Automating M anufacturing Systems
with PLCs

(Version 5.1, March 21, 2008)

Hugh Jack

page O

Copyright (c) 1993-2008 Hugh Jack (jackh@gvsu.edu).

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license isincluded
in the section entitled "GNU Free Documentation License".

This document is provided as-is with no warranty, implied or otherwise. There
have been attempts to eliminate errors from this document, but there is no doubt
that errorsremain. As aresult, the author does not assume any responsibility for
errors and omissions, or damages resulting from the use of the information pro-

vided.

Additional materials and updates for this work will be available at http://clay-
more.engineer.gvsu.edu/~jackh/books.html

pagei

11 TODO LIST 13
PROGRAMMABLE LOGIC CONTROLLERS 2.1
2.1 INTRODUCTION 2.1
211 Ladder Logic 21

212 Programming 2.6

213 PLC Connections 2.10

214 Ladder Logic Inputs 211

215 Ladder Logic Outputs 212

2.2 A CASE STUDY 2.13
2.3 SUMMARY 2.14
2.4 PRACTICE PROBLEMS 2.15
25 ASSIGNMENT PROBLEMS 2.15
3.1 PRACTICE PROBLEM SOLUTIONS 3.1
PLCHARDWARE i e 4.1
4.1 INTRODUCTION 4.1
4.2 INPUTSAND OUTPUTS 4.2
421 Inputs 4.3

4.2.2 Output Modules 4.7

4.3 RELAYS 4.13
4.4 A CASE STUDY 4.14
4.5 ELECTRICAL WIRING DIAGRAMS 4.15
45.1 JC Wiring Symbols 4.18

4.6 SUMMARY 4.22
4.7 PRACTICE PROBLEMS 4.22
4.8 ASSIGNMENT PROBLEMS 4.25
51 PRACTICE PROBLEM SOLUTIONS 51
LOGICAL SENSORS e 6.1
6.1 INTRODUCTION 6.1
6.2 SENSOR WIRING 6.1
6.2.1 Switches 6.2

6.2.2 Transistor Transistor Logic (TTL) 6.3

6.2.3 Sinking/Sourcing 6.3

6.24 Solid State Relays 6.10

6.3 PRESENCE DETECTION 6.11
6.3.1 Contact Switches 6.11

6.3.2 Reed Switches 6.11

6.3.3 Optical (Photoelectric) Sensors 6.12

6.34 Capacitive Sensors 6.19

6.3.5 Inductive Sensors 6.23

6.3.6 Ultrasonic 6.25

6.3.7 Hall Effect 6.25

10.

12.

6.4
6.5
6.6
7.1

LOGICAL ACTUATORS

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
9.1

BOOLEAN LOGIC DESIGN

10.1
10.2
10.3

10.4

10.5

10.6
10.7
10.8
111

KARNAUGH MAPS

121
12.2
12.3
124

pageii

6.3.8 Fluid Flow
SUMMARY
PRACTICE PROBLEMS
ASSIGNMENT PROBLEMS
PRACTICE PROBLEM SOLUTIONS

INTRODUCTION
SOLENOIDS

VALVES

CYLINDERS
HYDRAULICS
PNEUMATICS

MOTORS

OTHERS

SUMMARY

PRACTICE PROBLEMS
ASSIGNMENT PROBLEMS
PRACTICE PROBLEM SOLUTIONS

INTRODUCTION
BOOLEAN ALGEBRA
LOGIC DESIGN
1031 Boolean Algebra Techniques
COMMON LOGIC FORMS
104.1 Complex Gate Forms
10.4.2 Multiplexers
SIMPLE DESIGN CASES
10.5.1 Basic Logic Functions
10.5.2 Car Safety System
10.5.3 Motor Forward/Reverse
10.54 A Burglar Alarm
SUMMARY
PRACTICE PROBLEMS
ASSIGNMENT PROBLEMS
PRACTICE PROBLEM SOLUTIONS

INTRODUCTION
SUMMARY

PRACTICE PROBLEMS
ASSIGNMENT PROBLEMS

14.

16.

18.

131

PLC OPERATION

141
14.2

14.3
14.4
145
14.6
14.7
14.8
151

LATCHES, TIMERS, COUNTERS AND MORE

16.1
16.2
16.3
16.4
16.5
16.6
16.7

16.8
16.9
16.10
171

STRUCTURED LOGIC DESIGN

18.1
18.2
18.3
18.4
185
18.6
18.7
19.1

pageiii

PRACTICE PROBLEM SOLUTIONS

INTRODUCTION
OPERATION SEQUENCE
14.2.1 The Input and Output Scans
14.2.2 The Logic Scan
PLC STATUS
MEMORY TYPES
SOFTWARE BASED PLCS
SUMMARY
PRACTICE PROBLEMS
ASSIGNMENT PROBLEMS
PRACTICE PROBLEM SOLUTIONS

INTRODUCTION
LATCHES
TIMERS
COUNTERS
MASTER CONTROL RELAYS (MCRs)
INTERNAL BITS
DESIGN CASES
16.7.1 Basic Counters And Timers
16.7.2 More Timers And Counters
16.7.3 Deadman Switch
16.7.4 Conveyor
16.7.5 Accept/Reject Sorting
16.7.6 Shear Press
SUMMARY
PRACTICE PROBLEMS
ASSIGNMENT PROBLEMS
PRACTICE PROBLEM SOLUTIONS

INTRODUCTION

PROCESS SEQUENCE BITS
TIMING DIAGRAMS

DESIGN CASES

SUMMARY

PRACTICE PROBLEMS
ASSIGNMENT PROBLEMS
PRACTICE PROBLEM SOLUTIONS

pageiv

20. FLOWCHARTBASEDDESIGN 20.1
20.1 INTRODUCTION 20.1
20.2 BLOCK LOGIC 204
20.3 SEQUENCE BITS 20.11
204 SUMMARY 20.15
20.5 PRACTICE PROBLEMS 20.15
20.6 ASSIGNMENT PROBLEMS 20.16
211 PRACTICE PROBLEM SOLUTIONS 21.1
22. STATEBASEDDESIGN i 22.1
221 INTRODUCTION 221
2211 State Diagram Example 224
2212 Conversion to Ladder Logic 22.7
Block Logic Conversion 22.7
State Equations 22.16
State-Transition Equations 22.24
222 SUMMARY 22.29
22.3 PRACTICE PROBLEMS 22.29
224 ASSIGNMENT PROBLEMS 22.35
11 PRACTICE PROBLEM SOLUTIONS 11
2. NUMBERSAND DATA ... i 2.1
21 INTRODUCTION 2.1
2.2 NUMERICAL VALUES 2.2
221 Binary 2.2
Boolean Operations 2.5
Binary Mathematics 2.6
222 Other Base Number Systems 2.10
2.2.3 BCD (Binary Coded Decimal) 211
2.3 DATA CHARACTERIZATION 211
231 ASCIIl (American Standard Code for Information Interchange)
211
2.3.2 Parity 2.14
233 Checksums 2.15
234 Gray Code 2.16
24 SUMMARY 217
25 PRACTICE PROBLEMS 217
2.6 ASSIGNMENT PROBLEMS 2.20
31 PRACTICE PROBLEM SOLUTIONS 31
4, PLCMEMORY e e 4.1
4.1 INTRODUCTION 4.1

4.2 PROGRAM VSVARIABLE MEMORY 4.1

4.3
4.4

4.5
4.6
4.7
5.1

LADDER LOGIC FUNCTIONS

6.1
6.2

6.3

6.4

6.5
6.6
6.7
7.1

ADVANCED LADDER LOGIC FUNCTIONS

8.1
8.2

8.3

8.4

page v

PROGRAMS

VARIABLES (TAGYS)
44.1 Timer and Counter Memory
4.4.2 PLC Status Bits

44.3 User Function Control Memory

SUMMARY

PRACTICE PROBLEMS
ASSIGNMENT PROBLEMS
PRACTICE PROBLEM SOLUTIONS

INTRODUCTION
DATA HANDLING

6.2.1 Move Functions

6.2.2 Mathematical Functions

6.2.3 Conversions

6.24 Array Data Functions
Statistics

Block Operations

LOGICAL FUNCTIONS

6.3.1 Comparison of Values

6.3.2 Boolean Functions
DESIGN CASES

6.4.1 Simple Calculation

6.4.2 For-Next

6.4.3 Series Calculation

6.4.4 Flashing Lights
SUMMARY
PRACTICE PROBLEMS
ASSIGNMENT PROBLEMS
PRACTICE PROBLEM SOLUTIONS

INTRODUCTION
LIST FUNCTIONS
821 Shift Registers
8.2.2 Stacks
8.2.3 Sequencers
PROGRAM CONTROL
8.3.1 Branching and Looping
8.3.2 Fault Handling
8.3.3 Interrupts
INPUT AND OUTPUT FUNCTIONS
84.1 Immediate 1/O Instructions

4.3
4.3
4.6
4.8
4.11
4.12
4.12
4.13
5.1

6.1

6.1

6.3

6.3

6.5
6.10
6.11
6.12
6.13
6.15
6.15
6.21
6.22
6.22
6.23
6.24
6.25
6.25
6.26
6.28

7.1

8.1

8.1
8.1
8.1
8.3
8.6
8.9
8.9
8.14
8.15
8.17
8.17

10.

12.

14.

16.

8.5

8.6

8.7
8.8
8.9
9.1

OPEN CONTROLLERS

10.1
10.2
10.3
10.4
10.5
10.6
111

INSTRUCTION LIST PROGRAMMING

121
12.2
12.3
124
12.5
12.6
13.1

STRUCTURED TEXT PROGRAMMING

141
14.2

14.3
14.4
145
14.6
151

SEQUENTIAL FUNCTION CHARTS

16.1
16.2
16.3

page vi

DESIGN TECHNIQUES

85.1 State Diagrams
DESIGN CASES

8.6.1 If-Then

8.6.2 Traffic Light
SUMMARY
PRACTICE PROBLEMS
ASSIGNMENT PROBLEMS
PRACTICE PROBLEM SOLUTIONS

INTRODUCTION

|EC 61131

OPEN ARCHITECTURE CONTROLLERS
SUMMARY

PRACTICE PROBLEMS

ASSIGNMENT PROBLEMS

PRACTICE PROBLEM SOLUTIONS

INTRODUCTION

THE IEC 61131 VERSION

THE ALLEN-BRADLEY VERSION
SUMMARY

PRACTICE PROBLEMS
ASSIGNMENT PROBLEMS
PRACTICE PROBLEM SOLUTIONS

INTRODUCTION
THE LANGUAGE
1421 Elements of the Language
14.2.2 Putting Things Together in a Program
AN EXAMPLE
SUMMARY
PRACTICE PROBLEMS
ASSIGNMENT PROBLEMS
PRACTICE PROBLEM SOLUTIONS

INTRODUCTION
A COMPARISON OF METHODS
SUMMARY

18.

20.

22.

page vii

16.4 PRACTICE PROBLEMS 16.17
16.5 ASSIGNMENT PROBLEMS 16.17
17.1 PRACTICE PROBLEM SOLUTIONS 17.1
FUNCTION BLOCK PROGRAMMING 18.1
18.1 INTRODUCTION 18.1
18.2 CREATING FUNCTION BLOCKS 18.4
18.3 DESIGN CASE 18.5
18.4 SUMMARY 18.7
18.5 PRACTICE PROBLEMS 18.7
18.6 ASSIGNMENT PROBLEMS 18.9
19.1 PRACTICE PROBLEM SOLUTIONS 19.1
ANALOG INPUTSAND OUTPUTS 20.1
20.1 INTRODUCTION 20.1
20.2 ANALOG INPUTS 20.2
20.3 ANALOG OUTPUTS 20.9
20.4 ANALOG INPUTS AND OUTPUTSWITH CONTROLLOGIX 20.12
20.4.1 ANALOG INPUTS AND OUTPUTSWITH A PLC-5 20.14
20.4.2 Pulse Width Modulation (PWM) Outputs 20.20
20.4.3 Shielding 20.22
205 DESIGN CASES 20.24
205.1 Process Monitor 20.24
20.6 SUMMARY 20.24
20.7 PRACTICE PROBLEMS 20.25
20.8 ASSIGNMENT PROBLEMS 20.26
211 PRACTICE PROBLEM SOLUTIONS 21.1
CONTINUOUSSENSORS 22.1
221 INTRODUCTION 22.1
222 INDUSTRIAL SENSORS 22.2
2221 Angular Displacement 22.3
Potentiometers 22.3
22.2.2 Encoders 224
Tachometers 22.8
22.2.3 Linear Position 22.8
Potentiometers 22.8

Linear Variable Differential Transformers (LVDT)22.9
Moire Fringes 22.11
Accelerometers 2212
2224 Forces and Moments 22.15
Strain Gages 22.15
Piezoelectric 22.18

22.2.5 Liquids and Gases 22.20

24,

26.

22.3
224
225
22.6
22.7
22.8
231

CONTINUOUS ACTUATORS

24.1
24.2

24.3
24.4
245
24.6
24.7
25.1

CONTINUOUS CONTROL

26.1

page viii

Pressure

Venturi Valves
Coriolis Flow Meter
Magnetic Flow Meter
Ultrasonic Flow Meter
Vortex Flow Meter

Positive Displacement Meters

Pitot Tubes
22.2.6 Temperature

Resistive Temperature Detectors (RTDs)

Thermocouples

Thermistors

Other Sensors
22.2.7 Light

Light Dependant Resistors (LDR)

22.2.8 Chemical
pH
Conductivity
22.2.9 Others
INPUT ISSUES
SENSOR GLOSSARY
SUMMARY
REFERENCES
PRACTICE PROBLEMS
ASSIGNMENT PROBLEMS
PRACTICE PROBLEM SOLUTIONS

INTRODUCTION
ELECTRIC MOTORS
24.2.1 Basic Brushed DC Motors
24.2.2 AC Motors
24.2.3 Brushless DC Motors
2424 Stepper Motors
24.2.5 Wound Field Motors
HYDRAULICS
OTHER SYSTEMS
SUMMARY
PRACTICE PROBLEMS
ASSIGNMENT PROBLEMS
PRACTICE PROBLEM SOLUTIONS

INTRODUCTION

28.

30.

32.

26.2 CONTROL OF LOGICAL ACTUATOR SYSTEMS
26.3 CONTROL OF CONTINUOUS ACTUATOR SYSTEMS
26.3.1 Block Diagrams
26.3.2 Feedback Control Systems
26.3.3 Proportional Controllers
26.3.4 PID Control Systems
26.4 DESIGN CASES
26.4.1 Oven Temperature Control
26.4.2 Water Tank Level Control
26.4.3 Position Measurement
26.5 SUMMARY
26.6 PRACTICE PROBLEMS
26.7 ASSIGNMENT PROBLEMS
27.1 PRACTICE PROBLEM SOLUTIONS
FUZZY LOGIC ... i
28.1 INTRODUCTION
28.2 COMMERCIAL CONTROLLERS
28.3 REFERENCES
284 SUMMARY
28.5 PRACTICE PROBLEMS
28.6 ASSIGNMENT PROBLEMS
29.1 PRACTICE PROBLEM SOLUTIONS

SERIAL COMMUNICATION

30.1 INTRODUCTION
30.2 SERIAL COMMUNICATIONS
30.2.1 RS-232
30.2.2 ASCII Functions
30.3 PARALLEL COMMUNICATIONS
30.4 DESIGN CASES
30.4.1 PLC Interface To a Robot
30.5 SUMMARY
30.6 PRACTICE PROBLEMS
30.7 ASSIGNMENT PROBLEMS
311 PRACTICE PROBLEM SOLUTIONS
NETWORKING e
321 INTRODUCTION

32.2

page ix

32.1.1 Topology

32.1.2 OSI Network Model

32.1.3 Networking Hardware

32.14 Control Network Issues
NETWORK STANDARDS

page X

3221 Devicenet 32.8

32.2.2 CANbus 32.12

32.2.3 Controlnet 32.13

3224 Ethernet 32.14

32.25 Profibus 32.15

32.2.6 Sercos 32.15

32.3 PROPRIETARY NETWORKS 32.16
32.3.1 Data Highway 32.16

324 NETWORK COMPARISONS 32.20
325 DESIGN CASES 32.22
3251 Devicenet 32.22

32.6 SUMMARY 32.23
32.7 PRACTICE PROBLEMS 32.23
32.8 ASSIGNMENT PROBLEMS 32.24
331 PRACTICE PROBLEM SOLUTIONS 33.1
INTERNET ... e 34.1
34.1 INTRODUCTION 34.1
34.1.1 Computer Addresses 34.2

IPV6 34.3

34.1.2 Phone Lines 34.3

34.1.3 Mail Transfer Protocols 34.4

34.1.4 FTP - File Transfer Protocol 34.4

34.1.5 HTTP - Hypertext Transfer Protocol 34.4

34.1.6 Novell 34.5

34.1.7 Security 34.5

Firewall 34.5

IP Masquerading 34.5

34.1.8 HTML - Hyper Text Markup Language 34.6

34.1.9 URLs 34.6

34.1.10 Encryption 34.7

34.1.11 Compression 34.7

34.1.12 Clientsand Servers 34.7

34113 Java 34.9

34.1.14 Javascript 34.9

34115 Cal 34.9

34.1.16 ActiveX 34.9

34.1.17 Graphics 34.10

34.2 DESIGN CASES 34.10
34.2.1 Remote Monitoring System 34.11

34.3 SUMMARY 34.11
344 PRACTICE PROBLEMS 34.11
34.5 ASSIGNMENT PROBLEMS 34.11

35.1 PRACTICE PROBLEM SOLUTIONS 35.1

page Xi

36. HUMAN MACHINE INTERFACES(HMI) 36.1
36.1 INTRODUCTION 36.1
36.2 HMI/MMI DESIGN 36.2
36.3 DESIGN CASES 36.3
36.4 SUMMARY 36.3
36.5 PRACTICE PROBLEMS 36.4
36.6 ASSIGNMENT PROBLEMS 36.4
37.1 PRACTICE PROBLEM SOLUTIONS 37.1

38. ELECTRICAL DESIGN AND CONSTRUCTION 38.1
38.1 INTRODUCTION 38.1
38.2 ELECTRICAL WIRING DIAGRAMS 38.1

38.2.1 Selecting Voltages 38.8
38.2.2 Grounding 38.9
38.2.3 Wiring 38.12
38.24 Suppressors 38.13
38.2.5 PLC Enclosures 38.14
38.2.6 Wire and Cable Grouping 38.16
38.3 FAIL-SAFE DESIGN 38.17
384 SAFETY RULES SUMMARY 38.18
38.5 REFERENCES 38.20
38.6 SUMMARY 38.20
38.7 PRACTICE PROBLEMS 38.20
38.8 ASSIGNMENT PROBLEMS 38.20
39.1 PRACTICE PROBLEM SOLUTIONS 39.1
40. SOFTWARE ENGINEERING, 40.1
40.1 INTRODUCTION 40.1
40.1.1 Fail Safe Design 40.1
40.2 DEBUGGING 40.2
40.2.1 Troubleshooting 40.3
40.2.2 Forcing 40.3
40.3 PROCESS MODELLING 40.3
40.4 PROGRAMMING FOR LARGE SYSTEMS 40.8
40.4.1 Developing a Program Structure 40.8
40.4.2 Program Verification and Simulation 40.11
40.5 DOCUMENTATION 40.12
40.6 COMMISIONING 40.20
40.7 SAFETY 40.20
40.7.1 IEC 61508/61511 safety standards 40.21
40.8 LEAN MANUFACTURING 40.22
40.9 REFERENCES 40.23

40.10 SUMMARY 40.23

42.

45.

page Xxii

40.11 PRACTICE PROBLEMS
40.12 ASSIGNMENT PROBLEMS
41.1 PRACTICE PROBLEM SOLUTIONS

SELECTINGAPLC

42.1 INTRODUCTION

42.2 SPECIAL 1/O MODULES

42.3 SUMMARY

42.4 PRACTICE PROBLEMS

42.5 ASSIGNMENT PROBLEMS

43.1 PRACTICE PROBLEM SOLUTIONS

FUNCTIONREFERENCE

44.1 FUNCTION DESCRIPTIONS
44.1.1 Genera Functions
44.1.2 Program Control
44.1.3 Timers and Counters
4414 Compare
44.1.5 Calculation and Conversion
44.1.6 Logicad
44.1.7 Move
44.1.8 File
44.1.9 List
44.1.10 Program Control
44.1.11 Advanced Input/Output
44.1.12 String

44.2 DATA TYPES

COMBINED GLOSSARY OF TERMS

451
45.2
45.3
45.4
45.5
45.6
45.7
45.8
45.9
45.10
4511
45.12
45.13
45.14
45.15

oOZZIre—IOmnmmoOw>

40.23
40.23
41.1

42.1

42.1
42.6
42.9
42.10
42.10
43.1

44.1

44.1

44.1

44.3

44.5
44.10
44.14
44.20
44.21
44.22
44.27
44.30
44.34
44.37
44.42

45.1

45.1

45.2

45.5

45.9
4511
45.12
45.13
45.14
45.14
45.16
45.16
45.17
45.17
45.19
45.20

46.

47.

45.16
45.17
45.18
45.19
45.20
45.21
45.22
45.23
45.24
45.25
45.26

PLC REFERENCES

46.1
46.2
46.3

GNU Free Documentation License

47.1
47.2
47.3
47.4
47.5
47.6
a47.7
47.8
47.9
47.10
47.11
47.12

page Xiii

N<Xs<cCc—HnIuO

SUPPLIERS
PROFESSIONAL INTEREST GROUPS
PLC/DISCRETE CONTROL REFERENCES

PREAMBLE

APPLICABILITY AND DEFINITIONS
VERBATIM COPYING

COPYING IN QUANTITY
MODIFICATIONS

COMBINING DOCUMENTS
COLLECTIONS OF DOCUMENTS
AGGREGATION WITH INDEPENDENT WORKS
TRANSLATION

TERMINATION

FUTURE REVISIONS OF THIS LICENSE
How to use this License for your documents

plcwiring - 1.1

PREFACE

Designing software for control systemsisdifficult. Experienced controls engineers
have learned many techniquesthat allow them to solve problems. This book waswritten to
present methods for designing controls software using Programmable Logic Controllers
(PLCs). Itismy personal hope that by employing the knowledge in the book that you will
be able to quickly write controls programs that work as expected (and avoid having to
learn by costly mistakes.)

This book has been designed for students with some knowledge of technology,
including limited electricity, who wish to learn the discipline of practical control system
design on commonly used hardware. To this end the book will use the Allen Bradley Con-
trolLogix processorsto allow depth. Although the chapters will focus on specific hard-
ware, the techniques are portable to other PLCs. Whenever possible the IEC 61131
programming standards will be used to help in the use of other PLCs.

In some cases the material will build upon the content found in alinear controls
course. But, a heavy emphasisis placed on discrete control systems. Figure 1.1 crudely
shows some of the basic categories of control system problems.

CONTROL
CONTINUOUS DISCRETE
LINEAR NON_LINEAR CONDITIONAL SEQUENQAL
\ . EVENT BASED
€9 TEMPORAL
eg. PID BOOLEAN \
e.g. FUZZY LOGIC e.g. COUNTERS

EXPERT SYSTEMS €9- TIMERS

Figurel.1 Control Dichotomy

» Continuous - The values to be controlled change smoothly. e.g. the speed of acar.
* Logical/Discrete - The value to be controlled are easily described as on-off. e.g.
the car motor is on-off. NOTE: all systems are continuous but they can be
treated aslogical for smplicity.
e.g. “When | do this, that always happens!” For example, when the power
isturned on, the press closes!

plc wiring - 1.2

* Linear - Can be described with a simple differential equation. Thisis the pre-
ferred starting point for simplicity, and acommon approximation for real world
problems.

e.g. A car can bedriving around atrack and can pass same the same spot at
a congtant velocity. But, the longer the car runs, the mass decreases, and
it travelsfaster, but requires less gas, etc. Basically, the math gets
tougher, and the problem becomes non-linear.

e.g. We are driving the perfect car with no friction, with no drag, and can
predict how it will work perfectly.

* Non-Linear - Not Linear. Thisis how the world works and the mathematics
become much more complex.

e.g. Asrocket approaches sun, gravity increases, so control must change.

* Sequential - A logical controller that will keep track of time and previous events.

The difference between these control systems can be emphasized by considering a
simple elevator. An elevator isacar that travels between floors, stopping at precise
heights. There are certain logical constraints used for safety and convenience. The points
below emphasize different types of control problemsin the elevator.

Logical:
1. The elevator must move towards a floor when a button is pushed.
2. The elevator must open adoor when it isat afloor.
3. It must have the door closed before it moves.

etc.
Linear:
1. If the desired position changes to a new value, accelerate quickly
towards the new position.
2. Asthe elevator approaches the correct position, slow down.
Non-linear:

1 Accelerate slowly to start.

2. Decdlerate as you approach the final position.

3. Allow faster motion while moving.

4. Compensate for cable stretch, and changing spring constant, etc.

Logical and sequential control is preferred for system design. These systems are
more stable, and often lower cost. Most continuous systems can be controlled logically.
But, some times we will encounter a system that must be controlled continuously. When
this occurs the control system design becomes more demanding. When improperly con-
trolled, continuous systems may be unstable and become dangerous.

