8) or (8.9), we should keep in mind that the magnetic field produced by 
the current element I d l does not exert force on the element itself, just as a point charge 
does not exert force on itself. The B field that exerts force on I d l must be due to another 
element. In other words, the B field in eq. (8.8) or (8.9) is external to the current element  
I d l. If instead of the line current element I d l, we have surface current elements K dS  
or a volume current element J dv, we simply make use of eq. (8.6) so that eq. (8.8) becomes

 dF 5 K dS 3 B  or  dF 5 J dv 3 B (8.8)

while eq. (8.9) becomes

 F 5 3
S
 K dS 3 B  or  F 5 3

v
 J dv 3 B (8.9)

TABLE 8.1 Force on a Charged Particle

State of Particle E Field B Field Combined E and B Fields

Stationary QE — QE

Moving QE Qu 3 B Q 1E 1 u 3 B 2
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From eq. (8.8)

The magnetic field B is defined as the force per unit current element.

Alternatively, B may be defined from eq. (8.2) as the vector that satisfies Fm/q 5 u 3 B, 
just as we defined electric field E as the force per unit charge, Fe/q. Both these definitions 
of B show that B describes the force properties of a magnetic field.

C. Force between Two Current Elements
Let us now consider the force between two elements I1 d l1 and I2 d l2. According to Biot–
Savart’s law, both current elements produce magnetic fields. So we may find the force 
d(dF1) on element I1 d l1 due to the field dB2 produced by element I2 d l2 as shown in 
 Figure 8.1. From eq. (8.8),

 d 1dF1 2 5 I1 d l1 3 dB2 (8.10)

But from Biot–Savart’s law,

 dB2 5
moI2 d l2 3 aR21

4pR21
2  (8.11)

Hence,

 d 1dF1 2 5
moI1 d l1 3 1 I2 d l2 3 aR21

2
4pR21

2  (8.12)

This equation is essentially the law of force between two current elements and is analogous 
to Coulomb’s law, which expresses the force between two stationary charges. From eq. (8.12), 
we obtain the total force F1 on current loop 1 due to current loop 2 shown in Figure 8.1 as

 F1 5
moI1I2

4p
 C

L1

 C
L2

d l1 3 1d l2 3 aR21
2

R21
2  (8.13)

FIGURE 8.1 Force between two current 
loops.
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Although this equation appears complicated, we should remember that it is based on  
eq. (8.10). It is eq. (8.9) or (8.10) that is of fundamental importance.

The force F2 on loop 2 due to the magnetic field B1 from loop 1 is obtained from  
eq. (8.13) by interchanging subscripts 1 and 2. It can be shown that F2 5 2F1; thus F1 and 
F2 obey Newton’s third law that action and reaction are equal and opposite. It is worthwhile 
to mention that eq. (8.13) was experimentally established by Oersted and Ampère; Biot and 
Savart (Ampère’s colleagues) actually based their law on it.

A charged particle of mass 2 kg and charge 3 C starts at point 11, 22, 0 2  with velocity 
4ax 1 3az m/s in an electric field 12ax 1 10ay V/m. At time t 5 1 s, determine
(a) The acceleration of the particle
(b) Its velocity
(c) Its kinetic energy
(d) Its position

Solution:
(a) This is an initial-value problem because initial values are given. According to  Newton’s 
second law of motion,

F 5 ma 5 QE

where a is the acceleration of the particle. Hence,

 a 5
QE
m 5

3
2
112ax 1 10ay 2 5 18ax 1 15ay m/s2

 a 5
du
dt

5
d
dt
1ux, uy, uz 2 5 18ax 1 15ay

(b) Equating components and then integrating, we obtain

  
dux

dt
5 18 S  ux 5 18t 1 A (8.1.1)

  
duy

dt
5 15 S  uy 5 15t 1 B

 
(8.1.2)

  
duz

dt
5 0 S  uz 5 C (8.1.3)

where A, B, and C are integration constants. But at t 5 0, u 5 4ax 1 3az. Hence,

 ux 1 t 5 0 2 5 4 S  4 5 0 1 A  or  A 5 4

 uy 1 t 5 0 2 5 0 S  0 5 0 1 B  or  B 5 0

 uz 1 t 5 0 2 5 3 S  3 5 C

EXAMPLE 8.1
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Substituting the values of A, B, and C into eqs. (8.1.1) to (8.1.3) gives

u 1 t 2 5 1ux, uy, uz 2 5 118t 1 4, 15t, 3 2

Hence

u 1 t 5 1 s 2 5 22ax 1 15ay 1 3az m/s

(c) Kinetic energy 1K.E. 2 5
1
2

m 0 u 0 2 5
1
2
12 2 1222 1 152 1 32 2  

  5 718 J

(d) u 5
d l
dt

5
d
dt
1x, y, z 2 5 118t 1 4, 15t, 3 2

Equating components yields

 
dx
dt

5 ux 5 18t 1 4 S  x 5 9t2 1 4t 1 A1 (8.1.4)

 
dy
dt

5 uy 5 15t  S  y 5 7.5t2 1 B1 (8.1.5)

 
dz
dt

5 uz 5 3  S  z 5 3t 1 C1 (8.1.6)

At t 5 0, 1x, y, z 2 5 11, 22, 0 2 ; hence,

 x 1 t 5 0 2 5 1 S  1  5 0 1 A1   or   A1 5 1

 y 1 t 5 0 2 5 22 S  22 5 0 1 B1  or  B1 5 22

 z 1 t 5 0 2 5 0 S  0  5 0 1 C1   or   C1 5 0

Substituting the values of A1, B1, and C1 into eqs. (8.1.4) to (8.1.6), we obtain

 1x, y, z 2 5 19t2 1 4t 1 1, 7.5t2 2 2, 3t 2  (8.1.7)

Hence, at t 5 1, 1x, y, z 2 5 114, 5.5, 3 2 .
By eliminating t in eq. (8.1.7), the motion of the particle may be described in terms 

of x, y, and z. 

PRACTICE EXERCISE 8.1

A charged particle of mass 1 kg and charge 2 C starts at the origin with zero initial 
velocity in a region where E  3az V/m. Find the following:

(a) The force on the particle
(b) The time it takes to reach point P(0, 0, 12 m)
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8.2 Forces due to Magnetic Fields 355

A charged particle of mass 2 kg and 1 C starts at the origin with velocity 3ay m/s and travels 
in a region of uniform magnetic field B 5 10az Wb/m2. At t 5 4 s, do the following.
(a) Calculate the velocity and acceleration of the particle.
(b) Calculate the magnetic force on it.
(c) Determine its K.E. and location.
(d) Find the particle’s trajectory by eliminating t.
(e) Show that its K.E. remains constant.

Solution:

(a) F 5 m
du
dt

5 Qu 3 B

a 5
du
dt

5
Q
m u 3 B

Hence

d
dt
1uxax 1 uyay 1 uzaz 2 5

1
2
†
ax ay az
ux uy uz
0 0 10

† 5 5 1uyax 2 uxay 2

By equating components, we get

 
dux

dt
5 5uy (8.2.1)

 
duy

dt
5 25ux (8.2.2)

 
duz

dt
5 0 S  uz 5 Co (8.2.3)

We can eliminate ux or uy in eqs. (8.2.1) and (8.2.2) by taking second derivatives of one 
equation and making use of the other. Thus

d2ux

dt2 5 5
duy

dt
5 225ux

or

d2ux

dt2 1 25ux 5 0

EXAMPLE 8.2

(c) Its velocity and acceleration at P
(d) Its K.E. at P

Answer: (a) 6az N, (b) 2 s, (c) 12az m/s, 6az m/s2, (d) 72 J.
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which is a linear differential equation with solution (see Case 3 of Example 6.5)

 ux 5 C1 cos 5t 1 C2 sin 5t (8.2.4)

From eqs. (8.2.1) and (8.2.4),

 5uy 5
dux

dt
5 25C1 sin 5t 1 5C2 cos 5t (8.2.5)

or

uy 5 2C1 sin 5t 1 C2 cos 5t

We now determine constants Co, C1, and C2 using the initial conditions. At t 5 0, u 5 3ay. 
Hence,

 ux 5 0 S  0 5 C1
# 1 1 C2

# 0 S  C1 5 0

 uy 5 3 S  3 5 2C1
# 0 1 C2

# 1 S  C2 5 3

 uz 5 0 S  0 5 Co

Substituting the values of Co, C1, and C2 into eqs. (8.2.3) to (8.2.5) gives

 u 5 1ux, uy, uz 2 5 13 sin 5t, 3 cos 5t, 0 2  (8.2.6)

Hence,

 u 1 t 5 4 2 5 13 sin 20, 3 cos 20, 0 2
 5 2.739ax 1 1.224ay m/s

 a 5
du
dt

5 115 cos 5t, 215 sin 5t, 0 2

and
a 1 t 5 4 2 5 6.121ax 2 13.694ay m/s2

(b) F 5 ma 5 12.2ax 2 27.4ay N

or

 F 5 Qu 3 B 5 11 2 12.739ax 1 1.224ay 2 3 10az

 5 12.2ax 2 27.4ay N

(c) K.E. 5 1
2 m 0u 0 2 5 1

2 12 2  12.7392 1 1.2242 2 5 9 J

 ux 5
dx
dt

5 3 sin 5t S  x 5 2
3
5

 cos 5t 1 b1 (8.2.7)
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  uy 5
dy
dt

5 3 cos 5t S  y 5
3
5

 sin 5t 1 b2 (8.2.8)

 uz 5
dz
dt

5 0 S  z 5 b3 (8.2.9)

where b1, b2, and b3 are integration constants. At t 5 0, 1x, y, z 2 5 10, 0, 0 2  and hence,

 x 1 t 5 0 2 5 0 S  0 5 2
3
5

# 1 1 b1 S  b1 5 0.6

 y 1 t 5 0 2 5 0 S  0 5
3
5

# 0 1 b2 S  b2 5 0

 z 1 t 5 0 2 5 0 S  0 5 b3

Substituting the values of b1, b2, and b3 into eqs. (8.2.7) to (8.2.9), we obtain

 1x, y, z 2 5 10.6 2 0.6 cos 5t, 0.6 sin 5t, 0 2  (8.2.10)

At t 5 4 s,

1x, y, z 2 5 10.3552, 0.5478, 0 2

(d) From eq. (8.2.10), we eliminate t by noting that

1x 2 0.6 2 2 1 y2 5 10.6 2 2 1cos2 5t 1 sin2 5t 2 ,  z 50

or

1x 2 0.6 2 2 1 y2 5 10.6 2 2,  z 5 0

which is a circle on plane z 5 0, centered at 10.6, 0, 0 2  and of radius 0.6 m. Thus the 
 particle gyrates in an orbit about a magnetic field line.

(e) K.E. 5
1
2

 m 0 u 0 2 5
1
2
12 2 19 cos2 5t 1 9 sin2 5t 2 5 9 J

which is the same as the K.E. at t 5 0 and t 5 4 s. Thus the uniform magnetic field has no 
effect on the K.E. of the particle.

Note that the angular velocity v 5 QB/m and the radius of the orbit r 5 uo/v, where 
uo is the initial speed. An interesting application of the idea in this example is found in a 
common method of focusing a beam of electrons. The method employs a uniform mag-
netic field directed parallel to the desired beam as shown in Figure 8.2. Each electron 
emerging from the electron gun follows a helical path and returns to the axis at the same 
focal point with other electrons. If the screen of a cathode-ray tube were at this point, a 
single spot would appear on the screen.
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A charged particle moves with a uniform velocity 4ax m/s in a region where E 5 20 ay V/m 
and B 5 Boaz Wb/m2. Determine Bo such that the velocity of the particle remains constant.

Solution:
If the particle moves with a constant velocity, it is implied that its acceleration is zero. 
In other words, the particle experiences no net force. Hence,

 0 5 F 5 ma 5 Q 1E 1 u 3 B 2
 0 5 Q 120ay 1 4ax 3 Boaz 2

or

220ay 5 24Boay

Thus Bo 5 5.
This example illustrates an important principle employed in a velocity filter shown in 

Figure 8.3. In this application, E, B, and u are mutually perpendicular so that Qu 3 B is 

S
F

FIGURE 8.2 For Example 8.2: 
magnetic focusing of a beam of 
electrons: (a) helical paths of 
 electrons, (b) end view of paths.

PRACTICE EXERCISE 8.2

A proton of mass m is projected into a uniform field B  Boaz with an initial velocity aax 
 baz. (a) Find the differential equations that the position vector r  xax  yay  zaz 
must satisfy. (b) Show that a solution to these equations is

x 5
a

v
 sin vt,  y 5

a

v
 cos vt,  z 5 bt

where v  eBo/m and e is the charge on the proton. (c) Show that this solution describes 
a circular helix in space.

Answer: (a) 
dx
dt

5 a cos vt, 
dy
dt

5 2a sin vt, 
dz
dt

5 b, (b) and (c) Proof.

EXAMPLE 8.3
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directed opposite to QE, regardless of the sign of the charge. When the magnitudes of the 
two vectors are equal,

QuB 5 QE

or

u 5
E
B

This is the required (critical) speed to balance out the two parts of the Lorentz force. 
Particles with this speed are undeflected by the fields; they are “filtered” through the aper-
ture. Particles with other speeds are deflected down or up, depending on whether their 
speeds are greater or less than this critical speed.

C

FIGURE 8.3 For Example 8.3: a velocity filter for charged particles.

PRACTICE EXERCISE 8.3

Uniform E and B fields are oriented at right angles to each other. An electron moves 
with a speed of 8  106 m/s at right angles to both fields and passes undeflected through 
the field.

(a) If the magnitude of B is 0.5 mWb/m2, find the value of E.
(b) Will this filter work for positive and negative charges and any value of mass?

Answer: (a) 4 kV/m, (b) yes.

EXAMPLE 8.4 A rectangular loop carrying current I2 is placed parallel to an infinitely long filamentary 
wire carrying current I1 as shown in Figure 8.4(a). Show that the force experienced by the 
loop is given by

F, 5 2
moI1I2b

2p
c 1
ro

2
1

ro 1 a
d ar N
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Solution:
Let the force on the loop be

F, 5 F1 1 F2 1 F3 1 F4 5 I2 C
L
  dl2 3 B1

where F1, F2, F3, and F4 are, respectively, the forces exerted on sides of the loop labeled 1, 
2, 3, and 4 in Figure 8.4(b). Owing to the infinitely long wire

B1 5
moI1

2pro
 af

Hence,

 F1 5 I2 3
L
 d l2 3 B1 5 I2 3

b

z50
 dz az 3

moI1

2pro
 af

 5 2
moI1I2b
2pro

 ar  1attractive 2

F1 is attractive because it is directed toward the long wire; that is, F1 is along 2ar because 
loop side 1 and the long wire carry currents along the same direction. Similarly,

 F3 5 I2 3
L
 d l2 3 B1 5 I2 3

0

z5b
 dz az 3

moI1

2p 1ro 1 a 2  af

 5
moI1I2b

2p 1ro 1 a 2  ar  1repulsive 2

 F2 5 I2 3
ro1a

r5ro

 dr ar 3
moI1 af

2pr

FIGURE 8.4 For Example 8.4: 
(a) rec  tangular loop inside the field 
produced by an infinitely long wire,  
(b) forces acting on the loop 
and wire.
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 5
moI1I2

2p
 ln 

ro 1 a
ro

 az  1parallel 2

 F4 5 I2 3
ro

r5ro1a
 dr ar 3

moI1af

2pr

 5 2
moI1I2

2p
 ln 

ro 1 a
ro

 az  1parallel 2

The total force F on the loop is the sum of F1, F2, F3, and F4; that is,

F, 5
moI1I2b

2p
c 1
ro

2
1

ro 1 a
d 12ar 2

which is an attractive force trying to draw the loop toward the wire. The force Fw on the 
wire, by Newton’s third law, is 2F,; see Figure 8.4(b).

PRACTICE EXERCISE 8.4

In Example 8.4, find the force experienced by the infinitely long wire if I1  10 A, I2  5 A,  
ro  20 cm, a  10 cm, b  30 cm.

Answer: 5ar mN.

8.3 MAGNETIC TORQUE AND MOMENT

Now that we have considered the force on a current loop in a magnetic field, we can deter-
mine the torque on it. The concept of a current loop experiencing a torque in a magnetic 
field is of paramount importance in understanding the behavior of orbiting charged par-
ticles, dc motors, and generators. If the loop is placed parallel to a magnetic field, it experi-
ences a force that tends to rotate it.

The torque T (or mechanical moment of force) on the loop is the vector product of 
the moment arm r and the force F.

That is,

 T 5 r 3 F (8.14)

and its units are newton-meters 1N # m 2 .
Let us apply this to a rectangular loop of length  and width w placed in a uniform 

magnetic field B as shown in Figure 8.5(a). From Figure 8.5(a), we notice that d l is parallel 
to B along sides AB and CD of the loop and no force is exerted on those sides. Thus

08_Sadiku_Ch08.indd   361 25/09/17   10:33 AM



362 CHAPTER 8 MAGNETIC FORCES, MATERIALS, AND DEVICES

 F 5 I3
C

B
 d l 3 B 1 I3

A

D
 d l 3 B

 5 I3
,

0
 dz az 3 B 1 I3

0

,

 dz az 3 B

or

 F 5 Fo 2 Fo 5 0 (8.15)

where 0 Fo 0 5 IB, because B is uniform. Thus, no force is exerted on the loop as a whole. 
However, Fo and 2Fo act at different points on the loop, thereby creating a couple. If the 
normal to the plane of the loop makes an angle a with B, as shown in the cross-sectional 
view of Figure 8.5(b), the torque on the loop is

0T 0 5 0 Fo 0  w sin a

or

 T 5 BI,w sin a (8.16)

But ,w 5 S, the area of the loop. Hence,

 T 5 BIS sin a (8.17)

We define the quantity

 m 5 ISan (8.18)

as the magnetic dipole moment (in A # m2) of the loop. In eq. (8.18), an is a unit normal vec-
tor to the plane of the loop and its direction is determined by the right-hand rule: fingers 
in the direction of current and thumb along an.

A

AB

C D

FIGURE 8.5 (a) Rectangular planar loop in a uniform magnetic 
field. (b) Cross-sectional view of part (a).
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The magnetic dipole moment is the product of current and area of the loop; its 
 direction is normal to the loop.

Introducing eq. (8.18) in eq. (8.17), we obtain

 T 5 m 3 B (8.19)

Although this expression was obtained by using a rectangular loop, it is generally applicable 
in determining the torque on a planar loop of any arbitrary shape. The only limitation is 
that the magnetic field must be uniform. It should be noted that the torque is in the direc-
tion of the axis of rotation (the z-axis in the case of Figure 8.5(a)). It is directed with the 
aim of reducing a so that m and B are in the same direction. In an equilibrium position 
(when m and B are in the same direction), the loop is perpendicular to the magnetic field 
and the torque will be zero as well as the sum of the forces on the loop.

8.4 A MAGNETIC DIPOLE

A magnetic dipole consists of a bar magnet or small current-carrying loop. The reason for this 
and what we mean by “small” will soon be evident. Let us determine the magnetic field B at 
an observation point P 1r, u, f 2  due to a circular loop carrying  current I as in Figure 8.6. The 
magnetic vector potential at P is

 A 5
moI
4p

 C 
d l
r  (8.20)

It can be shown that in the far field r W a, so that the loop appears small at the observation 
point, A has only f-component and it is given by

 A 5
moIpa2 sin u af

4pr2  (8.21a)

FIGURE 8.6 Magnetic field at P due to a 
current loop.
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or

 A 5
mo m 3 ar

4pr2  (8.21b)

where m 5 Ipa2az, the magnetic moment of the loop, and az 3 ar 5 sin u af. We deter-
mine the magnetic flux density B from B 5 = 3 A as

 B 5
mom
4pr3 12 cos u ar 1 sin u au 2  (8.22)

TABLE 8.2 Comparison between Electric and Magnetic Monopoles and Dipoles

08_Sadiku_Ch08.indd   364 25/09/17   10:33 AM



8.4 A Magnetic Dipole 365

It is interesting to compare eqs. (8.21) and (8.22) with similar expressions in eqs. 
(4.80) and (4.82) for electrical potential V and electric field intensity E due to an electric 
dipole. This comparison is done in Table 8.2, in which we notice the striking similari-
ties between B in the far field due to a small current loop and E in the far field due to 
an electric dipole. It is therefore reasonable to regard a small current loop as a magnetic 
 dipole. The B lines due to a magnetic dipole are similar to the E lines due to an electric 
 dipole. Figure 8.7(a) illustrates the B lines around the magnetic dipole m 5 IS.

A short permanent magnetic bar, shown in Figure 8.7(b), may also be regarded as a 
magnetic dipole. Observe that the B lines due to the bar are similar to those due to a small 
current loop in Figure 8.7(a).

Consider the bar magnet of Figure 8.8. If Qm is an isolated magnetic charge (pole 
strength) and  is the length of the bar, the bar has a dipole moment Qm<. (Notice that Qm 
does exist; however, it does not exist without an associated 2Qm. See Table 8.2.) When the 
bar is in a uniform magnetic field B, it experiences a torque

 T 5 m 3 B 5 Qm< 3 B (8.23)

where < points south to north. The torque tends to align the bar with the external magnetic 
field. The force acting on the magnetic charge is given by

 F 5 QmB (8.24)

Since both a small current loop and a bar magnet produce magnetic dipoles, they are 
equivalent if they produce the same torque in a given B field, that is, when

 T 5 Qm,B 5 ISB (8.25)

FIGURE 8.7 The B lines due to 
magnetic dipoles: (a) a small 
current loop with m  IS, (b) a 
bar magnet with m  Qm.

FIGURE 8.8 A bar magnet in an external magnetic 
field.
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366 CHAPTER 8 MAGNETIC FORCES, MATERIALS, AND DEVICES

Hence,

 Qm, 5 IS (8.26)

showing that they must have the same dipole moment.

Determine the magnetic moment of an electric circuit formed by the triangular loop of 
 Figure 8.9.

Solution:
If a plane intercepts the coordinate axes at (a, 0, 0),  (0, b, 0), and (0, 0, c), its equation is 
given by

x
a 1

y
b

1
z
c 5 1 h bcx 1 cay 1 abz 5 abc

For the present problem, a = b = c = 2. Hence 

x  y  z  2

Thus, we can use

m 5 ISan

where

 S 5 loop area 5
1
2

3 base 3 height 5
1
2
12"2 2 12"2 2sin 60°

 5 4 sin 60°

FIGURE 8.9 Triangular loop of Example 8.5.

EXAMPLE 8.5
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If we define the plane surface by a function

f 1x, y, z 2 5 x 1 y 1 z 2 2 5 0

 an 5 6 
=f
0=f 0 5 6 

1ax 1 ay 1 az 2
"3

We choose the plus sign in view of the direction of the current in the loop (using the right-
hand rule, m is directed as in Figure 8.9). Hence

m 5 5 14 sin 60° 2
1ax 1 ay 1 az 2

"3
 5 10 1ax 1 ay 1 az 2  A # m2

PRACTICE EXERCISE 8.5

A rectangular coil of area 10 cm2 carrying current of 50 A lies on plane  
2x  6y  3z  7 such that the magnetic moment of the coil is directed away from the 
origin. Calculate its magnetic moment.

Answer: (1.429ax  4.286ay  2.143az)  102 A . m2.

EXAMPLE 8.6 A small current loop L1 with magnetic moment 5az A # m2 is located at the origin while 
 another small loop current L2 with magnetic moment 3ay A # m2 is located at 14, 23, 10 2 . 
Determine the torque on L2.

Solution:
The torque T2 on the loop L2 is due to the field B1 produced by loop L1. Hence,

T2 5 m2 3 B1

Since m1 for loop L1 is along az, we find B1 using eq. (8.22):

B1 5
mom1

4pr3 12 cos u ar 1 sin u au 2

Using eq. (2.23), we transform m2 from Cartesian to spherical coordinates:

m2 5 3ay 5 3 1sin u sin f ar 1 cos u sin f au 1 cos f af 2

At 14, 23, 10 2 ,

r 5 "42 1 123 2 2 1 102 5 5"5
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tan u 5
r

z 5
5

10
5

1
2

 S  sin u 5
1

"5
,  cos u 5

2

"5

tan f 5
y
x 5

23
4

 S  sin f 5
23
5

,  cos f 5
4
5

Hence,

B1 5
4p 3 1027 3 5

4p 625 "5
 a 4

"5
 ar 1

1

"5
 aub

 5
1027

625
 14ar 1 au 2

m2 5 3 c2 3ar

5"5
2

6au

5"5
1

4af

5
d

and

 T 5
1027 13 2

625 15"5 2
 123ar 2 6au 1 4"5af 2 3 14ar 1 af 2  

  5 4.293 3 10211 128.944ar 1 35.777au 1 21af 2
  5 20.384ar 1 1.536au 1 0.9015af nN # m

PRACTICE EXERCISE  8.6

The coil of Practice Exercise 8.5 is surrounded by a uniform field 0.6ax  0.4ay  0.5az 
Wb/m2.

(a) Find the torque on the coil.
(b)  Show that the torque on the coil is maximum if placed on plane 2x  8y  4z   

"84. Calculate the magnitude of the maximum torque.

Answer:  (a) 0.03ax 2 0.02ay 2 0.02az N # m, (b) 0.0439 N # m.

8.5  MAGNETIZATION IN MATERIALS

Our discussion here will parallel that on polarization of materials in an electric field. We 
shall assume that our atomic model is that of an electron orbiting about a positive  nucleus.

We know that a given material is composed of atoms. Each atom may be regarded as 
consisting of electrons orbiting about a central positive nucleus; the electrons also rotate 

08_Sadiku_Ch08.indd   368 25/09/17   10:33 AM



8.5 Magnetization in Materials 369

(or spin) about their own axes. Thus an internal magnetic field is produced by electrons 
orbiting around the nucleus as in Figure 8.10(a) or electrons spinning as in Figure 8.10(b). 
Both these electronic motions produce internal magnetic fields Bi that are similar to the 
magnetic field produced by a current loop of Figure 8.11. The equivalent current loop has 
a magnetic moment of m 5 IbSan, where S is the area of the loop and Ib is the bound cur-
rent (bound to the atom).

Without an external B field applied to the material, the sum of m’s is zero due to 
random orientation as in Figure 8.12(a). When an external B field is applied, the magnetic 
moments of the electrons more or less align themselves with B so that the net magnetic 
moment is not zero, as illustrated in Figure 8.12(b).

The magnetization M, in amperes per meter, is the magnetic dipole moment per 
unit volume.

N

Electron
Electron

FIGURE 8.10 (a) Electron orbiting around the 
nucleus. (b) Electron spin. FIGURE 8.11 Circular current loop 

equivalent to electronic motion of 
Figure 8.10.

FIGURE 8.12 Magnetic dipole 
moment in a volume Dn: (a) before  
B is applied, (b) after B is applied.

0 0

If there are N atoms in a given volume Dn and the kth atom has a magnetic moment mk,

 M 5 lim
DnS0

 
a

N

k51
 mk

Dn
 (8.27)
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A medium for which M is not zero everywhere is said to be magnetized. For a differential 
volume dv, the magnetic moment is dm 5 M dv r. Recall that we denote the field point by 
the unprimed coordinates (x, y, z) and the source point by the primed coordinates (x, y, z). 
From eq. (8.21b), the vector magnetic potential due to dm is

dA 5
moM 3 aR

4pR2  dv r 5
moM 3 R

4pR3  dv r

R
R3 5 = r

1
R

Hence,

 A 5
mo

4p
 3

vr
 M 3 = r 

1
R

 dv r (8.28)

Using eq. (7.48) gives

M 3 = r
1
R

5
1
R

= r 3 M 2 = r 3
M
R

Substituting this into eq. (8.28) yields

A 5
mo

4p
 3

vr
 
= r 3 M

R
 dv r 2

mo

4p
 3

vr
 = r 3

M
R

 dv r

Applying the vector identity

3
vr

 = r 3 F dv r 5 2C
Sr

 F 3 dS

to the second integral, we obtain

A 5
mo

4p
 3

vr
 
= r 3 M

R
 dv r 1

mo

4p
 C

Sr
 
M 3 an

R
 dS r

  5
mo

4p
 3

vr
 
Jb dv r

R
1

mo

4p
 C

Sr
 
Kb dS r

R
 (8.29)

Comparing eq. (8.29) with eqs. (7.42) and (7.43) (upon dropping the primes) gives

 Jb 5 = 3 M (8.30)

and
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 Kb 5 M 3 an
 (8.31)

where Jb is the bound volume current density or magnetization volume current density, in 
amperes per meter squared, Kb is the bound surface current density, in amperes per meter, 
and an is a unit vector normal to the surface. Equation (8.29) shows that the potential of 
a magnetic body is due to a volume current density Jb throughout the body and a surface 
current Kb on the surface of the body. The vector M is analogous to the polarization P in 
dielectrics and is sometimes called the magnetic polarization density of the medium. In 
another sense, M is analogous to H and they both have the same units. In this respect, as 
J 5 = 3 H, so Jb 5 = 3 M. Also, Jb and Kb for a magnetized body are similar to rpv and 
rps for a polarized body. As is evident in eqs. (8.29) to (8.31), Jb and Kb can be derived from 
M; therefore, Jb and Kb are not commonly used.

In free space, M 5 0 and we have

 = 3 H 5 Jf  or  = 3 a B
mo

b 5 Jf  (8.32)

where Jf is the free current volume density. In a material medium M 2 0, and as a result, 
B changes so that

= 3 a B
mo

b 5 Jf 1 Jb 5 J

         5 = 3 H 1 = 3 M

or

 B 5 mo 1H 1 M 2  (8.33)

The relationship in eq. (8.33) holds for all materials whether they are linear or not. The 
concepts of linearity, isotropy, and homogeneity introduced in Section 5.7 for dielectric 
media equally apply here for magnetic media. For linear materials, M (in A/m) depends 
linearly on H such that

 M 5 xmH (8.34)

where xm is a dimensionless quantity (ratio of M to H) called magnetic susceptibility of the 
medium. It is more or less a measure of how susceptible (or sensitive) the material is to a 
magnetic field. Substituting eq. (8.34) into eq. (8.33) yields

 B 5 mo 11 1 xm 2H 5 mH (8.35)

or

 B 5 momrH (8.36)

where
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372 CHAPTER 8 MAGNETIC FORCES, MATERIALS, AND DEVICES

 mr 5 1 1 xm 5
m

mo
 (8.37)

The quantity m 5 momr is called the permeability of the material and is measured in 
 henrys per meter; the henry is the unit of inductance and will be defined a little later. 
The dimensionless quantity mr is the ratio of the permeability of a given material to that 
of free space and is known as the relative permeability of the material.

It should be borne in mind that the relationships in eqs. (8.34) to (8.37) hold only for 
linear and isotropic materials. If the materials are anisotropic (e.g., crystals), eq. (8.33) still 
holds but eqs. (8.34) to (8.37) do not apply. In this case, m has nine terms [similar to  in 
eq. (5.37)] and, consequently, the fields B, H, and M are no longer parallel.

†8.6 CLASSIFICATION OF MATERIALS

In general, we may use the magnetic susceptibility xm or the relative permeability mr to 
classify materials in terms of their magnetic property or behavior. A material is said to be 
nonmagnetic if xm 5 0 (or mr 5 1); it is magnetic otherwise. Free space, air, and materials 
with xm 5 0 (or mr < 1) are regarded as nonmagnetic.

Roughly speaking, materials may be grouped into three major classes: diamag-
netic, paramagnetic, and ferromagnetic. This rough classification is depicted in  

r ( 1 (i.e., very small negative xm). 
It is paramagnetic if mr * 1 (i.e., very small positive xm). If mr W 1 (i.e., very large positive 
xm), the material is ferromagnetic. Table B.3 in Appendix B presents the values mr for some 

that mr . 1 for diamagnetic and paramagnetic materials. Thus, we may regard diamagnetic 
and paramagnetic materials as linear and nonmagnetic. Ferromagnetic materials are always 
nonlinear and magnetic except when their temperatures are above curie temperature (to be 
explained later). The reason for this will become evident as we more closely examine each 
of these three types of magnetic material.

Diamagnetism occurs when the magnetic fields in a material that are due to electronic 
motions of orbiting and spinning completely cancel each other. Thus, the permanent (or 
 in trinsic) magnetic moment of each atom is zero and such materials are weakly affected 
by a magnetic field. For most diamagnetic materials (e.g., bismuth, lead, copper, silicon, 
diamond, sodium chloride), xm is of the order of 21025. In certain materials, called super-
conductors, “perfect diamagnetism” occurs at temperatures near absolute zero: xm 5 21 
or mr 5 0 and B 5 0. Thus superconductors cannot contain magnetic fields.2 Except for 
superconductors, the diamagnetic properties of materials are seldom used in practice. 
Although the diamagnetic effect is overshadowed by other stronger effects in some materi-
als, all materials exhibit diamagnetism.

2 An excellent treatment of superconductors is found in M. A. Plonus, Applied Electromagnetics. New York: 
McGraw-Hill, 1978, pp. 375–388. Also, the August 1989 issue of the Proceedings of IEEE is devoted to 
 superconductivity.
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Materials whose atoms have nonzero permanent magnetic moment may be paramag-
netic or ferromagnetic. Paramagnetism occurs when the magnetic fields produced in a 
 material by orbital and spinning electrons do not cancel completely. Unlike diamagnetism, 
paramagnetism is temperature dependent. For most paramagnetic materials (e.g., air, 
platinum, tungsten, potassium), Xm is of the order 11025 to 11023 and is temperature 
dependent. Such materials find application in masers.

Ferromagnetism occurs in materials whose atoms have relatively large permanent mag-
netic moment. They are called ferromagnetic materials because the best-known member is 
iron. Other members are cobalt, nickel, and their alloys. Ferromagnetic materials are very 
useful in practice. As distinct from diamagnetic and paramagnetic materials, ferromagnetic 
materials have the following properties:

1. They are capable of being magnetized very strongly by a magnetic field.
2. They retain a considerable amount of their magnetization when removed from the field.
3. They lose their ferromagnetic properties and become linear paramagnetic materi-

als when the temperature is raised above a certain temperature known as the curie 
temperature. Thus if a permanent magnet is heated above its curie temperature 
(770°C for iron), it loses its magnetization completely.

4. They are nonlinear; that is, the constitutive relation B 5 momrH does not hold for 
ferromagnetic materials because mr depends on B and cannot be represented by a 
single value.

Thus, the values of mr cited in Table B.3 for ferromagnetics are only typical. For example, 
for nickel mr 5 50 under some conditions and 600 under other conditions.

As mentioned in Section 5.9 for conductors, ferromagnetic materials, such as iron 
and steel, are used for screening (or shielding) to protect sensitive electrical devices from 
disturbances from strong magnetic fields. In the example of a typical iron shield shown in 
 Figure 8.14(a), the compass is protected. Without the iron shield, as in Figure 8.14(b), the 
compass gives an erroneous reading owing to the effect of the external magnetic field. For 
perfect screening, it is required that the shield have infinite permeability.

Even though B 5 mo 1H 1 M 2  holds for all materials including ferromagnetics, the 
relationship between B and H depends on previous magnetization of a ferromagnetic  
material—its “magnetic history.” Instead of having a linear relationship between B and H 
(i.e., B 5 mH), it is only possible to represent the relationship by a magnetization curve or 
B–H curve.

Materials

FIGURE 8.13 Classification of materials.
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A typical B–H curve is shown in Figure 8.15. First, note the nonlinear relationship 
between B and H. Second, at any point on the curve, m is given by the ratio B/H and not 
by dB/dH, the slope of the curve.

If we assume that the ferromagnetic material whose B–H curve in Figure 8.15 is ini-
tially unmagnetized, as H increases (owing to increase in current) from O to maximum 
 applied field intensity Hmax, curve OP is produced. This curve is referred to as the virgin 
or initial magnetization curve. After reaching saturation at P, if H is decreased, B does not 
 follow the initial curve but lags behind H. This phenomenon of B lagging behind H is called 
hysteresis (which means “to lag” in Greek).

If H is reduced to zero, B is not reduced to zero but to Br, which is referred to as the per-
manent flux density. The value of Br depends on Hmax, the maximum applied field  intensity. 
The existence of Br is the cause of having permanent magnets. If H increases negatively (by 
reversing the direction of current), B becomes zero when H becomes Hc, which is known as 
the coercive field intensity. Materials for which Hc is small are said to be magnetically hard. 
The value of Hc also depends on Hmax.

FIGURE 8.14 Magnetic screening: (a) iron shield protecting a small compass,  
(b) compass gives erroneous reading without the shield.

FIGURE 8.15 Typical magnetization (B–H) curve.
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Further increase in H in the negative direction to reach Q and a reverse in its direc-
tion to reach P gives a closed curve called a hysteresis loop. Hysteresis loops vary in shape 
from one material to another. Some ferrites, for example, have an almost rectangular 
hysteresis loop and are used in digital computers as magnetic information storage  devices. 
The area of a hysteresis loop gives the energy loss (hysteresis loss) per unit volume during 
one cycle of the periodic magnetization of the ferromagnetic material. This energy loss 
is in the form of heat. It is therefore desirable that materials used in electric generators, 
motors, and transformers have tall but narrow hysteresis loops so that hysteresis losses 
are minimal.

Region 0 # z # 2 m is occupied by an infinite slab of permeable material 1mr 5 2.5 2 . If 
B 5 10yax 2 5xay mWb/m2 within the slab, determine: (a) J, (b) Jb, (c) M, (d) Kb on z 5 0.

Solution:
(a) By definition,

 J 5 = 3 H 5 = 3
B

momr
5

1
4p 3 1027 12.5 2 a

'By

'x
2

'Bx

'y
baz

  5
106

p
 125 2 10 21023az 5 24.775az kA/m2

(b)     Jb 5 xmJ 5 1mr 2 1 2J 5 1.5 124.775az 2 # 103

      5 27.163az kA/m2

(c)  M 5 xmH 5 xm
B

momr
5

1.5 110yax 2 5xay 2 # 1023

4p 3 1027 12.5 2
   5 4.775yax 2 2.387xay kA/m
(d) Kb 5 M 3 an. Since z 5 0 is the lower side of the slab occupying 0 # z # 2, an 5 2az. 
Hence,

Kb 5 14.775yax 2 2.387xay 2 3 12az 2
 5 2.387xax 1 4.775yay kA/m

EXAMPLE 8.7

PRACTICE EXERCISE 8.7

In a certain region (m  4.6mo),

B  10eyaz mWb/m2

find: (a) xm, (b) H, (c) M.

Answer:  (a) 3.6, (b) 1730eyaz A/m, (c) 6228eyaz A/m.
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We define magnetic boundary conditions as the conditions that H (or B) field must satisfy 
at the boundary between two different media. Our derivations here are similar to those in 
Section 5.9. We make use of Gauss’s law for magnetic fields

 C
S
 B # dS 5 0 (8.38)

and Ampère’s circuit law

 C
L
 H # d l 5 I (8.39)

Consider the boundary between two magnetic media 1 and 2, characterized, respec-
tively, by m1 and m2 as in Figure 8.16. Applying eq. (8.38) to the pillbox (Gaussian surface) 
of Figure 8.16(a) and allowing Dh S  0, we obtain

 B1n DS 2 B2n DS 5 0 (8.40)

Thus

 B1n 5 B2n  or  m1H1n 5 m2H2n (8.41)

since B 5 mH. Equation (8.41) shows that the normal component of B is continuous at the 
boundary. It also shows that the normal component of H is discontinuous at the boundary; 
H undergoes some change at the interface.

Similarly, we apply eq. (8.39) to the closed path abcda of Figure 8.16(b), where surface 
current K on the boundary is assumed normal to the path. We obtain

K # Dw 5 H1t
# Dw 1 H1n

# Dh
2

1 H2n
# Dh

2

8.7  MAGNETIC BOUNDARY CONDITIONS

FIGURE 8.16 Boundary conditions between two magnetic media: (a) for B, (b) for H.
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  2H2t
# Dw 2 H2n

# Dh
2

2 H1n
# Dh

2
 (8.42)

As Dh S  0, eq. (8.42) leads to

 H1t 2 H2t 5 K (8.43)

This shows that the tangential component of H is also discontinuous. Equation (8.43) may 
be written in terms of B as

 
B1t

m1
2

B2t

m2
5 K (8.44)

In the general case, eq. (8.43) becomes

 1H1 2 H2 2 3 an12 5 K (8.45)

where an12 is a unit vector normal to the interface and is directed from medium 1 to 
medium 2. If the boundary is free of current or the media are not conductors (for K is free 
current density), K 5 0 and eq. (8.43) becomes

 H1t 5 H2t    or    
B1t

m1
5

B2t

m2
 (8.46)

Thus the tangential component of H is continuous while that of B is discontinuous at the 
boundary.

If the fields make an angle u with the normal to the interface, eq. (8.41) results in

 B1 cos u1 5 B1n 5 B2n 5 B2 cos u2 (8.47)

while eq. (8.46) produces

 
B1

m1
 sin u1 5 H1t 5 H2t 5

B2

m2
 sin u2 (8.48)

Dividing eq. (8.48) by eq. (8.47) gives

 
tan u1

tan u2
5

m1

m2
 (8.49)

which is [similar to eq. (5.65)] the law of refraction for magnetic flux lines at a boundary 
with no surface current.

Given that H1 5 22ax 1 6ay 1 4az A/m in region y 2 x 2 2 # 0, where m1 5 5mo, 
 calculate

(a) M1 and B1
(b) H2 and B2 in region y 2 x 2 2 $ 0, where m2 5 2mo

EXAMPLE 8.8
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Solution:
Since y 2 x 2 2 5 0 is a plane, y 2 x # 2 or y # x 1 2 is region 1 in Figure 8.17. A 
point in this region may be used to confirm this. For example, the origin 10, 0 2  is in this 
region because 0 2 0 2 2 , 0. If we let the surface of the plane be described by f 1x, y 2  5
y 2 x 2 2, a unit vector normal to the plane is given by

an 5
=f
0=f 0 5

ay 2 ax

"2
(a) M1 5 xm1H1 5 1mr1 2 1 2  H1 5 15 2 1 2 122, 6, 4 2
  5 28ax 1 24ay 1 16az A/m
 B1 5 m1H1 5 momr1H1 5 4p 3 1027 15 2 122, 6, 4 2
  5 212.57ax 1 37.7ay 1 25.13az m Wb/m2

(b) H1n 5 1H1
# an 2an 5 c 122, 6, 4 2 #

121, 1, 0 2
"2

d  
121, 1, 0 2

"2
  5 24ax 1 4ay

But

H1 5 H1n 1 H1t

Hence,

 H1t 5 H1 2 H1n 5 122, 6, 4 2 2 124, 4, 0 2  
  5 2ax 1 2ay 1 4az

Using the boundary conditions, we have

H2t 5 H1t 5 2ax 1 2ay 1 4az

B2n 5 B1n S  m2H2n 5 m1H1n

2
2

y

an

µ2 � 2µ0

FIGURE 8.17 For Example 8.8.
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or

H2n 5
m1

m2
 H1n 5

5
2

 124ax 1 4ay 2 5 210ax 1 10ay

Thus

H2 5 H2n 1 H2t 5 28ax 1 12ay 1 4az A/m

and

 B2 5 m2H2 5 momr2H2 5 14p 3 1027 2 12 2 128, 12, 4 2  
  5 220.11ax 1 30.16ay 1 10.05az m Wb/m2  

PRACTICE EXERCISE  8.8

Region 1, described by 3x 1 4y $ 10, is free space, whereas region 2, described 
by 3x 1 4y # 10, is a magnetic material for which m . 10mo. Assuming that 
the boundary between the material and free space is current free, find B2 if 
B1 5 0.1ax 1 0.4ay 1 0.2az Wb/m2.

Answer:  21.052ax 1 1.264ay 1 2az Wb/m2.

The xy-plane serves as the interface between two different media. Medium 1 1z , 0 2  is 
filled with a material whose mr 5 6, and medium 2 1z . 0 2  is filled with a material whose 
mr 5 4. If the interface carries current 11/mo 2  ay mA/m, and B2 5 5ax 1 8az mWb/m2, 
find H1 and B1.

Solution:
In Example 8.8, K 5 0, so eq. (8.46) was appropriate. In this example, however, K 2 0, and 
we must resort to eq. (8.45) in addition to eq. (8.41). Consider the problem as illustrated in 
Figure 8.18. Let B1 5 1Bx, By, Bz 2  in mWb/m2.

 B1n 5 B2n 5 8az S  Bz 5 8 (8.9.1)

But

 H2 5
B2

m2
5

1
4mo

15ax 1 8az 2mA/m (8.9.2)

and

 H1 5
B1

m1
5

1
6mo

1Bxax 1 Byay 1 Bzaz 2  mA/m (8.9.3)

EXAMPLE 8.9
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Having found the normal components, we can find the tangential components by using

 1H1 2 H2 2 3 an12 5 K

or

 H1 3 an12 5 H2 3 an12 1 K (8.9.4)

Substituting eqs. (8.9.2) and (8.9.3) into eq. (8.9.4) gives

1
6mo

 1Bxax 1 Byay 1 Bzaz 2 3 az 5
1

4mo
 15ax 1 8az 2 3 az 1

1
mo

 ay

Equating components yields

 By 5 0,  
2Bx

6
5

25
4

1 1,   or  Bx 5
6
4

5 1.5 (8.9.5)

From eqs. (8.9.1) and (8.9.5), we have

B1 5 1.5ax 1 8az mWb/m2

H1 5
B1

m1
5

1
mo

 10.25ax 1 1.33az 2  mA/m

and

H2 5
1

mo
 11.25ax 1 2az 2  mA/m

Note that H1x is 1/mo mA/m less than H2x because of the current sheet and also that  
B1n 5 B2n. 

FIGURE 8.18 For Example 8.9.

PRACTICE EXERCISE  8.9

A unit normal vector from region 2 1m 5 2mo 2  to region 1 1m 5 mo 2  is an21 5
16ax 1 2ay 2 3az 2 /7. If H1 5 10ax 1 ay 1 12az A/m and H2 5 H2xax 2 5ay 14az A/m, 
determine
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A circuit (or closed conducting path) carrying current I produces a magnetic field B that 
causes a flux C 5 e  B # dS to pass through each turn of the circuit as shown in Figure 8.19. 
If the circuit has N identical turns, we define the flux linkage l as

 l 5 N C (8.50)

Also, if the medium surrounding the circuit is linear, the flux linkage l is proportional to 
the current I producing it; that is,

 l ~  I

or

 l 5 LI (8.51)

where L is a constant of proportionality called the inductance of the circuit. The inductance 
L is a property of the physical arrangement of the circuit. It is the ability of the physical 
arrangement to store magnetic energy. A circuit or part of a circuit that has inductance is 
called an inductor. The inductance L of an inductor is the ratio of the magnetic flux linkage 
 to the current I through the inductor.

 

The unit of inductance is the henry (H), which is the same as webers per ampere. Since the 
henry is a fairly large unit, inductances are usually expressed in millihenrys (mH).

(a) H2x
(b) The surface current density K on the interface
(c) The angles B1 and B2 make with the normal to the interface

Answer: (a) 5.833, (b) 4.86ax 2 8.64ay 1 3.95az A/m, (c) 76.27°, 77.62°.

8.8  INDUCTORS AND INDUCTANCES

FIGURE 8.19 Magnetic field B produced by a circuit.
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L 5
l

I
5

N�

I
 (8.52)
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The inductance defined by eq. (8.52) is commonly referred to as self-inductance, since 

regarded as a measure of how much magnetic energy is stored in an inductor. The magnetic 
energy (in joules) stored in an inductor is expressed in circuit theory as

 Wm 5
1
2

LI2 (8.53)

or

 L 5
2Wm

I2  (8.54)

Thus the self-inductance of a circuit may be defined or calculated from energy 
 considerations.

If instead of having a single circuit, we have two circuits carrying current I1 and I2 as 
shown in Figure 8.20, a magnetic interaction exists between the circuits. Four component 
fluxes C11, C12, C21, and C22 are produced. The flux C12, for example, is the flux passing 
through circuit 1 due to current I2 in circuit 2. If B2 is the magnetic flux density due to I2 
and S1 is the area of circuit 1, then

 

CC

FIGURE 8.20 Magnetic interaction between 
two circuits.
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�12 5 3
S1

 B2
# dS (8.55)

 M12 5
l12

I2
5

N1�12

I2
 (8.56)

Similarly, the mutual inductance M21 is defined as the flux linkages of circuit 2 per unit 
current I1; that is,

 M21 5
l21

I1
5

N2�21

I1
 (8.57a)

the linkages are produced by the inductor itself. Like capacitance, inductance may be 

The mutual inductance M12 is the ratio of the flux linkage  on circuit 1 to  
current I2.

l12 5 N1�12
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It can be shown by using energy concepts that if the medium surrounding the circuits is 
linear (i.e., in the absence of ferromagnetic material),

 M12 5 M21 (8.57b)

The mutual inductance M12 or M21 is expressed in henrys and should not be confused with 
the magnetization vector M expressed in amperes per meter. Mutual inductance is funda-
mental to the operation of transformers.

We define the self-inductance of circuits 1 and 2, respectively, as

where C1  C11  C12 and C2  C21  C22. The total energy in the magnetic field is the 
sum of the energies due to L1, L2, and M12 (or M21); that is,

Wm 5 W1 1 W2 1 W12

  5
1
2

 L1I1
2 1

1
2

 L2I2
2 6 M12I1I2 (8.60)

The positive sign is taken if currents I1 and I2 flow such that the magnetic fields of the two 
circuits strengthen each other. If the currents flow such that their magnetic fields oppose 
each other, the negative sign is taken.

As mentioned earlier, an inductor is a conductor arranged in a shape appropriate to store 
magnetic energy. Typical examples of inductors are toroids, solenoids, coaxial transmission 
lines, and parallel-wire transmission lines. The inductance of each of these inductors can be 
determined by following a procedure similar to that taken in determining the capacitance of 
a capacitor. For a given inductor, we find the self-inductance L by taking these steps:

1. Choose a suitable coordinate system.
2. Let the inductor carry current I.

The mutual inductance between two circuits may be calculated by taking a similar  
procedure.

In an inductor such as a coaxial or a parallel-wire transmission line, the inductance 
produced by the flux internal to the conductor is called the internal inductance Lin while 
that produced by the flux external to it is called external inductance Lext. The total induc-
tance L is
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 L1 5
l11

I1
5

N1�1

I1
 (8.58)

and

 L2 5
l22

I2
5

N2�2

I2
 (8.59)

3. Determine B from Biot–Savart’s law (or from Ampère’s law if symmetry exists) 
and calculate � from � 5

4. Finally fi nd L from L 5
l

I
5

N�

I
.

e
S
 B # dS.
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 L 5 Lin 1 Lext (8.61)

Just as it was shown that for capacitors

 RC 5
e

s
 (6.35)

it can be shown that

 LextC 5 me (8.62)

Thus Lext may be calculated using eq. (8.62) if C is known.
A collection of formulas for some fundamental circuit elements is presented in 

Table 8.3. All formulas can be derived by taking the steps just outlined.3

Just as the potential energy in an electrostatic field was derived as

 WE 5
1
2

 3  D # E dv 5
1
2

 3  eE2 dv (4.96)

we would like to derive a similar expression for the energy in a magnetostatic field. A 
simple approach is using the magnetic energy in the field of an inductor. From eq. (8.53),

 Wm 5
1
2

LI2 (8.53)

The energy is stored in the magnetic field B of the inductor. We would like to express  
eq. (8.53) in terms of B or H.

3 Additional formulas can be found in standard electrical handbooks or in H. Knoepfel, Pulsed High 
Magnetic Fields. Amsterdam: North-Holland, 1970, pp. 312–324.

8.9  MAGNETIC ENERGY

C

FIGURE 8.21 A differential 
volume in a magnetic field.
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Consider a differential volume in a magnetic field as shown in Figure 8.21. Let the 
volume be covered with conducting sheets at the top and bottom surfaces with current DI.  
We assume that the whole region is filled with such differential volumes. From eq. (8.52), 
each volume has an inductance

 

where DI 5 H Dy. Substituting eq. (8.63) into eq. (8.53), we have

 DWm 5
1
2

DL DI2 5
1
2

 mH2 Dx Dy Dz (8.64)

or

DWm 5
1
2

 mH2 Dv

The magnetostatic energy density wm (in J/m3) is defined as

wm 5 lim
DvS0

 
DWm

Dv
5

1
2

 mH2

Hence,

 wm 5
1
2

mH2 5
1
2

 B # H 5
B2

2m
 (8.65)

Thus the energy in a magnetostatic field in a linear medium is

Wm 5 3  wm dv

or

 Wm 5
1
2

 3  B # H dv 5
1
2

 3  mH2 dv (8.66)

which is similar to eq. (4.96) for an elctrostatic field.

Calculate the self-inductance per unit length of an infinitely long solenoid.

Solution:
We recall from Example 7.4 that for an infinitely long solenoid, the magnetic flux inside 
the solenoid per unit length is

B 5 mH 5 mIn

EXAMPLE 8.10
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DL 5
D�

DI
5

mH Dx Dz
DI

 (8.63)

v

vv



8.9 Magnetic Energy 387

where n 5 N/, 5 number of turns per unit length. If S is the cross-sectional area of the 
 solenoid, the total flux through the cross section is

and thus the inductance per unit length is

L r 5
L
,

5
l r
I

5 mn2S

L r 5 mn2S    H/m 

EXAMPLE 8.11

PRACTICE EXERCISE 8.10

A very long solenoid with 2 3 2 cm cross section has an iron core 1mr 5 1000 2  and 
4000 turns per meter. It carries a current of 500 mA. Find the following:

(a) Its self-inductance per meter
(b) The energy per meter stored in its field

Answer:  (a) 8.042 H/m, (b) 1.005 J/m.

Determine the self-inductance of a coaxial cable of inner radius a and outer radius b.

Solution:
The self-inductance of the inductor can be found in two different ways: by taking the four 
steps given in Section 8.8 or by using eqs. (8.54) and (8.66).

Method 1: Consider the cross section of the cable as shown in Figure 8.22. We recall from 
eq. (7.29) that by applying Ampère’s circuit law, we obtained for region 1 10 # r # a 2 ,

B1 5
mIr

2pa2 af

and for region 2 1a # r # b 2 ,

B2 5
mI

2pr
 af

We first find the internal inductance Lin by considering the flux linkages due to the inner 
conductor. From Figure 8.22(a), the flux leaving a differential shell of thickness dr is
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� 5 BS 5 mInS

Since this flux is only for a unit length of the solenoid, the linkage per unit length is

l r 5
l

,
5 n� 5 mn2IS
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because I is uniformly distributed over the cross section for dc excitation. Thus, the total 
flux linkages within the differential flux element are

dl1 5
mIr dr dz

2pa2
#
r2

a2

For length  of the cable,

 l1 5 3
a

r50
 3

,

z50
 
mIr3 dr dz

2pa4 5
mI,
8p

 Lin 5
l1

I
5

m,

8p
 (8.11.1)

The internal inductance per unit length, given by

 L rin 5
Lin

,
5

m

8p
    H/m (8.11.2)

We now determine the external inductance Lext by considering the flux linkages between 
the inner and the outer conductor as in Figure 8.22(b). For a differential shell of thickness dr,

FIGURE 8.22 Cross section of the coaxial cable: (a) for region 1, 
0 , r , a, (b) for region 2, a , r , b; for Example 8.11.
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d�1 5 B1 dr dz 5
mIr

2pa2 dr dz

The flux linkage is dΨ1 multiplied by the ratio of the area within the path enclosing the flux 
to the total area, that is,

dl1 5 d�1
# Ienc

I
5 d�1

# pr2

pa2

d�2 5 B2 dr dz 5
mI

2pr
 dr dz

is independent of the radius of the conductor or wire. Since the inductance does not depend 

cable to finding the inductance of any infinitely long straight conductor of finite radius.
on a, we can make the wire as thin as possible. Thus eqs. (8.11.1) and (8.11.2) are also appli-
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In this case, the total current I is enclosed within the path enclosing the flux. Hence,

Lext 5
l2

I
5

m,

2p
 ln 

b
a

Thus

L 5 Lin 1 Lext 5
m,

2p
 c 1

4
1 ln 

b
a d

or the inductance per length is

L r 5
L
,

5
m

2p
 c 1

4
1 ln 

b
a d     H/m

Method 2: It is easier to use eqs. (8.54) and (8.66) to determine L, that is,

Wm 5
1
2

 LI2  or  L 5
2Wm

I2

where

Wm 5
1
2

 3  B # H dv 5 3  
B2

2m
 dv

Hence

Lin 5
2
I2 3

v
 
B1

2

2m
 dv 5

1
I2m

 9  
m2I2r2

4p2a4  r dr df dz

 5
m

4p2a4 3
,

0
 dz 3

2p

0
 df 3

a

0
 r3 dr 5

m,

8p

 Lext 5
2
I2 3

v
 
B2

2

2m
 dv 5

1
I2m

 9  
m2I2

4p2r2 r dr df dz

 5
m

4p2 3
,

0
 dz 3

2p

0
 df 3

b

a
 
dr

r
5

m,

2p
 ln 

b
a

and

L 5 Lin 1 Lext 5
m,

2p
 c 1

4
1 ln 

b
a d

as obtained previously. 
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 l2 5 �2 5 3
b

r5a
 3
,

z50
 
mI dr dz

2pr
5

mI,
2p

 ln 
b
a
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Determine the inductance per unit length of a two-wire transmission line with separation 

Solution:
We use the two methods of Example 8.11.

Method 1: We determine Lin just as we did in Example 8.11. Thus for region 0 # r # a,
we obtain

l1 5
mI,
8p

as before. For region a # r # d 2 a, the flux linkages between the wires are

The flux linkages produced by wire 1 are

l1 1 l2 5
mI,
8p

1
mI,
2p

 ln 
d 2 a

a

l 5 2 1l1 1 l2 2 5
mI,
p

 c 1
4

1 ln 
d 2 a

a d 5 LI

If d W a, the self-inductance per unit length is

L r 5
L
,

5
m

p
 c 1

4
1 ln 

d
a d     H/m

Method 2: From Example 8.11, we have

Lin 5
m,

8p

PRACTICE EXERCISE  8.11

Calculate the self-inductance of the coaxial cable of Example 8.11 if the space  between 
the line conductor and the outer conductor is made of an inhomogeneous material 
having m 5 2mo/ 11 1 r 2 .

Answer: 
mo,

8p
1

mo,

p
c lnb

a 2 ln
11 1 b 2
11 1 a 2 d .

EXAMPLE 8.12
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l2 5 �2 5 3
d2a

r5a
 3
,

z50
 

mI
2pr

 dr dz 5
mI,
2p

 ln 
d 2 a

a

distance d. Each wire has radius a as shown in Figure 11.2 (b).

By symmetry, the same amount of flux is produced by current 2I in wire 2. Hence the 
total linkages are
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Now

Lext 5
2
I2 3  

B2 dv
2m

5
1

I2m
 9  

m2I2

4p2r2 r dr df dz

                5
m

4p2 3
,

0
 dz 3

2p

0
 df 3

d2a

a
 
dr

r

              5
m,

2p
 ln 

d 2 a
a

Since the two wires are symmetrical,

L 5 2 1Lin 1 Lext 2

 5
m,

p
 c 1

4
1 ln 

d 2 a
a d  H

as obtained earlier. 

PRACTICE EXERCISE  8.12

Two #10 copper wires (2.588 mm in diameter) are placed parallel in air with a sepa-
ration distance d between them. If the inductance of each wire is 1.2 mH/m, calculate

(a) Lin and Lext per meter for each wire
(b) The separation distance d

Answer: (a) 0.05 and 115 mH/m, (b) 40.79 cm.

Two coaxial circular wires of radii a and b 1b . a 2  are separated by distance h 1h W a, b 2  
as shown in Figure 8.23. Find the mutual inductance between the wires.

Solution:
Let current I1 flow in wire 1. At an arbitrary point P on wire 2, the magnetic vector potential 
due to wire 1 is given by eq. (8.21a), namely

A1 5
mI1a2 sin u

4r2  af 5
mI1a2baf

4 3h2 1 b2 43/2

If h W b

A1 .
mI1a2b

4h3  af

EXAMPLE 8.13
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PRACTICE EXERCISE  8.13

Find the mutual inductance of two coplanar concentric circular loops of radii 2 m 
and 3 m.

Answer: 2.632 mH.

†8.10 MAGNETIC CIRCUITS

The concept of magnetic circuits is based on solving some magnetic field problems by using 
a circuit approach. Magnetic devices such as toroids, transformers, motors, generators, and 
relays may be considered as magnetic circuits. The analysis of such circuits is made simple if an 
analogy between magnetic circuits and electric circuits is exploited. Once this has been done, 
we can directly apply concepts in electric circuits to solve their analogous magnetic circuits.

The analogy between magnetic and electric circuits is summarized in Table 8.4 and 
portrayed in Figure 8.24. The reader is advised to pause and study Table 8.4 and Figure 8.24. 
First, we notice from Table 8.4 that two terms are new. We define the magnetomotive force 
(mmf) , in ampere-turns (A # t), as

FIGURE 8.23 Two coaxial circular wires; 
for  Exam ple 8.13.

08_Sadiku_Ch08.indd   392 25/09/17   10:33 AM

Hence,

�12 5 C A1
# d l2 5

mI1a2b
4h3  2pb 5

mpI1a2b2

2h3

and

M12 5
�12

I1
5

mpa2b2

2h3  



8.10 Magnetic Circuits 393

  5 NI 5 C H # dl (8.67)

The source of mmf in magnetic circuits is usually a coil-carrying current as in Figure 8.24. 
We also define reluctance , in ampere-turns per weber, as

  5
,

mS
 (8.68)

where  and S are, respectively, the mean length and the cross-sectional area of the mag-
netic core. The reciprocal of reluctance is permeance . The basic relationship for circuit 
elements is Ohm’s law 1V 5 IR 2 :
   C  (8.69)

Based on this, Kirchhoff ’s current and voltage laws can be applied to nodes and loops of 
a given magnetic circuit just as in an electric circuit. The rules of adding voltages and for 

TABLE 8.4 Analogy between Electric and Magnetic Circuits

Electric Magnetic

FIGURE 8.24 Analogy between  
(a) an electric circuit and (b) a 
magnetic circuit.
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Conductivity  Permeability �

Field intensity E Field intensity H

Current I 5 e  J # dS Magnetic fl ux � 5 e  B # dS

Current density J 5
I
S

5 sE Flux density B 5
�

S
5 mH

Electromotive force (emf) V Magnetomotive force (mmf) �

Resistance R Reluctance �

Conductance G 5
1
R

Permeance � 5
1

�

Ohm’s law R 5
V
I

5
,

sS
Ohm’s law � 5

�

�
5
,

mS
    or    V 5 E, 5 IR     or    � 5 H, 5 � � 5 NI

Kirchhoff ’s laws:
         g  I 5 0

Kirchhoff ’s laws:
          g  � 5 0

g  V 2 g  RI 5 0 g  � 2 g  � � 5 0 
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combining series and parallel resistances also hold for mmfs and reluctances. Thus for n 
magnetic circuit elements in series

Some differences between electric and magnetic circuits should be pointed out. Unlike 
an electric circuit, where the current I flows, magnetic flux does not flow. Also, conduc-
tivity s is independent of current density J in an electric circuit, whereas permeability m 
varies with flux density B in a magnetic circuit. This is because ferromagnetic (nonlinear) 
materials are normally used in most practical magnetic devices. These differences not-
withstanding, the magnetic circuit concept serves in the approximate analysis of practical 
magnetic devices.

†8.11 FORCE ON MAGNETIC MATERIALS

It is of practical interest to determine the force that a magnetic field exerts on a piece of 
magnetic material in the field. This is useful in electromechanical systems such as elec-
tromagnets, relays, and rotating machines and in magnetic levitation (see Section 8.12). 
Consider, for example, an electromagnet made of iron of constant relative permeability as 
shown in Figure 8.25. The coil has N turns and carries a current I. If we ignore fringing, 
the magnetic field in the air gap is the same as that in iron 1B1n 5 B2n 2 . To find the force 
between the two pieces of iron, we calculate the change in the total energy that would result 
were the two pieces of the magnetic circuit separated by a differential displacement d l. The 
work required to effect the displacement is equal to the change in stored energy in the air 
gap (assuming constant current), that is,

  (8.74)

where S is the cross-sectional area of the gap, the factor 2 accounts for the two air gaps, 
and the negative sign indicates that the force acts to reduce the air gap (or that the force is 
 attractive). Thus
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 �1 5 �2 5 �3 5  . . . 5 �n (8.70)

and
 � 5 �1 1 �2 1 . . . 1 �n (8.71)

For n magnetic circuit elements in parallel,

 � 5 �1 1 �2 1 �3 1 . . . 1 �n (8.72)

and
 �1 5 �2 5 �3 5 . . . 5 �n (8.73)

2 F dl 5 dWm 5 2 c 1B2

2mo
S dl d
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 F 5 22aB2S
2mo

b  (8.75)

Note that the force is exerted on the lower piece and not on the current-carrying upper piece 
giving rise to the field. The tractive force across a single gap can be obtained from eq. (8.75) as

 F 5 2
B2S
2mo

 (8.76)

Notice the similarity between eq. (8.76) and that derived in Example 5.8 for electrostatic 
case. Equation (8.76) can be used to calculate the forces in many types of devices includ-
ing relays, rotating machines, and magnetic levitation. The tractive pressure (in N/m2) in 
a magnetized surface is

 p 5
F
S

5
B2

2mo
5

1
2

BH (8.77)

which is the same as the enery density wm in the air gap.

The toroidal core of Figure 8.26(a) has ro 5 10 cm and a circular cross section with 
a 5 1 cm. If the core is made of steel 1m 5 1000 mo 2  and has a coil with 200 turns, calcu-
late the amount of current that will produce a flux of 0.5 mWb in the core.

Solution:
This problem can be solved in two different ways: by using the magnetic field approach 
(direct) or by using the electric circuit analog (indirect).

Method 1: Since ro is large compared with a, from Example 7.6,

B 5
mNI

,
5

momr NI
2pro

 F

FIGURE 8.25 An electromagnet.

EXAMPLE 8.14
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Hence,

as obtained with Method 1. 

FIGURE 8.26 (a) Toroidal core of Example 8.14. (b) Its equivalent 
electric circuit analog.

PRACTICE EXERCISE  8.14

A conductor of radius a is bent into a circular loop of mean radius ro (see Figure 8.26(a)). 
If ro 5 10 cm and 2a 5 1 cm, calculate the internal inductance of the loop.

Answer: 31.42 nH.
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� 5 BS 5
momr NI pa2

2pro

or

I 5
2ro�

momr Na2 5
2 110 3 1022 2 10.5 3 1023 2

4p 3 1027 11000 2 1200 2 11 3 1024 2
 5

100
8p

 5 3.979 A

Method 2: The toroidal core in Figure 8.26(a) is analogous to the electric circuit of 

� 5 NI 5 �� 5 � 
,

mS
5 � 

2pro

momrpa2

or

 I 5
2ro�

momr Na2 5 3.979 A

Figure 8.26(b). From the circuit and Table 8.4,
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In the magnetic circuit of Figure 8.27, calculate the current in the coil that will produce 
a magnetic flux density of 1.5 Wb/m2 in the air gap, assuming that m 5 50mo and that all 
branches have the same cross-sectional area of 10 cm2.

Solution:
The magnetic circuit of Figure 8.27 is analogous to the electric circuit of Figure 8.28. In 
Figure 8.27, 1, 2, 3, and a are the reluctances in paths 143, 123, 35 and 16, and 56 
(air gap), respectively. Thus

EXAMPLE 8.15

FIGURE 8.27 Magnetic circuit for 
Ex am ple 8.15.

08_Sadiku_Ch08.indd   397 25/09/17   10:33 AM

 �1 5 �2 5
,

momr S
5

30 3 1022

14p 3 1027 2 150 2 110 3 1024 2
  5

3 3 108

20p

 �3 5
9 3 1022

14p 3 1027 2 150 2 110 3 1024 2 5
0.9 3 108

20p

 �a 5
1 3 1022

14p 3 1027 2 11 2 110 3 1024 2 5
5 3 108

20p

We combine �1 and �2 as resistors in parallel. Hence,

�1 y�2 5
�1�2

�1 1 �2
5

�1

2
5

1.5 3 108

20p

The total reluctance is

�T 5 �a 1 �3 1 �1 y�2 5
7.4 3 108

20p
 

The mmf is

� 5 NI 5 �a�T
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PRACTICE EXERCISE 8.15

The toroid of Figure 8.26(a) has a coil of 1000 turns wound on its core. If ro 5 10 cm 
and a 5 1 cm, find the current required to establish a magnetic flux of 0.5 mWb

(a) If the core is nonmagnetic
(b) If the core has mr 5 500

Answer: (a) 795.8 A, (b) 1.592 A.

FIGURE 8.28 Electric circuit analog of the magnetic circuit in 
Figure 8.27.

A U-shaped electromagnet shown in Figure 8.29 is designed to lift a 400 kg mass (which 
includes the mass of the keeper). The iron yoke 1mr 5 3000 2  has a cross section of 40 cm2 
and mean length of 50 cm, and the air gaps are each 0.1 mm long. Neglecting the reluctance 
of the keeper, calculate the number of turns in the coil when the excitation current is 1 A.

Solution:
The tractive force across the two air gaps must balance the weight. Hence

F 5 2
1Ba

2S 2
2mo

 5 mg

or

Ba
2 5

mgmo

S
5

400 3 9.8 3 4p 3 1027

40 3 1024

Ba 5 1.11 Wb/m2

EXAMPLE 8.16
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But �a 5 � 5 BaS. Hence

I 5
BaS�T

N
5

1.5 3 10 3 1024 3 7.4 3 108

400 3 20p

 5 44.16 A  
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PRACTICE EXERCISE  8.16

Find the force across the air gap of the magnetic circuit of Example 8.15.

Answer: 895.2 N.

I

K

W

FIGURE 8.29 U-shaped electromagnet; for Example 8.16.

†8.12 APPLICATION NOTE—MAGNETIC LEVITATION

Overcoming the grip of earth’s gravity has been a major challenge for years. However, 
 scientists and engineers have found many ways to achieve levitation. For example, a 
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But

 �  5 NI 5 � 1�a 1 �i 2
 �a 5

,a

mS
5

2 3 0.1 3 1023

4p 3 1027 3 40 3 1024 5
6 3 106

48p

 �i  5
,i

momr S
5

50 3 1022

4p 3 1027 3 3000 3 40 3 1024 5
5 3 106

48p

 �a  5
�a

�a 1 �i
 � 5

6
6 1 5

 NI 5
6

11
 NI

Since

�a 5 Ha,a 5
Ba,a

mo

N 5
11
6

 
Ba,a

moI
5

11 3 1.11 3 0.1 3 1023

6 3 4p 3 1027 3 1

N 5 162  
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 helicopter may be regarded as a levitation device, one that uses a stream of air to keep the 
aircraft floating.

Magnetic levitation (maglev) is a way of using electromagnetic fields to levitate 
things without any noise or the need for liquid fuel or air.

Thus, maglev is the means of floating one magnet over another. According to a theo-
rem due to Earnshaw, it is impossible to achieve static levitation by means of any combina-
tion of fixed magnets and electric charges. Static levitation means stable suspension of an 
object against gravity. There are, however, ways to levitate by getting round the  assumptions 
of the theorem. Magnetic levitation employs diamagnetism, an intrinsic property of many 
materials referring to their ability to expel temporarily a portion of an external magnetic 
field. As a result, diamagnetic materials repel and are repelled by strong  magnetic fields. 

Superconductors are ideal diamagnetics and completely expel magnetic fields at low 
temperatures. It is possible to levitate superconductors and other diamagnetic materials. 
This property is also used in maglev trains. It has become commonplace to see the new 
high-temperature superconducting materials levitated in this way. A superconductor is 
perfectly diamagnetic, which means that it expels a magnetic field. Other diamagnetic 
materials are commonplace and can also be levitated in a magnetic field if it is strong enough. 

There are two types of maglev: electromagnetic levitation (EML), which uses the attrac-
tive force between electromagnets on the levitated object and the circuit on the ground, and 
electrodynamic levitation (EDL), which makes use of the repulsive force between magnets 
(superconductive magnets) on the levitated object and induced current in the secondary 
circuit on the ground. Any type of maglev system consists of three subsystems: a magnetic 
suspension, a propulsion motor, and a power system. The magnetic suspension is supposed 
to ensure a stable suspension of a vehicle in its own magnetic field. The propulsion motor 
should produce a propulsion force sufficient for a continuous flight of the vehicle along an 
assigned track with a given speed. The power system provides uninterrupted power supply. 

As discussed in Section 8.5, materials in a magnetic field will become magnetized. 
Most materials such as water, wood, and plastic are diamagnetic, which means that they are 
repelled by magnetic fields. This repulsive force is, however, very weak compared with the 
attractive force a ferromagnetic material such as iron will experience in a magnetic field. 
As shown in Figure 8.30, if the repulsive force due to a magnetic field on a diamagnetic 
object is exactly equal to the weight of the object, then the object may be levitated in air. 
The magnetic fields required for this type of levitation are very large, typically 17 T. To 
produce such large fields requires using superconductive magnets. Thus, maglev relies on 
superconductors in practical applications.
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Levitating trains and levitating displays are but two examples of electromagnetic levi-
tation. The need for fast and reliable transportation is increasing throughout the world. 
High-speed rail has been the solution for many countries. A maglev train is a train-like 
vehicle that is suspended in the air above the track and propelled forward using the 
 repulsive and attractive forces of magnetism, as shown in Figure 8.31. Trains are fast, com-
fortable, and energy efficient. Conventional railroads operate at speeds below 300 km/hr,  
while  maglev vehicles are designed for operating speeds of up to 500 km/hr. A major 
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advantage of maglev systems is their ability to operate in almost all weather conditions; 
they are prepared for icy conditions because they do not require overhead power lines—
parts that are subject to freezing on conventional railroads.

Maglev technology is a reality. Japan and Germany have invested billions of dollars 
into the research and development of their maglev systems. In the United States, communi-
ties from Florida to California are considering building maglev systems.

Levitation force

Gravity

Magnetic field B

FIGURE 8.30 A levitated object.

FIGURE 8.31 Maglev train.

8.13 APPLICATION NOTE—SQUIDs
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SQUIDs are superconducting quantum interference devices. They are the most sensi-
tive detectors of magnetic flux known. They are quite versatile, capable of measuring any 
physical quantity that can be eventually converted to magnetic flux. It is a highly sensi-
tive magnetometer capable of measuring magnetic fields as feeble as even 510–18 T. The  
need for accurate measurement of magnetic field arises in various applications like  
geomagnetism, biomagnetism, magnetic microscopy, space magnetometry, magneto-
cardiography, nuclear magnetic resonance (NMR) or low magnetic field magnetic 
resonance imaging (MRI), metrological application, magnetic microscopy, and nonde-
structive testing or evaluation and magnetic anomaly detection. It is hypothesized that 
certain animals generate tiny levels of magnetic flux from their brain in order to navigate.  
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SQUIDs greatly help in such investigations. Environmental magnetic noise is likely to 
corrupt the magnetic field measurements unless the measuring device has a high figure of 
merit; hence, SQUIDs are proposed as a viable option. 

There are two central ideas in the development of SQUIDs: (i) magnetic flux quan-
tization and (ii) Josephson tunneling. Just as fundamental charge of an electron is e  

1.602210–19 C, magnetic flux is quantized in steps of F0  
h
2e

  2.0678 femto webers, 

where h is Planck’s constant. The Josephson tunneling effect is the phenomenon of supercur-
rent, a current that flows without any voltage applied across a junction, which consists of two 
superconductors coupled by a weak link. The weak link may be composed of a thin insulat-
ing barrier, known as a superconductor–insulator–superconductor junction, or SIS, a short 
section of nonsuperconducting metal or SNS, or a physical constriction that weakens the 

FIGURE 8.32 (a) The structure of a DC SQUID, (b) schematic and the shunt resistive load, (c) V-I 
characteristic for F  nF0 and for F  (n  1

2)F0 cases, (d) voltage-flux response characteristics.

Φ
II

(a)

I1

I2

I

I

R RC

+

–

C

Φ

V

(b)

nΦ0

I

V

Ib

Φ0(n+ )1
2

(c)

Φ/Φ0

V

1 2 3 4
(d)
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superconductivity at the point of contact. SQUIDs are made of a superconducting loop 
with Josephson junctions. There are two types of SQUIDs: (i) direct current SQUIDs or 
DC SQUIDs and (ii) radio frequency SQUIDs or RF SQUIDs. Comparatively, RF SQUIDs 
are less sensitive than DC counterparts, as they employ only one Josephson junction, and 
for this reason they are less expensive.

Essentially, a DC SQUID, as depicted in Figure 8.32(a), consists of two junctions 
that are connected in parallel on a flux-to-voltage transducer. a superconducting loop 
of inductance L. Each junction is resistively shunted to eliminate hysteresis on the volt-
ampere characteristic. Figure 8.32(b) shows the schematic with shunted resistive loading 
and Figure 8.32(c) shows a typical characteristic for flux of the form F  nF0 and F   
(n 1 1/2) F0, where F is the applied magnetic flux and n is an integer. If we bias the SQUID 
with a constant current above a threshold, the voltage across the SQUID oscillates with 
period F0, as we steadily increase F, as indicated in Figure 8.32(d). The SQUID is gener-
ally operated on the steep part of the V–F curve where the slope is maximum. Thus, the 
SQUID produces an output voltage in response to even a small input flux and is effectively 
a flux-to-voltage transducer.

A DC SQUID employing two resistively shunted Josephson tunnel junctions as shown 
in Figure 8.32(a) is typically constructed from thin films of superconductors of low transi-
tion-temperature Tc. The SQUID is coupled to an integrated superconducting coil carrying 
a signal source. A bias current entering the SQUID splits into the two parallel branches 
containing a Josephson junction each. In the absence of any external magnetic field, the 
input current splits into the two branches equally. If a small external magnetic field is 
applied to the superconducting loop, a screening current begins to circulate in the loop that 
generates a magnetic field canceling the applied external flux. The induced current is in the 
same direction as the incoming bias-current in one of the branches of the superconduct-
ing loop and is opposite to it in the other branch. As soon as the current in either branch 
exceeds the critical current of the Josephson junction, a voltage appears across the junction.

For a given constant biasing current into the SQUID device, the measured voltage 
oscillates with the changes in phase at the two junctions, which depends upon the change 
in the magnetic flux. Thus one might estimate the change in magnitude of the incident flux 
in terms of the voltage alterations.

The RF SQUID involves a single Josephson junction interrupting the current flow 

cases, the output from the SQUID is periodic with period in the magnetic flux applied to 
the loop. One generally is able to detect an output signal corresponding to a flux change 
of extremely small magnitude. Instruments based on low critical temperature SQUIDs 
include magnetometers, magnetic gradiometers, voltmeters, susceptometers, amplifiers, 
and displacement sensors; their applications vary from neuromagnetism and magnetotel-
luric sounding to the detection of gravity waves and magnetic resonance. The applications 
of SQUIDs are wide ranging, from the detection of tiny magnetic fields produced by the 
human brain and the measurement of fluctuating geomagnetic fields in remote areas to the 
detection of gravity waves and the observation of spin noise in an ensemble of magnetic 
nuclei.

around a superconducting loop and is operated with a radio frequency flux bias. In both 
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% This script computes the results for Example 8.1
%
% It uses the ‛dsolve’ function which solves symbolic 
% differential equations
% the arguments to the function are
%   1. the differential equation, with D and D2 in 
%  front of the variable denoting 1st and 2nd derivative
%   2. the 1st order initial value
%   3. the 2nd order initial value
%   4. the independent variable
clear
syms at ax ay az t % this statement makes symbolic variables 
                % for acceleration & position conponents
at=[ax, ay, az];   % group the acceleration conponents

% part a
a=[12, 10, 0]*3/2;
% display function is similar to printf in c/c++
disp(sprintf(‛Part a\nThe acceleration ‛))
disp(sprintf(‛is (%f, %f, %f) m/s’, a(1), a(2), a(3)))

% part b
% Solve for the velocity (each line solves for one component
v=[dsolve(‛Dvx=ax’,’vx(0)=4’,’t’), ...  % x
    dsolve(‛Dvy=ay’,’vy(0)=0’,’t’),...  % y
    dsolve(‛Dvz=az’,’vz(0)=3’,’t’)];    % z

v=subs(v,{ax,ay,az},{a(1), a(2), a(3)}); % Replace velocity 
                          % variable with numbers
disp(sprintf(‛\n\nPart b\nThe general velocity is given by’))  
                                     % display
pretty(v)           % make variable expression look algebraic
v=subs(v,{t},1);       % determine numerical v at time t
disp(‛The velocity at (1, -2, 0) is ‛);
disp(sprintf(‛(%f, %f, %f) m/s’, v(1), v(2), v(3)))

% part c
disp(‛\n\nPart c\nThe kinetic energy ‛) % display
disp(sprintf(‛ is %f J’,0.5*2*norm(v)^2))  
% part d
% Solve for the position (each line solves for one component
p=[dsolve(‛D2px=ax’,’px(0)=1’,’Dpx(0)=4’,’t’), ...   % x
    dsolve(‛D2py=ay’,’py(0)=-2’,’Dpy(0)=0’,’t’),...  % y
    dsolve(‘D2pz=az’,’pz(0)=0’,’Dpz(0)=3’,’t’)];     %z
% Find the acceleration, and replace the acceleration variable 
% components with the actual numbers
p=subs(p,{ax,ay,az},{a(1), a(2), a(3)});
disp(sprintf(‛\n\nPart d\nThe general position is given by’))

MATLAB 8.1
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SUMMARY

% display
pretty(p)           % make variable expression look algebraic
p=subs(p,{t},1);        % determine numerical v at time t
disp(‛The position at time t = 1 s ‛);
disp(sprintf(‛ is (%f, %f, %f) m/s’, p(1), p(2), p(3)))

1. The Lorentz force equation

F 5 Q 1E 1 u 3 B 2 5 m
du
dt

 relates the force acting on a particle with charge Q in the presence of EM fields. It ex-
presses the fundamental law relating EM to mechanics.

2. Based on the Lorentz force law, the force experienced by a current element I d l in a 
magnetic field B is

dF 5 I d l 3 B

 From this, the magnetic field B is defined as the force per unit current element.

3. The torque on a current loop with magnetic moment m in a uniform magnetic field B is

T 5 m 3 B 5 ISan 3 B

4. A magnetic dipole is a bar magnet or a small filamental current loop; it is so called 
because its B field lines are similar to the E field lines of an electric dipole.

5. When a material is subjected to a magnetic field, it becomes magnetized. The mag-
netization M is the magnetic dipole moment per unit volume of the material. For linear 
material,

M 5 xmH

 where xm is the magnetic susceptibility of the material.

6.  In terms of their magnetic properties, materials are either linear (diamagnetic or para-
magnetic) or nonlinear (ferromagnetic). For linear materials,

B 5 mH 5 momrH 5 mo 11 1 xm 2H 5 mo 1H 1 M 2

   where m 5 permeability and mr 5 m/mo 5 relative permeability of the material. For 
nonlinear material, B 5 m 1H 2  H, that is, m does not have a fixed value; the relation-
ship between B and H is usually represented by a magnetization curve.
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7.  The boundary conditions that H or B must satisfy at the interface between two differ-
ent media are

B1n 5 B2n

1H1 2 H2 2 3 an12 5 K or H1t 5 H2t, if K 5 0,

 where an12 is a unit vector directed from medium 1 to medium 2.

8. Energy in a magnetostatic field is given by

Wm 5
1
2

 3
v
 B # H dv

 For an inductor carrying current I

Wm 5
1
2

 LI2

 Thus the inductance L can be found by using

L 5

3
v
 B # H dv

I2

9.  The inductance L of an inductor can also be determined from its basic definition: the 
ratio of the magnetic flux linkage to the current through the inductor, that is,

10.  A magnetic circuit can be analyzed in the same way as an electric circuit. We simply 
keep in mind the similarity between

 

   Thus we can apply Ohm’s and Kirchhoff ’s laws to magnetic circuits just as we apply 
them to electric circuits.
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L 5
l

I
5

N�

I

   Th us by assuming current I, we determine B and � 5 e  B # dS, and fi nally fi nd 
L 5 N�/I.

� 5 NI 5 C H # dl 5 ��  and  V 5 IR

  that is,

�4V, �4I, �4R

s
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11.  The magnetic pressure (or force per unit surface area) on a piece of magnetic material is

P 5
F
S

5
1
2

 BH 5
B2

2mo

  where B is the magnetic field at the surface of the material.

12.  Magnetic levitation (maglev) is a way of using EM fields to levitate objects. One 
important area of application of maglev is transportation. Conventional railroads 
operate at speeds below 300 km/hr, while maglev vehicles are designed for operating 
speeds of up to 500 km/hr.

8.1 Which of the following statements are not true about electric force Fe and magnetic force 
Fm on a charged particle?

(a)  E and Fe are parallel to each other, whereas B and Fm are perpendicular to each 
other.

(b) Both Fe and Fm depend on the velocity of the charged particle.
(c) Both Fe and Fm can perform work.
(d) Both Fe and Fm are produced when a charged particle moves at a constant velocity.
(e) Fm is generally small in magnitude in comparison to Fe.
(f ) Fe is an accelerating force, whereas Fm is a purely deflecting force.

8.2 Two thin parallel wires carry currents along the same direction. The force experienced by 
one due to the other is

(a) Parallel to the lines
(b) Perpendicular to the lines and attractive
(c) Perpendicular to the lines and repulsive
(d) Zero

8.3 The force on differential length d l at point P in the conducting circular loop in 
Figure 8.33 is

(a) Outward along OP
(b) Inward along OP
(c) In the direction of the magnetic field
(d) Tangential to the loop at P

8.4 The resultant force on the circular loop in Figure 8.33 has the magnitude of

(a) 2proIB (c) 2roIB
(b) pro

2IB (d) Zero

8.5 What is the unit of magnetic charge?

(a) Ampere-meter squared (c) Ampere
(b) Coulomb (d) Ampere-meter

REVIEW
QUESTIONS
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8.6  Which of these materials requires the lowest value of magnetic field strength to magne- 
tize it?

(a) Nickel (c) Tungsten
(b) Silver (d) Sodium chloride

8.7 Identify the statement that is not true of ferromagnetic materials.

(a) They have a large xm.
(b) They have a fixed value of mr.
(c) Energy loss is proportional to the area of the hysteresis loop.
(d) They lose their nonlinearity property above the curie temperature.

8.8 Which of these formulas is wrong?

(a) B1n 5 B2n

(b) B2 5 "B2n
2 1 B2t

2

(c) H1 5 H1n 1 H1t

(d)  an21 3 1H1 2 H2 2 5 K, where an21 is a unit vector normal to the interface and 
directed from region 2 to region 1.

8.9 Each of the following pairs consists of an electric circuit term and the corresponding mag-
netic circuit term. Which pairs are not corresponding?

(a) V and 
(b) G and 
(c)  and m
(d) IR and H

8.10 A multilayer coil of 2000 turns of fine wire is 20 mm long and has a thickness 5 mm of 
winding. If the coil carries a current of 5 mA, the mmf generated is

(a) 10 A # t (c) 2000 A # t
(b) 500 A # t (d) None of the above

Answers:  8.1 b,c, 8.2b, 8.3a, 8.4d, 8.5c, 8.6a, 8.7b, 8.8c, 8.9c,d, 8.10a.

B

P
dl

I

O
�o

FIGURE 8.33 For Review Questions 8.3 and 8.4.
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(e) g  I 5 0 and g  � 5 0
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Section 8.2—Forces due to Magnetic Fields

8.1 A 4 mC charge has velocity u  1.4ax  3.2ay  az m/s at point P(2, 5, 3) in the 
presence of E  2xyzax  x2zay  x2yaz V/m and B  y2ax  z2ay  x2az Wb/m2. Find 
the force on the charge at P.

8.2 An electron (m  9.11  1031 kg) moves in a circular orbit of radius 0.4  1010 m with 
an angular velocity of 2  1016 rad/s. Find the centripetal force required to hold the electron.

8.3 A 1 mC charge with velocity 10ax  2ay  6az m/s enters a region where the magnetic 
flux density is 25az Wb/m2. (a) Calculate the force on the charge. (b) Determine the 
electric field intensity necessary to make the velocity of the charge constant.

8.4 Assume an electric field intensity of 20 kV/m and a magnetic flux density of  
5 mWb/m2 exist in a region. Find the ratio of the magnitudes of electric and magnetic 
forces on an electron that has attained a velocity of 0.5  108 m/s.

8.5 A 22 mC charge starts at point 10, 1, 2 2  with a velocity of 5ax m/s in a magnetic field 
B 5 6ay Wb/m2. Determine the position and velocity of the particle after 10 s, assuming 
that the mass of the charge is 1 gram. Describe the motion of the charge.

*8.6 By injecting an electron beam normally to the plane edge of a uniform field Boaz, elec-
trons can be dispersed according to their velocity as in Figure 8.34.

  (a)  Show that the electrons would be ejected out of the field in paths parallel to the 
input beam as shown.

  (b) Derive an expression for the exit distance d above the entry point.

8.7 Two large conducting plates are 8 cm apart and have a potential difference 12 kV. A drop of 
oil with mass 0.4 g is suspended in space between the plates. Find the charge on the drop. 

8.8 A straight conductor 0.2 m long carries a current 4.5 A along ax.  If the conductor lies in 
the magnetic field B  2.5(ay  az) mWb/m2, calculate the force on the conductor.

8.9 Determine |B| that will produce the same force on a charged particle moving at 140 m/s 
that an electric field of 12 kV/m produces.

*8.10 Three infinite lines L1, L2, and L3 defined by x 5 0, y 5 0; x 5 0, y 5 4; x 5 3, y 5 4, 
respectively, carry filamentary currents 2100 A, 200 A, and 300 A along az. Find the 
force per unit length on

  (a) L2 due to L1

  (b) L1 due to L2

  (c) L3 due to L1

  (d) L3 due to L1 and L2.

  State whether each force is repulsive or attractive.

    8.11 Two infinitely long parallel wires are separated by a distance of 20 cm. If the wires carry 
current of 10 A in opposite directions, calculate the force on the wires.

    8.12 A conductor 2 m long carrying a current of 3 A is placed parallel to the z-axis at distance 
ro 5 10 cm as shown in Figure 8.35. If the field in the region is cos 1f/3 2  ar Wb/m2, how 
much work is required to rotate the conductor one revolution about the z-axis?

PROBLEMS
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*8.13 A conducting triangular loop carrying a current of 2 A is located close to an infinitely 
long, straight conductor with a current of 5 A, as shown in Figure 8.36. Calculate (a) the 
force on side 1 of the triangular loop and (b) the total force on the loop.

*8.14 A three-phase transmission line consists of three conductors that are supported at points 
A, B, and C to form an equilateral triangle as shown in Figure 8.37. At one instant, con-
ductors A and B both carry a current of 75 A while conductor C carries a return current 
of 150 A. Find the force per meter on conductor C at that instant.

    8.15 A current sheet with K 5 10ax A/m lies in free space in the z 5 2 m plane. A filamentary 
conductor on the x-axis carries a current of 2.5 A in the ax-direction. Determine the force 
per unit length on the conductor. 

    8.16 The magnetic field in a certain region is B 5 40 ax mWb/m2. A conductor that is 2 m 
in length lies in the z-axis and carries a current of 5 A in the az-direction. Calculate the 
force on the conductor.

Electron

FIGURE 8.34 For Problem 8.6.

z

3 A

y

x

ρo

FIGURE 8.35 For Problem 8.12.

z

2 m

5 A

2 3

12 A

4 m

2 m

FIGURE 8.36 For Problem 8.13. FIGURE 8.37 For Problem 8.14.

y

x

A

B 75 A

75 A

150 A

C
2 m

08_Sadiku_Ch08.indd   410 06/11/17   6:31 PM



Sections 8.3 and 8.4—Magnetic Torque, Moments, and Dipole

*8.17 A rectangular loop shown in Figure 8.38 carries current I  10 A and is situated in the field  
B  4.5(ay   az) Wb/m2. Find the torque on the loop.

8.18 A 60-turn coil carries a current of 2 A and lies in the plane x 1 2y 2 5z 5 12 such that 
the magnetic moment m of the coil is directed away from the origin. Calculate m, assum-
ing that the area of the coil is 8 cm2.

8.19 The earth has a magnetic moment of about 8  1022 A ? m2 and its radius is 6370 km.  
Imagine that there is a loop around the equator and determine how much current in the loop 
would result in the same magnetic moment.

8.20 A triangular loop is placed in the x-z plane, as shown in Figure 8.39. Assume that a dc 
current I  2 A flows in the loop and that B  30az m Wb/m exists in the region. Find 
the forces and torque on the loop.

8.21 A loop with 50 turns and surface area of 12 cm2 carries a current of 4 A.  If the loop rotates 
in a uniform magnetic field of  100 mWb/m2, find the torque exerted on the loop.

8.22 High-current circuit breakers typically consist of coils that generate a magnetic field to blow 
out the arc formed when the contacts open. An arc 30 mm long carries a current of 520 
A in a direction perpendicular to a magnetic flux density of 0.4 mWb/m2. Determine the 
magnetic force on the arc.

Section 8.5—Magnetization in Materials

8.23 For a linear, isotropic, and homogeneous magnetic medium, show that M 5
xm

mo 11 1 xm 2
B.

8.24 A block of iron 1m 5 5000mo 2  is placed in a uniform magnetic field with 1.5 Wb/m2. If 
iron consists of 8.5 3 1028 atoms/m3, calculate (a) the magnetization M, (b) the average 
magnetic moment.

FIGURE 8.38 For Problem 8.16.
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FIGURE 8.39 For Problem 8.20.
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8.25 In a magnetic material, with xm = 6.5, the magnetization is M  24y2az A/m. Find mr, H, 
and J at y  2 cm.

8.26 In a ferromagnetic material (m 5 80mo), B = 20xay mWb/m2. Determine: (a) mr, (b) xm,  
(c) H, (d) M, (e) Jb.

8.27 An electromagnet is made of a ferromagnetic material whose magnetization curve can be 
approximated by 

B(H)  BoH/(Ho  H) mWb/m2

  where Bo  2 Wb/m2 and Ho  100 A/m
  Find mr when H = 250 A/m.

8.28 An infinitely long cylindrical conductor of radius a and permeability momr is placed along 
the z-axis. If the conductor carries a uniformly distributed current I along az, find M and 
Jb for 0 , r , a.

Section 8.7—Magnetic Boundary Conditions

*8.29 (a)  For the boundary between two magnetic media such as is shown in Figure 8.16, show 
that the boundary conditions on the magnetization vector are

M1t

xm1
2

M2t

xm2
5 K  and  

m1

xm1
M1n 5

m2

xm2
M2n

  (b) If the boundary is not current free, show that instead of eq. (8.49), we obtain

tan u1

tan u2
5

m1

m2
 c1 1

Km2

B2 sin u2
d

   8.30 Region 1, for which µ1  2.5µo, is defined by z < 0, while region 2, for which µ2  4µo, is 
defined by z > 0. If B1  6ax  4.2ay  1.8az mWb/m2, find H2 and the angle H2 makes 
with the interface.

   8.31 In medium 1 (z , 0) µ1  5µo, while in medium 2 (z . 0) µ2  2µo. If B1  4ax  10ay 
 12az mWb/m2, find B2 and the energy density in medium 2.

   8.32 In region x , 0, µ  µo, a uniform magnetic field makes angle 42 with the normal to the 
interface.  Calculate the angle the field makes with the normal in region x . 0, µ  6.5µo.

   8.33 A current sheet with K  12ay A/m is placed at x  0, which separates region 1, x , 0,  
µ  2µo and region 2, x . 0, µ  4µo. If H1  10ax  6az, A/m, find H2. 

   8.34 Suppose space is divided into region 1 (y , 0, m1  momr1) and region 2 (y , 0, m2  
momr2).  If H1  ax  ay az A/m, find H2. 

   8.35 If m1 5 2mo for region 1 10 , f , p 2  and m2 5 5mo for region 2 1p , f , 2p 2  and 
B2 5 10ar 1 15af 2 20az mWb/m2. Calculate (a) B1, (b) the energy densities in the two 
media.

*8.36 Region 1 is defined by x  y  2z . 5 with µ1  2µo, while region 2 is defined by x  y  
2z , 5 with µ2  5µo. If H1  40ax  20ay  30az A/m, find (a) H1n, (b) H2t, (c ) B2.
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   8.37 Inside a right circular cylinder, m1 5 800 mo, while the exterior is free space. Given that 
B1 5 mo 122ar 1 45af 2  Wb/m2, determine B2 just outside the cylinder.

   8.38 The plane z 5 0 separates air 1z $ 0, m 5 mo 2 from iron 1z # 0, m 5 200mo 2. Given that

H 5 10ax 1 15ay 2 3az A/m

  in air, find B in iron and the angle it makes with the interface.

   8.39 Region 0 # z # 2 m is filled with an infinite slab of magnetic material 1m 5 2.5mo 2 . If 
the surfaces of the slab at z 5 0 and z 5 2, respectively, carry surface currents 30ax A/m 
and 240ax A/m as in Figure 8.40, calculate H and B for

  (a) z , 0
  (b) 0 , z , 2
  (c) z . 2

   8.40 Medium 1 is free space and is defined by r , a, while medium 2 is a magnetic material 
with permeability µ2 and defined by r . a. The magnetic flux densities in the media are:

B1 5 Bo1 c a1 1
1.6a3

r3 bcos uar 2 a1 2
0.8a3

r3 bsin uau d

B2 5 Bo2 1cos uar 2 sin uau 2

  Find µ2.

Section 8.8—Inductors and Inductance

*8.41 (a)  If the cross section of the toroid of Figure 7.15 is a square of side a, show that the 
self-inductance of the toroid is

L 5
moN2a

2p
 ln c 2ro 1 a

2ro 2 a
d

  (b) If the toroid has a circular cross section as in Figure 7.15, show that

L 5
moN2a2

2ro

  where ro W a.

FIGURE 8.40 For Problem 8.39.

Problems 413
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414 CHAPTER 8 MAGNETIC FORCES, MATERIALS, AND DEVICES

   8.42 An air-filled toroid of square cross section has inner radius 3 cm, outer radius 5 cm, and 
height 2 cm. How many turns are required to produce an inductance of 45 mH?

   8.43 A wire of radius 2 mm is 40 m long. Calculate its inductance. Assume µ  µo.

   8.44 A coaxial cable has an internal inductance that is twice the external inductance. If the 
inner radius is 6.5 mm, calculate the outer radius.

   8.45 A hollow cylinder of radius a  2 cm is 10 m long. Find the inductance of the cylinder.  
(See Table 8.3.)

   8.46 Show that the mutual inductance between the rectangular loop and the infinite line 
 current of Figure 8.4 is

M12 5
mb
2p

 ln c a 1 ro

ro
d

  Calculate M12 when a 5 b 5 ro 5 1 m.

*8.47 Prove that the mutual inductance between the close-wound coaxial solenoids of length 
1 and 2 1,1 W ,2 2 , turns N1 and N2, and radii r1 and r2 with r1 . r2 is

M12 5
mN1N2

,1
 pr1

2

*8.48 A loop resides outside the region between two parallel long wires carrying currents in 
opposite directions as shown in Figure 8.41. Find the total flux linking the loop.

Section 8.9—Magnetic Energy

   8.49 A coaxial cable consists of an inner conductor of radius 1.2 cm and an outer conductor 
of radius 1.8 cm. The two conductors are separated by an insulating medium 1m 5 4mo 2 . 
If the cable is 3 m long and carries 25 mA current, calculate the energy stored in the 
medium.

b

w

h

II

a FIGURE 8.41 For Problem 8.48.
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   8.50 In a certain region for which xm 5 19,

H 5 5x2yzax 1 10xy2zay 2 15xyz2az A/m

  How much energy is stored in 0 , x , 1, 0 , y , 2, 21 , z , 2?

   8.51 The magnetic field in a material space (µ  15µo) is given by 

B  4ax  12ay mWb/m2 

  Calculate the energy stored in region 0, x ,2, 0 , y , 3, 0 , z , 4.

Section 8.10—Magnetic Circuits

   8.52 A cobalt ring 1mr 5 600 2  has a mean radius of 30 cm. If a coil wound on the ring car-
ries 12 A, calculate the number of turns required to establish an average magnetic flux 
density of 1.5 Wb/m2 in the ring.

   8.53 Refer to Figure 8.27. If the current in the coil is 0.5 A, find the mmf and the magnetic 
field intensity in the air gap. Assume that m 5 500mo and that all branches have the same 
cross-sectional area of 10 cm2.

   8.54 The magnetic circuit of Figure 8.42 has a current of 10 A in the coil of 2000 turns. 
Assume that all branches have the same cross section of 2 cm2 and that the material of 
the core is iron with mr 5 1500. Calculate R, , and C for

  (a) The core

  (b) The air gap

0.2 A 500 turns 

L = 42 cm  

Ig = 0.1 cm

FIGURE 8.42 For Problem 8.54. FIGURE 8.43 For Problem 8.55.

N1

I1

N2

I2

FIGURE 8.44 For Problem 8.56.

Problems 415
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8.55 Consider the magnetic circuit in Figure 8.42. Assuming that the core 1m 5 1000mo 2  has a 
uniform cross section of 4 cm2, determine the flux density in the air gap.

8.56 For the magnetic circuit shown in Figure 8.44, draw the equivalent electric circuit.  
Assume that all the sections have constant cross-sectional areas.

8.57 An air gap in an electric machine has length 4.4 mm and area 4.82  102 m2. Find the 
reluctance of the gap.

Section 8.11—Force on Magnetic Materials

8.58 An electromagnetic relay is modeled as shown in Figure 8.45. What force is on the arma-
ture (moving part) of the relay if the flux in the air gap is 2 mWb? The area of the gap is 
0.3 cm2, and its length 1.5 mm.

8.59 A toroid with air gap, shown in Figure 8.46, has a square cross section. A long conduc-
tor carrying current I2 is inserted in the air gap. If I1 5 200 mA, N 5 750, ro 5 10 cm, 
a 5 5 mm, and ,a 5 1 mm, calculate

  (a)  The force across the gap when I2 5 0 and the relative permeability of the toroid is 300.

  (b)  The force on the conductor when I2 5 2 mA and the permeability of the toroid is 
 infinite. Neglect fringing in the gap in both cases.

FIGURE 8.45 For Problem 8.58. FIGURE 8.46 For Problem 8.59.

FIGURE 8.47 For Problem 8.60. FIGURE 8.48 For Problem 8.61.
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8.60 A section of an electromagnet with a plate below it carrying a load as shown in Figure 8.47. 
The electromagnet has a contact area of 200 cm2 per pole, and the middle pole has a wind-
ing of 1000 turns with I 5 3 A. Calculate the maximum mass that can be lifted.  Assume 
that the reluctance of the electromagnet and the plate is negligible.

8.61 Figure 8.48 shows the cross section of an electromechanical system in which the plunger 
moves freely between two nonmagnetic sleeves. Assuming that all legs have the same 
cross-sectional area S, show that

F 5 2
2 N2I2moS
1a 1 2x 2 2 ax

Problems 417
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Michael Faraday (1791–1867), an English chemist and physicist, is known 
for his pioneering experiments in electricity and magnetism. Many consider 
him the greatest experimentalist who ever lived.

Born at Newington, near London, to a poor family, he received little 
more than an elementary education. During a seven-year apprenticeship 
as a bookbinder, Faraday developed his interest in science and in particular 
chemistry. As a result, Faraday started a second apprenticeship in chemistry. 
Following in the footsteps of Benjamin Franklin and other early scientists, 
Michael Faraday studied the nature of electricity. Later in life, Faraday 

became professor of chemistry at the Royal Institution. He discovered benzene and formulated the 
second law of electrolysis. Faraday’s greatest contribution to science was in the field of electricity. 
Faraday’s introduction of the concept of lines of force was initially rejected by most of the mathemati-
cal physicists of Europe. He discovered electromagnetic induction (to be covered in this chapter), the 
battery, the electric arc (plasmas), and the Faraday cage (electrostatics). His biggest breakthrough was 
his invention of the electric motor and dynamo (or generator). Despite his achievements, Faraday 
remained a modest and humble person. In his day, Faraday was deeply religious. The unit of capaci-
tance, the farad, is named after him.

James Clerk Maxwell (1831–1879), Scottish mathematician and physicist, 
published physical and mathematical theories of the electromagnetic field.

Born at Edinburgh, Scotland, Maxwell showed an early understand-
ing and love for the field of mathematics. Dissatisfied with the toys he 
was given, he made his own scientific toys at the age of 8! Maxwell was a 
true genius who made several contributions to the scientific community, 
but his most important achievement was his development of the equa-
tions of electromagnetic waves, which we now call Maxwell’s equations. In 
1931, on the centennial anniversary of Maxwell’s birth, Einstein described 
Maxwell’s work as the “most profound and the most fruitful that physics has experienced since the time 
of  Newton.” Without Maxwell’s work, radio and television could not exist. The 1888 announcement 
by the German physics professor Heinrich Rudolf Hertz (see Chapter 10) that he had transmitted 
and received electromagnetic waves was almost universally received as a glorious confirmation of 
Maxwell’s equations. The maxwell (Mx), the unit of measurement of magnetic flux in the centimeter-
gram-second (cgs) system of units, was named in his honor.
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9.1 INTRODUCTION

In Part 2 (Chapters 4–6) of this text, we mainly concentrated our efforts on electrostatic 
fields denoted by E 1x, y, z 2 ; Part 3 (Chapters 7 and 8) was devoted to magnetostatic fields 
represented by H 1x, y, z 2 . We have therefore restricted our discussions to static, or time- 
invariant, EM fields. Henceforth, we shall examine situations in which electric and mag-
netic fields are dynamic, or time varying. It should be mentioned first that in static EM 
fields, electric and magnetic fields are independent of each other, whereas in dynamic 
EM fields, the two fields are interdependent. In other words, a time-varying electric field 
necessarily involves a corresponding time-varying magnetic field. Second, time-varying 
EM fields, represented by E 1x, y, z, t 2  and H 1x, y, z, t 2 , are of more practical value than 
static EM fields. However, familiarity with static fields provides a good background for 
understanding dynamic fields. Third, recall that electrostatic fields are usually produced by 
static electric charges, whereas magnetostatic fields are due to motion of electric charges 
with uniform velocity (direct current) or static magnetic charges (magnetic poles); time-
varying fields or waves are usually due to accelerated charges or time-varying currents such 
as shown in Figure 9.1. Any pulsating current will produce radiation (time-varying fields). 
It is worth noting that pulsating current of the type shown in Figure 9.1(b) is the cause of 
 radiated emission in digital logic boards. In summary:

stationary charges → electrostatic fields
steady currents → magnetostatic fields
time-varying currents → electromagnetic fields (or waves)

Our aim in this chapter is to lay a firm foundation for our subsequent studies. This 
will involve introducing two major concepts: (1) electromotive force based on Faraday’s 
experiments and (2) displacement current, which resulted from Maxwell’s hypothesis. 
As  a result of these concepts, Maxwell’s equations as presented in Section 7.6 and the 
boundary conditions for static EM fields will be modified to account for the time variation 
of the fields. Maxwell’s equations, which summarize the laws of electromagnetism, shall be 

MAXWELL’S EQUATIONS

 Some people make enemies instead of friends because it is less trouble. 
—E. C. MCKENZIE

9
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422 CHAPTER 9 MAXWELL’S EQUATIONS

the basis of our discussions in the remaining part of the text. For this reason, Section 9.5 
should be regarded as the heart of this text.

