

Bilgin Ibryam and Roland Huß

Kubernetes Patterns
Reusable Elements for Designing

Cloud-Native Applications

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05028-5

[LSI]

Kubernetes Patterns
by Bilgin Ibryam and Roland Huß

Copyright © 2019 Bilgin Ibryam and Roland Huß. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Virginia Wilson
Production Editor: Katherine Tozer
Copyeditor: Christine Edwards
Proofreader: Sharon Wilkey

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

May 2019: First Edition

Revision History for the First Edition
2019-04-04: First Release

See https://www.oreilly.com/catalog/errata.csp?isbn=9781492050285 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Kubernetes Patterns, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
https://www.oreilly.com/catalog/errata.csp?isbn=9781492050285

Table of Contents

Foreword. ix

Preface. xi

1. Introduction. 1
The Path to Cloud Native 1
Distributed Primitives 3

Containers 4
Pods 5
Services 7
Labels 7
Annotations 9
Namespaces 9

Discussion 11
More Information 12

Part I. Foundational Patterns

2. Predictable Demands. 15
Problem 15
Solution 16

Runtime Dependencies 16
Resource Profiles 18
Pod Priority 20
Project Resources 22
Capacity Planning 22

iii

Discussion 23
More Information 24

3. Declarative Deployment. 25
Problem 25
Solution 25

Rolling Deployment 27
Fixed Deployment 29
Blue-Green Release 30
Canary Release 30

Discussion 31
More Information 33

4. Health Probe. 35
Problem 35
Solution 35

Process Health Checks 36
Liveness Probes 36
Readiness Probes 37

Discussion 38
More Information 40

5. Managed Lifecycle. 41
Problem 41
Solution 41

SIGTERM Signal 42
SIGKILL Signal 42
Poststart Hook 43
Prestop Hook 44
Other Lifecycle Controls 45

Discussion 46
More Information 46

6. Automated Placement. 47
Problem 47
Solution 47

Available Node Resources 48
Container Resource Demands 49
Placement Policies 49
Scheduling Process 50
Node Affinity 51

iv | Table of Contents

Pod Affinity and Antiaffinity 52
Taints and Tolerations 54

Discussion 57
More Information 59

Part II. Behavioral Patterns

7. Batch Job. 63
Problem 63
Solution 64
Discussion 67
More Information 68

8. Periodic Job. 69
Problem 69
Solution 70
Discussion 71
More Information 72

9. Daemon Service. 73
Problem 73
Solution 74
Discussion 76
More Information 77

10. Singleton Service. 79
Problem 79
Solution 80

Out-of-Application Locking 80
In-Application Locking 82
Pod Disruption Budget 84

Discussion 85
More Information 86

11. Stateful Service. 87
Problem 87

Storage 88
Networking 89
Identity 89
Ordinality 89

Table of Contents | v

Other Requirements 89
Solution 90

Storage 91
Networking 92
Identity 94
Ordinality 94
Other Features 95

Discussion 96
More information 97

12. Service Discovery. 99
Problem 99
Solution 100

Internal Service Discovery 101
Manual Service Discovery 104
Service Discovery from Outside the Cluster 107
Application Layer Service Discovery 111

Discussion 113
More Information 115

13. Self Awareness. 117
Problem 117
Solution 117
Discussion 121
More Information 121

Part III. Structural Patterns

14. Init Container. 125
Problem 125
Solution 126
Discussion 130
More Information 130

15. Sidecar. 131
Problem 131
Solution 132
Discussion 134
More Information 134

vi | Table of Contents

16. Adapter. 135
Problem 135
Solution 135
Discussion 138
More Information 138

17. Ambassador. 139
Problem 139
Solution 139
Discussion 141
More Information 142

Part IV. Configuration Patterns

18. EnvVar Configuration. 145
Problem 145
Solution 145
Discussion 148
More Information 149

19. Configuration Resource. 151
Problem 151
Solution 151
Discussion 156
More Information 156

20. Immutable Configuration. 157
Problem 157
Solution 157

Docker Volumes 158
Kubernetes Init Containers 159
OpenShift Templates 162

Discussion 163
More Information 164

21. Configuration Template. 165
Problem 165
Solution 165
Discussion 170
More Information 171

Table of Contents | vii

Part V. Advanced Patterns

22. Controller. 175
Problem 175
Solution 176
Discussion 186
More Information 187

23. Operator. 189
Problem 189
Solution 190

Custom Resource Definitions 190
Controller and Operator Classification 192
Operator Development and Deployment 195
Example 197

Discussion 201
More Information 202

24. Elastic Scale. 203
Problem 203
Solution 204

Manual Horizontal Scaling 204
Horizontal Pod Autoscaling 205
Vertical Pod Autoscaling 210
Cluster Autoscaling 213
Scaling Levels 216

Discussion 219
More Information 219

25. Image Builder. 221
Problem 221
Solution 222

OpenShift Build 223
Knative Build 230

Discussion 234
More Information 235

Afterword. 237

Index. 239

viii | Table of Contents

Foreword

When Craig, Joe, and I started Kubernetes nearly five years ago, I think we all recog‐
nized its power to transform the way the world developed and delivered software. I
don’t think we knew, or even hoped to believe, how quickly this transformation
would come. Kubernetes is now the foundation for the development of portable, reli‐
able systems spanning the major public clouds, private clouds, and bare-metal envi‐
ronments. However, even as Kubernetes has become ubiquitous to the point where
you can spin up a cluster in the cloud in less than five minutes, it is still far less obvi‐
ous to determine where to go once you have created that cluster. It is fantastic that we
have seen such significant strides forward in the operationalization of Kubernetes
itself, but it is only a part of the solution. It is the foundation on which applications
will be built, and it provides a large library of APIs and tools for building these appli‐
cations, but it does little to provide the application architect or developer with any
hints or guidance for how these various pieces can be combined into a complete, reli‐
able system that satisfies their business needs and goals.

Although the necessary perspective and experience for what to do with your Kuber‐
netes cluster can be achieved through past experience with similar systems, or via
trial and error, this is expensive both in terms of time and the quality of systems
delivered to our end users. When you are starting to deliver mission-critical services
on top of a system like Kubernetes, learning your way via trial and error simply takes
too much time and results in very real problems of downtime and disruption.

This then is why Bilgin and Roland’s book is so valuable. Kubernetes Patterns enables
you to learn from the previous experience that we have encoded into the APIs and
tools that make up Kubernetes. Kubernetes is the by-product of the community’s
experience building and delivering many different, reliable distributed systems in a
variety of different environments. Each object and capability added to Kubernetes
represents a foundational tool that has been designed and purpose-built to solve a
specific need for the software designer. This book explains how the concepts in
Kubernetes solve real-world problems and how to adapt and use these concepts to
build the system that you are working on today.

ix

In developing Kubernetes, we always said that our North Star was making the devel‐
opment of distributed systems a CS 101 exercise. If we have managed to achieve that
goal successfully, it is books like this one that are the textbooks for such a class. Bilgin
and Roland have captured the essential tools of the Kubernetes developer and distil‐
led them into segments that are easy to approach and consume. As you finish this
book, you will become aware not just of the components available to you in Kuber‐
netes, but also the “why” and “how” of building systems with those components.

— Brendan Burns,
Cofounder, Kubernetes

x | Foreword

Preface

With the evolution of microservices and containers in recent years, the way we
design, develop, and run software has changed significantly. Today’s applications are
optimized for scalability, elasticity, failure, and speed of change. Driven by new prin‐
ciples, these modern architectures require a different set of patterns and practices.
This book aims to help developers create cloud-native applications with Kubernetes
as a runtime platform. First, let’s take a brief look at the two primary ingredients of
this book: Kubernetes and design patterns.

Kubernetes
Kubernetes is a container orchestration platform. The origin of Kubernetes lies some‐
where in the Google data centers where Google’s internal container orchestration
platform, Borg, was born. Google used Borg for many years to run its applications. In
2014, Google decided to transfer its experience with Borg into a new open source
project called “Kubernetes” (Greek for “helmsman” or “pilot”), and in 2015, it became
the first project donated to the newly founded Cloud Native Computing Foundation
(CNCF).

Right from the start, Kubernetes gained a whole community of users, and the number
of contributors grew at an incredibly fast pace. Today, Kubernetes is considered one
of the most active projects on GitHub. It is probably fair to claim that at the time of
this writing, Kubernetes is the most commonly used and feature-rich container
orchestration platform. Kubernetes also forms the foundation of other platforms built
on top of it. The most prominent of those Platform-as-a-Service systems is Red Hat
OpenShift, which provides various additional capabilities to Kubernetes, including
ways to build applications within the platform. These are only some of the reasons we
chose Kubernetes as the reference platform for the cloud-native patterns in this book.

This book assumes you have some basic knowledge of Kubernetes. In Chapter 1, we
recapitulate the core Kubernetes concepts and lay out the foundation for the follow‐
ing patterns.

xi

https://research.google.com/pubs/pub43438.html

1 Christopher Alexander and his team defined the original meaning in the context of architecture as follows:
“Each pattern describes a problem which occurs over and over again in our environment, and then describes
the core of the solution to that problem, in such a way that you can use this solution a million times over,
without ever doing it the same way twice,” (A Pattern Language, Christopher Alexander et al., 1977, p. x). We
think this definition works for the patterns we describe in this book, except that we probably don’t have as
much variability in our solutions.

Design Patterns
The concept of design patterns dates back to the 1970s and from the field of architec‐
ture. Christopher Alexander, an architect and system theorist, and his team published
the groundbreaking A Pattern Language (Oxford University Press) in 1977, which
describes architectural patterns for creating towns, buildings, and other construction
projects. Sometime later this idea was adopted by the newly formed software indus‐
try. The most famous book in this area is Design Patterns—Elements of Reusable
Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides—the Gang of Four (Addison-Wesley). When we talk about the famous Sin‐
gleton, Factories, or Delegation patterns, it’s because of this defining work. Many
other great pattern books have been written since then for various fields with differ‐
ent levels of granularity, like Enterprise Integration Patterns by Gregor Hohpe and
Bobby Woolf (Addison-Wesley) or Patterns of Enterprise Application Architecture by
Martin Fowler (Addison-Wesley).

In short, a pattern describes a repeatable solution to a problem.1 It is different from a
recipe because instead of giving step-by-step instructions to solving a problem, a pat‐
tern provides a blueprint for solving a whole class of similar problems. For example,
the Alexandrian pattern “Beer Hall” describes how public drinking halls should be
constructed where “strangers and friends are drinking companions” and not “anchors
of the lonely.” All halls built after this pattern look different, but share common char‐
acteristics such as open alcoves for groups of four to eight and a place where a hun‐
dred people can meet with beverages, music, and other activities.

However, a pattern does more than provide a solution. It is also about forming a lan‐
guage. The unique pattern names form a dense, noun-centric language in which each
pattern carries a unique name. When this language is established, these names auto‐
matically evoke similar mental representations when people speak about these pat‐
terns. For example, when we talk about a table, anyone speaking English assumes we
are talking about a piece of wood with four legs and a top on which you can put
things. The same thing happens in software engineering when we talk about a “fac‐
tory.” In an object-oriented programming language context, we immediately associate
with a “factory” an object that produces other objects. Because we immediately know
the solution behind the pattern, we can move on to tackle yet unsolved problems.

xii | Preface

http://bit.ly/2OHN4hn
http://bit.ly/2Ibvjpl
http://bit.ly/2Ibvjpl
http://www.enterpriseintegrationpatterns.com/
https://www.martinfowler.com/books/eaa.html

There are also other characteristics of a pattern language. Patterns are interconnected
and can overlap so that together, they cover most of the problem space. Also, as
already laid out in the original A Pattern Language, patterns do not have the same
level of granularity and scope. More general patterns cover an extensive problem
space and provide rough guidance on how to solve the problem. Granular patterns
have a very concrete solution proposal but are not as widely applicable. This book
contains all sort of patterns, and many patterns reference other patterns or may even
include other patterns as part of the solution.

Another feature of patterns is that they follow a rigid format. However, each author
defines a different format, and unfortunately there is no common standard for the
way patterns should be laid out. Martin Fowler gives an excellent overview of the for‐
mats used for pattern languages in Writing Software Patterns.

How This Book Is Structured
We chose a simple pattern format for this book. We do not follow any particular pat‐
tern description language. For each pattern, we use the following structure:

Name
Each pattern carries a name, which is also the chapter’s title. The name is the cen‐
ter of the pattern’s language.

Problem
This section gives the broader context and describes the pattern space in detail.

Solution
This section is about how the pattern solves the problem in a Kubernetes-specific
way. This section also contains cross-references to other patterns that are either
related or part of the given pattern.

Discussion
A discussion about the advantages and disadvantages of the solution for the
given context follows.

More Information
This final section contains additional information sources related to the pattern.

We organized the patterns of this book as follows:

• Part I, Foundational Patterns, covers the core concepts of Kubernetes. These are
the underlying principles and practices for building container-based cloud-native
applications.

Preface | xiii

http://bit.ly/2HIuUdJ

• Part II, Behavioral Patterns, describes patterns that sit on top of the foundational
patterns and add finer-grained concepts for managing various types of container
and platform interactions.

• Part III, Structural Patterns, contains patterns related to organizing containers
within a Pod, which is the atom of the Kubernetes platform.

• Part IV, Configuration Patterns, gives insight into the various ways application
configuration can be handled in Kubernetes. These are very granular patterns,
including concrete recipes for connecting applications to their configuration.

• Part V, Advanced Patterns, is a collection of advanced concepts, such as how the
platform itself can be extended or how to build container images directly within
the cluster.

A pattern might not always fit into one category alone. Depending on the context, the
same pattern might fit into several categories. Every pattern chapter is self-contained,
and you can read chapters in isolation and in any order.

Who This Book Is For
This book is for developers who want to design and develop cloud-native applications
for the Kubernetes platform. It is most suitable for readers who have some basic
familiarity with containers and Kubernetes concepts, and want to take it to the next
level. However, you don’t need to know the low-level details of Kubernetes to under‐
stand the use cases and patterns. Architects, technical consultants, and developers
will all benefit from the repeatable patterns described here.

This book is based on use cases and lessons learned from real-world projects. We
want to help you create better cloud-native applications—not reinvent the wheel.

What You Will Learn
There’s a lot to discover in this book. Some of the patterns may read like excerpts
from a Kubernetes manual at first glance, but upon closer look you’ll see the patterns
are presented from a conceptual angle not found in other books on the topic. Other
patterns are explained with a different approach, with detailed guidelines for very
concrete problems, as in “Configuration Patterns” in Part IV.

Regardless of the pattern granularity, you will learn everything Kubernetes offers for
each particular pattern, with plenty of examples to illustrate the concepts. All these
examples have been tested, and we tell you how to get the full source code in “Using
Code Examples”.

xiv | Preface

Before we start to dive in, let’s briefly look at what this book is not:

• This book is not a guide on how to set up a Kubernetes cluster itself. Every pat‐
tern and every example assumes you have Kubernetes up and running. You have
several options for trying out the examples. If you are interested in learning how
to set up a Kubernetes cluster, we recommend Managing Kubernetes by Brendan
Burns and Craig Tracey (O’Reilly). Also, the Kubernetes Cookbook by Michael
Hausenblas and Sébastien Goasguen (O’Reilly) has recipes for setting up a
Kubernetes cluster from scratch.

• This book is not an introduction to Kubernetes, nor a reference manual. We
touch on many Kubernetes features and explain them in some detail, but we are
focusing on the concepts behind those features. Chapter 1, Introduction, offers a
brief refresher on Kubernetes basics. If you are looking for a comprehensive book
on how to use Kubernetes, we highly recommend Kubernetes in Action by Marko
Lukša (Manning Publications).

The book is written in a relaxed style, and is similar to a series of essays that can be
read independently.

Conventions
As mentioned, patterns form a kind of simple, interconnected language. To empha‐
size this web of patterns, each pattern is capitalized in italics, (e.g., Sidecar). When a
pattern is named like a Kubernetes core concept (like Init Container or Controller), we
use this specific formatting only when we directly reference the pattern itself. Where
it makes sense, we also interlink pattern chapters for ease of navigation.

We also use the following conventions:

• Everything you can type in a shell or editor is rendered in fixed font width.
• Kubernetes resource names are always rendered in uppercase (e.g., Pod). If the

resource is a combined name like ConfigMap, we keep it like this in favor of the
more natural “config map” for clarity and to make it clear that it refers to a
Kubernetes concept.

• Sometimes a Kubernetes resource name is identical to a common concept like
“service” or “node”. In these cases we use the resource name format only when
referring to the resource itself.

Preface | xv

https://oreil.ly/2HoadnU
http://bit.ly/2FTgJzk

Using Code Examples
Every pattern is backed with fully executable examples, which you can find on the
accompanying web page. You can find the link to each pattern’s example in the “More
Information” section of each chapter.

The “More Information” section also contains many links to further information
related to the pattern. We keep these lists updated in the example repository. Changes
to the link collections will also be posted on Twitter.

The source code for all examples in this book is available at GitHub. The repository
and the website also have pointers and instructions on how to get a Kubernetes clus‐
ter to try out the examples. When you go through the examples, please also have a
look into the provided resource files. They contain many useful comments that help
further in understanding the example code.

Many examples use a REST service called random-generator that returns random
numbers when called. It is uniquely crafted for playing well with the examples of this
book. Its source can be found at GitHub as well, and its container image k8spat
terns/random-generator is hosted on Docker Hub.

For describing resource fields, we use a JSON path notation. For example, .spec.rep
licas points to the replicas field of the resource’s spec section.

If you find an issue in the example code or documentation or if you have a question,
don’t hesitate to open a ticket in the GitHub issue tracker. We monitor these GitHub
issues and are happy to answer any questions over there.

All example code is distributed under the Creative Commons Attribution 4.0 (CC BY
4.0) license. The code is free to use, and you are free to share and adapt it for com‐
mercial and noncommercial projects. However, you should give attribution back to
this book if you copy or redistribute the material.

This attribution can be either a reference to the book including title, author, pub‐
lisher, and ISBN, as in “Kubernetes Patterns by Bilgin Ibryam and Roland Huß
(O’Reilly). Copyright 2019 Bilgin Ibryam and Roland Huß, 978-1-492-05028-5.”
Alternatively, add a link back to the accompanying website along with a copyright
notice and link to the license.

We love code contributions, too! If you think we can improve our examples, we are
happy to hear from you. Just open a GitHub issue or create a pull request, and let’s
start a conversation.

xvi | Preface

https://k8spatterns.io/
https://twitter.com/k8spatterns
https://github.com/k8spatterns
https://github.com/k8spatterns/random-generator
https://github.com/k8spatterns/examples/issues
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://k8spatterns.io/

O’Reilly Online Learning
For almost 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help compa‐
nies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book where we list errata, examples, and additional
information. You can access this page at https://oreil.ly/kubernetes_patterns.

To comment or ask technical questions about this book, email bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Follow the authors on Twitter: https://twitter.com/bibryam, https://twitter.com/ro14nd

Find the authors on GitHub: https://github.com/bibryam, https://github.com/rhuss

Follow their blogs: https://www.ofbizian.com, https://ro14nd.de

Preface | xvii

http://oreilly.com
http://oreilly.com
https://oreil.ly/kubernetes_patterns
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
https://twitter.com/bibryam
https://twitter.com/ro14nd
https://github.com/bibryam
https://github.com/rhuss
https://www.ofbizian.com
https://ro14nd.de

Acknowledgments
Creating this book was a long journey spanning over two years, and we want to thank
all of our reviewers who kept us on the right track. Special kudos go out to Paolo
Antinori and Andrea Tarocchi for helping us through the whole journey. Big thanks
also to Marko Lukša, Brandon Philips, Michael Hüttermann, Brian Gracely, Andrew
Block, Jiri Kremser, Tobias Schneck, and Rick Wagner, who supported us with their
expertise and advices. Last, but not least, big thanks to our editors Virginia Wilson,
John Devins, Katherine Tozer, Christina Edwards and all the awesome folks at
O’Reilly for helping us push this book over the finish line.

xviii | Preface

CHAPTER 1

Introduction

In this introductory chapter, we set the scene for the rest of the book by explaining a
few of the core Kubernetes concepts used for designing and implementing container-
based cloud-native applications. Understanding these new abstractions, and the
related principles and patterns from this book, are key to building distributed appli‐
cations made automatable by cloud-native platforms.

This chapter is not a prerequisite for understanding the patterns described later.
Readers familiar with Kubernetes concepts can skip it and jump straight into the pat‐
tern category of interest.

The Path to Cloud Native
The most popular application architecture on the cloud-native platforms such as
Kubernetes is the microservices style. This software development technique tackles
software complexity through modularization of business capabilities and trading
development complexity for operational complexity.

As part of the microservices movement, there is a significant amount of theory and
supplemental techniques for creating microservices from scratch or for splitting
monoliths into microservices. Most of these practices are based on the Domain-
Driven Design book by Eric Evans (Addison-Wesley) and the concepts of bounded
contexts and aggregates. Bounded contexts deal with large models by dividing them
into different components, and aggregates help further to group bounded contexts
into modules with defined transaction boundaries. However, in addition to these
business domain considerations, for every distributed system—whether it is based on
microservices or not—there are also numerous technical concerns around its organi‐
zation, structure, and runtime behavior.

1

http://dddcommunity.org/book/evans_2003/
http://dddcommunity.org/book/evans_2003/

Containers and container orchestrators such as Kubernetes provide many new primi‐
tives and abstractions to address the concerns of distributed applications, and here we
discuss the various options to consider when putting a distributed system into Kuber‐
netes.

Throughout this book, we look at container and platform interactions by treating the
containers as black boxes. However, we created this section to emphasize the impor‐
tance of what goes into containers. Containers and cloud-native platforms bring tre‐
mendous benefits to your distributed applications, but if all you put into containers is
rubbish, you will get distributed rubbish at scale. Figure 1-1 shows the mixture of the
skills required for creating good cloud-native applications.

Figure 1-1. The path to cloud native

At a high level, there are multiple abstraction levels in a cloud-native application that
require different design considerations:

• At the lowest code level, every variable you define, every method you create, and
every class you decide to instantiate plays a role in the long-term maintenance of
the application. No matter what container technology and orchestration platform
you use, the development team and the artifacts they create will have the most
impact. It is important to grow developers who strive to write clean code, have
the right amount of automated tests, constantly refactor to improve code quality,
and are software craftsmen at heart.

• Domain-Driven Design is about approaching software design from a business
perspective with the intention of keeping the architecture as close to the real
world as possible. This approach works best for object-oriented programming
languages, but there are also other good ways to model and design software for
real-world problems. A model with the right business and transaction bound‐
aries, easy-to-consume interfaces, and rich APIs is the foundation for successful
containerization and automation later.

2 | Chapter 1: Introduction

• The microservices architectural style very quickly evolved to become the norm,
and it provides valuable principles and practices for designing changing dis‐
tributed applications. Applying these principles lets you create implementations
that are optimized for scale, resiliency, and pace of change, which are common
requirements for any modern software today.

• Containers were very quickly adopted as the standard way of packaging and run‐
ning distributed applications. Creating modular, reusable containers that are
good cloud-native citizens is another fundamental prerequisite. With a growing
number of containers in every organization comes the need to manage them
using more effective methods and tools. Cloud native is a relatively new term
used to describe principles, patterns, and tools to automate containerized micro‐
services at scale. We use cloud native interchangeably with Kubernetes, which is
the most popular open source cloud-native platform available today.

In this book, we are not covering clean code, domain-driven design, or microservices.
We are focusing only on the patterns and practices addressing the concerns of the
container orchestration. But for these patterns to be effective, your application needs
to be designed well from the inside by applying clean code practices, domain-driven
design, microservices patterns, and other relevant design techniques.

Distributed Primitives
To explain what we mean by new abstractions and primitives, here we compare them
with the well-known object-oriented programming (OOP), and Java specifically. In
the OOP universe, we have concepts such as class, object, package, inheritance,
encapsulation, and polymorphism. Then the Java runtime provides specific features
and guarantees on how it manages the lifecycle of our objects and the application as a
whole.

The Java language and the Java Virtual Machine (JVM) provide local, in-process
building blocks for creating applications. Kubernetes adds an entirely new dimension
to this well-known mindset by offering a new set of distributed primitives and run‐
time for building distributed systems that spread across multiple nodes and pro‐
cesses. With Kubernetes at hand, we don’t rely only on the local primitives to
implement the whole application behavior.

We still need to use the object-oriented building blocks to create the components of
the distributed application, but we can also use Kubernetes primitives for some of the
application behaviors. Table 1-1 shows how various development concepts are real‐
ized differently with local and distributed primitives.

Distributed Primitives | 3

Table 1-1. Local and distributed primitives

Concept Local primitive Distributed primitive
Behavior encapsulation Class Container image

Behavior instance Object Container

Unit of reuse .jar Container image

Composition Class A contains Class B Sidecar pattern

Inheritance Class A extends Class B A container’s FROM parent image

Deployment unit .jar/.war/.ear Pod

Buildtime/Runtime isolation Module, Package, Class Namespace, Pod, container

Initialization preconditions Constructor Init container

Postinitialization trigger Init-method postStart

Predestroy trigger Destroy-method preStop

Cleanup procedure finalize(), shutdown hook Defer containera

Asynchronous & parallel execution ThreadPoolExecutor, ForkJoinPool Job

Periodic task Timer, ScheduledExecutorService CronJob

Background task Daemon thread DaemonSet

Configuration management System.getenv(), Properties ConfigMap, Secret
a Defer (or de-init) containers are not yet implemented, but there is a proposal on the way to include this feature in future
versions of Kubernetes. We discuss lifecycle hooks in Chapter 5, Managed Lifecycle.

The in-process primitives and the distributed primitives have commonalities, but
they are not directly comparable and replaceable. They operate at different abstrac‐
tion levels and have different preconditions and guarantees. Some primitives are sup‐
posed to be used together. For example, we still have to use classes to create objects
and put them into container images. However, some other primitives such as Cron‐
Job in Kubernetes can replace the ExecutorService behavior in Java completely.

Next, let’s see a few distributed abstractions and primitives from Kubernetes that are
especially interesting for application developers.

Containers
Containers are the building blocks for Kubernetes-based cloud-native applications. If
we make a comparison with OOP and Java, container images are like classes, and
containers are like objects. The same way we can extend classes to reuse and alter
behavior, we can have container images that extend other container images to reuse
and alter behavior. The same way we can do object composition and use functionality,
we can do container compositions by putting containers into a Pod and using collab‐
orating containers.

If we continue the comparison, Kubernetes would be like the JVM but spread over
multiple hosts, and would be responsible for running and managing the containers.

4 | Chapter 1: Introduction

http://bit.ly/2TegEM7

Init containers would be something like object constructors; DaemonSets would be
similar to daemon threads that run in the background (like the Java Garbage Collec‐
tor, for example). A Pod would be something similar to an Inversion of Control (IoC)
context (Spring Framework, for example), where multiple running objects share a
managed lifecycle and can access each other directly.

The parallel doesn’t go much further, but the point is that containers play a funda‐
mental role in Kubernetes, and creating modularized, reusable, single-purpose con‐
tainer images is fundamental to the long-term success of any project and even the
containers’ ecosystem as a whole. Apart from the technical characteristics of a con‐
tainer image that provide packaging and isolation, what does a container represent
and what is its purpose in the context of a distributed application? Here are a few sug‐
gestions on how to look at containers:

• A container image is the unit of functionality that addresses a single concern.
• A container image is owned by one team and has a release cycle.
• A container image is self-contained and defines and carries its runtime

dependencies.
• A container image is immutable, and once it is built, it does not change; it is

configured.
• A container image has defined runtime dependencies and resource requirements.
• A container image has well-defined APIs to expose its functionality.
• A container runs typically as a single Unix process.
• A container is disposable and safe to scale up or down at any moment.

In addition to all these characteristics, a proper container image is modular. It is para‐
meterized and created for reuse in the different environments it is going to run. But it
is also parameterized for its various use cases. Having small, modular, and reusable
container images leads to the creation of more specialized and stable container
images in the long term, similar to a great reusable library in the programming lan‐
guage world.

Pods
Looking at the characteristics of containers, we can see that they are a perfect match
for implementing the microservices principles. A container image provides a single
unit of functionality, belongs to a single team, has an independent release cycle, and
provides deployment and runtime isolation. Most of the time, one microservice cor‐
responds to one container image.

However, most cloud-native platforms offer another primitive for managing the life‐
cycle of a group of containers—in Kubernetes it is called a Pod. A Pod is an atomic

Distributed Primitives | 5

unit of scheduling, deployment, and runtime isolation for a group of containers. All
containers in a Pod are always scheduled to the same host, deployed together whether
for scaling or host migration purposes, and can also share filesystem, networking,
and process namespaces. This joint lifecycle allows the containers in a Pod to interact
with each other over the filesystem or through networking via localhost or host inter‐
process communication mechanisms if desired (for performance reasons, for
example).

As you can see in Figure 1-2, at the development and build time, a microservice cor‐
responds to a container image that one team develops and releases. But at runtime, a
microservice is represented by a Pod, which is the unit of deployment, placement,
and scaling. The only way to run a container—whether for scale or migration—is
through the Pod abstraction. Sometimes a Pod contains more than one container.
One such example is when a containerized microservice uses a helper container at
runtime, as Chapter 15, Sidecar demonstrates later.

Figure 1-2. A Pod as the deployment and management unit

Containers and Pods and their unique characteristics offer a new set of patterns and
principles for designing microservices-based applications. We looked at some of the
characteristics of well-designed containers; now let’s look at some of the characteris‐
tics of a Pod:

• A Pod is the atomic unit of scheduling. That means the scheduler tries to find a
host that satisfies the requirements of all containers that belong to the Pod (there
are some specifics around init containers, which we cover in Chapter 14, Init
Container). If you create a Pod with many containers, the scheduler needs to find
a host that has enough resources to satisfy all container demands combined. This
scheduling process is described in Chapter 6, Automated Placement.

• A Pod ensures colocation of containers. Thanks to the collocation, containers in
the same Pod have additional means to interact with each other. The most com‐
mon ways for communication include using a shared local filesystem for

6 | Chapter 1: Introduction

exchanging data or using the localhost network interface, or some host inter-
process communication (IPC) mechanism for high-performance interactions.

• A Pod has an IP address, name, and port range that are shared by all containers
belonging to it. That means containers in the same Pod have to be carefully con‐
figured to avoid port clashes, in the same way that parallel running Unix pro‐
cesses have to take care when sharing the networking space on a host.

A Pod is the atom of Kubernetes where your application lives, but you don’t access
Pods directly—that is where Services enter the scene.

Services
Pods are ephemeral—they can come and go at any time for all sort of reasons such as
scaling up and down, failing container health checks, and node migrations. A Pod IP
address is known only after it is scheduled and started on a node. A Pod can be
rescheduled to a different node if the existing node it is running on is no longer
healthy. All that means is the Pod’s network address may change over the life of an
application, and there is a need for another primitive for discovery and load
balancing.

That’s where the Kubernetes Services come into play. The Service is another simple
but powerful Kubernetes abstraction that binds the Service name to an IP address
and port number permanently. So a Service represents a named entry point for
accessing an application. In the most common scenario, the Service serves as the
entry point for a set of Pods, but that might not always be the case. The Service is a
generic primitive, and it may also point to functionality provided outside the Kuber‐
netes cluster. As such, the Service primitive can be used for Service discovery and
load balancing, and allows altering implementations and scaling without affecting
Service consumers. We explain Services in detail in Chapter 12, Service Discovery.

Labels
We have seen that a microservice is a container at build time but represented by a Pod
at runtime. So what is an application that consists of multiple microservices? Here,
Kubernetes offers two more primitives that can help you define the concept of an
application: labels and namespaces. We cover namespaces in detail in “Namespaces”
on page 9.

Before microservices, an application corresponded to a single deployment unit with a
single versioning scheme and release cycle. There was a single file for an application
in the form of a .war, or .ear or some other packaging format. But then, applications
got split into microservices, which are independently developed, released, run, restar‐
ted, or scaled. With microservices, the notion of an application diminishes, and there
are no longer key artifacts or activities that we have to perform at the application

Distributed Primitives | 7

level. However, if you still need a way to indicate that some independent services
belong to an application, labels can be used. Let’s imagine that we have split one mon‐
olithic application into three microservices, and another application into two micro‐
services.

We now have five Pod definitions (and maybe many more Pod instances) that are
independent of the development and runtime points of view. However, we may still
need to indicate that the first three Pods represent an application and the other two
Pods represent another application. Even the Pods may be independent, to provide a
business value, but they may depend on each other. For example, one Pod may con‐
tain the containers responsible for the frontend, and the other two Pods are responsi‐
ble for providing the backend functionality. If either of these Pods is down, the
application is useless from a business point of view. Using label selectors gives us the
ability to query and identify a set of Pods and manage it as one logical unit.
Figure 1-3 shows how you can use labels to group the parts of a distributed applica‐
tion into specific subsystems.

Figure 1-3. Labels used as an application identity for Pods

Here are a few examples where labels can be useful:

• Labels are used by the ReplicaSets to keep some instances of a specific Pod run‐
ning. That means every Pod definition needs to have a unique combination of
labels used for scheduling.

• Labels are also used heavily by the scheduler. The scheduler uses labels for co-
locating or spreading Pods to place Pods on the nodes that satisfy the Pods’
requirements.

8 | Chapter 1: Introduction

• A Label can indicate a logical grouping of set of Pods and give an application
identity to them.

• In addition to the preceding typical use cases, labels can be used to store meta‐
data. It may be difficult to predict what a label could be used for, but it is best to
have enough labels to describe all important aspects of the Pods. For example,
having labels to indicate the logical group of an application, the business charac‐
teristics and criticality, the specific runtime platform dependencies such as hard‐
ware architecture, or location preferences are all useful.
Later, these labels can be used by the scheduler for more fine-grained scheduling,
or the same labels can be used from the command line for managing the match‐
ing Pods at scale. However, you should not go overboard and add too many labels
in advance. You can always add them later if needed. Removing labels is much
riskier as there is no straight-forward way of finding out what a label is used for,
and what unintended effect such an action may cause.

Annotations
Another primitive very similar to labels is called annotations. Like labels, annotations
are organized as a map, but they are intended for specifying nonsearchable metadata
and for machine usage rather than human.

The information on the annotations is not intended for querying and matching
objects. Instead, it is intended for attaching additional metadata to objects from vari‐
ous tools and libraries we want to use. Some examples of using annotations include
build IDs, release IDs, image information, timestamps, Git branch names, pull
request numbers, image hashes, registry addresses, author names, tooling informa‐
tion, and more. So while labels are used primarily for query matching and perform‐
ing actions on the matching resources, annotations are used to attach metadata that
can be consumed by a machine.

Namespaces
Another primitive that can also help in the management of a group of resources is the
Kubernetes namespace. As we have described, a namespace may seem similar to a
label, but in reality, it is a very different primitive with different characteristics and
purpose.

Kubernetes namespaces allow dividing a Kubernetes cluster (which is usually spread
across multiple hosts) into a logical pool of resources. Namespaces provide scopes for
Kubernetes resources and a mechanism to apply authorizations and other policies to
a subsection of the cluster. The most common use case of namespaces is representing
different software environments such as development, testing, integration testing, or
production. Namespaces can also be used to achieve multitenancy, and provide isola‐

Distributed Primitives | 9

tion for team workspaces, projects, and even specific applications. But ultimately, for
a greater isolation of certain environments, namespaces are not enough, and having
separate clusters is common. Typically, there is one nonproduction Kubernetes clus‐
ter used for some environments (development, testing, and integration testing) and
another production Kubernetes cluster to represent performance testing and produc‐
tion environments.

Let’s see some of the characteristics of namespaces and how they can help us in differ‐
ent scenarios:

• A namespace is managed as a Kubernetes resource.
• A namespace provides scope for resources such as containers, Pods, Services, or

ReplicaSets. The names of resources need to be unique within a namespace, but
not across them.

• By default, namespaces provide scope for resources, but nothing isolates those
resources and prevents access from one resource to another. For example, a Pod
from a development namespace can access another Pod from a production
namespace as long as the Pod IP address is known. However, there are Kuber‐
netes plugins that provide networking isolation to achieve true multitenancy
across namespaces if desired.

• Some other resources such as namespaces themselves, nodes, and PersistentVo‐
lumes do not belong to namespaces and should have unique cluster-wide names.

• Each Kubernetes Service belongs to a namespace and gets a corresponding DNS
address that has the namespace in the form of <service-name>.<namespace-
name>.svc.cluster.local. So the namespace name is in the URI of every Ser‐
vice belonging to the given namespace. That’s one reason it is vital to name
namespaces wisely.

• ResourceQuotas provide constraints that limit the aggregated resource consump‐
tion per namespace. With ResourceQuotas, a cluster administrator can control
the number of objects per type that are allowed in a namespace. For example, a
developer namespace may allow only five ConfigMaps, five Secrets, five Services,
five ReplicaSets, five PersistentVolumeClaims, and ten Pods.

• ResourceQuotas can also limit the total sum of computing resources we can
request in a given namespace. For example, in a cluster with a capacity of 32 GB
RAM and 16 cores, it is possible to allocate half of the resources—16 GB RAM
and 8 cores—for the production namespace, 8 GB RAM and 4 cores for staging
environment, 4 GB RAM and 2 cores for development, and the same amount for
testing namespaces. The ability of imposing resource constraints on a group of
objects by using namespaces and ResourceQuotas is invaluable.

10 | Chapter 1: Introduction

Discussion
We’ve only briefly covered a few of the main Kubernetes concepts we use in this book.
However, there are more primitives used by developers on a day-by-day basis. For
example, if you create a containerized service, there are collections of Kubernetes
objects you can use to reap all the benefits of Kubernetes. Keep in mind, these are
only the objects used by application developers to integrate a containerized service
into Kubernetes. There are also other concepts used by administrators to enable
developers to manage the platform effectively. Figure 1-4 gives an overview of the
multitude of Kubernetes resources that are useful for developers.

Figure 1-4. Kubernetes concepts for developers

With time, these new primitives give birth to new ways of solving problems, and
some of these repetitive solutions become patterns. Throughout this book, rather
than describing a Kubernetes resource in detail, we will focus on Kubernetes aspects
that are proven as patterns.

Discussion | 11

More Information
• Principles of Container-Based Application Design
• The Twelve-Factor App
• Domain-Driven Design: Tackling Complexity in the Heart of Software
• Container Best Practices
• Best Practices for Writing Dockerfiles
• Container Patterns
• General Container Image Guidelines
• Pods

12 | Chapter 1: Introduction

https://red.ht/2HBKqYI
https://12factor.net
http://dddcommunity.org/book/evans_2003
http://bit.ly/2TUyNTe
https://dockr.ly/2TFZBaL
http://bit.ly/2TFjsH2
https://red.ht/2u6Ahvo
https://kubernetes.io/docs/user-guide/pods/

PART I

Foundational Patterns

Foundational patterns describe a number of fundamental principles that container‐
ized applications must comply with in order to become good cloud-native citizens.
Adhering to these principles will help ensure your applications are suitable for auto‐
mation in cloud-native platforms such as Kubernetes.

The patterns described in the following chapters represent the foundational building
blocks of distributed container-based Kubernetes-native applications:

• Chapter 2, Predictable Demands, explains why every container should declare its
resource profile and stay confined to the indicated resource requirements.

• Chapter 3, Declarative Deployment, shows the different application deployment
strategies that can be performed in a declarative way.

• Chapter 4, Health Probe, dictates that every container should implement specific
APIs to help the platform observe and manage the application in the healthiest
way possible.

• Chapter 5, Managed Lifecycle, describes why a container should have a way to
read the events coming from the platform and conform by reacting to those
events.

• Chapter 6, Automated Placement, introduces a pattern for distributing containers
in a Kubernetes multinode cluster.

CHAPTER 2

Predictable Demands

The foundation of successful application deployment, management, and coexistence
on a shared cloud environment is dependent on identifying and declaring the appli‐
cation resource requirements and runtime dependencies. This Predictable Demands
pattern is about how you should declare application requirements, whether they are
hard runtime dependencies or resource requirements. Declaring your requirements is
essential for Kubernetes to find the right place for your application within the cluster.

Problem
Kubernetes can manage applications written in different programming languages as
long as the application can be run in a container. However, different languages have
different resource requirements. Typically, a compiled language runs faster and often
requires less memory compared to just-in-time runtimes or interpreted languages.
Considering that many modern programming languages in the same category have
similar resource requirements, from a resource consumption point of view, more
important aspects are the domain, the business logic of an application, and the actual
implementation details.

It is difficult to predict the amount of resources a container may need to function
optimally, and it is the developer who knows the resource expectations of a service
implementation (discovered through testing). Some services have a fixed CPU and
memory consumption profile, and some are spiky. Some services need persistent
storage to store data; some legacy services require a fixed port number on the host
system to work correctly. Defining all these application characteristics and passing
them to the managing platform is a fundamental prerequisite for cloud-native
applications.

15

Besides resource requirements, application runtimes also have dependencies on
platform-managed capabilities like data storage or application configuration.

Solution
Knowing the runtime requirements for a container is important mainly for two rea‐
sons. First, with all the runtime dependencies defined and resource demands envis‐
aged, Kubernetes can make intelligent decisions for where to place a container on the
cluster for most efficient hardware utilization. In an environment with shared resour‐
ces among a large number of processes with different priorities, the only way for a
successful coexistence is to know the demands of every process in advance. However,
intelligent placement is only one side of the coin.

The second reason container resource profiles are essential is capacity planning.
Based on the particular service demands and the total number of services, we can do
some capacity planning for the different environments and come up with the most
cost-effective host profiles to satisfy the entire cluster demand. Service resource pro‐
files and capacity planning go hand-to-hand for successful cluster management in the
long term.

Let’s have a look first at how to declare runtime dependencies before we dive into
resource profiles.

Runtime Dependencies
One of the most common runtime dependencies is file storage for saving application
state. Container filesystems are ephemeral and lost when a container is shut down.
Kubernetes offers volume as a Pod-level storage utility that survives container
restarts.

The most straightforward type of volume is emptyDir, which lives as long as the Pod
lives and when the Pod is removed, its content is also lost. The volume needs to be
backed by some other kind of storage mechanism to have a volume that survives Pod
restarts. If your application needs to read or write files to such long-lived storage, you
have to declare that dependency explicitly in the container definition using volumes,
as shown in Example 2-1.

Example 2-1. Dependency on a PersistentVolume

apiVersion: v1
kind: Pod
metadata:
 name: random-generator
spec:
 containers:
 - image: k8spatterns/random-generator:1.0

16 | Chapter 2: Predictable Demands

 name: random-generator
 volumeMounts:
 - mountPath: "/logs"
 name: log-volume
 volumes:
 - name: log-volume
 persistentVolumeClaim:
 claimName: random-generator-log

Dependency of a PVC to be present and bound

The scheduler evaluates the kind of volume a Pod requires, which affects where the
Pod gets placed. If the Pod needs a volume that is not provided by any node on the
cluster, the Pod is not scheduled at all. Volumes are an example of a runtime depend‐
ency that affects what kind of infrastructure a Pod can run and whether the Pod can
be scheduled at all.

A similar dependency happens when you ask Kubernetes to expose a container port
on a specific port on the host system through hostPort. The usage of a hostPort
creates another runtime dependency on the nodes and limits where a Pod can be
scheduled. hostPort reserves the port on each node in the cluster and limit to maxi‐
mum one Pod scheduled per node. Because of port conflicts, you can scale to as many
Pods as there are nodes in the Kubernetes cluster.

A different type of dependency is configurations. Almost every application needs
some configuration information and the recommended solution offered by Kuber‐
netes is through ConfigMaps. Your services need to have a strategy for consuming
settings—either through environment variables or the filesystem. In either case, this
introduces a runtime dependency of your container to the named ConfigMaps. If not
all of the expected ConfigMaps are created, the containers are scheduled on a node,
but they do not start up. ConfigMaps and Secrets are explained in more details in
Chapter 19, Configuration Resource, and Example 2-2 shows how these resources are
used as runtime dependencies.

Example 2-2. Dependency on a ConfigMap

apiVersion: v1
kind: Pod
metadata:
 name: random-generator
spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 env:
 - name: PATTERN
 valueFrom:

Solution | 17

1 We talk more about Secret security in Chapter 19, Configuration Resource.

 configMapKeyRef:
 name: random-generator-config
 key: pattern

Dependency of a ConfigMap to be present

A similar concept to ConfigMaps are Secrets, which offer a slightly more secure way
of distributing environment-specific configurations to a container.1 The way to con‐
sume a Secret is the same as it is for ConfigMap consumption, and it introduces the
same kind of dependency from a container to a namespace.

While the creation of ConfigMap and Secret objects are simple admin tasks we have
to perform, cluster nodes provide storage and port numbers. Some of these depen‐
dencies limit where a Pod gets scheduled (if anywhere at all), and other dependencies
may prevent the Pod from starting up. When designing your containerized applica‐
tions with such dependencies, always consider the runtime constraints they will cre‐
ate later.

Resource Profiles
Specifying container dependencies such as ConfigMap, Secret, and volumes is
straightforward. We need some more thinking and experimentation for figuring out
the resources requirements of a container. Compute resources in the context of
Kubernetes are defined as something that can be requested by, allocated to, and con‐
sumed from a container. The resources are categorized as compressible (i.e., can be
throttled, such as CPU, or network bandwidth) and incompressible (i.e., cannot be
throttled, such as memory).

Making the distinction between compressible and incompressible resources is impor‐
tant. If your containers consume too many compressible resources such as CPU, they
are throttled, but if they use too many incompressible resources (such as memory),
they are killed (as there is no other way to ask an application to release allocated
memory).