When a system iswell behaved we say it is self regulating. These systems don’t
need to be closaely monitored, and we use open loop control. An open loop controller will
set a desired position for a system, but no sensors are used to verify the position. When a

plcwiring - 1.3

system must be constantly monitored and the control output adjusted we say it is closed
loop. A cruise control inacar is an excellent example. Thiswill monitor the actual speed
of acar, and adjust the speed to meet a set target speed.

Many control technologies are available for control. Early control systems relied
upon mechanisms and electronics to build controlled. Most modern controllers use a com-
puter to achieve control. The most flexible of these controllersisthe PLC (Programmable
Logic Controller).

The book has been set up to aid the reader, as outlined below.

Sections labeled Aside: are for topics that would be of interest to one disci-
pline, such as electrical or mechanical.

Sections labeled Note: are for clarification, to provide hints, or to add
explanation.

Each chapter supports about 1-4 lecture hours depending upon students
background and level in the curriculum.

Topics are organized to allow studentsto start |aboratory work earlier in the
semester.

Sections begin with atopic list to help set thoughts.

Objective given at the beginning of each chapter.

Summary at the end of each chapter to give big picture.

Significant use of figures to emphasize physical implementations.

Worked examples and case studies.

Problems at ends of chapters with solutions.

Glossary.

1.1 TODO LIST

- Finish writing chapters
- fuzzy logic chapter
* - internet chapter
- hmi chapter
- modify chapters
* - eectrical wiring chapter
- fix wiring and other issues in the implementation chapter
- software chapter - improve P&ID section
- appendices - complete list of instruction data types in appendix
- small items
- update serial 10 dlides
- al chapters
* - grammar and spelling check
* - add aresources web page with links

plcwiring - 1.4

- links to software/hardware vendors, iec1131, etc.
- pictures of hardware and controls cabinet

plcwiring - 2.1

2. PROGRAMMABLE LOGIC CONTROLLERS

Topics:
» PLC History
* Ladder Logic and Relays
* PLC Programming
* PLC Operation
* An Example

Objectives:
* Know general PLC issues
* To be able to write simple ladder logic programs
» Understand the operation of aPLC

2.1 INTRODUCTION

Control engineering has evolved over time. In the past humans were the main
method for controlling a system. More recently electricity has been used for control and
early eectrical control was based on relays. These relays allow power to be switched on
and off without a mechanical switch. It is common to use relays to make simple logical
control decisions. The development of low cost computer has brought the most recent rev-
olution, the Programmable Logic Controller (PLC). The advent of the PLC began in the
1970s, and has become the most common choice for manufacturing controls.

PL Cs have been gaining popularity on the factory floor and will probably remain
predominant for some time to come. Most of thisis because of the advantages they offer.

* Cost effective for controlling complex systems.

* Flexible and can be reapplied to control other systems quickly and easily.
» Computational abilities allow more sophisticated control.

* Trouble shooting aids make programming easier and reduce downtime.

* Reliable components make these likely to operate for years before failure.

2.1.1 Ladder Logic

Ladder logic is the main programming method used for PLCs. As mentioned
before, ladder logic has been devel oped to mimic relay logic. The decision to usethe relay

plc wiring - 2.2

logic diagrams was a strategic one. By selecting ladder logic as the main programming
method, the amount of retraining needed for engineers and tradespeople was greatly
reduced.

Modern control systems still include relays, but these are rarely used for logic. A
relay isasimple device that uses amagnetic field to control a switch, as pictured in Figure
2.1. When avoltage is applied to the input coil, the resulting current creates a magnetic
field. The magnetic field pulls ametal switch (or reed) towards it and the contacts touch,
closing the switch. The contact that closes when the coil is energized is called normally
open. The normally closed contacts touch when the input cail is not energized. Relays are
normally drawn in schematic form using a circle to represent the input coil. The output
contacts are shown with two parallel lines. Normally open contacts are shown as two
lines, and will be open (non-conducting) when the input is not energized. Normally closed
contacts are shown with two lines with a diagonal line through them. When the input coil
is not energized the normally closed contacts will be closed (conducting).

plc wiring - 2.3

o

input coil 7
r

e O
of £
normally
closed normally
open

. 1T
Z *ED%

e

o
Figure2.1 Simple Relay Layouts and Schematics

Relays are used to | et one power source close a switch for another (often high cur-
rent) power source, while keeping them isolated. An example of arelay in asimple control
application is shown in Figure 2.2. In this system the first relay on the left is used as nor-
mally closed, and will alow current to flow until avoltageis applied to the input A. The
second relay is normally open and will not allow current to flow until avoltage is applied
to theinput B. If current is flowing through the first two relays then current will flow
through the coil in the third relay, and close the switch for output C. This circuit would
normally be drawn in the ladder logic form. This can be read logically as C will beonif A
isoff and B ison.

plcwiring - 2.4

(H115VAC

(oD
rL_WEII plug @

r= 1= -

- = 1
I

—
— |
I I

input A input B
(normally closed) (normally open)

—
|
|

I relay logic

-
I
I
|
I
L

LHﬂEJ

I

I

— I
.

I
L — — —

output C
(normally open)

ladder logic

>
O

Figure2.2 A Simple Relay Controller

The example in Figure 2.2 does not show the entire control system, but only the
logic. When we consider aPL C there are inputs, outputs, and the logic. Figure 2.3 shows a
more complete representation of the PLC. Here there are two inputs from push buttons.
We can imagine the inputs as activating 24V DC relay coilsinthe PLC. Thisin turn drives
an output relay that switches 115V AC, that will turn on alight. Note, in actual PLCs
inputs are never relays, but outputs are often relays. Theladder logic inthe PLC isactually
a computer program that the user can enter and change. Notice that both of the input push
buttons are normally open, but the ladder logic inside the PLC has one normally open con-
tact, and one normally closed contact. Do not think that the ladder logic in the PLC needs
to match the inputs or outputs. Many beginners will get caught trying to make the ladder
logic match the input types.

plc wiring - 2.5

push buttons —L—

® ©
1
[® 0
power
supply
+24V]
com

PLC

ladder ‘
logic ‘

outputs | |

N /
AC power / .
neut,

Figure2.3 A PLC lllustrated With Relays

Many relays also have multiple outputs (throws) and this allows an output relay to
also be an input simultaneously. The circuit shown in Figure 2.4 isan example of this, itis
called aseal in circuit. In thiscircuit the current can flow through either branch of the cir-
cuit, through the contacts labelled A or B. The input B will only be on when the output B
ison. If B isoff, and A isenergized, then B will turn on. If B turns on then the input B will
turn on, and keep output B on even if input A goes off. After B isturned on the output B
will not turn off.

plc wiring - 2.6

A B

O

Note: When A is pushed, the output B will turn on, and
the input B will aso turn on and keep B on perma-
nently - until power isremoved.

Note: Theline on theright is being left off intentionally
and isimplied in these diagrams.

Figure2.4 A Sed-in Circuit

2.1.2 Programming

The first PLCs were programmed with a technique that was based on relay logic
wiring schematics. This eliminated the need to teach the electricians, technicians and engi-
neers how to program a computer - but, this method has stuck and it is the most common
technique for programming PL Cs today. An example of ladder logic can be seen in Figure
2.5. Tointerpret this diagram imagine that the power ison the vertical line on the left hand
side, we call thisthe hot rail. On the right hand side is the neutral rail. In the figure there
are two rungs, and on each rung there are combinations of inputs (two vertical lines) and
outputs (circles). If the inputs are opened or closed in the right combination the power can
flow from the hot rail, through the inputs, to power the outputs, and finally to the neutral
rail. An input can come from a sensor, switch, or any other type of sensor. An output will
be some device outside the PL C that is switched on or off, such as lights or motors. In the
top rung the contacts are normally open and normally closed. Which meansif input Aison
and input B is off, then power will flow through the output and activate it. Any other com-
bination of input values will result in the output X being off.

plcwiring - 2.7

HOT NEUTRAL
A B XG
C D G Y
on Em mm Em E G
4
- = E - - -E | ', H
INPUTS OUTPUTS

Note: Power needs to flow through some combination of the inputs
(A,B,C,D,E,FGH) to turn on outputs (X,Y).

Figure25 A Simple Ladder Logic Diagram

The second rung of Figure 2.5 is more complex, there are actually multiple combi-
nations of inputs that will result in the output Y turning on. On the left most part of the
rung, power could flow through the top if Cisoff and D ison. Power could also (and
simultaneously) flow through the bottom if both E and F are true. Thiswould get power
half way acrossthe rung, and then if G or H istrue the power will be delivered to output Y.
In later chapters we will examine how to interpret and construct these diagrams.

There are other methods for programming PLCs. One of the earliest techniques
involved mnemonic instructions. These instructions can be derived directly from the lad-
der logic diagrams and entered into the PL C through a ssmple programming terminal. An
example of mnemonicsis shown in Figure 2.6. In this example the instructions are read
one line at atime from top to bottom. The first line 00000 has the instruction LDN (input
load and not) for input A. Thiswill examine the input to the PLC and if it is off it will
remember al (or true), if itison it will remember a0 (or false). The next line usesan LD
(input load) statement to look at the input. If the input is off it remembers a0, if the input
isonit remembersal (note: thisisthereverse of the LDN). The AND statement recallsthe
last two numbers remembered and if the are both true the result isa 1, otherwise the result
isa0. Thisresult now replaces the two numbers that were recalled, and there is only one
number remembered. The process is repeated for lines 00003 and 00004, but when these
are done there are now three numbers remembered. The oldest number is from the AND,
the newer numbers are from the two LD instructions. The AND in line 00005 combinesthe
results from the last LD instructions and now there are two numbers remembered. The OR
instruction takes the two numbers now remaining and if either oneisaltheresultisal,
otherwise the result isa 0. This result replaces the two numbers, and thereisnow asingle

plc wiring - 2.8

number there. The last instruction isthe ST (store output) that will ook at the last value
stored and if it is 1, the output will be turned on, if it is O the output will be turned off.

00000 LDN
00001 LD
00002 AND
00003 LD
00004 LD
00005 AND
00006 OR
00007 ST
00008 END A B X

@

the mnemonic code is equivalent to
the ladder logic below

onO wW>r

X

END

Note: The notation shown aboveis SOR
not standard Allen-Bradley BST
notation. The program to the XICA
right would be the A-B equiva- XlIOB
lent. NXB

XloC
XIOD
BND
OTE X
EOR
END

Figure2.6 An Example of a Mnemonic Program and Equivalent Ladder Logic

The ladder logic program in Figure 2.6, is equivaent to the mnemonic program.
Even if you have programmed a PL C with ladder logic, it will be converted to mnemonic
form before being used by the PLC. In the past mnemonic programming was the most
common, but now it is uncommon for users to even see mnemonic programs.

plc wiring - 2.9

Sequentia Function Charts (SFCs) have been devel oped to accommodate the pro-
gramming of more advanced systems. These are similar to flowcharts, but much more
powerful. The example seen in Figure 2.7 is doing two different things. To read the chart,
start at the top where is says start. Below thisthere is the double horizontal line that says
follow both paths. Asaresult the PLC will start to follow the branch on the left and right
hand sides separately and simultaneously. On the left there are two functions the first one
isthe power up function. This function will run until it decidesit is done, and the power
down function will come after. On the right hand side is the flash function, thiswill run
until it is done. These functions look unexplained, but each function, such as power up
will be asmall ladder logic program. This method is much different from flowcharts
because it does not have to follow a single path through the flowchart.

Start
!
' 4 @ am om [
power up | Execution follows \
| multiple paths :
1
I ,' flash
power down| ¥ _ _ A
End

Figure2.7 An Example of a Sequential Function Chart

Structured Text programming has been devel oped as a more modern programming
language. It is quite similar to languages such as BASIC. A simple example is shown in
Figure 2.8. This example uses a PLC memory location i. This memory location isfor an
integer, as will be explained later in the book. The first line of the program sets the value
to 0. The next line begins aloop, and will be where the loop returnsto. The next line
recallsthevaluein location i, adds 1 to it and returns it to the same location. The next line
checksto see if the loop should quit. If i isgreater than or equal to 10, then the loop will
quit, otherwise the computer will go back up to the REPEAT statement continue from
there. Each time the program goes through this loop i will increase by 1 until the value
reaches 10.

plc wiring - 2.10

=0

REPEAT
i=i+1;
UNTIL i >=10
END_ REPEAT;

Figure2.8 An Example of a Structured Text Program

2.1.3 PLC Connections

When aprocessis controlled by a PLC it uses inputs from sensors to make deci-
sions and update outputs to drive actuators, as shown in Figure 2.9. The processis areal
processthat will change over time. Actuatorswill drive the system to new states (or modes
of operation). This means that the controller islimited by the sensors available, if an input
isnot available, the controller will have no way to detect a condition.

PROCESS

Feedback from Connections to
sensors/switches actuators

PLC

Figure2.9 The Separation of Controller and Process

The control loop is a continuous cycle of the PLC reading inputs, solving the lad-
der logic, and then changing the outputs. Like any computer this does not happen
instantly. Figure 2.10 shows the basic operation cycle of a PLC. When power isturned on
initially the PLC does a quick sanity check to ensure that the hardware is working prop-
erly. If thereis a problem the PLC will halt and indicate there is an error. For example, if
the PLC power is dropping and about to go off thiswill result in one type of fault. If the
PL C passes the sanity check it will then scan (read) all the inputs. After the inputs values
are stored in memory the ladder logic will be scanned (solved) using the stored values -
not the current values. Thisis done to prevent logic problems when inputs change during
the ladder logic scan. When the ladder logic scan is complete the outputs will be scanned

plc wiring - 2.11

(the output values will be changed). After this the system goes back to do a sanity check,
and the loop continues indefinitely. Unlike normal computers, the entire program will be
run every scan. Typical timesfor each of the stagesisin the order of milliseconds.

PL C program changes output
by examining inputs

Set new outputs

THE
CONTROL
LOOP

Power turned on

Process changes and PL C pauses

Read inputs while it checksits own operation

Figure2.10 The Scan Cycleof aPLC

2.1.4 Ladder Logic Inputs

PLC inputs are easily represented in ladder logic. In Figure 2.11 there are three
types of inputs shown. The first two are normally open and normally closed inputs, dis-
cussed previoudy. The lIT (Immediate InpuT) function allows inputs to be read after the
input scan, while the ladder logic is being scanned. This allows ladder logic to examine
input values more often than once every cycle. (Note: Thisinstruction is not available on
the ControlLogix processors, but is still available on older models.)

plc wiring - 2.12

all

| | Normally open, an active input x will close the contact
and allow power to flow.

X
/‘/}/ Normally closed, power flows when the input X is not open.

X
HT

Immediate inputs will take current values, not those from
the previous input scan. (Note: thisinstruction is actually

an output that will update the input table with the current
input values. Other input contacts can now be used to
examine the new values.)

Figure2.11 Ladder Logic Inputs

2.1.5 Ladder Logic Outputs

In ladder logic there are multiple types of outputs, but these are not consistently
available on all PLCs. Some of the outputswill be externally connected to devices outside
the PLC, but it is also possible to use internal memory locationsin the PLC. Six types of
outputs are shown in Figure 2.12. Thefirst isanormal output, when energized the output
will turn on, and energize an output. The circle with a diagonal line through is anormally
on output. When energized the output will turn off. Thistype of output is not available on
al PLC types. When initially energized the OSR (One Shot Relay) instruction will turn on
for one scan, but then be off for all scans after, until it isturned off. The L (latch) and U
(unlatch) instructions can be used to lock outputs on. When an L output is energized the
output will turn on indefinitely, even when the output coil is deenergized. The output can
only be turned off using a U output. The last instruction isthe IOT (Immediate OutpuT)
that will allow outputs to be updated without having to wait for the ladder logic scan to be
completed.

plc wiring - 2.13

When power is applied (on) the output X is activated for the left output, but turned
off for the output on the right.

~- X

An input transition on will cause the output x to go on for one scan
(thisis also known as a one shot relay)

When the L coil is energized, x will be toggled on, it will stay on until the U coil
isenergized. Thisislike aflip-flop and stays set even when the PLC is turned off.

4®Xi 4@Xi
Some PLCswill alow immediate outputs that do not wait for the program scan to

end before setting an output. (Note: Thisinstruction will only update the outputs using
the output table, other instruction must change the individual outputs.)

—(—
Note: Outputs are also commonly shown using parentheses -()- instead of

the circle. Thisis because many of the programming systems are text
based and circles cannot be drawn.

Figure2.12 Ladder Logic Outputs

2.2 A CASE STUDY

Problem: Try to develop (without looking at the solution) arelay based controller
that will allow three switchesin aroom to control asingle light.

plc wiring - 2.14

Solution: There are two possible approaches to this problem. The first assumes that any
one of the switches on will turn on the light, but all three switches must be off for the
light to be off.

switch 1
' Q light

switch 2

switch 3

The second solution assumes that each switch can turn the light on or off, regardless of
the states of the other switches. This method is more complex and involves thinking
through all of the possible combinations of switch positions. You might recognize
this problem as an exclusive or problem.

switch 1 swifch 2 swifch 3 Q ight

s&itm 1 swi}m 2 s&itm 3
|

s&itm 1 m@th 2 switch 3

switch 1 swi}m 2 switch 3
|

Note: It isimportant to get a clear understanding of how the controls are expected to
work. In this example two radically different solutions were obtained based upon a
simple difference in the operation.

2.3 SUMMARY

* Normally open and closed contacts.

* Relays and their relationship to ladder logic.

 PLC outputs can be inputs, as shown by the seal in circuit.

 Programming can be done with ladder logic, mnemonics, SFCs, and structured
text.

* There are multiple ways to write a PLC program.

plc wiring - 2.15

24 PRACTICE PROBLEMS

1. Give an example of where a PLC could be used.
2. Why would relays be used in place of PLCs?

3. Give aconcise description of aPLC.

4. List the advantages of a PLC over relays.

5. A PLC can effectively replace anumber of components. Give examples and discuss some good
and bad applications of PLCs.

6. Explain why ladder logic outputs are coils?

7. In the figure below, will the power for the output on thefirst rung normally be on or off? Would
the output on the second rung normally be on or off?

8. Write the mnemonic program for the Ladder Logic below.
A

(—
(—
QY_

2.5ASSIGNMENT PROBLEMS

1. Explain the trade-offs between relays and PLCs for contro applications.

2. Develop asimple ladder logic program that will turn on an output X if inputs A and B, or input
Cison.

plcwiring - 3.1

3.1 PRACTICE PROBLEM SOLUTIONS

1. To control a conveyor system
2. For smple designs

3. A PLCisacomputer based controller that uses inputs to monitor a process, and uses outputs to
control a process using a program.

4. Less expensive for complex processes, debugging tools, reliable, flexible, easy to expand, etc.
5. A PLC could replace afew relays. In this case the relays might be easier to install and less
expensive. To control a more complex system the controller might need timing, counting and

other mathematical calculations. In this case a PL C would be a better choice.

6. The ladder logic outputs were modelled on relay logic diagrams. The output in arelay ladder
diagramisarelay coil that switches a set of output contacts.

7. off, on

8. Generic: LD A, LD B, OR, ST Y, END; Allen Bradley: SOR, BST, X1O A, NXB, XIO B,
BND, OTEY, EOR, END

plcwiring - 4.1

4. PLC HARDWARE

Topics:
* PLC hardware configurations
* Input and outputs types
* Electrical wiring for inputs and outputs
* Relays
* Electrical Ladder Diagrams and J C wiring symbols

Objectives:
* Be able to understand and design basic input and output wiring.
* Be able to produce industrial wiring diagrams.

4.1 INTRODUCTION

Many PLC configurations are available, even from a single vendor. But, in each of
these there are common components and concepts. The most essential components are:

Power Supply - This can be built into the PLC or be an external unit. Common
voltage levels required by the PLC (with and without the power supply) are
24V dc, 120Vac, 220Vec.

CPU (Centra Processing Unit) - Thisisacomputer where ladder logic is stored
and processed.

1/O (Input/Output) - A number of input/output terminals must be provided so that
the PLC can monitor the process and initiate actions.

Indicator lights - These indicate the status of the PL C including power on, program
running, and afault. These are essential when diagnosing problems.

The configuration of the PLC refers to the packaging of the components. Typical
configurations are listed below from largest to smallest as shown in Figure 4.1.

Rack - A rack isoften large (up to 18” by 30" by 10”) and can hold multiple cards.
When necessary, multiple racks can be connected together. These tend to be the
highest cost, but also the most flexible and easy to maintain.

Mini - These are smaller than full sized PLC racks, but can have the same IO
capacity.

Micro - These units can be as small as a deck of cards. They tend to have fixed
guantities of 1/0 and limited abilities, but costs will be the lowest.

Software - A software based PLC requires a computer with an interface card, but

plc wiring - 4.2

alows the PL C to be connected to sensors and other PL Cs across a network.

Figure4.1 Typica Configurationsfor PLC

4.2 INPUTSAND OUTPUTS

Inputs to, and outputs from, a PLC are necessary to monitor and control a process.
Both inputs and outputs can be categorized into two basic types: logical or continuous.
Consider the example of alight bulb. If it can only be turned on or off, it islogical control.
If the light can be dimmed to different levels, it is continuous. Continuous val ues seem
more intuitive, but logical values are preferred because they allow more certainty, and
simplify control. Asaresult most controls applications (and PLCs) use logical inputs and
outputs for most applications. Hence, we will discusslogical 1/0 and leave continuous 1/0O
for later.

Outputs to actuators alow a PLC to cause something to happen in a process. A
short list of popular actuatorsis given below in order of relative popularity.

Solenoid Valves - logical outputs that can switch a hydraulic or pneumatic flow.

Lights - logical outputs that can often be powered directly from PLC output
boards.

Motor Starters - motors often draw alarge amount of current when started, so they
require motor starters, which are basicaly large relays.

Servo Motors - a continuous output from the PLC can command a variable speed
or position.

plc wiring - 4.3

Outputs from PLCs are often relays, but they can also be solid state electronics
such as transistors for DC outputs or Triacs for AC outputs. Continuous outputs require
special output cards with digital to analog converters.

Inputs come from sensors that trandlate physical phenomenainto electrical signals.
Typical examples of sensors are listed below in relative order of popularity.

Proximity Switches - use inductance, capacitance or light to detect an object logi-
cally.

Switches - mechanical mechanisms will open or close electrical contacts for alog-
ical signal.

Potentiometer - measures angular positions continuously, using resistance.

LVDT (linear variable differentia transformer) - measures linear displacement
continuoudly using magnetic coupling.

Inputsfor aPLC comein afew basic varieties, the simplest are AC and DC inputs.
Sourcing and sinking inputs are also popular. This output method dictates that a device
does not supply any power. Instead, the device only switches current on or off, like asim-
ple switch.

Sinking - When active the output allows current to flow to acommon ground. This
is best selected when different voltages are supplied.

Sourcing - When active, current flows from a supply, through the output device
and to ground. This method is best used when all devices use a single supply
voltage.

Thisisalso referred to as NPN (sinking) and PNP (sourcing). PNP is more popu-
lar. Thiswill be covered in detail in the chapter on sensors.

4.2.1 Inputs

In smaller PLCstheinputs are normally built in and are specified when purchasing
the PLC. For larger PLCsthe inputs are purchased as modules, or cards, with 8 or 16
inputs of the same type on each card. For discussion purposes we will discuss all inputs as
if they have been purchased as cards. The list below showstypical ranges for input volt-
ages, and is roughly in order of popularity.

12-24 Vdc
100-120 Vac
10-60 Vdc
12-24 Vac/dc

plcwiring - 4.4

5Vdc (TTL)
200-240 Vac
48 Vdc
24 Vac

PLC input cards rarely supply power, this means that an external power supply is
needed to supply power for the inputs and sensors. The example in Figure 4.2 shows how
to connect an AC input card.

PLC Input Card
24V AC
normally open push-button
O
00
24V AC Hot O o1
Power

Supply

02
03
04
05
06
07

eut,

normally open
temperature switch

O O O O O O

O COM

Pushbutton (bob:3:1.Data.1) itisinrack "bob"
dot 3

Tempsensor (bob:3:1.Data.3)

Note: inputs are normally high impedance. This means that they will
use very little current.