9.2 FARADAY’S LAW

After Oersted’s experimental discovery (upon which Biot–Savart and Ampère based their 
laws) that a steady current produces a magnetic field, it seemed logical to find out whether 
magnetism would produce electricity. In 1831, about 11 years after Oersted’s discovery, 
Michael Faraday in London and Joseph Henry in New York discovered that a time-varying 
magnetic field would produce an electric current.1

According to Faraday’s experiments, a static magnetic field produces no current flow; 
but in a closed circuit, a time-varying field produces an induced voltage (called electromo-
tive force or simply emf) that causes a flow of current.

Faraday discovered that the induced emf, Vemf

equal to the time rate of change of the magnetic flux linkage by the circuit.

This is called Faraday’s law, and it can be expressed as

 

where l 5 N is the flux linkage, N is the number of turns in the circuit, and  is the flux 
through each turn. The negative sign shows that the induced voltage acts in such a way as 

t t

t

FIGURE 9.1 Examples of time-varying current: (a) sinusoidal, 
(b) rectangular, (c) triangular.

1 For details on the experiments of Michael Faraday (1791–1867) and Joseph Henry (1797–1878), see W. F. Magie, 
A Source Book in Physics. Cambridge, MA: Harvard Univ. Press, 1963, pp. 472–519.
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Vemf 5 2
dl

dt
5 2N 

d�

dt
 (9.1)

 (in volts) in any closed circuit is 
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to oppose the flux producing it. This behavior is described as Lenz’s law2. Lenz’s law states 

Recall that we described an electric field as one in which electric charges experience 
force. The electric fields considered so far are caused by electric charges; in such fields, 
the flux lines begin and end on the charges. However, electric fields of other kinds are not 
directly caused by electric charges. These are emf-produced fields. Sources of emf include 
electric generators, batteries, thermocouples, fuel cells, and photovoltaic cells, which all 
convert nonelectrical energy into electrical energy.

Consider the electric circuit of Figure 9.2, where the battery is a source of emf. The 
electrochemical action of the battery results in an emf-produced field Ef. Due to the accu-
mulation of charge at the battery terminals, an electrostatic field Ee 1 5 2=V 2  also exists. 
The total electric field at any point is

 E 5 Ef 1 Ee (9.2)

Note that Ef is zero outside the battery, Ef and Ee have opposite directions in the battery, 
and the direction of Ee inside the battery is opposite to that outside it. If we integrate  
eq. (9.2) over the closed circuit, we have

 C
L
 E # d l 5 C

L
 Ef

# d l 1 0 5 3
P

N
 Ef

# d l  1 through battery 2  (9.3a)

where A Ee
# d l 5 0 because Ee is conservative. The emf of the battery is the line integral 

of the emf-produced field, that is,

 Vemf 5 3
P

N
 Ef

# d l 5 23
P

N
 Ee

# d l 5 IR (9.3b)

since Ef and Ee are equal but opposite within the battery (see Figure 9.2). It may also be 
regarded as the potential difference 1VP 2 VN 2  between the battery’s open-circuit termi-
nals. It is important to note the following facts.

1. An electrostatic field Ee cannot maintain a steady current in a closed circuit, since 
AL Ee

# d l 5 0 5 IR.
2. An emf-produced field Ef is nonconservative.
3. Except in electrostatics, voltage and potential difference are usually not equivalent.

B

FIGURE 9.2 A circuit showing emf-producing field Ef 
and electrostatic field Ee.

2After Heinrich Friedrich Emil Lenz (1804–1865), a Russian professor of physics.
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the direction of current flow in the circuit is such that the induced magnetic field produced 
by the induced current opposes change in the original magnetic field.
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9.3 TRANSFORMER AND MOTIONAL ELECTROMOTIVE FORCES

Having considered the connection between emf and electric field, we may examine how 
Faraday’s law links electric and magnetic fields. For a circuit with a single turn 1N 5 1 2 , 
eq. (9.1) becomes

 Vemf 5 2
dt

 (9.4)

In terms of E and B, eq. (9.4) can be written as

Vemf 5 C
L
 E # d l 5 2

d
dt

 3
S
 B # dS (9.5)

eS B # dS and S is the surface area of the circuit bounded by 
the closed path L. It is clear from eq. (9.5) that in a time-varying situation, both electric 
and magnetic fields are present and are interrelated. Note that d l and dS in eq. (9.5) are in 
accordance with the right-hand rule as well as Stokes’s theorem. This should be observed 
in Figure 9.3. The variation of flux with time as in eq. (9.1) or eq. (9.5) may be caused in 
three ways:

1. By having a stationary loop in a time-varying B field
2. By having a time-varying loop area in a static B field
3. By having a time-varying loop area in a time-varying B field

Each of these will be considered separately.

A. Stationary Loop in Time-Varying B Field (Transformer emf)
In Figure 9.3 a stationary conducting loop is in a time-varying magnetic B field. 
Equation (9.5) becomes

 Vemf 5 C
L
 E # d l 5 23

S
 
'B
't

# dS (9.6)

I

FIGURE 9.3 Induced emf due to a stationary loop in a time-
varying B field.
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where  has been replaced by 
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This emf induced by the time-varying current (producing the time-varying B field) in a 
 stationary loop is often referred to as transformer emf in power analysis, since it is due 
to  transformer action. By applying Stokes’s theorem to the middle term in eq. (9.6), we 
 obtain

 3
S
 1= 3 E 2 # dS 5 23

S
 
'B
't

# dS (9.7)

For the two integrals to be equal, their integrands must be equal; that is,

 = 3 E 5 2
'B
't

 (9.8)

This is one of the Maxwell’s equations for time-varying fields. It shows that the time- 
varying E field is not conservative 1= 3 E 2 0 2 . This does not imply that the principles 
of energy conservation are violated. The work done in taking a charge about a closed path 
in a time-varying electric field, for example, is due to the energy from the time-varying 
magnetic field. Observe that Figure 9.3 obeys Lenz’s law: the induced current I flows such 
as to produce a magnetic field that opposes the change in B(t).

B. Moving Loop in Static B Field (Motional emf)
When a conducting loop is moving in a static B field, an emf is induced in the loop. We 
recall from eq. (8.2) that the force on a charge moving with uniform velocity u in a mag-
netic field B is

 Fm 5 Qu 3 B (8.2)

We define the motional electric field Em as

 Em 5
Fm

Q
5 u 3 B (9.9)

If we consider a conducting loop, moving with uniform velocity u as consisting of a large 
number of free electrons, the emf induced in the loop is

 Vemf 5 C
L
 Em

# d l 5 C
L
 1u 3 B 2 # d l (9.10)

This type of emf is called motional emf or flux-cutting emf because it is due to motional 
action. It is the kind of emf found in electrical machines such as motors, generators, and 
alternators. Figure 9.4 illustrates a two-pole dc machine with one armature coil and a two-
bar commutator. Although the analysis of the dc machine is beyond the scope of this text, 
we can see that voltage is generated as the coil rotates within the magnetic field. Another 
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 example of motional emf is illustrated in Figure 9.5, where a rod is moving between a 
pair of rails. In this example, B and u are perpendicular, so eq. (9.9) in conjunction with  
eq. (8.2) becomes

 Fm 5 I,, 3 B (9.11)

or

 Fm 5 I,B (9.12)

and eq. (9.10) becomes

 Vemf 5 uB, (9.13)

By applying Stokes’s theorem to eq. (9.10), we have

3
S
 1= 3 Em 2 # dS 5 3

S
 = 3 1u 3 B 2 # dS

or

 = 3 Em 5 = 3 1u 3 B 2  (9.14)

Notice that unlike eq. (9.6), there is no need for a minus sign in eq. (9.10) because Lenz’s 
law is already accounted for.

N

FIGURE 9.4 A direct-current machine.

FIGURE 9.5 Induced emf due to a moving 
loop in a static B field.
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To apply eq. (9.10) is not always easy; some care must be exercised. The following 
points should be noted.

1. The integral in eq. (9.10) is zero along the portion of the loop where u 5 0. Thus 
d l is taken along the portion of the loop that is cutting the field (along the rod in 
Figure 9.5), where u has nonzero value.

2. The direction of the induced current is the same as that of Em or u 3 B. The limits 
of the integral in eq. (9.10) are selected in the direction opposite to the induced 
 current, thereby satisfying Lenz’s law. In Figure 9.5, for example, the integration 
over L is along 2ay, whereas induced current flows in the rod along ay.

C. Moving Loop in Time-Varying Field
In the general case, a moving conducting loop is in a time-varying magnetic field. Both 
transformer emf and motional emf are present. Combining eqs. (9.6) and (9.10) gives the 
total emf as

 Vemf 5 C
L
 E # d l 5 23

S
 
'B
't

# dS 1 C
L
 1u 3 B 2 # d l (9.15)

or from eqs. (9.8) and (9.14),

 = 3 E 5 2
'B
't

1 = 3 1u 3 B 2   (9.16)

Note that eq. (9.15) is equivalent to eq. (9.4), so Vemf can be found using either eq. (9.15) or 
(9.4). In fact, eq. (9.4) can always be applied in place of eqs. (9.6), (9.10), and (915).

A conducting bar can slide freely over two conducting rails as shown in Figure 9.6. 
Calculate the induced voltage in the bar
(a) If the bar is stationed at y 5 8 cm and B 5 4 cos 106taz mWb/m2

(b) If the bar slides at a velocity u 5 20ay m/s and B 5 4az mWb/m2

(c) If the bar slides at a velocity u 5 20ay m/s and B 5 4 cos 1106t 2 y 2  az mWb/m2

EXAMPLE 9.1

FIGURE 9.6 For Example 9.1.
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Solution:
(a) In this case, we have transformer emf given by

Vemf 5 23
S
 
'B
't

# dS 5 3
0.08

y50
 3

0.06

x50
 4 11023 2 1106 2  sin 106t dx dy

 5 4 1103 2 10.08 2 10.06 2  sin 106t
 5 19.2 sin 106t V

The polarity of the induced voltage (according to Lenz’s law) is such that point P on the bar 
is at lower potential than Q when B is increasing.

(b) This is the case of motional emf:

 Vemf 5 3
L
 1u 3 B 2 # d l 5 3

0

x5,

 1uay 3 Baz 2 # dx ax

 5 24.8 mV

(c) Both transformer emf and motional emf are present in this case. This problem can be 
solved in two ways.

Method 1: Using eq. (9.15), we write

        Vemf 5 23
S
 
'B
't

# dS 1 3
L
 1u 3 B 2 # d l (9.1.1)

  5 3
0.06

x50
 3

y

0
 4.1023 1106 2   sin 1106t 2 y r 2dy r dx

 1 3
0

0.06
 320ay 3 4.1023 cos 1106t 2 y 2az 4 # dx ax

  5 240 cos 1106t 2 y r 2 `
0

y

2 80 11023 2 10.06 2  cos 1106t 2 y 2
  5 240 cos 1106t 2 y 2 2 240 cos 106t 2 4.8 11023 2  cos 1106t 2 y 2
           . 240 cos 1106t 2 y 2 2 240 cos 106t  (9.1.2)

because the motional emf is negligible compared with the transformer emf. Using trigono-
metric identity, we write

cos A 2 cos B 5 22 sin 
A 1 B

2
 sin 

A 2 B
2

 (9.1.3)
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Vemf 5 2480 sina106t 2
y
2
b  sin 

y
2

 V 

 5 2uB, 5 220A4 3 1023 2 A0.06 2
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which is the same result in (9.1.2). Notice that in eq. (9.1.1), the dependence of y on time 
is taken care of in e  1u 3 B 2 # dl, and we should not be bothered by it in B/t. Why? 
Because in computing the transformer emf, the loop is assumed stationary. This is a subtle 
point one must keep in mind in applying eq. (9.1.1). For the same reason, the second 
method is always easier. 

PRACTICE EXERCISE 9.1

Consider the loop of Figure 9.5. If B 5 0.5az Wb/m2, R 5 20 V, , 5 10 cm, and the 
rod is moving with a constant velocity of 8ax m/s, find

(a) The induced emf in the rod
(b) The current through the resistor
(c) The motional force on the rod
(d) The power dissipated by the resistor.

Answer: (a) 0.4 V, (b) 20 mA, (c) 2ax mN, (d) 8 mW.
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Method 2: Alternatively, we can apply eq. (9.4), namely,

 Vemf 5 2
'�
't

 (9.1.4)

where

 � 5 3  B # dS

  5 3
y

y50
 3

0.06

x50
 4 cos 1106t 2 y 2  dx dy

  5 24 10.06 2  sin 1106t 2 y 2 `
y50

y

  5 20.24 sin 1106t 2 y 2 1 0.24 sin 106t mWb

But
dy
dt

5 u S  y 5 ut 5 20t

Hence,

� 5 20.24 sin 1106t 2 20t 2 1 0.24 sin 106t mWb

 Vemf 5 2
'�
't

5 0.24 1106 2 20 2  cos 1106t 2 20t 2 2 0.24 1106 2  cos 106t mV

  . 240 cos 1106t 2 y 2 2 240 cos 106t V  (9.1.5)
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The loop shown in Figure 9.7 is inside a uniform magnetic field B 5 50ax mWb/m2. If 
side DC of the loop cuts the flux lines at the frequency of 50 Hz and the loop lies in the  
yz-plane at time t 5 0, find

(a) The induced emf at t 5 1 ms
(b) The induced current at t 5 3 ms

Solution:
(a) Since the B field is time invariant, the induced emf is motional, that is,

Vemf 5 3
L
 1u 3 B 2 # d l

where

d l 5 d lDC 5 dz az,  u 5
d l r
dt

5
r df

dt
 af 5 rvaf

 r 5 AD 5 4 cm,  v 5 2pf 5 100p

Because u and d l are in cylindrical coordinates, we transform B into cylindrical coordi-
nates by using eq. (2.9):

B 5 Boax 5 Bo 1cos f ar 2 sin f af 2

where Bo 5 0.05. Hence,

FIGURE 9.7 For Example 9.2; polarity is for  
increasing emf.

EXAMPLE 9.2
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u 3 B 5 † ar af az
0 rv 0
Bo cos f 2Bo sin f 0

† 5 2rvBo cos f az
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and

 1u 3 B 2 # d l 5 2rvBo cos f dz 5 20.04 1100p 2 10.05 2  cos f dz
  5 20.2p cos f dz

    
Vemf 5 3

0.03

z50
2 0.2p cos f dz 5 26p cos f mV

To determine f, recall that

v 5
df

dt
 S  f 5 vt 1 Co

where Co is an integration constant. At t 5 0, f 5 p/2 because the loop is in the yz-plane 
at that time, Co 5 p/2. Hence,

f 5 vt 1
p

2

and

Vemf 5 26p cosavt 1
p

2
b 5 6p sin 1100pt 2  mV

At t 5 1 ms, Vemf 5 6p sin 10.1p 2 5 5.825 mV

(b) The current induced is

i 5
Vemf

R
5 60p sin 1100pt 2  mA

At t 5 3 ms,

i 5 60p sin 10.3p 2  mA 5 0.1525 A 

PRACTICE EXERCISE 9.2

Rework Example 9.2 with everything the same except that the B field is changed to:

(a) B 5 50ay mWb/m2—that is, the magnetic field is oriented along the y-direction
(b) B 5 0.02tax Wb/m2—that is, the magnetic field is time varying.

Answer:  (a) 217.93 mV, 20.1108 A, (b) 20.5 mV, 241.92 mA.

The magnetic circuit of Figure 9.8 has a uniform cross section of 1023 m2. If the circuit is 
energized by a current i1 1 t 2 5 3 sin 100pt A in the coil of N1 5 200 turns, find the emf 
induced in the coil of N2 5 100 turns. Assume that m 5 500 mo.

EXAMPLE 9.3
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Solution:
The flux in the circuit is

PRACTICE EXERCISE 9.3

A magnetic core of uniform cross section 4 cm2 is connected to a 120 V, 60 Hz  
generator as shown in Figure 9.9. Calculate the induced emf V2 in the secondary  
coil.

Answer: 72 V.

FIGURE 9.8 Magnetic circuit of 
Ex ample 9.3.

FIGURE 9.9 For Practice Exercise 9.3.
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� 5
�

�
5

N1i1

,/mS
5

N1i1mS
2pro

According to Faraday’s law, the emf induced in the second coil is

 V2 5 2N2 
d�

dt
5 2

N1N2mS
2pro

 
di1

dt

     5 2
100 # 1200 2 # 1500 2 # 14p 3 1027 2 # 11023 2 # 300p cos 100pt

2p 110 3 1022 2
     5 26p cos 100pt V
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9.4 DISPLACEMENT CURRENT

In Section 9.3 we have essentially reconsidered Maxwell’s curl equation for electrostatic 
fields and modified it for time-varying situations to satisfy Faraday’s law. We shall now 
 reconsider Maxwell’s curl equation for magnetic fields (Ampère’s circuit law) for time-
varying conditions.

For static EM fields, we recall that

 = 3 H 5 J (9.17)

But the divergence of the curl of any vector field is identically zero (see Example 3.10). 
Hence,

 = # 1= 3 H 2 5 0 5 = # J (9.18)

The continuity of current in eq. (5.43), however, requires that

 = # J 5 2
'rv

't
2 0 (9.19)

Thus eqs. (9.18) and (9.19) are obviously incompatible for time-varying conditions. We 
must modify eq. (9.17) to agree with eq. (9.19). To do this, we add a term to eq. (9.17) so 
that it becomes

 = 3 H 5 J 1 Jd (9.20)

where Jd is to be determined and defined. Again, the divergence of the curl of any vector 
is zero. Hence:

 = # 1= 3 H 2 5 0 5 = # J 1 = # Jd (9.21)

In order for eq. (9.21) to agree with eq. (9.19),

 = # Jd 5 2= # J 5
'rv

't
5

'

't
 1= # D 2 5 = # 'D

't
 (9.22a)

or

 Jd 5
'D
dt

 (9.22b)

Substituting eq. (9.22b) into eq. (9.20) results in

 = 3 H 5 J 1
'D
't  (9.23)

This is Maxwell’s equation (based on Ampère’s circuit law) for a time-varying field. The 
term Jd 5 'D/'t is known as displacement current density and J is the conduction current 
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density 1J 5 sE 2 .3 The insertion of Jd into eq. (9.17) was one of the major contributions 
of Maxwell. Without the term Jd, the propagation of electromagnetic waves (e.g., radio or 
TV waves) would be impossible. At low frequencies, Jd is usually neglected compared with 
J. However, at radio frequencies, the two terms are comparable. At the time of Maxwell, 
 high-frequency sources were not available and eq. (9.23) could not be verified experi-
mentally. It was years later that Hertz succeeded in generating and detecting radio waves, 
thereby verifying eq. (9.23). This is one of the rare cases of a mathematical argument paving 
the way for experimental investigation.

Based on the displacement current density, we define the displacement current as

 Id 5 3
S
 Jd

# dS 5 3
S
 
'D
't

# dS (9.24)

We must bear in mind that displacement current is a result of time-varying electric field. A 
typical example of such current is the current through a capacitor when an alternating volt-
age source is applied to its plates. This example, shown in Figure 9.10, serves to illustrate 
the need for the displacement current. Applying an unmodified form of Ampère’s circuit 
law to a closed path L shown in Figure 9.10(a) gives

 C
L
 H # d l 5 3

S1

 J # dS 5 Ienc 5 I (9.25)

where I is the current through the conductor and S1 is the flat surface bounded by L. 
If we use the balloon-shaped surface S2 that passes between the capacitor plates, as in 
Figure 9.10(b),

 C
L
 H # d l 5 3

S2

 J # dS 5 Ienc 5 0 (9.26)

because no conduction current 1J 5 0 2  flows through S2. This is contradictory in view 
of the fact that the same closed path L is used. To resolve the conflict, we need to include 

FIGURE 9.10 Two surfaces of integration 
showing the need for Jd in Ampère’s circuit 
law.

3 Recall that we also have J 5 rvu as the convection current density.
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the displacement current in Ampère’s circuit law. The total current density is J 1 Jd. In  
eq. (9.25), Jd 5 0, so that the equation remains valid. In eq. (9.26), J 5 0, so that

 C
L
 H # d l 5 3

S2

 Jd
# dS 5

d
dt

 3
S2

 D # dS 5
dQ
dt

5 I (9.27)

So we obtain the same current for either surface, although it is conduction current in S1 
and displacement current in S2.

A parallel-plate capacitor with plate area of 5 cm2 and plate separation of 3 mm has a 
 voltage 50 sin 103t V applied to its plates. Calculate the displacement current assuming 
e 5 2eo.

Solution:

D 5 eE 5 e 
V
d

Jd 5
'D
't

5
e

d
 
dV
dt

Hence,

Id 5 Jd
# S 5

eS
d

 
dV
dt

5 C 
dV
dt

which is the same as the conduction current, given by

Ic 5
dQ
dt

5 S 
drs

dt
5 S 

dD
dt

5 eS 
dE
dt

5
eS
d

 
dV
dt

5 C 
dV
dt

Id 5 2 # 1029

36p
# 5 3 1024

3 3 1023
# 103 3 50 cos 103t

 5 147.4 cos 103t nA

PRACTICE EXERCISE 9.4

In free space, E 5 20 cos 1vt 2 50x 2  ay V/m. Calculate

(a) Jd

(b) H
(c) v

Answer:  (a) 220veo sin 1vt 2 50x 2  ay A/m2, (b) 0.4 veo cos 1vt 2 50x 2  az A/m,  
(c) 1.5 3 1010 rad/s.

EXAMPLE 9.4
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9.5 MAXWELL’S EQUATIONS IN FINAL FORMS

The Scottish physicist James Clerk Maxwell (1831–1879) is regarded as the founder of 
electromagnetic theory in its present form. Maxwell’s celebrated work led to the discovery 
of electromagnetic waves.4 Through his theoretical efforts when he was between 35 and 
40 years old, Maxwell published the first unified theory of electricity and magnetism. The 
theory comprised all previously known results, both experimental and theoretical, on 
electricity and magnetism. It further introduced displacement current and predicted the 
existence of electromagnetic waves. Maxwell’s equations were not fully accepted by many 
scientists until 1888, when they were confirmed by Heinrich Rudolf Hertz (1857–1894). 
The German physicist was successful in generating and detecting radio waves.

The laws of electromagnetism that Maxwell put together in the form of four equations 
were presented in Table 7.2 in Section 7.6 for static conditions. The more generalized forms 
of these equations are those for time-varying conditions shown in Table 9.1. We notice 
from the table that the divergence equations remain the same, while the curl equations have 
been modified. The integral form of Maxwell’s equations depicts the underlying physical 
laws, whereas the differential form is used more frequently in solving problems. For a field 
to “qualify” as an electromagnetic field, it must satisfy all four Maxwell’s equations. The 
importance of Maxwell’s equations cannot be overemphasized because they summarize all 
known laws of electromagnetism. We shall often refer to them in the remainder of this text.

Since this section is meant to be a compendium of our discussion in this text, it is 
worthwhile to mention other equations that go hand in hand with Maxwell’s equations. 
The Lorentz force equation

 F 5 Q 1E 1 u 3 B 2  (9.28)

TABLE 9.1 Generalized Forms of Maxwell’s Equations

Differential Form Integral Form Remarks

= # D 5 rv
C

S
 D # dS 5 3

v
 rv dv

Gauss’s law

= # B 5 0
C

S
 B # dS 5 0

Nonexistence of isolated magnetic charge*

= 3 E 5 2
'B
't C

L
 E # d l 5 2

'

't
 3

S
 B # dS

Faraday’s law

= 3 H 5 J 1
'D
't C

L
 H # d l 5 3

S
 aJ 1

'D
't

b # dS
Ampère’s circuit law

*This is also referred to as Gauss’s law for magnetic fields.

4 Maxwell’s work can be found in his two-volume Treatise on Electricity and Magnetism (New York: Dover, 1954).
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is associated with Maxwell’s equations. Also the equation of continuity

 = # J 5 2
'rv

't
 (9.29)

is implicit in Maxwell’s equations. The concepts of linearity, isotropy, and homogeneity of a 
material medium still apply for time-varying fields; in a linear, homogeneous, and isotropic 
medium characterized by s, «, and m, the constitutive relations

 D 5 eE 5 eoE 1 P  (9.30a)

 B 5 mH 5 mo 1H 1 M 2  (9.30b)

 J 5 sE 1 rvu  (9.30c)

hold for time-varying fields. Consequently, the boundary conditions remain valid for time-
varying fields, where an is the unit normal vector to the boundary.

  E1t 2 E2t 5 0  or   1E1 2 E2 2 3 an  5 0 (9.31a)

  H1t 2 H2t 5 K    or  1H1 2 H2 2 3 an 5 K (9.31b)

 D1n 2 D2n 5 rs   or    1D1 2 D2 2 # an 5 rs (9.31c)

 B1n 2 B2n 5 0   or   1B2 2 B1 2 # an  5 0 (9.31d)

However, for a perfect conductor 1s . ` 2  in a time-varying field,

 E 5 0,  H 5 0,  J 5 0 (9.32)

and hence,

 Bn 5 0,  Et 5 0 (9.33)

For a perfect dielectric 1s . 0 2 , eqs. (9.31) hold except that K 5 0. Though eqs. (9.28) to 
(9.33) are not Maxwell’s equations, they are associated with them.

To complete this summary section, we present a structure linking the various potentials 
and vector fields of the electric and magnetic fields in Figure 9.11. This electromagnetic flow 
diagram helps with the visualization of the basic relationships between field quantities. It 
also shows that it is usually possible to find alternative formulations, for a given problem, in 
a relatively simple manner. It should be noted that in Figure 9.11(b) and (c), we introduce rm 
as the free magnetic density (similar to rv), which is, of course, zero, Ae as the electric vector 
potential (analogous to A), and Jm as the magnetic current density (analogous to J). Using 
terms from stress analysis, the principal relationships are typified as follows:

(a) compatibility equations

 = # B 5 rm 5 0 (9.34)
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and

 = 3 E 5 2
'B
't

5 Jm (9.35)

(b) constitutive equations

 B 5 mH (9.36)

and

 D 5 eE (9.37)

(c) equilibrium equations

 = # D 5 rv (9.38)

and

 = 3 H 5 J 1
'D
't

 (9.39)

FIGURE 9.11 Electromagnetic flow diagrams showing the relationship between the poten-
tials and vector fields: (a) electrostatic system, (b) magnetostatic system, (c) electromag-
netic system. [Adapted with permission from the Publishing Department of the Institution 
of Electrical Engineers.]
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†9.6 TIME-VARYING POTENTIALS

For static EM fields, we obtained the electric scalar potential as

 V 5 3
v
 
rv dv
4peR

 (9.40)

and the magnetic vector potential as

 A 5 3
v
 
mJ dv
4pR

 (9.41)

We would like to examine what happens to these potentials when the fields are time vary-
ing. Recall that A was defined from the fact that = # B 5 0, which still holds for time- 
varying fields. Hence the relation

 B 5 = 3 A (9.42)

holds for time-varying situations. Combining Faraday’s law as expressed in eq. (9.8) with 
eq. (9.42) gives

 = 3 E 5 2
'

't
 1= 3 A 2  (9.43a)

or

 = 3 aE 1
'A
't

b 5 0 (9.43b)

Since the curl of the gradient of a scalar field is identically zero (see Practice Exercise 3.10), 
the solution to eq. (9.43b) is

 E 1
'A
't

5 2=V (9.44)

or

 E 5 2=V 2
'A
't

 (9.45)

From eqs. (9.42) and (9.45), we can determine the vector fields B and E, provided the 
 potentials A and V are known. However, we still need to find some expressions for A and 
V similar to those in eqs. (9.40) and (9.41) that are suitable for time-varying fields.

From Table 9.1 or eq. (9.38) we know that = # D 5 rv is valid for time-varying condi-
tions. By taking the divergence of eq. (9.45) and making use of eqs. (9.37) and (9.38), we obtain

= # E 5
rv

e
5 2=2V 2

'

't
 1= # A 2
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or

 =2V 1
'

't
 1= # A 2 5 2

rv

e
 (9.46)

Taking the curl of eq. (9.42) and incorporating eqs. (9.23) and (9.45) results in

= 3 = 3 A 5 mJ 1 em 
'

't
 a2=V 2

'A
't

b

  5 mJ 2 me = a'V
't

b 2 me 
'2A
't2  

(9.47)

where D 5 eE and B 5 mH have been assumed. By applying the vector identity

 = 3 = 3 A 5 = 1= # A 2 2 =2A (9.48)

to eq. (9.47),

 =2A 2 = 1= # A 2 5 2mJ 1 me = a'V
't

b 1 me 
'2A
't2  (9.49)

A vector field is uniquely defined when its curl and divergence are specified. The curl of 
A has been specified by eq. (9.42); for reasons that will be obvious shortly, we may choose 
the divergence of A as

 = # A 5 2me 
'V
't

 (9.50)

5

in mind when we chose = # A 5 0 for magnetostatic fields in eq. (7.59). By imposing the 
Lorenz condition of eq. (9.50), eqs. (9.46) and (9.49), respectively, become

 =2V 2 me 
'2V
't2 5 2

rv

e
 (9.51)

and

 =2A 2 me 
'2 A
't2 5 2mJ (9.52)

which are wave equations to be discussed in the next chapter. The reason for choosing 
the Lorenz condition becomes obvious as we examine eqs. (9.51) and (9.52). The Lorenz 
 condition uncouples eqs. (9.46) and (9.49) and also produces a symmetry between 
eqs.  (9.51) and (9.52). It can be shown that the Lorenz condition can be obtained from 
the  continuity equation; therefore, our choice of eq. (9.50) is not arbitrary. Notice that 
eqs. (6.4) and (7.60) are special static cases of eqs. (9.51) and (9.52), respectively. In other 
words, potentials V and A satisfy Poisson’s equations for time-varying conditions. Just as 

5 Not to be confused with Hendrick A. Lorentz, Ludvig V. Lorenz (1829–1891) was a Danish  mathematician 
and physicist.
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This choice relates A and V, and it is called the Lorenz condition for potentials.  We had this 
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eqs. (9.40) and (9.41) are the solutions, or the integral forms of eqs. (6.4) and (7.60), it can 
be shown that the solutions6 to eqs. (9.51) and (9.52) are

 V 5 3
v
 
3rv 4 dv
4peR

 (9.53)

and

 A 5 3
v
 
m 3J 4 dv

4pR
 (9.54)

The term [rv] (or [J]) means that the time t in rv 1x, y, z, t 2  [or J 1x, y, z, t 2] is replaced by 
the retarded time t given by

 t r 5 t 2
R
u  (9.55)

where R 5 0r 2 r r 0  is the distance between the source point r and the observation  
point r and

 u 5
1

"me
 (9.56)

is the velocity of wave propagation. In free space, u 5 c . 3 3 108 m/s is the speed of 
light in a vacuum. Potentials V and A in eqs. (9.53) and (9.54) are, respectively, called the 
retarded electric scalar potential and the retarded magnetic vector potential. Given rv and J, 
V and A can be determined by using eqs. (9.53) and (9.54); from V and A, E and B can be 
determined by using eqs. (9.45) and (9.42), respectively.

9.7 TIME-HARMONIC FIELDS

So far, our time dependence of EM fields has been arbitrary. To be specific, we shall assume 
that the fields are time harmonic.

A time-harmonic field is one that varies periodically or sinusoidally with time.

Not only is sinusoidal analysis of practical value, but also it can be extended to most 
waveforms by Fourier analysis. Sinusoids are easily expressed in phasors, which are more 
convenient to work with. Before applying phasors to EM fields, it is worthwhile to have a 
brief review of the concept of phasor.

A phasor is a complex number that contains the amplitude and the phase of a sinusoi-
dal oscillation. As a complex number, a phasor z can be represented as

 z 5 x 1 jy 5 r lf (9.57)

6 For example, see D. K. Cheng, Fundamentals of Engineering Electromagnetics. Reading, MA:  Addison-Wesley, 
1993, pp. 253–254.
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or

 z 5 r e jf 5 r 1cos f 1 j sin f 2  (9.58)

where j 5 "21, x is the real part of z, y is the imaginary part of z, r is the magnitude of 
z, given by

 r 5 0 z 0 5 "x2 1 y2 (9.59)

and f is the phase of z, given by

 f 5 tan21 
y
x (9.60)

Here x, y, z, r, and f should not be mistaken as the coordinate variables, although they  
look similar (different letters could have been used but it is hard to find better ones). 
The phasor z can be represented in rectangular form as z 5 x 1 jy or in polar form as 
z 5 r lf 5 r e jf. The two forms of representing z are related in eqs. (9.57) to (9.60) and 
illustrated in Figure 9.12. Addition and subtraction of phasors are better performed in 
rectangular form; multiplication and division are better done in polar form.

Given complex numbers

z 5 x 1 jy 5 r lf,  z1 5 x1 1 jy1 5 r1 lf1,  and  z2 5 x2 1 jy2 5 r2 lf2

the following basic properties should be noted.

addition:

 z1 1 z2 5 1x1 1 x2 2 1 j 1 y1 1 y2 2  (9.61a)

subtraction:

 z1 2 z2 5 1x1 2 x2 2 1 j 1 y1 2 y2 2  (9.61b)

multiplication:

 z1z2 5 r1r2 liiii
f1 1 f2  (9.61c)

division:

 
z1

z2
5

r1

r2
 l
iiii
f1 2 f2  (9.61d)

FIGURE 9.12 Representation of a phasor 
z 5 x 1 jy 5 r lf.
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Square root:

 "z 5 "r l
ii
f/2  (9.61e)

Complex conjugate:

 z* 5 x 2 jy 5 r
ii
l2f 5 re2jf (9.61f)

Other properties of complex numbers can be found in Appendix A.2.

To introduce the time element, we let

 f 5 vt 1  (9.62)

where  may be a function of time or space coordinates or a constant. The real (Re) and 
imaginary (Im) parts of 

 rejf 5 re j(vt1) 5 re j e jvt (9.63)

are respectively given by

 Re re jf 5 r cos(vt 1 ) (9.64a)

and

 Im re jf 5 r sin(vt 1 ) (9.64b)

Thus, a sinusoidal current I(t) 5 Io cos(vt 1 ), for example, equals the real part of Ioejejvt. 
The current I(t) 5 Io sin(vt 1 ), which is the imaginary part of Ioejejvt, can be repre-
sented as the real part of Ioe jejvte2j90 because sin  5 cos( 2 90). However, in perform-
ing our mathematical operations, we must be consistent in our use of either the real part or 
the imaginary part of a quantity, but never both at the same time.

The complex term Ioe j, which results from dropping the time factor ejvt in I(t), is 
called the phasor current, denoted by Is; that is,

 Is 5 Ioe j 5 Io  (9.65)

where the subscript s denotes the phasor form of I(t). Thus I(t) 5 Io cos(vt 1 ), the instan-
taneous form, can be expressed as

 I(t) 5 Re  Ise jvt  (9.66)

In general, a phasor is a complex quantity and could be a scalar or a vector. If a vector A(x, 
y, z, t) is a time-harmonic field, the phasor form of A is As(x, y, z); the two quantities are 
related as

  A(x, y, z, t) 5 ReAs (x, y, z)ejvt  (9.67)

Note that the phasor is a function of position, not a function of time. For example,
if A 5 Ao cos 1vt 2 bx 2  ay, we can write A as

 A 5 Re 1Aoe2jbxaye jvt 2  (9.68)
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Comparing this with eq. (9.67) indicates that the phasor form of A is

 As 5 Aoe2jbxay (9.69)

Notice from eq. (9.67) that

'A
't

5
'

't
 Re 1Ase jvt 2

  5 Re 1 jvAse jvt 2  
(9.70)

showing that taking the time derivative of the instantaneous quantity is equivalent to mul-
tiplying its phasor form by jv. That is,

 
'A
't

 S  jvAs (9.71)

Similarly,

 3  A 't S  
As

jv
 (9.72)

Note that the real part is chosen in eq. (9.67) as in circuit analysis; the imaginary part 
could equally have been chosen. Also notice the basic difference between the instantaneous 
form A 1x, y, z, t 2  and its phasor form As 1x, y, z 2 : the former is time dependent and real, 
whereas the latter is time invariant and generally complex. It is easier to work with As and 
obtain A from As whenever necessary by using eq. (9.67).

We shall now apply the phasor concept to time-varying EM fields. The field quantities 
E 1x, y, z, t 2 , D 1x, y, z, t 2 , H 1x, y, z, t 2 , B 1x, y, z, t 2 , J 1x, y, z, t 2 , and rv 1x, y, z, t 2  and their 
derivatives can be expressed in phasor form by using eqs. (9.67) and (9.71). 

Let us see how we can write Maxwell’s equations in phasor form.  For example,  consider

  3 E (x, y, z, t) 5 2
'

't
B (x, y, z, t) (9.73)

We let 

 E (x, y, z, t) 5 Re Es(x, y, z)e jvt 

and 

 B (x, y, z, t) 5 Re Bs(x, y, z)e jvt 

Substituting these in eq. (9.73) gives

 = 3 eRe 3Esejvt 4 f 5 2
'

't
eRe 3Bsejvt 4 f  (9.74)

We consider the left-hand side of eq. (9.74). The curl operation operates only on  
(x, y, z), 

 = 3 eRe 3Esejvt 4 f 5 Re e 3= 3 Es 4ejvt f  (9.75)

09_Sadiku_Ch09.indd   444 25/09/17   1:55 PM



9.7 Time-Harmonic Fields 445

We similarly consider the right-hand side of eq. (9.74), keeping in mind that Bs does not 
depend on time:

 2
'

't
eRe 3Bsejvt 4 f 5 2Re eBs 

'

't
 ejvt f 5 2Re5jvBsejvt6 (9.76)

Comparing eqs. (9.75) and (9.76), we obtain

 = 3 Es 5 2jvBs (9.77)

which is the phasor form of eq. (9.73).  Other Maxwell’s equations can be treated in a 
similar manner, and we obtain Table 9.2.  From Table 9.2, note that the time factor e jvt 
disappears because it is associated with every term and therefore factors out, resulting in 
time-independent equations. Herein lies the justification for using phasors: the time factor 
can be suppressed in our analysis of time-harmonic fields and inserted when necessary. 
Also note that in Table 9.2, the time factor e jvt has been assumed. It is equally possible 
to have assumed the time factor e2jvt, in which case we would need to replace every j in 
Table 9.2 with 2j.

TABLE 9.2 Time-Harmonic Maxwell’s Equations 
Assuming Time Factor e jvt

Point Form Integral Form

= # Ds 5 rvs C Ds
# dS 5 3  rvs dv

= # Bs 5 0 C Bs
# dS 5 0

= 3 Es 5 2jvBs C Es
# d l 5 2jv 3  Bs

# dS

= 3 Hs 5 Js 1 jvDs C Hs
# d l 5 3  1Js 1 jvDs 2 # dS

 

Evaluate the complex numbers

(a) z1 5
j 13 2 j4 2*

121 1 j6 2 12 1 j 2 2

(b) z2 5 c 1 1 j
4 2 j8

d
1/2

Solution:
(a) This can be solved in two ways: working with z in rectangular form or polar form.

Method 1 (working in rectangular form):
Let

z1 5
z3z4

z5z6

EXAMPLE 9.5
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where

z3 5 j
z4 5 13 2 j4 2* 5 the complex conjugate of 13 2 j4 2

 5 3 1 j4

We note parenthetically that one can find the complex conjugate of a complex number 
simply by replacing every j with 2j:

z5 5 21 1 j6

and

z6 5 12 1 j 2 2 5 4 2 1 1 j4 5 3 1 j4

Hence,

 z3z4 5 j 13 1 j4 2 5 24 1 j3
 z5z6 5 121 1 j6 2 13 1 j4 2 5 23 2 j4 1 j18 2 24 
  5 227 1 j14

and
z1 5

24 1 j3
227 1 j14

Multiplying and dividing z1 by 227 2 j14 (rationalization), we have

Method 2 (working in polar form):

 z3 5 j 5 1 l
ii
90°

 z4 5 13 2 j4 2* 5 15 l
iiii
253.132* 5 5 l

iii
53.13°

 z5 5 121 1 j6 2 5 "37 l
iii

°99.46

 z6 5 12 1 j 2 2 5 1"5 l
iii

26.56 2 2 5 5 l
iii
53.13°

Hence,

  z1 5
11 l

ii
90° 2 15 l

iii
53.13° 2

1"37 l
iii
99.46° 2 15 l

iii
53.13° 2

  5
1

"37
 l
iiiiii
90° 2 99.46° 5 0.1644 l

iiii
29.46°

  5 0.1622 2 j0.027

as obtained before.
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z1 5
124 1 j3 2 1227 2 j14 2
1227 1 j14 2 1227 2 j14 2 5

150 2 j25
272 1 142

        5 0.1622 2 j0.027 5 0.1644 l
iii
29.46°



9.7 Time-Harmonic Fields 447

(b) Let

z2 5 c z7

z8
d

1/2

where

z7 5 1 1 j 5 "2 l
ii
45°

and

z8 5 4 2 j8 5 4"5 l
iii
263.4°

Hence

 
z7

z8
5

"2 l
ii
45°

4"5 l
iii
263.4°

  5 0.1581 l
iii
108.4°

and

 z2 5 "0.1581 l
iiii
108.4°/2

    5 0.3976 l
ii
54.2°

PRACTICE EXERCISE 9.5

Evaluate these complex numbers:

(a) j3 c 1 1 j
2 2 j

d
2

(b) 6 l30° 1 j5 2 3 1 e j45°

Answer: (a) 0.24 1 j0.32, (b) 2.03 1  j8.707.

Given that A 5 10 cos 1108t 2 10x 1 60° 2  az and Bs 5 120/j 2  ax 1 10 e j2px/3 ay, express A 
in phasor form and Bs in instantaneous form.

Solution:

A 5 Re 310e j1vt210x160°2az 4
where v 5 108. Hence

or

As 5 10 e j160°210x2az

5
"2

4"5
  l45° 2 263.4°
iiiiii

EXAMPLE 9.6
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If

 Bs 5
20
j

 ax 1 10e j2px/3ay 5 2j20ax 1 10e j2px/3ay

  5 20e2jp/2ax 1 10e j2px/3ay

 B 5 Re 1Bse jvt 2

  5 Re c20e j1vt2p/22ax 1 10e j1vt12px/32ayd

  5 20 cos 1vt 2 p/2 2ax 1 10 cosavt 1
2px

3
bay

  5 20 sin vt ax 1 10 cosavt 1
2px

3
bay

PRACTICE EXERCISE 9.6

If P 5 2 sin 110t 1 x 2 p/4 2ay and Qs 5 e jx 1ax 2 az 2sin py, determine the phasor 
form of P and the instantaneous form of Qs.

Answer:  2e j1x23p/42ay, sin p y cos 1vt 1 x 2 1ax 2 az 2 .

The electric field and the magnetic field in free space are given by

E 5
50
r

 cos 1106t 1 bz 2af V/m

H 5
Ho

r
 cos 1106t 1 bz 2ar A/m

Express these in phasor form and determine the constants Ho and b such that the fields 
 satisfy Maxwell’s equations.

Solution:
The instantaneous forms of E and H are written as

 E 5 Re 1Ese jvt 2 ,  H 5 Re 1Hse jvt 2  (9.7.1)

where v 5 106 and phasors Es and Hs are given by

 Es 5
50
r

 e jbzaf,  Hs 5
Ho

r
 e jbzar (9.7.2)

EXAMPLE 9.7
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For free space, rv 5 0, s 5 0, e 5 eo, and m 5 mo

  = # D 5 eo= # E 5 0  S  = # Es 5 0  (9.7.3)

  = # B 5 mo= # H 5 0 S  = # Hs 5 0  (9.7.4)

 = 3 H 5 sE 1 eo 
'E
't

  S  = 3 Hs 5 jveoEs  (9.7.5)

  = 3 E 5 2mo 
'H
't

  S  = 3 Es 5 2jvmoHs (9.7.6)

Substituting eq (9.7.2) into eqs. (9.7.3) and (9.7.4), it is readily verified that two Maxwell’s 
equations are satisfied; that is,

 = # Es 5
1
r

 
'

'f
 1Efs 2 5 0

= # Hs 5
1
r

 
'

'r
 1rHrs 2 5 0

Now

 = 3 Hs 5 = 3 aHo

r
 e jbzarb 5

jHob

r
 e jbzaf (9.7.7)

Substituting eqs. (9.7.2) and (9.7.7) into eq. (9.7.5), we have

jHob

r
 e jbzaf 5 jveo 

50
r

 e jbzaf

or

 Hob 5 50 veo (9.7.8)

Similarly, substituting eq. (9.7.2) into eq. (9.7.6) gives

2jb 
50
r

 e jbzar 5 2jvmo 
Ho

r
 e jbzar

or

 
Ho

b
5

50
vmo

 (9.7.9)

Multiplying eq. (9.7.8) by eq. (9.7.9) yields

Ho
2 5 150 2 2 

eo

mo
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or

Dividing eq. (9.7.8) by eq. (9.7.9), we get

b2 5 v2moeo

or

 b 5 6v"moeo 5 6
v

c 5 6
106

3 3 108

 5 63.33 3 1023

In view of eq. (9.7.8), Ho 5 0.1326, b 5 3.33 3 1023 or Ho 5 20.1326, b 523.33 3 1023; 
only these will satisfy Maxwell’s four equations.

PRACTICE EXERCISE 9.7

In air, E 5
sin u

r  cos 16 3 107t 2 br 2af V/m.

Find b and H.

Answer:  0.2 rad/m, 2
1

12pr2 cos u sin 16 3 107t 2 0.2r 2ar 2
1

120pr
 sin u 3

 cos 16 3 107t 2 0.2r 2au /m.

In a medium characterized by s 5 0, m 5 mo, e 5 4eo, and

E 5 20 sin 1108t 2 bz 2ay V/m

calculate b and H.

Solution:
This problem can be solved directly in time domain or by using phasors. As in Example 9.7, 
we find b and H by making E and H satisfy Maxwell’s four equations.

Method 1 (time domain):
Let us solve this problem the harder way—in time domain. It is evident that Gauss’s law for 
electric fields is satisfied; that is,

= # E 5
'Ey

'y
5 0

EXAMPLE 9.8
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Ho 5 650"eo/mo 5 6
50

120p
5 60.1326
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From Faraday’s law,

= 3 E 5 2m 
'H
't

  S   H 5 2
1
m

 3  1= 3 E 2  dt

But

= 3 E 5 ∞
ax ay az

'

'x
'

'y
'

'z
0 Ey 0

∞ 5 2
'Ey

'z
ax 1

'Ey

'x
az

 5 20b cos 1108t 2 bz 2  ax 1 0

Hence,

H 5 2
20b

m
 3  cos 1108t 2 bz 2  dt ax

  5 2
20b

m108 sin 1108t 2 bz 2  ax  (9.8.1)

It is readily verified that

= # H 5
'Hx

'x
5 0

showing that Gauss’s law for magnetic fields is satisfied. Lastly, from Ampère’s law

 = 3 H 5 sE 1 e 
'E
't
  S   E 5

1
e

 3  1= 3 H 2  dt (9.8.2)

because s 5 0.

But

= 3 H 5 ∞
ax ay az

'

'x
'

'y
'

'z
Hx 0 0

∞ 5
'Hx

'z
ay 2

'Hx

'y
az

 5
20b2

m108 cos 1108t 2 bz 2  ay 1 0
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where H in eq. (9.8.1) has been substituted. Thus eq. (9.8.2) becomes

E 5
20b2

me108 3  cos 1108t 2 bz 2  dt ay

 5
20b2

me1016 sin 1108t 2 bz 2  ay

Comparing this with the given E, we have

20b2

me1016 5 20

or

b 5 6108"me 5 6108"mo
# 4eo 5 6

108 12 2
c 5 6

108 12 2
3 3 108

 5 6
2
3

The b would be negative only in metamaterials, for an isotropic medium, b 5 
2
3

.

From eq. (9.8.1),

H 5 1
20 12/3 2

4p # 1027 1108 2  sin a108t
2z
3
b  ax

or

H 5 1
1

3p
 sin a108t

2z
3
bax A/m

Method 2 (using phasors):

 E 5 Im1Ese jvt 2  S   Es 5 20e2jbz ay (9.8.3)

where v 5 108.

Again

 = # Es 5
'Eys

'y
5 0

 = 3 Es 5 2jvmHs  S   Hs 5
= 3 Es

2jvm
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or

 Hs 5
1

2jvm
 c2

'Eys

'z
 ax d 5 2

20b

vm
 e2jbzax (9.8.4)

Notice that = # Hs 5 0 is satisfied.

 = 3 Hs 5 jveEs  S   Es 5
= 3 Hs

jve
 (9.8.5)

Substituting Hs in eq. (9.8.4) into eq. (9.8.5) gives

Es 5
1

jve
 
'Hxs

'z
 ay 5

20b2e2jbz

v2me
 ay

Comparing this with the given Es in eq. (9.8.3), we have

20 5
20b2

v2me

or

b 5 1v"me 5 1
2
3

as obtained before. From eq. (9.8.4),

 Hs 5 1
20 12/3 2  e jbz

108 14p 3 1027 2  ax 5 1
1

3p
 e jbzax

 H 5 Im 1Hse jvt 2

 5 ;
1

3p
 sin 1108t bz 2ax A/m

as obtained before. It should be noticed that working with phasors is considerably simpler than 
working directly in time domain. Also, notice that we have used

A 5 Im 1Ase jvt 2

because the given E is in sine form and not cosine. If we had used

A 5 Re 1Ase jvt 2
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sine would been expressed in terms of cosine, and eq. (9.8.3) would have been

E 5 20 cos 1108t 2 bz 2 90º 2ay 5 Re 1Ese jvt 2

or

Es 5 20e2jbz2j90°ay 5 2j20e2jbzay

and we follow the same procedure. 

PRACTICE EXERCISE 9.8

A medium is characterized by s 5 0, m 5 2mo and e 5 5eo. If H 5 2  
cos 1vt 2 3y 2az A/m, calculate v and E.

Answer:  2.846 3 108 rad/s, 2476.86 cos 12.846 3 108t 2 3y 2ax V/m.

†9.8 APPLICATION NOTE—MEMRISTOR 

In 1971 Leon O. Chua of the University of California–Berkeley introduced the memristor 
(Figure 9.13) as one of the four basic circuit elements, coequal in importance with the other 
well-known circuit elements, namely, resistor (R), inductor (L), and capacitor (C). The new 
element had not been physically realized when Chua proposed it. However, he was the 
first to use this moniker. Not until 2008 was a physical approximation of such an element 
fabricated, as a TiO2 nanodevice, by Stanley Williams’s group at Hewlett-Packard (HP).

FIGURE 9.13 Schematic of a memristor.

Chua characterized the memristor in terms of the electric charge and the mag-
netic flux. He also linked this relationship with the quasi-static expansion of Maxwell’s 
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9.9 Application Note—Optical Nanocircuits 455

 equations. A charge-controlled memristor can be defined as a two-terminal element sat-
isfying the constitutive relation 5 M(q), where  and q are magnetic flux and electric 
charge, respectively, and M (qs) is a piecewise-differentiable function. Memristors have 
interesting circuit-theoretic properties different from those of the classical circuit elements 
R, L, and C. These properties, in turn, lead to remarkable applications not realizable with 
the earlier circuits. 

A charge-controlled memristor behaves somewhat like a nonlinear resistor RM satis-
fying a q-dependent Ohm’s law, v 5 RMi. The quantity RM is memresistance, measured in 
webers per coulomb, and for all passive memristors RM 5 0. Since the voltage v is related to 
dw

dt
, we can express the memresistance as RM 5 

dfM 1q 2
dq

. When current through a memris-

tor is turned off at t 5 t0, 
dq
dt

 5 0 implies q 5 q(t0). This allows us to view a memristor as 

a nonvolatile analog memory. In particular, it can be used as a nonvolatile binary memory, 
where two sufficiently different values of resistance are chosen to code binary states “\0” 
and “\1,” respectively. The memristor reported by HP as well as many other nanodevices 
proposed recently can be scaled down to atomic dimensions. Thus the memristor offers 
immense potential for an ultra-low-power and ultradense nonvolatile memory technol-
ogy that could replace flash memories and dynamic random-access memories (DRAMs).

The most important common property of a memristor is the pinched hysteresis loop; 
that is, the loci of (v(t), i(t)) due to any bipolar periodic current source i(t) or periodic volt-
age source v(t) must always be pinched at the origin in the sense that  (v(t), i(t)) 5 (0, 0) 
must always lie on the (v,i)-loci. The pinched hysteresis loop phenomenon of the memris-
tor must hold for any bipolar periodic signal v(t), or i(t). 

Although memristors have become popular only recently, they are known to abound 
in many other forms. For example, the electric arc, dating back to 1801, has been identi-
fied as a memristor. Also, a very interesting and scientifically significant example is the 
classic Hodgkin–Huxley axon circuit model of the squid giant axon. Chua showed that the 
Hodgkin–Huxley time-varying potassium conductance is in fact a first-order memristor, and 
the Hodgkin–Huxley time-varying sodium conductance is in fact a second-order memristor.

Besides serving as nonvolatile memories, locally passive memristors have been used 
for switching electromagnetic devices, for field-programmable logic arrays, for synaptic 
memories, and for learning. In addition, locally passive memristors have been found to 
exhibit many exotic dynamical phenomena, such as oscillations, chaos, Hamiltonian vor-
tices, and autowaves.

†9.9 APPLICATION NOTE—OPTICAL NANOCIRCUITS

Circuit elements and electronic devices such as resistors, capacitors, inductors, switches, 
diodes, and transistors were developed at low frequencies; higher frequencies, even radio 
frequencies, were realized only later. With the development of metamaterials and nano-
technology, such elements have also been conceived at optical frequencies. Nader Engheta 
and his group at the University of Pennsylvania have recently proposed circuit elements 
at infrared and optical frequencies. The advantage of using lumped elements lies in their 
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simplicity and modularity: when we want to use lumped elements by connecting them with 
one another, we need to know only their in-terminal behavior and the functionality of the 
overall circuit they comprise. Although it is difficult to pinpoint the frequency at which one 
might consider an element to be lumped, as long as it is smaller than the wavelength but 
larger than it is when the quantum effects begin to manifest, we can conveniently model an 
arbitrary particle as a lumped circuit element.

〈V〉u
fringe

I u
imp

FIGURE 9.14 A nanoparticle used as a circuit element.

Optical lumped circuit elements with specific optical impedances have been realized 
by means of deep-subwavelength nanostructures. The use of gyroscopic nanospheres has 
permitted the identification of tunable circuit elements at infrared and optical frequencies. 
This new area is called optical metatronics—a portmanteau term derived from metamaterials, 
 optical, and electronics. The three fields of electronics, photonics, and magnetics can be brought 
together seamlessly under one umbrella. In this paradigm, for information processing and data 
storage at the nanoscale, the optical electric displacement currents or the optical magnetic dis-
placement currents play a more important role than the conventional drift of charged particles. 
In such optical circuitry, nanostructures with specific values of permittivity (or permeability) 
may act as lumped circuit elements (e.g., nanocapacitors, nanoinductors, nanoresistors).

By collecting properly arranging judiciously designed nanostructures, it is possible to 
achieve a new circuit platform in which optical signals can be tailored and manipulated, thus 
allowing optical information to be processed at the nanoscale. These nanostructures can be 
considered to be the modules and building blocks of metatronic circuits in which optical elec-
trical fields and optical displacement currents are connected through the optical impedances of 
the nanoscale lumped elements. Such optical lumped circuit elements and metatronic circuitry 
afford the possibility of bringing many designs from RF electronics into the field of optics but 
with a much higher level of miniaturization and higher bandwidth. Just as electrons play the 
fundamental role in electronics, spins in spintronics, and photons in photonics, optical dis-
placement current is of fundamental importance in the field of metatronics.

If the real part of the permittivity of the material forming a given nanoparticle is 
positive, its optical impedance is capacitive. If the imaginary part of the permittivity is 
nonzero, then the particle impedance arises from a lumped conductance in parallel with 
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the lumped capacitance. Similarly, a plasmonic particle with negative real part for its per-
mittivity may possess an optical impedance that resembles the impedance of an inductor at 
that frequency. These are fixed elements. But if we wish to make them variable, since it is 
not possible to mechanically change their physical size, we can consider gyrotropic mate-
rials impressed with a dc magnetic field and still realize tunable circuit elements. These 
nanocircuit elements play a vital role in metatronics for the design of various nanodevices. 
Actual fabrication of optical nanofilters, left-handed/right-handed nanotransmission lines, 
couplers, biosensors, information storage devices, and so on has become a reality, and more 
surprises are in the offing.

†9.10  APPLICATION NOTE—WIRELESS POWER TRANSFER  
AND QI STANDARD

Rapid growth in the area of high-speed wireless data transfer has resulted in the prolifera-
tion of cell-phones and various mobile devices that include even biomedical implants. In 
turn, rapid charging of batteries and remote powering of electric circuits have become a 
high priority and a pressing need. Especially the emergence of electric vehicles, aimed at 

charging batteries. All along, recharging was done by connecting power cord battery, but to 
increase mobility and ease of handling, doing this task cordlessly or, if possible, dispensing 

by means of induction and resonant coupling. Induction machines, microwave heating, 
and similar power devices developed historically, are all based on WPT. Since the distance 
between the source and the receiver in these devices is usually small, the term wireless is 
not highlighted when we refer to them.

We might achieve WPT in three broad ways: (i) near-field resonant reactive coupling, 

field or non-radiative WPT is based on the near-field magnetic coupling of conductive 
loops and can be either short range or mid-range in its applications. Far-field or radiative 
WPT takes place from a transmitting antenna and propagates through a medium such as 
air over distances that are several wavelengths long to a receiver where power is used to 
energize the mobile device. This method of transferring power can be highly directive if the 
locations of the receiver are predetermined or nondirective otherwise. In the latter case, the 

f transmission is very low. 
Wireless charging technology for portable electronic devices has escalated to the com-

mercialization stage with the introduction of the Qi (pronounced “chee”) Standard by the 
Wireless Power Consortium (WPC), now (at the time of this writing) growing with a mem-

appears as a charging pad, on which is placed a compatible device, which receives energy 
through resonant inductive coupling. The base station, connected to a power source, has 
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reducing environmental pollution, became a greater impetus for more efficient ways of 

(ii) far-field directive power beaming, and (iii) far-field nondirective power transfer. Near-

efficiency o

bership of over 220 companies worldwide. The Qi system comprises a base station that 

of batteries altogether would be better. Toward this goal, operating mobile devices through 
wireless power transfer (WPT) became the preferred choice. The development in this area 
has been rather slows, although the idea dates as far back as a century to Tesla, who 
proposed that electric power can be transferred not only by means of radiation, but also 
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planar coils that set up oscillating magnetic flux. Likewise, the mobile device has a receiver 
coil that harvests energy into a power receiver. Proper shielding of coils and selection of 
their parameters is done to ensure good inductive power transfer. To promote better cou-
pling and higher power transfer, relative alignment of the device is made in a guided way 
by markings on the charging pad. Also, free positioning is allowed by the careful design 
of coil geometry or using a technique that employs multiple cooperative flux generators.

A typical WPT charging unit is depicted in Figure 9.15. It shows the base station with the 
charging pad on the top and a power transmitter section. It has a power conversion unit (PCU) 
and a communications and control unit (CCU). The transmitting coil of the PCU underneath 
the charging pad establishes the required oscillating magnetic flux. The Qi compatible mobile 
device is equipped with the power receiver section, which essentially has the power pickup 
unit (PPU) and a CCU similar to the one in the base station. A receiver coil above the charg-
ing pad collects the energy induced and conveys to the PPU, which then drives the load. The 
CCUs are designed to regulate the transferred power to the required level at the highest pos-

Sensing & ControlLoad

Load Power

Power Receiver

Charging Pad
Power Transmitter

Power
Conversion Unit

Communication
& Control Unit

Input Power
System Unit

Ba
se

 S
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Pick up Unit

Communication
& Control Unit

FIGURE 9.15 A typical wireless 
power transfer system for charging 
a mobile device.
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In terms of the Qi standards, the low-power specification delivers up to 5 W, typically 
used to charge mobile devices, and the medium-power specification will deliver up to 120 W.  
Usually this is allocated for power displays and laptops. In 2015, WPC demonstrated a 
high-power specification that will deliver up to 1 kW, allowing the powering of kitchen 
utensils among other high-power utilities. The Qi logo is depicted in Figure 9.16. As the Qi 
standard gains popularity, it is forecast that Qi hotspots will begin to abound in all market 
places, coffee shops, airports, sports arenas, etc. The technology of WPT developed for 
electric vehicles and medical implants and other consumer power devices has begun to 
explode and readers are encouraged to consult additional references.

sible transfer efficiency. Although Figure 9.15 does not show, in practice, the base station has 
an array of transmitting coils to facilitate charging of numerous mobile devices. The system 
unit in the base station contains additional user interfaces. Between the receiver and the trans-
mitter, communication is established with the aid of backscatter modulation.
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% This script illustrates Matlab’s complex arithmetic abilities
% and assists the user to solve Practice Exercise 9.5
% 

clear

% Matlab recognizes the input of complex numbers using i or j
% for example z = 7 - 6*j sets variable z to the complex value of
% 7 plus sqrt(-1) times 6, thus it is interactive with respect to
% entering and displaying complex values
z = input(‛Enter the complex number z in the format a+j*b... \n > ‛);

disp(sprintf(‛The real part of z is %f‛, real(z)))  
                      % display the real part
disp(sprintf(‛The imaginary part of z is %f‛, imag(z)))   
           % display the imag part
disp(sprintf(‛The magnitude of z is %f‛, abs(z)))      
       % display the magnitude
disp(sprintf(‛The phase of z is %f degrees‛, angle(z)*180/pi))   
          % display the phase (degrees)

% Matlab also recognizes complex  numbers in polar form
% the exponential function accepts imaginary arguments, however it
% interprets the value as being in radians, not degrees, so if 
% degrees are desired a conversion must be made 
disp(‛Enter the complex number z in the a*exp(j*b) where b is‛);
z = input(‛ in radians... \n >  ‛);

disp(sprintf(‛The real part of z is %f‛, real(z)))
disp(sprintf(‛The imaginary part of z is %f‛, imag(z)))
disp(sprintf(‛The magnitude of z is %f‛, abs(z)))
disp(sprintf(‛The phase of z is %f degrees‛, angle(z)*180/pi))

% part a
% complex numbers may be handled with the same math operators 
% as real numbers in matlab....
z = j^3 * ((1+j)/(2-j))^2;

disp(sprintf(‛\nPart (a)\nz = %0.2f ‛, real(z)))

MATLAB 9.1

FIGURE 9.16 Qi logo
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1. In this chapter, we have introduced two fundamental concepts: electromotive force 
(emf), based on Faraday’s experiments, and displacement current, which resulted from 
Maxwell’s hypothesis. These concepts call for modifications in Maxwell’s curl equations 
obtained for static EM fields to accommodate the time dependence of the fields.

2. Faraday’s law states that the induced emf is given by 1N 5 1 2

 For transformer emf, Vemf 5 23  
'B
't

# dS

 and for motional emf, Vemf 5 3  1u 3 B 2 # d l.

3. The displacement current

Id 5 3  Jd
# dS

 where Jd 5
'D
't

 (displacement current densit

law. This modification, attributed to Maxwell, predicted electromagnetic waves several 
 years before the phenomenon was verified experimentally by Hertz.
4. In differential form, Maxwell’s equations for dynamic fields are:

  = # D 5 rv

 = # B 5 0

= 3 E 5 2
'B
't

= 3 H 5 J 1
'D
't

 Each differential equation has its integral counterpart (see Tables 9.1 and 9.2) that can 
be derived from the differential form by using Stokes’s theorem or the divergence theo-

disp(sprintf(‛ + j%0.2f ‛, imag(z)))

% part b
% note the conversion from degrees to radians in the 
% exponential
z = 6*exp(j*30*pi/180) + j*5 - 3 +exp(j*45*pi/180);

disp(sprintf(‛\nPart (b)\nz = %0.3f ‛, real(z)))
disp(sprintf(‛ + j%0.3f ‛, imag(z)))

SUMMARY
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Vemf 5 2
'�
't

y) is a modification to Ampère’s circuit 

rem. Any EM field must satisfy the four Maxwell’s equations  simultaneously.
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5. Time-varying electric scalar potential V 1x, y, z, t 2  and magnetic vector potential 
A 1x, y, z, t 2  are shown to satisfy wave equations if Lorenz’s condition is assumed.

6. Time-harmonic fields are those that vary sinusoidally with time. They are easily 
expressed in phasors, which are more convenient to work with. The cosine reference, 
can be used to show that the instantaneous vector quantity A 1x, y, z, t 2  is related to its 
 phasor form As 1x, y, z 2  according to

A 1x, y, z, t 2 5 Re 3As 1x, y, z 2  e jvt 4

 9.1 The flux through each turn of a 100-turn coil is 1 t3 2 2t 2  mWb, where t is in seconds. The 
induced emf at t 5 2 s is

(a) 1 V (d) 0.4 V

(b) 21 V (e) 20.4 V
(c) 4 mV

 9.2 Assuming that each loop is stationary and the time-varying magnetic field B induces cur-
rent I, which of the configurations in Figure 9.17 are incorrect?

 9.3 Two conducting coils 1 and 2 (identical except that 2 is split) are placed in a uniform 
magnetic field that decreases at a constant rate as in Figure 9.18. If the plane of the coils is 
perpendicular to the field lines, which of the following statements is true?

(a) An emf is induced in both coils.
(b) An emf is induced in split coil 2.
(c) Equal Joule heating occurs in both coils.
(d) Joule heating does not occur in either coil.

REVIEW
QUESTIONS

FIGURE 9.17 For Review Question 9.2. FIGURE 9.18 For Review Question 9.3.
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462 CHAPTER 9 MAXWELL’S EQUATIONS

 9.4 A loop is rotating about the y-axis in a magnetic field B 5 Bo sin vt ax Wb/m2. The volt-
age induced in the loop is due to

(a) Motional emf
(b) Transformer emf
(c) A combination of motional and transformer emf
(d) None of the above

 9.5 A rectangular loop is placed in the time-varying magnetic field B 5 0.2 cos150ptaz Wb/m2 
as shown in Figure 9.19. V1 is not equal to V2.

(a) True (b) False

 9.6 The concept of displacement current was a major contribution attributed to

(a) Faraday
(b) Lenz
(c) Maxwell
(d) Lorenz
(e) Your professor

 9.7 Identify which of the following expressions are not Maxwell’s equations for time-varying 
fields:

(a) = # J 1
'rv

't
5 0

(b) = # D 5 rv

(c) = # E 5 2
'B
't

(d) C
L
 H # d l 5 3

S
 asE 1 e 

'E
't

b # dS

(e) C
S
 B # dS 5 0

FIGURE 9.19 For Review Question 9.5.
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 9.8 An EM field is said to be nonexistent or not Maxwellian if it fails to satisfy Maxwell’s 
equations and the wave equations derived from them. Which of the following fields in free 
space are not Maxwellian?

(a) H 5 cos x cos 106t ay

(b) E 5 100 cos vt ax

(c) D 5 e210y sin 1105t 2 10y 2  az

(d) B 5 0.4 sin 104t az

(e) H 5 10 cos a105t 2
z

10
b  ax

(f) 

(g) B 5 11 2 r2 2  sin vt az

 9.9 Which of the following statements is not true of a phasor?

(a) It may be a scalar or a vector.
(b) It is a time-dependent quantity.
(c) A phasor Vs may be represented as Vo lu or Voe jv where Vo 5 0Vs 0 .
(d) It is a complex quantity.

9.10 If Es 5 10 e j4x ay, which of these is not a correct representation of E?

(a) Re 1Ese jvt 2  
(b) Re 1Ese2jvt 2  
(c) Im 1Ese jvt 2
(d) 10 cos 1vt 1 j4x 2  ay

(e) 10 sin 1vt 1 4x 2  ay

Answers:  9.1b, 9.2b, d, 9.3a, 9.4c, 9.5a, 9.6c, 9.7a,c, 9.8b, d, 9.9b, 9.10d.

Sections 9.2 and 9.3—Faraday’s Law and Electromotive Forces

 9.1 A conducting circular loop of radius 20 cm lies in the z 5 0 plane in a magnetic field 
B 5 10 cos 377t az mWb/m2. Calculate the induced voltage in the loop.

 9.2 The loop in Figure 9.20 exists in a magnetic field B 5 4cos(20t)az Wb/m2, where az is 
directed out of the page. If the area enclosed by the circuit is 2 cm2, find the current i(t).

 9.3 A circuit conducting loop lies in the xy-plane as shown in Figure 9.21. The loop has 
a radius of 0.2 m and resistance R 5 4 . If B 5 40 sin 104 taz mWb/m2, find the 
currrent. 

PROBLEMS
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E 5
sin u

r
 cos 1vt 2 rv"moeo 2  au
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 9.4 Two conducting bars slide over two stationary rails, as illustrated in Figure 9.22. If  
B 5 0.2az Wb/m2, determine the induced emf in the loop thus formed.

 9.5  A conductor located at 0 , y , 1.6 m moves with velocity 2ax m/s in a magnetic field, 
B 5 10 cos byaz   Wb/m2 where b is a constant. Determine the induced voltage.

 9.6 A square loop of side a recedes with a uniform velocity uoay from an infinitely long fila-
ment carrying current I along az as shown in Figure 9.23. Assuming that r 5 ro at time 
t 5 0, show that the emf induced in the loop at t . 0 is

Vemf 5
uoa2moI

2pr 1r 1 a 2
 9.7 A conducting rod moves with a constant velocity of 3 az m/s parallel to a long straight wire 

carrying a current of 15 A as in Figure 9.24. Calculate the emf induced in the rod and state 
which end is at the higher potential.

 9.8 A conducting rod has one end grounded at the origin, while the other end is free to move 
in the z 5 0 plane.  The rod rotates at 30 rad/s in a static magnetic field B 5 60az mWb/m2. 
If the rod is 8 cm long, find the voltage induced in the rod.

FIGURE 9.21 For Problem 9.3.z

R
x

y

FIGURE 9.20 For Problem 9.2.

20 Ω
30 Ω

i(t)

B
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FIGURE 9.22 For Problem 9.4.y

1.2 m 5 m/s 15 m/s

B

x

FIGURE 9.23 For Problem 9.6.

 9.9 A rectangular coil has a cross-sectional area of 30 cm2 and 50 turns.  If the coil rotates at 
60 rad/s in a magnetic field of 0.2 Wb/m2 such that its axis of rotation is perpendicular to 
the direction of the field, determine the induced emf in the coil.

9.10 Determine the induced emf in the V-shaped loop of Figure 9.25. Take B 5 0.6xaz Wb/m2 

and u 5 5ax m/s. Assume that the sliding rod starts at the origin when t = 0.

9.11 A car travels at 120 km/hr. If the earth’s magnetic field is 4.3 3 1025 Wb/m2, find the 
induced voltage in the car bumper of length 1.6 m. Assume that the angle between the 
earth’s magnetic field and the normal to the car is 65°.

FIGURE 9.24 For Problem 9.7.
FIGURE 9.25 For Problem 9.10.

y

x
30° u
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9.12 An airplane with a metallic wing of span 36 m flies at 410 m/s in a region where the verti-
cal component of the earth’s magnetic field is 0.4 mWb/m2. Find the emf induced on the 
airplane wing.

9.13 As portrayed in Figure 9.26, a bar magnet is thrust toward the center of a coil of 10 turns 
and resistance 15 . If the magnetic flux through the coil changes from 0.45 Wb to  
0.64 Wb in 0.02 s, find the magnitude and direction (as viewed from the side near the 
 magnet) of the induced current.

9.14 The cross section of a homopolar generator disk is shown in Figure 9.27. The disk has 
inner radius r1 5 2 cm and outer radius r2 5 10 cm and rotates in a uniform magnetic 
field 15 mWb/m2 at a speed of 60 rad/s. Calculate the induced voltage.

Section 9.4—Displacement Current

9.15 A 50 V voltage generator at 20 MHz is connected to the plates of an air dielectric parallel-
plate capacitor with a plate area of 2.8 cm2 and a separation distance of 0.2 mm. Find the 
maximum value of displacement current density and displacement current.

9.16 A dielectric material with m 5 mo, « 5 9«o s 5 4 S/m is placed between the plates 
of a parallel-plate capacitor. Calculate the frequency at which the conduction and 
displacement currents are equal.

FIGURE 9.26 For Problem 9.13.

FIGURE 9.27 For Problem 9.14.
B

CS
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9.17 The ratio J/Jd (conduction current density to displacement current density) is very impor-
tant at high frequencies. Calculate the ratio at 1 GHz for:

(a) distilled water 1m 5 mo, e 5 81eo, s 5 2 3 1023 S/m 2
(b) seawater 1m 5 mo, e 5 81eo, s 5 25 S/m 2
(c) limestone 1m 5 mo, e 5 5eo, s 5 2 3 1024 S/m 2

9.18 In seawater (s 5 4 S/m, « 5 81«o, m 5 mo), find the ratio of the conduction to the dis-
placement currents at 10 MHz.

9.19 Assume that dry soil has s 5 1024 S/m, « 5 3«o, and m 5 mo. Determine the frequency at 
which the ratio of the magnitudes of the conduction current density and the displacement 
current density is unity.

9.20 In a dielectric (s 5 1024 S/m, mr 5 1, «r 5 4.5), the conduction current density is given 
as Jc 5 0.4 cos 12p 3 108 t 2  A/m2. Determine the displacement current density.

9.21 In a source-free region, H 5 Ho cos(wt 2 bz)ax   A/m. Find the displacement current 
density.

9.22 An ac voltage source is connected across the plates of a parallel-plate capacitor so that  
E 5 25sin(103t)az    V/m. Calculate the total current crossing a 2 3 5 m area placed per-
pendicular to the electric field.  Assume that the capacitor is air filled.

Section 9.5—Maxwell’s Equations

9.23 (a)  Write Maxwell’s equations for a linear, homogeneous medium in terms of Es and Hs, 
assuming only the time factor e2jvt.

(b)  In Cartesian coordinates, write the point form of Maxwell’s equations in Table 9.2 as 
eight scalar equations.

9.24 Show that in a source-free region 1J 5 0, rv 5 0 2 , Maxwell’s equations can be reduced to 
two. Identify the two all-embracing equations.

9.25  Show that fields

E 5 Eo cos x cos tay    and    H 5
Eo

mo
 sin x sin taz

  do not satisfy all of Maxwell’s equations.

9.26 Assuming a source-free region, derive the diffusion equation

=2E 5 ms 
'E
't

9.27 In a certain region,

J 5 12yax 1 xzay 1 z3az 2  sin 104t A/m

  find rv if rv 1x, y, 0, t 2 5 0.

Problems 467
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9.28  In free space, the electric field is given by 

E 5 Eo cosz costaz 

  Find the charge density ρv that will produce this field.

9.29  In free space, 

H 5 10 sin(108 t 1 bx)ay A/m. 

  Find E and b.

9.30 In free space,

  Find k, Jd, and H.

9.31 The electric field intensity of a spherical wave in free space is given by

  Find the corresponding magnetic field intensity H.

9.32 In a certain region for which s 5 0, m 5 2mo, and « 5 10«o

J 5 60 sin(109t 2 bz)ax mA/m2

(a) Find D and H.
(b) Determine b.

9.33 Use Maxwell’s equations to derive the continuity equation.

9.34 In a source-free region, show that

,2E 2 ms
'E
't

2 me
'2E
't2 5 0

9.35 Check whether the following fields are genuine EM fields (i.e., they satisfy Maxwell’s equa-
tions). Assume that the fields exist in charge-free regions.

(a) A 5 40 sin 1vt 1 10x 2az

(b) B 5
10
r

 cos 1vt 2 2r 2af

(c) C 5 a3r2 cot f ar 1
cos f

r
 afb  sin vt

(d) D 5
1
r

 sin u sin 1vt 2 5r 2au
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E 5
50
r

 cos 1108 t 2 kz 2arV/m

E 5
10
r

 sin u cos 1vt 2 br 2au V/m



9.36 Given the total electromagnetic energy

W 5
1
2

 3  1E # D 1 H # B 2  dv

  show from Maxwell’s equations that

'W
't

5 2C
S
 1E 3 H 2 # dS 2 3

v
 E # J dv

9.37 In air, E 5 cos(12px)sin(1011t 2 y)az V/m. Find H and .

9.38 An AM radio signal propagating in free space has 

E 5 Eo sin(1200pt 2 bz)ax

H 5
Eo
h

 sin(1200pt 2 bz)ay

  Determine  b and h.

9.39 An antenna radiates in free space and

H 5
12 sin u

r
 cos 12p 3 108t 2 br 2au mA/m

  Find the corresponding E in terms of b.

Section 9.6—Time-Varying Potentials

9.40 In free space Arv 5 0, J 5 0 2 , show that

A 5
m0

4pr
 1cos u ar 2 sin u au 2e jv1t2r/c2

  satisfies the wave equation in eq. (9.52). Find the corresponding V. Take c as the speed of 
light in free space.

9.41 Retrieve Faraday’s law in differential form from

E 5 2=V 2
'A
't

9.42 In free space, the retarded potentials are given by 

V 5 x(z 2 ct)V,      A 5 x(z/c 2 t)az Wb/m

  where c 5 
1

"moeo

(a) Prove that = # A 5 moeo 
'V
't

.

(b) Determine E.

9.43 Let A 5 Ao sin(vt 2 bz)ax Wb/m in free space. (a) Find V and E. (b) Express b in terms 
of v, «o, and mo.

Problems 469
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Section 9.7—Time-Harmonic Fields

9.44 Evaluate the following complex numbers and express your answers in polar form:

(a) 14 l
i
30° 22 10 l

i
50°      2 1/2

(b) 
1 1 j2

6 1 j8 2 7 l
ii
15°

(c) 
13 1 j4 2 2

12 2 j7 1 126 1 j10 2*

(d) 
13.6 l

ii
2200°            2 1/2

12.4 l
ii
45°            2 2 125 1 j8 2*

9.45 Determine the phasor forms of the following instantaneous vector fields:

(a) H 5 210cos(106t 1 p/3)ax

(b) E 5 4cos(4y)cos(104t 2 2x)az

(c) D 5 5sin(104t 1 p/3)ax 2 8cos(104t 2 p/4)ay

9.46 Find the instantaneous form for each of the following phasors:

(a) As 5 j10ax 1
20
j

ay

(b) Bs 5 j4e2 j2xax 1 6e1 j2xaz

(c) Cs 5 j2e220ze2 jp/4az

9.47 In a source-free vacuum region,

H 5
1
r

 cos 1vt 2 3z 2af A/m

(a) Express H in phasor form.

(b) Find the associated E field.

(c) Determine v.

9.48  In a certain homogeneous medium, « 5 81«o, and m 5 mo,

Es 5 10e j(vt 1 bz)ay V/m

Hs 5 Hoe j(vt 1 bz)ax A/m

  If v 5 2p 3 109 rad/m, find b and Ho.
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9.49 The magnetic phasor of a plane wave propagating in air is 

Hs(x) 5 12ejaxaz

  Determine  and Es(x). Assume   v = 109 rad/s.

9.50 Given that

d2y
dt2 1 4 

dy
dt

1 y 5 2 cos 3t

  Solve for y by using phasors.

9.51 Show that in a linear homogeneous, isotropic source-free region, both Es and Hs must 
 satisfy the wave equation

=2As 1 g2As 5 0

  where g2 5 v2me 2 jvms and As 5 Es or Hs.

Problems 471
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Hermann von Helmholtz (1821–1894), a German physicist, extended 
Joule’s results to a general principle and derived the wave equation (to be 
discussed in this chapter).

Helmholtz was born in Potsdam, and his youth was marred by illness. He 
graduated from the Medical Institute in Berlin in 1843 and was assigned to 
a military regiment at  Potsdam, but spent all his spare time doing research. 
In 1858 he became professor of anatomy and physiology at Bonn. In 1871 
he became professor of physics at Berlin. Helmholtz made important con
tributions in all major fields of science, not only unifying the diverse fields 

of medicine, physiology, anatomy, and physics, but also relating this universal view to the fine arts. 
Helmholtz expressed the relationship between mechanics, heat, light, electricity, and magnetism by 
treating them all as manifestations of a single force. He sought to synthesize Maxwell’s electromagnetic 
theory of light with the central force theorem.

Heinrich Rudolf Hertz  (1857–1894), a German experimental physicist, 
demonstrated that electromagnetic waves obey the same fundamental laws 
that  govern light. His work confirmed James Clerk Maxwell’s celebrated 
theory and prediction that such waves existed.

Hertz was born into a prosperous family in Hamburg, Germany. He 
attended the University of Berlin and did his doctorate under Hermann von 
Helmholtz. He became a professor at Karlsruhe, where he began his quest 
for electromagnetic waves. Hertz successively generated and detected elec
tromagnetic waves; he was first to show that light is  electromagnetic energy. 
In 1887 Hertz noted for the first time the photoelectric effect of electrons in a molecular structure. 
Although Hertz died at the age of 37, his discovery of electromagnetic waves paved the way for the 
practical use of such waves in radio, television, and other communication systems. The unit of fre
quency, the hertz (Hz), bears his name.

10_Sadiku_Ch10.indd   472 25/09/17   3:16 PM



473

C H A P T E R

473

10.1 INTRODUCTION

Our first application of Maxwell’s equations will be in relation to electromagnetic wave 
propagation. The existence of EM waves, predicted by Maxwell’s equations, was first inves
tigated by Heinrich Hertz. After several calculations and experiments, Hertz succeeded in 
generating and detecting radio waves, which are sometimes called Hertzian waves in his 
honor.

In general, waves are means of transporting energy or information.

Typical examples of EM waves include radio waves, TV signals, radar beams, and light 
rays. All forms of EM energy share three fundamental characteristics: they all travel at high 
velocity; in traveling, they assume the properties of waves; and they radiate outward from a 
source, without benefit of any discernible physical vehicles. The problem of radiation will 
be addressed in Chapter 13.

In this chapter, our major goal is to solve Maxwell’s equations and describe EM wave 
motion in the following media:

1. Free space 1s 5 0, e 5 eo, m 5 mo 2
2. Lossless dielectrics 1s . 0, e 5 ereo, m 5 mrmo, or s V ve 2
3. Lossy dielectrics 1s 2 0, e 5 ereo, m 5 mrmo 2
4. Good conductors 1s . `, e 5 eo, m 5 mrmo, or s W ve 2

where v is the angular frequency of the wave. Case 3, for lossy dielectrics, is the most 
 general case and will be considered first. Once this general case has been solved, we  simply 
 derive the other cases (1, 2, and 4) from it as special cases by changing the values of s, 
, and «. However, before we consider wave motion in those different media, it is appro
priate that we study the characteristics of waves in general. This is important for proper 
 understanding of EM waves. The reader who is conversant with the concept of waves may 
skip Section 10.2. Power considerations, reflection, and transmission between two different 
media will be discussed later in the chapter.

ELECTROMAGNETIC WAVE 
PROPAGATION

Young people tell what they are doing, old people what they have done, and fools what 
they wish to do. 

—FRENCH PROVERB

10
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474 CHAPTER 10 ELECTROMAGNETIC WAVE PROPAGATION

A clear understanding of EM wave propagation depends on a grasp of what waves are in 
general.

A wave is a function of both space and time.

Wave motion occurs when a disturbance at point A, at time to, is related to what happens 
at point B, at time t . to. A wave equation, as exemplified by eqs. (9.51) and (9.52), is a 
partial differential equation of the second order. In one dimension, a scalar wave equation 
takes the form of

 
'2E
't2 2 u2 

'2E
'z2 5 0 (10.1)

where u is the wave velocity. Equation (10.1) is a special case of eq. (9.51) in which the 
medium is source free 1rv 5 0, J 5 0 2 . It can be solved by following a procedure similar 
to that in Example 6.5. Its solutions are of the form

    E1 5 f (z 2 ut) (10.2a)

 E2 5 g (z 1 ut) (10.2b)
or
         E 5 f (z 2 ut) 1 g (z 1 ut) (10.2c)

where f and g denote any function of z 2 ut and z 1 ut, respectively. Examples of such 
functions include z 6 ut, sin k 1z 6 ut 2 , cos k 1z 6 ut 2 , and e jk1z6ut2, where k is a constant. 
It can easily be shown that these functions all satisfy eq. (10.1).

If we particularly assume harmonic (or sinusoidal) time dependence e jvt, eq. (10.1) 
becomes

 
d2Es

dz2 1 b2Es 5 0 (10.3)

where b 5 v/u and Es is the phasor form of E. The solution to eq. (10.3) is similar to  
Case 3 of Example 6.5 [see eq. (6.5.12)]. With the time factor inserted, the possible solu
tions to eq. (10.3) are

 E1 5 Ae j1vt2bz2 (10.4a)

 E2 5 Be j1vt1bz2  (10.4b)

where E1 means positive ztravel and E2 means negative travel. Combining E1 and E2 
leads to

 E 5 Ae j 1vt2bz2 1 Be j 1vt1bz2 (10.4c)

where A and B are real constants.

†
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For the moment, let us consider the solution in eq. (10.4a). Taking the imaginary part 
of this equation, we have

 E 5 A sin 1vt 2 bz 2  (10.5)

This is a sine wave chosen for simplicity; a cosine wave would have resulted had we taken 
the real part of eq. (10.4a). Note the following characteristics of the wave in eq. (10.5):

1. It is time harmonic because we assumed time dependence of the form e jvt to arrive 
at eq. (10.5).

2. The amplitude of the wave A has the same units as E.
3. The phase (in radians) of the wave depends on time t and space variable z, it is the 

term 1vt 2 bz 2 .
4. The angular frequency v is given in radians per second; b, the phase constant or 

wave number, is given in radians per meter.

Because E varies with both time t and the space variable z, we may plot E as a func
tion of t by keeping z constant and vice versa. The plots of E 1z, t 5 constant 2  and 
E 1 t, z 5 constant 2  are shown in Figure 10.1(a) and (b), respectively. From Figure 10.1(a), 
we observe that the wave takes distance l to repeat itself and hence l is called the  

FIGURE 10.1 Plot of E 1z, t 2 5 A sin 1vt 2 bz 2 : (a) with 
 constant t, (b) with constant z.
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wavelength (in meters). From Figure 10.1(b), the wave takes time T to repeat itself; 
 consequently T is known as the period, in seconds. Since it takes time T for the wave to travel 
distance l at the speed u, we expect

 l 5 uT (10.6a)

But T 5 1/f , where f is the frequency (the number of cycles per second) of the wave in 
hertz (Hz). Hence,

 u 5 f l (10.6b)

Because of this fixed relationship between wavelength and frequency, one can identify 
the position of a radio station within its band by either the frequency or the wavelength. 
Usually the frequency is preferred. Also, because

 v 5 2pf  (10.7a)

 b 5
v

u  (10.7b)

and

 T 5
1
f

5
2p

v
 (10.7c)

we expect from eqs. (10.6) and (10.7) that

 b 5
2p

l
5 u  (10.8)

Equation (10.8) shows that for every wavelength of distance traveled, a wave undergoes a 
phase change of 2p radians.

We will now show that the wave represented by eq. (10.5) is traveling with a veloc
ity u in the 1zdirection. To do this, we consider a fixed point P on the wave. We sketch  

vt 2 bz 5 constant

or

 
dz
dt

5
v

b
5 u (10.9)

which is the same as eq. (10.7b). Equation (10.9) shows that the wave travels with veloc
ity u in the 1zdirection. Similarly, it can be shown that the wave B sin 1vt 1 bz 2  in  
eq. (10.4b) is traveling with velocity u in the 2zdirection.

In summary, we note the following:

1. A wave is a function of both time and space.
2. Though time t 5 0 is arbitrarily selected as a reference for the wave, a wave is 

without beginning or end.
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v

eq. (10.5) at times t 5 0, T/4, and T/2 as in Figure 10.2. From the figure, it is evident that 
as the wave advances with time, point P moves along the 1zdirection. Point P is a point 
of constant phase, therefore
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3. A negative sign in 1vt 6 bz 2  is associated with a wave propagating in the  
1z direction (forwardtraveling or positivegoing wave), whereas a positive sign 
indicates that a wave is traveling in the 2zdirection (backwardtraveling or 
negativegoing wave).

4. Since sin 12c 2 5 2sin c 5 sin 1c 6 p 2 , whereas cos 12c 2 5 cos c,

 sin 1c 6 p/2 2 5 6cos c (10.10a)

 sin 1c 6 p 2 5 2sin c  (10.10b)

 cos 1c 6 p/2 2 5 7sin c  (10.10c)

 cos 1c 6 p 2 5 2cos c (10.10d)

 where c 5 vt 6 bz. One of the relations in eqs. (10.10) can be used to represent 
any timeharmonic wave in the form of sine or cosine.

A large number of frequencies visualized in numerical order constitute a spectrum. 
Table 10.1 shows the frequencies at which various types of energy in the EM spectrum 
occur. Frequencies usable for radio communication occur near the lower end of the EM 
spectrum. As frequency increases, the manifestation of EM energy becomes dangerous to 
human  beings. Microwave ovens, for example, can pose a hazard if not properly shielded. 
The practical difficulties of using EM energy for communication purposes also increase 
as frequency increases, until finally it can no longer be used. As communication methods 
 improve, the limit to usable frequency has been pushed higher. Today communication 
satellites use frequencies near 14 GHz. This is still far below light frequencies, but in the 

FIGURE 10.2 Plot of E 1z, t 2 5 A 
sin 1vt 2 bz 2  at time (a) t 5 0, 
(b) t 5 T/4, (c) t 5 T/2; P moves 
in the 1z-direction with velocity u.
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5. E and H are called uniform waves if they lie in a plane and are constant over such planes.

enclosed environment of fiber optics, light itself can be used for radio communication.
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An electric field in free space is given by

E 5 50 cos 1108t 1 bx 2ay V/m

(a) Find the direction of wave propagation.
(b) Calculate b and the time it takes to travel a distance of l/2.
(c) Sketch the wave at t 5 0, T/4, and T/2.

Solution:
(a) From the positive sign in 1vt 1 bx 2 , we infer that the wave is propagating along 2ax. 
This will be confirmed in part (c) of this example.
(b) In free space, u 5 c:

b 5
v

c 5
108

3 3 108 5
1
3

or

b 5 0.3333 rad/m

If T is the period of the wave, it takes T seconds to travel a distance l at speed c. Hence to 
travel a distance of l/2 will take

t1 5
T
2

5
1
2

 
2p

v
5

p

108 5 31.42 ns

Alternatively, because the wave is traveling at the speed of light c,

l

2
5 ct1  or  t1 5

l

2c

But

l 5
2p

b
5 6p

TABLE 10.1 Electromagnetic Spectrum

EM Phenomena Examples of Uses Approximate Frequency Range

Cosmic rays Physics, astronomy 1014 GHz and above
Gamma rays Cancer therapy 1010–1013 GHz
Xrays Xray examination 108–109 GHz
Ultraviolet radiation Sterilization 106–108 GHz
Visible light Human vision 105–106 GHz
Infrared radiation Photography 103–104 GHz
Microwave waves Radar, microwave relays, 

  satellite communication
3–300 GHz 

Radio waves UHF television 470–806 MHz
VHF television, FM radio 54–216 MHz
Shortwave radio 3–26 MHz
AM radio 535–1605 kHz

EXAMPLE 10.1
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Hence,

t1 5
6p

2 13 3 108 2 5 31.42 ns

as obtained before.

(c) At t 5 0,   Ey 5 50 cos bx

 At t 5 T/4, Ey 5 50 cosav # 2p

4v
1 bxb 5 50 cos 1bx 1 p/2 2

   5 250 sin bx

 At t 5 T/2, Ey 5 50 cosav # 2p

2v
1 bxb 5 50 cos 1bx 1 p 2

   5 250 cos bx

Ey at t 5 0, T/4, T/2 is plotted against x as shown in Figure 10.3. Notice that a point P 
 (arbitrarily selected) on the wave moves along 2ax as t increases with time. This shows that 
the wave travels along 2ax. 

FIGURE 10.3 For Example 10.1; 
wave travels along 2ax.
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PRACTICE EXERCISE 10.1

In free space, H 5 0.1 cos 12 3 108t 2 kx 2ay A/m. 

(a) Calculate k, l, and T.
(b) Calculate the time t1 it takes the wave to travel l/8.
(c) Sketch the wave at time t1.

Answer:  (a) 0.667 rad/m, 9.425 m, 31.42 ns, (b) 3.927 ns, (c) see Figure 10.4.

10.3 WAVE PROPAGATION IN LOSSY DIELECTRICS

As mentioned in Section 10.1, wave propagation in lossy dielectrics is a general case from 
which wave propagation in media of other types can be derived as special cases. Therefore, 
this section is foundational to the next three setions.

A lossy dielectric is a medium in which an EM wave, as it propagates, loses power 
owing to imperfect dielectric.

In other words, a lossy dielectric is a partially conducting medium (imperfect dielectric 
or imperfect conductor) with s 2 0, as distinct from a lossless dielectric (perfect or good 
 dielectric) in which s 5 0.

Consider a linear, isotropic, homogeneous, lossy dielectric medium that is charge free 
1macroscopic rv 5 0 2 . Assuming and suppressing the time factor e jvt, Maxwell’s equations 
(see Table 9.2) become

  = # Es 5 0  (10.11)

  = # Hs 5 0  (10.12)

 = 3 Es 5 2jvmHs  (10.13)

 = 3 Hs 5 1s 1 jve 2Es (10.14)

FIGURE 10.4 For Practice Exercise 
10.1(c).
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Taking the curl of both sides of eq. (10.13) gives

 = 3 = 3 Es 5 2jvm 1= 3 Hs 2  (10.15)

Applying the vector identity

 = 3 1= 3 A 2 5 = 1= # A 2 2 =2A (10.16)

to the lefthand side of eq. (10.15) and invoking eqs. (10.11) and (10.14), we obtain

= 1= # Es 2 2 =2Es 5 2jvm 1s 1 jve 2Es
 0
or

 =2Es 2 g2Es 5 0 (10.17)

where

 g2 5 jvm 1s 1 jve 2  (10.18)

and g, in reciprocal meters, is called the propagation constant of the medium. By a similar 
procedure, it can be shown that for the H field,

 =2Hs 2 g2Hs 5 0 (10.19)

Equations (10.17) and (10.19) are known as homogeneous vector Helmholtz’s equations or 
simply vector wave equations. In Cartesian coordinates, eq. (10.17), for example, is equiva
lent to three scalar wave equations, one for each component of E along ax, ay, and az.

Since g in eqs. (10.17) to (10.19) is a complex quantity, we may let

 g 5 a 1 jb (10.20)

We obtain a and b from eqs. (10.18) and (10.20) by noting that

 2Re g2 5 b2 2 a2 5 v2me (10.21)

and

 0 g2 0 5 b2 1 a2 5 vm "s2 1 v2e2 (10.22)

From eqs. (10.21) and (10.22), we obtain

 

 

⎯
⎯

→
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a 5 vÇ
me

2  cÅ1 1 c s
ve

d 2
2 1 d

b 5 vÇ
me

2  cÅ1 1 c s
ve

d 2
1 1 d

 (10.23)

(10.24)
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only an xcomponent, then 

 Es 5 Exs 1z 2ax (10.25)

We then substitute into eq. (10.17), which yields

 1=2 2 g2 2Exs 1z 2 5 0 (10.26)

Without loss of generality, if we assume that a wave propagates in an unbounded 
medium along az and that E has only an xcomponent that does not vary with x and y, then

'2Exs 1z 2
'x2 1

'2Exs 1z 2
'y2 1

'2Exs 1z 2
'z2 2 g2Exs 1z 2 5 0

 0 0
or

 c d2

dz2 2 g2 dExs 1z 2 5 0 (10.27)

This is a scalar wave equation, a linear homogeneous differential equation, with solution 
(see eq. 6.5.13a in Case 3 of Example 6.5),

 Exs 1z 2 5 Eoe2gz 1 E roegz (10.28)

where Eo and E ro are constants. The fact that the field must be finite at infinity requires that 
E ro 5 0. Alternatively, because egz denotes a wave traveling along 2az, whereas we assume 
wave propagation along az, E ro 5 0. Whichever way we look at it, E ro 5 0. Inserting the time 
factor e jvt into eq. (10.28) and using eq. (10.20), we obtain

Ez, t 2 5 Re 3Exsz 2e jvtax 4 5 ReEoe2aze jvt2bz2ax 2

or

 E 1z, t 2 5 Eoe2azcos 1vt 2 bz 2ax (10.29)

A sketch of |E 0  at times t 5 0 and t 5 Dt is portrayed in Figure 10.5, where it is evident that 
E has only an xcomponent and it is traveling in the 1z-direction. Having obtained E 1z, t 2 , 
we obtain H 1z, t 2  either by taking similar steps to solve eq. (10.19) or by using eq. (10.29) in 
conjunction with Maxwell’s equations, as we did in Example 9.8. We will eventually arrive at

 H 1z, t 2 5 Re 1Hoe2aze j1vt2bz2 ay 2  (10.30)

where

 Ho 5
Eo

h
 (10.31)

and h is a complex quantity known as the intrinsic impedance, in ohms, of the medium. It 
can be shown by following the steps taken in Example 9.8 that

⎯
⎯

→

⎯
⎯

→
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Without loss of generality, if we assume that a wave propagates along 1az and that Es has 
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with

 0h 0 5
"m/e

c1 1 a s

ve
b

2

d
1/4,  tan 2uh 5

s

ve
 (10.33)

H 5 Re c Eo

0h 0 e juh
 e2aze j 1vt2bz2 ay d

or

 H 5
Eo

0h 0  e
2az cos 1vt 2 bz 2 uh 2  ay (10.34)

Notice from eqs. (10.29) and (10.34) that as the wave propagates along az, it decreases or 
attenuates in amplitude by a factor e2az, and hence a is known as the attenuation constant, 
or attenuation coefficient, of the medium. It is a measure of the spatial rate of decay of 

decibels per meter (dB/m). An attenuation of 1 neper denotes a reduction to e21 of the 
original value, whereas an increase of 1 neper indicates an increase by a factor of e. Hence, 
for voltages 

 1 Np 5 20 log10 e 5 8.686 dB (10.35)

From eq. (10.23), we notice that if s 5 0, as is the case for a lossless medium and free 
space, a 5 0 and the wave is not attenuated as it propagates. The quantity b is a measure 
of the phase shift per unit length in radians per meter and is called the phase constant or 

A

A

FIGURE 10.5 An E-field with 
an x-component traveling in the 
1z-direction at times t 5 0 and 
t 5 Dt; arrows indicate instanta-
neous values of E.
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h 5 Å
jvm

s 1 jve
5 0h 0 luh 5 0h 0 e juh (10.32)

where 0 # uh # 45º. Substituting eqs. (10.31) and (10.32) into eq. (10.30) gives

the wave in the medium, measured in nepers per meter (Np/m), and can be expressed in 
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wave number. In terms of b, the wave velocity u and wavelength l are, respectively, given 
by [see eqs. (10.7b) and (10.8)]

 u 5
v

b
,  l 5

2p

b
 (10.36)

We also notice from eqs. (10.29) and (10.34) that E and H are out of phase by uh at any 
instant of time due to the complex intrinsic impedance of the medium. Thus at any time, 
E leads H(or H lags E) by uh. Finally, we notice that the ratio of the magnitude of the con
duction current density Jc to that of the displacement current density Jd in a lossy medium is

0 Jcs 0
0 Jds 0

5
0sEs 0
0 jveEs 0

5
s

ve
5 tan u

or

 tan u 5
s

ve
 (10.37)

where tan u is known as the loss tangent and u is the loss angle of the medium as illustrated 
in Figure 10.6. Although a line of demarcation between good conductors and lossy dielec
trics is not easy to make, tan u or u may be used to determine how lossy a medium is. A 
medium is said to be a good (lossless or perfect) dielectric if tan u is very small 1s V ve 2  
or a good conductor if tan u is very large 1s W ve 2 . From the viewpoint of wave propaga
tion, the characteristic behavior of a medium depends not only on its constitutive param
eters s, «, and  but also on the frequency of operation. A medium that is  regarded as a 
good conductor at low frequencies may be a good dielectric at high frequencies. Note from 
eqs. (10.33) and (10.37) that

 u 5 2uh (10.38)

From eq. (10.14)

= 3 Hs 5 1s 1 jve 2Es 5 jve c1 2
js
ve

dEs

    5 jvecEs  
(10.39)

FIGURE 10.6 Loss angle of a lossy medium.
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where

 ec 5 e c1 2 j 
s

ve
d 5 e 312j tan u 4 (10.40a)

or

 ec 5 e r 2 jes (10.40b)

with e r 5 e, es 5 s/v, e 5 eoer; «c is called the complex permittivity of the medium. We 

 tan u 5
es
e r

5
s

ve
 (10.41)

In subsequent sections, we will consider wave propagation in media of other types 
that may be regarded as special cases of what we have considered here. Thus we will simply 
 deduce the governing formulas from those obtained  for the general case treated in this 
section. The student is advised not just to memorize the formulas but to observe how they 
are easily obtained from the formulas for the general case.

A lossy dielectric has an intrinsic impedance of 200 l
i
30° V at a particular radian frequency 

v. If, at that frequency, the plane wave propagating through the dielectric has the magnetic 
field component

H 5 10 e2ax cosavt 2
1
2

 xbay A/m

find E and a. 

Solution:
The given wave travels along ax so that ak 5 ax; aH 5 ay, so

2aE 5 ak 3 aH 5 ax 3 ay 5 az

or
aE 5 2az

Also Ho 5 10, so

Eo

Ho
5 h 5 200 l

i
30° 5 200 e jp/6 S  Eo 5 2000e jp/6

Except for the amplitude and phase difference, E and H always have the same form. Hence

E 5 Re 12000e jp/6e2gxe jvtaE 2

EXAMPLE 10.2
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observe that the ratio of « to « is the loss tangent of the medium; that is,
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or

E 5 22e2ax cosavt 2
x
2

1
p

6
baz kV/m

But 
s

ve
5 tan 2uh 5 tan 60° 5 "3. Hence,

a

b
5 c 2 2 1

2 1 1
d

1/2

5
1

"3

or

a 5
b

"3
5

1

2"3
5 0.2887 Np/m

PRACTICE EXERCISE 10.2

A plane wave propagating through a medium with er 5 8, mr 5 2 has E 5 0.5
e2z/3 sin 1108t 2 bz 2ax V/m. Determine

(a)  b   (d) Wave velocity
(b) The loss tangent  (e) H field
(c) Intrinsic impedance

Answer:  (a) 1.374 rad/m, (b) 0.5154, (c) 177.72 l
iii
13.63° V, (d) 7.278 3 107 m/s, 

(e) 2.817e2z/3 sin(108 t 2 bz 2 13.63° 2ay mA/m.
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Knowing that b 5 1/2, we need to determine 	. Since

a 5 vÇ
me

2
 cÅ1 1 c s

ve
d 2

2 1 d
and

b 5 vÇ
me

2
 cÅ1 1 c s

ve
d 2

1 1 d

a

b
5 ≥ Å

1 1 c s

ve
d 2

2 1

Å1 1 c s

ve
d 2

1 1

¥
1/2
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10.4 PLANE WAVES IN LOSSLESS DIELECTRICS

In a lossless dielectric, s V ve. It is a special case of that in Section 10.3 except that

 s . 0,  e 5 eoer,  m 5 momr (10.42)

Substituting these into eqs. (10.23) and (10.24) gives

 a 5 0,  b 5 v"me (10.43a)

 u 5
v

b
5

1

"me
,  l 5

2p

b
 (10.43b)

Also

 h 5 Å
m

e
 l0° (10.44)

and thus E and H are in time phase with each other.

10.5 PLANE WAVES IN FREE SPACE

Plane waves in free space comprise a special case of what we considered in Section 10.3. 
In this case,

 s 5 0,  e 5 eo,  m 5 mo (10.45)

  a 5 0, b 5 v"moeo 5
v

c  (10.46a)

  u 5
1

"moeo

5 c, l 5
2p

b
 (10.46b)

where c . 3 3 108 m/s, the speed of light in a vacuum. The fact that EM waves  
travel in free space at the speed of light is significant. It provides some evidence that 
light is the manifestation of an EM wave. In other words, light is characteristically 
electromagnetic. 
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This may also be regarded as a special case of Section 10.4. Thus we simply replace « by «o 
and  by o in eq. (10.43), or we substitute eq. (10.45) directly into eqs. (10.23) and (10.24). 
Either way, we obtain
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By substituting the constitutive parameters in eq. (10.45) into eq. (10.33), uh 5 0 and 
h 5 ho, where ho is called the intrinsic impedance of free space and is given by

 

 E 5 Eo cos 1vt 2 bz 2  ax (10.48a)

then

 H 5 Ho cos 1vt 2 bz 2ay 5
Eo

ho
 cos 1vt 2 bz 2ay (10.48b)

The plots of E and H are shown in Figure 10.7(a). In general, if aE, aH, and ak are unit 
 vectors along the E field, the H field, and the direction of wave propagation; it can be shown 
that (see Proble

ak 3 aE 5 aH

or

ak 3 aH 5 2aE

or

 aE 3 aH 5 ak (10.49)

Both E and H fields (or EM waves) are everywhere normal to the direction of wave propa
gation, ak. That means that the fields lie in a plane that is transverse or orthogonal to the 

FIGURE 10.7 Plots of E and H (a) as functions of z at t 5 0; and (b) at z 5 0. The arrows 
 indicate instantaneous values.
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ho 5 Å
mo

eo
5 120p . 377 V (10.47)

m 10.69).
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direction of wave propagation. They form an EM wave that has no electric or magnetic 
field components along the direction of propagation; such a wave is called a transverse 
electromagnetic (TEM) wave. A combination of E and H is called a uniform plane wave 
because E (or H) has the same magnitude throughout any transverse plane, defined by 
z 5 constant. The direction in which the electric field points is the polarization of a TEM 
wave.1 The wave in eq. (10.29), for example, is polarized in the xdirection. This should 
be observed in Figure 10.7(b), which illustrates uniform plane waves. A uniform plane 
wave cannot exist physically because it stretches to infinity and would represent an infinite 
energy. Such waves are characteristically simple and fundamentally important. They serve 
as approximations to practical waves such as those from a radio antenna at distances suf
ficiently far from radiating sources. Although our discussion after eq. (10.48) deals with 
free space, it also applies for any other isotropic medium.