Based on the nature and the implementation details of your application, you have to
specify the minimum amount of resources that are needed (called requests) and the
maximum amount it can grow up to (the limits). Every container definition can
specify the amount of CPU and memory it needs in the form of a request and limit.
At a high level, the concept of requests/limits is similar to soft/hard limits. For
example, similarly, we define heap size for a Java application by using the -Xms and -
Xmx command-line options.

18 | Chapter 2: Predictable Demands

The requests amount (but not limits) is used by the scheduler when placing Pods
to nodes. For a given Pod, the scheduler considers only nodes that still have enough
capacity to accommodate the Pod and all of its containers by summing up the reques‐
ted resource amounts. In that sense, the requests field of each container affects
where a Pod can be scheduled or not. Example 2-3 shows how such limits are speci‐
fied for a Pod.

Example 2-3. Resource limits

apiVersion: v1
kind: Pod
metadata:
 name: random-generator
spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 resources:
 requests:
 cpu: 100m
 memory: 100Mi
 limits:
 cpu: 200m
 memory: 200Mi

Initial resource request for CPU and memory

Upper limit until we want our application to grow at max

Depending on whether you specify the requests, the limits, or both, the platform
offers a different kind of Quality of Service (QoS).

Best-Effort
Pod that does not have any requests and limits set for its containers. Such a Pod is
considered as the lowest priority and is killed first when the node where the Pod
is placed runs out of incompressible resources.

Burstable
Pod that has requests and limits defined, but they are not equal (and limits is
larger than requests as expected). Such a Pod has minimal resource guarantees,
but is also willing to consume more resources up to its limit when available.
When the node is under incompressible resource pressure, these Pods are likely
to be killed if no Best-Effort Pods remain.

Solution | 19

Guaranteed
Pod that has an equal amount of request and limit resources. These are the
highest-priority Pods and guaranteed not to be killed before Best-Effort and Bur‐
stable Pods.

So the resource characteristics you define or omit for the containers have a direct
impact on its QoS and define the relative importance of the Pod in the event of
resource starvation. Define your Pod resource requirements with this consequence in
mind.

Pod Priority
We explained how container resource declarations also define Pods’ QoS and affect
the order in which the Kubelet kills the container in a Pod in case of resource starva‐
tion. Another related feature that is still in beta at the time of this writing is Pod Pri‐
ority and Preemption. Pod priority allows indicating the importance of a Pod relative
to other Pods, which affects the order in which Pods are scheduled. Let’s see that in
action in Example 2-4.

Example 2-4. Pod priority

apiVersion: scheduling.k8s.io/v1beta1
kind: PriorityClass
metadata:
 name: high-priority
value: 1000
globalDefault: false
description: This is a very high priority Pod class

apiVersion: v1
kind: Pod
metadata:
 name: random-generator
 labels:
 env: random-generator
spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 priorityClassName: high-priority

The name of the priority class object

The priority value of the object

The priority class to use with this Pod, as defined in PriorityClass resource

20 | Chapter 2: Predictable Demands

We created a PriorityClass, a non-namespaced object for defining an integer-based
priority. Our PriorityClass is named high-priority and has a priority of 1,000. Now
we can assign this priority to Pods by its name as priorityClassName: high-

priority. PriorityClass is a mechanism for indicating the importance of Pods relative
to each other, where the higher value indicates more important Pods.

When the Pod Priority feature is enabled, it affects the order in which the scheduler
places Pods on nodes. First, the priority admission controller uses the priorityClass
Name field to populate the priority value for new Pods. When multiple Pods are wait‐
ing to be placed, the scheduler sorts the queue of pending Pods by highest priority
first. Any pending Pod is picked before any other pending Pod with lower priority in
the scheduling queue, and if there are no constraints preventing it from scheduling,
the Pod gets scheduled.

Here comes the critical part. If there are no nodes with enough capacity to place a
Pod, the scheduler can preempt (remove) lower-priority Pods from nodes to free up
resources and place Pods with higher priority. As a result, the higher-priority Pod
might be scheduled sooner than Pods with a lower priority if all other scheduling
requirements are met. This algorithm effectively enables cluster administrators to
control which Pods are more critical workloads and place them first by allowing the
scheduler to evict Pods with lower priority to make room on a worker node for
higher-priority Pods. If a Pod cannot be scheduled, the scheduler continues with the
placement of other lower-priority Pods.

Pod QoS (discussed previously) and Pod priority are two orthogonal features that are
not connected and have only a little overlap. QoS is used primarily by the Kubelet to
preserve node stability when available compute resources are low. The Kubelet first
considers QoS and then PriorityClass of Pods before eviction. On the other hand, the
scheduler eviction logic ignores the QoS of Pods entirely when choosing preemption
targets. The scheduler attempts to pick a set of Pods with the lowest priority possible
that satisfies the needs of higher-priority Pods waiting to be placed.

When Pods have a priority specified, it can have an undesired effect on other Pods
that are evicted. For example, while a Pod’s graceful termination policies are respec‐
ted, the PodDisruptionBudget as discussed in Chapter 10, Singleton Service is not
guaranteed, which could break a lower-priority clustered application that relies on a
quorum of Pods.

Another concern is a malicious or uninformed user who creates Pods with the high‐
est possible priority and evicts all other Pods. To prevent that, ResourceQuota has
been extended to support PriorityClass, and larger priority numbers are reserved for
critical system Pods that should not usually be preempted or evicted.

In conclusion, Pod priorities should be used with caution because user-specified
numerical priorities that guide the scheduler and Kubelet about which Pods to place

Solution | 21

or to kill are subject to gaming by users. Any change could affect many Pods, and
could prevent the platform from delivering predictable service-level agreements.

Project Resources
Kubernetes is a self-service platform that enables developers to run applications as
they see suitable on the designated isolated environments. However, working in a
shared multitenanted platform also requires the presence of specific boundaries and
control units to prevent some users from consuming all the resources of the platform.
One such tool is ResourceQuota, which provides constraints for limiting the aggrega‐
ted resource consumption in a namespace. With ResourceQuotas, the cluster admin‐
istrators can limit the total sum of computing resources (CPU, memory) and storage
consumed. It can also limit the total number of objects (such as ConfigMaps, Secrets,
Pods, or Services) created in a namespace.

Another useful tool in this area is LimitRange, which allows setting resource usage
limits for each type of resource. In addition to specifying the minimum and maxi‐
mum permitted amounts for different resource types and the default values for these
resources, it also allows you to control the ratio between the requests and limits,
also known as the overcommit level. Table 2-1 gives an example how the possible val‐
ues for requests and limits can be chosen.

Table 2-1. Limit and request ranges

Type Resource Min Max Default limit Default request Lim/req ratio
Container CPU 500m 2 500m 250m 4

Container Memory 250Mi 2Gi 500Mi 250Mi 4

LimitRanges are useful for controlling the container resource profiles so that there
are no containers that require more resources than a cluster node can provide. It can
also prevent cluster users from creating containers that consume a large number of
resources, making the nodes not allocatable for other containers. Considering that
the requests (and not limits) are the primary container characteristic the scheduler
uses for placing, LimitRequestRatio allows you to control how much difference there
is between the requests and limits of containers. Having a big combined gap
between requests and limits increases the chances for overcommitting on the node
and may degrade application performance when many containers simultaneously
require more resources than originally requested.

Capacity Planning
Considering that containers may have different resource profiles in different environ‐
ments, and a varied number of instances, it is evident that capacity planning for a
multipurpose environment is not straightforward. For example, for best hardware

22 | Chapter 2: Predictable Demands

utilization, on a nonproduction cluster, you may have mainly Best-Effort and Bursta‐
ble containers. In such a dynamic environment, many containers are starting up and
shutting down at the same time, and even if a container gets killed by the platform
during resource starvation, it is not fatal. On the production cluster where we want
things to be more stable and predictable, the containers may be mainly of the Guar‐
anteed type and some Burstable. If a container gets killed, that is most likely a sign
that the capacity of the cluster should be increased.

Table 2-2 presents a few services with CPU and memory demands.

Table 2-2. Capacity planning example

Pod CPU request CPU limit Memory request Memory limit Instances
A 500m 500m 500Mi 500Mi 4

B 250m 500m 250Mi 1000Mi 2

C 500m 1000m 1000Mi 2000Mi 2

D 500m 500m 500Mi 500Mi 1

Total 4000m 5500m 5000Mi 8500Mi 9

Of course, in a real-life scenario, the more likely reason you are using a platform such
as Kubernetes would be because there are many more services to manage, some of
which are about to retire, and some are still at the design and development phase.
Even if it is a continually moving target, based on a similar approach as described
previously, we can calculate the total amount of resources needed for all the services
per environment.

Keep in mind that in the different environments there are also a different number of
containers, and you may even need to leave some room for autoscaling, build jobs,
infrastructure containers, and more. Based on this information and the infrastructure
provider, you can choose the most cost-effective compute instances that provide the
required resources.

Discussion
Containers are useful not only for process isolation and as a packaging format. With
identified resource profiles, they are also the building blocks for successful capacity
planning. Perform some early tests to discover the resource needs for each container
and use that information as a base for future capacity planning and prediction.

However, more importantly, resource profiles are the way an application communi‐
cates with Kubernetes to assist in scheduling and managing decisions. If your applica‐
tion doesn’t provide any requests or limits, all Kubernetes can do is treat your
containers as opaque boxes that are dropped when the cluster gets full. So it is more

Discussion | 23

or less mandatory for every application to think about and provide these resource
declarations.

Now that you know how to size our applications, in Chapter 3, Declarative Deploy‐
ment, you will learn multiple strategies to get our applications installed and updated
on Kubernetes.

More Information
• Predictable Demands Example
• Using ConfigMap
• Resource Quotas
• Kubernetes Best Practices: Resource Requests and Limits
• Setting Pod CPU and Memory Limits
• Configure Out of Resource Handling
• Pod Priority and Preemption
• Resource Quality of Service in Kubernetes

24 | Chapter 2: Predictable Demands

http://bit.ly/2CrT8FJ
http://kubernetes.io/docs/user-guide/configmap/
http://kubernetes.io/docs/admin/resourcequota/
http://bit.ly/2ueNUc0
http://kubernetes.io/docs/admin/limitrange/
http://bit.ly/2TKEYKz
http://bit.ly/2OdBcU6
http://bit.ly/2HGimUq

CHAPTER 3

Declarative Deployment

The heart of the Declarative Deployment pattern is Kubernetes’ Deployment resource.
This abstraction encapsulates the upgrade and rollback processes of a group of con‐
tainers and makes its execution a repeatable and automated activity.

Problem
We can provision isolated environments as namespaces in a self-service manner and
have the services placed in these environments with minimal human intervention
through the scheduler. But with a growing number of microservices, continually
updating and replacing them with newer versions becomes an increasing burden too.

Upgrading a service to a next version involves activities such as starting the new ver‐
sion of the Pod, stopping the old version of a Pod gracefully, waiting and verifying
that it has launched successfully, and sometimes rolling it all back to the previous ver‐
sion in the case of failure. These activities are performed either by allowing some
downtime but no running concurrent service versions, or with no downtime, but
increased resource usage due to both versions of the service running during the
update process. Performing these steps manually can lead to human errors, and
scripting properly can require a significant amount of effort, both of which quickly
turn the release process into a bottleneck.

Solution
Luckily, Kubernetes has automated this activity as well. Using the concept of Deploy‐
ment, we can describe how our application should be updated, using different strate‐
gies, and tuning the various aspects of the update process. If you consider that you do
multiple Deployments for every microservice instance per release cycle (which,

25

depending on the team and project, can span from minutes to several months), this is
another effort-saving automation by Kubernetes.

In Chapter 2, we have seen that, to do its job effectively, the scheduler requires suffi‐
cient resources on the host system, appropriate placement policies, and containers
with adequately defined resource profiles. Similarly, for a Deployment to do its job
correctly, it expects the containers to be good cloud-native citizens. At the very core
of a Deployment is the ability to start and stop a set of Pods predictably. For this to
work as expected, the containers themselves usually listen and honor lifecycle events
(such as SIGTERM; see Chapter 5, Managed Lifecycle) and also provide health-check
endpoints as described in Chapter 4, Health Probe, which indicate whether they
started successfully.

If a container covers these two areas accurately, the platform can cleanly shut down
old containers and replace them by starting updated instances. Then all the remain‐
ing aspects of an update process can be defined in a declarative way and executed as
one atomic action with predefined steps and an expected outcome. Let’s see the
options for a container update behavior.

Imperative Rolling Updates with kubectl Are Deprecated
Kubernetes has supported rolling updates since its very beginning. The first imple‐
mentation was imperative in nature; the client kubectl tells the server what to do for
each update step.

Although the kubectl rolling-update command is still present, it’s highly depre‐
cated because of the following drawbacks of such an imperative approach:

• Rather than describing the desired end state, kubectl rolling-update issues
commands to get the system into the desired state.

• The whole orchestration logic for replacing the containers and the Replication‐
Controllers is performed by kubectl, which monitors and interacts with the API
Server behind the scenes while the update process happens, moving an inherent
server-side responsibility to the client.

• You may need more than one command to get the system into the desired state.
These commands must be automated and repeatable in different environments.

• Somebody else may override your changes with time.
• The update process has to be documented and kept up-to-date while the service

evolves.
• The only way to find out what we have deployed is by checking the condition of

the system. Sometimes the state of the current system might not be the desired
state, in which case we have to correlate it with the deployment documentation.

26 | Chapter 3: Declarative Deployment

Instead, the Deployment resource object was introduced for supporting a declarative
update, fully managed by the Kubernetes backend. As declarative updates have so
many advantages, and imperative update support will vanish eventually, we focus
exclusively on declarative updates in this pattern.

Rolling Deployment
The declarative way of updating applications in Kubernetes is through the concept of
Deployment. Behind the scenes, the Deployment creates a ReplicaSet that supports
set-based label selectors. Also, the Deployment abstraction allows shaping the update
process behavior with strategies such as RollingUpdate (default) and Recreate.
Example 3-1 shows the important bits for configuring a Deployment for a rolling
update strategy.

Example 3-1. Deployment for a rolling update

apiVersion: apps/v1
kind: Deployment
metadata:
 name: random-generator
spec:
 replicas: 3
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 1
 selector:
 matchLabels:
 app: random-generator
 template:
 metadata:
 labels:
 app: random-generator
 spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 readinessProbe:
 exec:
 command: ["stat", "/random-generator-ready"]

Declaration of three replicas. You need more than one replica for a rolling update
to make sense.

Solution | 27

Number of Pods that can be run temporarily in addition to the replicas specified
during an update. In this example, it could be a total of four replicas at maxi‐
mum.

Number of Pods that can be unavailable during the update. Here it could be that
only two Pods are available at a time during the update.

Readiness probes are very important for a rolling deployment to provide zero
downtime—don’t forget them (see Chapter 4, Health Probe).

RollingUpdate strategy behavior ensures there is no downtime during the update
process. Behind the scenes, the Deployment implementation performs similar moves
by creating new ReplicaSets and replacing old containers with new ones. One
enhancement here is that with Deployment, it is possible to control the rate of a new
container rollout. The Deployment object allows you to control the range of available
and excess Pods through maxSurge and maxUnavailable fields. Figure 3-1 shows the
rolling update process.

Figure 3-1. Rolling deployment

To trigger a declarative update, you have three options:

• Replace the whole Deployment with the new version’s Deployment with
kubectl replace.

• Patch (kubectl patch) or interactively edit (kubectl edit) the Deployment to
set the new container image of the new version.

• Use kubectl set image to set the new image in the Deployment.

See also the full example in our example repository, which demonstrates the usage of
these commands, and shows you how you can monitor or roll back an upgrade with
kubectl rollout.

28 | Chapter 3: Declarative Deployment

http://bit.ly/2Fc6d6J

In addition to addressing the previously mentioned drawbacks of the imperative way
of deploying services, the Deployment brings the following benefits:

• Deployment is a Kubernetes resource object whose status is entirely managed by
Kubernetes internally. The whole update process is performed on the server side
without client interaction.

• The declarative nature of Deployment makes you see how the deployed state
should look rather than the steps necessary to get there.

• The Deployment definition is an executable object, tried and tested on multiple
environments before reaching production.

• The update process is also wholly recorded, and versioned with options to pause,
continue, and roll back to previous versions.

Fixed Deployment
A RollingUpdate strategy is useful for ensuring zero downtime during the update
process. However, the side effect of this approach is that during the update process,
two versions of the container are running at the same time. That may cause issues for
the service consumers, especially when the update process has introduced backward-
incompatible changes in the service APIs and the client is not capable of dealing with
them. For this kind of scenario, there is the Recreate strategy, which is illustrated in
Figure 3-2.

Figure 3-2. Fixed deployment using a Recreate strategy

The Recreate strategy has the effect of setting maxUnavailable to the number of
declared replicas. This means it first kills all containers from the current version and
then starts all new containers simultaneously when the old containers are evicted.
The result of this sequence of actions is that there is some downtime while all con‐
tainers with old versions are stopped, and there are no new containers ready to han‐
dle incoming requests. On the positive side, there won’t be two versions of the
containers running at the same time, simplifying the life of service consumers to han‐
dle only one version at a time.

Solution | 29

Blue-Green Release
The Blue-Green deployment is a release strategy used for deploying software in a pro‐
duction environment by minimizing downtime and reducing risk. Kubernetes’
Deployment abstraction is a fundamental concept that lets you define how Kuber‐
netes transitions immutable containers from one version to another. We can use the
Deployment primitive as a building block, together with other Kubernetes primitives,
to implement this more advanced release strategy of a Blue-Green deployment.

A Blue-Green deployment needs to be done manually if no extensions like a Service
Mesh or Knative is used, though. Technically it works by creating a second Deploy‐
ment with the latest version of the containers (let’s call it green) not serving any
requests yet. At this stage, the old Pod replicas (called blue) from the original Deploy‐
ment are still running and serving live requests.

Once we are confident that the new version of the Pods is healthy and ready to handle
live requests, we switch the traffic from old Pod replicas to the new replicas. This
activity in Kubernetes can be done by updating the Service selector to match the new
containers (tagged as green). As demonstrated in Figure 3-3, once the green contain‐
ers handle all the traffic, the blue containers can be deleted and the resources freed
for future Blue-Green deployments.

Figure 3-3. Blue-Green release

A benefit of the Blue-Green approach is that there’s only one version of the applica‐
tion serving requests, which reduces the complexity of handling multiple concurrent
versions by the Service consumers. The downside is that it requires twice the applica‐
tion capacity while both blue and green containers are up and running. Also, there
can be significant complications with long-running processes and database state
drifts during the transitions.

Canary Release
Canary release is a way to softly deploy a new version of an application into produc‐
tion by replacing only a small subset of old instances with new ones. This technique
reduces the risk of introducing a new version into production by letting only some of

30 | Chapter 3: Declarative Deployment

the consumers reach the updated version. When we are happy with the new version
of our service and how it performed with a small sample of users, we replace all the
old instances with the new version. Figure 3-4 shows a canary release in action.

Figure 3-4. Canary release

In Kubernetes, this technique can be implemented by creating a new ReplicaSet for
the new container version (preferably using a Deployment) with a small replica count
that can be used as the Canary instance. At this stage, the Service should direct some
of the consumers to the updated Pod instances. Once we are confident that every‐
thing with new ReplicaSet works as expected, we scale a new ReplicaSet up, and the
old ReplicaSet down to zero. In a way, we are performing a controlled and user-tested
incremental rollout.

Discussion
The Deployment primitive is an example of where Kubernetes turns the tedious pro‐
cess of manually updating applications into a declarative activity that can be repeated
and automated. The out-of-the-box deployment strategies (rolling and recreate) con‐
trol the replacement of old containers by new ones, and the release strategies (blue-
green and canary) control how the new version becomes available to service
consumers. The latter two release strategies are based on a human decision for the
transition trigger and as a consequence are not fully automated but require human
interaction. Figure 3-5 shows a summary of the deployment and release strategies,
showing instance counts during transitions.

Discussion | 31

Figure 3-5. Deployment and release strategies

Every software is different, and deploying complex systems usually requires addi‐
tional steps and checks. The techniques discussed in this chapter cover the Pod
update process, but do not include updating and rolling back other Pod dependencies
such as ConfigMaps, Secrete, or other dependent services.

As of this writing, there is a proposal for Kubernetes to allow hooks in the deploy‐
ment process. Pre and Post hooks would allow the execution of custom commands
before and after Kubernetes has executed a deployment strategy. Such commands
could perform additional actions while the deployment is in progress and would
additionally be able to abort, retry, or continue a deployment. Those commands are a
good step toward new automated deployment and release strategies. For now, an
approach that works is to script the update process at a higher level to manage the
update process of services and its dependencies using the Deployment and other
primitives discussed in this book.

Regardless of the deployment strategy you are using, it is essential for Kubernetes to
know when your application Pods are up and running to perform the required
sequence of steps reaching the defined target deployment state. The next pattern,
Health Probe, in Chapter 4 describes how your application can communicate its
health state to Kubernetes.

32 | Chapter 3: Declarative Deployment

More Information
• Declarative Deployment Example
• Rolling Update
• Deployments
• Run a Stateless Application Using a Deployment
• Blue-Green Deployment
• Canary Release
• DevOps with OpenShift

More Information | 33

http://bit.ly/2Fc6d6J
http://bit.ly/2r06Ich
http://bit.ly/2q7vR7Y
http://bit.ly/2XZZhlL
http://bit.ly/1Gph4FZ
https://martinfowler.com/bliki/CanaryRelease.html
https://red.ht/2W7fdAQ

CHAPTER 4

Health Probe

The Health Probe pattern is about how an application can communicate its health
state to Kubernetes. To be fully automatable, a cloud-native application must be
highly observable by allowing its state to be inferred so that Kubernetes can detect
whether the application is up and whether it is ready to serve requests. These obser‐
vations influence the lifecycle management of Pods and the way traffic is routed to
the application.

Problem
Kubernetes regularly checks the container process status and restarts it if issues are
detected. However, from practice, we know that checking the process status is not
sufficient to decide about the health of an application. In many cases, an application
hangs, but its process is still up and running. For example, a Java application may
throw an OutOfMemoryError and still have the JVM process running. Alternatively,
an application may freeze because it runs into an infinite loop, deadlock, or some
thrashing (cache, heap, process). To detect these kinds of situations, Kubernetes needs
a reliable way to check the health of applications. That is, not to understand how an
application works internally, but a check that indicates whether the application is
functioning as expected and capable of serving consumers.

Solution
The software industry has accepted the fact that it is not possible to write bug-free
code. Moreover, the chances for failure increase even more when working with dis‐
tributed applications. As a result, the focus for dealing with failures has shifted from
avoiding them to detecting faults and recovering. Detecting failure is not a simple
task that can be performed uniformly for all applications, as all have different defini‐

35

tions of a failure. Also, various types of failures require different corrective actions.
Transient failures may self-recover, given enough time, and some other failures may
need a restart of the application. Let’s see the checks Kubernetes uses to detect and
correct failures.

Process Health Checks
A process health check is the simplest health check the Kubelet constantly performs on
the container processes. If the container processes are not running, the probing is
restarted. So even without any other health checks, the application becomes slightly
more robust with this generic check. If your application is capable of detecting any
kind of failure and shutting itself down, the process health check is all you need.
However, for most cases that is not enough and other types of health checks are also
necessary.

Liveness Probes
If your application runs into some deadlock, it is still considered healthy from the
process health check’s point of view. To detect this kind of issue and any other types of
failure according to your application business logic, Kubernetes has liveness probes—
regular checks performed by the Kubelet agent that asks your container to confirm it
is still healthy. It is important to have the health check performed from the outside
rather than the in application itself, as some failures may prevent the application
watchdog from reporting its failure. Regarding corrective action, this health check is
similar to a process health check, since if a failure is detected, the container is restar‐
ted. However, it offers more flexibility regarding what methods to use for checking
the application health, as follows:

• HTTP probe performs an HTTP GET request to the container IP address and
expects a successful HTTP response code between 200 and 399.

• A TCP Socket probe assumes a successful TCP connection.
• An Exec probe executes an arbitrary command in the container kernel name‐

space and expects a successful exit code (0).

An example HTTP-based liveness probe is shown in Example 4-1.

Example 4-1. Container with a liveness probe

apiVersion: v1
kind: Pod
metadata:
 name: pod-with-liveness-check
spec:
 containers:

36 | Chapter 4: Health Probe

 - image: k8spatterns/random-generator:1.0
 name: random-generator
 env:
 - name: DELAY_STARTUP
 value: "20"
 ports:
 - containerPort: 8080
 protocol: TCP
 livenessProbe:
 httpGet:
 path: /actuator/health
 port: 8080
 initialDelaySeconds: 30

HTTP probe to a health-check endpoint

Wait 30 seconds before doing the first liveness check to give the application some
time to warm up

Depending on the nature of your application, you can choose the method that is most
suitable for you. It is up to your implementation to decide when your application is
considered healthy or not. However, keep in mind that the result of not passing a
health check is restarting of your container. If restarting your container does not help,
there is no benefit to having a failing health check as Kubernetes restarts your con‐
tainer without fixing the underlying issue.

Readiness Probes
Liveness checks are useful for keeping applications healthy by killing unhealthy con‐
tainers and replacing them with new ones. But sometimes a container may not be
healthy, and restarting it may not help either. The most common example is when a
container is still starting up and not ready to handle any requests yet. Or maybe a
container is overloaded, and its latency is increasing, and you want it to shield itself
from additional load for a while.

For this kind of scenario, Kubernetes has readiness probes. The methods for perform‐
ing readiness checks are the same as liveness checks (HTTP, TCP, Exec), but the cor‐
rective action is different. Rather than restarting the container, a failed readiness
probe causes the container to be removed from the service endpoint and not receive
any new traffic. Readiness probes signal when a container is ready so that it has some
time to warm up before getting hit with requests from the service. It is also useful for
shielding the service from traffic at later stages, as readiness probes are performed
regularly, similarly to liveness checks. Example 4-2 shows how a readiness probe can
be implemented by probing the existence of a file the application creates when it is
ready for operations.

Solution | 37

Example 4-2. Container with readiness probe

apiVersion: v1
kind: Pod
metadata:
 name: pod-with-readiness-check
spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 readinessProbe:
 exec:
 command: ["stat", "/var/run/random-generator-ready"]

Check for the existence of a file the application creates to indicate it’s ready to
serve requests. stat returns an error if the file does not exist, letting the readiness
check fail.

Again, it is up to your implementation of the health check to decide when your appli‐
cation is ready to do its job and when it should be left alone. While process health
checks and liveness checks are intended to recover from the failure by restarting the
container, the readiness check buys time for your application and expects it to recover
by itself. Keep in mind that Kubernetes tries to prevent your container from receiving
new requests (when it is shutting down, for example), regardless of whether the read‐
iness check still passes after having received a SIGTERM signal.

In many cases, you have liveness and readiness probes performing the same checks.
However, the presence of a readiness probe gives your container time to start up.
Only by passing the readiness check is a Deployment considered to be successful, so
that, for example, Pods with an older version can be terminated as part of a rolling
update.

The liveness and readiness probes are fundamental building blocks in the automation
of cloud-native applications. Application frameworks such as Spring actuator, Wild‐
Fly Swarm health check, Karaf health checks, or the MicroProfile spec for Java pro‐
vide implementations for offering Health Probes.

Discussion
To be fully automatable, cloud-native applications must be highly observable by pro‐
viding a means for the managing platform to read and interpret the application
health, and if necessary, take corrective actions. Health checks play a fundamental
role in the automation of activities such as deployment, self-healing, scaling, and oth‐
ers. However, there are also other means through which your application can provide
more visibility about its health.

38 | Chapter 4: Health Probe

The obvious and old method for this purpose is through logging. It is a good practice
for containers to log any significant events to system out and system error and have
these logs collected to a central location for further analysis. Logs are not typically
used for taking automated actions, but rather to raise alerts and further investiga‐
tions. A more useful aspect of logs is the postmortem analysis of failures and detect‐
ing unnoticeable errors.

Apart from logging to standard streams, it is also a good practice to log the reason for
exiting a container to /dev/termination-log. This location is the place where the con‐
tainer can state its last will before being permanently vanished. Figure 4-1 shows the
possible options for how a container can communicate with the runtime platform.

Figure 4-1. Container observability options

Containers provide a unified way for packaging and running applications by treating
them like black boxes. However, any container that is aiming to become a cloud-
native citizen must provide APIs for the runtime environment to observe the con‐
tainer health and act accordingly. This support is a fundamental prerequisite for
automation of the container updates and lifecycle in a unified way, which in turn
improves the system’s resilience and user experience. In practical terms, that means,
as a very minimum, your containerized application must provide APIs for the differ‐
ent kinds of health checks (liveness and readiness).

Even better-behaving applications must also provide other means for the managing
platform to observe the state of the containerized application by integrating with trac‐
ing and metrics-gathering libraries such as OpenTracing or Prometheus. Treat your
application as a black box, but implement all the necessary APIs to help the platform
observe and manage your application in the best way possible.

The next pattern, Managed Lifecycle, is also about communication between applica‐
tions and the Kubernetes management layer, but coming from the other direction. It’s
about how your application gets informed about important Pod lifecycle events.

Discussion | 39

More Information
• Health Probe Example
• Configuring Liveness and Readiness Probes
• Setting Up Health Checks Wth Readiness and Liveness Probes
• Resource Quality of Service
• Graceful Shutdown with Node.js and Kubernetes
• Advanced Health-Check Patterns in Kubernetes

40 | Chapter 4: Health Probe

http://bit.ly/2Y6wCLG
http://bit.ly/2r096A3
http://bit.ly/2HJkoDf
http://bit.ly/2HGimUq
http://bit.ly/2udUfo0
https://ahmet.im/blog/advanced-kubernetes-health-checks/

CHAPTER 5

Managed Lifecycle

Containerized applications managed by cloud-native platforms have no control over
their lifecycle, and to be good cloud-native citizens, they have to listen to the events
emitted by the managing platform and adapt their lifecycles accordingly. The Man‐
aged Lifecycle pattern describes how applications can and should react to these lifecy‐
cle events.

Problem
In Chapter 4, Health Probe we explained why containers have to provide APIs for the
different health checks. Health-check APIs are read-only endpoints the platform is
continually probing to get application insight. It is a mechanism for the platform to
extract information from the application.

In addition to monitoring the state of a container, the platform sometimes may issue
commands and expect the application to react on these. Driven by policies and exter‐
nal factors, a cloud-native platform may decide to start or stop the applications it is
managing at any moment. It is up to the containerized application to determine
which events are important to react to and how to react. But in effect, this is an API
that the platform is using to communicate and send commands to the application.
Also, applications are free to either benefit from lifecycle management or ignore it if
they don’t need this service.

Solution
We saw that checking only the process status is not a good enough indication of the
health of an application. That is why there are different APIs for monitoring the
health of a container. Similarly, using only the process model to run and stop a pro‐
cess is not good enough. Real-world applications require more fine-grained interac‐

41

tions and lifecycle management capabilities. Some applications need help to warm up,
and some applications need a gentle and clean shutdown procedure. For this and
other use cases, some events, as shown in Figure 5-1, are emitted by the platform that
the container can listen to and react to if desired.

Figure 5-1. Managed container lifecycle

The deployment unit of an application is a Pod. As you already know, a Pod is com‐
posed of one or more containers. At the Pod level, there are other constructs such as
init containers, which we cover in Chapter 14, Init Container (and defer-containers,
which is still at the proposal stage as of this writing) that can help manage the con‐
tainer lifecycle. The events and hooks we describe in this chapter are all applied at an
individual container level rather than Pod level.

SIGTERM Signal
Whenever Kubernetes decides to shut down a container, whether that is because the
Pod it belongs to is shutting down or simply a failed liveness probe causes the con‐
tainer to be restarted, the container receives a SIGTERM signal. SIGTERM is a gentle
poke for the container to shut down cleanly before Kubernetes sends a more abrupt
SIGKILL signal. Once a SIGTERM signal has been received, the application should
shut down as quickly as possible. For some applications, this might be a quick termi‐
nation, and some other applications may have to complete their in-flight requests,
release open connections, and clean up temp files, which can take a slightly longer
time. In all cases, reacting to SIGTERM is the right moment to shut down a container
in a clean way.

SIGKILL Signal
If a container process has not shut down after a SIGTERM signal, it is shut down
forcefully by the following SIGKILL signal. Kubernetes does not send the SIGKILL
signal immediately but waits for a grace period of 30 seconds by default after it has
issued a SIGTERM signal. This grace period can be defined per Pod using
the .spec.terminationGracePeriodSeconds field, but cannot be guaranteed as it can
be overridden while issuing commands to Kubernetes. The aim here should be to
design and implement containerized applications to be ephemeral with quick startup
and shutdown processes.

42 | Chapter 5: Managed Lifecycle

Poststart Hook
Using only process signals for managing lifecycles is somewhat limited. That is why
there are additional lifecycle hooks such as postStart and preStop provided by
Kubernetes. A Pod manifest containing a postStart hook looks like the one in
Example 5-1.

Example 5-1. A container with poststart hook

apiVersion: v1
kind: Pod
metadata:
 name: post-start-hook
spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 lifecycle:
 postStart:
 exec:
 command:
 - sh
 - -c
 - sleep 30 && echo "Wake up!" > /tmp/postStart_done

The postStart command waits here 30 seconds. sleep is just a simulation for
any lengthy startup code that might run here. Also, it uses a trigger file here to
sync with the main application, which starts in parallel.

The postStart command is executed after a container is created, asynchronously
with the primary container’s process. Even if many of the application initialization
and warm-up logic can be implemented as part of the container startup steps, post
Start still covers some use cases. The postStart action is a blocking call, and the
container status remains Waiting until the postStart handler completes, which in
turn keeps the Pod status in the Pending state. This nature of postStart can be used
to delay the startup state of the container while giving time to the main container
process to initialize.

Another use of postStart is to prevent a container from starting when the Pod does
not fulfill certain preconditions. For example, when the postStart hook indicates an
error by returning a nonzero exit code, the main container process gets killed by
Kubernetes.

Solution | 43

postStart and preStop hook invocation mechanisms are similar to the Health Probes
described in Chapter 4 and support these handler types:

exec
Runs a command directly in the container

httpGet
Executes an HTTP GET request against a port opened by one Pod container

You have to be very careful what critical logic you execute in the postStart hook as
there are no guarantees for its execution. Since the hook is running in parallel with
the container process, it is possible that the hook may be executed before the con‐
tainer has started. Also, the hook is intended to have at-least once semantics, so the
implementation has to take care of duplicate executions. Another aspect to keep in
mind is that the platform does not perform any retry attempts on failed HTTP
requests that didn’t reach the handler.

Prestop Hook
The preStop hook is a blocking call sent to a container before it is terminated. It has
the same semantics as the SIGTERM signal and should be used to initiate a graceful
shutdown of the container when reacting to SIGTERM is not possible. The preStop
action in Example 5-2 must complete before the call to delete the container is sent to
the container runtime, which triggers the SIGTERM notification.

Example 5-2. A container with a preStop hook

apiVersion: v1
kind: Pod
metadata:
 name: pre-stop-hook
spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 lifecycle:
 preStop:
 httpGet:
 port: 8080
 path: /shutdown

Call out to a /shutdown endpoint running within the application

Even though preStop is blocking, holding on it or returning a nonsuccessful result
does not prevent the container from being deleted and the process killed. preStop is
only a convenient alternative to a SIGTERM signal for graceful application shutdown

44 | Chapter 5: Managed Lifecycle

and nothing more. It also offers the same handler types and guarantees as the post
Start hook we covered previously.

Other Lifecycle Controls
In this chapter, so far we have focused on the hooks that allow executing commands
when a container lifecycle event occurs. But another mechanism that is not at the
container level but at a Pod level allows executing initialization instructions.

We describe in Chapter 14, Init Container, in depth, but here we describe it briefly to
compare it with lifecycle hooks. Unlike regular application containers, init containers
run sequentially, run until completion, and run before any of the application contain‐
ers in a Pod start up. These guarantees allow using init containers for Pod-level initi‐
alization tasks. Both lifecycle hooks and init containers operate at a different
granularity (at container level and Pod-level, respectively) and could be used inter‐
changeably in some instances, or complement each other in other cases. Table 5-1
summarizes the main differences between the two.

Table 5-1. Lifecycle Hooks and Init Containers

Aspect Lifecycle hooks Init Containers
Activates on Container lifecycle phases Pod lifecycle phases

Startup phase action A postStart command A list of initContainers to execute

Shutdown phase
action

A preStop command No equivalent feature exists yet

Timing guarantees A postStart command is executed at the
same time as the container’s ENTRYPOINT

All init containers must be completed successfully
before any application container can start

Use cases Perform noncritical startup/shutdown
cleanups specific to a container

Perform workflow-like sequential operations using
containers; reuse containers for task executions

There are no strict rules about which mechanism to use except when you require a
specific timing guarantee. We could skip lifecycle hooks and init containers entirely
and use a bash script to perform specific actions as part of a container’s startup or
shutdown commands. That is possible, but it would tightly couple the container with
the script and turn it into a maintenance nightmare.

We could also use Kubernetes lifecycle hooks to perform some actions as described in
this chapter. Alternatively, we could go even further and run containers that perform
individual actions using init containers. In this sequence, the options require more
effort increasingly, but at the same time offer stronger guarantees and enable reuse.

Understanding the stages and available hooks of containers and Pod lifecycles is cru‐
cial for creating applications that benefit from being managed by Kubernetes.

Solution | 45

Discussion
One of the main benefits the cloud-native platform provides is the ability to run and
scale applications reliably and predictably on top of potentially unreliable cloud infra‐
structure. These platforms provide a set of constraints and contracts for an applica‐
tion running on them. It is in the interest of the application to honor these contracts
to benefit from all of the capabilities offered by the cloud-native platform. Handling
and reacting to these events ensures your application can gracefully start up and shut
down with minimal impact on the consuming services. At the moment, in its basic
form, that means the containers should behave as any well-designed POSIX process.
In the future, there might be even more events giving hints to the application when it
is about to be scaled up, or asked to release resources to prevent being shut down. It is
essential to get into the mindset where the application lifecycle is no longer in the
control of a person but fully automated by the platform.

Besides managing the application lifecycle, the other big duty of orchestration plat‐
forms like Kubernetes is to distribute containers over a fleet of nodes. The next pat‐
tern, Automated Placement, explains the options to influence the scheduling decisions
from the outside.

More Information
• Managed Lifecycle Example
• Container Lifecycle Hooks
• Attaching Handlers to Container Lifecycle Events
• Terminating with Grace
• Graceful Shutdown of Pods with Kubernetes
• Defer Containers

46 | Chapter 5: Managed Lifecycle

http://bit.ly/2udxws4
http://bit.ly/2Fb38Uk
http://bit.ly/2Jn9ANi
http://bit.ly/2TcPnJW
http://bit.ly/2CvDQjs
http://bit.ly/2TegEM7

CHAPTER 6

Automated Placement

Automated Placement is the core function of the Kubernetes scheduler for assigning
new Pods to nodes satisfying container resource requests and honoring scheduling
policies. This pattern describes the principles of Kubernetes’ scheduling algorithm
and the way to influence the placement decisions from the outside.

Problem
A reasonably sized microservices-based system consists of tens or even hundreds of
isolated processes. Containers and Pods do provide nice abstractions for packaging
and deployment but do not solve the problem of placing these processes on suitable
nodes. With a large and ever-growing number of microservices, assigning and plac‐
ing them individually to nodes is not a manageable activity.

Containers have dependencies among themselves, dependencies to nodes, and
resource demands, and all of that changes over time too. The resources available on a
cluster also vary over time, through shrinking or extending the cluster, or by having it
consumed by already placed containers. The way we place containers impacts the
availability, performance, and capacity of the distributed systems as well. All of that
makes scheduling containers to nodes a moving target that has to be shot on the
move.

Solution
In Kubernetes, assigning Pods to nodes is done by the scheduler. It is an area that is
highly configurable, still evolving, and changing rapidly as of this writing. In this
chapter, we cover the main scheduling control mechanisms, driving forces that affect
the placement, why to choose one or the other option, and the resulting conse‐
quences. The Kubernetes scheduler is a potent and time-saving tool. It plays a funda‐

47

mental role in the Kubernetes platform as a whole, but similarly to other Kubernetes
components (API Server, Kubelet), it can be run in isolation or not used at all.

At a very high level, the main operation the Kubernetes scheduler performs is to
retrieve each newly created Pod definition from the API Server and assign it to a
node. It finds a suitable node for every Pod (as long as there is such a node), whether
that is for the initial application placement, scaling up, or when moving an applica‐
tion from an unhealthy node to a healthier one. It does this by considering runtime
dependencies, resource requirements, and guiding policies for high availability, by
spreading Pods horizontally, and also by colocating Pods nearby for performance and
low-latency interactions. However, for the scheduler to do its job correctly and allow
declarative placement, it needs nodes with available capacity, and containers with
declared resource profiles and guiding policies in place. Let’s look at each of these in
more detail.

Available Node Resources
First of all, the Kubernetes cluster needs to have nodes with enough resource capacity
to run new Pods. Every node has capacity available for running Pods, and the schedu‐
ler ensures that the sum of the resources requested for a Pod is less than the available
allocatable node capacity. Considering a node dedicated only to Kubernetes, its
capacity is calculated using the formula in Example 6-1.

Example 6-1. Node capacity

Allocatable [capacity for application pods] =
 Node Capacity [available capacity on a node]
 - Kube-Reserved [Kubernetes daemons like kubelet, container runtime]
 - System-Reserved [OS system daemons like sshd, udev]

If you don’t reserve resources for system daemons that power the OS and Kubernetes
itself, the Pods can be scheduled up to the full capacity of the node, which may cause
Pods and system daemons to compete for resources, leading to resource starvation
issues on the node. Also keep in mind that if containers are running on a node that is
not managed by Kubernetes, reflected in the node capacity calculations by Kuber‐
netes.

A workaround for this limitation is to run a placeholder Pod that doesn’t do anything,
but has only resource requests for CPU and memory corresponding to the untracked
containers’ resource use amount. Such a Pod is created only to represent and reserve
the resource consumption of the untracked containers and helps the scheduler build
a better resource model of the node.

48 | Chapter 6: Automated Placement

Container Resource Demands
Another important requirement for an efficient Pod placement is that containers have
their runtime dependencies and resource demands defined. We covered that in more
detail in Chapter 2, Predictable Demands. It boils down to having containers that
declare their resource profiles (with request and limit) and environment dependen‐
cies such as storage or ports. Only then are Pods sensibly assigned to nodes and can
run without affecting each other during peak times.

Placement Policies
The last piece of the puzzle is having the right filtering or priority policies for your
specific application needs. The scheduler has a default set of predicate and priority
policies configured that is good enough for most use cases. It can be overridden dur‐
ing scheduler startup with a different set of policies, as shown in Example 6-2.

Scheduler policies and custom schedulers can be defined only by
an administrator as part of the cluster configuration. As a regular
user you just can refer to predefined schedulers.

Example 6-2. An example scheduler policy

{
 "kind" : "Policy",
 "apiVersion" : "v1",
 "predicates" : [
 {"name" : "PodFitsHostPorts"},
 {"name" : "PodFitsResources"},
 {"name" : "NoDiskConflict"},
 {"name" : "NoVolumeZoneConflict"},
 {"name" : "MatchNodeSelector"},
 {"name" : "HostName"}
],
 "priorities" : [
 {"name" : "LeastRequestedPriority", "weight" : 2},
 {"name" : "BalancedResourceAllocation", "weight" : 1},
 {"name" : "ServiceSpreadingPriority", "weight" : 2},
 {"name" : "EqualPriority", "weight" : 1}
]
}

Predicates are rules that filter out unqualified nodes. For example, PodFitsHost‐
sPorts schedules Pods to request certain fixed host ports only on those nodes that
have this port still available.

Solution | 49

Priorities are rules that sort available nodes according to preferences. For exam‐
ple, LeastRequestedPriority gives nodes with fewer requested resources a higher
priority.

Consider that in addition to configuring the policies of the default scheduler, it is also
possible to run multiple schedulers and allow Pods to specify which scheduler to
place them. You can start another scheduler instance that is configured differently by
giving it a unique name. Then when defining a Pod, just add the field .spec.schedu
lerName with the name of your custom scheduler to the Pod specification and the
Pod will be picked up by the custom scheduler only.

Scheduling Process
Pods get assigned to nodes with certain capacities based on placement policies. For
completeness, Figure 6-1 visualizes at a high level how these elements get together
and the main steps a Pod goes through when being scheduled.

Figure 6-1. A Pod-to-node assignment process

As soon as a Pod is created that is not assigned to a node yet, it gets picked by the
scheduler together with all the available nodes and the set of filtering and priority
policies. In the first stage, the scheduler applies the filtering policies and removes all
nodes that do not qualify based on the Pod’s criteria. In the second stage, the remain‐

50 | Chapter 6: Automated Placement

ing nodes get ordered by weight. In the last stage the Pod gets a node assigned, which
is the primary outcome of the scheduling process.

In most cases, it is better to let the scheduler do the Pod-to-node assignment and not
micromanage the placement logic. However, on some occasions, you may want to
force the assignment of a Pod to a specific node or a group of nodes. This assignment
can be done using a node selector. .spec.nodeSelector is Pod field and specifies a
map of key-value pairs that must be present as labels on the node for the node to be
eligible to run the Pod. For example, say you want to force a Pod to run on a specific
node where you have SSD storage or GPU acceleration hardware. With the Pod defi‐
nition in Example 6-3 that has nodeSelector matching disktype: ssd, only nodes
that are labeled with disktype=ssd will be eligible to run the Pod.