Figure4.2 AnAC Input Card and Ladder Logic

plc wiring - 4.5

In the example there are two inputs, one is a normally open push button, and the
second is atemperature switch, or thermal relay. (NOTE: These symbols are standard and
will be discussed later in this chapter.) Both of the switches are powered by the positive/
hot output of the 24Vac power supply - thisislike the positive terminal on a DC supply.
Power is supplied to the left side of both of the switches. When the switches are open there
is no voltage passed to the input card. If either of the switches are closed power will be
supplied to the input card. In this case inputs 1 and 3 are used - notice that the inputs start
at 0. The input card compares these voltages to the common. If the input voltage iswithin
agiven tolerance range the inputs will switch on. Ladder logic is shown in the figure for
the inputs. Here it uses Allen Bradley notation for ControlLogix. At the top isthe tag
(variable name) for the rack. Theinput card ('I') isin dot 3, so the address for the card is
bob:3.I.Data.x, where’x’ isthe input bit number. These addresses can aso be given alias
tags to make the ladder logic less confusing.

NOTE: The design process will be much easier if the inputs and outputs are planned first,

and the tags are entered before the ladder logic. Then the program is entered using the
much simpler tag names.

Many beginners become confused about where connections are needed in the cir-
cuit above. The key word to remember is circuit, which meansthat thereisafull loop that
the voltage must be ableto follow. In Figure 4.2 we can start following the circuit (loop) at
the power supply. The path goes through the switches, through the input card, and back to
the power supply where it flows back through to the start. In afull PLC implementation
there will be many circuits that must each be complete.

A second important concept is the common. Here the neutral on the power supply
isthe common, or reference voltage. In effect we have chosen thisto be our OV reference,
and all other voltages are measured relative to it. If we had a second power supply, we
would also need to connect the neutral so that both neutrals would be connected to the
same common. Often common and ground will be confused. The common is areference,
or datum voltage that is used for OV, but the ground is used to prevent shocks and damage
to equipment. The ground is connected under a building to ametal pipe or grid in the
ground. Thisis connected to the electrical system of a building, to the power outlets,
where the metal cases of electrical equipment are connected. When power flows through
the ground it isbad. Unfortunately many engineers, and manufacturers mix up ground and
common. It isvery common to find a power supply with the ground and common misla-
beled.

plc wiring - 4.6

Remember - Don’t mix up the ground and common. Don’t connect them together if the
common of your device is connected to a common on another device.

One final concept that tends to trap beginnersis that each input card is isolated.
Thismeansthat if you have connected acommon to only one card, then the other cards are
not connected. When this happens the other cards will not work properly. You must con-
nect a common for each of the output cards.

There are many trade-offs when deciding which type of input cards to use.

» DC voltages are usually lower, and therefore safer (i.e., 12-24V).

* DCinputsarevery fast, AC inputsrequire alonger on-time. For example, a60Hz
wave may require up to 1/60sec for reasonable recognition.

 DC voltages can be connected to larger variety of electrical systems.

» AC signals are more immune to noise than DC, so they are suited to long dis-
tances, and noisy (magnetic) environments.

» AC power is easier and less expensive to supply to equipment.

» AC signals are very common in many existing automation devices.

plc wiring - 4.7

ASIDE: PLC inputs must convert avariety of logic levelsto the 5Vdc logic levels
used on the data bus. This can be done with circuits similar to those shown below.
Basically the circuits condition the input to drive an optocoupler. This electricaly
isolates the external electrical circuitry from the internal circuitry. Other circuit
components are used to guard against excess or reversed voltage polarity.

+5V

optocoupler
pea—y Pooonls =
DC :__ : TTL
input AN T \\.
- |
COM (R ¥
hot
oA /X .
AC optocoupler
input — — — [
| L TTL
\; Vi
neut. Q‘/\M :
L 4+ — — — |4

Figure4.3 Aside: PLC Input Circuits

4.2.2 Output Modules

WARNING - ALWAY S CHECK RATED VOLTAGES AND CURRENTSFOR PLC's
AND NEVER EXCEED!

plc wiring - 4.8

Aswith input modules, output modules rarely supply any power, but instead act as
switches. External power supplies are connected to the output card and the card will
switch the power on or off for each output. Typical output voltages are listed below, and
roughly ordered by popularity.

120 Vac
24Vdc
12-48 Vac
12-48 Vdc
5Vdc (TTL)
230 Vac

These cardstypically have 8 to 16 outputs of the same type and can be purchased
with different current ratings. A common choice when purchasing output cardsisrelays,
transistors or triacs. Relays are the most flexible output devices. They are capable of
switching both AC and DC outputs. But, they are slower (about 10ms switching is typi-
cal), they are bulkier, they cost more, and they will wear out after millions of cycles. Relay
outputs are often called dry contacts. Transistors are limited to DC outputs, and Triacs are
limited to AC outputs. Transistor and triac outputs are called switched outputs.

Dry contacts - a separate relay is dedicated to each output. This allows mixed volt-
ages (AC or DC and voltage levels up to the maximum), as well asisolated out-
putsto protect other outputs and the PL C. Response times are often greater than
10ms. This method is the least sensitive to voltage variations and spikes.

Switched outputs - avoltage is supplied to the PLC card, and the card switchesit to
different outputs using solid state circuitry (transistors, triacs, etc.) Triacs are
well suited to AC devicesrequiring lessthan 1A. Transistor outputs use NPN or
PNP transistors up to 1A typicaly. Their response timeiswell under 1ms.

plc wiring - 4.9

ASIDE: PLC outputs must convert the 5Vdc logic levels on the PLC data bus to exter-
nal voltage levels. This can be done with circuits similar to those shown below.
Basically the circuits use an optocoupler to switch external circuitry. This electri-
cally isolates the externa electrical circuitry from the internal circuitry. Other cir-
cuit components are used to guard against excess or reversed voltage polarity.

* O +v
optocoupler
L N
| S~ | Sourcing DC output
I N —O
| I
L 4+ — — — 4
opocouler ~ ac
TTL | g
- output
Vs Y
I N
| I
L 4+ — — — 4 O
—— =12 ¢\ O Note: Some AC outputs will
| relay also use zero voltage detec-
| output tion. This allows the output
| AC/DC to be switched on when the
— O voltage and current are
effectively off, thus prevent-
ing surges.

Figure4.4 Aside: PLC Output Circuits

Caution isrequired when building a system with both AC and DC outputs. If ACis

plc wiring - 4.10

accidentally connected to a DC transistor output it will only be on for the positive half of
the cycle, and appear to be working with a diminished voltage. If DC is connected to an
AC triac output it will turn on and appear to work, but you will not be ableto turn it off
without turning off the entire PLC.

ASIDE: A transistor is a semiconductor based device that can act as an adjustable valve.
When switched off it will block current flow in both directions. While switched on it
will alow current flow in one direction only. Thereisnormally aloss of a couple of
volts acrossthetransistor. A triacislike two SCRs (or imagine transistors) connected
together so that current can flow in both directions, which is good for AC current.
Onemagjor differencefor atriacisthat if it has been switched on so that current flows,
and then switched off, it will not turn off until the current stops flowing. Thisisfine
with AC current because the current stops and reverses every 1/2 cycle, but this does
not happen with DC current, and so the triac will remain on.

A major issue with outputs is mixed power sources. It isgood practiceto isolate all
power supplies and keep their commons separate, but thisis not aways feasible. Some
output modules, such asrelays, allow each output to have its own common. Other output
cards require that multiple, or all, outputs on each card share the same common. Each out-
put card will be isolated from the rest, so each common will have to be connected. It is
common for beginnersto only connect the common to one card, and forget the other cards
- then only one card seemsto work!

The output card shown in Figure 4.5 is an example of a 24V dc output card that has
a shared common. Thistype of output card would typically use transistors for the outputs.

plc wiring - 4.11

24V DC 120V AC

Output Card
Power

Supply

00 O
Neut.

01 O Relay
02 O

03 O

04 O I

05 O

06 O

07 O +24V DC
Power

comO Supply
COM

rack "sue"
slot 2

Motor (sue:2.0.Data.3)

O

Lamp (sue:2.0.Data.7)

O

Figure45 An Example of a24Vdc Output Card (Sinking)

In this example the outputs are connected to alow current light bulb (lamp) and a
relay coil. Consider the circuit through the lamp, starting at the 24V dc supply. When the
output 07 ison, current can flow in 07 to the COM, thus completing the circuit, and allow-
ing the light to turn on. If the output is off the current cannot flow, and the light will not
turn on. The output 03 for the relay is connected in asimilar way. When the output 03 is
on, current will flow through the relay coil to close the contacts and supply 120Vac to the
motor. Ladder logic for the outputs is shown in the bottom right of the figure. The notation
isfor an Allen Bradley ControlLogix. The output card ("O’) isin arack labelled 'sue’ in
dot 2. Asindicated for the input card, it is good practice to define and use an diastag for
an output (e.g. Motor) instead of using the full description (e.g. sue:2.0.Data.3). This card

plc wiring - 4.12

could have many different voltages applied from different sources, but all the power sup-
plies would need a single shared common.

Thecircuitsin Figure 4.6 had the sequence of power supply, then device, then PLC
card, then power supply. This requires that the output card have a common. Some output
schemes reverse the device and PLC card, thereby replacing the common with a voltage
input. The example in Figure 4.5 isrepeated in Figure 4.6 for a voltage supply card.

24V DC

Output Card
Power

Supply

v+ O 124V DC CON

00 O

01 O Relay

02 O 120V AC
03 O Power

Supply
04 O I@I Neut.
05 O

24\ lamp

~ | @
07 O |

Figure4.6 An Example of a24Vdc Output Card With a Voltage Input (Sourcing)

In this example the positive terminal of the 24V dc supply is connected to the out-
put card directly. When an output is on power will be supplied to that output. For example,
if output 07 is on then the supply voltage will be output to the lamp. Current will flow
through the lamp and back to the common on the power supply. The operation isvery sim-
ilar for the relay switching the motor. Notice that the ladder logic (shown in the bottom
right of the figure) isidentical to that in Figure 4.5. With this type of output card only one
power supply can be used.

We can also use relay outputs to switch the outputs. The example shown in Figure

plc wiring - 4.13

4.5 and Figure 4.6 is repeated yet again in Figure 4.7 for relay output.

120V AC/DC
Output Card

24V DC

00

01

02

03

Power
Supply

04

05

06

07

<B<B€><58><58><5c5T8><5€><58><5

inrack 01
1/O group 2

Figure4.7 An Example of a Relay Output Card

In this example the 24V dc supply is connected directly to both relays (note that
this requires 2 connections now, whereas the previous example only required one.) When
an output is activated the output switches on and power is delivered to the output devices.
Thislayout ismore similar to Figure 4.6 with the outputs supplying voltage, but the relays
could also be used to connect outputs to grounds, as in Figure 4.5. When using relay out-
putsit is possible to have each output isolated from the next. A relay output card could

Relay

24\ lamp

120V AC
Power

Supply

have AC and DC outputs beside each other.

4.3 RELAYS

Although relays are rarely used for control logic, they are still essential for switch-

plc wiring - 4.14
ing large power loads. Some important terminology for relaysis given below.

Contactor - Special relays for switching large current loads.

Motor Starter - Basically a contactor in series with an overload relay to cut off
when too much current is drawn.

Arc Suppression - when any relay is opened or closed an arc will jJump. This
becomes a major problem with large relays. On relays switching AC this prob-
lem can be overcome by opening the relay when the voltage goesto zero (while
crossing between negative and positive). When switching DC loads this prob-
lem can be minimized by blowing pressurized gas across during opening to sup-
press the arc formation.

AC coils- If anormal cail isdriven by AC power the contacts will vibrate open
and closed at the frequency of the AC power. This problem is overcome by
relay manufacturers by adding a shading poleto the internal construction of the

relay.

The most important consideration when selecting relays, or relay outputs on a
PLC, istherated current and voltage. If the rated voltage is exceeded, the contacts will
wear out prematurely, or if the voltage istoo high fire is possible. The rated current isthe
maximum current that should be used. When thisis exceeded the device will become too
hot, and it will fail sooner. The rated values are typically given for both AC and DC,
although DC ratings are lower than AC. If the actual |oads used are below the rated values
the relays should work well indefinitely. If the values are exceeded a small amount the life
of the relay will be shortened accordingly. Exceeding the values significantly may lead to
immediate failure and permanent damage. Please note that relays may also include mini-
mum ratings that should also be observed to ensure proper operation and long life.

* Rated Voltage - The suggested operation voltage for the coil. Lower levels can
result in failure to operate, voltages above shorten life.

* Rated Current - The maximum current before contact damage occurs (welding or
melting).

4.4 A CASE STUDY

(Try the following case without |ooking at the solutionin Figure 4.8.) An electrical
layout is needed for a hydraulic press. The press uses a 24V dc double actuated solenoid
valve to advance and retract the press. This device has a single common and two input
wires. Putting 24V dc on one wire will cause the press to advance, putting 24V dc on the
second wire will cause it to retract. The pressisdriven by alarge hydraulic pump that
requires 220Vac rated at 20A, this should be running as long as the pressis on. The press
is outfitted with three push buttons, oneis a NC stop button, the other isa NO manual
retract button, and the third isa NO start automatic cycle button. There are limit switches

plc wiring - 4.15

at the top and bottom of the press travels that must also be connected.

SOLUTION
24vVDC 24VDC
output card input card
solenoid
V+ o o 1/0
o o o 1/1
I
oo o | 1/2
advance
o/0
oo o | 1/3
retract S —
O/1 o o 1/4
relay for
hydraulic N
pump o7 -
24VDC com

Figure4.8 Case Study for Press Wiring

The input and output cards were both selected to be 24V dc so that they may share
asingle 24Vdc power supply. In this case the solenoid valve was wired directly to the out-
put card, while the hydraulic pump was connected indirectly using arelay (only the coil is
shown for simplicity). This decision was primarily made because the hydraulic pump
requires more current than any PLC can handle, but arelay would be relatively easy to
purchase and install for that load. All of the input switches are connected to the same sup-
ply and to the inputs.

45 ELECTRICAL WIRING DIAGRAMS

When a controls cabinet is designed and constructed ladder diagrams are used to
document the wiring. A basic wiring diagram is shown in Figure 4.9. In this example the
system would be supplied with AC power (120Vac or 220Vac) on the left and right rails.

plc wiring - 4.16

Thelines of these diagrams are numbered, and these numbers are typically used to number
wires when building the electrical system. The switch before line 010 is a master discon-
nect for the power to the entire system. A fuseis used after the disconnect to limit the
maximum current drawn by the system. Line 020 of the diagram is used to control power
to the outputs of the system. The stop button is normally closed, while the start button is
normally open. The branch, and output of the rung are CR1, which is a master control
relay. The PLC receives power on line 30 of the diagram.

Theinputsto the PLC are all AC, and are shown on lines 040 to 070. Notice that
Input 1:0/0 is a set of contacts on the MCR CRL. The three other inputs are a normally
open push button (line 050), alimit switch (060) and a normally closed push button (070).
After line 080 the MCR CR1 can apply power to the outputs. These power the relay out-
puts of the PLC to control ared indicator light (040), agreen indicator light (050), a sole-
noid (060), and another relay (080). The relay on line 080 switches arelay that turn on
another device drill station.

plc wiring - 4.17

L1
010
stop start CR
-
020 P o o MC
| CR1
|
030 L1 PLC N
90-1
CR1 . 0:0/d 0%) L1
| 1:0/0 N~/
040 | _ R
_/
PB1 L : 100-1°100 7N
050 . o 1:0/1 0:0/1 > L2,
e
LSl : _
. 1:0/2 110-1 2N
060 ! 0:0/7 110, o
i 120-1 120>
0:0/3
080 ac com OCRZ
1 cr1
090 | 01035
100 100-1 .
110 110-1 .
120
120-1 < ?I?>
CR2 Drill Station
130 | | L1 N

Figure4.9 A Ladder Wiring Diagram

plc wiring - 4.18

In the wiring diagram the choice of a normally close stop button and a normally
open start button are intentional. Consider line 020 in the wiring diagram. If the stop but-
ton is pushed it will open the switch, and power will not be able to flow to the control
relay and output power will shut off. If the stop button is damaged, say by awirefalling
off, the power will also be lost and the system will shut down - safely. If the stop button
used was normally open and this happened the system would continue to operate while the
stop button was unable to shut down the power. Now consider the start button. If the but-
ton was damaged, say awire was disconnected, it would be unable to start the system, thus
leaving the system unstarted and safe. In summary, all buttonsthat stop a system should be
normally closed, while al buttons that start a system should be normally open.

4.5.1 JIC Wiring Symbols

To standardize electrical schematics, the Joint International Committee (JIC) sym-
bols were developed, these are shown in Figure 4.10, Figure 4.11 and Figure 4.12.

plc wiring - 4.19

LAb . alelol ool o
555 P ity iy B oy i

disconnect circuit interrupter

(3 phase AC) (3 phase AC) % % %
O\\Q O——T1 O

normally closed
normally open limit switch O O O
limit switch breaker (3 phase AC)
RN
olo Olo
normally open normally closed O
push-button push-button QUble |°(Q mushroor%%ead
push-button push-button
r O
LL
thermal 5 vacuum pressure
overload relay fuse motor (3 phase AC) normally closed
liquid level liquid level vacuum pressure
normally open normally closed normally open

Figure4.10 JIC Schematic Symbols

plc wiring - 4.20

o O o -0
temperature temperature
normally open

yop normally closed

normally open

flow
normally closed

- e O 0

hydraulic solenoid

<>

normally open normally closed
proximity switch proximity switch

Figure4.11 JIC Schematic Symbols

relay contact relay contact relay coil indicator lamp
normally open normally closed
o O Qf Qf
, relay time delay on . relay time delay off
relay timedelay on hormal ly closed relay time delay off hormal ly closed
normally open normally open
H1 H3 H2 H4
\ O eEE
horn buzzer bell X1 X2
control transformer
2-H
O—1—0
solenoid 2-position %

Mal e connector

—<

Femal e connector

plc wiring - 4.21

— A — A

— \

Resistor Tapped Resistor Variable Resistor
(potentiometer)

—\pA— I al
| |
Rheostat Capacitor Polarized Capacitor
(potentiometer)

I/
1 AN {

Variable Capacitor

Crystal T@ouple Antenna

/—\———/’\
_/___\J e

Shielded Conductor Shielded Grounded

o Jrrrrue.
o TrTTrYw
Caoil or Inductor o _
Common Coil with magnetic core
WYL U UL
o rrTrre —
] o Jrrrrue
Tapped Cail Transformer

Transformer magnetic core

Figure4.12 JIC Schematic Symbols

plc wiring - 4.22

4.6 SUMMARY

» PLC inputs condition AC or DC inputs to be detected by the logic of the PLC.

* Outputs are transistors (DC), triacs (AC) or relays (AC and DC).

* Input and output addresses are a function of the card location/tag name and input
bit number.

* Electrical system schematics are documented with diagrams that look like ladder
logic.

4.7 PRACTICE PROBLEMS

1. Can aPLC input switch arelay coil to control a motor?

2. How do input and output cards act as an interface between the PLC and external devices?

3. What is the difference between wiring a sourcing and sinking output?

4. What is the difference between a motor starter and a contactor?

5.1SAC or DC easer to interrupt?

6. What can happen if the rated voltage on adevice is exceeded?

7. What are the benefits of input/output modul es?

8. (for electrical engineers) Explain the operation of AC input and output conditioning circuits.
9. What will happen if aDC output is switched by an AC output.

10. Explain why a stop button must be normally closed and a start button must be normally open.

11. For the circuit shown in the figure below, list the input and output addresses for the PLC. If
switch A controls the light, switch B the motor, and C the solenoid, write asimple ladder logic

plc wiring - 4.23

program.
200 @
201 A
- 101
B
-~ id 102
/ 103
205
104 c
206
+
— 105
207 24VDQ
- 106 +
107 12vDC
com

12. We have a PLC rack with a24 VDC input card in slot 3, and a 120VAC output card in slot 2.
The inputs are to be connected to 4 push buttons. The outputs are to drive a 120VAC light bulb,
a 240VAC motor, and a 24V DC operated hydraulic valve. Draw the electrical connections for
the inputs and outputs. Show all other power supplies and other equipment/components
required.

13. You are planning a project that will be controlled by a PLC. Before ordering parts you decide
to plan the basic wiring and select appropriate input and output cards. The devices that we will
usefor inputs are 2 limit switches, a push button and athermal switch. The output will befor a
24V dc solenoid valve, a 110Vac light bulb, and a 220Vac 50HP motor. Sketch the basic wiring
below including PLC cards.

14. Add three push buttons as inputs to the figure below. You must al so select a power supply, and

plc wiring - 4.24

show all necessary wiring.

com

com

com

com

com

15. Three 120Vac outputs are to be connected to the output card below. Show the 120Vac source,
and all wiring.

Vv

00
01
02
03
04
05
06
07

16. Sketch the wiring for PLC outputs that are listed bel ow.
- adouble acting hydraulic solenoid valve (with two cails)
-a24Vdclamp
- 2120 Vac high current lamp
- alow current 12V dc motor

plc wiring - 4.25

4.8 ASSIGNMENT PROBLEMS

1. Describe what could happen if anormally closed start button was used on a system, and the
wires to the button were cut.

2. Describe what could happen if anormally open stop button was used on a system and the wires
to the button were cut.

3. a) For theinput ('in") and output (" out’) cards below, add three output lights and three normally
open push button inputs. b) Redraw the outputs so that it uses arelay output card.

in:0.l.Data.x out:1.0.Data.x
0 \% +I
1 0 i
2 1
3 2
4 3
5 4
n 6 5
- 7 6
com 7

4. Draw an electrical wiring (ladder) diagram for PLC outputs that are listed below.
- asolenoid controlled hydraulic valve
-a24Vvdc lamp
- 2120 Vac high current lamp
- alow current 12V dc motor

5. Draw an electrical ladder diagram for a PLC that has a PNP and an NPN sensor for inputs. The
outputs are two small indicator lights. You should use proper symbolsfor all components. You
must also include all safety devices including fuses, disconnects, MCRs, €tc...

6. Draw an electrical wiring diagram for a PLC controlling a system with both NPN and PNP
input sensors. The outputs include an indicator light and arelay to control a 20A motor load.
Include ALL safety circuitry.

7. Develop awiring diagram for a system that has the following elements. Include all safety cir-

plc wiring - 4.26

cuitry.
2 NPN proximity sensors
2 N.O. pushbuttons
3 solenoid outputs
A 440Vac 3ph. 20HP (i.e., large) motor
8. Draw aladder wiring diagram for a system that has 2 PNP inputs, and 2 solenoid outputs. All
inputs and outputs are 24Vdc. Include ALL safety circuitry.

9. Develop aladder wiring diagram, including all safety circuitry that uses an PNP and an NPN
input sensors. The outputsisarelay controlled AC light.

10. Draw a complete ladder wiring diagram for a PLC based control system with the following
components. Include al necessary safety circuitry.
1 large 3 phase (AC) motor
2 PNP sensors
1 NO pushbutton
1 NC pushbutton
1 solenoid output

plc wiring - 5.1

5.1 PRACTICE PROBLEM SOLUTIONS

1. no- aplc OUTPUT can switch arelay

2. input cards are connected to sensors to determine the state of the system. Output cards are con-
nected to actuators that can drive the process.

3. sourcing outputs supply current that will pass through an electrical load to ground. Sinking
inputs allow current to flow from the electrical load, to the common.

4. amotor starter typically has three phases
5. ACiseasie, it hasazero crossing
6. it will lead to premature failure

7. by using separate modules, a PL C can be customized for different applications. If asingle mod-
ulefalils, it can be replaced quickly, without having to replace the entire controller.

8. AC input conditioning circuits will rectify an AC input to aDC waveform with aripple. This
will be smoothed, and reduced to a reasonable voltage level to drive an optocoupler. An AC
output circuit will switch an AC output with atriac, or arelay.

9. an AC output is atriac. When atriac output is turned off, it will not actualy turn off until the
AC voltage goesto 0V. Because DC voltages don’t go to OV, it will never turn off.

10. If aNC stop button is damaged, the machine will act asif the stop button was pushed and shut
down safely. If aNO start button is damaged the machine will not be able to start.

11.
outputs:
200 - light || 100 200
202 - motor ‘ ‘
204 - solenoid
inputs: 102 202
100 - switch A
102 - switch B
104 - switch C
104 Q 210

12.

13.

plc wiring - 5.2

_
0 * o 0
1
1 e &——]
_
2 * o 2
1
3 ——o o—— 3
4 4
5 5
6 6
7 + 7
24vVDC
com - com
1 L $ L]
M +
* 0 0 AN L 24Vdc
I 4R -
e 2 2 | }_
L] hot
? 3 3 220Vac
5 5 [
| hot
6 6 L[120Vac
neut.
+ 7 7 [
24VDC
- com Note: relays are used to reduce the total

number of output cards

plc wiring - 5.3

14.
L
* o————— 1
24Vdc L com
o o 2
L com
o o— 1 3
com
4
com
5
com
15.
Vv hot
00 Load 1 120Vac
01 1 Toad? neut.
% Load 3
03
04
05
06
07

16.

relay output card

00

plc wiring - 5.4

)

01

+

power

supply
24Vdc

02

03

04

hot

neut.

power

supply
120Vac

power

supply
12Vdc

discrete sensors - 6.1

6. LOGICAL SENSORS

Topics:
* Sensor wiring; switches, TTL, sourcing, sinking
* Proximity detection; contact switches, photo-optics, capacitive, inductive and
ultrasonic

Objectives:
» Understand the different types of sensor outputs.
» Know the basic sensor types and understand application issues.