10.6 PLANE WAVES IN GOOD CONDUCTORS

 s . `,  e 5 eo,  m 5 momr (10.50)

Also, from eq. (10.32),

 h 5 Å
jvm

s
5 Å

vm

s
 l45° (10.52)

and thus E leads H by 45°. If

 E 5 Eoe2azcos 1vt 2 bz 2ax (10.53a)

then

 H 5
Eo

Å
vm

s

 e2az cos 1vt 2 bz 2 45° 2ay (10.53b)

1 Polarization will be covered in Section 10.7.
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Hence, eqs. (10.23) and (10.24) become

 a 5 b 5 Å
vms

2
5 "pfms (10.51a)

 u 5
v

b
5 Å

2v

ms
,  l 5

2p

b
 (10.51b)

Plane waves in good conductors comprise another special case of that considered in 
Section 10.3. A perfect, or good conductor, is one in which s W ve, so that 

s

ve, W 1; that is,
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Therefore, as the E (or H) wave travels in a conducting medium, its amplitude is attenuated 
by the factor e2az. The distance d, shown in Figure 10.8, through which the wave amplitude 
decreases to a factor e21 (about 37% of the original value) is called skin depth or penetration 
depth of the medium; that is,

Eoe2ad 5 Eoe21

or

 d 5
1
a

 (10.54a)

The skin depth is a measure of the depth to which an EM wave can penetrate the 
medium.

Equation (10.54a) is generally valid for any material medium. For good conductors,  
eqs. (10.51a) and (10.54a) give

 

The illustration in Figure 10.8 for a good conductor is exaggerated. However, for a partially 
conducting medium, the skin depth can be quite large. Note from eqs. (10.51a), (10.52), 
and (10.54b) that for a good conductor,

 

Noting that for good conductors we have a 5 b 5
1
d

, eq. (10.53a) can be written as

E 5 Eoe2z/d cosavt 2
z
d
bax

showing that d measures the exponential damping of the wave as it travels through the 
conductor. The skin depth in copper at various frequencies is shown in Table 10.2. From 
Table 10.2, we notice that the skin depth decreases with increasing frequency. Thus, E and 
H can hardly propagate through good conductors.

The phenomenon whereby field intensity in a conductor rapidly decreases is known 
as the skin effect. It is a tendency of charges to migrate from the bulk of the conducting 
material to the surface, resulting in higher resistance. The fields and associated currents are 
confined to a very thin layer (the skin) of the conductor surface. For a wire of radius a, for 
example, it is a good approximation at high frequencies to assume that all of the current 
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d 5
1

!pfms
5

1
a

 (10.54b)

h 5
1

sd
 "2 e jp/4 5

1 1 j
sd

 (10.55)



10.6 Plane Waves in Good Conductors 491

flows in the circular ring of thickness d as shown in Figure 10.9. The skin effect appears in 
different guises in such problems as attenuation in waveguides, effective or ac resistance of 
transmission lines, and electromagnetic shielding. It is used to advantage in many applica
tions. For example, because the skin depth in silver is very small, the difference in perfor
mance between a pure silver component and a silverplated brass component is negligible, 
so silver plating is often used to reduce the material cost of waveguide components. For 
the same reason, hollow tubular conductors are used instead of solid conductors in out
door television antennas. Effective electromagnetic shielding of electrical devices can be 
provided by conductive enclosures a few skin depths in thickness.

The skin depth is useful in calculating the ac resistance due to skin effect. The resis
tance in eq. (5.16) is called the dc resistance, that is,

 Rdc 5
,

sS
 

We define the surface or skin resistance Rs (in V) as the real part of h for a good conductor. 
Thus from eq. (10.55)

 

This is the resistance of a unit width and unit length of the conductor. It is equivalent to 
the dc resistance for a unit length of the conductor having crosssectional area 1 3 d. Thus 

FIGURE 10.8 Illustration of skin depth.

TABLE 10.2 Skin Depth in Copper*

Frequency (Hz) 10 60 100 500 104 108 1010

Skin depth (mm) 20.8 8.6 6.6 2.99 0.66 6.6 3 1023 6.6 3 1024
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Rs 5
1

sd
5 Å

pfm
s

 (10.56)

*For copper, s 5 5.8 3 107 S/m, m 5 mo, d 5 66.1/!f  (in mm).
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for a given width w and length , the ac resistance is calculated by using the familiar dc 
 resistance relation of eq. (5.16) and assuming a uniform current flow in the conductor of 
thickness d; that is,

 Rac 5
,

sdw
5

Rs,

w  (10.57)

where S . dw. For a conductor wire of radius a (see Figure 10.9), w 5 2pa, so

Rac

Rdc
5

,

s2pad

,

spa2

5
a

2d
5

a
2
!pfms

Since d V a at high frequencies, this shows that Rac is far greater than Rdc. In general, the 
ratio of the ac to the dc resistance starts at 1.0 for dc and very low frequencies and increases 
as the frequency increases. Also, although the bulk of the current is nonuniformly distrib
uted over a thickness of 5d of the conductor, the power loss is the same as though it were 
uniformly distributed over a thickness of d and zero elsewhere. This is one more reason 
that d is referred to as the skin depth. For easy reference, the formulas for propagation 
constants for different media are summarized in Table 10.3.

FIGURE 10.9 Skin depth at high frequencies, d V a.

TABLE 10.3 Formulas, for a, b, h, n, and l 

Lossy Medium Lossless Medium Free Space Conductor

a 5

vD
me

2
DÑ1 1 a s

ve
b

2

2 1T T

1/2 0 0 "pfms

b 5

vD
me

2
DÑ1 1 a s

ve
b

2

1 1T T

1/2
v"me v"moeo "pfms

h 5

Å
jvm

s 1 jve Å
m

e Å
mo

eo
 . 377

(1 1 j)
a

s

n 5
v

b
,       l 5

2p

b
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In a lossless dielectric for which h 5 60p, mr 5 1, and H 5 20.1 cos 1vt 2 z 2ax 1
0.5 sin 1vt 2 z 2ay A/m, calculate «r, v, and E.

Solution:

From the given H field, E can be calculated in two ways: by using the techniques (based 
on Maxwell’s equations) developed in this chapter or directly, by using Maxwell’s equations 
as in Chapter 9.

Method 1: To use the techniques developed in the present chapter, we let

H 5 H1 1 H2

where H1 5 20.1 cos 1vt 2 z 2ax and H2 5 0.5 sin 1vt 2 z 2ay and the corresponding 
electric field

E 5 E1 1 E2

where E1 5 E1o cos 1vt 2 z 2aE1
 and E2 5 E2o sin 1vt 2 z 2aE2

. Notice that although H has 
components along ax and ay, it has no component along the direction of propagation; it is 
therefore a TEM wave.
For E1,

aE1
5 2 1ak 3 aH1

2 5 2 1az 3 2ax 2 5 ay

E1o 5 hH1o 5 60p 10.1 2 5 6p

Hence

E1 5 6p cos 1vt 2 z 2ay

EXAMPLE 10.3
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In this case, s 5 0, a 5 0, and b 5 1, so

h 5 "m/e 5 Å
mo

eo
 Å

mr

er
5

120p

"er

or

"er 5
120p

h
5

120p

60p
5 2  S   er 5 4

b 5 v"me 5 v"moeo "mrer 5
v

c  "4 5
2v

c

or

v 5
bc
2

5
1 13 3 108 2

2
5 1.5 3 108 rad/s
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For E2,

aE2
5 2 1ak 3 aH2

2 5 2 1az 3 ay 2 5 ax

E2o 5 hH2o 5 60p 10.5 2 5 30p

Hence

E2 5 30p sin 1vt 2 z 2ax

Adding E1 and E2 gives E; that is,

E 5 94.25 sin 11.5 3 108t 2 z 2ax 1 18.85 cos 11.5 3 108t 2 z 2ay V/m

Method 2: We may apply Maxwell’s equations directly

= 3 H 5 sE 1 e 
'E
't
  S   E 5

1
e

 3= 3 H dt

 0
because s 5 0. But

where H1o 5 20.1 and H2o 5 0.5. Hence

 E 5
1
e

 3= 3 H dt 5
H2o

ev
 sin 1vt 2 z 2ax 2

H1o

ev
 cos 1vt 2 z 2ay

  5 94.25 sin 1vt 2 z 2ax 1 18.85 cos 1vt 2 z 2ay V/m

as expected.

⎯
⎯

→

PRACTICE EXERCISE 10.3

A plane wave in a nonmagnetic medium has E 5 50 sin 1108t 1 2z 2ay V/m. Find

(a) The direction of wave propagation
(b) l, f, and er
(c) H

Answer:  (a) in the 2zdirection, (b) 3.142 m, 15.92 MHz, 36, (c) 0.7958 
sin 1108t 1 2z 2ax A/m.
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 = 3 H 5 ∞
ax ay az

'
'x

'
'y

'
'z

Hx 1z 2 Hy 1z 2 0

∞ 5 2
'Hy

'z
ax 1

'Hx

'z
ay

 5 H2o cos 1vt 2 z 2ax 1 H1o sin 1vt 2 z 2ay



10.6 Plane Waves in Good Conductors 495

A uniform plane wave propagating in a medium has

E 5 2e2az sin 1108t 2 bz 2ay V/m

If the medium is characterized by er 5 1, mr 5 20, and s 5 3 S/m, find a, b, and H.

Solution:
We need to determine the loss tangent to be able to tell whether the medium is a lossy 
 dielectric or a good conductor.

s

ve
5

3

108 3 1 3
1029

36p

5 3393 W 1

EXAMPLE 10.4
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showing that the medium may be regarded as a good conductor at the frequency of opera-
tion. Hence,

 a 5 b 5 Å
mvs

2
5 c 4p 3 1027 3 20 1108 2 13 2

2
d 1/2

  5 61.4

   a 5 61.4 Np/m,  b 5 61.4 rad/m

Also

  0h 0 5 Å
mv

s
5 c 4p 3 1027 3 20 1108 2

3
d 1/2

  5 Å
800p

3

  tan 2uh 5
s

ve
5 3393  S   uh 5 45º 5

p

4
Hence

H 5 Hoe2az sinavt 2 bz 2
p

4
baH

where

aH 5 ak 3 aE 5 az 3 ay 5 2ax

and

Ho 5
Eo0h 0 5 2 Å

3
800p

5 69.1 3 1023

Thus

H 5 269.1 e261.4z sina108t 2 61.42z 2
p

4
bax mA/m 
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A plane wave E 5 Eo cos 1vt 2 bz 2ax is incident on a good conductor at z $ 0. Find the 
current density in the conductor.

Solution:
Since the current density J 5 sE, we expect J to satisfy the wave equation in eq. (10.17); 
that is, we expect to find

=2Js 2 g2Js 5 0

Also the incident E has only an xcomponent and varies with z. Hence J 5 Jx 1z, t 2ax and

d2

dz2Jsx 2 g2Jsx 5 0

which is an ordinary differential equation with solution (see Case 2 of Example 6.5)

Jsx 5 Ae2gz 1 Be1gz

The constant B must be zero because Jsx is finite as z S  `. But in a good conductor, 

g 5 a 1 jb 5 a 11 1 j 2 5
11 1 j 2

d

and

Jsx 5 Ae2z111j2/d

or

Jsx 5 Jsx 10 2  e2z111j2/d

where Jsx (0) is the current density on the conductor surface. 

PRACTICE EXERCISE 10.4

A plane wave traveling in the 1y-direction in a lossy medium 1er 5 4, mr 5 1, 
s 5 1022 S/m 2  has E 5 30 cos 1109p t 1 p/4 2az V/m at y 5 0. Find

(a) E at y 5 1 m, t 5 2 ns
(b) The distance traveled by the wave to have a phase shift of 10
(c) The distance traveled by the wave to have its amplitude reduced by 40%
(d) H at y 5 2 m, t 5 2 ns

Answer:  (a) 2.844az V/m, (b) 8.349 mm, (c) 542 mm, (d) 222.6ax mA/m.

EXAMPLE 10.5
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s W ve, so that a 5 b 5 1/d. Hence
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For the copper coaxial cable of Figure 7.12, let a 5 2 mm, b 5 6 mm, and t 5 1 mm. 
Calculate the resistance of a 2 m length of the cable at dc and at 100 MHz.

Solution:
Let

R 5 Ro 1 Ri

where Ro and Ri are the resistances of the inner and outer conductors.
At dc,

Ri 5
,

sS
5

,

spa2 5
2

5.8 3 107p 32 3 1023 42 5 2.744 mV

Ro 5
,

sS
5

,

sp 3 3b 1 t 42 2 b2 4 5
,

sp 3t2 1 2bt 4
 5

2
5.8 3 107p 31 1 12 4 3 1026

EXAMPLE 10.6

PRACTICE EXERCISE 10.5

Given the current density of Example 10.5, find the magnitude of the total current 
through a strip of the conductor of infinite depth along z and width w along y.

Answer:  
Jsx 10 2wd

"2
.
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 5 0.8429 mV

Hence Rdc 5 2.744 1 0.8429 5 3.587 mV.
 At f 5 100 MHz,

Ri 5
Rs,

w 5
,

sd2pa
5

,

2pa
 Å

pfm
s

 5
2

2p 3 2 3 1023 Å
p 3 108 3 4p 3 1027

5.8 3 107

 5 0.41 V

Since d 5 6.6 mm V t 5 1 mm, w 5 2pb for the outer conductor. Hence,

Ro 5
Rs,

w 5
,

2pb
 Å

pfm
s

 5
2

2p 3 6 3 1023 Å
p 3 108 3 4p 3 1027

5.8 3 107

 5 0.1384 V
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Hence,

Rac 5 0.41 1 0.1384 5 0.5484 V

which is about 150 times greater than Rdc. Thus, for the same effective current i, the ohmic 
loss (i2R) of the cable at 100 MHz is greater than the dc power loss by a factor of 150. 

PRACTICE EXERCISE 10.6

For an aluminum wire having a diameter 2.6 mm, calculate the ratio of ac to dc 
 resistance at

(a) 10 MHz
(b) 2 GHz

Answer: (a) 24.16, (b) 341.7.

10.7 WAVE POLARIZATION

It is a common practice to describe an EM wave by its polarization. Polarization is an 
important property of an EM wave, and the concept has been developed to describe the 
various types of electric field variation and orientation. The polarization of an EM wave 
depends on the transmitting antenna or source. It is determined by the direction of the 
electric field for fields having more than one component. 

Polarization may be regarded as the locus of the tip of the electric field (in a plane 
perpendicular to the direction of propagation) at a given point as a function of time.

There are three types of polarization: linear or plane, circular, and elliptical. That means 
that the tip of the electric field can describe a straight line, a circle, or an ellipse with 
time, as shown in Figure 10.10. Wave polarization is important for radio and TV broad
casting. Amplitude modulation (AM) radio broadcasting is with polarization vertical to 
the earth’s surface, while frequency modulation (FM) broadcasting is generally circularly 
polarized.

A uniform plane wave is linearly polarized if it has only one component or when 
its  transverse components are in phase. For a wave traveling in the +zdirection, we 
may have

 Ex 5 Eox cos(vt 2 bz 1 x ) (10.58) 
Ey 5 Eoy cos(vt 2 bz 1 y )

where Eox and Eoy are real. The composite wave
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 E 5 Eox cos(vt 2 bz 1 x )ax 1 Eoy cos(vt 2 bz 1 y )ay (10.59)

is linearly polarized when the phase difference D is

 D 5 y 2 x 5 np,  n 5 0, 1, 2, . . . (10.60)

 D 5 y 2 x 5  (2n 1 1)p/2 ,  n 5 0, 1, 2, . . .  (10.61)

FIGURE 10.10 Wave polarizations: (a) linear, (b) circular, (c) elliptical.
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This allows the two components to maintain the same ratio at all times. If we observe the 
wave in the direction of propagation (z in this case), we will notice that the tip of the elec

can be generated by simple antennas (such as dipole antennas) or lasers.
Circular polarization takes place when the x and ycomponents are the same in 

 magnitude (Eox 5 Eoy 5 Eo) and the phase difference between them is an odd multiple of 
p/2; that is,

tric field follows a line—hence, the term linear polarization. Linearly polarized plane waves 



500 CHAPTER 10 ELECTROMAGNETIC WAVE PROPAGATION

For example, the x and ycomponents may be of the form

 Ex 5 Eo cos(vt 2 bz) (10.62) 
 Ey 5 Eo cos(vt 2 bz 1 p/2)

The tip of the composite electric field as observed as a fixed point in the xyplane moves 
along a circle as time progresses. Circularly polarized waves can be generated by a helically 
wound wire antenna or by two linear sources that are oriented perpendicular to each other 
and fed with currents that are out of phase by 90. That the locus of total field traces a circle 
can be seen if we examine the components at a point, say z 5 0,

 Ex 5 Eo cos(vt),   Ey 5 Eo cos(vt 1 p/2) 5 2Eo sin(vt) (10.63)

   E2 5 E2
x 1 E2

y
 5 E2

o  (10.64)

which is the equation of a circle.
Linear and circular polarizations are special cases of the more general case of the ellip

tical polarization. An elliptically polarized wave is one in which the tip of the field traces an 
elliptic locus in a fixed transverse plane as the field changes with time. Elliptical polariza
tion is achieved when the x and ycomponents are not equal in magnitude Eox  Eoy and 
the phase difference between them is an odd multiple of p hat is,

 D 5 y 2 x 5  (2n 1 1)p/2,  n 5 0, 1, 2, . . .  (10.65)

This allows the tip of the electric field to trace an ellipse in the xyplane. To show that this 
is the case, consider eq. (10.58) when z 5 0 and D 5 y 2 x 5 p/2, 

 Ex 5 Eoz cos(vt) ⎯→  cos(vt) 5 
Ex

Eox
 

(10.66)

Ey 5 Eoy cos(vt 1 p/2) 5 2Eo sin(vt) ⎯→  2sin(vt) 5 
Ey

Eoy

Squaring and adding these equations yields

 cos2 (vt) 1 sin2 (vt) 5 1 ⎯→  
Ex

2

Eox
2 1

Ey
2

Eoy
2  5 1 (10.67)

which is the equation of an ellipse, as shown in Figure 10.10. Notice that if Eox 5 Eoy , we 
have circular polarization. Thus, circular polarization is a special case of elliptical polariza
tion. In fact, we can show that linear polarization is also a special case of elliptical polariza
tion. Thus, the most general case is elliptical polarization.

Determine the polarization of a plane wave with:
(a) E(z, t) 5 4e20.25z cos(vt 2 0.8z)ax 1 3e20.25z sin(vt 2 0.8z)ay V/m
(b) Hs(z) 5 Ho e2jbz ax 2 2Ho e2jbz

 
ay

Solution:
(a) From the given E,

Ex5 4e20.25z cos(vt 2 0.8z)

EXAMPLE 10.7
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Ey5 3e20.25z sin(vt 2 0.8z)

In the z 5 0 plane, we have

1
4

 Ex(0, t) 5 cos(vt)

1
3

 Ex(0, t) 5 sin(vt)

Squaring and adding gives

1
16

Ex
2

 10,  t 2 1
1
9

Ey
2

 10,  t 2 5 1

which describes an ellipse. Hence, the wave is elliptically polarized.
(b)  The two components of H are in phase; hence, the polarization is linear. For proper 

characterization, it is expedient to find the electric field component. This can be done 
in many ways. Using Maxwell’s equation,

 3 Hs 5 ∞
ax ay az

'

'x
'

'y
'

'z
Hoe2jbz 22Hoe2jbz 0

∞  5 j2bHoe2jbz ax 2 jbHoe2jbz ay

Dividing both sides by jv« and setting h = b/v« yields

Es 5 2hHoe2jbz ax 2 hHoe2jbz ay

In the time domain, 

E(z, t)5 Re[Ese2jt] 5 2hHocos(vt 2 bz)ax 2 hHocos(vt 2 bz)ay

If we set z 5 0,

E(0, t) 5 (2hHoax 2 hHoay) cos(vt)

At t 5 0, E has components 2hHo in the xdirection and hHo in the ydirection. The ratio 
Ey/Ex remains the same as t changes. Hence, E is linearly polarized.

PRACTICE EXERCISE 10.7

Given that Es5 Eo (ay 2 jay)e2jbz, determine the polarization.

Answer: Circular polarization.
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� � Hs � j��Es ⎯⎯⎯→ Es 5
1

jve
 � � Hs
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10.8 POWER AND THE POYNTING VECTOR

As mentioned before, energy can be transported from one point (where a transmitter is 
located) to another point (with a receiver) by means of EM waves. The rate of such energy 
transportation can be obtained from Maxwell’s equations:

  = 3 E 5 2m
'H
't

 (10.68a)

  = 3 H 5 sE 1 e
'E
't

 (10.68b)

Dotting both sides of eq. (10.68b) with E gives

 E # 1= 3 H 2 5 sE2 1 E # e
'E
et

 (10.69)

But for any vector fields A and B (see Appendix A.10)

= # 1A 3 B 2 5 B # 1= 3 A 2 2 A # 1= 3 B 2

Applying this vector identity to eq. (10.69) 1 letting A 5 H and B 5 E 2  gives

  H # 1= 3 E 2 1 = # 1H 3 E 2 5 sE2 1 E # e 
'E
't

 (10.70)

  5 sE2 1
1
2

 e
'

't
E2  

Dotting both sides of eq. (10.68a) with H, we write

 H # 1= 3 E 2 5 H # a2m
'H
't

b 5 2
m

2
 
'

't
 1H # H 2  (10.71)

and thus eq. (10.70) becomes

2
m

2
 
'H2

't
2 = # 1E 3 H 2 5 sE2 1

1
2

 e
'E2

't

Rearranging terms and taking the volume integral of both sides,

 3
v
 = # 1E 3 H 2dv 5 2

'

't
 3

v
 c 1

2
 eE2 1

1
2

 mH2 ddv 2 3
v
 sE2 dv (10.72)

Applying the divergence theorem to the lefthand side gives

 C
S
 1E 3 H 2 # dS 5 2

'

't
 3

v
 c 1

2
 eE2 1

1
2

 mH2 ddv 2 3
v
 sE2dv (10.73)

 

T T T

total power rate of decrease in ohmic power
leaving the volume 5 energy stored in electric 2 dissipated

and magnetic fields

 (10.74)
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Equation (10.73) is referred to as Poynting’s theorem.2 The various terms in the equation 
are identified using energyconservation arguments for EM fields. The first term on the 
righthand side of eq. (10.73) is interpreted as the rate of decrease in energy stored in the 
electric and magnetic fields. The second term is the power dissipated because the medium 
is conducting 1s 2 0 2 . The quantity E 3 H on the lefthand side of eq. (10.73) is known 
as the Poynting vector , measured in watts per square meter (W/m2); that is,

  5 E 3 H (10.75)

It represents the instantaneous power density vector associated with the EM field at a given 
point. The integration of the Poynting vector over any closed surface gives the net power 
flowing out of that surface.

Poynting’s theorem states that the net power flowing out of a given volume v is equal to 
the time rate of decrease in the energy stored within v minus the ohmic losses.

The theorem is illustrated in Figure 10.11.
It should be noted that  is normal to both E and H and is therefore along the 

 direction of wave propagation ak for uniform plane waves. Thus

 ak 5 aE 3 aH (10.49)

The fact that  points along ak causes  to be regarded as a “pointing” vector.
Again, if we assume that

E 1z, t 2 5 Eoe2az cos 1vt 2 bz 2ax

then

H 1z, t 2 5
Eo

0h 0  e
2az cos 1vt 2 bz 2 uh 2ay

and

 1z, t 2 5
Eo

2

0h 0  e
22az cos 1vt 2 bz 2  cos 1vt 2 bz 2 uh 2az

  5
Eo

2

2 0h 0  e
22az 3cos uh 1 cos 12vt 2 2bz 2 uh 2 4az

 (10.76)

2 After J. H. Poynting, “On the transfer of energy in the electromagnetic field,” Philosophical Transactions, 
vol. 174, 1883, p. 343.
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S
S

FIGURE 10.11 Illustration of power 
 balance for EM fields.
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since cos A cos B 5 1
2 3cos 1A 2 B 2 1 cos 1A 1 B 2 4 . To determine the time-average 

Poynting vector �ave(z) (in W/m2), which is of more practical value than the 
 instantaneous Poynting vector �(z, t), we integrate eq. (10.76) over the period 
T 5 2p/v; that is,

 �ave 1z 2 5
1
T

 3
T

0
 � 1z, t 2  dt (10.77)

It can be shown (see Problem 10.4 ) that this is equivalent to

 �ave 1z 2 5
1
2

 Re 1Es 3 H*s 2  (10.78)

By substituting eq. (10.76) into eq. (10.77), we obtain

 �ave 1z 2 5
E2

o

2 0h 0  e22az cos uh az (10.79)

The total time-average power crossing a given surface S is given by

 Pave 5 3
S
 �ave

# dS (10.80)

2
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We should note the difference between , ave, and Pave: whereas  1x, y, z, t 2  is the 
Poynting vector in watts per square meter and is time varying, ave(x, y, z), also in watts 
per square meter, is the time average of the Poynting vector ; it is a vector but is time 
invariant.  Finally, Pave is a total timeaverage power through a surface in watts; it is a scalar.

In a nonmagnetic medium

E 5 4 sin 12p 3 107t 2 0.8x 2az V/m

Find
(a) «r , h
(b) The timeaverage power carried by the wave
(c) The total power crossing 100 cm2 of plane 2x 1 y 5 5

Solution:
(a) Since a 5 0 and b 2 v/c, the medium is not free space but a lossless medium:

b 5 0.8, v 5 2p 3 107, m 5 mo 1nonmagnetic 2 , e 5 eoer

EXAMPLE 10.8
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Hence

b 5 v"me 5 v"moeoer 5
v

c  "er

or

 "er 5
bc
v

5
0.8 13 3 108 2

2p 3 107 5
12
p

  er 5 14.59

  h 5 Å
m

e
5 Å

mo

eoer
5

120p

"er

5 120p # p

12
5 10p2

  5 98.7 V

(b) � 5 E 3 H 5
E2

o

h
 sin2 1vt 2 bx 2ax

 �ave 5
1
T

 3
T

0
 � dt 5

E2
o

2h
 ax 5

16
2 3 10p2 ax

 5 81ax mW/m2

(c) On plane 2x 1 y 5 5 (see Example 3.5 or 8.5),

an 5
2ax 1 ay

"5
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PRACTICE EXERCISE 10.8

In free space, H 5 0.2 cos 1vt 2 bx 2az A/m. Find the total power passing through:

(a) A square plate of side 10 cm on plane x 1 y 5 1
(b) A circular disk of radius 5 cm on plane x 5 1.

Answer:  (a) 53.31 mW, (b) 59.22 mW.

10.9 REFLECTION OF A PLANE WAVE AT NORMAL INCIDENCE

So far, we have considered uniform plane waves traveling in unbounded, homogeneous, 
isotropic media. When a plane wave from one medium meets a different medium, it is 
partly reflected and partly transmitted. The proportion of the incident wave that is reflected 
or transmitted depends on the constitutive parameters 1e, m, s 2  of the two media involved. 
Here we will assume that the incident plane wave is normal to the boundary between the 
media; oblique incidence of plane waves will be covered in the next section after we have 
presented the simpler case of normal incidence.

Suppose that a plane wave propagating along the 1z-direction is incident normally on 
the boundary z 5 0 between medium 1 1z , 0 2  characterized by s1, «1, 1 and medium 
2 1z . 0 2  characterized by s2, «2, 2, as shown in Figure 10.12. In Figure 10.12, subscripts 
i, r, and t denote incident, reflected, and transmitted waves, respectively. The incident, 
reflected, and transmitted waves shown in Figure 10.12 are obtained as follows.

Incident Wave
1Ei, Hi 2  is traveling along 1az in medium 1. If we suppress the time factor e jvt and assume 
that

 Eis 1z 2 5 Eioe2g1z
 ax (10.81)
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Hence the total power is

 Pave 5 3   �ave
# dS 5 �ave

# S an

 5 181 3 1023ax 2 # 1100 3 1024 2  c 2ax 1 ay

"5
d

 5
162 3 1025

"5
5 724.5 mW 
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then

 His 1z 2 5 Hioe2g1z
 ay 5

Eio

h1
 e2g1z

 ay (10.82)

Reflected Wave
1Er, Hr 2  is traveling along 2az in medium 1. If

 Ers 1z 2 5 Eroeg1z
 ax (10.83)

then

 Hrs 1z 2 5 Hro eg1z 12ay 2 5 2
Ero

h1
 eg1z

 ay (10.84)

where Ers has been assumed to be along ax. To satisfy the necessary boundary conditions 
at the interface, we will consistently assume that for normal incidence Ei, Er, and Et have 
the same polarization.

Transmitted Wave
1Et, Ht 2  is traveling along 1az in medium 2. If

 Ets 1z 2 5 Eto e2g2z
 ax (10.85)

then

 Hts 1z 2 5 Hto e2g2z ay 5
Eto

h2
 e2g2z

 ay (10.86)

M 1

I

R

M

T

FIGURE 10.12 A plane wave incident normally on an interface 
between two different media.
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In eqs. (10.81) to (10.86), Eio, Ero, and Eto are, respectively, the magnitudes of the incident, 
reflected, and transmitted electric fields at z 5 0.

Notice from Figure 10.12 that the total field in medium 1 comprises both the incident 

E1 5 Ei 1 Er,  H1 5 Hi 1 Hr

E2 5 Et,  H2 5 Ht

At the interface z 5 0, the boundary conditions require that the tangential components  
of E and H fields must be continuous. Since the waves are transverse, E and H fields  
are entirely tangential to the interface. Hence at z 5 0, E1tan 5 E2tan and H1tan 5 H2tan 
imply that

 Ei 10 2 1 Er 10 2 5 Et 10 2  S   Eio 1 Ero 5 Eto (10.87)

  Hi 10 2 1 Hr 10 2 5 Ht 10 2  S   
1
h1

1Eio 2 Ero 2 5
Eto

h2
 (10.88)

From eqs. (10.87) and (10.88), we obtain

 Ero 5
h2 2 h1

h2 1 h1
 Eio (10.89)

and

 Eto 5
2h2

h2 1 h1
 Eio (10.90)

We now define the reflection coefficient G and the transmission coefficient t from  
eqs. (10.89) and (10.90) as

 G 5
Ero

Eio
5

h2 2 h1

h2 1 h1
 (10.91a)

or

 Ero 5 GEio (10.91b)

and

 t 5
Eto

Eio
5

2h2

h2 1 h1
 (10.92a)

or

 Eto 5 tEio (10.92b)
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and the reflected fields, whereas medium 2 has only the transmitted field; that is,
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Note that

1. 1 1 G 5 t
2. Both G and t are dimensionless and may be complex.
3. 0 # 0G 0 # 1 (10.93)

The case just considered is the general case. Let us now consider the following special 
case: medium 1 is a perfect dielectric 1 lossless, s1 5 0 2  and medium 2 is a perfect conduc
tor 1s2 . ` 2 . For this case, h2 5 0; hence, G 5 21, and t 5 0, showing that the wave is 
totally reflected. This should be expected because fields in a perfect conductor must vanish, 
so there can be no transmitted wave 1E2 5 0 2 . The totally reflected wave combines with 
the incident wave to form a standing wave. A standing wave “stands” and does not travel; it 
consists of two traveling waves 1Ei and Er 2  of equal amplitudes but in opposite  directions. 
Combining eqs. (10.81) and (10.83) gives the standing wave in medium 1 as 

 E1s 5 Eis 1 Ers 5 1Eioe2g1z 1 Eroeg1z 2ax (10.94)

But

G 5
Ero

Eio
5 21, s1 5 0, a1 5 0, g1 5 jb1

Hence,

E1s 5 2Eio 1e jb1z 2 e2jb1z 2ax

or

 E1s 5 22jEio sin b1z ax (10.95)

Thus

E1 5 Re 1E1se jvt 2

or

 E1 5 2Eio sin b1z sin vt ax (10.96)

By taking similar steps, it can be shown that the magnetic field component of the wave is

 H1 5
2Eio

h1
 cos b1z cos vt ay (10.97)

A sketch of the standing wave in eq. (10.96) is presented in Figure 10.13 for t 5 0, T/8, T/4, 
3T/8, T/2, and so on, where T 5 2p/v. From Figure 10.13, we notice that the wave does 
not travel but oscillates.

When media 1 and 2 are both lossless, we have another special case: s1 5 0 5 s2. In 
this case, h1 and h2 are real and so are G and t. Let us consider two more cases:
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CASE 1.

If h2 1
ted wave in medium 2. However, the incident and reflected waves have amplitudes that are 
not equal in magnitude. It can be shown that a relative maximum of 0E1 0  occurs at

2b1zmax 5 np

or

 zmax 5 2
np

b1
5 2

nl1

2
,  n 5 0, 1, 2, . . . (10.98)

and the minimum values of 0E1 0  occur at

2b1zmin 5 12n 1 1 2p
2

or

 zmin 5 2
12n 1 1 2p

2b1
5 2

12n 1 1 2
4

 l1,  n 5 0, 1, 2, . . . (10.99)

CASE 2.

If h2 , h1, G , 0. For this case, the locations of 0E1 0  maximum are given by eq. (10.99), 
whereas those of 0E1 0  minimum are given by eq. (10.98). All these are illustrated in 
Figure 10.14. Note that

FIGURE 10.13 Standing waves E 5 2Eio sin b1z sin vt ax. The curves 
0, 1, 2, 3, 4, . . . , are, respectively, at times t 5 0, T/8, T/4, 3T/8, T/2, . . . ; 
l 5 2p/b1.
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. h , G . 0. Again there is a standing wave in medium 1, but there is also a transmit
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1. 0H1 0  minimum occurs whenever there is 0E1 0  maximum, and vice versa.
2. The transmitted wave (not shown in Figure 10.14) in medium 2 is a purely travel

ing wave, and consequently there are no maxima or minima in this region.

The ratio of 0E1 0 max to 0E1 0 min 1or 0H1 0 max to 0H1 0 min 2  is called the standing wave 
ratio s; that is,

 s 5
0E1 0 max

0E1 0 min
5

0H1 0 max

0H1 0 min
5

1 1 0G 0
1 2 0G 0  (10.100)

or

 0G 0 5
s 2 1
s 1 1

 (10.101)

Since 0G 0 # 1, it follows that 1 # s # `. The standing wave ratio is dimensionless, and it 
is customarily expressed in decibels (dB) as

 s dB 5 20 log10 s (10.102)

In free space 1z # 0 2 , a plane wave with

Hi 5 10 cos 1108t 2 bz 2ax mA/m

is incident normally on a lossless medium 1e 5 2eo, m 5 8mo 2  in region z $ 0. Determine 
the reflected wave Hr, Er and the transmitted wave Ht, Et.

4

FIGURE 10.14 Standing waves due to reflection at an interface between 
two lossless media; l 5 2p/b1.

EXAMPLE 10.9

10_Sadiku_Ch10.indd   511 25/09/17   3:17 PM



512 CHAPTER 10 ELECTROMAGNETIC WAVE PROPAGATION

Solution:
This problem can be solved in two different ways.

Method 1: Consider the problem as illustrated in Figure 10.15. For free space,

b1 5
v

c 5
108

3 3 108 5
1
3

h1 5 ho 5 120p

Given that Hi 5 10 cos 1108t 2 b1z 2ax mA/m, we expect that

Ei 5 Eio cos 1108t 2 b1z 2aEi

where

aEi
5 aHi

3 aki
5 ax 3 az 5 2ay 

and

Eio 5 h1Hio 5 10 ho

Hence,

Ei 5 210ho cos 1108t 2 b1z 2ay mV/m

F L

FIGURE 10.15 For Example 10.9.
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For the lossless dielectric medium,

b2 5 v"me 5 v"moeo"mrer 5
v

c
# 14 2 5 4b1 5

4
3

h2 5 Å
m

e
5 Å

mo

eo
 Å

mr

er
5 2 ho
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Now

Ero

Eio
 5 G 5

h2 2 h1

h2 1 h1
5

2ho 2 ho

2ho 1 ho
5

1
3

Ero 5
1
3

 Eio

Thus

Er 5 2
10
3

 ho cosa108t 1
1
3

 zbay mV/m

from which we easily obtain Hr as

Hr 5 2
10
3

 cosa108t 1
1
3

 zbax mA/m

Similarly,

Eto

Eio
5 t 5 1 1 G 5

4
3
  or  Eto 5

4
3

 Eio

Thus

Et 5 Eto cos 1108t 2 b2z 2aEt

where aEt
5 aEi

5 2ay. Hence,

Et 5 2
40
3

 ho cosa108t 2
4
3

 zbay mV/m

from which we obtain

Ht 5
20
3

 cosa108t 2
4
3

 zbax mA/m

Method 2: Alternatively, we can obtain Hr and Ht directly from Hi by using

Hro

Hio
5 2G  and  

Hto

Hio
5 t 

h1

h2

Thus

Hro 5 2
1
3

 Hio 5 2
10
3

Hto 5
4
3

 
ho

2ho

# Hio 5
2
3

 Hio 5
20
3
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and

Hr 5 2
10
3

 cos 1108t 1 b1z 2ax mA/m

Ht 5
20
3

 cos 1108t 2 b2z 2ax mA/m

as obtained by Method 1.
Notice that the boundary conditions at z 5 0, namely,

Ei 10 2 1 Er 10 2 5 Et 10 2 5 2
40
3

 ho cos 1108t 2ay

and

Hi 10 2 1 Hr 10 2 5 Ht 10 2 5
20
3

 cos 1108t 2ax

are satisfied. The boundary conditions can always be used to crosscheck E and H. 

PRACTICE EXERCISE 10.9

A 5 GHz uniform plane wave Eis 5 10 e2jbz ax V/m in free space is incident normally 
on a large, plane, lossless dielectric slab 1z . 0 2  having e 5 4eo, m 5 mo. Find the 
 reflected wave Ers and the transmitted wave Ets.

Answer:  23.333 exp 1 jb1z 2ax V/m, 6.667 exp 12jb2z 2ax V/m, where b2 5 2b1 5
200p/3.

Given a uniform plane wave in air as

Ei 5 40 cos 1vt 2 bz 2ax 1 30 sin 1vt 2 bz 2ay V/m

(a) Find Hi.
(b)  If the wave encounters a perfectly conducting plate normal to the zaxis at z 5 0, find 

the reflected wave Er and Hr.
(c) What are the total E and H fields for z # 0?
(d) Calculate the timeaverage Poynting vectors for z # 0 and z $ 0.

Solution:
(a) This is similar to the problem in Example 10.3. We may treat the wave as consisting of 
two waves Ei1 and Ei2, where

Ei1 5 40 cos 1vt 2 bz 2ax,  Ei2 5 30 sin 1vt 2 bz 2ay

EXAMPLE 10.10
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At atmospheric pressure, air has er 5 1.0006 . 1. Thus air may be regarded as free space. 
Let Hi 5 Hi1 1 Hi2.

Hi1 5 Hi1o cos 1vt 2 bz 2aH1

where

Hi1o 5
Ei1o

ho
5

40
120p

5
1

3p

aH1
5 ak 3 aE 5 az 3 ax 5 ay

Hence

Hi1 5
1

3p
 cos 1vt 2 bz 2ay

Similarly,

Hi2 5 Hi2o sin 1vt 2 bz 2aH2

where

Hi2o 5
Ei2o

ho
5

30
120p

5
1

4p

aH2
5 ak 3 aE 5 az 3 ay 5 2ax

Hence

Hi2 5 2
1

4p
 sin 1vt 2 bz 2ax

and

Hi 5 Hi1 1 Hi2

 5 2
1

4p
 sin 1vt 2 bz 2ax 1

1
3p

 cos 1vt 2 bz 2ay mA/m

This problem can also be solved using Method 2 of Example 10.3.
(b) Since medium 2 is perfectly conducting,

s2

ve2
W 1 S  h2 V h1

that is,

G . 21,  t 5 0

showing that the incident E and H fields are totally reflected:

Ero 5 G Eio 5 2Eio

Hence,

Er 5 240 cos 1vt 1 bz 2ax 2 30 sin 1vt 1 bz 2ay V/m
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We can find Hr from Er just as we did in part (a) of this example or by using Method 2 of 
Example 10.9, starting with Hi. Whichever approach is taken, we obtain

Hr 5
1

3p
 cos 1vt 1 bz 2ay 2

1
4p

 sin 1vt 1 bz 2ax A/m

(c) The total fields in air

E1 5 Ei 1 Er  and  H1 5 Hi 1 Hr

can be shown to be standing waves. The total fields in the conductor are

E2 5 Et 5 0,    H2 5 Ht 5 0

PRACTICE EXERCISE 10.10

The plane wave E 5 50 sin 1vt 2 5x 2ay V/m in a lossless medium 1m 5 4mo, e 5 eo 2  
encounters a lossy medium 1m 5 mo, e 5 4eo, s 5 0.1 S/m 2  normal to the xaxis at 
x 5 0. Find

(a) G, t, and s
(b) Er and Hr
(c) Et and Ht
(d) The timeaverage Poynting vectors in both regions
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(d) For z # 0,

  �1ave 5
0E1s 0 2
2h1

 ak 5
1

2ho
 3E2

ioaz 2 E2
roaz 4

 5
1

240p
 3 1402 1 302 2az 2 1402 1 302 2az 4

   � 0

For z $ 0,

�2ave 5
0E2S 0 2
2h2

 ak 5
E2

to

2h2
 az 5 0

Answer:  (a)  0.8186 l
ii
171.1°, 0.2295 l

ii
33.56°, 10.025, (b) 40.93 sin 1vt 1 5x 1

171.9° 2ay V/m, 254.3 sin 1vt 1 5x 1 171.9° 2az mA/m, 

      (c)  11.47 e26.021xsin 1vt 27.826x 1 33.56º2ay V/m, 
120.2 e26.021x sin 1vt 2 7.826x 2 4.01º 2az mA/m, 

  (d) 0.5469 ax W/m2, 0.5469 exp 1212.04x 2ax W/m2.
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3 The phenomenon of signal distortion due to a dependence of the phase velocity on frequency is known as 
dispersion.

†10.10 REFLECTION OF A PLANE WAVE AT OBLIQUE INCIDENCE

We now consider a more general situation than that in Section 10.9. To simplify the analy
sis, we will assume that we are dealing with lossless media. (We may extend our analysis to 

c

E 1r, t 2 5 Eo cos 1k # r 2 vt 2
                  5 Re 3Eoe j1k # r2vt2 4 (10.103)

where r 5 xax 1 yay 1 zaz is the radius or position vector and k 5 kxax 1 kyay 1 kzaz 
is the wave number vector or the propagation vector; k is always in the direction of wave 
propagation. The magnitude of k is related to v according to the dispersion relation:3

 k2 5 k2
x 1 k2

y 1 k2
z 5 v2me (10.104)

Thus, for lossless media, k is essentially the same as b in the preceding sections. With the 
general form of E as in eq. (10.103), Maxwell’s equations for a sourcefree region reduce to

 k 3 E 5 vmH (10.105a)

 k 3 H 5 2veE (10.105b)

 k # H 5 0 (10.105c)
 k # E 5 0 (10.105d)

showing that (i) E, H, and k are mutually orthogonal, and (ii) E and H lie on the plane

k # r 5 kxx 1 kyy 1 kzz 5 constant

From eq. (10.105a), the H field corresponding to the E field in eq. (10.103) is

 H 5
1

vm
 k 3 E 5

ak 3 E
h

 (10.106)

Having expressed E and H in the general form, we can now consider the oblique inci
dence of a uniform plane wave at a plane boundary as illustrated in Figure 10.16(a). The 
plane defined by the propagation vector k and a unit normal vector an to the boundary is 
called the plane of incidence. The angle ui between k and an is the angle of incidence.
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that of lossy media by merely replacing « by « .) It can be shown (see Problems 10.69 and 
10.72) that a uniform plane wave takes the general form of
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ted (or refracted) wave is in medium 2. Let

 Ei 5 Eio cos 1kixx 1 kiyy 1 kizz 2 vit 2  (10.107a)

 Er 5 Ero cos 1krxx 1 kryy 1 krzz 2 vrt 2  (10.107b)

 Et 5 Eto cos 1ktxx 1 ktyy 1 ktzz 2 vtt 2  (10.107c)

where ki, kr, and kt with their normal and tangential components are shown in 
Figure  10.16(b). Since the tangential component of E must be continuous across the 
boundary z 5 0,

 Ei 
1z 5 0 2 1 Er 

1z 5 0 2 5 Et 
1z 5 0 2  (10.108)

This boundary condition can be satisfied by the waves in eq. (10.107) for all x and y only if

1. vi 5 vr 5 vt 5 v
2. kix 5 krx 5 ktx 5 kx
3. kiy 5 kry 5 kty 5 ky

M M

FIGURE 10.16 Oblique incidence of a plane wave: (a) illustration of ui, ur, 
and ut; (b) illustration of the normal and tangential components of k.
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Again, both the incident and the reflected waves are in medium 1, while the transmit
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Condition 1 implies that the frequency is unchanged. Conditions 2 and 3 require that the 
tangential components of the propagation vectors be continuous (called the phase-matching 
conditions). This means that the propagation vectors ki, kt, and kr must all lie in the plane 
of incidence. Thus, by conditions 2 and 3,

 ki sin ui 5 kr sin ur (10.109)

 ki sin ui 5 kt sin ut (10.110)

where ur is the angle of reflection and ut is the angle of transmission. But for lossless media,

 ki 5 kr 5 b1 5 v"m1e1 (10.111a)

 kt 5 b2 5 v"m2e2 (10.111b)

From eqs. (10.109) and (10.111a), it is clear that

 ur 5 ui (10.112)

so that the angle of reflection ur equals the angle of incidence ui, as in optics. Also from  
eqs. (10.110) and (10.111),

where n1 5 c"m1e1 5 c/u1 and n2 5 c"m2e2 5 c/u2 are the refractive indices of the 
media.

Based on these general preliminaries on oblique incidence, we will now consider two 
special cases: one with the E field perpendicular to the plane of incidence and the other 
with the E field parallel to it. Any other polarization may be considered as a linear combi
nation of these two cases.

A.  Parallel Polarization
Figure 10.17, where the E field lies in the xzplane, the plane of incidence, illustrates the case 
of parallel polarization. In medium 1, we have both incident and reflected fields given by

  Eis 5 Eio 1cos ui ax 2 sin ui az 2  e2jb11x sin ui1z cos ui2  (10.115a)
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where u 5 v/k is the phase velocity. Equation (10.113) is the well-known  Snell’s law, which 
can be written as

 n1 sin ui 5 n2 sin ut (10.114)

sin ut

sin ui
5

ki

kt
5

u2

u1
5 Å

m1e1

m2e2
 (10.113)
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 His 5
Eio

h1
 e2jb11x sin ui1z cos ui2ay  (10.115b)

  Ers 5 Ero 1cos ur ax 1 sin ur az 2  e2jb11x sin ur2z cos ur2 (10.116a)

 Hrs 5 2
Ero

h1
 e2jb11x sin ur2z cos ur2ay  (10.116b)

where b1 5 v"m1e1. Notice carefully how we arrive at each field component. The  
trick in deriving the components is to first get the propagation vector k as shown in  
Figure 10.16(b) for incident, reflected, and transmitted waves. Once k is known, we  
define Es such that = # Es 5 0 or k # Es 5 0 and then Hs is obtained from Hs 5

k
vm

3 Es 5  ak 3
E
h

.

The transmitted fields exist in medium 2 and are given by

 Ets 5 Eto 1cos ut ax 2 sin ut az 2  e2jb21x sin ut1z cos ut2 (10.117a)

 Hts 5
Eto

h2
 e2jb21x sin ut1z cos ut2ay (10.117b)

where b2 5 v"m2e2. Should our assumption about the relative directions in eqs. (10.115) 
to (10.117) be wrong, the final result will show us this by means of its sign.

Requiring that ur 5 ui and that the tangential components of E and H be continuous 
at the boundary z 5 0, we obtain

 1Eio 1 Ero 2  cos ui 5 Eto cos ut  (10.118a)

  
1
h1

 1Eio 2 Ero 2 5
1
h2

 Eto (10.118b)

Expressing Ero and Eto in terms of Eio, we obtain

ur
ui

Ei

ki
Hi

Er

kr

M M

FIGURE 10.17 Oblique incidence with 
E  par allel to the plane of incidence.
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Gy 5

Ero

Eio
5

h2 cos ut 2 h1 cos ui

h2 cos ut 1 h1 cos ui

 (10.119a)

or

 Ero 5 GyEio (10.119b)

and

 ty 5
Eto

Eio
5

2h2 cos ui

h2 cos ut 1 h1 cos ui
 (10.120a)

or

 Eto 5 tyEio (10.120b)

Equations (10.119) and (10.120) are called Fresnel’s equations. Gy and ty are known as 
Fresnel coefficients. Note that the equations  reduce to eqs. (10.91) and (10.92) when 
ui 5 ut 5 0 as expected. Since ui and ut are related according to Snell’s law of eq. (10.113), 
eqs. (10.119) and (10.120) can be written in terms of ui by substituting

 

From eqs. (10.119) and (10.120), it is easily shown that

 1 1 Gy 5 ty a
cos ut

cos ui
b  (10.122)

From eq. (10.119a), it is evident that it is possible that Gy 5 0 because the numerator 
is the difference of two terms. Under this condition, there is no reflection 1Ero 5 0 2 , and 
the incident angle at which this takes place is called the Brewster angle uB y

. The Brewster 
angle is also known as the polarizing angle because an arbitrarily polarized incident wave 
will be reflected with only the component of E perpendicular to the plane of incidence. The 
Brewster effect is utilized in a laser tube where quartz windows are set at the Brewster angle 
to control polarization of emitted light. The Brewster angle is obtained by setting ui 5 uB y

 
when Gy 5 0 in e hat is,

h2 cos ut 5 h1 cos uB y

or

h2
2 11 2 sin2 ut 2 5 h1

2 11 2 sin2 uB y
2

Introducing eq. (10.113) or (10.114) gives

 sin2 uB y
5

1 2 m2e1/m1e2

1 2 1e1/e2 2 2  (10.123)
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 cos ut 5 "1 2 sin2 ut 5 "1 2 1u2/u1 2 2sin2 ui (10.121)

qs. (10.119); t
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It is of practical value to consider the case when the dielectric media are not only lossless 
but nonmagnetic as well—that is, m1 5 m2 5 mo. For this situation, eq. (10.123) becomes

showing that there is a Brewster angle for any combination of «1 and «2.

B.  Perpendicular Polarization
When the E field is perpendicular to the plane of incidence (the xzplane) as shown in 

in medium 1 are given by

 Eis 5 Eioe2jb11x sin ui1z cos ui2ay  (10.125a)

 His 5
Eio

h1
 12cos ui ax 1 sin ui az 2  e2jb11x sin ui1z cos ui2 (10.125b)

 Ers 5 Eroe2jb11x sin ur2z cos ur2 ay  (10.126a)

 Hrs 5
Ero

h1
 1cos ur ax 1 sin ur az 2  e2jb11x sin ur2z cos ur2  (10.126b)

while the transmitted fields in medium 2 are given by

 Ets 5 Etoe2jb21x sin ut1z cos ut2 ay  (10.127a)

 Hts 5
Eto

h
2

 12cos ut ax 1 sin ut az 2  e2jb21x sin ut1z cos ut2 (10.127b)

Notice that in defining the field components in eqs. (10.125) to (10.127), Maxwell’s equa
tions (10.105) are always satisfied. Again, requiring that the tangential components of E 
and H be continuous at z 5 0 and setting ur equal to ui, we get

 Eio 1 Ero 5 Eto (10.128a)

 
1
h1

 1Eio 2 Ero 2  cos ui 5
1
h2

 Eto cos ut (10.128b)
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or

 tan uB y 5 Å
e2

e1
5

n2

n1
 (10.124)

sin2 uB y 5
1

1 1 e1/e2
 S  sin uB y 5 Å

e2

e1 1 e2

 Figure 10.18, we have perpendicular polarization. This may also be viewed as the case in 
which the H field is parallel to the plane of incidence. The incident and reflected fields 
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Expressing Ero and Eto in terms of Eio leads to

 G' 5
Ero

Eio
5

h2 cos ui 2 h1 cos ut

h2 cos ui 1 h1 cos ut
 (10.129a)

or

 Ero 5 G' Eio (10.129b)

and

 t' 5
Eto

Eio
5

2h2 cos ui

h2 cos ui 1 h1 cos ut
 (10.130a)

or

 Eto 5 t'Eio (10.130b)

which are the Fresnel’s equations for perpendicular polarization Gy and  ty are known as 
Fresnel coefficients. From eqs. (10.129) and (10.130), it is easy to show that

 1 1 G' 5 t' (10.131)

which is similar to eq. (10.93) for normal incidence. Also, when ui 5 ut 5 0, eqs. (10.129) 
and (10.130) become eqs. (10.91) and (10.92), as they should.

For no reflection, G' 5 0 1or Er 5 0 2 . This is the same as the case of total transmis
sion 1t' 5 1 2 . By replacing ui with the corresponding Brewster angle uB'

, we obtain

h2 cos uB'
5 h1 cos ut

or

h2
2 11 2 sin2 uB'

2 5 h1
2 11 2 sin2 ut 2

M M

FIGURE 10.18 Oblique incidence with E 
perpendicular to the plane of incidence.
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Incorporating eq. (10.114) yields

 sin2 uB'
5

1 2 m1e2/m2e1

1 2 1m1/m2 2 2  (10.132)

Note that for nonmagnetic media 1m1 5 m2 5 mo 2 , sin2 uB'
 S  ` in eq. (10.132), so uB'

 
does not exist because the sine of an angle is never greater than unity. Also if m1 2 m2 and 
e1 5 e2, eq. (10.132) reduces to

Although this situation is theoretically possible, it rarely occurs in practice.

An EM wave travels in free space with the electric field component

Es 5 100 e j 10.866y10.5z2ax V/m

Determine
(a) v and l
(b) The magnetic field component
(c) The time average power in the wave

Solution:
(a) Comparing the given E with

Es 5 Eo e jk #  r 5 Eoe j 1kxx1kyy1kzz2ax

it is clear that

kx 5 0,  ky 5 0.866,  kz 5 0.5

But in free space,

k 5 b 5 v"moeo 5
v

c 5
2p

l

Hence,

v 5 kc 5 3 3 108 rad/s

EXAMPLE 10.11
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sin uB' 5 Å
m2

m1 1 m2

or

 tan uB' 5 Å
m2

m1
 (10.133)

Thus

k 5 "k2
x 1 k2

y 1 k2
z 5 "10.866 2 2 1 10.5 2 2 5 1
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l 5
2p

k
5 2p 5 6.283 m

(b) From eq. (10.106), the corresponding magnetic field is given by

Hs 5
1

mv
 k 3 Es

 5
10.866ay 1 0.5az 2

4p 3 1027 3 3 3 108 3 100 axe jk #  r

or

Hs 5 (132.63ay 2 229.7az) e j(0.866y10.5z)mA/m

PRACTICE EXERCISE 10.11

Rework Example 10.11 if

E 5 110ay 1 5az 2  cos 1vt 1 2y 2 4z 2  V/m

in free space.

Answer:  (a) 1.342 3 109 rad/s, 1.405 m, (b) 229.66 cos 11.342 3 109t 1 2y 2
4z 2ax mA/m, (c) 20.07415ay 1 0.489az W/m2.

A uniform plane wave in air with

E 5 8 cos 1vt 2 4x 2 3z 2ay V/m

is incident on a dielectric slab 1z $ 0 2  with mr 5 1.0, er 5 2.5, s 5 0. Find

(a) The polarization of the wave
(b) The angle of incidence
(c) The reflected E field
(d) The transmitted H field

EXAMPLE 10.12
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(c) Th e time-average power is

 �ave 5
1
2

Re 1Es 3 H*s 2 5
E2

o

2h
 ak

  5
1100 2 2

2 1120p 2 10.866ay 1 0.5az 2
  5 11.49ay 1 6.631az W/m2 
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Solution:
(a) From the incident E field, it is evident that the propagation vector is

ki 5 4ax 1 3az S  ki 5 5 5 v"moeo 5
v

c

Hence,

v 5 5c 5 15 3 108 rad/s

A unit vector normal to the interface 1z 5 0 2  is az. The plane containing k and az is 
y 5 constant, which is the xzplane, the plane of incidence. Since Ei is normal to this plane, 
we have perpendicular polarization (similar to Figure 10.18).

(b) The propagation vectors are illustrated in Figure 10.19 where it is clear that

tan ui 5
kix

kiz
5

4
3

 S  ui 5 53.13°

Alternatively, without Figure 10.19, we can obtain ui from the fact that ui is the angle 
n

cos ui 5 ak
# an 5 a4ax 1 3az

5
b # az 5

3
5

or

ui 5 53.13°

(c) An easy way to find Er is to use eq. (10.126a) because we have noticed that this prob
lem is similar to that considered in Section 10.10B. Suppose we are not aware of this. Let

Er 5 Ero cos 1vt 2 kr
# r 2ay

FIGURE 10.19 Propagation vectors of 
Example 10.12.
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between k and a ; that is,
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which is similar to the form of the given Ei. The unit vector ay is chosen in view of the fact 
that the tangential component of E must be continuous at the interface. From Figure 10.19,

kr 5 krx ax 2 krz az

where

krx 5 kr sin ur,  krz 5 kr cos ur

But ur 5 ui and kr 5 ki 5 5 because both kr and ki are in the same medium. Hence,

kr 5 4ax 2 3az

G' 5
238.4 cos 53.13° 2 377 cos 30.39°
238.4 cos 53.13° 1 377 cos 30.39°

5 20.389

Hence,

Ero 5 G' Eio 5 20.389 18 2 5 23.112

and

Er 5 23.112 cos 115 3 108t 2 4x 1 3z 2ay V/m

(d) Similarly, let the transmitted electric field be

Et 5 Eto cos 1vt 2 kt
# r 2ay
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To find Ero, we need �t. From Snell’s law

sin ut 5
n1

n2
 sin ui 5

c"m1e1

c"m2e2

 sin ui

 5
sin 53.13º

"2.5
or

 ut 5 30.39º

G' 5
Ero

Eio

 5
h2 cos ui 2 h1 cos ut

h2 cos ui 1 h1 cos ut

where h1 5 ho 5 377 V, h2 5 Å
momr2

eoer2

5
377

"2.5
5 238.4 V 
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where

 kt 5 b2 5 v"m2e2 5
v

c "mr2
er2

 5
15 3 108

3 3 108 "1 3 2.5 5 7.906

From Figure 10.19,

 ktx 5 kt sin ut 5 4

 ktz 5 kt cos ut 5 6.819

or

kt 5 4ax 1 6.819 az

The same result could be obtained from the relation t' 5 1 1 G'. Hence,

 Eto 5 t' Eio 5 0.611 3 8 5 4.888

Et 5 4.888 cos(15 3 108t 2 4x 2 6.819z)ay V/m

From Et, Ht is easily obtained as

 Hi 5
1

m2v
 kt 3 Et 5

akt
3 Et

h2

 5
4ax 1 6.819 az

7.906 1238.4 2 3 4.888 ay cos 1vt 2 k # r 2

 Ht 5 1217.69ax 1 10.37az 2  cos 115 3 108t 2 4x 2 6.819z 2  mA/m

PRACTICE EXERCISE 10.12

If the plane wave of Practice Exercise 10.11 is incident on a dielectric medium having 
s 5 0, e 5 4eo, m 5 mo and occupying z $ 0, calculate

(a) The angles of incidence, reflection, and transmission
(b) The reflection and transmission coefficients
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Notice that kix 5 krx 5 ktx as expected.

t' 5
Eto

Eio
5

2 h2 cos ui

h2 cos ui 1 h1 cos ut

 5
2 3 238.4 cos 53.13º

238.4 cos 53.13º 1 377 cos 30.39º

 5 0.611
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(c) The total E field in free space
(d) The total E field in the dielectric
(e) The Brewster angle

Answer:  (a) 26.56°, 26.56°, 12.92°, (b) 20.295, 0.647, (c) 110ay 1 5az 2 3  
cos 1vt 1 2y 2 4z 2 1 122.946ay 1 1.473az 2  cos 1vt 1 2y 1 4z 2  V/m,  
(d) 17.055ay 1 1.618az 2  cos 1vt 1 2y 2 8.718z 2  V/m, (e) 63.43°.

†10.11 APPLICATION NOTE—MICROWAVES

At the moment, there are three means for carrying thousands of channels over long dis
tances: (a) microwave links, (b) coaxial cables, and (c) fiber optic, a technology to be cov
ered later in Section 12.9.

Microwaves are EM waves whose frequencies range from approximately 300 MHz to 
1000 GHz.

For comparison, the signal from an AM radio station is about 1 MHz, while that from an 
FM station is about 100 MHz. The higherfrequency edge of microwaves borders on the 
optical spectrum. This accounts for why microwaves behave more like rays of light than 
ordinary radio waves. You may be familiar with microwave appliances such as the micro
wave oven, which operates at 2.4 GHz, the satellite television receiver, which operates at 
about 4 GHz, and the police radar, which works at about 22 GHz.

Features that make microwaves attractive for communications include wide available 
bandwidths (capacities to carry information) and directive properties of short wavelengths. 
Since the amount of information that can be transmitted is limited by the available band
width, the microwave spectrum provides more communication channels than the radio 
and TV bands. With the everincreasing demand for channel allocation, microwave com
munications has become more common.

A microwave system4 normally consists of a transmitter (including a microwave 
 oscillator, waveguides, and a transmitting antenna) and a receiver subsystem (including a 
receiving antenna, transmission line or waveguide, microwave amplifiers, and a receiver). 
A microwave network is usually an interconnection of various microwave components and 
devices. There are several microwave components and variations of these components. 
Common microwave components include the following:

 • Coaxial cables, which are transmission lines for interconnecting microwave  
components

 • Resonators, which are usually cavities in which EM waves are stored

4 For a comprehensive treatment of microwaves, see D. M. Pozar, Microwave Engineering, 3rd ed. Hoboken, 
NJ: John Wiley & Sons, 2004.

10_Sadiku_Ch10.indd   529 25/09/17   3:17 PM



530 CHAPTER 10 ELECTROMAGNETIC WAVE PROPAGATION

Satellite

(a) Point-to-point link via satellite microwave

Satellite

Multiple receivers
Transmitter

Multiple receivers

(b) Broadcast link via satellite microwave

FIGURE 10.20 Satellite communications configurations. (From 
W. Stallings, Data and Computer Communications, 5th ed. Upper Saddle 
River, NJ: Prentice Hall, 1997, p. 90.)
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 • Waveguide sections, which may be straight, curved, or twisted
 • Antennas, which transmit or receive EM waves efficiently
 • Terminators, which are designed to absorb the input power and therefore act as 

oneport networks
 • Attenuators, which are designed to absorb some of the EM power passing through 

the device, thereby decreasing the power level of the microwave signal
 • Directional couplers, which consist of two waveguides and a mechanism for cou

pling signals between them
 • Isolators, which allow energy flow in only one direction
 • Circulators, which are designed to establish various entry/exit points where power 

can be either fed or extracted
 • Filters, which suppress unwanted signals and/or separate signals of different  

frequencies.

The use of microwaves has greatly expanded. Examples include telecommunications, 
radio astronomy, land surveying, radar, meteorology, UHF television, terrestrial micro wave 
links, solidstate devices, heating devices, medical therapeutic and diagnostic equipment, 
and identification systems. We will  consider only three of these.

1. Telecommunications (the transmission of analog or digital information from 
one point to another): This is the largest application of microwave frequencies. 
Microwaves propagate along a straight line like light rays and are not bent by the iono
sphere as are signals of lower frequency. This makes communication satellites possible. 
In essence, a communication satellite is a microwave relay station that is used to link two 
or more groundbased transmitters and receivers. The satellite receives signals at one 
frequency, repeats or amplifies them, and transmits at another frequency. Two common 
modes of  operation for satellite communication are portrayed in Figure 10.20. The satel
lite  provides a pointtopoint link in Figure 10.20(a), while it is being used to provide 
multiple links between one groundbased transmitter and several groundbased receiv
ers in Figure 10.20(b).

2. Radar systems: Radar systems provided the major incentive for the development 
of microwave technology because they give better resolution for radar instruments at 
higher frequencies. Only the microwave region of the spectrum could provide the required 
resolution with antennas of reasonable size. The ability to focus a radiated wave sharply 
is what makes microwaves so useful in radar applications. Radar is used to detect aircraft, 
guide supersonic missiles, observe and track weather patterns, and control flight traffic at 
airports. It is also used in burglar alarms, garagedoor openers, and police speed detectors.

3. Heating: Microwave energy is more easily directed, controlled, and concentrated 
than lowfrequency EM waves. Also, various atomic and molecular resonances occur at 
microwave frequencies, creating diverse application areas in basic science, remote sensing, 
and heating methods. The heating properties of microwave power are useful in a wide vari
ety of commercial and industrial applications. The microwave oven, shown in Figure 10.21, 
is a typical example. When the magnetron oscillates, microwave energy is extracted from 
the resonant cavities. The reflections from the stationary walls and the motion of the stir
ring fan cause the microwave energy to be well distributed. Thus the microwave enables the 
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cooking process to be fast and even. Microwave heating properties also are used in physical 
diathermy and in drying potato chips, paper, cloth, and so on.

A microwave circuit consists of microwave components such as sources, transmis
sion lines, waveguides, attenuators, resonators, circulators, and filters. One way of analyz
ing, for example, a circuit, is to relate the input and output variables of each component. 
Several sets of parameters can be used for relating input and output variables; but at high 
 frequencies, such as microwave frequencies, where voltage and current are not well defined, 
Sparameters are often used to analyze microwave circuits. The scattering or Sparameters 
are defined in terms of wave variables, which are more easily measured at microwave fre
quencies than voltage and current.

Consider the twoport network shown in Figure 10.22. The traveling waves are related 
to the scattering parameters according to

b1 5 S11a1 1 S12a2 

  b2 5 S21a1 1 S22a2 (10.134)

or in matrix form

 cb1

b2
d 5 cS11 S12

S21 S22
d  ca1

a2
d  (10.135)

1 2 1 2
represent the reflected waves, as shown in Figure 10.22. For the S matrix, the offdiagonal 
terms represent voltage wave transmission coefficients, while the diagonal terms represent 
reflection coefficients. If the network is reciprocal, it will have the same transmission char

 S12 5 S21 (10.136)

Front
panel

Magnetron
tube

Stirrer fan Waveguide

Power supply

Metal
cavity

FIGURE 10.21 Microwave oven. (From N. Schlager, ed., How Products Are Made. Detroit: Gale  Research, 
1994, p. 289.)
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where a  and a  represent the incident waves at ports 1 and 2, respectively, while b  and b  

acteristics in either direction; that is,



If the network is symmetrical, then

 S11 5 S22 (10.137)

For a matched twoport network, the reflection coefficients are zero and

 S11 5 S22 5 0 (10.138)

The input reflection coefficient can be expressed in terms of the Sparameters and the 
load ZL as

 Gi 5
b1

a1
5 S11 1

S12S21GL

1 2 S22GL
 (10.139)

where

 GL 5
ZL 2 Zo

ZL 1 Zo
 (10.140)

Similarly, the output reflection coefficient (with Vg 5 0) can be expressed in terms of the 
generator impedance Zg and the Sparameters as

 Go 5
b2

a2
`
Vg50

5 S22 1
S12S21Gg

1 2 S11Gg
 (10.141)

where

 Gg 5
Zg 2 Zo

Zg 1 Zo
 (10.142)

ZL

b2b1

a1 a2

Vg

Zg
S l1 S l2

S21 S22

FIGURE 10.22 A two-port network.

EXAMPLE 10.13
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The following S-parameters are obtained for a microwave transistor operating at 2.5 GHz: 
S11 5 0.85l230°

ii
, S12 5 0.07l56°

i
, S21 5 1.68l120°

ii
, S22 5 0.85l240

ii
. Determine the 

input reflection coefficient when ZL 5 Zo 5 75 V.



534 CHAPTER 10 ELECTROMAGNETIC WAVE PROPAGATION

Solution:
 From eq. (10.140),

GL 5
ZL 2 Zo

ZL 1 Zo
5 0

Hence, using eq. (10.139) leads to

PRACTICE EXERCISE 10.13

For an hybrid coupler, the voltage standing wave ratios (VSWRs) for the input and 
output ports are, respectively, given as

 si 5
1 1 0 S11 0
1 2 0 S11 0

so 5
1 1 0 S22 0
1 2 0 S22 0

 

Calculate si and so for the following scattering matrix:

S 5 c0.4 j0.6
j0.6 0.2

d

Answer:  2.333, 1.5.

10.12 APPLICATION NOTE—60 GHz TECHNOLOGY

The nextgeneration wireless technology—namely, 60 GHz—can provide wireless  
connectivity for short distances between electronic devices at speeds in the multi

the wavelength is nearly 5 mm. Although millimeter wave (mmWave) technology has 
been known for a long time, it was used initially only for military applications. With 
the strides in process technologies and lowcost integration solutions, academia, indus
try, and standardization bodies also turned to mmWave technology. Broadly speaking, 
mmWave refers to the electromagnetic spectrum that spans 30 to 300 GHz, correspond
ing to wavelengths from 10 mm down to 1 mm. At these smaller wavelengths, the data 
rates are expected to be 40 to 100 times faster than current wireless technologies for 
localarea networks. Also, IBM’s highspeed signal processing and coding techniques, 
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Gi 5 S11 5 0.85l230°
ii

 

gigabytepersecond range, as typically shown in Figure 10.23. At such a high frequency, 
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such as error and packet recovery, enable efficient and robust digital data transmission 
for small additional cost and low power consumption. Some of the factors that make 
this technology attractive are the following.

 • There is a large bandwidth (up to 7 GHz) available worldwide.
 • The 60 GHz technology is less restricted in terms of power limits.
 • At 60 GHz, the path loss is higher, but higher transmitting power overcomes 

this, especially when the operation is restricted to indoor environments. The 
 effective interference levels for 60 GHz are less severe than those systems 
 located in the congested 2–2.5 and 5–5.8 GHz bands. In addition, higher 
 frequency reuse can also be achieved in indoor environments, allowing a very 
high throughput.

 • The compact size of the 60 GHz radio band permits the use of multiple antenna 
arrays, which can be conveniently integrated into consumer electronic products.

 • Operators at these bands are exempt from license fees.
 • Narrow beamwidth is possible.
 • For example, this technology can be applied to an inflight entertainment 

 distribution system without causing interference with flight controls or navigation 
equipment.

 • Oxygen absorption does not pose a problem when a 60 GHz system is used 
 between satellites.

Intense efforts are under way to expedite the commercialization of this fascinating 
technology. For example, industrial alliances and regulatory bodies are working to draft 
standards for mmWave.

FIGURE 10.23 Predicting the use of 60 GHz Wi-Fi.

60 GHz
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While the advantages of 60 GHz technology are very attractive, there are also some challenges  
to be met. At the data rates and range of communication offered by 60 GHz technology, 
ensuring a reliable communication link with sufficient power margin is not a trivial task. 
Delay spread of the channel under study, another limiting factor for highspeed transmissions, 
necessitates sophisticated coding techniques. Large delay spread values can easily increase the 
complexity of the system beyond the practical limit for channel equalization. The technology 
permits instant wireless downloading of multi media content. Transmitting a large amount of 
data across remotely controlled miniature robots or vehicles without cable connections would 
be possible. Rescuing people in case of emergency or accidents becomes less problematic. 
Applications of mmWave technology to automobiles are also attractive. Overall, this technol
ogy could significantly affect the way computers and electronic devices communicate with 
each other. 
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% This script assists with the solution and graphing of Example 10.1
% We use symbolic variables in the creation of the waveform equation
% that describes the expression for the electric field

clear
syms E omega Beta t x        % symbolic variables for fields, 
                             % time, and frequency 

% Enter the frequency (in rad/s)
w = input(‛Enter the angular frequency\n >  ’);

% The expression for the y-component of the electric field 
E = 50*cos(w*t+Beta*x);

% part (b)
% solve for Beta
B = w/3e8;        % B is the numeric variable for Beta, 
     % with value as calculated here
E = subs(E,Beta,B); % substitute the value B in for 
                     % variable Beta

% Generate numerical sequence
xfinal=ceil(6*2*pi/B);  % we will compute spatial values 
       % out to 3 wavelengths
dx=xfinal/1000;       % the discrete distance
space=0:dx:xfinal; % create a vector of 1000 discrete space segments
unityvec=ones(1,length(space));   % create a vector of 1s that is 
        % the same length as the spatial vector discrete space 

segments

% Plot
figure
f = w/(2*pi);    % determine the frequency

for time=0:1/(20*f):1/f,  % time loop - each interation of this loop
                  % will plot the e-field waveform for 
                       % a different increment of time we will loop
                       % through exactly one wavelength
    En = subs(E,{x,t},{space,unityvec*time});  % substitute 
                 % the time and space vector into the variable 
                % to get a vector of the field as a function of 
    plot(space, En)
    axis([0 6*2*pi/B min(En)-10 max(En)+10])  
                        % add buffer space of 5 units to graph
    xlabel(‛x-axis (m)’)
    ylabel(‛y-axis (m)’)
    str=strcat(‛time = ‛, num2str(time), ‛ (s)’);  
             % concatenate string ‟time = ‟ to the actual time
    text(1.5, max(En)+5, str)  % put annotation on figure 
             % to show time
    pause(0.5)    % pause for half a second then re-draw
    hold off
end

MATLAB 10.1
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1. The wave equation is of the form

 where u 5 wave velocity, A 5 wave amplitude, v 5 angular frequency 152pf 2 , and 
b 5 phase constant. Also, b 5 v/u 5 2p/l or u 5 f l 5 l/T, where l 5 wavelength 
and  T 5 period.

2. In a lossy, chargefree medium, the wave equation based on Maxwell’s equations is of 
the form

=2As 2 g2As 5 0

 where As is either Es or Hs and g 5 a 1 jb is the propagation constant. If we assume 
Es 5 Exs 1z 2  ax, we obtain EM waves of the form

E 1z, t 2 5 Eoe2az cos 1vt 2 bz 2ax

H 1z, t 2 5 Hoe2az cos 1vt 2 bz 2 uh 2ay

 where a 5 attenuation constant, b 5 phase constant, h 5 0h 0 luh 5 intrinsic imped
ance of the medium, also called wave impedance. The reciprocal of a is the skin depth 
1d 5 1/a 2 . The relations between b, v, and l as stated in item 1 remain valid for 
EM waves.

3. Wave propagation in media of other types can be derived from that for lossy media as 
special cases. For free space, set s 5 0, e 5 eo, m 5 mo; for lossless dielectric media, set 
s 5 0, e 5 eoer, and m 5 momr; and for good conductors, set s . `, e 5 eo, m 5 mo, 
or s/« → .

4. A medium is classified as a lossy dielectric, a lossless dielectric, or a good conductor 
 depending on its loss tangent, given by

tan u 5
0 Js 0
0 Jds

0 5
s

ve
5

es
e r

 where ec 5 e r 2 jes is the complex permittivity of the medium. For lossless dielectrics 
tan u V 1, for good conductors tan u W 1, and for lossy dielectrics tan u is of the 
order of unity.

5. In a good conductor, the fields tend to concentrate within the initial distance d from 
the conductor surface. This phenomenon is called the skin effect. For a conductor of 
width w and length ,, the effective or ac resistance is

Rac 5
,

s wd

 where d is the skin depth.

SUMMARY
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6. The Poynting vector  is the powerflow vector whose direction is the same as the 
 direction of wave propagation; its magnitude is the same as the amount of power 
 flowing through a unit area normal to the propagation direction.

7. If a plane wave is incident normally from medium 1 to medium 2, the reflection coef
ficient G and transmission coefficient t are given by

G 5
Ero

Eio
5

h2 2 h1

h2 1 h1
,  t 5

Eto

Eio
5 1 1 G

 The standing wave ratio, s, is defined as

s 5
1 1 0G 0
1 2 0G 0

8. For oblique incidence from lossless medium 1 to lossless medium 2, we have the 
 Fresnel coefficients as

Gy 5
h2 cos ut 2 h1 cos ui

h2 cos ut 1 h1 cos ui
,  ty 5

2h2 cos ui

h2 cos ut 1 h1 cos ui

 for parallel polarization and

G' 5
h2 cos ui 2 h1 cos ut

h2 cos ui 1 h1 cos ut
  t' 5

2h2 cos ui

h2 cos ui 1 h1 cos ut

 for perpendicular polarization. As in optics,

ur 5 ui

 Total transmission or no reflection 1G 5 0 2  occurs when the angle of incidence ui is 
equal to the Brewster angle.

9. Microwaves are EM waves of very short wavelengths. They propagate along a straight 
line like light rays and can therefore be focused easily in one direction by antennas. 
They are used in radar, guidance, navigation, and heating.

10.1 Which of these is not a correct form of the wave Ex 5 cos 1vt 2 bz 2?
(a) cos 1bz 2 vt 2
(b) sin 1bz 2 vt 2 p/2 2

(c) cosa2pt
T

2
2pz

l
b

REVIEW
QUESTIONS
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(d) Re(e j (t2bz))
(e) cos b 1z 2 ut 2

10.2 Which of these functions does not satisfy the wave equation?

(a) 50e jv1t23z2

(b) sin v 110z 1 5t 2
(c) 1x 1 2t 2 2

(d) cos2 1y 1 5t 2
(e) sin x cos t
(f) cos 15y 1 2x 2

10.3 Which of the following statements is not true of waves in general?

(a) The phenomenon may be a function of time only.
(b) The phenomenon may be sinusoidal or cosinusoidal.
(c) The phenomenon must be a function of time and space.
(d) For practical reasons, it must be finite in extent.

10.4 The electric field component of a wave in free space is given by 
E 5 10 cos 1107t 1 kz 2ay V/m. It can be inferred that

(a) The wave propagates along ay.
(b) The wavelength l 5 188.5 m.
(c) The wave amplitude is 10 V/m.
(d) The wave number k 5 0.33 rad/m.
(e) The wave attenuates as it travels.

10.5 Given that H 5 0.5 e20.1x sin 1106t 2 2x 2az A/m, which of these statements are  incorrect?

(a) a 5 0.1 Np/m
(b) b 5 22 rad/m
(c) v 5 106 rad/s
(d) The wave travels along ax.
(e) The wave is polarized in the zdirection.
(f) The period of the wave is 1 s.

10.6 What is the major factor for determining whether a medium is free space, a lossless dielec
tric, a lossy dielectric, or a good conductor?

(a) Attenuation constant
(b) Constitutive parameters (s, «, )
(c) Loss tangent
(d) Reflection coefficient

10.7 In a certain medium, E 5 10 cos 1108t 2 3y 2ax V/m. What type of medium is it?

(a) Free space
(b) Lossy dielectric
(c) Lossless dielectric
(d) Perfect conductor

10.8 Electromagnetic waves travel faster in conductors than in dielectrics.

(a) True
(b) False
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540 CHAPTER 10 ELECTROMAGNETIC WAVE PROPAGATION

10.9  In a good conductor, E and H are in time phase.

(a) True
(b) False

10.10  The Poynting vector physically denotes the power density leaving or entering a given 
volume in a timevarying field.

(a) True
(b) False

Answers:  10.1b, 10.2f, 10.3a, 10.4b,c 10.5b,e,f, 10.6c, 10.7c, 10.8b, 10.9b, 10.10a.

Section 10.2—Waves in General

10.1 An EM wave propagating in a certain medium is described by

E 5 25 sin 12p 3 106t 2 6x 2az V/m

  (a) Determine the direction of wave propagation.
  (b) Compute the period T, the wavelength l, and the velocity u.
  (c) Sketch the wave at t 5 0, T/8, T/4, T/2.

10.2 Calculate the wavelength for plane waves in vacuum at the following frequencies:

  (a) 60 Hz (power line)
  (b) 2 MHz (AM radio)
  (c) 120 MHz (FM radio)
  (d) 2.4 GHz (microwave oven)

10.3 An EM wave in free space is described by

  Determine (a) the angular frequency v, (b) the wave number b, (c) the wavelength l,
 (d) the direction of wave propagation,  (e) the value of H(2, 3, 4, 10 ns).

10.4 (a) Show that E 1x, t 2 5 cos 1x 1 vt 2 1 cos 1x 2 vt 2  satisfies the scalar wave equation. 
  (b) Determine the velocity of wave propagation.

Section 10.3—Wave Propagation in Lossy Dielectrics

10.5 (a) Derive eqs. (10.23) and (10.24) from eqs. (10.18) and (10.20).
  (b) Using eq. (10.29) in conjunction with Maxwell’s equations, show that

h 5
jvm

g

  (c) From part (b), derive eqs. (10.32) and (10.33).

PROBLEMS
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10.6 Show that the phase constant in eq. (10.24) can be approximated as

 b 5 v"me a1 1
s

8v2e2b

 for 
s

ve
 5 1.

10.7  At 50 MHz, a lossy dielectric material is characterized by e 5 3.6eo, m 5 2.1mo, and 
s 5 0.08 S/m. If Es 5 6e2gx az V/m, compute (a) g, (b) l, (c) u, (d) h, (e) Hs.

10.8 Determine the loss tangent for each of the following nonmagnetic media at 12 MHz.

 (a) wet earth 1e 5 10eo 
, s 5 1022  S/m 2

 (b) dry earth 1e 5 4eo 
, s 5 1024  S/m 2

 (c) seawater 1e 5 81eo 
, s 5 4  S/m 2

10.9 Alumina is a ceramic material used in making printed circuit boards. At 15 GHz, 
e 5 9.6eo,  5 o, tan u 5 3 3 1024. Calculate (a) the penetration depth, (b) the total 
attenuation over a thickness of 5 mm.

10.10 The properties of a medium are s 5 ev, e 5 4eo, m 5 mo. If the wavelength in free 
space is 12 cm, find  a, b, and u in the medium.

10.11 At f 5 100 MHz, show that silver 1s 5 6.1 3 107  S/m, mr 5 1, er 5 1 2  is a good con
ductor, while rubber 1s 5 10215  S/m, mr 5 1, er 5 3.1 2  is a good insulator.

10.12  Seawater plays a vital role in the study of submarine communications. Assuming that for 
seawater, s 5 4 S/m, er 5 80, mr 5 1, and f 5 100 kHz, calculate (a) the phase velocity, 
(b) the wavelength, (c) the skin depth, (d) the intrinsic impedance.

10.13 In a certain medium with m 5 mo, e 5 4eo,

H 5 12e20.1y sin 1p 3 108t 2 by 2ax A/m

   Find (a) the wave period T, (b) the wavelength l, (c) the electric field E, (d) the phase 
 difference between E and H.

10.14 In a nonmagnetic medium,

H 5 50e2100x cos 12p 3 109t 2 200x 2ay  mA/m

 Find E.

10.15 A certain medium has  5 1 S/m, « 5 4«o, and  5 9 o at a frequency of 1 GHz.  
Determine the (a) attenuation constant, (b) phase constant, (c) intrinsic impedance, and 
(d) wave velocity. 
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Sections 10.4 and 10.5—Waves in Lossless Dielectrics and Free Space

10.16 The electric field of a TV broadcast signal progagating in air is given by

E (z,t) 5 0.2 cos(vt – 6.5z)ax V/m

  (a) Determine the wave frequency v and the wavelength l.
  (b) Sketch Ex as a function of t at z 5 0 and z 5 l/2.
  (c) Find the corresponding H(z, t).

10.17 A uniform plane wave has a wavelength of 6.4 cm in free space and 2.8 cm in a dielectric 
(s 5 0, e 5 eoer, m 5 mo). Find «r .

10.18  The magnetic field component of an EM wave propagating through a nonmagnetic 
medium 1m 5 mo 2  is

H 5 25 sin 12 3 108t 1 6x 2ay mA/m

  Determine:
  (a) The direction of wave propagation
  (b) The permittivity of the medium
  (c) The electric field intensity

10.19  A manufacturer produces a ferrite material with m 5 750mo, e 5 5eo, and s 51026 S/m 
at 10 MHz.

  (a) Would you classify the material as lossless, lossy, or conducting?
  (b) Calculate b and l.
  (c) Determine the phase difference between two points separated by 2 m.
  (d) Find the intrinsic impedance.

10.20 The electric field intensity of a uniform plane wave in air is given by 

E 5 50 sin 1108pt 2 bx 2az mV/m

 (a) Calculate b.
 (b) Determine the location(s) where E vanishes at t 5 50 ns. 
 (c) Find H.

10.21 For a uniform plane wave at 4 GHz, the intrinsic impedance and phase velocity of an 
unknown material are measured as 105 V and 7.6 3 107 m/s, respectively. Find «r and r 
of the material.

10.22 In a lossless medium (er 5 4.5, r 5 1), a uniform plane wave

E 5 8 cos(vt 2 bz)ax 2 6 sin(vt 2 bz)ay V/m

  propagates at 40 MHz. (a) Find H. (b) Determine b, l, h, and u.

10.23  A uniform plane wave in a lossy nonmagnetic medium has

Es 5 15 ax 1 12 ay 2e2gz,   g 5 10.2 1 j3.4 2  /m

  (a) Compute the magnitude of the wave at z 5 4 m, t 5 T/8.
  (b) Find the loss in decibels suffered by the wave in the interval 0 , z , 3 m.
  (c) Calculate the intrinsic impedance.
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Section 10.6—Plane Waves in Good Conductors

10.24 The magnet field intensity of a uniform plane wave in a good conductor (« 5 «o,  5 o) is

H 5 20e212z cos 12p 3 106t 1 12z 2ay  mA/m

  Find the conductivity and the corresponding E field.
10.25 Which of the following media may be treated as conducting at 8 MHz?

  (a) Wet marshy soil 1e 5 15eo, m 5 mo, s 5 1022 S/m 2
  (b) Intrinsic germanium 1e 5 16eo, m 5 mo, s 5 0.025 S/m 2
  (c) Seawater 1e 5 81eo, m 5 mo, s 5 25 S/m 2
10.26  A uniform plane wave impinges normally on a conducting medium.  If the frequency 

is 100 MHz and the skin depth is 0.02 mm, determine the velocity of the wave in the 
conducting medium.

10.27 (a)  Determine the dc resistance of a round copper wire 1s 5 5.8 3 107 S/m,
mr 5 1, er 5 1 2  of radius 1.2 mm and length 600 m.

  (b) Find the ac resistance at 100 MHz.
  (c) Calculate the approximate frequency at which dc and ac resistances are equal.

10.28  A 10 GHz wave passes through a medium made of copper 
(e 5 eo, m 5 mo,   s 5 5.8 3 107 S/m); find: (a) attenuation constant, (b) the skin depth, 
(c) the intrinsic impedance.

10.29  For silver, s 5 6.1 3 107 S/m, r 5 1, «r 5 1, determine the frequency at which the 
penetration depth is 2 mm.

10.30  Compute the penetration depth of copper at the power frequency of 60 Hz.

10.31 By measurements conducted at 12 MHz on a certain material, it is found that the intrin
sic impedance is 24.6/45° V with  5 . Find a, b, l, and u.

10.32 Fat tissue at 2.42 GHz has the following properties:

 s 5 0.12 S/m, e 5 5.5 eo, and  5 o. Find the penetration depth.

10.33  Brass waveguides are often silver plated to reduce losses. If the thickness of  silver 
1m 5 mo, e 5 eo, s 5 6.1 3 107 S/m 2  must be 5d, find the minimum thickness required 
for a waveguide operating at 12 GHz.

10.34 How deep does a radar wave at 2 GHz travel in seawater before its amplitude is reduced to 
1025 of its amplitude just below the surface? Assume that  5 o, « 5 24«o, s 5 4 S/m.

Section 10.7—Wave Polarization

10.35 The electric field intensity of a uniform plane wave in a medium  
(s 5 0,  5 o, « 5 «o«r) is 

E 5 12 sin 12p 3 107t 2 3y 2az V/m

 (a) Determine the polarization of the wave.
 (b) Find the frequency.
 (c ) Calculate «r.
 (d) Obtain the magnetic field intensity H.
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10.36  Let E 5 2 sin(vt 2bx)ay 2 5 sin(vt 2bx)az V/m. What is the wave polarization?

10.37 Determine the wave polarization of each of the following waves:

 (a) Eo cos(vt 1 by)ax 1 Eo sin(vt 1 by)az V/m
 (b) Eo cos(vt 2 by)ax 2 3Eo sin(vt 1 by)az V/m

10.38 Determine the polarization of the following waves:

 (a) Es 5 40e j10zax 1 60e j10zay V/m
 (b) Es 5 12e jp/3e2j10xay 1 5e2jp/3e2j10xaz V/m

10.39 The electric field intensity of a uniform plane wave in free space is given by

E 5 40 cos(vt 2bz)ax 1 60 sin(vt 2bz)ay V/m

 (a) What is the wave polarization?
 (b) Determine the magnetic field intensity.

10.40 Show that a linearly polarized plane wave of the form Es 5 Eoe 2jbz ax can be expressed as 
the sum of two circularly polarized waves.

10.41 Suppose E(y,t) 5 Eo1 cos(vt 2 by)ax 1 Eo2 cos(vt 2 by 1 )az V/m. Determine the 
polarization when (a)  5 0, (b)  5 p/2, (c)  5 p.

Section 10.8—Power and the Poynting Vector

10.42 Show that eqs. (10.77) and (10.78) are equivalent.

10.43 The electric field intensity in a dielectric medium ( 5 o, « 5 «o«r) is given by

 E 5 150 cos(109t 1 8x)az V/m

  Calculate
  (a) The dielectric constant «r

  (b) The intrinsic impedance
  (c) The velocity of propagation
  (d) The magnetic field intensity 
  (e) The Poynting vector 

10.44  In free space, E 5 40 cos(vt 2 10z)ay V/m. Find the total average power passing 
through a circular disk of radius 1.5 m in the z = 0 plane.

10.45 The electric field due a short dipole antenna located in free space is

Es 5
10
r  sin ue2 j3rau  V/m

  Find (a) Hs , (b) the average power crossing the surface r = 2, 0 , u , p/6, 0 ,  , p.
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10.46  The electric field component of a uniform plane wave traveling in seawater 
1s 5 4 S/m, e 5 81 eo, m 5 mo 2  is

E 5 8e20.1z cos 1vt 2 0.3z 2ax V/m

  (a)  Determine the average power density. (b) Find the depth at which the power density 
is reduced by 20 dB.

10.47 In a coaxial transmission line filled with a lossless dielectric 1e 5 4.5eo, m 5 mo 2 ,

E 5
40
r

 sin 1vt 2 2z 2ar V/m

   Find (a) v and H, (b) the Poynting vector, (c) the total timeaverage power crossing the 
surface z 5 1 m, 2 mm , r , 3 mm, 0 , f , 2p.

10.48 An antenna is located at the origin of a spherical coordinate system. The fields produced 
by the antenna in free space are

E 5
Eo

r
 sin u sin v 1 t 2 r/c 2au

H 5
Eo

hr
 sin u sin v 1 t 2 r/c 2af

   where c 5
"moeo

 and h 5 Å
mo

mo
. Determine the timeaverage power radiated by the  

antenna.

10.49 A plane wave in free space has 

H(x, t) 5 (10ay 2 20az) sin(vt 2 40x) A/m

  Find v, E, and ave.

10.50 Human exposure to the electromagnetic radiation in air is regarded as safe if the power 
density is less than 10 mW/m2. What is the corresponding electric field intensity? 

10.51 Given that E 5 cos(vt 2 bz)ax 1 sin(vt 2 bz)ay V/m, show that the Poynting vector 
is constant everywhere.

10.52 At the bottom of a microwave oven,  E 5 2.4 kV/m.  If this value is found uniformly over 
the entire area of the oven, which is 450 cm2, determine the power delivered by the oven. 
Assume  5 o, « 5 «o.

10.53 A coaxial cable consists of two conducting cylinders of radii a and b. The electric and 
magnetic  fields in the cable are
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 where Vo and Io are constants. (a) Determine the timeaverage Poynting vector. (b) Find 
the timeaverage power flowing through the cable.

Section 10.9—Reflection at Normal Incidence

10.54 (a)  For a normal incidence upon the dielectric–dielectric interface for which 
m1 5 m2 5 mo, we define R and T as the reflection and transmission coefficients for 
average powers; that is, Pr,ave 5 RPi,ave and Pt,ave 5 TPi,ave. Prove that

R 5 an1 2 n2

n1 1 n2
b

2

  and  T 5
4n1n2

1n1 1 n2 2 2

   where n1 and n2 are the refractive indices of the media.

  (b)  Determine the ratio n1/n2 so that the reflected and the transmitted waves have the 
same average power.

10.55  A plane wave in a lossless medium  (s 5 0, m 5 2mo, e 5 8eo) is given as

E 5 60sin(vt 2 10z)ax 1 30sin(vt 2 10z 1 p/6)ay V/m.

 

10.56 A uniform plane wave in free space impinges perpendicularly on a lossless nonmagnetic 
material with e 5 9eo. Calculate the fraction of the incident average power that is trans
mitted.

10.57 A uniform plane wave in air with

H 5 4 sin 1vt 2 5x 2ay A/m

   is normally incident on a plastic region 1x $ 0 2  with the parameters m 5 mo, e 5 4eo, 
and s 5 0. (a) Obtain the total electric field in air. (b) Calculate the timeaverage power 
density in the plastic region. (c) Find the standing wave ratio.

10.58  Region 1 is a lossless medium for which y $ 0, m 5 mo, e 5 4eo, whereas region 2 
is free space, y # 0. If a plane wave Ei 5 5 cos 1108t 1 by 2az V/m exists in region 1, 
find (a) the total electric field component of the wave in region 1, (b) the time
average Poynting vector in region 1, (c) the timeaverage Poynting vector in 
region 2.

10.59  A uniform plane wave propagates in a medium for which s 5 0, e 5 16eo m 5 mo. The 
electric field in the medium is 

E 5 60cos(vt 2 bz)ax V/m

 where v 5 90  Mrad/s. If the wave hits free space normally at z = 0, determine the power 
densities in both media.
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10.60  A uniform plane wave in air is normally incident on an infinite lossless dielectric  
material  occupying z  0 and having e 5 3eo and m 5 mo. If the incident wave is 
Ei 5 10 cos 1vt 2 z 2ay V/m, find

  (a) l and v of the wave in air and the transmitted wave in the dielectric medium
  (b) The incident Hi field
  (c) G and t
  (d) The total electric field and the timeaverage power in both regions

10.61 A 100 MHz plane wave is normally incident from air to the sea surface, which may be 
assumed to be calm and smooth. If s 5 4 S/m, r 5 1, and «r 5 81 for seawater, calculate 
the fractions of the incident power that are transmitted and reflected.

10.62 A uniform plane wave in a certain medium ( 5 o, « 5 4«o) is given by

E 5 12 cos(t 2 40px)az V/m

  (a) Find .
  (b)  If the wave is normally incident on a dielectric ( 5 o, « 5 3.2«o), determine  

Er and Et.

*10.63 A signal in air 1z $ 0 2  with the electric field component

E 5 10 sin 1vt 1 3z 2ax V/m

   hits normally the ocean surface at z 5 0 as in Figure 10.24. Assuming that the ocean 
 surface is smooth and that e 5 80eo, m 5 mo, s 5 4 S/m in ocean, determine

  (a) v

  (b) The wavelength of the signal in air
  (c) The loss tangent and intrinsic impedance of the ocean
  (d) The reflected and transmitted E field

10.64  Sketch the standing wave in eq. (10.97) at t 5 0, T/8, T/4, 3T/8, T/2, and so on, where 
T 5 2p/v.

10.65  A uniform plane wave is incident at an angle ui 5 45° on a pair of dielectric slabs joined 
together as shown in Figure 10.25. Determine the angles of transmission ut1 and ut2 in 
the slabs.

FIGURE 10.24 For Problem 10.63.

Ocean
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10.66 Show that the field

Es 5 20 sin 1kxx 2  cos 1kyy 2az

   where k2
x 1 k2

y 5 v2moeo, can be represented as the superposition of four propagating 
plane waves. Find the corresponding Hs.

10.67 Electromagnetic radiation can be used to heat cancerous tumors. If a plane wave is nor
mally incident on the tissue surface at 1.2 GHz as shown in Figure. 10.26, determine the 
refection coefficient. At 1.2 GHz, the electrical properties of the tissue are «r 5 50, r 5 
1,  54 S/m.

10.68 An EM plane wave in a lossless medium impinges normally on a lossy  medium.

 (a)  Determine the ratio of transmitted to incident power in terms of the standing wave 
ratio s.

 (b) Express the ratio of reflected to incident power in terms of s.

Section 10.10—Reflection at Oblique Incidence

*10.69  By assuming the timedependent fields E 5 Eoe j1k # r2vt2 and H 5 Hoe j1k # r2vt2 where 
k 5 kxax 1 kyay 1 kzaz is the wave number vector and r 5 xax 1 yay 1 zaz is the radius 
vector, show that = 3 E 5 2'B/'t can be expressed as k 3 E 5 mvH and  deduce 
ak 3 aE 5 aH.

Ei

Air

Hi z

Tissue
FIGURE 10.26 For Problem 10.67.

F F
FIGURE 10.25 For Problem 10.65.
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10.70 A plane wave in free space has a propagation vector

k 5 124ax 1 124ay 1263az

 Find the wavelength, frequency, and angles k makes with the x, y, and zaxes. 

10.71 In free space,

 Es 5 [Eoax 1 ay 1(3 1 j4)az ]e 2j(3.4x24.2y) V/m

 Determine Eo, Hs, and frequency.

10.72  Assume the same fields as in Problem 10.69 and show that Maxwell’s equations in a 
sourcefree region can be written as

k # E 5 0
k # H 5 0

k 3 E 5 vmH
k 3 H 5 2veE

 From these equations deduce

ak 3 aE 5 aH  and  ak 3 aH 5 2aE

10.73  Show that for nonmagnetic dielectric media, the reflection and transmission coefficients 
for oblique incidence become

 Gy 5
tan 1ut 2 ui 2
tan 1ut 1 ui 2

,   ty 5
2 cos ui sin ut

sin 1ut 1 ui 2  cos 1ut 2 ui 2

 G' 5
sin 1ut 2 ui 2
sin 1ut 1 ui 2

,   t' 5
2 cos ui sin ut

sin 1ut 1 ui 2
10.74

10.75 A parallelpolarized wave in air with

E 5 18ay 2 6az 2  sin 1vt 2 4y 2 3z 2  V/m

   impinges a dielectric halfspace as shown in Figure 10.27. Find (a) the incidence angle 
ui, (b) the timeaverage power in air 1m 5 mo, e 5 eo 2 , (c) the reflected and transmitted 
E fields.
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10.76 In a dielectric medium 1e 5 9eo, m 5 mo 2 , a plane wave with

H 5 0.2 cos 1109t 2 kx 2 k"8z 2ay A/m

  is incident on an air boundary at z 5 0. Find
  (a) ur and ut

  (b) k
  (c) The wavelength in the dielectric and in air
  (d) The incident E
  (e) The transmitted and reflected E
  (f) The Brewster angle

10.77 A plane wave in free space has  

Ei 5 (4ax 1 5ay 2 3az)cos(vt 2 0.5px 2 0.866pz)

 Determine: (a) the perpendicular and parallelpolarized components of the wave,  
(b) the angle of incidence. Assume that the xyplane is the boundary between the two 
media.

10.78 A parallelpolarized wave in free space impinges on a dielectric medium 
(s 5 0, e 5 eoer, m 5 mo ). If the Brewster angle is 68, find «r.

10.79 If u is the phase velocity of an EM wave in a given medium, the index of refraction of the 
medium is n 5 c/u, where c is the speed of light in vacuum.

 (a) Paraffin has r 5 1, «r 5 2.1. Determine n for unbounded medium of paraffin.
 (b) Distilled water has r 5 1, «r 5 81. Find n.
 (c) Polystyrene has r 5 1, «r 5 2.7. Calculate n.

Section 10.11—Application Note—Microwaves

10.80 Discuss briefly some applications of microwaves other than those discussed in the text.

FIGURE 10.27 For Problem 10.75.

Air Dielectric

z

y
�i

kiEi

e e(  � o, � � �o) (e  � 4e 0, � � �0) 
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10.81  A useful set of parameters, known as the scattering transfer parameters, is related to the 
incident and reflected waves as

ca1

b1
d 5 cT11 T12

T21 T22
d  cb2

a2
d

  (a) Express the Tparameters in terms of the Sparameters.
  (b) Find T when

S 5 c0.2 0.4
0.4 0.2

d

10.82 The Sparameters of a twoport network are:

S11 5 0.33 2 j0.16, S12 5 S21 5 0.56, S22 5 0.44 2 j0.62

  Find the input and output reflection coefficients when ZL 5 Zo 5 50 V and Zg 5 2Zo.

10.83  Why can’t regular lumped circuit components such as resistors, inductors, and capacitors 
be used at microwave frequencies?

10.84  In free space, a microwave signal has a frequency of 8.4 GHz. Calculate the wavelength 
of the signal.
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Is it safe to live close to power transmission lines? Are cellular phones safe? Can video  display terminals 
cause problems for pregnant women? These and other questions are  addressed by bioelectromagnet-
ics (BEM), which is the branch of electromagnetics that deals with the biological effects of man-made 
EM fields with respect to humans and the envi ronment. BEM may also be regarded as the emerging 
science that studies how living organisms interact with EM fields. It combines the investigative efforts 
of scientists from various disciplines.

A major challenge the industry faces as a result of the immense spread of wireless technology is the 
growth of health concerns on the part of the public and health agencies alike. The recent focus has been 
on the design criteria for transmitters operating in the closest proximity of the human body. When a 
person is exposed to an EM field, energy incident on the person may be scattered, reflected, transmit-
ted, or absorbed into the body depending on the field strength, the frequency, the dimensions of the 
body, and the electrical properties of the tissue. The heat  produced by radiation may affect live tissue. If 
the body cannot dissipate this heat energy as fast as it is produced, the internal temperature of the body 
will rise. This may result in damage to tissues and organs and in death if the rise is  sufficiently high.

An EM field is classified as ionizing if its energy is high enough to dislodge electrons from an atom 
or molecule. High-energy forms of EM radiation, such as gamma rays and X-rays, are strongly ion-
izing in biological matter. For this reason, prolonged exposure to such rays is harmful. Radiation in the 
middle portion of the frequency and energy spectrum—such as visible, especially ultraviolet, light—is 
weakly ionizing. Although it has long been known that exposure to strongly ionizing EM radiation can 
cause extreme damage to biological tissues, only recently has evidence implicated long-term exposure 
to nonionizing EM fields, such as those emitted by power lines, in increased health hazards.

Researchers have reported that to prevent deep-tissue burning, individuals wearing or carrying 
metal objects such as hairpins, metal implants, buckles, coins, or metal-framed eyeglasses, any of 
which may concentrate the EM field and cause burning, should not be exposed to radio-frequency 
(RF) radiation. Researchers have also pointed out that radiation can be absorbed deeply and is actu-
ally greater in tissue such as muscle or the brain than in regions of poorer absorption in the bone 
and fatty layers near the body surface. At this time, there are fewer scientists who will say that there 
is positively no possibility of nonthermal hazards of low-level EM fields. Ongoing research is aimed 
at determining whether there is a hazard and if so, at what levels.

BIOELECTROMAGNETICS
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C H A P T E R

553

11.1 INTRODUCTION

Our discussion in Chapter 10 was essentially on wave propagation in unbounded media, 
media of infinite extent. Such wave propagation is said to be unguided in that the uniform 
plane wave exists throughout all space, and EM energy associated with the wave spreads 
over a wide area. Wave propagation in unbounded media is used in radio or TV broadcast-
ing, where the information being transmitted is meant for everyone who may be interested. 

Another means of transmitting power or information is by guided structures. 
Guided structures serve to guide (or direct) the propagation of energy from the source 
to the load. Typical examples of such structures are transmission lines and waveguides. 
Waveguides are discussed in the next chapter; transmission lines are considered in this 
chapter.

Transmission lines are commonly used in power distribution (at low frequencies) 
and in communications (at high frequencies). Transmission lines such as twisted-pair and 
coaxial cables (thinnet and thicknet) are used in computer networks such as the Ethernet 
and the Internet.

A transmission line basically consists of two or more parallel conductors used to 
connect a source to a load. The source may be a hydroelectric generator, a transmit-
ter, or an oscillator; the load may be a factory, an antenna, or an oscilloscope. Typical 
transmission lines include coaxial cable, a two-wire line, a parallel-plate or planar line, 
a wire above the conducting plane, and a microstrip line. These lines are portrayed in 
Figure 11.1. Notice that each of these lines consists of two conductors in parallel. Coaxial 
cables are routinely used in electrical laboratories and in connecting TV sets to antennas. 
Microstrip lines (similar to that in Figure 11.1e) are particularly important in integrated 
circuits, where metallic strips connecting electronic elements are deposited on dielectric 
substrates.

Transmission line problems are usually solved by means of EM field theory and elec-
tric circuit theory, the two major theories on which electrical engineering is based. In this 
chapter, we use circuit theory because it is easier to deal with mathematically. The basic 
concepts of wave propagation (such as propagation constant, reflection coefficient, and 
standing wave ratio) covered in the preceding chapter apply here.

TRANSMISSION LINES

Kind hearts are the garden. Kind thoughts are the roots. Kind words are the flowers. 
Kind deeds are the fruits. Take care of your garden, And keep out the weeds. Fill it up 
with sunshine, Kind words and kind deeds. 