Example 6-3. Node selector based on type of disk available

apiVersion: v1
kind: Pod
metadata:
 name: random-generator
spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 nodeSelector:
 disktype: ssd

Set of node labels a node must match to be considered to be the node of this Pod

In addition to specifying custom labels to your nodes, you can use some of the default
labels that are present on every node. Every node has a unique kubernetes.io/host
name label that can be used to place a Pod on a node by its hostname. Other default
labels that indicate the OS, architecture, and instance-type can be useful for place‐
ment too.

Node Affinity
Kubernetes supports many more flexible ways to configure the scheduling processes.
One such a feature is node affinity, which is a generalization of the node selector
approach described previously that allows specifying rules as either required or pre‐
ferred. Required rules must be met for a Pod to be scheduled to a node, whereas pre‐
ferred rules only imply preference by increasing the weight for the matching nodes
without making them mandatory. Besides, the node affinity feature greatly expands
the types of constraints you can express by making the language more expressive with
operators such as In, NotIn, Exists, DoesNotExist, Gt, or Lt. Example 6-4 demon‐
strates how node affinity is declared.

Solution | 51

Example 6-4. Pod with node affinity

apiVersion: v1
kind: Pod
metadata:
 name: random-generator
spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: numberCores
 operator: Gt
 values: ["3"]
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 preference:
 matchFields:
 - key: metadata.name
 operator: NotIn
 values: ["master"]
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator

Hard requirement that the node must have more than three cores (indicated by a
node label) to be considered in the scheduling process. The rule is not reevalu‐
ated during execution if the conditions on the node change.

Match on labels.

Soft requirements, which is a list of selectors with weights. For every node, the
sum of all weights for matching selectors is calculated, and the highest-valued
node is chosen, as long as it matches the hard requirement.

Match on a field (specified as jsonpath). Note that only In and NotIn are allowed
as operators, and only one value is allowed to be given in the list of values.

Pod Affinity and Antiaffinity
Node affinity is a more powerful way of scheduling and should be preferred when
nodeSelector is not enough. This mechanism allows constraining which nodes a Pod
can run based on label or field matching. It doesn’t allow expressing dependencies
among Pods to dictate where a Pod should be placed relative to other Pods. To
express how Pods should be spread to achieve high availability, or be packed and co-
located together to improve latency, Pod affinity and antiaffinity can be used.

52 | Chapter 6: Automated Placement

Node affinity works at node granularity, but Pod affinity is not limited to nodes and
can express rules at multiple topology levels. Using the topologyKey field, and the
matching labels, it is possible to enforce more fine-grained rules, which combine
rules on domains like node, rack, cloud provider zone, and region, as demonstrated
in Example 6-5.

Example 6-5. Pod with Pod affinity

apiVersion: v1
kind: Pod
metadata:
 name: random-generator
spec:
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchLabels:
 confidential: high
 topologyKey: security-zone
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchLabels:
 confidential: none
 topologyKey: kubernetes.io/hostname
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator

Required rules for the Pod placement concerning other Pods running on the tar‐
get node.

Label selector to find the Pods to be colocated with.

The nodes on which Pods with labels confidential=high are running are sup‐
posed to carry a label security-zone. The Pod defined here is scheduled to a
node with the same label and value.

Antiaffinity rules to find nodes where a Pod would not be placed.

Rule describing that the Pod should not (but could) be placed on any node where
a Pod with the label confidential=none is running.

Solution | 53

1 However, if node labels change and allow for unscheduled Pods to match their node affinity selector, these
Pods are scheduled on this node.

Similar to node affinity, there are hard and soft requirements for Pod affinity and
antiaffinity, called requiredDuringSchedulingIgnoredDuringExecution and prefer
redDuringSchedulingIgnoredDuringExecution, respectively. Again, as with node
affinity, there is the IgnoredDuringExecution suffix in the field name, which exists
for future extensibility reasons. At the moment, if the labels on the node change and
affinity rules are no longer valid, the Pods continue running,1 but in the future run‐
time changes may also be taken into account.

Taints and Tolerations
A more advanced feature that controls where Pods can be scheduled and are allowed
to run is based on taints and tolerations. While node affinity is a property of Pods
that allows them to choose nodes, taints and tolerations are the opposite. They allow
the nodes to control which Pods should or should not be scheduled on them. A taint
is a characteristic of the node, and when it is present, it prevents Pods from schedul‐
ing onto the node unless the Pod has toleration for the taint. In that sense, taints and
tolerations can be considered as an opt-in to allow scheduling on nodes, which by
default are not available for scheduling, whereas affinity rules are an opt-out by
explicitly selecting on which nodes to run and thus exclude all the nonselected nodes.

A taint is added to a node by using kubectl: kubectl taint nodes master node-
role.kubernetes.io/master="true":NoSchedule, which has the effect shown in
Example 6-6. A matching toleration is added to a Pod as shown in Example 6-7.
Notice that the values for key and effect in the taints section of Example 6-6 and
the tolerations: section in Example 6-7 have the same values.

Example 6-6. Tainted node

apiVersion: v1
kind: Node
metadata:
 name: master
spec:
 taints:
 - effect: NoSchedule
 key: node-role.kubernetes.io/master

Taint on a node’s spec to mark this node as not available for scheduling except
when a Pod tolerates this taint

54 | Chapter 6: Automated Placement

Example 6-7. Pod tolerating node taints

apiVersion: v1
kind: Pod
metadata:
 name: random-generator
spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 tolerations:
 - key: node-role.kubernetes.io/master
 operator: Exists
 effect: NoSchedule

Tolerate (i.e., consider for scheduling) nodes, which have a taint with key node-
role.kubernetes.io/master. On production clusters, this taint is set on the
master node to prevent scheduling of Pods on the master. A toleration like this
allows this Pod to be installed on the master nevertheless.

Tolerate only when the taint specifies a NoSchedule effect. This field can be
empty here, in which case the toleration applies to every effect.

There are hard taints that prevent scheduling on a node (effect=NoSchedule), soft
taints that try to avoid scheduling on a node (effect=PreferNoSchedule), and taints
that can evict already running Pods from a node (effect=NoExecute).

Taints and tolerations allow for complex use cases like having dedicated nodes for an
exclusive set of Pods, or force eviction of Pods from problematic nodes by tainting
those nodes.

You can influence the placement based on the application’s high availability and per‐
formance needs, but try not to limit the scheduler much and back yourself into a cor‐
ner where no more Pods can be scheduled, and there are too many stranded
resources. For example, if your containers’ resource requirements are too coarse-
grained, or nodes are too small, you may end up with stranded resources in nodes
that are not utilized.

In Figure 6-2, we can see node A has 4 GB of memory that cannot be utilized as there
is no CPU left to place other containers. Creating containers with smaller resource
requirements may help improve this situation. Another solution is to use the Kuber‐
netes descheduler, which helps defragment nodes and improve their utilization.

Solution | 55

Figure 6-2. Processes scheduled to nodes and stranded resources

Once a Pod is assigned to a node, the job of the scheduler is done, and it does not
change the placement of the Pod unless the Pod is deleted and recreated without a
node assignment. As you have seen, with time, this can lead to resource fragmenta‐
tion and poor utilization of cluster resources. Another potential issue is that the
scheduler decisions are based on its cluster view at the point in time when a new Pod
is scheduled. If a cluster is dynamic and the resource profile of the nodes changes or
new nodes are added, the scheduler will not rectify its previous Pod placements.
Apart from changing the node capacity, you may also alter the labels on the nodes
that affect placement, but past placements are not rectified either.

All these are scenarios that can be addressed by the descheduler. The Kubernetes
descheduler is an optional feature that typically is run as a Job whenever a cluster
administrator decides it is a good time to tidy up and defragment a cluster by
rescheduling the Pods. The descheduler comes with some predefined policies that can
be enabled and tuned or disabled. The policies are passed as a file to the descheduler
Pod, and currently, they are the following:

RemoveDuplicates
This strategy ensures that only a single Pod associated with a ReplicaSet or
Deployment is running on a single node. If there are more Pods than one, these
excess Pods are evicted. This strategy is useful in scenarios where a node has
become unhealthy, and the managing controllers started new Pods on other
healthy nodes. When the unhealthy node is recovered and joins the cluster, the
number of running Pods is more than desired, and the descheduler can help
bring the numbers back to the desired replicas count. Removing duplicates on
nodes can also help with the spread of Pods evenly on more nodes when schedul‐
ing policies and cluster topology have changed after the initial placement.

56 | Chapter 6: Automated Placement

LowNodeUtilization
This strategy finds nodes that are underutilized and evicts Pods from other over-
utilized nodes, hoping these Pods will be placed on the underutilized nodes, lead‐
ing to better spread and use of resources. The underutilized nodes are identified
as nodes with CPU, memory, or Pod count below the configured thresholds val‐
ues. Similarly, overutilized nodes are those with values greater than the config‐
ured targetThresholds values. Any node between these values is appropriately
utilized and not affected by this strategy.

RemovePodsViolatingInterPodAntiAffinity
This strategy evicts Pods violating interpod antiaffinity rules, which could hap‐
pen when the antiaffinity rules are added after the Pods have been placed on the
nodes.

RemovePodsViolatingNodeAffinity
This strategy is for evicting Pods violating node affinity rules.

Regardless of the policy used, the descheduler avoids evicting the following:

• Critical Pods that are marked with scheduler.alpha.kubernetes.io/critical-
pod annotation.

• Pods not managed by a ReplicaSet, Deployment, or Job.
• Pods managed by a DaemonSet.
• Pods that have local storage.
• Pods with PodDisruptionBudget where eviction would violate its rules.
• Deschedule Pod itself (achieved by marking itself as a critical Pod).

Of course, all evictions respect Pods’ QoS levels by choosing Best-Efforts Pods first,
then Burstable Pods, and finally Guaranteed Pods as candidates for eviction. See
Chapter 2, Predictable Demands for a detailed explanation of these QoS levels.

Discussion
Placement is an area where you want to have as minimal intervention as possible. If
you follow the guidelines from Chapter 2, Predictable Demands and declare all the
resource needs of a container, the scheduler will do its job and place the Pod on the
most suitable node possible. However, when that is not enough, there are multiple
ways to steer the scheduler toward the desired deployment topology. To sum up, from
simpler to more complex, the following approaches control Pod scheduling (keep in
mind, as of this writing, this list changes with every other release of Kubernetes):

Discussion | 57

nodeName
The simplest form of hardwiring a Pod to a node. This field should ideally be
populated by the scheduler, which is driven by policies rather than manual node
assignment. Assigning a Pod to a node limits greatly where a Pod can be sched‐
uled. This throws us back in to the pre-Kubernetes era when we explicitly speci‐
fied the nodes to run our applications.

nodeSelector
Specification of a map of key-value pairs. For the Pod to be eligible to run on a
node, the Pod must have the indicated key-value pairs as the label on the node.
Having put some meaningful labels on the Pod and the node (which you should
do anyway), a node selector is one of the simplest acceptable mechanisms for
controlling the scheduler choices.

Default scheduling alteration
The default scheduler is responsible for the placement of new Pods onto nodes
within the cluster, and it does it reasonably. However, it is possible to alter the
filtering and priority policies list, order, and weight of this scheduler if necessary.

Pod affinity and antiaffinity
These rules allow a Pod to express dependencies on other Pods. For example, for
an application’s latency requirements, high availability, security constraints, and
so forth.

Node affinity
This rule allows a Pod to express dependency toward nodes. For example, con‐
sidering nodes’ hardware, location, and so forth.

Taints and tolerations
Taints and tolerations allow the node to control which Pods should or should not
be scheduled on them. For example, to dedicate a node for a group of Pods, or
even evict Pods at runtime. Another advantage of Taints and Tolerations is that if
you expand the Kubernetes cluster by adding new nodes with new labels, you
don’t need to add the new labels on all the Pods, but only on the Pods that should
be placed on the new nodes.

Custom scheduler
If none of the preceding approaches is good enough, or maybe you have complex
scheduling requirements, you can also write your custom scheduler. A custom
scheduler can run instead of, or alongside, the standard Kubernetes scheduler. A
hybrid approach is to have a “scheduler extender” process that the standard
Kubernetes scheduler calls out to as a final pass when making scheduling deci‐
sions. This way you don’t have to implement a full scheduler, but only provide
HTTP APIs to filter and prioritize nodes. The advantage of having your schedu‐
ler is that you can consider factors outside of the Kubernetes cluster like hard‐

58 | Chapter 6: Automated Placement

ware cost, network latency, and better utilization while assigning Pods to nodes.
You can also use multiple custom schedulers alongside the default scheduler and
configure which scheduler to use for each Pod. Each scheduler could have a dif‐
ferent set of policies dedicated to a subset of the Pods.

As you can see, there are lots of ways to control the Pod placement and choosing the
right approach or combining multiple approaches can be challenging. The takeaway
from this chapter is this: size and declare container resource profiles, label Pods and
nodes accordingly, and finally, do only a minimal intervention to the Kubernetes
scheduler.

More Information
• Automated Placement Example
• Assigning Pods to Nodes
• Node Placement and Scheduling Explained
• Pod Disruption Budget
• Guaranteed Scheduling for Critical Add-On Pods
• The Kubernetes Scheduler
• Scheduler Algorithm
• Configuring Multiple Schedulers
• Descheduler for Kubernetes
• Keep Your Kubernetes Cluster Balanced: The Secret to High Availability
• Everything You Ever Wanted to Know About Resource Scheduling, but Were

Afraid to Ask

More Information | 59

http://bit.ly/2TTJUMh
https://kubernetes.io/docs/user-guide/node-selection/
https://red.ht/2TP1ceB
https://kubernetes.io/docs/admin/disruptions/
https://kubernetes.io/docs/admin/rescheduler/
http://bit.ly/2Hrq8lJ
http://bit.ly/2F9Vfi2
http://bit.ly/2HLv5Fk
http://bit.ly/2YMQzYn
http://bit.ly/2zuecKk
http://bit.ly/2FNkBT9
http://bit.ly/2FNkBT9

PART II

Behavioral Patterns

The patterns under this category are focused around the communication mechanisms
and interactions between the Pods and the managing platform. Depending on the
type of managing controller, a Pod may run until completion, or be scheduled to run
periodically. It can run as a Daemon Service, or provide uniqueness guarantees to its
replicas. There are different ways to run a Pod and picking the right Pod management
primitives requires understanding their behavior. In the following chapters, we
explore the patterns:

• Chapter 7, Batch Job, describes an isolated atomic unit of work run until
completion.

• Chapter 8, Periodic Job, allows the execution of a unit of work to be triggered by a
temporal event.

• Chapter 9, Daemon Service, allows running infrastructure-focused Pods on spe‐
cific nodes, before application Pods are placed.

• Chapter 10, Singleton Service, ensures only one instance of a service is active at a
time and still highly available.

• Chapter 11, Stateful Service, is all about how to create and manage distributed
stateful applications with Kubernetes.

• Chapter 12, Service Discovery, explains how clients can access and discover the
instances providing application services.

• Chapter 13, Self Awareness, describes mechanisms for introspection and meta‐
data injection into applications.

CHAPTER 7

Batch Job

The Batch Job pattern is suited for managing isolated atomic units of work. It is based
on Job abstraction, which runs short-lived Pods reliably until completion on a dis‐
tributed environment.

Problem
The main primitive in Kubernetes for managing and running containers is the Pod.
There are different ways of creating Pods with varying characteristics:

Bare Pod
It is possible to create a Pod manually to run containers. However, when the node
such a Pod is running on fails, the Pod is not restarted. Running Pods this way is
discouraged except for development or testing purposes. This mechanism is also
known under the names of unmanaged or naked Pods.

ReplicaSet
This controller is used for creating and managing the lifecycle of Pods expected
to run continuously (e.g., to run a web server container). It maintains a stable set
of replica Pods running at any given time and guarantees the availability of a
specified number of identical Pods.

DaemonSet
A controller for running a single Pod on every node. Typically used for managing
platform capabilities such as monitoring, log aggregation, storage containers, and
others. See Chapter 9, Daemon Service for a detailed discussion on DaemonSets.

A common aspect of these Pods is the fact that they represent long-running processes
that are not meant to stop after some time. However, in some cases there is a need to

63

perform a predefined finite unit of work reliably and then shut down the container.
For this task, Kubernetes provides the Job resource.

Solution
A Kubernetes Job is similar to a ReplicaSet as it creates one or more Pods and ensures
they run successfully. However, the difference is that, once the expected number of
Pods terminate successfully, the Job is considered complete and no additional Pods
are started. A Job definition looks like Example 7-1.

Example 7-1. A Job specification

apiVersion: batch/v1
kind: Job
metadata:
 name: random-generator
spec:
 completions: 5
 parallelism: 2
 template:
 metadata:
 name: random-generator
 spec:
 restartPolicy: OnFailure
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 command: ["java", "-cp", "/", "RandomRunner", "/numbers.txt", "10000"]

Job should run five Pods to completion, which all must succeed.

Two Pods can run in parallel.

Specifying the restartPolicy is mandatory for a Job.

One crucial difference between the Job and the ReplicaSet definition is the .spec.tem
plate.spec.restartPolicy. The default value for a ReplicaSet is Always, which
makes sense for long-running processes that must always be kept running. The value
Always is not allowed for a Job and the only possible options are either OnFailure or
Never.

64 | Chapter 7: Batch Job

So why bother creating a Job to run a Pod only once instead of using bare Pods?
Using Jobs provides many reliability and scalability benefits that make them the pre‐
ferred option:

• A Job is not an ephemeral in-memory task, but a persisted one that survives clus‐
ter restarts.

• When a Job is completed, it is not deleted but kept for tracking purposes. The
Pods that are created as part of the Job are also not deleted but available for
examination (e.g., to check the container logs). This is also true for bare Pods, but
only for a restartPolicy: OnFailure.

• A Job may need to be performed multiple times. Using the .spec.completions
field it is possible to specify how many times a Pod should complete successfully
before the Job itself is done.

• When a Job has to be completed multiple times (set through .spec.comple
tions), it can also be scaled and executed by starting multiple Pods at the same
time. That can be done by specifying the .spec.parallelism field.

• If the node fails or when the Pod is evicted for some reason while still running,
the scheduler places the Pod on a new healthy node and reruns it. Bare Pods
would remain in a failed state as existing Pods are never moved to other nodes.

All of this makes the Job primitive attractive for scenarios where some guarantees are
required for the completion of a unit of work.

The two fields that play major roles in the behavior of a Job are:

.spec.completions

Specifies how many Pods should run to complete a Job.

.spec.parallelism

Specifies how many Pod replicas could run in parallel. Setting a high number
does not guarantee a high level of parallelism and the actual number of Pods may
still be less (and in some corner cases, more) than the desired number (e.g., due
to throttling, resource quotas, not enough completions left, and other reasons).
Setting this field to 0 effectively pauses the Job.

Figure 7-1 shows how the Batch Job defined in Example 7-1 with a completion count
of five and a parallelism of two is processed.

Solution | 65

Figure 7-1. Parallel Batch Job with a fixed completion count

Based on these two parameters, there are the following types of Jobs:

Single Pod Job
This type is selected when you leave out both .spec.completions and .spec.par
allelism or set them to their default values of one. Such a Job starts only one
Pod and is completed as soon as the single Pod terminates successfully (with exit
code 0).

Fixed completion count Jobs
When you specify .spec.completions with a number greater than one, this
many Pods must succeed. Optionally, you can set .spec.parallelism, or leave it
at the default value of one. Such a Job is considered completed after
the .spec.completions number of Pods has completed successfully. Example 7-1
shows this mode in action and is the best choice when we know the number of
work items in advance, and the processing cost of a single work item justifies the
use of a dedicated Pod.

Work queue Jobs
You have a work queue for parallel Jobs when you leave out .spec.completions
and set .spec.parallelism to an integer greater than one. A work queue Job is
considered completed when at least one Pod has terminated successfully, and all
other Pods have terminated too. This setup requires the Pods to coordinate
among themselves and determine what each one is working on so that they can
finish in a coordinated fashion. For example, when a fixed but unknown number
of work items is stored in a queue, parallel Pods can pick these up one by one to
work on them. The first Pod that detects that the queue is empty and exits with
success indicates the completion of the Job. The Job controller waits for all other
Pods to terminate too. Since one Pod processes multiple work items, this Job type
is an excellent choice for granular work items—when the overhead for one Pod
per work item is not justified.

If you have an unlimited stream of work items to process, other controllers like Repli‐
caSet are the better choice for managing the Pods processing these work items.

66 | Chapter 7: Batch Job

Discussion
The Job abstraction is a pretty basic but also fundamental primitive that other primi‐
tives such as CronJobs are based on. Jobs help turn isolated work units into a reliable
and scalable unit of execution. However, a Job doesn’t dictate how you should map
individually processable work items into Jobs or Pods. That is something you have to
determine after considering the pros and cons of each option:

One Job per work item
This option has the overhead of creating Kubernetes Jobs, and also for the plat‐
form to manage a large number of Jobs that are consuming resources. This
option is useful when each work item is a complex task that has to be recorded,
tracked, or scaled independently.

One Job for all work items
This option is right for a large number of work items that do not have to be inde‐
pendently tracked and managed by the platform. In this scenario, the work items
have to be managed from within the application via a batch framework.

The Job primitive provides only the very minimum basics for scheduling of work
items. Any complex implementation has to combine the Job primitive with a batch
application framework (e.g., in the Java ecosystem we have Spring Batch and JBeret as
standard implementations) to achieve the desired outcome.

Not all services must run all the time. Some services must run on demand, some on a
specific time, and some periodically. Using Jobs can run Pods only when needed, and
only for the duration of the task execution. Jobs are scheduled on nodes that have the
required capacity, satisfy Pod placement policies, and other container dependency
considerations. Using Jobs for short-lived tasks rather than using long-running
abstractions (such as ReplicaSet) saves resources for other workloads on the platform.
All of that makes Jobs a unique primitive, and Kubernetes a platform supporting
diverse workloads.

Discussion | 67

More Information
• Batch Job Example
• Run to Completion Finite Workloads
• Parallel Processing Using Expansions
• Coarse Parallel Processing Using a Work Queue
• Fine Parallel Processing Using a Work Queue
• Indexed Job Created with Metacontroller
• Java Batch Processing Frameworks and Libraries

68 | Chapter 7: Batch Job

http://bit.ly/2Jnloz6
http://bit.ly/2W1ZTW2
http://bit.ly/2Y563GL
http://bit.ly/2Y29cqS
http://bit.ly/2Obtutr
http://bit.ly/2FkjQSA
https://github.com/jberet

CHAPTER 8

Periodic Job

The Periodic Job pattern extends the Batch Job pattern by adding a time dimension
and allowing the execution of a unit of work to be triggered by a temporal event.

Problem
In the world of distributed systems and microservices, there is a clear tendency
toward real-time and event-driven application interactions using HTTP and light‐
weight messaging. However, regardless of the latest trends in software development,
job scheduling has a long history, and it is still relevant. Periodic Jobs are commonly
used for automating system maintenance or administrative tasks. They are also rele‐
vant to business applications requiring specific tasks to be performed periodically.
Typical examples here are business-to-business integration through file transfer,
application integration through database polling, sending newsletter emails, and
cleaning up and archiving old files.

The traditional way of handling Periodic Jobs for system maintenance purposes has
been the use of specialized scheduling software or Cron. However, specialized soft‐
ware can be expensive for simple use cases, and Cron jobs running on a single server
are difficult to maintain and represent a single point of failure. That is why, very
often, developers tend to implement solutions that can handle both the scheduling
aspect and the business logic that needs to be performed. For example, in the Java
world, libraries such as Quartz, Spring Batch, and custom implementations with the
ScheduledThreadPoolExecutor class can run temporal tasks. But similarly to Cron,
the main difficulty with this approach is making the scheduling capability resilient
and highly available, which leads to high resource consumption. Also, with this
approach, the time-based job scheduler is part of the application, and to make the
scheduler highly available, the whole application must be highly available. Typically,
that involves running multiple instances of the application, and at the same time,

69

ensuring that only a single instance is active and schedules jobs—which involves
leader election and other distributed systems challenges.

In the end, a simple service that has to copy a few files once a day may end up requir‐
ing multiple nodes, a distributed leader election mechanism, and more. Kubernetes
CronJob implementation solves all that by allowing scheduling of Job resources using
the well-known Cron format and letting developers focus only on implementing the
work to be performed rather than the temporal scheduling aspect.

Solution
In Chapter 7, Batch Job, we saw the use cases and the capabilities of Kubernetes Jobs.
All of that applies to this chapter as well since the CronJob primitive builds on top of
a Job. A CronJob instance is similar to one line of a Unix crontab (cron table) and
manages the temporal aspects of a Job. It allows the execution of a Job periodically at
a specified point in time. See Example 8-1 for a sample definition.

Example 8-1. A CronJob resource

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: random-generator
spec:
 # Every three minutes
 schedule: "*/3 * * * *"
 jobTemplate:
 spec:
 template:
 spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 command: ["java", "-cp", "/", "RandomRunner", "/numbers.txt", "10000"]
 restartPolicy: OnFailure

Cron specification for running every three minutes

Job template that uses the same specification as a regular Job

Apart from the Job spec, a CronJob has additional fields to define its temporal
aspects:

.spec.schedule

Crontab entry for specifying the Job’s schedule (e.g., 0 * * * * for running every
hour).

70 | Chapter 8: Periodic Job

.spec.startingDeadlineSeconds

Deadline (in seconds) for starting the Job if it misses its scheduled time. In some
use cases, a task is valid only if it executed within a certain timeframe and is use‐
less when executed late. For example, if a Job is not executed in the desired time
because of a lack of compute resources or other missing dependencies, it might
be better to skip an execution because the data it is supposed to process is obso‐
lete already.

.spec.concurrencyPolicy

Specifies how to manage concurrent executions of Jobs created by the same
CronJob. The default behavior Allow creates new Job instances even if the previ‐
ous Jobs have not completed yet. If that is not the desired behavior, it is possible
to skip the next run if the current one has not completed yet with Forbid or to
cancel the currently running Job and start a new one with Replace.

.spec.suspend

Field suspending all subsequent executions without affecting already started
executions.

.spec.successfulJobsHistoryLimit and .spec.failedJobsHistoryLimit
Fields specifying how many completed and failed Jobs should be kept for audit‐
ing purposes.

CronJob is a very specialized primitive, and it applies only when a unit of work has a
temporal dimension. Even if CronJob is not a general-purpose primitive, it is an
excellent example of how Kubernetes capabilities build on top of each other and sup‐
port noncloud-native use cases as well.

Discussion
As you can see, a CronJob is a pretty simple primitive that adds clustered, Cron-like
behavior to the existing Job definition. But when it is combined with other primitives
such as Pods, container resource isolation, and other Kubernetes features such as
those described in Chapter 6, Automated Placement, or Chapter 4, Health Probe, it
ends up being a very powerful Job scheduling system. This enables developers to
focus solely on the problem domain and implement a containerized application that
is responsible only for the business logic to be performed. The scheduling is per‐
formed outside the application, as part of the platform with all of its added benefits
such as high availability, resiliency, capacity, and policy-driven Pod placement. Of
course, similar to the Job implementation, when implementing a CronJob container,
your application has to consider all corner and failure cases of duplicate runs, no
runs, parallel runs, or cancellations.

Discussion | 71

More Information
• Periodic Job Example
• Cron Jobs
• Cron

72 | Chapter 8: Periodic Job

http://bit.ly/2HGXAnh
https://kubernetes.io/docs/concepts/jobs/cron-jobs/
https://en.wikipedia.org/wiki/Cron

CHAPTER 9

Daemon Service

The Daemon Service pattern allows placing and running prioritized, infrastructure-
focused Pods on targeted nodes. It is used primarily by administrators to run node-
specific Pods to enhance the Kubernetes platform capabilities.

Problem
The concept of a daemon in software systems exists at many levels. At an operating
system level, a daemon is a long-running, self-recovering computer program that
runs as a background process. In Unix, the names of daemons end in “d,” such as
httpd, named, and sshd. In other operating systems, alternative terms such as
services-started tasks and ghost jobs are used.

Regardless of what they are called, the common characteristics among these pro‐
grams are that they run as processes and usually do not interact with the monitor,
keyboard, and mouse, and are launched at system boot time. A similar concept exists
at the application level too. For example, in the JVM daemon threads run in the back‐
ground and provide supporting services to the user threads. These daemon threads
have a low priority, run in the background without a say in the life of the application,
and perform tasks such as garbage collection or finalization.

Similarly, there is also the concept of a DaemonSet in Kubernetes. Considering that
Kubernetes is a distributed platform spread across multiple nodes and with the pri‐
mary goal of managing application Pods, a DaemonSet is represented by Pods that
run on the cluster nodes and provide some background capabilities for the rest of the
cluster.

73

Solution
ReplicaSet and its predecessor ReplicationController are control structures responsi‐
ble for making sure a specific number of Pods are running. These controllers con‐
stantly monitor the list of running Pods and make sure the actual number of Pods
always matches the desired number. In that regard, a DaemonSet is a similar con‐
struct and is responsible for ensuring that a certain number of Pods are always run‐
ning. The difference is that the first two run a specific number of Pods, usually driven
by the application requirements of high availability and user load, irrespective of the
node count.

On the other hand, a DaemonSet is not driven by consumer load in deciding how
many Pod instances to run and where to run. Its main purpose is to keep running a
single Pod on every node or specific nodes. Let’s see such a DaemonSet definition
next in Example 9-1.

Example 9-1. DaemonSet resource

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
 name: random-refresher
spec:
 selector:
 matchLabels:
 app: random-refresher
 template:
 metadata:
 labels:
 app: random-refresher
 spec:
 nodeSelector:
 feature: hw-rng
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 command:
 - sh
 - -c
 - >-
 "while true; do
 java -cp / RandomRunner /host_dev/random 100000;
 sleep 30; done"
 volumeMounts:
 - mountPath: /host_dev
 name: devices
 volumes:
 - name: devices

74 | Chapter 9: Daemon Service

 hostPath:
 path: /dev

Use only nodes with the label feature set to value hw-rng.

DaemonSets often mount a portion of a node’s filesystem to perform mainte‐
nance actions.

hostPath for accessing the node directories directly.

Given this behavior, the primary candidates for a DaemonSet are usually
infrastructure-related processes such as log collectors, metric exporters, and even
kube-proxy, that perform cluster-wide operations. There are many differences in how
DaemonSet and ReplicaSet are managed, but the main ones are the following:

• By default, a DaemonSet places one Pod instance to every node. That can be con‐
trolled and limited to a subset of nodes by using the nodeSelector field.

• A Pod created by a DaemonSet already has nodeName specified. As a result, the
DaemonSet doesn’t require the existence of the Kubernetes scheduler to run con‐
tainers. That also allows using a DaemonSet for running and managing the
Kubernetes components.

• Pods created by a DaemonSet can run before the scheduler has started, which
allows them to run before any other Pod is placed on a node.

• Since the scheduler is not used, the unschedulable field of a node is not respec‐
ted by the DaemonSet controller.

• Pods managed by a DaemonSet are supposed to run only on targeted nodes, and
as a result, are treated with higher priority and differently by many controllers.
For example, the descheduler will avoid evicting such Pods, the cluster autoscaler
will manage them separately, etc.

Typically a DaemonSet creates a single Pod on every node or subset of nodes. Given
that, there are several ways for Pods managed by DaemonSets to be reached:

Service
Create a Service with the same Pod selector as a DaemonSet, and use the Service
to reach a daemon Pod load-balanced to a random node.

DNS
Create a headless Service with the same Pod selector as a DaemonSet that can be
used to retrieve multiple A records from DNS containing all Pod IPs and ports.

Solution | 75

NodeIP with hostPort
Pods in the DaemonSet can specify a hostPort and become reachable via the
node IP addresses and the specified port. Since the combination of hostIp and
hostPort and protocol must be unique, the number of places where a Pod can
be scheduled is limited.

Push
The application in the DaemonSets Pod can push data to a well-known location
or service that’s external to the Pod. No consumer needs to reach the Daemon‐
Sets Pods.

Static Pods
Another way to run containers similar to the way a DaemonSet does is through the
static Pods mechanism. The Kubelet, in addition to talking to the Kubernetes API
Server and getting Pod manifests, can also get the resource definitions from a local
directory. Pods defined this way are managed by the Kubelet only and run on one
node only. The API service is not observing these Pods, and there are no controller
and no health checks performed on them. The Kubelet watches such Pods and
restarts them when they crash. Similarly, the Kubelet also periodically scans the con‐
figured directory for Pod definition changes and adds or removes Pods accordingly.

Static Pods can be used to spin off a containerized version of Kubernetes system pro‐
cesses or other containers. But DaemonSets are better integrated with the rest of the
platform and recommended over static Pods.

Discussion
In this book, we describe patterns and Kubernetes features primarily used by devel‐
opers rather than platform administrators. A DaemonSet is somewhere in the middle,
inclining more toward the administrator toolbox, but we include it here because it
also has applicability to application developers. DaemonSets and CronJobs are also
perfect examples of how Kubernetes turns single-node concepts such as Crontab and
daemon scripts into multinode clustered primitives for managing distributed sys‐
tems. These are new distributed concepts developers must also be familiar with.

76 | Chapter 9: Daemon Service

More Information
• Daemon Service Example
• DaemonSets
• Performing a Rolling Update on a DaemonSet
• DaemonSets and Jobs
• Static Pods

More Information | 77

http://bit.ly/2TMX3rc
http://bit.ly/2r07CWx
http://bit.ly/2CAZ13F
http://bit.ly/2HLeHof
https://kubernetes.io/docs/tasks/administer-cluster/static-pod/

CHAPTER 10

Singleton Service

The Singleton Service pattern ensures only one instance of an application is active at a
time and yet is highly available. This pattern can be implemented from within the
application, or delegated fully to Kubernetes.

Problem
One of the main capabilities provided by Kubernetes is the ability to easily and trans‐
parently scale applications. Pods can scale imperatively with a single command such
as kubectl scale, or declaratively through a controller definition such as ReplicaSet,
or even dynamically based on the application load as we describe in Chapter 24, Elas‐
tic Scale. By running multiple instances of the same service (not a Kubernetes Service,
but a component of a distributed application represented by a Pod), the system usu‐
ally increases throughput and availability. The availability increases because if one
instance of a service becomes unhealthy, the request dispatcher forwards future
requests to other healthy instances. In Kubernetes, multiple instances are the replicas
of a Pod, and the Service resource is responsible for the request dispatching.

However, in some cases only one instance of a service is allowed to run at a time. For
example, if there is a periodically executed task in a service and multiple instances of
the same service, every instance will trigger the task at the scheduled intervals, lead‐
ing to duplicates rather than having only one task fired as expected. Another example
is a service that performs polling on specific resources (a filesystem or database) and
we want to ensure only a single instance and maybe even a single thread performs the
polling and processing. A third case occurs when we have to consume messages from
a messages broker in order with a single-threaded consumer that is also a singleton
service.

79

In all these and similar situations, we need some control over how many instances
(usually only one is required) of a service are active at a time, regardless of how many
instances have been started and kept running.

Solution
Running multiple replicas of the same Pod creates an active-active topology where all
instances of a service are active. What we need is an active-passive (or master-slave)
topology where only one instance is active, and all the other instances are passive.
Fundamentally, this can be achieved at two possible levels: out-of-application and in-
application locking.

Out-of-Application Locking
As the name suggests, this mechanism relies on a managing process that is outside of
the application to ensure only a single instance of the application is running. The
application implementation itself is not aware of this constraint and is run as a single‐
ton instance. From this perspective, it is similar to having a Java class that is instanti‐
ated only once by the managing runtime (such as the Spring Framework). The class
implementation is not aware that it is run as a singleton, nor that it contains any code
constructs to prevent instantiating multiple instances.

Figure 10-1 shows how out-of-application locking can be realized with the help of a
StatefulSet or ReplicaSet controller with one replica.

Figure 10-1. Out-of-application locking mechanism

The way to achieve this in Kubernetes is to start a Pod with one replica. This activity
alone does not ensure the singleton Pod is highly available. What we have to do is also
back the Pod with a controller such as a ReplicaSet that turns the singleton Pod into a
highly available singleton. This topology is not exactly active-passive (there is no pas‐
sive instance), but it has the same effect, as Kubernetes ensures that one instance of
the Pod is running at all times. In addition, the single Pod instance is highly available,

80 | Chapter 10: Singleton Service

thanks to the controller performing health checks as described in Chapter 4, Health
Probe and healing the Pod in case of failures.

The main thing to keep an eye on with this approach is the replica count, which
should not be increased accidentally, as there is no platform-level mechanism to pre‐
vent a change of the replica count.

It’s not entirely true that only one instance is running at all times, especially when
things go wrong. Kubernetes primitives such as ReplicaSet, favor availability over
consistency—a deliberate decision for achieving highly available and scalable dis‐
tributed systems. That means a ReplicaSet applies “at least” rather than “at most”
semantics for its replicas. If we configure a ReplicaSet to be a singleton with repli
cas: 1, the controller makes sure at least one instance is always running, but occa‐
sionally it can be more instances.

The most popular corner case here occurs when a node with a controller-managed
Pod becomes unhealthy and disconnects from the rest of the Kubernetes cluster. In
this scenario, a ReplicaSet controller starts another Pod instance on a healthy node
(assuming there is enough capacity), without ensuring the Pod on the disconnected
node is shut down. Similarly, when changing the number of replicas or relocating
Pods to different nodes, the number of Pods can temporarily go above the desired
number. That temporary increase is done with the intention of ensuring high availa‐
bility and avoiding disruption, as needed for stateless and scalable applications.

Singletons can be resilient and recover, but by definition, are not highly available.
Singletons typically favor consistency over availability. The Kubernetes resource that
also favors consistency over availability and provides the desired strict singleton
guarantees is the StatefulSet. If ReplicaSets do not provide the desired guarantees for
your application, and you have strict singleton requirements, StatefulSets might be
the answer. StatefulSets are intended for stateful applications and offer many features,
including stronger singleton guarantees, but they come with increased complexity as
well. We discuss concerns around singletons and cover StatefulSets in more detail in
Chapter 11, Stateful Service.

Typically, singleton applications running in Pods on Kubernetes open outgoing con‐
nections to message brokers, relational databases, file servers, or other systems run‐
ning on other Pods or external systems. However, occasionally, your singleton Pod
may need to accept incoming connections, and the way to enable that on Kubernetes
is through the Service resource.

We cover Kubernetes Services in depth in Chapter 12, Service Discovery, but let’s dis‐
cuss briefly the part that applies to singletons here. A regular Service (with type:
ClusterIP) creates a virtual IP and performs load balancing among all the Pod
instances that its selector matches. But a singleton Pod managed through a StatefulSet
has only one Pod and a stable network identity. In such a case, it is better to create a

Solution | 81

headless Service (by setting both type: ClusterIP and clusterIP: None). It is called
headless because such a Service doesn’t have a virtual IP address, kube-proxy doesn’t
handle these Services, and the platform performs no proxying.

However, such a Service is still useful because a headless Service with selectors creates
endpoint records in the API Server and generates DNS A records for the matching
Pod(s). With that, a DNS lookup for the Service does not return its virtual IP, but
instead the IP address(es) of the backing Pod(s). That enables direct access to the sin‐
gleton Pod via the Service DNS record, and without going through the Service virtual
IP. For example, if we create a headless Service with the name my-singleton, we can
use it as my-singleton.default.svc.cluster.local to access the Pod’s IP address
directly.

To sum up, for nonstrict singletons, a ReplicaSet with one replica and a regular Ser‐
vice would suffice. For a strict singleton and better performant service discovery, a
StatefulSet and a headless Service would be preferred. You can find a complete exam‐
ple of this in Chapter 11, Stateful Service where you have to change the number of
replicas to one to make it a singleton.

In-Application Locking
In a distributed environment, one way to control the service instance count is
through a distributed lock as shown in Figure 10-2. Whenever a service instance or a
component inside the instance is activated, it can try to acquire a lock, and if it suc‐
ceeds, the service becomes active. Any subsequent service instance that fails to
acquire the lock waits and continuously tries to get the lock in case the currently
active service releases it.

Many existing distributed frameworks use this mechanism for achieving high availa‐
bility and resiliency. For example, the message broker Apache ActiveMQ can run in a
highly available active-passive topology where the data source provides the shared
lock. The first broker instance that starts up acquires the lock and becomes active,
and any other subsequently started instances become passive and wait for the lock to
be released. This strategy ensures there is a single active broker instance that is also
resilient to failures.

82 | Chapter 10: Singleton Service

Figure 10-2. In-application locking mechanism

We can compare this strategy to a classic Singleton as it is known in the object-
oriented world: a Singleton is an object instance stored in a static class variable. In
this instance, the class is aware of being a singleton, and it is written in a way that
does not allow instantiation of multiple instances for the same process. In distributed
systems, this would mean the containerized application itself has to be written in a
way that does not allow more than one active instance at a time, regardless of the
number of Pod instances that are started. To achieve this in a distributed environ‐
ment, first, we’s need a distributed lock implementation such as the one provided by
Apache ZooKeeper, HashiCorp’s Consul, Redis, or Etcd.

The typical implementation with ZooKeeper uses ephemeral nodes, which exist as
long as there is a client session, and gets deleted as soon as the session ends. The first
service instance that starts up initiates a session in the ZooKeeper server and creates
an ephemeral node to become active. All other service instances from the same clus‐
ter become passive and have to wait for the ephemeral node to be released. This is
how a ZooKeeper-based implementation makes sure there is only one active service
instance in the whole cluster, ensuring a active/passive failover behavior.

In the Kubernetes world, instead of managing a ZooKeeper cluster only for the lock‐
ing feature, a better option would be to use Etcd capabilities exposed through the
Kubernetes API and running on the master nodes. Etcd is a distributed key-value
store that uses the Raft protocol to maintain its replicated state. Most importantly, it
provides the necessary building blocks for implementing leader election, and a few
client libraries have implemented this functionality already. For example, Apache

Solution | 83

Camel has a Kubernetes connector that also provides leader election and singleton
capabilities. This connector goes a step further, and rather than accessing the Etcd
API directly, it uses Kubernetes APIs to leverage ConfigMaps as a distributed lock. It
relies on Kubernetes optimistic locking guarantees for editing resources such as Con‐
figMaps where only one Pod can update a ConfigMap at a time.

The Camel implementation uses this guarantee to ensure only one Camel route
instance is active, and any other instance has to wait and acquire the lock before acti‐
vating. It is a custom implementation of a lock, but achieves the same goal: when
there are multiple Pods with the same Camel application, only one of them becomes
the active singleton, and the others wait in passive mode.

An implementation with ZooKeeper, Etcd, or any other distributed lock implementa‐
tion would be similar to the one described: only one instance of the application
becomes the leader and activates itself, and other instances are passive and wait for
the lock. This ensures that even if multiple Pod replicas are started and all are healthy,
up, and running, only one service is active and performs the business functionality as
a singleton, and other instances are waiting to acquire the lock in case the master fails
or shuts down.

Pod Disruption Budget
While Singleton Service and leader election try to limit the maximum number of
instances a service is running at a time, the PodDisruptionBudget functionality of
Kubernetes provides a complementary and somewhat opposite functionality—limit‐
ing the number of instances that are simultaneously down for maintenance.

At its core, PodDisruptionBudget ensures a certain number or percentage of Pods will
not voluntarily be evicted from a node at any one point in time. Voluntary here means
an eviction that can be delayed for a particular time—for example, when it is trig‐
gered by draining a node for maintenance or upgrade (kubectl drain), or a cluster
scaling down, rather than a node becoming unhealthy, which cannot be predicted or
controlled.

The PodDisruptionBudget in Example 10-1 applies to Pods that match its selector
and ensures two Pods must be available all the time.

Example 10-1. PodDisruptionBudget

apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
 name: random-generator-pdb
spec:
 selector:
 matchLabels:

84 | Chapter 10: Singleton Service

 app: random-generator
 minAvailable: 2

Selector to count available Pods.

At least two Pods have to be available. You can also specify a percentage, like 80%,
to configure that only 20% of the matching Pods might be evicted.

In addition to .spec.minAvailable, there is also the option to use .spec.maxUna
vailable, which specifies the number of Pods from that set that can be unavailable
after the eviction. But you cannot specify both fields, and PodDisruptionBudget typi‐
cally applies only to Pods managed by a controller. For Pods not managed by a con‐
troller (also referred to as bare or naked Pods), other limitations around
PodDisruptionBudget should be considered.

This functionality is useful for quorum-based applications that require a minimum
number of replicas running at all times to ensure a quorum. Or maybe when an
application is serving critical traffic that should never go below a certain percentage
of the total number of instances. It is another Kubernetes primitive that controls and
influences the instance management at runtime, and is worth mentioning in this
chapter.

Discussion
If your use case requires strong singleton guarantees, you cannot rely on the out-of-
application locking mechanisms of ReplicaSets. Kubernetes ReplicaSets are designed
to preserve the availability of their Pods rather than to ensure at-most-one semantics
for Pods. As a consequence, there are many failure scenarios (e.g., when a node that
runs the singleton Pod is partitioned from the rest of the cluster, for example when
replacing a deleted Pod instance with a new one) that have two copies of a Pod run‐
ning concurrently for a short period. If that is not acceptable, use StatefulSets or
investigate the in-application locking options that provide you more control over the
leader election process with stronger guarantees. The latter would also prevent acci‐
dental scaling of Pods by changing the number of replicas.