6.1 INTRODUCTION

Sensors allow a PLC to detect the state of a process. Logical sensors can only
detect a state that is either true or false. Examples of physical phenomenathat are typically
detected are listed below.

* inductive proximity - isametal object nearby?

* capacitive proximity - is adielectric object nearby?

* optical presence - is an object breaking alight beam or reflecting light?
» mechanical contact - is an object touching a switch?

Recently, the cost of sensors has dropped and they have become commodity items,
typically between $50 and $100. They are available in many forms from multiple vendors
such as Allen Bradley, Omron, Hyde Park and Turck. In applications sensors are inter-
changeable between PL C vendors, but each sensor will have specific interface require-
ments.

This chapter will begin by examining the various electrical wiring techniques for
sensors, and conclude with an examination of many popular sensor types.

6.2 SENSOR WIRING

When asensor detectsalogica change it must signal that changeto the PLC. This
istypically done by switching a voltage or current on or off. In some cases the output of
the sensor is used to switch aload directly, completely eliminating the PLC. Typical out-

discrete sensors - 6.2

puts from sensors (and inputs to PLCs) are listed below in relative popularity.

Sinking/Sourcing - Switches current on or off.

Plain Switches - Switches voltage on or off.

Solid State Relays - These switch AC outputs.

TTL (Transistor Transistor Logic) - Uses OV and 5V to indicate logic levels.

6.2.1 Switches

The simplest example of sensor outputs are switches and relays. A simple example
isshown in Figure 6.1.

PLC Input Card
24V DC
normally open push-button O oo
24 Vdc + O 0
Power
Supply O 02
O 03
VH
sensor rday O o4
[output O 05
| O 06
V- O 07
O COM

Figure6.1 An Example of Switched Sensors

In the figure a NO contact switch is connected to input 01. A sensor with arelay
output is also shown. The sensor must be powered separately, therefore the V+ and V- ter-
minals are connected to the power supply. The output of the sensor will become active
when a phenomenon has been detected. This means the internal switch (probably arelay)
will be closed allowing current to flow and the positive voltage will be applied to input 06.

discrete sensors - 6.3

6.2.2 Transistor Transistor Logic (TTL)

Transistor-Transistor Logic (TTL) is based on two voltage levels, OV for false and
5V for true. The voltages can actually be dlightly larger than OV, or lower than 5V and till
be detected correctly. This method is very susceptible to electrical noise on the factory
floor, and should only be used when necessary. TTL outputs are common on electronic
devices and computers, and will be necessary sometimes. WWhen connecting to other
devices ssmple circuits can be used to improve the signal, such as the Schmitt trigger in
Figure 6.2.

vi Vo Vi TN\
Vo A
L

Figure6.2 A Schmitt Trigger

A Schmitt trigger will receive an input voltage between 0-5V and convert it to OV
or 5V. If the voltage isin an ambiguous range, about 1.5-3.5V it will be ignored.

If asensor hasa TTL output the PLC must usea TTL input card to read the values.
If the TTL sensor is being used for other applicationsit should be noted that the maximum
current output is normally about 20mA.

6.2.3 Sinking/Sourcing

Sinking sensors allow current to flow into the sensor to the voltage common, while
sourcing sensorsallow current to flow out of the sensor from a positive source. For both of
these methods the emphasisis on current flow, not voltage. By using current flow, instead
of voltage, many of the electrical noise problems are reduced.

When discussing sourcing and sinking we are referring to the output of the sensor
that isacting like aswitch. In fact the output of the sensor isnormally atransistor, that will
act like a switch (with some voltage loss). A PNP transistor is used for the sourcing out-
put, and an NPN transistor is used for the sinking input. When discussing these sensorsthe

discrete sensors - 6.4

term sourcing is often interchanged with PNP, and sinking with NPN. A simplified exam-
ple of asinking output sensor is shown in Figure 6.3. The sensor will have some part that
deals with detection, thisis on the left. The sensor needs a voltage supply to operate, so a
voltage supply is needed for the sensor. If the sensor has detected some phenomenon then
it will trigger the active line. The active line is directly connected to an NPN transistor.
(Note: for an NPN transistor the arrow always points away from the center.) If the voltage
to the transistor on the active lineis 0V, then the transistor will not alow current to flow
into the sensor. If the voltage on the active line becomes larger (say 12V) then the transis-
tor will switch on and allow current to flow into the sensor to the common.

T V+
V+H—
: |
physical
phenomenory | sensor
| output
N /”\ Sensor | current flowsin
NPN when switched on
Detector |
Activg |
Line |
|
V- : 1V

Aside: The sensor respondsto a physical phenomenon. If the sensor isinactive (nothing
detected) then the active lineislow and the transistor is off, thisislike an open
switch. That means the NPN output will have no current in/out. When the sensor is
active, it will make the active line high. Thiswill turn on the transistor, and effec-
tively close the switch. Thiswill allow current to flow into the sensor to ground
(hence sinking). The voltage on the NPN output will be pulled down to V-. Note: the
voltage will always be 1-2V higher because of the transistor. When the sensor is off,
the NPN output will float, and any digital circuitry needsto contain a pull-up resistor.

Figure6.3 A Simplified NPN/Sinking Sensor

Sourcing sensors are the complement to sinking sensors. The sourcing sensors use
aPNP transistor, as shown in Figure 6.4. (Note: PNP transistors are always drawn with the
arrow pointing to the center.) When the sensor isinactive the active line stays at the V+

discrete sensors - 6.5

value, and the transistor stays switched off. When the sensor becomes active the active
line will be made OV, and the transistor will allow current to flow out of the sensor.

T V+
V+H_ | °
physical |
phenomenonry . |
. Activg__|
N /\ Line |
“cen | current flows out
Sor :
when switched on
and : | = am o mm ’
Detector | PNP
Sensor
: output
V- : V-

Aside: The sensor responds to the physical phenomenon. If the sensor isinactive (nothing
detected) then the active line is high and the transistor is off, thisislike an open switch.
That means the PNP output will have no current in/out. When the sensor is active, it
will make the active line high. Thiswill turn on the transistor, and effectively close the
switch. Thiswill allow current to flow from V+ through the sensor to the output (hence
sourcing). The voltage on the PNP output will be pulled up to V+. Note: the voltage
will always be 1-2V lower because of the transistor. When off, the PNP output will
float, if used with digital circuitry a pull-down resistor will be needed.

Figure6.4 A Simplified Sourcing/PNP Sensor

Most NPN/PNP sensors are capable of handling currents up to afew amps, and
they can be used to switch loads directly. (Note: always check the documentation for rated
voltages and currents.) An example using sourcing and sinking sensorsto control lightsis
shown in Figure 6.5. (Note: This example could be for a motion detector that turns on
lightsin dark hallways.)

discrete sensors - 6.6

sensor v+ v+
() power sinking
NPN supply
V- V- (common)
sensor v+ v+
m power sourcing
PNP supply
V- V- (common)

Note: remember to check the current and voltage ratings for the sensors.

Note: When marking power terminals, there will sometimes be two sets of
markings. The more standard is V+ and COM, but sometimes you will see
devices and power supplies without a COM (common), in this case assume
the V- is the common.

Figure6.5 Direct Control Using NPN/PNP Sensors

In the sinking system in Figure 6.5 the light has V+ applied to one side. The other
side is connected to the NPN output of the sensor. When the sensor turns on the current
will be able to flow through the light, into the output to V- common. (Note: Yes, the cur-
rent will be allowed to flow into the output for an NPN sensor.) In the sourcing arrange-
ment the light will turn on when the output becomes active, allowing current to flow from
the V+, thought the sensor, the light and to V- (the common).

At thispoint it isworth stating the obvious - The output of asensor will be an input
for aPLC. And, as we saw with the NPN sensor, this does not necessarily indicate where
current isflowing. There are two viable approaches for connecting sensorsto PLCs. The
first isto always use PNP sensors and normal voltage input cards. The second option isto
purchase input cards specifically designed for sourcing or sinking sensors. An example of
aPLC card for sinking sensorsis shown in Figure 6.6.

discrete sensors - 6.7

PLC Input Card for Sinking Sensors

! Vv current flow
| | anemrnaow
_ | O+ Y
S If / +V power
%; o U NPN supply
= ! QD)N PN gonsor -V
?ﬁ ! 00 T -V |
m I (
~ I
8 '/‘ | &N v
o) | -
3 —
3 | QD S -
| 01 Note: When a PLC input card does not have a
| common but it hasa V+ instead, it can be
I used for NPN sensors. In this case the cur-
P . rent will flow out of the card (sourcing) and
PLC DataBus External Electrical we must switch it to ground.

ASIDE: This card is shown with 2 optocouplers (one for each output). Inside these
devicestheisan LED and a phototransistor, but no electrical connection. These
devices are used to isolate two different electrical systems. In this case they pro-
tect the 5V digital levels of the PLC computer from the various external voltages
and currents.

Figure6.6 A PLC Input Card for Sinking Sensors

The dashed line in the figure represents the circuit, or current flow path when the
sensor is active. This path enters the PLC input card first at aV+ termina (Note: thereis
no common on this card) and flows through an optocoupler. This current will use light to
turn on a phototransistor to tell the computer in the PLC the input current isflowing. The
current then leaves the card at input 00 and passes through the sensor to V-. When the sen-
sor isinactive the current will not flow, and the light in the optocoupler will be off. The
optocoupler is used to help protect the PLC from electrical problems outside the PLC.

The input cards for PNP sensors are similar to the NPN cards, as shown in Figure
6.7.

discrete sensors - 6.8

N
\
N +V
00 , l
_ PNP |
QD/ PNP oonsor I current flow
5 S |
(_-"Q' &~ [-V
S \ |
2 \
e 01
) \
m - D | AN Y,
o o \ power
5 NE \ BN supply
) R -
= @ Y}
com

Note: When we have aPLC input card that has
acommon then we can use PNP sensors. In
this case the current will flow into the card
and then out the common to the power sup-

ply.

Figure 6.7 PLC Input Card for Sourcing Sensors

The current flow loop for an active sensor is shown with a dashed line. Following
the path of the current we see that it begins at the V+, passes through the sensor, in the
input 00, through the optocoupler, out the common and to the V-.

Wiring isamajor concern with PLC applications, so to reduce the total number of
wires, two wire sensors have become popular. But, by integrating three wires worth of
function into two, we now couple the power supply and sensing functions into one. Two
wire sensors are shown in Figure 6.8.

discrete sensors - 6.9

+V
PLC Input Card two wire
for Sourcing Sensors 00 Sensor
0 v
01
+V
QD power
supply
-V

com
Note: These sensorsrequire acertain leakage
current to power the electronics.
V+
PLC Input Card
for Sinking Sensors 00
® v
two wire
sensor
01
-V +V
QD power
supply
-V

Figure6.8 Two Wire Sensors

A two wire sensor can be used as either a sourcing or sinking input. In both of
these arrangements the sensor will require a small amount of current to power the sensor,
but when activeit will allow more current to flow. This requiresinput cardsthat will allow
asmall amount of current to flow (called the leakage current), but also be able to detect
when the current has exceeded a given value.

discrete sensors - 6.10

When purchasing sensors and input cards there are some important considerations.
Most modern sensors have both PNP and NPN outputs, although if the choice is not avail-
able, PNP is the more popular choice. PLC cards can be confusing to buy, as each vendor
refers to the cards differently. To avoid problems, look to see if the card is specifically for
sinking or sourcing sensors, or look for aV+ (sinking) or COM (sourcing). Some vendors
also sell cardsthat will alow you to have NPN and PNP inputs mixed on the same card.

When drawing wiring diagrams the symbolsin Figure 6.9 are used for sinking and
sourcing proximity sensors. Notice that in the sinking sensor when the switch closes
(moves up to the terminal) it contacts the common. Closing the switch in the sourcing sen-
sor connectsthe output to the V+. On the physical sensor the wires are color coded asindi-
cated in the diagram. The brown wireis positive, the blue wire is negative and the output
iswhite for sinking and black for sourcing. The outside shape of the sensor may change
for other devices, such as photo sensors which are often shown as round circles.

V+ __brown

NPN (sinking)

NPN white blue V-

, PNP
PNP (sourcing)

V-

Figure6.9 Sourcing and Sinking Schematic Symbols

6.2.4 Solid State Relays

Solid state relays switch AC currents. These are relatively inexpensive and are
available for large loads. Some sensors and devices are available with these as outputs.

discrete sensors - 6.11

6.3 PRESENCE DETECTION

There are two basic ways to detect object presence; contact and proximity. Contact
implies that there is mechanical contact and a resulting force between the sensor and the
object. Proximity indicates that the object is near, but contact is not required. The follow-
ing sections examine different types of sensors for detecting object presence. These sen-
sors account for amajority of the sensors used in applications.

6.3.1 Contact Switches

Contact switches are available as normally open and normally closed. Their hous-
ings are reinforced so that they can take repeated mechanical forces. These often haveroll-
ers and wear pads for the point of contact. Lightweight contact switches can be purchased
for less than adollar, but heavy duty contact switches will have much higher costs. Exam-
ples of applications include motion limit switches and part present detectors.

6.3.2 Reed Switches

Reed switches are very similar to relays, except a permanent magnet is used
instead of awire coil. When the magnet is far away the switch is open, but when the mag-
net is brought near the switch is closed as shown in Figure 6.10. These are very inexpen-
sive an can be purchased for afew dollars. They are commonly used for safety screens and
doors because they are harder to trick than other sensors.

o4 5 5

Note: With this device the magnet is moved towards the reed switch. Asit gets
closer the switch will close. This allows proximity detection without contact, but
requires that a separate magnet be attached to a moving part.

Figure6.10 Reed Switch

discrete sensors - 6.12

6.3.3 Optical (Photoelectric) Sensors

Light sensors have been used for amost a century - originally photocells were
used for applications such as reading audio tracks on motion pictures. But modern optical
sensors are much more sophisticated.

Optical sensors require both alight source (emitter) and detector. Emitters will
produce light beams in the visible and invisible spectrums using LEDs and laser diodes.
Detectors are typically built with photodiodes or phototransistors. The emitter and detec-
tor are positioned so that an object will block or reflect abeam when present. A basic opti-
cal sensor isshown in Figure 6.11.

Square wave

JULLL iy
+V el ™ N N ™ +V

j) ’// lens lens | k T

g amplifier
_ 1 AL demodulator
oscillator 7 \\: S | A detector and
switching circuitg
LED of
e
N phototransistor I

Figure6.11 A Basic Optical Sensor

In the figure the light beam is generated on the left, focused through alens. At the
detector side the beam isfocused on the detector with a second lens. If the beam is broken
the detector will indicate an object is present. The oscillating light wave is used so that the
sensor can filter out normal light in the room. The light from the emitter is turned on and
off at a set frequency. When the detector receives the light it checks to make surethat itis
at the same frequency. If light is being received at the right frequency then the beam is not
broken. The frequency of oscillation isin the KHz range, and too fast to be noticed. A side
effect of the frequency method is that the sensors can be used with lower power at longer
distances.

An emitter can be set up to point directly at a detector, thisis known as opposed
mode. When the beam is broken the part will be detected. This sensor needs two separate

components, as shown in Figure 6.12. This arrangement works well with opague and
reflective objects with the emitter and detector separated by distances of up to hundreds of

feet.

discrete sensors - 6.13

emitter

——————— > object

Figure 6.12

Having the emitter and detector separate increases maintenance problems, and
alignment isrequired. A preferred solution isto house the emitter and detector in one unit.
But, this requires that light be reflected back as shown in Figure 6.13. These sensors are

Opposed Mode Optical Sensor

well suited to larger objects up to afew feet away.

detector

emitter

detector ’

\

\ \

-« — -

/

detector - Y, //

Zy

object

reflector | |

reflector | |

Note: the reflector is constructed with polarizing screens oriented at 90 deg. angles. If
the light is reflected back directly the light does not pass through the screen in front
of the detector. The reflector is designed to rotate the phase of the light by 90 deg.,

so it will now pass through the screen in front of the detector.

Figure 6.13

Retroreflective Optical Sensor

In the figure, the emitter sends out a beam of light. If the light is returned from the
reflector most of the light beam is returned to the detector. When an object interrupts the
beam between the emitter and the reflector the beam is no longer reflected back to the
detector, and the sensor becomes active. A potential problem with this sensor is that
reflective objects could return a good beam. This problem is overcome by polarizing the
light at the emitter (with afilter), and then using a polarized filter at the detector. The
reflector uses small cubic reflectors and when the light is reflected the polarity is rotated
by 90 degrees. If the light is reflected off the object the light will not be rotated by 90
degrees. So the polarizing filters on the emitter and detector are rotated by 90 degrees, as

discrete sensors - 6.14

shown in Figure 6.14. The reflector is very similar to reflectors used on bicycles.

emitter

havefiltersfor detector
emitted light
rotated by 90 deg.
emitter
detector

light reflected with
same polarity

light rotated by 90 deg.

Figure6.14 Polarized Light in Retroreflective Sensors

reflector

reflector

For retroreflectors the reflectors are quite easy to align, but this method still

requires two mounted components. A diffuse sensorsisasingle unit that does not use a

reflector, but uses focused light as shown in Figure 6.15.

discrete sensors - 6.15

emitter he ~ \
~ \)
ﬁ object
detector [+ — }//
/
4

Note: with diffuse reflection the light is scattered. This reduces the quantity of light
returned. As aresult the light needs to be amplified using lenses.

Figure6.15 Diffuse Optical Sensor

Diffuse sensors use light focused over a given range, and a sensitivity adjustment
is used to select adistance. These sensors are the easiest to set up, but they require well
controlled conditions. For exampleif it isto pick up light and dark colored objects prob-
lems would result.

When using opposed mode sensors the emitter and detector must be aligned so that
the emitter beam and detector window overlap, as shown in Figure 6.16. Emitter beams
normally have a cone shape with a small angle of divergence (afew degrees of less).
Detectors also have a cone shaped volume of detection. Therefore when aligning opposed
mode sensor careisrequired not just to point the emitter at the detector, but also the detec-
tor at the emitter. Another factor that must be considered with this and other sensorsisthat
the light intensity decreases over distance, so the sensors will have alimit to separation
distance.

discrete sensors - 6.16

,effective beam

effective
detector

detector
angle
emitter
! / effeCtlve al | gnment
“i isrequired
- : : T >
Intensity o >

r

Figure6.16 Beam Divergence and Alignment

If an object is smaller than the width of the light beam it will not be able to block
the beam entirely when it isin front as shown in Figure 6.17. Thiswill create difficulties
in detection, or possibly stop detection altogether. Solutions to this problem are to use nar-
rower beams, or wider objects. Fiber optic cables may be used with an opposed mode opti-
cal sensor to solve this problem, however the maximum effective distance is reduced to a
couple feet.

emitter detector

———

the smaller beam width is good (but harder to align

Figure6.17 The Relationship Between Beam Width and Object Size

Separated sensors can detect reflective parts using reflection as shown in Figure
6.18. The emitter and detector are positioned so that when areflective surfaceisin posi-
tion the light is returned to the detector. When the surface is not present the light does not
return.

discrete sensors - 6.17

reflective surface

Figure6.18 Detecting Reflecting Parts

Other types of optical sensors can also focus on a single point using beams that
converge instead of diverge. The emitter beam isfocused at a distance so that the light
intensity is greatest at the focal distance. The detector can look at the point from another
angle so that the two centerlines of the emitter and detector intersect at the point of inter-
est. If an object is present before or after the focal point the detector will not see the
reflected light. This technique can a so be used to detect multiple points and ranges, as
shown in Figure 6.20 where the net angle of refraction by the lens determines which detec-
tor isused. Thistype of approach, with many more detectors, is used for range sensing
systems.

focal poin

emitter

Figure6.19 Point Detection Using Focused Optics

discrete sensors - 6.18

distance 1 distance 2
lens

I |
emitter /\ > i
I T

| Pe |
s

detector 2

detector 1

Figure6.20 Multiple Point Detection Using Optics

Some applications do not permit full sized photooptic sensors to be used. Fiber
optics can be used to separate the emitters and detectors from the application. Some ven-
dors also sell photosensors that have the phototransistors and LEDs separated from the
electronics.

Light curtains are an array of beams, set up as shown in Figure 6.21. If any of the
beams are broken it indicates that somebody has entered aworkcell and the machine needs
to be shut down. Thisis an inexpensive replacement for some mechanical cages and barri-
ers.

\

Figure6.21 A Light Curtain

The optical reflectivity of objects varies from material to material as shown in Fig-

discrete sensors - 6.19

ure 6.22. These values show the percentage of incident light on a surface that is reflected.
These values can be used for relative comparisons of materials and estimating changesin
sensitivity settings for sensors.

Reflectivity
nonshiny materials Kodak white test card 90%
white paper 80%
kraft paper, cardboard 70%
lumber (pine, dry, clean) 75%
rough wood pallet 20%
beer foam 70%
opaque black nylon 14%
black neoprene 4%
black rubber tire wall 1.5%
shiny/transparent materials gegr plastic bottle 40%
translucent brown plastic bottle 60%
opaque white plastic 87%
unfinished aluminum 140%
straightened aluminum 105%
unfinished black anodized aluminum 115%
stainless steel microfinished 400%
stainless steel brushed 120%

Note: For shiny and transparent materials the reflectivity can be higher
than 100% because of the return of ambient light.

Figure6.22 Table of Reflectivity Valuesfor Different Materials [Banner Handbook of
Photoel ectric Sensing]

6.3.4 Capacitive Sensor s

Capacitive sensors are able to detect most materials at distances up to afew centi-
meters. Recall the basic relationship for capacitance.

discrete sensors - 6.20

C= d where, C = capacitance (Farads)
k = dielectric constant
A = area of plates
d = distance between plates (el ectrodes)

In the sensor the area of the plates and distance between them is fixed. But, the
dielectric constant of the space around them will vary as different materials are brought
near the sensor. An illustration of a capacitive sensor is shown in Figure 6.23. an oscillat-
ing field is used to determine the capacitance of the plates. When this changes beyond a
selected sensitivity the sensor output is activated.

electric v
field
— _ 1 dectrode : |
_ j oscillator . load
object 7 switching

O |
™~ |
S — —] dectrode detector |

NOTE: For this sensor the proximity of any material near the electrodes will
increase the capacitance. Thiswill vary the magnitude of the oscillating signal
and the detector will decide when thisis great enough to determine proximity.

Figure6.23 A Capacitive Sensor

These sensors work well for insulators (such as plastics) that tend to have high
dielectric coefficients, thusincreasing the capacitance. But, they also work well for metals
because the conductive materials in the target appear as larger electrodes, thusincreasing
the capacitance as shown in Figure 6.24. In total the capacitance changes are normally in
the order of pF.

discrete sensors - 6.21

electrode [— — | meta electrode | dielectric
m T T NN
INAERN
Il
|/
L _] /S
electrode | — — electrode |

Figure6.24 Dielectrics and Metals Increase the Capacitance

The sensors are normally made with rings (not plates) in the configuration shown
in Figure 6.25. In the figure the two inner metal rings are the capacitor electrodes, but a
third outer ring is added to compensate for variations. Without the compensator ring the
sensor would be very sensitive to dirt, oil and other contaminants that might stick to the
Sensor.

electrode
compensating Note: the compensating electrode is used for
electrode negative feedback to make the sensor

more resistant to variations, such as con-
taminations on the face of the sensor.