—LONGFELLOW

11
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554 CHAPTER 11 TRANSMISSION LINES

Our analysis of transmission lines will include the derivation of the transmission line 
equations and characteristic quantities, the use of the Smith chart, various practical appli-
cations of transmission lines, and transients on transmission lines.

(a) (b)

(c) (d) (e)

FIGURE 11.1 Typical transmission lines in cross-sectional view: (a) coaxial line, (b) two-wire 
line, (c) planar line, (d) wire above conducting plane, (e) microstrip line.

11.2 TRANSMISSION LINE PARAMETERS

It is customary and convenient to describe a transmission line in terms of its line param-
eters, which are its resistance per unit length R, inductance per unit length L, conductance 
per unit length G, and capacitance per unit length C. Each of the lines shown in Figure 11.1 
has specific formulas for finding R, L, G, and C. For coaxial, two-wire, and planar lines, 
the formulas for calculating the values of R, L, G, and C are provided in Table 11.1. The 
dimensions of the lines are as shown in Figure 11.2. Some of the formulas1 in Table 11.1 
were derived in Chapters 6 and 8. It should be noted that

1. The line parameters R, L, G, and C are not discrete or lumped. Rather, they are dis-
tributed as shown in Figure 11.3. By this we mean that the parameters are  uniformly 
distributed along the entire length of the line.

1Similar formulas for other transmission lines can be obtained from engineering handbooks or data books—for 
example, M. A. R. Gunston, Microwave Transmission-Line Impedance Data. London: Van Nostrand Reinhold, 1972.
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11.2 Transmission Line Parameters 555

2. For each line, the conductors are characterized by sc, mc, ec 5 eo, and the homoge-
neous dielectric separating the conductors is characterized by s, m, .

3. G 2 1/R; R is the ac resistance per unit length of the conductors comprising the line, 
and G is the conductance per unit length due to the dielectric medium  separating 
the conductors.

4. The value of L shown in Table 11.1 is the external inductance per unit length, that 
is, L 5 Lext. The effects of internal inductance Lin 15 R /v 2  are negligible at the high 
frequencies at which most communication systems operate.

5. For each line,

 LC 5 me  and  
G
C

5
s

e
 (11.1)

As a way of preparing for the next section, let us consider how an EM wave propa-
gates through a two-conductor transmission line. For example, consider the coaxial 
line connecting the generator or source to the load as in Figure 11.4(a). When switch 
S is closed, the inner conductor is made positive with respect to the outer one so that 

TABLE 11.1 Distributed Line Parameters at High Frequencies*

Parameters Coaxial Line Two-Wire Line Planar Line

R 1V/m 2 1
2pdsc

 c 1
a

1
1
b
d

1
padsc

2
wdsc

1d V a, c 2 b 2 1d V a 2 1d V t 2
L 1H/m 2 m

2p
 ln 

b
a

m

p
 cosh21 

d
2a

md
w

G 1S/m 2 2ps

ln 
b
a

ps

cosh21 
d

2a

sw
d

C 1F/m 2 2pe

ln 
b
a

pe

cosh21 
d

2a

ew
d1w W d 2

*
d 5

1

"pfmcsc

5 skin depth of the conductor; cosh21 
d
2a

. ln 
d
a

 if c d
2a

d
2

W 1.

FIGURE 11.2 Common transmission lines: (a) coaxial line,  
(b) two-wire line, (c) planar line. 
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556 CHAPTER 11 TRANSMISSION LINES

the E field is  radially outward as in Figure 11.4(b). According to Ampère’s law, the H 
field  encircles the current-carrying conductor as in Figure 11.4(b). The Poynting vector 
1E 3 H 2  points along the transmission line. Thus, closing the switch simply establishes 
a disturbance, which appears as a transverse electromagnetic (TEM) wave propagating 
along the line. This wave is a nonuniform plane wave, and by means of it, power is trans-
mitted through the line.

S

S

FIGURE 11.3 Distributed parameters of a two-conductor transmission line.

LCG

FIGURE 11.4 (a) Coaxial line connecting the generator to the load; 
(b) E and H fields on the coaxial line.
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11.3 Transmission Line Equations 557

As mentioned in Section 11.2, a two-conductor transmission line supports a TEM 
wave; that is, the electric and magnetic fields on the line are perpendicular to each other 
and transverse to the direction of wave propagation. An important property of TEM waves 
is that the fields E and H are uniquely related to voltage V and current I,  respectively:

 V 5 23
L
 E # dl,  I 5 C

L
 H # dl (11.2)

In view of this, we will use circuit quantities V and I in solving the transmission line 
problem instead of solving field quantities E and H (i.e., solving Maxwell’s equations and 
boundary conditions). The circuit model is simpler and more convenient.

Let us examine an incremental portion of length z of a two-conductor transmission 
line. We intend to find an equivalent circuit for this line and derive the line equations. From 
Figure 11.3, we expect the equivalent circuit of a portion of the line to be as in Figure 11.5. 
The model in Figure 11.5 is in terms of the line parameters R, L, G, and C, and may repre-
sent any of the two-conductor lines of Figure The model is called the L-type equiva-

By applying Kirchhoff ’s voltage law to the outer loop of the circuit in Figure 11.5, we 
obtain

V 1z, t 2 5 R Dz I 1z, t 2 1 L Dz 
'I 1z, t 2

't
1 V 1z 1 Dz, t 2

or

 2
V 1z 1 Dz, t 2 2 V 1z, t 2

Dz
5 RI 1z, t 2 1 L 

'I 1z, t 2
't

 (11.3)

11.3  TRANSMISSION LINE EQUATIONS

FIGURE 11.5 An L-type equivalent circuit model of a two-conductor 
transmission line of differential length z.
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11.2. 
lent circuit; there are other possible types. In the model of Figure 11.5, we assume that the 
wave propagates along the 1z-direction, from the generator to the load.
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Taking the limit of eq. (11.3) as Dz S  0 leads to

 2
'V 1z, t 2

'z
5 RI 1z, t 2 1 L 

'I 1z, t 2
't

 (11.4)

Similarly, applying Kirchhoff ’s current law to the main node of the circuit in Figure 11.5 
gives

I 1z, t 2 5 I 1z 1 Dz, t 2 1 DI

 5 I 1z 1 Dz, t 2 1 G Dz V 1z 1 Dz, t 2 1 C Dz 
'V 1z 1 Dz, t 2

't

or

 2
I 1z 1 Dz, t 2 2 I 1z, t 2

Dz
5 GV 1z 1 Dz, t 2 1 C 

'V 1z 1 Dz, t 2
't

 (11.5)

As Dz S  0, eq. (11.5) becomes

 2
'I 1z, t 2
'z

5 GV 1z, t 2 1 C 
'V 1z, t 2

't
 (11.6)

If we assume harmonic time dependence so that

 V(z, t) 5 Re[Vs(z) ejwt] (11.7a)

 I(z, t) 5 Re[Is(z) ejwt] (11.7b)

where Vs 1z 2  and Is 1z 2  are the phasor forms of V 1z, t 2  and I 1z, t 2 , respectively, eqs. (11.4) 
and (11.6) become

 2
dVs

dz
5 1R 1 jvL 2 Is (11.8)

 2
dIs

dz
5 1G 1 jvC 2Vs (11.9)

The differential eqs. (11.8) and (11.9) are coupled. To separate them, we take the second 
derivative of Vs in eq. (11.8) and employ eq. (11.9) so that we obtain

d2Vs

dz2 5 1R 1 jvL 2 1G 1 jvC 2Vs

or

 
d2Vs

dz2 2 g2Vs 5 0 (11.10)
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11.3 Transmission Line Equations 559

where

 g 5 a 1 jb 5 "1R 1 jvL 2 1G 1 jvC 2  (11.11)

By taking the second derivative of Is in eq. (11.9) and employing eq. (11.8), we get

 
d2Is

dz2 2 g2Is 5 0 (11.12)

We notice that eqs. (11.10) and (11.12) are, respectively, the wave equations for voltage 
and current similar in form to the wave equations obtained for plane waves in eqs. (10.17) 
and (10.19). Thus, in our usual notations, g in eq. (11.11) is the propagation constant (in 
per meter), a is the attenuation constant (in nepers per meter or decibels per meter),2 and 
b is the phase constant (in radians per meter). The wavelength l and wave velocity u are, 
respectively, given by

 l 5
2p

b
 (11.13)

 u 5
v

b
5 f l (11.14)

The solutions of the linear homogeneous differential equations (11.10) and (11.12) are 
similar to Case 2 of Example 6.5, namely,

Vs 1z 2 5 V1
o  e2gz 1 V2

o  egz

 h 1z 2z v  (11.15)

and

Is 1z 2 5 I1
o  e2gz 1 I2

o  egz

 h 1z 2z v  (11.16)

where V1
o , V2

o , I1
o , and I2

o  are wave amplitudes; the 1 and 2 signs, respectively, denote 
waves traveling along 1z- and 2z-directions, as is also indicated by the arrows. We obtain 
the instantaneous expression for voltage as

 V 1z, t 2 5 Re 3Vs 1z 2  e jvt 4 
  5 V1

o  e2az cos 1vt 2 bz 2 1 V2
o  eaz cos 1vt 1 bz 2  (11.17)

The characteristic impedance Zo of the line is the ratio of the positively traveling volt-
age wave to the current wave at any point on the line.

2Recall from eq. (10.35) that 1 Np 5 8.686 dB.
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560 CHAPTER 11 TRANSMISSION LINES

The characteristic impedance Zo is analogous to h, the intrinsic impedance of the medium 
of wave propagation. By substituting eqs. (11.15) and (11.16) into eqs. (11.8) and (11.9) and 
equating coefficients of terms egz and e2gz, we obtain

 Zo 5
V1

o

I1
o

5 2
V2

o

I2
o

5
R 1 jvL

g
5

g

G 1 jvC
 (11.18)

or

 Zo 5 Å
R 1 jvL
G 1 jvC

5 Ro 1 jXo (11.19)

where Ro and Xo are the real and imaginary parts of Zo. Do not mistake Ro for R—while 
o

impedance Zo are important properties of the line because both depend on the line param-
eters R, L, G, and C and the frequency of operation. The reciprocal of Zo is the characteristic 
 admittance Yo, that is, Yo 5 1/Zo.

The transmission line considered thus far in this section is the lossy type in that the 
conductors comprising the line are imperfect 1sc 2 ` 2  and the dielectric in which the 
conductors are embedded is lossy 1s 2 0 2 . Having considered this general case, we may 
now consider two special cases: the lossless transmission line and the distortionless line.

A.  Lossless Line (R = 0 = G)

A transmission line is said to be lossless if the conductors of the line are perfect 
1sc < ` 2  and the dielectric medium separating them is lossless 1s . 0 2 .

For such a line, it is evident from Table 11.1 that when sc . ` and s . 0,

 R 5 0 5 G (11.20)

This is a necessary condition for a line to be lossless. Thus for such a line, eq. (11.20) forces 
eqs. (11.11), (11.14), and (11.19) to become

 a 5 0,  g 5 jb 5 jv "LC (11.21a)

 u 5
v

b
5

1

"LC
5 f l (11.21b)

 Xo 5 0,  Zo 5 Ro 5 Å
L
C

 (11.21c)
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B.  Distortionless Line (R/L = G/C)
A signal normally consists of a band of frequencies; wave amplitudes of different frequency 
components will be attenuated differently in a lossy line because a is frequency  dependent. 
Since, in general, the phase velocity of each frequency component is also  frequency depen-
dent, this will result in distortion.

A distortionless line is one in which the attenuation constant a is frequency indepen-
dent while the phase constant b is linearly dependent on frequency.

From the general expression for a and b [in eq. (11.11)], a distortionless line results if the 
line parameters are such that

 
R
L

5
G
C

 (11.22)

Thus, for a distortionless line,

g 5 ÅRG a1 1
jvL
R

b a1 1
jvC

G
b

 5 "RG a1 1
jvC

G
b 5 a 1 jb

or

 a 5 "RG,  b 5 v"LC (11.23a)

showing that a does not depend on frequency, whereas b is a linear function of frequency. Also

Zo 5 Å
R 11 1 jvL/R 2
G 11 1 jvC/G 2 5 Å

R
G

5 Å
L
C

5 Ro 1 jXo

or

 Ro 5 Å
R
G

5 Å
L
C

,  Xo 5 0 (11.23b)

and

 u 5
v

b
5

1

"LC
5 f l (11.23c)

Note the following important properties.

1. The phase velocity is independent of frequency because the phase constant b 
 linearly depends on frequency. We have shape distortion of signals unless a and u 
are independent of frequency.
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562 CHAPTER 11 TRANSMISSION LINES

2. Both u and Zo remain the same as for lossless lines.
3. A lossless line is also a distortionless line, but a distortionless line is not necessarily 

lossless. Although lossless lines are desirable in power transmission, telephone lines 
are required to be distortionless.

A summary of our discussion in this section is in Table 11.2. For the greater part of our 
analysis, we shall restrict our discussion to lossless transmission lines.

An air line has a characteristic impedance of 70 V and a phase constant of 3 rad/m at  
100 MHz. Calculate the inductance per meter and the capacitance per meter of the line. 

Solution:
An air line can be regarded as a lossless line because s . 0 and sc S  `. Hence

R 5 0 5 G  and  a 5 0

 Zo 5 Ro 5 Å
L
C

 (11.1.1)

 b 5 v "LC (11.1.2)

Dividing eq. (11.1.1) by eq. (11.1.2) yields

Ro

b
5

1
vC

or

C 5
b

vRo
5

3
2p 3 100 3 106 170 2 5 68.2 pF/m

From eq. (11.1.1),

L 5 R2
oC 5 170 2 2 168.2 3 10212 2 5 334.2 nH/m 

EXAMPLE 11.1
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TABLE 11.2 Transmission Line Characteristics

Case Propagation Constant 
g 5 a 1 jb

Characteristic Impedance
Zo 5 Ro 1 jXo

General "1R 1 jvL 2 1G 1 jvC 2
Å

R 1 jvL
G 1 jvC

Lossless 0 1 jv"LC
Å

L
C

1 j0

Distortionless "RG 1 jv"LC
Å

L
C

1 j0 
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A distortionless line has Zo 5 60 V, a 5 20 mNp/m, u 5 0.6c, where c is the speed of 
light in a vacuum. Find R, L, G, C, and l at 100 MHz.

Solution:
For a distortionless line,

RC 5 GL  or  G 5
RC
L

and hence

 Zo 5 Å
L
C

 (11.2.1)

 a 5 "RG 5 R Å
C
L

5
R
Zo

 (11.2.2a)

or

 R 5 a Zo (11.2.2b)

But

 u 5
v

b
5

1

"LC
 (11.2.3)

From eq. (11.2.2b),

R 5 a Zo 5 120 3 1023 2 160 2 5 1.2 V/m

Dividing eq. (11.2.1) by eq. (11.2.3) results in

L 5
Zo

u 5
60

0.6 13 3 108 2 5 333 nH/m

From eq. (11.2.2a),

G 5
a2

R
5

400 3 1026

1.2
5 333 mS/m

PRACTICE EXERCISE 11.1

A transmission line operating at 500 MHz has Zo 5 80 V, a 5 0.04 Np/m, b 51.5 rad/m. 
Find the line parameters R, L, G, and C.

Answer: 3.2 V/m, 38.2 nH/m, 5 3 1024 S/m, 5.97 pF/m.

EXAMPLE 11.2

11_Sadiku_Ch11.indd   563 25/09/17   5:24 PM



564 CHAPTER 11 TRANSMISSION LINES

Multiplying eqs. (11.2.1) and (11.2.3) together gives

uZo 5
1
C

or

 C 5
1

uZo
5

1
0.6 13 3 108 2  60

5 92.59 pF/m

 l 5
u
f

5
0.6 13 3 108 2

108 5 1.8 m 

Consider a transmission line of length , characterized by g and Zo, connected to a load ZL 
as shown in Figure 11.6(a). Looking into the line, the generator sees the line with the load 
as an input impedance Zin. It is our intention in this section to determine the input imped-
ance, the standing wave ratio (SWR), and the power flow on the line.

Let the transmission line extend from z 5 0 at the generator to z 5 , at the load. First 
of all, we need the voltage and current waves in eqs. (11.15) and (11.16), that is,

 Vs 1z 2 5 V1
o e2gz 1 V2

o egz (11.24)

 Is 1z 2 5
V1

o

Zo
 e2gz 2

V2
o

Zo
 egz (11.25)

where eq. (11.18) has been incorporated. To find V1
o  and V2

o , the terminal conditions must 
be given. For example, if we are given the conditions at the input, say

 Vo 5 V 1z 5 0 2 ,  Io 5 I 1z 5 0 2  (11.26)

11.4 INPUT IMPEDANCE, STANDING WAVE RATIO, AND POWER

PRACTICE EXERCISE 11.2

A telephone line has R 5 30 V/km, L 5 100 mH/km, G 5 0, and C 5 20 mF/km.  
At f 5 1 kHz, obtain:
(a) The characteristic impedance of the line
(b) The propagation constant
(c) The phase velocity

Answer:  (a) 70.75l
iii
21.367° V, (b) 2.121 3 1024 1 j8.888 3 1023/m,  

(c) 7.069 3105 m/s.
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substituting these into eqs. (11.24) and (11.25) results in

 V1
o 5

1
2

 1Vo 1 ZoIo 2  (11.27a)

 V2
o 5

1
2

 1Vo 2 ZoIo 2  (11.27b)

If the input impedance at the input terminals is Zin, the input voltage Vo and the input 
 current Io are easily obtained from Figure 11.6(b) as

 Vo 5
Zin

Zin 1 Zg
 Vg,  Io 5

Vg

Zin 1 Zg
 (11.28)

On the other hand, if we are given the conditions at the load, say

 VL 5 V 1z 5 , 2 ,  IL 5 I 1z 5 , 2  (11.29)

Substituting these into eqs. (11.24) and (11.25) gives

 V1
o 5

1
2

 1VL 1 ZoIL 2eg, (11.30a)

 V2
o 5

1
2

 1VL 2 ZoIL 2e2g, (11.30b)

o

o

FIGURE 11.6 (a) Input impedance due to a line terminated by 
a load. (b) Equivalent circuit for finding Vo and Io in terms of 
Zin at the input.
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Next, we determine the input impedance Zin 5 Vs 1z 2 /Is 1z 2  at any point on the line. At 
the generator, for example, eqs. (11.24) and (11.25) yield

 Zin 5
Vs 1z 2
Is 1z 2

5
Zo 1V1

o 1 V2
o 2

V1
o 2 V2

o
 (11.31)

Substituting eq. (11.30) into (11.31) and utilizing the fact that

 
eg, 1 e2g,

2
5 cosh g,,  

eg, 2 e2g,

2
5 sinh g, (11.32a)

or

 tanh g, 5
sinh g,

cosh g,
5

eg, 2 e2g,

eg, 1 e2g,
 (11.32b)

we get

 Zin 5 Zo cZL 1 Zo tanh g,

Zo 1 ZL tanh g,
d     (lossy) (11.33)

Although eq. (11.33) has been derived for the input impedance Zin at the generation end, 
it is a general expression for finding Zin at any point on the line. To find Zin at a distance 
 from the load as in Figure 11.6(a), we replace  by . A formula for calculating the 
hyperbolic tangent of a complex number, required in eq. (11.33), is found in Appendix A.3.

For a lossless line, g 5 jb, tanh jb, 5 j tan b,, and Zo 5 Ro, so eq. (11.33) becomes

 Zin 5 Zo cZL 1 jZo tan b,

Zo 1 jZL tan b,
d     (lossless) (11.34)

showing that the input impedance varies periodically with distance  from the load. The 
quantity b in eq. (11.34) is usually referred to as the electrical length of the line and can be 
expressed in degrees or radians.

We now define GL as the voltage reflection coefficient (at the load). The reflection coef-
L

 GL 5
V2

o  eg,

V1
o  e2g,

 (11.35)

Substituting V2
o  and V1

o  in eq. (11.30) into eq. (11.35) and incorporating VL 5 ZLIL gives

 GL 5
ZL 2 Zo

ZL 1 Zo
 (11.36)
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ficient G  is the ratio of the voltage reflection wave to the incident wave at the load; that is,
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The voltage reflection coefficient at any point on the line is the ratio of the reflected 
voltage wave to that of the incident wave.

That is,

G 1z 2 5
V2

o  egz

V1
o  e2gz 5

V2
o

V1
o

 e2gz

But z 5 , 2 , r. Substituting and combining with eq. (11.35), we get

 G 1z 2 5
V2

o

V1
o

 e2g,e22g,r 5 GLe22g,r (11.37)

The current reflection coefficient at any point on the line is the negative of the volt-
age reflection coefficient at that point.

Thus, the current reflection coefficient at the load is I2
o  eg,/I1

o  e2g, 5 2GL.
Just as we did for plane waves, we define the standing wave ratio s (otherwise denoted 

by SWR) as

 s 5
Vmax

Vmin
5

Imax

Imin
5

1 1 0GL 0
1 2 0GL 0

 (11.38a)

 (11.38b)

It is easy to show that Imax 5 Vmax/Zo and Imin 5 Vmin /Zo. The input impedance Zin in  
eq. (11.34) has maxima and minima that occur, respectively, at the maxima and minima of 
the voltage standing wave. It can also be shown that

 0Zin 0 max 5
Vmax

Imin
5 sZo (11.39a)

and

 0Zin 0 min 5
Vmin

Imax
5

Zo

s  (11.39b)

As a way of demonstrating these concepts, consider a lossless line with characteristic 
impedance of Zo 5 50 V. For the sake of simplicity, we assume that the line is terminated 
in a pure resistive load ZL 5 100 V and the voltage at the load is 100 V (rms). The condi-
tions on the line are displayed in Figure 11.7. Note from Figure 11.7 that conditions on the 
line repeat themselves every half-wavelength.
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0GL 0 5
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As mentioned at the beginning of this chapter, a transmission line is used in transfer-
ring power from the source to the load. The average input power at a distance  from the 
load is given by an equation similar to eq. (10.78); that is,

Pave 5
1
2

 Re 3Vs 1, 2 I*s 1, 2 4

where the factor  12  is needed because we are dealing with the peak values instead of the rms 
values. Assuming a lossless line, we substitute eqs. (11.24) and (11.25) to obtain

Pave 5
1
2

 Re cV1
o 1e jb, 1 Ge2jb, 2  V1*

Zo
 1e2jb, 2 G*e jb, 2 d

   5
1
2

 Re c 0V
1
o 0 2

Zo
 11 2 0G 0 2 1 Ge22jb, 2 G*e2jb, 2 d

Since the last two terms together become purely imaginary, we have

 Pave 5
0V1

o 0 2
2Zo

 11 2 0G 0 2 2  (11.40)

| V  |

| V  |

| I  |

βl (radians)

λ (wavelength)

FIGURE 11.7 Voltage and current standing wave patterns on a lossless line terminated 
by a resistive load.
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The first term is the incident power Pi, while the second term is the reflected power Pr. 
Thus eq. (11.40) may be written as

Pt 5 Pi 2 Pr

where Pt is the input or transmitted power and the negative sign is due to the negative-
going wave (since we take the reference direction as that of the voltage/current traveling 
toward the right). We should notice from eq. (11.40) that the power is constant and does 
not depend on , since it is a lossless line. Also, we should notice that maximum power is 
delivered to the load when G 5 0, as expected.

We now consider special cases when the line is connected to load ZL 5 0, ZL 5 `, and 
ZL 5 Zo. These special cases can easily be derived from the general case.

A.  Shorted Line (ZL = 0)
For this case, eq. (11.34) becomes

 Zsc 5 Zin `
ZL50

5 jZo tan b, (11.41a)

Also, from eqs. (11.36) and (11.38)

 GL 5 21,  s 5 ` (11.41b)

We notice from eq. (11.41a) that Zin is a pure reactance, which could be capacitive 
or  inductive depending on the value of . The variation of Zin with  is shown in 
 Figure 11.8(a).

B.  Open-Circuited Line (ZL = `)
In this case, eq. (11.34) becomes

 Zoc 5 lim
ZLS`

 Zin 5
Zo

j tan b,
5 2jZo cot b, (11.42a)

and from eqs. (11.36) and (11.38),

 GL 5 1,  s 5 ` (11.42b)

The variation of Zin with  is shown in Figure 11.8(b). Notice from eqs. (11.41a) and 
(11.42a) that

 ZscZoc 5 Z2
o (11.43)

C.  Matched Line (ZL = Zo)

 Zin 5 Zo (11.44a)
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The most desired case from the practical point of view is the matched line i.e., ZL = Zo. For 
this case, eq. (11.34) reduces to
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and from eqs. (11.36) and (11.38),

 GL 5 0,  s 5 1 (11.44b)

that is, V2
o 5 0; the whole wave is transmitted, and there is no reflection. The incident 

power is fully absorbed by the load. Thus maximum power transfer is possible when a 
transmission line is matched to the load.

A certain transmission line 2 m long operating at v 5 106 rad/s has a 5 8 dB/m, 
b 5 1 rad/m, and Zo 5 60 1 j40 V. If the line is connected to a source of 10l0° V,  
Zg 5 40 V and terminated by a load of 20 1 j50 V, determine

(a) The input impedance
(b) The sending-end current
(c) The current at the middle of the line

FIGURE 11.8 Input impedance of 
a lossless line: (a) when shorted, 
(b) when open.

EXAMPLE 11.3
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Solution:
(a) Since 1 Np 5 8.686 dB,

a 5
8

8.686
5 0.921 Np/m

 g 5 a 1 jb 5 0.921 1 j1 /m

g, 5 2 10.921 1 j1 2 5 1.84 1 j2

Using the formula for tanh 1x 1 jy 2  in Appendix A.3, we obtain

 tanh g, 5 1.033 2 j0.03929

 Zin 5 Zo aZL 1 Zo tanh g,

Zo 1 ZL tanh g,
b

  5 160 1 j40 2  c 20 1 j50 1 160 1 j40 2 11.033 2 j0.03929 2
60 1 j40 1 120 1 j50 2 11.033 2 j0.03929 2 d

 Zin 5 60.25 1 j38.79 V

(b) The sending-end current is I 1z 5 0 2 5 Io. From eq. (11.28),

I 1z 5 0 2 5
Vg

Zin 1 Zg
5

10
60.25 1 j38.79 1 40

 5 93.03l
iii
221.15° mA

(c) To find the current at any point, we need V1
o  and V2

o . But

 Io 5 I 1z 5 0 2 5 93.03l
iii
221.15° mA

 Vo 5 ZinIo 5 171.66l
iii

32.77° 2 10.09303l
iii
221.15° 2 5 6.667l

iii
11.62° V

From eq. (11.27),

 V1
o 5

1
2

 1Vo 1 ZoIo 2

 5
1
2

 36.667l
iii
11.62° 1 160 1 j40 2 10.09303l

iiii
221.15° 2 4 5 6.687l

iii
12.08°

 V2
o 5

1
2

 1Vo 2 ZoIo 2 5 0.0518l
ii
260°

At the middle of the line, z 5 ,/2, gz 5 0.921 1 j1. Hence, the current at this point is

Is 1z 5 ,/2 2 5
V1

o

Zo
 e2gz 2

V2
o

Zo
 egz

  5
16.687e j12.08° 2e20.9212j1

60 1 j40
2

10.0518e j260° 2e0.9211j1

60 1 j40
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Note that j1 is in radians and is equivalent to j57.3°. Thus,

 Is 1z 5 ,/2 2 5
6.687e j12.08°e20.921e2j57.3°

72.1e j33.69° 2
0.0518e j260°e0.921e j57.3°

72.1e33.69°

 5 0.0369e2j78.91° 2 0.001805e j283.61°

 5 6.673 2 j34.456 mA
 5 35.10l

ii
281° mA

PRACTICE EXERCISE 11.3

The transmission line shown in Figure 11.9 is 40 m long and has Vg 5 15l 0° Vrms, 

(a) The input impedance Zin

(b) The sending-end current Iin and voltage Vin

(c) The propagation constant g

Answer:  (a) 30 1 j60 V, (b) 0.2236l
iii
263.43° A, 7.5l0° Vrms, (c) 0.0101 1

j0.02094 /m.

FIGURE 11.9 For Practice Exercise 11.3.

11.5  THE SMITH CHART

Prior to the advent of digital computers and calculators, engineers developed all sorts of aids 
(slide rules, tables, charts, graphs, etc.) to facilitate their calculations for design and analysis. 
To reduce the tedious manipulations involved in calculating the characteristics of transmis-
sion lines, graphical means were then developed. The Smith chart3 is the most commonly 

3Devised by Phillip H. Smith in 1939. See P. H. Smith, “Transmission line calculator,” Electronics, vol. 12, pp. 29–31, 
1939, and “An improved transmission line calculator,” Electronics, vol. 17, pp. 130–133, 318–325, 1944.
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Zo 5 30 1 j60 V, and VL 5 5l
ii
248° Vrms. If the line is matched to the load and Zg 5 0, 

calculate:
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used of the graphical techniques. It is basically a graphical indication of the  impedance of a 
transmission line and of the corresponding reflection coefficient as one moves along the line. 
It becomes easy to use after a small amount of experience. We will first  ex am ine how the Smith 
chart is constructed and later employ it in our calculations of transmission line characteristics 
such as GL, s, and Zin. We will assume that the transmission line to which the Smith chart will 
be applied is lossless 1Zo 5 Ro 2 , although this is not fundamentally required.

The Smith chart is constructed within a circle of unit radius 1 0G 0 # 1 2  as shown in 
Figure 11.10. The construction of the chart is based on the relation in eq. (11.36)4; that is,

 G 5
ZL 2 Zo

ZL 1 Zo
 (11.45)

or

 G 5 0G 0 luGi
5 Gr 1 jGi (11.46)

where Gr and Gi are the real and imaginary parts of the reflection coefficient G.
Instead of having separate Smith charts for transmission lines with different character-

istic impedances (e.g., Zo 5 60, 100, 120 V), we prefer to have just one that can be used for 
any line. We achieve this by using a normalized chart in which all impedances are normalized 
with respect to the characteristic impedance Zo of the particular line under  consideration. 
For the load impedance ZL, for example, the normalized impedance zL is given by

 zL 5
ZL

Zo
5 r 1 jx (11.47)

Substituting eq. (11.47) into eqs. (11.45) and (11.46) gives

 G 5 Gr 1 jGi 5
zL 2 1
zL 1 1

 (11.48a)

FIGURE 11.10 Unit circle on which the Smith chart 
is constructed.

4 Whenever a subscript is not attached to G, we simply mean voltage reflection coefficient at the load 1GL 5 G 2 .
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or

 zL 5 r 1 jx 5
11 1 Gr 2 1 jGi

11 2 Gr 2 2 jGi
 (11.48b)

Normalizing and equating real and imaginary components, we obtain

 r 5
1 2 G2

r 2 G2
i

11 2 Gr 2 2 1 G2
i
 (11.49a)

 x 5
2 Gi

11 2 Gr 2 2 1 G2
i
 (11.49b)

Rearranging terms in eqs. (11.49) leads to

 cGr 2
r

1 1 r
d

2

1 G2
i 5 c 1

1 1 r
d

2

 (11.50)

and

 3Gr 2 1 42 1 cGi 2
1
x d

2

5 c 1
x d

2

 (11.51)

Each of eqs. (11.50) and (11.51) is similar to

 1x 2 h 2 2 1 1y 2 k 2 2 5 a2 (11.52)

which is the general equation of a circle of radius a, centered at 1h, k 2 . Thus eq. (11.50) is 
an r-circle (resistance circle) with

 center at 1Gr, Gi 2 5 a r
1 1 r

, 0b  (11.53a)

  radius 5
1

1 1 r
 (11.53b)

TABLE 11.3 Radii and Centers of r-Circles for Typical Values of r

Normalized Resistance (r) Radius a 1
1 1 r

b Center a r
1 1 r

, 0b

0
1/2
1
2
5
`

1
2/3
1/2
1/3
1/6
0

(0, 0)
(1/3, 0)
(1/2, 0)
(2/3, 0)
(5/6, 0)
(1, 0)
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For typical values of the normalized resistance r, the corresponding centers and radii of the 
r-circles are presented in Table 11.3. Typical examples of the r-circles based on the data in 
Table 11.3 are shown in Figure 11.11. Similarly, eq. (11.51) is an x-circle (reactance circle) 
with

 center at 1Gr, Gi 2 5 a1, 
1
xb  (11.54a)

  radius 5
1
x (11.54b)

Table 11.4 presents centers and radii of the x-circles for typical values of x, and Figure 11.12 
shows the corresponding plots. Notice that while r is always positive, x can be positive (for 
inductive impedance) or negative (for capacitive impedance).

If we superpose the r-circles and x-circles, what we have is the Smith chart shown in 
Figure 11.13. On the chart, we locate a normalized impedance z 5 2 1 j, for example, as 
the point of intersection of the r 5 2 circle and the x 5 1 circle. This is point P1 in Figure 
11.13. Similarly, z 5 1 2 j 0.5 is located at P2, where the r 5 1 circle and the x 5 20.5 
circle  intersect.

Apart from the r- and x-circles (shown on the Smith chart), we can draw the s-circles 
or constant standing wave ratio circles (always not shown on the Smith chart), which are 

TABLE 11.4 Radii and Centers of x-Circles  
for Typical Values of x

Normalized Reactance (x) Radius a1
x
b Center a1, 

1
x
b

    0
1/2
1
2
5

`

    `

2
1
1/2
1/5
0

(1, `)
(1, 2)
(1, 1)
(1, 1/2)
(1, 1/5)
(1, 0)

FIGURE 11.11 Typical r-circles for 
r 5 0, 0.5, 1, 2, 5, `.
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FIGURE 11.12 Typical x-circles for 
x 5 0, 0.5, 1, 2, 5, `.

FIGURE 11.13 Illustration of the r-, x-, and s-circles on the Smith chart.
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centered at the origin with s varying from 1 to `. The value of the standing wave ratio s is 
determined by locating where an s-circle crosses the Gr axis. Typical examples of s-circles 
for s 5 1, 2, 3, and ` are shown in Figure 11.13. Since 0G 0  and s are related according to 
eq. (11.38), the s-circles are sometimes referred to as 0G 0 -circles, with 0G 0  varying linearly 
from 0 to 1 as we move away from the center O toward the periphery of the chart, while s 
varies nonlinearly from 1 to `.

The following points should be noted about the Smith chart.

1. At point Psc on the chart r 5 0, x 5 0; that is, ZL 5 0 1 j0, showing that Psc repre-
sents a short circuit on the transmission line. At point Poc, r 5 ` and x 5 `, or 
ZL 5 ` 1 j`, which implies that Poc corresponds to an open circuit on the line. 
Also at Poc, r 5 0 and x 5 0, showing that Poc is another location of a short circuit 
on the line.

2. A complete revolution (360°) around the Smith chart represents a distance of l/2 
on the line. Clockwise movement on the chart is regarded as moving toward the 
generator (or away from the load) as shown by the arrow G in Figure 11.14(a) and 
(b). Similarly, counterclockwise movement on the chart corresponds to moving 
toward the load (or away from the generator) as indicated by the arrow L in Figure 
11.14. Notice from Figure 11.14(b) that at the load, moving toward the load does 
not make sense (because we are already at the load). The same can be said of the 
case when we are at the generator end.

3. There are three scales around the periphery of the Smith chart as illustrated in 
Figure 11.14(a). The three scales are included for the sake of convenience but they 
are actually meant to serve the same purpose; one scale should be sufficient. The 
scales are used in determining the distance from the load or generator in degrees 
or wavelengths. The outermost scale is used to determine the distance on the line 
from the generator end in terms of wavelengths, and the next scale determines the 
distance from the load end in terms of wavelengths. The innermost scale is a pro-
tractor (in degrees) and is primarily used in determining G; it can also be used to 
determine the distance from the load or generator. Since a l/2 distance on the line 
corresponds to a movement of 360° on the chart, l distance on the line corresponds 
to a 720° movement on the chart.

 l → 720° (11.55)

 Thus we may ignore the other outer scales and use the protractor (the innermost 
scale) for all our G and distance calculations.

4. The voltage Vmax occurs where Zin, max is located on the chart [see eq. (11.39a)], and 
that is on the positive Gr-axis or on OPoc in Figure 11.14(a). The voltage Vmin is located 
at the same point where we have Zin, min r
on OPsc in Figure 11.14(a). Notice that Vmax and Vmin (or Zin, max and Zin, min) are l/4 
(or 180°) apart.

5. The Smith chart is used both as impedance chart and admittance chart 1Y 5 1/Z 2 . 
As admittance chart (normalized admittance y 5 Y/Yo 5 g 1 jb 2 , the g- and  
b-circles correspond to r- and x-circles, respectively.
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 on the chart, that is, on the negative G -axis or 
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Based on these important properties, the Smith chart may be used to determine, 
among other things, (a) G 5 0G 0 luG and s; (b) Zin or Yin; and (c) the locations of Vmax and 
Vmin  provided that we are given Zo, ZL, l, and the length of the line. Some examples will 
clearly show how we can find all these and much more with the aid of the Smith chart, a 
compass, and a plain straightedge. A complete Smith chart is available in Appendix D. You  
may copy this.

load

ge
ne

rat
or

FIGURE 11.14 (a) Smith chart illustrating scales around the periphery 
and movements around the chart. (b) Corresponding movements along 
the transmission line.
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A lossless transmission line with Zo 5 50 V is 30 m long and operates at 2 MHz. The line 
is terminated with a load ZL 5 60 1 j40 V. If u 5 0.6c on the line, find
(a) The reflection coefficient G
(b) The standing wave ratio s
(c) The input impedance

Solution:
This problem will be solved with and without using the Smith chart.

Method 1 (without the Smith chart):

(a) G 5
ZL 2 Zo

ZL 1 Zo
5

60 1 j40 2 50
50 1 j40 1 50

5
10 1 j40

110 1 j40
  5 0.3523l56º

i

(b) s 5
1 1 0G 0
1 2 0G 0 5

1 1 0.3523
1 2 0.3523

5 2.088

(c) Since u 5 v/b, or b 5 v/u,

b, 5
v,

u 5
2p 12 3 106 2 130 2

0.6 13 3 108 2 5
2p

3
5 120º

Note that b is the electrical length of the line.

Zin 5 Zo cZL 1 jZo tan b,

Zo 1 jZL tan b,
d

 5
50 160 1 j40 1 j50 tan 120º 2
350 1 j 160 1 j40 2  tan 120º 4

 5
50 16 1 j4 2 j5"3 2
15 1 4"3 2 j6"3 2

5 24.01l3.22°
ii

 5 23.97 1 j1.35 V

Method 2 (using the Smith chart):
(a) Calculate the normalized load impedance

zL 5
ZL

Zo
5

60 1 j40
50

 5 1.2 1 j0.8

Locate zL on the Smith chart of Figure 11.15 at point P, where the r 5 1.2 circle and the 
x 5 0.8 circle meet. To get G at zL, extend OP to meet the r 5 0 circle at Q and measure 
OP and OQ. Since OQ corresponds to 0G 0 5 1, then at P,

0G 0 5
OP
OQ

5
3.2 cm
9.1 cm

5 0.3516

EXAMPLE 11.4
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Note that OP 5 3.2 cm and OQ 5 9.1 cm were taken from the Smith chart used by the 
author; the Smith chart in Figure 11.15 is reduced, but the ratio of OP/OQ remains the same.

G

uG 5 angle POS 5 56º

Thus

G 5 0.3516 l56º
i

(b) To obtain the standing wave ratio s, draw a circle with radius OP and center at O.  
This is the constant s or 0G 0  circle. Locate point S where the s-circle meets the Gr-axis. [This 
is easily shown by setting Gi 5 0 in eq. (11.49a).] The value of r at this point is s; that is,

 s 5 r 1 for r $ 1 2
 5 2.1

FIGURE 11.15 Smith chart for Example 11.4.
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Angle   is read directly on the chart as the angle between OS and OP; that is,
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(c) To obtain Zin, first express  in terms of l or in degrees:

 l 5
u
f

5
0.6 13 3 108 2

2 3 106 5 90 m

, 5 30 m 5
30
90

 l 5
l

3
 S  720º

3
5 240º

Since l corresponds to an angular movement of 720° on the chart, the length of the line 
corresponds to an angular movement of 240°. That means we move toward the generator 
(or away from the load, in the clockwise direction) 240° on the s-circle from point P to 
point G. At G, we obtain

zin 5 0.47 1 j0.03

Hence

Zin 5 Zozin 5 50 10.47 1 j0.03 2 5 23.5 1 j1.5 V

Although the results obtained using the Smith chart are only approximate, for engineering 
purposes they are close enough to the exact ones obtained by Method 1. However, an inex-
pensive modern calculator can handle the complex algebra in less time and with much less 
effort than are needed to use the Smith chart. The value of the Smith chart is that it allows 
us to observe the variation of Z in with .

PRACTICE EXERCISE 11.4

A 70 V lossless line has s 5 1.6 and uG 5 300°. If the line is 0.6l long, obtain

(a) G, ZL, Zin

(b) The distance of the first minimum voltage from the load

A load of 100 1 j150 V is connected to a 75 V lossless line. Find:
(a) G

(b) s
(c) The load admittance YL

(d) Zin at 0.4l from the load
(e) The locations of Vmax and Vmin with respect to the load if the line is 0.6l long
(f) Zin at the generator.

Solution:
(a) We can use the Smith chart to solve this problem. The normalized load impedance is

zL 5
ZL

Zo
5

100 1 j150
75

5 1.33 1 j2

EXAMPLE 11.5
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Answer:  (a) 0.228 l300º
ii

, 80.5 2 j33.6 V, 47.6 2 j17.5 V, (b) 
/6.
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We locate this at point P on the Smith chart of Figure 11.16. At P, we obtain

0G 0 5
OP
OQ

5
6 cm

9.1 cm
5 0.659

 uG 5 angle POS 5 40º

Hence,

G 5 0.659 l40º
i

Check:

 G 5
ZL 2 Zo

ZL 1 Zo
5

100 1 j150 2 75
100 1 j150 1 75

            5 0.6598 /——39.94°

FIGURE 11.16 Smith chart for Example 11.5.
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(b) Draw the constant s-circle passing through P and obtain

s 5 4.82

Check:

s 5
1 1 0G 0
1 2 0G 0 5

1 1 0.659
1 2 0.659

5 4.865

(c) To obtain YL, extend PO to POP and note point P where the constant s-circle meets 
POP. At P, obtain

yL 5 0.228 2 j0.35

The load admittance is

YL 5 YoyL 5
1

75
10.228 2 j0.35 2 5 3.04 2 j4.67 mS

Check:

YL 5
1
ZL

5
1

100 1 j150
5 3.07 2 j4.62 mS

(d) The 0.4l corresponds to an angular movement of 0.4 3 720º 5 288º on the constant 
s-circle. From P, we move 288° toward the generator (clockwise) on the s-circle to reach 
point R. At R,

zin 5 0.3 1 j0.63

Hence

 Zin 5 Zozin 5 75 10.3 1 j0.63 2
 5 22.5 1 j47.25 V

Check:

 b, 5
2p

l
10.4l 2 5 360° 10.4 2 5 144°

 Zin 5 Zo cZL 1 jZo tan b,

Zo 1 jZL tan b,
d

         5
75 1100 1 j150 1 j75 tan 144° 2
375 1 j 1100 1 j150 2  tan 144° 4

 5 54.41l65.25
ii

º
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584 CHAPTER 11 TRANSMISSION LINES

or

Zin 5 21.9 1 j47.6 V

(e) The 0.6l corresponds to an angular movement of

0.6 3 720º 5 432º 5 1 revolution 1 72º

Thus, we start from P (load end), move clockwise along the s-circle 432°, or one revolution 
plus 72°, and reach the generator at point G. Note that to reach G from P, we have passed 
through point T (location of Vmin) once and point S (location of Vmax) twice. Thus, from 
the load,

1st Vmax is located at 
40º

720º l 5 0.055l

2nd Vmax is located at 0.0555l 1
l

2
5 0.555l

and the only Vmin is located at 0.055l 1 l/4 5 0.3055l
(f) At G (generator end),

 zin 5 1.8 2 j2.2

Zin 5 75 11.8 2 j2.2 2 5 135 2 j165 V

This can be checked by using eq. (11.34), where b, 5
2p

l
 10.6l 2 5 216°.

We can see how much time and effort are saved by using the Smith chart. 

PRACTICE EXERCISE 11.5

A lossless 60 V line is terminated by a load of 60 1 j60 V.

(a)  Find G and s. If Zin 5 120 2 j60 V, how far (in terms of wavelengths) is the load 
from the generator? Solve this without using the Smith chart.

(b)  Use the Smith chart to solve the problem in part (a). Calculate Zmax and Zin, min. How 
far (in terms of l) is the first maximum voltage from the load?

Answer:  (a) 0.4472 /——63.43°, 2.618, 
l

8
 11 1 4n 2 , n 5 0, 1, 2, . . . , (b) 0.4457 /—62°,

   2.612, 
l

8
 11 1 4n 2 , 157.1 V, 22.92 V, 0.0861 l.
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Transmission lines are used to serve different purposes. Here we consider how transmis-
sion lines are used for load matching and impedance measurements.

A.  Quarter-Wave Transformer (Matching)
When Zo 2 ZL, we say that the load is mismatched and a reflected wave exists on the line. 
However, for maximum power transfer, it is desired that the load be matched to the trans-
mission line 1Zo 5 ZL 2  so that there is no reflection 1 0G 0 5 0 or s 5 1 2 . The matching is 
achieved by using shorted sections of transmission lines.

We recall from eq. (11.34) that when , 5 l/4 or b, 5 12p/l 2 1l/4 2 5 p/2,

 Zin 5 Zo cZL 1 jZo tan p/2
Zo 1 jZL tan p/2

d 5
Z2

o

ZL
 (11.56)

that is,

Zin

Zo
5

Zo

ZL

or

 
zin 5

1
zL

 S  yin 5 zL (11.57)

Thus by adding a l/4 line on the Smith chart, we obtain the input admittance correspond-
ing to a given load impedance.

Also, a mismatched load ZL can be properly matched to a line (with characteristic 
impedance Zo) by inserting prior to the load a transmission line l/4 long (with character-
istic impedance Z or) as shown in Figure 11.17. The l/4 section of the transmission line is 
called a quarter-wave transformer because it is used for impedance matching like an ordi-
nary transformer. From eq. (11.56), Z ro is selected such that 1Zin 5 Zo 2

 Z ro 5 "ZoZL (11.58)

11.6 SOME APPLICATIONS OF TRANSMISSION LINES

FIGURE 11.17 Load matching using a l/4  transformer.
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586 CHAPTER 11 TRANSMISSION LINES

where Z ro, Zo and ZL are all real. If, for example, a 120 V load is to be matched to a 75 V line, 
the quarter-wave transformer must have a characteristic impedance of !175 2 1120 2 .  
95 V. This 95 V quarter-wave transformer will also match a 75 V load to a 120 V line. The 
voltage standing wave patterns without and with the l/4 transformer are shown in Figure 
11.18(a) and (b), respectively. From Figure 11.18, we observe that although a standing wave 
still exists between the transformer and the load, there is no standing wave to the left of the 
transformer due to the matching. However, the reflected wave (or standing wave) is elimi-
nated only at the desired wavelength (or frequency f ); there will be reflection at a slightly 
different wavelength. Thus, the main disadvantage of the quarter-wave transformer is that 
it is a narrow-band or frequency-sensitive device.

B.  Single-Stub Tuner (Matching)
The major drawback of using a quarter-wave transformer as a line-matching device is 
eliminated by using a single-stub tuner. The tuner consists of an open or shorted section of 
transmission line of length d connected in parallel with the main line at some distance  from 
the load, as in Figure 11.19. Notice that the stub has the same characteristic impedance as the 
main line, although stubs may be designed with different values of Zo. It is more difficult to 
use a series stub although it is theoretically feasible. An open-circuited stub radiates some 
energy at high frequencies. Consequently, shunt short-circuited parallel stubs are preferred.

Since we intend that Zin 5 Zo, that is, zin 5 1 or yin 5 1 at point A on the line, we first 
draw the locus y 5 1 1 jb 1r 5 1 circle 2  on the Smith chart as shown in Figure 11.20. If a 
shunt stub of admittance ys 5 2jb is introduced at A, then

 yin 5 1 1 jb 1 ys 5 1 1 jb 2 jb 5 1 1 j0 (11.59)

FIGURE 11.18 Voltage standing 
wave pattern of mismatched load: 
(a) with out a l/4 transformer,  
(b) with a l/4 transformer.

S

FIGURE 11.19 Matching with a single-stub tuner.
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11.6 Some Applications of Transmission Lines 587

as desired. Since b could be positive or negative, two possible values of , 1,l/2 2  can be 
found on the line. At A, ys 5 2jb, , 5 ,A and at B, ys 5 jb, , 5 ,B as in Figure 11.20. 
Because the stub is shorted 1y rL 5 ` 2 , we determine the length d of the stub by finding the 
distance from Psc (at which z rL 5 0 1 j0) to the required stub admittance ys. For the stub 
at A, we obtain d 5 dA as the distance from Psc to A, where A corresponds to ys 5 2jb 
located on the periphery of the chart as in Figure 11.20. Similarly, we obtain d 5 dB as the 
distance from Psc to B 1ys 5 jb 2 .

Thus we obtain d 5 dA and d 5 dB, corresponding to A and B, respectively, as shown 
in Figure 11.20. Note that dA 1 dB 5 l/2 always. Since we have two possible shunted stubs, 
we normally choose to match the shorter stub or one at a position closer to the load. Instead 
of having a single stub shunted across the line, we may have two stubs. This arrangement, 
which is called double-stub matching, allows for the adjustment of the load impedance.

C.  Slotted Line (Impedance Measurement)
At high frequencies, it is very difficult to measure current and voltage because measuring 
devices become significant in size and every circuit becomes a transmission line. The slot-
ted line is a simple device used in determining the impedance of an unknown load at high 
frequencies up into the region of gigahertz. It consists of a section of an air (lossless) line 
with a slot in the outer conductor as shown in Figure 11.21. The line has a probe, along the 
E field (see Figure 11.4), which samples the E field and consequently measures the potential 
difference between the probe and its outer shield.

The slotted line is primarily used in conjunction with the Smith chart to determine 
the standing wave ratio s (the ratio of maximum voltage to the minimum voltage) and 
the load impedance ZL. The value of s is read directly on the detection meter when the 
load is connected. To determine ZL, we first replace the load by a short circuit and note 
the locations of voltage minima (which are more accurately determined than the maxima 
because of the sharpness of the turning point) on the scale. Since impedances repeat every 
half-wavelength, any of the minima may be selected as the load reference point. We now 
determine the distance from the selected reference point to the load by replacing the short 
circuit by the load and noting the locations of voltage minima. The distance  (distance of 

Psc

L

FIGURE 11.20 Using the Smith chart 
to determine  and d of a shunt-shorted 
single-stub tuner.
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588 CHAPTER 11 TRANSMISSION LINES

Vmin toward the load) expressed in terms of l is used to locate the position of the load of 
an s-circle on the chart as shown in Figure 11.22. 

The procedure for using the slotted line can be summarized as follows.

1. With the load connected, read s on the detection meter. With the value of s, draw 
the s-circle on the Smith chart.

2. With the load replaced by a short circuit, locate a reference position for ZL at a 
 voltage minimum point.

3. With the load on the line, note the position of Vmin and determine .
4. On the Smith chart, move toward the load a distance  from the location of Vmin. 

Find ZL at that point.

C

To ge

S

FIGURE 11.21 (a) Typical slotted line; (b) Determining the location of 
the load ZL and Vmin on the line.

s-C

V

load FIGURE 11.22 Determining the load imped-
ance from the Smith chart by using the data 
obtained from the slotted line.
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11.6 Some Applications of Transmission Lines 589

With an unknown load connected to a slotted air line, s 5 2 is recorded by a standing wave 

replaced by a short circuit, the minima are at 16 cm, 24 cm, . . . . If Zo 5 50 V, calculate 
l, f, and ZL.

Solution:
Consider the standing wave patterns as in Figure 11.23(a). From this, we observe that

l

2
 5 19 2 11 5 8 cm or l 5 16 cm

f 5
u
l

5
3 3 108

16 3 1022 5 1.875 GHz

Electrically speaking, the load can be located at 16 cm or 24 cm. If we assume that the load 
is at 24 cm, the load is at a distance  from Vmin, where

, 5 24 2 19 5 5 cm 5
5

16
 l 5 0.3125 l

W

W

FIGURE 11.23 Determining ZL by 
using the slotted line: (a) wave 
 pattern, (b) Smith chart for 
Example 11.6.

EXAMPLE 11.6
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This corresponds to an angular movement of 0.3125 3 720° 5 225° on the s 5 2 circle. 
By starting at the location of Vmin and moving 225° toward the load (counterclockwise), we 
reach the location of zL as illustrated in Figure 11.23(b). Thus

zL 5 1.4 1 j0.75

and

ZL 5 ZozL 5 50 11.4 1 j0.75 2 5 70 1 j37.5 V 

PRACTICE EXERCISE 11.6

The following measurements were taken by means of the slotted line technique: with 
load, s 5 1.8, Vmax occurred at 23 cm, 33.5 cm, . . . ; with short, s 5 `, Vmax occurred 
at 25 cm, 37.5 cm, . . . . If Zo 5 50 V, determine ZL.

Answer: 32.5 2 j17.5 V.

An antenna with an impedance of 40 1 j30 V is to be matched to a 100 V lossless line with 
a shorted stub. Determine
(a) The required stub admittance
(b) The distance between the stub and the antenna
(c) The stub length
(d) The standing wave ratio on each segment of the system

Solution:

(a) zL 5
ZL

Zo
5

40 1 j30
100

5 0.4 1 j0.3

Locate zL on the Smith chart as in Figure 11.24 and from this draw the s-circle so that yL 
can be located diametrically opposite zL. Thus yL 5 1.6 2 j1.2. Alternatively, we may find 
yL by using

yL 5
Zo

ZL
5

100
40 1 j30

5 1.6 2 j1.2

Locate points A and B where the s-circle intersects the g 5 1 circle. At A, ys 5 2j1.04 and 
at B, ys 5 1j1.04. Thus the required stub admittance is

Ys 5 Yoys 5 6j1.04 
1

100
5 6j10.4 mS 

Both j10.4 mS and 2j10.4 mS are possible values.

EXAMPLE 11.7
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(b) From Figure 11.24, we determine the distance between the load (antenna in this case) 
yL and the stub. At A,

,A 5
l

2
2

162° 2 239° 2l
720°

5 0.36l

and at B:

,B 5
162° 2 39° 2l

720°
5 0.032l

FIGURE 11.24 Smith chart for Example 11.7.
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(c) Locate points A and B corresponding to stub admittance 2j1.04 and j1.04, respec-
tively. Determine the stub length (distance from Psc to A and B):

dA 5
88°

720°
 l 5 0.1222l

dB 5
272°
720°

l 5 0.3778l

Notice that dA 1 dB 5 0.5l as expected.
(d) From Figure 11.24, s 5 2.7. This is the standing wave ratio on the line segment 
between the stub and the load (see Figure 11.18); s 5 1 to the left of the stub because the 
line is matched, and s 5 ` along the stub because the stub is shorted. 

PRACTICE EXERCISE 11.7

A 75 V lossless line is to be matched to a load of 100 2 j80 V with a shorted stub. 
Calculate the stub length, its distance from the load, and the necessary stub admit-
tance.

Answer:  ,A 5 0.093l, ,B 5 0.272l, dA 5 0.126l, dB 5 0.374l, 6j12.67 mS.

†11.7 TRANSIENTS ON TRANSMISSION LINES

In our discussion so far, we have assumed that a transmission line operates at a single fre-
quency. In computer networks and in certain other practical applications, pulsed signals 
may be sent through the line. From Fourier analysis, a pulse can be regarded as a super-
position of waves of many frequencies. Thus, sending a pulsed signal on the line may be 
regarded as the same as simultaneously sending waves of different frequencies.

As in circuit analysis, when a pulse generator or battery connected to a transmission 
line is switched on, it takes some time for the current and voltage on the line to reach steady 
values. This transitional period is called the transient. The transient behavior just after clos-
ing the switch (or due to lightning strokes) is usually analyzed in the frequency domain by 
using Laplace transformation. For the sake of convenience, we treat the problem in the time 
domain.

Consider a lossless line of length  and characteristic impedance Zo as shown in Figure 
11.25(a). Suppose that the line is driven by a pulse generator of voltage Vg with internal 
impedance Zg at z 5 0 and terminated with a purely resistive load ZL. At the instant t 5 0 
that the switch is closed, the starting current “sees” only Zg and Zo, so the initial situation 
can be described by the equivalent circuit of Figure 11.25(b). From the figure, the starting 
current at z 5 0, t 5 01 is given by

 I 10, 01 2 5 Io 5
Vg

Zg 1 Zo
 (11.60)
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11.7 Transients on Transmission Lines 593

and the initial voltage is

 V 10, 01 2 5 Vo 5 IoZo 5
Zo

Zg 1 Zo
 Vg (11.61)

After the switch is closed, waves I1 5 Io and V1 5 Vo propagate toward the load at the 
speed

 u 5
1

"LC
 (11.62)

Since this speed is finite, it takes some time for the waves traveling in the positive direction 
to reach the load and interact with it. The presence of the load has no effect on the waves 
before the transit time given by

 t1 5
,

u (11.63)

After t1 seconds, the waves reach the load. The voltage (or current) at the load is the sum 
of the incident and reflected voltages (or currents). Thus

 V 1,, t1 2 5 V1 1 V2 5 Vo 1 GLVo 5 11 1 GL 2Vo (11.64)

and

 I 1,, t1 2 5 I1 1 I2 5 Io 2 GLIo 5 11 2 GL 2 Io (11.65)

where GL is the load reflection coefficient given in eq. (11.36); that is,

 GL 5
ZL 2 Zo

ZL 1 Zo
 (11.66)

The reflected waves V2 5 GLVo and I2 5 2GLIo travel back toward the generator in addi-
tion to the waves Vo and Io already on the line. At time t 5 2t1, the reflected waves have 
reached the generator, so

V 10, 2t1 2 5 V1 1 V2 5 GGGLVo 1 11 1 GL 2Vo

FIGURE 11.25 Transients on a transmission line: (a) a line driven 
by a pulse generator, (b) the equivalent circuit at z 5 0, t 5 01.
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or

 V 10, 2t1 2 5 11 1 GL 1 GGGL 2Vo (11.67)

and

I 10, 2t1 2 5 I1 1 I2 5 2GG 12GLIo 2 1 11 2 GL 2 Io

or

 I 10, 2t1 2 5 11 2 GL 1 GLGG 2 Io (11.68)

where GG is the generator reflection coefficient given by

 GG 5
Zg 2 Zo

Zg 1 Zo
 (11.69)

Again the reflected waves (from the generator end) V1 5 GGGLVo and I1 5 GGGLIo propa-

absorbed by the resistors Zg and ZL.
Instead of tracing the voltage and current waves back and forth, it is easier to keep track of the 

reflections using a bounce diagram, otherwise known as a lattice diagram. The bounce diagram 
consists of a zigzag line indicating the position of the voltage (or current) wave with respect to 
the generator end, as shown in Figure 11.26. On the bounce diagram, the voltage (or current) at 
any time may be determined by adding those values that appear on the diagram above that time.

For the transmission line of Figure 11.27, calculate and sketch

(a) The voltage at the load and generator ends for 0 , t , 6 ms
(b) The current at the load and generator ends for 0 , t , 6 ms

FIGURE 11.26 Bounce diagram for (a) a voltage wave and  
(b) a current wave.

EXAMPLE 11.8
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Solution:
(a) We first calculate the voltage reflection coefficients at the generator and load ends:

GG 5
Zg 2 Zo

Zg 1 Zo
5

100 2 50
100 1 50

5
1
3

GL 5
ZL 2 Zo

ZL 1 Zo
5

200 2 50
200 1 50

5
3
5

The transit time t1 5
,

u 5
100
108 5 1 ms.

The initial voltage at the generator end is

Vo 5
Zo

Zo 1 Zg
Vg 5

50
150

112 2 5 4 V

The 4 V is sent out to the load. The leading edge of the pulse arrives at the load at t 5 t1 5
1 ms. A portion of it, 4 13/5 2 5 2.4 V, is reflected back and reaches the generator at t 5
2t1 5 2 ms. At the generator, 2.4 11/3 2 5 0.8 is reflected and the process continues. The 
whole process is best illustrated in the voltage bounce diagram of Figure 11.28.

FIGURE 11.27 For Example 11.8.

FIGURE 11.28 Voltage bounce diagram for Example 11.8.
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From the bounce diagram, we can sketch V 10, t 2  and V 1,, t 2  as functions of time as 
shown in Figure 11.29. Notice from Figure 11.29 that as t S  `, the voltages approach an 
asymptotic value of

V` 5
ZL

ZL 1 Zg
Vg 5

200
300

112 2 5 8 V

This should be expected because the equivalent circuits at t 5 0 and t 5 ` are as shown 
in Figure 11.30.
(b) The current reflection coefficients at the generator and load ends are 2GG 5 21/3 
and 2GL 5 23/5, respectively. The initial current is

Io 5
Vo

Zo
5

4
50

5 80 mA

FIGURE 11.29 Voltage (not to 
scale) for Example 11.8: (a) at 
the generator end, (b) at the 
load end.
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Again, I 10, t 2  and I 1,, t 2  are easily obtained from the current bounce diagram shown in 
 Figure 11.31. These currents are sketched in Figure 11.32. Note that I 1,, t 2 5 V 1,, t 2 /ZL. 
Hence, Figure 11.32(b) can be obtained either from the current bounce diagram of 
Figure  11.31 or by scaling Figure 11.29(b) by a factor of 1/ZL 5 1/200. Notice from 
Figures 11.30(b) and 11.32 that the currents approach an asymptotic value of

I` 5
Vg

Zg 1 ZL
5

12
300

5 40 mA

FIGURE 11.30 Equivalent circuits for the line in Figure 11.27 for (a) t 5 0 
and (b) t 5 `.

FIGURE 11.31 Current bounce diagram for Example 11.8.
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PRACTICE EXERCISE 11.8

Repeat Example 11.8 if the transmission line is

(a) Short-circuited
(b) Open-circuited

Answer:  (a) See Figure 11.33, (b) See Figure 11.34.

FIGURE 11.32 Current (not to 
scale) for Example 11.8: (a) at the 
generator end, (b) at the load end. 
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0 V

4 V

FIGURE 11.33 For Practice Exercise 11.8(a).
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12 V

12 V

8 V

4 V

4 V 4 V

0 A

FIGURE 11.34 For Practice Exercise 11.8(b).
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A 75 V transmission line of length 60 m is terminated by a 100 V load. If a rectangular 
pulse of width 5 ms and magnitude 4 V is sent out by the generator connected to the line, 
sketch I 10, t 2  and I 1,, t 2  for 0 , t , 15 ms. Take Zg 5 25 V and u 5 0.1c.

Solution:
In the previous example, the switching on of a battery created a step function, a pulse of 
infinite width. In this example, the pulse is of finite width of 5 ms. We first calculate the 
voltage reflection coefficients:

The initial voltage and transit time are given by

Vo 5
Zo

Zo 1 Zg
 Vg 5

75
100

 14 2 5 3 V

t1 5
,

u 5
60

0.1 13 3 108 2 5 2 ms

The time taken by Vo to go forth and back is 2t1 5 4 ms, which is less than the pulse dura-
tion of 5 ms. Hence, there will be overlapping.
 The current reflection coefficients are

2GL 5 2
1
7
  and  2GG 5

1
2

The initial current Io 5
Vg

Zg 1 Zo
5

4
100

5 40 mA.

Let i and r denote incident and reflected pulses, respectively. At the generator end:

            0 , t , 5 ms, Ir 5 Io 5 40 mA 

 4 , t , 9,  Ii 5 2
1
7

 140 2 5 25.714 

 Ir 5
1
2

 125.714 2 5 22.857

 8 , t , 13,  Ii 5 2
1
7

 122.857 2 5 0.4082

    Ir 5
1
2

 10.4082 2 5 0.2041

EXAMPLE 11.9
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GG 5
Zg 2 Zo

Zg 1 Zo
5

25 2 75
25 1 75

5
21
2

GL 5
ZL 2 Zo

ZL 1 Zo
5

100 2 75
100 1 75

5
1
7
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 12 , t , 17,    Ii 5 2
1
7

 10.2041 2 5 20.0292 

   Ir 5
1
2

 120.0292 2 5 20.0146

and so on. Hence, the plot of I 10, t 2  versus t is as shown in Figure 11.35(a).

FIGURE 11.35 For Example 11.9 (not to scale).
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At the load end:

 0 , t , 2 ms, V 5 0

 2 , t , 7, Vi 5 3

 Vr 5
1
7
13 2 5 0.4296

 6 , t , 11,  Vi 5 2
1
2
10.4296 2 5 20.2143

 Vr 5
1
7
120.2143 2 5 20.0306

10 , t , 14,  Vi 5 2
1
2
120.0306 2 5 0.0154

 Vr 5
1
7
10.0154 2 5 0.0022

and so on. From V 1,, t 2 , we can obtain I 1,, t 2  as

I 1,, t 2 5
V 1,, t 2

ZL
5

V 1,, t 2
100

The plots of V 1,, t 2  and I 1,, t 2  are shown in Figure 11.35(b) and (c). 

PRACTICE EXERCISE 11.9

Repeat Example 11.9, replacing the rectangular pulse by the triangular pulse of 
 Figure 11.36.

Answer: 1 Io 2max 5 100 mA. See Figure 11.37 for the current waveforms.

FIGURE 11.36 Triangular pulse for Practice Exercise 11.9.
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†A. Microstrip Transmission Lines
Microstrip lines belong to a group of lines known as parallel-plate transmission lines. 
They are widely used in present-day electronics. Apart from being the most commonly 
used form of transmission lines for microwave integrated circuits, microstrips are used for 
circuit components such as filters, couplers, resonators, and antennas. In comparison with 
coaxial lines, microstrip lines allow for greater flexibility and compactness of design.

A microstrip line consists of a single ground plane and an open strip conduc-
tor  separated by dielectric substrate as shown in Figure 11.38. It is constructed by the 

†11.8 APPLICATION NOTE—MICROSTRIP LINES AND 
CHARACTERIZATION OF DATA CABLES

FIGURE 11.37 Current waves for 
Practice Exercise 11.9.

FIGURE 11.38 Microstrip line.
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 photographic processes used for integrated circuits. Analytical derivation of the char-
acteristic properties of the line is cumbersome. We will consider only some basic, valid 
empirical formulas necessary for calculating the phase velocity, impedance, and losses 
of the line.

Owing to the open structure of the microstrip line, the EM field is not confined to the 
dielectric, but is partly in the surrounding air as in Figure 11.39. Provided the frequency 
is not too high, the microstrip line will propagate a wave that, for all practical purposes, is 
a TEM wave. Because of the fringing, the effective relative permittivity eff is less than the 
relative permittivity r of the substrate. If w is the line width and h is the substrate thickness, 
an approximate value of eff is given by

 eeff 5
1er 1 1 2

2
1

1er 2 1 2
2"1 1 12h/w

 (11.70)

The characteristic impedance is given by the following approximate formulas:

 Zo 5 µ
60

"eeff

 lna8h
w 1

w
4h

b w/h # 1

1

"eeff

 
120p

3w/h 1 1.393 1 0.667 ln 1w/h 1 1.444 2 4 w/h $ 1
 (11.71)

The characteristic impedance of a wide strip is often low, while that of a narrow strip is 
high.

FIGURE 11.39 Pattern of the EM field of a microstrip line. (From  
D. Roddy, Microwave Technology, 1986, by permission of Prentice-Hall.)
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For design purposes, if r and Zo are known, the ratio w/h necessary to achieve Zo is 
given by

 
w
h

5 f

8eA

e2A 2 2
,                                                                  w/h # 2

2
p

 eB 2 1 2 ln 12B 2 1 2

1
er 2 1

2er
 c ln 1B 2 1 2 1 0.39 2

0.61
er

d f ,   w/h . 2

 (11.72)

where

 A 5
Zo

60
 Å

er 1 1
2

1
er 2 1
er 1 1

 a0.23 1
0.11
er

b
 

(11.73a)

 B 5
60p2

Zo"er  
(11.73b)

From the knowledge of eff and Zo, the phase constant and the phase velocity of a wave 
propagating on the microstrip are given, respectively, by

 b 5
v"eeff

c  (11.74a)

 u 5
c

"eeff

 (11.74b)

where c is the speed of light in a vacuum. The attenuation due to conduction (or ohmic) 
loss is (in dB/m)

 ac . 8.686 
Rs

wZo
 (11.75)

where Rs 5
1

scd
 is the skin resistance of the conductor. The attenuation due to dielectric 

loss is (in dB/m)

 ad . 27.3 
1eeff 2 1 2  er 

1er 2 1 2  "eeff

 
tan u

l
 (11.76)

where l 5 u/f  is the line wavelength and tan u 5 s/ve is the loss tangent of the substrate. 
The total attenuation constant is the sum of the ohmic attenuation constant ac and the 

d

 a 5 ac 1 ad (11.77)

Sometimes ad is negligible in comparison with ac. Although they offer an advantage of 
flexibility and compactness, microstrip lines are not useful for long transmission because 
attenuation is excessive.
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A certain microstrip line has fused quartz 1er 5 3.8 2  as a substrate. If the ratio of line width 
to substrate thickness is w/h 5 4.5, determine

(a) The effective relative permittivity of the substrate
(b) The characteristic impedance of the line
(c) The wavelength of the line at 10 GHz

Solution:
(a) For w/h 5 4.5, we have a wide strip. From eq. (11.70),

eeff 5
4.8
2

1
2.8
2

 c1 1
12
4.5

d
21/2

5 3.131

(b) From eq. (11.71),

Zo 5
120p

"3.131 34.5 1 1.393 1 0.667 ln 14.5 1 1.444 2 4

 5 30.08 V

(c) l 5
u
f

5
c

f "eeff

5
3 3 108

1010
 "3.131

  5 1.69 3 1022 m 5 16.9 mm 

EXAMPLE 11.10

EXAMPLE 11.11

PRACTICE EXERCISE 11.10

Repeat Example 11.10 for w/h 5 0.8.

Answer: (a) 2.75, b) 84.03 V, (c) 18.09 mm.

At 10 GHz, a microstrip line has the following parameters:

 h 5 1 mm

 w 5 0.8 mm

 er 5 6.6

 tan u 5 1024

 sc 5 5.8 3 107 S/m

Calculate the attenuation due to conduction loss and dielectric loss.
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Solution:
The ratio w/h 5 0.8. Hence from eqs. (11.70) and (11.71)

eeff 5
7.6
2

1
5.6
2

 a1 1
12
0.8

b
21/2

5 4.5

Zo 5
60

"4.5
 ln a 8

0.8
1

0.8
4
b

5 65.69 V

The skin resistance of the conductor is

Rs 5
1

scd
5 Å

pfmo

sc
5 Å

p 3 10 3 109 3 4p 3 1027

5.8 3 107  

 5 2.609 3 1022 V/m2

Using eq. (11.75), we obtain the conduction attenuation constant as

ac 5 8.686 3
2.609 3 1022

0.8 3 1023 3 65.69

 5 4.31 dB/m

To find the dielectric attenuation constant, we need l:

l 5
u
f

5
c

f "eeff

5
3 3 108

10 3 109
 "4.

 5 1.414 3 1022 m

Applying eq. (11.76), we have

ad 5 27.3 3
3.5 3 6.6 3 1024

5.6 3 "4.5 3 1.414 3 1022

5 0.3754 dB/m 

PRACTICE EXERCISE 11.11

Calculate the attenuation due to ohmic losses at 20 GHz for a microstrip line con-
structed of copper conductor having a width of 2.5 mm on an alumina substrate. Take 
the characteristic impedance of the line as 50 V.

Answer: 2.564 dB/m.
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B. Characterization of Data Cables
Data communication has become a vital part of our daily life, the educational system, and 
business enterprises. Cables (copper or optical fiber) play an important role in data com-
munication  because they constitute the vehicle that transmits electrical signals from one 
point to  another. Before such cables are installed, they must meet certain requirements  
specified in terms of parameters including insertion loss (or attenuation), return loss (RL), 
near-end crosstalk (NEXT), far-end crosstalk (FEXT), attenuation-to-crosstalk ratio (ACR), 
power sum NEXT (PSNEXT), propagation delay, propagation delay skew, equal level far-
end crosstalk (ELFEXT), and power sum ELFEXT (PSELFEXT). In this section, we focus 
on the most popular measures: attenuation, RL, NEXT, and ELFEXT.

Attenuation

Attenuation (also known as insertion loss) is one of the greatest concerns of any cabling 
 infrastructure. It is the reduction of signal strength during transmission. It is the opposite 
of amplification. Although it is normal to expect attenuation, a signal that attenuates too 
much becomes unintelligible, which is why most networks require repeaters at regular 
intervals. 

The factors that contribute to a cable’s attenuation include conductor size, material, 
insulation, frequency (bandwidth), speed, and distance.

 
dP
dz

5 22aP S P 5 Poe22az (11.78)

where it is assumed that signal propagates along z, a is the attenuation coefficient, and Po 
is the power at z 5 0. Thus, attenuation describes how energy is lost or dissipated. Energy 
loss occurs as a transformation from one type of energy to another. Attenuation increases 
with both frequency and length. Attenuation is usually expressed in decibels. For a cable of 
length L, attenuation (or loss) through the cable is

 A 5 8.686La dB (11.79)

Since it is a loss, it is usually expressed as a negative value. Thus, –12 dB is a weaker  signal 
than 210 dB.

Return Loss

Return loss (RL) is a measure of the reflected energy caused by impedance mismatches 
in a cabling system. It is a measure of the dissimilarity between impedances in metal-
lic transmission lines and loads. It may also be regarded as the ratio, at the junction of a 
transmission line and a terminating impedance or other discontinuity, of the amplitude 
of the reflected wave to the amplitude of the incident wave. Return loss is important in 
applications that use simultaneous bidirectional transmission. Possible causes of excessive 
return loss include fluctuation in characteristic impedance, cable kinks, excessive bends, 
and cable jacket.
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Return loss is defined as the ratio of the incident power to the reflected power:

 RL 5 10  log10
P1

P2 5 220  log10 0G 0  dB (11.80)

since P2 5 0G 0 2P1 and the reflection coefficient is given by

 G 5
ZL 2 Zo

ZL 1 Zo
 (11.81)

where Zo is the characteristic impedance of the cable and ZL is the load impedance. Thus, 
return loss is a number that indicates the amount of signal that is reflected back into the 
cable from the terminating equipment. It is generally specified in decibels, and larger 
 values are better because they indicate less reflection. Ideally, there would be no reflection, 
and return loss would have a value of infinity. Generally, values of 35 to 40 dB or higher 
are considered acceptable. A value of 40 dB indicates that only 1% of the signal is reflected.

NEXT

Crosstalk is a major impairment in any two-wire transmission system. Within a cable, there are 
usually several active pairs. Because these pairs are in close physical proximity over long distanc-
es, coupling takes place, and the pairs “crosstalk” in each other. Thus, the idea of crosstalk refers 
to interference that enters a communication channel through some coupling path. There are two 
types of crosstalk in multipair cables: near-end crosstalk (NEXT) and far-end crosstalk (FEXT). 

When current flows in a wire, an electromagnetic field is created which can interfere 
with signals on adjacent wires. As frequency increases, this effect becomes stronger. Each 
pair is twisted because this allows opposing fields in the wire pair to cancel each other. The 
tighter the twist, the more effective the cancellation and the higher the data rate supported 
by the cable. If wires are not tightly twisted, the result is near-end crosstalk (NEXT). If you 
have ever been talking on the telephone and could hear another conversation faintly in 
the background, you have experienced crosstalk. In fact, the term derives from telephony 
applications where ‘talk’ came ‘across.’ In local-area networks, NEXT occurs when a strong 
signal on one pair of wires is picked up by an adjacent pair of wires. NEXT is the portion 
of the transmitted signal that is electromagnetically coupled back into the received signal, 
as illustrated in Figure 11.40. In many cases, excessive crosstalk is due to poorly twisted 
terminations at connection points.

Since NEXT is a measure of difference in signal strength between a disturbing pair and 
a disturbed pair, a larger number (less crosstalk) is more desirable than a smaller number 
(more crosstalk). Because NEXT varies significantly with frequency, it is important to mea-
sure it across a range of frequencies, typically 1–250 MHz. Twisted-pair coupling becomes 
less effective for higher frequencies. 

ELFEXT

Far-end crosstalk (FEXT) is similar to NEXT, except that the signal is sent from the local 
end as shown in Figure 11.41, and crosstalk is measured at the far end. As a result of attenu-
ation, signals that induce FEXT can be much weaker, especially for longer cable lengths. 

11_Sadiku_Ch11.indd   610 25/09/17   5:25 PM



11.8 Application Note—Microstrip Lines and Characterization of Data Cables 611

For that reason, FEXT results are not meaningful without an indication of the correspond-
ing attenuation on the link. Thus, FEXT is measured but rarely reported. FEXT results are 
used to derive equal-level far-end crosstalk (ELFEXT).

Noise occurring at the far end can be difficult to measure. It is common in practice to 
eliminate the attenuation effects and look at the pure noise taking place. ELFEXT is used 
when one is looking at the noise minus the effects of attenuation.

ELFEXT is a measure of the unwanted signal coupling from a transmitter at the near 
end into a neighboring pair measured at the far end relative to the received signal level 
measured on the same pair. Unlike attenuation, return loss, NEXT, and FEXT, ELFEXT is 
a calculated rather than a measured quantity. It is derived by subtracting the attenuation 
of the disturbing pair from the FEXT this pair induces in an adjacent pair. That is, if the 
disturbing pair is i and the disturbed pair is j,

Remote transceiver

Transmitter

Transmitted signal

Crosstalk signal

Remote transceiver

Receiver

Transmitter

Receiver

FIGURE 11.41 Far-end crosstalk (FEXT) in a paired cable.

Remote transceiver

Transmitter

Transmitted signal

Crosstalk signal

Remote transceiver

Receiver

Transmitter

Receiver

FIGURE 11.40 Near-end crosstalk (NEXT) in a paired cable.
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metamaterial with negative refractive index
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 ELFEXTij 5 FEXTij 2 attenuationj (11.82)

This normalizes the results for length. Since both FEXT and attenuation are measured in 
decibels, ELFEXT is also measured in decibels. High ELFEXT is indicative of excessive 
attenuation, higher than expected FEXT, or both.

11.9 APPLICATION NOTE—METAMATERIALS

In 1967, Russian physicist Viktor Veselago studied theoretically the problem of time-
harmonic monochromatic plane wave propagation in a material whose permittivity and 
permeability he assumed to be simultaneously negative at the frequency of interest. He 
showed that such a material could possess interesting electromagnetic features such as 
anomalous refraction. At the turn of the century, American physicists Richard Shelby, 
David Smith, Sheldon Schultz, and their group constructed such a composite medium by 
embedding split rings in a host medium. They experimentally showed in the microwave 

called metamaterials, have gained considerable attention.

FIGURE 11.42 Showing anomalous refraction.
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Metamaterials are synonymously called left-handed materials, negative refractive 
index materials, and double-negative materials. A conventional material inherits its elec-
tromagnetic properties from the constituent atoms. But metamaterials derive their proper-
ties from the constituent units embedded in a host medium. They can be engineered as we 
desire.

The phenomena of radiation, scattering, guidance in metamaterials, and complex 
structures made by pairing them with layers of conventional materials are being actively 
investigated. Researchers envision exciting possibilities for the development of improved 
computer chips, DVDs with vastly increased memory, cheaper and better-performing 
wireless communication systems, and improved medical imaging equipment. Several 
important ideas and developments that should lead to fabrication of components such as 
phase conjugators, unconventional guided-wave structures, compact thin cavities, high-
impedance surfaces, and perfect lens are expected to emerge from these studies. The 
concepts underlying metamaterials also led to the development of artificial left-handed 
transmission lines.

Metamaterials are artificial materials engineered to have specific properties that are 
not found in nature. Unlike naturally occurring materials, the behavior of a metamaterial 
is determined not only by the properties of its components, but also by the size, geometry, 
orientation, and arrangement of those components. Metamaterials have gained attention 
owing to their unique ability to bend waves rather than reflect them, rendering an object 
surrounded by a metamaterial invisible. Section 11.10 describes some applications of these 
unusual materials to microwave  imaging.

11.10 APPLICATION NOTE—MICROWAVE IMAGING

Section 10.2 introduced mmWave technology, which takes advantage of the proper-
ties of electromagnetic waves in the 30–300 GHz frequency band, or mm-waves, which 
correspond to wavelengths in the range of 10–1 mm. Many optically opaque objects 
are rendered transparent when they are imaged with signals only a few millimeters in 
wavelength. This makes mm-wave imaging attractive for a wide variety of commercial, 
defense, and scientific applications. Examples include nondestructive testing (NDT) for 
structural integrity, material characterization, security scanning, and medical screening. 
Microwaves and millimeter waves have been used extensively to image dielectric bodies. 
They can penetrate into many optically opaque media such as living tissues, wood, ceram-
ics, plastics, clothing, concrete, soil, fog, and foliage. In the past, many people believed 
that microwaves could be used just for target detection and tracking. But they have also 
been used for decades in remote sensing, that is, for the imaging of weather patterns or 
the surfaces of remote planets, for underground surveillance, and so on. More recently, 
microwave and millimeter-wave systems have been deployed for a variety of short-range 
applications, most notably in concealed-weapon detection (Figure 11.43) and through-
the-wall imaging. Additional information about cloaking applications for metamaterials 
is presented in  Section 12.10.
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The main measures of performance of an imaging system are considered to be the spa-
tial resolution in lateral and range directions and the image dynamic range offered. With 
the availability of more channels, combined with the powerful digital signal processing 
(DSP) capabilities of modern computers, the performance of mm-wave imaging systems 
is advancing rapidly.

The most commonly known imaging systems are based on X-ray technology. Their 
applications are in, for example, computed tomography (CT) for medical diagnostics, 
NDT applications, and luggage inspection at security checkpoints. These systems work in 
a transmission setup. Furthermore, backscatter X-ray systems, which work in a reflection 
setup, have been investigated over the past few years, especially for the screening of airline 
passengers for concealed objects. On the one hand, X-ray images have an inherent high 
lateral resolution owing to the extremely short wavelength (0.01–10 nm). But on the other 
hand, the energy of the photons is high enough to ionize organic and inorganic matter. 
Therefore, health aspects are critical with respect to the imaging of humans, especially 
people who must be imaged frequently, such as airport personnel.

In contrast, electromagnetic mm-waves offer a contactless inspection of materials with 
nonionizing radiation and a high spatial resolution. Since spatial resolution and penetra-
tion depth are conflicting parameters regarding the wavelength, the E-band (60–90 GHz 
with wavelengths of 5–3.3 mm) is a good compromise for NDT applications to detect 
flaws, material inhomogeneities, and inclusions in dielectrics. A lateral resolution of about 
2 mm is sufficient for many applications (e.g., personnel screening at airport security 
checkpoints).

The application of microwaves in biomedical imaging and diagnostics, however, 
remains a field with many uncharted territories. So far, the contributions of microwave 
technology to medical imaging have been limited except for radio-frequency component 
design for magnetic resonance imaging (MRI) systems. From the imaging of isolated 
organs to the imaging of the brain, the bones, or the breast, the microwave community is 
striving to make an entrance in the highly competitive world of medical imaging.

FIGURE 11.43 A concealed weapon revealed.
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% This script computes the voltage and current waveforms as functions 
% of length along 
% a transmission line terminated with a complex load

clear
syms w Z0 ZL ZG VG gamma z Zin % symbolic variables for frequency, 
                     % characteristic impedance,
% load impedance, source impedance, source voltage, propagation 
% constant, distance

% Enter the frequency (in rad/s)
wn = input(‛Enter the angular frequency\n >  ‛);
% Enter the propagation constant gamma (in a+j*b format)
gamman = input(‛Enter the propagation constant\n >  ‛);
% Enter the length (m)
L = input(‛Enter the length\n >  ‛);
% Enter the characteristic impedance 
Z0n = input(‛Enter the characteristic impedance\n >  ‛);
% Enter the load impedance (in a+j*b format)
disp(‛Enter the complex load impedance ‛);
ZLn = input(‛(in a+j*b format)\n >  ‛);
% Enter the source impedance (in a+j*b format)
disp(‛Enter the complex source impedance ‛);
ZGn = input(‛(in a+j*b format)\n >  ‛);
% Enter the source voltage (in a*exp(j*b) format)
disp(‛Enter the source voltage ‛);
VGn = input(‛ (in a*exp(j*b) format)\n >  ‛);

% The expression for the input impedance as a function of 
% length along the line
% This expression at this point is purely symbolic and 
% contains no numerical data, it will be used in line 37
Zin = Z0*(ZL - Z0 * tanh(gamma *z)) / (Z0 - ...
               ZL * tanh(gamma * z));

% Output the key parameters
% Reflection coefficient at load
GammaL = (ZLn - Z0n) / (ZLn + Z0n);
disp(‛\nThe reflection coefficient at the load is‛);
disp(sprintf(‛ %0.2f+j%0.2f\n‛,real(GammaL), imag(GammaL)))

MATLAB 11.1
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% SWR
SWR=(1+abs(GammaL))/(1-abs(GammaL));
disp(sprintf(‛The SWR at the load is %0.2f\n‛, SWR))
% Input impedance seen at source 
ZinG=subs(Zin,{Z0,ZL,gamma,z},{Z0n,ZLn, gamman,L});
disp(‛The input impedance seen by the generator ‛)
disp(sprintf(‛ is %0.2f+j%0.2f\n‛, real(ZinG), imag(ZinG)))

% now determine the forward-traveling voltage coefficient 
% V0plus at the load (z = 0) from the equation
% V(z) = (V0+) e^(-j B z) (1 + GammaL exp (2 j B z))
% by setting z = -L
% First Determine the voltage at the source
V0G = VGn * ZinG / (ZGn + ZinG); 
V0plus = V0G * exp(-gamman*L)/(1 + GammaL *exp(-2*gamman*L));

% Generate vector of voltage over length
z=-L:L/1000:0;   % vector of length
Vz = V0plus*exp(gamman*z).*(1 + GammaL*exp(2*gamman*z)); 

% voltage vector 
Iz = V0plus/Z0n*exp(gamman*z).*(1 - GammaL*exp(2*gamman*z)); 

% voltage vector 
%(notice the .* for multiplying two vectors 
% together element-by-element)

% Plot
figure
subplot(2,1,1)  % generate a subplot within one figure window 
% the two plots will be one on top of the other 
% (2,`,1) means there are two rows, one column, and this plot 
% goes into the top subplot
plot(z, abs(Vz))  % plot only voltage magnitude
axis([-L 0 0 abs(2*V0plus)])
title(‛Voltage on transmission line as a function of length’)
xlabel(‛distance from load (m)’)
ylabel(‛magnitude of voltage (V)’)
subplot(2,1,2)
plot(z, abs(Iz))  % plot only current magnitude
axis([-L 0 0 abs(2*V0plus/Z0n)])
title(‛Current on transmission line as a function of length’)
xlabel(‛distance from load (m)’)
ylabel(‛magnitude of current (A)’)

11_Sadiku_Ch11.indd   616 15/11/17   7:51 PM



Summary 617

1. A transmission line is commonly described by its distributed parameters R (in V/m), 
L (in H/m), G (in S/m), and C (in F/m). Formulas for calculating R, L, G, and C are 
provided in Table 11.1 for coaxial, two-wire, and planar lines.

2. The distributed parameters are used in an equivalent circuit model to represent a dif-
ferential length of the line. The transmission line equations are obtained by applying 
Kirchhoff ’s laws and allowing the length of the line to approach zero. The voltage and 
current waves on the line are

 V 1z, t 2 5 V1
o e2az cos 1vt 2 bz 2 1 V2

o eaz cos 1vt 1 bz 2

 I 1z, t 2 5
V1

o

Zo
 e2az cos 1vt 2 bz 2 2

V2
o

Zo
 eaz cos 1vt 1 bz 2

 showing that there are two waves traveling in opposite directions on the line.

3. The characteristic impedance Zo (analogous to the intrinsic impedance h of plane 
waves in a medium) of a line is given by

Zo 5 Å
R 1 jvL
G 1 jvC

 and the propagation constant g (per meter) is given by

g 5 a 1 jb 5 "1R 1 jvL 2 1G 1 jvC 2

 The wavelength and wave velocity are

l 5
2p

b
,  u 5

v

b
5 f l

4. The general case is that of the lossy transmission line 1G 2 0 2 R 2  considered earlier. 
For a lossless line, R 5 0 5 G; for a distortionless line, R/L 5 G/C. It is desirable that 
power lines be lossless and telephone lines be distortionless.

5. The voltage reflection coefficient at the load end is defined as

GL 5
V2

o

V1
o

5
ZL 2 Zo

ZL 1 Zo

 and the standing wave ratio is

s 5
1 1 0GL 0
1 2 0GL 0

 where ZL is the load impedance.

SUMMARY
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 6.  At any point on the line, the ratio of the phasor voltage to phasor current is the  
impedance at that point looking toward the load and would be the input impedance 
to the line if the line were that long. For a lossy line,

Z 1z 2 5
Vs 1z 2
Is 1z 2

5 Zin 5 Zo cZL 1 Zo tanh g,

Zo 1 ZL tanh g,
d

 where  is the distance from load to the point. For a lossless line (a 5 0), tanh  
g, 5 j tan b,; for a shorted line, ZL 5 0; for an open-circuited line, ZL 5 `; and  
for  a matched line, ZL 5 Zo.

 7.  The Smith chart is a graphical means of obtaining line characteristics such as G, s, 
and Zin. It is constructed within a circle of unit radius and based on the formula for 
GL given in eq. (11.36). For each r and x, there are two explicit circles (the resistance 
and reactance circles) and one implicit circle (the constant s-circle). The Smith chart is 
conveniently used in determining the location of a stub tuner and its length. It is also 
used with the slotted line to determine the value of the unknown load  impedance.

 8.  When a dc voltage is suddenly applied at the sending end of a line, a pulse moves 
forth and back on the line. The transient behavior is conveniently analyzed by using 
bounce diagrams.

 9.  Microstrip transmission lines are useful in microwave integrated circuits. Useful  
formulas for constructing microstrip lines and determining losses on the lines have 
been presented.

10.  Some parameters that are commonly used in characterizing data communication 
 cables are presented. These parameters include attenuation, return loss, NEXT, and 
ELFEXT. 

11.1 Which of the following statements are not true of the line parameters R, L, G, and C?

(a) R and L are series elements.
(b) G and C are shunt elements.

(c) G 5
1
R

.

(d) LC 5 me and RG 5 se.
(e) Both R and G depend on the conductivity of the conductors forming the line.
(f) Only R depends explicitly on frequency.
(g) The parameters are not lumped but distributed.

11.2 For a lossy transmission line, the characteristic impedance does not depend on

(a) The operating frequency of the line
(b) The length of the line
(c) The load terminating the line
(d) The conductivity of the conductors
(e) The conductivity of the dielectric separating the conductors

REVIEW
QUESTIONS
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11.3 Which of the following conditions will not guarantee a distortionless transmission line?

(a) R 5 0 5 G
(b) RC 5 GL
(c) Very low frequency range 1R W vL, G W vC 2
(d) Very high frequency range 1R V vL, G V vC 2

11.4 Which of these is not true of a lossless line?

(a) Zin 5 2jZo for a shorted line with , 5 l/8.
(b) Zin 5 j` for a shorted line with , 5 l/4.
(c) Zin 5 jZo for an open line with , 5 l/2.
(d) Zin 5 Zo for a matched line.
(e)  At a half-wavelength from a load, Zin 5 ZL and repeats for every half-wavelength 

thereafter.

11.5 A lossless transmission line of length 50 cm with L 5 10 mH/m, C 5 40 pF/m is operated 
at 30 MHz. Its electrical length is

(a) 20l

(b) 0.2l

(c) 108°
(d) 40p

(e) None of the above

11.6 Match the following normalized impedances with points A, B, C, D, and E on the Smith 
chart of Figure 11.44.

   (i) 0 1 j0    (ii) 1 1 j0

 (iii) 0 2 j1   (iv) 0 1 j1

  (v) ` 1 j`   (vi) cZin

Zo
d

min(vii) 
cZin

Zo
d

max
 (viii) Matched load 1G 5 0 2

11.7 A 500 m lossless transmission line is terminated by a load that is located at P on the Smith 
chart of Figure 11.45. If l 5 150 m, how many voltage maxima exist on the line?

(a) 7 (b) 6
(c) 5 (d) 3
(e) None

11.8 Write true (T) or false (F) for each of the following statements.

(a) All r- and x-circles pass through point 1Gr, Gi 2 5 11, 0 2 .
(b) Any impedance repeats itself every l/4 on the Smith chart.
(c) An s 5 2 circle is the same as 0G 0 5 0.5 circle on the Smith chart.
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620 CHAPTER 11 TRANSMISSION LINES

(d)  The basic principle of any matching scheme is to eliminate the reflected wave  between 
the source and the matching device.

(e) The slotted line is used to determine ZL only.
(f )  At any point on a transmission line, the current reflection coefficient is the reciprocal 

of the voltage reflection coefficient at that point.

11.9  In an air line, adjacent maxima are found at 12.5 cm and 37.5 cm. The operating 
 frequency is

(a) 1.5 GHz (b) 600 MHz
(c) 300 MHz (d) 1.2 GHz

FIGURE 11.44 Smith chart for 
Review Question 11.6.

FIGURE 11.45 Smith chart for 
Review Question 11.7.

11.10  Two identical pulses each of magnitude 12 V and width 2 ms are incident at t 5 0 on a 
lossless transmission line of length 400 m terminated with a load. If the two pulses are 
separated 3 ms and u 5 2 3 108 m/s, when does the contribution to VL 1,, t 2  by the 
 second pulse start overlapping that of the first?

(a) t 5 0.5 ms
(b) t 5 2 ms
(c) t 5 5 ms
(d) t 5 5.5 ms
(e) t 5 6 ms

Answers:  11.1c,d,e, 11.2b,c, 11.3c, 11.4a,c, 11.5c, 11.6 (i) D,e (ii) A, (iii) E, (iv) C, (v) B, (vi) D, (vii) 
B, (viii) A, 11.7a, 11.8 (a) T, (b) F, (c) F, (d) T, (e) F, (f) F, 11.9b, 11.10e.
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Section 11.2—Transmission Line Parameters

11.1 An air-filled planar line with w 5 30 cm, d 5 1.2 cm, t 5 3 mm has conducting plates 
with sc 5 7 3 107 S/m. Calculate R, L, C, and G at 500 MHz.

11.2 A coaxial cable has an inner conductor of radius a 5 0.8 mm and an outer conductor 
of  radius b 5 2.6 mm. The conductors have sc 5 5.28  107 S/m, mc 5 mo, and ec 5 eo; 
they are separated by a dielectric material having s 5 1025 S/m, m 5 mo, e 5 3.5 eo. At 
80 MHz, calculate the line parameters L, C, G, and R.

11.3 A coaxial cable has inner radius a and outer radius b. If the inner and outer conductors 
are separated by a material with conductivity σ, show that the conductance per unit 
length is

G 5
2ps

ln
b
a

11.4 A planar transmission line is made of copper strips of width 30 mm and are separated 
by a dielectric of thickness 2 mm, s 5 1023 S/m, e 5 4eo, m 5 mo. The conductivity of 
copper is 5.8  107 S/m. Assuming that the line operates at 200 MHz,  (a) find R, L, G, 
and C, (b) determine g and Zo.

11.5 The copper leads of a diode are 16 mm in length and have a radius of 0.3 mm. They are 
separated by a distance of 2 mm as shown in Figure 11.46. Find the capacitance between 
the leads and the ac resistance at 10 MHz.

Section 11.3—Transmission Line Equations

*11.6 A TV twin-lead is made of two parallel copper wires with a 5 1.2 mm. The wires are 
separated by 1.5 cm of a dielectric material with «r = 4. Calculate L, C, and Zo.

11.7 A small section z of a transmission line may be represented by the equivalent circuit in 
Figure 11.47. Determine the voltage–current relationship for the section.

PROBLEMS

FIGURE 11.46 The diode of Problem 11.5.
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622 CHAPTER 11 TRANSMISSION LINES

 11.8 (a) Show that at high frequencies (R V vL, G V vL),

g . aR
2Å

C
L

1
G
2Å

L
C
b 1 jv"LC

  (b) Obtain a similar formula for Zo.

 11.9 A transmission line operates at 12 MHz and has the following parameters:

R 5 0.2  V/m, G 5 4 mS/m, L 5 40 mH/m, C 5 25 mH/m

  (a) Compute g using eq. (11.11).
  (b) Compute g using the result of  Problem 11.8(a). 

11.10  The current along a transmission line is given by

I(z,t) 5 I1(vt 2 bz) 1 I2(vt 1 bz)

  (a) Determine which of the two components represents a wave traveling from source to load.
  (b) Find the corresponding voltage V(z, t).

11.11 At 60 MHz, the following characteristics of a lossy line are measured:

Zo 5 50 V,  a 5 0.04 dB/m,  b 5 2.5 rad/m

  Calculate R, L, C, and G of the line.

11.12  A 78 V lossless planar line was designed but did not meet a requirement. What fraction 
of the widths of the strip should be added or removed to get the characteristic impedance 
of 75 V?

11.13  A telephone line operating at 1 kHz has R 5 6.8 V/mi, L 5 3.4 mH/mi, C 5 8.4 nF/mi,
and G 5 0.42 mS/mi. Find (a) Z and g, (b) phase velocity, (c) wavelength.

11.14 A TV antenna lead-in wire 10 cm long has a characteristic impedance of 250 Ω and 
is open-circuited at its end.  If the line operates at 400 MHz, determine its input 
impedance.

L∆z

C∆z

∆z

I(z.t)

+ +

– –

V(z.t) V(z+∆z.t)

I(z+∆z.t)

FIGURE 11.47 For Problem 11.7.
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11.15 A coaxial cable has its conductors made of copper 1sc 5 5.8 3 107 S/m 2  and its dielec-
tric made of polyethylene 1er 5 2.25, mr 5 1 2 . If the radius of the outer conductor is  
3 mm, determine the radius of the inner conductor so that Zo 5 75 V.

11.16 For a lossless two-wire transmission line, show that

  (a) The phase velocity u 5 c 5
1

!LC

  (b) The characteristic impedance Zo 5
120
!er

 cosh21 
d

2a
  Is part (a) true of other lossless lines?

11.17  A twisted line, which may be approximated by a two-wire line, is very useful in the 
telephone industry. Consider a line comprising two copper wires of diameter 0.12 cm 
that have a 0.32 cm center-to-center spacing. If the wires are separated by a dielectric 
material with e 5 3.5eo, find L, C, and Zo.

11.18 A distortionless cable is 4 m long and has a characteristic impedance of 60 Ω. An attenu-
ation of 0.24 dB is observed at the receiving end. Also, a signal applied to the cable is 
delayed by 80 ms before it is measured at the receiving end.  Find R, G, L, and C for the 
cable.

11.19 A distortionless line operating at 120 MHz has R 5 20 V/m, L 5 0.3 mH/m, and 
C 5 63 pF/m. (a) Determine g, u, and Zo. (b) How far will a voltage wave travel before it is 
reduced to 20% of its initial magnitude? (c) How far will it travel to suffer a 45° phase shift?

11.20  On a distortionless line, the voltage wave is given by

V 1, r 2 5 120e0.0025,r cos 1108t 1 2, r 2 1 60e20.0025,r cos 1108t 2 2, r 2
   where  is the distance from the load. If ZL 5 300 V, find (a) a, b, and u, (b) Zo and I 1, r 2 .
11.21 The voltage on a line is given by

V 1, 2 5 80e102 3,

 cos 12p 3 104t 1 0.01, 2 1 60e2102 3,

 cos 12p 3 104t 1 0.01, 2  V

  where , is the distance from the load. Calculate g and u.

11.22 A distortionless transmission line satisfies RC = LG. If the line has R 5 10 mV/m,  
C = 82 pF/m, and L 5 0.6 mH/m, calculate its characteristic impedance and propaga-
tion  constant. Assume that the line operates at 80 MHz.

11.23  A coaxial line 5.6 m long has distributed parameters R 5 6.5 V/m, L 5 3.4 mH/m, 
G 5 8.4 mS/m, and C 5 21.5 pF/m. If the line operates at 2 MHz, calculate the charac-
teristic impedance and the end-to-end propagation time delay.

11.24  A lossy transmission line of length 2.1 m has characteristic impedance of 80 1 j60 V. 
When the line is short-circuited, the input impedance is 30 – j12 V. (a) Determine a and 
b. (b)  Find the input impedance when the short circuit is replaced by ZL 5 40 1 j30 V.

11.25  A lossy transmission line with characteristic impedance of 75 1 j60 V is connected to 
a 200 V load. If attenuation is 1.4 Np/m and phase constant is 2.6 rad/m, find the input 
impedance for  5 0.5 m.
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Section 11.4—Input Impedance, Standing Wave Ratio, and Power

11.26 (a) Show that a transmission coefficient may be defined as

tL 5
VL

V1
o

5 1 1 GL 5
2ZL

ZL 1 Zo

  (b)  Find tL when the line is terminated by (i) a load whose value is nZo, (ii) an open 
 circuit, (iii) a short circuit, (iv) ZL 5 Zo (matched line).

11.27 (a) Show that  

ZL 5
1 1 G

1 2 G
  Zo

  (b) A 50 V line has a reflection coefficient of 0.6/45°. Find the load impedance.
11.28 A 120 V lossless line is terminated at a load impedance  200 2 j240 V.  Find GL and s.
11.29 A lossy transmission line has R 5 3.5 V/m, L 5 2 mH/m, C 5 120 pF/m, and G < 0. At 

400 MHz, determine a, b, Zo, and u.
11.30 Find the input impedance of a short-circuited coaxial transmission line of Figure 11.48  

if Zo 5 65 1 j38 V, g 5 0.7 1 j2.5/m, , 5 0.8 m.
11.31 Calculate the reflection coefficient due to ZL 5 (1 1 2j)Z0.

11.32 Refer to the lossless transmission line shown in Figure 11.49. (a) Find G and s.  
(b) Determine Zin at the generator.

11.33 A 60 V lossless line is connected to a source with Vg 5 10l0º Vrms and Zg 5 50 2 
j40 V and terminated with a load of j40 V. If the line is 100 m long and b 5 0.25 rad/m, 
calculate Zin and V at

 (a) The sending end (c) 4 m from the load
 (b) The receiving end (d) 3 m from the source

FIGURE 11.48 For Problem 11.30.

Zg
120 Ω

λ/6

Vg

Zo = 50 Ω
�

�

FIGURE 11.49 For Problem 11.32.
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*11.34 Consider the two-port network shown in Figure 11.50(a). The relation between the 
input and output variables can be written in matrix form as

cV1

I1
d 5 cA B

C D d cV2

2I2
d

  For the lossy line in Figure 11.50(b), show that the ABCD matrix is

£
cosh g, Zo sinh g,
1
Zo

 sinh g, cosh g,
§

Section 11.5—The Smith Chart

11.35 Normalize the following impedances with respect to 50 V and locate them on the Smith 
chart: (a) Za 5 80 V, (b) Zb 5 60 1 j40 V, (c) Zc 5 30 2 j120 V.

11.36  A quarter-wave lossless 100 V line is terminated by a load ZL 5 210 V. If the voltage at 
the receiving end is 80 V, what is the voltage at the sending end?

11.37 Determine the impedance at a point l/4 distant from a load of impedance (1 + j2)Zo.

11.38 Two lines are cascaded as shown in Figure 11.51. Determine:
  (a) The input impedance
  (b) The standing wave ratio for sections XY and YZ
  (c) The reflection coefficient at Z

FIGURE 11.50 For Problem 11.34: (a) network, (b) lossy line.

150 Ω

λ/2λ/4

X Y Z

50 Ω75 Ω

FIGURE 11.51 For Problem 11.38.
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11.39 A 50 V lossless line operates at 600 MHz and is terminated by a load of ZL. If the 
line is 0.1 m long and Zin 5 100 2 j120, find ZL and s. Assume u = 0.8 c.

11.40 A lossless transmission line, with characteristic impedance of 50 V and electrical 
length of , 5 0.27l, is terminated by a load impedance 40 – j25 V. Determine GL, s, 
and Zin.

11.41 A lossless 100 V transmission line is terminated in an unknown impedance ZL. The 
standing wave ratio is 2.4, and the nearest voltage minimum is 0.2 l from the load. Find 
ZL and G.

11.42 The distance from the load to the first minimum voltage in a 50 V line is 0.12l, and the 
standing wave ratio s = 4.

  (a) Find the load impedance ZL.
  (b) Is the load inductive or capacitive?
  (c) How far from the load is the first maximum voltage?

11.43 A lossless 50 V line is terminated by a load ZL 5 75 1 j60 V. Using a Smith chart, deter-
mine (a) the reflection coefficient G, (b) the standing wave ratio s, (c) the input impedance 
at 0.2l from the load, (d) the location of the first minimum voltage from the load, (e) the 
shortest distance from the load at which the input impedance is purely resistive. 

11.44 A transmission line is terminated by a load with admittance YL 5 10.6 1 j0.8 2 /Zo. Find 
the normalized input impedance at l/6 from the load.

11.45 Using the Smith chart, determine the admittance of Z = 100 1 j60 V with respect to 
Zo 5 50 V.

11.46 A 50 V transmission line operates at 160 MHz and is terminated by a load of 50 1 j30 
V. If its wave speed is c/2 and the input impedance is to be made real, calculate the 
minimum possible length of the line and the corresponding input impedance.

11.47 A 50 V transmission line, l/4 in length, is connected to a l/2 section of 100 V line ter-
minated by a 60 V resistor. Calculate the input impedance to the 50 V line.

11.48 (a) Calculate the reflection coefficient corresponding to ZL 5 (0.5 2 j)Zo.
  (b) Determine the load impedance corresponding to the reflection coefficient 0.4 l25°.

11.49 An 80 V transmission line operating at 12 MHz is terminated by a load ZL. At 22 m from 
the load, the input impedance is 100 2 j120 V. If u 5 0.8c,

  (a) Calculate GL, Zin, max, and Zin, min.
  (b) Find ZL, s, and the input impedance at 28 m from the load.
  (c)  How many Zin, max and Zin, min are there between the load and the 100 2 j120 V input 

impedance?