In other scenarios, only a part of a containerized application should be a singleton.
For example, there might be a containerized application that provides an HTTP end‐
point that is safe to scale to multiple instances, but also a polling component that
must be a singleton. Using the out-of-application locking approach would prevent
scaling the whole service. Also, as a consequence, we either have to split the singleton
component in its deployment unit to keep it a singleton (good in theory, but not
always practical and worth the overhead) or use the in-application locking mecha‐
nism and lock only the component that has to be a singleton. This would allow us to

Discussion | 85

scale the whole application transparently, have HTTP endpoints scaled, and have
other parts as active-passive singletons.

More Information
• Singleton Service Example
• Simple Leader Election with Kubernetes and Docker
• Leader Election in Go Client
• Configuring a Pod Disruption Budget
• Creating Clustered Singleton Services on Kubernetes
• Apache Camel Kubernetes Connector

86 | Chapter 10: Singleton Service

http://bit.ly/2TKp5nm
http://bit.ly/2FwUS1a
http://bit.ly/2UatejW
http://bit.ly/2HDKcR3
http://bit.ly/2TKm1HR
http://bit.ly/2JoL6mT

CHAPTER 11

Stateful Service

Distributed stateful applications require features such as persistent identity, network‐
ing, storage, and ordinality. The Stateful Service pattern describes the StatefulSet
primitive that provides these building blocks with strong guarantees ideal for the
management of stateful applications.

Problem
So far we have seen many Kubernetes primitives for creating distributed applications:
containers with health checks and resource limits, Pods with multiple containers,
dynamic cluster-wide placements, batch jobs, scheduled jobs, singletons, and more.
The common characteristic among all these primitives is the fact that they treat the
managed application as a stateless application composed of identical, swappable, and
replaceable containers and comply with The Twelve-Factor App principles.

While it is a significant boost to have a platform taking care of the placement, resil‐
iency, and scaling of stateless applications, there is still a large part of the workload to
consider: stateful applications in which every instance is unique and has long-lived
characteristics.

In the real world, behind every highly scalable stateless service is a stateful service
typically in the shape of some data store. In the early days of Kubernetes when it
lacked support for stateful workloads, the solution was placing stateless applications
on Kubernetes to get the benefits of the cloud-native model, and keeping stateful
components outside the cluster, either on a public cloud or on-premises hardware,
managed with the traditional noncloud-native mechanisms. Considering that every
enterprise has a multitude of stateful workloads (legacy and modern), the lack of sup‐
port for stateful workloads was a significant limitation in Kubernetes, which was
known as a universal cloud-native platform.

87

But what are the typical requirements of a stateful application? We could deploy a
stateful application such as Apache ZooKeeper, MongoDB, Redis, or MySQL by using
a Deployment, which could create a ReplicaSet with replicas=1 to make it reliable;
use a Service to discover its endpoint; and use PersistentVolumeClaim and Persistent‐
Volume as permanent storage for its state.

While that is mostly true for a single-instance stateful application, it is not entirely
true, as a ReplicaSet does not guarantee at-most-once semantics, and the number of
replicas can vary temporarily. Such a situation can be disastrous and lead to data loss.
Also, the main challenges come up when it is a distributed stateful service that is
composed of multiple instances. A stateful application composed of multiple clus‐
tered services requires multifaceted guarantees from the underlying infrastructure.
Let’s see some of the most common long-lived persistent prerequisites for distributed
stateful applications.

Storage
We could easily increase the number of replicas in a ReplicaSet and end up with a
distributed stateful application. However, how do we define the storage requirements
in such a case? Typically a distributed stateful application such as those mentioned
previously would require dedicated, persistent storage for every instance. A Replica‐
Set with replicas=3 and a PersistentVolumeClaim (PVC) definition would result in
all three Pods attached to the same PersistentVolume (PV). While the ReplicaSet and
the PVC ensure the instances are up and the storage is attached to whichever node
the instances are scheduled on, the storage is not dedicated, but shared among all Pod
instances.

A workaround here would be for the application instances to use shared storage and
have an in-app mechanism for splitting the storage into subfolders and using it
without conflicts. While doable, this approach creates a single point of a failure with
the single storage. Also, it is error-prone as the number of Pods changes during scal‐
ing, and it may cause severe challenges around preventing data corruption or loss
during scaling.

Another workaround would be to have a separate ReplicaSet (with replicas=1) for
every instance of the distributed stateful application. In this scenario, every Replica‐
Set would get its PVC and dedicated storage. The downside of this approach is that it
is intensive in manual labor: scaling up requires creating a new set of ReplicaSet,
PVC, or Service definitions. This approach lacks a single abstraction for managing all
instances of the stateful application as one.

88 | Chapter 11: Stateful Service

Networking
Similar to the storage requirements, a distributed stateful application requires a stable
network identity. In addition to storing application-specific data into the storage
space, stateful applications also store configuration details such as hostname and con‐
nection details of their peers. That means every instance should be reachable in a pre‐
dictable address that should not change dynamically as is the case with Pod IP
addresses in a ReplicaSet. Here we could address this requirement again through a
workaround: create a Service per ReplicaSet and have replicas=1. However, manag‐
ing such a setup is manual work, and the application itself cannot rely on a stable
hostname because it changes after every restart and is also not aware of the Service
name it is accessed from.

Identity
As you can see from the preceding requirements, clustered stateful applications
depend heavily on every instance having a hold of its long-lived storage and network
identity. That is because in a stateful application, every instance is unique and knows
its own identity, and the main ingredients of that identity are the long-lived storage
and the networking coordinates. To this list, we could also add the identity/name of
the instance (some stateful applications require unique persistent names), which in
Kubernetes would be the Pod name. A Pod created with ReplicaSet would have a ran‐
dom name and would not preserve that identity across a restart.

Ordinality
In addition to a unique and long-lived identity, the instances of clustered stateful
applications have a fixed position in the collection of instances. This ordering typi‐
cally impacts the sequence in which the instances are scaled up and down. However,
it can also be used for data distribution or access and in-cluster behavior positioning
such as locks, singletons, or masters.

Other Requirements
Stable and long-lived storage, networking, identity, and ordinality are among the col‐
lective needs of clustered stateful applications. Managing stateful applications also
carries many other specific requirements that vary case by case. For example, some
applications have the notion of a quorum and require a minimum number of instan‐
ces to be always available; some are sensitive to ordinality, and some are fine with
parallel Deployments; some tolerate duplicate instances, and some don’t. Planning for
all these one-off cases and providing generic mechanisms is an impossible task and
that’s why Kubernetes also allows creating CustomResourceDefinitions and Operators
for managing stateful applications. Operators are explained in Chapter 23.

Problem | 89

1 Let’s assume we have invented a highly sophisticated way of generating random numbers in a distributed
RNG cluster with several instances of our service as nodes. Of course, that’s not true, but for this example’s
sake, it’s a good enough story.

We have seen some of the common challenges of managing distributed stateful appli‐
cations, and a few less-than-ideal workarounds. Next, let’s check out the Kubernetes
native mechanism for addressing these requirements through the StatefulSet primi‐
tive.

Solution
To explain what StatefulSet provides for managing stateful applications, we occasion‐
ally compare its behavior to the already familiar ReplicaSet primitive that Kubernetes
uses for running stateless workloads. In many ways, StatefulSet is for managing pets,
and ReplicaSet is for managing cattle. Pets versus cattle is a famous (but also a contro‐
versial) analogy in the DevOps world: identical and replaceable servers are referred to
as cattle, and nonfungible unique servers that require individual care are referred to
as pets. Similarly, StatefulSet (initially inspired by the analogy and named PetSet) is
designed for managing nonfungible Pods, as opposed to ReplicaSet, which is for
managing identical replaceable Pods.

Let’s explore how StatefulSets work and how they address the needs of stateful appli‐
cations. Example 11-1 is our random-generator service as a StatefulSet. 1

Example 11-1. Service for accessing StatefulSet

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: rg
spec:
 serviceName: random-generator
 replicas: 2
 selector:
 matchLabels:
 app: random-generator
 template:
 metadata:
 labels:
 app: random-generator
 spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 ports:
 - containerPort: 8080

90 | Chapter 11: Stateful Service

 name: http
 volumeMounts:
 - name: logs
 mountPath: /logs
 volumeClaimTemplates:
 - metadata:
 name: logs
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 10Mi

Name of the StatefulSet is used as prefix for the generated node names

References the mandatory Service defined in Example 11-2

Two Pod members in the StatefulSet named ng-0 and ng-1

Template for creating a PVC for each Pod (similar to the Pod’s template)

Rather than going through the definition in Example 11-1 line by line, we explore the
overall behavior and the guarantees provided by this StatefulSet definition.

Storage
While it is not always necessary, the majority of stateful applications store state and
thus require per-instance-based dedicated persistent storage. The way to request and
associate persistent storage with a Pod in Kubernetes is through PVs and PVCs. To
create PVCs the same way it creates Pods, StatefulSet uses a volumeClaimTemplates
element. This extra property is one of the main differences between a StatefulSet and
a ReplicaSet, which has a persistentVolumeClaim element.

Rather than referring to a predefined PVC, StatefulSets create PVCs by using volume
ClaimTemplates on the fly during Pod creation. This mechanism allows every Pod to
get its own dedicated PVC during initial creation as well as during scaling up by
changing the replicas count of the StatefulSets.

As you probably realize, we said PVCs are created and associated with the Pods, but
we didn’t say anything about PVs. That is because StatefulSets do not manage PVs in
any way. The storage for the Pods must be provisioned in advance by an admin, or
provisioned on-demand by a PV provisioner based on the requested storage class and
ready for consumption by the stateful Pods.

Note the asymmetric behavior here: scaling up a StatefulSet (increasing the replicas
count) creates new Pods and associated PVCs. Moreover, scaling down deletes the
Pods, but it does not delete any PVCs (nor PVs), which means the PVs cannot be

Solution | 91

recycled or deleted, and Kubernetes cannot free the storage. This behavior is by
design and driven by the presumption that the storage of stateful applications is criti‐
cal and that an accidental scale-down should not cause data loss. If you are sure the
stateful application has been scaled down on purpose and has replicated/drained the
data to other instances, you can delete the PVC manually, which allows subsequent
PV recycling.

Networking
Each Pod created by a StatefulSet has a stable identity generated by the StatefulSet’s
name and an ordinal index (starting from 0). Based on the preceding example, the
two Pods are named rg-0 and rg-1. The Pod names are generated in a predictable
format that differs from the ReplicaSet’s Pod-name-generation mechanism, which
contains a random suffix.

Dedicated scalable persistent storage is an essential aspect of stateful applications and
so is networking.

In Example 11-2 we define a headless Service. In a headless Service, clusterIP:
None, which means we don’t want a kube-proxy to handle the Service, and we don’t
want a cluster IP allocation nor load balancing. Then why do we need a Service?

Example 11-2. Service for accessing StatefulSet

apiVersion: v1
kind: Service
metadata:
 name: random-generator
spec:
 clusterIP: None
 selector:
 app: random-generator
 ports:
 - name: http
 port: 8080

Declares this Service as headless

Stateless Pods created through a ReplicaSet are assumed to be identical, and it doesn’t
matter on which one a request lands (hence the load balancing with a regular Ser‐
vice). But stateful Pods differ from each other, and we may need to reach a specific
Pod by its coordinates.

A headless Service with selectors (notice .selector.app == random-generator)
enables exactly this. Such a Service creates Endpoint records in the API Server, and
creates DNS entries to return A records (addresses) that point directly to the Pods

92 | Chapter 11: Stateful Service

backing the Service. Long story short, each Pod gets a DNS entry where clients can
directly reach out to it in a predictable way. For example, if our random-generator
Service belongs to the default namespace, we can reach our rg-0 Pod through its
fully qualified domain name: rg-0.random-generator.default.svc.clus

ter.local, where the Pod’s name is prepended to the Service name. This mapping
allows other members of the clustered application or other clients to reach specific
Pods if they wish to.

We can also perform DNS lookup for SRV records (e.g., through dig SRV random-
generator.default.svc.cluster.local) and discover all running Pods registered
with the StatefulSet’s governing Service. This mechanism allows dynamic cluster
member discovery if any client application needs to do so. The association between
the headless Service and the StatefulSet is not only based on the selectors, but the
StatefulSet should also link back to the Service by its name as serviceName:
"random-generator".

Having dedicated storage defined through volumeClaimTemplates is not mandatory,
but linking to a Service through serviceName field is. The governing Service must
exist before the StatefulSet is created and is responsible for the network identity of the
set. You can always create other types of Services additionally that load balance across
your stateful Pods if that is what you want.

As shown in Figure 11-1, StatefulSets offer a set of building blocks and guaranteed
behavior needed for managing stateful applications in a distributed environment. It is
up to you to choose and use them in a way that is meaningful for your stateful use
case.

Solution | 93

Figure 11-1. A distributed stateful application on Kubernetes

Identity
Identity is the meta building block all other StatefulSet guarantees are built upon.
Based on StatefulSet’s name, we can get predictable a Pod name and identity. We then
use that identity to name PVCs, reach out to specific Pods through headless Services,
and more. You can predict the identity of every Pod before creating it and use that
knowledge in the application itself if needed.

Ordinality
By definition, a distributed stateful application consists of multiple instances that are
unique and nonswappable. In addition to their uniqueness, instances may also be
related to each other based on their instantiation order/position, and this is where the
ordinality requirement comes in.

From a StatefulSet point of view, the only place where ordinality comes into play is
during scaling. Pods have names that have an ordinal suffix (starting from 0), and
that Pod creation order also defines the order in which Pods are scaled up and scaled
down (in reverse order, from n – 1 to 0).

If we create a ReplicaSet with multiple replicas, Pods are scheduled and started
together without waiting for the first one to start successfully (running and ready sta‐
tus as described in Chapter 4, Health Probe). The order in which Pods are starting and
are ready is not guaranteed. It is the same when we scale down a ReplicaSet (either by

94 | Chapter 11: Stateful Service

changing the replicas count or deleting it). All Pods belonging to a ReplicaSet start
shutting down simultaneously without any ordering and dependency among them.
This behavior may be faster to complete, but is not desired by stateful applications,
especially if data partitioning and distribution are involved among the instances.

To allow proper data synchronization during scale-up and -down, StatefulSet by
default performs sequential startup and shutdown. That means Pods start from the
first one (with index 0), and only when that Pod has successfully started, is the next
one scheduled (with index 1), and the sequence continues. During scaling down, the
order reverses—first shutting down the Pod with the highest index, and only when it
has shut down successfully is the Pod with the next lower index stopped. This
sequence continues until the Pod with index 0 is terminated.

Other Features
StatefulSets have other aspects that are customizable to suit the needs of stateful
applications. Each stateful application is unique and requires careful consideration
while trying to fit it into the StatefulSet model. Let’s see a few more Kubernetes fea‐
tures that may turn out to be useful while taming stateful applications:

Partitioned Updates
We described above the sequential ordering guarantees while scaling a Stateful‐
Set. As for updating an already running stateful application (e.g., by altering
the .spec.template element), StatefulSets allow phased rollout (such as a canary
release), which guarantees a certain number of instances to remain intact while
applying updates to the rest of the instances.

By using the default rolling update strategy, you can partition instances by speci‐
fying a .spec.updateStrategy.rollingUpdate.partition number. The param‐
eter (with a default value of 0) indicates the ordinal at which the StatefulSet
should be partitioned for updates. If the parameter is specified, all Pods with an
ordinal index greater than or equal to the partition are updated while all Pods
with an ordinal less than that are not updated. That is true even if the Pods are
deleted; Kubernetes recreates them at the previous version. This feature can
enable partial updates to clustered stateful applications (ensuring the quorum is
preserved, for example), and then roll out the changes to the rest of the cluster by
setting the partition back to 0.

Parallel Deployments
When we set .spec.podManagementPolicy to Parallel, the StatefulSet launches
or terminates all Pods in parallel, and does not wait for Pods to become running
and ready or completely terminated before moving to the next one. If sequential
processing is not a requirement for your stateful application, this option can
speed up operational procedures.

Solution | 95

At-Most-One Guarantee
Uniqueness is among the fundamental attributes of stateful application instances,
and Kubernetes guarantees that by making sure no two Pods of a StatefulSet have
the same identity or are bound to the same PV. In contrast, ReplicaSet offers the
At-Least-X-Guarantee for its instances. For example, a ReplicaSet with two repli‐
cas tries to keep at least two instances up and running at all times. Even if occa‐
sionally there is a chance for that number to go higher, the controller’s priority is
not to let the number of Pods go below the specified number. It is possible to
have more than the specified number of replicas running when a Pod is being
replaced by a new one, and the old Pod is still not fully terminated. Or, it can go
higher if a Kubernetes node is unreachable with NotReady state but still has run‐
ning Pods. In this scenario, the ReplicaSet’s controller would start new Pods on
healthy nodes, which could lead to more running Pods than desired. That is all
acceptable within the semantics of At-Least-X.

A StatefulSet controller, on the other hand, makes every possible check to ensure
no duplicate Pods—hence the At-Most-One Guarantee. It does not start a Pod
again unless the old instance is confirmed to be shut down completely. When a
node fails, it schedules new Pods on a different node unless Kubernetes can con‐
firm that the Pods (and maybe the whole node) are shut down. The At-Most-One
semantics of StatefulSets dictates these rules.

It is still possible to break these guarantees and end up with duplicate Pods in a
StatefulSet, but this requires active human intervention. For example, deleting an
unreachable node resource object from the API Server while the physical node is
still running would break this guarantee. Such an action should be performed
only when the node is confirmed to be dead or powered down, and no Pod pro‐
cesses are running on it. Or, for example, forcefully deleting a Pod with kubectl
delete pods _<pod>_ --grace-period=0 --force, which does not wait for a
confirmation from the Kubelet that the Pod is terminated. This action immedi‐
ately clears the Pod from the API Server and causes the StatefulSet controller to
start a replacement Pod that could lead to duplicates.

We discuss other approaches to achieving singletons in more depth in Chapter 10,
Singleton Service.

Discussion
In this chapter, we saw some of the standard requirements and challenges in manag‐
ing distributed stateful applications on a cloud-native platform. We discovered that
handling a single-instance stateful application is relatively easy, but handling dis‐
tributed state is a multidimensional challenge. While we typically associate the notion
of “state” with “storage,” here we have seen multiple facets of state and how it requires
different guarantees from different stateful applications. In this space, StatefulSets is

96 | Chapter 11: Stateful Service

an excellent primitive for implementing distributed stateful applications generically. It
addresses the need for persistent storage, networking (through Services), identity,
ordinality, and a few other aspects. It provides a good set of building blocks for man‐
aging stateful applications in an automated fashion, making them first-class citizens
in the cloud-native world.

StatefulSets are a good start and a step forward, but the world of stateful applications
is unique and complex. In addition to the stateful applications designed for a cloud-
native world that can fit into a StatefulSet, a ton of legacy stateful applications exist
that have not been designed for cloud-native platforms, and have even more needs.
Luckily Kubernetes has an answer for that too. The Kubernetes community has real‐
ized that rather than modeling different workloads through Kubernetes resources and
implementing their behavior through generic controllers, it should allow users to
implement their custom Controllers and even go one step further and allow modeling
application resources through custom resource definitions and behavior through
Operators.

In Chapter 22 and Chapter 23, you will learn about the related Controller and Opera‐
tor patterns, which are better suited for managing complex stateful applications in
cloud-native environments.

More information
• Stateful Service Example
• StatefulSet Basics
• StatefulSets
• Deploying Cassandra with Stateful Sets
• Running ZooKeeper, a Distributed System Coordinator
• Headless Services
• Force Delete StatefulSet Pods
• Graceful Scaledown of Stateful Apps in Kubernetes
• Configuring and Deploying Stateful Applications

More information | 97

http://bit.ly/2Y7SUN2
http://bit.ly/2r0boiA
http://bit.ly/2HGm6oE
http://bit.ly/2HBLNXA
http://bit.ly/2JmNPNQ
http://bit.ly/2v7Z19P
http://bit.ly/2OeuRrh
http://bit.ly/2Fk0mgK
http://bit.ly/2UsbkJt

CHAPTER 12

Service Discovery

The Service Discovery pattern provides a stable endpoint at which clients of a service
can access the instances providing the service. For this purpose, Kubernetes provides
multiple mechanisms, depending on whether the service consumers and producers
are located on or off the cluster.

Problem
Applications deployed on Kubernetes rarely exist on their own, and usually, they have
to interact with other services within the cluster or systems outside the cluster. The
interaction can be initiated internally or through external stimulus. Internally initi‐
ated interactions are usually performed through a polling consumer: an application
either after startup or later connects to another system and start sending and receiv‐
ing data. Typical examples are an application running within a Pod that reaches a file
server and starts consuming files, or connects to a message broker and starts receiv‐
ing or sending messages, or connects to a relational database or a key-value store and
starts reading or writing data.

The critical distinction here is that the application running within the Pod decides at
some point to open an outgoing connection to another Pod or external system, and
starts exchanging data in either direction. In this scenario, we don’t have an external
stimulus for the application, and we don’t need any additional setup in Kubernetes.

To implement the patterns described in Chapter 7, Batch Job or Chapter 8, Periodic
Job, we often use this technique. In addition, long-running Pods in DaemonSets or
ReplicaSets sometimes actively connect to other systems over the network. The more
common use case for Kubernetes workloads occurs when we have long-running serv‐
ices expecting external stimulus, most commonly in the form of incoming HTTP
connections from other Pods within the cluster or external systems. In these cases,

99

service consumers need a mechanism for discovering Pods that are dynamically
placed by the scheduler and sometimes elastically scaled up and down.

It would be a significant challenge if we had to perform tracking, registering and dis‐
covering endpoints of dynamic Kubernetes Pods ourselves. That is why Kubernetes
implements the Service Discovery pattern through different mechanisms, which we
explore in this chapter.

Solution
If we look at the “Before Kubernetes Era,” the most common mechanism of service
discovery was through client-side discovery. In this architecture, when a service con‐
sumer had to call another service that might be scaled to multiple instances, the ser‐
vice consumer would have a discovery agent capable of looking at a registry for
service instances and then choosing one to call. Classically, that would be done, for
example, either with an embedded agent within the consumer service (such as a Zoo‐
Keeper client, Consul client, or Ribbon), or with another colocated process such as
Prana looked up the service in a registry, as shown in Figure 12-1.

Figure 12-1. Client-side service discovery

In the “Post Kubernetes Era,” many of the nonfunctional responsibilities of dis‐
tributed systems such as placement, health check, healing, and resource isolation are
moving into the platform, and so is Service Discovery and load balancing. If we use
the definitions from service-oriented architecture (SOA), a service provider instance
still has to register itself with a service registry while providing the service capabili‐
ties, and a service consumer has to access the information in the registry to reach the
service.

In the Kubernetes world, all that happens behind the scenes so that a service con‐
sumer calls a fixed virtual Service endpoint that can dynamically discover service
instances implemented as Pods. Figure 12-2 shows how registration and lookup are
embraced by Kubernetes.

100 | Chapter 12: Service Discovery

Figure 12-2. Server-side service discovery

At first glance, Service Discovery may seem like a simple pattern. However, multiple
mechanisms can be used to implement this pattern, which depends on whether a ser‐
vice consumer is within or outside the cluster, and whether the service provider is
within or outside the cluster.

Internal Service Discovery
Let’s assume we have a web application and want to run it on Kubernetes. As soon as
we create a Deployment with a few replicas, the scheduler places the Pods on the suit‐
able nodes, and each Pod gets a cluster IP address assigned before starting up. If
another client service within a different Pod wishes to consume the web application
endpoints, there isn’t an easy way to know the IP addresses of the service provider
Pods in advance.

This challenge is what the Kubernetes Service resource addresses. It provides a con‐
stant and stable entry point for a collection of Pods offering the same functionality.
The easiest way to create a Service is through kubectl expose, which creates a Ser‐
vice for a Pod or multiple Pods of a Deployment or ReplicaSet. The command creates
a virtual IP address referred to as the clusterIP, and it pulls both Pod selectors and
port numbers from the resources to create the Service definition. However, to have
full control over the definition, we create the Service manually, as shown in
Example 12-1.

Example 12-1. A simple Service

apiVersion: v1
kind: Service
metadata:
 name: random-generator
spec:
 selector:
 app: random-generator

Solution | 101

 ports:
 - port: 80
 targetPort: 8080
 protocol: TCP

Selector matching Pod labels

Port over which this Service can be contacted

Port on which the Pods are listening

The definition in this example will create a Service named random-generator (the
name is important for discovery later) and type: ClusterIP (which is the default)
that accepts TCP connections on port 80 and routes them to port 8080 on all the
matching Pods with selector app: random-generator. It doesn’t matter when or how
the Pods are created—any matching Pod becomes a routing target, as illustrated in
Figure 12-3.

Figure 12-3. Internal service discovery

The essential points to remember here are that once a Service is created, it gets a clus
terIP assigned that is accessible only from within the Kubernetes cluster (hence the
name), and that IP remains unchanged as long as the Service definition exists. How‐
ever, how can other applications within the cluster figure out what this dynamically
allocated clusterIP is? There are two ways:

Discovery through environment variables
When Kubernetes starts a Pod, its environment variables get populated with the
details of all Services that exist up to that moment. For example, our random-
generator Service listening on port 80 gets injected into any newly starting Pod,
as the environment variables shown in Example 12-2 demonstrate. The applica‐
tion running that Pod would know the name of the Service it needs to consume,
and can be coded to read these environment variables. This lookup is a simple

102 | Chapter 12: Service Discovery

mechanism that can be used from applications written in any language, and is
also easy to emulate outside the Kubernetes cluster for development and testing
purposes. The main issue with this mechanism is the temporal dependency on
Service creation. Since environment variables cannot be injected into already
running Pods, the Service coordinates are available only for Pods started after the
Service is created in Kubernetes. That requires the Service to be defined before
starting the Pods that depend on the Service—or if this is not the case, the Pods
needs to be restarted.

Example 12-2. Service-related environment variables set automatically in Pod

RANDOM_GENERATOR_SERVICE_HOST=10.109.72.32
RANDOM_GENERATOR_SERVICE_PORT=8080

Discovery through DNS lookup
Kubernetes runs a DNS server that all the Pods are automatically configured to
use. Moreover, when a new Service is created, it automatically gets a new DNS
entry that all Pods can start using. Assuming a client knows the name of the Ser‐
vice it wants to access, it can reach the Service by a fully qualified domain name
(FQDN) such as random-generator.default.svc.cluster.local. Here,
random-generator is the name of the Service, default is the name of the name‐
space, svc indicates it is a Service resource, and cluster.local is the cluster-
specific suffix. We can omit the cluster suffix if desired, and the namespace as
well when accessing the Service from the same namespace.

The DNS discovery mechanism doesn’t suffer from the drawbacks of the
environment-variable-based mechanism, as the DNS server allows lookup of all
Services to all Pods as soon as a Service is defined. However, you may still need to
use the environment variables to look up the port number to use if it is a non‐
standard one or unknown by the service consumer.

Here are some other high-level characteristics of the Service with type: ClusterIP
that other types build upon:

Multiple ports
A single Service definition can support multiple source and target ports. For
example, if your Pod supports both HTTP on port 8080 and HTTPS on port
8443, there is no need to define two Services. A single Service can expose both
ports on 80 and 443, for example.

Session affinity
When there is a new request, the Service picks a Pod randomly to connect to by
default. That can be changed with sessionAffinity: ClientIP, which makes all
requests originating from the same client IP stick to the same Pod. Remember
that Kubernetes Services performs L4 transport layer load balancing, and it can‐

Solution | 103

not look into the network packets and perform application-level load balancing
such as HTTP cookie-based session affinity.

Readiness Probes
In Chapter 4, Health Probe you learned how to define a readinessProbe for a
container. If a Pod has defined readiness checks, and they are failing, the Pod is
removed from the list of Service endpoints to call even if the label selector
matches the Pod.

Virtual IP
When we create a Service with type: ClusterIP, it gets a stable virtual IP
address. However, this IP address does not correspond to any network interface
and doesn’t exist in reality. It is the kube-proxy that runs on every node that picks
this new Service and updates the iptables of the node with rules to catch the net‐
work packets destined for this virtual IP address and replaces it with a selected
Pod IP address. The rules in the iptables do not add ICMP rules, but only the
protocol specified in the Service definition, such as TCP or UDP. As a conse‐
quence, it is not possible to ping the IP address of the Service as that operation
uses ICMP protocol. However, it is of course possible to access the Service IP
address via TCP (e.g., for an HTTP request).

Choosing ClusterIP
During Service creation, we can specify an IP to use with the field .spec.clus
terIP. It must be a valid IP address and within a predefined range. While not
recommended, this option can turn out to be handy when dealing with legacy
applications configured to use a specific IP address, or if there is an existing DNS
entry we wish to reuse.

Kubernetes Services with type: ClusterIP are accessible only from within the clus‐
ter; they are used for discovery of Pods by matching selectors, and are the most com‐
monly used type. Next, we will look at other types of Services that allow discovery of
endpoints that are manually specified.

Manual Service Discovery
When we create a Service with selector, Kubernetes tracks the list of matching and
ready-to-serve Pods in the list of endpoint resources. For Example 12-1, you can
check all endpoints created on behalf of the Service with kubectl get endpoints
random-generator. Instead of redirecting connections to Pods within the cluster, we
could also redirect connections to external IP addresses and ports. We can do that by
omitting the selector definition of a Service and manually creating endpoint resour‐
ces, as shown in Example 12-3.

104 | Chapter 12: Service Discovery

Example 12-3. Service without selector

apiVersion: v1
kind: Service
metadata:
 name: external-service
spec:
 type: ClusterIP
 ports:
 - protocol: TCP
 port: 80

Next, in Example 12-4, we define an endpoints resource with the same name as the
Service, and containing the target IPs and ports.

Example 12-4. Endpoints for an external service

apiVersion: v1
kind: Endpoints
metadata:
 name: external-service
subsets:
 - addresses:
 - ip: 1.1.1.1
 - ip: 2.2.2.2
 ports:
 - port: 8080

Name must match the Service that accesses these Endpoints

This Service is also accessible only within the cluster and can be consumed in the
same way as the previous ones, through environment variables or DNS lookup. The
difference here is that the list of endpoints is manually maintained, and the values
there usually point to IP addresses outside the cluster, as demonstrated in
Figure 12-4.

Solution | 105

Figure 12-4. Manual service discovery

While connecting to an external resource is this mechanism’s most common use, it is
not the only one. Endpoints can hold IP addresses of Pods, but not virtual IP
addresses of other Services. One good thing about the Service is that it allows adding
and removing selectors and pointing to external or internal providers without delet‐
ing the resource definition that would lead to a Service IP address change. So service
consumers can continue using the same Service IP address they first pointed to, while
the actual service provider implementation is migrated from on-premises to Kuber‐
netes without affecting the client.

In this category of manual destination configuration, there is one more type of Ser‐
vice, as shown in Example 12-5.

Example 12-5. Service with an external destination

apiVersion: v1
kind: Service
metadata:
 name: database-service
spec:
 type: ExternalName
 externalName: my.database.example.com
 ports:
 - port: 80

This Service definition does not have a selector either, but its type is ExternalName.
That is an important difference from an implementation point of view. This Service
definition maps to the content pointed by externalName using DNS only. It is a way
of creating an alias for an external endpoint using DNS CNAME rather than going
through the proxy with an IP address. But fundamentally, it is another way of provid‐
ing a Kubernetes abstraction for endpoints located outside of the cluster.

106 | Chapter 12: Service Discovery

Service Discovery from Outside the Cluster
The service discovery mechanisms discussed so far in this chapter all use a virtual IP
address that points to Pods or external endpoints, and the virtual IP address itself is
accessible only from within the Kubernetes cluster. However, a Kubernetes cluster
doesn’t run disconnected from the rest of the world, and in addition to connecting to
external resources from Pods, very often the opposite is also required—external
applications wanting to reach to endpoints provided by the Pods. Let’s see how to
make Pods accessible for clients living outside the cluster.

The first method to create a Service and expose it outside of the cluster is through
type: NodePort.

The definition in Example 12-6 creates a Service as earlier, serving Pods that match
the selector app: random-generator, accepting connections on port 80 on the virtual
IP address, and routing each to port 8080 of the selected Pod. However, in addition to
all of that, this definition also reserves port 30036 on all the nodes and forwards
incoming connections to the Service. This reservation makes the Service accessible
internally through the virtual IP address, as well as externally through a dedicated
port on every node.

Example 12-6. Service with type NodePort

apiVersion: v1
kind: Service
metadata:
 name: random-generator
spec:
 type: NodePort
 selector:
 app: random-generator
 ports:
 - port: 80
 targetPort: 8080
 nodePort: 30036
 protocol: TCP

Open port on all nodes.

Specify a fixed port (which needs to be available) or leave this out to get a ran‐
domly selected port assigned.

While this method of exposing services as illustrated in Figure 12-5 may seem like a
good approach, it has drawbacks. Let’s see some of its distinguishing characteristics:

Solution | 107

Port number
Instead of picking a specific port with nodePort: 30036, you can let Kubernetes
pick a free port within its range.

Firewall rules
Since this method opens a port on all the nodes, you may have to configure addi‐
tional firewall rules to let external clients access the node ports.

Node selection
An external client can open connection to any node in the cluster. However, if the
node is not available, it is the responsibility of the client application to connect to
another healthy node. For this purpose, it may be a good idea to put a load bal‐
ancer in front of the nodes that picks healthy nodes and performs failover.

Pods selection
When a client opens a connection through the node port, it is routed to a ran‐
domly chosen Pod that may be on the same node where the connection was open
or a different node. It is possible to avoid this extra hop and always force Kuber‐
netes to pick a Pod on the node where the connection was opened by adding
externalTrafficPolicy: Local to the Service definition. When this option is
set, Kubernetes does not allow connecting to Pods located on other nodes, which
can be an issue. To resolve that, you have to either make sure there are Pods
placed on every node (e.g., by using Daemon Services), or make sure the client
knows which nodes have healthy Pods placed on them.

Source addresses
There are some peculiarities around the source addresses of packets sent to dif‐
ferent types of Services. Specifically, when we use type NodePort, client addresses
are source NAT’d, which means the source IP addresses of the network packets
containing the client IP address are replaced with the node’s internal addresses.
For example, when a client application sends a packet to node 1, it replaces the
source address with its node address and replaces the destination address with
the Pod’s address, and forwards the packet to node 2, where the Pod is located.
When the Pod receives the network packet, the source address is not equal to the
original client’s address but is the same as node 1’s address. To prevent this from
happening, we can set externalTrafficPolicy: Local as described earlier and
forward traffic only to Pods located on node 1.

108 | Chapter 12: Service Discovery

Figure 12-5. Node port Service Discovery

Another way of Service Discovery for external clients is through a load balancer. You
have seen how a type:NodePort Service builds on top of a regular Service with type:
ClusterIP by also opening a port on every node. The limitation of this approach is
that we still need a load balancer for client applications to pick a healthy node. The
Service type LoadBalancer addresses this limitation.

In addition to creating a regular Service, and opening a port on every node as with
type: NodePort, it also exposes the service externally using a cloud provider’s load
balancer. Figure 12-6 shows this setup: a proprietary load balancer serves as a gateway
to the Kubernetes cluster.

Figure 12-6. Load balancer service discovery

Solution | 109

So this type of Service works only when the cloud provider has Kubernetes support
and provisions a load balancer.

We can create a Service with a load balancer by specifying the type LoadBalancer.
Kubernetes then will add IP addresses to the .spec and .status fields, as shown in
Example 12-7.

Example 12-7. Service of type LoadBalancer

apiVersion: v1
kind: Service
metadata:
 name: random-generator
spec:
 type: LoadBalancer
 clusterIP: 10.0.171.239
 loadBalancerIP: 78.11.24.19
 selector:
 app: random-generator
 ports:
 - port: 80
 targetPort: 8080
 protocol: TCP
status:
 loadBalancer:
 ingress:
 - ip: 146.148.47.155

Kubernetes assigns clusterIP and loadBalancerIP when they are available.

The status field is managed by Kubernetes and adds the Ingress IP.

With this definition in place, an external client application can open a connection to
the load balancer, which picks a node and locates the Pod. The exact way that load-
balancer provisioning is performed and service discovery varies among cloud provid‐
ers. Some cloud providers will allow defining the load-balancer address, and some
will not. Some offer mechanisms for preserving the source address, and some replace
that with the load-balancer address. You should check the specific implementation
provided by your cloud provider of choice.

Yet another type of Service is available: headless services, for which
you don’t request a dedicated IP address. You create a headless ser‐
vice by specifying clusterIP: None within the Service’s spec: sec‐
tion. For headless services, the backing Pods are added to the
internal DNS server and are most useful for implementing Services
to StatefulSets, as described in detail in Chapter 11, Stateful Service.

110 | Chapter 12: Service Discovery

Application Layer Service Discovery
Unlike the mechanisms discussed so far, Ingress is not a service type, but a separate
Kubernetes resource that sits in front of Services and acts as a smart router and entry
point to the cluster. Ingress typically provides HTTP-based access to Services through
externally reachable URLs, load balancing, SSL termination, and name-based virtual
hosting, but there are also other specialized Ingress implementations.

For Ingress to work, the cluster must have one or more Ingress controllers running. A
simple Ingress that exposes a single Service is shown in Example 12-8.

Example 12-8. A sinmple Ingress definition

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: random-generator
spec:
 backend:
 serviceName: random-generator
 servicePort: 8080

Depending on the infrastructure Kubernetes is running on, and the Ingress controller
implementation, this definition allocates an externally accessible IP address and
exposes the random-generator Service on port 80. But this is not very different from
a Service with type: LoadBalancer, which requires an external IP address per Ser‐
vice definition. The real power of Ingress comes from reusing a single external load
balancer and IP to service multiple Services and reduce the infrastructure costs.

A simple fan-out configuration for routing a single IP address to multiple Services
based on HTTP URI paths looks like Example 12-9.

Example 12-9. An Ingress definition with mappings

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: random-generator
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - http:
 paths:
 - path: /
 backend:
 serviceName: random-generator
 servicePort: 8080

Solution | 111

 - path: /cluster-status
 backend:
 serviceName: cluster-status
 servicePort: 80

Dedicated rules for the Ingress controller for dispatching requests based on the
request path

Redirect every request to Service random-generator…

… except /cluster-status which goes to another Service

Since every Ingress controller implementation is different, apart from the usual
Ingress definition, a controller may require additional configuration, which is passed
through annotations. Assuming the Ingress is configured correctly, the preceding def‐
inition would provision a load balancer and get an external IP address that services
two Services under two different paths, as shown in Figure 12-7.

Figure 12-7. Application layer service discovery

Ingress is the most powerful and at the same time most complex Service Discovery
mechanism on Kubernetes. It is most useful for exposing multiple services under the
same IP address and when all services use the same L7 (typically HTTP) protocol.

112 | Chapter 12: Service Discovery

OpenShift Routes
Red Hat OpenShift is a popular enterprise distribution of Kubernetes. Besides being
fully compliant with Kubernetes, OpenShift provides some additional features. One of
these features are Routes, which are very similar to Ingress. They are so similar, in
fact, the differences might be difficult to spot. First of all, Routes predates the intro‐
duction of the Ingress object in Kubernetes, so Routes can be considered a kind of
predecessor of Ingress.

However, some technical differences still exist between Routes and Ingress objects:

• A Route is picked up automatically by the OpenShift-integrated HAProxy load
balancer, so there is no requirement for an extra Ingress controller to be installed.
However, you can replace the build in an OpenShift load balancer, too.

• You can use additional TLS termination modes like re-encryption or pass-
through for the leg to the Service.

• Multiple weighted backends for splitting traffic can be used.
• Wildcard domains are supported.

Having said all that, you can use Ingress on OpenShift, too. So you have the choice
when using OpenShift.

Discussion
In this chapter, we covered the favorite Service Discovery mechanisms on Kubernetes.
Discovery of dynamic Pods from within the cluster is always achieved through the
Service resource, though different options can lead to different implementations. The
Service abstraction is a high-level cloud-native way of configuring low-level details
such as virtual IP addresses, iptables, DNS records, or environment variables. Service
Discovery from outside the cluster builds on top of the Service abstraction and focu‐
ses on exposing the Services to the outside world. While a NodePort provides the
basics of exposing Services, a highly available setup requires integration with the plat‐
form infrastructure provider.

Table 12-1 summarizes the various ways Service Discovery is implemented in Kuber‐
netes. This table aims to organize the various Service Discovery mechanisms in this
chapter from more straightforward to more complex. We hope it can help you build a
mental model and understand them better.

Discussion | 113

Table 12-1. Service Discovery mechanisms

Name Configuration Client type Summary
ClusterIP type: ClusterIP

.spec.selector

Internal The most common internal discovery mechanism

Manual IP type: ClusterIP
kind: Endpoints

Internal External IP discovery

Manual FQDN type: ExternalName
.spec.externalName

Internal External FQDN discovery

Headless Service type: ClusterIP
.spec.clusterIP: None

Internal DNS-based discovery without a virtual IP

NodePort type: NodePort External Preferred for non-HTTP traffic

LoadBalancer type: LoadBalancer External Requires supporting cloud infrastructure

Ingress kind: Ingress External L7/HTTP-based smart routing mechanism

This chapter gave a comprehensive overview of all the core concepts in Kubernetes
for accessing and discovering services. However, the journey does not stop here. With
the Knative project, new primitives on top of Kubernetes have been introduced,
which help application developers in advanced serving, building, and messaging.

In the context of Service Discovery, the Knative serving subproject is of particular
interest as it introduces a new Service resource with the same kind as the Services
introduced here (but with a different API group). Knative serving provides support
for application revision but also for a very flexible scaling of services behind a load
balancer. We give a short shout-out to Knative serving in “Knative Build” on page 230
and “Knative Serving” on page 210, but a full discussion of Knative is beyond the
scope of this book. In “More Information” on page 219, you will find links that point
to detailed information about Knative.

114 | Chapter 12: Service Discovery

More Information
• Service Discovery Example
• Kubernetes Services
• DNS for Services and Pods
• Debug Services
• Using Source IP
• Create an External Load Balancer
• Kubernetes NodePort versus LoadBalancer versus Ingress?
• Ingress
• Kubernetes Ingress versus OpenShift Route

More Information | 115

http://bit.ly/2TeXzcr
http://bit.ly/2q7AbUD
http://bit.ly/2Y5jUwL
http://bit.ly/2r0igMX
https://kubernetes.io/docs/tutorials/services/
http://bit.ly/2Gs05Wh
http://bit.ly/2GrVio2
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://red.ht/2JDDflo

CHAPTER 13

Self Awareness

Some applications need to be self-aware and require information about themselves.
The Self Awareness pattern describes the Kubernetes Downward API that provides a
simple mechanism for introspection and metadata injection to applications.

Problem
For the majority of use cases, cloud-native applications are stateless and disposable
without an identity relevant to other applications. However, sometimes even these
kinds of applications need to have information about themselves and the environ‐
ment they are running in. That may include information known only at runtime,
such as the Pod name, Pod IP address, and the hostname on which the application is
placed. Or, other static information defined at Pod level such as the specific resource
requests and limits, or some dynamic information such as annotations and labels that
could be altered by the user at runtime.

For example, depending on the resources made available to the container, you may
want to tune the application thread-pool size, or change the garbage collection algo‐
rithm or memory allocation. You may want to use the Pod name and the hostname
while logging information, or while sending metrics to a central server. You may want
to discover other Pods in the same namespace with a specific label and join them into
a clustered application. For these and other use cases, Kubernetes provides the Down‐
ward API.

Solution
The requirements that we’ve described and the following solution are not specific
only to containers but are present in any dynamic environment where the metadata
of resources changes. For example, AWS offers Instance Metadata and User Data

117

services that can be queried from any EC2 instance to retrieve metadata about the
EC2 instance itself. Similarly, AWS ECS provides APIs that can be queried by the con‐
tainers and retrieve information about the container cluster.

The Kubernetes approach is even more elegant and easier to use. The Downward API
allows passing metadata about the Pod to the containers and the cluster through envi‐
ronment variables and files. These are the same mechanisms we used for passing
application-related data from ConfigMaps and Secrets. But in this case, the data is not
created by us. Instead, we specify the keys that interests us, and Kubernetes populates
the values dynamically. Figure 13-1 gives an overview of how the Downward API
injects resource and runtime information into interested Pods.

Figure 13-1. Application introspection mechanisms

The main point here is that with the Downward API, the metadata is injected into
your Pod and made available locally. The application does not need to use a client and
interact with the Kubernetes API and can remain Kubernetes-agnostic. Let’s see how
easy it is to request metadata through environment variables in Example 13-1.

Example 13-1. Environment variables from Downward API

apiVersion: v1
kind: Pod
metadata:
 name: random-generator
spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 env:
 - name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP

118 | Chapter 13: Self Awareness

 - name: MEMORY_LIMIT
 valueFrom:
 resourceFieldRef:
 container: random-generator
 resource: limits.memory

The environment variable POD_IP is set from the properties of this Pod and come
into existence at Pod startup time.

The environment variable MEMORY_LIMIT is set to the value of the memory
resource limit of this container; the actual limit declaration is not shown here.

In this example we use fieldRef to access Pod-level metadata. The keys shown in
Table 13-1 are available for fieldRef.fieldPath both as environment variables and
downwardAPI volumes.

Table 13-1. Downward API information available in fieldRef.fieldPath

Name Description

spec.nodeName Name of node hosting the Pod

status.hostIP IP address of node hosting the Pod

metadata.name Pod name

metadata.namespace Namespace in which the Pod is running

status.podIP Pod IP address

spec.serviceAccountName ServiceAccount that is used for the Pod

metadata.uid Unique ID of the Pod

metadata.labels['key'] Value of the Pod’s label key

metadata.annotations['key'] Value of the Pod’s annotation key

Similarly to fieldRef, we can use resourceFieldRef to access metadata specific to a
container belonging to the Pod. This metadata is specific to a container which can be
specified with resourceFieldRef.container. When used as environment variable
then by default the current container is used. The possible keys for resourceFiel
dRef.resource are shown in Table 13-2.