Figure6.25 Electrode Arrangement for Capacitive Sensors

A table of dielectric propertiesis given in Figure 6.26. This table can be used for
estimating the relative size and sensitivity of sensors. Also, consider a case where a pipe
would carry different fluids. If their dielectric constants are not very close, a second sensor
may be desired for the second fluid.

discrete sensors - 6.22

Material Constant Material Constant
ABSresin pellet 1.5-25 hexane 19
acetone 195 hydrogen cyanide 954
acetyl bromide 16.5 hydrogen peroxide 84.2
acrylicresin 2.7-45 isobutylamine 45

ar 1.0 lime, shell 1.2
alcohol, industrial 16-31 marble 8.0-85
alcohol, isopropyl 18.3 melamine resin 4.7-10.2
ammonia 15-25 methane liquid 1.7
aniline 55-7.8 methanol 33.6
aqueous solutions 50-80 mica, white 4.5-9.6
ash (fly) 1.7 milk, powdered 354
bakelite 3.6 nitrobenzene 36
barley powder 3.0-4.0 neoprene 6-9
benzene 2.3 nylon 4-5
benzy| acetate 5 oil, for transformer 2.2-2.4
butane 14 oil, paraffin 2.2-4.8
cable sealing compound 2.5 oil, peanut 3.0
calcium carbonate 9.1 oil, petroleum 21
carbon tetrachloride 2.2 oil, soybean 2.9-35
celluloid 3.0 oil, turpentine 22
cellulose 3.2-75 paint 5-8
cement 1521 paraffin 1.9-25
cement powder 5-10 paper 1.6-2.6
cereal 35 paper, hard 45
charcoal 1.2-1.8 paper, oil saturated 4.0
chlorine, liquid 2.0 perspex 3.2-35
coke 1.1-22 petroleum 2.0-2.2
corn 5-10 phenol 9.9-15
ebonite 2.7-2.9 phenol resin 49
epoxy resin 2.5-6 polyacetal (Delrin TM) 3.6
ethanol 24 polyamide (nylon) 25
ethyl bromide 4.9 polycarbonate 29
ethylene glycol 38.7 polyester resin 2.8-8.1
flour 25-3.0 polyethylene 2.3
FreonTM R22,R502 lig. 6.1 polypropylene 2.0-2.3
gasoline 22 polystyrene 3.0
glass 3.1-10 polyvinyl chlorideresin ~ 2.8-3.1
glass, raw material 2.0-25 porcelain 4.4-7

glycerine 47 press board 2-5

Material

quartz glass
rubber

salt

sand

shellac

silicon dioxide
silicone rubber
silicone varnish
styreneresin
sugar

sugar, granulated
sulfur

sulfuric acid

Figure 6.26

Constant

3.7
2.5-35
6.0

3-5
2.0-3.8
4.5
3.2-9.8
2.8-3.3
2.3-34
3.0
15-22
34

84

discrete sensors - 6.23

Material

Teflon (TM), PCTFE
Teflon (TM), PTFE
toluene
trichloroethylene
urearesin

urethane

vaseline

water

wax

wood, dry

wood, pressed board
wood, wet

xylene

Constant

2.3-2.8
20

2.3

34
6.2-9.5
3.2
2.2-2.9
48-88
2.4-6.5
2-7
2.0-2.6
10-30
24

Dielectric Constants of Various Materials [Turck Proximity Sensors

Guide]

The range and accuracy of these sensors are determined mainly by their size.
Larger sensors can have diameters of afew centimeters. Smaller ones can be less than a
centimeter across, and have smaller ranges, but more accuracy.

6.3.5 Inductive Sensors

Inductive sensors use currents induced by magnetic fields to detect nearby metal
objects. The inductive sensor uses a coil (an inductor) to generate a high frequency mag-
netic field as shown in Figure 6.27. If thereisametal object near the changing magnetic
field, current will flow in the object. This resulting current flow sets up a new magnetic
field that opposes the original magnetic field. The net effect isthat it changes the induc-
tance of the cail in the inductive sensor. By measuring the inductance the sensor can deter-
mine when ametal have been brought nearby.

These sensors will detect any metals, when detecting multiple types of metal mul-
tiple sensors are often used.

discrete sensors - 6.24

inductive coil
metdl

\ oscillator output

and level switching
detector

Note: these work by setting up a high frequency field. If atarget nearsthe field will
induce eddy currents. These currents consume power because of resistance, so
energy isinthefield islost, and the signal amplitude decreases. The detector exam-
ines filed magnitude to determine when it has decreased enough to switch.

Figure6.27 Inductive Proximity Sensor

The sensors can detect objects afew centimeters away from the end. But, the
direction to the object can be arbitrary as shown in Figure 6.28. The magnetic field of the
unshielded sensor covers alarger volume around the head of the coil. By adding a shield
(ametal jacket around the sides of the coail) the magnetic field becomes smaller, but also
more directed. Shields will often be available for inductive sensors to improve their direc-
tionality and accuracy.

discrete sensors - 6.25

-
PIAIIIIIAA, — Tt ,'
- | |
nnnn- -2, ﬂﬂﬂﬂ_id///
—::__:;\ ::ji\

oUUO .) oUuT T~
~_ _J v~ ~ | |
_____ // [

chielded unshielded

Figure6.28 Shielded and Unshielded Sensors

6.3.6 Ultrasonic

An ultrasonic sensor emits a sound above the normal hearing threshold of 16KHz.
The timethat isrequired for the sound to travel to the target and reflect back is propor-
tional to the distance to the target. The two common types of sensors are;

electrostatic - uses capacitive effects. It has longer ranges and wider bandwidth,
but is more sensitive to factors such as humidity.

piezoelectric - based on charge displacement during strainin crystal lattices. These
are rugged and inexpensive.

These sensors can be very effective for applications such asfluid levelsin tanks
and crude distance measurement.

6.3.7 Hall Effect

Hall effect switches are basically transistors that can be switched by magnetic
fields. Their applications are very similar to reed switches, but because they are solid state
they tend to be more rugged and resist vibration. Automated machines often use these to
doinitial calibration and detect end stops.

discrete sensors - 6.26

6.3.8 Fluid Flow

We can also build more complex sensors out of simpler sensors. The examplein
Figure 6.29 shows a metal float in atapered channel. Asthe fluid flow rate increases the
pressure forces the float upwards. The tapered shape of the float ensures an equilibrium
position proportional to flowrate. An inductive proximity sensor can be positioned so that
it will detect when the float has reached a certain height, and the system has reached a
given flowrate.

— pfluid flow out

metal I:Ii nductive proximity sensor
float

fluid flow in

-

Asthefluid flow increases the float is forced higher. A proximity sensor
can be used to detect when the float reaches a certain height.

Figure6.29 Flow Rate Detection With an Inductive Proximity Switch

6.4 SUMMARY

» Sourcing sensors alow current to flow out from the V+ supply.

* Sinking sensors allow current to flow in to the V- supply.

» Photo-optical sensors can use reflected beams (retroreflective), an emitter and
detector (opposed mode) and reflected light (diffuse) to detect a part.

* Capacitive sensors can detect metals and other materials.

* Inductive sensors can detect metals.

« Hall effect and reed switches can detect magnets.

* Ultrasonic sensors use sound waves to detect parts up to meters away.

discrete sensors - 6.27

6.5 PRACTICE PROBLEMS

1. Given aclear plastic bottle, list 3 different types of sensors that could be used to detect it.

2. List 3 significant trade-offs between inductive, capacitive and photooptic sensors.

3. Why isasinking output on a sensor not like a normal switch?

4. @) Sketch the connections needed for the PL C inputs and outputs below. The outputs include a

24V dc light and a 120Vac light. The inputs are from 2 NO push buttons, and also from an opti-
cal sensor that has both PNP and NPN outputs.

24Vdc 24Vdc
outputs N inputs

V+ 24VDC 0

0 1

1 2

2 3

3 =0 4

4 OR 5

O

5 G—_0O 6

6 7

7 com

b) State why you used either the NPN or PNP output on the sensor.
5. Select a sensor to pick up atransparent plastic bottle from a manufacturer. Copy or print the
specifications, and then draw awiring diagram that shows how it will be wired to an appropri-
ate PLC input card.

6. Sketch the wiring to connect a power supply and PNP sensor to the PLC input card shown

discrete sensors - 6.28

below.

00

01

02

24V DC_ 04

05

06

07

COM

7. Sketch the wiring for inputs that include the following items.
3 normally open push buttons
1 thermal relay
3 sinking sensors
1 sourcing sensor

8. A PLC haseight 10-60V dc inputs, and four relay outputs. It isto be connected to the following
devices. Draw the required wiring.
* Two inductive proximity sensors with sourcing and sinking outputs.
* A NO run button and NC stop button.
* A 120Vaec light.
* A 24V dc solenoid.

discrete sensors - 6.29

in:2.1.Data.x out:4.0.Data.x
0 0

1

com

9. Draw aladder wiring diagram (as donein the lab) for a system that has two push-buttons and a
sourcing/sinking proximity sensors for 10-60V dc inputs and two 120Vac output lights. Don’'t

discrete sensors - 6.30

forget to include hard-wired start and stop buttons with an MCR.

L1 N
L1 PLC N
1.0 — — Vac
0.0
1.1
0.1
1.2
0.2
1.3
com — — 0.3

6.6 ASSIGNMENT PROBLEMS

1. What type of sensor should be used if it is to detect small cosmetic case mirrors as they pass
along a belt. Explain your choice.

2. Summarize the tradeoffs between capacitive, inductive and optical sensorsin atable.
3. Clearly and concisely explain the difference between wiring PNP and NPN sensors.

4. a) Show the wiring for the following sensor, and circle the output that you are using, NPN or

discrete sensors - 6.31

PNP. Redraw the sensor using the correct symbol for the sourcing or sinking sensor chosen.

24VDC

24Vdc
inputs

V+

5. A PLC hasthree NPN and two PNP sensors as inputs, and outputs to control a 24V dc solenoid
and asmall 115Vac motor. Develop the required wiring for the inputs and outputs.

discrete sensors - 7.1

7.1 PRACTICE PROBLEM SOLUTIONS

1. capacitive proximity, contact switch, photo-optic retroreflective/diffuse, ultrasonic
2. materials that can be sensed, environmental factors such as dirt, distance to object

3. the sinking output will pass only DC in a single direction, whereas a switch can pass AC and
DC.

4,
24Vdc 24Vdc
outputs
V+ 24vDC
i ()
1
(Y ’
2 _/ l'
3 }_I; hot |
120Vag | 1
4 @ neut. |
|
5 1
|)
6 s\ 4
s.-II---I----_",
7 com

b) the PNP output was selected. because it will supply current, while the input card
requiresit. The dashed lineindicates the current flow through the sensor and input card.

discrete sensors - 7.2

A transparent bottle can be picked up with a capacitive, ultrasonic, diffuse optical sen-
sor. A particular model can be selected at a manufacturers web site (eg., www.ban-
ner.com, www.hydepark.com, www.ab.com, etc.) The figure below shows the
sensor connected to a sourcing PLC input card - therefore the sensor must be sink-
ing, NPN.

+ V+
24V DC_ 0
1
2

[c -
L
w

24VDC

discrete sensors - 7.3

SNe

00

01

02

03

04

05

06

07

COM

discrete sensors - 7.4

T

power

00
01
02
03
04
05
06
07
COM

V+

00

01

02

03

power

&0

SO

discrete sensors - 7.5

power
supply,

O

in:2.1.Data.x out:4.0.Data.x
o o
power
supply ole 1
- 2 1
V+ 3
PNP
V- 4 2
5
V+
PNP
V- 6 3
7

com

120Vac
power

neuuPP!Y

discrete sensors - 7.6

V+

L1

L1 N
i stop start C1
1
C1
L1 PLC N
o1,
o o 1.0 — — Vac
L1
PB2 NP
1) /4
o o 1.1 0.0) PN
) LZ\/\/
R S [.2 o1 B A
0.2
1.3
C1l
- com — — 03
R R
))

discrete actuators - 8.1

8. LOGICAL ACTUATORS

Topics:

» Solenoids, valves and cylinders
* Hydraulics and pneumatics
* Other actuators

Objectives:
» Be aware of various actuators available.

8.1 INTRODUCTION

Actuators Drive motions in mechanical systems. Most often thisis by converting
electrical energy into some form of mechanical motion.

8.2 SOLENOIDS

Solenoids are the most common actuator components. The basic principle of oper-
ation isthere isamoving ferrous core (a piston) that will move inside wire coil as shown
in Figure 8.1. Normally the piston is held outside the coil by a spring. When avoltageis
applied to the coil and current flows, the coil builds up a magnetic field that attracts the
piston and pullsit into the center of the coil. The piston can be used to supply alinear
force. Well known applications of these include pneumatic values and car door openers.

i N

current off current on

Figure8.1 A Solenoid

discrete actuators - 8.2

As mentioned before, inductive devices can create voltage spikes and may need
snubbers, although most industrial applications have low enough voltage and current rat-
ings they can be connected directly to the PLC outputs. Most industrial solenoids will be
powered by 24V dc and draw afew hundred mA.

8.3 VALVES

The flow of fluids and air can be controlled with solenoid controlled valves. An
example of asolenoid controlled valveis shown in Figure 8.2. The solenoid is mounted on
the side. When actuated it will drive the central spool left. The top of the valve body has
two portsthat will be connected to adevice such asahydraulic cylinder. The bottom of the
valve body has asingle pressure line in the center with two exhausts to the side. In the top
drawing the power flows in through the center to the right hand cylinder port. The left
hand cylinder port is allowed to exit through an exhaust port. In the bottom drawing the
solenoid isin anew position and the pressure is now applied to the left hand port on the
top, and the right hand port can exhaust. The symbols to the left of the figure show the
schematic equivalent of the actual valve positions. Valves are also available that allow the
valves to be blocked when unused.

=atith 1 e
A) |

exhaust out pdwer in

The solenoid has two positions and when
actuated will change the direction that
fluid flowsto the device. The symbols
shown here are commonly used to ‘ '
represent thistype of valve.

ShtitY:
6

solenoid

powet in exhaust out

Figure8.2 A Solenoid Controlled 5 Ported, 4 Way 2 Position Valve

discrete actuators - 8.3

Valve types are listed below. In the standard terminology, the ' n-way’ designates
the number of connections for inlets and outlets. In some cases there are redundant ports
for exhausts. The normally open/closed designation indicates the valve condition when

power is off. All of the valves listed are two position valve, but three position valves are
also available.

2-way normally closed - these have one inlet, and one outlet. When unenergized,
the valveis closed. When energized, the valve will open, allowing flow. These
are used to permit flows.

2-way normally open - these have one inlet, and one outlet. When unenergized, the
valve is open, allowing flow. When energized, the valve will close. These are
used to stop flows. When system power is off, flow will be allowed.

3-way normally closed - these have inlet, outlet, and exhaust ports. When unener-
gized, the outlet port is connected to the exhaust port. When energized, the inlet
is connected to the outlet port. These are used for single acting cylinders.

3-way normally open - these have inlet, outlet and exhaust ports. When unener-
gized, the inlet is connected to the outlet. Energizing the valve connects the out-
let to the exhaust. These are used for single acting cylinders

3-way universal - these have three ports. One of the ports acts as an inlet or outlet,
and is connected to one of the other two, when energized/unenergized. These
can be used to divert flows, or select alternating sources.

4-way - These valves have four ports, two inlets and two outlets. Energizing the
valve causes connection between the inlets and outlets to be reversed. These are
used for double acting cylinders.

Some of the 1SO symbolsfor valves are shown in Figure 8.3. When using the sym-
bolsin drawings the connections are shown for the unenergized state. The arrows show
the flow pathsin different positions. The small triangles indicate an exhaust port.

discrete actuators - 8.4

normally closed normally open
Two way, two position — L
T T
normally closed normally open
Three way, two position T . _l_\‘ T\‘ T -
® ®

Four way, two position

>
<

A

Figure 8.3 SO Valve Symbols

When selecting valves there are a number of details that should be considered, as
listed below.

pipe size - inlets and outlets are typically threaded to accept NPT (national pipe
thread).
flow rate - the maximum flow rate is often provided to hydraulic valves.
operating pressure - a maximum operating pressure will be indicated. Some valves
will also require a minimum pressure to operate.
electrical - the solenoid coil will have afixed supply voltage (AC or DC) and cur-
rent.
response time - thisis the time for the valve to fully open/close. Typical timesfor
valves range from 5msto 150ms.
enclosure - the housing for the valve will be rated as,
type 1 or 2 - for indoor use, requires protection against splashes
type 3 - for outdoor use, will resists some dirt and weathering
type 3R or 3Sor 4 - water and dirt tight
type 4X - water and dirt tight, corrosion resistant

8.4 CYLINDERS

A cylinder uses pressurized fluid or air to create alinear force/motion as shown in
Figure 8.4. In the figure afluid is pumped into one side of the cylinder under pressure,

discrete actuators - 8.5

causing that side of the cylinder to expand, and advancing the piston. The fluid on the
other side of the piston must be alowed to escape freely - if the incompressible fluid was
trapped the cylinder could not advance. The force the cylinder can exert is proportional to
the cross sectional area of the cylinder.

F
q
B B advancing
Fluid pumped in Fluid flows out
at pressure P at low pressure
F
h
. . retracting
Fluid flows out Fluid pumped in
at low pressure at pressure P
For Force:
_F _
P = A F =PA
where,

P = the pressure of the hydraulic fluid
A =the area of the piston
F = the force available from the piston rod

Figure8.4 A Cross Section of a Hydraulic Cylinder

Single acting cylinders apply force when extending and typically use a spring to
retract the cylinder. Double acting cylinders apply force in both direction.

discrete actuators - 8.6

single acting spring return cylinder

AN
VYV Y

double acting cylinder

Figure85 Schematic Symbolsfor Cylinders

Magnetic cylinders are often used that have a magnet on the piston head. When it
moves to the limits of motion, reed switches will detect it.

8.5HYDRAULICS

Hydraulics use incompressible fluids to supply very large forces at Slower speeds
and limited ranges of motion. If the fluid flow rate is kept low enough, many of the effects
predicted by Bernoulli’s equation can be avoided. The system uses hydraulic fluid (nor-
mally an oil) pressurized by a pump and passed through hoses and valves to drive cylin-
ders. At the heart of the system is a pump that will give pressures up to hundreds or
thousands of psi. These are delivered to acylinder that convertsit to alinear force and dis-
placement.

discrete actuators - 8.7

Hydraulic systems normally contain the following components,

1. Hydraulic Fluid

2. An Oil Reservoir

3. A Pump to Move Qil, and Apply Pressure

4. Pressure Lines

5. Control Valves - to regulate fluid flow

6. Piston and Cylinder - to actuate external mechanisms

The hydraulic fluid is often a noncorrosive oil chosen so that it lubricates the com-
ponents. Thisisnormally stored in areservoir as shown in Figure 8.6. Fluid isdrawn from
the reservoir to a pump whereit is pressurized. Thisis normally ageared pump so that it
may deliver fluid at a high pressure at a constant flow rate. A flow regulator is normally
placed at the high pressure outlet from the pump. If fluid is not flowing in other parts of
the system thiswill allow fluid to recirculate back to the reservoir to reduce wear on the
pump. The high pressure fluid is delivered to solenoid controlled vales that can switch
fluid flow on or off. From the vales fluid will be delivered to the hydraulics at high pres-
sure, or exhausted back to the reservaoir.

ar filter
| fluid return outlet tube
| B i
S/
|
— L |
e — — - access hatch
|.” '|I ﬂl'l oo 7 : : 1 for cleaning
refill oil filter — -
gill o | T . -
e e e e I I .
/ s
s L level
/ || s s
p " gauge
/ | VAR Y

\\baffl e - isolates the

outlet fluid from
turbulence in the inlet

discrete actuators - 8.8

Figure8.6 A Hydraulic Fluid Reservoir

Hydraulic systems can be very effective for high power applications, but the use of
fluids, and high pressures can make this method awkward, messy, and noisy for other
applications.

8.6 PNEUMATICS

Pneumatic systems are very common, and have much in common with hydraulic
systems with afew key differences. The reservoir is eliminated as there is no need to col-
lect and store the air between usesin the system. Also because air isagasit is compress-
ible and regulators are not needed to recirculate flow. But, the compressibility also means
that the systems are not as stiff or strong. Pneumatic systems respond very quickly, and are
commonly used for low force applications in many locations on the factory floor.

Some basic characteristics of pneumatic systems are,

- stroke from afew millimeters to metersin length (longer strokes have more
springiness

- the actuators will give abit - they are springy

- pressures are typically up to 85psi above normal atmosphere

- the weight of cylinders can be quite low

- additional equipment isrequired for a pressurized air supply- linear and rotatory
actuators are available.

- dampers can be used to cushion impact at ends of cylinder travel.

When designing pneumatic systems care must be taken to verify the operating
location. In particular the elevation above sealevel will result in adramatically different
air pressure. For example, at sealevel the air pressure is about 14.7 psi, but at a height of
7,800 ft (Mexico City) the air pressureis 11.1 psi. Other operating environments, such as
in submersibles, the air pressure might be higher than at sealevel.

Some symbols for pneumatic systems are shown in Figure 8.7. The flow control
valveis used to restrict the flow, typically to slow motions. The shuttle valve alows flow
in one direction, but blocks it in the other. The receiver tank allows pressurized air to be
accumulated. The dryer and filter help remove dust and moisture from the air, prolonging
thelife of the valves and cylinders.

discrete actuators - 8.9

Flow control valve

Shuttle valve

==
O
— O
—

Filter

Pressure regulator Bl

Figure 8.7 Pneumatics Components

8.7 MOTORS

Motors are common actuators, but for logical control applications their properties
are not that important. Typically logical control of motors consists of switching low cur-
rent motors directly with aPLC, or for more powerful motors using arelay or motor
starter. Motors will be discussed in greater detail in the chapter on continuous actuators.

discrete actuators - 8.10

8.8 OTHERS

There are many other types of actuators including those on the brief list below.

Heaters - The are often controlled with arelay and turned on and off to maintain a
temperature within arange.

Lights - Lights are used on almost all machines to indicate the machine state and
provide feedback to the operator. most lights are low current and are connected
directly tothe PLC.

Sirens/Horns - Sirens or horns can be useful for unattended or dangerous machines
to make conditions well known. These can often be connected directly to the
PLC.

Computers - some computer based devicesmay use TTL 0/5V logic levelsto trig-
ger actions. Generally these are prone to electrical noise and should be avoided
if possible.

8.9 SUMMARY

» Solenoids can be used to convert an electric current to alimited linear motion.

 Hydraulics and pneumatics use cylindersto convert fluid and gas flowsto limited
linear motions.

» Solenoid valves can be used to redirect fluid and gas flows.

» Pneumatics provides smaller forces at higher speeds, but is not stiff. Hydraulics
provides large forces and is rigid, but at lower speeds.

» Many other types of actuators can be used.

8.10 PRACTICE PROBLEMS

1. A piston isto be designed to exert an actuation force of 120 |bs on its extension stroke. The
inside diameter of the cylinder is2.0” and the ram diameter is0.375”. What shop air pressure
will be required to provide this actuation force? Use a safety factor of 1.3.

2. Draw a simple hydraulic system that will advance and retract a cylinder using PL C outputs.
Sketches should include details from the PLC output card to the hydraulic cylinder.

3. Develop an electrical ladder diagram and pneumatic diagram for a PLC controlled system. The
system includes the components listed below. The system should include all required safety
and wiring considerations.

a 3 phase 50 HP motor
1 NPN sensor
1 NO push button

discrete actuators - 8.11

1 NC limit switch
1 indicator light
adoubly acting pneumatic cylinder
4. What are the trade-offs between 3-phase and single-phase AC power.

8.11 ASSIGNMENT PROBLEMS

1. Draw a schematic symbol for a solenoid controlled pneumatic valve and explain how the valve
operates.

2. A PLC based system has 3 proximity sensors, a start button, and an E-stop asinputs. The sys-
tem controls a pneumatic system with a solenoid controlled valve. It also controls arobot with
aTTL output. Develop a complete wiring diagram including all safety elements.

3. A system contains a pneumatic cylinder with two inductive proximity sensors that will detect
when the cylinder is fully advanced or retracted. The cylinder is controlled by a solenoid con-
trolled valve. Draw electrical and pneumatic schematics for a system.

4. Draw an electrical ladder wiring diagram for a PLC controlled system that contains 2 PNP sen-
sors, aNO push button, aNC limit switch, a contactor controlled AC motor and an indicator
light. Include all safety circuitry.

5. We are to connect a PL C to detect boxes moving down an assembly line and divert larger
boxes. Thelineis 12 inches wide and slanted so the boxes fall to one side as they travel by.
One sensor will be mounted on the lower side of the conveyor to detect when a box is present.
A second sensor will be mounted on the upper side of the conveyor to determine when alarger
box is present. If the box is present, an output to a pneumatic solenoid will be actuated to divert
the box. Your job isto select a specific PLC, sensors, and solenoid valve. Details (the absolute
minimum being model numbers) are expected with aladder wiring diagram. (Note: take
advantage of manufacturers web sites.)

6. Develop awiring diagram for a system that has the following elements. Include all safety cir-
cuitry.
2 NPN proximity sensors
2 N.O. pushbuttons
3 solenoid outputs
A 440Vac 3ph. 20HP (i.e., large) motor

discrete actuators - 9.1

9.1 PRACTICE PROBLEM SOLUTIONS

1. A = pi*r"2 = 3.14159in"2, P=FS* (F/A)=1.3(120/3.14159)=49.7psi. Note, if the cylinder were
retracting we would need to subtract the rod areafrom the piston area. Note: thisair pressureis
much higher than normally found in a shop, so it would not be practical, and a redesign would
be needed.

2.
cylinder
\% +
1 24Vdc
00 /ﬁ -
01
S1
=1 Xy !
02 Y
03 pressure
regul ator
< Telease |
sump pump
>
3.

ADD SOLUTION

4. 3-phase power isideal for large loads such as motors. Single phase power is suited to small
loads, and the power usage on each phase must be balanced someplace on the electrical grid.

plc boolean - 10.1

10. BOOLEAN LOGIC DESIGN

Topics:
* Boolean algebra
* Converting between Boolean algebra and logic gates and ladder logic
* Logic examples
Objectives:
* Be able to simplify designs with Boolean algebra

10.1 INTRODUCTION

The process of converting control objectivesinto aladder logic program requires
structured thought. Boolean algebra provides the tools needed to analyze and design these
systems.