11.50 An antenna, connected to a 150 V lossless line, produces a standing wave ratio of 2.6. If 
measurements indicate that voltage maxima are 120 cm apart and that the last maximum 
is 40 cm from the antenna, calculate

  (a) The operating frequency
  (b) The antenna impedance
  (c) The reflection coefficient (assume that u 5 c).
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200 Ω

λ /4

λ /4 Line 1

Zo

Line 3

Line 2

λ /4

Short
circuit

Zo

Zo

FIGURE 11.54 For Problem 11.56.

FIGURE 11.55 For Problem 11.57.

�

�

in

FIGURE 11.53 For Problems 11.54 and 11.55.

FIGURE 11.52 Double section 
 transformer of Problem 11.53.
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11.51 An 80 V lossless line has ZL 5 j60 V and Zin 5 j40 V. (a) Determine the shortest length 
of the line. (b) Calculate s and GL.

11.52 A 50 V air-filled line is terminated in a mismatched load of 40 1 j25 V. Find the shortest 
distance from the load at which the voltage has the smallest magnitude.

11.53 Two l/4 transformers in tandem are to connect a 50 V line to a 75 V load as in 
 Figure 11.52.

  (a)  Determine the characteristic impedance Zo1 if Zo2 5 30 V and there is no reflected 
wave to the left of A.

  (b) If the best results are obtained when

c Zo

Zo1
d

2

5
Zo1

Zo2
5 cZo2

ZL
d

2

  determine Zo1 and Zo2 for this case.

11.54 Two identical antennas, each with input impedance 74 V, are fed with three identical  
50 V quarter-wave lossless transmission lines as shown in Figure 11.53. Calculate the 
input impedance at the source end.

11.55 If the lines in Figure 11.53 are connected to a voltage source of 120 V with an internal 
impedance of 80 V, calculate the average power delivered to either antenna.

11.56 Consider the three lossless lines in Figure 11.54. If Zo 5 50 V, calculate:
  (a) Zin looking into line 1
  (b) Zin looking into line 2
  (c) Zin looking into line 3

11.57 A section of lossless transmission line is shunted across the main line as in Figure 11.55. 
If ,1 5 l/4, ,2 5 l/8, and ,3 5 7l/8, find yin1

, yin2
, and yin3

 given that Zo 5 100 V, 
ZL 5 200 1 j150 V. Repeat the calculations as if the shorted section were open.

Section 11.6—Some Applications of Transmission Lines

11.58 A load ZL 5 75 1 j100 V is to be matched to a 50 V line.  A shorted shunt-stub tuner 
is preferred.  Find the length of the stub in terms of l.

11.59 A stub of length 0.12l is used to match a 60 V lossless line to a load. If the stub is located 
at 0.3l from the load, calculate

  (a) The load impedance ZL

  (b) The length of an alternative stub and its location with respect to the load
  (c) The standing wave ratio between the stub and the load

11.60 A 50 V lossless transmission line that is 20 m long is terminated into a 120 1 j220 V 
load. To perfectly match, what should be the length and location of a short-circuited stub 
line? Assume an operating frequency of 10 MHz. 

11.61 On a lossless line, measurements indicate s 5 4.2 with the first maximum voltage at l/4 
from the load. Determine how far from the load a short-circuited stub should be located 
and calculate its length.

11_Sadiku_Ch11.indd   628 15/11/17   5:18 PM



Problems 629

11.62 A 60 V lossless line terminated by load ZL has a voltage wave as shown in Figure 11.56. 
Find s, G, and ZL.

FIGURE 11.58 For Problem 11.66.

RL = 2ZoRs = 4Zo Zo, u

z

Is(t)

Is

t
0

10 mA
�

Zo, γ�
�

z = 0

27 V

2Zo
t = 0

0.5 Zo

z = ,

FIGURE 11.57 For Problem 11.65.

FIGURE 11.56 For Problem 11.62.

11.63  A 50 V air-filled slotted line is applied in measuring a load impedance. Adjacent minima 
are found at 14 cm and 22.5 cm from the load when the unknown load is connected, 
and Vmax 5 0.95 V and Vmin 5 0.45 V. When the load is replaced by a short circuit, the 
minima are 3.2 cm to the load. Determine s, f, G, and ZL.
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Section 11.7—Transients on Transmission Lines

11.64 A 50 V coaxial cable is connected to an 80 V resistive load and a dc source with zero internal 
resistance. Calculate the voltage reflection coefficients at the source and at the load. 

11.65 The switch in Figure 11.57 is closed at t 5 0. Sketch the voltage and current at the right 
side of the switch for 0 , t , 6,/u. Take Zo 5 50 V and ,/u 5 2 ms. Assume a lossless 
transmission line.

11.66 A step current of 10 mA is turned on at t = 0, at z = 0 of a transmission line as shown 
in Figure 11.58. Determine the load voltage and current as functions of time. Let 
Zo 5 50 V, m 5 2 3 108 m/s. You may Thévenin equivalent at z = 0. Carry out your 
analysis for 0 , t , 6,/u.

+

–

+

–

FIGURE 11.59 For Problem 11.68.

11.67 A 50-cm-long cable, of characteristic impedance 75 V and wave velocity 2 3 108 m/s, 
is used to connect a source of internal impedance 32 V to an amplifier with an input 
impedance of 2 M V. If the source voltage changes from 0 to 8 V at t = 0, obtain the 
voltage seen by the amplifier at t = 20 ns.

*11.68 Refer to Figure 11.59, where Zo 5 50 V, Zg 5 40 V, Vg 5 12V, Zt 5 100V, l = 40 cm 
Assuming wave speed u 5 2.5 3 108 m/s, find V(0, t) and V(l, t). 

11.69 Using a time-domain reflectometer, the voltage waveform shown in Figure 11.60 was 
observed at the sending end of a lossless transmission line in response to a step voltage.  
If Zg = 60 V and Zo = 50 V, calculate the generator voltage and the length of the line. 
Assume u 5 c.

11.70 A 12 V battery with an internal resistance of 10 V is connected to a 20 m length of 50 V 
coaxial cable with phase velocity of 2  108 m/s. If the receiving end is short-circuited, 
sketch the sending voltage V(0, t) and the receiving-end voltage V(,, t).

11.71 Suppose ZL 5 ZG and a dc voltage is turned on at t = 0 (i.e., a unit step function) of 
amplitude Vo. The voltage is launched on a lossless line with characteristic impedance 
Zo. Find the voltage across the line after a very long time.

Section 11.8—Application Note: Microstrip and  Characterization of Data Cables

11.72 A microstrip line is 1 cm thick and 1.5 cm wide. The conducting strip is made of brass 
1sc 5 1.1 3 107 S/m 2 , while the substrate is a dielectric material with er 5 2.2 and 
tan u 5 0.02. If the line operates at 2.5 GHz, find (a) Zo and eff, (b) ac and ad, (c) the 
distance down the line before the wave drops by 20 dB.
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11.73 A 50 V microstrip line has a phase shift of 45° at 8 GHz. If the substrate thickness is 
h 5 8 mm with er 5 4.6, find (a) the width of the conducting strip, (b) the length of the 
microstrip line.

11.74 An alumina substrate 1e 5 9.6eo 2  of thickness 2 mm is used for the construction of a 
microstrip circuit. If the circuit designer can choose a line width between 0.4 mm and  
8.0 mm, what is the range of characteristic impedance of the line?

FIGURE 11.60 For Problem 11.69.

V (0, t)

8 V

5 V

0 t4 µs

FIGURE 11.61 For Problem 11.75.

t

w

B

εr

11.75 A strip transmission line is shown in Figure 11.61. An approximate expression for the 
characteristic impedance is

Zo 5 
377

2p"er

  ln e 1 1
4b

pw r
c 8b
pw r

1 Å6.27 1 a 8b
pw r

b
2

d f

  where w 5 w 1 
t

3.2
lna5b

t
b . Determine Zo for w = 0.5 cm, t = 0.1 cm, b= 1.2 cm, r = 2.

11.76 Design a 75 V microstrip line on a 1.2 mm thick duroid 1er 5 2.3 2  substrate. Find the 
width of the conducting strip and the phase velocity.

11.77 Find the return loss due to a 150 V cable terminated by a 100 V load.

11.78 The effective relative permittivity «e is given by eq. (11.70). Use MATLAB to plot «e for  
0.1 , w/h , 10.  Assume «r = 2.2 (Teflon).

Problems 631
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RF MEMS

MEMS stands for micro electro mechanical systems. These devices and systems range in size from a 
few micrometers to a few millimeters. The field of MEMS (or nanotechnology) encompasses all aspects 
of science and technology and is involved with things on a smaller scale. MEMS technology gives 
scientists and engineers the tools to build things that have been impossible or prohibitively expensive 
with other  technologies.

MEMS technology has emerged with a major application area in telecommunications, par-
ticularly in optical switching and wireless communication. Wireless communication is expanding 
at an incredible pace for applications ranging from mobile phones to satellite communications. 
Radiofrequency MEMS technologies are helping fuel this expansion. The integration of MEMS into 
traditional RF circuits has resulted in systems with superior performance levels and lower manu-
facturing costs. RF MEMS are providing critical reductions in power consumption and signal loss 
to extend battery life and reduce weight. RF MEMS devices have a broad range of potential applica-
tions in military and commercial wireless communication and in navigation and sensor systems. 
Though RF MEMS devices are small, they can be very complex, commonly encompassing multiple 
 interdependent engineering disciplines.

RF MEMS application areas are in phased arrays and reconfigurable apertures for defense and 
communication systems and in switching networks for satellite communications. As a breakthrough 
technology, allowing unparalleled synergy between apparently unrelated fields of endeavor such as 
biology and microelectronics, many new MEMS  applications will emerge, expanding beyond that 
which is currently identified or known. 

Traditionally, the training of MEMS engineers and scientists has entailed a graduate education 
at one of a few research universities, with the student working under the  direction of an experienced 
faculty member to design, fabricate, and test a MEMS device. A graduate education in MEMS tech-
nology is very costly and comparatively time- consuming. Consequently, the current output from our 
universities of technical persons trained in MEMS technology does not meet the requirement for per-
sonnel to support the projected growth of MEMS industry. If your university offers classes in MEMS, 
take as many as possible. Better still, if your university has a MEMS laboratory, consider doing your 
senior design or your graduate thesis in that area. That should prepare you well enough for the job 
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12.1 INTRODUCTION

As mentioned in the preceding chapter, a transmission line can be used to guide EM 
energy from one point (generator) to another (load). A waveguide is another means of 
achieving the same goal. However, a waveguide differs from a transmission line in some 
respects, although we may regard the latter as a special case of the former. In the first place, 
a transmission line can support only a transverse electromagnetic (TEM) wave, whereas 
a waveguide can support many possible field configurations. Second, at microwave fre-
quencies (roughly 3–300 GHz), transmission lines become inefficient as a result of skin 
effect and dielectric losses; waveguides are used at that range of frequencies to obtain 
larger bandwidth and lower signal attenuation. Moreover, a transmission line may oper-
ate from dc 1 f 5 0 Hz 2  to a very high frequency; a waveguide can operate only above a 
certain frequency called the cutoff frequency and therefore acts as a high-pass filter. Thus, 
waveguides cannot transmit dc, and they become excessively large at frequencies below 
microwave frequencies.

Although a waveguide may assume any arbitrary but uniform cross section, common 
waveguides are either rectangular or circular. Typical waveguides1 are shown in Figure 12.1. 
Analysis of circular waveguides is involved and requires familiarity with Bessel functions, 
which are beyond our scope.2 We will consider only hollow rectangular waveguides. By 
assuming lossless waveguides 1sc . `, s < 0 2 , we shall apply Maxwell’s equations with 
the appropriate boundary conditions to obtain different modes of wave propagation and 
the corresponding E and H fields. When we close both ends of a waveguide, a cavity is 
formed. We will also consider optical fiber guide, which is basic to optical communications.

WAVEGUIDES

Reading makes a full man; conference makes a ready man; and writing makes an  
accurate man.

—ANONYMOUS

12

1 For other types of waveguides, see J. A. Seeger, Microwave Theory, Components and Devices.  Englewood Cliffs, 
NJ: Prentice-Hall, 1986, pp. 128–133.
2 Analysis of circular waveguides can be found in advanced EM or EM-related texts (e.g., S. Y. Liao, 
Microwave Devices and Circuits, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1990, pp. 119–141).
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634 CHAPTER 12 WAVEGUIDES

Consider the rectangular waveguide shown in Figure 12.2, where a and b are the inner 
dimensions of the waveguide. We shall assume that the waveguide is filled with a source-
free 1rv 5 0, J 5 0 2  lossless dielectric material 1s . 0 2  and that its walls are perfectly 
conducting 1sc . ` 2 . From eqs. (10.17) and (10.19), we recall that for a lossless medium, 
Maxwell’s equations in phasor form become

 =2Es 1 k2Es 5 0 (12.1)

 =2Hs 1 k2Hs 5 0 (12.2)

a

FIGURE 12.2 A rectangular wave-
guide with perfectly conducting walls, 
filled with a lossless material.

FIGURE 12.1 Typical waveguides.

12.2 RECTANGULAR WAVEGUIDES
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12.2 Rectangular Waveguides 635

where

 k 5 v!me (12.3)

and the time factor e jt is assumed. If we let

Es 5 1Exs, Eys, Ezs 2  and  Hs 5 1Hxs, Hys, Hzs 2

each of eqs. (12.1) and (12.2) comprises three scalar Helmholtz equations. In other words, 
to obtain the E and H fields, we have to solve six scalar equations. For the z-component, 
for example, eq. (12.1) becomes

 
'2Ezs

'x2 1
'2Ezs

'y2 1
'2Ezs

'z2 1 k2Ezs 5 0 (12.4)

which is a partial differential equation. From Example 6.5, we know that eq. (12.4) can be 
solved by separation of variables (product solution). So we let

 Ezs 1x, y, z 2 5 X 1x 2  Y 1y 2  Z 1z 2  (12.5)

where X(x), Y(y), and Z(z) are functions of x, y, and z, respectively. Substituting eq. (12.5) 
into eq. (12.4) and dividing by XYZ gives

 
Xs
X

1
Ys
Y

1
Zs
Z

5 2k2 (12.6)

Since the variables are independent, each term in eq. (12.6) must be constant, so the equa-
tion can be written as

 2k2
x 2 k2

y 1 g2 5 2k2 (12.7)

where 2k2
x, 2k2

y, and 2 are separation constants. Thus, eq. (12.6) is separated as

 Xs 1 k2
xX 5 0 (12.8a)

 Ys 1 k2
yY 5 0 (12.8b)

 Zs 2 g2Z 5 0 (12.8c)

The choice of 2 is due to the realization that the guided waves propagate along the guide 
axis z in the positive or negative direction, and the propagation may result in Ezs and Hzs 
that approach zero as z S 6`.

By following the same argument as in Example 6.5, we obtain the solution to eq. (12.8) as

 X 1x 2 5 c1 cos kxx 1 c2 sin kxx (12.9a)

 Y 1y 2 5 c3 cos kyy 1 c4 sin kyy (12.9b)

 Z 1z 2 5 c5egz 1 c6e2gz (12.9c)
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Substituting eq. (12.9) into eq. (12.5) gives

Ezs 1x, y, z 2 5 1c1 cos kxx 1 c2 sin kxx 2 1c3 cos kyy
          1 c4 sin kyy 2  1c5egz 1 c6e2gz 2  (12.10)

As usual, if we assume that the wave propagates along the waveguide in the 1z-direction, 
the multiplicative constant c5 5 0 because the wave has to be finite at infinity [i.e., 
Ezs 1x, y, z 5 ` 2 5 0]. Hence eq. (12.10) is reduced to

 Ezs 1x, y, z 2 5 1A1 cos kxx 1 A2 sin kxx 2 1A3 cos kyy 1 A4 sin kyy 2e2gz (12.11)

where A1 5 c1c6, A2 5 c2c6, A3  c3c6, and A4  c4c6. By taking similar steps, we get the 
solution of the z-component of eq. (12.2) as

 Hzs 1x, y, z 2 5 1B1 cos kxx 1 B2 sin kxx 2 1B3 cos kyy 1 B4 sin kyy 2e2gz (12.12)

Instead of solving for other field components Exs, Eys, Hxs, and Hys in eqs. (12.1) and (12.2) 
in the same manner, it is more convenient to use Maxwell’s equations to determine them 
from Ezs and Hzs. From

= 3 Es 5 2jvmHs

and

= 3 Hs 5 jveEs

we obtain

 
'Ezs

'y
2

'Eys

'z
5 2jvmHxs (12.13a)

 
'Hzs

'y
2

'Hys

'z
5 jveExs (12.13b)

 
'Exs

'z
2

'Ezs

'x
5 2jvmHys (12.13c)

 
'Hxs

'z
2

'Hzs

'x
5 jveEys (12.13d)

 
'Eys

'x
2

'Exs

'y
5 2jvmHzs (12.13e)

 
'Hys

'x
2

'Hxs

'y
5 jveEzs (12.13f)

We will now express Exs, Eys, Hxs, and Hys in terms of Ezs and Hzs. For Exs, for example, 
we combine eqs. (12.13b) and (12.13c) and obtain
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12.2 Rectangular Waveguides 637

 jveExs 5
'Hzs

'y
1

1
jvm

 a'
2Exs

'z2 2
'2Ezs

'x'z
b  (12.14)

From eqs. (12.11) and (12.12), it is clear that all field components vary with z according to 
e2gz, that is,

Ezs ,  e2gz,  Exs ,  e2gz

Hence

'Ezs

'z
5 2gEzs,  

'2Exs

'z2 5 g2Exs

and eq. (12.14) becomes

jveExs 5
'Hzs

'y
1

1
jvm

 ag2Exs 1 g
'Ezs

'x
b

or

2
1

jvm
 1g2 1 v2me 2  Exs 5

g

jvm
 
'Ezs

'x
1

'Hzs

'y

Thus, if we let h2 5 g2 1 v2me 5 g2 1 k2,

Exs 5 2
g

h2 
'Ezs

'x
2

jvm

h2  
'Hzs

'y

Similar manipulations of eqs. (12.13) yield expressions for Eys, Hxs, and Hys in terms of Ezs 
and Hzs. Thus,

 

Exs 5 2
g

h2 
'Ezs

'x 2
jvm

h2  
'Hzs

'y

Eys 5 2
g

h2 
'Ezs

'y 1
jvm

h2  
'Hzs

'x

Hxs 5
jve

h2
 'Ezs

'y
2

g

h2
 'Hzs

'x

Hys 5 2
jve

h2  
'Ezs

'x
2

g

h2 
'Hzs

'y

 

(12.15a)

(12.15b)

(12.15c)

(12.15d)

where

 h2 5 g2 1 k2 5 k2
x 1 k2

y (12.16)
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638 CHAPTER 12 WAVEGUIDES

Thus we can use eqs. (12.15) in conjunction with eqs. (12.11) and (12.12) to obtain Exs, Eys, 
Hxs, and Hys.

From eqs. (12.11), (12.12), and (12.15), we notice that the field patterns or configura-
tions come in different types. Each of these distinct field patterns is called a mode. Four 
 different mode categories can exist, namely:

1. Ezs 5 0 5 Hzs (TEM mode): In the transverse electromagnetic mode, both the E 
and H fields are transverse to the direction of wave propagation. From eq. (12.15), 
all field components vanish for Ezs 5 0 5 Hzs. Consequently, we conclude that a 
hollow rectangular waveguide cannot support TEM mode.

2. Ezs 5 0, Hzs 2 0 (TE modes): For this case, the remaining components (Exs and 
Eys) of the electric field are transverse to the direction of propagation az. Under this 
condition, fields are said to be in transverse electric (TE) modes. See Figure 12.3(a).

3. Ezs 2 0, Hzs 5 0 (TM modes): In this case, the H field is transverse to the direc-
tion of wave propagation. Thus we have transverse magnetic (TM) modes. See 
Figure 12.3(b).

4. Ezs 2 0, Hzs 2 0 (HE modes): In this case neither the E nor the H field is trans-
verse to the direction of wave propagation. Sometimes these modes are referred to 
as  hybrid modes.

We should note the relationship between k in eq. (12.3) and b of eq. (10.43a). The phase 
constant b in eq. (10.43a) was derived for TEM mode. For the TEM mode, h 5 0, so from 
eq. (12.16), g2 5 2k2 S  g 5 a 1 jb 5 jk; that is, b 5 k. For other modes, b 2 k. In 
the subsequent sections, we shall examine the TM and TE modes of propagation separately.

FIGURE 12.3 Components of EM fields in a rectangular waveguide:  
(a) TE mode Ez  0, (b) TM mode, Hz  0.

12.3 TRANSVERSE MAGNETIC MODES

For the TM case, the magnetic field has its components transverse (or normal) to the direc-
tion of wave propagation. This implies that we set Hz 5 0 and determine Ex, Ey, Ez, Hx, and 
Hy by using eqs. (12.11) and (12.15) and the boundary conditions. We shall solve for Ez 
and later determine other field components from Ez. At the walls (perfect conductors) of 
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12.3 Transverse Magnetic Modes 639

the  waveguide in Figure 12.2, the tangential components of the E field must be continuous; 
that is,

 Ezs 5 0   at   y 5 0    (bottom wall) (12.17a)
 Ezs 5 0   at   y 5 b    (top wall) (12.17b)
 Ezs 5 0   at   x 5 0    (right wall) (12.17c)
 Ezs 5 0   at   x 5 a    (left wall) (12.17d)

Equations (12.17a) and (12.17c) require that A1 5 0 5 A3 in eq. (12.11), so eq. (12.11) 
 becomes

 Ezs 5 Eo sin kxx sin kyy e2gz (12.18)

where Eo 5 A2A4. Also eqs. (12.17d) and (12.17b) when applied to eq. (12.18) require, 
respectively, that

 sin kxa 5 0,  sin kyb 5 0 (12.19)

This implies that

  kxa 5 mp,   m 5 1, 2, 3, . . . (12.20a)

  kyb 5 np,   n 5 1, 2, 3, . . . (12.20b)

or

 kx 5
mp

a ,  ky 5
np

b
 (12.21)

The negative integers are not chosen for m and n in eq. (12.20a) for the reason given in 
 Example 6.5. Substituting eq. (12.21) into eq. (12.18) gives

 Ezs 5 Eo sin ampx
a b  sin anpy

b
b  e2gz (12.22)

We obtain other field components from eqs. (12.22) and (12.15), bearing in mind that 
Hzs 5 0. Thus

 Exs 5 2
g

h2 amp

a b  Eo cos ampx
a b  sin anpy

b
b  e2gz (12.23a)

 Eys 5 2
g

h2 anp

b
b  Eo sin ampx

a b  cos anpy
b

b  e2gz (12.23b)

 Hxs 5
jve

h2  anp

b
b  Eo sin ampx

a b  cos anpy
b

b  e2gz (12.23c)

 Hys 5 2
jve

h2  amp

a b  Eo cos ampx
a b  sin anpy

b
b  e2gz (12.23d)
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640 CHAPTER 12 WAVEGUIDES

where

 h2 5 k2
x 1 k2

y 5 cmp

a d
2

1 cnp

b
d

2

 (12.24)

which is obtained from eqs. (12.16) and (12.21). Notice from eqs. (12.22) and (12.23) 
that each set of integers m and n gives a different field pattern or mode, referred to as 
TMmn mode, in the waveguide. Integer m equals the number of half-cycle variations in the  
x-direction, and integer n is the number of half-cycle variations in the y-direction. We also 
notice from eqs. (12.22) and (12.23) that if 1m, n 2  is 10, 0 2 , 10, n 2 , or 1m, 0 2 , all field com-
ponents vanish. Thus neither m nor n can be zero. Consequently, TM11 is the lowest-order 
mode of all the TMmn modes.

By substituting eq. (12.21) into eq. (12.16), we obtain the propagation constant

 g 5 Å cmp

a d
2

1 cnp

b
d

2

2 k2 (12.25)

where k 5 v!me as in eq. (12.3). We recall that, in general, g 5 a 1 jb. In the case of 
eq. (12.25), we have three possibilities depending on k (or ), m, and n:

CASE 1 (cutoff)
If

k2 5 v2me 5 cmp

a d
2

1 cnp

b
d

2

 g 5 0 or a 5 0 5 b

The value of  that causes this is called the cutoff angular frequency c; that is,

 vc 5
1

!me
 Å cmp

a d
2

1 cnp

b
d

2

 (12.26)

No propagation takes place at this frequency.

CASE 2 (evanescent)
If

k2 5 v2me , cmp

a d
2

1 cnp

b
d

2

 g 5 a, b 5 0

In this case, we have no wave propagation at all. These nonpropagating modes are said to 
be evanescent.
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CASE 3 (propagation)
If

 k2 5 v2me . cmp

a d
2

1 cnp

b
d

2

  g 5 jb,        a 5 0

that is, from eq. (12.25) the phase constant b becomes

 b 5 Åk2 2 cmp

a d
2

2 cnp

b
d

2

 (12.27)

This is the only case in which propagation takes place, because all field components will 
have the factor e2gz 5 e2jbz.

Thus for each mode, characterized by a set of integers m and n, there is a correspond-
ing cutoff frequency fc .

The cutoff frequency is the operating frequency below which attenuation occurs and 
above which propagation takes place.

The waveguide therefore operates as a high-pass filter. The cutoff frequency is obtained 
from eq. (12.26) as

fc 5
vc

2p
5

1

2p"me
 Å cmp

a d
2

1 cnp

b
d

2

or

 fc 5
u r
2

 Åam
a b

2

1 an
b
b

2

 (12.28)

where u r 5
1

"me
5 phase velocity of uniform plane wave in the lossless dielectric 

 medium 1s 5 0, m, e 2  filling the waveguide. The cutoff wavelength lc is given by

lc 5
u r
fc

or

 lc 5
2

Åam
a b

2

1 an
b
b

2
 (12.29)

12_Sadiku_Ch12.indd   641 25/09/17   5:27 PM



642 CHAPTER 12 WAVEGUIDES

Note from eqs. (12.28) and (12.29) that TM11 has the lowest cutoff frequency (or the longest 
cutoff wavelength) of all the TM modes. The phase constant b in eq. (12.27) can be written 
in terms of fc as

b 5 v!me Å1 2 c fc

f
d

2

or

 b 5 b r Å1 2 c fc

f
d

2

 (12.30)

where b r 5 v/u r 5 v!me 5 phase constant of uniform plane wave in the dielectric 
medium. It should be noted that  for evanescent mode can be expressed in terms of 
fc, namely,

 g 5 a 5 b r Åa fc

f
b

2

2 1 (12.30)

The phase velocity up and the wavelength in the guide are, respectively, given by

 up 5
v

b r
, l 5

2p

b
5

up

f
 (12.31)

The intrinsic wave impedance of the mode is obtained from eq. (12.23) as 1g 5 jb 2

 hTM 5
Ex

Hy
5 2

Ey

Hx

 5
b

ve
5 Å

m

e
 Å1 2 c fc

f
d

2

or

 hTM 5 h r Å1 2 c fc

f
d

2

 (12.32)

where h r 5 !m/e is the intrinsic impedance of a uniform plane wave in the medium. 
Note the difference between u, b, and h, and u, b, and h. The primed quantities are 
wave characteristics of the dielectric medium unbounded by the waveguide, as dis-
cussed in Chapter 10 (i.e., for TEM mode). For example, u would be the velocity of the 
wave if the waveguide were removed and the entire space were filled with the dielectric. 
The unprimed quantities are the wave characteristics of the medium bounded by the 
 waveguide.
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As mentioned before, the integers m and n indicate the number of half-cycle varia-
tions in the x–y cross section of the guide. Thus for a fixed time, the field configuration of 
 Figure 12.4 results for TM21 mode, for example.

End view Side view

E

H

FIGURE 12.4 Field configuration for TM21 mode.

12.4 TRANSVERSE ELECTRIC MODES

In the TE modes, the electric field is transverse (or normal) to the direction of wave 
propagation. We set Ez 5 0 and determine other field components Ex, Ey, Hx, Hy, and 
Hz from eqs. (12.12) and (12.15) and the boundary conditions just as we did for the TM 
modes. The boundary conditions are obtained from the requirement that the tangential 
components of the electric field be continuous at the walls (perfect conductors) of the 
waveguide; that is,

 Exs 5 0   at   y 5 0 (12.33a)
 Exs 5 0   at   y 5 b (12.33b)
 Eys 5 0   at   x 5 0 (12.33c)
 Eys 5 0   at   x 5 a (12.33d)

From eqs. (12.15) and (12.33), the boundary conditions can be written as

 
'Hzs

'y
5 0   at   y 5 0 (12.34a)

 
'Hzs

'y
5 0   at   y 5 b (12.34b)

 
'Hzs

'x
5 0   at   x 5 0 (12.34c)

 
'Hzs

'x
5 0   at   x 5 a (12.34d)
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Imposing these boundary conditions on eq. (12.12) yields

 Hzs 5 Ho cos ampx
a b  cos anpy

b
b  e2gz (12.35)

where Ho 5 B1B3. Other field components are easily obtained from eqs. (12.35) and (12.15) as

 Exs 5
jvm

h2  anp

b
b  Ho cos ampx

a b  sin anpy
b

b  e2gz (12.36a)

 Eys 5 2
jvm

h2  amp

a b  Ho sin ampx
a b  cos anpy

b
b  e2gz (12.36b)

 Hxs 5
g

h2 amp

a b  Ho sin ampx
a b  cos anpy

b
b  e2gz (12.36c)

 Hys 5
g

h2 anp

b
b  Ho cos ampx

a b  sin anpy
b

b  e2gz (12.36d)

where m 5 0, 1, 2, 3, . . . ; and n 5 0, 1, 2, 3, . . . ; h and  remain as defined for the TM 
modes. Again, m and n denote the number of half-cycle variations in the x–y cross section 
of the guide. For TE32 mode, for example, the field configuration is in Figure 12.5. The cut-
off frequency fc, the cutoff wavelength lc, the phase constant b, the phase velocity up, and 
the wavelength l for TE modes are the same as for TM modes [see eqs. (12.28) to (12.31)].

For TE modes, 1m, n 2  may be 10, 1 2  or 11, 0 2  but not 10, 0 2 . Both m and n cannot be 
zero at the same time because this will force the field components in eq. (12.36) to vanish. 
This implies that the lowest mode can be TE10 or TE01 depending on the values of a and 
b, the dimensions of the guide. It is standard practice to have a . b so that 1/a2 , 1/b2 in 

eq. (12.28). Thus TE10 is the lowest mode because fcTE10
5

u r
2a

, fcTE01
5

u r
2b

. This mode is 

End view Top view

E
H

FIGURE 12.5 Field configuration for TE32 mode.
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called the dominant mode of the waveguide and is of practical importance. The cutoff 
 frequency for the TE10 mode is obtained from eq. (12.28) as 1m 5 1, n 5 0 2

 fc10
5

u r
2a

 (12.37)

and the cutoff wavelength for TE10 mode is obtained from eq. (12.29) as

 lc10
5 2a (12.38)

Note that from eq. (12.28) the cutoff frequency for TM11 is

u r 3a2 1 b2 41/2

2ab

which is greater than the cutoff frequency for TE10. Hence, TM11 cannot be regarded as the 
dominant mode.

The dominant mode is the mode with the lowest cutoff frequency (or longest cutoff 
wavelength).

Also note that any EM wave with frequency f , fc10
 1or l . lc10

2  will not be propagated 
in the guide.

The intrinsic impedance for the TE mode is not the same as for TM modes. From  
eq. (12.36), it is evident that 1g 5 jb 2

hTE 5
Ex

Hy
5 2

Ey

Hx
5

vm

b

  5 Å
m

e
 

1

Å1 2 c fc

f
d

2

or

 hTE 5
h r

Å1 2 c fc

f
d

2
 (12.39)

Note from eqs. (12.32) and (12.39) that hTE and hTM are purely resistive and vary with 
 frequency, as shown in Figure 12.6. Also note that

 hTE hTM 5 h r2 (12.40)

Important equations for TM and TE modes are listed in Table 12.1 for convenience and 
quick reference.
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ηTE

ηTM

FIGURE 12.6 Variation of wave  
impedance with frequency for TE  
and TM modes.
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TABLE 12.1 Important Equations for TM and TE Modes

TM Modes TE Modes

Exs 5 2
jb

h2 amp

a
b  Eo cos ampx

a
b  sin anpy

b
b  e2gz Exs 5

jvm

h2  anp

b
b  Ho cos ampx

a
b  sin anpy

b
b  e2gz

Eys 5 2
jb

h2 anp

b
b  Eo sin ampx

a
b  cos anpy

b
b  e2gz Eys 5 2

jvm

h2  amp

a
b  Ho sin ampx

a
b  cos anpy

b
b  e2gz

Ezs 5 Eo sin ampx
a

b  sin anpy
b

b  e2gz Ezs 5 0

Hxs 5
jve

h2  anp

b
b  Eo sin ampx

a
b  cos anpy

b
b  e2gz Hxs 5

jb

h2 amp

a
b  Ho sin ampx

a
b  cos anpy

b
b  e2gz

Hys 5 2
jve

h2  amp

a
b  Eo cos ampx

a
b  sin anpy

b
b  e2gz Hys 5

jb

h2 anp

b
b  Ho cos ampx

a
b  sin anpy

b
b  e2gz

Hzs 5 0 Hzs 5 Ho cos ampx
a

b  cos anpy
b

b  e2gz

h 5 h rÅ1 2 a fc

f
b2

 h 5
h r

Å1 2 a fc

f
b2

 
fc 5

u r
2

 Åam
a
b2

1 an
b
b2

 
lc 5

u r
fc

 
b 5 b rÅ1 2 a fc

f
b2

 
up 5

v

b
5 f l

where h2 5 amp

a
b2

1 anp

b
b2

, u r 5
1

"me
, b r 5

v

u r
, h r 5 Å

m

e



12.4 Transverse Electric Modes 647

From eqs. (12.22), (12.23), (12.35), and (12.36), we obtain the field patterns for the TM 
and TE modes. For the dominant TE10 mode, m 5 1 and n 5 0, so eq. (12.35) becomes

  Hzs 5 Ho cosapx
a b  e2jbz (12.41)

In the time domain,

Hz 5 Re 1Hzse jvt 2
or

 Hz 5 Ho cosapx
a b  cos 1vt 2 bz 2  (12.42)

Similarly, from eq. (12.36),

  Ey 5
vma

p
 Ho sinapx

a b  sin 1vt 2 bz 2  (12.43a)

  Hx 5 2
ba
p

 Ho sinapx
a b  sin 1vt 2 bz 2  (12.43b)

 Ez 5 Ex 5 Hy 5 0 (12.43c)

FIGURE 12.7 Variation of the field components  
with x for TE10 mode.
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The variation of the E and H fields with x in an xy-plane, say plane cos 1vt 2 bz 2 5 1 for 
Hz, and plane sin 1vt 2 bz 2 5 1 for Ey and Hx, is shown in Figure 12.7 for the TE10 mode. 
The corresponding field lines are shown in Figure 12.8.

FIGURE 12.8 Field lines for TE10 
mode, corresponding to components 
(a), (b), and (c) in Figure 12.7.

Top view

Side view

End view

E

H

EXAMPLE 12.1 A rectangular waveguide with dimensions a 5 2.5 cm, b 5 1 cm is to operate below 15.1 
GHz. How many TE and TM modes can the waveguide transmit if the guide is filled with 
a medium characterized by s 5 0, e 5 4 eo, mr 5 1? Calculate the cutoff frequencies of 
the modes.

Solution:
The cutoff frequency is given by
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fcmn
5

u r
2

 Å
m2

a2 1
n2

b2
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where a 5 2.5b or a/b 5 2.5, and

u r 5
1

"me
5

c

"mr 
er

5
c
2

or

 fcmn
5 3"m2 1 6.25n2 GHz (12.1.1)

We are looking for fcmn
, 15.1 GHz. A systematic way of doing this is to fix m or n and 

increase the other until fcmn
 is greater than 15.1 GHz. From eq. (12.1.1), it is evident that 

fixing m and increasing n will quickly give us an fcmn
 that is greater than 15.1 GHz.

For TE01 mode 1m 5 0, n 5 1 2 , fc01
5 3 12.5 2 5 7.5 GHz

 TE02 mode 1m 5 0, n 5 2 2 , fc02
5 3 15 2 5 15 GHz

 TE03 mode, fc03
5 3 17.5 2 5 22.5 GHz

Thus for fcmn
, 15.1 GHz, the maximum n 5 2. We now fix n and increase m until fcmn

 is 
greater than 15.1 GHz.

For TE10 mode 1m 5 1, n 5 0 2 , fc10
5 3 GHz

TE20 mode, fc20
5 6 GHz

TE30 mode, fc30
5 9 GHz

TE40 mode, fc40
5 12 GHz

TE50 mode, fc50
5 15 GHz 1 the same as for TE02 2

TE60 mode, fc60
5 18 GHz

That is, for fcmn
, 15.1 GHz, the maximum m 5 5. Now that we know the maximum m 

and n, we try other possible combinations in between these maximum values.

For TE11, TM11 (degenerate modes), fc11
5 3"7.25 5 8.078 GHz

TE21, TM21, fc21
5 3"10.25 5 9.6 GHz

TE31, TM31, fc31
5 3"15.25 5 11.72 GHz

TE41, TM41, fc41
5 3"22.25 5 14.14 GHz

TE12, TM12, fc12
5 3"26 5 15.3 GHz

12_Sadiku_Ch12.indd   649 25/09/17   5:27 PM

Hence,

fcmn
5

c
4a

 Åm2 1
a2

b2 n2

 5
3 3 108

4 12.5 3 1022 2  "m2 1 6.25n2
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Those modes, whose cutoff frequencies are less than or equal to 15.1 GHz, will be 
transmitted—that is, 11 TE modes and 4 TM modes (all the foregoing modes except TE12, 
TM12, TE60, and TE03). The cutoff frequencies for the 15 modes are illustrated in Figure 12.9.

PRACTICE EXERCISE 12.1

Consider the waveguide of Example 12.1. Calculate the phase constant, phase velocity, 
and wave impedance for TE10 and TM11 modes at the operating frequency of 15 GHz.

Answer:  For TE10, b 5 615.6 rad/m, u 5 1.531 3 108 m/s, hTE 5 192.4 V; for TM11, 
b 5 529.4 rad/m, u 5 1.78 3 108 m/s, hTM 5 158.8 V.

FIGURE 12.9 Cutoff frequencies of rectangular waveguide 
with a  2.5b; for Example 12.1.

EXAMPLE 12.2 Write the general instantaneous field expressions for the TM and TE modes. Deduce those 
for TE01 and TM12 modes.

Solution:
The instantaneous field expressions are obtained from the phasor forms by using

E 5 Re 1Ese jvt 2  and  H 5 Re 1Hse jvt 2

Applying these to eqs. (12.22) and (12.23) while replacing  with jb gives the following 
field components for the TM modes:

Ex 5
b

h2 c
mp

a d  Eo cos ampx
a b  sin anpy

b
b  sin 1vt 2 bz 2

Ey 5
b

h2 c
np

b
d  Eo sin ampx

a b  cos anpy
b

b  sin 1vt 2 bz 2

Ez 5 Eo sin ampx
a b  sin anpy

b
b  cos 1vt 2 bz 2
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Hx 5 2
ve

h2  cnp

b
d  Eo sin ampx

a b  cos anpy
b

b  sin 1vt 2 bz 2

Hy 5
ve

h2  cmp

a d  Eo cos ampx
a b  sin anpy

b
b  sin 1vt 2 bz 2

Hz 5 0

Similarly, for the TE modes, eqs. (12.35) and (12.36) become

Ex 5 2
vm

h2  cnp

b
d  Ho cos ampx

a b  sin anpy
b

b  sin 1vt 2 bz 2  

Ey 5
vm

h2  cmp

a d  Ho sin ampx
a b  cos anpy

b
b  sin 1vt 2 bz 2

Ez 5 0 

Hx 5 2
b

h2 cmp

a d  Ho sin ampx
a b  cos anpy

b
b  sin 1vt 2 bz 2

Hy 5 2
b

h2 cnp

b
d  Ho cos ampx

a b  sin anpy
b

b  sin 1vt 2 bz 2

Hz 5 Ho cos ampx
a b  cos anpy

b
b  cos 1vt 2 bz 2

For the TE01 mode, we set m 5 0, n 5 1 to obtain

 h2 5 cp
b
d

2

Ex 5 2
vmb

p
 Ho sin apy

b
b  sin 1vt 2 bz 2

Ey 5 0 5 Ez 5 Hx

Hy 5 2
bb
p

 Ho sin apy
b
b  sin 1vt 2 bz 2

Hz 5 Ho cos apy
b
b  cos 1vt 2 bz 2

For the TM12 mode, we set m 5 1, n 5 2 to obtain

Ex 5
b

h2 ap

a b  Eo cos apx
a b  sin a2py

b
b  sin 1vt 2 bz 2

Ey 5
b

h2 a2p

b
b  Eo sin apx

a b  cos a2py
b

b  sin 1vt 2 bz 2

Ez 5 Eo sin apx
a b  sin a2py

b
b  cos 1vt 2 bz 2
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Hx 5 2
ve

h2  a2p

b
b  Eo sin apx

a b  cos a2py
b

b  sin 1vt 2 bz 2

Hy 5
ve

h2  ap

a b  Eo cos apx
a b  sin a2py

b
b  sin 1vt 2 bz 2

Hz 5 0

where

h2 5 cpa d
2

1 c 2p

b
d

2

EXAMPLE 12.3

PRACTICE EXERCISE 12.2

At 15 GHz, an air-filled 5 cm  2 cm waveguide has

Ezs 5 20 sin 40px sin 50py e2jbz V/m

(a) What mode is being propagated?
(b) Find b.
(c) Determine Ey/Ex.

Answer: (a) TM21, (b) 241.3 rad/m, (c) 1.25 tan 40px cot 50py.

In a rectangular waveguide for which a 5 1.5 cm, b 5 0.8 cm, s 5 0, m 5 mo, and 
e 5 4eo,

Hx 5 2 sin apx
a b  cos a3py

b
b  sin 1p 3 1011t 2 bz 2  A/m

Determine
(a) The mode of operation
(b) The cutoff frequency
(c) The phase constant b
(d) The propagation constant 
(e) The intrinsic wave impedance h

Solution:
(a) It is evident from the given expression for Hx and the field expressions in 
Example 12.2 that m 5 1, n 5 3; that is, the guide is operating at TM13 or TE13. Suppose 
we choose TM13 mode (the possibility of having TE13 mode is left as an exercise in 
Practice  Exercise 12.3).

12_Sadiku_Ch12.indd   652 25/09/17   5:28 PM



12.4 Transverse Electric Modes 653

PRACTICE EXERCISE 12.3

Repeat Example 12.3 if TE13 mode is assumed. Determine other field components for 
this mode.

Answer:   fc 5 28.57 GHz, b 5 1718.81 rad/m, g 5 jb, hTE13
5 229.69 V

 Ex 5 2584.1 cos apx
a b  sin a3py

b
b  sin 1vt 2 bz 2  V/m

 Ey 5 2459.4 sin apx
a b  cos a3py

b
b  sin 1vt 2 bz 2  V/m,  Ez 5 0

 Hy 5 11.25 cos apx
a b  sin a3py

b
b  sin 1vt 2 bz 2  A/m

 Hz 5 27.96 cos apx
a b  cos a3py

b
b  cos 1vt 2 bz 2  A/m
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(b) fcmn
5

u r
2

 Å
m2

a2 1
n2

b2

 u r 5
1

"me
5

c

"mrer

5
c
2

Hence

fc13
5

c
4

 Å
1

31.5 3 1022 42 1
9

30.8 3 1022 42
 5

3 3 108

4
 1"0.444 1 14.06 2 3 102 5 28.57 GHz

(c) b 5 v"me Å1 2 c fc

f
d 2

5
v"er

c  Å1 2 c fc

f
d 2

 v 5 2pf 5 p 3 1011  or  f 5
1011

2
5 50 GHz

 b 5
p 3 1011 12 2

3 3 108  Å1 2 c 28.57
50

d 2

5 1718.81 rad/m

(d) g 5 jb 5 j1718.81 /m

(e)  hTM13
5 h r Å1 2 c fc

f
d 2

5
377

"er

 Å1 2 c 28.57
50

d 2

  5 154.7 V
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Examination of eq. (12.23) or (12.36) shows that the field components all involve the terms 
sine or cosine of 1mp/a 2x or 1np/b 2y times e2gz. Since

 sin u 5
1
2j

 1e ju 2 e2ju 2  (12.44a)

 cos u 5
1
2

 1e ju 1 e2ju 2  (12.44b)

a wave within the waveguide can be resolved into a combination of plane waves reflected 
from the waveguide walls. For the TE10 mode, for example,

 Eys 5 2
jvma

p
 sin apx

a b  e2jbz

  5 2
vma
2p

 1e jpx/a 2 e2jpx/a 2  e2jbz (12.45)

  5
vma
2p

 3e2jb1z1px/ba2 2 e2jb1z2px/ba2 4

where Ho  1. The first term of eq. (12.45) represents a wave traveling in the positive   
z- direction at an angle

 u 5 tan21a p

ba
b  (12.46)

with the z-axis. The second term of eq. (12.45) represents a wave traveling in the positive 
z-direction at an angle 2u. The field may be depicted as a sum of two plane TEM waves 
propagating along zigzag paths between the guide walls at x 5 0 and x 5 a as illustrated 
in Figure 12.10(a). The decomposition of the TE10 mode into two plane waves can be 
extended to any TE and TM mode. When n and m are both different from zero, four plane 
waves result from the decomposition.

The wave component in the z-direction has a different wavelength from that of the 
plane waves. This wavelength along the axis of the guide is called the waveguide wavelength 
and is given by

 l 5
l r

Å1 2 c fc

f
d

2
 (12.47)

where l r 5 u r/f .
As a consequence of the zigzag paths, we have three types of velocity: the medium 

 velocity u, the phase velocity up, and the group velocity ug. Figure 12.10(b) illustrates the 
relationship between the three different velocities. The medium velocity u r 5 1/!me is as 

12.5 WAVE PROPAGATION IN THE GUIDE
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explained in the preceding sections. The phase velocity up is the velocity at which loci of 

 up 5
v

b
 (12.48a)

or

 up 5
u r

cos u
5

u r

Å1 2 c fc

f
d

2
 (12.48b)

This shows that up $ u r, since cos u # 1. If u r 5 c, then up is greater than the speed of 
light in vacuum. Does this violate Einstein’s relativity theory that messages cannot travel 
faster than the speed of light? Not really, because information (or energy) in a waveguide 
generally does not travel at the phase velocity. Information travels at the group velocity, 
which must be less than the speed of light. The group velocity ug is the velocity with which 
the resultant repeated reflected waves are traveling down the guide and is given by

 ug 5
1

'b/'v
 (12.49a)

or

 ug 5 u r cos u 5 u r Å1 2 c fc

f
d

2

 (12.49b)

Wave path

�/2
FIGURE 12.10 (a) Decomposition 
of the TE10 mode into two plane 
waves. (b) Relationship between 
u, up, and ug.
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constant phase are propagated down the guide and is given by eq. (12.31); that is,
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Although the concept of group velocity is fairly complex and is beyond the scope of this 
chapter, a group velocity is essentially the velocity of propagation of the wave-packet enve-
lope of a group of frequencies. It is the energy propagation velocity in the guide and is 
always less than or equal to u. From eqs. (12.48) and (12.49), it is evident that

 upug 5 u r2 (12.50)

This relation is similar to eq. (12.40). Hence the variation of up and ug with frequency is 
similar to that in Figure 12.6 for hTE and hTM.

EXAMPLE 12.4 A standard air-filled rectangular waveguide with dimensions a 5 8.636 cm, b 5 4.318 cm 
is fed by a 4 GHz carrier from a coaxial cable. Determine whether a TE10 mode will be 
propagated. If so, calculate the phase velocity and the group velocity.

Solution:
For the TE10 mode, fc 5 u r/2a. Since the waveguide is air filled, u r 5 c 5 3 3 108. Hence,

fc 5
3 3 108

2 3 8.636 3 1022 5 1.737 GHz

As f 5 4 GHz . fc, the TE10 mode will propagate.

up 5
u r

"1 2 1 fc/f 2 2
5

3 3 108

"1 2 11.737/4 2 2

 5 3.33 3 108 m/s

ug 5
u r2

up
5

9 3 1016

3.33 3 108 5 2.702 3 108 m/s

PRACTICE EXERCISE 12.4

Repeat Example 12.4 for the TM11 mode.

Answer:  12.5 3 108 m/s, 7.2 3 107 m/s.

To determine power flow in the waveguide, we first find the average Poynting vector [given 
earlier as eq. (10.78)],

 ave 5
1
2

 Re 1Es 3 H*s 2  (12.51)
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In this case, the Poynting vector is along the z-direction so that

where h 5 hTE for TE modes or h 5 hTM for TM modes. The total average power trans-
mitted across the cross section of the waveguide is

Of practical importance is the attenuation in a lossy waveguide. In our analysis thus 
far, we have assumed lossless waveguides 1s 5 0, sc . ` 2  for which a 5 0, g 5 jb. 
When the dielectric medium is lossy 1s 2 0 2  and the guide walls are not perfectly con-
ducting 1sc 2 ` 2 , there is a continuous loss of power as a wave propagates along the 
guide. According to eq. (10.79), the power flow in the guide is of the form

 Pave 5 Poe22az (12.54)

In general,

 a 5 ac 1 ad (12.55)

where ac and ad are attenuation constants due to ohmic or conduction losses 1sc 2 ` 2  and 
dielectric losses 1s 2 0 2 , respectively.

To determine ad, recall that we started with eq. (12.1) assuming a lossless dielectric 
medium 1s 5 0 2 . For a lossy dielectric, we need to incorporate the fact that s 2 0. All our 
equations still hold except that g 5 jb needs to be modified. This is achieved by replacing 
« in eq. (12.25) by the complex permittivity of eq. (10.40). Thus, we obtain

 g 5 ad 1 jbd 5 Åamp

a b
2

1 anp

b
b

2

2 v2mec (12.56)

where

 ec 5 e r 2 jes 5 e 2 j 
s

v
 (12.57)

Substituting eq. (12.57) into eq. (12.56) and squaring both sides of the equation, we obtain

 g2 5 a2
d 2 b2

d 1 2jadbd 5 amp

a b
2

1 anp

b
b

2

2 v2me 1 jvms
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 �ave 5
1
2

 Re 1ExsH*ys 2 EysH*xs 2  az

  5
0 Exs 0 2 1 0 Eys 0 2

2h
 az 

(12.52)

  Pave 5 3  �ave
# dS

  5 3
a

x50
 3

b

y50
 
0 Exs 0 2 1 0 Eys 0 2

2h
 dy dx 

(12.53)
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Equating real and imaginary parts, we have

 a2
d 2 b2

d 5 amp

a b
2

1 anp

b
b

2

2 v2me (12.58a)

 2adbd 5 vms  or  ad 5
vms

2bd
 (12.58b)

Assuming that a2
d V b2

d, a2
d 2 b2

d . 2b2
d, so eq. (12.58a) gives

bd 5 Åv2me 2 amp

a b
2

2 anp

b
b

2

  5 v"me Å1 2 a fc

f
b

2

 
(12.59)

which is the same as b in eq. (12.30). Substituting eq. (12.59) into eq. (12.58b) gives

 ad 5
sh r

2Å1 2 a fc

f
b

2
 (12.60)

where h r 5 !m/e.
The determination of ac for TMmn and TEmn modes is time-consuming and tedious. 

We shall illustrate the procedure by finding ac for the TE10 mode. For this mode, only Ey, 
Hx, and Hz exist. Substituting eq. (12.43a) into eq. (12.53) yields

 Pave 5 3
a

x50
 3

b

y50
 
0 Eys 0 2
2h

 dx dy 5
v2m2a2H2

o

2p2h
 3

b

0
 dy 3

a

0
 sin2 

px
a  dx

 Pave 5
v2m2a3H2

ob
4p2h

 
(12.61)

The total power loss per unit length in the walls is

 PL 5 PL 0 y50 1 PL 0 y5b 1 PL 0 x50 1 PL 0 x5a

  5 2 1PL 0 y50 1 PL 0 x50 2  (12.62)

since the same amount is dissipated in the walls y 5 0 and y 5 b or x 5 0 and x 5 a. For 
the wall y 5 0,

 PL 0 y50 5
1
2

 Re chc 3  1 0Hxs 0 2 1 0Hzs 0 2 2  dx d `
y50

  5
1
2

 Rs c3
a

0
 
b2a2

p2  H2
o sin2 

px
a  dx 1 3

a

0
 H2

o cos2 
px
a  dx d  (12.63)

  5
RsaH2

o

4
 a1 1

b2a2

p2 b
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where Rs is the real part of the intrinsic impedance hc of the conducting wall. From 
eq. (10.56), we write

 Rs 5
1

scd
5 Å

pfm
sc

 (12.64)

where d is the skin depth. The skin resistance of the wall Rs may be regarded as the 
 resistance of 1 m by d by 1 m of the conducting material. For the wall x 5 0,

  PL 0 x50 5
1
2

 Re chc 3  1 0Hzs 0 2 2  dy d  0 x50 5
1
2

 Rs 3
b

0
 H2

o dy

  5
RsbH2

o

2
 

(12.65)

Substituting eqs. (12.63) and (12.65) into eq. (12.62) gives

 PL 5 RsH2
o cb 1

a
2

 a1 1
b2a2

p2 b d  (12.66)

For energy to be conserved, the rate of decrease in Pave must equal the time-average power 
L

PL 5 2
dPave

dz
5 2aPave

or

 a 5
PL

2Pave 
(12.67)

Finally, substituting eqs. (12.61) and (12.66) into eq. (12.67), we have

 ac 5

RsH2
o cb 1

a
2

 a1 1
b2a2

p2 b d  2p2h

v2m2a3H2
ob

 (12.68a)

It is convenient to express ac in terms of f and fc. After some manipulations, we obtain for 
the TE10 mode

 ac 5
2Rs

bh r Å1 2 c fc

f
d

2
 a0.5 1

b
a c fc

f
d

2

b  (12.68b)

By following the same procedure, the attenuation constant for the TEmn modes 1n 2 0 2  
can be obtained as

  ac 0 TE 5
2Rs

bh r Å1 2 c fc

f
d

2
 ≥ a1 1

b
ab c

fc

f
d

2

1

b
a ab

a m2 1 n2b
b2

a2 m2 1 n2
 a1 2 c fc

f
d

2

b ¥  (12.69)
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loss P  per unit length; that is,
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and for the TMmn modes as

 ac 0 TM 5
2Rs

bh r Å1 2 c fc

f
d

2
 c (b/a)3 m2 1 n2

(b/a)2 m2 1 n2 d  (12.70)

The total attenuation constant a is obtained by substituting eqs. (12.60) and (12.69) or 
(12.70) into eq. (12.55).

†

For either TM or TE modes, the surface current density K on the walls of the waveguide 
may be found by using

 K 5 an 3 H (12.71)

where an is the unit outward normal to the wall and H is the field intensity evaluated on the 
wall. The current flow on the guide walls for TE10 mode propagation can be found by using 
eq. (12.71) with eqs. (12.42) and (12.43). The result is sketched in Figure 12.11.

The surface charge density rS on the walls is given by

 rS 5 an
# D 5 an

# eE (12.72)

where E is the electric field intensity evaluated on the guide wall.
A waveguide is usually fed or excited by a coaxial line or another waveguide. Most 

often, a probe (central conductor of a coaxial line) is used to establish the field intensities 
of the desired mode and achieve a maximum power transfer. The probe is located so as to 
produce E and H fields that are roughly parallel to the lines of E and H fields of the desired 
mode. To excite the TE10 mode, for example, we know from eq. (12.43a) that Ey has maxi-
mum value at x 5 a/2. Hence, the probe is located at x 5 a/2 to excite the TE10 mode as 

y

z

x

FIGURE 12.11 Surface current on guide walls for TE10 mode.
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shown in Figure 12.12(a), where the field lines are similar to those of Figure 12.8. Similarly, 
the TM11 mode is launched by placing the probe along the z-direction as in Figure 12.12(b).

(a)

(b)

FIGURE 12.12 Excitation of modes in a rectangular waveguide:  
(a) TE10 mode, (b) TM11 mode.

EXAMPLE 12.5 An air-filled rectangular waveguide of dimensions a 5 4 cm, b 5 2 cm transports energy 
in the dominant mode at a rate of 2 mW. If the frequency of operation is 10 GHz, determine 
the peak value of the electric field in the waveguide.

Solution:
The dominant mode for a . b is TE10 mode. The field expressions corresponding to this 
mode 1m 5 1, n 5 0 2  are in eq. (12.36) or (12.43), namely,

Exs 5 0,  Eys 5 2jEo sin apx
a b  e2jbz,  where Eo 5

vma
p

 Ho

 fc 5
u r
2a

5
3 3 108

2 14 3 1022 2 5 3.75 GHz

 h 5 hTE 5
h r

/ 1 2 c fc

f
d

2
5

377

/ 1 2 c 3.75
10

d
2

5 406.7 V
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From eq. (12.53), the average power transmitted is

Pave 5 3
b

y50
 3

a

x50
 
0 Eys 0 2
2h

 dx dy 5
E2

o

2h
 3

b

0
 dy 3

a

0
 sin2 apx

a b  dz

 5
E2

o ab
4h

Hence,

E2
o 5

4hPave

ab
5

4 1406.7 2 3 2 3 1023

8 3 1024 5 4067

Eo 5 63.77 V/m

EXAMPLE 12.6

PRACTICE EXERCISE 12.5

In Example 12.5, calculate the peak value Ho of the magnetic field in the guide if 
a 5 2 cm, b 5 4 cm, while other things remain the same.

Answer: 63.34 mA/m.

A copper-plated waveguide 1sc 5 5.8 3 107 S/m 2  operating at 4.8 GHz is supposed to 
deliver a minimum power of 1.2 kW to an antenna. If the guide is filled with polystyrene 
1s 5 10217 S/m, e 5 2.55eo 2  and its dimensions are a 5 4.2 cm, b 5 2.6 cm, calculate the 
power dissipated in a length 60 cm of the guide in the TE10 mode.

Solution:
Let

Pd 5 power loss or dissipated
Pa 5 power delivered to the antenna
Po 5 input power to the guide

so that Po 5 Pd 1 Pa
From eq. (12.54),

Pa 5 Poe22az

Hence,

Pa 5 1Pd 1 Pa 2e22az

or

Pd 5 Pa 1e2az 2 1 2
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Now we need to determine � from

a 5 ad 1 ac

From eq. (12.60),

ad 5
sh r

2 Å1 2 c fc

f
d 2

Since the loss tangent

s

ve
5

10217

2p 3 4.8 3 109 3
1029

36p
3 2.55

 5 1.47 3 10217 V 1  1 lossless dielectric medium 2
then

 h r . Å
m

e
5

377

"er

5 236.1

u r 5
1

"me
5

c

"er

5 1.879 3 108 m/s

fc 5
u r
2a

5
1.879 3 108

2 3 4.2 3 1022 5 2.234 GHz

ad 5
10217 3 236.1

2Å1 2 c 2.234
4.8

d 2

ad 5 1.334 3 10215 Np/m

For the TE10 mode, eq. (12.68b) gives

ac 5
2Rs

bh rÅ1 2 c fc

f
d 2

 a0.5 1
b
a c fc

f
d 2b

where

Rs 5
1

scd
5 Å

pfm
sc

5 Å
p 3 4.8 3 109 3 4p 3 1027

5.8 3 107

 5 1.808 3 1022 V
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Note that ad V ac, showing that the loss due to the finite conductivity of the guide walls is 
more important than the loss due to the dielectric medium. Thus

a 5 ad 1 ac . ac 5 4.218 3 1023 Np/m

and the power dissipated is

Pd 5 Pa 1e2az 2 1 2 5 1.2 3 103 1e234.2183102330.6 2 1 2
 5 6.089 W

EXAMPLE 12.7

PRACTICE EXERCISE 12.6

A brass waveguide 1sc 5 1.1 3 107 S/m 2  of dimensions a 5 4.2 cm, b 5 1.5 cm is 
filled with Teflon 1er 5 2.6, s 5 10215 S/m 2 . The operating frequency is 9 GHz. For 
the TE10 mode:

(a) Calculate ad and ac.
(b) Find the loss in decibels in the guide if it is 40 cm long.

Answer: (a) 1.205 3 10213 Np/m, 2 3 1022 Np/m, (b) 0.06945 dB.

Sketch the field lines for the TM11 mode. Derive the instantaneous expressions for the 
 surface current density of this mode.

Solution:
From Table 12.1, we obtain the fields for TM11 mode 1m 5 1, n 5 1 2  as

Ex 5
b

h2 ap

a b  Eo cos apx
a b  sin apy

b
b  sin 1vt 2 bz 2

Ey 5
b

h2 ap

b
b  Eo sin apx

a b  cos apy
b
b  sin 1vt 2 bz 2

Ez 5 Eo sin apx
a b  sin apy

b
b  cos 1vt 2 bz 2

Hx 5 2
ve

h2  ap

b
b  Eo sin apx

a b  cos apy
b
b  sin 1vt 2 bz 2
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Hence

ac 5

2 3 1.808 3 1022 a0.5 1
2.6
4.2

c 2.234
4.8

d 2b
2.6 3 1022 3 236.1 Å1 2 c 2.234

4.8
d 2

 5 4.218 3 1023 Np/m



Hy 5
ve

h2  ap

a b  Eo cos apx
a b  sin apy

b
b  sin 1vt 2 bz 2

 Hz 5 0

For the electric field lines,
dy
dx

5
Ey

Ex
5

a
b

 tan apx
a b  cot apy

b
b

For the magnetic field lines,

dy
dx

5
Hy

Hx
5 2

b
a cot apx

a b  tan apy
b
b

Notice that 1Ey /Ex 2 1Hy /Hx 2 5 21, showing that electric and magnetic field lines are 
mutually orthogonal. This should also be observed in Figure 12.13, where the field lines 
are sketched.
 The surface current density on the walls of the waveguide is given by

K 5 an 3 H 5 an 3 1Hx, Hy, 0 2
At x 5 0, an 5 ax, K 5 Hy 1 2 z

K 5
ve

h2  ap

a b  Eo sin apy
b
b  sin 1vt 2 bz 2  az

At x 5 a, an 5 2ax, K 5 2Hy 1a, y, z, t 2  az, or

K 5
ve

h2  ap

a b  Eo sin apy
b
b  sin 1vt 2 bz 2  az

At y 5 0, an 5 ay, K 5 2Hx 1x, 0, z, t 2  az, or

K 5
ve

h2  ap

b
b  Eo sin apx

a b  sin 1vt 2 bz 2  az

At y 5 b, an 5 2ay, K 5 Hx 1x, b, z, t 2  az, or

K 5
ve

h2  ap

b
b  Eo sin apx

a b  sin 1vt 2 bz 2  az

E

H

FIGURE 12.13 Field lines for TM11 mode; for 
Example 12.7.
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End view

Top view

Side view

E

H

FIGURE 12.14 Field lines for TE11 mode; for Practice Exercise 12.7.

PRACTICE EXERCISE 12.7

Sketch the field lines for the TE11 mode.

Answer:  See Figure 12.14. The strength of the field at any point is indicated by the den-
sity of the lines; the field is strongest (or weakest) where the lines are closest 
together (or farthest apart).

Resonators are primarily used for energy storage. At high frequencies (100 MHz) the 
RLC circuit elements are inefficient when used as resonators because the dimensions of the 
circuits are comparable to the operating wavelength, and consequently, there is unwanted 
radiation. Therefore, at high frequencies the RLC resonant circuits are replaced by electro-
magnetic cavity resonators. Such resonator cavities are used in klystron tubes, bandpass 
 filters, and wave meters. The microwave oven essentially consists of a power supply, a 
waveguide feed, and an oven cavity.

Consider the rectangular cavity (or closed conducting box) shown in Figure 12.15. We 
notice that the cavity is simply a rectangular waveguide shorted at both ends. We therefore 
expect to have standing wave and also TM and TE modes of wave propagation. Depending 
on how the cavity is excited, the wave can propagate in the x-, y-, or z-direction. We will 
choose the 1z-direction as the “direction of wave propagation.” In fact, there is no wave 
propagation. Rather, there are standing waves. We recall from Section 10.9 that a standing 
wave is a combination of two waves traveling in opposite directions.
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FIGURE 12.15 Rectangular cavity.

A. TM Mode to z
For propagation to z in TM mode, Hz 5 0 and we let

 Ezs 1x, y, z 2 5 X 1x 2  Y 1y 2  Z 1z 2  (12.73)

be the product solution of eq. (12.1). We follow the same procedure taken in Section 12.2 
and obtain

 X 1x 2 5 c1 cos kxx 1 c2 sin kxx (12.74a)

 Y 1y 2 5 c3 cos kyy 1 c4 sin kyy (12.74b)

 Z 1z 2 5 c5 cos kzz 1 c6 sin kzz (12.74c)

where

 k2 5 k2
x 1 k2

y 1 k2
z 5 v2me (12.75)

The boundary conditions are:

 Ez 5 0    at   x 5 0, a (12.76a)

 Ez 5 0    at   y 5 0, b (12.76b)

 Ey 5 0, Ex 5 0  at  z 5 0, c (12.76c)

As shown in Section 12.3, the conditions in eqs. (12.76a,b) are satisfied when c1 5 0 5 c3 
and

 kx 5
mp

a ,  ky 5
np

b
 (12.77)

where m 5 1, 2, 3, . . . , n 5 1, 2, 3, . . . . To invoke the conditions in eq. (12.76c), we 
notice that eq. (12.14) 1with Hzs 5 0 2  yields

 jveExs 5
1

jvm
 a'

2Exs

'z2 2
'2Ezs

'z 'x
b  (12.78)
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Similarly, combining eqs. (12.13a) and (12.13d) 1with Hzs 5 0 2  results in

 jveEys 5
1

2jvm
a '

2Ezs

'y 'z
2

'2Eys

'z2 b  (12.79)

From eqs. (12.78) and (12.79), it is evident that eq. (12.76c) is satisfied if

 
'Ezs

'z
5 0  at  z 5 0, c (12.80)

This implies that c6 5 0 and sin kzc 5 0 5 sin pp. Hence,

 kz 5
pp

c  (12.81)

where p 5 0, 1, 2, 3, . . . . Substituting eqs. (12.77) and (12.81) into eq. (12.74) yields

 Ezs 5 Eo sin ampx
a b  sin anpy

b
b  cos appz

c b  (12.82)

where Eo 5 c2c4c5. Other field components are obtained from eqs. (12.82) and (12.13).  
The phase constant b is obtained from eqs. (12.75), (12.77), and (12.81) as

 b2 5 k2 5 cmp

a d
2

1 cnp

b
d

2

1 c pp

c d
2

 (12.83)

Since b2 5 v2me, from eq. (12.83), we obtain the resonant frequency fr

2pfr 5 vr 5
b

"me
5 bu r

or

 fr 5
u r
2

 Å cm
a d

2

1 cn
b
d

2

1 c p
c d

2

 (12.84)

The corresponding resonant wavelength is

 lr 5
u r
fr

5
2

Å cm
a d

2

1 cn
b
d

2

1 c p
c d

2
 (12.85)

From eq. (12.84), we notice that the lowest-order TM mode is TM110.
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B. TE Mode to z
For propagation to z in TE mode, Ez 5 0 and

Hzs 5 1b1 cos kxx 1 b2 sin kxx 2 1b3 cos kyy 1 b4 sin kyy 2

  1b5 cos kzz 1 b6 sin kzz 2  (12.86)

The boundary conditions in eq. (12.76c) combined with eq. (12.13) yields

  Hzs 5 0   at   z 5 0, c (12.87a)

  
'Hzs

'x
5 0  at   x 5 0, a (12.87b)

  
'Hzs

'y
5 0  at   y 5 0, b (12.87c)

Imposing the conditions in eq. (12.87) on eq. (12.86) in the same manner as for TM mode 
to z leads to

 Hzs 5 Ho cos ampx
a b  cos anpy

b
b  sin appz

c b  (12.88)

where m 5 0, 1, 2, 3, . . . , n 5 0, 1, 2, 3, . . . , and p 5 1, 2, 3, . . . . Other field 
 components can be obtained from eqs. (12.13) and (12.88). The resonant frequency is 
the same as that of eq. (12.84) except that m or n (but not both at the same time) can 
be zero for TE modes. It is impossible for m and n to be zero at the same time because 
the field components will be zero if m and n are zero. The mode that has the lowest 
resonant frequency for a given cavity size (a, b, c) is the dominant mode. If a . b , c, 

101. Note that for a . b , c, 
the resonant frequency of TM110 mode is higher than that for TE101 mode; hence, TE101 is 
dominant. When different modes have the same resonant frequency, we say that the modes 
are degenerate; one mode will dominate others depending on how the cavity is  excited.

A practical resonant cavity has walls with finite conductivity sc and is, therefore, 
 capable of losing stored energy. The quality factor Q is a means of determining the loss.

The quality factor is also a measure of the bandwidth of the cavity resonator.

It may be defined as

Q 5 2p #
time average energy stored

energy loss per cycle of oscillation

  5 2p # W
PLT

5 v 
W
PL

 (12.89)
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it implies that 1/a , 1/b . 1/c; hence, the dominant mode is TE
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where T 5 1/f 5 the period of oscillation, PL is the time-average power loss in the cavity, 
and W is the total time-average energy stored in electric and magnetic fields in the cavity. 
Usually Q is very high for a cavity resonator compared with Q for an RLC resonant circuit. 
By following a procedure similar to that used in deriving ac in Section 12.6, it can be shown 
that the quality factor for the dominant TE101 is given by3

 QTE101
5

1a2 1 c2 2abc
d 32b 1a3 1 c3 2 1 ac 1a2 1 c2 2 4  (12.90)

where d 5
1

"pf101mosc

 is the skin depth of the cavity walls.

EXAMPLE 12.8 An air-filled resonant cavity with dimensions a 5 5 cm, b 5 4 cm, and c 5 10 cm is made 
of copper 1sc 5 5.8 3 107 S/m 2 . Find

(a) The five lowest-order modes
(b) The quality factor for TE101 mode

3 For the proof, see S. V. Marshall and G. G. Skitek, Electromagnetic Concepts and Applications, 3rd ed. 
Englewood Cliffs, NJ: Prentice-Hall, 1990, pp. 440–442.
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Solution:
(a) The resonant frequency is given by

fr 5
u r
2

 Å cm
a d 2

1 cn
b
d 2

1 c p
c d

2

where

u r 5
1

"me
5 c

Hence

fr 5
3 3 108

2
 Å c m

5 3 1022 d
2

1 c n
4 3 1022 d

2

1 c p
10 3 1022 d

2

 5 15"0.04m2 1 0.0625n2 1 0.01p2 GHz

Since c . a . b or 1/c , 1/a , 1/b, the lowest-order mode is TE101. Notice that TM101 
and TE100 do not exist because m 5 1, 2, 3, . . . , n 5 1, 2, 3, . . . , and p 5 0, 1, 2, 3, . . .
for the TM modes, and m 5 0, 1, 2, . . . , n 5 0, 1, 2, . . . , and p 5 1, 2, 3, . . . for the 
TE modes. The resonant frequency for the TE101 mode is

fr101
5 15"0.04 1 0 1 0.01 5 3.354 GHz
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The next higher mode is TE011 (TM011 does not exist), with

fr011
5 15"0 1 0.0625 1 0.01 5 4.04 GHz

The next mode is TE102 (TM102 does not exist), with

fr102
5 15"0.04 1 0 1 0.04 5 4.243 GHz

The next mode is TM110 (TE110 does not exist), with

fr110
5 15"0.04 1 0.0625 1 0 5 4.8 GHz

The next two modes are TE111 and TM111 (degenerate modes), with

fr111
5 15"0.04 1 0.0625 1 0.01 5 5.031 GHz

The next mode is TM103 with

fr103
5 15"0.04 1 0 1 0.09 5 5.408 GHz

Thus the five lowest order modes in ascending order are

TE101 (3.35 GHz)
TE011 (4.04 GHz)
TE102 (4.243 GHz)
TM110 (4.8 GHz)
TE111 or TM111 (5.031 GHz)

(b) The quality factor for TE101 is given by

QTE101
5

1a2 1 c2 2  abc
d 32b 1a3 1 c3 2 1 ac 1a2 1 c2 2 4

 5
125 1 100 2  200 3 1022

d 38 1125 1 1000 2 1 50 125 1 100 2 4

 5
1

61d
5

"pf101 mosc

61

 5
"p 13.35 3 109 2  4p 3 1027 15.8 3 107 2

61
 5 14,358

PRACTICE EXERCISE 12.8

If the resonant cavity of Example 12.8 is filled with a lossless material 1mr 5 1, er 5 3 2  , 
find the resonant frequency fr and the quality factor for TE101 mode.

Answer: 1.936 GHz, 1.093 3 104.
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†12.9 APPLICATION NOTE—OPTICAL FIBER

In the mid-1970s, it was recognized that the existing copper technology would be unsuit-
able for future communication networks. In view of this, the telecommunication industry 
invested heavily in research into optical fibers. Optical fiber provides an attractive alter-
native to wire transmission lines such as twisted pair and coaxial cable (or coax). Optical 
fiber4 has the following advantages over copper:

 • Bandwidth: It provides a very high capacity for carrying information. It has suf-
ficient bandwidth that bit-serial transmission can be used, thereby considerably 
reducing the size, cost, and complexity of the hardware.

 • Attenuation: It provides low attenuation and is therefore capable of transmitting 
over a long distance without the need of repeaters.

 • Noise susceptibility: It neither radiates nor is affected by electromagnetic interfer-
ence. The immunity from EMI is due to the absence of metal parts, which means 
that there can be no conduction currents.

 • Security: It is more secure from malicious interception because it is not easy to tap 
a fiber-optic cable without interrupting communication.

 • Cost: The cost of optical fibers has fallen considerably since the turn of the century 
and will continue to fall. The cost of related components such as optical transmit-
ters and receivers also is falling.

These impressive advantages over electrical media have made fiber optics a popular trans-
mission medium in recent times. Although optical fiber is more expensive and is used 
mainly for point-to-point links, there has been a rapid changeover from coax and twisted 
pair to optical fibers for telecommunication systems, instrumentation, cable TV networks, 
industrial automation, and data transmission systems.

An optical fiber is a dielectric waveguide operating at optical frequency.

Optical frequencies are on the order of 100 THz. As shown in Figure 12.16, an optical fiber 
consists of three concentric cylindrical sections: the core, the cladding, and the jacket. The 
core consists of one or more thin strands made of glass or plastic. The cladding is the glass 
or plastic coating surrounding the core, which may be step index or graded index. In the 
step-index core, the refractive index is uniform but undergoes an abrupt change at the 
core–cladding interface, while the graded-index core has a refractive index that varies with 
the radial distance from the center of the fiber. The jacket surrounds one or a bundle of 
cladded fibers. The jacket is made of plastic or other materials to protect against moisture, 
crushing, and other forms of damage.

A ray of light entering the core will be internally reflected when incident in the denser 
medium and the angle of incidence is greater than a critical value. Thus a light ray is 

4 There are several excellent books that can provide further exposition on optical fiber. See, for example, S. L. W. 
Meardon, The Elements of Fiber Optics, Englewood Cliffs, NJ: Regents/Prentice Hall, 1993.
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 reflected back into the original medium and the process is repeated as light passes down 
the core. This form of propagation is multimode, referring to the variety of angles that 
will  reflect, as shown in Figure 12.17. It causes the signal to spread out in time and limits 
the rate at which data can be accurately received. When the radius of the core is reduced a 
 single-mode propagation occurs. This eliminates distortion.

A fiber-optic system is similar to a conventional transmission system. As shown in 
Figure 12.18, a fiber-optic system consists of a transmitter, a transmission medium, and a 
 receiver. The transmitter accepts and converts to optical signals electrical signals input in 
analog or digital form. The transmitter sends the optical signal by modulating the output 
of a light source (usually an LED or a laser) by varying its intensity. The optical signal is 
transmitted over the optical fiber to a receiver. At the receiver, the optical signal is con-
verted back into an electrical signal by a photodiode.

The performance of a fiber-optic link depends on the numerical aperture (NA), atten-
uation, and dispersion characteristics of the fiber. As signals propagate through the fiber, 
they become distorted owing to attenuation and dispersion.

Numerical Aperture

The most important parameter of an optical fiber is its numerical aperture (NA). The 
value of NA is dictated by the refractive indices of the core and cladding. By definition, the 
 refractive index n of a medium is defined as

n 5
speed of light in a vacuum

speed of light in the medium
 

 

 5
c

um
5

1
!moeo

1
!mmem

 (12.91)

Jacket

Cladding
Core

Angle of
incidence

Angle of
reflection

Light at less than
critical angle is
absorbed in jacket

FIGURE 12.16 Optical fiber.
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(a)

(c)

(b)

Absorptive jacket

Core

Cladding

FIGURE 12.17. Optical fiber transmission modes: (a) multimode, (b) multi-
mode graded index, (c) single mode. (From W. Stallings, Local and Metropolitan 
Area Networks, 4th ed. New York: Macmillan, 1993, p. 85.)
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Since mm 5 mo in most practical cases,

 n 5 Å
em

eo
5 "er (12.92)

indicating that the refractive index is essentially the square root of the dielectric constant. 
Keep in mind that «r can be complex, as discussed in Chapter 10. For common materials, 
n 5 1 for air, n 5 1.33 for water, and n 5 1.5 for glass.

As a light ray propagates from medium 1 to medium 2, Snell’s law must be satisfied.

 n1 sin u1 5 n2 sin u2 (12.93)

where 1 is the incident angle in medium 1 and 2 is the transmission angle in medium 2. 
The total reflection occurs when 2  90, resulting in

 u1 5 uc 5 sin21 
n2

n1
 (12.94)

where c is the critical angle for total internal reflection. Note that eq. (12.94) is valid only 
if n1 . n2, since the value of sin c must be less than or equal to 1.

Another way of looking at the light-guiding capability of a fiber is to measure the 
 acceptance angle a, which is the maximum angle over which light rays entering the fiber 
will be trapped in its core. We know that the maximum angle occurs when c is the critical 
angle, thereby satisfying the condition for total internal reflection. Thus, for a step-index 
fiber,

 NA 5 sin ua 5 n1 sin uc 5 "n1
2 2 n2

2 (12.95)

where n1 is the refractive index of the core and n2 is the refractive index of the cladding, as 
shown in Figure 12.19. Since most fiber cores are made of silica, n1 5 1.48. Typical values 
of NA range between 0.19 and 0.25. The larger the value of NA, the more optical power the 
fiber can capture from a source.

Because such optical fibers may support the numerous modes, they are called a multi-
mode step-index fibers. The mode volume V is given by

 V 5
pd
l
"n1

2 2 n2
2 (12.96)

Electrical data
input

Electrical-to-
optical
converter

Optical fiber cable

Transmission
medium

Light detectorLight source

Electrical data
output

Optical-to-
electrical
converter

FIGURE 12.18 A typical fiber-optic system.
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where d is the fiber core diameter and l is the wavelength of the optical source. From  
eq. (12.96), the number N of modes propagating in a step-index fiber can be estimated as 

 N 5
V2

2
 (12.97)

Attenuation

As discussed in Chapter 10, attentuation is the reduction in the power of the optical signal. 
Power attenuation (or fiber loss) in an optical fiber is governed by

 
dP
dz

5 2aP (12.98)

where a is the attenuation and P is the optical power. In eq. (12.98), it is assumed that a 
wave propagates along z. By solving eq. (12.98), the power P 10 2  at the input of the fiber and 
the power P 1, 2  of the light after  are related as

 P 1, 2 5 P 10 2e2a, (12.99)

It is customary to express attenuation a in decibels per kilometer and length  of the fiber 
in kilometers. In this case, eq. (12.99) becomes

 a, 5 10 log10 
P 10 2
P 1, 2  (12.100)

Thus, the power of the light reduces by a decibels per kilometer as it propagates through 
the fiber. Equation (12.100) may be written as

 P 1, 2 5 P 10 2 # 102a,/10 (12.101)

�c

�cA

n1

n2

n0 � 1

�a

�a

Core

Cladding

FIGURE 12.19 Numerical aperture and acceptance angle.

12_Sadiku_Ch12.indd   676 25/09/17   5:28 PM



For , 5 100 km,

 
P 1, 2
P 10 2 , e 102100 for coaxial cable

1022 for optical fiber
 (12.102)

indicating that much more power is lost in the coaxial cable than in optical fiber.

Dispersion

The spreading of pulses of light as they propagate down a fiber is called dispersion. As the 
pulses representing 0s spread, they overlap epochs that represent 1s. If dispersion is beyond 
a certain limit, it may confuse the receiver. The dispersive effects in single-mode fibers are 
much smaller than in multimode fibers.

EXAMPLE 12.9 A step-index fiber has a core diameter of 80 mm, a core refractive index of 1.62, and a 
numerical aperture of 0.21. Calculate (a) the acceptance angle, (b) the refractive index that 
the fiber can propagate at a wavelength of 0.8 mm, (c) the number of modes that the fiber 
can propagate at a wavelength of 0.8 mm.

Solution:
(a) Since sin ua 5 NA 5 0.21, then

ua 5 sin21 0.21 5 12.12

(b) From NA 5 "n1
2 2 n2

2, we obtain

 n2 5 "n1
2 2 NA2 5 "1.622 2 0.212 5 1.606

(c) V 5
pd
l
"n1

2 2 n2
2 5

pd NA
l

 

    5
p 180 3 1026 2 3 0.21

0.8 3 1026 5 65.973

Hence

N 5
V2

2
5 2176 modes

PRACTICE EXERCISE 12.9

A silica fiber has a refractive index of 1.48. It is surrounded by a cladding material with 
a refractive index of 1.465. Find (a) the critical angle above which total internal reflec-
tion occurs, (b) the numerical aperture of the fiber.

Answer: (a) 81.83, (b) 0.21.

12.9 Application Note—Optical Fiber 677
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EXAMPLE 12.10 Light pulses propagate through a fiber cable with an attenuation of 0.25 dB/km. Determine 
the distance through which the power of pulses is reduced by 40%.

Solution:
If the power is reduced by 40%, it means that

P 1, 2
P 10 2 5 1 2 0.4 5 0.6

Hence

, 5
10
a

 log10 
P 10 2
P 1, 2  

 5
10

0.25
 log10 

1
0.6

 5 8.874 km

PRACTICE EXERCISE 12.10

A 10 km fiber with an attenuation of 0.2 dB/km serves as an optical link between two 
cities. How much of input power is received?

Answer:  63.1%.

12.10 APPLICATION NOTE—CLOAKING AND INVISIBILITY

The practice of using metamaterials to hide an object is called metamaterial cloaking. 
Metamaterials are ideal for cloaking because they are designed to have a negative refractive 
index. All materials have an index of refraction, a number that describes that amount of 
light, or electromagnetic wave, that is reflected as the wave passes through the material. All 
materials that are found in nature have a positive refraction index, allowing the reflected 
light to hit an observer’s eye, making the object visible. However, the negative refraction 
index of metamaterials can bend the wave around an object instead of reflecting the light, 
thus making the object invisible.

Many attempts at cloaking an object have been made and have been successful to some 
degree, leaving only small reflections of the cloaked object. Recently, however,  researchers 
at Duke University discovered a method of cloaking an object completely, making it 
 perfectly invisible. The research at Duke began in 2006, but the cloaking models suffered 
from the common problem of reflected light. In 2011, David Smith and graduate  student 
Nathan Landy modified the models by altering the arrangement of the  metamaterial 
to a  diamond-like configuration and shifting the metamaterial so that the reflections 
were  canceled by its mirror image at each intersection. With this adjustment, illustrated 
 schematically in Figure 12.20, perfect invisibility was achieved.
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12.10 Application Note—Cloaking and Invisibility 679

This perfect invisibility, however, comes at the price of a few caveats. An invisibility 
cloak has been created only on the centimeter scale. Also, the object surrounded by this 
metamaterial cloak is invisible only to microwaves. In other words, the researchers have 
been able to bend microwaves but have not yet achieved the bending of light waves, which 
are more difficult to bend because they have a higher frequency. Finally, the invisibil-
ity is unidirectional: that is, the object cloaked is invisible from only one specific angle. 
Nonetheless, this research at Duke University marks a breakthrough in metamaterial cloak-
ing. These researchers, who were the first to bend waves without any reflection, now plan 
to further develop the cloak to make it omnidirectional, hiding the object from every angle.

While using metamaterials to render objects invisible to the human eye may be 
decades away, invisibility to microwaves has many practical applications in telecommuni-
cations and defense. Potential applications include radar and sensor detection, battlefield 
communication, and infrastructure monitoring.

FIGURE 12.20 Showing bending of light.

% This script computes the cutoff frequencies of the first 
% 10 waveguide modes, allowing the user to enter the 
% dimensions (assuming a > b) and relative material properties.
% The script first finds the lowest 100 modes by cutoff frequency 
% for both TE and TM, creating a list of 200 total modes, from 
% which the lowest 10 of all (TE and TM) are found

clear

% Enter the frequency (in rad/s)
a = input(‛Enter the waveguide width\n >  ‛);
% Enter the propagation constant gamma (in a+j*b format)
b = input(‛Enter the waveguide height\n >  ‛);
% Enter the relative permittivity 
er = input(‛Enter the relative permittivity \n >  ‛);
% Enter the propagation constant gamma (in a+j*b format)
ur = input(‛Enter the relative permeability\n >  ‛);

% Determine the first 100 TM modes

MATLAB 12.1
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index=1; % start a count
for m=1:10,
    for n=1:10,
        modes(index,1)=1; % store a 1 in row <index>, and 
                   % column 1 for TM modes
        modes(index,2)=m; % store m in row <index>, and column 2 
        modes(index,3)=n; % store n in row <index>, and column 3 
        modes(index,4)=3e8/sqrt(er*ur)*sqrt((m*pi/a)^2+(n*pi/b)^2);
                % store cutoff in row <index>, and column 4  
        index=index+1; % increment counter
    end
end

% Determine the first 100 TE modes
for m=0:9,
    for n=0:9,
        if m | n  % check if either m or n is nonzero and 
                         % compute mode
            modes(index,1)=2; 
            modes(index,2)=m;
            modes(index,3)=n;
             modes(index,4)=3e8/sqrt(er*ur)*sqrt((m*pi/

a)^2+(n*pi/b)^2);
            index=index+1;
        else
            % do nothing, because m = n = 0
        end
    end
end

% Sort these 100 modes by lowest cutoff 
% this command sorts the matrix by grouping the fourth 
% column (the frequencies) in ascending order)
modes=sortrows(modes,4);

% Print out the lowest 10 modes of the lowest 100 modes
mode_string=’ME’;  % ‛M  is the first character, ‛E  is the second
disp(sprintf(‛\n’));  % format extra line
for k = 1:10
    disp(sprintf(‛Mode: T%c%d%d, ‛,...
        mode_string(modes(k,1)),modes(k,2), modes(k,3)))     
   disp(sprintf(‛Cutoff frequency = %0.3f GHz\n’,...
               modes(k,4)/(2*pi*1e9)))
end

SUMMARY  1.  Waveguides are structures used in guiding EM waves at high frequencies. Assuming 
a lossless rectangular waveguide 1sc . `, s . 0 2 , we apply Maxwell’s equations in 
analyzing EM wave propagation through the guide. The resulting partial differential 
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Summary 681

equation is solved by using the method of separation of variables. On applying the 
boundary conditions on the walls of the guide, the basic formulas for the guide are 
obtained for different modes of operation.

 2.  Two modes of propagation (or field patterns) are the TMmn and TEmn, where m and n 
are positive integers. For TM modes, m 5 1, 2, 3, . . . , and n 5 1, 2, 3, . . . and for 
TE modes, m 5 0, 1, 2, . . . , and n 5 0, 1, 2, . . . , n 5 m 2 0.

 3.  Each mode of propagation has an associated propagation constant and cutoff frequency. 
The propagation constant g 5 a 1 jb does not depend only on the constitutive pa ra-
meters 1e, m, s 2  of the medium as in the case of plane waves in an unbounded space; it 
depends on the cross-sectional dimensions 1a, b 2  of the guide. The cutoff frequency is 
the frequency at which  changes from being purely real (attenuation) to purely imagi-
nary (propagation). The dominant mode of operation is the lowest mode possible. It is 
the mode with the lowest cutoff frequency. If a . b, the dominant mode is TE10.

 4.  The basic equations for calculating the cutoff frequency fc, the phase constant b, 
and the phase velocity up are summarized in Table 12.1. Formulas for calculating the 
 attenuation constants due to lossy dielectric medium and imperfectly conducting 
walls are also provided.

 5.  The group velocity (or velocity of energy flow) ug is related to the phase velocity up of 
the wave propagation by

upug 5 u r2

   where u r 5 1/"me is the medium velocity (i.e., the velocity of the wave in the 
 dielectric medium unbounded by the guide). Although up is greater than u, ug does 
not exceed u.

 6.  The mode of operation for a given waveguide is dictated by the method of  
 excitation.

 7.  A waveguide resonant cavity is used for energy storage at high frequencies. It is 

waveguide. The resonant frequency for both the TE and the TM modes to z is given by

   For TM modes, m 5 1, 2, 3, . . . , n 5 1, 2, 3, . . . , and p 5 0, 1, 2, 3, . . . , and for  
TE modes, m 5 0, 1, 2, 3, . . . , n 5 0, 1, 2, 3, . . . , and p 5 1, 2, 3, . . . , m 5 n 2 0. 
If a . b , c, the dominant mode (one with the lowest resonant frequency) is TE101.

 8.  The quality factor, a measure of the energy loss in the cavity, is given by

Q 5 v 
W
PL

  9.  An optical fiber is a dielectric waveguiding structure operating at optical frequencies; 
it consists of a core region and a cladding region.

10.  Advantages of optical fiber over copper wire include large bandwidth, low attenua-
tion, immunity to electromagnetic intererence, and low cost.
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REVIEW
QUESTIONS  12.1 At microwave frequencies, we prefer waveguides to transmission lines for transporting 

EM energy because of all the following except that
(a) losses in transmission lines are prohibitively large.
(b) waveguides have larger bandwidths and lower signal attenuation.
(c) transmission lines are larger than waveguides.
(d) transmission lines support only TEM mode.

 12.2 An evanescent mode occurs when
(a) a wave is attenuated rather than propagated.
(b) the propagation constant is purely imaginary.
(c) m 5 0 5 n so that all field components vanish.
(d) the wave frequency is the same as the cutoff frequency.

 12.3 The dominant mode for rectangular waveguides is

(a) TE11 (c) TE101

(b) TM11 (d) TE10

 12.4 The TM10 mode can exist in a rectangular waveguide.

(a) True (b) False

 12.5 For TE30 mode, which of the following field components exist?

(a) Ex (d) Hx

(b) Ey (e) Hy

(c) Ez

 12.6 If in a rectangular waveguide for which a 5 2b, the cutoff frequency for TE02 mode is 
12 GHz, the cutoff frequency for TM11 mode is

(a) 3 GHz (d) 6!5 GHz
(b) 3!5 GHz (e) None of the above
(c) 12 GHz

 12.7 If a tunnel is 4 m by 7 m in cross section, a car in the tunnel will not receive an AM radio 
signal 1e.g.,  f 5 10 MHz 2 .
(a) True (b) False

 12.8 When the electric field is at its maximum value, the magnetic energy of a cavity is

(a) at its maximum value

(b) at !2 of its maximum value

(c) at 
1
!2

 of its maximum value

(d) at 1/2 of its maximum value

(e) zero
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 12.9 Which of these modes does not exist in a rectangular resonant cavity?

(a) TE110 (c) TM110

(b) TE011 (d) TM111

12.10 How many degenerate dominant modes exist in a rectangular resonant cavity for which 
a 5 b 5 c?

(a) 0 (d) 5
(b) 2 (e) 

(c) 3

PROBLEMS
Sections 12.3 and 12.4—TM and TE Modes

 12.1 An air-filled rectangular waveguide has a cross section of 6 cm  4 cm.

  (a) Calculate the cutoff frequency of the dominant mode.

  (b)  Determine how many modes are passed at three times cutoff frequency of dominant 
mode.

 12.2 A square waveguide (a by a) can propagate only TE10 and not TE11 or higher modes.  In 
order to achieve this, what must be the size a?

 12.3 A rectangular waveguide (2.28 cm  1.01 cm) is filled with polyethylene 1er 5 2.25 2 . 
Calculate the cutoff frequencies for the following modes: 

  TE01, TE10, TE11, TE02, TE22, TM11, TM12, TM21. Assume that polyethylene is lossless.

 12.4 An air-filled waveguide has a cross section of 2.4 cm  1.2 cm. A microwave signal of 
12 GHz propagates down the guide. (a) Calculate the cutoff frequencies of TE10, TE01, 
TE20, and TE02 modes. (b) Which modes will propagate?

 12.5 Design a rectangular waveguide with an aspect ratio of 3 to 1 for use in the K-band 
(18–26.5 GHz). Assume that the guide is air filled.

 12.6 A tunnel is modeled as an air-filled metallic rectangular waveguide with dimensions 
a 5 8 m and b 5 16 m. Determine whether the tunnel will pass (a) a 1.5 MHz AM 
broadcast signal, (b) a 120 MHz FM broadcast signal.

 12.7 In an air-filled rectangular waveguide, the cutoff frequency of a TE10 mode is 5 GHz, 

  (a) The dimensions of the guide

  (b) The cutoff frequencies of the next three higher TE modes

  (c)  The cutoff frequency for TE11 mode if the guide is filled with a lossless material 
 having er 5 2.25 and mr 5 1

 12.8 An air-filled rectangular waveguide operates at 40 GHz. If the cutoff frequency of the 
TE12 mode is 25 GHz, calculate the wavelength, phase constant, phase velocity, and 
intrinsic impedance of this mode.
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12.9 An air-filled rectangular waveguide of dimension 5 cm  3 cm operates on the TE10 
mode at a frequency of 12.5 GHz. Find the phase constant, phase velocity, and the wave 
impedance.

12.10 An air-filled waveguide has a = 2b = 4 cm and operates at the TE10 mode. Determine fc, 
b, and l at 24 MHz.

12.11 An air-filled hollow rectangular waveguide is 150 m long and is capped at the end with a 
metal plate. If a short pulse of frequency 7.2 GHz is introduced into the input end of the 
guide, how long will it take the pulse to return to the input end? Assume that the cutoff 
frequency of the guide is 6.5 GHz.

12.12 A section of an air-filled rectangular waveguide (a  2.4 cm, b  1.2 cm) operates 
in the TE10 mode. The operating frequency is 25% higher than the cutoff frequency.  
Determine fc, f, and h.

12.13 A K-band waveguide (1.067 cm  0.533 cm) is filled by a dielectric material with er 5 6.8. 
If it operates in the dominant TE10 mode  at 6 GHz, determine the following: 

  (a) The cutoff frequency

  (b) The phase velocity

  (c) The waveguide wavelength

12.14 Show that the attenuation due to a waveguide operating below cutoff is

12.15 An air-filled rectangular waveguide has cross-sectional dimensions a 5 6 cm and 
b 5 3 cm. Given that

Ez 5 5 sin a2px
a b  sin a3py

b
b  cos 11012t 2 bz 2  V/m

  calculate the intrinsic impedance of this mode and the average power flow in the guide.

12.16 In an air-filled rectangular waveguide, a TE mode operating at 6 GHz has

Ey 5 5 sin a2px
a b  cos apy

b
b  sin 1vt 2 12z 2  V/m

  Determine (a) the mode of operation, (b) the cutoff frequency, (c) the intrinsic imped-
ance, (d) Hx.

12.17 In an air-filled rectangular waveguide with a 5 2.286 cm and b 5 1.016 cm, the  
y-component of the TE mode is given by

Ey 5 sin a2px
a b  cos a3py

b
b  sin 110p 3 1010t 2 bz 2  V/m

  Find (a) the operating mode, (b) the propagation constant , (c) the intrinsic impedance h.
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12.18 A rectangular waveguide with cross sections shown in Figure 12.21 has dielectric 
discontinuity. Calculate the standing wave ratio if the guide operates at 8 GHz in the 
dominant mode.

12.19 Analysis of a circular waveguide requires solution of the scalar Helmholtz equation in 
cylindrical coordinates, namely,

=2Ezs 1 k2Ezs 5 0

  or

1
r

 
'

'r
 ar 

'Ezs

'r
b 1

1
r2 

'2Ezs

'f2 1
'2Ezs

'z2 1 k2Ezs 5 0

  By assuming the product solution

Ezs 1r, f, z 2 5 R 1r 2  F 1f 2  Z 1z 2

  show that the separated equations are

 Zs 2 k2
z Z 5 0

 Fs 1 k2
f F 5 0

r2Rs 1 rR r 1 1k2
r r2 2 k2

f 2  R 5 0

  where

k2
r 5 k2 1 k2

z

12.20 For an air-filled waveguide, use MATLAB to plot up and ug for 10 GHz , f , 100 GHz.  
Assume that fc  8 GHz.

Section 12.5—Wave Propagation in the Guide

12.21 Determine the values of b, mp, mg, and hTE10 for a 7.2 cm  3.4 cm rectangular wave-
guide operating at 6.2 GHz (a) if the waveguide is air filled, (b) if the waveguide is filled 
with a material having «  2.25 «o, m  mo, s  0.

FIGURE 12.21 For Problem 12.18.
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12.22 Consider a WR284 waveguide (a  7.214 cm, b  3.404 cm). If it is filled with polyeth-
ylene («r  2.5) and operates at 4 GHz, determine up and ug.

12.23 In a certain medium, the phase velocity is 

up 5 c clo

l
d

2

  where c  3   m/s. Obtain the expression for the group velocity.

12.24 The group velocity of a dielectric-filled rectangular waveguide operating at 12 GHz is 
c/4. When the frequency becomes 15 GHz, the group velocity is c/3 for the same mode. 
Determine fc and «r.

12.25 A square waveguide operates at 4.5 GHz in the dominant mode. If the group velocity 
is determined to be 1.8  108 m/s, calculate the largest dimension of the waveguide. 
 Assume that the waveguide is filled with oil («  2.2«o).

12.26 A rectangular waveguide is filled with polyethylene 1e 5 2.25eo 2  and operates at 24 GHz. 
If the cutoff frequency of a certain TE mode is 16 GHz, find the group velocity and 
intrinsic impedance of the mode.

Section 12.6—Power Transmission and Attenuation

12.27 The average power density is given by

ave 5
1
2

 Re 3Es 3 H*
s 4

  Show that  for a rectangular waveguide operating in the TE10 mode,

ave 5
vmba2

2p2  H2
o sin2 apx

a baz

12.28 For TE01 mode,

Exs 5
jvmp

bh2  Ho sin 1py/b 2e2gz,  Eys 5 0

  Find ave and Pave.

12.29 A 1 cm  2 cm waveguide is made of copper 1sc 5 5.8 3 107 S/m 2  and filled with a 
dielectric material for which e 5 2.6eo, m 5 mo, sd 5 1024 S/m. If the guide operates 
at 12 GHz, evaluate ac and ad for (a) TE10 and (b) TM11.

12.30  A 4 cm square waveguide is filled with a dielectric with complex permittivity ec 5
16eo 11 2 j1024 2  and is excited with the TM21 mode. If the waveguide operates at 10% 
above the cutoff frequency, calculate attenuation ad. How far can the wave travel down 
the guide before its magnitude is reduced by 20%?

12.31 If the walls of the square waveguide in Problem 12.30 are made of brass 1sc 5
1.5 3 107 S/m 2 , find ac and the distance over which the wave is attenuated by 30%.
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12.32 An air-filled waveguide with dimensions a = 6 cm and b = 3 cm is excited at the level 
of |E| = 2.2 kV/m.  If the dominant mode propagates at 4 GHz, determine the power 
transmitted.

12.33 A rectangular waveguide with a 5 2b 5 4.8 cm is filled with Teflon (er 5 2.11, loss 
tangent of 3 3 1024). Assume that the walls of the waveguide are coated with gold 
1sc 5 4.1 3 107 S/m 2  and that a TE10 wave at 4 GHz propagates down the waveguide. 
Find (a) ad, (b) ac.

12.34 Use MATLAB to plot the attenuation for the TE10 mode a of waveguide with copper 
walls as a function of frequency. Do this for frequencies above cutoff. Keep in mind 
that Rs varies with frequency. Take a  2b  1 cm, fc  10 GHz, and assume that the 
waveguide is filled with a dielectric having er 5  2.25.

12.35 An air-filled X-band rectangular waveguide has dimensions a  2.286 cm and b  1.016 cm. 
If the waveguide has copper walls (e 5 eo,m 5 mo,s 5 5.8 3 107 S/m), find the attenua-
tion in dB/m due to the wall loss when the dominant mode is propagating at 8.4 GHz.

12.36 A rectangular, air-filled waveguide has dimensions a  3.8 cm and b  1.6 cm, and 
walls are made of copper. For the dominant mode at f  10 GHz, calculate

  (a) the group velocity
  (b) the attenuation dB/m

12.37 A rectangular waveguide has transverse dimensions a  2.5 cm and b  1.5 cm and 
operates at 7.5 GHz in the dominant mode. If the waveguide is filled with a lossy dielec-
tric material with er 5 2.26, mr 5 1, s 5 1024 S/m and the walls are made of brass  
(so 5 1.1 3 107 S/m), calculate b, ad, ac, up, ug,  and lc.

12.38 A rectangular brass 1sc 5 1.37 3 107 S/m 2  waveguide with dimensions a 5 2.25 cm 
and b 5 1.5 cm operates in the dominant mode at frequency 5 GHz. If the waveguide 
is filled with Teflon 1mr 5 1, er 5 2.11, s . 0 2 , determine (a) the cutoff frequency 
for the dominant mode, (b) the attenuation constant due to the loss in the guide 
walls.

12.39 For a square waveguide, show that attenuation ac is minimum for the TE10 mode when 
f 5 2.962fc.

Section 12.8—Waveguide Resonators

12.40 Show that for propagation from the TE mode to z in a rectangular cavity,

Eys 5 2
jvm

h2 amp

a bHo sin ampx
a b  cos anpy

b
b  sin appz

c b

  Find Hxs.

12.41 For a rectangular cavity, show that

Hxs 5
jve

h2 anp

b
bEo sin ampx

a b  cos anpy
b

b  cos appz
c b

  for propagation from the TM mode to z. Determine Eys.
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12.42 In a rectangular resonant cavity, identify the dominant made when

  (a) a , b , c
  (b) a . b . c
  (c) a 5 c . b

12.43 A rectangular cavity has dimensions a  3 cm, b 4 cm, and c  6 cm. The cavity is filled 
with a lossless dielectric with «r  4.6. Calculate: (a) the resonant frequency of the dominant 
mode, (b) the quality factor.

12.44 
shorted at each end, forming a cavity. Determine the lowest three resonance frequency.

12.45 A rectangular cavity has dimension a  1 cm, b  2 cm, c  3 cm. If it is filled with 
polyethylene (e 5 2.5eo), find the first five resonant frequencies.

12.46 For a cubical cavity (a  b  c) in the TE101 mode, show that 

Q 5
a

3d

  where d is the skin depth.

12.47 An air-filled cavity has dimensions 20 mm 3 8 mm 3 10 mm. If the walls are  silver-plated, 
find (a) dominant resonant frequency, (b) Q for the TE101mode.

12.48 Design an air-filled cubical cavity to have its dominant resonant frequency at 3 GHz.

12.49 Design a cubical resonant cavity with a dominant frequency of 5.6 GHz.  Assume that 
the cavity is filled with (a) air, (b) Teflon having «r = 2.05.

12.50 An air-filled cubical cavity of size 10 cm has

E  200 sin(30x) sin(30y) cos(6  109t)az V/m

  (a) Find H. (b) Show that E  H  0.

12.51 (a) Determine the size of an air-filled cubical cavity made of copper that it will give a 
dominant resonant frequency of 12 GHz.

  (b) Calculate the quality factor Q at that frequency.

12.52 Shielded rooms act as resonant cavities. We must avoid operating equipment in any 
such room at a resonant frequency of the cavity. If an air-filled shielded room has the 
 dimensions 10.2 m by 8.7 m by 3.6 m, find all resonant frequencies below 50 MHz.  

Section 12.9—Application Note—Optical Fiber

12.53 The speed of light in a given medium is measured as 2.1 3 108 m/s. Find its refractive index.

12.54 Determine the numerical aperture of an optical fiber which has n1  1.51 and n2  1.45.
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12.55 A glass fiber has a core diameter of 50 mm, a core refractive index of 1.62, and a cladding 
with a refractive index of 1.604. If light having a wavelength of 1300 nm is used, find

  (a) The numerical aperture
  (b) The acceptance angle
  (c) The number of transmission modes

12.56 A silicon fiber has a core index of 1.48 and a cladding index of 1.46. If the core radius is 
5 mm, find the number of propagating modes for the source wavelength of 1300 nm.

12.57 An optical fiber with an attenuation of 0.4 dB/km is 5 km long. The fiber has  
n1 5 1.53, n2 5 1.45, and a diameter of 50 mm. Find:

  (a) The maximum angle at which rays will enter the fiber and be trapped
  (b) The percentage of input power received

12.58  A laser diode is capable of coupling 10 mW into a fiber with attenuation of 0.5 dB/km. 
If the fiber is 850 m long, calculate the power received at the end of the fiber.

12.59 Attenuation a10 in Chapter 10 is in nepers per meter (Np/m), whereas attenuation a12 in this 
chapter is in decibels per kilometer (dB/km). What is the relationship between the two?

12.60 A power of 1.25 mW is launched into an optical fiber that has a 0.4 dB/km attenuation. 
Determine the fiber length such that a power of 1 mW is received at the other end of the fiber.

12.61 A lightwave system uses a 30 km fiber link with a loss of 0.4 dB/km. If the system 
 requires at least 0.2 mW at the receiver, calculate the minimum power that must be 
launched into the fiber.

12.62 (a)  Discuss the advantages derived from using a fiber-optic cable.

  (b) What is pulse dispersion?
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SMART ANTENNAS

Just as we hear better with two ears than with one, a communications system with two or more anten-
nas can outperform a system with a single antenna. Smart antennas (also known as adaptive anten-
nas) basically consist of an antenna array combined with signal processing in both time and space. 
They are different from common antennas in that they have adaptive (nonfixed) lobe patterns. They 
exploit the fact that interferers and users rarely have the same location.