Table 13-2. Downward API information available in resourceFieldRef.resource

Name Description

requests.cpu A container’s CPU request

limits.cpu A container’s CPU limit

limits.memory A container’s memory request

requests.memory A container’s memory limit

Solution | 119

A user can change certain metadata such as labels and annotations while a Pod is
running. Unless the Pod is restarted, environment variables will not reflect such a
change. But downwardAPI volumes can reflect updates to labels and annotations. In
addition to the individual fields described previously, downwardAPI volumes can cap‐
ture all Pod labels and annotations into files with metadata.labels and meta
data.annotations references. Example 13-2 shows how such volumes can be used.

Example 13-2. Downward API through volumes

apiVersion: v1
kind: Pod
metadata:
 name: random-generator
spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 volumeMounts:
 - name: pod-info
 mountPath: /pod-info
 volumes:
 - name: pod-info
 downwardAPI:
 items:
 - path: labels
 fieldRef:
 fieldPath: metadata.labels
 - path: annotations
 fieldRef:
 fieldPath: metadata.annotations

Values from the Downward API can be mounted as files into the Pod.

The file labels contain all labels, line by line, in the format name=value. This file
gets updated when labels are changing.

The annotations file holds all annotations in the same format as the labels.

With volumes, if the metadata changes while the Pod is running, it is reflected in the
volume files. But it is still up to the consuming application to detect the file change
and read the updated data accordingly. If such a functionality is not implemented in
the application, a Pod restart still might be required.

120 | Chapter 13: Self Awareness

Discussion
On many occasions, an application needs to be self-aware and have information
about itself and the environment in which it is running. Kubernetes provides nonin‐
trusive mechanisms for introspection and metadata injection. One of the downsides
of the Downward API is that it offers a fixed number of keys that can be referenced. If
your application needs more data, especially about other resources or cluster-related
metadata, it has be queried on the API Server.

This technique is used by many applications that query the API Server to discover
other Pods in the same namespace that have certain labels or annotations. Then the
application may form a cluster with the discovered Pods and sync state, for example.
It is also used by monitoring applications to discover Pods of interest and then start
instrumenting them.

Many client libraries are available for different languages to interact with the Kuber‐
netes API Server to obtain more self-referring information that goes beyond what the
Downward API provides.

More Information
• Self Awareness Example
• Expose Pod Information to Containers Through Files
• Expose Pod Information to Containers Through Environment Variables
• Amazon ECS Container Agent Introspection
• Instance Metadata and User Data

Discussion | 121

http://bit.ly/2TYBXpc
http://bit.ly/2CoZyFy
http://bit.ly/2JpuHPe
https://amzn.to/2JnVXgX
http://amzn.to/1Cu0fTl

PART III

Structural Patterns

Container images and containers are similar to classes and objects in the object-
oriented world. Container images are the blueprint from which containers are instan‐
tiated. But these containers do not run in isolation; they run in other abstractions
such as Pods, which provide unique runtime capabilities.

The patterns in this category are focused on structuring and organizing containers in
a Pod to satisfy different use cases. The forces that affect containers in Pods result in
the patterns discussed in the following chapters:

• Chapter 14, Init Container, introduces a separate lifecycle for initialization-related
tasks and the main application containers.

• Chapter 15, Sidecar, describes how to extend and enhance the functionality of a
pre-existing container without changing it.

• Chapter 16, Adapter, takes an heterogeneous system and makes it conform to a
consistent unified interface that can be consumed by the outside world.

• Chapter 17, Ambassador, describes a proxy that decouples access to external
services.

CHAPTER 14

Init Container

Init Containers enable separation of concerns by providing a separate lifecycle for
initialization-related tasks distinct from the main application containers. In this chap‐
ter, we look closely at this fundamental Kubernetes concept that is used in many other
patterns when initialization logic is required.

Problem
Initialization is a widespread concern in many programming languages. Some lan‐
guages have it covered as part of the language, and some use naming conventions and
patterns to indicate a construct as the initializer. For example, in the Java program‐
ming language, to instantiate an object that requires some setup, we use the construc‐
tor (or static blocks for fancier use cases). Constructors are guaranteed to run as the
first thing within the object, and they are guaranteed to run only once by the manag‐
ing runtime (this is just an example; we don’t go into detail here on the different lan‐
guages and corner cases). Moreover, we can use the constructor to validate
preconditions such as mandatory parameters. We also use constructors to initialize
the instance fields with incoming arguments or default values.

Init Containers are similar, but at Pod level rather than class level. So if you have one
or more containers in a Pod that represent your main application, these containers
may have prerequisites before starting up. These may include setting up special per‐
missions on the filesystem, database schema setup, or application seed data installa‐
tion. Also, this initializing logic may require tools and libraries that cannot be
included in the application image. For security reasons, the application image may
not have permissions to perform the initializing activities. Alternatively, you may
want to delay the startup of your application until an external dependency is satisfied.
For all these kinds of use cases, Kubernetes uses init containers as implementation of

125

this pattern, which allow separation of initializing activities from the main applica‐
tion duties.

Solution
Init Containers in Kubernetes are part of the Pod definition, and they separate all con‐
tainers in a Pod into two groups: init containers and application containers. All init
containers are executed in a sequence, one by one, and all of them have to terminate
successfully before the application containers are started up. In that sense, init con‐
tainers are like constructor instructions in a Java class that help object initialization.
Application containers, on the other hand, run in parallel, and the startup order is
arbitrary. The execution flow is demonstrated in Figure 14-1.

Figure 14-1. Init and application containers in a Pod

Typically, init containers are expected to be small, run quickly, and complete success‐
fully, except when an init container is used to delay the start of a Pod while waiting
for a dependency, in which case it may not terminate until the dependency is satis‐
fied. If an init container fails, the whole Pod is restarted (unless it is marked with
RestartNever), causing all init containers to run again. Thus, to prevent any side
effects, making init containers idempotent is a good practice.

On one hand, init containers have all of the same capabilities as application contain‐
ers: all of the containers are part of the same Pod, so they share resource limits, vol‐
umes, and security settings, and end up placed on the same node. On the other hand,
they have slightly different health-checking and resource-handling semantics. There
is no readiness check for init containers, as all init containers must terminate success‐
fully before the Pod startup processes can continue with application containers.

126 | Chapter 14: Init Container

Init containers also affect the way Pod resource requirements are calculated for
scheduling, autoscaling, and quota management. Given the ordering in the execution
of all containers in a Pod (first, init containers run a sequence, then all application
containers run in parallel), the effective Pod-level request and limit values become the
highest values of the following two groups:

• The highest init container request/limit value
• The sum of all application container values for request/limit

A consequence of this behavior is that if you have init containers with high resource
demands and application containers with low resource demands, the Pod-level
request and limit values affecting the scheduling will be based on the higher value of
the init containers. This setup is not resource-efficient. Even if init containers run for
a short period of time and there is available capacity on the node for the majority of
the time, no other Pod can use it.

Moreover, init containers enable separation of concerns and allow keeping containers
single-purposed. An application container can be created by the application engineer
and focus on the application logic only. A deployment engineer can author an init
containers and focus on configuration and initialization tasks only. We demonstrate
this in Example 14-1, which has one application container based on an HTTP server
that serves files.

The container provides a generic HTTP-serving capability and does not make any
assumptions about where the files to serve might come from for the different use
cases. In the same Pod, an init container provides Git client capability, and its sole
purpose is to clone a Git repo. Since both containers are part of the same Pod, they
can access the same volume to share data. We use the same mechanism to share the
cloned files from the init container to the application container.

Example 14-1 shows an init container that copies data into an empty volume.

Example 14-1. Init Container

apiVersion: v1
kind: Pod
metadata:
 name: www
 labels:
 app: www
spec:
 initContainers:
 - name: download
 image: axeclbr/git
 command:
 - git

Solution | 127

 - clone
 - https://github.com/mdn/beginner-html-site-scripted
 - /var/lib/data
 volumeMounts:
 - mountPath: /var/lib/data
 name: source
 containers:
 - name: run
 image: docker.io/centos/httpd
 ports:
 - containerPort: 80
 volumeMounts:
 - mountPath: /var/www/html
 name: source
 volumes:
 - emptyDir: {}
 name: source

Clone an external Git repository into the mounted directory

Shared volume used by both init container and the application container

Empty directory used on the node for sharing data

We could have achieved the same effect by using ConfigMap or PersistentVolumes,
but wanted to demonstrate how init containers work here. This example illustrates a
typical usage pattern of an init container sharing a volume with the main container.

Keep a Pod running

For debugging the outcome of init containers, it helps if the com‐
mand of the application container is replaced temporarily with a
dummy sleep command so that you have time to examine the sit‐
uation. This trick is particularly useful if your init container fails to
start up and your application fails to start because the configura‐
tion is missing or broken. The following command within the Pod
declaration gives you an hour to debug the volumes mounted by
entering the Pod with kubectl exec -it <Pod> sh:

 command:
 - /bin/sh
 - "-c"
 - "sleep 3600"

A similar effect can be achieved by using a Sidecar as described next in Chapter 15,
where the HTTP server container and the Git container are running side by side as
application containers. But with the Sidecar approach, there is no way of knowing
which container will run first, and Sidecar is meant to be used when containers run

128 | Chapter 14: Init Container

side by side continuously (as in Example 15-1, where the Git synchronizer container
continuously updates the local folder). We could also use a Sidecar and Init Container
together if both a guaranteed initialization and a constant update of the data are
required.

More Initialization Techniques
As you have seen, an init container is a Pod-level construct that gets activated after a
Pod has been started. A few other related techniques used to initialize Kubernetes
resources are different from init containers and worth listing here for completeness:

Admission controllers
These are a set of plugins that intercept every request to the Kubernetes API
Server before persistence of the object and can mutate or validate it. There are
many controllers for applying checks, enforcing limits, and setting default values,
but they are all compiled into the kube-apiserver binary, and configured by a
cluster administrator when the API Server starts up. This plugin system is not
very flexible, which is why admission webhooks were added to Kubernetes.

Admission webhooks
These components are external admission controllers that perform HTTP call‐
backs for any matching request. There are two types of admission webhooks: the
mutating webhook (which can change resources to enforce custom defaults) and
the validating webhook (which can reject resources to enforce custom admission
policies). This concept of external controllers allows admission webhooks to be
developed out of Kubernetes and configured at runtime.

Initializers
Initializers are useful for admins to force policies or to inject defaults by specify‐
ing a list of pending preinitialization tasks, stored in every object’s metadata.
Then custom initializer controllers whose names correspond to the names of the
tasks perform the tasks. Only after all initialization tasks are completed fully does
the API object become visible to regular controllers.

PodPresets
PodPresets are evaluated by another admission controller, which helps inject
fields specified in a matching PodPreset into Pods at creation time. The fields can
include volumes, volume mounts, or environment variables. Thus, PodPresets
inject additional runtime requirements into a Pod at creation time using label
selectors to specify the Pods to which a given PodPreset applies. PodPresets allow
Pod template authors to automate adding repetitive information required for
multiple Pods.

There are many techniques for initializing Kubernetes resources. However, these
techniques differ from admission webhooks because they validate and mutate resour‐
ces at creation time. You could use these techniques, for example, to inject an init

Solution | 129

container into any Pod that doesn’t have one already. In contrast, the Init Container
pattern discussed in this chapter is something that activates and performs its respon‐
sibilities during startup of the Pod. In the end, the most significant difference is that
init containers is for developers deploying on Kubernetes, whereas the techniques
described here help administrators control and manage the container initialization
process.

Discussion
So why separate containers in a Pod into two groups? Why not just use an application
container in a Pod for initialization if required? The answer is that these two groups
of containers have different lifecycles, purposes, and even authors in some cases.

Having init containers run before application containers, and more importantly, hav‐
ing init containers run in stages that progress only when the current init container
completes successfully, means you can be sure at every step of the initialization that
the previous step has completed successfully, and you can progress to the next stage.
Application containers, in contrast, run in parallel and do not provide the same guar‐
antees as init containers. With this distinction in hand, we can create containers
focused on a single initialization or application-focused task, and organize them in
Pods.

More Information
• Init Container Example
• Init Containers
• Configuring Pod Initialization
• The Initializer Pattern in JavaScript
• Object Initialization in Swift
• Using Admission Controllers
• Dynamic Admission Control
• How Kubernetes Initializers Work
• Pod Preset
• Inject Information into Pods Using a PodPreset
• Kubernetes Initializer Tutorial

130 | Chapter 14: Init Container

http://bit.ly/2TW7ckN
http://bit.ly/2TR7OsD
http://bit.ly/2TWMEbL
http://bit.ly/2TYF14G
https://apple.co/2FdSLPN
http://bit.ly/2ztKrJM
http://bit.ly/2DwR2Y3
http://bit.ly/2TeYz0k
https://kubernetes.io/docs/concepts/workloads/pods/podpreset/
http://bit.ly/2Fh7QzV
http://bit.ly/2FfEu4W

CHAPTER 15

Sidecar

A Sidecar container extends and enhances the functionality of a preexisting container
without changing it. This pattern is one of the fundamental container patterns that
allows single-purpose containers to cooperate closely together. In this chapter, we
learn all about the basic Sidecar concept. The specialized follow-up patterns, Adapter
and Ambassador, are discussed in Chapter 16 and Chapter 17, respectively.

Problem
Containers are a popular packaging technology that allows developers and system
administrators to build, ship, and run applications in a unified way. A container rep‐
resents a natural boundary for a unit of functionality with a distinct runtime, release
cycle, API, and team owning it. A proper container behaves like a single Linux pro‐
cess—solves one problem and does it well—and is created with the idea of replacea‐
bility and reuse. This last part is essential as it allows us to build applications more
quickly by leveraging existing specialized containers.

Today, to make an HTTP call, we don’t have to write a client library, but use an exist‐
ing one. In the same way, to serve a website, we don’t have to create a container for a
web server, but use an existing one. This approach allows developers to avoid rein‐
venting the wheel and create an ecosystem with a smaller number of better-quality
containers to maintain. However, having single-purpose reusable containers requires
ways of extending the functionality of a container and a means for collaboration
among containers. The Sidecar pattern describes this kind of collaboration where a
container enhances the functionality of another preexisting container.

131

Solution
In Chapter 1 we described how the Pod primitive allows us to combine multiple con‐
tainers into a single unit. Behind the scenes, at runtime, a Pod is a container as well,
but it starts as a paused process (literally with the pause command) before all other
containers in the Pod. It is not doing anything other than holding all the Linux name‐
spaces the application containers use to interact throughout the Pod’s lifetime. Apart
from this implementation detail, what is more interesting is all the characteristics that
the Pod abstraction provides.

The Pod is such a fundamental primitive that it is present in many cloud-native plat‐
forms under different names, but always with similar capabilities. A Pod as the
deployment unit puts certain runtime constraints on the containers belonging to it.
For example, all containers end up deployed to the same node, and they share the
same Pod lifecycle. In addition, a Pod allows its containers to share volumes and
communicate over the local network or host IPC. These are the reasons users put a
group of containers into a Pod. Sidecar (in some places also called Sidekick) is used to
describe the scenario of a container being put into a Pod to extend and enhance
another container’s behavior.

A typical example used to demonstrate this pattern is with an HTTP server and a Git
synchronizer. The HTTP server container is focused only on serving files over HTTP
and does not know how and where the files are coming from. Similarly, the Git syn‐
chronizer container’s only goal is to sync data from a Git server to the local filesys‐
tem. It does not care what happens to the files once synced, and its only concern is
keeping the local folder in sync with the remote Git server. Example 15-1 shows a Pod
definition with these two containers configured to use a volume for file exchange.

Example 15-1. Pod with Sidecar

apiVersion: v1
kind: Pod
metadata:
 name: web-app
spec:
 containers:
 - name: app
 image: docker.io/centos/httpd
 ports:
 - containerPort: 80
 volumeMounts:
 - mountPath: /var/www/html
 name: git
 - name: poll
 image: axeclbr/git
 volumeMounts:
 - mountPath: /var/lib/data

132 | Chapter 15: Sidecar

 name: git
 env:
 - name: GIT_REPO
 value: https://github.com/mdn/beginner-html-site-scripted
 command:
 - "sh"
 - "-c"
 - "git clone $(GIT_REPO) . && watch -n 600 git pull"
 workingDir: /var/lib/data
 volumes:
 - emptyDir: {}
 name: git

Main application container serving files over HTTP

Sidecar container running in parallel and pulling data from a Git server

Shared location for exchanging data between the Sidecar and main application
container

This example shows how the Git synchronizer enhances the HTTP server’s behavior
with content to serve and keeps it synchronized. We could also say that both contain‐
ers collaborate and are equally important, but in a Sidecar pattern, there is a main
container and a helper container that enhances the collective behavior. Typically, the
main container is the first one listed in the containers list, and it represents the
default container (e.g., when we run the command: kubectl exec).

This simple pattern, illustrated in Figure 15-1, allows runtime collaboration of con‐
tainers, and at the same time, enables separation of concerns for both containers,
which might be owned by separate teams, using different programming languages,
with different release cycles, etc. It also promotes replaceability and reuse of contain‐
ers as the HTTP server, and the Git synchronizer can be reused in other applications
and different configuration either as a single container in a Pod or again in collabora‐
tion with other containers.

Figure 15-1. Sidecar pattern

Solution | 133

Discussion
Previously we said that container images are like classes, and containers are like the
objects in object-oriented programming (OOP). If we continue this analogy, extend‐
ing a container to enhance its functionality is similar to inheritance in OOP, and hav‐
ing multiple containers collaborating in a Pod is similar to composition in OOP.
While both of these approaches allow code reuse, inheritance involves tighter cou‐
pling between containers and represents an “is-a” relationship between containers.

On the other hand, a composition in a Pod represents a “has-a” relationship, and it is
more flexible because it doesn’t couple containers together at build time, giving the
ability to later swap containers in the Pod definition. On the other hand, composi‐
tions in Pods mean you have multiple containers (processes) running, health
checked, restarted, and consuming resources as the main application container does.
Modern Sidecar containers are small and consume minimal resources, but you have
to decide whether it is worth running a separate process or whether it is better to
merge it into the main container.

From a different point of view, container composition is similar to aspect-oriented
programming, in that with additional containers we introduce orthogonal capabilities
to the Pod without touching the main container. In recent months, use of the Sidecar
pattern has become more and more common, especially for handling networking,
monitoring, and tracing aspects of services, where every service ships Sidecar con‐
tainers as well.

More Information
• Sidecar Example
• Design Patterns for Container-Based Distributed Systems
• Prana: A Sidecar for your Netflix PaaS-based Applications and Services
• Tin-Can Phone: Patterns to Add Authorization and Encryption to Legacy Appli‐

cations
• The Almighty Pause Container

134 | Chapter 15: Sidecar

http://bit.ly/2FqSZUV
http://bit.ly/2Odan24
http://bit.ly/2Y9PRnS
https://www.feval.ca/posts/tincan-phone/
https://www.feval.ca/posts/tincan-phone/
http://bit.ly/2FOYH21

CHAPTER 16

Adapter

The Adapter pattern takes a heterogeneous containerized system and makes it con‐
form to a consistent, unified interface with a standardized and normalized format
that can be consumed by the outside world. The Adapter pattern inherits all its char‐
acteristics from the Sidecar, but has the single purpose of providing adapted access to
the application.

Problem
Containers allow us to package and run applications written in different libraries and
languages in a unified way. Today, it is common to see multiple teams using different
technologies and creating distributed systems composed of heterogeneous compo‐
nents. This heterogeneity can cause difficulties when all components have to be
treated in a unified way by other systems. The Adapter pattern offers a solution by
hiding the complexity of a system and providing unified access to it.

Solution
The best way to illustrate this pattern is through an example. A major prerequisite for
successfully running and supporting distributed systems is providing detailed moni‐
toring and alerting. Moreover, if we have a distributed system composed of multiple
services we want to monitor, we may use an external monitoring tool to poll metrics
from every service and record them.

However, services written in different languages may not have the same capabilities
and may not expose metrics in the same format expected by the monitoring tool. This
diversity creates a challenge for monitoring such a heterogeneous application from a
single monitoring solution that expects a unified view of the whole system. With the
Adapter pattern, it is possible to provide a unified monitoring interface by exporting

135

metrics from various application containers into one standard format and protocol.
In Figure 16-1, an Adapter container translates locally stored metrics information
into the external format the monitoring server understands.

Figure 16-1. Adapter pattern

With this approach, every service represented by a Pod, in addition to the main appli‐
cation container, would have another container that knows how to read the custom
application-specific metrics and expose them in a generic format understandable by
the monitoring tool. We could have one Adapter container that knows how to export
Java-based metrics over HTTP, and another Adapter container in a different Pod that
exposes Python-based metrics over HTTP. For the monitoring tool, all metrics would
be available over HTTP, and in a common normalized format.

For a concrete implementation of this pattern, let’s revisit our sample random genera‐
tor application and create the adapter shown in Figure 16-1. When appropriately
configured, it writes out a log file with the random-number generator, and includes
the time it took to create the random number. We want to monitor this time with
Prometheus. Unfortunately, the log format doesn’t match the format Prometheus
expects. Also, we need to offer this information over an HTTP endpoint so that a
Prometheus server can scrape the value.

For this use case, an Adapter is a perfect fit: a Sidecar container starts a small HTTP
server, and on every request, reads the custom log file and transforms it into a
Prometheus-understandable format. Example 16-1 shows a Deployment with such an
Adapter. This configuration allows a decoupled Prometheus monitoring setup
without the main application needing to know anything about Prometheus. The full
example in our GitHub repository demonstrates this setup together with a Prome‐
theus installation.

136 | Chapter 16: Adapter

Example 16-1. Adapter delivering Prometheus-conformant output

apiVersion: apps/v1
kind: Deployment
metadata:
 name: random-generator
spec:
 replicas: 1
 selector:
 matchLabels:
 app: random-generator
 template:
 metadata:
 labels:
 app: random-generator
 spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 env:
 - name: LOG_FILE
 value: /logs/random.log
 ports:
 - containerPort: 8080
 protocol: TCP
 volumeMounts:
 - mountPath: /logs
 name: log-volume
 # --
 - image: k8spatterns/random-generator-exporter
 name: prometheus-adapter
 env:
 - name: LOG_FILE
 value: /logs/random.log
 ports:
 - containerPort: 9889
 protocol: TCP
 volumeMounts:
 - mountPath: /logs
 name: log-volume
 volumes:
 - name: log-volume
 emptyDir: {}

Main application container with the random generator service exposed on 8080

Path to the log file containing the timing information about random-number
generation

Solution | 137

Directory shared with the Prometheus Adapter container

Prometheus exporter image, exporting on port 9889

Path to the same log file to which the main application is logging to

Shared volume is also mounted in the Adapter container

Files are shared via an emptyDir volume from the node’s filesystem

Another use of this pattern is logging. Different containers may log information in
different formats and level of detail. An Adapter can normalize that information,
clean it up, enrich it with contextual information by using the Self Awareness pattern
described in Chapter 13, and then make it available for pickup by the centralized log
aggregator.

Discussion
The Adapter is a specialization of the Sidecar pattern explained in Chapter 15. It acts
as a reverse proxy to a heterogeneous system by hiding its complexity behind a uni‐
fied interface. Using a distinct name different from the generic Sidecar pattern allows
us to more precisely communicate the purpose of this pattern.

In the next chapter, you’ll get to know another Sidecar variation: the Ambassador pat‐
tern, which acts as a proxy to the outside world.

More Information
• Adapter Example
• The Distributed System Toolkit: Container Patterns for Modular Distributed Sys‐

tem Design

138 | Chapter 16: Adapter

http://bit.ly/2HvFF3Y
https://bit.ly/2U2iWD9
https://bit.ly/2U2iWD9

CHAPTER 17

Ambassador

The Ambassador pattern is a specialized Sidecar responsible for hiding complexity
and providing a unified interface for accessing services outside the Pod. In this chap‐
ter, we see how the Ambassador pattern can act as a proxy and decouple the main Pod
from directly accessing external dependencies.

Problem
Containerized services don’t exist in isolation and very often have to access other
services that may be difficult to reach in a reliable way. The difficulty in accessing
other services may be due to dynamic and changing addresses, the need for load bal‐
ancing of clustered service instances, an unreliable protocol, or difficult data formats.
Ideally, containers should be single-purposed and reusable in different contexts. But if
we have a container that provides some business functionality and consumes an
external service in a specialized way, the container will have more than one
responsibility.

Consuming the external service may require a special service discovery library that
we do not want to put in our container. Or we may want to swap different kinds of
services by using different kinds of service discovery libraries and methods. This
technique of abstracting and isolating the logic for accessing other services in the out‐
side world is the goal of this Ambassador pattern.

Solution
To demonstrate the pattern, we will use a cache for an application. Accessing a local
cache in the development environment may be a simple configuration, but in the pro‐
duction environment, we may need a client configuration that can connect to the dif‐
ferent shards of the cache. Another example would be consuming a service by

139

looking it up in a registry and performing client-side service discovery. A third exam‐
ple would be consuming a service over a nonreliable protocol such as HTTP, so to
protect our application we have to use circuit-breaker logic, configure timeouts, per‐
form retries, and more.

In all of these cases, we can use an Ambassador container that hides the complexity of
accessing the external services and provides a simplified view and access to the main
application container over localhost. Figures 17-1 and 17-2 show how an Ambassador
Pod can decouple access to a key-value store by connecting to an Ambassador con‐
tainer listening on a local port. In Figure 17-1, we see how data access can be delega‐
ted to a fully distributed remote store like Etcd.

Figure 17-1. Ambassador for accessing a remote distributed cache

For development purposes, this Ambassador container can be easily exchanged with a
locally running in-memory key-value store like memcached (as shown in
Figure 17-2).

Figure 17-2. Ambassador for accessing a local cache

The benefits of this pattern are similar to those of the Sidecar pattern—both allow
keeping containers single-purposed and reusable. With such a pattern, our applica‐
tion container can focus on its business logic and delegate the responsibility and
specifics of consuming the external service to another specialized container. This also
allows creating specialized and reusable Ambassador containers that can be combined
with other application containers.

Example 17-1 shows an Ambassador that runs parallel to a REST service. Before
returning its response, the REST service logs the generated data by sending it to a
fixed URL: http://localhost:9009. The Ambassador process listens in on this port and
processes the data. In this example, it prints the data out just to the console, but it

140 | Chapter 17: Ambassador

could also do something more sophisticated like forward the data to a full logging
infrastructure. For the REST service, it doesn’t matter what happens to the log data,
and you can easily exchange the Ambassador by reconfiguring the Pod without
touching the main container.

Example 17-1. Ambassador processing log output

apiVersion: v1
kind: Pod
metadata:
 name: random-generator
 labels:
 app: random-generator
spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: main
 env:
 - name: LOG_URL
 value: http://localhost:9009
 ports:
 - containerPort: 8080
 protocol: TCP
 - image: k8spatterns/random-generator-log-ambassador
 name: ambassador

Main application container providing a REST service for generating random
numbers

Connection URL for communicating with the Ambassador via localhost

Ambassador running in parallel and listening on port 9009 (which is not exposed
to the outside of the Pod)

Discussion
At a higher level, the Ambassador is a Sidecar pattern. The main difference between
Ambassador and Sidecar is that an Ambassador does not enhance the main applica‐
tion with additional capability. Instead, it acts merely as a smart proxy to the outside
world, where it gets its name from (this pattern is sometimes referred to as the Proxy
pattern as well).

Discussion | 141

More Information
• Ambassador Example
• How to Use the Ambassador Pattern to Dynamically Configure Services
• Dynamic Docker Links with an Ambassador Powered
• Link via an Ambassador Container
• Modifications to the CoreOS Ambassador Pattern

142 | Chapter 17: Ambassador

http://bit.ly/2FpjBFS
https://do.co/2HxGIQG
http://bit.ly/2TQ1uBO
https://dockr.ly/2UdTGKc
http://bit.ly/2Ju4zmb

PART IV

Configuration Patterns

Every application needs to be configured, and the easiest way to do so is by storing
configurations in the source code. This approach has the side effect of configuration
and code living and dying together, as described by the Immutable Server concept.
However, we still need the flexibility to adapt configuration without recreating the
application image. In fact, this recreation would be time-consuming and an antipat‐
tern for a continuous delivery approach, where the application is created once and
then moves unaltered through the various stages of the deployment pipeline until it
reaches production.

In such a scenario, how would we adapt an application to the different setups of
development, integration, and production environments? The answer is to use exter‐
nal configuration data, which is different for each environment. The patterns in the
following chapters are all about customizing and adapting applications with external
configurations for various environments:

• Chapter 18, EnvVar Configuration, uses environment variables to store configu‐
ration data.

• Chapter 19, Configuration Resource, uses Kubernetes resources like ConfigMaps
or Secrets to store configuration information.

• Chapter 20, Immutable Configuration, brings immutability to large configuration
sets by putting it into containers linked to the application at runtime.

• Chapter 21, Configuration Template, is useful when large configuration files need
to be managed for various environments that differ only slightly.

http://bit.ly/2CoH5cj

CHAPTER 18

EnvVar Configuration

In this EnvVar Configuration pattern, we look into the simplest way to configure
applications. For small sets of configuration values, the easiest way to externalize con‐
figuration is by putting them into universally supported environment variables. We
see different ways of declaring environment variables in Kubernetes but also the limi‐
tations of using environment variables for complex configurations.

Problem
Every nontrivial application needs some configuration for accessing data sources,
external services, or production-level tuning. And we knew well before The Twelve-
Factor App manifesto that it is a bad thing to hardcode configurations within the
application. Instead, the configuration should be externalized so that we can change it
even after the application has been built. That provides even more value for contain‐
erized applications that enable and promote sharing of immutable application arti‐
facts. But how can this be done best in a containerized world?

Solution
The Twelve-Factor App manifesto recommends using environment variables for stor‐
ing application configurations. This approach is simple and works for any environ‐
ment and platform. Every operating system knows how to define environment
variables and how to propagate them to applications, and every programming lan‐
guage also allows easy access to these environment variables. It is fair to claim that
environment variables are universally applicable. When using environment variables,
a typical usage pattern is to define hardcoded default values during build time, which
we then can overwrite at runtime. Let’s see some concrete examples of how this works
in Docker and Kubernetes.

145

For Docker images, environment variables can be defined directly in Dockerfiles with
the ENV directive. You can define them line by line or all in a single line, as shown in
Example 18-1.

Example 18-1. Example Dockerfile with environment variables

FROM openjdk:11
ENV PATTERN "EnvVar Configuration"
ENV LOG_FILE "/tmp/random.log"
ENV SEED "1349093094"

Alternatively:
ENV PATTERN="EnvVar Configuration" LOG_FILE=/tmp/random.log SEED=1349093094
...

Then a Java application running in such a container can easily access the variables
with a call to the Java standard library, as shown in Example 18-2.

Example 18-2. Reading environment variables in Java

public Random initRandom() {
 long seed = Long.parseLong(System.getenv("SEED"));
 return new Random(seed);
}

Initializes a random-number generator with a seed from an EnvVar

Directly running such an image will use the default hardcoded values. But in most
cases, you want to override these parameters from outside the image.

When running such an image directly with Docker, environment variables can be set
from the command line by calling Docker, as in Example 18-3.

Example 18-3. Set environment variables when starting a Docker container

docker run -e PATTERN="EnvVarConfiguration" \
 -e LOG_FILE="/tmp/random.log" \
 -e SEED="147110834325" \
 k8spatterns/random-generator:1.0

For Kubernetes, these types of environment variables can be set directly in the Pod
specification of a controller like Deployment or ReplicaSet (as in Example 18-4).

Example 18-4. Deployment with environment variables set

apiVersion: v1
kind: Pod

146 | Chapter 18: EnvVar Configuration

metadata:
 name: random-generator
spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 env:
 - name: LOG_FILE
 value: /tmp/random.log
 - name: PATTERN
 valueFrom:
 configMapKeyRef:
 name: random-generator-config
 key: pattern
 - name: SEED
 valueFrom:
 secretKeyRef:
 name: random-generator-secret
 key: seed

EnvVar with a literal value

EnvVar from a ConfigMap

ConfigMap’s name

Key within the ConfigMap to look for the EnvVar value

EnvVar from a Secret (lookup semantic is the same as for a ConfigMap)

In such a Pod template, you not only can attach values directly to environment vari‐
ables (like for LOG_FILE), but also can use a delegation to Kubernetes Secrets (for sen‐
sitive data) and ConfigMaps (for non-sensitive configuration). The advantage of
ConfigMap and Secret indirection is that the environment variables can be managed
independently from the Pod definition. Secret and ConfigMap and their pros and
cons are explained in detail in Chapter 19, Configuration Resource.

In the preceding example, the SEED variable comes from a Secret resource. While that
is a perfectly valid use of Secret, it is also important to point out that environment
variables are not secure. Putting sensitive, readable information into environment
variables makes this information easy to read, and it may even leak into logs.

Solution | 147

About Default Values
Default values make life easier, as they take away the burden of selecting a value for a
configuration parameter you might not even know exists. They also play a significant
role in the convention over configuration paradigm. However, defaults are not always a
good idea. Sometimes they might even be an antipattern for an evolving application.

This is because changing default values retrospectively is a difficult task. First, chang‐
ing default values means replacing them within the code, which requires a rebuild.
Second, people relying on defaults (either by convention or consciously) will always
be surprised when a default value changes. We have to communicate the change, and
the user of such an application probably has to modify the calling code as well.

Changes in default values, however, often make sense, because it is hard to get default
values right from the very beginning. It’s essential that we consider a change in a
default values as a major change, and if semantic versioning is in use, such a modifica‐
tion justifies a bump in the major version number. If unsatisfied with a given default
value, it is often better to remove the default altogether and throw an error if the user
does not provide a configuration value. This will at least break the application early
and prominently instead of it doing something different and unexpected silently.

Considering all these issues, it is often the best solution to avoid default values from
the very beginning if you cannot be 90% sure that a reasonable default will last for a
long time. Passwords or database connection parameters are good candidates for not
providing default values, as they depend highly on the environment and often cannot
be reliably predicted. Also, if we do not use default values, the configuration informa‐
tion has to be provided explicitly, which serves as documentation too.

Discussion
Environment variables are easy to use, and everybody knows about them. This con‐
cept maps smoothly to containers, and every runtime platform supports environment
variables. But environment variables are not secure, and they are good only for a
decent number of configuration values. And when there are a lot of different parame‐
ters to configure, the management of all these environment variables becomes
unwieldy.

In these cases, many people use an extra level of indirection and put configuration
into various configuration files, one for each environment. Then a single environ‐
ment variable is used to select one of these files. Profiles from Spring Boot are an
example of this approach. Since these profile configuration files are typically stored
within the application itself, which is within the container, it couples the configura‐
tion tightly with the application. This often leads to configuration for development

148 | Chapter 18: EnvVar Configuration

and production ending up side by side in the same Docker image, which requires an
image rebuild for every change in either environment. All that shows us that environ‐
ment variables are suitable for small sets of configurations only.

The patters Configuration Resource, Immutable Configuration, and Configuration
Template described in the following chapters are good alternatives when more com‐
plex configuration needs come up.

Environment variables are universally applicable, and because of that, we can set
them at various levels. This option leads to fragmentation of the configuration defini‐
tions and makes it hard to track for a given environment variable where it comes
from. When there is no central place where all environments variables are defined, it
is hard to debug configuration issues.

Another disadvantage of environment variables is that they can be set only before an
application starts, and we cannot change them later. On the one hand, it’s a drawback
that you can’t change configuration “hot” during runtime to tune the application.
However, many see this as an advantage, as it promotes immutability even to the con‐
figuration. Immutability here means you throw away the running application con‐
tainer and start a new copy with a modified configuration, very likely with a smooth
Deployment strategy like rolling updates. That way, you are always in a defined and
well-known configuration state.

Environment variables are simple to use, but are applicable mainly for simple use
cases and have limitations for complex configuration requirements. The next patterns
show how to overcome those limitations.

More Information
• EnvVar Configuration Example
• The Twelve-Factor App
• Immutable Server
• Spring Boot Profiles for Using Sets of Configuration Values

More Information | 149

http://bit.ly/2YcUtJC
https://12factor.net/config
https://martinfowler.com/bliki/ImmutableServer.html
http://bit.ly/2YcSKUE

CHAPTER 19

Configuration Resource

Kubernetes provides native configuration resources for regular and confidential data,
which allows decoupling of the configuration lifecycle from the application lifecycle.
The Configuration Resource pattern explains the concepts of ConfigMap and Secret
resources, and how we can use them, as well as their limitations.

Problem
One significant disadvantage of the EnvVar Configuration pattern is that it’s suitable
for only a handful of variables and simple configurations. Another one is that because
environment variables can be defined in various places, it is often hard to find the
definition of a variable. And even if you find it, you can’t be entirely sure it is not
overridden in another location. For example, environment variables defined within a
Docker image can be replaced during runtime in a Kubernetes Deployment resource.

Often, it is better to keep all the configuration data in a single place and not scattered
around in various resource definition files. But it does not make sense to put the con‐
tent of a whole configuration file into an environment variable. So some extra indi‐
rection would allow more flexibility, which is what Kubernetes Configuration
Resources offer.

Solution
Kubernetes provides dedicated Configuration Resources that are more flexible than
pure environment variables. These are the ConfigMap and Secret objects for general-
purpose and sensitive data, respectively.

We can use both in the same way, as both provide storage and management of key-
value pairs. When we are describing ConfigMaps, the same can be applied most of

151

the time to Secrets too. Besides the actual data encoding (which is Base64 for Secrets),
there is no technical difference for the use of ConfigMaps and Secrets.

Once a ConfigMap is created and holding data, we can use the keys of a ConfigMap
in two ways:

• As a reference for environment variables, where the key is the name of the envi‐
ronment variable.

• As files that are mapped to a volume mounted in a Pod. The key is used as the
filename.

The file in a mounted ConfigMap volume is updated when the ConfigMap is updated
via the Kubernetes API. So, if an application supports hot reload of configuration
files, it can immediately benefit from such an update. However, with ConfigMap
entries used as environment variables, updates are not reflected because environment
variables can’t be changed after a process has been started.

In addition to ConfigMap and Secret, another alternative is to store configuration
directly in external volumes that are then mounted.

The following examples concentrate on ConfigMap usage, but they can also be used
for Secrets. There is one big difference, though: values for Secrets have to be Base64
encoded.

A ConfigMap resource contains key-value pairs in its data section, as shown in
Example 19-1.

Example 19-1. ConfigMap resource

apiVersion: v1
kind: ConfigMap
metadata:
 name: random-generator-config
data:
 PATTERN: Configuration Resource
 application.properties: |
 # Random Generator config
 log.file=/tmp/generator.log
 server.port=7070
 EXTRA_OPTIONS: "high-secure,native"
 SEED: "432576345"

ConfigMaps can be accessed as environment variables and as a mounted file. We
recommend using uppercase keys in the ConfigMap to indicate an EnvVar usage
and proper filenames when used as mounted files.

152 | Chapter 19: Configuration Resource

We see here that a ConfigMap can also carry the content of complete configuration
files, like the Spring Boot application.properties in this example. You can imagine
that for a nontrivial use case, this section could get quite large!

Instead of manually creating the full resource descriptor, we can use kubectl to create
ConfigMaps or Secrets too. For the preceding example, the equivalent kubectl com‐
mand looks like that in Example 19-2.

Example 19-2. Create a ConfigMap from a file

kubectl create cm spring-boot-config \
 --from-literal=JAVA_OPTIONS=-Djava.security.egd=file:/dev/urandom \
 --from-file=application.properties

This ConfigMap then can be read in various places—everywhere environment vari‐
ables are defined, as demonstrated Example 19-3.

Example 19-3. Environment variable set from ConfigMap

apiVersion: v1
kind: Pod
metadata:
 name: random-generator
spec:
 containers:
 - env:
 - name: PATTERN
 valueFrom:
 configMapKeyRef:
 name: random-generator-config
 key: PATTERN
....

If a ConfigMap has many entries that you want to consume as environment variables,
using a certain syntax can save a lot of typing. Rather than specifying each entry indi‐
vidually, as shown in the preceding example in the env: section, envFrom: allows
exposing all ConfigMap entries that have a key that also can be used as a valid envi‐
ronment variable. We can prepend this with a prefix, as shown in Example 19-4.

Example 19-4. Environment variable set from ConfigMap

apiVersion: v1
kind: Pod
metadata:
 name: random-generator
spec:
 containers:
 envFrom:

Solution | 153

 - configMapRef:
 name: random-generator-config
 prefix: CONFIG_

Pick up all keys from the ConfigMap random-generator-config that can be used
as environment variable names.

Prefix all suitable ConfigMap keys with CONFIG_. With the ConfigMap defined in
Example 19-1, this leads to three exposed environment variables: CONFIG_PAT
TERN_NAME, CONFIG_EXTRA_OPTIONS, and CONFIG_SEED.

Secrets, as with ConfigMaps, can also be consumed as environment variables, either
per entry, or for all entries. To access a Secret instead of a ConfigMap, replace config
MapKeyRef with secretKeyRef.

When used as a volume, the complete ConfigMap is projected into this volume, with
the keys used as filenames. See Example 19-5.

Example 19-5. Mount a ConfigMap as a volume

apiVersion: v1
kind: Pod
metadata:
 name: random-generator
spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 volumeMounts:
 - name: config-volume
 mountPath: /config
 volumes:
 - name: config-volume
 configMap:
 name: random-generator-config

A ConfigMap-backed volume will contain as many files as entries, with the map’s
keys as filenames and the map’s values as file content.

The configuration in Example 19-1 that is mounted as a volume results in two files in
the /config folder: An application.properties with the content defined in the Config‐
Map, and a PATTERN file with a single line of content.

The mapping of configuration data can be fine-tuned more granularly by adding
additional properties to the volume declaration. Rather than mapping all entries as
files, you can also individually select every key that should be exposed and the file‐

154 | Chapter 19: Configuration Resource

name under which it should be available. Refer to the ConfigMap documentation for
more details.

How Secure Are Secrets?
Secrets hold Base64-encoded data, and decode it prior passing it to a Pod either as
environment variables or mounted volume. This is very often confused as a security
feature. Base64 encoding is not an encryption method, and from a security perspec‐
tive, it is considered the same as plain text. Base64 encoding in Secrets allows storing
binary data, so why are Secrets considered more secure than ConfigMaps? There are a
number of other implementation details of Secrets that make them secure. Constant
improvements are occurring in this area, but the main implementation details cur‐
rently are as follows:

• A Secret is distributed only to nodes running Pods that need access to the Secret.
• On the nodes, Secrets are stored in memory in a tmpfs and never written to

physical storage, and removed when the Pod is removed.
• In Etcd, Secrets are stored in encrypted form.

Regardless of all that, there are still ways to get access to Secrets as a root user, or even
by creating a Pod and mounting a Secret. You can apply role-based access control
(RBAC) to Secrets (as you can do to ConfigMaps, or other resources), and allow only
certain Pods with predefined service accounts to read them. But users who have the
ability to create Pods in a namespace can still escalate their privileges within that
namespace by creating Pods. They can run a Pod under a greater-privileged service
account and still read Secrets. A user or a controller with Pod creation access in a
namespace can impersonate any service account and access all Secrets and Config‐
Maps in that namespace. Thus, additional encryption of sensitive information is often
done at application level too.

Another way to store configuration with the help of Kubernetes is the usage of
gitRepo volumes. This type of volume mounts an empty directory on the Pod and
clones a Git repository into it. The advantage of keeping configuration on Git is that
you get versioning and auditing for free. But gitRepo volumes require external access
to a Git repository, which is not a Kubernetes resource, and is possibly located outside
the cluster and needs to be monitored and managed separately. The cloning and
mounting happens during startup of the Pod, and the local cloned repo is not upda‐
ted automatically with changes. This volume works similarly to the approach
described in Chapter 20, Immutable Configuration by using Init Containers to copy
configuration into a shared local volume.

In fact, volumes of type gitRepo are deprecated now in favor of Init Container-based
solutions, as this approach is more generally applicable and supports other sources of

Solution | 155

data and not just Git. So going forward, you can use the same approach of retrieving
configuration data from external systems and storing it into a volume, but rather than
using the predefined gitRepo volume, use the more flexible Init Container method.
We explain this technique in detail in “Kubernetes Init Containers” on page 159.

Discussion
ConfigMaps and Secrets allow the storage of configuration information in dedicated
resource objects that are easy to manage with the Kubernetes API. The most signifi‐
cant advantage of using ConfigMaps and Secrets is that they decouple the definition
of configuration data from its usage. This decoupling allows us to manage the objects
by using configurations independently from the configurations.

Another benefit of ConfigMaps and Secrets is that they are intrinsic features of the
platform. No custom construct like that in Chapter 20, Immutable Configuration is
required.

However, these Configuration Resources also have their restrictions: with a 1 MB size
limt for Secrets, they can’t store arbitrarily large data and are not well suited for non‐
configuration application data. You can also store binary data in Secrets, but since
they have to be Base64 encoded, you can use only around 700 kb data for it.

Real-world Kubernetes clusters also put an individual quota on the number of Con‐
figMaps that can be used per namespace or project, so ConfigMap is not a golden
hammer.

The next two chapters show how to deal with large configuration data by using
Immutable Configuration and Configuration Templates.