10.2 BOOLEAN ALGEBRA

Boolean algebra was developed in the 1800's by James Bool, an Irish mathemati-
cian. It was found to be extremely useful for designing digital circuits, and it is still
heavily used by electrical engineers and computer scientists. The techniques can model a
logical system with a single equation. The equation can then be ssmplified and/or manipu-
lated into new forms. The same techniques developed for circuit designers adapt very well
to ladder logic programming.

Boolean equations consist of variables and operations and look very similar to nor-
mal algebraic equations. The three basic operatorsare AND, OR and NOT; more complex
operators include exclusive or (EOR), not and (NAND), not or (NOR). Small truth tables
for these functions are shown in Figure 10.1. Each operator is shown in asimple equation
with the variables A and B being used to calculate avalue for X. Truth tables are asimple
(but bulky) method for showing all of the possible combinations that will turn an output
on or off.

plc boolean - 10.2

Note: By convention afalse state is also called off or O (zero). A true state is also
caledonor 1.

AND OR NOT
A A A

s —>0—X
B)X B—))X
X=A-B X =A+B X =A
A B X A B X A X
0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1
NAND NOR EOR
A A A
B PX B) JoX N
X = A B X =A+B X=A®B
A B X A B X A B X
0 0 1 0 0 1 0 0 0
0 1 1 0 1 0 0 1 1
1 0 1 1 0 0 1 0 1
1 1 0 1 1 0 1 1 0

Note: The symbols used in these equations, such as + for OR are not universal stan-
dards and some authors will use different notations.

Note: The EOR function is available in gate form, but it is more often converted to
its equivalent, as shown below.

X=A®B=A-B+A-B

Figure10.1 Boolean Operations with Truth Tables and Gates

In a Boolean equation the operators will be put in a more complex form as shown

plc boolean - 10.3

in Figure 10.2. The variable for these equations can only have avalue of O for false, or 1
for true. The solution of the equation follows rules similar to normal algebra. Parts of the
eguation inside parenthesis are to be solved first. Operations are to be done in the
sequence NOT, AND, OR. In the example the NOT function for C is done first, but the
NOT over the first set of parentheses must wait until asingle value is available. When
thereis achoice the AND operations are done before the OR operations. For the given set
of variable values the result of the calculation isfalse.

given _
X=(A+B-C)+A-(B+C)
assuming A=1, B=0, C=1
X =(1+0-1)+1-(0+1)
X=(1+0)+1-(0+0)

(H+1-(0)

X
X +0
X

1
o O

Figure10.2 A Boolean Equation

The equations can be manipulated using the basic axioms of Boolean shown in
Figure 10.3. A few of the axioms (associative, distributive, commutative) behave like nor-
mal algebra, but the other axioms have subtle differences that must not be ignored.

plc boolean - 10.4

| dempotent
A+A=A

Associative
(A+B)+C = A+(B+C)

Commutative
A+B =B+A

Distributive
A+(B-C) = (A+B)-(A+C)

| dentity
A+0 = A
A-0=0

Complement
A+A =1

Duality

(A-B)-C=A-(B-C)

A-(B+C)=(A-B)+(A-0O)

A+l =1

(A-B) = A+B

interchange AND and OR operators, as well asall Universal, and Null
sets. The resulting equation is equivalent to the original.

Figure10.3 The Basic Axioms of Boolean Algebra

An example of equation manipulation is shown in Figure 10.4. The distributive
axiom is applied to get equation (1). The idempotent axiom is used to get equation (2).
Equation (3) is obtained by using the distributive axiom to move C outside the parenthe-
ses, but the identity axiom is used to deal with the lone C. The identity axiom isthen used
to simplify the contents of the parenthesesto get equation (4). Finally the Identity axiomis

plc boolean - 10.5

used to get the final, simplified equation. Notice that using Boolean algebra has shown
that 3 of the variables are entirely unneeded.

A=B - (C-(D+E+C)+F-C)

A=B- (D-C+E-C+C-C+F-0C) (1)
A=B-(D-C+E-C+C+E-C) 2)
A=B.C.(D+E+1+F) (3)
A=B-C- (1 (4)
A=B-C)

Figure10.4 Simplification of a Boolean Equation

Note: When simplifying Boolean algebra, OR operators have alower priority, so they
should be manipulated first. NOT operators have the highest priority, so they should be
simplified last. Consider the example from before.

X=(A+B-C)+A-(B+C) The higher priority operators are
X = (AT (B Cl+A. (B+T) put in parentheses

- : - DeMorgan's theoremis applied

X =(A) - (B-C)+A-(B+C
L _ DeMorgan’'s theorem is applied again

X=A-(B+C)+A-(B+C) - o

The equation is expanded
X=A-B+A-C+A B+A. C -4

Terms with common terms are
X=A.-B+(A-C+A-C)+A-B “ collected, hereitisonly NOT C
X=A B+C - (A+A)+A B 4 Theredundant termis eliminated
X =A B+C+A.B --— A Boolean axiom is applied to

simplify the equation further

plc boolean - 10.6

10.3LOGIC DESIGN

Design ideas can be converted to Boolean equations directly, or with other tech-
niques discussed later. The Boolean equation form can then be simplified or rearranges,
and then converted into ladder logic, or acircuit.

Aside: Thelogic for aseal-in circuit can be analyzed using a Boolean equation as shown
below. Recall that the START is NO and the STOPis NC.

START STOP

ON’ = (START + ON) - STOP

ON STOP START ON’

stop pushed, not active

stop pushed, not active

not active

start pushed, becomes active
stop pushed, not active

stop pushed, not active

active, start no longer pushed
becomes active and start pushed

PFRPRRPRPFPLPOOOO
PFRPOOPRFREFOO
POFRPOPFLPOPFRO
PFRPOOFR,OOO

If we can describe how a controller should work in words, we can often convert it
directly to a Boolean equation, as shown in Figure 10.5. In the example a process descrip-
tion isgiven first. In actual applications thisis obtained by talking to the designer of the
mechanical part of the system. In many cases the system does not exist yet, making thisa
challenging task. The next step is to determine how the controller should work. In this
case it iswritten out in a sentence first, and then converted to a Boolean expression. The
Boolean expression may then be converted to adesired form. The first equation contains
an EOR, which is not available in ladder logic, so the next line converts this to an equiva
lent expression (2) using ANDs, ORs and NOTs. The ladder logic developed isfor the sec-
ond equation. In the conversion the termsthat are ANDed are in series. The termsthat are
ORed are in parallel branches, and terms that are NOTed use normally closed contacts.
Thelast equation (3) isfully expanded and ladder logic for it isshown in Figure 10.6. This
illustrates the same logical control function can be achieved with different, yet equivalent,

plc boolean - 10.7

ladder logic.

Process Description:

A heating oven with two bays can heat one ingot in each bay. When the
heater is on it provides enough heat for two ingots. But, if only one
ingot is present the oven may become too hot, so afan isused to
cool the oven when it passes a set temperature.

Control Description:
If the temperature istoo high and there is an ingot in only one bay then
turn on fan.

Define Inputs and Outputs:
B1 = bay 1 ingot present
B2 = bay 2 ingot present
F=fan
T = temperature overheat sensor

Boolean Equation:
F=T-(B,®B,)

F=T (B;-B,+B; B, 2
F=B,-B, T+B,-B, T (3)
Ladder Logic for Equation (2):
B1 B2 T r ‘
|| N
| % |
Bl B2
Note: the result for conditional logic
isasingle step in the ladder

Warning: in spoken and written english OR and EOR are often not clearly defined. Con-
sider the traffic directions "Go to main street then turn left or right." Does this or mean
that you can drive either way, or that the person isn’t sure which way to go? Consider
the expression "The carsarered or blue.”, Does this mean that the cars can be either red
or blue, or all of the carsarered, or all of the cars are blue. A good literal way to
describe this condition is "one or the other, but not both".

Figure10.5 Boolean Algebra Based Design of Ladder Logic

plc boolean - 10.8

Ladder Logic for Equation (3):
B1 B2 T

Bl B2 T

Figure10.6 Alternate Ladder Logic

Boolean algebrais often used in the design of digital circuits. Consider the exam-
plein Figure 10.7. In this case we are presented with a circuit that is built with inverters,
nand, nor and, and gates. This figure can be converted into a boolean equation by starting
at the left hand side and working right. Gates on the left hand side are solved first, so they
are put inside parentheses to indicate priority. Inverters are represented by puttingaNOT
operator on avariable in the equation. This circuit can’t be directly converted to ladder
logic because there are no equivalents to NAND and NOR gates. After the circuit is con-
verted to aBoolean equation it is simplified, and then converted back into a (much sim-

pler) circuit diagram and ladder logic.

plc boolean - 10.9

O wm >

> —

¢ oo

Thecircuit is converted to a Boolean equation and simplified. The most nested terms
in the equation are on the left hand side of the diagram.

uy)

SN
-

>

X=(A-B-C)+B)-B-(A+C)

X =(A+B+C+B)-B-(A-C)
X=A-B-A-C+B-B-A-C+C-B-A-C+B-B-A-C
X=B-A-C+B-A-C+0+B-A-C
X=B-A-C

This simplified equation is converted back into a circuit and equivalent ladder logic.

I_j X
A —)

Figure10.7 Reverse Engineering of a Digital Circuit

To summarize, we will obtain Boolean equations from a verbal description or
existing circuit or ladder diagram. The equation can be manipulated using the axioms of
Boolean algebra. after simplification the equation can be converted back into ladder logic
or acircuit diagram. Ladder logic (and circuits) can behave the same even though they are
in different forms. When simplifying Boolean equations that are to be implemented in lad-

plc boolean - 10.10
der logic there are afew basic rules.

1. Eliminate NOTs that are for more than one variable. This normally includes
replacing NAND and NOR functions with simpler ones using DeMorgan’s the-
orem.

2. Eliminate complex functions such as EORs with their equivalent.

These principles are reinforced with another design that begins in Figure 10.8.
Assume that the Boolean equation that describes the controller is already known. This
equation can be converted into both a circuit diagram and ladder logic. The circuit dia-
gram contains about two dollars worth of integrated circuits. If the design was mass pro-
duced the final cost for the entire controller would be under $50. The prototype of the
controller would cost thousands of dollars. If implemented in ladder logic the cost for each
controller would be approximately $500. Therefore alarge number of circuit based con-
trollers need to be produced before the break even occurs. This number is normally in the
range of hundreds of units. There are some particular advantages of a PLC over digital cir-
cuits for the factory and some other applications.

* the PLC will be more rugged,
* the program can be changed easily
* less skill is needed to maintain the equipment

plc boolean - 10.11

Given the controller equation;

A=B-(C-(D+E+C)+F-0C)

The circuit is given below, and equivalent ladder logic is shown.
o =O0——
E
C |

F4|>Q73 }
o

The gates can be purchased for
about $0.25 each in bulk.

D C X Inputs and outputs are

i Q typicaly 5V
E
C

Aninexpensive PLC isworth
X \LB QA at least afew hundred dollars
|

F C

I I Consider the cost trade-off!

Figure10.8 A Boolean Equation and Derived Circuit and Ladder Logic

Theinitial equation is not the simplest. It is possible to simplify the equation to the
form seen in Figure 10.8. If you are avisual learner you may want to notice that some sim-
plifications are obvious with ladder logic - consider the C on both branches of the ladder
logic in Figure 10.9.

plc boolean - 10.12

A=B-C-F-(D+E)

WO T

Figure10.9 The Simplified Form of the Example

The equation can also be manipulated to other forms that are more routine but less
efficient as shown in Figure 10.10. The equation shown isin digunctive normal form - in
simpler words thisis ANDed terms ORed together. Thisis also an example of acanonical
form - in simpler terms this means astandard form. Thisform is more important for digital
logic, but it can a'so make some PL C programming issues easier. For example, when an
equation issimplified, it may not look like the original design intention, and therefore
becomes harder to rework without starting from the beginning.

plc boolean - 10.13

A= (B-C-D)+(B-C-E)+(B-C-F)
B [0
C

D— =0

B C D A
N

B C E

B C F

Figure 10.10 A Canonical Logic Form

10.3.1 Boolean Algebra Techniques

There are some common Boolean algebra techniques that are used when simplify-
ing equations. Recognizing these forms are important to simplifying Boolean Algebra
with ease. These are itemized, with proofsin Figure 10.11.

plc boolean - 10.14

A+ CA

A+C proof: A+CA
(A+C)(A+A)
(A+C)(1)
A+C

AB+A

I
>

proof: AB+A
AB+ Al
A(B+1)
A(L)

>l
(vs]]
@]

A+B+C = proof: A+B+C

Figure10.11 Common Boolean Algebra Techniques

10.4 COMMON LOGIC FORMS

Knowing asimple set of logic formswill support a designer when categorizing
control problems. The following forms are provided to be used directly, or provide ideas
when designing.

10.4.1 Complex Gate Forms

In total there are 16 different possible types of 2-input logic gates. The simplest are
AND and OR, the other gates we will refer to as complex to differentiate. The three popu-
lar complex gates that have been discussed before are NAND, NOR and EOR. All of these
can be reduced to simpler forms with only ANDs and ORs that are suitable for ladder
logic, as shown in Figure 10.12.

plc boolean - 10.15

NAND NOR EOR
X=AB X=A+B X =A®B
X =A+B X=AB X=A-B+A-B
A B
A X X
| | |
B ()

Figure 10.12 Conversion of Complex Logic Functions

10.4.2 Multiplexers

Multiplexers allow multiple devices to be connected to asingle device. These are
very popular for telephone systems. A telephone switch is used to determine which tele-
phone will be connected to alimited number of lines to other telephone switches. This
allows telephone calls to be made to somebody far away without a dedicated wire to the
other telephone. In older telephone switch boards, operators physically connected wires

by plugging them in. In modern computerized telephone switches the same thing is done,
but to digital voice signals.

In Figure 10.13 amultiplexer is shown that will take one of four inputs bits D1,

D2, D3 or D4 and make it the output X, depending upon the values of the address bits, A1
and A2.

plc boolean - 10.16

— Al A2 | X
D1 multiplexer
0 0 X=D1
B, . 0 1 X=D2
D2 X
L 1 0 X=D3
1 1 X=D4
—>
D3
—>
D4

Al A2

Figure 10.13 A Multiplexer

Ladder logic form the multiplexer can be seen in Figure 10.14.

Al A2 D1 X

| | ||
| 9
Al A2 D2
\l\1|\ | | | |
I || ||
Al A2 D3
|| | ||
I \I‘\?\ I
Al A2 D4
| | | | | |

Figure 10.14 A Multiplexer in Ladder Logic

plc boolean - 10.17

10.5 SIMPLE DESIGN CASES

The following cases are presented to illustrate various combinatorial logic prob-
lems, and possible solutions. It is recommended that you try to satisfy the description
before looking at the solution.

10.5.1 Basic Logic Functions

Problem: Develop a program that will cause output D to go true when switch A
and switch B are closed or when switch C is closed.

Solution:
D=(A-B)+C
A |B| D
[
C

Figure 10.15 Sample Solution for Logic Case Study A

Problem: Develop a program that will cause output D to be on when push button A
ison, or either B or C are on.

plc boolean - 10.18

Solution:
D=A+(B®C)

A %

Figure 10.16 Sample Solution for Logic Case Study B

10.5.2 Car Safety System

Problem: Develop Ladder Logic for a car door/seat belt safety system. When the
car door is open, and the seatbelt is not done up, the ignition power must not be applied. If
all is safe then the key will start the engine.

Solution:

Door Open Seat Belt Key .
|] |] |] Ignition Q
[1 [[1

Figure 10.17 Solution to Car Safety System Case

10.5.3 Motor Forward/Rever se

Problem: Design a motor controller that has aforward and a reverse button. The
motor forward and reverse outputs will only be on when one of the buttons is pushed.

plc boolean - 10.19

When both buttons are pushed the motor will not work.

Solution:
BF - BR where,

o F = motor forward

R = BF - BR R = motor reverse
BF = forward button
BR = reverse button

BF BR

Figure 10.18 Motor Forward, Reverse Case Study

10.5.4 A Burglar Alarm

Consider the design of a burglar alarm for a house. When activated an alarm and
lights will be activated to encourage the unwanted guest to leave. This alarm be activated
if an unauthorized intruder is detected by window sensor and a motion detector. The win-
dow sensor is effectively aloop of wirethat is a piece of thin metal foil that encirclesthe
window. If thewindow is broken, the foil breaks breaking the conductor. This behaveslike
anormally closed switch. The motion sensor is designed so that when a person is detected
the output will go on. Aswith any alarm an activate/deactivate switch is aso needed. The
basic operation of the alarm system, and the inputs and outputs of the controller are item-
ized in Figure 10.19.

plc boolean - 10.20

The inputs and outputs are chosen to be;

A = Alarm and lights switch (1 = on)
W = Window/Door sensor (1 = OK)
M = Motion Sensor (0 = OK)

S= Alarm Active switch (1 = on)

The basic operation of the alarm can be described with rules.
1. If darmison, check sensors.

2. If window/door sensor is broken (turns off), sound alarm and turn on
lights

Note: Asthe engineer, it isyour responsibility to define these items before starting
the work. If you do not do thisfirst you are guaranteed to produce a poor
design. It isimportant to develop agood list of inputs and outputs, and give
them simple names so that they are easy to refer to. Most companies will use
wire numbering schemes on their diagrams.

Figure 10.19 Controller Requirements List for Alarm

The next step isto define the controller equation. In this case the controller has 3
different inputs, and a single output, so atruth table is a reasonabl e approach to formaliz-
ing the system. A Boolean equation can then be written using the truth table in Figure
10.20. Of the eight possible combinations of alarm inputs, only three lead to alarm condi-
tions.

plc boolean - 10.21

Inputs Output

wn
>

arm off
i galarm on/no thief
alarm on/thief detected
ncMWumce

Figure 10.20 Truth Table for the Alarm

PRPRPROOOO
RPRrOORROO|Z
ROrORrORO|Z
PRPOROOOO

The Boolean equation in Figure 10.21 is written by examining the truth tablein
Figure 10.20. There are three possible alarm conditions that can be represented by the con-
ditions of all three inputs. For example take the last line in the truth table where when all
three inputs are on the alarm should be one. Thisleadsto the last term in the equation. The
other two terms are devel oped the same way. After the equation has been written, itissim-
plified.

plc boolean - 10.22

A=(SM-W)+(S-M-W)+(S-M-W)
=S (M-W+M-W+M-W)

>

SA=S (M-WHM-W)+ (M- W+ M- W)

SJA=(S-W)+(S-M) =S-(W+M)

(S*W)+(S*M)

Figure 10.21 A Boolean Equation and Implementation for the Alarm

The equation and circuits shown in Figure can also be further simplified, as shown
in Figure 10.22.

plc boolean - 10.23

= (S*W)+(S*M)

s P

Figure 10.22 The Simplest Circuit and Ladder Diagram

Aside: The alarm could also be implemented in programming languages. The pro-
gram below isfor aBasic Stamp Il chip. (www.parallaxinc.com)

w=1,s=2,m=3;a=4

input m; input w; input s

output a

loop:

if in2=1)and (inl=0orin3=1)thenon
low a; goto loop ‘aarm off

on:

high a; goto loop ‘alarm on

Figure 10.23 Alarm Implementation Using A High Level Programming Language

10.6 SUMMARY

* Logic can be represented with Boolean equations.

* Boolean equations can be converted to (and from) ladder logic or digital circuits.
* Boolean equations can be simplified.

« Different controllers can behave the same way.

» Common logic forms exist and can be used to understand logic.

plc boolean - 10.24

* Truth tables can represent all of the possible state of a system.

10.7 PRACTICE PROBLEMS

1. Istheladder logic in the figure below for an AND or an OR gate?

2. Draw aladder diagram that will cause output D to go true when switch A and switch B are
closed or when switch C is closed.

3. Draw aladder diagram that will cause output D to be on when push button A ison, or either B
or C areon.

4. Design ladder logic for acar that considers the variables below to control the motor M. Also
add a second output that uses any outputs not used for motor control.

- doors opened/closed (D)
- keysinignition (K)

- motor running (M)

- transmission in park (P)
- ignition start (1)

5. a) Explain why a stop button must be normally closed and a start button must be normally open.

b) Consider a case where an input to a PLC isanormally closed stop button. The contact used in

the ladder logic is normally open, as shown below. Why are they both not the same? (i.e.,, NC
or NO)

start stop

| I Q motor

6. Make asimple ladder logic program that will turn on the outputs with the binary patterns when

motor

plc boolean - 10.25

the corresponding buttons are pushed.

OUTPUTS
INPUTS
HG FE DC B A
11 01 01 01 Input X on
10 10 OO0 01 Input Y on
10 01 01 11 Input Z on

7. Convert the following Boolean equation to the ssmplest possible ladder logic.

X=A-(A+A-B)

8. Simplify the following boolean equations.

a) A(B + AB) b) A(B + AB)
0) A(B + AB) d) A(B + AB)

9. Simplify the following Boolean equations,
a) (A+B)-(A+B)

b) ABCD + ABCD + ABCD + ABCD

10. Simplify the Boolean expression below.

(A-B)y+(B+A))-C+(B-C+B-C)

11. Given the Boolean expression a) draw adigital circuit and b) aladder diagram (do not sim-
plify), c) simplify the expression.

X=A-B-C+(C+B)

12. Simplify the following Boolean equation and write corresponding ladder logic.

Y = (ABCD + ABCD + ABCD + ABCD) + D

13. For the following Boolean equation,
X = A+B(A+CB+DAC)+ABCD

a) Write out the logic for the unsimplified equation.

plc boolean - 10.26

b) Simplify the equation.
¢) Write out the ladder logic for the simplified equation.

14. a) Write a Boolean equation for the following truth table. (Hint: do this by writing an expres-
sion for each line with atrue output, and then ORing them together.)

A B C D Result
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

b) Write the resultsin a) in a Boolean equation.
¢) Simplify the Boolean equation in b)

15. Simplify the following Boolean equation, and create the ssimplest ladder logic.

c[m(

A+ (BC(A+ B_C)))]

16. Simplify the following boolean equation with Boolean algebra and write the corresponding

ladder logic.

X =(A+B-A)+(C+D+EC)

17. Convert the following ladder logic to a Boolean equation. Then simplify it, and convert it back

plc boolean - 10.27

to smpler ladder logic.

A B D D v
| | | | | | | |

|| || || ||

B A

\l\1|\ | |

I ||

A C D

| | | | |

|| || \1\1\

18. a) Develop the Boolean expression for the circuit below.
b) Simplify the Boolean expression.
c) Draw asimpler circuit for the equation in b).

o

L

O wm >

—

D

19. Given a system that is described with the following equation,
X=A+(B - (A+C)+C)+A-B-(D+E)

a) Simplify the equation using Boolean Algebra.
b) Implement the original and then the simplified equation with adigital circuit.
¢) Implement the original and then the simplified equation in ladder logic.

)

>

20. Simplify the following and implement the original and simplified equations with gates and
ladder logic.

A+(B+C+D)- (B+C)+A-B-(C+D)

21. Convert thefollowing ladder logic to a Boolean equation. Simplify the equation and convert it

plc boolean - 10.28

back to ladder logic.

A B C D
O X
A B C D
A B C D
A B C D
A B C D
A B C D

22. Use Boolean equations to develop simplified ladder logic for the following truth table where
A, B,CandD areinputs, and X and Y are outputs.

>
(o8]
@]
O
X
<

PRPRRPRPRPRPRPPRPOO0OO0OO0OO0OOO
PFRPRPPRPOOOORRRLRRLROOOO
PRPOORRFRPROORRPROORRLROO
PORORORORORORORO
POROROROOOOORORO
PRPRPOOOOORRLRRLPOOOOO

plc boolean - 10.29

10.8 ASSIGNMENT PROBLEMS

1. Smplify the following Boolean equation and implement it in ladder logic.

X =A+BA+BC+D+C

2. Simplify the following Boolean equation and write a ladder logic program to implement it.

X = (ABC + ABC + ABC + ABC + ABC)

3. Convert the following ladder logic to a Boolean equation. Simplify the equation using Boolean
algebra, and then convert the simplified equation back to ladder logic.

e ()

plc boolean - 10.30

4. Convert the truth table below to a Boolean equation, and then simplify it. The output is X and
theinputsare A, B, Cand D.