There are basically two types of smart antenna: switched beam (a finite number of fixed, pre-
defined patterns) and adaptive array (an infinite number of patterns that are adjusted in real time). 
The switched-beam type is the simplest technique. It is simply a controlled RF switch connected to 
many fixed antennas. It employs a grid of beams and usually chooses the beam that gives the best 
signal-to-noise ratio. It is easily deployed but has low gain between beams. 

The wireless personal communications market, especially the cellular telephone segment, has 
been growing exponentially for years and will continue to grow. But there are some challenges along 
the way. These include quality of service, traffic capacity, and cost of service. The smart antenna tech-
nology is a promising approach to these problems, offering increased capacity, extended range, better 
link quality, and longer battery life in mobile units. Smart antenna systems enable operators of PCs, 
cellular phones, wireless local-area networks, and wireless local-loop networks to realize significant 
increases in channel capacity, signal quality, spectrum efficiency, and coverage.

Although smart antennas make wireless systems more complex, they provide real improvements 
in areas that are critical for making wireless service more universal and  reliable. It has been rightly 
argued that the performance requirements of future wireless systems cannot be met without the use 
of smart antennas. To know about smart antennas, one should take a class on antennas to acquire 
general background information. Unfortunately, most electrical engineering departments do not 
offer courses on antennas at the undergraduate level.

Source: Adapted with permission from M. Chryssomallis, “Smart  antennas,” IEEE 
Antennas and Propagation Magazine, vol. 42, no. 3, June 2000, pp. 129–136.
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13.1 INTRODUCTION

Up until now, we have not asked ourselves how EM waves are produced. Recall that electric 
charges are the sources of EM fields. If the sources are time varying, EM waves propagate 
away from the sources and radiation is said to have taken place. Radiation may be thought 
of as the process of transmitting electric energy. The radiation or launching of the waves 
into space is efficiently accomplished with the aid of conducting or dielectric structures 
called antennas. Theoretically, any structure can radiate EM waves, but not all structures 
can serve as efficient radiation mechanisms.

An antenna may also be viewed as a transducer used in matching the transmission line 
or as a waveguide (used in guiding the wave to be launched) to the surrounding medium, 
or vice versa. Figure 13.1 shows how an antenna is used to accomplish a match between the 
line or guide and the medium. The antenna is needed for two main reasons: for efficient 
radiation and for matching wave impedances to minimize reflection. The antenna uses 
voltage and current from the transmission line (or the EM fields from the waveguide) to 
launch an EM wave into the medium. An antenna may be used for either transmitting or 
receiving EM energy.

Typical antennas are illustrated in Figure 13.2. The dipole antenna in Figure 13.2(a) 
consists of two straight wires lying along the same axis. The loop antenna, exemplified in 
Figure 13.2(b), consists of one or more turns of wire. The helical antenna in Figure 13.2(c) 
consists of a wire in the form of a helix backed by a ground plane. Antennas in Figure 
13.2(a–c) are called wire antennas; they are used in automobiles, buildings, aircraft, ships, 
and so on. The horn antenna in Figure 13.2(d), an example of an aperture antenna, is a 
tapered section of waveguide providing a transition between a waveguide and the sur-
roundings. Since it is conveniently flush mounted, it is useful in various applications such 
as aircraft communications. The parabolic dish reflector in Figure 13.2(e) utilizes the fact 
that EM waves are reflected by a conducting sheet. When used as a transmitting antenna, 
a feed antenna such as a dipole or horn is placed at the focal point. The radiation from the 
source is reflected by the dish (acting like a mirror), and a parallel beam results. Parabolic 
dish  antennas are used in communications, radar, and astronomy.

ANTENNAS

 A committee is a group of the unwilling, chosen from the unfit, to do the unnecessary. 
—ANONYMOUS

13
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FIGURE 13.1 An antenna as a matching device between the 
guiding structure and the surrounding medium.

D

H

P

L

P

FIGURE 13.2 Typical antennas.
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13.2 Hertzian Dipole 693

The phenomenon of radiation is rather complicated, so we have intentionally delayed 
its discussion until this chapter. We will not attempt a broad coverage of antenna theory; 
our discussion will be limited to the basic types of antennas such as the Hertzian dipole, the 
half-wave dipole, the quarter-wave monopole, and the small loop. For each of these types, 
we will determine the radiation fields by taking the following steps:

1. Select an appropriate coordinate system and determine the magnetic vector 
 potential A.

2. Find H from B 5 mH 5 = 3 A.

3. Determine E from = 3 H 5 e 
'E
't

 or E 5 hH 3 ak assuming a lossless medium 
1s 5 0 2 .

13.2 HERTZIAN DIPOLE

By “Hertzian dipole” we mean an infinitesimal current element I dl, where dl # l /10. 
 Although such a current element does not exist in real life, it serves as a building block 
from which the field of a practical antenna can be calculated by integration.

Consider the Hertzian dipole shown in Figure 13.3. We assume that it is located at the 
origin of a coordinate system and that it carries a uniform current (constant throughout the 

FIGURE 13.3 A Hertzian dipole carry-
ing current I 5 Io cos vt.
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4. Find the far field and determine the time-average power radiated by using

Note that Prad throughout this chapter is the same as Pave in eq. (10.80).

Prad 5 3  �ave
# dS

 where

�ave 5
1
2

 Re 1Es 3 H*s 2

We will consider antenna arrays which produce particular directional properties of 
the radiated field.  We will derive the Friis transmission equation for coupling between two 
antennas.  Finally, we will consider the problem of electromagnetic interference (EMI).
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dipole), I 5 Io cos vt. From eq. (9.54), the retarded magnetic vector potential at the field 
point P, due to the dipole, is given by

 A 5
m 3I 4 dl

4p r
 az (13.1)

where [I] is the retarded current given by

3I 4 5 Io cos v at 2
r
ub 5 Io cos 1vt 2 br 2

  5 Re 3Ioe j1vt2br2 4  
(13.2)

where b 5 v/u 5 2p/l, and u 5 1/!me. The current is said to be retarded at point P 
because there is a propagation time delay r/u or phase delay br from O to P. By substituting 
eq. (13.2) into eq. (13.1), we may write A in phasor form as

 Azs 5
mIodl
4pr

 e2jbr (13.3)

Transforming this vector from Cartesian to spherical coordinates yields

As 5 1Ars, Aus, Afs 2

where

 Ars 5 Azs cos u,  Aus 5 2Azs sin u,  Afs 5 0 (13.4)

Since Bs 5 mHs 5 = 3 As, we obtain the H field as

 Hfs 5
Iodl
4p

 sin u c jb
r 1

1
r2 d  e2jbr (13.5a)

 Hrs 5 0 5 Hus  (13.5b)

We find the E field by using = 3 H 5 e 'E/'t or = 3 Hs 5 jveEs,

 Ers 5
hIodl
2p

 cos u c 1
r2 2

j
br3 d  e2jbr  (13.6a)

 Eus 5
hIodl
4p

 sin u c jb
r 1

1
r2 2

j
br3 d  e2jbr (13.6b)

 Efs 5 0  (13.6c)

where

h 5
b

ve
5 Å

m

e
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13.2 Hertzian Dipole 695

A close observation of the field equations in eqs. (13.5) and (13.6) reveals that we have 
terms varying as 1/r3, 1/r2, and 1/r. The 1/r3 term is called the electrostatic field, since it cor-
responds to the field of an electric dipole [see eq. (4.82)]. This term dominates other terms 
in a region very close to the Hertzian dipole. The 1/r2 term is called the inductive field, and 
it is predictable from the Biot–Savart law [see eq. (7.3)]. The term is important only at near 
field, that is, at distances close to the current element. The 1/r term is called the far field or 
radiation field because it is the only term that remains at the far zone, that is, at a point very 
far from the current element. Here, we are mainly concerned with the far field or radiation 
zone 1br W 1 or 2pr W l 2 , where the terms in 1/r3 and 1/r2 can be  neglected in favor of 
the 1/r term. Also note that near-zone and far-zone fields are determined, respectively, to 
be the inequalities br V 1 and br W 1. More specifically, we define the boundary between 
the near and the far zones by the value of r given by

 r 5
2d2

l
 (13.7)

where d is the largest dimension of the antenna. Thus at far field,

 Hfs 5
jIobdl
4pr

 sin u e2jbr,  Eus 5 h Hfs (13.8a)

 Hrs 5 Hus 5 Ers 5 Efs 5 0 (13.8b)

Note from eq. (13.8a) that the radiation terms of Hfs and Eus are in time phase and orthogo-
nal just as the fields of a uniform plane wave.
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The time-average power density is obtained as

 5 3
2p

f50
 c3

p

u50
 
I2

ohb2 dl2

32p2r2  sin2 u r2 sin u du ddf (13.10)

  5
I2

ohb2 dl2

32p2  2p 3
p

0
 sin3 u du

But

3
p

0
 sin3 u du 5 3

p

0
 11 2 cos2 u 2  d 12cos u 2

  5
cos3 u

3
2 cos u `

0

p

5
4
3

 �ave 5
1
2

 Re 1Es 3 H*s 2 5
1
2

 Re 1Eus H*fsar 2
 5

1
2

 h 0Hfs 0 2 ar  (13.9)

Substituting eq. (13.8a) into eq. (13.9) yields the time-average radiated power as

  Prad 5 3  �ave
# dS
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and b2 5 4p2/l2. Hence eq. (13.10) becomes

 Prad 5
I2

o ph

3
 cdl

l
d

2

 (13.11a)

If free space is the medium of propagation, h 5 120p and

 Prad 5 40p2 cdl
l
d

2

 I2
o (13.11b)

This power is equivalent to the power dissipated in a fictitious resistance Rrad by current 
o

Prad 5 I2
rms Rrad

or

 Prad 5
1
2

 I2
o Rrad (13.12)

where Irms is the root-mean-square value of I. From eqs. (13.11) and (13.12), we obtain

 Rrad 5
2Prad

I2
o

 (13.13a)

or

 Rrad 5 80p2 cdl
l
d

2

 (13.13b)

The resistance Rrad is a characteristic property of the Hertzian dipole antenna and is called 
its radiation resistance. From eqs. (13.12) and (13.13), we observe antennas with large 
 radiation resistances are required to deliver large amounts of power to space. For example, 
if dl 5 l/20, Rrad . 2 V, which is small in that it can deliver relatively small amounts of 
power. It should be noted that Rrad in eq. (13.13b) is for a Hertzian dipole in free space. If 
the dipole is in a different, lossless medium, h 5 "m/e is substituted in eq. (13.11a) and 
Rrad is determined by using eq. (13.13a).

Note that the Hertzian dipole is assumed to be infinitesimally small 1b dl V 1 or 
dl # l/10 2 . Consequently, its radiation resistance is very small, and it is in practice dif-
ficult to match it with a real transmission line. We have also assumed that the dipole 
has a uniform current; this requires that the current be nonzero at the end points of the 
dipole. This is practically impossible because the surrounding medium is not conduct-
ing. However, our analysis will serve as a useful, valid approximation for an antenna with 
dl # l/10. A more practical (and perhaps the most important) antenna is the half-wave 
dipole, considered in the next section.
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I 5 I  cos vt; that is,



13.3 Half-Wave Dipole Antenna 697

The half-wave dipole derives its name from the fact that its length is half a wavelength 
1, 5 l/2 2 . As shown in Figure 13.4(a), it consists of a thin wire fed or excited at the mid-
point by a voltage source connected to the antenna via a transmission line (e.g., a two-wire 
line). The field due to the dipole can be easily obtained if we consider it as consisting of a 
chain of Hertzian dipoles. The magnetic vector potential at P due to a differential length 
dl 15 dz 2  of the dipole [see Figure. 13.4(b)] carrying a phasor current Is 5 Io cos bz is

 dAzs 5
mIo cos bz dz

4pr r
 e2jbrr (13.14)

Notice that to obtain eq. (13.14), we have assumed a sinusoidal current distribution for two 
reasons. First, the sinusoidal current assumption is based on the transmission line model 
of the dipole. Second, the current must vanish at the ends of the dipole. A triangular cur-
rent distribution is also possible (see Problem 13.5) but would give less accurate results. 
The actual current distribution on the antenna is not precisely known. It is determined 
by  solving Maxwell’s equations subject to the boundary conditions on the antenna, but 

13.3 HALF-WAVE DIPOLE ANTENNA

FIGURE 13.4 (a) A half-wave dipole.  
(b) Geometry for calculating the fields. 
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the procedure is mathematically complex. However, the sinusoidal current assumption 
approximates the distribution obtained by solving the boundary-value problem and is 
commonly used in antenna theory.

If r W ,, as explained in Section 4.9 on electric dipoles (see Figure 4.20), then

r 2 r r 5 z cos u  or  r r 5 r 2 z cos u

Thus we may substitute r r . r in the denominator of eq. (13.14), where the magnitude  
of the distance is needed. For the phase term in the numerator of eq. (13.14), the dif- 
ference between br and br is significant, so we replace r by r 2 z cos u and not r. In other 
words, we maintain the cosine term in the exponent while neglecting it in the denominator 
because the exponent involves the phase constant while the denominator does not. Thus,

Azs 5
mIo

4pr
 3

l/4

2l/4
 e2jb1r2z cos u2 cos bz dz

  5
mIo

4pr
 e2jbr 3

l/4

2l/4
 e jbz cos u cos bz dz 

(13.15)

From the integral tables of Appendix A.8,

3  eaz cos bz dz 5
eaz 1a cos bz 1 b sin bz 2

a2 1 b2 1 c

Applying this to eq. (13.15) gives

 Azs 5
mIoe2jbre jbz cos u

4pr
 
1 jb cos u cos bz 1 b sin bz 2

2b2 cos2 u 1 b2  `
2l/4

l/4

 (13.16)

Since b 5 2p/l or b l/4 5 p/2 and 2cos2 u 1 1 5 sin2 u, eq. (13.16) becomes

 Azs 5
mIoe2jbr

4prb2 sin2 u
 3e j1p/22 cos u 10 1 b 2 2 e2j1p/22 cos u 10 2 b 2 4 (13.17)

Using the identity e jx 1 e2jx 5 2 cos x, we obtain

 Azs 5

mIoe2jbr cos ap

2
 cos ub

2prb sin2 u
 (13.18)

We use eq. (13.4) in conjunction with the fact that Bs 5 mHs 5 = 3 As and = 3 Hs 5 jveEs 
to obtain the magnetic and electric fields at far zone (discarding the 1/r3 and 1/r2 terms) as

 Hfs 5

jIoe2jbr cos ap

2
  cos ub

2pr sin u
,  Eus 5 hHfs (13.19)
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13.3 Half-Wave Dipole Antenna 699

Notice again that the radiation terms Hfs and Eus are in time phase and orthogonal.
By using eqs. (13.9) and (13.19), we obtain the time-average power density as

 3ave 5
1
2

 h 0Hfs 0 2 ar

  5
hI2

o cos2 ap

2
 cos ub

8p2r2 sin2 u
 ar 

(13.20)

The time-average radiated power can be determined as

 5 3
2p

f50
 ≥ 3

p

u50
 
hI2

o cos2 ap

2
 cos ub

8p2r2 sin2 u
 r2 sin u du¥ df

  5
hI2

o

8p2 2p 3
p

0
 
cos2 ap

2
 cos ub

sin u
 du  

(13.21)

 5 30 I2
o 3

p

0
 
cos2 ap

2
 cos ub

sin u
 du

where h 5 120p has been substituted assuming free space as the medium of propagation. 
Due to the nature of the integrand in eq. (13.21),

3
p/2

0
 
cos2ap

2
 cos ub

sin u
 du 5 3

p

p/2
 
cos2ap

2
 cos ub

sin u
 du

This is easily illustrated by a rough sketch of the variation of the integrand with u. Hence

 Prad 5 60I2
o 3

p/2

0
 
cos2 ap

2
 cos ub  du

sin u
 (13.22)

Changing variables, u 5 cos u, and using partial fraction reduces eq. (13.22) to

Prad 5 60I2
o 3

1

0
 
cos2 

1
2

pu

1 2 u2  du

  5 30I2
o £3

1

0
 
cos2 

1
2

pu

1 1 u
 du 1 3

1

0
 
cos2 

1
2

pu

1 2 u
 du §  

(13.23)
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Prad 5 3
S
 �ave

# dS
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Replacing 1 1 u with v in the first integrand and 1 2 u with v in the second results in

Prad 5 30I2
o £3

1

0
 
sin2 

1
2

pv

v
 dv 1 3

2

1
 
sin2 

1
2

pv

v
 dv §

  5 30I2
o 3

2

0
 
sin2 

1
2

pv

v
 dv  

(13.24)

Changing variables, w 5 pv, yields

Prad 5 30I2
o 3

2p

0
 
sin2 

1
2

 w

w
 dw

  5 15I2
o 3

2p

0
 
11 2 cos w 2

w  dw  (13.25)

 5 15I2
o 3

2p

0
 c w

2!
2

w3

4!
1

w5

6!
2

w7

8!
1 . . . d  dw

since cos w 5 1 2
w2

2!
1

w4

4!
2

w6

6!
1

w8

8!
 2 . . .

 
. Integrating eq. (13.25) term by term and 

evaluating at the limit leads to

Prad 5 15I2
o c 12p 2 2

2 12! 2 2
12p 2 4

4 14! 2 1
12p 2 6

6 16! 2 2
12p 2 8

8 18! 2 1 . . . d

  . 36.56 I2
o  

(13.26)

The radiation resistance Rrad for the half-wave dipole antenna is readily obtained from 
eqs. (13.12) and (13.26) as

 Rrad 5
2Prad

I2
o

. 73 V (13.27)

Note the significant increase in the radiation resistance of the half-wave dipole over that of 
the Hertzian dipole. Thus the half-wave dipole is capable of delivering greater amounts of 
power to space than the Hertzian dipole.

The total input impedance Zin of the antenna is the impedance seen at the terminals 
of the antenna and is given by

 Zin 5 Rin 1 jXin (13.28)

13_Sadiku_Ch13.indd   700 17/10/17   12:05 PM
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where Rin 5 Rrad for a lossless antenna. Deriving the value of the reactance Xin involves 
a complicated procedure beyond the scope of this text. It is found that Xin 5 42.5 V, so 
Zin 5 73 1 j42.5 V for a dipole length , 5 l/2. The inductive reactance drops rapidly to 
zero as the length of the dipole is slightly reduced. For , 5 0.485 l, the dipole is resonant, 
with Xin 5 0. Thus in practice, a l/2 dipole is designed such that Xin approaches zero and 
Zin . 73 V. This value of the radiation resistance of the l/2 dipole antenna is the reason 
for the standard 75 V coaxial cable. Also, the value is easy to match to transmission lines. 
These factors in addition to the resonance property are the reasons for the dipole antenna’s 
popularity and its extensive use.

13.4 QUARTER-WAVE MONOPOLE ANTENNA

Basically, the quarter-wave monopole antenna consists of half of a half-wave dipole anten-
na located on a conducting ground plane, as in Figure 13.5. The monopole antenna is per-
pendicular to the plane, which is usually assumed to be infinite and perfectly conducting. 
It is fed by a coaxial cable connected to its base.

Using image theory of Section 6.6, we replace the infinite, perfectly conducting ground 
plane with the image of the monopole. The field produced in the region above the ground 
plane due to the l/4 monopole with its image is the same as the field due to a l/2 wave 
dipole. Thus eq. (13.19) holds for the l/4 monopole. However, the integration in eq. (13.21) 
is only over the hemispherical surface above the ground plane (i.e., 0 # u # p/2) because 
the monopole radiates only through that surface. Hence, the monopole radiates only half 
as much power as the dipole with the same current. Thus for a l/4 monopole,

 Prad . 18.28 I2
o (13.29)

and

Rrad 5
2Prad

I2
o

or

 Rrad . 36.5 V (13.30)

By the same token, the total input impedance for a l/4 monopole is Zin 5 36.5 1 j21.25 V.

FIGURE 13.5 The monopole antenna.
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The loop antenna is of practical importance. It is used as a directional finder (or 
search loop) in radiation detection and as a TV antenna for ultrahigh frequencies. The 
term “small” implies that the dimensions (such as ro) of the loop are much smaller than l.

Consider a small filamentary circular loop of radius ro carrying a uniform current,  
Io cos vt, as in Figure 13.6. The loop may be regarded as an elemental magnetic dipole. The 
magnetic vector potential at the field point P due to the loop is

 A 5 C
L
 
m 3I 4 d l

4pr r
 (13.31)

where 3I 4 5 Io cos 1vt 2 br r 2 5 Re 3Ioe j1vt2brr2 4. Substituting [I] into eq. (13.31), we 
obtain A in phasor form as

 As 5
mIo

4p
 C

L
 
e2jbrr

r r
 d l (13.32)

Evaluating this integral requires a lengthy procedure. It can be shown that for a small 
loop 1ro V l 2 , r can be replaced by r in the denominator of eq. (13.32) and As has only  
a f-component given by

 Afs 5
mIoS
4pr2 11 1 jbr 2e2jbr sin u (13.33)

where S 5 pr2
o 5 loop area. For a loop with N turns, S 5 Npr2

o. Using the fact that 
Bs 5 mHs 5 = 3 As and = 3 Hs 5 jveEs, we obtain the electric and magnetic fields from 
eq. (13.33) as

 Efs 5
2jvmIoS

4p
 sin u c jb

r 1
1
r2 d  e2jbr  (13.34a)

 Hrs 5
jvmIoS

2ph
 cos u c 1

r2 2
j

br3 d  e2jbr  (13.34b)

 Hus 5
jvmIoS

4ph
 sin u c jb

r 1
1
r2 2

j
br3 d  e2jbr (13.34c)

 Ers 5 Eus 5 Hfs 5 0  (13.34d)

Comparing eqs. (13.5) and (13.6) with eq. (13.34), we observe the dual nature of the field 
due to an electric dipole of Figure 13.3 and the elemental magnetic dipole of Figure 13.6 
(see Table 8.2 also). At far field, only the 1/r term (the radiation term) in eq.  (13.34) 
 remains. Thus at far field,

13.5 SMALL-LOOP ANTENNA
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Efs 5
vmIoS

4pr
 b sin u e2jbr

 5
hpIoS

rl2  sin u e2jbr

or

 Efs 5
120p2Io

r  
S
l2 sin u e2jbr,  Hus 5 2

Efs

h
 (13.35a)

 Ers 5 Eus 5 Hrs 5 Hfs 5 0 (13.35b)

where h 5 120p for free space has been assumed. Though the far-field expressions in  
eqs. (13.35) are obtained for a small circular loop, they can be used for a small square loop 
with one turn 1S 5 a2 2  or with N turns 1S 5 Na2 2 , or for any small loop, provided the loop 
dimensions are small (d # l/10, where d is the largest dimension of the loop). It is left as 
an exercise to show that using eqs. (13.13a) and (13.35) gives the radiation resistance of a 
small loop antenna as

 Rrad 5
320 p4S2

l4  (13.36)

FIGURE 13.6 The small-loop antenna.

A magnetic field strength of 5 mA/m is required at a point on u 5 p/2, which is 2 km from 
an antenna in air. Neglecting ohmic loss, how much power must the antenna transmit if 
it is

(a) A Hertzian dipole of length l/25?
(b) A half-wave dipole?

EXAMPLE 13.1
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(c) A quarter-wave monopole?
(d) A 10-turn loop antenna of radius ro 5 l/20?

Solution:
(a) For a Hertzian dipole,

0Hfs 0 5
Iob dl sin u

4pr

where dl 5 l/25 or b dl 5
2p

l
# l

25
5

2p

25
. Hence,

5 3 1026 5

Io
# 2p

25
11 2

4p 12 3 103 2 5
Io

105

or

Io 5 0.5 A

Prad 5 40p2 cdl
l
d

2

 I2
o 5

40p2 10.5 2 2

125 2 2

 5 158 mW

(b) For a l/2 dipole,

0Hfs 0 5

Io cos ap

2
 cos ub

2pr sin u

5 3 1026 5
Io

# 1
2p 12 3 103 2 # 11 2

or

Io 5 20p mA

 Prad 5
1
2

 I2
o Rrad 5

1
2 

 120p 2 2 3 1026 173 2
 5 144 mW

(c) For a l/4 monopole,

Io 5 20p mA

as in part (b).

 Prad 5
1
2

 I2
o Rrad 5

1
2

 120p 2 2 3 1026 136.56 2
 5 72 mW
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(d) For a loop antenna,

0Hus 0 5
pIo

r  
S
l2 sin u

For a single turn, S 5 pr2
o. For N-turn, S 5 Npr2

o. Hence,

5 3 1026 5
pIo10p

2 3 103 cro

l
d

2

or

Io 5
10

10p2 c l

ro
d

2

3 1023 5
202

p2 3 1023

 5 40.53 mA

Rrad 5
320 p4 S2

l4 5 320 p6 N2 cro

l
d

4

 5 320 p6 3 100 c 1
20

d
4

5 192.3 V

Prad 5
1
2

 I2
o Rrad 5

1
2

 140.53 2 2 3 1026 1192.3 2

 5 158 mW

PRACTICE EXERCISE 13.1

A Hertzian dipole of length l/100 is located at the origin in free space and fed with a 
current of 0.25 sin 108t A. Determine the magnetic field at

(a) r 5 l/5, u 5 30

(b) r 5 200l, u 5 60

Answer:  (a) 0.2119 sin 1108t 2 20.5° 2  af mA/m, (b) 0.2871 sin 1108t 1 90° 2  af 
mA/m.

An electric field strength of 10 mV/m is to be measured at an observation point u 5 p/2, 
500 km from a half-wave (resonant) dipole antenna operating in air at 50 MHz.
(a) What is the length of the dipole?
(b) Calculate the current that must be fed to the antenna.
(c) Find the average power radiated by the antenna.
(d)  If a transmission line with Zo 5 75 V is connected to the antenna, determine the 

standing wave ratio.

EXAMPLE 13.2
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Solution:

(a) The wavelength l 5
c
f

5
3 3 108

50 3 106 5 6 m.

Hence, the length of the half-dipole is , 5
l

2
5 3 m.

(b) From eq. (13.19),

0 Eus 0 5

hoIo cos ap

2
 cos ub

2pr sin u

or

Io 5
0 Eus 0  2pr sin u

ho cos ap

2
 cos ub

 

 5
10 3 1026 2p 1500 3 103 2 # 11 2

120p 11 2
 5 83.33 mA

(c) Rrad . 73 V

 Prad 5
1
2

 I2
o Rrad 5

1
2
183.33 2 2 3 1026 3 73

  5 253.5 mW

(d) G 5
ZL 2 Zo

ZL 1 Zo
   1ZL 5 Zin in this case 2

       5
73 1 j42.5 2 75
73 1 j42.5 1 75

5
22 1 j42.5
148 1 j42.5

       5
42.55l92.69°

153.98l16.02°
5 0.2763l76.67°

iii

       s 5
1 1 0G 0
1 2 0G 0 5

1 1 0.2763
1 2 0.2763

5 1.763

PRACTICE EXERCISE 13.2

Repeat Example 13.2 with the dipole antenna replaced by a l/4 monopole.

Answer:  (a) 1.5 m, (b) 83.33 mA, (c) 126.8 mW, (d) 2.265.
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Having considered the basic elementary antenna types, we now discuss some important 
characteristics of antennas as radiators of electromagnetic energy. These characteristics 

A. Antenna Patterns

When the amplitude of a specified component of the E field is plotted, it is called the field 
pattern or voltage pattern. When the square of the amplitude of E is plotted, it is called 
the power pattern. A three-dimensional plot of an antenna pattern is avoided by plotting 
separately the normalized 0 Es 0  versus u for a constant f (this is called an E-plane pattern or 
 vertical pattern) and the normalized 0 Es 0  versus f for u 5 p/2 (called the H-plane pattern 
or horizontal pattern). The normalization of 0 Es 0  is with respect to the maximum value of 
the 0 Es 0  so that the maximum value of the normalized 0 Es 0  is unity.

For the Hertzian dipole, for example, the normalized 0 Es 0  is obtained from eq. (13.8a) as

 f 1u 2 5 0 sin u 0  (13.37)

which is independent of f. From eq. (13.37), we obtain the E-plane pattern as the polar 
plot of f(u) with u varying from 0° to 180°. The result is shown in Figure 13.7(a). Note that 
the plot is symmetric about the z-axis 1u 5 0 2 . For the H-plane pattern, we set u 5 p/2 
so that f 1u 2 5 1, which is circle of radius 1 as shown in Figure 13.7(b). When the two 

13.6 ANTENNA CHARACTERISTICS

FIGURE 13.7 Field patterns of the Hertzian dipole: (a) normalized 
E-plane or vertical pattern (f 5 constant 5 0), (b) normalized H-plane 
or horizontal pattern (u 5 p/2), (c) three-dimensional pattern.
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 include (a) antenna patterns, (b) radiation intensity, (c) directive gain, (d) power gain.
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plots of  Figure 13.7(a) and (b) are combined, we have the three-dimensional field pattern 
of Figure 13.7(c), which has the shape of a doughnut.

A plot of the time-average power, |3ave| 5 3ave, for a fixed distance r is the power 
 pattern of the antenna. It is obtained by plotting separately 3ave versus u for constant f and 
3ave versus f for constant u.

For the Hertzian dipole, the normalized power pattern is easily obtained from eqs. 
(13.37) or (13.9) as

 f 2 1u 2 5 sin2 u (13.38)

which is sketched in Figure 13.8. Notice that Figures 13.7(b) and 13.8(b) show circles 
 because f(u) is independent of f and that the value of OP in Figure 13.8(a) is the relative 
average power for that particular u. Thus, at point Q 1u 5 45° 2 , the average power is half 
the maximum average power (the maximum average power is at u 5 p/2).

An antenna pattern (or radiation pattern) is a three-dimensional plot of its radiation 
at far field.

B. Radiation Intensity

FIGURE 13.8 Power patterns of the Hertzian dipole: (a) (f 5 constant 5 0), 
(b) u 5 constant 5 p/2.
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The radiation intensity of an antenna is defined as

 U 1u, f 2 5 r2 �ave (13.39)
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From eq. (13.39), the total average power radiated can be expressed as

 Prad 5 C
S
 ave dS 5 C

S
 ave r2 sin u du df

  5 3
S
 U 1u, f 2  sin u du df  (13.40)

 5 3
2p

f50
 3

p

u50
 U 1u, f 2  dV

where dV 5 sin u du df is the differential solid angle in steradian (sr). Hence the radiation 
intensity U 1u, f 2  is measured in watts per steradian (W/sr). The average value of U 1u, f 2  
is the total radiated power divided by 4p sr; that is,

 Uave 5
Prad

4p
 (13.41)

C. Directive Gain
Besides the antenna patterns just described, we are often interested in measurable quanti-
ties such as gain and directivity to determine the radiation characteristics of an antenna.

The directive gain Gd(u, f) of an antenna is a measure of the concentration of the 
radiated power in a particular direction (u, f).

It may be regarded as the ability of the antenna to direct radiated power in a given direc-
tion. It is usually obtained as the ratio of radiation intensity in a given direction 1u, f 2  to 
the average radiation intensity, that is,

 Gd 1u, f 2 5
U 1u, f 2

Uave
5

4p U 1u, f 2
Prad

 (13.42)

By substituting eq. (13.39) into eq. (13.42), 3ave may be expressed in terms of directive 
gain as

 

The directive gain Gd 1u, f 2  depends on antenna pattern. For the Hertzian dipole (as well 
as for l /2 dipole and l /4 monopole), we notice from Figure 13.8 that 3ave is maximum at 
u 5 p/2 and minimum (zero) at u 5 0 or p. Thus the Hertzian dipole radiates power in 
a direction broadside to its length. For an isotropic antenna (one that radiates equally in all 
directions), Gd 5 1. However, such an antenna is not a physicality but an ideality.

The directivity D of an antenna is the ratio of the maximum radiation intensity to the 
average radiation intensity.
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� �

�ave 5
Gd

4pr2 Prad (13.43)
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Obviously, D is the maximum directive gain Gd max. Thus

 D 5
Umax

Uave
5 Gd max (13.44a)

or, from eq. (13.41),

 D 5
4p Umax

Prad
 (13.44b)

For an isotropic antenna, D 5 1; this is the smallest value D can have. For the Hertzian  dipole,

 Gd 1u, f 2 5 1.5 sin2 u,  D 5 1.5 (13.45)

For the l/2 dipole,

 Gd 1u, f 2 5
h

pRrad
 f 2 1u 2 ,  D 5 1.64 (13.46)

where h 5 120p, Rrad . 73 V, and

 f 1u 2 5

cos ap

2
 cos ub

sin u
 (13.47)

D. Power Gain
Our definition of the directive gain in eq. (13.42) does not account for the ohmic power loss 
P, of the antenna. This power loss P, occurs because the antenna is made of a conductor with 
finite conductivity. As illustrated in Figure 13.9, if Pin is the total input power to the antenna,

Pin 5 P, 1 Prad

  5
1
2

 0 Iin 0 2 1R, 1 Rrad 2  (13.48)

where Iin is the current at the input terminals and R, is the loss or ohmic resistance of the 
antenna. In other words, Pin is the power accepted by the antenna at its terminals during 
the radiation process, and Prad is the power radiated by the antenna; the difference between 
the two powers is P,, the power dissipated within the antenna.

in rad

FIGURE 13.9 Relating Pin, P, and Prad.
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We define the power gain Gp 1u, f 2  of the antenna as

 Gp 1u, f 2 5
4p U 1u, f 2

Pin
 (13.49)

The ratio of the power gain in any specified direction (u, f) to the directive gain in that 
r

hr 5
GP

Gd
5

Prad

Pin

Introducing eq. (13.48) leads to

 hr 5
Prad

Pin
5

Rrad

Rrad 1 R,

 (13.50)

For many antennas, hr is close to 100% so that GP . Gd. It is customary to express directiv-
ity and gain in decibels. Thus

 D 1dB 2 5 10 log10 D (13.51a)

 G 1dB 2 5 10 log10 G (13.51b)

It should be mentioned at this point that the radiation patterns of an antenna are mea-
sured in the far-field region. The far-field region of an antenna is commonly taken to exist 
at a distance r $ rmin, where

 rmin 5
2d2

l
 (13.52)

and d is the largest dimension of the antenna. For example, d 5 , for the electric dipole 
 antenna and d 5 2ro for the small-loop antenna.

Show that the directive gain of the Hertzian dipole is

Gd 1u, f 2 5 1.5 sin2 u

and that of the half-wave dipole is

Gd 1u, f 2 5 1.64 
cos2ap

2
 cos ub

sin2 u

EXAMPLE 13.3
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 direction is referred to as the radiation efficiency h  of the antenna; that is,
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Solution:
Starting from eq. (13.42) and introducing the expressions for U(u, f) and Prad, we obtain

Gd 1u, f 2 5
4p f 2 1u 2

3  f 2 1u 2  dV

(a) For the Hertzian dipole,

Gd 1u, f 2 5
4p sin2 u

3
2p

f50
 3

p

u50
 sin3 u du df

5
4p sin2 u
2p 14/3 2

 5 1.5 sin2 u

as required.
(b) For the half-wave dipole,

Gd 1u, f 2 5

4p cos2ap

2
 cos ub

sin2 u

3
2p

f50
 3

p

u50
 
cos2ap

2
 cos ub  du df

sin u

From eq. (13.26), the integral in the denominator gives 2p 11.2188 2 . Hence,

Gd 1u, f 2 5

4p cos2ap

2
 cos ub

sin2 u
# 1

2p 11.2188 2

 5 1.64 
cos2ap

2
 cos ub

sin2 u

as required.

PRACTICE EXERCISE 13.3

Calculate the directivity of

(a) The Hertzian monopole
(b) The quarter-wave monopole

Answer: (a) 3, (b) 3.28.
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Determine the electric field intensity at a distance of 10 km from an antenna having a 
 directive gain of 5 dB and radiating a total power of 20 kW.

Solution:

5 5 Gd 1dB 2 5 10 log10 Gd

or

0.5 5 log10 Gd S  Gd 5 100.5 5 3.162

From eq. (13.43),

ave 5
GdPrad

4pr2

But

ave 5
0 Es 0 2
2h

Hence,

 0 Es 0 2 5
hGdPrad

2pr2 5
120p 13.162 2 120 3 103 2

2p 310 3 103 42
  0 Es 0 5 0.1948 V/m

PRACTICE EXERCISE 13.4

A certain antenna with an efficiency of 95% has maximum radiation intensity of  
0.5 W/sr. Calculate its directivity when

(a) The input power is 0.4 W
(b) The radiated power is 0.3 W

Answer: (a) 16.53, (b) 20.94.

The radiation intensity of a certain antenna is

U 1u, f 2 5 e 2 sin u sin3 f, 0 # u # p, 0 # f # p
0, elsewhere

Determine the directivity of the antenna.

EXAMPLE 13.4

EXAMPLE 13.5

13_Sadiku_Ch13.indd   713 17/10/17   12:05 PM

�

�



714 CHAPTER 13 ANTENNAS

Solution:
The directivity is defined as

D 5
Umax

Uave

From the given U,

Umax 5 2

From eqs. (13.40) and (13.41), we get the expression for the average radiated intensity.

Uave 5
1

4p
 3  U 1u, f 2  dV

 5
1

4p
 3

p

f50
 3

p

u50
 2 sin u sin3 f sin u du df

 5
1

2p
 3

p

0
 sin2 u du 3

p

0
 sin3 f df

 5
1

2p
 3

p

0
 
1
2

 11 2 cos 2u 2  du 3
p

0
 11 2 cos2 f 2  d 12cos f 2

 5
1

2p
 
1
2

 au 2
sin 2u

2
b `

0

p

 acos3 f
3

2 cos fb  `
0

p

 5
1

2p
 ap

2
b  a4

3
b 5

1
3

Hence

D 5
2

11/3 2 5 6 

PRACTICE EXERCISE 13.5

Evaluate the directivity of an antenna with normalized radiation intensity

U 1u, f 2 5 e sin u, 0 # u # p/2, 0 # f # 2p
0, otherwise

Answer:  2.546.
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In many practical applications (e.g., in an AM broadcast station), it is necessary to design 
antennas with more energy radiated in some particular directions and less in other directions. 
This is tantamount to requiring that the radiation pattern be concentrated in the direction of 
interest. This is hardly achievable with a single antenna element. An antenna array is used to 
obtain greater directivity than can be obtained with a single antenna element.

An antenna array is a group of radiating elements arranged to produce particular 
 radiation characteristics.

It is practical and convenient that the array consists of identical elements, but this is not 
fundamentally required. We shall consider the simplest case of a two-element array and 
extend our results to the more complicated, general case of an N-element array.

Consider an antenna consisting of two Hertzian dipoles placed in free space along the 
z-axis but oriented parallel to the x-axis as depicted in Figure 13.10. We assume that the 
 dipole at 10, 0, d/2 2  carries current I1s 5 Iola and the one at 10, 0, 2d/2 2  carries current 
I2s 5 Iol0, where a is the phase difference between the two currents. By varying the spacing 
d and phase difference a, the fields from the array can be made to interfere constructively 
(add) in certain directions of interest and interfere destructively (cancel) in other  directions. 
The total electric field at point P is the vector sum of the fields due to the individual elements. 
If P is in the far-field zone, we obtain the total electric field at P from eq. (13.8a) as

Es 5 E1s 1 E2s

   5
jhbIodl

4p
 ccos u1 

e2jbr1

r1
 e ja au1

1 cos u2 
e2jbr2

r2
 au2

d  (13.53)

Note that sin u in eq. (13.8a) has been replaced by cos u because the element of Figure 13.3 
is z-directed, whereas those in Figure 13.10 are x-directed. Since P is far from the array, 
u1 . u . u2 and au1

. au . au2
. In the amplitude, we can set r1 . r < r2 but in the phase, 

we use

 r1 . r 2
d
2

 cos u (13.54a)

13.7 ANTENNA ARRAYS

FIGURE 13.10 A two-element array.
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 r2 . r 1
d
2

 cos u (13.54b)

Thus eq. (13.53) becomes

Es 5
jhbIo dl

4p r
 cos u e2jbre ja/2 3e j1bd cos u2/2e ja/2 1 e2j1bd cos u2/2e2ja/2 4 au

  5
jhbIo dl

4p r
 cos u e2jbre ja/22 cos c1

2
 1bd cos u 1 a 2 d  au  

(13.55)

Comparing this with eq. (13.8a) shows that the total field of an array is equal to the field of 
single element located at the origin multiplied by an array factor given by

 AF 5 2 cos c 1
2

 1bd cos u 1 a 2d  e ja/2 (13.56)

Thus, in general, the far field due to a two-element array is given by

 E 1 total 2 5 1E due to single element at origin 2 3 1array factor 2  (13.57)

Also, from eq. (13.55), note that 0 cos u 0  is the radiation pattern due to a single element, 
whereas the normalized array factor, 0 cos 31/2 1bd cos u 1 a 2 4 0 , is the radiation pattern 
the array would have if the elements were isotropic. These may be regarded as “unit pat-
tern” and “group pattern,” respectively. Thus the “resultant pattern” is the product of the 

 resultant pattern 5 unit pattern 3 group pattern (13.58)

This is known as pattern multiplication, and it can be used to sketch, almost by inspec-
tion, the pattern of an array. Therefore, pattern multiplication is a useful tool in the 
design of an array. We should note that while the unit pattern depends on the type of 
elements comprising the array, the group pattern is independent of the element type 
as long as the spacing d, the phase difference a, and the orientation of the elements 
remain the same.

Let us now extend the results on the two-element array to the general case of an  

eq. (13.57) once the array factor is known. For the uniform linear array, the array factor is 
the sum of the contributions by all the elements. Thus,

 AF 5 1 1 e jc 1 e j2c 1 e j3c 1 . . . 1 e j1N212c (13.59)
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N-element array shown in Figure 13.11. We assume that the array is linear in that the ele-
ments are spaced equally along a straight line and lie along the z-axis. Also, we assume 
that the array is uniform so that each element is fed with current of the same magnitude 

1s 5 Iol0
i

, I2s 5 Iola
i

, I3s 5 Iol2a
i

, and so on. 
We are mainly interested in finding the array factor; the far field can easily be found from 

unit pattern and the group pattern; that is,

but of progressive phase shift a; that is, I
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where

 c 5 bd cos u 1 a (13.60)

phase shift. Notice that the right-hand side of eq. (13.59) is a geometric series of the form

 1 1 x 1 x2 1 x3 1 . . . 1 xN21 5
1 2 xN

1 2 x
 (13.61)

Hence eq. (13.59) becomes

 AF 5
1 2 e jNc

1 2 e jc  (13.62)

which can be written as

AF 5
e jNc 2 1
e jc 2 1

5
e jNc/2

e jc/2  
e jNc/2 2 e2jNc/2

e jc/2 2 e2jc/2

  5 e j1N212c/2 
sin 1Nc/2 2
sin 1c/2 2  

(13.63)

The phase factor e j1N212c/2 would not be present if the array were centered about the origin. 
Neglecting this unimportant term, we have

 0AF 0 5 4  
sin 

Nc

2

sin 
c

2

 4  ,  c 5 bd cos u 1 a (13.64)

FIGURE 13.11 An N-element uniform linear array.
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In eq. (13.60), b 5 2p/l, and d and a are, respectively, the spacing, and the interelement 
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Note that this equation reduces to eq. (13.56) when 0AF 0  is considered and N 5 2 as 
expected. Also, note the following:

1. Since 0AF 0  has the maximum value of N, the normalized 0AF 0  is obtained by 
dividing 0AF 0  

 0 5 bd cos u 1 a  or  cos u 5 2
a

bd
 (13.65)

2. When 0AF 0 5 0, 0AF 0  has nulls (or zeros); that is, 

 
Nc

2
5 6kp,  k 5 1, 2, 3, . . . (13.66)

 where k is not a multiple of N.
3. A broadside array has its maximum radiation directed normal to the axis of the 

|     |

|     |

|     |

FIGURE 13.12 Array factors for uniform linear 
arrays.
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by N. The principal maximum occurs when c 5 0; that is,

array; that is, c 5 0, u 5 90º so that a 5 0.
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4. An end-fire array has its maximum radiation directed along the axis of the array, 

that is,  c 5 0, u 5 c
p

0

 so that a 5 c
bd

2bd

.

These points are helpful in plotting 0AF 0 . For N 5 2, 3, and 4, the plots of 0AF 0  are 
sketched in Figure 13.12.

For the two-element antenna array of Figure 13.10, sketch the normalized field pattern 
when the currents are:
(a) Fed in phase 1a 5 0 2 , d 5 l/2
(b) Fed 90° out of phase 1a 5 p/2 2 , d 5 l/4

Solution:
The normalized field of the array is obtained from eqs. (13.55) to (13.57) as

f 1u 2 5 `cos u cos c 1
2

 1bd cos u 1 a 2 d `

(a) If a 5 0, d 5 l/2, bd 5
2p

l
 
l

2
5 p. Hence,

f 1u 2 5 0 cos u 0 `cos 
p

2  1cos u 2 `
T T T

resultant 5 unit 3 group
pattern pattern pattern

The sketch of the unit pattern is straightforward. It is merely a rotated version of that  
in Figure 13.7(a) for the Hertzian dipole and is shown in Figure 13.13(a). To sketch a group 
pattern, we must first determine nulls and maxima. For the nulls (or zeros),

cos ap

2
 cos ub 5 0 S  

p

2
 cos u 5 6

p

2

or

u 5 0°, 180°

For the maxima,

cos ap

2
 cos ub 5 1 S  cos u 5 0

EXAMPLE 13.6
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or

u 5 90°

The group pattern, shown in Figure 13.12(b), is the polar plot obtained by sketching 

`cos ap

2
 cos ub `  for u 5 0, 5°, 10°, 15°, .  .  . , 180° and incorporating the nulls and maxima 

at u 5 0°, 180° and u 5 90°, respectively. Multiplying Figure 13.13(a) with Figure 13.13 
(b) gives the resultant pattern in Figure 13.13(c). MATLAB can easily be used to do this. It 
should be observed that the field patterns in Figure 13.13 are in the plane containing the 
axes of the elements. Note the following: (1) In the yz-plane, which is normal to the axes of 
the elements, the unit pattern 15 1 2  is a circle [see Figure 13.7(b)] while the group pattern 
remains as in Figure 13.13(b); therefore, the resultant pattern is the same as the group pat-
tern in this case. (2) In the xy-plane, u 5 p/2, so the unit pattern vanishes while the group 
pattern 15 1 2  is a circle.

(b) If a 5 p/2, d 5 l/4, and bd 5
2p

l
 
l

4
5

p

2

f 1u 2 5 0 cos u 0 `cos 
p

4  1cos u 1 1 2 `
T T T

resultant 5 unit 3 group
pattern pattern pattern

The unit pattern remains as in Figure 13.13(a). For the group pattern, the null occurs when

cos 
p

4
 11 1 cos u 2 5 0 S  

p

4
 11 1 cos u 2 5

p

2

or

cos u 5 1 S  u 5 0

U G R

FIGURE 13.13 For part (a) of Example 13.6: field patterns in the plane 
containing the axes of the elements.

13_Sadiku_Ch13.indd   720 14/11/17   2:16 PM



13.7 Antenna Arrays 721

The maxima and minima occur when

d
du

 ccos 
p

4
 11 1 cos u 2 d 5 0 S  sin u sin 

p

4
 11 1 cos u 2 5 0

 sin u 5 0 S  u 5 0°, 180°

and

sin 
p

4
 11 1 cos u 2 5 0 S  cos u 5 21  or  u 5 180°

Each field pattern is obtained by varying u 5 0°, 5°, 10°, 15°, .  .  . , 180°. Note that 
u 5 180° corresponds to the maximum value of 0AF 0 , whereas u 5 0° corresponds to 
the null. Thus the unit, group, and resultant patterns in the plane containing the axes of 
the elements are shown in Figure 13.14. Observe from the group patterns that the broad-
side array 1a 5 0 2  in Figure 13.13 is bidirectional, while the end-fire array 1a 5 bd 2  in 
Figure 13.14 is unidirectional.

U G R

FIGURE 13.14 For part (b) of Example 13.6; field patterns in the plane  
containing the axes of the elements.

PRACTICE EXERCISE 13.6

Repeat Example 13.6 for the following cases: (a) a 5 p, d 5 l/2, (b) a 5 2p/2, 
d 5 l/4.

Answer:  See Figure 13.15.

13_Sadiku_Ch13.indd   721 17/10/17   12:05 PM



722 CHAPTER 13 ANTENNAS

Consider a three-element array that has current ratios 121 as in Figure 13.16(a). Sketch 

Each group is a two-element array with d 5 l/2, a 5 0, so that the group pattern of 
the two- element array (or the unit pattern for the three-element array) is as shown in 
Figure 13.13(b). The two groups form a two-element array similar to Example 13.6(a) 
with d 5 l/2, a 5 0, so that the group pattern is the same as that in Figure 13.13(b). 
Thus, in this case, both the unit and group patterns are the same pattern in Figure 
13.13(b). The  resultant group pattern is obtained in Figure 13.17(c). We should note that 
the pattern in Figure 13.17(c) is not the resultant pattern but the group pattern of the 
three-element array. The resultant group pattern of the array is Figure 13.17(c) multi-
plied by the field pattern of the element type.

FIGURE 13.15 For Practice Exercise 13.6.

EXAMPLE 13.7
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the group pattern in the plane containing the axes of the elements.

Solution:
For the purpose of analysis, we split the middle element in Figure 13.16(a) carrying cur-
rent 2Il0°

i
 into two elements each carrying current Il0°

i
. This results in four elements 

instead of three, as shown in Figure 13.16(b). If we consider elements 1 and 2 as a group 
and elements 3 and 4 as another group, we have a two-element array of Figure 13.16(c). 
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An alternative method of obtaining the resultant group pattern of the three-element 
array of Figure 13.16 is by following steps similar to those taken to obtain eq. (13.59). We 
obtain the normalized array factor (or the group pattern) as

1AF 2n 5
1
4
0 1 1 2ejc 1 e j2c 0

 5
1
4

 0 e jc 0 0 2 1 e2jc 1 e jc 0

 5
1
2

 0 1 1 cos c 0 5 `cos 
c

2
`
2

where c 5 bd cos u 1 a if the elements are placed along the z-axis but oriented parallel to 

the x-axis. Since a 5 0, d 5 l/2, bd 5
2p

l
# l

2
5 p, and

 1AF 2n 5  `cos ap

2
 cos ub `

2

1AF 2n 5 `cos ap
2  cos ub ` `cos ap

2  cos ub `
T T T

resultant unit 3 group
group pattern pattern pattern

The sketch of these patterns is exactly what is in Figure 13.17.

FIGURE 13.16 For Example 13.7: (a) a three-element  
array with current ratios 121; (b) and (c) equivalent  
two-element arrays.
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If two three-element arrays in Figure 13.16(a) are displaced by l/2, we obtain 
a four- element array with current ratios 1331 as in Figure 13.18. Two of such 
four-element  arrays, displaced by l/2, give a five-element array with current ratios 
14641. Continuing this process results in an N-element array, spaced l/2 and 
1N 2 1 2l/2 long, whose current ratios are the binomial coefficients. Such an array is 
called a linear binomial array. 

FIGURE 13.18 For Example 
13.7 and Practice Exercise 13.7: 
four-element array with current 
ratios 1331.

U G R

FIGURE 13.17 For Example 13.7; 
obtaining the resultant group pattern 
of the three-element array of Figure 
13.16(a).

PRACTICE EXERCISE 13.7

(a)  Sketch the resultant group pattern for the four-element array with current ratios 
1331 shown in Figure 13.18.

(b)  Derive an expression for the group pattern of a linear binomial array of N elements. 
Assume that the elements are placed along the z-axis, oriented parallel to the x-axis 
with spacing d and interelement phase shift a.

Answer: (a) See Figure 13.19, (b) `cos 
c

2
`
N21

, where c 5 bd cos u 1 a.

FIGURE 13.19 For part (a) of Practice Exercise 13.7.
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When the incoming EM wave is normal to the entire surface of a receiving antenna, the 

This necessitates the idea of the effective area of a receiving antenna.
The concept of effective area or effective aperture (receiving cross section of an 

antenna) is usually employed in the anaysis of receiving antennas.

The effective area Ae of a receiving antenna is the ratio of the time-average power 
received Pr (or delivered to the load, to be strict) to the time-average power density 
3ave of the incident wave at the antenna.

to extract energy from a passing EM wave.
Let us derive the formula for calculating the effective area of the Hertzian dipole  acting 

as a receiving antenna. The Thévenin equivalent circuit for the receiving antenna is shown 
in Figure 13.20, where Voc is the open-circuit voltage induced on the antenna terminals 
by a remote transmitter, Zin 5 Rrad 1 jXin is the antenna impedance, and ZL 5 RL 1 jXL 

Pr 5
1
2

 c 0Voc 0
2Rrad

d
2

 Rrad

  5
0Voc 0 2
8 Rrad

 
(13.69)

†13.8 EFFECTIVE AREA AND THE FRIIS EQUATION

oc

FIGURE 13.20 Thévenin equivalent of a receiving 
antenna.
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power received is

 

But in most cases, the incoming EM wave is not normal to the entire surface of the antenna. 

Pr 5 3
S
 �ave

# dS 5 �aveS (13.67)

That is,

 

From eq. (13.68), we notice that the effective area is a measure of the ability of the antenna 

Ae 5
Pr

�ave
 (13.68)

is the external load impedance, which might be the input impedance to the transmission 
line feeding the antenna. For maximum power transfer, ZL 5 Z*in and XL 5 2Xin. The 
time-average power delivered to the matched load is therefore
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For the Hertzian dipole, eq. (13.13b) gives Rrad 5 80p2 1dl/l 2 2 and Voc 5 E dl, where E is 
the effective field strength parallel to the dipole axis. Hence, eq. (13.69) becomes

 Pr 5
E2l2

640p2 (13.70)

Ae 5
3l2

8p
5 1.5 

l2

4p

or

 Ae 5
l2

4p
 D (13.72)

where D 5 1.5 is the directivity of the Hertzian dipole. Although eq. (13.72) was derived for 
the Hertzian dipole, it holds for any antenna if D is replaced by Gd 1u, f 2 . Thus, in general

 Ae 5
l2

4p
 Gd 1u, f 2  (13.73)

Now suppose we have two antennas separated by distance r in free space as shown 
in Figure 13.21. The transmitting antenna has effective area Aet and directive gain Gdt and 

FIGURE 13.21 Transmitting and receiving antennas in free space.
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Inserting eqs. (13.70) and (13.71) in eq. (13.68) gives

The time-average power at the antenna is

 �ave 5
E2

2h
5

E2

240p
 (13.71)

transmits a total power Pt 15 Prad 2 . The receiving antenna has effective area of Aer and 
directive gain Gdr and receives a total power of Pr. At the transmitter,

Gdt 5
4pU

Pt
5

4pr2�ave

Pt

or

 �ave 5
Pt

4pr2 Gdt (13.74)
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antenna to the power transmitted by the other, provided the two antennas are separated by 
r $ 2d2/l, where d is the largest dimension of either antenna [see eq. (13.52)]. Therefore, to 
apply the Friis equation, we must make sure that each antenna is in the far field of the other.

Find the maximum effective area of a l/2 wire dipole operating at 30 MHz. How much 
power is received with an incident plane wave of strength 2 mV/m?

Solution:

 Ae 5
l2

4p
 Gd 1u, f 2

 l 5
c
f

5
3 3 108

30 3 106 5 10 m

 Gd 1u, f 2 5
h

pRrad
 f 2 1u 2 5

120p

73p
 f 2 1u 2 5 1.64f 2 1u 2

 Gd max 5 1.64

 Ae max 5
102

4p
 11.64 2 5 13.05 m2

     

PRACTICE EXERCISE 13.8

Determine the maximum effective area of a Hertzian dipole of length 10 cm operating 
at 100 MHz. If the antenna receives 3 mW of power, what is the power density of the 
incident wave?

Answer:  1.074 m2, 2.793 mW/m2.

EXAMPLE 13.8
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By applying eqs. (13.68) and (13.73), we obtain the time-average power received as

 

Substituting eq. (13.74) into eq. (13.75) results in

 Pr 5 GdrGdt c l

4pr
d

2

 Pt (13.76)

This is referred to as the Friis transmission formula. It relates the power received by one 

Pr 5 �ave Aer 5
l2

4p
 Gdr �ave (13.75)

 Pr 5 �ave Ae 5
E0

2

2h
 Ae

     5
12 3 1023 2 2

240p
 13.05 5 69.23 nW
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The transmitting and receiving antennas are separated by a distance of 200 l and have 
 directive gains of 25 dB and 18 dB, respectively. If 5 mW of power is to be received, calcu-
late the minimum transmitted power.

Solution:
Given that Gdt 1dB 2 5 25 dB 5 10 log10 Gdt,

Gdt 5 102.5 5 316.23

Similarly,

Gdr 1dB 2 5 18 dB  or  Gdr 5 101.8 5 63.1

Using the Friis equation, we have

Pr 5 GdrGdt c l

4pr
d

2

 Pt

or

Pt 5 Pr c 4pr
l

d
2

 
1

GdrGdt

 5 5 3 1023 c 4p 3 200 l
l

d
2

 
1

163.1 2 1316.23 2
 5 1.583 W

PRACTICE EXERCISE 13.9

An antenna in air radiates a total power of 100 kW so that a maximum radiated electric 
field strength of 12 mV/m is measured 20 km from the antenna. Find (a) its  directivity 
in decibels, (b) its maximum power gain if hr 5 98%.

Answer:  (a) 20.18 dB, (b) 9.408  103.

Radars are electromagnetic devices used for detection and location of objects. The term 
radar is derived from the phrase radio detection and ranging. In a typical radar system, as 
shown in Figure 13.22(a), pulses of EM energy are transmitted to a distant object. The same 
antenna is used for transmitting and receiving, so the time interval between the  transmitted 
and reflected pulses is used to determine the distance of the target. If r is the  distance 

†13.9 THE RADAR EQUATION

EXAMPLE 13.9

13_Sadiku_Ch13.indd   728 17/10/17   12:05 PM



13.9 The Radar Equation 729

between the radar and target and c is the speed of light, the elapsed time between the trans-
mitted and received pulse is 2r/c. By measuring the elapsed time, we determine r.

The ability of a target to scatter (or reflect) energy is characterized by its scattering cross 
section  (also called the radar cross section). The scattering cross section has the units of 
area and can be measured experimentally.

The scattering cross section is the equivalent area intercepting the amount of power 
that, when scattering isotropically, produces at the radar a power density that is 
equal to that scattered (or reflected) by the actual target.

That is,

where 3i is the incident power density at the target T while 3s is the scattered power 
 density at the transceiver O as in Figure 13.22(b).

From eq. (13.43), the incident power density 3i at the target T is

 

The power received at transreceiver O is

Pr 5 Aer s

FIGURE 13.22 (a) Typical radar 
system. (b) Simplification of the 
system in (a) for calculating the 
target cross section .
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ps 5 lim
rS`

 c s�i

4pr2 d
or

 s 5 lim
rS`

 4pr2 
�s

�i
 (13.77)

�i 5 �ave 5
Gd

4pr2 Prad (13.78)

�
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or

 

Note that 3i and 3s are the time-average power densities in watts per square meter, 
and  Prad and Pr are the total time-average powers in watts. Since Gdr 5 Gdt 5 Gd and 
Aer 5 Aet 5 Ae, substituting eqs. (13.78) and (13.79) into eq. (13.77) gives

 s 5 14pr2 2 2 
Pr

Prad
 

1
Ae Gd

 (13.80a)

or

 Pr 5
AesGdPrad

14pr2 2 2  (13.80b)

From eq. (13.73), Ae 5 l2Gd/4p. Hence,

 Pr 5
1lGd 2 2sPrad

14p 2 3r4  (13.81)

This is the radar transmission equation for free space. It is the basis for measurement of 
scattering cross section of a target. Solving for r in eq. (13.81) results in

 r 5 cl
2 G2

ds

14p 2 3
#

Prad

Pr
d

1/4

 (13.82)

Equation (13.82) is called the radar range equation. Given the minimum detectable power 
of the receiver, the equation determines the maximum range for a radar. It is also useful for 
obtaining engineering information concerning the effects of the various parameters on the 
performance of a radar system.

The radar considered so far is the monostatic type because of the predominance of this 
type of radar in practical applications. A bistatic radar is one in which the transmitter and 
receiver are separated. If the transmitting and receiving antennas are at distances r1 and r2 
from the target and Gdr 2 Gdt, eq. (13.81) for bistatic radar becomes

 Pr 5
GdtGdr

4p
c l

4pr1r2
d

2

 sPrad (13.83)

Radar transmission frequencies range from 25 to 70,000 MHz. Table 13.1 shows radar 
frequencies and their designations as commonly used by radar engineers.
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�s 5
Pr

Aer
 (13.79)
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An S-band radar transmitting at 3 GHz radiates 200 kW. Determine the signal power 
 density at ranges 100 and 400 nautical miles if the effective area of the radar antenna is  
9 m2. With a 20 m2 target at 300 nautical miles, calculate the power of the reflected signal 
at the radar.

Solution:
The nautical mile is a common unit in radar communications.

1 nautical mile 1nm 2 5 1852 m

 l 5
c
f

5
3 3 108

3 3 109 5 0.1 m

Gdt 5
4p

l2  Aet 5
4p

10.1 2 2 9 5 3600p

For r 5 100 nm 5 1.852 3 105 m

TABLE 13.1 Designations of Radar Frequencies

Designation Frequency

UHF 300–1000 MHz
L 1000–2000 MHz
S 2000–4000 MHz
C 4000–8000 MHz
X 8000–12,500 MHz
Ku  12.5–18 GHz
K    18–26.5 GHz
Millimeter       .  35 GHz  

EXAMPLE 13.10
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Using eq. (13.80b)

Pr 5
Aes Gd Prad

34pr2 42

 � 5
GdtPrad

4pr2 5
3600p 3 200 3 103

4p 11.852 2 2 3 1010

 5 5.248 mW/m2

For r 5 400 nm 5 4 11.852 3 105 2  m

� 5
5.248
14 2 2 5 0.328 mW/m2
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where r 5 300 nm 5 5.556 3 105 m

Pr 5
9 3 20 3 3600p 3 200 3 103

34p 3 5.5562 42 3 1020 5 2.706 3 10214 W

The same result can be obtained by using eq. (13.81). 

PRACTICE EXERCISE 13.10

A C-band radar with an antenna 1.8 m in radius transmits 60 kW at a frequency of 
6000 MHz. If the minimum detectable power is 0.26 mW, for a target cross section of 
5 m2, calculate the maximum range in nautical miles and the signal power density at 
half this range. Assume unity efficiency and that the effective area of the antenna is 70% 
of the actual area.

Answer: 0.031 nm, 501 W/m2.

†13.10 APPLICATION NOTE—ELECTROMAGNETIC  
INTERFERENCE AND COMPATIBILITY

Every electronic device is a source of radiated electromagnetic fields called radiated 
 emissions. These are often an accidental by-product of the design.

Electromagnetic interference (EMI) is the degradation in the performance of a  device 
due to the fields making up the electromagnetic environment.

Electromagnetic compatibility (EMC) is achieved when a device functions satisfacto-
rily without introducing intolerable disturbances to the electromagnetic environment 
or to other devices in its neighborhood.

The electromagnetic environment consists of various apparatuses such as radio and TV 
broadcast stations, radar, and navigational aids that radiate EM energy as they oper-
ate. Every electronic device is susceptible to EMI. Its influence can be seen all around 
us. The results include “ghosts” in TV picture reception, taxicab radio interference with 
police radio systems, power line transient interference with personal computers, and self- 

EMC1 is achieved when electronic devices coexist in harmony, such that each device func-
tions according to its intended purpose in the presence of, and in spite of, the others. EMI 

1 For an in-depth treatment of EMC, see C. R. Paul, Introduction to Electromagnetic Compatibility, 2nd 
ed. Hoboken, NJ: John Wiley & Sons, 2006.
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oscillation of a radio receiver or transmitter circuit.
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is the problem that occurs when unwanted voltages or currents are present to influence 
the performance of a device, while EMC is the solution to the problem. The goal of EMC 
is  system or subsystem compatibility, and this is achieved by applying proven design tech-
niques, the use of which ensures a system relatively free of EMI problems.

EMC is a growing field because of the ever-increasing density of electronic circuits in 
modern systems for computation, communication, control, and so on. It is a concern not 
only to electrical and computer engineers, but also to automotive engineers. The increas-
ing application of automotive electronic systems to improve fuel economy, reduce  exhaust 
emissions, ensure vehicle safety, and provide assistance to the driver has resulted in a grow-
ing need to ensure compatibility during normal operation. We will consider the sources 
and characteristics of EMI. Later, we will examine EMI control techniques.

A. Source and Characteristics of EMI
First, let us classify EMI in terms of its causes and sources. The classification will facilitate 
recognition of sources and assist in determining means of control. As mentioned earlier, 
any electronic device may be the source of EMI, although this is not the intention of the 
designer. The cause of the EMI problem may be either within the system, in which case it 
is termed an intrasystem problem, or from the outside, in which case it is called an intersys-
tem problem. Figure 13.23 shows intersystem EMI problems. The term “emitter” is com-
monly used to denote the source of EMI, while the term “susceptor” is used to designate a 
victim device. Tables 13.2 and 13.3 present typical causes of intrasystem and intersystem 
problems. Both intrasystem and intersystem EMI generally can be controlled by the sys-
tem design engineer by following some design guidelines and techniques. For intrasystem 
EMI problems, for example, the design engineer may apply proper grounding and wiring 
arrangements, shielding of circuits and devices, and filtering.

The sources of EMI can be classified as natural or artificial (manmade). The origins 
of EMI are basically undesired conducted emissions (voltages and/or currents) or radiated 
emissions (electric and/or magnetic fields). Conducted emissions are currents that are car-
ried by metallic paths (the unit’s power cord) and placed on the common power network, 
where they may cause interference with other devices that are connected to the network. 
Radiated emissions concern the electric fields radiated by the device that may be received 
by other electronic devices causing interference in those devices. Figure 13.24 illustrates the 
conceptual difference between conducted and radiated paths.

No single operating agency has jurisdiction over all systems to dictate actions necessary to 
achieve EMC. Thus, EMC is usually achieved by industrial association, voluntary regulation, 
government-enforced regulation, and negotiated agreements between the  affected parties. 
Frequency plays a significant role in EMC. Frequency allocations and  assignments are made 
according to the constraints established by international treaties. The Radio Regulations result-
ing from such international treaties are published by the  International Telecommunication 
Union (ITU). The Federal Communications Commission (FCC) has the authority over radio 
and wire communications in the United States. The FCC has set limits on the radiated and 
conducted emissions of electronic devices including calculators, televisions, printers, modems, 
and personal computers. It is illegal to market an electronic device in the United States unless 
its radiated and conducted emissions have been measured and do not exceed the limits of FCC 
regulations. Therefore, any electronic device designed today that is designed without incorpo-
rating EMC design principles will probably fail to comply with the FCC limits.
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Microwave
relay link

Aircraft
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Radar

Power lines

Telecommunications

Radio

Mobile TX
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FM/TV
broadcast

E = Emitters of interference
S = Susceptible equipment
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E S

E S

E S

E

S

E

FIGURE 13.23 Typical examples of intersystem EMI problems. Source: J. I. N. Violette et al., 
Electromagnetic Compatibility Handbook. New York: Van Nostrand Reinhold, 1987, p. 4.

TABLE 13.2 Intrasystem EMI Causes

Emitters Susceptors

Power supplies Relays
Radar transmitters Radar receivers
Mobile radio transmitters Mobile radio receivers
Fluorescent lights Ordnance
Car ignition systems Car radio receivers

TABLE 13.3 Intersystem EMI Causes

Emitters Susceptors

Lightning strokes Radio receivers
Computers TV sets
Power lines Heart pacers
Radar transmitters Aircraft navigation systems
Police radio transmitters Taxicab radio receivers
Fluorescent lights Industrial controls
Aircraft transmitters Ship receivers
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B. EMI Control Techniques
The three common design approaches used to control or suppress EMI are grounding, 
shielding, and filtering. Although each technique has a distinct role in system design, 
proper grounding may sometimes minimize the need for shielding and filtering; also 
proper shielding may minimize the need for filtering. Therefore, we discuss the three 
techniques, grounding, shielding, and filtering, in that order.

Grounding

Grounding is the establishment of an electrically conductive path between two points to 
connect electrical and electronic elements of a system to one another or to some reference 
point, which may be designated the ground. An ideal ground plane is a zero-potential, zero-
impedance body that can be used as a reference for all signals in associated circuitry and to 
which any undesired current can be transferred for the elimination of its effects.

The purpose of the floating ground is to isolate circuits or equipment electrically from 
a common ground plane. This type of grounding technique may cause a hazard. Single-
point grounding is used to minimize the effects of facility ground currents. Multiple-point 
grounding minimizes ground lead lengths. The ground plane might be a ground wire that 
is carried throughout the system or a large conductive body.

Bonding is the establishment of a low-impedance path between two metal surfaces. 
Grounding is a circuit concept, while bonding denotes the physical implementation of that 
concept. The purpose of a bond is to make a structure homogeneous with respect to the 
flow of electrical currents, thus avoiding the development of potentials between the metal-
lic parts, since such potentials may result in EMI. Bonds provide protection from electrical 
shock, power circuit current return paths, and antenna ground plane connections and also 
minimize the potential difference between the devices. They have the ability to carry large 
fault current.

There are two types of bonds: direct and indirect. The direct bond is a metal-to-metal 
contact between the elements connected, while the indirect bond is a contact through the 
use of conductive jumpers.

Radiated
interference

Transmitter

Receiver

Common ground
Common
power
source

Power cables

Conducted
interference

FIGURE 13.24 Differences 
between conducted and radiated 
emissions.
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The dc resistance Rdc of a bond is often used as an indication of bond quality. It is given by

 Rdc 5
,

sS
 (13.84)

where  is the length of the bond,  is its conductivity, and S is its cross-sectional area. As 
frequency increases, the bond resistance increases due to skin effect. Thus the ac resistance 
Rac is given as

 Rac 5
,

sdw
 (13.85)

where w is the width of the bond and d is the skin depth.
Bonding effectiveness can be expressed as the difference (in dB) between the induced 

voltages on an equipment case with and without the bond trap.

Shielding

The purpose of shielding is to confine radiated energy to a specific region or to prevent 
radiated energy from entering a specific region. Shields may be in the form of partitions 
and boxes as well as in the form of cable and connector shields.

Shield types include solid, nonsolid (e.g., screen), and braid, as is used on cables. In all 
cases, a shield can be characterized by its shielding effectiveness. The shielding effectiveness 
(SE) is defined as

 SE 5 10 log10 
incident power density

transmitted power density
 (13.86)

where the incident power density is the power density at a measuring point before a shield is 
installed and the transmitted power is the power density at the same point after the shield is in 
place. In terms of the field strengths, the shielding effectiveness may also be defined as the ratio 
of the field Et transmitted through to the inside to the incident field Ei. Thus, SE is given by

 SE 5 20 log10 
Ei

Et
 (13.87)

For magnetic fields,

 SE 5 20 log10 
Hi

Ht
 (13.88)

a computer cabinet is much thicker than this, an aluminum case is considered a highly 
 effective shield. A cabinet that effectively shields the circuits inside from external fields 
is also highly effective in preventing radiation from those circuits to the external world. 
Because of the effective shield, radiated emission from the computer system is caused by 
openings in the cabinet such as cracks or holes from disk drives and from wires that pen-
etrate the cabinet such as power cords and cables to external devices.
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For example, aluminum has s 5 3.5 3 107 S/m, e 5 eo, m 5 mo. An aluminum sheet 
at 100 MHz has an SE of 100 dB at a thickness of 0.01 mm. Since an aluminum sheet for 
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Filtering

An electrical filter is a network of lumped or distributed constant resistors, inductors, and 
capacitors that offers comparatively little opposition to certain frequencies, while blocking 
the passage of other frequencies. A filter provides the means whereby levels of conducted 
interference are substantially reduced.

The most significant characteristic of a filter is the insertion loss it provides as a func-
tion of frequency. Insertion loss (IL) is defined as

 IL 5 20 log10 
V1

V2
 (13.89)

where V1 is the output voltage of a signal source with the filter in the circuit, and V2 is the 
output voltage of the signal source without the use of the filter. Low-pass filters are com-
monly used in EMC work. The insertion loss for the low-pass filters is given by

 IL 5 10 log10 11 1 F2 2  dB (13.90)

where

 F 5 epfRC, for a capacitive filter
pfL/R, for an inductive filter

 (13.91)

and f is the frequency.

Antennas for body-centric communication (Figure 13.25) have been introduced in recent 
years. Antennas in this new class can be sewn directly onto clothes. Weaving antennas and 
other electronic sensors into textiles heralds a new era for the apparel industry. The gar-
ments of the future will not only cover the human body and protect against the extremes of 
nature, but also collect and transmit crucial information about the wearer’s vital signs and 
current environment. These capabilities will be achieved by seamlessly tailoring biomedical 
and environmental monitoring systems into fabric.

Researchers at the Ohio State University created a prototype using plastic film and 
metallic thread. Some of the novel body-worn antennas and medical sensors they have 
developed are based on embroidered conductive polymer fibers called e-fibers on textiles. 
The flexible conductors are constructed from silver-coated p-phenylene-2,6-benzobisoxa-
zole (PBO) fibers. The e-fibers are composed of high-strength and flexible polymer cores 
that incorporate conductive metallic coatings. They are readily embroidered onto regular 
textiles and can also be laminated onto polymer dielectric substrates.

The e-fiber textiles exhibit an insertion loss of only 0.07 dB/cm at 1 GHz and 0.15 dB/
cm at 2 GHz. They provide inherent mechanical strength that is due to their polymer core, 
together with high electrical conductivity resulting from the silver coating. These e-fibers 
are twisted together to improve their conductivity. For instance, the 332-strand e-fibers 
have a low resistivity of only 0.8 V/m. More importantly, e-fibers are suitable for automatic 

13.11 APPLICATION NOTE—TEXTILE ANTENNAS AND SENSORS
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embroidery onto textiles to realize various antenna and circuit designs. The embroidered 
e-fiber textile electronics exhibit both mechanical and electrical advantages. Also, because 
of their high conductivity, e-fibers provide much better antenna performance than other 
textile antennas utilizing less conductive materials or embedded metal wires.

The e-fibers are sewn onto textiles via computerized embroidery processes to form 
antennas or RF circuits. Because the fibers are so thin, they can be bundled to form much 
thicker threads (664 strands per thread) for improved conductivity. During embroidery, 
an “assistant” yarn is used to couch the e-fibers onto one side of the textile’s surface. This 
procedure avoids abrasion damage to the silver coatings on the e-fiber’s polymer core. The 
antenna and sensor designs are translated into embroidery software, followed by digitizing 
stitches of the assistant yarn. As the sewing machine carries out each stitch, the e-fibers are 
firmly and precisely placed onto the textile. To improve surface conductivity by minimizing 
physical discontinuities and thread gaps, a second layer can be embroidered right on top of 

frequency. This precaution is critical to realizing high-performance antennas and circuits.
Although primarily designed for military use, the e-fiber technology could potentially 

be applied to the manufacture of gear for police officers, firefighters, and astronauts—
anybody who needs to keep the hands free for important work. The European Integrated 
Project Proetex aims at developing such wearable textile systems chiefly for professional 
firefighters and other first responders. A variety of sensors are being sewn inside and 

tronic unit and transmitted to a base station. Suitable antennas that combine flexibility with 
robustness and reliability are needed for this purpose. In other applications substrates at 
least 2 mm thick are used to print the antennas. But since the clothes are usually thinner, 
a flexible protective foam available in a variety of thicknesses and easily layered with gar-
ments such as firefighter suits is employed in the design. Proetex also contemplates design-
ing wearable textile systems for civilian victims of natural and other disasters.

Textile antennas find applications not only for continuous monitoring, but also for 
therapeutic regimes. For instance, they can be made to produce hyperthermia for the treat-
ment of tumors and to monitor various physiological parameters. In addition to medical 
applications, textile antennas serve as part of a biotelemetry system to establish wireless 
communication links between implantable devices and exterior instruments.

FIGURE 13.25 Textile antenna.
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outside the firefighter’s outfit, and the signals from them are processed in a wearable elec-

the first (double embroidery). It is recommended that the resultant e-fiber surface discon-
tinuities be kept to less than λ/20, where λ is the free-space wavelength of the operational 
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13.12 APPLICATION NOTE—FRACTAL ANTENNAS

Antennas whose shape is inherited from fractals are called fractal antennas. The 
widespread use of wireless communication systems posed the necessity for the design of 

sonal communication systems, satellite communication terminals, RFID, unmanned aerial 
vehicles, and so on. The central idea in their design involves optimal appropriation of the 
physical space either in planar or in 3-dimension. This accomplishes greater bandwidth of 
operation from a low quality factor. Fractal concepts have been applied to many branches 
of science and engineering, including fractal electrodynamics for radiation, propagation, 
and scattering. They have been extended to antenna theory and design resulting in the 
implementations of different fractal antenna elements and arrays.

There are broadly two categories of fractals: deterministic and random. Deterministic 
fractals are generated from several scaled-down and rotated copies of themselves. 
Examples are the von Koch snowflake and the Sierpinski gaskets. Recursive algorithms 
are used to generate such fractals. Random fractals evince some degree of randomness 
such as is found in natural phenomena. Fractal geometries can best be characterized and 
generated using an iterative process suitable for self-similar and self-affinity structures. 
Figure 13.26 illustrates this iterative process in generating few iterations of a Koch loop 
and a Koch loop antenna at a chosen iteration. In a similar fashion, other shapes can be 
generated. Figure 13.27 shows the stages of fractal tree dipole antenna. Figures 13.28 
and 13.29 depict a fern leaf and the Sierpinski triangle, which can also be rendered as 
antennas.

antennas. A small circular loop of quarter wavelength perimeter has low radiation resis-
tance, but a Koch loop occupying similar space has 35 times higher resistance. Higher 
iterative geometries cause longer electrical lengths and exhibit lower resonant frequen-
cies. The meanderings of fractal contour impart distributive loading. For example, in 
the Koch fractal loop inductance adds in a distributive way. The increase in inductance 

13_Sadiku_Ch13.indd   739 17/10/17   12:05 PM

Historically, antennas were called aerials; but they were so named because of their resem-
blance to insect antennae. Standard antennas come in various shapes, almost all of which 
have mathematical description. Many shapes occurring in nature cannot be described in 
terms of euclidean geometry. For example, a fern leaf, a thin snowflake, the shoreline, and a 

statistically similar to a part thereof. These are characterized by fractal geometry. A fractal 
is an iteratively generated geometry that has fractal dimensions. The underlying notions 
were conceived by Benoit B. Mandelbrot. He investigated the relationship between these 
iterated function systems and the nature around us using previous contributions of Gaston 
Julia, Pierre Fatou, and Felix Hausdorff. He depicted many fractals existing in nature and 
was able to accurately model certain phenomena. Also, he introduced new fractal mod-
els for more complex structures, including trees, clouds, and mountains, that possess an 
inherent self-similarity and self-affnity by way of geometrical continuation in terms of 
non-euclidean elements.

A useful feature of fractal antennas arises from their space-filling property that helps 
in miniaturization while increasing the length. This permits low values of Q factors and 
higher bandwidths. At resonance, the impedance is higher compared to that of traditional 

class of crustaceans possess self-similarity, a property that the whole is deterministically or 

wideband, or multiband, low-profile, small antennas. Their role became important in per-
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0 1 2 3 4

Koch loop antenna

FIGURE 13.26 Generating Koch loop antenna.

FIGURE 13.27 Fractal tree dipole antenna iteration after 
iteration.
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allows the monopole to be smaller than the corresponding linear monopole and still be 
resonant. Most of the miniaturization benefits of the fractal dipoles occur within the first  
five iterations, with meager marginal changes in the characteristics at greater complexi-
ties. Similar to several fractal antennas, Sierpinski gaskets possess desirable radiation 
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FIGURE 13.28 Fern leaf.

FIGURE 13.29 Sierpinski triangle.
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and impedance characteristics and can be used as monopoles and dipoles with similar 
cross-sectional contours. Although fractal antennas have several advantages, they do not 
necessarily outperform other classical categories.
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Radio-frequency identification (RFID) is a relatively new technology for tracking and 
access applications that have been under development since the 1980s. For example, with 
RFID, one can use electromagnetic signals to read data from electronic labels without 
actual contact. The label to be read does not have be located in a line-of-sight region. This 
technology is very attractive for tracking and tagging purposes (Figure 13.30). For a long 
time, the universal product code (UPC), also known as the bar code, has been the foremost 
means of identifying products. Designed to provide an open standard for product labeling, 
bar codes not only reduced costs but also increased efficiency and favored innovations 
that benefited consumers, manufacturers, wholesalers, and retailers alike. However, bar 
codes suffer drawbacks such as the need for line-of-sight from the scanner to the bar code. 
They are also limited in their capacity for storing data and thus are employed only to track 
product categories.

The Electronic Product Code (EPC) is one of the industrial standards for global RFID 
usage, and a core element of the EPCglobal network, an architecture of open standards 
developed by the GS1 EPCglobal community. Most currently deployed EPC RFID tags 
comply with ISO/IEC 18000-6C for the RFID air interface standard. In ambient conditions 
that do not permit bar code labels as effective identifiers, RFID tags could serve the pur-
pose. Thanks to the technology's ability to track moving objects, use of RFID has become 
an established practice in a wide range of markets.

FIGURE 13.30 Schematic view of an RFID tag in use.
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RFID also greatly facilitates identification of and automated data collection from 
livestock, moving trucks, or other nonstationary objects. Pharmaceuticals can be tracked 
through warehouses. Livestock and pets may have tags injected, allowing positive identifi-
cation of the animals.

Essentially, an RFID system works as follows. Two-way radio transmitter–receivers 
called interrogators or readers send a signal to the tag and read its response. The readers 
generally transmit their observations to a computer system running RFID software or 
RFID middleware. RFID systems typically come in three configurations. One is a passive 
reader/active tag (PRAT) system in which a passive reader does no more than receive radio 
signals from active tags that are battery operated and do no more than transmit. The recep-
tion range of a PRAT system reader can be adjusted from 1 to 2000 feet, thereby allowing 
for great flexibility in applications such as asset protection and supervision. Another con-
figuration is an active reader/passive tag (ARPT) system, in which an active reader trans-
mits interrogator signals and also receives authentication replies from passive tags. Finally, 
there is the active reader/active tag (ARAT) system in which active tags are awakened with 
an interrogator signal from the active reader. A variation of this system could also use a 
battery-assisted passive (BAP) tag, which acts like a passive tag but has a small battery to 
power the tag’s return reporting signal. RFID tags can be passive, active, or battery-assisted 
passive. An active tag has an onboard battery and periodically transmits its ID signal. A 
BAP tag has a small battery onboard and is activated in the presence of an RFID reader. A 
passive tag is cheaper and smaller because it has no battery. Instead, the tag uses the radio 
energy transmitted by the reader as its energy source. The interrogator must be close for 
the RF field to be strong enough to transfer sufficient power to the tag. Since tags have 
individual serial numbers, the RFID system design can discriminate several tags that might 
be within the range of the RFID reader and read them simultaneously.

The tag’s information is stored electronically in a nonvolatile memory. The RFID 
tag includes a small RF transmitter and receiver. An RFID reader transmits an encoded 
radio signal to interrogate the tag. The tag receives the message and responds with its 
identification information. This may be only a unique tag serial number or perhaps such 
product-related information as a stock number, lot or batch number, production date, or 
other specific information. RFID tags contain at least two parts: an integrated circuit (for 
storing and processing information, modulating and demodulating an RF signal, collecting 
dc power from the incident reader signal, and other specialized functions) and an antenna 
(for receiving and transmitting the signal). Fixed readers are set up to create a specific 
interrogation zone, which can be tightly controlled. This allows a highly defined reading 
area to accommodate movement of the tags in and out of the interrogation zone. Mobile 
readers may be handheld or mounted on carts or vehicles.

Printed antenna technology, electronic circuitry, the middleware for data collection 
and filtering, and other areas of innovation are constantly evolving. Some of the complexi-
ties are not understood by the general public. Since RFID tags can be attached to clothing, 
possessions, or even implanted within people, the possibility of reading personally linked 
information without consent has raised privacy concerns.
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% This script allows the user to calculate and plot the far-field 
% radiation pattern for an array of isotropic point sources, 
% placed anywhere around the ‟origin”.
% The main assumption is that the array elements are clustered 
% together relative to the far-field, so that the origin is roughly 
% in the center of the cluster. The user can still enter [x y] 
% coordinates and magnitude/phase for each point source. Also the 
% calculation assumes free space.

% Prompt user for number of antennas and frequency
n=input(‛Enter number of point sources \n> ‛);
f=input(‛Enter frequency \n> ‛);

% Begin loop prompting the user to enter each coefficient and each
% coordinate
for i=1:n
    disp(‛Enter source coefficient for point ‛)
    disp(sprintf(‛ %d source coefficient (a*exp(j*b) format)’,i))
    A(i)=input(‛> ‛);  % store complex coefficients in A   
    disp(‛Enter the (x,y) coordinate for point ‛)
    disp(sprintf(‛ %d source coefficient (in format [x y])’,i))
    P(i,:)=input(‛> ‛); % store coordinates in P, where i is 
                                      % the ith element (row) 
    % and column 1 contains the x values, column 2 the y values
end

Beta = 2*pi*f/3e8;  % solve for free space

phi = 0:2*pi/1000:2*pi;   % create a vector of 1001 points around 
                                       % a circle
Etotal=zeros(1,length(phi));   % the total electric field is also 
                   % a vector of 1001 points

% loop through the antennas 
for i=1:n
    % first determine how much the point source is offset from the
    % phi = 0
    % axis (x-axis)
    phi_offset(i) = atan2(P(i,2), P(i,1));
    % now find the distance from the ith point source to the origin
    rho(i) = sqrt(P(i,1)^2+P(i,2)^2);
end

% loop through the phi array and calculate the far field as a 
% function of phi 
for phi_index = 1:length(phi)
    for i=1:n  % need to add 
        % The apparent angle between a point in the far field is the
        %  difference between phi and the offset of the antenna 

from the
        % x-axis

MATLAB 13.1
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 1. We have discussed the fundamental ideas and definitions in antenna theory. The basic 
types of antenna considered were the Hertzian (or differential length) dipole, the half-
wave dipole, the quarter-wave monopole, and the small loop.

 2. Theoretically, if we know the current distribution on an antenna, we can find the 
retarded magnetic vector potential A, and from it we can find the retarded electro-
magnetic fields H and E by using

H 5 = 3
A
m

,  E 5 h H 3 ak

 The far-zone fields are obtained by retaining only 1/r terms.
 3. The analysis of the Hertzian dipole serves as a stepping-stone for other antennas. The 

radiation resistance of the dipole is very small. This limits the practical usefulness of 
the Hertzian dipole.

 4. The half-wave dipole has a length equal to l/2. It is more popular and of more 
 practical use than the Hertzian dipole. Its input impedance is 73 1 j42.5 V.

 5. The quarter-wave monopole is essentially half a half-wave dipole placed on a 
 conducting plane.

 6. The radiation patterns commonly used are the field intensity, power intensity, and 
radiation intensity patterns. The field pattern is usually a plot of 0 Es 0  or its normalized 
form f(u). The power pattern is the plot of 3ave or its normalized form f 2(u).

 7. The directive gain is the ratio of U 1u, f 2  to its average value. The directivity is the 
maximum value of the directive gain.

 8. An antenna array is a group of radiating elements arranged to produce particular 
 radiation characteristics. Its radiation pattern is obtained by multiplying the unit 
 pattern (due to a single element in the group) with the group pattern, which is the 
plot of the normalized array factor. For an N-element linear  uniform array,

0AF 0 5 ∞
sin aNc

2
b

sin ac

2
b

∞

 where c 5 bd cos u 1 a, b 5 2p/l, d 5 spacing between the elements, and a 5 
interelement phase shift.

 9. The Friis transmission formula characterizes the coupling between two  antennas in 
terms of their directive gains, separation distance, and frequency of operation.

        phi_apparent = phi(phi_index) - phi_offset(i);  
        Etotal(phi_index)=Etotal(phi_index) + A(i)*...
        exp(j*Beta*rho(i)*cos(phi_apparent));
    end
end

% Polar plot of far-field field pattern
polar(phi, abs(Etotal))

SUMMARY
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10. For a bistatic radar (one in which the transmitting and receiving antennas are 
 separated), the power received is given by

Pr 5
GdtGdr

4p
 c l

4pr1r2
d

2

 s Prad

 For a monostatic radar, r1 5 r2 5 r and Gdt 5 Gdr.
11. Electromagnetic compatibility (EMC) is the capability of electrical and electronic devices 

to operate in their intended electromagnetic environment without suffering or causing 
unacceptable degradation as a result of EMI.

12. Electromagnetic interference (EMI) is the disturbance generated by one electronic device 
that affects another device. It can be suppressed by grounding, shielding, and filtering.

 13.1 An antenna located in a city is a source of radio waves. How much time does it take the 
waves to reach a town 12,000 km away?

(a) 36 s (d) 40 ms
(b) 20 ms (e) None of the above
(c) 20 ms

 13.2 In eq. (13.34a–c), which term is the radiation term?
(a) 1/r term (c) 1/r3 term
(b) 1/r2 term (d) All of the above

 13.3 A very small, thin wire of length l/100 has a radiation resistance of
(a) .  0 V (c) 7.9 V
(b) 0.08 V (d) 790 V

 13.4 A quarter-wave monopole antenna operating in air at frequency 1 MHz must have an 
overall length of
(a) , W l (c) 150 m (e) , V l

(b) 300 m (d) 75 m

 13.5 If a small single-turn loop antenna has a radiation resistance of 0.04 V, how many turns 
are needed to produce a radiation resistance of 1 V?

(a) 150 (c) 50 (e) 5

(b) 125 (d) 25

 13.6 At a distance of 8 km from a differential antenna, the field strength is 12 mV/m. The 
field strength at a location 20 km from the antenna is

(a) 75 mV/m (c) 4.8 mV/m
(b) 30 mV/m (d) 1.92 mV/m

 13.7  An antenna has Umax 5 10 W/sr, Uave 5 4.5 W/sr, and hr 5 95%. The input power to 
the antenna is

(a) 2.222 W (c) 55.55 W
(b) 12.11 W (d) 59.52 W

REVIEW
QUESTIONS
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 13.8  A receiving antenna in an airport has a maximum dimension of 3 m and operates at 
100 MHz. An aircraft approaching the airport is 0.5 km from the antenna. The aircraft 
is in the far-field region of the antenna.

(a) True (b) False

 13.9  A receiving antenna is located 100 m away from the transmitting antenna. If the effec-
tive area of the receiving antenna is 500 cm2 and the power density at the receiving 
location is 2 mW/m2, the total power received is:

(a) 10 nW (c) 1 mW (e) 100 mW
(b) 100 nW (d) 10 mW

13.10 Let R be the maximum range of a monostatic radar. If a target with radar cross section 
of 5 m2 exists at R/2, what should be the target cross section at 3R/2 to result in an equal 
 signal strength at the radar?

(a) 0.0617 m2 (c) 15 m2 (e) 405 m2

(b) 0.555 m2 (d) 45 m2

Answers:  13.1d, 13.2a, 13.3b, 13.4d, 13.5e, 13.6c, 13.7d, 13.8a, 13.9e, 13.10e.

Section 13.2—Hertzian Dipole

 13.1 The magnetic vector potential at point P 1r, u, f 2  due to a small antenna located at the 
 origin is given by

As 5
50 e2jbr

r  ax

  where r2 5 x2 1 y2 1 z2. Find E 1r, u, f, t 2  and H 1r, u, f, t 2  at the far field.

 13.2 A dipole antenna has the following parameters :
  Antenna length < 5 0.02

  Current magnitude Io 5 3 A
  Operating frequency f 5 400 MHz
  Radiation range r 5 60 m

  Determine the following:
  (a) The magnitude of the electric field intensity at u 5 90

  (b) The magnitude of the magnetic field intensity at u 5 90

  (c) The radiation resistance
  (d) The radiated power

 13.3 A Hertzian antenna in free space is 10 cm long. It is fed by a current of 20 A at frequency 
of 50 MHz.  Find the electric and magnetic fields at far zone.

 13.4 Determine the current necessary for a 2 cm Hertzian dipole to radiate 12 W at 140 MHz.

PROBLEMS
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FIGURE 13.31 Short dipole antenna with triangular 
current distribution; for Problem 13.5.

 13.5  (a)  Instead of a constant current distribution assumed for the short dipole of Section 13.2, 

     assume a triangular current distribution Is 5 Io a1 2
2 0 z 0

,
b  shown in Figure 13.31. 

Show that

Rrad 5 20 p2 c ,

l
d

2

      which is one-fourth of that in eq. (13.13). Thus Rrad depends on the current 
distribution.

  (b)  Calculate the length of the dipole that will result in a radiation resistance of 0.5 V.

 13.6 A  short dipole antenna operates at the AM broadcast band at 1.2 MHz.  To achieve a 
radiation resistance of 0.5 V, how long must the antenna be?

Section 13.3—Half-Wave Dipole Antenna

 13.7 A half-wave dipole antenna is driven by a 24 V, 200 MHz source having an internal imped-
ance of 40 V. Find the average power radiated by the antenna, given that Zin 5 73  j42 V. 

 13.8 A car radio antenna 1 m long operates in the AM frequency band of 1.5 MHz. How 
much current is required to transmit 4 W of power?

*13.9 (a)  Show that the generated far-field expressions for a thin dipole of length  carrying 
sinusoidal current Io cos bz are

 Hfs 5
jIoe2br

2pr
 
cos ab,

2
 cos ub 2 cos 

b,

2
sin u

,  Eus 5 hHfs

     [Hint: Use Figure 13.4 and start with eq. (13.14).]

  (b)  On a polar coordinate sheet, plot f(u) in part (a) for , 5 l, 3l/2, and 2l.

13.10 An antenna engineer is asked to design a l/2 dipole antenna to operate at 450 MHz.
  (a) Calculate the length of the antenna if it is located in free space.
  (b)  Determine the length of the antenna if it is located under seawater (« 5 81«0, 

m 5 m0,  5 4 S/m).
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Section 13.4—Quarter-Wave Monopole Antenna

 13.11 Quarter-wavelength antennas are used to transmit:
  (a) AM signals at 1150 kHz
  (b) FM signals at 90 MHz
  (c) VHF-TV signals at 80 MHz
  (d) UHF-TV signals at 600 MHz
  Calculate the respective antenna lengths.

13.12  A dipole antenna (, 5 l /8) operating at 400 MHz is used to send a message to a satellite 
in space. Find the radiation resistance of the antenna.

Section 13.5—Small-Loop Antenna

 13.13  A 100-turn loop antenna of radius 20 cm operating at 10 MHz in air is to give a 50 
mV/m field strength at a distance 3 m from the loop. Determine

  (a) The current that must be fed to the antenna
  (b) The average power radiated by the antenna

 13.14 A circular loop antenna has a mean radius of 1.2 cm and N turns. If it operates at 80 
MHz, find N that will produce a radiation resistance of 8 V. 

 13.15 A loop antenna with loop radius of 0.4 m is made of copper wire of radius 4 mm. If the 
loop radiates at 6 MHz and carries a current of 50 A, find 

  (a) The radiation resistance of the loop 
  (b) The power radiated
  (c) The radiation efficiency

Section 13.6—Antenna Characteristics

 13.16 Sketch the normalized E-field and H-field patterns for
  (a) A half-wave dipole
  (b) A quarter-wave monopole

 13.17 The radiation efficiency is given by eq. (13.50) as

hr 5
Prad

Prad 1 Pohm

  where P rad is the radiation power and P ohm is the power loss due to ohmic resistance  of 
the antenna.  For a cylindrical conductor of length z that carries current I,

Pohm 5
1
2

I2 Rs Dz

  where Rs 5
1

sd2pa
 and  is the skin depth. A short antenna of length z has an effi-

ciency of 20%. Assume that the efficiency is improved by increasing the length to 2z, 
while keeping the same current. What is the new efficiency?
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13.18 Determine the radiation efficiency of a half-wave dipole operating at 6 MHz.  The wire 
is made of copper  ( = 58 MS/m) and is 1.2 mm in radius.

 13.19 An antenna located at the origin has a far-zone electric field as

Es 5
cos 2u

r e2jbrau V/m

  (a) Obtain the corresponding Hs field.
  (b) Determine the power radiated. 
  (c) What fraction of the total power is radiated in the belt 60° , u , 120°?

 13.20 In the far field of a particular antenna located at the origin, the magnetic field  intensity is

Hs 5
jbIo

4pr
 1sin f au 1 cos u cos f af 2

  where Io is the peak value of the input current. Show that the radiation resistance is given 
by Rrad = 20 b2.

*13.21 An antenna located on the surface of a flat earth transmits an average power of 200 kW. 
Assuming that all the power is radiated uniformly over the surface of a hemisphere with 
the antenna at the center, calculate

  (a) The time-average Poynting vector at 50 km
  (b) The maximum electric field at that location.

 13.22 The radiated power density of an antenna at far-zone is given by

3ave 5
a sin2 u sin3 f

r2  af,  0 , u , p, 0 , f , p

  where a is a constant. Determine the directive gain and directivity.

 13.23 For a one-and-a-half-wave antenna, show that the normalized field pattern is 

f 1u 2 5
cos 11.5 p cos u 2

sin u

  Use MATLAB to plot f(u).

 13.24 Divide the interval 0 , u , 2p into 20 equal parts and use MATLAB to show that

3
2p

0

11 2 cos  u 2
u

  du 5 2.438

13_Sadiku_Ch13.indd   750 15/11/17   5:36 PM



 Problems 751

 13.25 For a thin dipole l/16 long, find

  (a) The directive gain  (b) The directivity
  (c) The effective area  (d) The radiation resistance

 13.26 Find the directive gain and directivity of the small loop antenna.

 13.27 A quarter-wavelength monopole antenna is used at 1.2 MHz for AM transmission. 
The antenna is vertically placed above a conducting surface. Determine

  (a) The length of the antenna
  (b) The radiation resistance
  (c) The directivity of the antenna

 13.28 Find Uave, Umax, and D if:

  (a) U 1u, f 2 5 sin2 2u,  0 , u , p, 0 , f , 2p

  (b) U 1u, f 2 5 4 csc2 u,  p/3 , u , p/2, 0 , f , p

  (c) U 1u, f 2 5 2 sin2 u sin2 f,  0 , u , p, 0 , f , p

 13.29 For each of the following radiation intensities, calculate the directive gain and directivity.

  (a) U(u, f) 5 10 sin u sin2 f, 0 , u , p, 0 , f , 2p

  (b) U(u, f) 5 2 sin2 u sin3 f, 0 , u , p, 0 , f , p
  (c) U(u, f) 5 5 (1sin2 u sin2 f), 0 , u , p, 0 , f , 2p

13.30 The radiation intensity of an antenna is given by

U 1u, f 2 5 e 4 sin2u sin  f/2, 0 , f , p, 0 , u , p

0,                     otherwise

  Calculate the directivity of the antenna.

 13.31 An antenna has a far-field electric field given by

Es 5
Io

r
e2jbrsin u au

  where Io is the maximum input current. Determine the value of Io to radiate a power of 50 mW.

 13.32 Find the radiation intensity of a small loop antenna.

 13.33 The field due to an isotropic (or omnidirectional) antenna is given by

E 5
al
r

  where a is a constant. Determine the radiation resistance of the antenna.

 13.34 Determine the fraction of the total power radiated by the elemental (Hertzian) antenna 
over  0 , u , 60º.
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Section 13.7—Antenna Array

 13.35  Derive Es at far field due to the two-element array shown in Figure 13.32. Assume that 
the Hertzian dipole elements are fed in phase with uniform current Io cos vt.

 13.36  An array comprises two dipoles that are separated by one wavelength. If the dipoles are 
fed by currents of the same magnitude and phase,

  (a) Find the array factor.
  (b) Calculate the angles where the nulls of the pattern occur.
  (c) Determine the angles where the maxima of the pattern occur.
  (d) Sketch the group pattern in the plane containing the elements.

 13.37 Sketch the group pattern in the xz-plane of the two-element array of Figure 13.10 with

  (a) d 5 l, a 5 p/2
  (b) d 5 l/4, a 5 3p/4
  (c) d 5 3l/4, a 5 0

 13.38  An antenna array consists of N identical Hertzian dipoles uniformly located along the 
z-axis and polarized in the z-direction. If the spacing between the dipoles is l/4, sketch 
the group pattern when (a) N 5 2, (b) N 5 4.

 13.39 An array of isotropic elements has the group pattern

F 1c 2 5 ∞ sin 12p cos c 2
sinap

2
 cos cb

 cos2ap

2
 cos cb 4

  Use MATLAB to plot F(c) for 0 , c , 180.

FIGURE 13.32 Two-element array of Problem 13.35.
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 13.40 Sketch the resultant group patterns for the four-element arrays shown in Figure 13.33.

Section 13.8—Effective Area and the Friis Equation

 13.41 A microwave antenna has a power gain of 20 dB at 10 GHz. Determine its effective area.

 13.42  An antenna receives a power of 2 mW from a radio station. Calculate its effective area if 
the antenna is located in the far zone of the station where E 5 50 mV/m.

 13.43 A telemetry transmitter situated on the moon transmits 120 mW at 200 MHz. The gain 
of the transmitting antenna is 15 dB. Calculate the  gain (in dB) of the receiving antenna 
(situated on earth) in order to receive 4 nW. Assume that the moon is 238,857 miles 
away from the earth and that 1 mile 5 1.609 km.

 13.44 In a communication system, suppose the transmitting and receiving antennas have 
gains 25 dB and 20 dB, respectively, and  are 42 km apart. Find the minimum power 
that must be transmitted in order to deliver a minimum of 3 mW. The channel fre-
quency is 3 GHz.

 13.45  The power transmitted by a synchronous orbit satellite antenna is 320 W. If the antenna 
has a gain of 40 dB at 15 GHz, calculate the power received by another antenna with a 
gain of 32 dB at the range of 24,567 km.

 13.46  A communication link uses a half-wave dipole antenna for transmission and another 
half-wave dipole antenna for reception.  The link operates at 20 MHz and the two 
antennas are separated by a distance of 80 km. If the receiving antenna must receive an 
average power of 0.5 mW, determine the minimum required current of the transmitting 
antenna.

 13.47  Two identical antennas in an anechoic chamber are separated by 12 m and are 
oriented for maximum directive gain. At a frequency of 5 GHz, the power received 
by one is 30 dB down from that transmitted by the other. Calculate the gain of the 
antennas in dB.

FIGURE 13.33 For Problem 13.40.
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Section 13.9—The Radar Equation

 13.48  An L-band pulse radar with a common transmitting and receiving antenna having a 
directive gain of 3500 operates at 1500 MHz and transmits 200 kW. If an object is 120 
km from the radar and its scattering cross section is 8 m2, find

  (a) The magnitude of the incident electric field intensity of the object
  (b) The magnitude of the scattered electric field intensity at the radar
  (c) The amount of power captured by the object
  (d) The power absorbed by the antenna from the scattered wave

 13.49 A monostatic radar operates at 4 GHz and has a directive gain of 30 dB. The radar is 
used to track a target 10 km away, and the radar cross section of the target is 12 m2. 
If the antenna of the radar transmits 80 kW, calculate the power intercepted by the 
target.

 13.50 A 4 GHz radar antenna with effective area of 2 m2 transmits 60 kW.  A target with cross 
section of 5 m2 is located 160 km away. Calculate:  (a) the round trip travel time,  (b) the 
power received, (c) the maximum detectable range, assuming that the minimum detect-
able power is 8 pW.

 13.51 It is required to double the range capacity of a radar.  What percentage increase in trans-
mitter power is necessary to achieve this?

 13.52  In the bistatic radar system of Figure 13.34, the ground-based antennas are separated by 
4 km and the 2.4 m2 target is at a height of 3 km. The system operates at 5 GHz. For Gdt 
of 36 dB and Gdr of 20 dB, determine the minimum necessary radiated power to obtain 
a return power of 8 3 10212 W.

FIGURE 13.34 For Problem 13.52.
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Vg

Zg A B

C D
Vl VL

ZL

FIGURE 13.35 For Problem 13.54.

Section 13.10—Application Note—Electromagnetic  Interference and Compatibility

 13.53  (a)  For an RL filter with L 5 50 nH and R 5 20 V, find the insertion loss in dB at 300 
MHz.

  (b) Repeat part (a) if an RC filter with C 5 60 pF and R 5 10 kV is used instead.

*13.54 The insertion loss of a filter circuit can be calculated in terms of its A, B, C, and D 
pa rameters when terminated by Zg and ZL as shown in Figure 13.35. Show that

IL 5 20 log10 `
AZL 1 B 1 CZgZL 1 DZg

Zg 1 ZL
`

 13.55 A silver rod has rectangular cross section with height 0.8 cm and width 1.2 cm. Find

  (a) The dc resistance per kilometer of the conductor
  (b) The ac resistance per kilometer of the conductor at 6 MHz

13.56 Within a shielded enclosure, the electric field is 6 V/m. It is required that the electric 
field outside the shield be no more than 20 mV/m. Find the shielding effectiveness  
in dB.

13_Sadiku_Ch13.indd   755 15/11/17   5:36 PM



COMPUTATIONAL ELECTROMAGNETICS

Until the 1940s, most electromagnetic problems were solved by using the classical  methods of sepa-
ration of variables and integral equations. Application of those methods, however,  required a high 
degree of ingenuity, experience, and effort, and only a narrow range of  practical problems could be 
investigated, owing to the complex geometries defining the  problems. While theory and experiment 
remain the two conventional pillars of science and engineering, modeling and simulation represent 
the third pillar that complements them.

Computational electromagnetics (CEM) is the theory and practice of solving EM field prob-
lems on digital computers. It offers the key to comprehensive solutions of Maxwell’s equations. In 
this chapter, the common methods used in computational electromagnetics will be presented. CEM 
techniques can be used to model electromagnetic  interaction phenomena in circuits, devices, and 
systems.