More Information
• Configuration Resource Example
• ConfigMap Documentation
• Secrets Documentation
• Encrypting Secret Data at Rest
• Distribute Credentials Securely Using Secrets
• gitRepo Volumes
• Size Restriction of a ConfigMap

156 | Chapter 19: Configuration Resource

http://bit.ly/2YeGymi
http://bit.ly/2Cs59uQ
https://kubernetes.io/docs/concepts/configuration/secret/
http://bit.ly/2ORsavt
http://bit.ly/2FfcvCn
http://bit.ly/2HxuGqO
http://bit.ly/2UkHRRy

CHAPTER 20

Immutable Configuration

The Immutable Configuration pattern packages configuration data into an immutable
container image and links the configuration container to the application at runtime.
With this pattern, we are able to not only use immutable and versioned configuration
data, but also overcome the size limitation of configuration data stored in environ‐
ment variables or ConfigMaps.

Problem
As you saw in Chapter 18, EnvVar Configuration, environment variables provide a
simple way to configure container-based applications. And although they are easy to
use and universally supported, as soon as the number of environment variables
exceeds a certain threshold, managing them becomes hard.

This complexity can be handled to some degree by using Configuration Resources.
However, all of these patterns do not enforce immutability of the configuration data
itself. Immutability here means that we can’t change the configuration after the appli‐
cation has started, in order to ensure that we always have a well-defined state for our
configuration data. In addition, Immutable Configuration can be put under version
control, and follow a change control process.

Solution
To address the preceding concerns, we can put all environment-specific configuration
data into a single, passive data image that we can distribute as a regular container
image. During runtime, the application and the data image are linked together so that
the application can extract the configuration from the data image. With this
approach, it is easy to craft different configuration data images for various environ‐

157

ments. These images then combine all configuration information for specific envi‐
ronments and can be versioned like any other container image.

Creating such a data image is trivial, as it is a simple container image that contains
only data. The challenge is the linking step during startup. We can use various
approaches, depending on the platform.

Docker Volumes
Before looking at Kubernetes, let’s go one step back and consider the vanilla Docker
case. In Docker, it is possible for a container to expose a volume with data from the
container. With a VOLUME directive in a Dockerfile, you can specify a directory that
can be shared later. During startup, the content of this directory within the container
is copied over to this shared directory. As shown in Figure 20-1, this volume linking
is an excellent way to share configuration information from a dedicated configuration
container with another application container.

Figure 20-1. Immutable configuration with Docker volume

Let’s have a look at an example. For the development environment, we create a
Docker image that holds the developer configuration and creates a volume /config.
We can create such an image with Dockerfile-config as in Example 20-1.

Example 20-1. Dockerfile for a configuration image

FROM scratch

ADD app-dev.properties /config/app.properties

VOLUME /config

Add the specified property

Create volume and copy property into it

We now create the image itself and the Docker container with the Docker CLI in
Example 20-2.

158 | Chapter 20: Immutable Configuration

Example 20-2. Building the configuration Docker image

docker build -t k8spatterns/config-dev-image:1.0.1 -f Dockerfile-config
docker create --name config-dev k8spatterns/config-dev-image:1.0.1 .

The final step is to start the application container and connect it to this configuration
container (Example 20-3).

Example 20-3. Start application container with config container linked

docker run --volumes-from config-dev k8spatterns/welcome-servlet:1.0

The application image expects its configuration files within a directory /config, the
volume exposed by the configuration container. When you move this application
from the development environment to the production environment, all you have to
do is change the startup command. There is no need to alter the application image
itself. Instead, you simply volume-link the application container with the production
configuration container, as seen in Example 20-4.

Example 20-4. Use different configuration for production environment

docker build -t k8spatterns/config-prod-image:1.0.1 -f Dockerfile-config
docker create --name config-prod k8spatterns/config-prod-image:1.0.1 .
docker run --volumes-from config-prod k8spatterns/welcome-servlet:1.0

Kubernetes Init Containers
In Kubernetes, volume sharing within a Pod is perfectly suited for this kind of linking
of configuration and application containers. However, if we want to transfer this tech‐
nique of Docker volume linking to the Kubernetes world, we will find that there is
currently no support for container volumes in Kubernetes. Considering the age of the
discussion and the complexity of implementing this feature versus its limited benefits,
it’s likely that container volumes will not arrive anytime soon.

So containers can share (external) volumes, but they cannot yet directly share direc‐
tories located within the containers. In order to use Immutable Configuration con‐
tainers in Kubernetes, we can use the Init Containers pattern from Chapter 14 that
can initialize an empty shared volume during startup.

In the Docker example, we base the configuration Docker image on scratch, an
empty Docker image without any operating system files. We don’t need anything
more there because all we want is the configuration data shared via Docker volumes.
However, for Kubernetes init containers, we need some help from the base image to
copy over the configuration data to a shared Pod volume. busybox is a good choice

Solution | 159

for the base image, which is still small but allows us to use plain Unix cp command
for this task.

So how does the initialization of shared volumes with configuration work under the
hood? Let’s have a look at an example. First, we need to create a configuration image
again with a Dockerfile, as in Example 20-5.

Example 20-5. Development configuration image

FROM busybox

ADD dev.properties /config-src/demo.properties

ENTRYPOINT ["sh", "-c", "cp /config-src/* $1", "--"]

Using a shell here in order to resolve wildcards

The only difference from the vanilla Docker case in Example 20-1 is that we have a
different base image and we add an ENTRYPOINT that copies the properties file to the
directory given as an argument when Docker image starts. This image can now be
referenced in an init container within a Deployment’s .template.spec (see
Example 20-6).

Example 20-6. Deployment that copies configuration to destination in init container

initContainers:
- image: k8spatterns/config-dev:1
 name: init
 args:
 - "/config"
 volumeMounts:
 - mountPath: "/config"
 name: config-directory
containers:
- image: k8spatterns/demo:1
 name: demo
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP
 volumeMounts:
 - mountPath: "/config"
 name: config-directory
volumes:
 - name: config-directory
 emptyDir: {}

160 | Chapter 20: Immutable Configuration

The Deployment’s Pod template specification contains a single volume and two
containers:

• The volume config-directory is of type emptyDir, so it’s created as an empty
directory on the node hosting this Pod.

• The init container Kubernetes calls during startup is built from the image we just
created, and we set a single argument /config used by the image’s ENTRYPOINT.
This argument instructs the init container to copy its content to the specified
directory. The directory /config is mounted from the volume config-

directory.
• The application container mounts the volume config-directory to access the

configuration that was copied over by the init container.

Figure 20-2 illustrates how the application container accesses the configuration data
created by an init container over a shared volume.

Figure 20-2. Immutable configuration with an init container

Now to change the configuration from the development to the production environ‐
ment, all we need to do is exchange the image of the init container. We can do this
either by changing the YAML definition or by updating with kubectl. However, it is
not ideal to have to edit the resource descriptor for each environment. If you are on
Red Hat OpenShift, an enterprise distribution of Kubernetes, OpenShift Templates can
help address this. OpenShift Templates can create different resource descriptors for
the different environments from a single template.

Solution | 161

OpenShift Templates
Templates are regular resource descriptors that are parameterized. As seen in
Example 20-7, we can easily use the configuration image as a parameter.

Example 20-7. OpenShift Template for parameterizing config image

apiVersion: v1
kind: Template
metadata:
 name: demo
parameters:
 - name: CONFIG_IMAGE
 description: Name of configuration image
 value: k8spatterns/config-dev:1
objects:
- apiVersion: v1
 kind: DeploymentConfig
 //
 spec:
 template:
 metadata:
 //
 spec:
 initContainers:
 - name: init
 image: ${CONFIG_IMAGE}
 args: ["/config"]
 volumeMounts:
 - mountPath: /config
 name: config-directory
 containers:
 - image: k8spatterns/demo:1
 // ...
 volumeMounts:
 - mountPath: /config
 name: config-directory
 volumes:
 - name: config-directory
 emptyDir: {}

Template parameter CONFIG_IMAGE declaration

Use of the template parameter

We show here only a fragment of the full descriptor, but we can quickly recognize the
parameter CONFIG_IMAGE we reference in the init container declaration. If we create
this template on an OpenShift cluster, we can instantiate it by calling oc, as in
Example 20-8.

162 | Chapter 20: Immutable Configuration

Example 20-8. Applying OpenShift template to create new application

oc new-app demo -p CONFIG_IMAGE=k8spatterns/config-prod:1

Detailed instructions for running this example, as well as the full Deployment
descriptors, can be found as usual in our example Git repository.

Discussion
Using data containers for the Immutable Configuration pattern is admittedly a bit
involved. However, this pattern has some unique advantages:

• Environment-specific configuration is sealed within a container. Therefore, it can
be versioned like any other container image.

• Configuration created this way can be distributed over a container registry. The
configuration can be examined even without accessing the cluster.

• The configuration is immutable as the container image holding the configura‐
tion: a change in the configuration requires a version update and a new container
image.

• Configuration data images are useful when the configuration data is too complex
to put into environment variables or ConfigMaps, since it can hold arbitrarily
large configuration data.

As expected, this pattern also has certain drawbacks:

• It has higher complexity, because extra container images need to be built and dis‐
tributed via registries.

• It does not address any of the security concerns around sensitive configuration
data.

• Extra init container processing is required in the Kubernetes case, and hence we
need to manage different Deployment objects for different environments.

All in all, we should carefully evaluate whether such an involved approach is really
required. If immutability is not required, maybe a simple ConfigMap as described in
Chapter 19, Configuration Resource is entirely sufficient.

Another approach for dealing with large configuration files that differ only slightly
from environment to environment is described with the Configuration Template pat‐
tern, the topic of the next chapter.

Discussion | 163

More Information
• Immutable Configuration Example
• How to Mimic --volumes-from in Kubernetes
• Feature Request: Image Volumes in Kubernetes
• docker-flexvol: A Kubernetes Driver that Supports Docker Volumes
• OpenShift Templates

164 | Chapter 20: Immutable Configuration

http://bit.ly/2HL95dp
http://bit.ly/2YbRhhy
http://bit.ly/2Wf0pjt
https://github.com/dims/docker-flexvol
https://red.ht/2Ohh7vO

CHAPTER 21

Configuration Template

The Configuration Template pattern enables creating and processing large and com‐
plex configurations during application startup. The generated configuration is spe‐
cific to the target runtime environment as reflected by the parameters used in
processing the configuration template.

Problem
In Chapter 19, Configuration Resource you saw how to use the Kubernetes native
resource objects ConfigMap and Secret to configure applications. But sometimes con‐
figuration files can get large and complex. Putting the configuration files directly into
ConfigMaps can be problematic since they have to be correctly embedded in the
resource definition. We need to be careful and avoid special characters like quotes
and breaking the Kubernetes resource syntax. The size of configurations is another
consideration, as there is a limit on the sum of all values of ConfigMaps or Secrets,
which is 1 MB (a limit imposed by the underlying backend store Etcd).

Large configuration files typically differ only slightly for the different execution envi‐
ronments. This similarity leads to a lot of duplication and redundancy in the Config‐
Maps because each environment has mostly the same data. The Configuration
Template pattern we explore in this chapter addresses these specific use-case
concerns.

Solution
To reduce the duplication, it makes sense to store only the differing configuration val‐
ues like database connection parameters in a ConfigMap or even directly in environ‐
ment variables. During startup of the container, these values are processed with
Configuration Templates to create the full configuration file (like a JBoss WildFly

165

standalone.xml). There are many tools like Tiller (Ruby) or Gomplate (Go) for pro‐
cessing templates during application initialization. Figure 21-1 is a Configuration
Template example filled with data coming from environment variables or a mounted
volume, possibly backed by a ConfigMap.

Before the application is started, the fully processed configuration file is put into a
location where it can be directly used like any other configuration file.

There are two techniques for how such live processing can happen during runtime:

• We can add the template processor as part of the ENTRYPOINT to a Dockerfile so
the template processing becomes directly part of the container image. The entry
point here is typically a script that first performs the template processing and
then starts the application. The parameters for the template come from environ‐
ment variables.

• With Kubernetes, a better way to perform initialization is with an Init Container
of a Pod in which the template processor runs and creates the configuration for
the application containers in the Pod. Init Containers are described in detail in
Chapter 14.

For Kubernetes, the Init Container approach is the most appealing because we can use
ConfigMaps directly for the template parameters. The diagram in Figure 21-1 illus‐
trates how this pattern works.

Figure 21-1. Configuration template

The application’s Pod definition consists of at least two containers: one init container
for the template processing and one for the application container. The init container
contains not only the template processor, but also the configuration templates them‐

166 | Chapter 21: Configuration Template

selves. In addition to the containers, this Pod also defines two volumes: one volume
for the template parameters, backed by a ConfigMap, and an emptyDir volume used
to share the processed templates between the init container and the application con‐
tainer.

With this setup, the following steps are performed during startup of this Pod:

1. The init container is started and runs the template processor. The processor takes
the templates from its image, and the template parameters from the mounted
ConfigMap volume, and stores the result in the emptyDir volume.

2. After the init container has finished, the application container starts up and loads
the configuration files from the emptyDir volume.

The following example uses an init container for managing a full set of WildFly con‐
figuration files for two environments: a development environment and a production
environment. Both are very similar to each other and differ only slightly. In fact, in
our example, they differ only in the way logging is performed: each log line is pre‐
fixed with DEVELOPMENT: or PRODUCTION:, respectively.

You can find the full example along with complete installation instructions in our
example GitHub repo. (We show only the main concept here; for the technical details,
refer to the source repo.)

The log pattern in Example 21-1 is stored in standalone.xml, which we parameterize
by using the Go template syntax.

Example 21-1. Log configuration template

....
<formatter name="COLOR-PATTERN">
 <pattern-formatter pattern="{{(datasource "config").logFormat}}"/>
</formatter>
....

Here we use Gomplate as a template processor, which uses the notion of a data source
for referencing the template parameters to be filled in. In our case, this data source
comes from a ConfigMap-backed volume mounted to an init container. Here, the
ConfigMap contains a single entry with the key logFormat, from where the actual
format is extracted.

With this template in place, we can now create the Docker image for the init con‐
tainer. The Dockerfile for the image k8spatterns/example-configuration-template-init
is very simple (Example 21-2).

Solution | 167

http://bit.ly/2TKUHZY

Example 21-2. Simple Dockerfile for template image

FROM k8spatterns/gomplate
COPY in /in

The base image k8spatterns/gomplate contains the template processor and an entry
point script that uses the following directories by default:

• /in holds the WildFly configuration templates, including the parameterized
standalone.xml. These are added directly to the image.

• /params is used to look up the Gomplate data sources, which are YAML files.
This directory is mounted from a ConfigMap-backed Pod volume.

• /out is the directory into which the processed files are stored. This directory is
mounted in the WildFly application container and used for the configuration.

The second ingredient of our example is the ConfigMap holding the parameters. In
Example 21-3, we just use a simple file with key-value pairs.

Example 21-3. Values for log Configuration Template

logFormat: "DEVELOPMENT: %-5p %s%e%n"

A ConfigMap named wildfly-parameters contains this YAML-formatted data refer‐
enced by a key config.yml and is picked up by an init container.

Finally, we need the Deployment resource for the WildFly server (Example 21-4).

Example 21-4. Deployment with template processor as Init Container

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 labels:
 example: cm-template
 name: wildfly-cm-template
spec:
 replicas: 1
 template:
 metadata:
 labels:
 example: cm-template
 spec:
 initContainers:
 - image: k8spatterns/example-config-cm-template-init
 name: init
 volumeMounts:
 - mountPath: "/params"

168 | Chapter 21: Configuration Template

 name: wildfly-parameters
 - mountPath: "/out"
 name: wildfly-config
 containers:
 - image: jboss/wildfly:10.1.0.Final
 name: server
 command:
 - "/opt/jboss/wildfly/bin/standalone.sh"
 - "-Djboss.server.config.dir=/config"
 ports:
 - containerPort: 8080
 name: http
 protocol: TCP
 volumeMounts:
 - mountPath: "/config"
 name: wildfly-config
 volumes:
 - name: wildfly-parameters
 configMap:
 name: wildfly-parameters
 - name: wildfly-config
 emptyDir: {}

Image holding the configuration templates

Parameters are mounted from a ConfigMap wildfly-parameters

The target directory for writing out processed templates. This is mounted from
an empty volume.

The directory holding the generated full configuration files is mounted
as /config

Volume declaration for the parameters’ ConfigMap and the empty directory used
for sharing the processed configuration.

This declaration is quite a mouthful, so let’s drill down: the Deployment specification
contains a Pod with our init container, the application container, and two internal
Pod volumes:

• The first volume, wildfly-parameters, contains our ConfigMap with the same
name (i.e., it includes a file called config.yml holding our parameter value).

• The other volume is an empty directory initially and is shared between the init
container and the WildFly container.

Solution | 169

1 DRY is an acronym for “Don’t Repeat Yourself.”

If you start this Deployment, the following will happen:

• An init container is created and its command is executed. This container takes
the config.yml from the ConfigMap volume, fills in the templates from the /in
directory in an init container, and stores the processed files in the /out directory.
The /out directory is where the volume wildfly-config is mounted.

• After the init container is done, a WildFly server starts with an option so that it
looks up the complete configuration from the /config directory. Again, /config
is the shared volume wildfly-config containing the processed template files.

It is important to note that we do not have to change these Deployment resource
descriptors when going from the development to the production environment. Only
the ConfigMap with the template parameters is different.

With this technique, it is easy to create a DRY1 configuration without copying and
maintaining duplicated large configuration files. For example, when the WildFly con‐
figuration changes for all environments, only a single template file in the init con‐
tainer needs to be updated. This approach has, of course, significant advantages on
maintenance as there is no danger of configuration drift.

Volume debugging tip

When working with Pods and volumes as in this pattern, it is not
obvious how to debug if things don’t work as expected. So if you
want to examine the processed templates, check out the direc‐
tory /var/lib/kubelet/pods/{podid}/volumes/kubernetes.io~empty-dir/
on the node as it contains the content of an emptyDir volume. Just
kubectl exec into the Pod when it is running, and examine this
directory for any created files.

Discussion
The Configuration Template pattern builds on top of Configuration Resource and is
especially suited when we need to operate applications in different environments with
similar complex configurations. However, the setup with Configuration Template is
more complicated and has more moving parts that can go wrong. Use it only if your
application requires huge configuration data. Such applications often require a con‐
siderable amount of configuration data from which only a small fraction is dependent
on the environment. Even when copying over the whole configuration directly into
the environment-specific ConfigMap works initially, it puts a burden on the mainte‐

170 | Chapter 21: Configuration Template

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

nance of that configuration because it is doomed to diverge over time. For such a sit‐
uation, the template approach is perfect.

More Information
• Configuration Template Example
• Tiller Template Engine
• Gomplate
• Go Template Syntax

More Information | 171

http://bit.ly/2TKUHZY
https://github.com/markround/tiller
https://github.com/hairyhenderson/gomplate
https://golang.org/pkg/html/template/

PART V

Advanced Patterns

The patterns in this category cover more complex topics that do not fit in any of the
other categories. Some of the patterns here such as Controller are timeless, and Kuber‐
netes itself is built on them. However, some of the other pattern implementations are
still very new (like Knative for building container images and scale-to-zero for Serv‐
ices) and might already be different by the time you read this book. To keep up with
this, we will keep our online examples up-to-date and reflect the latest developments
in this space.

In the following chapters, we explore these advanced patterns:

• Chapter 22, Controller, is essential to Kubernetes itself and this pattern shows
how custom controllers can extend the platform.

• Chapter 23, Operator, combines a Controller with custom and domain-specific
resources to encapsulate operational knowledge in an automated form.

• Chapter 24, Elastic Scale, describes how Kubernetes can handle dynamic loads by
scaling in various dimensions.

• Chapter 25, Image Builder, moves the aspect of building application images into
the cluster itself.

https://github.com/k8spatterns/examples

CHAPTER 22

Controller

A Controller actively monitors and maintains a set of Kubernetes resources in a
desired state. The heart of Kubernetes itself consists of a fleet of controllers that regu‐
larly watch and reconcile the current state of applications with the declared target
state. In this chapter, we see how to leverage this core concept for extending the plat‐
form for our needs.

Problem
You already have seen that Kubernetes is a sophisticated and comprehensive platform
that provides many features out of the box. However, it is a general-purpose orches‐
tration platform that does not cover all application use cases. Luckily, it provides nat‐
ural extension points where specific use cases can be implemented elegantly on top of
proven Kubernetes building blocks.

The main question that arises here is about how to extend Kubernetes without chang‐
ing and breaking it, and how to use its capabilities for custom use cases.

By design, Kubernetes is based on a declarative resource-centric API. What exactly do
we mean by declarative? As opposed to an imperative approach, a declarative
approach does not tell Kubernetes how it should act, but instead describes how the
target state should look. For example, when we scale up a Deployment, we do not
actively create new Pods by telling Kubernetes to “create a new Pod.” Instead, we
change the Deployment resource’s replicas property via the Kubernetes API to the
desired number.

So, how are the new Pods created? This is done internally by the Controllers. For
every change in the resource status (like changing the replicas property value of a
Deployment), Kubernetes creates an event and broadcasts it to all interested listeners.
These listeners then can react by modifying, deleting, or creating new resources,

175

which in turn creates other events, like Pod-created events. These events are then
potentially picked up again by other controllers, which perform their specific actions.

The whole process is also known as state reconciliation, where a target state (the num‐
ber of desired replicas) differs from the current state (the actual running instances),
and it is the task of a controller to reconcile and reach the desired target state again.
When looked at from this angle, Kubernetes essentially represents a distributed state
manager. You give it the desired state for a component instance, and it attempts to
maintain that state should anything change.

How can we now hook into this reconciliation process without modifying Kubernetes
code and create a controller customized for our specific needs?

Solution
Kubernetes comes with a collection of built-in controllers that manage standard
Kubernetes resources like ReplicaSets, DaemonSets, StatefulSets, Deployments, or
Services. These controllers run as part of the Controller Manager, which is deployed
(as a standalone process or a Pod) on the master node. These controllers are not
aware of one another. They run in an endless reconciliation loop, to monitor their
resources for the actual and desired state, and to act accordingly to get the actual state
closer to the desired state.

However, in addition to these out-of-the-box controllers, the Kubernetes event-
driven architecture allows us to plug in natively other custom controllers. Custom
controllers can add extra functionality to the behavior state change events, the same
way as the internal controllers do. A common characteristic of controllers is that they
are reactive and react to events in the system to perform their specific actions. At a
high level, this reconciliation process consists of the following main steps:

Observe
Discover the actual state by watching for events issued by Kubernetes when an
observed resource changes.

Analyze
Determine the differences from the desired state.

Act
Perform operations to drive the actual to the desired state.

For example, the ReplicaSet controller watches for ReplicaSet resource changes, ana‐
lyzes how many Pods need to be running, and acts by submitting Pod definitions to
the API Server. Kubernetes’ backend is then responsible for starting up the requested
Pod on a node.

176 | Chapter 22: Controller

Figure 22-1 shows how a controller registers itself as an event listener for detecting
changes on the managed resources. It observes the current state and changes it by
calling out to the API Server to get closer to the target state (if necessary).

Figure 22-1. Observe-Analyze-Act cycle

Controllers are part of Kubernetes’ control plane, and it became clear early on that
they would also allow extending the platform with custom behavior. Moreover, they
have turned into the standard mechanism for extending the platform and enable
complex application lifecycle management. And as a result, a new generation of more
sophisticated controllers was born, called Operators. From an evolutionary and com‐
plexity point of view, we can classify the active reconciliation components into two
groups:

Controllers
A simple reconciliation process that monitors and acts on standard Kubernetes
resources. More often, these controllers enhance platform behavior and add new
platform features.

Operators
A sophisticated reconciliation process that interacts with CustomResourceDefini
tions (CRDs), which are at the heart of the Operator pattern. Typically, these
Operators encapsulate complex application domain logic and manage the full
application lifecycle. We discuss Operators in depth in Chapter 23.

As stated previously, these classifications help introduce new concepts gradually.
Here, we focus on the simpler Controllers, and in the next chapter, we introduce
CRDs and build up to the Operator pattern.

To avoid having multiple controllers acting on the same resources simultaneously,
controllers use the SingletonService pattern explained in Chapter 10. Most controllers
are deployed just as Deployments, but with one replica, as Kubernetes uses optimistic
locking at the resource level to prevent concurrency issues when changing resource
objects. In the end, a controller is nothing more than an application that runs perma‐
nently in the background.

Solution | 177

Because Kubernetes itself is written in Go, and a complete client library for accessing
Kubernetes is also written in Go, many controllers are written in Go too. However,
you can write controllers in any programming language by sending requests to the
Kubernetes API Server. We see a controller written in pure shell script later in
Example 22-1.

The most straightforward kind of controllers extend the way Kubernetes manages its
resources. They operate on the same standard resources and perform similar tasks as
the Kubernetes internal controllers operating on the standard Kubernetes resources,
but which are invisible to the user of the cluster. Controllers evaluate resource defini‐
tions and conditionally perform some actions. Although they can monitor and act
upon any field in the resource definition, metadata and ConfigMaps are most suitable
for this purpose. The following are a few considerations to keep in mind when choos‐
ing where to store controller data:

Labels
Labels as part of a resource’s metadata can be watched by any controller. They are
indexed in the backend database and can be efficiently searched for in queries.
We should use labels when a selector-like functionality is required (e.g., to match
Pods of a Service or a Deployment). A limitation of labels is that only alphanu‐
meric names and values with restrictions can be used. See the Kubernetes docu‐
mentation for which syntax and character sets are allowed for labels.

Annotations
Annotations are an excellent alternative to labels. They have to be used instead of
labels if the values do not conform to the syntax restrictions of label values.
Annotations are not indexed, so we use annotations for nonidentifying informa‐
tion not used as keys in controller queries. Preferring annotations over labels for
arbitrary metadata also has the advantage that it does not negatively impact the
internal Kubernetes performance.

ConfigMaps
Sometimes controllers need additional information that does not fit well into
labels or annotations. In this case, ConfigMaps can be used to hold the target
state definition. These ConfigMaps are then watched and read by the controllers.
However, CRDs are much better suited for designing the custom target state
specification and are recommended over plain ConfigMaps. For registering
CRDs, however, you need elevated cluster-level permissions. If you don’t have
these, ConfigMaps are still the best alternative to CRDs. We will explain CRDs in
detail in Chapter 23, Operator.

Here are a few reasonably simple example controllers you can study as a sample
implementation of this pattern:

178 | Chapter 22: Controller

jenkins-x/exposecontroller
This controller watches Service definitions, and if it detects an annotation named
expose in the metadata, the controller automatically exposes an Ingress object for
external access of the Service. It also removes the Ingress object when someone
removes the Service.

fabric8/configmapcontroller
This is a controller that watches ConfigMap objects for changes and performs
rolling upgrades of their associated Deployments. We can use this controller with
applications that are not capable of watching the ConfigMap and updating them‐
selves with new configurations dynamically. That is particularly true when a Pod
consumes this ConfigMap as environment variables or when your application
cannot quickly and reliably update itself on the fly without a restart. In
Example 22-2, we implement such a controller with a plain shell script.

Container Linux Update Operator
This is a controller that reboots a Kubernetes node when it detects a particular
annotation on the node.

Now let’s take a look at a concrete example: a controller that consists of a single shell
script and that watches the Kubernetes API for changes on ConfigMap resources. If
we annotate such a ConfigMap with k8spatterns.io/podDeleteSelector, all Pods
selected with the given annotation value are deleted when the ConfigMap changes.
Assuming we back these Pods with a high-order resource like Deployment or Repli‐
caSet, these Pods are restarted and pick up the changed configuration.

For example, the following ConfigMap would be monitored by our controller for
changes and would restart all Pods that have a label app with value webapp. The Con‐
figMap in Example 22-1 is used in our web application to provide a welcome
message.

Example 22-1. ConfigMap use by web application

apiVersion: v1
kind: ConfigMap
metadata:
 name: webapp-config
 annotations:
 k8spatterns.io/podDeleteSelector: "app=webapp"
data:
 message: "Welcome to Kubernetes Patterns !"

Annotation used as selector for the controller in Example 22-2 to find the appli‐
cation Pods to restart

Solution | 179

http://bit.ly/2Ushlpy
http://bit.ly/2uJ2FnI
http://bit.ly/2uFcNgX

Our controller shell script now evaluates this ConfigMap. You can find the source in
its full glory in our Git repository. In short, the Controller starts a hanging GET HTTP
request for opening an endless HTTP response stream to observe the lifecycle events
pushed by the API Server to us. These events are in the form of plain JSON objects,
which we then analyze to detect whether a changed ConfigMap carries our annota‐
tion. As events arrive, we act by deleting all Pods matching the selector provided as
the value of the annotation. Let’s have a closer look at how the controller works.

The main part of this controller is the reconciliation loop, which listens on Config‐
Map lifecycle events, as shown in Example 22-2.

Example 22-2. Controller script

namespace=${WATCH_NAMESPACE:-default}

base=http://localhost:8001
ns=namespaces/$namespace

curl -N -s $base/api/v1/${ns}/configmaps?watch=true | \
while read -r event
do
 # ...
done

Namespace to watch (or default if not given)

Access to the Kubernetes API via an Ambassador proxy running in the same Pod

Loop with watches for events on ConfigMaps

The environment variable WATCH_NAMESPACE specifies the namespace in which the
controller should watch for ConfigMap updates. We can set this variable in the
Deployment descriptor of the controller itself. In our example, we are using the
Downward API described in Chapter 13, Self Awareness to monitor the namespace in
which we have deployed the controller as configured in Example 22-3 as part of the
controller Deployment.

Example 22-3. WATCH_NAMESPACE extracted from the current namespace

env:
 - name: WATCH_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

180 | Chapter 22: Controller

With this namespace, the controller script constructs the URL to the Kubernetes API
endpoint to watch the ConfigMaps.

Note the watch=true query parameter in Example 22-2. This
parameter indicates to the API Server not to close the HTTP con‐
nection but to send events along the response channel as soon as
they happen (hanging GET or Comet are other names for this kind
of technique). The loop reads every individual event as it arrives as
a single item to process.

As you can see, our controller contacts the Kubernetes API Server via localhost. We
won’t deploy this script directly on the Kubernetes API master node, but then how
can we use localhost in the script? As you may have probably guessed, another pat‐
tern kicks in here. We deploy this script in a Pod together with an Ambassador con‐
tainer that exposes port 8001 on localhost and proxies it to the real Kubernetes
Service. See Chapter 17 for more details on this pattern. We see the actual Pod defini‐
tion with this Ambassador in detail later in this chapter.

Watching events this way is not very robust, of course. The connection can stop any‐
time, so there should be a way to restart the loop. Also, one could miss events, so
production-grade controllers should not only watch on events but from time to time
also query the API Server for the entire current state and use that as the new base. For
the sake of demonstrating the pattern, this is good enough.

Within the loop, the logic shown in Example 22-4 is performed.

Example 22-4. Controller reconciliation loop

curl -N -s $base/api/v1/${ns}/configmaps?watch=true | \
while read -r event
do
 type=$(echo "$event" | jq -r '.type')
 config_map=$(echo "$event" | jq -r '.object.metadata.name')
 annotations=$(echo "$event" | jq -r '.object.metadata.annotations')

 if ["$annotations" != "null"]; then
 selector=$(echo $annotations | \
 jq -r "\
 to_entries |\
 .[] |\
 select(.key == \"k8spatterns.io/podDeleteSelector\") |\
 .value |\
 @uri \
 ")
 fi

 if [$type = "MODIFIED"] && [-n "$selector"]; then

Solution | 181

 pods=$(curl -s $base/api/v1/${ns}/pods?labelSelector=$selector |\
 jq -r .items[].metadata.name)

 for pod in $pods; do
 curl -s -X DELETE $base/api/v1/${ns}/pods/$pod
 done
 fi
done

Extract the type and name of the ConfigMap from the event.

Extract all annotations on the ConfigMap with key k8spatterns.io/podDeleteSelec‐
tor. See “Some jq Fu” on page 182 for an explanation of this jq expression.

If the event indicates an update of the ConfigMap and our annotation is attached,
then find all Pods matching this label selector.

Delete all Pods that match the selector.

First, the script extracts the event type that specifies what action happened to the
ConfigMap. After we have extracted the ConfigMap, we derive the annotations with
jq. jq is an excellent tool for parsing JSON documents from the command line, and
the script assumes it is available in the container the script is running in.

If the ConfigMap has annotations, we check for the annotation k8spatterns.io/
podDeleteSelector by using a more complex jq query. The purpose of this query is
to convert the annotation value to a Pod selector that can be used in an API query
option in the next step: an annotation k8spatterns.io/podDeleteSelector:

"app=webapp is transformed to app%3Dwebapp that is used as a Pod selector. This con‐
version is performed with jq and is explained in “Some jq Fu” on page 182 if you are
interested in how this extraction works.

Some jq Fu
Extracting the ConfigMap’s k8spatterns.io/podDeleteSelector annotation value
and converting it to a Pod selector is performed with jq. This is an excellent JSON
command-line tool, but some concepts can be a bit confusing. Let’s have a close look
at how the expressions work in detail:

selector=$(echo $annotations | \
 jq -r "\
 to_entries |\
 .[] |\
 select(.key == \"k8spatterns.io/podDeleteSelector\") |\
 .value |\
 @uri \
 ")

182 | Chapter 22: Controller

https://stedolan.github.io/jq/

• $annotations holds all annotations as a JSON object, with annotation names as
properties.

• With to_entries, we convert a JSON object like { "a": "b"} into a an array
with entries like { "key": "a", "value": "b" }. See the jq documentation for
more details.

• .[] selects the array entries individually.
• From these entries, we pick only the ones with the matching key. There can be

only zero or one matches that survive this filter.
• Finally, we extract the value (.value) and convert it with @uri so that it can be

used as part of an URI.

This expression converts a JSON structure like

{
 "k8spatterns.io/pattern": "Controller",
 "k8spatterns.io/podDeleteSelector": "app=webapp"
}

to a selector app%3Dwebapp.

If the script can extract a selector, we can use it now directly to select the Pods to
delete. First, we look up all Pods that match the selector, and then we delete them one
by one with direct API calls.

This shell script-based controller is, of course, not production-grade (e.g., the event
loop can stop any time), but it nicely reveals the base concepts without too much
boilerplate code for us.

The remaining work is about creating resource objects and container images. The
controller script itself is stored in a ConfigMap config-watcher-controller and can
be easily edited later if required.

We use a Deployment to create a Pod for our controller with two containers:

• One Kubernetes API Ambassador container that exposes the Kubernetes API on
localhost on port 8001. The image k8spatterns/kubeapi-proxy is an Alpine
Linux with a local kubectl installed and kubectl proxy started with the proper
CA and token mounted. The original version, kubectl-proxy, was written by
Marko Lukša, who introduced this proxy in Kubernetes in Action.

• The main container that executes the script contained in the just-created Config‐
Map. We use here an Alpine base image with curl and jq installed.

You can find the Dockerfiles for the k8spatterns/kubeapi-proxy and k8spatterns/
curl-jq images in our example Git repository.

Solution | 183

http://bit.ly/2FnPVsw
http://bit.ly/2WaPjMD

Now that we have the images for our Pod, the final step is to deploy the controller by
using a Deployment. We can see the main parts of the Deployment in Example 22-5
(the full version can be found in our example repository).

Example 22-5. Controller Deployment

apiVersion: apps/v1
kind: Deployment
....
spec:
 template:
 # ...
 spec:
 serviceAccountName: config-watcher-controller
 containers:
 - name: kubeapi-proxy
 image: k8spatterns/kubeapi-proxy
 - name: config-watcher
 image: k8spatterns/curl-jq
 # ...
 command:
 - "sh"
 - "/watcher/config-watcher-controller.sh"
 volumeMounts:
 - mountPath: "/watcher"
 name: config-watcher-controller
 volumes:
 - name: config-watcher-controller
 configMap:
 name: config-watcher-controller

ServiceAccount with proper permissions for watching events and restarting Pods

Ambassador container for proxying localhost to the Kubeserver API

Main container holding all tools and mounting the controller script

Startup command calling the controller script

Volume mapped to the ConfigMap holding our script

Mount of the ConfigMap-backed volume into the main Pod

As you can see, we mount the config-watcher-controller-script from the Con‐
figMap we have created previously and directly use it as the startup command for the
primary container. For simplicity reasons, we omitted any liveness and readiness
checks as well as resource limit declarations. Also, we need a ServiceAccount config-

184 | Chapter 22: Controller

watcher-controller allowed to monitor ConfigMaps. Refer to the example reposi‐
tory for the full security setup.

Let’s see the controller in action now. For this, we are using a straightforward web
server, which serves the value of an environment variable as the only content. The
base image uses plain nc (netcat) for serving the content. You can find the Dockerfile
for this image in our example repository.

We deploy the HTTP server with a ConfigMap and Deployment as is sketched in
Example 22-6.

Example 22-6. Sample web app with Deployment and ConfigMap

apiVersion: v1
kind: ConfigMap
metadata:
 name: webapp-config
 annotations:
 k8spatterns.io/podDeleteSelector: "app=webapp"
data:
 message: "Welcome to Kubernetes Patterns !"

apiVersion: apps/v1
kind: Deployment
...
spec:
 # ...
 template:
 spec:
 containers:
 - name: app
 image: k8spatterns/mini-http-server
 ports:
 - containerPort: 8080
 env:
 - name: MESSAGE
 valueFrom:
 configMapKeyRef:
 name: webapp-config
 key: message

ConfigMap for holding the data to serve

Annotation that triggers a restart of the web app’s Pod

Message used in web app in HTTP responses

Deployment for the web app

Solution | 185

Simplistic image for HTTP serving with netcat

Environment variable used as an HTTP response body and fetched from the
watched ConfigMap

This concludes our example of our ConfigMap controller implemented in a plain
shell script. Although this is probably the most complex example in this book, it also
shows that it does not take much to write a basic controller.

Obviously, for real-world scenarios, you would write this sort of controller in a real
programming language that provides better error-handling capabilities and other
advanced features.

Discussion
To sum up, a Controller is an active reconciliation process that monitors objects of
interest for the world’s desired state and the world’s actual state. Then, it sends
instructions to try to change the world’s current state to be more like the desired state.
Kubernetes uses this mechanism with its internal controllers, and you can also reuse
the same mechanism with custom controllers. We demonstrated what is involved in
writing a custom controller and how it functions and extends the Kubernetes plat‐
form.

Controllers are possible because of the highly modular and event-driven nature of the
Kubernetes architecture. This architecture naturally leads to a decoupled and asyn‐
chronous approach for controllers as extension points. The significant benefit here is
that we have a precise technical boundary between Kubernetes itself and any exten‐
sions. However, one issue with the asynchronous nature of controllers is that they are
often hard to debug because the flow of events is not always straightforward. As a
consequence, you can’t easily set breakpoints in your controller to stop everything to
examine a specific situation.

In Chapter 23, you’ll learn about the related Operator pattern, which builds on this
Controller pattern and provides an even more flexible way to configure operations.

186 | Chapter 22: Controller

More Information
• Controller Example
• Writing Controllers
• Writing a Custom Controller in Python
• A Deep Dive into Kubernetes Controllers
• Expose Controller
• ConfigMap Controller
• Writing a Custom Controller
• Writing Kubernetes Custom Controllers
• Contour Ingress Controller
• AppController
• Characters Allowed for Labels
• Kubectl-Proxy

More Information | 187

http://bit.ly/2TWw6AW
http://bit.ly/2HKlIWc
https://red.ht/2HxC85a
http://bit.ly/2ULdC3t
https://github.com/jenkins-x/exposecontroller
https://github.com/fabric8io/configmapcontroller
http://bit.ly/2TYgo9b
http://bit.ly/2Cs1rS4
https://github.com/heptio/contour
https://github.com/Mirantis/k8s-AppController
http://bit.ly/2Q0td0M
http://bit.ly/2FgearB

CHAPTER 23

Operator

An Operator is a Controller that uses a CRD to encapsulate operational knowledge for
a specific application in an algorithmic and automated form. The Operator pattern
allows us to extend the Controller pattern from the preceding chapter for more flexi‐
bility and greater expressiveness.

Problem
You learned in Chapter 22, Controller how to extend the Kubernetes platform in a
simple and decoupled way. However, for extended use cases, plain custom controllers
are not powerful enough, as they are limited to watching and managing Kubernetes
intrinsic resources only. Sometimes we want to add new concepts to the Kubernetes
platform, which requires additional domain objects. Let’s say we chose Prometheus as
our monitoring solution, and we want to add it as a monitoring facility to Kubernetes
in a well-defined way. Wouldn’t it be wonderful if we had a Prometheus resource
describing our monitoring setup and all the deployment details, similar to the way we
define other Kubernetes resources? Moreover, could we then have resources describ‐
ing which services we have to monitor (e.g., with a label selector)?

These situations are precisely the kind of use cases where CustomResourceDefini‐
tions (CRDs) are very helpful. They allow extensions of the Kubernetes API, by
adding custom resources to your Kubernetes cluster and using them as if they were
native resources. Custom resources, together with a Controller acting on these resour‐
ces, form the Operator pattern.

189

This quote by Jimmy Zelinskie probably describes the characteristics of Operators
best:

An operator is a Kubernetes controller that understands two domains: Kubernetes and
something else. By combining knowledge of both areas, it can automate tasks that usu‐
ally require a human operator that understands both domains.

Solution
As you saw in Chapter 22, Controller, we can efficiently react to state changes of
default Kubernetes resources. Now that you understand one half of the Operator pat‐
tern, let’s have a look now at the other half—representing custom resources on
Kubernetes using CRD resources.

Custom Resource Definitions
With a CRD, we can extend Kubernetes to manage our domain concepts on the
Kubernetes platform. Custom resources are managed like any other resource,
through the Kubernetes API, and eventually stored in the backend store Etcd. Histor‐
ically, the predecessors of CRDs were ThirdPartyResources.

The preceding scenario is actually implemented with these new custom resources by
the CoreOS Prometheus operator to allow seamless integration of Prometheus to
Kubernetes. The Prometheus CRD is defined as in Example 23-1, which also explains
most of the available fields for a CRD.

Example 23-1. CustomResourceDefinition

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 name: prometheuses.monitoring.coreos.com
spec:
 group: monitoring.coreos.com
 names:
 kind: Prometheus
 plural: prometheuses
 scope: Namespaced
 version: v1
 validation:
 openAPIV3Schema:

Name

API group it belongs to

Kind used to identify instances of this resource

190 | Chapter 23: Operator

http://bit.ly/2Fjlx1h

Naming rule for creating the plural form, used for specifying a list of those
objects

Scope—whether the resource can be created cluster-wide or is specific to a name‐
space

Version of the CRD

OpenAPI V3 schema for validation (not shown here)

An OpenAPI V3 schema can also be specified to allow Kubernetes to validate a cus‐
tom resource. For simple use cases, this schema can be omitted, but for production-
grade CRDs, the schema should be provided so that configuration errors can be
detected early.

Additionally, Kubernetes allows us to specify two possible subresources for our CRD
via the spec field subresources:

scale
With this property, a CRD can specify how it manages its replica count. This field
can be used to declare the JSON path, where the number of desired replicas of
this custom resource is specified: the path to the property that holds the actual
number of running replicas and an optional path to a label selector that can be
used to find copies of custom resource instances. This label selector is usually
optional, but is required if you want to use this custom resource with the Hori‐
zontalPodAutoscaler explained in Chapter 24, Elastic Scale.

status
When we set this property, a new API call is available that only allows you to
change the status. This API call can be secured individually and allows for status
updates from outside the controller. On the other hand, when we update a cus‐
tom resource as a whole, the status section is ignored as for standard Kuber‐
netes resources.

Example 23-2 shows a potential subresource path as is also used for a regular Pod.

Example 23-2. Subresource definition for a CustomResourceDefinition

kind: CustomResourceDefinition
...
spec:
 subresources:
 status: {}
 scale:
 specReplicasPath: .spec.replicas

Solution | 191

 statusReplicasPath: .status.replicas
 labelSelectorPath: .status.labelSelector

JSON path to the number of declared replicas

JSON path to the number of active replicas

JSON path to a label selector to query for the number of active replicas

Once we define a CRD, we can easily create such a resource, as shown in
Example 23-3.

Example 23-3. A Prometheus custom resource

apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
 name: prometheus
spec:
 serviceMonitorSelector:
 matchLabels:
 team: frontend
 resources:
 requests:
 memory: 400Mi

The metadata: section has the same format and validation rules as any other Kuber‐
netes resource. The spec: contains the CRD-specific content, and Kubernetes vali‐
dates against the given validation rule from the CRD.

Custom resources alone are not of much use without an active component to act on
them. To give them some meaning, we need again our well-known Controller, which
watches the lifecycle of these resources and acts according to the declarations found
within the resources.

Controller and Operator Classification
Before we dive into writing our Operator, let’s look at a few kinds of classifications for
Controllers, Operators, and especially CRDs. Based on the Operator’s action, broadly
the classifications are as follows:

Installation CRDs
Meant for installing and operating applications on the Kubernetes platform. Typ‐
ical examples are the Prometheus CRDs, which we can use for installing and
managing Prometheus itself.

192 | Chapter 23: Operator

1 is-a emphasizes the inheritance relationship between Operator and Controller, that an Operator has all charac‐
teristics of a Controller plus a bit more

Application CRDs
In contrast, these are used to represent an application-specific domain concept.
This kind of CRD allows applications deep integration with Kubernetes, which
involves combining Kubernetes with an application-specific domain behavior.
For example, the ServiceMonitor CRD is used by the Prometheus operator to
register specific Kubernetes Services for being scraped by a Prometheus server.
The Prometheus operator takes care of adapting the Prometheus’ server configu‐
ration accordingly.