>
w
@
O
X

PRRPRRPRPRPRPRPRPRPOOOOOOOO
PRPRRPPRPOOOORRRRPROOOO
PORORORORORORORO
PRPRRPRRPPRPOOOROOOROOO

PrRPOOFRRFRPOOFRPFRPOORFRLEFLOO

5. Simplify the following Boolean equation. Convert both the unsimplified and simplified equa-
tionsto ladder logic.

X = (ABC)(A+BC)

6. Convert the following ladder logic to a Boolean equation. Simplify the equation and convert it
back to ladder logic.

A B C D
O X
A B C D
A B C D
A B C D
A B C D
A B C D

plc boolean - 11.1

11.1 PRACTICE PROBLEM SOLUTIONS

1. AND
2.
A B | ‘ D
| O
C
3.
B C
O
B C
A
4.
I P K
| | oM
M
K D
| O "
where,

B = the alarm that goes "Bing" to warn that the keys are still in the car.

5. a) If aNC stop button is damaged, the machine will act asif the stop button was pushed and

plc boolean - 11.2

shut down safely. If aNO start button is damaged the machine will not be able to start.)

b) For the actual estop whichis NC, when all is ok the power to the input is on, when thereisa
problem the power to theinput is off. In the ladder logic an input that is on (indicating all is ok)
will allow the rung to turn on the motor, otherwise an input that is off (indicating a stop) will
break the rung and cut the power.)

6.
: O
Y
Z
: O
: O
: O
z
ETC....
7.
A X
| | |
I || O
8.

a AB b) A+B c) AB d A+B

b)

10.C

11.

12.

plc boolean - 11.3

(A+B)- (A+B) = (AB)(AB) = 0

ABCD + ABCD + ABCD + ABCD = BCD + ABD = B(CD +AD)

X=B-(A-C+0C)

Y = (ABCD + ABCD + ABCD + ABCD) + D

Y = (ABCD + ABCD + ABCD + ABCD)D

Y = (0+ ABCD+0+0)D

Y = ABCD

et

O

13.

plc boolean - 11.4

A
|]
B|| A
|]
C B,
D A C
AL B c D
|]
A+DCB
Al
]
D S B\

14.

plc boolean - 11.5

Q B

¢ o

D

C A B
| | | |
|] |]

D

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
BCD + ACD + BCD + ABD + BCD + ACD + ABC
BCD + CD(A+A) + CD(B +B) + ABD + ABC

BCD + D(C + AB) + ABC

15.

16.

plc boolean - 11.6

|
v = c(m (A+ (BC(A+B+ c>>)J
(

v= (A+ (A+ (BCR00)|

Y = C(A+(A+0))

I C
Y = C(A+(A+1)) Q v

I A
Y = C(A+(1))
Y = C(A+0)
Y = CA
Y=C+A
X = (A+B-A)+(C+D+EC) X = (A+B-A)+(C+D +EC)
- OR -
X = (A+B-A)(C+D+EC) X = A+B-A+CD(E+C)
X = (A)(B-A)(C+D +EC) X = A+B+CDE
2B A ~ X = AB(CDE)
X = (A)(B-A)(C+D +EC)
X:AB(C+D+E6) X=AB(C+D+E)

X = AB(C+D +E)

17.

18.

plc boolean - 11.7

CAB
A e) X
B I—J

19.

plc boolean - 11.8

a) X=A+(B-(A+C)+C)+A-B-(D+E)
X=A+(B-A+B-C+C)+A-B-D+A-B-E

X=A-(1+B-D+B-E)+B-A+C-(B+1)

X=A+B-A+C

)

b) ABCDE

Dy

u

20.

plc boolean - 11.9

: O
B A
C
C
A|| B D
|
E

A+(B+C+D)- (B+C)+A-B-(C+D)
A-(1+B-(C+D))+(B+C+D)-B+(B+C+D)-C
A+(C+D)-B+C

A+C-B+D-B+C

A+D-B+C

plc boolean - 11.10

B+C

A+D-

< o OO0

21.

22.

(The equations

)

plc boolean - 11.11

X = D(B+A)

Y = B(D +C)

plc karnaugh - 12.1

12. KARNAUGH MAPS

Topics:
* Truth tables and Karnaugh maps

Objectives:
* Be able to ssimplify designs with Boolean algebra and Karnaugh maps

1221 INTRODUCTION

Karnaugh maps allow us to convert atruth table to a smplified Boolean expres-
sion without using Boolean Algebra. The truth table in Figure 12.1 is an extension of the
previous burglar alarm example, an alarm quiet input has been added.

Given
A, W, M, Sasbefore
Q= Alarm Quiet (0 = quiet)

Stepl: Draw the truth table

RPRPRRPRPRPRPRPRRPRPRPRPRPOOOCOCDOOOCORIWM
PRPRPRPRPOOOORRRRFRPROOOO
PFRPROOFRFROOFRPRFPFOORFREFRLOO
RPOFRPROFRPROFRPOFRPORFRPOPRFRLORKRO
POPRPOOORFRPROOOOOOOOCOoOL>

plc karnaugh - 12.2

Figure12.1 Truth Tablefor aBurglar Alarm

Instead of converting this directly to a Boolean equation, it is put into a tabular
form as shown in Figure 12.2. The rows and columns are chosen from the input variables.
The decision of which variablesto use for rows or columns can be arbitrary - the table will
look different, but you will still get asimilar solution. For both the rows and columns the
variables are ordered to show the values of the bits using NOTSs. The sequence is not
binary, but it is organized so that only one of the bits changes at a time, so the sequence of
bitsis 00, 01, 11, 10 - this step is very important. Next the values from the truth table that
are true are entered into the Karnaugh map. Zeros can also be entered, but are not neces-
sary. In the example the three true values from the truth table have been entered in the
table.

Step 2: Divide the input variables up. | choose SQ and MW

Step 3: Draw a Karnaugh map based on the input variables

M W (=00)| MW (=01) | MW (=11) | MW (=10)

(=00)
(=01)
(=11)
(=10)

[EEY
[EEY
[

|

B8 1814

Added for clarity

Note: Theinputsare arranged so that only one bit changes at atime for the Karnaugh
map. In the example above notice that any adjacent location, even the top/bottom
and left/right extremes follow thisrule. Thisis done so that changes are visually
grouped. If this pattern is not used then it is much more difficult to group the bits.

Figure12.2 The Karnaugh Map

When bits have been entered into the Karnaugh map there should be some obvious
patterns. These patternstypically have some sort of symmetry. In Figure 12.3 there are
two patterns that have been circled. In this case one of the patternsis because there are two
bits beside each other. The second pattern is harder to see because the bitsin the left and
right hand side columns are beside each other. (Note: Even though the table has a left and
right hand column, the sides and top/bottom wrap around.) Some of the bits are used more
than once, thiswill lead to some redundancy in the final equation, but it will also give a

plc karnaugh - 12.3
simpler expression.

The patterns can then be converted into a Boolean equation. Thisis done by first
observing that all of the patterns sit in the third row, therefore the expression will be
ANDed with SQ. There are two patterns in the third row, one has M as the common term,
the second has W as the common term. These can now be combined into the equation.
Finally the equation is converted to ladder logic.

Step 4: Look for patternsin the map

MW |[MW | MW |[MW /

y .
(1) &_&))/ al areinrow SQ

N

k/ W is the common term

Step 5: Write the equation using the patterns

M isthe common term

@88(0:

A=SQ-(M+W)
Step 6: Convert the equation into ladder logic

Figure12.3 Recognition of the Boolean Equation from the Karnaugh Map

Karnaugh maps are an alternative method to simplifying equations with Boolean
algebra. It iswell suited to visua learners, and is an excellent way to verify Boolean alge-
bra calculations. The example shown was for four variables, thus giving two variables for
the rows and two variables for the columns. More variables can also be used. If there were
five input variables there could be three variables used for the rows or columns with the
pattern 000, 001, 011, 010, 110, 111, 101, 100. If there is more than one output, a Kar-
naugh map is needed for each output.

plc karnaugh - 12.4

Aside: A method developed by David Luque Sacaluga uses a circular format for the table.
A brief example is shown below for comparison.

B C D | X

>

Convert the truth table to a circle using the Gray code
for sequence. Bitsthat aretrue in the truth table are
shaded in the circle.

1000
0000

1011

1010

1110

1111

PRPRRPRRPRRPRRPRRPRRPROOOOOOOO
PRPRPPRPOOOORRPRRLPRLPOOOO
PRPOORROORROORRLROO
PORPORORORORORORO
PRPOOO0OO0OO0OORROOOOOO

1100

L ook for large groups of repeated patterns.

1. Inthiscase’B’ istrue in the bottom half of the circle, so the equation becomes,
X =B-(...)

2. Thereisleft-right symmetry, with’C’ as the common term, so the equation becomes
X=B-C-(...)

3. The equation covers all four values, so the final equation is,
X=B-C

Figure12.4 Asde: An Alternate Approach

12.2 SUMMARY

 Karnaugh maps can be used to convert atruth table to asimplified Boolean equa-
tion.

plc karnaugh - 12.5

12.3 PRACTICE PROBLEMS

1. Setup the Karnaugh map for the truth table bel ow.

Result

OO0 O A A1 OO AdA—d10O0O

OO0 1010101 0O0"10-d10

OO0 A1 OO d-100dAd100-—

OO0 0O A A A1 0000

OO O0CO0OO0O0OO0O0O A

2. Use aKarnaugh map to ssimplify the following truth table, and implement it in ladder logic.

OO0 0000 dH1HOOOOOO

Ocrd O 1010101000

OO0 d 10O A 100 d10O0

OO0 O0Od A 10000

OO OO0 O0OO0OO0O A

—

—

—

—

i

plc karnaugh - 12.6

3. Write the simplest Boolean equation for the Karnaugh map below,

CD | CD D|CD

o | Ol

AB 1 0 1

>
(o]
o
o
o
o

pog
us]]
o
o
o
o

>
w
o
.
.
o

4. Given the truth table below find the most efficient ladder logic to implement it. Use astructured
technique such as Boolean algebra or Karnaugh maps.

A BCD|XY
0 00 O)|O0O
0001 01
0 01O0]/]0O0
001100
01 00/]0O0
01 01|00
0110 01
0111 01
1000 |10
1 001 11
1 01000
1011 00
1100 |10
1101 |10
1110 01
1111 01

plc karnaugh - 12.7

5. Examine the truth table below and design the simplest ladder logic using a Karnaugh map.

D E F G Y

PRPRRPRPRPRPRPRPOO0OO0O0OO0OOOO
PFRPRPPRPOOOORRPRRLRRLROOOO
PORORORORORORORO
POROROROROROOOOO

PRPOORFRPPFPOOFRPRPFPOORFRLPFLOO

6. Find the ssmplest Boolean equation for the Karnaugh map below without using Boolean alge-
brato simplify it. Draw the ladder logic.

ABC ABC ABC ABC ABC ABC ABC ABC

DE| 1|1 |0 |1 o/l o0 |0 | o0
BE| 1|1 |0 |oO o/l o |0 | o0
pE| 1|1 |0 |oO o/l o0 |0 | o0
pE| 1|1 |0 |1 o| o |0 | o

7. Given the following truth table for inputs A, B, C and D and output X. Convert it to simplified

plc karnaugh - 12.8

ladder logic using a Karnaugh map.

A B C D X
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

8. Consider the following truth table. Convert it to a Karnaugh map and develop asimplified

plc karnaugh - 12.9

Boolean equation (without Boolean algebra). Draw the corresponding ladder logic.

output

inputs

-

-

-

O 1O +H0O

OO d+dH OO0

OCOOO -

ocoocoooo

oo oOo0ooo

O 10O -

- O O

1 OO

OO -

oo oo

O —+10-0

OO

OO

e B B |

(oNeoloNeNe

i

i

i

i

o

Ocrd O 101010 +d10O O

OO0 11001100 A+10O0O

OO0 O0OO0OdAddA10O00O00O0O

OO OO0 O0O0OOdAdAdd

U B B I o R IO I IO B B B B |

i

-

i

i

-

plc karnaugh - 12.10

9. Given the truth table below
A

RPRPRRPRRPRPRPOO0O00000O0
PRPRPRPOOOORRRPFROOOO |y
PRPOORROORROORROO|N
RPORORORORORORORO|T
PRPRPOOORORRROOO0OO|N

a) find a Boolean algebra expression using a Karnaugh map.
b) draw aladder diagram using the truth table (not the Boolean expression).

10. Convert the following ladder logic to a Karnaugh map.

| A C A XQ
|

B D

11. a) Construct atruth table for the following problem.
i) there are three buttons A, B, C.
ii) the output is on if any two buttons are pushed.
iii) if Cispressed the output will always turn on.
b) Develop a Boolean expression.
c) Develop a Boolean expression using a Karnaugh map.

12. Develop the simplest Boolean expression for the Karnaugh map below,

a) graphically.
b) by Boolean Algebra

ABl AB| AB| AB

CD 1 1
CD 1 1

CD

CD 1 1

plc karnaugh - 12.11

13. Consider the following boolean equation.

X = (A+BA)A+(CD +CD + CD)

a) Can this Boolean equation be converted directly ladder logic. Explain your
answer, and if necessary, make any changesrequired so that it may be converted
to ladder logic.

b) Write out ladder logic, based on the result in step a).

¢) Simplify the equation using Boolean algebra and write out new ladder logic.

d) Write aKarnaugh map for the Boolean equation, and show how it can be used to
obtain asimplified Boolean equation.

12.4 ASSIGNMENT PROBLEMS

1. Use the Karnaugh map below to create a simplified Boolean equation. Then use the equation to
create ladder logic.

AB AB AB AB
1 1

CD 1 1

2. Use aKarnaugh map to develop simplified ladder logic for the following truth table where A,
B, Cand D areinputs, and X and Y are outputs.

plc karnaugh - 12.12

A B C D X Y
0O 0 O O 0O O
0O 0 0 1 1 O
0O 0 1 O 0O O
O o0 1 1 1 O
0O 1 0 O 0O O
0O 1 0 1 0 1
O 1 1 O 0 1
o 1 1 1 0 1
1 0 0 O 0O O
1 0 0 1 1 O
1 0 1 O 0O O
1 0 1 1 1 O
1 1 0 O 0O O
1 1 0 1 1 1
1 1 1 O 0 1
1 1 1 1 1 1

3. You are planning the basic layout for a control system with the criteria provided below. You
need to plan the wiring for the input and output cards, and then write the ladder logic for the
controller. You decide to use a Boolean logic design technique to design the ladder logic.
AND, your design will be laid out on the design sheets found later in this book.

* There are two inputs from PNP photoel ectric sensors part and busy.

» ThereisaNO cycle button, and NC stop button.

* There are two outputs to indicator lights, the running light and the stopped light.

* Thereisan output to a conveyor, that will drive ahigh current 120Vac motor.

* The conveyor isto run when the part sensor is on and while the cycle button is
pushed, but the busy sensor is off. If the stop button is pushed the conveyor will
stop.

» While the conveyor isrunning the running light will be on, otherwise the stopped
light will be on.

plc karnaugh - 12.13

4. Convert the following truth table to ssmplified ladder logic using a Karnaugh map AND Bool-
ean equations. Theinputsare A, B, C and D and the output is X.

A

vy)
(@]
W)
X

PRPRPRPPPRPRPPOO0OO0OO0OO0O0OOO
PPRPPRPOOOORRLRRLRRPRPOOOO
PRPOORRFRPROORRLROORRLROO
PORPOROFRORORORORO
ORPOFROROFROORRLROORER

plc karnaugh - 13.1

13.1 PRACTICE PROBLEM SOLUTIONS

AB AB AB AB
CD 1 |1 |1
cD 1 0 1
CcD 0 0 1
ED 0 0 1
2.
CD
00 01 11 10
00 0
AB 01 0 X = BC
1 0
10 0
‘ B
| | X
| | |
3.
s CD CD CD CD -For dl, B istrue
\ /
AB 1 0 0 1
AB 0 0 0 0 _
- B(AD + AD)
AB 0 0 0 0
_ '
AB 0 1 1 0

plc karnaugh - 13.2

FOR X FORY
CD
00 01 11 10
W |0 0 0 0 00
AB OL |0 0 0 O AB 01
1 /1 1\ 0 0 11
10 (1 1)0 o0 10
X=A-C Y =
A C
B C D
N
B C
FG
00 01 11 10
0 0 0 0 _
Y = G(E+D
DE 01 0 m 0 (E+D)
1 0 YT 1) 0
G

QY

plc karnaugh - 13.3

AB ABRC ABC., ABC, ABC ABC ABC ABC
se 121)]o \1 / olo | o |o
DE 1 1 0 0 0 0 0 0
peEll1]1 12 o |o o|lo | o |o
pE 1121]o /1 \ olo |0 |o
— ABCE o
AB output = AB + ABCE
A B
Q output
A B C| E|
NN
‘ A B
D B

Ox

plc karnaugh - 13.4

ABC ABC ABC ABC ABC ABC ABC ABC
0

X = ABC +D(ABC + ABC + EC)

o |o |o | ol o |o
o|lo o |[o | olflt]lo | o
o A | 1 G 1)1 o

. 1| ollt]l o | o

A B C
A B C
A B C

Qx

os]]

plc karnaugh - 13.5

o | >

0
Ol
o

Z=B*(C+D)+ABCD

'_\

Ol
Ql

@]
Q

C D ZO
C D
C D
C D
C D
C D
C D

plc karnaugh - 13.6

10.

QO o o o

(]

Ol o o o

_hDu — — o —

w © o o -
m [an] M m
< < < 1<

o

OCOO0OO0OO0OdHOOHOOO

o

A O 1010 "0 d0-d0-dO0

Ocrd 1 OO0 A 10O+ 0O0

OO0 A A A "1 0000

OO 00000 drdd

-

—

-

—

11.

m
_A — o
[aa]
_A — o
(a]
< Im
+ A — o
@]
n| A | -
<
O (@]
=]
e} O—1O0O A0 A dAdA
@) O-HOAO A O H
oM OCOAdd0OdAdA
< OCO0OO0O0OAAAA

12.

13.

plc karnaugh - 13.7

DA + ACD
ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
ACD + ACD + ACD

AD + ACD

X = AB+A+(C+D)(C+D)(C+D)

X=A+B+CD
CD CD D

@]
Ol

1 1 1

>
o]
[EEN

plc operation - 14.1

14. PLC OPERATION

Topics:
» The computer structure of aPLC
* The sanity check, input, output and logic scans
 Status and memory types

Objectives:
* Understand the operation of a PLC.

14.1 INTRODUCTION

For smple programming the relay model of the PLC is sufficient. As more com-
plex functions are used the more complex vonNeumann model of the PLC must be used.
A vonNeumann computer processes oneinstruction at atime. Most computers operate this
way, although they appear to be doing many things at once. Consider the computer com-
ponents shown in Figure 14.1.

Keyboard
(Input) \

- x86 » SVGA Screen
Serial CPU (Output)
Mouse
(Inputy | o

(Storage) (Storage)

Figure14.1 Simplified Personal Computer Architecture

Input is obtained from the keyboard and mouse, output is sent to the screen, and
the disk and memory are used for both input and output for storage. (Note: the directions
of these arrows are very important to engineers, always pay attention to indicate where
information is flowing.) Thisfigure can be redrawn asin Figure 14.2 to clarify the role of

inputs

inputs

and outputs.

plc operation - 14.2

|

. S I

Input circuits | computer
I
I

Keyboard

Input Uart

output circuits

|
|
|
|
|
|
—?
|

Graphics
card

outputs

/'/'I

Mouse

Serial Input Uart

I

I

I
-

I

I

I
e

I

I

I

I

I

I

I

I

—

/'ﬂ x86 CPU
|

|

~
/

M onitoi

Digital output

—~ <

/ Disk Controller

I

Memory ICs

Disk

storage

Figure14.2 An Input-Output Oriented Architecture

N

|
|
|
_LLED display
|
|
|
|
|
|
|

In this figure the data enters the left side through the inputs. (Note: most engineer-
ing diagrams have inputs on the left and outputs on the right.) It travels through buffering
circuits before it enters the CPU. The CPU outputs data through other circuits. Memory
and disks are used for storage of datathat is not destined for output. If we look at a per-
sonal computer as acontroller, it is controlling the user by outputting stimuli on the
screen, and inputting responses from the mouse and the keyboard.

A PLC isaso acomputer controlling a process. When fully integrated into an
application the anal ogies become;

inputs - the keyboard is analogous to a proximity switch
input circuits - the serial input uart is like a 24V dc input card
computer - the x86 CPU islike a PLC CPU unit

output circuits - agraphics card is like atriac output card
outputs - amonitor islike alight
storage - memory in PLCsis similar to memoriesin personal computers

plc operation - 14.3

It isaso possible to implement a PL C using anormal Personal Compuiter,
although thisis not advisable. In the case of a PLC the inputs and outputs are designed to
be more reliable and rugged for harsh production environments.

14.2 OPERATION SEQUENCE

All PLCs have four basic stages of operations that are repeated many times per
second. Initially when turned on the first timeit will check it’s own hardware and software
for faults. If there are no problemsit will copy all the input and copy their values into
memory, thisis called the input scan. Using only the memory copy of the inputs the ladder
logic program will be solved once, thisis called the logic scan. While solving the ladder
logic the output values are only changed in temporary memory. When the ladder scan is
done the outputs will updated using the temporary values in memory, thisis called the out-
put scan. The PLC now restarts the process by starting a self check for faults. This process
typically repeats 10 to 100 times per second asis shown in Figure 14.3.

Sdfl input| logic| output | Selff input| logic| output | Selff input| logic
test| scan | solve| scan | test| scan | solve| scan | test| scan | solve
| —>
- ranges from <1 to 100 ms are possible time
PLC turnson

SELF TEST - Checksto seeif all cardserror free, reset watch-dog timer, etc. (A watchdog
timer will cause an error, and shut down the PLC if not reset within a short period of
time - thiswould indicate that the ladder logic is not being scanned normally).

INPUT SCAN - Reads input values from the input cards, and copies their values to mem-
ory. This makes the PL C operation faster, and avoids cases where an input changes
from the start to the end of the program (e.g., an emergency stop). There are special
PL C functions that read the inputs directly, and avoid the input tables.

LOGIC SOLVE/SCAN - Based on the input table in memory, the program is executed 1
step at atime, and outputs are updated. Thisisthe focus of the later sections.

OUTPUT SCAN - The output table is copied from memory to the outputs. These then
drive the output devices.

Figure14.3 PLC Scan Cycle

The input and output scans often confuse the beginner, but they are important. The

plc operation - 14.4

input scan takes a snapshot of the inputs, and solves the logic. This prevents potential
problems that might occur if an input that is used in multiple placesin the ladder logic pro-
gram changed while half way through aladder scan. Thus changing the behaviors of half
of the ladder logic program. This problem could have severe effects on complex programs
that are developed later in the book. One side effect of the input scan isthat if achangein
input istoo short in duration, it might fall between input scans and be missed.

When the PLC isinitially turned on the normal outputs will be turned off. This
does not affect the values of the inputs.

14.2.1 The Input and Output Scans

When the inputs to the PL C are scanned the physical input values are copied into
memory. When the outputs to a PLC are scanned they are copied from memory to the
physical outputs. When the ladder logic is scanned it uses the valuesin memory, not the
actual input or output values. The primary reason for doing thisis so that if a program uses
an input value in multiple places, achange in the input value will not invalidate the logic.
Also, if output bits were changed as each bit was changed, instead of all at once at the end
of the scan the PLC would operate much slower.

14.2.2 The L ogic Scan

Ladder logic programs are modelled after relay logic. In relay logic each element
in the ladder will switch as quickly as possible. But in a program elements can only be
examines one at atime in afixed sequence. Consider the ladder logic in Figure 14.4, the
ladder logic will be interpreted |eft-to-right, top-to-bottom. In the figure the ladder logic
scan begins at the top rung. At the end of the rung it interprets the top output first, then the
output branched below it. On the second rung it solves branches, before moving along the
ladder logic rung.

plc operation - 14.5

5 6 9 11@

Figure14.4 Ladder Logic Execution Sequence

The logic scan sequence become important when solving ladder logic programs
which use outputs as inputs, aswe will seein Chapter 8. It also becomes important when
considering output usage. Consider Figure 14.5, the first line of ladder logic will examine
input A and set output X to have the same value. The second line will examine input B and
set the output X to have the opposite value. So the value of X was only equal to A until the
second line of ladder logic was scanned. Recall that during the logic scan the outputs are
only changed in memory, the actual outputs are only updated when the ladder logic scan is
complete. Therefore the output scan would update the real outputs based upon the second
line of ladder logic, and the first line of ladder logic would be ineffective.

’* CF

B OF

Note: It isacommon mistake for beginners to unintentionally repeat
the same ladder logic output more than once. Thiswill basically

invalidate the first output, in this case the first line will never do
anything.

Figure14.5 A Duplicated Output Error

plc operation - 14.6

14.3 PLC STATUS

The lack of keyboard, and other input-output devicesis very noticeable on a PLC.
On the front of the PLC there are normally limited status lights. Common lights indicate;

power on - thiswill be on whenever the PLC has power
program running - thiswill often indicate if aprogram isrunning, or if no program

isrunning
fault - thiswill indicate when the PLC has experienced a major hardware or soft-
ware problem

These lights are normally used for debugging. Limited buttons will also be pro-
vided for PLC hardware. The most common will be a run/program switch that will be
switched to program when maintenance is being conducted, and back to run when in pro-
duction. Thisswitch normally requires akey to keep unauthorized personnel from altering
the PL C program or stopping execution. A PLC will ailmost never have an on-off switch or
reset button on the front. This needs to be designed into the remainder of the system.