Numerical modeling and simulation have revolutionized all aspects of engineering design to the 
extent that several software packages have been developed to aid designing and modeling. Widely 
used software packages for CEM include the Numerical Electromagnetics Code (NEC) based on the 
method of moments and developed at Lawrence  Livermore National Laboratory, the High Frequency 
Structure Simulator (HFSS) based on the finite element method and developed by Ansoft, Microwave 
Office based on the method of moments and developed by Applied Wave Research, Sonnet developed 
by Sonnet, COMSOL based on the finite element method by Sonnet, COMSOL based on the finite 
element method, and QuickField, which is another finite element modeling software. These software 
packages put powerful tools and techniques, previously available only to full-time theorists, into 
the hands of engineers not formally trained in CEM. The best method or software package to use 
depends on the particular problem you are trying to solve.
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14.1 INTRODUCTION

In the preceding chapters we considered various analytic techniques for solving EM prob-
lems and obtaining solutions in closed form. A closed-form solution is one in the form of 
an explicit, algebraic equation in which values of the problem parameters can be substi-
tuted. Some of these analytic solutions were obtained assuming certain situations, thereby 
making the solutions applicable to those idealized situations. For example, in deriving the 
formula for calculating the capacitance of a parallel-plate capacitor, we assumed that the 
fringing effect was negligible and that the separation distance was very small compared 
with the width and length of the plates. Also, our application of Laplace’s equation in 
Chapter 6 was restricted to problems with boundaries coinciding with coordinate surfaces. 
Analytic solutions have an inherent advantage of being exact. They also make it easy to 
observe the behavior of the solution when there is variation in the problem parameters. 
However, analytic solutions are available only for problems with simple configurations.

When the complexities of theoretical formulas make analytic solution intractable, we 
resort to nonanalytic methods, which include (1) graphical methods, (2) experimental 
methods, (3) analog methods, and (4) numerical methods. Graphical, experimental, and 
analog methods are applicable to solving relatively few problems. Numerical methods have 
come into prominence and have become more attractive with the advent of fast digital 
computers. The three most commonly used simple numerical techniques in EM are the 
moment method, the finite difference method, and the finite element method. Most EM 
problems involve either partial differential equations or integral equations. Partial differen-
tial equations are usually solved by using the finite difference method or the finite element 
method; integral equations are solved conveniently by using the moment method. Although 
numerical methods give  approximate solutions, the solutions are sufficiently  accurate for 
engineering purposes. We should not get the impression that analytic techniques are out-
dated because of numerical methods; rather, they are complementary. As will be observed 
later, every numerical method involves analytic simplification until the method can be easily 
applied.

The MATLAB codes developed for computer implementation of the concepts 
developed in this chapter are simplified and self-explanatory for instructional purposes. 
(Appendix C provides a short tutorial on MATLAB.) The notations used in the programs 

NUMERICAL METHODS

Young men think old men are fools, but old men know young men are fools. 
—GEORGE CHAPMAN

14

14_Sadiku_Ch14.indd   757 14/11/17   2:12 PM



758 CHAPTER 14 NUMERICAL METHODS

are as close as possible to those used in the main text; some are defined wherever neces-
sary. These programs are by no means unique; there are several ways of writing a computer 
program. Therefore, users may decide to modify the programs to suit their objectives.

†14.2  FIELD PLOTTING

In Section 4.9, we used field lines and equipotential surfaces for visualizing an electrostatic 
field. However, the graphical representations in Figure 4.21 for electrostatic fields and in 
Figures 7.8(b) and 7.16 for magnetostatic fields are very simple, trivial, and qualitative. 
Accurate pictures of more complicated charge distributions would be more helpful. This 
section presents a numerical technique that may be developed into an interactive computer 
program. It generates data points for electric field lines and equipotential lines for arbitrary 
configuration of point sources.

Electric field lines and equipotential lines can be plotted for coplanar point sources 
with simple programs. Suppose we have N point charges located at position vectors  
r1, r2, . . . , rN, the electric field intensity E and potential V at position vector r are given, 
respectively, by

 E 5 a
N

k51
 

Qk 1r 2 rk 2
4pe 0 r 2 rk 0 3

 (14.1)

and

 V 5 a
N

k51
 

Qk

4pe 0 r 2 rk 0
 (14.2)

If the charges are on the same plane 1z 5 constant 2 , eqs. (14.1) and (14.2) become

 E 5 a
N

k51
 

Qk 3 1x 2 xk 2ax 1 1y 2 yk 2ay 4
4pe 3 1x 2 xk 2 2 1 1 y 2 yk 2 2 43/2 (14.3)

 V 5 a
N

k51
 

Qk

4pe 3 1x 2 xk 2 2 1 1 y 2 yk 2 2 41/2 (14.4)

To plot the electric field lines, follow these steps:

1. Choose a starting point on the field line.
2. Calculate Ex and Ey at that point using eq. (14.3).
3. Take a small step along the field line to a new point in the plane. As shown in 

 Figure 14.1, a movement D along the field line corresponds to movements Dx and Dy 
in the x- and y-directions, respectively. From Figure 14.1, it is evident that

Dx
D,

5
Ex

E
5

Ex

3Ex
2 1 Ey

2 41/2
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 or

 Dx 5
D, # Ex

3Ex
2 1 Ey

2 41/2 (14.5)

 Similarly,

 Dy 5
D, # Ey

3Ex
2 1 Ey

2 41/2 (14.6)

 Move along the field line from the old point 1x, y 2  to a new point x r 5 x 1 Dx, 
y r 5 y 1 Dy.

4. Go back to steps 2 and 3 and repeat the calculations. Continue to generate new 
points until a line is completed within a given range of coordinates. On  completing 
the line, go back to step 1 and choose another starting point. Note that since there 
are an infinite number of field lines, any starting point is likely to be on a field line. 
The points generated can be plotted by a plotter as illustrated in  Figure 14.2.

To plot the equipotential lines, follow these steps:

1. Choose a starting point.
2. Calculate the electric field 1Ex, Ey 2  at that point by using eq. (14.3).
3. Move a small step along the line perpendicular to the E-field line at that point. 

Utilize the fact that if a line has slope m, a perpendicular line must have slope 
21/m. Since an E-field line and an equipotential line meeting at a given point are 
mutually  orthogonal there,

 Dx 5
2D, # Ey

3Ex
2 1 Ey

2 41/2 (14.7)

 Dy 5
D, # Ex

3Ex
2 1 Ey

2 41/2 (14.8)

 move along the equipotential line from the old point 1x, y 2  to a new point 
1x 1 Dx, y 1 Dy 2 . As a way of checking the new point, calculate the potential at 

F

N

O

FIGURE 14.1 A small displacement on a field line.
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760 CHAPTER 14 NUMERICAL METHODS

the new and old points using eq. (14.4); the potentials must be equal because the 
points are on the same equipotential line.

4. Go back to steps 2 and 3 and repeat the calculations. Continue to generate new 
points until a line is completed within the given range of x and y. After completing 
the line, go back to step 1 and choose another starting point. Join the points gener-
ated by a plotter as illustrated in Figure 14.2.

By following the same reasoning, we can use the Biot–Savart law to plot the magnetic 
field line due to various current distributions. Programs for determining the magnetic field 
line due to line current, a current loop, a Helmholtz pair, and a solenoid can be developed. 
Programs for drawing the electric and magnetic field lines inside a rectangular waveguide 
or the power radiation pattern produced by a linear array of vertical half-wave electric 
dipole antennas can also be written.

Write a program to plot the electric field and equipotential lines due to:

(a) Two point charges Q and 24Q, located at 1x, y 2 5 121, 0 2  and 11, 0 2 , respectively.
(b) Four point charges Q, 2Q, Q, and 2Q, located at 1x, y 2 5 121, 21 2 , 11, 21 2 , 
11, 1 2 , and 121, 1 2 , respectively. Take Q/4pe 5 1 and D, 5 0.1. Consider the range 
25 , x , 5, 2 5 , y , 5.

Solution:
Based on the steps given in Section 14.2, the program in Figure 14.3 was developed. 
Enough comments are inserted to make the program as self-explanatory as possible. For 
example, to use the program to generate the plot in Figure 14.4(a), load program plotit in 
your MATLAB directory. At the command prompt in MATLAB, type

plotit 1 31 24 4, 321 0; 1 0 4, 1, 1, 0.1, 0.01, 8, 2, 5)

where the numbers have meanings provided in the program. Further explanation of the 
program is provided in the following paragraphs.

FIGURE 14.2 Generated points on E-field lines 
(shown thick) and equipotential lines (dotted).

EXAMPLE 14.1
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Since the E-field lines emanate from positive charges and terminate on negative 
charges, it seems reasonable to generate starting points 1xs, ys 2  for the E-field lines on small 
circles centered at charge locations 1xQ, yQ 2 ; that is,

 xs 5 xQ 1 r cos u (14.1.1a)

 ys 5 yQ 1 r sin u (14.1.1b)

function plotit(charges,location,ckEField,ckEq,DLE,DLV,NLE,NLV,PTS)
figure;
hold on;
% Program for plotting the electric field lines
% and equipotential lines due to coplanar point charges
% the plot is to be within the range -5<x,y<5
%
% This is the correct usage:
% function plotit(charges,location,ckEField,ckEq,DLE,DLV,NLE,NLV,PTS)
%
% where,
%    charges = a vector containing the charges
%   location = a matrix where each row is a charge location
%   ckEField = Flag set to 1 plots the Efield lines
%       ckEq = Flag set to 1 plots the Equipotential lines
% DLE or DLV = the increment along E & V lines
%        NLE = No. of E-Field lines per charge
%        NLV = No. of Equipotential lines per charge
%        PTS => Plots every PTS point (i.e. if PTS = 5 then plot 
every 5th point) 
% note that constant Q/4*Pie*ErR is set equal to 1.0

% Determine the E-Field LInes
% For convenience, the starting points (XS,YS) are radially 
distributed about charge locations
Q=charges;
XQ = location(:,1);
YQ = location(:,2);
JJ=1;
NQ = length(charges);
if (ckEField)
for K=1:NQ
   for I =1:NLE
      THETA = 2*pi*(I-1)/(NLE);
      XS=XQ(K) + 0.1*cos(THETA);
      YS=YQ(K) + 0.1*sin(THETA);
      XE=XS;
      YE=YS;
      JJ=JJ+1;
      if (~mod(JJ,PTS))

FIGURE 14.3 Computer program for Example 14.1.
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762 CHAPTER 14 NUMERICAL METHODS

         plot (XE,YE);
      end
      while(1)
      % FIND INCREMENT AND NEW POINT (X,Y)
         EX=0;
         EY=0;
         for J=1:NQ
            R =sqrt((XE-XQ(J))^2 + (YE - YQ(J))^2);
            EX = EX +Q(J)*(XE-XQ(J))/(R^3);
            EY = EY +Q(J)*(YE-YQ(J))/(R^3);
         end
         E = sqrt(EX^2 + EY^2);

         % CHECK FOR A SINGULAR POINT
         if (E <=.00005)
            break;
         end
         DX = DLE*EX/E;
         DY = DLE*EY/E;
         % FOR NEGATIVE CHARGE, NEGATE DX & DY SO THAT INCREMENT
         % IS AWAY FROM THE CHARGE
         if (Q(K) < 0)
            DX = -DX;
            DY = -DY;
         end
         XE = XE + DX;
         YE = YE + DY;
         % CHECK WHETHER NEW POINT IS WITHIN THE GIVEN RANGE OR 
         TOO
         % CLOSE TO ANY OF THE POINT CHARGES - TO AVOID SINGULAR  
         POINT
         if ((abs(XE) >= 5) | (abs(YE) >= 5))
            break;
         end

         if (sum(abs(XE-XQ) < .05 & abs(YE-YQ) < .05) >0)
            break;
         end
         JJ=JJ+1;
         if (~mod(JJ,PTS))
            plot (XE,YE);
         end
      end % while loop
   end % I =1:NLE
end   % K = 1:NQ
end % if
% NEXT, DETERMINE THE EQUIPOTENTIAL LINES
% FOR CONVENIENCE, THE STARTING POINTS (XS,YS) ARE
% CHOSEN LIKE THOSE FOR THE E-FIELD LINES
if (ckEq)

FIGURE 14.3 (Continued)
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JJ=1;
DELTA = .2;
ANGLE = 45*pi/180;
for K =1:NQ
   FACTOR = .5;
   for KK = 1:NLV
     XS = XQ(K) + FACTOR*cos(ANGLE);
     YS = YQ(K) + FACTOR*sin(ANGLE);
     if ( abs(XS) >= 5 | abs(YS) >=5)
        break;
     end
     DIR = 1;
     XV = XS;
     YV = YS;
     JJ=JJ+1;
     if (~mod(JJ,PTS))
        plot(XV,YV);
     end
% FIND INCREMENT AND NEW POINT (XV,YV)
     N=1;
     while (1)
         EX = 0;
         EY = 0;
         for J = 1:NQ
            R = sqrt((XV-XQ(J))^2 + (YV-YQ(J))^2);
            EX = EX + Q(J)*(XV-XQ(J))/(R^3);
            EY = EY + Q(J)*(YV-YQ(J))/(R^3);
         end
         E=sqrt(EX^2 + EY^2);
         if (E <= .00005)
            FACTOR = 2*FACTOR;
            break;
         end
         DX = -DLV*EY/E;
         DY = DLV*EX/E;
         XV = XV + DIR*DX;
         YV = YV + DIR*DY;
         % CHECK IF THE EQUIPOTENTIAL LINE LOOPS BACK TO (X,YS)
         R0 = sqrt((XV - XS)^2 + (YV - YS)^2);
         if (R0 < DELTA & N < 50)
            FACTOR = 2*FACTOR;
            break;
         end
         % CHECK WHETHER NEW POINT IS WITHIN THE GIVEN RANGE
         % IF FOUND OUT OF RANGE, GO BACK TO THE STARTING POINT
         % (XS,YS)BUT INCREMENT IN THE OPPOSITE DIRECTION
         if (abs(XV) > 5 | abs(YV) > 5)
            DIR = DIR -2;
            XV = XS;

FIGURE 14.3 (Continued)
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            YV = YS;
            if (abs(DIR) > 1)
               FACTOR = 2*FACTOR;
               break;
            end
        else
            if (sum(abs(XV-XQ) < .005 & abs(YV-YQ) < .005) >0)
                  break;
            end
         end
         JJ=JJ+1;
         if (~mod(JJ,PTS))
            N=N+1;
            plot(XV,YV);
         end
      end % WHILE loop
   end  % KK
end   % K

end % if

(a)

(b)

FIGURE 14.4 For Example 14.1; 
plots of E-field lines and equipo-
tential lines due to (a) two point 
charges and (b) four point charges 
(a two-dimensional qua drupole).
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where r is the radius of the small circle 1e.g., r 5 0.1 or 0.05 2 , and u is a prescribed angle 
chosen for each E-field line. The starting points for the equipotential lines can be generated 
in different ways: along the x- and y-axes, along line y 5 x, and so on. However, to make 
the program as general as possible, the starting points should depend on the charge loca-
tions like those for the E-field lines. They could be chosen by using eq. (14.1.1) but with 
fixed u (e.g., 45°) and variable r (e.g., 0.5, 1.0, 2.0, . . .).

The value of incremental length D is crucial for accurate plots. Although the smaller 
the value of D, the more accurate the plots, we must keep in mind that the smaller the 
value of D, the more points we generate, and memory storage may be a problem. For 
example, a line may consist of more than 1000 generated points. In view of the large num-
ber of points to be plotted, the points are usually stored in a data file and a graphics routine 
is used to plot the data.

For both the E-field and equipotential lines, different checks are inserted in the pro-
gram in Figure 14.3:

(a) Check for singular point (E = 0?).
(b) Check whether the point generated is too close to a charge location.
(c) Check whether the point is within the given range of 25 , x , 5, 2 5 , y , 5,
(d) Check whether the (equipotential) line loops back to the starting point.

The plot of the points generated for the cases of two point charges and four point 
charges are shown in Figure 14.4(a) and (b), respectively.

PRACTICE EXERCISE 14.1

Write a complete program for plotting the electric field lines and equipotential lines 
due to coplanar point charges. Run the program for N 5 3; that is, there are three 
point charges 2Q, 1Q, and 2Q, located at 1x, y 2 5 121, 0 2 , 10, 1 2 , and 11, 0 2 ,   
respectively. Take Q/4pe 5 1, D, 5 0.1 or 0.01 for greater accuracy and limit your plot 
to 25 , x , 5, 2 5 , y , 5.

Answer:  See Figure 14.5.

FIGURE 14.5 For Practice 
Exercise 14.1.
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766 CHAPTER 14 NUMERICAL METHODS

The finite difference method1 (FDM) is a simple numerical technique used in solving prob-
lems like those solved analytically in Chapter 6. A problem is uniquely defined by three things:

1. A partial differential equation such as Laplace’s or Poisson’s equation
2. A solution region
3. Boundary and/or initial conditions

A finite difference solution to Poisson’s or Laplace’s equation, for example, proceeds in 
three steps: (1) dividing the solution region into a grid of nodes, (2) approximating the 
differential equation and boundary conditions by a set of linear algebraic equations (called 
difference equations) on grid points within the solution region, and (3) solving this set of 
algebraic equations.
Step 1: Suppose we intend to apply the finite difference method to determine the electric 
potential in a region shown in Figure 14.6(a). The solution region is divided into rect-
angular meshes with grid points or nodes as in Figure 14.6(a). A node on the boundary 
of the region where the potential is specified is called a fixed node (fixed by the prob-
lem), and interior points in the region are called free points (free in that the potential is 
unknown).
Step 2: Our objective is to obtain the finite difference approximation to Poisson’s equation 
and use this to determine the potentials at all the free points. We recall that Poisson’s equa-
tion is given by

 =2V 5 2
rv

e
 (14.9a)

1 For an extensive treatment of the finite difference method, see G. D. Smith, Numerical Solution of Partial 
Differential Equations: Finite Difference Methods, 3rd ed. Oxford: Oxford Univ. Press, 1985.

FIGURE 14.6 Finite difference solution pattern: (a) division of the 
 solution into grid points, (b) finite difference five-node molecule.

14.3  THE FINITE DIFFERENCE METHOD
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For two-dimensional solution region such as in Figure 14.6(a), 
'2V
'z2 5 0, so

 
'2V
'x2 1

'2V
'y2 5 2

rv

e
 (14.9b)

From the definition of the derivative of V 1x, y 2  at point 1xo, yo 2 ,

V r 5
'V
'x

 `
x5xo

.
V 1xo 1 Dx, yo 2 2 V 1xo 2 Dx, yo 2

2Dx

  5
Vi11, j 2 Vi21, j

2 Dx
 (14.10)

where Dx is a sufficiently small increment along x. For the second derivative, which is the 
derivative of the first derivative V,

V s 5
'2V
'x2  `

x5xo

5
'V r
'x

.
V r 1xo 1 Dx/2, yo 2 2 V r 1xo 2 Dx/2, yo 2

Dx

 5
V 1xo 1 Dx, yo 2 2 2V 1xo, yo 2 1 V 1xo 2 Dx, yo 2

1Dx 2 2

  5
Vi11, j 2 2Vi, j 1 Vi21, j

1Dx 2 2  (14.11)

Equations (14.10) and (14.11) are the finite difference approximations for the first and 
 second partial derivatives of V with respect to x, evaluated at x 5 xo. The approximation 
in eq. (14.10) is associated with an error of the order of the Dx while that of eq. (14.11) has 
an associated error on the order of 1Dx 2 2. Similarly,

'2V
'y2  `

y5yo

.
V 1xo, yo 1 Dy 2 2 2V 1xo, yo 2 1 V 1xo, yo 2 Dy 2

1Dy 2 2

  5
Vi, j11 2 2Vi, j 1 Vi, j21

1Dy 2 2  (14.12)

Substituting eqs. (14.11) and (14.12) into eq. (14.9b) and letting Dx 5 Dy 5 h gives

Vi11, j 1 Vi21, j 1 Vi, j11 1 Vi, j21 2 4Vi, j 5 2
h2rv

e

or

 Vi, j 5
1
4

 aVi11, j 1 Vi21, j 1 Vi, j11 1 Vi, j21 1
h2rv

e
b  (14.13)
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where h is called the mesh size. Equation (14.13) is the finite difference approximation to Poisson’s 
equation. If the solution region is charge free 1rv 5 0 2 , eq. (14.9) becomes Laplace’s equation:

 =2V 5
'2V
'x2 1

'2V
'y2 5 0 (14.14)

The finite difference approximation to this equation is obtained from eq. (14.13) by setting 
rv 5 0; that is,

 Vi, j 5
1
4

 1Vi11, j 1 Vi21, j 1 Vi, j11 1 Vi, j21 2  (14.15)

This equation is essentially a five-node finite difference approximation for the potential at 
the central point of a square mesh. Figure 14.6(b) illustrates what is called the finite differ-
ence five-node molecule. The molecule in Figure 14.6(b) is taken out of Figure 14.6(a). Thus 
eq. (14.15) applied to the molecule becomes

 Vo 5
1
4

 1V1 1 V2 1 V3 1 V4 2  (14.16)

This equation clearly shows the average-value property of Laplace’s equation. In other 
words, Laplace’s equation can be interpreted as a differential means of stating the fact that 
the potential at a specific point is the average of the potentials at the neighboring points. 
Step 3: To apply eq. (14.16) [or eq. (14.13)] to a given problem, one of the following two 
methods is commonly used.

A. Iteration Method
We start by setting initial values of the potentials at the free nodes equal to zero or to any 
reasonable guessed value. Keeping the potentials at the fixed nodes unchanged at all times, 
we apply eq. (14.16) to every free node in turn until the potentials at all free nodes have 
been calculated. The potentials obtained at the end of this first iteration are just approxi-
mate. To increase the accuracy of the potentials, we repeat the calculation at every free 
node, using old values to determine new ones. The iterative or repeated modification of the 
potential at each free node is continued until a prescribed degree of accuracy is achieved or 
until the old and the new values at each node are satisfactorily close.

B. Band Matrix Method
Equation (14.16) applied to all free nodes results in a set of simultaneous equations of the form

 3A 4 3V 4 5 3B 4 (14.17)

where [A] is a sparse matrix (i.e., one having many zero terms), [V] consists of the 
unknown potentials at the free nodes, and [B] is another column matrix formed by the 
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14.3 The Finite Difference Method 769

known potentials at the fixed nodes. Matrix [A] is also banded in that its nonzero terms 
appear clustered near the main diagonal because only nearest neighboring nodes affect the 
potential at each node. The sparse, band matrix is easily inverted to determine [V]. Thus 
we obtain the potentials at the free nodes from matrix [V] as

 3V 4 5 3A 421 3B 4 (14.18)

The finite difference method can be applied to solve time-varying problems. For 
example, consider the one-dimensional wave equation of eq. (10.1), then

 

Figure 14.7 are

 

 

Where Dx and Dt are increments along x and t. Inserting eqs. (14.20) and (14.21) in  
eq. (14.19) and solvin

 

where

 a 5 cu Dt
Dx

d
2

 (14.23)

FIGURE 14.7 Finite difference  solution 
pattern for the wave  equation: eq. (14.19).
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u2 
'2�

'x2 5
'2�

't2  (14.19)

  
'2�

'x2  `
x5xo

.
�i21, j 2 2�i, j 1 �i11, j

1Dx 2 2  (14.20)

  
'2�

't2  `
t5to

.
�i, j21 2 2�i, j 1 �i, j11

1Dt 2 2  (14.21)

�i, j11 . a �i21, j 1 �i11, j 2 1 2 11 2 a 2  �i, j 2 �i, j21 (14.22)

g for �i,j11 gives

where u is the wave velocity and F is the E- or H-field component of the EM wave. The 
difference approximations of the derivatives at the 1xo, to 2  or 1 i, j 2 th node shown in   

1



770 CHAPTER 14 NUMERICAL METHODS

It can be shown that for the solution in eq. (14.22) to be stable, a # 1. To start the finite 
 difference algorithm in eq. (14.22), we use the initial conditions. We assume that at t 5 0, 

be obtained directly from eq. (14.22). Note that the three methods discussed for solving  
eq. (14.16) do not apply to eq. (14.22) because eq. (14.22) can be used directly with  
eq. (14.25) as the starting formula. In other words, we do not have a set of simultaneous 
equations; eq. (14.22) is an explicit formula.

The FDM concept can be extended to Poisson’s, Laplace’s, or wave equations in other 
coordinate systems. The accuracy of the method depends on the fineness of the grid and 
the amount of time spent in refining the potentials. We can reduce computer time and 
increase the accuracy and convergence rate by the method of successive overrelaxation, by 
making reasonable guesses at initial values, by taking advantage of symmetry if possible, 
by making the mesh size as small as possible, and by using more complex finite difference 
molecules. One limitation of the finite difference method is that interpolation of some 
kind must be used to determine solutions at points not on the grid. One obvious way to 
overcome this is to use a finer grid, but this requires a greater number of computations and 
a larger amount of computer storage.

EXAMPLE 14.2
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'�i,0 /'t 5 0 and use (central) difference approximation (see Review Question 14.2) to get

With eq. (14.25) as the “starting” formula, the value of F at any point on the grid can 

'�i,0

't
.

�i,1 2 �i,21

2Dt
5 0

or

 �i,1 5 �i,21 (14.24)

Substituting eq. (14.24) into eq. (14.22) and taking j 5 0 1 t 5 0 2 , we obtain

�i,1 . a 1�i21,0 1 �i11,0 2 1 2 11 2 a 2�i,0 2 �i,1

or

 �i,1 .
1
2

 3a 1�i21,0 1 �i11,0 2 1 2 11 2 a 2�i,0 4 (14.25)

Solve the one-dimensional boundary-value problem 2�s 5 x2, 0 # x # 1, subject to
� 10 2 5 0 5 � 11 2 . Use the finite difference method.

Solution:
First, we obtain the finite difference approximation to the differential equation �s 5 2x2, 
which is Poisson’s equation in one dimension. Next, we divide the entire domain 
0 # x # 1 into N equal segments each of length h 15 1/N 2  as in Figure 14.8(a) so that 
there are 1N 1 1 2  nodes.

2xo
2 5

d2�

dx2  `
x5xo

.
� 1xo 1 h 2 2 2� 1xo 2 1 � 1xo 2 h 2

h2



14.3 The Finite Difference Method 

the degree of accuracy desired. For a one-dimensional problem such as this, ni 5 50 may 
suffice. For two- or three-dimensional problems, larger values of ni would be required (see 
later: Table 14.1). It should be noted that the values of F at end points (fixed nodes) are 
held fixed. The solutions for N 5 4 and 10 are shown in Figure 14.10.

FIGURE 14.8 For Example 14.2.
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Using this finite difference scheme, we obtain an approximate solution for various values 
of N. The MATLAB code is shown in Figure 14.9. The number of iterations ni depends on 

or

2xj
2 5

�j11 2 2�j 1 ��21

h2

Thus

22�j 5 2�j
2h2 2 �j11 2 �j21

or

�j 5
1
2
1�j11 1 �j21 1 xj

2 h2 2

 We may compare this with the exact solution obtained as follows. Given that 
d2�/dx2 5 2x2, integrating twice gives

� 5 2
x4

12
1 Ax 1 B

where A and B are integration constants. From the boundary conditions,

 � 10 2 5 0 S  B 5 0

 � 11 2 5 0 S  0 5 2
1

12
1 A  or  A 5

1
12

Hence, the exact solution is � 5 x 11 2 x3 2 /12, which is calculated in Figure 14.9 and 
found to be very close to case N 5 10. 

771
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% ONE-DIMENSIONAL PROBLEM OF EXAMPLE 14.2
% SOLVED USING FINITE DIFFERENCE METHOD
%
% h = MESH SIZE
% ni = NO. OF ITERATIONS DESIRED

      P = [ ];
      n=20;
      ni=500;
      1=1.0;
      h = 1/n;
      phi=zeros(n+1,1);
      x=h*[0:n]’;
      x1=x(2:n);
      for k=1:ni
         phi([2:n])=[phi(3:n+1)+phi(1:n-1)+x1.^2*h^2]/2;
      end
      %  CALCULATE THE EXACT VALUE ALSO
      phiex=x.*(1.0-x.^3)/12.0;
      diary a:test.out
      [[1:n+1]’ phi phiex]
      diary off

FIGURE 14.9 Computer program for Example 14.2.

0.90.80.70.60.50.40.30.20.1

0

0

0

0

0

0

FIGURE 14.10 For Example 14.2: plot of F(x). Continuous curve is for 
N 5 10; dashed curve is for N 5 4.
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14.3 The Finite Difference Method 773

Determine the potential at the free nodes in the potential system of Figure 14.11 using 
the finite difference method.

Solution:
This problem will be solved by using the iteration method first, and then the band matrix 
method.
Method 1 (Iteration Method): We first set the initial values of the potential at the free 
nodes equal to zero. We apply eq. (14.16) to each free node, using the newest surrounding 
potentials each time the potential at that node is calculated. For the first iteration:

V1 5 1/4 10 1 20 1 0 1 0 2 5 5

V2 5 1/4 15 1 0 1 0 1 0 2 5 1.25

V3 5 1/4 15 1 20 1 0 1 0 2 5 6.25

V4 5 1/4 11.25 1 6.25 1 0 1 0 2 5 1.875

FIGURE 14.11 For Example 14.3.
EXAMPLE 14.3

PRACTICE EXERCISE 14.2

Solve the differential equation d2y/dx2 1 y 5 0 with the boundary conditions y 10 2 5 0, 
y 11 2 5 1 by using the finite difference method. Take Dx 5 1/4.

Answer:  Compare your result with the exact solution y 1x 2 5
sin 1x 2
sin 11 2 .
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774 CHAPTER 14 NUMERICAL METHODS

and so on. To avoid confusion, each time a new value at a free node is calculated, we cross out the 
old value as shown in Figure 14.12. After V8 is calculated, we start the second iteration at node 1:

V1 5 1/4 10 1 20 1 1.25 1 6.25 2 5 6.875

V2 5 1/4 16.875 1 0 1 0 1 1.875 2 5 2.187

and so on. If this process is continued, we obtain the uncrossed values shown in Figure 14.12 
after five iterations. After 10 iterations (not shown in Figure 14.12), we obtain

V1 5 10.04,  V2 5 4.956,  V3 5 15.22,  V4 5 9.786

V5 5 21.05,  V6 5 18.97,  V7 5 15.06,  V8 5 11.26

Method 2 (Band Matrix Method): This method reveals the sparse structure of the 
 problem. We apply eq. (14.16) to each free node and keep the known terms (prescribed 

FIGURE 14.12 For Example 14.3; the values not crossed out are the 
solutions after five iterations.
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14.3 The Finite Difference Method 775

potentials at the fixed nodes) on the right side; the unknown terms (potentials at free 
nodes) are on the left side of the resulting system of simultaneous equations, which will be 
expressed in matrix form as 3A 4 3V 4 5 3B 4.
 For node 1,

24V1 1 V2 1 V3 5 220 2 0

 For node 2,

V1 1 4V2 1 V4 5 20 2 0

 For node 3,

V1 2 4V3 1 V4 1 V5 5 220

 For node 4,

V2 1 V3 2 4V4 1 V6 5 20

 For node 5,

V3 2 4V5 1 V6 5 220 2 30

 For node 6,

V4 1 V5 2 4V6 1 V7 5 230

 For node 7,

V6 2 4V7 1 V8 5 230 2 0

 For node 8,

V7 2 4V8 5 20 2 0 2 30

Note that since we are using a five-node molecule, we have five terms at each node. The 
eight equations obtained are put in matrix form as

H

24 1 1 0 0 0 0 0
1 24 0 1 0 0 0 0
1 0 24 1 1 0 0 0
0 1 1 24 0 1 0 0
0 0 1 0 24 1 0 0
0 0 0 1 1 24 1 0
0 0 0 0 0 1 24 1
0 0 0 0 0 0 1 24

X H

V1
V2
V3
V4
V5
V6
V7
V8

X 5 H

220
0

220
0

250
230
230
230

X

or

3A 4 3V 4 5 3B 4
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776 CHAPTER 14 NUMERICAL METHODS

where [A] is the band, sparse matrix, [V] is the column matrix consisting of the unknown 
potentials at the free nodes, and [B] is the column matrix formed by the potential at the 
fixed nodes. The “band” nature of [A] is shown by the dotted loop.
 Notice that matrix [A] could have been obtained directly from Figure 14.11 without writ-
ing down eq. (14.16) at each free node. To do this, we simply set the diagonal (or self) terms 
Aii 5 24 and set Aij 5 1 if i and j nodes are connected or Aij 5 0 if i and j nodes are not 
directly connected. For example, A23 5 A32 5 0 because nodes 2 and 3 are not connected, 
whereas A46 5 A64 5 1 because nodes 4 and 6 are connected. Similarly, matrix [B] is obtained 
directly from Figure 14.11 by setting Bi equal to minus the sum of the potentials at fixed nodes 
connected to node i. For example, B5 5 2 120 1 30 2  because node 5 is connected to two fixed 
nodes with potentials 20 V and 30 V. If node i is not connected to any fixed node, Bi 5 0.
 By using MATLAB to invert matrix [A], we obtain

3V 4 5 3A 421 3B 4

or

V1 5 10.04,  V2 5 4.958,  V3 5 15.22,  V4 5 9.788

V5 5 21.05,  V6 5 18.97,  V7 5 15.06,  V8 5 11.26

which compares well with the result obtained by means of the iteration method. 

PRACTICE EXERCISE 14.3

Use the iteration method to find the finite difference approximation to the potentials at 
points a and b of the system in Figure 14.13.

Answer:  Va = 10.135 V, Vb = 28.378 V.

FIGURE 14.13 For Practice Exercise 14.3.
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14.3 The Finite Difference Method 777

Obtain the solution of Laplace’s equation for an infinitely long trough whose rectangu-
lar cross section is shown in Figure 14.14. Let V1 5 10 V, V2 5 100 V, V3 5 40 V, and 
V4 5 0 V.

Solution:
We shall solve this problem by using the iteration method. In this case, the solution region 
has a regular boundary. We can easily write a program to determine the potentials at the 
grid points within the trough. We divide the region into square meshes. If we decide to 
use a 15 3 10 grid, the number of grid points along x is 15 1 1 5 16 and the number of 
grid points along y is 10 1 1 5 11. The mesh size h 5 1.5/15 5 0.1 m. The 15 3 10 grid 
is illustrated in Figure 14.15. The grid points are numbered 1 i, j 2  starting from the lower 
left-hand corner of the trough. The computer program in Figure 14.16, for determining the 
potential at the free nodes, was developed by applying eq. (14.15) and using the iteration 
method. At points 1x, y 2 5 10.5, 0.5 2 , 10.8, 0.8 2 , 11.0, 0.5 2 , and 10.8, 0.2 2  corresponding 
to 1 i, j 2 5 15, 5 2 , 18, 8 2 , 110, 5 2 , and 18, 2 2 , respectively, the potentials after 50, 100, and 
200 iterations are shown in Table 14.1. The exact values obtained by using the method 
of separation of variables and a program similar to that of Figure 6.11 are also shown. It 
should be noted that the degree of accuracy depends on the mesh size h. It is always desir-
able to make h as small as possible. Also note that the potentials at the fixed nodes are held 
constant throughout the calculations.

EXAMPLE 14.4 FIGURE 14.14 For Example 14.4.

FIGURE 14.15 For Example 14.4;  
a 15 3 10 grid.

14_Sadiku_Ch14.indd   777 14/11/17   2:12 PM



778 CHAPTER 14 NUMERICAL METHODS

%   USING FINITE DIFFERENCE (ITERATION) METHOD
%   THIS PROGRAM SOLVES THE TWO-DIMENSIONAL BOUNDARY-VALUE
%   PROBLEM (LAPLACE’S EQUATION) SHOWN IN FIG. 14.14.
%   ni = NO. OF ITERATIONS
%   nx = NO. OF X GRID POINTS
%   ny = NO. OF Y GRID POINTS
%   v(i,j) = POTENTIAL AT GRID POINT (i,j) OR (x,y) WITH
%   NODE NUMBERING STARTING FROM THE LOWER LEFT-HAND
%   CORNER OF THE TROUGH

v1 = 10.0;
v2 = 100.0;
v3 = 40.0;
v4 = 0.0;
ni = 200;
nx = 16;
ny = 11;
% SET INITIAL VALUES EQUAL TO ZEROES
v = zeros(nx,ny);
% FIX POTENTIALS ARE FIXED NODES
for i=2:nx-1
   v(i,1) = v1;
   v(i,ny) = v3;
end
for j=2:ny-1
   v(1,j) = v4;
   v(nx,j) = v2;
end
v(1,1) = 0.5*(v1 + v4);
v(nx,1) = 0.5*(v1 + v2);
v(1,ny) = 0.5*(v3 + v4);
v(nx,ny) = 0.5*(v2 + v3);
% NOW FIND v(i,j) USING EQ. (14.15) AFTER ni ITERATIONS
for k=1:ni
   for i=2:nx-1
      for j=2:ny-1
         v(i,j) = 0.25*( v(i+1,j) + v(i-1,j) + v(i,j+1) + v(i,j-1) );
      end
   end
end
diary a:test1.out
[v(6,6), v(9,9), v(11,6), v(9,3)]
[ [1:nx, 1:ny] v(i,j) ]
diary off

FIGURE 14.16 Computer program for Example 14.4.
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PRACTICE EXERCISE 14.4

Consider the trough of Figure 14.17. Use a five-node finite difference scheme to find 
the potential at the center of the trough using (a) a 4 3 8 grid, and (b) a 12 3 24 grid.

Answer:  (a) 31.08 V, (b) 42.86 V.

TABLE 14.1 Solution of Example 14.4 (Iteration 
Method) at Selected Points

Number of Iterations
 Coordinates
 (x, y) 50 100 200 Exact Value

(0.5, 0.5) 20.91 22.44 22.49 22.44
(0.8, 0.8) 37.7 38.56 38.59 38.55
(1.0, 0.5) 41.83 43.18 43.2 43.22
(0.8, 0.2) 19.87 20.94 20.97 20.89

FIGURE 14.17 For Practice Exercise 14.4.

2 The term “moment method” was first used in the Western literature by Harrington. For further  exposition on 
the method, see R. F. Harrington, Field Computation by Moment Methods. New York: IEEE Press, 1993.

14.4  THE MOMENT METHOD

Like the finite difference method, the moment method,2 or the method of moments 
(MOM), has the advantage of being conceptually simple. While the finite difference 
method is used in solving differential equations, the moment method is commonly used 
in solving integral equations.
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For example, suppose we want to apply the moment method to solve Poisson’s 
 equation in eq. (14.9a). It can be shown that an integral solution to Poisson’s equation is

 V 5 3
v
 
rv dv
4per

 (14.26)

We recall from Chapter 4 that eq. (14.26) can be derived from Coulomb’s law. We also recall 
that given the charge distribution rv 1x, y, z 2 , we can always find the potential V 1x, y, z 2 , 
the electric field E 1x, y, z 2 , and the total charge Q. If, on the other hand, the potential V is 
known and the charge distribution is unknown, how do we determine rv from eq. (14.26)? 
In that situation, eq. (14.26) becomes what is called an integral equation.

An integral equation is one involving the unknown function under the integral sign.

It has the general form of 

 V 1x 2 5 3
b

a
 K 1x, t 2  r 1 t 2  dt (14.27)

where the functions K 1x, t 2  and V 1 t 2  and the limits a and b are known. The unknown 
function r 1 t 2  is to be determined; the function K 1x, t 2  is called the kernel of the equation. 
The moment method is a common numerical technique used in solving integral equations 
such as in eq. (14.27). The method is probably best explained with an example.

Consider a thin conducting wire of radius a, length L 1L W a 2  located in free space  
as shown in Figure 14.18. Let the wire be maintained at a potential of Vo. Our goal is to  
determine the charge density rL along the wire by using the moment method. Once we have 
determined rL, related field quantities can be found. At any point on the wire, eq. (14.26) 
reduces to an integral equation of the form

 Vo 5 3
L

0
 

rL dl
4peor

 (14.28)

FIGURE 14.18 Thin conducting wire held 
at a constant potential.
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Since eq. (14.28) applies for observation points everywhere on the wire, at a fixed point yk 
known as the match point.

 Vo 5
1

4peo
 3

L

0
 
rL 1y 2  dy
0 yk 2 y 0  (14.29)

We recall from calculus that integration is essentially finding the area under a curve. If Dy 
is small, the integration of f(y) over 0 , y , L is given by

 3
L

0
 f 1y 2  dy . f 1y1 2  Dy 1 f 1y2 2  Dy 1 . . . 1 f 1yN 2Dy

  5 a
N

k51
 f 1yk 2Dy 

(14.30)

where the interval L has been divided into N units, each having length Dy. With the wire 
divided into N segments of equal length D as shown in Figure 14.19, eq. (14.29) becomes

 4peoVo .
r1 D

0 yk 2 y1 0
1

r2 D
0 yk 2 y2 0

1 . . . 1
rN D

0 yk 2 yN 0
 (14.31)

where D 5 L/N 5 Dy. The assumption in eq. (14.31) is that the unknown charge  density 
rk on the kth segment is constant on that segment. The kth term in eq. (14.31) has  
|yk – yk| in the denominator and causes numerical problems. We shall soon circumvent this 
problem by modeling the line  segment by means of a cylindrical surface charge. Thus in 
eq. (14.31), we have unknown constants r1, r2, . . . , rN. Since eq. (14.31) must hold at all 
points on the wire, we obtain N  similar equations by choosing N match points at y1, y2, . . . , 
yk, . . . , yN on the wire. Thus we obtain

 4peoVo 5
r1 D

0 y1 2 y1 0
1

r2 D
0 y1 2 y2 0

1 . . . 1
rND

0 y1 2 yN 0
 (14.32a)

 4peoVo 5
r1 D

0 y2 2 y1 0
1

r2 D
0 y2 2 y2 0

1 . . . 1
rND

0 y2 2 yN 0
 (14.32b)

.

.

.

 4peoVo 5
r1 D

0 yN 2 y1 0
1

r2 D
0 yN 2 y2 0

1 . . . 1
rND

0 yN 2 yN 0
 (14.32c)

The idea of matching the left-hand side of eq. (14.29) with the right-hand side of the equa-
tion at the match points is similar to the concept of taking moments in mechanics. Here 
lies the reason this technique is called the moment method. Notice from Figure 14.19 that 
the match points y1, y2, . . . , yN are placed at the center of each segment. Equation (14.32) 
can be put in matrix form as

 3B 4 5 3A 4 3r 4 (14.33)
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where

  3B 4 5 4peoVo F

1
1
.
.
.
1

V (14.34)

  3A 4 5 F

A11 A12 . . . A1N

A21 A22 . . . A2N

. .

. .

. .

AN1 AN2 . . . ANN

V (14.35a)

  Amn 5
D

0 ym 2 yn 0
,  m 2 n (14.35b)

  3r 4 5 F

r1

r2

.

.

.
rN

V (14.36)

In eq. (14.33), [r] is the matrix whose elements are unknown. We can determine [r] from 
eq. (14.33) by using Cramer’s rule, matrix inversion, or the Gaussian elimination technique. 
With matrix inversion,

 3r 4 5 3A 421 3B 4 (14.37)

FIGURE 14.19 Division of the wire into N segments.
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where 3A 421 is the inverse of matrix [A]. In evaluating the diagonal elements (or self terms) 
of matrix [A] in eq. (14.35), caution must be exercised. Since the wire is conducting, a 
surface charge density rS is expected over the wire surface. Hence at the center of each 
segment,

V 1center 2 5
1

4peo
 3

2p

0
 3

D/2

2D/2
 

rSa df dy
3a2 1 y2 41/2

 5
2parS

4peo
 ln e D/2 1 3 1D/2 2 2 1 a2 41/2

2D/2 1 3 1D/2 2 2 1 a2 41/2 f

Assuming D W a,

 V 1center 2 5
2parS

4peo
 2 ln aD

a b
 (14.38)

 5
2rL

4peo
 ln aD

a b .

where rL 5 2p arS. Thus, the self terms 1m 5 n 2  are

 Ann 5 2 ln aD

a b  (14.39)

Equation (14.33) now becomes

 I

2
 
ln aD

a b
D

0 y1 2 y2 0
. . . D

0 y1 2 yN 0
    
D

0 y2 2 y1 0
2 ln aD

a b . . . D

0 y2 2 yN 0. .
. .
. .
D

0 yN 2 y1 0
D

0 yN 2 y2 0
. . . 2 ln aD

a b

Y F

r1
r2
.
.
.

rN

V 5 4peoVo F

1
1
.
.
.
1

V (14.40)

Using eq. (14.37) with eq. (14.40) and letting Vo 5 1 V, L 5 1 m, a 5 1 mm, and 
N 5 20 1D 5 L/N 2 , a MATLAB code such as in Figure 14.20 can be developed. The pro-
gram in Figure 14.20 is self-explanatory. It inverts matrix [A] and plots rL against y. The 
plot is shown in Figure 14.21. The program also determines the total charge on the wire 
using

 Q 5 3  rL dl (14.41)
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%  THIS PROGRAM DETERMINES THE CHARGE DISTRIBUTION
%  ON A CONDUCTING THIN WIRE, OF RADIUS AA AND
%  LENGTH L, MAINTAINED AT VO VOLT
%  THE WIRE IS LOCATED AT 0 < Y < L
%  ALL DIMENSIONS ARE IN S.I. UNITS

%  MOMENT METHOD IS USED
%  N IS THE NO. OF SEGMENTS INTO WHICH THE WIRE IS DIVIDED
%  RHO IS THE LINE CHARGE DENSITY, RHO = INV(A)*B

%  FIRST, SPECIFY PROBLEM PARAMETERS
ER = 1.0;
EO = 8.8541e-12;
VO = 1.0;
AA = 0.001;
L = 1.0;
N = 20;
DELTA = L/N;
%  SECOND, CALCULATE THE ELEMENTS OF THE COEFFICIENT
%  MATRIX A
I=1:N;
Y=DELTA*(I-O.5);
for i=1:N
   for j=1:N
      if(i ~=j)
         A(i,j)=DELTA/abs(Y(i)-Y(j));
      else
         A(i,j)=2.0*log(DELTA/AA);
      end
   end
end
%  NOW DETERMINE THE MATRIX OF CONSTANT VECTOR B
%  AND FIND Q
B = 4.0*pi*EO*ER*VO*ones(N,1);
C = inv(A);
RHO = C*B;
SUM = 0.0;
for I=1:N
   SUM = SUM + RHO(I);
end
Q=SUM*DELTA;
diary  a:exam145a.out
[EO,Q]
[ [1:N]’ Y’ RHO ]
diary off
%  FINALLY PLOT RHO AGAINST Y
plot(Y,RHO)
xlabel(‛y (m)’), ylabel(‛rho_L (pC/m)’)

FIGURE 14.20 MATLAB code for calculating the charge distribution on the wire in Figure 14.18.
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which can be written in discrete form as

 Q 5 a
N

k51
 rk D (14.42)

With the chosen parameters, the value of the total charge was found to be Q 5 8.5793 pC.  
If desired, the electric field at any point can be calculated by using

 E 5 3  
rL dl

4peoR2 aR (14.43)

which can be written as

 E 5 a
N

k51
 
rk D R
4peoR3 (14.44)

where R 5 0R 0  and

R 5 r 2 rk 5 1x 2 xk 2ax 1 1y 2 yk 2ay 1 1z 2 zk 2az

r 5 1x, y, z 2  is the position vector of the observation point, and rk 5 1xk, yk, zk 2  is that of 
the source point.

Notice that to obtain the charge distribution in Figure 14.21, we have taken N 5 20. It 
should be expected that a smaller value of N would give a less accurate result and a larger 
value of N would yield a more accurate result. However, if N is too large, we may have the 
computation problem of inverting the square matrix [A]. The capacity of the computing 
facilities at our disposal can limit the accuracy of the numerical experiment.
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/m
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FIGURE 14.21 Plot of rL against y.
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786 CHAPTER 14 NUMERICAL METHODS

Use the moment method to find the capacitance of the parallel-plate capacitor of  
Figure 14.22. Take a 5 1 m, b 5 1 m, d 5 1 m, and er 5 1.0.

Solution:
Let the potential difference between the plates be Vo 5 2 V so that the top plate P1 is 
maintained at 11 V while the bottom plate P2 is at 21 V. We would like to determine the 
 surface charge density rS on the plates so that the total charge on each plate can be found as

Q 5 3  rS dS

Once Q is known, we can calculate the capacitance as

C 5
Q
Vo

5
Q
2

To determine rS by means of the moment method, we divide P1 into n subsections: DS1,  
DS2, . . . , DSn and P2 into n subsections: DSn11, DSn12, . . . , DS2n. The potential Vi at the 
center of a typical subsection DSi is

Vi 5 3
S
 

rS dS
4peoR

. a
2n

j51
 

1
4peo

 3
DSi

 
rj dS

Rij

 5 a
2n

j51
 rj 

1
4peo

 3
DSj

 
dS
Rij

It has been assumed that there is uniform charge distribution on each subsection. The last 
equation can be written as

Vi 5 a
2n

j51
 rj Aij

where

Aij 5
1

4peo
 3

DSi

 
dS
Rij

EXAMPLE 14.5

FIGURE 14.22 Parallel-plate 
capacitor; for Example 14.5.
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Thus

 V1 5 a
2n

j51
 rj A1j 5 1

 V2 5 a
2n

j51
 rj A2j 5 1

 .
 .
 .

 Vn 5 a
2n

j51
 rj Anj 5 1

Vn11 5 a
2n

j51
 rj An11, j 5 21

 .
 .
 .

V2n 5 a
2n

j51
 rj A2n, j 5 21

yielding a set of 2n simultaneous equations with 2n unknown charge densities rj. In matrix form,

G

A11 A12 . . . A1,2n

A21 A22
. . . A2,2n

. .

. .

. .
    

A2n,1 A2n,2
. . . A2n,2n

W G

r1

r2
.
.
.
 

r2n

W 5 G

1

1
.
.
.

21
21

W

or

3A 4 3r 4 5 3B 4

Hence,

3r 4 5 3A 421 3B 4

where [B] is the column matrix defining the potentials and [A] is a square matrix con- 
taining elements Aij. To determine Aij, consider the two subsections i and j shown in  
Figure 14.23 where the subsections could be on different plates or on the same plate.

Aij 5
1

4peo
 3

y2

y5y1

 3
x2

x5x1

 
dx dy

Rij
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where

Rij 5 3 1xj 2 xi 2 2 1 1yj 2 yi 2 2 1 1zj 2 zi 2 2 41/2

For the sake of convenience, if we assume that the subsections are squares,

x2 2 x1 5 D, 5 y2 2 y1

it can be shown that

Aij 5
DSi

4peoRij
5

1D, 2 2

4peoRij
  i 2 j

and

Aii 5
D,

peo
 ln 11 1 "2 2 5

D,

peo
 10.8814 2

With these formulas, the MATLAB code in Figure 14.24 was developed. With n 5 9,  
C = 26.52 pF, with n 5 16, C 5 27.27 pF, and with n 5 25, C 5 27.74 pF. 

%   USING THE METHOD OF MOMENT,
%   THIS PROGRAM DETERMINES THE CAPACITANCE OF A
%   PARALLEL-PLATE CAPACITOR CONSISTING OF TWO CONDUCTING
%   PLATES, EACH OF DIMENSION AA x BB, SEPARATED BY A
%   DISTANCE D, AND MAINTAINED AT 1 VOLT AND -1 VOLT

%   ONE PLATE IS LOCATED ON THE Z=0 PLANE WHILE THE OTHER
%   IS LOCATED ON THE Z=D PLANE

%   ALL DIMENSIONS ARE IN S.I. UNITS
%   N IS THE NUMBER IS SUBSECTIONS INTO WHICH EACH PLATE IS 
DIVIDED

FIGURE 14.24 MATLAB program for Example 14.5.

FIGURE 14.23 Subsections i and j; 
for Example 14.5.
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14.4 The Moment Method 789

FIGURE 14.24 (Continued)

%   FIRST, SPECIFY THE PARAMETERS

ER = 1.0;
EO = 8.8541e-12;
AA = 1.0;
BB = 1.0;
D = 1.0;
N = 9;
NT = 2*N;
M = sqrt(N);
DX = AA/M;
DY = BB/M;
DL = DX;
%   SECOND, CALCULATE THE ELEMENTS OF THE COEFFICIENT
%   MATRIX A
K = 0;
for K1=1:2
   for K2=1:M
      for K3=1:M
         K = K + 1;
         X(K) = DX*(K2 - 0.5);
         Y(K) = DY*(K3 - 0.5);
      end
   end
end
for K1=1:N
   Z(K1) = 0.0;
   Z(K1+N) = D;
end
for I=1:NT
   for J=1:NT
      if(I==J)
         A(I,J) = DL*0.8814/(pi*EO);
      else
         R = sqrt( (X(I)-X(J))^2 + (Y(I)-Y(J))^2 + (Z(I)-Z(J))^2 );
         A(I,J) = DL^2/(4.*pi*EO*R);
      end
   end
end
%  NOW DETERMINE THE MATRIX OF CONSTANT VECTOR B
for K=1:N
   B(K) = 1.0;
   B(K+N) = -1.0;
end
%  INVERT A AND CALCULATE RHO CONSISTING OF
%  THE UNKNOWN ELEMENTS
%  ALSO CALCULATE THE TOTAL CHARGE Q AND CAPACITANCE C
F = inv(A);
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790 CHAPTER 14 NUMERICAL METHODS

FIGURE 14.25 Parallel conducting wires for Practice 
 Exercise 14.5.

TABLE 14.2 Capacitance 
for Practice Exercise 14.5

 xo (m) C (pF)

 0.0 4.91
 0.2 4.891
 0.4 4.853
 0.6 4.789
 0.8 4.71
 1.0 4.643

RHO = F*B’;
SUM = 0.0;
for I=1:N
   SUM = SUM + RHO(I);
end
Q = SUM*(DL^2);
VO = 2.0;
C = abs(Q)/VO;
diary
[C]
[ [1:NT]’  X   Y’  Z’  RHO ]
diary off

PRACTICE EXERCISE 14.5

Use the moment method to write a program to determine the capacitance of two iden-
tical parallel conducting wires separated at a distance yo and displaced by xo as shown 
in Figure 14.25. If each wire is of length L and radius a, find the capacitance for cases 
xo 5 0, 0.2, 0.4, . . . , 1.0 m. Take yo 5 0.5 m, L 5 1 m, a 5 1 mm, er 5 1.

Answer:  For N 5 10 5 number of segments per wire, see Table 14.2.
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14.5 The Finite Element Method 791

The finite element method (FEM) has its origin in the field of structural analysis. The 
method was not applied to EM problems until 1968.3 Like the finite difference method, 
the finite element method is useful in solving differential equations. As noticed in Section 
14.3, the finite difference method represents the solution region by an array of grid points; 
its application becomes difficult with problems having irregularly shaped boundaries. Such 
problems can be handled more easily by using the finite element method.

The finite element analysis of any problem involves basically four steps: (a) discretizing 
the solution region into a finite number of subregions or elements, (b) deriving governing 
equations for a typical element, (c) assembling all the elements in the solution region, and 
(d) solving the system of equations obtained.

A.  Finite Element Discretization
We divide the solution region into a number of finite elements as illustrated in Figure 14.26, 
where the region is subdivided into four nonoverlapping elements (two triangular and two 
quadrilateral) and seven nodes. We will assume only triangular elements in this section. We 
seek an approximation for the potential Ve within an  element e and then interrelate the poten-
tial distributions in various elements such that the potential is continuous across interelement 
boundaries. The approximate solution for the whole region is

 V 1x, y 2 . a
N

e51
 Ve 1x, y 2  (14.45)

where N is the number of triangular or quadrilateral elements into which the solution 
region is divided.

The most common form of approximation for Ve within an element is polynomial 
 approximation, namely,

 Ve 1x, y 2 5 a 1 bx 1 cy (14.46)

for a triangular element and

 Ve 1x, y 2 5 a 1 bx 1 cy 1 dxy (14.47)

14.5  THE FINITE ELEMENT METHOD

3 See P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers, 3rd ed. Cambridge, U.K.: 
Cambridge Univ. Press, 1996.

N

E

FIGURE 14.26 A typical finite element 
subdivision of an irregular domain.
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792 CHAPTER 14 NUMERICAL METHODS

for a quadrilateral element. The potential Ve in general is nonzero within element e but 
zero outside e. It is difficult to approximate the boundary of the solution region with quad-
rilateral elements; such elements are useful for problems whose boundaries are sufficiently 
regular. In view of this, we prefer to use triangular elements throughout our analysis in this 
section. Notice that our assumption of linear variation of potential within the triangular 
element as in eq. (14.46) is the same as assuming that the electric field is uniform within 
the element; that is,

 Ee 5 2=Ve 5 2 1b ax 1 c ay 2  (14.48)

B.  Element-Governing Equations
Consider a typical triangular element, as shown in Figure 14.27. The potential Ve1, Ve2, and 
Ve3 at nodes 1, 2, and 3, respectively, are obtained by using eq. (14.46); that is,

 £
Ve1

Ve2
Ve3

§ 5 £
1 x1 y1

1 x2 y2

1 x3 y3

§  £
a
b
c
§  (14.49)

The coefficients a, b, and c are determined from eq. (14.49) as

 £
a
b
c
§ 5 £

1 x1 y1

1 x2 y2

1 x3 y3

§
21

 £
Ve1

Ve2

Ve3

§  (14.50)

Substituting this into eq. (14.46) gives

Ve 5 31 x y 4 1
2A

 £
1x2y3 2 x3y2 2 1x3y1 2 x1y3 2 1x1y2 2 x2y1 2
1y2 2 y3 2 1y3 2 y1 2 1y1 2 y2 2
1x3 2 x2 2 1x1 2 x3 2 1x2 2 x1 2

§  £
Ve1
Ve2
Ve3

§

or

 Ve 5 a
3

i51
 ai 1x, y 2  Vei (14.51)

FIGURE 14.27 Typical triangular element; the 
local node numbering 1-2-3 must be counterclock-
wise as indicated by the arrow.
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14.5 The Finite Element Method 793

where

 a1 5
1

2A
 3 1x2y3 2 x3y2 2 1 1y2 2 y3 2  x 1 1x3 2 x2 2  y 4 (14.52a)

 a2 5
1

2A
 3 1x3y1 2 x1y3 2 1 1y3 2 y1 2  x 1 1x1 2 x3 2  y 4 (14.52b)

 a3 5
1

2A
 3 1x1y2 2 x2y1 2 1 1y1 2 y2 2  x 1 1x2 2 x1 2  y 4 (14.52c)

and A is the area of the element e; that is,

2A 5 †
1 x1 y1
1 x2 y2
1 x3 y3

†

 5 1x1y2 2 x2y1 2 1 1x3y1 2 x1y3 2 1 1x2y3 2 x3y2 2

or

 A 5 1/2 3 1x2 2 x1 2 1y3 2 y1 2 2 1x3 2 x1 2 1y2 2 y1 2 4 (14.53)

The value of A is positive if the nodes are numbered counterclockwise (starting from any 
node) as shown by the arrow in Figure 14.27. Note that eq. (14.51) gives the potential at 
any point 1x, y 2  within the element, provided the potentials at the vertices are known. This 
is unlike the situation in finite difference analysis, where the potential is known at the grid 
points only. Also note that ai are linear interpolation functions. They are called the element 
shape functions, and they have the following properties:

 ai 1xj, yj 2 5 e 1, i 5 j
0, i 2 j

 (14.54a)

 a
3

i51
 ai 1x, y 2 5 1 (14.54b)

The shape functions a1 and a2, for example, are illustrated in Figure 14.28.

FIGURE 14.28 Shape functions a1 
and a2 for a triangular element.
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794 CHAPTER 14 NUMERICAL METHODS

The energy per unit length associated with the element e is given by eq. (4.96); that is,

 We 5
1
2

 3
S
 e 0E 0 2 dS 5

1
2

 3
S
 e 0=Ve 0 2 dS (14.55)

where a two-dimensional solution region free of charge 1rV 5 0 2  is assumed. But from  
eq. (14.51),

 =Ve 5 a
3

i51
 Vei =ai (14.56)

Substituting eq. (14.56) into eq. (14.55) gives

 We 5
1
2

 a
3

i51
 a

3

j51
 eVei c3

S
 =ai

# =aj dS d  Vej (14.57)

If we define the term in brackets as

 Cij
1e2 5 3

S
 =ai

# =aj dS (14.58)

we may write eq. (14.57) in matrix form as

 We 5
1
2

 e 3Ve 4T 3C1e2 4 3Ve 4 (14.59)

where the superscript T denotes the transpose of the matrix

 3Ve 4 5 £
Ve1
Ve2
Ve3

§  (14.60a)

and

 3C1e2 4 5 D
C11

1e2 C12
1e2 C13

1e2

C21
1e2 C22

1e2 C23
1e2

C31
1e2 C32

1e2 C33
1e2
T  (14.60b)

The matrix [C(e)] is usually called the element coefficient matrix. The matrix element Cij
1e2 of 

the coefficient matrix may be regarded as the coupling between nodes i and j; its value is 
obtained from eqs. (14.52) and (14.58). For example,

C12
1e2 5 3  =a1

# =a2 dS

  5
1

4A2 3 1y2 2 y3 2 1y3 2 y1 2 1 1x3 2 x2 2 1x1 2 x3 2 4 3
S
 dS (14.61a)

 5
1

4A
 3 1y2 2 y3 2 1y3 2 y1 2 1 1x3 2 x2 2 1x1 2 x3 2 4
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Similarly:

C11
1e2 5

1
4A

 3 1y2 2 y3 2 2 1 1x3 2 x2 2 2 4 (14.61b)

 C13
1e2 5

1
4A

 3 1y2 2 y3 2 1y1 2 y2 2 1 1x3 2 x2 2 1x2 2 x1 2 4 (14.61c)

C22
1e2 5

1
4A

 3 1y3 2 y1 2 2 1 1x1 2 x3 2 2 4 (14.61d)

 C23
1e2 5

1
4A

 3 1y3 2 y1 2 1y1 2 y2 2 1 1x1 2 x3 2 1x2 2 x1 2 4 (14.61e)

C33
1e2 5

1
4A

 3 1y1 2 y2 2 2 1 1x2 2 x1 2 2 4 (14.61f)

Also

 C21
1e2 5 C12

1e2,  C31
1e2 5 C13

1e2,  C32
1e2 5 C23

1e2 (14.61g)

However, our calculations will be easier if we define

 P1 5 1y2 2 y3 2 ,  P2 5 1y3 2 y1 2 ,  P3 5 1y1 2 y2 2  (14.62a)

Q1 5 1x3 2 x2 2 ,  Q2 5 1x1 2 x3 2 ,  Q3 5 1x2 2 x1 2

With Pi and Qi 1 i 5 1, 2, 3 are the local node numbers 2 , each term in the element coef-
ficient matrix is found as

 Cij
1e2 5

1
4A

 3PiPj 1 QiQj 4 (14.62b)

where

 A 5
1
2

 1P2Q3 2 P3Q2 2  (14.62c)

Note that P1 1 P2 1 P3 5 0 5 Q1 1 Q2 1 Q3 and hence a
3

i51
 C1e2

ij 5 0 5 a
3

j51
 C1e2

ij . 

This may be used in checking our calculations.

C.  Assembling All the Elements
Having considered a typical element, the next step is to assemble all such elements in the 
solution region. The energy associated with the assemblage of all elements in the mesh is

 W 5 a
N

e51
 We 5

1
2

 e 3V 4T 3C 4 3V 4 (14.63)
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where

 3V 4 5 F

V1
V2
.
.
.

Vn

V (14.64)

n is the number of nodes, N is the number of elements, and [C] is called the overall or global 
coefficient matrix, which is the assemblage of individual element coefficient matrices. The 
major problem now is obtaining [C] from 3C1e2 4.

The process by which individual element coefficient matrices are assembled to obtain 
the global coefficient matrix is best illustrated with an example. Consider the finite element 
mesh consisting of three finite elements as shown in Figure 14.29. Observe the numberings 
of the nodes. The numbering of nodes as 1, 2, 3, 4, and 5 is called global numbering. The 
numbering i-j-k is called local numbering, and it corresponds with 1-2-3 of the element 
in Figure 14.27. For example, for element 3 in Figure 14.29, the global numbering 3-5-4 
corresponds to local numbering 1-2-3 of the element in Figure 14.27. Note that the local 
 numbering must be in counterclockwise sequence starting from any node of the element. 
For element 3, for example, we could choose 4-3-5 or 5-4-3 instead of 3-5-4 to correspond 
with 1-2-3 of the element in Figure 14.27. Thus the numbering in Figure 14.29 is not 
unique. However, we obtain the same [C] whichever numbering is used. Assuming the 
particular numbering in Figure 14.29, the global coefficient matrix is expected to have the 
form

 3C 4 5 E

C11 C12 C13 C14 C15
C21 C22 C23 C24 C25
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

U (14.65)

which is a 5 3 5 matrix, since five nodes 1n 5 5 2  are involved. Again, Cij is the coupling 
between nodes i and j. We obtain Cij by utilizing the fact that the potential distribution 

FIGURE 14.29 Assembly of three elements: i-j-k 
corresponds to local numbering 1-2-3 of the 
 element in Figure 14.27.
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14.5 The Finite Element Method 797

must be continuous across interelement boundaries. The contribution to the i, j position in 
[C] comes from all elements containing nodes i and j. To find C11, for example, we observe 
from Figure 14.29 that global node 1 belongs to elements 1 and 2 and it is local node 1 in 
both; hence,

 C11 5 C11
112 1 C11

122 (14.66a)

For C22, global node 2 belongs to element 1 only and is the same as local node 3; hence,

 C22 5 C33
112 (14.66b)

For C44, global node 4 is the same as local nodes 2, 3, and 3 in elements 1, 2, and 3, respec-
tively; hence,

 C44 5 C22
112 1 C33

122 1 C33
132 (14.66c)

For C14, global link 14 is the same as the local links 12 and 13 in elements 1 and 2, respec-
tively; hence,

 C14 5 C12
112 1 C13

122 (14.66d)

Since there is no coupling (or direct link) between nodes 2 and 3,

 C23 5 C32 5 0 (14.66e)

Continuing in this manner, we obtain all the terms in the global coefficient matrix by 
inspection of Figure 14.29 as

 3C 4 5 F

C11
112 1 C11

122 C13
112 C12

122 C12
112 1 C13

122 0

C31
112 C33

112 0 C32
112 0

C21
122 0 C22

122 1 C11
132 C23

122 1 C13
132 C12

132

C21
112 1 C31

122 C23
112 C32

122 1 C31
132 C22

112 1 C33
122 1 C33

132 C32
132

0 0 C21
132 C23

132 C22
132

V (14.67)

Note that element coefficient matrices overlap at nodes shared by elements and that there 
are 27 terms (nine for each of the three elements) in the global coefficient matrix [C]. Also 
note the following properties of the matrix [C]:

1. It is symmetric 1Cij 5 Cji 2  just like the element coefficient matrix.
2. Since Cij 5 0 if no coupling exists between nodes i and j, it is evident that for a 

large number of elements [C] becomes sparse and banded.
3. It is singular. Although this is less obvious, it can be shown by using the element 

coefficient matrix of eq. (14.60b).
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D.  Solving the Resulting Equations
From variational calculus, it is known that Laplace’s (or Poisson’s) equation is satisfied 
when the total energy in the solution region is minimum. Thus we require that the partial 
derivatives of W with respect to each nodal value of the potential be zero; that is,

'W
'V1

5
'W
'V2

 5 . . . 5
'W
'Vn

5 0

or

 
'W
'Vk

5 0,  k 5 1, 2, . . ., n (14.68)

For example, to get 'W/'V1 5 0 for the finite element mesh of Figure 14.29, we substitute   
eq. (14.65) into eq. (14.63) and take the partial derivative of W with respect to V1. We obtain

0 5
'W
'V1

5 2V1C11 1 V2C12 1 V3C13 1 V4C14 1 V5C15

 1 V2C21 1 V3C31 1 V4C41 1 V5C51

or

 0 5 V1C11 1 V2C12 1 V3C13 1 V4C14 1 V5C15 (14.69)

In general, 'W/'Vk 5 0 leads to

 0 5 a
n

i51
 Vi Cik (14.70)

where n is the number of nodes in the mesh. By writing eq. (14.70) for all nodes 
k 5 1, 2, . . . , n, we obtain a set of simultaneous equations from which the solution of 
3V 4T 5 3V1, V2, . . . , Vn 4 can be found. This can be done in two ways similar to those used 
in solving finite difference equations obtained from Laplace’s (or Poisson’s) equation.

Iteration Method

The iterative approach is similar to that used in the finite difference method. Let us assume 
that node 1 in Figure 14.29, for example, is a free node. The potential at node 1 can be 
obtained from eq. (14.69) as

 V1 5 2
1

C11
 a

5

i52
 ViC1i (14.71)

In general, the potential at a free node k is obtained from eq. (14.70) as

 Vk 5 2
1

Ckk
 a

n

i51,i2k
 ViCik (14.72)
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This is applied iteratively to all the free nodes in the mesh with n nodes. Since Cki 5 0 if 
node k is not directly connected to node i, only nodes that are directly linked to node k 
contribute to Vk in eq. (14.72).

Thus if the potentials at nodes connected to node k are known, we can determine Vk 
by using eq. (14.72). The iteration process begins by setting the potentials at the free nodes 
equal to zero or to the average potential.

 Vave 5
1
2

 1Vmin 1 Vmax 2  (14.73)

where Vmin and Vmax are the minimum and maximum values of the prescribed potentials 
at the fixed nodes. With those initial values, the potentials at the free nodes are calculated 
by using eq. (14.72). At the end of the first iteration, when the new values have been calcu-
lated for all the free nodes, these values become the old values for the second iteration. The 
procedure is repeated until the change between subsequent iterations is negligible.

Band Matrix Method

If all free nodes are numbered first and the fixed nodes last, eq. (14.63) can be written such 
that

 W 5
1
2

 e 3Vf Vp 4 cCff Cfp
Cpf Cpp

d  cVf
Vp

d  (14.74)

where subscripts f and p, respectively, refer to nodes with free and fixed (or prescribed) 
 potentials. Since Vp is constant (it consists of known, fixed values), we differentiate only 
with respect to Vf , so that applying eq. (14.68) to eq. (14.74) yields

CffVf 1 CfpVp 5 0

or

 3Cff 4 3Vf 4 5 2 3Cfp 4 3Vp 4 (14.75)

This equation can be written as

 3A 4 3V 4 5 3B 4 (14.76a)

or

 3V 4 5 3A 421 3B 4 (14.76b)

where 3V 4 5 3Vf 4, 3A 4 5 3Cff 4, and 3B 4 5 2 3Cfp 4 3Vp 4. Since [A] is, in general, non-
singular, the potential at the free nodes can be found by using eq. (14.75). We can solve 
for [V] in eq. (14.76a) by using the Gaussian elimination technique. We can also use 
matrix inversion to solve for [V] in eq. (14.76b) if the size of the matrix to be inverted 
is not large.
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800 CHAPTER 14 NUMERICAL METHODS

Notice that as from eq. (14.55) onward, our solution has been restricted to a two- 
dimensional problem involving Laplace’s equation, =2V 5 0. The basic concepts developed 
in this section can be extended to finite element analysis of problems involving Poisson’s 
equation 1=2V 5 2rv /e, =2A 5 2mJ 2  or the wave equation 1=2f 2 g2f 5 0 2 . A major 
problem associated with finite element analysis is the relatively large amount of computer 
memory required for storing the matrix elements, as well as the associated computational 
time. However, several algorithms have been developed to alleviate the problem to some 
degree.

The finite element method has a number of advantages over the finite difference 
method and the method of moments. First, the FEM can easily handle the complex solu-
tion region. Second, the generality of the FEM makes it possible to construct a general-
purpose program for solving a wide range of problems. A single program can be used to 
solve different problems (described by the same partial differential equations) with differ-
ent solution regions and different boundary conditions; only the input data to the problem 
need be changed. However, the FEM has its own drawbacks. It is harder to understand and 
program than the other methods (FDM and MOM). It also requires preparing input data, 
a process that could be tedious.

Consider the two-element mesh shown in Figure 14.30(a). Using the finite element meth-
od, determine the potentials within the mesh.

FIGURE 14.30 For Example 14.6: (a) two-
element mesh, (b) local and global numbering 
of the elements.

EXAMPLE 14.6
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14.5 The Finite Element Method 801

Solution:
The element coefficient matrices can be calculated by using one of the relations of  
eq. (14.62). For element 1, consisting of nodes 1-2-4 corresponding to the local numbering 
1-2-3 as in Figure 14.30(b),

 P1 5 21.3,  P2 5 0.9,  P3 5 0.4

Q1 5 20.2,  Q2 5 20.4,  Q3 5 0.6 

 A 5 1/2 10.54 1 0.16 2 5 0.35

Substituting all these into eq. (14.62b) gives

 3C112 4 5 £
1.236 20.7786 20.4571

20.7786 0.6929 0.0857
20.4571 0.0857 0.3714

§  (14.6.1)

Similarly, for element 2, consisting of nodes 2-3-4 corresponding to local numbering 1-2-3, 
as in Figure 14.30(b),

 P1 5 20.6,  P2 5 1.3,  P3 5 20.7

 Q1 5 20.9,  Q2 5 0.2,  Q3 5 0.7

 A 5 1/2 10.91 1 0.14 2 5 0.525

Hence,

 3C122 4 5 £
0.5571 20.4571 20.1

20.4571 0.8238 20.3667
20.1 20.3667 0.4667

§  (14.6.2)

Applying eq. (14.75) gives

 cC22 C24
C42 C44

d  cV2

V4
d 5 2 cC21 C23

C41 C43
d  cV1

V3
d  (14.6.3)

This can be written in a more convenient form as

 ≥
1 0 0 0
0 C22 0 C24

0 0 1 0
0 C42 0 C44

¥  ≥
V1

V2

V3

V4

¥ 5 ≥
1 0

2C21 2C23

0 1
2C41 2C43

¥  cV1

V3
d  (14.6.4a)

or

 3C 4 3V 4 5 3B 4 (14.6.4b)
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802 CHAPTER 14 NUMERICAL METHODS

The terms of the global coefficient matrix are obtained as follows:

C22 5 C22
112 1 C11

122 5 0.6929 1 0.5571 5 1.25 

 C42 5 C24 5 C23
112 1 C13

122 5 0.0857 2 0.1 5 20.0143 

C44 5 C33
112 1 C33

122 5 0.3714 1 0.4667 5 0.8381

 C21 5 C21
112 5 20.7786

 C23 5 C12
122 5 20.4571

 C41 5 C31
112 5 20.4571

C43 5 C32
122 5 20.3667

Note that we follow local numbering for the element coefficient matrix and global number-
ing for the global coefficient matrix. Thus the square matrix [C] is obtained as

 3C 4 5 ≥
1 0 0 0
0 1.25 0 20.0143
0 0 1 0
0 20.0143 0 0.8381

¥  (14.6.5)

and the matrix [B] on the right-hand side of eq. (14.6.4a) is obtained as

 3B 4 5 ≥
0

4.571
10.0

3.667

¥  (14.6.6)

By inverting matrix [C] in eq. (14.6.5), we obtain

3V 4 5 3C 421 3B 4 5 ≥
0

3.708
10.0

4.438

¥

Thus V1 5 0, V2 5 3.708, V3 5 10, and V4 5 4.438. Once the values of the potentials at 
the nodes are known, the potential at any point within the mesh can be determined by 
using eq. (14.51). 
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14.5 The Finite Element Method 

Write a program to solve Laplace’s equation by means of the finite element method. Apply 
the program to the two-dimensional problem shown in Figure 14.32(a).

Solution:
The solution region is divided into 25 three-node triangular elements with the total num-
ber of nodes being 21, as shown in Figure 14.32(b). This step is necessary to have input 
data defining the geometry of the problem. Based on our discussions thus far, a general 
MATLAB program for solving problems involving Laplace’s equation by using three-node 
triangular elements was developed as in Figure 14.33. The development of the program 
basically involves four steps indicated in the program and explained as follows.

Step 1: This involves inputting the necessary data defining the problem. This is the only step 
that depends on the geometry of the problem at hand. Through a data file, we input the num-
ber of elements, the number of nodes, the number of fixed nodes, the prescribed values of the 
potentials at the free nodes, the x- and y-coordinates of all nodes, and a list identifying the 

FIGURE 14.31 For Practice Exercise 14.6.

EXAMPLE 14.7
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PRACTICE EXERCISE 14.6

Calculate the global coefficient matrix for the two-element mesh shown in  
Figure 14.31 when (a) node 1 is linked with node 3 and the local numbering (i-j-k) is 
as indicated in Figure 14.31(a), (b) node 2 is linked with node 4 with local numbering 
as in Figure 14.31(b).

Answer:  (a) ≥
0.9964 0.05 20.2464 20.8
0.05 0.7 20.75 0.0

20.2464 20.75 1.5964 20.75
20.8 0.0 20.75 1.4

¥ .

 

  (b) ≥
1.333 20.7777 0.0 21.056

20.0777 0.8192 20.98 0.2386
0.0 20.98 2.04 21.06

21.056 0.2386 21.06     1.877

¥ .

803



804 CHAPTER 14 NUMERICAL METHODS

FIGURE 14.32 For Example 
14.7: (a) two-dimensional elec-
trostatic problem, (b) solution 
region divided into 25 triangular 
elements.

%  FINITE ELEMENT SOLUTION OF LAPLACE’S EQUATION FOR
%  TWO-DIMENSIONAL PROBLEMS
%  TRIANGULAR ELEMENTS ARE USED
%  ND = NO. OF NODES
%  NE = NO. OF ELEMENTS
%  NP = NO. OF FIXED NODES (WHERE POTENTIAL IS PRESCRIBED)
%  NDP(I) = NODE NO. OF PRESCRIBED POTENTIAL, I=1,2,...,NP
%  VAL(I) = VALUE OF PRESCRIBED POTENTIAL AT NODE NDP(I)
%  NL(I,J) = LIST OF NODES FOR EACH ELEMENT I, WHERE

FIGURE 14.33 Computer program for Example 14.7.
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14.5 The Finite Element Method 805

%           J=1,2,3 REFERS TO THE LOCAL NODE NUMBER
%  CE(I,J) = ELEMENT COEFFICIENT MATRIX
%  C(I,J) = GLOBAL COEFFICIENT MATRIX
%  B(I) = RIGHT-HAND SIDE MATRIX IN THE SYSTEM OF
%  SIMULTANEOUS EQUATIONS; SEE EQ. (14.6.4)
%  X(I), Y(I) = GLOBAL COORDINATES OF NODE I
%  XL(J), YL(J) = LOCAL COORDINATES OF NODE J=1,2,3
%  V(I) = POTENTIAL AT NODE I
%  MATRICES P(I) AND Q (I) ARE DEFINED IN EQ. (14.62a)

%  ****************************************************
%  FIRST STEP -  INPUT DATA DEFINING GEOMETRY AND 

BOUNDARY CONDITIONS
%  ****************************************************

clear
input(‘Name of input data file = ‛)

% ******************************************************
%  SECOND STEP -  EVALUATE COEFFICIENT MATRIX FOR EACH 

ELEMENT AND ASSEMBLE GLOBALLY
% ******************************************************
B = zeros(ND,1);
C = zeros(ND,ND);
for I=1:NE
% FIND LOCAL COORDINATES XL(J), YL(J) FOR ELEMENT I
   K = NL(I,[1:3]);
   XL = X(K);
   YL = Y(K);
P=zeros(3,1);
Q=zeros(3,1);
   P(1) = YL(2) - YL(3);
   P(2) = YL(3) - YL(1);
   P(3) = YL(1) - YL(2);
   Q(1) = XL(3) - XL(2);
   Q(2) = XL(1) - XL(3);
   Q(3) = XL(2) - XL(1);
   AREA = 0.5*abs( P(2)*Q(3) - Q(2)*P(3) );
%  DETERMINE COEFFICIENT MATRIX FOR ELEMENT I
   CE=(P*P’+Q*Q’)/(4.0*AREA);
%  ASSEMBLE GLOBALLY - FIND C(I,J) AND B(I)
   for J=1:3
      IR = NL(I,J);
      IFLAG1=0;
%  CHECK IF ROW CORRESPONDS TO A FIXED NODE
   for K = 1:NP
      if (IR == NDP(K))

FIGURE 14.33 (Continued)
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806 CHAPTER 14 NUMERICAL METHODS

nodes belonging to each element in the order of the local numbering 1-2-3. For the problem 
in Figure 14.32, the three sets of data for coordinates, the element–node relationship, and the 
prescribed potentials at fixed nodes are shown in Tables 14.3, 14.4, and 14.5, respectively.

Step 2: This step entails finding the element coefficient matrix [C(e)] for each element and 
the global coefficient matrix [C]. The procedure explained in Example 14.6 is applied. 
Equation (14.6.4) can be written in general form as

c1 0
0 Cff

d  cVP

Vf
d 5 c 1

2Cfp
d  3Vp 4

         C(IR,IR) = 1.0;
         B(IR) = VAL(K);
         IFLAG1=1;
      end
   end % end for K = 1:NP
   if(IFLAG1 == 0)
   for L = 1:3
     IC = NL(I,L);
     IFLAG2=0;
%  CHECK IF COLUMN CORRESPONDS TO A FIXED NODE
     for K=1:NP
        if ( IC == NDP(K) ),
          B(IR) = B(IR) - CE(J,L)*VAL(K);
          IFLAG2=1;
        end
      end % end for K=1:NP
    if(IFLAG2 == 0)
      C(IR,IC) = C(IR,IC) + CE(J,L);
      end
    end  % end for L=1:3
  end   %end if(iflag1 == 0)
end  % end for J=1:3
end % end for I=1:NE
% ***************************************************
%   THIRD STEP - SOLVE THE SYSTEM OF EQUATIONS
% ***************************************************

V = inv(C)*B;
V=V’;
% ***************************************************
%   FOURTH STEP - OUTPUT THE RESULTS
% ***************************************************
diary exam147.out
[ND, NE, NP]
[ [1:ND]’ X’ Y’ V’]
diary off

FIGURE 14.33 (Continued)
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14.5 The Finite Element Method 807

TABLE 14.3 Nodal Coordinates of the Finite Element Mesh  
of Figure 14.33

Node x y Node x y

 1 0.0 0.0 12 0.0 0.4
 2 0.2 0.0 13 0.2 0.4
 3 0.4 0.0 14 0.4 0.4
 4 0.6 0.0 15 0.6 0.4
 5 0.8 0.0 16 0.0 0.6
 6 1.0 0.0 17 0.2 0.6
 7 0.0 0.2 18 0.4 0.6
 8 0.2 0.2 19 0.0 0.8
 9 0.4 0.2 20 0.2 0.8
10 0.6 0.2 21 0.0 1.0
11 0.8 0.2

TABLE 14.4 Element–Node Identification

 Local Node No. Local Node No.

Element No. 1 2 3 Element No. 1 2 3

  1 1  2  7 14  9 10 14
  2 2  8  7 15 10 15 14
  3 2  3  8 16 10 11 15
  4 3  9  8 17 12 13 16
  5 3  4  9 18 13 17 16
  6 4 10  9 19 13 14 17
  7 4  5 10 20 14 18 17
  8 5 11 10 21 14 15 18
  9 5  6 11 22 16 17 19
 10 7  8 12 23 17 20 19
 11 8 13 12 24 17 18 20
 12 8  9 13 25 19 20 21
 13 9 14 13

TABLE 14.5 Prescribed Potentials  
at Fixed Nodes

 Prescribed  Prescribed 
Node No. Potential Node No. Potential

  1   0.0 18 100.0
  2   0.0 20 100.0
  3   0.0 21  50.0
  4   0.0 19   0.0
  5   0.0 16   0.0
  6  50.0 12   0.0
 11 100.0  7   0.0
 15 100.0
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808 CHAPTER 14 NUMERICAL METHODS

TABLE 14.6 Input Data for the Finite Element  
Program in Figure 14.33

NE = 25;
ND = 21;
NP = 15;
NL = [ 1 2 7
   2 8 7
   2 3 8
       3 9 8
       3 4 9
       4 10 9
       4 5 10
       5 11 10
       5 6 11
       7 8 12
      8 13 12
       8 9 13
       9 14 13
       9 10 14
       10 15 14
       10 11 15
       12 13 16
       13 17 16
       13 14 17
       14 18 17
       14 15 18
       16 17 19
       17 20 19
       17 18 20
       19 20 21];

    X = [0.0  0.2  0.4  0.6  0.8  1.0  0.0 ...
         0.2  0.4  0.6  0.8  0.0  0.2  0.4 ...
         0.6  0.0  0.2  0.4  0.0  0.2  0.0];

    Y = [0.0  0.0  0.0  0.0  0.0  0.0  0.2 ...
         0.2  0.2  0.2  0.2  0.4  0.4  0.4 ...
         0.4  0.6  0.6  0.6  0.8  0.8  1.0];

    NDP = [ 1 2 3 4 5 6 11 15 18 20 21 19 16 12 7];

    VAL = [ 0.0  0.0  0.0  0.0 0.0 ...
            50.0  100.0  100.0  100.0  100.0
            50.0  0.0   0.0   0.0   0.0];

or

3C 4 3V 4 5 3B 4

Both the “global” matrix [C] and matrix [B] are calculated at this stage.

Step 3: The global matrix obtained in step 2 is inverted. The values of the potentials at 
all nodes are obtained by matrix multiplication as in eq. (14.76b). Instead of inverting 
the global matrix, it is also possible to solve for the potentials at the nodes by using the 
Gaussian elimination technique.

Step 4: Finally, the result of the computation is provided. The input and output data are 
presented in Tables 14.6 and 14.7, respectively.
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14.5 The Finite Element Method 809

TABLE 14.7 Output Data of the 
Program in Figure 14.33

Node X Y Potential

 1 0.00 0.00 0.000
 2 0.20 0.00 0.000
 3 0.40 0.00 0.000
 4 0.60 0.00 0.000
 5 0.80 0.00 0.000
 6 1.00 0.00 50.000
 7 0.00 0.20 0.000
 8 0.20 0.20 18.182
 9 0.40 0.20 36.364
10 0.60 0.20 59.091
11 0.80 0.20 100.000
12 0.00 0.40 0.000
13 0.20 0.40 36.364
14 0.40 0.40 68.182
15 0.60 0.40 100.000
16 0.00 0.60 0.000
17 0.20 0.60 59.091
18 0.40 0.60 100.000
19 0.00 0.80 0.000
20 0.20 0.80 100.000
21 0.00 1.00 50.000

FIGURE 14.34 For Practice Exercise 14.7.
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810 CHAPTER 14 NUMERICAL METHODS

PRACTICE EXERCISE 14.7

Rework Example 14.3 using the finite element method. Divide the solution region into 
triangular elements as shown in Figure 14.34. Compare the solution with that obtained 
in Example 14.3 using the finite difference method.

Answer:  See Example 14.3.

The numerical methods covered in this chapter have been applied successfully to solve 
many EM-related problems. Besides the simple examples considered earlier in the chapter, 
the methods have been applied to diverse problems including transmission line problems, 
EM penetration and scattering problems, EM pulse (EMP) problems, EM  exploration of 
minerals, and EM energy deposition in human bodies. It is practically  impossible to cover 
all these applications within the limited scope of this text. In this  section, we use the finite 
difference method to consider the relatively easier problem of transmission lines.

The finite difference techniques are suited for computing the characteristic imped-
ance, phase velocity, and attenuation of several transmission lines: polygonal lines, shielded 
strip lines, coupled strip lines, microstrip lines, coaxial lines, and rectangular lines. The 
knowledge of the basic parameters of these lines is of paramount importance in the design 
of microwave circuits.

For concreteness, consider the microstrip line shown in Figure 14.35(a). The geometry 
in Figure 14.35(a) is deliberately selected to illustrate how one uses the finite difference 
technique to account for discrete inhomogeneities (i.e., homogeneous media separated 
by interfaces) and lines of symmetry. The techniques presented are equally applicable to 
other lines. Because the mode is TEM, having components of neither E nor H fields in the 
direction of propagation, the fields obey Laplace’s equation over the line cross section. The 
TEM mode assumption provides good approximations if the line dimensions are much 

†14.6 APPLICATION NOTE—MICROSTRIP LINES

2a

0 bw
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2w

Vd

«1 = «o

«2 = «o «r

«1 = «o

(a) (b)

0 V

«2 = «o «r

y

t

FIGURE 14.35 (a) Shielded double strip line with partial dielectric support. 
(b) Problem in (a) simplified by taking advantage of symmetry.
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14.6 Application Note—Microstrip Lines 811

smaller than half a wavelength, which means that the operating frequency is far below cut-
off  frequency for all higher-order modes. Also, owing to biaxial symmetry about the two 
axes, only one-quarter of the cross section need be considered, as shown in Figure 14.35(b).

The finite difference approximation of Laplace’s equation, =2V 5 0, was derived in 
eq. (14.15), namely

 V 1 i,j 2 5
1
4
3V 1 i 1 1,j 2 1 V 1 i 2 1,j 2 1 V 1 i,j 1 1 2 1 V 1 i,j 2 1 2 4 (14.77)

For the sake of conciseness, let us denote

 Vo  V(i, j)

 V1  V(i, j  1)

 V2  V(i  1, j) (14.78)

 V3  V(i, j  1)

 V4  V(i  1, j)

so that eq. (14.77) becomes

 Vo 5
1
4
3V1 1 V2 1 V3 1 V4 4 (14.79)

with the computation molecule as shown in Figure 14.36. Equation (14.79) is the gen-
eral formula to be applied to all free nodes in the free space and dielectric region of 
Figure 14.35(b). The only limitation on eq. (14.79) is that region is discretely homogeneous.

On the dielectric boundary, the boundary condition

 D1n  D2n (14.80)

V3

V4

V1

V2
Vo

h

h

h
h

x

y

FIGURE 14.36 Computation molecule 
for Laplace’s equation.
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812 CHAPTER 14 NUMERICAL METHODS

must be imposed. We recall that this condition is based on Gauss’s law for the electric field; 
that is,

 C   
L
Dn

# dl 5 C    
L
En

# dl 5 Qenc/m 5 0 (14.81)

since no free charge is deliberately placed on the dielectric boundary. Substituting 
E 5 2, V in eq. (14.81) gives

 

where ∂V/∂n denotes the derivative of V normal to the contour L. Applying eq. (14.82) to 
the interface in Figure 14.37 yields

       0 5 e1 

1V1 2 Vo 2
h

 h 1 e1 

1V2 2 Vo 2
h

h
2

1 e2 

1V2 2 Vo 2
h

h
2

              1 e2 

1V3 2 Vo 2
h

 h 1 e2 

1V4 2 Vo 2
h

h
2

1 e1
1V4 2 Vo 2

h
h
2

Rearranging the terms, we have

2 1e1 1 e2 2Vo 5 e1V1 1 e2V3 1
1e1 1 e2 2

2
1V2 1 V4 2

or

 Vo 5
e1

2 1e1 1 e2 2
V1 1

e2

2 1e1 1 e2 2
V3 1

1
4

V2 1
1
4

V4 (14.83)

V3

V4

«2

«1

V1

V2 Vo

L

FIGURE 14.37 Interface between media of dielectric 
 permittivities 1 and 2.
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0 5 C
L
e,V # dl 5 C

L
e
'V
'n

dl (14.82)



This is the finite difference equivalent of the boundary condition in eq. (14.80). Notice 
that the discrete inhomogeneity does not affect points 2 and 4 on the boundary but affects 
points 1 and 3 in proportion to their corresponding permittivities. Also note that when 
e2 5 e1, eq. (14.83) reduces to eq. (14.79).

On the line of symmetry, we impose the condition

 
'V
'n

5 0 (14.84)

This implies that on the line of symmetry along the y-axis, (x  0 or i  0), 
'V
'x

5
1V4 2 V2 2

2h
5 0 or V2  V4 so that eq. (14.79) becomes

 Vo 5
1
4

 3V1 1 V3 1 2V4 4 (14.85a)

or

 VA0, jB 5
1
4

 3VA0, j 1 1B 1 VA0, j 2 1B 1 2VA1, jB 4 (14.85b)

On the line of symmetry along the x-axis (y  0 or j  0 ), 
'V
'y

5
1V1 2 V3 2

2h
5 0,

orV3 5 V1, so that

 Vo 5
1
4

 32V1 1 V2 1 V4 4 (14.86a)

or

 V 1 i,0 2 5
1
4

 32V 1 i,1 2 1 V 1 i 2 1,0 2 1 V 1 i 1 1,0 2 4 (14.86b)

The computation molecules for eqs. (14.85) and (14.86) are displayed in Figure 14.38.

y

y

xx

V1

V2 Vo V4

V1

Vo V4

V3

(a) (b)

FIGURE 14.38 Computation molecules 
used for satisfying symmetry conditions: 
(a) ∂V/dx  0 (b) ∂V/dy  0

14.6 Application Note—Microstrip Lines 813
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814 CHAPTER 14 NUMERICAL METHODS

By setting the potential at the fixed nodes equal to their prescribed values and applying 
eqs. (14.79), (14.83), (14.85), and (14.86) to the free nodes according to the band  matrix 
or iterative methods discussed in Section 14.3, the potential at the free nodes can be deter-
mined. Once this is accomplished, the quantities of interest can be calculated.

The characteristic impedance Zo and phase velocity u of the line are defined as

  Zo 5 Å
L
C

 (14.87a)

  u 5
1

"LC
 (14.87b)

where L and C are the inductance and capacitance per unit length, respectively. If the 
 dielectric medium is nonmagnetic 1m 5 mo 2 , the characteristic impedance Zoo and phase 
 velocity uo with the dielectric removed (i.e., the line is air filled) are given by

  Zoo 5 Å
L
Co

 (14.88a)

 uo 5
1

"LCo

 (14.88b)

where Co is the capacitance per unit length without the dielectric. Combining eqs. (14.87) 
and (14.88) yields

  Zo 5
1

uo"CCo

5
1

uC
 (14.89a)

 u 5 uoÅ
Co

C
5

uo

"e
eff

 (14.89b)

 eeff 5
C
Co

 (14.89c)

where uo  c  3  108 m/s, the speed of light in free space, and eff is the effective 
dielectric constant. Thus to find Zo and u for an inhomogeneous medium requires 
calculating the capacitance per unit length of the structure, with and without the 
dielectric substrate.

If Vd is the potential difference between the inner and the outer conductor,

 C 5
4Q
Vd

 (14.90)

so that the problem is reduced to finding the charge per unit length Q. (The factor 4 
is needed because we are working on only one-quarter of the cross section.) To find 
Q, we apply Gauss’s law to a closed path L enclosing the inner conductor. We may  
select L as the rectangular path between two adjacent rectangles as shown in Figure 14.39.

14_Sadiku_Ch14.indd   814 14/11/17   2:12 PM



  Q 5 C
L
D # dl 5 C

L
e 
'V
'n

dl 
(14.91)

5 eaVP 2 VN

Dx
bDy 1 eaVM 2 VL

Dx
bDy 1 eaVH 2 VL

Dy
bDx 1 eaVG 2 VK

Dy
bDx 1   c

Since Dx 5 Dy 5 h,

 Q 5 1eVP 1 eVM 1 eVH 1 eVG 1c
  2 2 1eVN 1 2eVL 1 eVK 1  

c
  2  (14.92)

or

Q 5 eo 3a eriVi for nodes i on external rectangle GHJMP
   with corners (such as J) not counted] (14.93)

         2eo 3 a eriVi for nodes i on inner rectangle KHL 
with corners (such as L) counted twice].

The procedure is outlined as follows:

1. Calculate V (with the dielectric space replaced by free space), using eqs. (14.79), 
(14.83), (14.85), and (14.86).

2. Determine Q using eq. (14.93).
3. Find Co 5 4Qo/Vd.
4. Repeat steps 1 and 2 (with the dielectric space) and find C  4Q/Vd.

5. Finally, calculate Zo 5
1

c"CCo

, c  3  108 m/s.

G

K L
M

P
N

l

H J

y

x
h

h

FIGURE 14.39 The rectangular path  used in calculating a 
charge  enclosed.
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816 CHAPTER 14 NUMERICAL METHODS

Calculate Zo for the microstrip transmission line in Figure 14.35 with a  b  2.5 cm,  
d  0.5 cm, w  1 cm, t  0.001 cm, 1  o, 2  2.35o.

Solution:
This problem is representative of the various problem types that can be solved by using 
the concepts developed in this section. A computer program shown in Figure 14.40 was 
 developed based on the five-step procedure just outlined. By specifying the step size h and 
the number of iterations, the program first sets the potential at all nodes equal to zero. The 
potential on the outer conductor is also set equal to zero, while that on the inner conductor 
is set to 100 V so that Vd  100. The program finds Co when the dielectric slab is removed 
and C when the slab is in place and finally determines Zo. For a selected step size h, the 
number of iterations must be large enough and greater than the number of divisions along 
the x- or y-direction. Table 14.8 shows some typical results.

EXAMPLE 14.8

% Using finite difference,
% this programs finds the characteristic impedance of
% a shielded microstrip line

a=2.5; b=2.5;
d=0.5;
w=1;
h=0.05;
vd=100;
ni=1000;
nx=b/h;
ny=a/h;
nw=w/h;
nd=d/h;
er=2.35;
eo=10^(-9)/(36*pi);
e1=eo;
e2=er*eo;
u =3*10^8;
% Initialization
v=zeros(nx,ny);
for i=1:nw % set the potential on the inner conductor to V_d
    v(i,nd)=vd;
end
% Calculate the potential everywhere
    p1=e1/(2.0*(e1+e2));
   p2=e2/(2.0*(e1+e2));
   for n=1:2
    if n==1
        er=1;
    else
        er=2.35;
    end

FIGURE 14.40 MATLAB code for Example 14.8.
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  for k=1:ni
    
   for i=2:nx-1
       for j=2:nd-1 % below the interface
           v(i,j)=0.25*( v(i+1,j) + v(i-1,j) + v(i,j+1) +  
                v(i,j-1) );
       end
   end
   for i=2:nx-1
       for j=nd+1:ny-1 % above the interface
           v(i,j)=0.25*( v(i+1,j) + v(i-1,j) + v(i,j+1) +  
v(i,j-1) ) ;
       end
   end
   j=nd; % on the interface
       for i=nw+1:nx-1
           v(i,j)=0.25*( v(i+1,j) + v(i-1,j)) + p1*v(i,j+1) + 
p2*v(i,j-1);
       end
          % on the lines of symmetry
       for i=2:nx-1
           v(i,1)=0.25*( v(i+1,1) + v(i-1,1) + 2*v(i,2) );
       end
       for j=2:nd-1
           v(1,j)=0.25*( 2*v(2,j) + v(1,j+1) + v(1,j-1) );
       end
       for j=nd+1:ny-1
           v(1,j)=0.25*( 2*v(2,j) + v(1,j+1) + v(1,j-1) );
       end
   end
% Now calculate the charge enclosed
% Select two adjacent paths
sum1=0.0;
sum2=0.0;
nm=fix( nd + 0.5*(ny-nd) );
nn=fix( nx/2 );
for i=2:nn
    sum1= sum1 + v(i,nm);
    sum2= sum2 + v(i,nm+1);
end
sum1 = sum1 + 0.5*v(1,nm);
sum2 = sum2 + 0.5*v(1,nm+1);
for j=2:nd-1 
    sum1 = sum1 + er*v(nn,j);
    sum2 = sum2 + er*v(nn+1,j);
end
sum1 = sum1 + 0.5*er*v(nn,1);
sum2 = sum2 + 0.5*er*v(nn+1,1);
for j=nd+1:nm  

FIGURE 14.40 (Continued)

14.6 Application Note—Microstrip Lines 817
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818 CHAPTER 14 NUMERICAL METHODS

    sum1 = sum1 + v(nn,j);
    sum2 = sum2 + v(nn+1,j);
end
    sum1 = sum1 + 0.5*(er+1)*v(nn,nd);
    sum2 = sum2 + 0.5*(er+1)*v(nn+1,nd);
q(n)=eo*abs(sum2 - sum1);
end    
% Calculate the characteristic impedance
c1=4*q(1)/vd;
c2=4*q(2)/vd;
zo=1/(u*sqrt(c1*c2))

TABLE 14.8 Characteristic Impedance 
of a  Microstrip Line; for Example 14.8

h Number of Iterations Zo 1V 2
0.25  700 72.43
0.1  500 57.56
0.05  500 67.36
0.05  700 66.88
0.05 1000 66.53

% This script allows the user to enter the dimensions and 
% dielectric properties of a microstrip line and then use 
% the finite-difference algorithm to solve Laplace’s 
% equation iteratively and obtain the potential as a 
% function of space
% The microstrip problem is normally open-aired, meaning 
% the upper and side boundaries exist at infinity, but due 
% to the limitations of solution space in the numerical 
% problem, we have added shielding walls (where E = 0) of 
% perfect electric conductor, which should be sufficiently 
% far from the microstrip structure a,b >> w,d for accurate 
% simulation of free-space and boundaries at infinity.

% The script creates a coarse rectangular grid and then solves

% Prompt user for basic parameters
Vstrip=input(‛Enter the voltage on the microstrip \n> ‛);
a=input(‛Enter the horizontal span of space \n> ‛);
b=input(‛Enter the vertical span of space \n> ‛);
w=input(‛Enter the microstrip width \n> ‛);

MATLAB 14.1
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14.7 Application Note—Microstrip Lines 819

d=input(‛Enter the dielectric thickness \n> ‛);

% the dielectric boundary
disp(‛Enter the relative dielectric constant ‛);
epstop=input(‛ above the microstrip \n> ‛);
disp(‛Enter the relative dielectric constant ‛);
epsbottom=input(‛ below the microstrip \n> ‛);
epsave=(epstop+epsbottom)/2; % the average relative dielectric 
                                     % along the boundary

% Fill the potential solution space with zeros
P=zeros(b,a);

% set voltage on strip
% the floor rounds odd numbers divided by 2 down to the 
% nearest integer
for i=floor(b/2)-(floor(w/2)-1):1:floor(b/2)+floor(w/2),
    P(i,d)=Vstrip;
end

% Begin iterations to solve potential
% ----------------------------------
for i=1:600,   % i is the iteration step
    % the larger this number is the more accurate the potential 
    % solution
    for j=2:1:a-1,  % sweep each column of y-values
        % if j is not a unit on the microstrip conductor
        if j ~= d  
            for i=2:b-1, % sweep each row of x-values
                % this equation solves for the potential by
                % discretizing Laplace’s equation on the 
                % rectangular grid
                P(i,j)=0.25*(P(i+1,j)+P(i-1,j)+P(i,j+1)+P(i,j-1));
            end
        % else we are at y = d, in the axis of the strip
        else   
            for i=2:b-1, % sweep each row of x-values
                 if (i < (floor(b/2)-(w/2-1))) | (i > 

(floor(b/2)+w/2))
                 % this equation solves for the potential by
                  % discretizing Laplace’s equation on the 

rectangular
                 % grid
                    P(i,j)=(1/(4*epsave))*(epsave*(P(i+1,j)+...
                    P(i-1,j))+epstop*P(i,j+1)+epsbottom*P(i,j-1));
                end
            end
        % end the if conditional
        end
    end
end
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820 CHAPTER 14 NUMERICAL METHODS

1. Electric field lines and equipotential lines due to coplanar point sources can be plotted 
by using the numerical technique presented in this chapter. The basic concept can be 
 extended to plotting magnetic field lines.

2. An EM problem in the form of a partial differential equation can be solved by using the 
finite difference method. The finite difference equation that approximates the differen-
tial equation is applied at grid points spaced in an ordered manner over the whole solu-
tion region. The field quantity at the free points is determined using a suitable method.

3. An EM problem in the form of an integral equation is conveniently solved by using 
the moment method. The unknown quantity under the integral sign is determined 
by matching both sides of the integral equation at a finite number of points in the 
domain of the quantity.

4. While the finite difference method is restricted to problems with regularly shaped 
solution regions, the finite element method can handle problems with complex geom-
etries. This method involves dividing the solution region into finite elements, deriving 
equations for a typical element, assembling all elements in the region, and solving the 
 resulting system of equations.

5. The finite difference has been applied to determine the characteristic impedance of a 
microstrip transmission line.

 Typical examples on how to apply each method to some practical problems have been 
shown. Computer programs for solving the problems are provided wherever needed.

 14.1 At the point 11, 2, 0 2  in an electric field due to coplanar point charges, E 5 0.3 ax 2
0.4 ay V/m. A differential displacement of 0.05 m on an equipotential line at that point 
will lead to point

(a) 11.04, 2.03, 0 2  (c) 11.04, 1.97, 0 2
(b) 10.96, 1.97, 0 2  (d) 10.96, 2.03, 0 2

% ------------------------------------

% Plot potential distribution
% Create the vector of voltage contours
v=[0.005,0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]*...
  Vstrip;
figure
contour(P’,v); % P’ is the transposed matrix to meet the 
requirements
colorbar   % add the colorbar as a legend for the colors which 
                  % define the equipotential lines
xlabel(‛Horizontal position‛)
ylabel(‛Vertical position‛)
title(‛Equipotential Curves For Microstrip Line‛)

SUMMARY

REVIEW
QUESTIONS
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 14.2  Which of the following is not a correct finite difference approximation to dV/dx at xo if 
h 5 Dx?4

(a) 
V 1xo 1 h 2 2 V 1xo 2

h  
(d) 

V 1xo 1 h 2 2 V 1xo 2 h 2
2h

(b) 
V 1xo 2 2 V 1xo 2 h 2

h  
(e) 

V 1xo 1 h/2 2 2 V 1xo 2 h/2 2
h

(c) 
V 1xo 1 h 2 2 V 1xo 2 h 2

h

 14.3  The triangular element of Figure 14.41 is in free space. The approximate value of the 
 potential at the center of the triangle is
(a) 10 V (c) 5 V
(b) 7.5 V (d) 0 V

 14.4  For finite difference analysis, a rectangular plate measuring 10 by 20 cm is divided into 
eight subregions by lines 5 cm apart parallel to the edges of the plates. How many free 
nodes are there if the edges are connected to some source?
(a) 15 (c) 9 (e) 3
(b) 12 (d) 6

 14.5  Using the difference equation Vn 5 Vn21 1 Vn11 with Vo 5 V5 5 1 and starting with 
initial values Vn 5 0 for 1 # n # 4, the value of V2 after the third iteration is
(a) 1 (c) 9 (e) 25
(b) 3 (d) 15

 14.6  The coefficient matrix [A] obtained in the moment method does not have one of these 
properties:
(a) It is dense (i.e., has many nonzero terms).
(b) It is banded.
(c) It is square and symmetric.
(d) It depends on the geometry of the given problem.

FIGURE 14.41 For Review Questions 14.3 
and 14.10.