Note that an Operator can act on different kinds of CRDs as the
Prometheus operator does in this case. The boundary between
these two categories of CRDs is blurry.

In our categorization of Controller and Operator, an Operator is-a Controller that uses
CRDs.1 However, even this distinction is a bit fuzzy as there are variations in between.

One example is a controller, which uses a ConfigMap as a kind of replacement for a
CRD. This approach makes sense in scenarios where default Kubernetes resources are
not enough, but creating CRDs is not feasible either. In this case, ConfigMap is an
excellent middle ground, allowing encapsulation of domain logic within the content
of a ConfigMap. An advantage of using a plain ConfigMap is that you don’t need to
have the cluster-admin rights you need when registering a CRD. In certain cluster
setups, it is just not possible for you to register such a CRD (e.g., like when running
on public clusters like OpenShift Online).

However, you can still use the concept of Observe-Analyze-Act when you replace a
CRD with a plain ConfigMap that you use as your domain-specific configuration.
The drawback is that you don’t get essential tool support like kubectl get for CRDs;
you have no validation on the API Server level, and no support for API versioning.
Also, you don’t have much influence on how you model the status: field of a Con‐
figMap, whereas for a CRD you are free to define your status model as you wish.

Another advantage of CRDs is that you have a fine-grained permission model based
on the kind of CRD, which you can tune individually. This kind of RBAC security is
not possible when all your domain configuration is encapsulated in ConfigMaps, as
all ConfigMaps in a namespace share the same permission setup.

From an implementation point of view, it matters whether we implement a controller
by restricting its usage to vanilla Kubernetes objects or whether we have custom

Solution | 193

https://en.wikipedia.org/wiki/Is-a

resources managed by the controller. In the former case, we already have all types
available in the Kubernetes client library of our choice. For the CRD case, we don’t
have the type information out of the box, and we can either use a schemaless
approach for managing CRD resources, or define the custom types on our own, pos‐
sibly based on an OpenAPI schema contained in the CRD definition. Support for
typed CRDs varies by client library and framework used.

Figure 23-1 shows our Controller and Operator categorization starting from simpler
resource definition options to more advanced with the boundary between Controller
and Operator being the use of custom resources.

Figure 23-1. Spectrum of Controllers and Operators

For Operators, there is even a more advanced Kubernetes extension hook option.
When Kubernetes-managed CRDs are not sufficient to represent a problem domain,
you can extend the Kubernetes API with an own aggregation layer. We can add a cus‐
tom implemented APIService resource as a new URL path to the Kubernetes API.

To connect a given Service with name custom-api-server and backed by a Pod with
your service, you can use a resource like that shown in Example 23-4.

Example 23-4. API aggregation with a custom APIService

apiVersion: apiregistration.k8s.io/v1beta1
kind: APIService
metadata:
 name: v1alpha1.sample-api.k8spatterns.io
spec:
 group: sample-api.k8spattterns.io
 service:

194 | Chapter 23: Operator

 name: custom-api-server
 version: v1alpha1

Besides the Service and Pod implementation, we need some additional security con‐
figuration for setting up the ServiceAccount under which the Pod is running.

Once it is set up, every request to the API Server https://<api server ip>/apis/
sample-api.k8spatterns.io/v1alpha1/namespaces/<ns>/... is directed to our
custom Service implementation. It’s up to this custom Service’s implementation to
handle these requests, including persisting the resources managed via this API. This
approach is different from the preceding CRD case, where Kubernetes itself com‐
pletely manages the custom resources.

With a custom API Server, you have many more degrees of freedom, which allows
going beyond watching resource lifecycle events. On the other hand, you also have to
implement much more logic, so for typical use cases, an operator dealing with plain
CRDs is often good enough.

A detailed exploration of the API Server capabilities is beyond the scope of this chap‐
ter. The official documentation as well as a complete sample-apiserver have more
detailed information. Also, you can use the apiserver-builder library, which helps
with implementing API Server aggregation.

Now, let’s see how we can develop and deploy our operators with CRDs.

Operator Development and Deployment
At the time of this writing (2019), operator development is an area of Kubernetes that
is actively evolving, with several toolkits and frameworks available for writing opera‐
tors. The three main projects aiding in the creation of operators are as follows:

• CoreOS Operator Framework
• Kubebuilder developed under the SIG API Machinery of Kubernetes itself
• Metacontroller from Google Cloud Platform

We touch on them very briefly next, but be aware that all of these projects are quite
young and might change over time or even get merged.

Operator framework
The Operator Framework provides extensive support for developing Golang-based
operators. It provides several subcomponents:

• The Operator SDK provides a high-level API for accessing a Kubernetes cluster
and a scaffolding to start up an operator project

Solution | 195

http://bit.ly/2uk7TWM
http://bit.ly/2HJULSy
http://bit.ly/2JIhHEl

2 This restriction might be lifted in the future, as there are plans for namespace-only registration of CRDs.
3 SIGs (Special Interest Groups) is the way the Kubernetes community organizes feature areas. You can find a

list of current SIGs on the Kubernetes GitHub repository.

• The Operator Lifecycle Manager manages the release and updates of operators
and their CRDs. You can think about it as a kind of “operator operator.”

• Operator Metering enables using reporting for operators.

We won’t go into much detail here about the Operator SDK, which is still evolving,
but the Operator Lifecycle Manager (OLM) provides particularly valuable help when
using operators. One issue with CRDs is that these resources can be registered only
cluster-wide and hence require cluster-admin permissions.2 While regular Kubernetes
users can typically manage all aspects of the namespaces they have granted access to,
they can’t just use operators without interaction with a cluster administrator.

To streamline this interaction, the OLM is a cluster service running in the back‐
ground under a service account with permissions to install CRDs. A dedicated CRD
called ClusterServiceVersion (CSV) is registered along with the OLM and allows us to
specify the Deployment of an operator together with references to the CRD defini‐
tions associated with this operator. As soon as we have created such a CSV, one part
of the OLM waits for that CRD and all of its dependent CRDs to be registered. If this
is the case, the OLM deploys the operator specified in the CSV. Another part of the
OLM can be used to register these CRDs on behalf of a nonprivileged user. This
approach is an elegant way to allow regular cluster users to install their operators.

Kubebuilder
Kubebuilder is a project by the SIG API Machinery with comprehensive documenta‐
tion.3 Like the Operator SDK, it supports scaffolding of Golang projects and the man‐
agement of multiple CRDs within one project.

There is a slight difference from the Operator Framework in that Kubebuilder works
directly with the Kubernetes API, whereas the Operator SDK adds some extra
abstraction on top of the standard API, which makes it easier to use (but lacks some
bells and whistles).

The support for installing and managing the lifecycle of an operator is not as sophis‐
ticated as the OLM from the Operator Framework. However, both projects have a sig‐
nificant overlap, they might eventually converge in one way or another.

Metacontroller
Metacontroller is very different from the other two operator building frameworks as
it extends Kubernetes with APIs that encapsulate the common parts of writing cus‐

196 | Chapter 23: Operator

https://github.com/kubernetes-sigs

tom controllers. It acts similarly to Kubernetes Controller Manager by running multi‐
ple controllers that are not hardcoded but defined dynamically through
Metacontroller-specific CRDs. In other words, it’s a delegating controller that calls
out to the service providing the actual Controller logic.

Another way to describe Metacontroller would be as declarative behavior. While
CRDs allow us to store new types in Kubernetes APIs, Metacontroller makes it easy to
define the behavior for standard or custom resources declaratively.

When we define a controller through Metacontroller, we have to provide a function
that contains only the business logic specific to our controller. Metacontroller handles
all interactions with the Kubernetes APIs, runs a reconciliation loop on our behalf,
and calls our function through a webhook. The webhook gets called with a well-
defined payload describing the CRD event. As the function returns the value, we
return a definition of the Kubernetes resources that should be created (or deleted) on
behalf of our controller function.

This delegation allows us to write functions in any language that can understand
HTTP and JSON, and that do not have any dependency on the Kubernetes API or its
client libraries. The functions can be hosted on Kubernetes, or externally on a
Functions-as-a-Service provider, or somewhere else.

We cannot go into many details here, but if your use case involves extending and cus‐
tomizing Kubernetes with simple automation or orchestration, and you don’t need
any extra functionality, you should have a look at Metacontroller, especially when you
want to implement your business logic in a language other than Go. Some controller
examples will demonstrate how to implement StatefulSet, Blue-Green Deployment,
Indexed Job, and Service per Pod by using Metacontroller only.

Example
Let’s have a look at a concrete Operator example. We extend our example in Chap‐
ter 22, Controller and introduce a CRD of type ConfigWatcher. An instance of this
CRD specifies then a reference to the ConfigMap to watch and which Pods to restart
if this ConfigMap changes. With this approach, we remove the dependency of the
ConfigMap on the Pods, as we don’t have to modify the ConfigMap itself to add trig‐
gering annotations. Also, with our simple annotation-based approach in the Control‐
ler example, we can connect only a ConfigMap to a single application, too. With a
CRD, arbitrary combinations of ConfigMaps and Pods are possible.

This ConfigWatcher custom resource looks like that in Example 23-5.

Example 23-5. Simple ConfigWatcher resource

kind: ConfigWatcher
apiVersion: k8spatterns.io/v1

Solution | 197

metadata:
 name: webapp-config-watcher
spec:
 configMap: webapp-config
 podSelector:
 app: webapp

Reference to ConfigMap to watch

Label selector to determine Pods to restart

In this definition, the attribute configMap references the name of the ConfigMap to
watch. The field podSelector is a collection of labels and their values, which identify
the Pods to restart.

We can define the type of this custom resource with a CRD, as shown in
Example 23-6.

Example 23-6. ConfigWatcher CRD

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 name: configwatchers.k8spatterns.io
spec:
 scope: Namespaced
 group: k8spatterns.io
 version: v1
 names:
 kind: ConfigWatcher
 singular: configwatcher
 plural: configwatchers
 validation:
 openAPIV3Schema:
 properties:
 spec:
 properties:
 configMap:
 type: string
 description: "Name of the ConfigMap"
 podSelector:
 type: object
 description: "Label selector for Pods"
 additionalProperties:
 type: string

Connected to a namespace

Dedicated API group

198 | Chapter 23: Operator

Initial version

Unique kind of this CRD

Labels of the resource as used in tools like kubectl

OpenAPI V3 schema specification for this CRD

For our operator to be able to manage custom resources of this type, we need to
attach a ServiceAccount with the proper permissions to our operator’s Deployment.
For this task, we introduce a dedicated Role that is used later in a RoleBinding to
attach it to the ServiceAccount in Example 23-7.

Example 23-7. Role definition allowing access to custom resource

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: config-watcher-crd
rules:
- apiGroups:
 - k8spatterns.io
 resources:
 - configwatchers
 - configwatchers/finalizers
 verbs: [get, list, create, update, delete, deletecollection, watch]

With these CRDs in place, we can now define custom resources as in Example 23-5.

To make sense of these resources, we have to implement a controller that evaluates
these resources and triggers a Pod restart when the ConfigMap changes.

We expand here on our Controller script in Example 22-2 and adapt the event loop in
the controller script.

In the case of a ConfigMap update, instead of checking for a specific annotation, we
do a query on all resources of kind ConfigWatcher and check whether the modified
ConfigMap is included as a configMap: value. Example 23-8 shows the reconciliation
loop. Refer to our Git repository for the full example, which also includes detailed
instructions for installing this operator.

Example 23-8. WatchConfig controller reconciliation loop

curl -Ns $base/api/v1/${ns}/configmaps?watch=true | \
while read -r event
do
 type=$(echo "$event" | jq -r '.type')

Solution | 199

 if [$type = "MODIFIED"]; then

 watch_url="$base/apis/k8spatterns.io/v1/${ns}/configwatchers"
 config_map=$(echo "$event" | jq -r '.object.metadata.name')

 watcher_list=$(curl -s $watch_url | jq -r '.items[]')

 watchers=$(echo $watcher_list | \
 jq -r "select(.spec.configMap == \"$config_map\") | .metadata.name")

 for watcher in watchers; do
 label_selector=$(extract_label_selector $watcher)
 delete_pods_with_selector "$label_selector"
 done
 fi
done

Start a watch stream to watch for ConfigMap changes for a given namespace.

Check for a MODIFIED event only.

Get a list of all installed ConfigWatcher custom resources.

Extract from this list all ConfigWatcher elements that refer to this ConfigMap.

For every ConfigWatcher found, delete the configured Pod via a selector. The
logic for calculating a label selector as well as the deletion of the Pods are omitted
here for clarity. Refer to the example code in our Git repository for the full imple‐
mentation.

As for the Controller example, this controller can be tested with a sample web applica‐
tion that is provided in our example Git repository. The only difference with this
Deployment is that we use an unannotated ConfigMap for the application
configuration.

Although our operator is quite functional, it is also clear that our shell script-based
operator is still quite simple and doesn’t cover edge or error cases. You can find many
more interesting, production-grade examples in the wild.

Awesome Operators has a nice list of real-world operators that are all based on the
concepts covered in this chapter. We have already seen how a Prometheus operator
can manage Prometheus installations. Another Golang-based operator is the Etcd
Operator for managing an Etcd key-value store and automating operational tasks like
backing up and restoring of the database.

If you are looking for an operator written in the Java programming languages, the
Strimzi Operator is an excellent example of an operator that manages a complex mes‐
saging system like Apache Kafka on Kubernetes. Another good starting point for

200 | Chapter 23: Operator

http://bit.ly/2Ucjs0J

Java-based operators is the JVM Operator Toolkit, which provides a foundation for
creating operators in Java and JVM-based languages like Groovy or Kotlin and also
comes with a set of examples.

Discussion
While we have seen how to extend the Kubernetes platform, Operators are still not a
silver bullet. Before using an operator, you should carefully look at your use case to
determine whether it fits the Kubernetes paradigm.

In many cases, a plain Controller working with standard resources is good enough.
This approach has the advantage that it doesn’t need any cluster-admin permission to
register a CRD but has its limitations when it comes to security or validation.

An Operator is a good fit for modeling a custom domain logic that fits nicely with the
declarative Kubernetes way of handling resources with reactive controllers.

More specifically, consider using an Operator with CRDs for your application domain
for any of the following situations:

• You want tight integration into the already existing Kubernetes tooling like
kubectl.

• You are at a greenfield project where you can design the application from the
ground up.

• You benefit from Kubernetes concepts like resource paths, API groups, API ver‐
sioning, and especially namespaces.

• You want to have already good client support for accessing the API with watches,
authentication, role-based authorization, and selectors for metadata.

If your custom use case fits these criteria, but you need more flexibility in how cus‐
tom resources can be implemented and persisted, consider using a custom API
Server. However, you should also not consider Kubernetes extension points as the
golden hammer for everything.

If your use case is not declarative, if the data to manage does not fit into the Kuber‐
netes resource model, or you don’t need a tight integration into the platform, you are
probably better off writing your standalone API and exposing it with a classical Ser‐
vice or Ingress object.

The Kubernetes documentation itself also has a chapter for suggestions on when to
use a Controller, Operator, API aggregation, or custom API implementation.

Discussion | 201

http://bit.ly/2FrfyJ6

More Information
• Operator Example
• Operator Framework
• OpenAPI V3
• Kubebuilder
• Kubernetes Client Libraries
• Metacontroller
• JVM Operator Toolkit
• Extend the Kubernetes API with CustomResourceDefinitions
• Awesome Operators in the Wild
• Custom Resources Versus API Server Aggregations
• Comparison of Kubebuilder, Operator Framework, and Metacontroller
• TPR Is Dead! Kubernetes 1.7 Turns on CRD
• Code Generation for Custom Resources
• A Sample Operator in Go
• Prometheus Operator
• Etcd Operator
• Memhog Operator

202 | Chapter 23: Operator

http://bit.ly/2HvfIkV
http://bit.ly/2CKLYN1
http://bit.ly/2Tluk82
http://bit.ly/2I8w9mz
http://bit.ly/2Sh1XYk
https://metacontroller.app/
https://github.com/jvm-operators
http://bit.ly/2uk6Iq5
http://bit.ly/2Ucjs0J
http://bit.ly/2FrfR6I
http://bit.ly/2FpO4Ug
http://bit.ly/2FQnCSA
https://red.ht/2HIS9Er
http://bit.ly/2UppsTN
http://bit.ly/2HICRjT
http://bit.ly/2JTz8SK
https://github.com/secat/memhog-operator

CHAPTER 24

Elastic Scale

The Elastic Scale pattern covers application scaling in multiple dimensions: horizontal
scaling by adapting the number of Pod replicas, vertical scaling by adapting resource
requirements for Pods, and scaling the cluster itself by changing the number of clus‐
ter nodes. While all of these actions can be performed manually, in this chapter we
explore how Kubernetes can perform scaling based on load automatically.

Problem
Kubernetes automates the orchestration and management of distributed applications
composed of a large number of immutable containers by maintaining their declara‐
tively expressed desired state. However, with the seasonal nature of many workloads
that often change over time, it is not an easy task to figure out how the desired state
should look. Identifying accurately how many resources a container will require, and
how many replicas a service will need at a given time to meet service-level agreements
takes time and effort. Luckily, Kubernetes makes it easy to alter the resources of a
container, the desired replicas for a service, or the number of nodes in the cluster.
Such changes can happen either manually, or given specific rules, can be performed
in a fully automated manner.

Kubernetes not only can preserve a fixed Pod and cluster setup, but also can monitor
external load and capacity-related events, analyze the current state, and scale itself for
the desired performance. This kind of observation is a way for Kubernetes to adapt
and gain antifragile traits based on actual usage metrics rather than anticipated fac‐
tors. Let’s explore the different ways we can achieve such behavior, and how to com‐
bine the various scaling methods for an even greater experience.

203

Solution
There are two main approaches to scaling any application: horizontal and vertical.
Horizontally in the Kubernetes world equates to creating more replicas of a Pod. Ver‐
tically scaling implies giving more resources to running containers managed by Pods.
While it may seem straightforward on paper, creating an application configuration
for autoscaling on a shared cloud platform without affecting other services and the
cluster itself requires significant trial and error. As always, Kubernetes provides a
variety of features and techniques to find the best setup for our applications, and we
explore them briefly here.

Manual Horizontal Scaling
The manual scaling approach, as the name suggests, is based on a human operator
issuing commands to Kubernetes. This approach can be used in the absence of
autoscaling, or for gradual discovery and tuning of the optimal configuration of an
application matching the slow-changing load over long periods. An advantage of the
manual approach is that it also allows anticipatory rather than reactive-only changes:
knowing the seasonality and the expected application load, you can scale it out in
advance, rather than reacting to already increased load through autoscaling, for
example. We can perform manual scaling in two styles.

Imperative scaling
A controller such as ReplicaSet is responsible for making sure a specific number of
Pod instances are always up and running. Thus, scaling a Pod is as trivially simple as
changing the number of desired replicas. Given a Deployment named random-
generator, scaling it to four instances can be done in one command, as shown in
Example 24-1.

Example 24-1. Scaling a Deployment’s replicas on the command line

kubectl scale random-generator --replicas=4

After such a change, the ReplicaSet could either create additional Pods to scale up, or
if there are more Pods than desired, delete them to scale down.

Declarative scaling
While using the scale command is trivially simple and good for quick reactions to
emergencies, it does not preserve this configuration outside the cluster. Typically, all
Kubernetes applications would have their resource definitions stored in a source con‐
trol system that also includes the number of replicas. Recreating the ReplicaSet from
its original definition would change the number of replicas back to its previous num‐

204 | Chapter 24: Elastic Scale

ber. To avoid such a configuration drift and to introduce operational processes for
backporting changes, it is a better practice to change the desired number of replicas
declaratively in the ReplicaSet or some other definition and apply the changes to
Kubernetes as shown in Example 24-2.

Example 24-2. Using a Deployment for declaratively setting the number of replicas

kubectl apply -f random-generator-deployment.yaml

We can scale resources managing multiple Pods such as ReplicaSets, Deployments,
and StatefulSets. Notice the asymmetric behavior in scaling a StatefulSet with persis‐
tent storage. As described in Chapter 11, Stateful Service, if the StatefulSet has
a .spec.volumeClaimTemplates element, it will create PVCs while scaling, but it
won’t delete them when scaling down to preserve the storage from deletion.

Another Kubernetes resource that can be scaled but follows a different naming con‐
vention is the Job resource, which we described in Chapter 7, Batch Job. A Job can be
scaled to execute multiple instances of the same Pod at the same time by changing
the .spec.parallelism field rather than .spec.replicas. However, the semantic
effect is the same: increased capacity with more processing units that act as a single
logical unit.

For describing resource fields we use a JSON path notation. For
example, .spec.replicas points to the replicas field of the
resource’s spec section.

Both manual scaling styles (imperative and declarative) expect a human to observe or
anticipate a change in the application load, make a decision on how much to scale,
and apply it to the cluster. They have the same effect, but they are not suitable for
dynamic workload patterns that change often and require continuous adaptation.
Next, let’s see how we can automate scaling decisions themselves.

Horizontal Pod Autoscaling
Many workloads have a dynamic nature that varies over time and makes it hard to
have a fixed scaling configuration. But cloud-native technologies such as Kubernetes
enable creating applications that adapt to changing loads. Autoscaling in Kubernetes
allows us to define a varying application capacity that is not fixed but instead ensures
just enough capacity to handle a different load. The most straightforward approach to
achieving such behavior is by using a HorizontalPodAutoscaler (HPA) to horizontally
scale the number of pods.

Solution | 205

An HPA for the random-generator Deployment can be created with the command in
Example 24-3. For the HPA to have any effect, it is important that the Deployment
declare a .spec.resources.requests limit for the CPU as described in Chapter 2,
Predictable Demands. Another requirement is that you have the metrics server
enabled, which is a cluster-wide aggregator of resource usage data.

Example 24-3. Create HPA definition on the command line

kubectl autoscale deployment random-generator --cpu-percent=50 --min=1 --max=5

The preceding command will create the HPA definition shown in Example 24-4.

Example 24-4. HPA definition

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
 name: random-generator
spec:
 minReplicas: 1
 maxReplicas: 5
 scaleTargetRef:
 apiVersion: extensions/v1beta1
 kind: Deployment
 name: random-generator
 metrics:
 - resource:
 name: cpu
 target:
 averageUtilization: 50
 type: Utilization
 type: Resource

Minimum number of Pods that should always run

Maximum number of Pods until the HPA can scale up

Reference to the object that should be associated with this HPA

Desired CPU usage as a percentage of the Pods, requested CPU resource. For
example, when the Pods have a .spec.resources.requests.cpu of 200m, a
scale-up happens when on average more than 100m CPU (= 50%) is utilized.

206 | Chapter 24: Elastic Scale

1 For multiple running Pods, the average CPU utilization is used as currentMetricValue.

In Example 24-4 we use the API version v2beta2 of the resource to
configure the HPA. This version is in active development and is
feature-wise a superset of version v1. Version v2 allows for much
more criteria than the CPU usage, like memory consumption or
application-specific custom metrics. By using kubectl get

hpa.v2beta2.autoscaling -o yaml, you can easily convert a v1
HPA resource created by kubectl autoscale to a v2 resource.

This definition instructs the HPA controller to keep between one and five Pod instan‐
ces to retain an average Pod CPU usage of around 50% of the specified CPU resource
limit in the Pod’s .spec.resources.requests declaration. While it is possible to
apply such an HPA to any resource that supports the scale subresource such as
Deployments, ReplicaSets, and StatefulSets, you must consider the side effects.
Deployments create new ReplicaSets during updates but without copying over any
HPA definitions. If you apply an HPA to a ReplicaSet managed by a Deployment, it is
not copied over to new ReplicaSets and will be lost. A better technique is to apply the
HPA to the higher-level Deployment abstraction, which preserves and applies the
HPA to the new ReplicaSet versions.

Now, let’s see how an HPA can replace a human operator to ensure autoscaling. At a
high level, the HPA controller performs the following steps continuously:

1. Retrieves metrics about the Pods that are subject to scaling according to the HPA
definition. Metrics are not read directly from the Pods but from the Kubernetes
Metrics APIs that serve aggregated metrics (and even custom and external met‐
rics if configured to do so). Pod-level resource metrics are obtained from the
Metrics API, and all other metrics are retrieved from the Custom Metrics API of
Kubernetes.

2. Calculates the required number of replicas based on the current metric value and
targeting the desired metric value. Here is a simplified version of the formula:

desiredReplicas = currentReplicas × currentMetricValue
desiredMetricValue

For example, if there is a single Pod with a current CPU usage metric value of 90% of
the specified CPU resource request value,1 and the desired value is 50%, the number
of replicas will be doubled, as 1 × 90

50 = 2. The actual implementation is more com‐
plicated as it has to consider multiple running Pod instances, cover multiple metric
types, and account for many corner cases and fluctuating values as well. If multiple

Solution | 207

metrics are specified, for example, then HPA evaluates each metric separately and
proposes a value that is the largest of all. After all the calculations, the final output is a
single integer number representing the number of desired replicas that keep the
measured value below the desired threshold value.

The replicas field of the autoscaled resource will be updated with this calculated
number and other controllers do their bit of work in achieving and keeping the new
desired state. Figure 24-1 shows how the HPA works: monitoring metrics and chang‐
ing declared replicas accordingly.

Figure 24-1. Horizontal Pod autoscaling mechanism

Autoscaling is an area of Kubernetes with many low-level details that are still evolving
rapidly, and each one can have a significant impact on the overall behavior of
autoscaling. As such, it is beyond the scope of this book to cover all the details, but
“More Information” on page 219 provides the latest up-to-date information on the
subject.

Broadly, there are the following metric types:

Standard metrics
These metrics are declared with .spec.metrics.resource[:].type equals to
Resource and represent resource usage metrics such as CPU and memory. They
are generic and available for any container on any cluster under the same name.
You can specify them as a percentage as we did in the preceding example, or as an
absolute value. In both cases, the values are based on the guaranteed resource
amount, which is the container resource requests values and not the limits val‐
ues. These are the easiest-to-use metric types generally provided by the metrics
server or Heapster components, which can be launched as cluster addons.

Custom metrics
These metrics with .spec.metrics.resource[*].type equals to Object or
Pod require a more advanced cluster monitoring setup, which can vary from
cluster to cluster. A custom metric with the Pod type, as the name suggests,
describes a Pod-specific metric, whereas the Object type can describe any other
object. The custom metrics are served in an aggregated API Server under

208 | Chapter 24: Elastic Scale

custom.metrics.k8s.io API path and are provided by different metrics adapters
such as Prometheus, Datadog, Microsoft Azure, or Google Stackdriver.

External metrics
This category is for metrics that describe resources that are not a part of the
Kubernetes cluster. For example, you may have a Pod that consumes messages
from a cloud-based queueing service. Very often in such a scenario, you may
want to scale the number of consumer Pods based on the queue depth. Such a
metric would be populated by an external metrics plugin similar to custom met‐
rics.

Getting autoscaling right is not easy and involves a little bit of experimenting and
tuning. The following are a few of the main areas to consider when setting up an
HPA:

Metric selection
Probably one of the most critical decisions around autoscaling is which metrics
to use. For an HPA to be useful, there must be a direct correlation between the
metric value and the number of Pod replicas. For example, if the chosen metric is
of Queries-per-Second (such as HTTP requests per second) kind, increasing the
number of Pods causes the average number of queries to go down as the queries
are dispatched to more Pods. The same is true if the metric is CPU usage, as there
is a direct correlation between the query rate and CPU usage (an increased num‐
ber of queries would result in increased CPU usage). For other metrics such as
memory consumption that is not the case. The issue with memory is that if a ser‐
vice consumes a certain amount of memory, starting more Pod instances most
likely will not result in a memory decrease unless the application is clustered and
aware of the other instances and has mechanisms to distribute and release its
memory. If the memory is not released and reflected in the metrics, the HPA
would create more and more Pods in an effort to decrease it, until it reaches the
upper replica threshold, which is probably not the desired behavior. So choose a
metric directly (preferably linearly) correlated to the number of Pods.

Preventing thrashing
The HPA applies various techniques to avoid rapid execution of conflicting deci‐
sions that can lead to a fluctuating number of replicas when the load is not stable.
For example, during scale-up, the HPA disregards high CPU usage samples when
a Pod is initializing, ensuring a smoothing reaction to increasing load. During
scale-down, to avoid scaling down in response to a short dip in usage, the con‐
troller considers all scale recommendations during a configurable time window
and chooses the highest recommendation from within the window. All this
makes HPA more stable to random metric fluctuations.

Solution | 209

Delayed reaction
Triggering a scaling action based on a metric value is a multistep process involv‐
ing multiple Kubernetes components. First, it is the cAdvisor (container advisor)
agent that collects metrics at regular intervals for the Kubelet. Then the metrics
server collects metrics from the Kubelet at regular intervals. The HPA controller
loop also runs periodically and analyzes the collected metrics. The HPA scaling
formula introduces some delayed reaction to prevent fluctuations/thrashing (as
explained in the previous point). All this activity accumulates into a delay
between the cause and the scaling reaction. Tuning these parameters by introduc‐
ing more delay makes the HPA less responsive, but reducing the delays increases
the load on the platform and increases thrashing. Configuring Kubernetes to bal‐
ance resources and performance is an ongoing learning process.

Knative Serving
Knative serving (which we introduce in “Knative Build” on page 230) allows even
more advanced horizontal scaling techniques. These advanced features include “scale-
to-zero” where the set of Pods backing a Service can be scaled down to 0 and scaled
up only when a specific trigger happens, like an incoming request. For this to work,
Knative is built on top of the service mesh Istio, which in turn provides transparent
internal proxying services for Pods. Knative serving provides the foundation for a
serverless framework for an even more flexible and fast horizontal scaling behavior
that goes beyond the Kubernetes standard mechanisms.

A detailed discussion of Knative serving is beyond the scope of this book, as this is
still a very young project and deserves its own book. We have added more links to
Knative resources in “More Information” on page 219.

Vertical Pod Autoscaling
Horizontal scaling is preferred over vertical scaling because it is less disruptive, espe‐
cially for stateless services. That is not the case for stateful services where vertical scal‐
ing may be preferred. Other scenarios where vertical scaling is useful is for tuning the
actual resource needs of a service based on actual load patterns. We have discussed
why identifying the correct number of replicas of a Pod might be difficult and even
impossible when load changes over time. Vertical scaling also has these kinds of chal‐
lenges in identifying the correct requests and limits for a container. The Kuber‐
netes Vertical Pod Autoscaler (VPA) aims to address these challenges by automating
the process of adjusting and allocating resources based on real-world usage feedback.

As we saw in Chapter 2, Predictable Demands, every container in a Pod can specify its
CPU and memory requests, which influences where the managing Pods will be
scheduled. In a sense, the resource requests and limits of a Pod form a contract

210 | Chapter 24: Elastic Scale

between the Pod and the scheduler, which causes a certain amount of resources to be
guaranteed or prevents the Pod from being scheduled. Setting the memory requests
too low can cause nodes to be more tightly packed which in turn can lead to out-of-
memory errors or workload eviction due to memory pressure. If the CPU limits are
too low, CPU starvation and underperforming workloads can occur. On the other
hand, specifying resource requests that are too high allocates unnecessary capacity
leading to wasted resources. It is important to get resource requests as accurately as
possible since they impact the cluster utilization and the effectiveness of horizontal
scaling. Let’s see how VPA helps address this.

On a cluster with VPA and the metrics server installed, we can use a VPA definition
to demonstrate vertical autoscaling of Pods, as in Example 24-5.

Example 24-5. VPA

apiVersion: poc.autoscaling.k8s.io/v1alpha1
kind: VerticalPodAutoscaler
metadata:
 name: random-generator-vpa
spec:
 selector:
 matchLabels:
 app: random-generator
 updatePolicy:
 updateMode: "Off"

Label selector to identify the Pods to manage

The update policy for how VPA will apply changes

A VPA definition has the following main parts:

Label selector
Specifies what to scale by identifying the Pods it should handle.

Update policy
Controls how VPA applies changes. The Initial mode allows assigning resource
requests only during Pod creation time but not later. The default Auto mode
allows resource assignment to Pods at creation time, but additionally, it can
update Pods during their lifetimes, by evicting and rescheduling the Pod. The
value Off disables automatic changes to Pods, but allows suggesting resource val‐
ues. This is a kind of dry run for discovering the right size of a container, but
without applying it directly.

Solution | 211

A VPA definition can also have a resource policy that influences how VPA computes
the recommended resources (e.g., by setting per container lower and upper resource
boundaries).

Depending on which .spec.updatePolicy.updateMode is configured, the VPA
involves different system components. All three VPA components—recommender,
admission plugin, and updater—are decoupled, independent, and can be replaced
with alternative implementations. The module with the intelligence to produce rec‐
ommendations is the recommender, which is inspired by Google’s Borg system. The
current implementation analyzes the actual resource usage of a container under load
for a certain period (by default, eight days), produces a histogram, and chooses a high
percentile value for that period. In addition to metrics, it also considers resource and
specifically memory-related Pod events such as evictions and OutOfMemory events.

In our example we chose .spec.updatePolicy.updateMode equals Off, but there are
two other options to choose from, each with a different level of potential disruption
on the scaled Pods. Let’s see how different values for updateMode work, starting from
nondisruptive to a more disruptive order:

updateMode: Off

The VPA recommender gathers Pod metrics and events and then produces rec‐
ommendations. The VPA recommendations are always stored in the status sec‐
tion of the VPA resource. However, this is how far the Off mode goes. It analyzes
and produces recommendations, but it does not apply them to the Pods. This
mode is useful for getting insight on the Pod resource consumption without
introducing any changes and causing disruption. That decision is left for the user
to make if desired.

updateMode: Initial

In this mode, the VPA goes one step further. In addition to the activities per‐
formed by the recommender component, it also activates the VPA admission
plugin, which applies the recommendations to newly created Pods only. For
example, if a Pod is scaled manually through an HPA, updated by a Deployment,
or evicted and restarted for whatever reason, the Pod’s resource request values are
updated by the VPA Admission Controller.

This controller is a mutating admission plugin that overrides the requests of new
Pods matching the VPA label selector. This mode does not restart a running Pod,
but it is still partially disruptive because it changes the resource request of newly
created Pods. This in turn can affect where a new Pod is scheduled. What’s more,
it is possible that after applying the recommended resource requests, the Pod is
scheduled to a different node, which can have unexpected consequences. Or
worse, the Pod might not be scheduled to any node if there is not enough
capacity on the cluster.

212 | Chapter 24: Elastic Scale

updateMode: Auto

In addition to the recommendation creation and its application for newly created
Pods as described previously, in this mode the VPA also activates its updated
component. This component evicts running Pods matching its label selector.
After the eviction, the Pods get recreated by the VPA admission plugin compo‐
nent, which updates their resource requests. So this approach is the most disrup‐
tive as it restarts all Pods to forcefully apply the recommendations and can lead
to unexpected scheduling issues as described earlier.

Kubernetes is designed to manage immutable containers with immutable Pod spec
definitions as seen in Figure 24-2. While this simplifies horizontal scaling, it introdu‐
ces challenges for vertical scaling such as requiring Pod deletion and recreation,
which can impact scheduling and cause service disruptions. This is true even when
the Pod is scaling down and wants to release already allocated resources with no dis‐
ruption.

Another concern is around the VPA and HPA coexistence because these autoscalers
are not currently aware of each other, which can lead to unwanted behavior. For
example, if an HPA is using resource metrics such as CPU and memory and the VPA
is also influencing the same values, you may end up with horizontally scaled Pods
that are also vertically scaled (hence double scaling).

We don’t go into more detail here because the VPA is still in beta and may change
after it’s in active use. But it is a feature that has the potential to improve resource
consumption significantly.

Figure 24-2. Vertical Pod autoscaling mechanism

Cluster Autoscaling
The patterns in this book primarily use Kubernetes primitives and resources targeted
at developers using a Kubernetes cluster that’s already set up, which is usually an
operational task. Since it is a topic related to elasticity and scaling of workloads, we
will cover the Kubernetes Cluster Autoscaler (CA) here briefly.

Solution | 213

One of the tenets of cloud computing is pay-as-you-go resource consumption. We
can consume cloud services when needed, and only as much as needed. CA can inter‐
act with cloud providers where Kubernetes is running, and request additional nodes
during peak times or shut down idle nodes during other times, reducing infrastruc‐
ture costs. While HPA and VPA perform Pod-level scaling and ensure service
capacity elasticity within a cluster, CA provides node scalability to ensure cluster
capacity elasticity.

CA is a Kubernetes addon that has to be turned on and configured with a minimum
and maximum number of nodes. It can function only when the Kubernetes cluster is
running on a cloud-computing infrastructure where nodes can be provisioned and
decommissioned on demand and that has support for Kubernetes CA, such as AWS,
Microsoft Azure, or Google Compute Engine.

Cluster API
All major cloud providers support Kubernetes CA. However, to make this happen,
plugins have been written by cloud providers, leading to vendor locking and inconsis‐
tent CA support. Luckily there is the Cluster API Kubernetes project, which aims to
provide APIs for cluster creation, configuration, and management. All major public
and private cloud providers like AWS, Azure, GCE, vSphere, and OpenStack support
this initiative. This also allows CA on on-premises Kubernetes installations. The heart
of the Cluster API is a machine controller running in the background, for which sev‐
eral independent implementations like the Kubermatic machine-controller or the
machine-api-operator by Open‐Shift already exist. It is worth keeping an eye on the
Cluster API as it may become the backbone for any cluster autoscaling in the future.

A CA performs primarily two operations: add new nodes to a cluster or remove
nodes from a cluster. Let’s see how these actions are performed:

Adding a new node (scale-up)
If you have an application with a variable load (busy times during the day, week‐
end, or holiday season, and much less load during other times), you need varying
capacity to meet these demands. You could buy fixed capacity from a cloud pro‐
vider to cover the peak times, but paying for it during less busy periods reduces
the benefits of cloud computing. This is where CA becomes truly useful.

When a Pod is scaled horizontally or vertically, either manually or through HPA
or VPA, the replicas have to be assigned to nodes with enough capacity to satisfy
the requested CPU and memory. If there is no node in the cluster with enough
capacity to satisfy all of the Pod’s requirements, the Pod is marked as unschedula‐
ble and remains in the waiting state until such a node is found. CA monitors for

214 | Chapter 24: Elastic Scale

such Pods to see whether adding a new node would satisfy the needs of the Pods.
If the answer is yes, it resizes the cluster and accommodates the waiting Pods.

CA cannot expand the cluster by a random node—it has to choose a node from
the available node groups the cluster is running on. It assumes that all the
machines in a node group have the same capacity and the same labels, and that
they run the same Pods specified by local manifest files or DaemonSets. This
assumption is necessary for CA to estimate how much extra Pod capacity a new
node will add to the cluster.

If multiple node groups are satisfying the needs of the waiting Pods, then CA can
be configured to choose a node group by different strategies called expanders. An
expander can expand a node group with an additional node by prioritizing least
cost, least resource waste, accommodating most Pods, or just randomly. At the
end of a successful node selection, a new machine should be provisioned by the
cloud provider in a few minutes and registered in the API Server as a new Kuber‐
netes node ready to host the waiting Pods.

Removing a node (scale-down)
Scaling down Pods or nodes without service disruption is always more involved
and requires many checks. CA performs scale-down if there is no need to scale
up and a node is identified as unneeded. A node is qualified for scale-down if it
satisfies the following main conditions:

• More than half of its capacity is unused—that is, the sum of all requested
CPU and memory of all Pods on the node is less than 50% of the node allo‐
catable resource capacity.

• All movable Pods on the node (Pods that are not run locally by manifest files
or Pods created by DaemonSets) can be placed on other nodes. To prove
that, CA performs a scheduling simulation and identifies the future location
of every Pod that would be evicted. The final location of the Pods still is
determined by the scheduler and can be different, but the simulation ensures
there is spare capacity for the Pods.

• There are no other reasons to prevent node deletion, such as a node being
excluded from scaling down through annotations.

• There are no Pods that cannot be moved, such as Pods with PodDisruption‐
Budget that cannot be satisfied, Pods with local storage, Pods with annota‐
tions preventing eviction, Pods created without a controller, or system Pods.

All of these checks are performed to ensure no Pod is deleted that cannot be
started on a different node. If all of the preceding conditions are true for a while
(the default is 10 minutes), the node qualifies for deletion. The node is deleted by
marking it as unschedulable and moving all Pods from it to other nodes.

Solution | 215

Figure 24-3 summarizes how the CA interacts with cloud providers and Kubernetes
for scaling out cluster nodes.

Figure 24-3. Cluster autoscaling mechanism

As you probably figured out by now, scaling Pods and nodes are decoupled but com‐
plementary procedures. An HPA or VPA can analyze usage metrics, events, and scale
Pods. If the cluster capacity is insufficient, the CA kicks in and increases the capacity.
The CA is also helpful when there are irregularities in the cluster load due to batch
Jobs, recurring tasks, continuous integration tests, or other peak tasks that require a
temporary increase in the capacity. It can increase and reduce capacity and provide
significant savings on cloud infrastructure costs.

Scaling Levels
In this chapter, we explored various techniques for scaling deployed workloads to
meet their changing resource needs. While a human operator can manually perform
most of the activities listed here, that doesn’t align with the cloud-native mindset. In
order to enable large-scale distributed system management, the automation of repeti‐
tive activities is a must. The preferred approach is to automate scaling and enable
human operators to focus on tasks that a Kubernetes operator cannot automate yet.

Let’s review all of the scaling techniques, from the more granular to the more coarse-
grained order as shown in Figure 24-4.

216 | Chapter 24: Elastic Scale

Figure 24-4. Application-scaling levels

Application Tuning
At the most granular level, there is an application tuning technique we didn’t cover in
this chapter, as it is not a Kubernetes-related activity. However, the very first action
you can take is to tune the application running in the container to best use allocated
resources. This activity is not performed every time a service is scaled, but it must be
performed initially before hitting production. For example, for Java runtimes, that is
right-sizing thread pools for best use of the available CPU shares the container is get‐
ting. Then tuning the different memory regions such as heap, nonheap, and thread
stack sizes. Adjusting these values is typically performed through configuration
changes rather than code changes.

Container-native applications use start scripts that can calculate good default values
for thread counts, and memory sizes for the application based on the allocated con‐
tainer resources rather than the shared full node capacity. Using such scripts is an
excellent first step. You can also go one step further and use techniques and libraries
such as Netflix’s Adaptive Concurrency Limits library, where the application can
dynamically calculate its concurrency limits by self-profiling and adapting. This is a
kind of in-app autoscaling that removes the need for manually tuning services.

Tuning applications can cause regressions similar to a code change and must be fol‐
lowed by a degree of testing. For example, changing the heap size of an application
can cause it to be killed with an OutOfMemory error and horizontal scaling won’t be
able to help. On the other hand, scaling Pods vertically or horizontally, or provision‐

Solution | 217

ing more nodes will not be as effective if your application is not consuming the
resources allocated for the container properly. So tuning for scale at this level can
impact all other scaling methods and can be disruptive, but it must be performed at
least once to get optimal application behavior.

Vertical Pod Autoscaling
Assuming the application is consuming the container resources effectively, the next
step is setting the right resource requests and limits in the containers. Earlier we
explored how VPA can automate the process of discovering and applying optimal val‐
ues driven by real consumption. A significant concern here is that Kubernetes
requires Pods to be deleted and created from scratch, which leaves the potential for
short or unexpected periods of service disruption. Allocating more resources to a
resource starved container may make the Pod unschedulable and increase the load on
other instances even more. Increasing container resources may also require applica‐
tion tuning to best use the increased resources.

Horizontal Pod Autoscaling
The preceding two techniques are a form of vertical scaling; we hope to get better
performance from existing Pods by tuning them but without changing their count.
The following two techniques are a form of horizontal scaling: we don’t touch the Pod
specification, but we change the Pod and node count. This approach reduces the
chances for the introduction of any regression and disruption and allows more
straightforward automation. HPA is currently the most popular form of scaling.
While initially, it provided minimal functionality through CPU and memory metrics
support only, now using custom and external metrics allow more advanced scaling
use cases.

Assuming that you have performed the preceding two methods once for identifying
good values for the application setup itself and determined the resource consumption
of the container, from there on, you can enable HPA and have the application adapt
to shifting resource needs.

Cluster Autoscaling
The scaling techniques described in HPA and VPA provide elasticity within the
boundary of the cluster capacity only. You can apply them, only if there is enough
room within the Kubernetes cluster. CA introduces flexibility at the cluster capacity
level. CA is complementary to the other scaling methods, but also completely decou‐
pled. It doesn’t care about the reason for extra capacity demand or why there is
unused capacity, or whether it is a human operator, or an autoscaler that is changing
the workload profiles. It can extend the cluster to ensure demanded capacity, or
shrink it to spare some resources.

218 | Chapter 24: Elastic Scale

Discussion
Elasticity and the different scaling techniques are an area of Kubernetes that are still
actively evolving. HPA recently added proper metric support, and VPA is still experi‐
mental. Also, with the popularization of the serverless programming model, scaling
to zero and quick scaling has become a priority. Knative serving is a Kubernetes
addon that exactly addresses this need to provide the foundation for scale-to-zero as
we briefly describe in “Knative Serving” on page 210 and “Knative Build” on page
230. Knative and the underlying service meshes are progressing quickly and intro‐
duce very exciting new cloud-native primitives. We are watching this space closely
and recommend you to have an eye on Knative too.

Given a desired state specification of a distributed system, Kubernetes can create and
maintain it. It also makes it reliable and resilient to failures, by continuously monitor‐
ing and self-healing and ensuring its current state matches the desired one. While a
resilient and reliable system is good enough for many applications today, Kubernetes
goes a step further. A small but properly configured Kubernetes system would not
break under heavy load, but instead would scale the Pods and nodes. So in the face of
these external stressors, the system would get bigger and stronger rather than weaker
and brittle, giving Kubernetes antifragile capabilities.

More Information
• Elastic Scale Example
• Rightsize Your Pods with Vertical Pod Autoscaling
• Kubernetes Autoscaling 101
• Horizontal Pod Autoscaler
• HPA Algorithm
• Horizontal Pod Autoscaler Walk-Through
• Kubernetes Metrics API and Clients
• Vertical Pod Autoscaling
• Configuring Vertical Pod Autoscaling
• Vertical Pod Autoscaler Proposal
• Vertical Pod Autoscaler GitHub Repo
• Cluster Autoscaling in Kubernetes
• Adaptive Concurrency Limits
• Cluster Autoscaler FAQ
• Cluster API

Discussion | 219

http://bit.ly/2HwQa6V
http://bit.ly/2WInN9l
http://bit.ly/2U0XoGa
http://bit.ly/2r08Row
http://bit.ly/2Fh35Xb
http://bit.ly/2FlUSRH
https://github.com/kubernetes/metrics/
http://bit.ly/2Fixzbn
http://bit.ly/2HyI0eb
http://bit.ly/2OfAOnW
http://bit.ly/2BDnAMZ
http://bit.ly/2TkNQl9
http://bit.ly/2JuXxxx
http://bit.ly/2Cum0NH
http://bit.ly/2D133T9

• Kubermatic Machine-Controller
• OpenShift Machine API Operator
• Knative
• Knative: Serving Your Serverless Services
• Knative Tutorial

220 | Chapter 24: Elastic Scale

http://bit.ly/2VeTqae
http://bit.ly/2uI7TzP
https://cloud.google.com/knative/
https://red.ht/2HvenKZ
http://bit.ly/2HT70x9

CHAPTER 25

Image Builder

Kubernetes is a general-purpose orchestration engine, suitable not only for running
applications, but also for building container images. The Image Builder pattern
explains why it makes sense to build the container images within the cluster and what
techniques exist today for creating images within Kubernetes.

Problem
All the patterns in this book so far have been about operating applications on Kuber‐
netes. We learned how we can develop and prepare our applications to be good
cloud-native citizens. But what about building the application itself? The classic
approach is to build container images outside the cluster, push them to a registry, and
refer to them in the Kubernetes Deployment descriptors. However, building within
the cluster has several advantages.

If the company policies allow, having only one cluster for everything is advantageous.
Building and running applications in one place can reduce maintenance costs consid‐
erably. It also simplifies capacity planning and reduces platform resource overhead.

Typically, Continuous Integration (CI) systems like Jenkins are used to build images.
Building with a CI system is a scheduling problem for efficiently finding free comput‐
ing resources for build jobs. At the heart of Kubernetes is a highly sophisticated
scheduler that is a perfect fit for this kind of scheduling challenge.

Once we move to Continuous Delivery (CD), where we transition from building
images to running containers, if the build happens within the same cluster, both pha‐
ses share the same infrastructure and ease transition. For example, let’s assume that a
new security vulnerability is discovered in a base image used for all applications. As
soon as your team has fixed this issue, you have to rebuild all the application images
that depend on this base image and update your running applications with the new

221

image. When implementing this Image Builder pattern, the cluster knows both—the
build of an image and its deployment—and can automatically do a redeployment if a
base image changes. In “OpenShift Build” on page 223, we will see how OpenShift
implements such automation.

Daemonless Builds
When building within Kubernetes, the cluster has full control of the build process,
but needs higher security standards as a result because the build is not running in iso‐
lation anymore. To do builds in the cluster, it is essential to run the build without root
privileges. Luckily, today there are many ways to achieve so-called daemonless builds
that work without elevated privileges.

Docker was tremendously successful in bringing container technologies to the
masses, thanks to its unmatched user experience. Docker is based on a client-server
architecture with a Docker daemon running in the background and taking instruc‐
tions via a REST API from its client. This daemon needs root privileges mainly for
network and volume management reasons. Unfortunately, this imposes a security
risk, as running untrusted processes can escape their container and an intruder could
get control of the whole host. This concern applies not only when running containers,
but also when building containers because building also happens within a container
when the Docker daemon executes arbitrary commands.

Many projects have been created to allow Docker builds without requiring root per‐
missions to reduce that attack surface. Some of them don’t allow running commands
during building (like Jib), and other tools use different techniques. At the time of this
writing, the most prominent daemonless image build tools are img, buildah, and
Kaniko. Also, the S2I system explained in “Source-to-Image” on page 225 performs
the image build without root permissions.

Having seen the benefits of building images on the platform, let’s look at what
techniques exist for creating images in a Kubernetes cluster.

Solution
One of the oldest and most mature ways of building images in a Kubernetes cluster is
the OpenShift build subsystem. It allows several ways of building images. One sup‐
ported technique is Source-to-Image (S2I), an opinionated way of doing builds with
so-called builder images. We take a closer look at S2I and the OpenShift way of build‐
ing images in “OpenShift Build” on page 223.

Another mechanism for doing intracluster builds is through Knative Build. It works
on top of Kubernetes, and the service mesh Istio and is one of the main parts of Kna‐
tive, a platform for building, deploying, and managing serverless workloads. At the

222 | Chapter 25: Image Builder

https://cloud.google.com/knative/
https://cloud.google.com/knative/

time of this writing, Knative is still a very young project and is moving fast. The sec‐
tion “Knative Build” on page 230 gives an overview of Knative and provides examples
for building images in a Kubernetes cluster with the help of Knative build.

Let’s have a look at OpenShift build first.

OpenShift Build
Red Hat OpenShift is an enterprise distribution of Kubernetes. Besides supporting
everything Kubernetes supports, it adds a few enterprise-related features like an inte‐
grated container image registry, single sign-on support, and a new user interface, and
also adds a native image building capability to Kubernetes. OKD (formerly known as
OpenShift Origin) is the upstream open source community edition distribution that
contains all the OpenShift features.

OpenShift build was the first cluster-integrated way of directly building images man‐
aged by Kubernetes. It supports multiple strategies for building images:

Source-to-Image (S2I)
Takes the source code of an application and creates the runnable artifact with the
help of a language-specific S2I builder image and then pushes the images to the
integrated registry.

Docker Builds
Use a Dockerfile plus a context directory and creates an image as a Docker dae‐
mon would do.

Pipeline Builds
Map a build to build jobs of an internally managed Jenkins server by allowing the
user to configure a Jenkins pipeline.

Custom Builds
Give you full control over how you create your image. Within a custom build,
you have to create the image on your own within the build container and push it
to a registry.

The input for doing the builds can come from different sources:

Git
Repository specified via a remote URL from where the source is fetched.

Dockerfile
A Dockerfile that is directly stored as part of the build configuration resource.

Image
Another container image from which files are extracted for the current build.
This source type allows for chained builds, as we see in Example 25-2.

Solution | 223

https://www.okd.io/

Secret
Resource for providing confidential information for the build.

Binary
Source to provide all input from the outside. This input has to be provided when
starting the build.

The choice of which input sources we can use in which way depends on the build
strategy. Binary and Git are mutually exclusive source types. All other sources can be
combined or used standalone. We will see later in Example 25-1 how this works.

All the build information is defined in a central resource object called BuildConfig.
We can create this resource either by directly applying it to the cluster or by using the
CLI tool oc, which is the OpenShift equivalent of kubectl. oc supports build specific
command for defining and triggering a build.

Before we look at BuildConfig, we need to understand two additional concepts spe‐
cific to OpenShift.

An ImageStream is an OpenShift resource that references one or more container
images. It is a bit similar to a Docker repository, which also contains multiple images
with different tags. OpenShift maps an actual tagged image to an ImageStreamTag
resource so that an ImageStream (repository) has a list of references to ImageStream‐
Tags (tagged images). Why is this extra abstraction required? Because it allows Open‐
Shift to emit events when an image is updated in the registry for an ImageStreamTag.
Images are created during builds or when an image is pushed to the OpenShift inter‐
nal registry. That way, build or deployment can listen to these events and trigger a
new build or start a deployment.

To connect an ImageStream to a deployment, OpenShift uses the
DeploymentConfig resource instead of the Kubernetes Deployment
resource, which can only use container image references directly.
However, you can still use vanilla Deployment resources in Open‐
Shift, if you don’t plan to use ImageStreams.

The other concept is a trigger, which we can consider as a kind of listener to events.
One possible trigger is imageChange, which reacts to the event published because of
an ImageStreamTag change. As a reaction, such a trigger can, for example, cause the
rebuild of another image or redeployment of the Pods using this image. You can read
more about triggers and the kinds of triggers available in addition to the imageChange
trigger in the OpenShift documentation.

224 | Chapter 25: Image Builder

https://red.ht/2FrDIDj

Source-to-Image
Let’s have a quick look at what an S2I builder image looks like. We won’t go into too
many details here, but an S2I builder image is a standard container image that con‐
tains a set of S2I scripts, with two mandatory commands we have to provide:

assemble

The script that gets called when the build starts. Its task is to take the source
given by one of the configured inputs, compile it if necessary, and copy the final
artifacts to the proper locations.

run

Used as an entry point for this image. OpenShift calls this script when it deploys
the image. This run script uses the generated artifacts to deliver the application
services.

Optionally you can also script to provide a usage message, saving the generated arti‐
facts for so-called incremental builds that are accessible by the assemble script in a
subsequent build run or add some sanity checks.

Let’s have a closer look at an S2I build in Figure 25-1. An S2I build has two ingredi‐
ents: a builder image and a source input. Both are brought together by the S2I build
system when a build is started—either because a trigger event was received or because
we started it manually. When the build image has finished by, for example, compiling
the source code, the container is committed to an image and pushed to the config‐
ured ImageStreamTag. This image contains the compile and prepared artifacts, and
the image’s run script is set as the entry point.

Figure 25-1. S2I Build with Git Source as input

Example 25-1 shows a simple Java S2I build with a Java S2I image. This build takes a
source, the builder image, and produces an output image that is pushed to an Image‐
StreamTag. It can be started manually via oc start-build or automatically when the
builder images changes.

Solution | 225

Example 25-1. S2I Build using a Java builder image

apiVersion: v1
kind: BuildConfig
metadata:
 name: random-generator-build
spec:
 source:
 git:
 uri: https://github.com/k8spatterns/random-generator
 strategy:
 sourceStrategy:
 from:
 kind: DockerImage
 name: fabric8/s2i-java
 output:
 to:
 kind: ImageStreamTag
 name: random-generator-build:latest
 triggers:
 - type: ImageChange

Reference to the source code to fetch; in this case, pick it up from GitHub.

sourceStrategy switches to S2I mode and the builder image is picked up
directly from Docker Hub.

The ImageStreamTag to update with the generated image. It’s the committed
builder container after the assemble script has run.

Rebuild automatically when the builder image is updated.

S2I is a robust mechanism for creating application images, and it is more secure than
plain Docker builds because the build process is under full control of trusted builder
images. However, thisi approach still has some drawbacks.

For complex applications, S2I can be slow, especially when the build needs to load
many dependencies. Without any optimization, S2I loads all dependencies afresh for
every build. In the case of a Java application built with Maven, there is no caching as
when doing local builds. To avoid downloading the internet again and again, it is rec‐
ommended to set up a cluster internal Maven repository that serves as a cache. The
builder image then has to be configured to access this common repository instead of
downloading the artifacts from remote repositories.

Another way to decrease the build time is to use incremental builds with S2I, which
allows reusing artifacts created or downloaded in a previous S2I build. However, a lot
of data is copied over from the previously generated image to the current build con‐

226 | Chapter 25: Image Builder

tainer and the performance benefits are typically not much better than using a
cluster-local proxy holding the dependencies.

Another drawback of S2I is that the generated image also contains the whole build
environment. This fact not only increases the size of the application image but also
increases the surface for a potential attack as builder tools can become vulnerable,
too.

To get rid of unneeded builder tools like Maven, OpenShift offers chained builds,
which take the result of an S2I build and create a slim runtime image. We look at
chained builds in “Chained builds” on page 227.

Docker builds
OpenShift also supports Docker builds directly within this cluster. Docker builds
work by mounting the Docker daemon’s socket directly in the build container, which
is then used for a docker build. The source for a Docker build is a Dockerfile and a
directory holding the context. You can also use an Image source that refers an arbi‐
trary image and from which files can be copied into the Docker build context direc‐
tory. As mentioned in the next section, this technique, together with triggers, can be
used for chained builds.

Alternatively, you can use a standard multistage Dockerfile to separate the build and
runtime parts. Our example repository contains a fully working multistage Docker
build example that results in the same image as the chained build described in the
next section.

Chained builds
The mechanics of a chained build are shown in Figure 25-2. A chained build consists
of an initial S2I build, which creates the runtime artifact like a binary executable. This
artifact is then picked up from the generated image by a second build, typically a
Docker kind of build.

Solution | 227

http://bit.ly/2CxnnuX

Figure 25-2. Chained build with S2I for compiling and Docker build for application
image

Example 25-2 shows the setup of this second build config, which uses the JAR file
generated in Example 25-1. The image that eventually is pushed to the ImageStream
random-generator-runtime can be used in a DeploymentConfig to run the applica‐
tion.

Note that the trigger used in Example 25-2 that monitors the result
of the S2I build. This trigger causes a rebuild of this runtime image
whenever we run an S2I build so that both ImageStreams are
always in sync.

Example 25-2. Docker build for creating the application image.

 apiVersion: v1
 kind: BuildConfig
 metadata:
 name: runtime
 spec:
 source:
 images:
 - from:
 kind: ImageStreamTag
 name: random-generator-build:latest
 paths:
 - sourcePath: /deployments/.
 destinationDir: "."

228 | Chapter 25: Image Builder

 dockerfile: |-
 FROM openjdk:8-alpine
 COPY *.jar /
 CMD java -jar /*.jar
 strategy:
 type: Docker
 output:
 to:
 kind: ImageStreamTag
 name: random-generator:latest
 triggers:
 - imageChange:
 automatic: true
 from:
 kind: ImageStreamTag
 name: random-generator-build:latest
 type: ImageChange

Image source references the ImageStream that contains the result of the S2I build
run and selects a directory within the image that contains the compiled JAR
archive.

Dockerfile source for the Docker build that copies the JAR archive from the
ImageStream generated by the S2I build.

The strategy selects a Docker build.

Rebuild automatically when the S2I result ImageStream changes—after a success‐
ful S2I run to compile the JAR archive.

Register listener for image updates and do a redeploy when a new image has been
added to the ImageStream.

You can find the full example with installation instructions in our example repository.

As mentioned, OpenShift build, along with its most prominent S2I mode, is one of
the oldest and most mature ways to safely build container images within a Kubernetes
cluster with OpenShift flavor.

Let’s look at another way to build container images within a vanilla Kubernetes
cluster.

Solution | 229

http://bit.ly/2CxnnuX

Knative Build
Google started the Knative project in 2018 with the aim of bringing advanced
application-related functionality to Kubernetes.

The basis of Knative is a service mesh like Istio, which provides infrastructure services
for traffic management, observability, and security out of the box. Service meshes use
Sidecars to instrument applications with infrastructure-related functionality.

On top of the service mesh, Knative provides additional services, primarily targeted
at application developers:

Knative serving
For scale-to-zero support for application services, that can be leveraged by
Function-as-a-Service platforms, for example. Together with the pattern
described in Chapter 24, Elastic Scale and the underlying service mesh support,
Knative serving enables scaling from zero to arbitrary many replicas.

Knative eventing
A mechanism for delivering events from sources to sinks through channels.
Events can trigger Services used as sinks to scale up from zero.

Knative build
For compiling an application’s source code to container images within a Kuber‐
netes cluster. A follow-up project is Tekton Pipelines, which will eventually
replace Knative build.

Both Istio and Knative are implemented with the Operator pattern and use CRDs to
declare their managed domain resources.

In the remaining part of this section, we focus on Knative build as this is Knative’s
implementation of the Image Builder pattern.

Knative build is primarily targeted at tool developers to provide a
user interface and seamless build experience to the end user. Here
we give a high-level overview of the building blocks of Knative
build. The project is rapidly moving and might even be replaced by
a follow-up project like Tekton Pipelines but the principle mechan‐
ics are very likely to stay the same. Nevertheless, some details might
change in the future, so refer to the example code, which we keep
up-to-date with the latest Knative versions and projects.

Knative is designed to provide building blocks to integrate with your existing CI/CD
solutions. It is not a CI/CD solution for building container images by itself. We expect

230 | Chapter 25: Image Builder

https://istio.io/
http://bit.ly/2CxnnuX

more and more such solutions to emerge over time, but for now let’s have a look at its
building blocks.

Simple build
The Build CRD is the central element of the Knative build. The Build defines the con‐
crete steps that the Knative build operator needs to perform for a build. Example 25-3
demonstrates the main ingredients:

• A source specification for pointing to the location of the application’s source
code. The source can be a Git repository as in this example or other remote loca‐
tions like Google Cloud Storage, or even an arbitrary container from where the
build operator can extract the source.

• The steps required for turning the source code into a runnable container image.
Each step refers to a builder image that is used to perform the step. Every step has
access to a volume mounted on /workspace that contains the source code but is
also used to share data among the steps.

In this example, the source is again our sample Java project hosted on GitHub and
built with Maven. The builder image is a container image that contains Java and
Maven. Jib is used to build the image without a Docker daemon and push it to a
registry.

Example 25-3. Knative Java build using Maven with Jib

apiVersion: build.knative.dev/v1alpha1
kind: Build
metadata:
 name: random-generator-build-jib
spec:
 source:
 git:
 url: https://github.com/k8spatterns/random-generator.git
 revision: master
 steps:
 - name: build-and-push
 image: gcr.io/cloud-builders/mvn
 args:
 - compile
 - com.google.cloud.tools:jib-maven-plugin:build
 - -Djib.to.image=registry/k8spatterns/random-generator
 workingDir: /workspace

Name of the build object

Source specification with a GitHub URL

Solution | 231

https://github.com/GoogleContainerTools/jib

One or more build steps

Image with Java and Maven included that is used for this build step

Arguments given to the builder container that will trigger Maven to compile,
create, and push a container image via the jib-maven-plugin

The directory /workspace is shared and mounted for every build step.

It’s also interesting to take a brief look under the hood to learn how the Knative build
Operator performs the build.

Figure 25-3. Knative build using init containers

Figure 25-3 shows how a custom Build resource is transformed into plain Kubernetes
resources. A Build becomes a Pod with the build steps translated into a chain of Init
Containers that are called one after another. The first init containers are implicitly
created. In our example, there is one for the initializing credentials used for interact‐
ing with external repositories and a second init container for checking out the source
from GitHub. The remaining init container are just the given steps with the declared
builder images. When all init containers are finished, the primary container is just a
no-operation that does nothing, so that the Pod stops after the initialization steps.

Build templates
Example 25-3 contains only a single build step, but your typical build consists of mul‐
tiple steps. The BuildTemplate custom resource can be used to reuse the same steps
for similar builds.

232 | Chapter 25: Image Builder

Example 25-4 demonstrates such a template for a build with three steps:

1. Create a Java JAR file with mvn package.
2. Create a Dockerfile that copies this JAR file into a container image and starts it

with java -jar.
3. Create and push a container image with a builder image using Kaniko. Kaniko is

a tool created by Google for building container images from a Dockerfile inside a
container with a local Docker daemon running in user space.

A template is more or less the same as a Build with the exception that it supports
parameters such as placeholders, which are filled in when the template is used. In this
example, IMAGE is the single parameter required to specify the target image to create.

Example 25-4. Knative build template using Maven and Kaniko

apiVersion: build.knative.dev/v1alpha1
kind: BuildTemplate
metadata:
 name: maven-kaniko
spec:
 parameters:
 - name: IMAGE
 description: The name of the image to create and push
 steps:
 - name: maven-build
 image: gcr.io/cloud-builders/mvn
 args:
 - package
 workingDir: /workspace
 - name: prepare-docker-context
 image: alpine
 command: [....]
 - name: image-build-and-push
 image: gcr.io/kaniko-project/executor
 args:
 - --context=/workspace
 - --destination=${IMAGE}

A list of parameters to be provided when the template is used

Step for compiling and packaging a Java application by using Maven

Step for creating a Dockerfile for copying and starting the generated JAR file. The
details are left out here but can be found in our example GitHub repository.

Step for calling Kaniko to build and push the Docker image

Solution | 233

The destination uses the provided template parameter ${IMAGE}.

This template can then be used by a Build, which specifies the name of the template
instead of a list of steps as seen in Example 25-5. As you can see, you have to specify
only the name of the application container image to create, and you can easily reuse
this multistep build to create different applications.

Example 25-5. Knative build using a build template

 apiVersion: build.knative.dev/v1alpha1
 kind: Build
 metadata:
 name: random-generator-build-chained
 spec:
 source:
 git:
 url: https://github.com/k8spatterns/random-generator.git
 revision: master
 template:
 name: maven-kaniko
 arguments:
 - name: IMAGE
 value: registry:80/k8spatterns/random-generator

Source specification for where to pick up the source code

Reference to template we defined in Example 25-4

Image specification filled into the template as parameter

You can find many predefined templates in the Knative build-templates repository.

This example ends our quick tour through Knative build. As mentioned, this project
is still very young and the details are likely to change, but the main mechanics
described here should stay the same.

Discussion
You have seen two ways to build container images within a cluster. The OpenShift
build system demonstrates nicely one of the main benefits of building and running an
application in the same cluster. With OpenShift’s ImageStream triggers, you can not
only connect multiple builds, but also redeploy your application if a build updates
your application’s container image. This is especially useful for lower environments
where a build step is usually followed by a deploy step. Better integration between
build and deployment is a step forward to the holy grail of CD. OpenShift builds with

234 | Chapter 25: Image Builder

S2I are a proven and established technology, but S2I is currently usable only when
using the OpenShift distribution of Kubernetes.

Knative build is another implementation of this Image Builder pattern. Knative build’s
primary purpose is to transform source code into a runnable container image and
push it to a registry so that it can be picked up by Deployments. These steps are per‐
formed by builder images, which can be provided for different technologies. Knative
build is agnostic about the concrete steps of the build but cares about how to manage
the build’s lifecycle and how to schedule the build.

Knative build is still a young project (as of 2019) that provides the building blocks for
cluster builds. It’s not meant so much for the end user, but more for tool builders. You
can expect new and existing tools to support Knative build or its successor projects
soon, so we will see more implementations of the Image Builder pattern emerging.

More Information
• ImageBuilder Examples
• Jib
• Img
• Buildah
• Kaniko
• OpenShift Builds Design Document
• Multistage Dockerfile
• Chaining S2I Builds
• Build Triggers
• Source-to-Image Specification
• Incremental S2I Builds
• Knative
• Building Container Images on Your Kubernetes Cluster with Knative Build
• Knative Build
• Tekton Pipelines
• Knative: Building Your Serverless Service
• Introducing Knctl: A Simpler Way to Work with Knative
• Interactive Knative Build Tutorial
• Knative Build Templates

More Information | 235

http://bit.ly/2FpCkkL
https://github.com/GoogleContainerTools/jib
https://github.com/genuinetools/img
https://github.com/projectatomic/buildah
https://github.com/GoogleContainerTools/kaniko
http://bit.ly/2HILD0E
http://bit.ly/2YfUY63
https://red.ht/2Jqzlw9
https://red.ht/2FrDIDj
https://github.com/openshift/source-to-image
https://red.ht/2TSGxp9
https://cloud.google.com/knative/
http://bit.ly/2YJuZUC
https://github.com/knative/build
https://github.com/knative/build-pipeline
https://red.ht/2Oew8Pj
https://ibm.co/2Hwnmvw
http://bit.ly/2OewLZb
https://github.com/knative/build-templates

Afterword

Ubiquitous Platform
Today, Kubernetes is the most popular container orchestration platform. It is jointly
developed and supported by all major software companies and offered as a service by
all the major cloud providers. It supports Linux and Windows systems and all major
programming languages. Kubernetes can orchestrate and automate stateless and
stateful applications, batch jobs, periodic tasks, and serverless workloads. It is the new
application portability layer and the common denominator among everybody on the
cloud. If you are a software developer targeting the cloud, the odds are that Kuber‐
netes will become part of your everyday life sooner or later.

Hybrid Responsibilities
In recent years, more and more of the application’s nonfunctional requirements are
provided as capabilities by cloud-native platforms. Distributed application responsi‐
bilities such as provisioning, deployment, service discovery, configuration manage‐
ment, job management, resource isolation, and health checks are all implemented by
Kubernetes. With the popularization of microservices architecture, implementing
even a simple service will require a good understanding of distributed technology
stacks and container orchestration fundamentals. As a consequence, a developer has
to be fluent in a modern programming language to implement the business function‐
ality, and equally fluent in cloud-native technologies to address the nonfunctional
requirements.

237

What We Covered
In this book, we covered 24 of the most popular patterns from Kubernetes, grouped
as the following:

• Foundational patterns represent the principles that containerized applications
must comply with in order to become good cloud-native citizens. Regardless of
the application nature, and the constraints you may face, you should aim to fol‐
low these guidelines. Adhering to these principles will help ensure that your
applications are suitable for automation on Kubernetes.

• Behavioral patterns describe the communication mechanisms and interactions
between the Pods and the managing platform. Depending on the type of the
workload, a Pod may run until completion as a batch job, or be scheduled to run
periodically. It can run as a daemon service or singleton. Picking the right man‐
agement primitive will help you run a Pod with the desired guarantees.

• Structural patterns focus on structuring and organizing containers in a Pod to
satisfy different use cases. Having good cloud-native containers is the first step,
but not enough. Reusing containers and combining them into Pods to achieve a
desired outcome is the next step.

• Configuration patterns cover customizing and adapting applications for different
configuration needs on the cloud. Every application needs to be configured, and
no one way works for all. We explore patterns from the most common to the
most specialized.

• Advanced patterns explore more complex topics that do not fit in any of the other
categories. Some of the patterns, such as Controller are mature—Kubernetes itself
is built on it—and some are still new and might change by the time you read this
book. But these patterns cover fundamental ideas that cloud-native developers
should be familiar with.

Final Words
Like all good things, this book has come to an end. We hope you have enjoyed read‐
ing this book and that it has changed the way you think about Kubernetes. We truly
believe Kubernetes and the concepts originating from it will be as fundamental as
object-oriented programming concepts are. This book is our attempt to create the
Gang of Four Design Patterns but for container orchestration. We hope this is not the
end, but the beginning for your Kubernetes journey; it is so for us.

Happy kubectl-ing.

238 | Afterword

Index

A
active-passive topology, 80
Adapter, 131, 135-138

Sidecar, 131
admission controllers, 129
admission webhooks, 129
Ambassador, 131, 139-142, 181, 183

Controller, 181, 183
Sidecar, 131

annotations, 9, 178
application introspection mechanisms, 118
application layer service discovery, 111
application requirements, declaring, 15
at-most-one guarantee, 96
Automated Placement, 47-59, 71

Periodic Job, 71
autoscaling (see also Elastic Scale)

cluster autoscaling, 213
horizontal Pod autoscaling, 205
vertical Pod autoscaling, 210

Awesome Operators, 200

B
Batch Job, 63-68, 69, 99, 205

Elastic Scale, 205
Periodic Job, 69
Service Discovery, 99

best-effort quality of service, 19
blue-green deployment, 30
build templates, 232
burstable quality of service, 19
busybox, 159

C
canary release, 30
capacity planning, 22
CD (see Continuous Delivery (CD))
chained S2I builds, 227
CI (see Continuous Integration (CI))
Cloud Native Computing Foundation (CNCF),

xi
cloud-native applications, 1
Cluster API, 214
cluster autoscaling, 213
clusterIP, 101
CNCF (see Cloud Native Computing Founda‐

tion)
code examples, obtaining and using, xvi
Comet technique, 181
ConfigMaps

custom controllers for, 179
dependencies on, 17
versus EnvVar Configuration, 151
holding target state definitions in, 178
similarities to Secrets, 152
using, 152

configuration information
best approach to handling, 151
declaring application requirements, 17
decoupling definition from usage, 156
default values, 148
DRY configurations, 170
externalizing configuration, 145
immutable and versioned configuration

data, 157
live processing of, 166
reducing duplication in, 165

239

Configuration Resource, 4, 17, 147, 149,
151-156, 163, 165
Configuration Template, 165
EnvVar Configuration, 147, 149
Immutable Configuration, 163
Predictable Demands, 17

Configuration Template, 149, 165-171
EnvVar Configuration, 149

Container Linux Update Operator, 179
container orchestration platforms, xi, 3
containers

basics of, 4
enhancing through collaboration, 131
observability options, 39
resource demands, 49
runtime dependencies, 16
separating initialization from main duties,

125
upgrade and rollback of container groups,

25
volumes, 159

Continuous Delivery (CD), 221
Continuous Integration (CI), 221
Controller, 97, 175-187, 189, 192, 194

Operator, 189, 192, 194
Stateful Service, 97

convention over configuration paradigm, 148
CoreOS, 195
CPU and memory demands, 22
CRDs (see custom resource definitions)
CronJob implementation, 70
custom resource definitions (CRDs)

application CRDs, 193
installation CRDs, 192
managing domain concepts with, 190
operator development and deployment, 195
subresources, 191
support for, 194
uses for, 189

custom scheduling approach, 58

D
Daemon Service, 4, 63, 73-77

Batch Job, 63
daemonless builds, 222
DaemonSet, 63
data stores, decoupling access to external, 140
Declarative Deployment, 24, 25-33

Predictable Demands, 24

declarative resource-centric APIs, 175
declarative scaling, 204
default scheduling alteration, 58
default values, 148
dependencies, 16, 139
Deployment

blue-green, 30
fixed, 29
parallel, 95
resource, 25
rolling, 27

design patterns
concept of, xii
design patterns, xiii
pattern language, xii

discovery (see also Service Discovery)
service discovery in Kubernetes, 113
through DNS lookup, 103
through environment variables, 102

DNS lookup, 103
Docker builds, 227
Docker volumes, 158
Domain-Driven Design, 2
Downward API, 118
DRY configurations, 170

E
Elastic Scale, 79, 191, 203-220, 230

Image Builder, 230
Operator, 191
Singleton Service, 79

emptyDir volume type, 16
endpoints, discovering, 99
environment variables

versus ConfigMaps, 151
service discovery through, 102
storing application configuration in, 145

EnvVar Configuration, 145-149, 151, 157
Configuration Resource, 151
Immutable Configuration, 157

Etcd operator, 200
event-driven

application interactions, 69
architecture, 176

F
fabric8/configmapcontroller, 179
failures

detecting, 35

240 | Index

postmortem analysis, 39
fixed Deployment, 29
FQDN (see fully qualified domain name

(FQDN))
fully qualified domain name (FQDN), 103

G
gitRepo volumes, 155
Go template, 167
Gomplate, 166
guaranteed quality of service, 20

H
hanging GET technique, 181
headless services, 110
Health Probe, 26, 28, 35-40, 41, 44, 71, 81, 94,

104
Declarative Deployment, 26, 28
Managed Lifecycle, 41, 44
Periodic Job, 71
Service Discovery, 104
Singleton Service, 81
Stateful Service, 94

heterogeneous components, managing, 135
horizontal Pod autoscaling, 205
hostPort, 17

I
Image Builder, 221-235
immutability, 149 (see also Immutable Config‐

uration)
Immutable Configuration, 149, 155, 157-164

Configuration Resource, 155
EnvVar Configuration, 149

imperative rolling updates, 26
imperative scaling, 204
in-application locking, 82
incremental S2I builds, 225
Ingress, 111
Init Container, 4, 6, 42, 45, 125-130, 155, 159,

162, 163, 166, 232
Configuration Resource, 155
Configuration Template, 166
Image Builder, 232
Immutable Configuration, 159, 162, 163
Managed Lifecycle, 42, 45

initialization
initializers, 129

separating from main duties, 125
techniques for, 129

internal service discovery, 101
introspection mechanisms, 118
Istio, 230

J
jenkins-x/exposecontroller, 179
Jib, 231
Jobs

.spec.completions and .spec.parallelism, 65
versus bare Pods, 65
benefits and drawbacks of, 67
defining, 64
versus ReplicaSet, 64
triggering by temporal events (Periodic

Jobs), 69
types of, 66

jq command line tool, 182
JVM Operator Toolkit, 200

K
Kaniko, 233
Knative

build, 230
eventing, 230
serving, 210, 230

Kubebuilder, 196
Kubernetes

concepts for developers, 11
declarative resource-centric API base, 175
descheduler, 56
event-driven architecture, 176
history and origin of, xi
path to cloud-native applications, 1
primitives, 3-10
resources for learning about, 11

L
label selectors

benefits of, 8
internal service discovery, 104
optional path to, 191
PodPresets, 129
rolling Deployment, 27
vertical Pod autoscaling, 211

labels, 7, 178
lifecycle events

Index | 241

lifecycle controls, 45
reacting to, 41

LimitRange, 22
liveness probes, 36
LoadBalancer, 109
locking

in-application locking, 82
out-of-application locking, 80

logging, 39, 138
lookup and registration, 100
LowNodeUtilization, 57

M
Managed Lifecycle, 26, 41-46

Declarative Deployment, 26
manual horizontal scaling, 204
manual service discovery, 104
master-slave topology, 80
Metacontroller, 196
metadata, injecting, 118
microservices architectural style, 1-3
modularization, 1

N
namespaces, 9
nodeName, 58
NodePort, 107
nodes

available node resources, 48
node affinity, 51, 58
nodeSelector, 51, 58
resource profiles, 18
scaling down, 215
scaling up, 214

O
object-oriented programming (OOP), 3
observe-analyze-act, 193
OLM (see Operator Lifecycle Manager (OLM))
OOP (see object-oriented programming

(OOP))
Open Shift (see Red Hat Openshift)
OpenAPI V3 schema, 191
Operator, 97, 177, 189-202, 216, 230, 231

Controller, 177
Elastic Scale, 216
Image Builder, 230, 231
Stateful Service, 97

Operator Framework, 195
Operator Lifecycle Manager (OLM), 196
out-of-application locking, 80
overcommit level, 22

P
parallel deployments, 95
partitioned updates, 95
Periodic Job, 4, 69-72, 99

Service Discovery, 99
placement policies, 49
Platform-as-a-Service, xi
PodDisruptionBudget, 84
PodPresets, 129
Pods

automatic scaling based on loads, 203
bare Pods, 63
basics of, 5
creating long-running, 63
creating new, 175
decoupling from accessing external depen‐

dencies, 139
influencing Pod assignments, 47
injecting metadata into, 118
Pod affinity and anitaffinity, 52, 58
Pod priority, 20
preventing voluntary eviction, 84
Quality of Service (QoS) levels, 19
running node-specific Pods, 73
running short-lived Pods, 63
scheduling process, 50
static pods mechanism, 76
tracking, registering and discovering end‐

points, 99
upgrades and rollbacks, 25

postmortem analysis, 39
postStart hooks, 43
predicate and priority policies, 49
Predictable Demands, 15-24, 26, 49, 57, 206,

210
Automated Placement, 49, 57
Declarative Deployment, 26
Elastic Scale, 206, 210

preStop hooks, 44
problems

accessing services in outside world, 139
adding flexibility and expressiveness to con‐

trollers, 189
automatic scaling based on loads, 203

242 | Index

communicating application health state, 35
controlling number of active instances, 79
creating customized controllers, 175
creating images within Kubernetes, 221
dealing with large configuration files, 165
declaring application requirements, 15
enhancing containers through collabora‐

tion, 131
externalizing configuration, 145
immutable and versioned configuration

data, 157
influencing Pod assignments, 47
managing stateful applications, 87
mechanism for introspection and metadata

injection, 117
providing unified application access, 135
reacting to lifecycle events, 41
running node-specific Pods, 73
running short-lived Pods, 63
separating initialization from main duties,

125
tracking, registering and discovering end‐

points, 99
triggering Jobs by temporal events, 69
upgrade and rollback of container groups,

25
using ConfigMap and Secrets, 151

process health checks, 36
project resources, 22
Prometheus operator, 200

Q
QoS (see Quality of Service (QoS))
Quality of Service (QoS)

best-effort, 19
burstable, 19
guaranteed, 20

quorum-based applications, 85

R
RBAC (see role-based access control (RBAC))
Recreate strategy, 29
Red Hat OpenShift

benefits of, xi
build system, 223
DeploymentConfig, 162
ImageStream, 225
Routes, 113
S2I, 225

registration and lookup, 100
RemoveDuplicates, 56
RemovePodsViolatingInterPodAntiAffinity, 57
RemovePodsViolatingNodeAffinity, 57
ReplicaSet

benefits of, 67, 82
canary release, 31
Controller, 176
creating and managing Pods, 63, 74, 75, 79
Elastic Scale, 207-209
environment variables, 146
labels, 8
namespaces, 10
out-of-application locking, 80, 85
RemoveDuplicates, 56
rolling Deployment, 28
Service Discovery, 99-101
Stateful Service, 88-96

resource profiles, 18, 22
ResourceQuota, 22
role-based access control (RBAC), 155
rollbacks, 25
rolling deployment, 27
Routes, 113
runtime dependencies, 16

S
S2I (see Source-to-Image (S2I))
scaling

application scaling levels, 216
cluster autoscaling, 213
horizontal Pod autoscaling, 205
manual horizontal scaling, 204
vertical Pod autoscaling, 210

scheduler
Automated Placement, 47-59
Batch Job, 65
benefits of, 221
Daemon Service, 75
Declarative Deployment, 25
labels used by, 8
Periodic Job, 69
Pod order, 21
requests amount, 19, 22, 211
role of, 6, 17
Service Discovery, 100

Secrets
creating, 153
dependencies on, 18

Index | 243

security of, 155
similarities to ConfigMaps, 151
value encoding for, 152

Self Awareness, 117-121, 138, 180
Adapter, 138
Controller, 180

Service Discovery, 7, 81, 99-115
Singleton Service, 81

service meshes, 210, 219, 222, 230
Services

autoscaling (see Elastic Scale)
basics of, 7
capacity planning, 16
controller for exposing, 179
discovery (see Service Discovery)

shell script-based controller, 183
Sidecar, 4, 6, 128, 131-134, 135, 139, 230

Adapter, 135
Ambassador, 139
Image Builder, 230
Init Container, 128

SIGKILL signal, 42
SIGTERM signal, 42
Singleton Service, 21, 79-86, 96, 177

Controller, 177
Predictable Demands, 21
Stateful Service, 96

Source-to-Image (S2I), 225-229, 234
Spring Boot, 148, 153

state reconciliation, 176
Stateful Service, 81, 82, 87-97, 110, 205

Elastic Scale, 205
Service Discovery, 110
Singleton Service, 81, 82

static pods mechanism, 76
Strimzi operator, 200
system maintenance, 69

T
taints and tolerations, 54, 58
Tekton Pipelines, 230
Tiller, 166
Twelve-Factor App, 149
Twelve-Factor App Manifesto, 12, 87, 145

U
updates

Declarative Deployment, 25
partitioned updates, 95

V
vertical Pod autoscaling, 210

Z
Zookeeper, 83-84, 88, 97

244 | Index

About the Authors
Bilgin Ibryam (@bibryam) is a principal architect at Red Hat, a member of Apache
Software Foundation, and committer to multiple open source projects. He is a regular
blogger, open source evangelist, blockchain enthusiast, speaker, and the author of
Camel Design Patterns. He has over a decade of experience building and designing
highly scalable, resilient, distributed systems.

In his day-to-day job, Bilgin enjoys mentoring, coding, and leading enterprise compa‐
nies to be successful with building open source solutions. His current work focuses
on application integration, enterprise blockchains, distributed system design, micro‐
services, and cloud-native applications in general.

Dr. Roland Huß (@ro14nd) is a principal software engineer at Red Hat who worked
as tech lead on Fuse Online and landed recently in the serverless team for coding on
Knative. He has been developing in Java for over 20 years now and recently found
another love with Golang. However, he has never forgotten his roots as a system
administrator. Roland is an active open source contributor, lead developer of the
JMX-HTTP bridge Jolokia and some popular Java build tools for creating container
images and deploying them on Kubernetes and OpenShift. Besides coding, he enjoys
spreading the word about his work at conferences and through his writing.

Colophon
The animal on the cover of Kubernetes Patterns is a red-crested whistling duck (Netta
rufina). The species name rufina means “red-haired” in Latin. Another common
name for them is “red-crested pochard,” with pochard meaning “diving duck.” The
red-crested whistling duck is native to the wetlands of Europe and central Asia. Its
population has also spread throughout northern African and south Asian wetlands.

Red-crested whistling ducks reach 1.5–2 feet in height and weigh 2–3 pounds when
fully grown. Their wingspan is nearly 3 feet. Females have varying shades of brown
feathers with a light face, and are less colorful than males. A male red-crested whis‐
tling duck has a red bill, rusty orange head, black tail and breast, and white sides.

The red-crested whistling duck’s diet primarily consists of roots, seeds, and aquatic
plants. They build nests in the vegetation beside marshes and lakes and lay eggs in the
spring and summer. A normal brood is 8–12 ducklings. Red-crested whistling ducks
are most vocal during mating. The call of the male sounds more like a wheeze than a
whistle, and the female’s is a shorter “vrah, vrah, vrah.”

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

http://animals.oreilly.com

The cover illustration is by Karen Montgomery, based on a black and white engraving
from British Birds. The cover fonts are Gilroy Semibold and Guardian Sans. The text
font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	Kubernetes
	Design Patterns
	How This Book Is Structured
	Who This Book Is For
	What You Will Learn
	Conventions
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	The Path to Cloud Native
	Distributed Primitives
	Containers
	Pods
	Services
	Labels
	Annotations
	Namespaces

	Discussion
	More Information

	Part I. Foundational Patterns
	Chapter 2. Predictable Demands
	Problem
	Solution
	Runtime Dependencies
	Resource Profiles
	Pod Priority
	Project Resources
	Capacity Planning

	Discussion
	More Information

	Chapter 3. Declarative Deployment
	Problem
	Solution
	Rolling Deployment
	Fixed Deployment
	Blue-Green Release
	Canary Release

	Discussion
	More Information

	Chapter 4. Health Probe
	Problem
	Solution
	Process Health Checks
	Liveness Probes
	Readiness Probes

	Discussion
	More Information

	Chapter 5. Managed Lifecycle
	Problem
	Solution
	SIGTERM Signal
	SIGKILL Signal
	Poststart Hook
	Prestop Hook
	Other Lifecycle Controls

	Discussion
	More Information

	Chapter 6. Automated Placement
	Problem
	Solution
	Available Node Resources
	Container Resource Demands
	Placement Policies
	Scheduling Process
	Node Affinity
	Pod Affinity and Antiaffinity
	Taints and Tolerations

	Discussion
	More Information

	Part II. Behavioral Patterns
	Chapter 7. Batch Job
	Problem
	Solution
	Discussion
	More Information

	Chapter 8. Periodic Job
	Problem
	Solution
	Discussion
	More Information

	Chapter 9. Daemon Service
	Problem
	Solution
	Discussion
	More Information

	Chapter 10. Singleton Service
	Problem
	Solution
	Out-of-Application Locking
	In-Application Locking
	Pod Disruption Budget

	Discussion
	More Information

	Chapter 11. Stateful Service
	Problem
	Storage
	Networking
	Identity
	Ordinality
	Other Requirements

	Solution
	Storage
	Networking
	Identity
	Ordinality
	Other Features

	Discussion
	More information

	Chapter 12. Service Discovery
	Problem
	Solution
	Internal Service Discovery
	Manual Service Discovery
	Service Discovery from Outside the Cluster
	Application Layer Service Discovery

	Discussion
	More Information

	Chapter 13. Self Awareness
	Problem
	Solution
	Discussion
	More Information

	Part III. Structural Patterns
	Chapter 14. Init Container
	Problem
	Solution
	Discussion
	More Information

	Chapter 15. Sidecar
	Problem
	Solution
	Discussion
	More Information

	Chapter 16. Adapter
	Problem
	Solution
	Discussion
	More Information

	Chapter 17. Ambassador
	Problem
	Solution
	Discussion
	More Information

	Part IV. Configuration Patterns
	Chapter 18. EnvVar Configuration
	Problem
	Solution
	Discussion
	More Information

	Chapter 19. Configuration Resource
	Problem
	Solution
	Discussion
	More Information

	Chapter 20. Immutable Configuration
	Problem
	Solution
	Docker Volumes
	Kubernetes Init Containers
	OpenShift Templates

	Discussion
	More Information

	Chapter 21. Configuration Template
	Problem
	Solution
	Discussion
	More Information

	Part V. Advanced Patterns
	Chapter 22. Controller
	Problem
	Solution
	Discussion
	More Information

	Chapter 23. Operator
	Problem
	Solution
	Custom Resource Definitions
	Controller and Operator Classification
	Operator Development and Deployment
	Example

	Discussion
	More Information

	Chapter 24. Elastic Scale
	Problem
	Solution
	Manual Horizontal Scaling
	Horizontal Pod Autoscaling
	Vertical Pod Autoscaling
	Cluster Autoscaling
	Scaling Levels

	Discussion
	More Information

	Chapter 25. Image Builder
	Problem
	Solution
	OpenShift Build
	Knative Build

	Discussion
	More Information

	Afterword
	Ubiquitous Platform
	Hybrid Responsibilities
	What We Covered
	Final Words

	Index
	About the Authors
	Colophon