4 The formula in (a) is known as a forward-difference formula, that in (b) as a backward-difference formula, 
and that in (d) or (e) as a central-difference formula.
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822 CHAPTER 14 NUMERICAL METHODS

 14.7 A major difference between the finite difference and the finite element methods is that
(a) Using one, a sparse matrix results in the solution.
(b) In one, the solution is known at all points in the domain.
(c) One applies to solving partial differential equation.
(d) One is limited to time-invariant problems.

 14.8  If the plate of Review Question 14.4 is to be discretized for finite element analysis such 
that we have the same number of grid points, how many triangular elements are there?
(a) 32 (c) 12
(b) 16 (d) 9

 14.9 Which of these statements is not true about shape functions?
(a) They are interpolatory in nature.
(b) They must be continuous across the elements.
(c) Their sum is identically equal to unity at every point within the element.
(d) The shape function associated with a given node vanishes at any other node.
(e) The shape function associated with a node is zero at that node.

14.10 The area of the element in Figure 14.41 is
(a) 14 (c) 7
(b) 8 (d) 4

Answers:  14.1a, 14.2c, 14.3a, 14.4e, 14.5c, 14.6b, 14.7a 14.8b, 14.9e, 14.10d.

Section 14.2—Field Plotting

 14.1 Use the program developed in Example 14.1 or your own equivalent code to plot the 
electric field lines and equipotential lines for the following cases:

  (a)  Three point charges of 21 C, 2 C, and 1 C placed at 121, 0 2 , 10, 2 2 , and 11, 0 2 , 
 respectively.

  (b)  Five identical point charges of 1 C located at 121, 21 2 , 121, 1 2 , 11, 21 2 , 11, 1 2 , 
and 10, 0 2 , respectively.

Section 14.3—The Finite Difference Method

 14.2 A boundary-value problem is defined by

d2V
dx2 5 x 1 1,  0,x,1

  Subject to V(0)  0 and V(1) 1. Use the finite difference method to find V(0.5). You may 
take D  0.25 and perform 5 iterations. Compare your result with the exact solution.

PROBLEMS
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 14.3 (a) Obtain 
dV
dx

 and 
d2V
dx2  at x 5 0.15 from the following table.

x 0.1 0.15 0.2 0.25 0.3
V 1.0017 1.5056 2.0134 2.5261 3.0452

  (b)  The data in the table are obtained from V 5 10 sinh x. Compare your result in 
part (a) with the exact values.

 14.4 Show that the finite difference equation for Laplace’s equation in cylindrical coordinates, 
V 5 V 1r, z 2 , is

V 1ro, zo 2 5
1
4

 cV 1ro, zo 1 h 2 1 V 1ro, zo 2 h 2 1 a1 1
h

2ro
b

 V 1ro 1 h, zo 2 1 a1 2
h

2ro
b  V 1ro 2 h, zo 2 d

  where h 5 Dz 5 Dr.
 14.5 Using the finite difference representation in cylindrical coordinates 1r, f 2  at a grid 

point P shown in Figure 14.42, let r 5 m Dr and f 5 n Df so that V 1r, f 2 0 P 5
V 1mDr, nDf 2 5 Vm

n . Show that

 =2V 0 m,n 5
1

Dr2 c a1 2
1

2m
bVm21

n 2 2Vm
n 1 a1 1

1
2m

bVm11
n

1
1

1m Df 2 2 1Vm
n21 2 2 Vm

n 1 Vm
n11 2 d

 14.6  The four sides of a square trough are maintained at potentials 10 V, 40 V, 50 V, and 
80 V. Determine the potential at the center of the trough.

 14.7 For the potential problem in Figure 14.43, use the finite difference method to determine 
V1 to V4. Five iterations are enough.

FIGURE 14.42 Finite difference grid in cylin-
drical coordinates; for Problem 14.5.

FIGURE 14.43 For Problem 14.7.

Gap

40 V

60 V

20 V

1 2

3 4

0 V
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824 CHAPTER 14 NUMERICAL METHODS

 14.8 Use the finite difference method to obtain the potential at points a, b, and c in Figure 
14.44. Five iterations are enough.

 14.9 The cross section of a long conducting pipe is shown in Figure 14.45. For the indicated 
boundary conditions: 

  (a) Find the potential distribution V(x, y) by solving Laplace’s equation.
  (b)  Find the potential at the center of the region using the finite difference method. Take 

a = 1 m and Vo = 50 V.
14.10  For the rectangular region shown in Figure 14.46, the electric potential is zero on the 

boundaries and the charge distribution rv is 50 nC/m3. Although there are six free 
nodes, there are only four unknown potentials (V1V4) because of symmetry. Solve for 
the unknown potentials.

14.11  Apply the band matrix technique to set up a system of simultaneous difference equa-
tions for each of the problems in Figure 14.47. Obtain matrices [A] and [B].

100 V0 V

0 V

a

b c

FIGURE 14.44 For Problem 14.8.

FIGURE 14.46 For Problem 14.10.

3 4 0 V

0 V

0 V

1

0 V

2

1 cm

FIGURE 14.47 For Problem 14.11.

FIGURE 14.45 For Problem 14.9.

Gap
x

y

a0

a

Vo

Vo
0 V

0 V
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FIGURE 14.48 For Problem 14.12. FIGURE 14.49 For Problem 14.13.

Gap

Gap

Gaps

50 V

4 mm
0 V

0

0 V

4 mm

1

4

5 6 7

2 3

0 V

y

100 V

100 V

x

14.12 (a)  How would you modify matrices [A] and [B] of Example 14.3 if the solution region 
had charge density rv?

  (b)  Write a program to solve for the potentials at the grid points shown in Figure 14.48 
assuming a charge density rv 5 x 1y 2 1 2  nC/m3. Use the iterative finite difference 
method and take er 5 1.0.

14.13  Use the finite difference method to find the potentials at nodes 1 to 7 in the grid shown 
in Figure 14.49.

14.15  Write a program that uses the finite difference scheme to solve the one-dimensional 
wave equation

'2V
'x2 5

'2V
't2 ,  0 # x # 1,  t . 0

  given boundary conditions V 10, t 2 5 0, V 11, t 2 5 0, t . 0 and the initial condition 
'V/'t 1x, 0 2 5 0, V 1x, 0 2 5 sin px, 0 , x , 1. Take Dx 5 Dt 5 0.1. Compare your 
solution with the exact solution V 1x, t 2 5 sin px cos pt for 0 , t , 4.
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14.14  The two-dimensional wave equation is given by

  

 

1
c2 
'2�

't2 5
'2�

'x2 1
'2�

'z2

By letting �m,n
j  denote the finite difference approximation of � 1xm, zn, tj 2 , show that the 

finite difference scheme for the wave equation is

  a 1�m,n11
j 1 ��,n21

j 2 2 �m,n
j 2

 where h 5 Dx 5 Dz and a 5 1cDt/h 2 2.

��,n
j11 5 2 ��,n

j21 1 a 1 1 ��21,n
j 2 2 1� j2 �m,n

j 2 �m,n
j

m11,n
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Section 14.4—The Moment Method

14.16 The electric field due to a circular loop placed at the origin with charge r per unit length 
at a distance x from origin is given by

Ex 5
r

2peoa
3

p

0

(u 2 cos u)du

(1 1 u2
2 2u cosu)3/2 5

r

2peoa
 F(u)

  where

F(u) 5 3
p

0

(u 2 cos u)du

(1 1 u2
2 2u cosu)3/2

  and u = x/a. Use MATLAB to plot  F(u) for 0 , u , 2.
14.17  A transmission line consists of two identical wires of radius a, separated by distance d 

as shown in Figure 14.50. Maintain one wire at 1 V and the other at 21 V and use the 
method of moments to find the capacitance per unit length. Compare your result with 
exact formula for C in Table 11.1. Take a 5 5 mm, d 5 5 cm, , 5 5 m, and e 5 eo.

14.18  Two conducting wires of equal length L and radius a are separated by a small gap and 
inclined at an angle u as shown in Figure 14.51. Find the capacitance between the wires 
by using the method of moments for cases u 5 10º, 20°, . . . , 180°. Take the gap as 
2 mm, a 5 1 mm, L 5 2 m, er 5 1.

14.19  Given an infinitely long thin strip transmission line shown in Figure 14.52(a), use the 
moment method to determine the characteristic impedance of the line. We divide each 
strip into N subareas as in Figure 14.52(b) so that on subarea i,

Vi 5 a
2N

j51
 Aij rj

  where

Aij 5 µ
2D,

2peo
 ln Rij, i 2 j

2D,

2peo
 3ln D, 2 1.5 4, i 5 j

  Rij is the distance between the ith and jth subareas, and Vi 5 1 or 21 depending on 
whether the ith subarea is on strip 1 or 2, respectively. Write a program to find the char-
acteristic impedance of the line using the fact that

Zo 5
"moeo

C

FIGURE 14.50 For Problem 
14.17.

d

2a

l
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  where C is the capacitance per unit length and

C 5
Q
Vd

5
a

N

i51
 ri D,

Vd

  and Vd 5 2 V is the potential difference between strips. Take H 5 2 m, W 5 5 m, and 
N 5 20.

14.20  Consider an L-shaped thin wire of radius 1 mm as shown in Figure 14.53. If the wire is 
held at a potential V  10 V, use the method of moments to find the charge distribution 
on the wire. Take D  0.1.

14.21  Consider the coaxial line of the arbitrary cross section shown in Figure 14.54(a). Using 
the moment method to find the capacitance C per length involves dividing each conduc-
tor into N strips so that the potential on the jth strip is given by

Vj 5 a
2N

i51
 ri Aij

  where

Aij 5 µ
2D,

2pe
 ln 

Rij

ro
, i 2 j

2D,

2pe
 c ln 

D,i

ro
2 1.5 d , i 5 j

  and Vj 5 21 or 1 depending on whether Di lies on the inner or outer conductor, 
respectively. Write a MATLAB program to determine the total charge per length on a 
coaxial cable of elliptical cylindrical cross section shown in Figure 14.54(b) by using

Q 5 a
N

i51
 ri

  and the capacitance per unit length with C 5 Q/2.

  (a)  As a way of checking your program, take A 5 B 5 2 cm and a 5 b 5 1 cm (coax-
ial line with circular cross section), and compare your result with the exact value of 
C 5 2pe/ln 1A/a 2 .

FIGURE 14.51 For Problem 14.18.

G

FIGURE 14.52 Analysis of strip transmission line using 
moment method. For Problem 14.19.
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  (b)  Take A 5 2 cm, B 5 4 cm, a 5 1 cm, and b 5 2 cm.
  Hint: For the inner ellipse of Figure 14.54(b), for example,

r 5
a

"sin2 f 1 v2cos2 f
  where v 5 a/b, d, 5 r df. Take ro 5 1 cm.

14.22  A conducting bar of rectangular cross section is shown in Figure 14.55. By dividing the 
bar into N equal segments, we obtain the potential at the jth segment as

Vj 5 a
N

i51
 qiAij

  where

Aij 5 µ
1

4peoRij
, i 2 j

1
2eo!phD

, i 5 j

  and D is the length of the segment. If we maintain the bar at 10 V, we obtain

3A 4 3q 4 5 10 3I 4

  where 3I 4 5 31 1 1. . .1 4T and qi 5 rvthD.

  (a)  Write a program to find the charge distribution rv on the bar and take , 5 2 m, 
h 5 2 cm, t 5 1 cm, and N 5 20.

y

x

A

B

1 m

1 m

FIGURE 14.53 For Problem 14.20. FIGURE 14.54 For Problem 14.21; coaxial line of (a) arbitrary 
cross section, (b) elliptical  cylindrical cross section.
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  (b) Compute the capacitance of the isolated conductor by using

C 5
Q
V

5 1q1 1 q2 1 c 1 qN 2 /10

Section 14.5—The Finite Element Method

14.23  Another way of defining the shape functions at an arbitrary point 1x, y 2  in a finite 
 element is using the areas A1, A2, and A3 shown in Figure 14.56. Show that

ak 5
Ak

A
,  k 5 1, 2, 3

  where A 5 A1 1 A2 1 A3 is the total area of the triangular element.

FIGURE 14.55 For Problem 
14.22.

h

t

FIGURE 14.56 For Problem 14.23.

FIGURE 14.57 For Problem 14.24.

(4, 2)

(a) (b)

21

3

(7, 2)

(7, 6)

(0.5, 1)

1

3

2

(2, 0.5)

(1.5, 2.5)

14_Sadiku_Ch14.indd   829 14/11/17   2:13 PM



830 CHAPTER 14 NUMERICAL METHODS

FIGURE 14.58 For Problem 14.25. FIGURE 14.59 For Problem 14.26.

FIGURE 14.60 For Problem 14.27. FIGURE 14.61 For Problem 14.28.

y

(4, 0)

(2, 2)(0, 2)

(0, 0)

2

1

x

14.24 Determine the element coefficient matrices of the triangular elements in Figure 14.57.

14.25  The nodal potential values for the triangular element of Figure 14.58 are V1 5 100 V, 
V2 5 50 V, and V3 5 30 V. (a) Determine where the 80 V equipotential line intersects 
the boundaries of the element. (b) Calculate the potential at 12, 1 2 .

14.26  The triangular element shown in Figure 14.59 is part of a finite element mesh. If 
V1 5 8 V, V2 5 12 V, and V3 5 10 V, find the potential at (a) (1, 2) and (b) the center 
of the element.

14.27  Determine the global coefficient matrix for the two-element region shown in  Figure 14.60.

14.28  Calculate the global coefficient matrix for the two-element region shown in Figure 14.61.

14.29  Find the global coefficient matrix of the two-element mesh of Figure 14.62.

14.30  For the two-element mesh of Figure 14.62, let V1 5 10 V and V3 5 30 V. Find V2 and V4.

14.31  Use the MATLAB code in Figure 14.33 to determine the potentials at node 5 of the 
system shown in Figure 14.63.
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14.32  Use the program in Figure 14.33 to solve Laplace’s equation in the problem shown in 
Figure 14.64, where Vo 5 100 V. Compare the finite element solution to the exact solu-
tion in Example 6.5; that is,

V 1x, y 2 5
4Vo

p
 a

`

k50
 
sin np x sinh npy

n sinh np
,  n 5 2k 1 1

FIGURE 14.62 For Problems 14.29 and 14.30.

FIGURE 14.63 For Problem 14.31.

2cm

0V

0V

100V

0V

4cm
x

y

0
1 2 3

31

2 4

5
5

4 6
7

6 8

8 974cm

2cm

FIGURE 14.64 For Problem 14.32.
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832 CHAPTER 14 NUMERICAL METHODS

14.33  Repeat Problem 14.32 for Vo 5 100 sin px. Compare the finite element solution with 
the theoretical solution [similar to Example 6.6(a)]; that is,

V 1x, y 2 5
100 sin p x sinh p y

sinh p

14.34  Show that when a square mesh is used in the finite difference method, we obtain the 
same result in the finite element method when the squares are cut into triangles.

Section 14.6—Application Note—Microstrip Lines

14.35 Consider the shielded microstrip problem shown in Figure 14.65. Use the finite differ-
ence method to find the potential at points 1 to 6. Five iterations are sufficient.

14.36 Refer to the square mesh in Figure 14.66. By setting the potential values at the free nodes 
equal to zero, find (by hand calculation) the potentials at nodes 1 to 4 for five or more 
iterations. 

14.37  Determine the characteristic impedance of the microstrip line shown in Figure 14.67. 
Take  a  2.02, b  7.0, h  1.0  w, t  0.01.

14.38  The cross section of a transmission line is shown in Figure 14.68. Use the finite differ-
ence method to compute the characteristic impedance of the line.

14.39  Half a solution region is shown in Figure 14.69 so that the y-axis is a line of symmetry. 
Use finite difference to find the potential at nodes 1 to 9. Five iterations are sufficient if 
you use an iterative method.

14.40  The potential system in Figure 14.70 is symmetric about the y-axis.  Set the initial val-
ues at the free nodes equal to zero and calculate the potentials at nodes 1 to 5 for five 
 iterations.

2 3

5 64

1

0 V

100 V

FIGURE 14.65 For Problem 14.35.

2

43

1

100 V

0 V

ε2 = 3 εo

ε1 = εo

FIGURE 14.66 For Problem 14.36.
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«1 � «o

«2 � 9.6«o

a

b

w

h

t

FIGURE 14.67 For Problem 14.37.

« � «o

1 cm 3 cm

1 cm

3 cm

FIGURE 14.68 For Problem 14.38.

1

2

4

7

3

5

8

6

9

y

Gap
x

100 V

0 V

100 V

FIGURE 14.69 For Problem 14.39.

0 V

1

y

3 4

2

5

x

100 V

FIGURE 14.70 For Problem 14.40.
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MATHEMATICAL FORMULAS

 tan A 5
sin A
cos A

,   cot A 5
1

tan A

sec A 5
1

cos A
,   csc A 5

1
sin A

 

sin2 A 1 cos2 A 5 1,  1 1 tan2 A 5 sec2 A

1 1 cot2 A 5 csc2 A

 sin 1A 6 B 2 5 sin A cos B 6 cos A sin B

 cos 1A 6 B 2 5 cos A cos B 7 sin A sin B

 2 sin A sin B 5 cos 1A 2 B 2 2 cos 1A 1 B 2
 2 sin A cos B 5 sin 1A 1 B 2 1 sin 1A 2 B 2
2 cos A cos B 5 cos 1A 1 B 2 1 cos 1A 2 B 2  

sin A 1 sin B 5 2 sin 
A 1 B

2
 cos 

A 2 B
2

 

 sin A 2 sin B 5 2 cos 
A 1 B

2
 sin 

A 2 B
2

 cos A 1 cos B 5 2 cos 
A 1 B

2
 cos 

A 2 B
2

 cos A 2 cos B 5 22 sin 
A 1 B

2
 sin 

A 2 B
2

cos 1A 6 90° 2 5 7sin A 

 sin 1A 6 90° 2 5 6cos A

 tan 1A 6 90° 2 5 2cot A

 cos 1A 6 180° 2 5 2cos A

 sin 1A 6 180° 2 5 2sin A

A.1  TRIGONOMETRIC IDENTITIES

A P P E N D I X A
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836 APPENDIX A MATHEMATICAL FORMULAS

 tan 1A 6 180° 2 5 tan A

             sin 2A 5 2 sin A cos A

cos 2A 5 cos2 A 2 sin2 A 5 2 cos2 A 2 1 5 1 2 2 sin2 A 

 tan 1A 6 B 2 5
tan A 6 B

1 7 tan A tan B

 tan 2A 5
2 tan A

1 2 tan2 A

sin A 5
e jA 2 e2jA

2j
,  cos A 5

e jA 1 e2jA

2

   e jA 5 cos A 1 j sin A  1Euler's identity 2
  p < 3.1416

  1 rad < 57.296°

A.2  COMPLEX VARIABLES

A complex number may be represented as

 z 5 x 1 jy 5 rlu
i

5 re ju 5 r 1cos u 1 j sin u 2
where x 5 Re z 5 r cos u,  y 5 Im z 5 r sin u 

 r 5 0 z 0 5 "x2 1 y2,  u 5 tan21 
y
x

 j 5 "21,  
1
j

5 2j,  j2 5 21

The complex conjugate of z 5 z* 5 x 2 jy 5 rl2u
i

5 re2ju

  5 r 1cos u 2 j sin u 2
   1e ju 2n 5 e jnu 5 cos nu 1 j sin nu  1de Moivre's theorem 2

If z1 5 x1 1 jy1 and z2 5 x2 1 jy2, then z1 5 z2 only if x1 5 x2 and y1 5 y2.

 z1 6 z2 5 1x1 1 x2 2 6 j 1y1 1 y2 2
 z1z2 5 1x1x2 2 y1y2 2 1 j 1x1y2 1 x2y1 2

or

z1z2 5 r1r2 e j1u11u22 5 r1r2liii
u1 1 u2i
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z1

z2
5

1x1 1 jy1 2
1x2 1 jy2 2

#
1x2 2 jy2 2
1x2 2 jy2 2

5
x1x2 1 y1y2

x2
2 1 y2

2 1 j 
x2y1 2 x1y2

x2
2 1 y2

2

or

 
z1

z2
5

r1

r2
 e j1u12u22 5

r1

r2
l
iii
u1 2 u2

 "z 5 "x 1 jy 5 "r e ju/2 5 "r lu/2
ii

 zn 5 1x 1 jy 2n 5 rn e jnu 5 rn lnu
i

  1n 5 integer 2

 z1/n 5 1x 1 jy 2 1/n 5 r1/n eju/n 5 r1/n lu/n
ii

1
iii

2pk/n
i

 1k 5 0, 1, 2, . . . , n 2 1 2

   ln 1re ju 2 5 ln r 1 ln e ju 5 ln r 1 ju 1 j2kp  1k 5 integer 2  

A.3  HYPERBOLIC FUNCTIONS

 sinh x 5
ex 2 e2x

2
,  cosh x 5

ex 1 e2x

2

 tanh x 5
sinh x
cosh x

,  coth x 5
1

tanh x

 csch x 5
1

sinh x
,  sech x 5

1
cosh x

 sin jx 5 j sinh x,  cos jx 5 cosh x

 sinh jx 5 j sin x,  cosh jx 5 cos x

 sinh 1x 6 y 2 5 sinh x cosh y 6 cosh x sinh y

 cosh 1x 6 y 2 5 cosh x cosh y 6 sinh x sinh y

 sinh 1x 6 jy 2 5 sinh x cos y 6 j cosh x sin y

cosh 1x 6 jy 2 5 cosh x cos y 6 j sinh x sin y 

tanh 1x 6 jy 2 5
sinh 2x

cosh 2x 1 cos 2y
6 j 

sin 2y
cosh 2x 1 cos 2y

cosh2 x 2 sinh2 x 5 1 

 sech2 x 1 tanh2 x 5 1

 sin 1x 6 jy 2 5 sin x cosh y 6 j cos x sinh y

cos 1x 6 jy 2 5 cos x cosh y 7 j sin x sinh y 
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838 APPENDIX A MATHEMATICAL FORMULAS

 log xy 5 log x 1 log y

  log 
x
y 5 log x 2 log y

  log xn 5 n log x

log10 x 5 log x 1common logarithm 2  

 loge x 5 ln x 1natural logarithm 2

If 0 x 0 V 1, ln 11 1 x 2  .  x

ex 5 1 1 x 1
x2

2!
1

x3

3!
1

x4

4!
 1 . . .

where e <  2.7183

 exey 5 ex1y

3ex 4n 5 enx 

ln ex 5 x 

If 0 x 0 V 1,

 11 6 x 2n .  1 6 nx

 ex .  1 1 x

 ln 11 1 x 2  .  x

 sin x .  x or lim
xS0

  
sin x

x 5 1

 cos x .  1

 tan x .  x

If a W b,

(a 1 b)n  an 1 nan21b 

A.4  LOGARITHMIC IDENTITIES

A.5  EXPONENTIAL IDENTITIES

A.6 APPROXIMATIONS FOR SMALL QUANTITIES
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If U 5 U 1x 2 , V 5 V 1x 2 , and a 5 constant,

d
dx

 1aU 2 5 a 
dU
dx

d
dx

 1UV 2 5 U 
dV
dx

1 V 
dU
dx

d
dx

 cU
V
d 5

V 
dU
dx

2 U 
dV
dx

V2

d
dx

 1aUn 2 5 naUn21

d
dx

 loga U 5
loga e

U
 
dU
dx

d
dx

 ln U 5
1
U

 
dU
dx

 
d

dx
 aU 5 aU ln a 

dU
dx

d
dx

 eU 5 eU 
dU
dx

d
dx

 UV 5 VUv21 
dU
dx

1 UV ln U 
dV
dx

d
dx

 sin U 5 cos U 
dU
dx

d
dx

 cos U 5 2sin U 
dU
dx

d
dx

 tan U 5 sec2 U 
dU
dx

d
dx

 sinh U 5 cosh U 
dU
dx

d
dx

 cosh U 5 sinh U 
dU
dx

d
dx

 tanh U 5 sech2 U 
dU
dx

A.7  DERIVATIVES
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If U 5 U 1x 2 , V 5 V 1x 2 , a and b are constants, and C is an arbitrary constant,

3  a dx 5 ax 1 C

3  U dV 5 UV 2 3  V dU  1 integration by parts 2

3  Un dU 5
Un11

n 1 1
1 C,  n 2 21

3
 dU
U

5 ln U 1 C

3
 

aU dU 5
aU

ln a
1 C,  a . 0, a 2 1

3  eU dU 5 eU 1 C

3  eax dx 5
1
a eax 1 C

3  xeax dx 5
eax

a2 1ax 2 1 2 1 C

3  x2eaxdx 5
eax

a3  1a2x2 2 2ax 1 2 2 1 C

3  ln x dx 5 x ln x 2 x 1 C

3  sin ax dx 5 2
1
a cos ax 1 C

3  cos ax dx 5
1
a sin ax 1 C

3  tan ax dx 5
1
a ln sec ax 1 C 5 2

1
a ln cos ax 1 C

3  sec ax dx 5
1
a ln 1sec ax 1 tan ax 2 1 C

 3  sin2 ax dx 5
x
2

2
sin 2ax

4a
1 C

3  cos2 ax dx 5
x
2

1
sin 2ax

4a
1 C

3  x sin ax dx 5
1
a2 1sin ax 2 ax cos ax 2 1 C

A.8  INDEFINITE INTEGRALS
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3  x cos ax dx 5
1
a2 1cos ax 1 ax sin ax 2 1 C

3  eax sin bx dx 5
eax

a2 1 b2 1a sin bx 2 b cos bx 2 1 C

3  eax cos bx dx 5
eax

a2 1 b2 1a cos bx 1 b sin bx 2 1 C

3  sin ax sin bx dx 5
sin 1a 2 b 2x

2 1a 2 b 2 2
sin 1a 1 b 2x

2 1a 1 b 2 1 C,  a2 2 b2

3  sin ax cos bx dx 5 2
cos 1a 2 b 2x

2 1a 2 b 2 2
cos 1a 1 b 2x

2 1a 1 b 2 1 C,  a2 2 b2

3  cos ax cos bx dx 5
sin 1a 2 b 2x

2 1a 2 b 2 1
sin 1a 1 b 2x

2 1a 1 b 2 1 C,  a2 2 b2

3  sinh ax dx 5
1
a  cosh ax 1 C

3  cosh ax dx 5
1
a sinh ax 1 C

3  tanh ax dx 5
1
a ln cosh ax 1 C

3  
dx

ax 1 b
5

1
a ln 0ax 1 b 0

3  
dx

x2 1 a2 5
1
a tan21 

x
a 1 C

3  
xdx

x2 1 a2 5
1
2

 ln 1x2 1 a2 2 1 C

3  
x2 dx

x2 1 a2 5 x 2 a tan21 
x
a 1 C

3  
dx

x2 2 a2 5 µ
1

2a
 ln 

x 2 a
x 1 a

1 C, x2 . a2

1
2a

 ln 
a 2 x
a 1 x

1 C, x2 , a2

3  
dx

"a2 2 x2
5 sin21 

x
a 1 C

3  
dx

"x2 6 a2
5 ln 1x 1 "x2 6 a2 2 1 C

                 3  
xdx

"x2 1 a2
5 "x2 1 a2 1 C
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3  
dx

1x2 1 a2 2 3/2 5
x/a2

"x2 1 a2
1 C

3  
xdx

1x2 1 a2 2 3/2 5 2
1

"x2 1 a2
1 C

3  
x2dx

1x2 1 a2 2 3/2 5 ln a"x2 1 a2

a 1
x
ab 2

x

"x2 1 a2
1 C

3  
dx

1x2 1 a2 2 2 5
1

2a2a
x

x2 1 a2 1
1
a tan21 

x
ab 1 C

A.9  DEFINITE INTEGRALS
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If m and n are integers, a, b, and c are constants,

3
p

0
 sin mx sin nx dx 5 3

p

0
 cos mx cos nx dx 5 e 0, m 2 n

p/2, m 5 n

3
p

0
 sin mx cos nx dx 5 •

0, m 1 n 5 even
2m

m2 2 n2, m 1 n 5 odd

3
2p

0
 sin mx sin nx dx 5 3

p

2p

 sin mx sin nx dx 5 e 0, m 2 n
p, m 5 n

3
`

0
 
sin ax

x  dx 5 • p/2, a . 0
0, a 5 0

2p/2, a , 0

                      3
`

0
 
sin2 x

x2  dx 5
p

2

                    3
`

0
 
sin2 ax

x2  dx 5 0 a 0  p
2

,    a � 0

In the following, a � 0 for the integrals to converge.

3
`

0
 xne2ax dx 5

n!

an11

3
`

0
 e2ax2

 dx 5
1
2

 Å
p

a

3
`

2`

 e2ax2
 dx 5 Å

p

a

3
`

2`

 e21ax21bx1c2 dx 5 Å
p

a  e1b224ac2/4a
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3
`

0
 e2ax cos bx dx 5

a
a2 1 b2

3
`

0
 e2ax sin bx dx 5

b
a2 1 b2

If A and B are vector fields while U and V are scalar fields, then

= 1U 1 V 2 5 =U 1 =V

= 1UV 2 5 U =V 1 V =U

= cU
V
d 5

V 1=U 2 2 U 1=V 2
V2

= Vn 5 n Vn21 =V  1n 5 integer 2
= 1A # B 2 5 1A # = 2  B 1 1B # = 2  A 1 A 3 1= 3 B 2 1 B 3 1= 3 A 2
= # 1A 1 B 2 5 = # A 1 = # B

= # 1A 3 B 2 5 B # 1= 3 A 2 2 A # 1= 3 B 2
= # 1VA 2 5 V = # A 1 A # =V

= # 1=V 2 5 =2V

= # 1= 3 A 2 5 0

= 3 1A 1 B 2 5 = 3 A 1 = 3 B

= 3 1A 3 B 2 5 A 1= # B 2 2 B 1= # A 2 1 1B # = 2A 2 1A # = 2B
= 3 1VA 2 5 =V 3 A 1 V 1= 3 A 2

               = 3 1=V 2 5 0

= 3 1= 3 A 2 5 = 1= # A 2 2 =2A

C
L
 A # d l 5 3

S
 = 3 A # dS

C
L
 Vd l 5 23

S
 =V 3 dS

C
S
 A # dS 5 3

v
 = # A dv

C
S
 VdS 5 3

v
 =V dv

C
S
 A 3 dS 5 23

v
 = 3 A dv

A.10  VECTOR IDENTITIES
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MATERIAL CONSTANTS 

TABLE B.1 Approximate Conductivity* of Some 
Common Materials at 20°C

Material Conductivity (siemens/meter)

Conductors
  Silver 6.1 � 107

  Copper (standard annealed) 5.8 � 107

  Gold 4.1 � 107

  Aluminum 3.5 � 107

  Tungsten 1.8 � 107

  Zinc 1.7 � 107

  Brass 1.1 � 107

  Iron (pure) 107

  Lead 5 � 106

  Mercury 106

  Carbon 3 � 104

  Water (sea) 4
Semiconductors
  Germanium (pure) 2.2
  Silicon (pure) 4.4 � 1024

Insulators
  Water (distilled) 1024

  Earth (dry) 1025

  Bakelite 10210

  Paper 10211

  Glass 10212

  Porcelain 10212

  Mica 10215

  Paraffin 10215

  Rubber (hard) 10215

  Quartz (fused) 10217

  Wax 10217

*  The values vary from one published source to another because there 
are many varieties of most materials, and conductivity is sensitive to 
temperature, moisture content, impurities, and the like. 

A P P E N D I X B
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TABLE B.2 Approximate Dielectric Constant or Relative Permittivity 1er 2  and 
Strength of Some Common Materials*

 Dielectric Constant Dielectric Strength 
Material εr (Dimensionless) E (V/m)

Barium titanate 1200 7.5 � 106 
Water (sea) 80
Water (distilled) 81
Nylon 8
Paper 7  12 � 106

Glass 5–10  35 � 106

Mica 6  70 � 106

Porcelain 6
Bakelite 5  20 � 106

Quartz (fused) 5  30 � 106

Rubber (hard) 3.1  25 � 106

Wood 2.5–8.0
Polystyrene 2.55
Polypropylene 2.25
Paraffin 2.2  30 � 106

Petroleum oil 2.1  12 � 106

Air (1 atm) 1   3 � 106

*  The values given are only typical; they vary from one published source to another because of 
the different varieties of most materials and the dependence of er on temperature, humidity, 
and the like.

TABLE B.3 Relative Permeability (mr) of Some Materials*

Material mr

Diamagnetic
  Bismuth 0.999833
  Mercury 0.999968
  Silver 0.9999736
  Lead 0.9999831
  Copper 0.9999906
  Water 0.9999912
  Hydrogen (STP) . 1.0
Paramagnetic
  Oxygen (STP) 0.999998
  Air 1.00000037
  Aluminum 1.000021
  Tungsten 1.00008
  Platinum 1.0003
  Manganese 1.001
Ferromagnetic
  Cobalt 250
  Nickel 600
  Soft iron 5000
  Silicon–iron 7000

*  The values given are only typical; they vary from one published source to  another owing to 
 different varieties of most materials.
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MATLAB

MATLAB has become a powerful tool of technical professionals worldwide. The term 
MATLAB is an abbreviation for Matrix Laboratory, implying that MATLAB is a computa-
tional tool that employs matrices and vectors/arrays to carry out numerical analysis, signal 
processing, and scientific visualization tasks. Because MATLAB uses matrices as its fun-
damental building blocks, one can write mathematical expressions involving matrices just 
as easily as one would on paper. MATLAB is available for Macintosh, Unix, and Windows 
operating systems. A student version of MATLAB is available for PCs. A copy of MATLAB 
can be obtained from

The Mathworks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
Phone: (508) 647-7000
Website: http://www.mathworks.com

The brief introduction on MATLAB presented in this appendix is sufficient for solving 
problems in this book. Additional information about MATLAB can be found in MATLAB 
books and from online help. The best way to learn MATLAB is to learn the basics and start 
working with the program right away.

C.1 MATLAB FUNDAMENTALS

The Command window is the primary area in which the user interacts with MATLAB. A little 
later, we will learn how to use the text editor to create M-files, which allow executing sequences 
of commands. For now, we focus on how to work in the Command window. We will first learn 
how to use MATLAB as a calculator. We do so by using the algebraic operators in Table C.1.

TABLE C.1 Basic Operations

Operation MATLAB Formula

Addition a+b
Division (right) a/b    (means a  b)
Division (left) a\b    (means b  a)
Multiplication a*b
Power a^b
Subtraction a–b

A P P E N D I X C
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848 APPENDIX C MATLAB

To begin to use MATLAB, we use these operators. Type commands to the MATLAB 
prompt “>>” in the Command window (correct any mistakes by backspacing) and press 
the <Enter> key. For example,

» a=2; b=4; c=-6;
» dat = b^2 - 4*a*c
dat =
   64
» e=sqrt(dat)/10
e =
   0.8000

The first command assigns the values 2, 4, and –6 to the variables a, b, and c, respectively. 
MATLAB does not respond because this line ends with a semicolon. The second command 
sets dat to b2  4ac, and MATLAB returns the answer as 64. Finally, the third line sets e 
equal to the square root of dat and divides by 10. MATLAB prints the answer as 0.8. As 
function sqrt is used here, other mathematical functions listed in Table C.2 can be used. 
Table C.2 provides just a small sample of MATLAB functions. Others can be obtained from 
the online help. To get help, type

>> help

[a long list of topics comes up]

TABLE C.2 Typical Elementary Math Functions

Function Remark

abs(x) Absolute value or complex magnitude of x
acos, acosh(x) Inverse cosine and inverse hyperbolic cosine of x in radians
acot, acoth(x) Inverse cotangent and inverse hyperbolic cotangent of x in radians
angle(x) Phase angle (in radians) of a complex number x 
asin, asinh(x) Inverse sine and inverse hyperbolic sine of x in radians
atan, atanh(x) Inverse tangent and inverse hyperbolic tangent of x in radians
conj(x) Complex conjugate of x
cos, cosh(x) Cosine and hyperbolic cosine of x in radians
cot, coth(x) Cotangent and hyperbolic cotangent of x in radians
exp(x) Exponential of x
fix Round toward zero
imag(x) Imaginary part of a complex number x
log(x) Natural logarithm of x
log2(x) Logarithm of x to base 2
log10(x) Common logarithms (base 10) of x
real(x) Real part of a complex number x
sin, sinh(x) Sine and hyperbolic sine of x in radians
sqrt(x) Square root of x
tan, tanh(x) Tangent and hyperbolic tangent of x in radians

17_Sadiku_APP-C.indd   848 16/11/17   4:19 PM



APPENDIX C MATLAB 849

and for a specific topic, type the command name. For example, to get help on log to base 2, 
type

>> help log2

[a help message on the log function follows]

Note that MATLAB is case sensitive, so that sin(a) is not the same as sin(A).

Try the following examples:

>> 3^(log10(25.6))
>> y=2* sin(pi/3)
>>exp(y+4-1) 

In addition to operating on mathematical functions, MATLAB easily allows one to work 
with vectors and matrices. A vector (or array) is a special matrix with one row or one col-
umn. For example,

>> a = [1 -3 6 10 -8 11 14];

is a row vector. Defining a matrix is similar to defining a vector. For example, a 3  3 
 matrix can be entered as

>> A = [1 2 3; 4 5 6; 7 8 9]

or as

>> A = [1 2 3
          4 5 6
          7 8 9]

In addition to the arithmetic operations that can be performed on a matrix, the operations 
in Table C.3 can be implemented.

We can use the operations in Table C.3 to manipulate matrices as follows.

» B = A'
B =
   1   4   7
   2   5   8
   3   6   9
» C = A + B

TABLE C.3 Matrix Operations

Operation Remark

A’ Finds the transpose of matrix A
det(A) Evaluates the determinant of matrix A
inv(A) Calculates the inverse of matrix A
eig(A) Determines the eigenvalues of matrix A
diag(A) Finds the diagonal elements of matrix A
exp(A) Exponential of matrix A
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C =
   2   6  10
   6  10  14
  10  14  18
» D = A^3 - B*C
D =
     372   432   492
     948  1131  1314
    1524  1830  2136
» e= [1 2; 3 4]
e =
   1   2
   3   4
» f=det(e)
f =
  -2
» g = inv(e)
g =
  -2.0000   1.0000
   1.5000  -0.5000
» H = eig(g)
H =
  -2.6861
   0.1861

Note that not all matrices can be inverted. A matrix can be inverted if and only if its deter-
minant is nonzero. Special matrices, variables, and constants are listed in Table C.4. For 
example, type

>> eye(3)
ans=
    1  0  0
    0  1  0
    0  0  1

to get a 3  3 identity matrix.

TABLE C.4 Special Matrices, Variables, and Constants

Matrix/Variable/Constant Remark

eye Identity matrix
ones An array of ones
zeros An array of zeros
i or j Imaginary unit or sqrt(–1)
pi 3.1416
NaN Not a number
inf Infinity
eps A very small number, 2.2e16

rand Random element
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To plot using MATLAB is easy. For a two-dimensional plot, use the plot command with 
two arguments as
>> plot(xdata,ydata)

where xdata and ydata are vectors of the same length containing the data to be plotted.
For example, suppose we want to plot y=10*sin(2*pi*x) from 0 to 5*pi, we will 

proceed with the following commands:
>> x = 0:pi/100:5*pi;  % x is a vector, 0 <= x <= 5*pi, 

  increments of pi/100
>> y = 10*sin(2*pi*x); % create a vector y
>> plot(x,y); % create the plot

With this, MATLAB responds with the plot in Figure C.1.
MATLAB will let you graph multiple plots together and distinguish them with differ-

ent colors. This capability is obtained with the command plot(xdata, ydata, ‘color’), where 
the color is indicated by using a character string from the options listed in Table C.5.

For example,
>> plot(x1, y1, ‘r’, x2,y2, ‘b’, x3,y3, ‘--’);

will graph data (x1, y1) in red, data (x2, y2) in blue, and data (x3, y3) in dashed lines, all 
on the same plot.

MATLAB also allows for logarithm scaling. Rather than the plot command, we use:

loglog log(y) versus log(x)
semilogx y versus log(x)
semilogy log(y) versus x 

C.2 USING MATLAB TO PLOT

0 2 4 6 8 10 12 14 16
�10

�8

�6

�4
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0
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6

8

10

FIGURE C.1 MATLAB plot of y=10*sin(2*pi*x).
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Three-dimensional plots are drawn by using the functions mesh and meshgrid (mesh 
 domain). For example, to draw the graph of z = x*exp(-x^2–y^2) over the  domain 
-1 <x, y<1, we type the following commands:

>> xx = -1:.1:1;
» yy = xx;
» [x,y] = meshgrid(xx,yy);
» z=x.*exp(-x.^2 -y.^2);
» mesh(z);

(The dot symbol used in x. and y. allows element-by-element multiplication.) The result 
is shown in Figure C.2.

Other plotting commands in MATLAB are listed in Table C.6. The help command can 
be used to find out how each of these is used.

TABLE C.5 Various Color and Line Types

y Yellow . Point
m Magenta o Circle
c Cyan x -mark
r Red + Plus
g Green - Solid
b Blue * Star
w White : Dotted
k Black -. Dashdot
  -- Dashed

0.5

0

�0.5
30

20

10

0 0
5

10
15

20
25

FIGURE C.2 A three-dimensional plot.

17_Sadiku_APP-C.indd   852 16/11/17   4:19 PM



APPENDIX C MATLAB 853

C.3 PROGRAMMING WITH MATLAB

TABLE C.6 Other Plotting Commands

Command Comments

bar(x,y) A bar graph
contour(z) A contour plot
errorbar (x,y,l,u) A plot with error bars
hist(x) A histogram of the data
plot3(x,y,z) A three-dimensional version of plot (c)
polar(r, angle) A polar coordinate plot
stairs(x,y) A stairstep plot
stem(x)  Plots the data sequence as stems
subplot(m,n,p)  Multiple (m  n) plots per window
surf(x,y,x,c) A plot of three-dimensional colored surface

So far MATLAB has been used as a calculator. You can also use MATLAB to create your 
own program. The command line editing in MATLAB can be inconvenient if one has 
several lines to execute. To avoid this problem, one creates a program that is a sequence 
of statements to be executed. If you are in the Command window, click File/New/M-files 
to open a new file in the MATLAB Editor/Debugger or simple text editor. Type the pro-
gram and save the program in a file with an extension .m, say filename.m (it is for this 
reason such files are called M-files). Once a program has been saved as an M-file, exit the 
Debugger window.  You are now back in the Command window. Type the file without the 
extension .m to get results. For example, the plot that was made earlier in Figure C.1 can be 
improved by adding a title and labels and typing as an M-file called example1.m as follows:

x = 0:pi/100:5*pi;  % x is a vector, 0 <= x <= 5*pi, 
  increments of pi/100

y = 10*sin(2*pi*x); % create a vector y
plot(x,y); % create the plot
xlabel(‘x (in radians)’); % label the x-axis
ylabel(‘10*sin(2*pi*x)’);  % label the y-axis
title(‘A sine function’);  % title the plot
grid % add grid

Once the file is saved as example1.m and we exit text editor, we type

>> example1

in the Command window, and hit <Enter> to obtain the result shown in Figure C.3.
To allow flow control in a program, certain relational and logical operators are neces-

sary. These are shown in Table C.7. Perhaps the most commonly used flow control state-
ments are for and if. The for statement is used to create a loop or a repetitive procedure and 
has the general form
for x  array
  [commands]
end
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The if statement is used when certain conditions must be met before an expression is 
 executed. It has the general form

if expression
  [commands if expression is True]
else
  [commands if expression is False]
end

0 2 4 6 8 10 12 14 16
�10

�8

�6

�4

�2

0

2

4

6

8

10

x (in radians)

10
*s

in
(2

*p
i*

x)

A sine function

FIGURE C.3 MATLAB plot of y=10*sin(2*pi*x) with title and labels.

TABLE C.7 Relational and Logical 
 Operators

Operator Remark

< less than
<= less than or equal
> greater than
>= greater than or equal
== equal
~= not equal
& and
| or
~ not
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For example, suppose we have an array y(x) and we want to determine the minimum 
value of y and its corresponding index x. This can be done by creating an M-file as fol-
lows.

% example2.m
% This program finds the minimum y value
% and its corresponding index
x = [1 2 3  4 5 6   7 8 9 10]; %the nth term in y
y = [3 9 15 8 1 0 -2 4 12 5];
min1 = y(1);
for k=1:10
  min2=y(k);
  if(min2 < min1)
   min1 = min2;
   xo = x(k);
  else
   min1 = min1;
  end
end
diary
min1, xo
diary off

Note the use of for and if statements. When this program is saved as example2.m, we 
execute it in the Command window and obtain the minimum value of y as –2 and the cor-
responding value of x as 7, as expected:

» example2
min1 =
  -2
xo =
   7

If we are not interested in the corresponding index, we could do the same thing using the 
command

>> min(y)

The following tips are helpful in working effectively with MATLAB:

 • Comment your M-file by adding lines beginning with a % character.
 • To suppress output, end each command with a semicolon (;). You may remove the 

semicolon when debugging the file.
 • Press up and down arrow keys to retrieve previously executed commands.
 • If your expression does not fit on one line, use an ellipse (. . .) at the end of the line 

and continue on the next line. For example, MATLAB considers
  y = sin(x + log10(2x + 3)) + cos(x + ...
  log10(2x+3));
  as one line of expression.
 • Keep in mind that variable and function names are case sensitive.
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Consider the general system of n simultaneous equations as

a11x1 1 a12x2 1 c1 a1nxn 5 b1

a21x1 1 a22x2 1 c1 a2nxn 5 b2

(

an1x1 1 an2x2 1 c1 annxn 5 bn

or in matrix form

AX 5 B

where

A 5 ≥
a11 a12

c a1n

a21 a22
c a2n

c c c c
an1 an2 an3 ann

¥ , X 5 ≥
x1

x2
c
xn

¥ , B 5 ≥
b1

b2
c
bn

¥

The square matrix A is known as the coefficient matrix, while X and B are vectors. We are 
seeking X, the solution vector. There are two ways to solve for X in MATLAB. First, we can 
use the backslash operator (\) so that

X 5 A\B

Second, we can solve for X as

X  A1B

which in MATLAB is the same as

X  inv(A)*B

We can also solve equations by using the command solve. For example, given the quadratic 
equation x2 1 2x 2 3 5 0, we obtain the solution by using the MATLAB command

>> [x]=solve('x^2 + 2*x - 3 =0')
x =
[-3]
[ 1]

indicating that the solutions are x  3 and x  1. Of course, we can use the com-
mand solve for a case involving two or more variables. We will see that in the following 
example.

C.4 SOLVING EQUATIONS
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Use MATLAB to solve the following simultaneous equations:

25x1 2 5x2 2 20x3 5 50
25x1 1 10x2 2 4x3 5 0
25x1 2 4x2 1 9x3 5 0

Solution:
We can use MATLAB to solve this in two ways:

Method 1:
The given set of simultaneous equations could be written as

£
25 25 220
25 10 24
25 24 9

§ £
x1

x2

x3

§ 5 £
50
0
0
§  or AX 5 B

We obtain matrix A and vector B and enter them in MATLAB as follows:

» A = [25 -5 -20; -5 10 -4; -5 -4 9]
A =
  25  -5  -20
  -5  10  -4
  -5  -4   9
» B = [50 0 0]'
B =
  50
   0
   0
» X = inv(A)*B
X =
  29.6000
  26.0000
  28.0000
» X=A\B
X =
  29.6000
  26.0000
  28.0000

Thus, x1  29.6,  x2  26,  and x3  28.

Method 2:
Since the equations are not many in this case, we can use the command solve to obtain the 
solution of the simultaneous equations as follows:

 [x1,x2,x3]=solve('25*x1 - 5*x2 - 20*x3=50', '-5*x1 + 10*x2 - 4*x3 
=0', '-5*x1 - 4*x2 + 9*x3=0')
x1 =

EXAMPLE C.1

17_Sadiku_APP-C.indd   857 16/11/17   4:19 PM



858 APPENDIX C MATLAB

148/5
x2 =
26
x3 =
28

The same result obtained by Method 1 appears again.

PRACTICE PROBLEM C.1

Use MATLAB to solve the problem in the following simultaneous equations.

3x1 2 x2 2 2x3 5 1
2x1 1 6x2 2 3x3 5 0
22x1 2 3x2 1 6x3 5 6

Answer: x1  3  x3,  x2  2.  

C.5 PROGRAMMING HINTS

A good program should be well documented, of reasonable size, and capable of performing 
computations with reasonable accuracy within a reasonable amount of time. The following 
hints may make writing and running MATLAB programs easier.

 • Use the fewest commands possible and avoid execution of extra commands. This is 
particularly applicable for loops.

 • Use matrix operations directly as much as possible and avoid for, do, and/or while 
loops if possible.

 • Make effective use of functions for executing a series of commands over several 
times in a program.

 • When unsure about a command, take advantage of the help capabilities of the 
 software.

 • Start each file with comments to help you remember what it is all about.
 • When writing a long program, save frequently. If possible, avoid a long program; 

break it down into smaller subroutines.
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Table C.8 lists some common useful MATLAB commands that may be used in this book.

C.6 OTHER USEFUL MATLAB COMMANDS

TABLE C.8 Other Useful MATLAB Commands

Command Explanation

diary Saves screen display output in text format
mean Mean value of a vector
min(max) Minimum (maximum) of a vector
grid Adds a grid mark to the graphic window
poly Converts a collection of roots into a polynomial
roots Finds the roots of a polynomial
sort Sorts the elements of a vector
sound Plays vector as sound
std Standard deviation of a data collection
sum Sum of elements of a vector

17_Sadiku_APP-C.indd   859 16/11/17   4:19 PM



860

THE COMPLETE SMITH CHART
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ANSWERS TO ODD-NUMBERED 
PROBLEMS

CHAPTER 1

1.1 0.8704ax 2 0.3482ay 2 0.3482az 
1.3 2ax 1 9ay 1 az

1.5 (a)  ax 2 ay 1 8az
 (b)  232
 (c)  86.69o

1.7 (a)  T(4,6,21) and S(10,12,8)
 (b)  6ax 1 6ay 1 9az
 (c)  12.37
1.9 (a)  2ax 1 10az
 (b)  22
 (c)  100.14o

1.11 (a)  7.3485
 (b)  4
 (c)  24
 (d)  206
 (e)  16ax 1 12ay 1 8az
 (f)  162.3o

 (g)  86.45o

1.13 213, 221ax 2 2ay 1 6az, 120.66o

1.15 (a)  (B • A)A 2 (A • A)B 
 (b) 2A2(A 3 B)
1.17 (a) 7.6811,  (b)  22ay 25az,  (c)  42.57o,  (d)  11.023,  (e) 17.31
1.19 8.646
1.21 218ax 25ay 1 4az 

1.23 (a)  22.8577
 (b)  20.2857ax 1 0.8571ay 1 0.4286az
 (c)  65.91o

1.25 (a)  10, (b) 15ax 2 30ay 2 15az, (c) 5ax 1 5az 

A P P E N D I X E

19_Sadiku_APP-E_NEW1.indd   861 20/11/17   8:47 AM



862 APPENDIX E ANSWERS TO ODD-NUMBERED PROBLEMS

1.27 (a)  0.8242ax  1 0.1374ay 1 0.5494az

 (b)  100 5 4x2y2 1 x2 1 2xz 1 z2 1 z4

1.29 (a)  G 5 6.403, H 5 7.348
 (b)  218
 (c)  uGH 5 112.5°
1.31 (a)  6.403 
 (b)  1.286ax 2 2.571ay 1 3.857az 
 (c)  6ax

CHAPTER 2

2.1 (a)  P(5.3852, 68.2°, 1),  P(5.477, 79.48°,  68.2°)
 (b)  Q(5, 306.88°, 0), Q(5.90°, 306.88°)
 (c)  R(6.325,18.438, 24),  R (7.483,122.318, 18.438)
2.3 (a) (6.324, 71.56o , 24)
 (b)  (7.483, 147.69o, 71.56o)
2.5 T(x, y, z) 5 (7.5, 4.33, 5)
 T(r, f, z) 5 (8.66, 30o, 5)

2.7 (a)  
1

"r2 1 z2
 (rar 1 4az), asin2 u 1

4
rsin ubar 1 sin uacos u 2

4
r bau

 (b)  
r2

"r2 1 z2
 (rar 1 zaz), r2 sin2 uar 

2.9 23ax 1 2ay 1 4az

2.11 
4

(x2 1 y2 1 z2)
3xax 1 yay 1 zaz 4

2.13 (a)  B 5 r cosfaz

 (b)  B 5 0.5r sin(2u) cosfar 2 r sin2u cosfau

2.15 Proof
2.17 (a)  1,  (b) 1,  (c )   20.4472
2.19 (a)  8ap 1 2af 2 7az
 (b)  7
 (c)  216ar 1 29af 2 10az
 (d)  78.56o

2.21 rzsin 2far 1 rzcos 2faf 1 0.5r2 sin2faz

2.23 (a)   
 rsinu 3sinf cosu(rsinu 1 cosf)ar 1 sinf(rcos2u 2 sin u cosf)au 1 3cosfaf 4,
 5au 2 21.21af

 (b)   "r2 1 z2 arar 1
r

r2 1 z2 af 1 zazb , 4.472ar 1 0.8944af 1 2.236az
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2.25 64
2.27 (a)  50.07o,  (b)  0.9428ar 1 0.2357af 2 0.2357az

2.29 9
2.31 (a)  An infinite line parallel to the z-axis.
 (b)  Point (2,21,10).
 (c)  A circle of radius  rsinu 5 5,  i.e., the intersection of a cone and a sphere.
 (d)  An infinite line parallel to the z-axis.
 (e)  A semi-infinite line parallel to the x2y plane.
 (f)  A semi-circle of radius 5 in the y2z plane.
2.33 2.5

CHAPTER 3

3.1 (a)  2.356
 (b)  0.5236
 (c)  4.189
3.3 (a)  6
 (b)  110
 (c)  4.538
3.5 11.502
3.7 2047.5
3.9 (a)  250
 (b)  239.5
3.11 21.5
3.13 2
3.15 484.58
3.17 (a)  (6y 2 2z)ax 1 6xay 1 (1 2 2x)az

 (b)  (10 cosf 2 z)ar 2 10 sinfaf 2 raz

 (c)  2
2
r2 cos far 2

2sinf

r2 sinu
af

3.19 Proof
3.21 0.4082ax 2 0.8165ay 1 0.4082az 
3.23 240.42
3.25 2.36,  0.5413ax 1 1.624ay 1 1.624az

3.27 (a)  3y 2 x
 (b)  2z2 1 sin2f 1 2rsin2f

 (c)  3
3.29 Proof
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3.31 (a)  6YZax 1 3XY2ay 1 3X2YZaz

 (b)  4YZax 1 3XY2ay 1 4X2YZaz

 (c )  6XYZ 1 3XY3 1 3X2YZ2

 (d)  2(X2 1 Y2 1 Z2) 5 2r2

3.33 (a) 209.44
 (b) 209.44
3.35 24
3.37 37.7
3.39 198.97
3.41 (a)  2y2aX 1 2zay 2 x2aZ,     0
 (b)  (r2 2 3z2)af 1 4r2 az,    0

 (c)  2
sinf

r3sinu
ar 1

cosf

r3sinu
au 1

cosf

r3 af,    0 

3.43 Proof
3.45 29.4956
3.47 0
3.49 (a) 4p
 (b) 4p
 (c) 24p
 (d) 2.2767
 (e) 7.2552
 (f) 9.532
3.51 (a) 2z 1 5x 1 8,  (b) 8ax 1 2xay 1 5yaz

3.53 Proof
3.55 (a)  6(x 1 y 1 z)

 (b)  a23z2

r
1 2rbsin2f

 (c)  6 1 4 cosu sinf 2
cosu sinf

sin2u

3.57 (a)  
r
r2,  (b)  

1
r2

3.59 2rz cos far 2 rz sin faf 1 r2 cosfaz,   3z cosf

3.61 Proof
3.63 Proof
3.65 (a)  G is irrotational,  (b)  8,  (c)  26
3.67 Proof
3.69 Proof
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CHAPTER 4

4.1 21.8291ax 2 0.5226ay 1 1.3065az  mN

4.3 (a)  
Q

2peoa2 ax

 (b)  
2Q

4"2peoa2
 ax

 (c)  
2Q

10"5pe0a2
 ax 1

Q
4pe0a2 c1 2

1
5!5

d az

4.5 (a)  0.5 C,  (b)  1.206 mC,  (c)  1579.1 C
4.7 10.472 mC
4.9 288 mC
4.11 (a)  4 nC,  (b)  3.6 31.025az V/m

4.13 
rsh

4pe0
c 1
!a2 1 h2 2

1
!b2 1 h2 d az

4.15 2151.7ax 2 303.5ay

4.17 (a)  565.5ax 2 1131ay 2 1696.5az  kV/m
 (b)  2565.5ax 2 1131ay 2 1696.5az  kV/m
 (c)  565.5ax 1 1131ay 1 1696.5az  kV/m
4.19 Proof
4.21 (a)  0.32ax mC/m2

 (b)  251.182 mC
4.23 21.326 nC
4.25 (a)  8y C/m2

 (b)  6sinf 1 4z C/m3

 (c)  0
4.27 22.7ar  mC/m2

4.29 (a)  2y C/m3

 (b)  1/3 C
 (c)  1 C
4.31 Proof
4.33 (a)  125.7 mC,  377 mC,  (b)  0, 1.2ar mC/m2

4.35 1.325 V
4.37 (a)  135 kV,   (b)  135 kV,  (c)  135 kV
4.39 215.38ar 2 7.688af 1 30.75az  V/m
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4.41 (a)  
8p

15
a3ro

 (b)  
2a3ro

15eor2
 ar,    

2a3ro

15eor

 (c)  
ro

eo
a r

3
2

r3

5a2bar,  
ro

eo
a r4

20a2 2
r2

6
b 1

a2ro

4eo

 (d) Proof
4.43 230 C/m3

4.45 
2eoEo

a ,   0 , r , a

4.47 (a)  0.1592 nC/m2,  (b)  480  mJ
4.49 28 V
4.51 45.24 mJ
4.53 (a)  2e2z sinfar 2 e2z cosfaf 1 re2z sinfaz

 (b)  Proof

4.55 2
Q

4peo
a1

a 2
1
b
b

4.57 Not a genuine EM field;   0.5858 C
4.59 (a)  21.136ay kV/m 
 (b) (ax 1 0.2ay) 3 107  m/s

4.61 Proof,    
Qd

4peor3(2sinusinfar 2 cosu sinfau 2 cosfaf)

4.63 54.748, 125.268

4.65 1.886  nJ

4.67 
Q2

8peoa
4.69 (a)  2e2z sinfar 2 e2z cosfaf 1 re2z sinfaz
 (b)  8.512 pJ

CHAPTER 5

5.1 20.1172  A
5.3 100 A
5.5 25.13 A
5.7 (a)  33.95 mV

 (b)  265.1 A
 (c)  2.386 kW
5.9 The silver wire  is longer.
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5.11 (a)  0.27 mV 

 (b)  50.3 A (copper), 9.7 A  (steel)
 (c)  0.322 mV 

5.13 130.86 A
5.15 3.6 3 1028 ax

 C/m2, 1.0407
5.17 2.261arkV/m,   70arnC/m2

5.19 (a)  286.86 3 10218 C
 (b)  883.5 3 10218 C
 (c)  2796.61 3 10218 C
5.21 2.16 kV,  
 2.16ax 1 0.432ay 1 2.16az  kV/m, 133.69ax 1 26.74ay 1 133.69az nC/m2

5.23 For r , a, E 5 0 5 D 5 P

 For a , r , b, D 5
ar

pr2,   E 5
ar

2eopr2,   P 5
ar

2pr2

 For b , r , c, D 5
2ar

2pr2,   E 5
2ar

10eopr2,   P 5
24ar

10pr2

 For r . c, D 5
2ar

pr2,   E 5
2ar

eopr2,   P 5 0

5.25 1.733
5.27  

 (a)  
roa2(2er 1 1)

6eoer
 

 (b)  
roa2

3eo

5.29 (a)  Possible
 (b)  Not possible
 (c)  Not possible
 (d)  Possible

5.31 (a)  
100
r3

 C/m3.s 

 (b)  314.16 A
5.33 Proof
5.35 (a)  2.741 3 104s, (b)  5.305 3 104s, (c)  7.07 mS
5.37 Proof
5.39 (a)  79.6ax 2 265.3ay 1 212.2az pC/m2, 53.05ax 2 88.42ay 1 70.74az pC/m2,
 (b)  3.0593 nJ/m3, 1.7684 nJ/m3  
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5.41 (a)  6.667ax 2 13.33ay 1 6.667az V/m, 13.3ax 2 23.3ay 1 33.3az  V/m
 (b)  16ax 2 18ay 1 36az  V/m

5.43 (a)  387.8ax 2 452.4ay 1 678.6az V/m, 12ax 2 14ay 1 21az  nC/m2

 (b)  4ax 2 2ay 1 3az  nC/m2,   0
 (c)  12.62 mJ/m2,  9.839 mJ/m2 

5.45 30 sinuar 1 5 cosuau, eo(60 sinuar 1 10 cosuau)
5.47 0.476 pC/m2

5.49 49.118, 608, 308

CHAPTER 6 

6.1 (a)  2270ax 1 540ay2135az V/m
 (b) 14.324 nC/m3

6.3 27.25 V
6.5 157.08y4 2 942.5y2 1 30.374 kV

6.7 a0.3142 2
66.51

r
bar

6.9 127.58 V
6.11 23xy
6.13 436.14 nC/m2  
6.15 36.91 V, 9.102ar kV/m, 161ar nC/m2, 322 nC/m2, 2107.3 nC/m2

6.17 (a) Proof
 (b) 2Vo sin far 2 Vo cos faf

6.19 V 5 2
100

r 1 150, E 5 2
100
r2

 ar  V/m

6.21 (a) V(r5 15 mm) 5 12.4 V, (b) u 5 8.93 3 106 m/s

6.23 (a)  
4Vo

p a
`

n5odd

sin(npx/b)sinh(np(a 2 y)/b)
nsinh(npa/b)

 (b)  
4Vo

p a
`

n5odd

sin(npy/a)sinh(npx/a)
nsinh(npb/a)

 (c)  
4Vo

p a
`

n5odd

sin(npy/a)sinh(np(b 2 x)/a)
nsinh(npb/a)

6.25 
4Vo

a a
`

n5odd
exp(2npx/a) 3sin(npy/a)ax 2 cos(npy/a)ay 4

6.27 Proof
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6.29 Proof
6.31 Proof
6.33 Derivations

6.35 
2psV2

In
b
a

6.37 2.122 pF
6.39 6 pF
6.41 Proof
6.43 1.75
6.45 1/3 Co, 1/3 Qo, 1/3 Eo, 1/3 Wo

6.47 (a) 25 pF,  (b)  63.66 nC/m2  

6.49 
1

1
4peoc

1
1

4peo
a1

a 2
1
b
b

6.51 0.8665 mF
6.53 Proof

6.55 
2pe1e2

e2 In(b/a) 1 e1In(c/b) 
6.57 Proof

6.59 (a)  
Vo

In2
In

x 1 d
d

, 2
Vo

(x 1 d)In2
ax

 (b)  2
eoxVo

d(x 1 d)In2
 ax

 (c)  0, 2
eoVo

2dIn2
 

 (d)  
eoS

d In 2
6.61 Proof
6.63 0.326 nF 
6.65 (a)  212.107  pF/m2, (b)  210 nC
6.67 20.1092(ax 1 ay 1 az) N
6.69 (a)  2138.2ax 2 184.3ay V/m, (b) 21.018 nc/m2
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7.1 (a)  See text.
 (b)  0.7433ax 1 0.382ay 1 0.1404az   A/m
7.3 20.1592ax 
7.5 20.234ax 1 0.382ay 1 0.1404az A/m
7.7  (a)  28.471ay mA/m  
 (b)  13(2ax 1 ay) mA/m
 (c)  25.1ax 1 1.7ay mA/m
 (d)  5.1ax 1 1.7ay mA/m 
7.9 (a)  20.6792az A/m 
 (b)  0.1989az A/m 
 (c)  0.1989(ax 1 ay) A/m 
7.11 (a)  1.964az A/m
 (b)  1.78az A/m
 (c)  20.1178az A/m
 (d)  20.3457ax 2 0.3165ay 1 0.1798az A/m
7.13 Proof

7.15 
Ifo

4p
a 1

r1
2

1
r2
b  Oz

7.17 (a)  69.63  A/m,  (b) 36.77  A/m

7.19 (a)  See text.  

 (b)  Hf 5 g I
2pr

ar2 2 a2

b2 2 a2b ,       a , r , b

7.21 94.25 A

7.23 Hf 5 c
Jo,         0 , r , a
Jo a
r

,    

7.25 (a)  
2ko

a  az,      r , a

 (b)  koaa
r
baf,     r . a

7.27 (a)  3r 3 103az   A/m2

 (b)  50.265 kA 

I
2pr

,     r . b

0,  r , a

r . a

CHAPTER 7
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7.29 (a)  80af nWb/m2, (b) 1.756 mWb 

7.31 (a)  
1
2

pa2Jo,

 (b)  Hf 5 µ
Jor

4
a2 2

r2

a2b , r , a

aJo

4r
, r . a

7.33 
moI
4a

az

7.35 Proof, 1.37 3 1028 Wb  
7.37 2.854  Wb
7.39 12.53  Wb/m2

7.41  (a) magnetostatic field, (b) magnetostatic field,  (c ) neither electrostatic nor mag-
netostatic field.

7.43 
p

mo
asinpxay 2 10cospyazb   A/m,   

p2

mo
 (10sinpyax 1 cospxaz)    A/m2 

7.45  (a) B 5 (26xz 1 4x2y 1 3xz2)ax 1 (y 1 6yz 2 4xy2)ay 1 (y2 2 z3 2 2x2 2 z)az 
Wb/m2

 
(b) 8 Wb

 (c) Proof
7.47 1.011 Wb
7.49 Proof

7.51 
Ao

r3  (2cos uar 1 sin uau)   Wb/m2

7.53 (a)  2
20r

mo
af   mA/m,     2

40
mo

az  mA/m2

 (b)  2 400 A
7.55 1A
7.57 Proof

CHAPTER 8

8.1 2152.8ax 2 170.4ay 2 189.6az mN
8.3 (a) 20.05ax 2 0.25ay N
 (b) 50ax 1 250ay V/m
8.5  (0.2419, 1, 1.923), 4.071ax 2 2.903az m/s.  The particle gyrates in a circle in the y 

5 1 plane with center at (0,1,19/12). 
8.7 26.67 nC
8.9 85.714 Wb/m2

8.11 100 mN
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8.13 (a) 2.197az, (b) 0.575ar  
8.15 15.71az mN/m 
8.17 540(ay + az) N.m
8.19 627.5 MA
8.21 24 mN.m
8.23 Proof
8.25 7.5, 1.477az mA/m, 0.1477az A/m2

8.27 4.54
8.29 (a)  Proof,  (b)  Proof
8.31 1.6ax 2 4ay 1 12az mWb/m2, 32.34 J/m3  
8.33 5ax 2 6az A/m   
8.35 (a)  4ar 1 15af 2 8az mWb/m2 
 (b)  60.68 J/m3, 57.7 J/m3   
8.37 mo(22ar 1 0.05625af) Wb/m2

8.39 (a)  25ay A/m, 26.28ay m Wb/m2

 (b)  235ay A/m, 2110ay mWb/m2 
 (c)  5ay A/m, 6.283ay m Wb/m2

8.41 Proof
8.43 2 mH
8.45 11.82 mH
8.47 Proof
8.49 304.1 pJ
8.51 101.86 J
8.53 190.8  A.t,   19080  A/m
8.55 88.5  mWb/m2

8.57 7.2643 3 104 A.t/Wb
8.59 (a) 37 mN
 (b) 1.885 mN
8.61 Proof

CHAPTER 9

9.1  0.4738 sin377t V
9.3 212.57 cos 104 t A 
9.5 20 sin 1.6b

          b
9.7 9.888 mV, point A at higher potential
9.9 21.8 V
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9.11 0.97 mV
9.13 6.33 A, counterclockwise
9.15 277.8 A/m2,  77.78 mA
9.17  (a) 0.444 3 1023

 (b) 5.555
 (c) 7.2 3 1024

9.19 600 kHz
9.21 bHo sin (vt 2 bz)ay

9.23 (a)  = 3 Es 5 jvmHs,    = 3 Hs 5 (s 2 jve)Es

 (b)  = ? D 5 rv S
'Dx

'x
1

'Dy

'y
1

'Dz

'z
5 rv

       
= ? B 5 0 S  

'Bx

'x
1

'By

'y
1

'Bz

'z
5 0

       = 3 E 5 2 
'B
't

S
'Ez

'y
2

'Ey

'z
5 2

'Bx

't

 
      

'Ex

'z
2

'Ez

'x
5 2

'By

't

       
'Ey

'x
2

'Ex

'y
5 2

'Bz

't

 
      = 3 H 5 J 1  

'D
't

S
'Hz

'y
2

'Hy

'z
5 Jx 1

'Dx

't

 
      

'Hx

'z
2

'Hz

'x
5 Jy 1

'Dy

't

 
      

'Hy

'x
2

'Hx

'y
5 Jz 1

'Dz

't

9.25 Proof
9.27 0.3z2 cos 104 t mC/m3 

9.29 
40b

veo
 sin(vt 1 bx)az   V/m,     0.333 rad/m

9.31 
10b

vmor
 sinu cos(vt 2 br)af   A/m

9.33 Derivation
9.35 (a) Yes,  (b) yes,  (c ) no,  (d) no.
9.37 2.636 cos(12px) sin(1010t 2 25.66y)ax 1

 3 sin(12px) cos(1010t 2 25.66y)ay     mA/m,  33/2

9.39 2
12b sinu

veor
 cos(vt 2 br)af,     v 5 2p 3 108

9.41 Derivation
9.43 (a)  V5 constant,  E 5 2Aov cos(vt 2 bz)ax

 (b)  b 5 v Èmo«o
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9.45 (a)  210ejp/3ax

 (b)  4cos(4y)e2 j2xaz

 (c)  5e2 jp/6ax 2 8e2 jp/4ay

9.47 (a)  
1
r

e2 j3zaf

 (b)  
3

reov
 cos(vt 2 3z)ar

 (c)  9 3 108 rad/s

9.49 3.333, 24.533ej3.33x ay

9.51 Proof

CHAPTER 10

10.1 (a)  along ax
 (b)  1 ms, 1.047 m, 1.047 3 106 m/s
 (c)  See Figure E.1.
 

x

25

0

25
t T/4

/2

x

25

0

25
t  0

/2

x

25

0

25
t T/2

/2

x

25

0

25
t T/8

/2

FIGURE E.1 For Problem 10.1(c).

10.3 (a)  108 rad/s
 (b)  0.333 rad/m
 (c)  18.85 m
 (d)  Along 2ay
 (e)  20.1665 A/m 
10.5 Derivations
10.7 (a)  5.41 1j6.129 /m,  (b) 1.025 m, (c) 5.125 3 107 m/s, (d) 101.4 
 (e)  259.16e2j41.44o e2g

Z ay mA/m    
10.9 (a)  6.85 m, (b)  0.73 3 1023 Np    

19_Sadiku_APP-E_NEW1.indd   874 20/11/17   8:48 AM



APPENDIX E ANSWERS TO ODD-NUMBERED PROBLEMS 875

10.11 Proof
10.13 (a)  20 ns, (b) 3 m, (c) 2.257e20.1y sin (p 3 108t 2 2.088y 1 2.74o)az V/m, (d) 2.74° 
10.15 (a)  168.8 Np/m
 (b)  210.5 rad/m 
 (c)  263.38/38.73°  V,
 (d)  2.985 3 107  m/s
10.17 5.224
10.19 (a)  lossless
 (b)  12.83 rad/m, 0.49 m
 (c)  25.66 rad
 (d)  4.62 kV

10.21 14.175, 1.0995
10.23 (a)  5.662 V/m
 (b)  5.212 dB
 (c)  36.896/3.365°  V
10.25 (a)  No, nonconducting
 (b)  No, nonconducting
 (c)  Yes, conducting
10.27 (a)  2.287 V
 (b)  207.61 V
 (c)  12.137 kHz
10.29 1.038  kHz
10.31 2.723 Np/m, 2.723 rad/m, 2.306 m, 2.768 3 107 m/s
10.33 2.94 31026 m
10.35 (a)  Linearly polarized along az
 (b)  10 MHz  
 (c)  205.18 
 (d)  20.456 sin (2p 3 107 t 2 3y)ax A/m 
10.37 (a)  Circular polarization
 (b)  Elliptical polarization
10.39 (a)  Elliptically polarized.
 (b)  2159.2 sin(vt 2 bz)az 1 106 cos(vt 2 bz)ay mA/m 
10.41 (a)  Linearly polarized
 (b)  Elliptically polarized
 (c)  Linearly polarized
10.43 (a)  5.76  
 (b)  157.1 V  
 (c)  1.25 3 108 m/s 
 (d)  0.955 cos (109 t 1 8x)ay A/m 
 (e)  2143.25 cos2 (109t 1 8x)ax W/m2 
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10.45 (a)  
1

12pr
 sinue2 j3raf   A/m

 
(b)  7.145 mW

10.47 (a)  2.828 3 108 rad/s, 
0.225

r
 sin(vt 2 2z)af

 
 A/m

 (b)  
9
r2

 sin2(vt 2 2z)az    W/m2

 (c)  11.46 W
10.49  12 3 109rad/s, 27.539 sin(vt 2 40x)ay 2 3.775 sin(vt 2 40x)az kV/m,  

94.23ax kW/m2  
10.51 Proof

10.53 (a)  
Vo Io

4pr2 In(b/a)
 az

 (b)  
1
2

Vo Io

10.55 2 20sin(vt 1 10z)ax 2 10sin(vt 1 10z 1 p/6)ay   V/m,
 40sin(vt 2 10z)ax 1 20sin(vt 2 10z 1 p/6)ay   V/m
10.57 (a)  21.508 sin(vt 2 5x)az 1 0.503 sin (vt 1 5x)az kV/m 
 (b)  2.68ax kW/m2 
 (c)  2
10.59 p1 5 38.197 cos2(vt 2 b1z)ax 1 13.75cos2(vt 1 b1z)ay  W/m2, b1 5 1200 rad/m,
 p2 5 24.46 cos2(vt 2 b2z)ax  W/m2,   b2 5 300  rad/m

10.61 89.51%, 10.84%
10.63 (a)  9 3 108 rad/s  
 (b)  2.094 m  
 (c)  6.288, 16.71/40.74°  V
 (d)  Er 5 9.35 sin(vt 2 3z 1 179.7o)ax V/m  
 Er 5 0.857 e43.94z sin(9 3 108 t 1 51.48z 1 38.89o)ax V/m  
10.65 ut1 5 19.47o, ut2 5 28.13o   
10.67 0.8146/174.4°
10.69 Proof
10.71 1.235, 258 MHz,   
 0.491 3(12.6 1 j16.8)ax 1 (10.2 1 j13.6)ay 2 8.59az 4e2 j3.4x14.2y  mA/m

10.73 Proof
10.75 (a)  ui 5 36.87o

 (b)  106.1ay 1 79.58az mW/m2 
 (c)   Er 5 2(1.518ay 1 2.02az) sin(vt 1 4y 2 3z),  

Et 5 (1.879ay 2 5.968az) sin(vt 2 9.539y 23z) V/m
10.77 (a)  5cos(vt20.5px 2 0.866pz)ay, (4ax 2 3az)cos(vt20.5px 2 0.866pz)
 (b)  36.87o
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CHAPTER 11

11.1 0.0354 V/m, 50.26 nH/m, 221 pF/m, 0 S/m
11.3 Proof
11.5 0.2342 pF, 1.4 3 1022 V

11.7 
'V
'z

5 2L
'I
't

 ,      
'I
'z

5 2C
'V
't

11.9 (a) 8.159 3 1022 1 j2.384 3 103 /m, (b) 8.159 3 1022 1 j2.384 3 103

11.11 0.2305 V/m, 0.3316 mH/m, 0.1326 nF/m, 92.2 mS/m
11.13 (a) 644.3 2 j97 V, (5.415 1 j33.96) 3 1023 /mi
 (b) 1.85 3 105 mi/s
 (c) 185.02 mi
11.15 0.46 mm
11.17 0.655 mH/m, 59.4 pF/m,  105 V
11.19 (a) 0.2898 1 j3.278 /m, 2.3 3 108 m/s, 69V 
 (b) 5.554 m
 (c) 0.3051m
11.21 (1 1 j10) 3 1023 /m, 6.283 3 106 m/s
11.23 55.12 1 j45.85 V, 0.1783 ms
11.25 57.44 1 j48.82 V
11.27 (a)  Proof,  (b)  62.6 1 j82.93 V
11.29 0.0136 Np/m,  38.94 rad/m,  129.1 –j0.045 V, 6.452 3 107 m/s
11.31 0.7071/45°
11.33 (a) j29.375 V,   5.75/102° V
 (b) j40 V,   12.60/0° V
 (c ) 2j3471.88,   22.74/0° V
 (d) 2j18.2 V,   6.607/180° V
11.35 (a) 1.6
 (b) 1.2 1 j0.8
 (c)  0.6 2 j2.4
 See Figure E.2 for their locations on the Smith chart.

10.79 (a)  1.45,  (b)  9,  (c ) 1.643

10.81 (a)  T11 5 1/S21, T12 5 2S22/S21, T21 5 S11/S21, T22 5 S12 2 S11S22/S21

 (b)  T 5 c2.5 20.5
0.5 0.3

d
10.83  The microwave wavelengths are of the same magnitude as the circuit components. 

The physical dimension of the lumped element must be in this range, which is not 
physically realizable.
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C

A

B

x =
 0

.8

x =
 2.

4

r =
 0

.6

r =
 1

.2

r =
 1

.6

FIGURE E.2 For Problem 11.35.

11.37 (0.2 2 j0.4)Zo

11.39 10.25 1 j12.3, 5.19
11.41 46 1 j26 V,   0.4167/144°
11.43 (a)  0.475/42°
 (b)  2.8
 (c)  27.5 1 j32.5V  
 (d)  At 0.05833l
 (e)  Same as in (d), i.e., 0.05833l

11.45 7.4 2 j4.4 mS
11.47 42 V
11.49 (a)  0.5543/25°,   296 V,  21.622 V
 (b)  184 1 j124 V, 3.7, 38.4 1 j60.4 V  
 (c)  3Zin,max and 2Zin,min 
11.51 (a)  0.4714l
 (b)  s 5 `,   GL 5 1/106.26°
11.53 (a)  24.5 V
 (b)  55.33 V,  67.74 V
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11.55 10.25 W
11.57 20 1 j15 mS, 2j10 mS, 6.408 1j5.189 mS, j10 mS, 2.461 1 j5.691 mS
11.59 (a)  34.2 1 j41.4 V
 (b)  0.38l, 0.473l
 (c)  2.65
11.61 0.0723l, 0.4093l

11.63 2.11, 1.764 GHz, 0.357/244.5°, 70 2 j40 V
11.65 See Figure E.3.

 

V(0,t) 9V

5V

−1 V

1/3
1/9

−3 V

t(µs)4 8 12

5.444V 5.395V

 

I(0,t) 180mA
220mA

216.05
mA215.5

mA

60mA

−20mA

t(µs)4 8 12

 FIGURE E.3 For Problem 11.65.

11.67 9.57 V
11.69 17.6 V, 600m

11.71 
Vg

2
, where Vo 5  

Zo

Zo 1 Zg
 Vg

11.73 (a) 14.9 mm,  (b) 2.52 mm
11.75 127.64 V
11.77 13.98 dB
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CHAPTER 12

12.1 (a)  2.5 GHz
 (b)  7 TE modes and 2 TM modes
12.3 See Table E.1

 

TABLE E.1 For Problem 12.3

Mode fc (GHz)

TE01 9.901
TE10 4.386
TE11 10.829
TE02 19.802
TE22 21.66
TM11 10.829
TM12 20.282
TM21 13.228

12.5 A design could be a 5 9 mm, b 5 3 mm
12.7 (a)  3 cm, 1.25 cm
 (b)  10, 12, 13  GHz
 (c)  8.67 GHz
12.9 254.15 rad/m, 3.09 3 108, 388.3 V
12.11 2.325 ms
12.13 (a)  5.391 GHz
 (b)  2.62 3 108  m/s
 (c)  4.368 cm
12.15 375.1 V, 1.5 mW
12.17   (a)  TE23
 (b)  j400.7  /m
 (c)  985.3 V
12.19 Proof
12.21 (a)  122.32 rad/m, 3.185 3 108 m/s, 2.826 3 108 m/s, 400.21 V,
 (b)  189.83 rad/m, 2.052 3 108 m/s, 1.949 3 108 m/s, 257.88 V,
12.23 3up

12.25 4.927 cm

12.27 
vmba2

2p2 H2
o sin2(py/b)az

12.29 (a)  0.012682  Np/m, 0.0153 Np/m
 (b)  0.02344 Np/m, 0.0441 Np/m
12.31 6.5445 m
12.33 (a)  2.165 3 1022 Np/m
 (b)  4.818 3 1023 Np/m
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12.35 0.1339 dB/m
12.37  199.94 rad/m, 1.481 3 1022 Np/m, 2.183 3 1022 Np/m, 2.357 3 108 m/s,  

1.689 3 108 m/s, 5 cm
12.39 Proof

12.41 Proof, 
1
h2(np/b)(rp/c)Eo sin(mpx/a) cos(npy/b) cos(rpz/c) V/m

12.43 (a) 2.606 GHz,  (b) 4727.7
12.45  5.701 GHz (TE011), 7.906 GHz (TE012), 10 GHz (TE101 and TE021),  

10.61 GHz (TE013 or TM110), 11.07 GHz (TE111 or TM111)
12.47 (a)  16.77 GHz, (b) 6589.51
12.49 (a)  a 5 b 5 c 5 3.788 cm, (b) a 5 b 5 c 5 2.646 cm
12.51 (a)  a 5 b 5 c 5 1.77 cm, (b) 9767.61
12.53 1.4286
12.55 (a)  0.2271, (b) 13.13o, (c) 6 modes
12.57 (a)  29.23o, (b) 63.1%
12.59 a12 5 8686a10

12.61 3.1698 mW

CHAPTER 13

13.1 
50hb

mr  sin(vt 2 br) (sin faf 1 cosu cos fau) V/m,

 
250
mr  bsin(vt 2 br) (sin faf 2 cosu cos fau)A/m

13.3 Hs 5
j0.1667

r  sinue2 jpr/3af,    Es 5
j62.83

r  sinue2 jpr/3au

13.5 (a)  Proof
 (b)  ø 5 0.05l

13.7 1.447 W
13.9 (a)  Proof                                          

 (b)  For l 5 l, f(u) 5
cos(p cosu) 1 1

sinu

 See Figure E.4.
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0

180

30
l = λ

30

6060

9090

2
1.5 1 0.5

120120

150150

 For l 5
3l

2
, f(u) 5

cosa3p

2
 cosub

sinu

 

0

180

3030

6060

9090

1.5 1

120120

150150

0.5

l = 3l/2

 For l 5 2l, f(u) 5
cosu sin(2p cosu)

sinu
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0

180

3030

6060

9090

2.5 2

120120

150150

0.511.5

l = 2λ

13.11 (a)  65.22 m
 (b)  0.8333 m
 (c)  0.9375 m
 (d)  0.125 m
13.13 (a)  9.071 mA
 (b)  0.25 mW
13.15 (a)  1.26 mV
 (b)  1.575 W
 (c)  1.933%
13.17 33.3%

13.19 (a)  Hs 5
cos 2u

120pr
e2jbraf  A/m, (b) 7.778 mW, (c) 76.78%

13.21 (a)  12.73ar mW/m2, (b) 0.098 V/m
13.23 See Figure E.5.

0

180

3030

6060

9090

2.5 2

120120

150150

0.511.5

l = 2λ

FIGURE E.4 For Problem 13.9.

FIGURE E.5 For Problem 13.23.
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13.25 (a) 1.5 sin2 u, (b) 1.5, (c) 
1.5l2  sin2u

4p
, (d) 3.084 V 

13.27 (a) 62.5 m, (b) 36.5 V, (c ) 3.282
13.29 (a) 2.546 sin u sin2 f, 2.546
 (b) 2.25p sin2 u sin3 f, 7.069
 (c) 0.75(1 1 sin2u sin2f), 1.5
13.31 2.121 A

13.33 
a2

30

13.35 
jhbIodl

2p
 sinu cosa1

2
bd cosubau

13.37 See Figure E.6.
                     

0

180

3030

6060

9090

1

120120

150150

0.6

d = λ, α = π/2

0.8
0.20.4

  

0

180

3030

6060

9090

1

120120

150150

0.6

d = λ/4, α = 3π/4

0.8
0.20.4

0

180

3030

6060

9090

1

120120

150150

0.6

d = 3λ/4, α = 0

0.8
0.20.4

FIGURE E.6 For Problem 13.37.

(c)

(a) (b)
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13.39 See Figure E.7.

 

90

270

60120

30150

0180

330210

300240

Polar plot

ψ

3

4

2

1

 FIGURE E.6 For Problem 13.39.

13.41 7.162 3 1023 m2

13.43 115.384 dB
13.45 21.29 pW
13.47 19 dB
13.49 272.1 pW
13.51 The transmitted power must be increased 16 times.
13.53 (a)  8.164 dB,  (b) 55.05 dB
13.55 (a)  17.1 mV/km, (b) 51.93 V
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14.3 (a)  10.117, 1.56
 (b)  10.113, 1.506
14.5 Proof
14.7 V1 5 39.93, V2 5 34.97, V3 5 24.96, V4 5 19.98 V

14.9 (a)  
4Vo

p
 a

`

n5odd
 
sinanpx

a b  sinh anpy
a b

n sinh(np)
1

4Vo

p
 a

`

n5odd
 
sinanpy

a b  sinh anpx
a b

n sinh(np)
 

  (b)  25 V
14.11 (a)  

 F

24 1 0 1 0 0
1 24 1 0 1 0
0 1 24 0 0 1
1 0 0 24 1 0
0 1 0 1 24 1
0 0 1 0 1 24

 V F

Va

Vb

Vc

Vd

Ve

Vf

V 5 F

2200
2100
2100
2100

0
0

V

 [A] [B]

CHAPTER  14

14.1 See Figure E.8

FIGURE E.8 For Problem 14.1.
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 (b)

 H

24 1 0 1 0 0 0 0
1 24 1 0 1 0 0 0
0 1 24 0 0 1 0 0
1 0 0 24 1 0 1 0
0 1 0 1 24 1 0 1
0 0 1 0 1 24 0 0
0 0 0 1 0 0 24 1
0 0 0 0 1 0 1 24

X H

V1

V2

V3

V4

V5

V6

V7

V8

X 5 H

230
215
230
27.5

0
27.5

0
0

X

 [A] [B]

14.13  V1 5 10.97, V2 5 26.25, V3 5 44.06, V4 5 17.97, V5 5 11.05,  
V6 5 26.28, V7 5 44.07 V

14.15 The numerical and analytical solutions are  plotted in Figure E.9.
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0

–1

 FIGURE E.9 For Problem 14.15.

14.17 12.77 pF/m
14.19 100 V
14.21 (a) Exact C 5 80.26 pF/m, Zo 5 41.56 V; for numerical solution, see Table E.2.

TABLE E.2 For Problem 14.21(a)

N C (pF/m) Zo (V)

 10 82.386 40.486
 20 80.966 41.197
 40 80.438 41.467
100 80.025 41.562
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 (b) For numerical result, see Table E.3
TABLE E.3 For Problem 14.21(b)

N C (pF/m) Zo (V)

10 109.51 30.458
20 108.71 30.681
40 108.27 30.807
100 107.93 30.905

14.23 Proof
14.25 (a) (1.5, 0.5)  along 12  and (0.9286, 0.9286) along 13
 (b) 56.67 V
 

14.27 D

0.8802 20.2083 0 20.6719
20.2083 1.5333 21.2 20.125

0 21.2 1.4083 20.2083
20.6719 20.125 20.2083 1.0052

T
 
 

14.29 D

0.8333 20.667 0 20.1667
20.6667 1.4583 20.375 20.4167

0 20.375 0.625 20.25
20.1667 20.4167 20.25 0.833

T

14.31 25 V
14.33 See Table E.4.

 8 3.635 3.412
 9 5.882 5.521
10 5.882 5.521
11 3.635 3.412
14 8.659 8.217
15 14.01 13.30
16 14.01 13.30
17 8.659 8.217
20 16.99 16.37
21 27.49 26.49
22 27.49 26.49
23 16.99 16.37
26 31.81 31.21
27 51.47 50.5
28 51.47 50.5
29 31.81 31.21

TABLE E.4 For Problem 14.33

Node no. FEM Solution Exact Solution

14.35 V1 5 V3 5 V4 5 V6 5 35.71 V, V2 5 V5 5 42.85
14.37 40.587 V
14.39 92.01, 74.31, 82.87, 53.72, 61.78, 78.6, 30.194, 36.153, 53.69 V
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I N D E X

Capacitance, 250
Capacitance per unit length, 554, 812
Capacitor, 250
Career, 30, 176
Cartesian coordinates, 5, 32, 59
Cathode-ray tube (CRT), 357
Cavity, 666
Characteristic admittance, 560
Characteristic impedance, 559, 560, 605, 812
Charge conservation, 196
Charge distributions, 119, 120, 155
Charged sphere, 137
Circle, 574
Circular polarization, 499
Circulation, 66
Closed-form solution, 755
Coaxial capacitor, 253
Coercive field intensity, 374
Colatitude, 36
Commutative law, 12
Compatibility equations, 437
Complex numbers, 442
Complex permittivity, 485, 657 
Components, 6, 16, 37
Computational electromagnetics (CEM), 754
Conductance per unit length, 554
Conducting plane, 267, 269
Conduction current, 180, 351
Conduction current density, 180
Conduction losses, 657
Conductivity, 177, 178, 180
Conductors, 181
Conservative field, 93, 142, 147
Constant-coordinate surfaces, 44
Constitutive equations, 438
Constitutive relations, 437
Continuity equation, 196, 437
Convection current, 179, 180, 351
Convection current density, 180
Coulomb, C. A., 110
Coulomb’s gauge, 327

AC resistance, 491
Acceptance angle, 675
Ampere, A. M., 296
Ampere’s circuit law, 309, 326, 327
Amperian path, 310, 312
Amplitude, 475
Amplitude modulation (AM), 498
Analytic solution, 755
Angle of incidence, 517, 519
Angle of transmission, 519
Angular frequency, 475
Antenna arrays, 715
Antenna patterns, 707
Antennas, 691

Smart type of, 690
Anticommutative law, 14
Antisotropic material, 191
Applications of EM, 3
Array factor, 716
Atom, 187, 368
Attenuation, 609, 657, 672, 676
Attenuation constant, 483, 559, 659

Band matrix, 767
Band matrix method, 766, 772, 797
Bandwidth, 672
Bessel differential equation, 249
Binomial array, 724
Bioelectromagnetics, 552
Biot, J. B., 296
Biot–Savart’s law, 298, 326, 352
Bond, 735
Bonding effectiveness, 736
Bounce diagram, 594
Bound surface/volume charge densities, 189
Bound surface/volume current densities, 371
Boundary conditions, 198–203, 810
Boundary-value problems, 225
Brewster angle, 521–523
Broadside array, 718
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Coulomb’s law, 112, 349, 352
Critical angle, 675
Cross product, 11, 13
Crosstalk, 609, 610
Curie temperature, 372, 373
Curl, 82
Curl-free field, 93
Current, 178, 196
Current density, 178
Current reflection coefficient, 567
Cutoff frequency, 633, 640, 641
Cutoff wavelength, 641
Cylindrical coordinates, 32, 61

DC resistance, 491, 736
Degenerate, 669
Diamagnetic materials, 372
Dielectric breakdown, 191
Dielectric constant, 191, 207
Dielectric losses, 657
Dielectric materials, 192
Dielectric strength, 191
Difference equations, 764
Differential displacement, 59, 60–62
Differential normal surface area, 60, 61, 63
Differential solid angle, 709
Differential volume, 60, 61, 63
Dipole moment, 151, 366
Directional derivative, 73
Directive gain, 709
Directivity, 709
Dish antennas, 691
Dispersion, 677
Dispersion relation, 517
Displacement current, 434
Displacement current density, 433
Distance, 38
Distance vector, 8
Distortionless lines, 561
Distributive law, 12, 14
Divergence, 75, 77
Divergence theorem, 78, 133, 189, 196, 227,  

319, 502
Divergenceless field, 92

Dominant mode, 645, 669
Dot product, 11, 12
Double-stub matching, 587

E-fibers, 737
Effective area, 725
Effective relative permittivity, 605
Electric circuits, 392
Electric dipole, 150, 364
Electric displacement, 131
Electric field lines, 756, 763
Electric field intensity, 114, 120, 121, 349, 756
Electric fields, 177
Electric flux, 131, 152
Electric flux density, 131
Electric force, 112, 349
Electric potential, 141
Electric susceptibility, 190
Electric voltage, 178
Electrical length, 566
Electrohydrodynamic (EHD) pumping, 229
Electromagnet, 394
Electromagnetic compatibility (EMC), 732
Electromagnetic interference (EMI), 672, 732, 733
Electromagnetics (EM), 3, 176
Electromechanical systems, 394
Electrometer, 195
Electromotive force, 422
Electron gun, 357
Electrostatic discharge (ESD), 159
Electrostatic field, 695
Electrostatic potential well, 330
Electrostatic shielding/screening, 202
Electrostatics, 111
Element coefficient matrix, 792
Element shape functions, 791
Elements, 789
Elliptical polarization, 500
EM, see Electromagnetics
EM devices, 3
Emitter, 733
End-fire array, 719
Energy, 154, 386
Energy density, 154, 156, 386
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Engineering, 2
Equilibrium, 438
Equipotential lines, 152, 756, 763
Equipotential surface/body, 152, 181
Ethics, 2
Evanescent mode, 640
External inductance, 383

Far field, 695
Far-end crosstalk (FEXT), 610
Faraday, M., 152, 420
Faraday’s law, 422
Federal Communications Commission (FCC), 733
Ferromagnetic materials, 372, 373
Field, 5
Field plotting, 756
Filtering, 737
Finite difference method, 764, 767, 808
Finite element method, 789
Finite elements, 789
Finite line charge, 121
Five-node molecule, 766
Fixed nodes, 764
Flux, 66, 67
Flux lines, 150, 152
Flux linkage, 381, 422
Fractal antennas, 739
Fractals, 739
Franklin, B., 329
Free nodes, 764
Free space, 203, 487
Frequency, 476
Frequency allocations, 733
Frequency modulation (FM), 498
Fresnel coefficients, 523
Fresnel’s equations, 521, 523
Friis transmission formula, 727

Gauss, C. F., 58
Gauss’s law, 132–134, 319
Gauss–Otrogradsky theorem, 78
Gaussian surface, 134
Global coefficient matrix, 794

Global numbering, 794
Gradient, 71, 72
Gradient operator, 69
Graphene, 208, 209
Grounding, 735
Group pattern, 716
Group velocity, 654, 655

Half-wave dipole, 697
Harmonic field, 90
Heating, 531
Helmholtz, H., 472
Helmholtz’s equation, 481, 635
Helmholtz’s theorem, 94
Henry, J., 422
Hertz, H. R., 472
Hertzian dipole, 693, 726
Hertzian waves, 473
Homogeneous materials, 191
Horn antenna, 691
Hybrid, 638
Hysteresis, 374
Hysteresis loop, 375

IEEE, 2
Images, 271
Imaging systems, 614
Inductance, 381, 385, 389
Inductance per unit length, 554, 812
Inductive field, 695
Inductor, 381
Infinite line charge, 122, 135
Infinite line current, 302, 310
Infinite sheet of charge, 122, 123, 136
Infinite sheet of current, 310, 311
Inhomogeneous materials, 191
Initial magnetization curve, 374
Input impedance, 564
Insertion loss, 609, 737
Instantaneous form, 443
Insulator, 178
Integral equation, 778
Internal inductance, 383
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International Telecommunication Union (ITU), 733
Intrinsic impedance, 482, 642

of free space, 488
Irrotational fields, 93, 147
Isolated conductor, 181
Isolated magnet, 318
Isolated sphere, 254
Isotropic antenna, 709
Isotropic materials, 191
Iteration method, 766, 771, 796

Joule’s law, 183

Kirchhoff, 272
Kirchhoff ’s current law, 196, 558

Laplace, P. S., 224
Laplace’s equation, 90, 226, 766, 809
Laplacian, 90, 94
Lattice diagrams, 594
Law of refraction, 201
Laws of algebra, 7
Lenz, 423
Lightning, 328
Lightning rods, 329
Line charge, 120, 269
Line equations, 557
Line integral, 66
Line parameters, 554
Line-matching, 586
Linear material, 191
Linear polarization, 499
Local numbering, 794
Loop antenna, 702
Lorentz force, 359
Lorentz force equation, 350, 436
Lorenz condition, 440
Lord Kelvin, 266
Loss angle, 484
Loss tangent, 484
Lossless dielectrics, 487
Lossless line, 560
Lossy dielectrics, 480

Magnetic boundary conditions, 376
Magnetic circuit, 392
Magnetic dipole, 363, 364
Magnetic dipole moment, 362, 363
Magnetic energy, 384
Magnetic field, 298, 352
Magnetic field intensity, 298
Magnetic flux, 317
Magnetic flux density, 317
Magnetic flux lines, 318
Magnetic history, 373
Magnetic levitation, 399, 400
Magnetic moment, 369
Magnetic resonance imaging (MRI), 348
Magnetic scalar potential, 320
Magnetic susceptibility, 371
Magnetic vector potential, 320, 694, 702
Magnetization, 369
Magnetization curve, 373
Magnetomotive force, 392
Match point, 779
Matching, 585, 586
MATLAB, 244, 755
Maximum power transfer, 570
Maxwell, J. C., 436
Maxwell’s equations, 4, 133, 148, 309, 319, 420, 421, 

433, 436, 445, 473, 502, 636
Medium velocity, 654
Memristor, 454
MEMs, 632
Mesh size, 766
Metal, 178
Metamaterials, 456, 612, 613, 678
Method of images, 266
Microelectromechanical (MEM) systems, 275, 276
Microstrip lines, 272, 604, 808
Microwaves, 529, 679
Mode, 638, 640
Mode excitation, 660
Mode volume, 675
Moment method, 777
Monopole, 152 
Motional electric field, 425
Motional emf, 425
Multimode propagation, 673, 675, 677
Mutual inductance, 362
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Nanotechnology, 455
Nautical miles, 731
Near-end crosstalk, 610
Newton’s second law of motion, 350
Newton’s third law of motion, 353, 361
Noise susceptibility, 672
Nondestructive testing (NDT), 613
Nonlinear materials, 191
Nonmagnetic materials, 372
Nonorthogonal system, 31
Nonpolar molecule, 188
Normal derivative, 72
Normal incidence, 506
Normalized impedance, 573
Nulls, 718
Numerical aperture, 673

Oblique incidence, 517
Oersted, H. C., 297, 422
Ohm’s law, 180
Ohmic resistance, 710
Optical fiber, 672
Optical frequency, 672
Optical metatronics, 456
Orthogonal surfaces, 45
Orthogonal system, 31

Paramagnetic materials, 372, 373
Parallel-plate capacitor, 251
Pattern multiplication, 716
Penetration depth, 490
Perfect conductor, 181
Period, 476
Permanent flux density, 374
Permeability, 372
Permeability of free space, 317
Permeance, 393
Permittivity, 191
Permittivity of free space, 112, 191
Phase, 475
Phase constant, 475, 483, 559, 606, 642
Phase velocity, 606, 642, 654, 655, 812
Phase-matching conditions, 519
Phasor, 441, 443

Piezoelectric materials, 210, 211
Plane incidence, 517
Point charge, 112, 134, 267, 271, 756
Point transformation, 33
Poisson, S. D., 224
Poisson’s equation, 226, 327
Polar molecule, 188
Polarization, 187, 489, 498, 519
Polarizing angle, 521
Polywell, 329
Position vector, 7, 113
Potential, 142, 756
Potential difference, 141, 142, 178
Power, 183
Power density, 183
Power gain, 710, 711
Power pattern, 707
Power transmission, 562
Poynting’s theorem, 503
Poynting vector, 503, 657
Product solution, 238, 635, 667
Propagation, 641
Propagation constant, 481, 559
Propagation vector, 517

Quadrupole, 152
Quality factor, 669
Quarter-wave monopole antenna, 701
Quarter-wave transformer, 585

Radar, 531, 728
Bistatic type of, 730
Monostatic type of, 730

Radar cross section, 729
Radar range equation, 730
Radar transmission equation, 730
Radiated emissions, 732
Radiation, 691
Radiation efficiency, 711
Radiation field, 695
Radiation intensity, 708
Radiation pattern, 708
Radiation resistance, 696, 700
Radio frequency identification (RFID), 208, 742
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Reactance circle, 575
Reciprocal networks, 532
Rectangular coordinates, see Cartesian coordinates
Reflection, 506, 517
Reflection coefficient, 508
Refractive indices, 519
Relative permeability, 372
Relative permittivity, 191, see also Dielectric constant
Relaxation time, 197
Reluctance, 393
Resistance, 182, 249
Resistance circle, 574
Resistance per unit length, 554
Resistivity, 183
Resonant frequency, 668
Resonator, 666
Retarded current, 694
Retarded potential, 441
Retarded time, 441
Return loss, 609
Return stroke, 328
Right-hand rule, 14

S-circles, 575
Satellite, 530
Scalar, 4
Scalar component, 16
Scalar product, 11
Scalar triple product, 15
Scattering transfer parameters, 551
Scattering parameters, 532
Security, 672
Self-inductance, 382, 383
Semi-infinite line current, 302
Separated equations, 238, 249
Separation constant, 238, 248
Separation of variables, 238, 247, 635
Shielding, 373, 736
Shielding effectiveness, 736
Simple materials, 192
Single-mode propagation, 673, 677
Single-stub tuner, 586
Sink, 76
Skin depth, 490

Skin effect, 490
Skin resistance, 491
Smith chart, 572, 573, 575
Snell’s law, 519, 675
Software packages, 754
Solenoidal field, 92
Source, 76
Spectrum, 477
Spherical capacitor, 253
Spherical coordinates, 35, 62
SQUIDS, 401
Standing wave, 509
Standing wave ratio, 511, 567
Stokes, G. G., 58
Stokes’s theorem, 85, 147, 322, 327, 425, 426
Supercapacitors, 276, 278
Superconductors, 178, 400
Superposition principle, 114
Superposition theorem, 242
Surface charge, 122
Surface integral, 66
Susceptor, 733
Symmetrical network, 533

Telecommunications, 531
Telephone lines, 562
Time-harmonic field, 441
Time-varying field, 421
Time-varying potentials, 439
Textile antennas, 737, 738
Total internal reflection, 675
Transformer emf, 425
Transient, 592
Transmission coefficient, 508
Transmission lines, 553, 633
Transverse electric (TE) mode, 638, 643
Transverse electromagnetic (TEM)  

wave, 489, 638
Transverse magnetic (TM) mode, 638

Uniform cross section, 182
Uniform field, 8
Uniform plane wave, 489
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Wave, 474
Wave equations, 440, 474, 481, 559
Wave number, 484
Wave number vector, 517
Wave propagation, 473
Wave velocity, 474, 484, 559, 767
Waveguide, 553, 633, 634
Waveguide wavelength, 654
Wavelength, 476, 484, 559, 642
Waves, 473
Wire antennas, 691
Wireless Power Consortium (WPC), 457
Wireless power transfer (WPT), 457
Work, 141, 147, 152, 154

X-ray, 614
Xerographic copier, 231

Zeeman effect, 348

Uniqueness theorem, 227, 228
Unit normal vector, 47
Unit pattern, 716
Unit vector, 5, 32, 36

Variational calculus, 796
Vector, 5, 33
Vector addition, 6
Vector calculus, 59
Vector component, 16
Vector differential operator, 69
Vector multiplication, 11
Vector product, 11, 13
Vector subtraction, 6
Vector transformation, 35, 38
Vector triple product, 15
Velocity filter, 358
Voltage, 178
Voltage reflection coefficient, 566, 567
Volume charge, 123
Volume integral, 67
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Uppercase Lowercase Name Uppercase Lowercase Name

A	 a Alpha N n Nu
B b Beta J j Xi
G g Gamma O o Omicron
D d Delta P p Pi
E « Epsilon R r Rho
Z z Zeta S s,	 Sigma
H h Eta T t Tau
U u Theta   Upsilon
I i Iota  f Phi
K k Kappa  x Chi
L l Lambda  c Psi
M m Mu  v Omega 

THE GREEK ALPHABET

Power  Prefix Symbol

1024 yotta Y
1021 zetta Z
1018 exa E
1015 peta P
1012 tera T
109 giga G
106 mega M
103 kilo k
102 hecto h
101 deka da
101 deci d
102 centi c
103 milli m
106 micro m

109 nano n
1012 pico p
1015 femto f
1018 atto a
1021 zepto z
1024 yocto y 
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VECTOR DERIVATIVES
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Cartesian Coordinates (x, y, z)

A  5 Ax ax 1 Ayay 1 Azaz

=V  5
'V
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ax 1
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ay 1
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az

= # A  5
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1
'Ay
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'Az
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= 3 A 5 ∞
ax ay az

'
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'
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'
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Ax Ay Az
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'x
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'y
d az

= 2V  5
'2V
'x2 1

'2V
'y2 1

'2V
'z2

Cylindrical Coordinates (�, �, z)

A  5 Arar 1 Afaf 1 Az az
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1
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1
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ar raf az
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'
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'
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2
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1rAf 2 2
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'
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b 1
1
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'2V
'f2 1

'2V
'z2



VECTOR DERIVATIVES (cont.)
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 Spherical Coordinates (r, �, �)

 A 5 Ar ar 1 Auau 1 Afaf

 =V 5
'V
'r

ar 1
1
r  
'V
'u

au 1
1

r sin u
 
'V
'f

af

 = # A 5
1
r2 
'
'r

 1r2Ar 2 1
1

r sin u
 
'
'u

 1Au sin u 2 1
1

r sin u
 
'Af

'f

 = 3 A 5
1

r2 sin u
∞
ar rau 1r sin u 2  af

'
'r

'
'u

'
'f

Ar rAu 1r sin u 2  Af

∞

 5
1

r sin u
  c '
'u

 1Af sin u 2 2
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1
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1
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 1rAf 2 d au
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1
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'
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'f2
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