The status of the PLC can be detected by ladder logic also. It is common for pro-
gramsto check to seeif they are being executed for the first time, as shown in Figure 14.6.
The’first scan’ or 'first pass' input will be true the very first time the ladder logic is
scanned, but false on every other scan. In this case the address for ’first pass' in Control-
Logix is’S:FS . With the logic in the example the first scan will seal on’light’, until
"clear’ isturned on. So the light will turn on after the PLC has been turned on, but it will
turn off and stay off after ’clear’ isturned on. The 'first scan’ bit is aso referred to at the
"first pass’ bit.

first scan
SFS Cleer

M Q light
light

Figure14.6 An program that checksfor the first scan of the PLC

144 MEMORY TYPES

There are afew basic types of computer memory that are in use today.

plc operation - 14.7

RAM (Random Access Memory) - this memory isfast, but it will loseits contents
when power islogt, thisis known as volatile memory. Every PLC uses this
memory for the central CPU when running the PLC.

ROM (Read Only Memory) - thismemory is permanent and cannot be erased. Itis
often used for storing the operating system for the PLC.

EPROM (Erasable Programmable Read Only Memory) - thisis memory that can
be programmed to behave like ROM, but it can be erased with ultraviol et light
and reprogrammed.

EEPROM (Electronically Erasable Programmable Read Only Memory) - This
memory can store programs like ROM. It can be programmed and erased using
avoltage, so it is becoming more popular than EPROMSs.

Hard Disk - Software based PL Cs run on top of another operating system (such as
Windows) that will read and save values to a hard drive, in case power islost.

All PLCsuse RAM for the CPU and ROM to store the basic operating system for
the PLC. When the power is on the contents of the RAM will be kept, but the issueiswhat
happens when power to the memory islost. Originally PLC vendors used RAM with a bat-
tery so that the memory contents would not be lost if the power was lost. This method is
still in use, but islosing favor. EPROM s have also been a popular choice for programming
PLCs. The EPROM is programmed out of the PLC, and then placed in the PLC. When the
PLC isturned on the ladder logic program on the EPROM isloaded into the PLC and run.
This method can be very reliable, but the erasing and programming technique can be time
consuming. EEPROM memories are a permanent part of the PLC, and programs can be
stored in them like EPROM. Memory costs continue to drop, and newer types (such as
flash memory) are becoming available, and these changes will continue to impact PLCs.

14.5 SOFTWARE BASED PLCS

The dropping cost of personal computersisincreasing their use in control, includ-
ing the replacement of PLCs. Software isinstalled that allows the personal computer to
solve ladder logic, read inputs from sensors and update outputs to actuators. These are
important to mention here because they don’t obey the previous timing model. For exam-
ple, if the computer isrunning agame it may slow or halt the computer. Thisissue and
others are currently being investigated and good solutions should be expected soon.

14.6 SUMMARY

» A PLC and computer are similar with inputs, outputs, memory, etc.

» The PLC continuously goes through a cycle including a sanity check, input scan,
logic scan, and output scan.

» While the logic is being scanned, changes in the inputs are not detected, and the

plc operation - 14.8

outputs are not updated.
* PLCsuse RAM, and sometime EPROM s are used for permanent programs.

14.7 PRACTICE PROBLEMS

1. DoesaPLC normally contain RAM, ROM, EPROM and/or batteries.

2. What are the indicator lights on a PLC used for?

3. A PLC can only go through the ladder logic a few times per second. Why?

4. What will happen if the scan time for a PLC is greater than the time for an input pulse? Why?
5. What is the difference between a PL C and a desktop computer?

6. Why do PLCs do a self check every scan?

7. Will the test time for a PLC be long compared to the time required for a simple program.

8. What iswrong with the following ladder logic? What will happen if it is used?

(L@(L@

9. What is the address for a memory location that indicates when a PLC has just been turned on?

14.8 ASSIGNMENT PROBLEMS

1. Describe the basic steps of operation for a PLC after it is turned on.
2. Repeating anormal output in ladder logic should not be done normally. Discuss why.

3. Why does removing a battery from some older PL Cs clear the memory?

plc operation - 15.1

15.1 PRACTICE PROBLEM SOLUTIONS

1. Every PLC contains RAM and ROM, but they may also contain EPROM or batteries.

2. Diagnostic and maintenance

3. Even if the program was empty the PLC would still need to scan inputs and outputs, and do a
self check.

4. The pulse may be missed if it occurs between the input scans

5. Some key differences include inputs, outputs, and uses. A PLC has been designed for the fac-
tory floor, so it does not have inputs such as keyboards and mice (although some newer types
can). They also do not have outputs such as a screen or sound. Instead they have inputs and
outputs for voltages and current. The PLC runs user designed programs for specialized tasks,
whereas on a personal computer it is uncommon for a user to program their system.

6. This helps detect faulty hardware or software. If an error were to occur, and the PLC continued
operating, the controller might behave in an unpredictable way and become dangerous to peo-
ple and equipment. The self check helps detect these types of faults, and shut the system down
safely.

7. Yes, the self check isequivalent to about 1msin many PLCs, but asingle program instructionis
about 1 micro second.

8. The normal output Y is repeated twice. In this example the value of Y would always match B,
and the earlier rung with A would have no effect on Y.

9. S2:1/14 for micrologix, S2:1/15 for PLC-5, S:FS for ControlLogix processor

plctimers- 16.1

16. LATCHES, TIMERS, COUNTERS AND MORE

Topics:
* Latches, timers, counters and MCRs
* Design examples
* Internal memory locations are available, and act like outputs

Objectives:
» Understand latches, timers, counters and MCRs.
* To be able to select simple internal memory bits.

16.1 INTRODUCTION

More complex systems cannot be controlled with combinatorial logic alone. The
main reason for thisisthat we cannot, or choose not to add sensorsto detect all conditions.
In these cases we can use events to estimate the condition of the system. Typical events
used by a PLC include;

first scan of the PLC - indicating the PLC has just been turned on
time since an input turned on/off - adelay

count of events - to wait until set number of events have occurred
latch on or unlatch - to lock something on or turn it off

The common theme for al of these eventsisthat they are based upon one of two
guestions "How many?' or "How long?'. An example of an event based deviceis shown
in Figure 16.1. The input to the device is a push button. When the push button is pushed
the input to the device turnson. If the push button is then released and the device turns off,
itisalogical device. If when the push button is release the device stays on, iswill be one
type of event based device. To reiterate, the device is event based if it can respond to one
or more things that have happened before. If the device responds only one way to the
immediate set of inputs, it islogical.

plctimers- 16.2

e.g. A Start Push Button

Push Button
+V S
O Device
On/Off
A
Push Button ————
Device T (Logical Response)

(Event Response)

Device |

p time

Figure16.1 An Event Driven Device

16.2 LATCHES

A latch islike a sticky switch - when pushed it will turn on, but stick in place, it
must be pulled to release it and turn it off. A latch in ladder logic uses one instruction to
latch, and a second instruction to unlatch, as shown in Figure 16.2. The output with an L
inside will turn the output D on when the input A becomes true. D will stay on even if A
turns off. Output D will turn off if input B becomes true and the output with aU inside
becomestrue (Note: thiswill seem alittle backwards at first). If an output has been latched
on, it will keep itsvalue, even if the power has been turned off.

FTT

Figure16.2 A Ladder Logic Latch

plctimers- 16.3

The operation of the ladder logic in Figure 16.2 isillustrated with atiming diagram
in Figure 16.3. A timing diagram shows values of inputs and outputs over time. For exam-
plethe value of input A startslow (false) and becomes high (true) for a short while, and
then goes low again. Here when input A turns on both the outputs turn on. Thereisadlight
delay between the change in inputs and the resulting changes in outputs, due to the pro-
gram scan time. Here the dashed lines represent the output scan, sanity check and input
scan (assuming they are very short.) The space between the dashed linesisthe ladder logic
scan. Consider that when A turns on initially it is not detected until the first dashed line.
Thereisthen adelay to the next dashed line while the ladder is scanned, and then the out-
put at the next dashed line. When A eventually turns off, the normal output C turns off, but
the latched output D stays on. Input B will unlatch the output D. Input B turns on twice,
but the first timeit isonis not long enough to be detected by an input scan, so it isignored.
The second timeit ison it unlatches output D and output D turns off.

Timing Diagram event too short to be noticed (aliasing)

A L I R Coo | :
AL LT
! | | | ; T | | : |
R EEE A
B . o i L A :
S I] U S B R
ci [Nt |
' I I Lo ! ! | I b | !
E | \.\(A E I :(| |
D, | , | ! T . 7 |\:' |
| T J | | | \ | | | | : | |
| | I | | | A | I I | | i |

T R T >

C‘Ig:es indicate PLC input/output refresh times. At thistime

all of the outputs are updated, and all of the inputs are read.
Notice that some inputs can be ignored if at the wrong time,

and there can be a delay between a change in input, and a change
in output.

The space between the lines is the scan time for the ladder logic.
The spaces may vary if different parts of the ladder diagram are
executed each time through the ladder (as with state space code).
The space is afunction of the speed of the PLC, and the number of
Ladder logic elements in the program.

Figure16.3 A Timing Diagram for the Ladder Logic in Figure 16.2

plctimers- 16.4

The timing diagram shown in Figure 16.3 has more details than are normal in a
timing diagram as shown in Figure 16.4. The brief pulse would not normally be wanted,
and would be designed out of a system either by extending the length of the pulse, or

decreasing the scan time. An ideal system would run so fast that aliasing would not be
possible.

Figure16.4 A Typical Timing Diagram

A more elaborate example of latchesis shown in Figure 16.5. In this example the
addresses are for an older Allen-Bradley Micrologix controller. The inputs begin with 1/,
followed by an input number. The outputs begin with O/, followed by an output number.

plctimers- 16.5

1/0 00
1/0 o/
a
1/1 o/
>y
1/0 02
1/1 O/2
A
/0 | M 1 1
1/1 [1
ool [1 [N e e
o/ [— | [L
o2 L] L] L
|

Figure16.5 A Latch Example

A normal output should only appear once in ladder logic, but latch and unlatch
instructions may appear multiple times. In Figure 16.5 anormal output O/2 is repeated
twice. When the program runs it will examine the fourth line and change the value of O/2
in memory (remember the output scan does not occur until the ladder scan is done.) The
last lineisthen interpreted and it overwrites the value of O/2. Basically, only thelast line
will change O/2.

Latches are not used universally by all PLC vendors, others such as Siemens use

plctimers- 16.6

flip-flops. These have asimilar behavior to latches, but adifferent notation asillustrated in
Figure 16.6. Here the flip-flop is an output block that is connected to two different logic
rungs. The first rung shown has an input A connected to the S setting terminal. When A
goes true the output value Q will go true. The second rung has an input B connected to the
R resetting terminal. When B goes true the output value Q will be turned off. The output Q
will always be the inverse of Q. Notice that the Sand R values are equivalent to the L and
U values from earlier examples.

A
S Q
B _
R Q
A
Al 1 1 M
B L1 - ——
o)) — L
Q[——
>

Figure16.6 Flip-Flopsfor Latching Values

16.3TIMERS

There are four fundamental types of timers shown in Figure 16.7. An on-delay
timer will wait for a set time after aline of ladder logic has been true before turning on, but
it will turn off immediately. An off-delay timer will turn on immediately when aline of
ladder logicistrue, but it will delay before turning off. Consider the example of an old car.
If you turn the key in the ignition and the car does not start immediately, that is an on-
delay. If you turn the key to stop the engine but the engine doesn't stop for afew seconds,
that is an off delay. An on-delay timer can be used to allow an oven to reach temperature
before starting production. An off delay timer can keep cooling fans on for a set time after

plctimers- 16.7

the oven has been turned off.

on-delay off-delay
retentive RTO RTF
nonretentive TON TOF
TON - Timer ON
TOF - Timer OFf

RTO - Retentive Timer On
RTF - Retentive Timer oFf

Figure16.7 The Four Basic Timer Types

A retentive timer will sum all of the on or off time for atimer, even if the timer
never finished. A nonretentive timer will start timing the delay from zero each time. Typi-
cal applications for retentive timers include tracking the time before maintenance is
needed. A non retentive timer can be used for a start button to give a short delay before a
conveyor begins moving.

An example of an Allen-Bradley TON timer isshown in Figure 16.8. The rung has
asingle input A and afunction block for the TON. (Note: Thistimer block will look differ-
ent for different PLCs, but it will contain the same information.) The information inside
the timer block describesthe timing parameters. Thefirst itemisthetimer’example’. This
isalocation in the PLC memory that will store the timer information. The preset isthe
millisecond delay for thetimer, in thiscase it is 4s (4000ms). The accumulator value gives
the current value of the timer as 0. While the timer is running the accumulated value will
increase until it reaches the preset value. Whenever the input A is true the EN output will
be true. The DN output will be false until the accumulator has reached the preset value.
The EN and DN outputs cannot be changed when programming, but these are important
when debugging aladder logic program. The second line of ladder logic usesthetimer DN
output to control another output B.

plctimers- 16.8

TON
A| | Timer example
] Presst 4000 [(EN)
Accumulator O
(DN)
example.DN 5

A | | I | ! | |

I | I | : i |
AL T 1 1

I | I | : i |

| | | | |
example.EN I | T I D B

: : | o i :

example.DN | | | 1 : |

1 | I | I |

| | | ! |

example.T | | ! i—|

: : | Do i :

B | | | 1 : |

1 | I | I |

g : 4. e

I D ! I [

m_o/\/ 1

example, : | | —
0 3 6 9 13 14 17 19

Note: For the older Allen-Bradley equipment the notations are similar, although the
tag names are replaced with a more strict naming convention. The timers are kept
in’files’ with names starting with’ T4:”, followed by atimer number. The exam-
ples below show the older (PLC-5 and micrologix notations compared to the new
RS-Logix (5000) notations. In the older PL Cs the timer is given a unique number,
in the RSLogix 5000 processorsit is given atag name (in this case’t’) and type

"TIMER'.
Older Newer
T4:0/DN t.DN
T4:0/EN t.EN
T4:0.PRE t.PRE
T4:0.ACC t.ACC
T4:0/TT tTT

Figure16.8 An Allen-Bradley TON Timer

plctimers- 16.9

Thetiming diagram in Figure 16.8 illustrates the operation of the TON timer with
a4 second on-delay. A isthe input to the timer, and whenever the timer input istrue the
EN enabled bit for the timer will aso betrue. If the accumulator value is equal to the pre-
set value the DN bit will be set. Otherwise, the TT bit will be set and the accumulator value
will begin increasing. Thefirst time Aistrue, it isonly true for 3 seconds before turning
off, after this the value resets to zero. (Note: in aretentive time the value would remain at
3 seconds.) The second time Aistrue, it ison more than 4 seconds. After 4 secondsthe TT
bit turns off, and the DN bit turns on. But, when A is released the accumulator resets to
zero, and the DN bit is turned off.

A value can be entered for the accumulator while programming. When the pro-
gram is downloaded this value will be in the timer for the first scan. If the TON timer is
not enabled the value will be set back to zero. Normally zero will be entered for the preset
value.

Thetimer in Figure 16.9 isidentical to that in Figure 16.8, except that it is reten-
tive. The most significant difference is that when the input A is turned off the accumulator
value does not reset to zero. As aresult the timer turns on much sooner, and the timer does
not turn off after it turnson. A reset instruction will be shown later that will allow the
accumulator to be reset to zero.

RTO
AI | Timer example ——(EN)
I Preset 4000
Accum. 0 —(DN)
A | | = o
| | 1 1 1
A I M |]
| | | | : | i
example.EN] ; I e N
I I ! | | | i
example.DN : | : i ' : :
. : — : ! [
I I ! | | \ i
examplelT] — | ' i
I i ! X ; : i
l i 4! | o
: 3 | T ! [,
| i r : | i
example ACC 0 | | : : | . |
| [! ! i

exampleT—1 |

plc timers- 16.10

Figure16.9 An Allen Bradley Retentive On-Delay Timer

An off delay timer is shown in Figure 16.10. This timer has atime base of 0.01s,
with a preset value of 3500, giving atotal delay of 3.5s. As before the EN enable for the
timer matches the input. When the input A istrue the DN bit ison. Isis also on when the
input A has turned off and the accumulator is counting. The DN bit only turns off when the
input A has been off long enough so that the accumulator value reaches the preset. This
type of timer is not retentive, so when the input A becomes true, the accumulator resets.

TOF
| A| | Timer example ——(EN)
‘] Preset 3500
Accum. 0 —(DN)
A | | (. | I
| | [| |
A 1l | 1
| | . : ! i
example.EN ‘ L I
example.DN ; || | :

| | |
| . | |
3 | - : |
example. AC | : | | L
0 , B l

0 3 6 9.5 10 16 18 ' 20

Figure 16.10 An Allen Bradley Off-Delay Timer

Retentive off-delay (RTF) timers have few applications and are rarely used, there-
fore many PL C vendors do not include them.

An example program is shown in Figure 16.11. In total there are four timers used
inthisexample, t_ 1,t 2,t 3, andt_4. Thetimer instructions are shown with the accumu-
lator values omitted, assuming that they start with avalue of zero. All four different types
of counters have theinput 'go’. Output 'done’ will turn on when the TON countert_1is
done. All four of the timers can be reset with input "reset’.

plctimers- 16.11

g? TON t 1
| I delay 4 sec
RTO t2
gT I delay 4 sec
go | TOF t 3
| delay 4 sec
90 RTF (4
I delay 4 sec
1PN done
| N >
reset
RES t1
reset
RES t 2
reset
RES t3
reset
RES t 4

Figure 16.11 A Timer Example

A timing diagram for this example is shown in Figure 16.12. Asinput go isturned
on the TON and RTO timers begin to count and reach 4s and turn on. When reset becomes
true it resets both timers and they start to count for another second before go is turned off.
After the input is turned off the TOF and RTF both start to count, but neither reaches the
4s preset. The input go isturned on again and the TON and RTO both start counting. The
RTO turns on one second sooner because it had 1s stored from the 7-8s time period. After
go turns off again both the off delay timers count down, and reach the 4 second delay, and
turn on. These patterns continue across the diagram.

plc timers- 16.12

A
g0 BN | o B
I [T [[1] I [
reset | | LI L] [11 | L[
I [T [[1] I [
I [[1] I I—II
L 1DN I_I||| 11 | T
I [T [[1] I [
t 2DN Ml |] Ll 1l
B I [T [[1] I [
| L1l || |l | L 1]
t 30N T o L s
I [T [[1] I [
t 4.DN rrr 1 L1 | |1
- I [T [[1] I [
I [11 [1] I []
donel 1 [L1 !]
TTTT |I|III|I|I|I|III|I|IIIIIIIIIIIIIIIIIIIIItFne
0 5 10 15 20 25 30 35 40 (sec)

Figure16.12 A Timing Diagram for Figure 16.11

Consider the short ladder logic program in Figure 16.13 for control of a heating
oven. The system is started with a Sart button that seals in the Auto mode. This can be
stopped if the Sop button is pushed. (Remember: Stop buttons are normally closed.)
When the Auto goes on initially the TON timer is used to sound the horn for the first 10
seconds to warn that the oven will start, and after that the horn stops and the heating coils
start. When the oven is turned off the fan continues to blow for 300s or 5 minutes after.

plctimers- 16.13

Start Sto
| ? Q Auto
|

Auto TON
Timer heat
Delay 10s

TOF
Timer cooling
Delay 300s

heat. TT

Q Horn
heat.DN . :

Q Heating Coils
cooling.DN

Q Fan

Note: For the remainder of the text | will use the shortened notation for timers
shown above. Thiswill save space and reduce confusion.

Figure 16.13 A Timer Example

A program is shown in Figure 16.14 that will flash a light once every second.
When the PLC starts, the second timer will be off and thet_on.DN bit will be off, there-
fore the normally closed input to the first timer will be on. t_off will start timing until it
reaches 0.5s, when it is done the second timer will start timing, until it reaches 0.5s. At
that point t_on.DN will become true, and the input to thefirst time will become false. t_off
isthen set back to zero, and thent_on is set back to zero. And, the process starts again
from the beginning. In this example the first timer is used to drive the second timer. This
type of arrangement is normally called cascading, and can use more that two timers.

plc timers- 16.14

\—f\y\ Timer t_off
Delay 0.5s
| Timer t_on
Delay 0.5s
tonTT
—|[I Q Light

Figure 16.14 Another Timer Example

16.4 COUNTERS

There are two basic counter types. count-up and count-down. When the input to a
count-up counter goes true the accumulator value will increase by 1 (no matter how long
theinput istrue.) If the accumulator val ue reaches the preset value the counter DN bit will
be set. A count-down counter will decrease the accumulator value until the preset valueis
reached.

An Allen Bradley count-up (CTU) instruction is shown in Figure 16.15. The
instruction requires memory in the PLC to store values and status, in this case is example.
The preset value is 4 and the value in the accumulator is 2. If the input A were to go from
falseto true the value in the accumulator would increaseto 3. If A were to go off, then on
again the accumulator value would increase to 4, and the DN bit would go on. The count
can continue above the preset value. If input B becomes true the value in the counter accu-
mulator will become zero.

plc timers- 16.15

CTuU
A| | Counter example (CU)
| | Preset 4
Accum. 2 (DN)

example.DN
| | X
|
B
I I @example

Note: The notations for older Allen-Bradley equipment are very similar to the newer
notations. The examples below show the older (PLC-5 and micrologix notations
compared to the new RS-Logix (5000) notations. In the older PL Csthe counter is
given a unique name, in the RSLogix 5000 processorsit is given aname (in this
case’c’) and thetype’ COUNTER’.

Older Newer
C5:0/DN c.DN
C5:.0/CU c.CU
C5:0.PRE c.PRE
C5.0.ACC c.ACC
C5.0/CD c.CD

Figure 16.15 An Allen Bradley Counter

Count-down counters are very similar to count-up counters. And, they can actually
both be used on the same counter memory location. Consider the examplein Figure 16.16,
the example input cnt_up drives the count-up instruction for counter example. Input
cnt_down drives the count-down instruction for the same counter location. The preset
value for a counter is stored in memory location example so both the count-up and count-
down instruction must have the same preset. Input reset will reset the counter.

plc timers- 16.16

cnip CTU example
| preset 3
cnt__d|own CTD example
| preset 3
reset
RES example
example.DN output_thingy
A
cntup | ML LML L M rere
cnt_down M
reset [M
example.PN m] —
output_thingy
>

Figure 16.16 A Counter Example

Thetiming diagram in Figure 16.16 illustrates the operation of the counter. If we
assume that the value in the accumulator starts at 0, then the positive edges on the cnt_up
input will causeit to count up to 3 where it turnsthe counter example done bit on. It isthen
reset by input reset and the accumul ator value goes to zero. Input cnt_up then pulsesagain
and causes the accumulator value to increase again, until it reaches a maximum of 5. Input
cnt_down then causes the accumulator value to decrease down below 3, and the counter
turns off again. Input cnt_up then causesiit to increase, but input reset resets the accumula-
tor back to zero again, and the pulses continue until 3 is reached near the end.

plctimers- 16.17

The program in Figure 16.17 is used to remove 5 out of every 10 parts from a con-
veyor with a pneumatic cylinder. When the part is detected both counters will increase
their values by 1. When the sixth part arrives the first counter will then be done, thereby
allowing the pneumatic cylinder to actuate for any part after the fifth. The second counter
will continue until the eleventh part is detected and then both of the counters will be reset.

|

Counter parts_cnt
Preset 6

CTu
Counter parts_max
Preset 11

parts max.DN
I |T @ parts_cnt
@ parts_max
par'|[sTcnt.DN part|p|resent pneumatic
R || cylinder

Figure 16.17 A Counter Example

16.5 MASTER CONTROL RELAYS(MCRs)

In an electrical control system aMaster Control Relay (MCR) is used to shut down
asection of an electrical system, as shown earlier in the electrical wiring chapter. This
concept has been implemented in ladder logic also. A section of ladder logic can be put
between two lines containing MCR’s. When the first MCR caoil is active, al of the inter-
mediate ladder logic is executed up to the second line with an MCR coil. When the first

MCR coil ininactive, the ladder logic is still examined, but all of the outputs are forced
off.

Consider the examplein Figure 16.18. If Aistrue, then the ladder logic after will

plc timers- 16.18

be executed as normal. If Aisfalsethe following ladder logic will be examined, but all of
the outputs will be forced off. The second MCR function appears on aline by itself and
marks the end of the MCR block. After the second MCR the program execution returns to
normal. While Aistrue, X will equal B, and Y can be turned on by C, and off by D. But, if
A becomes false X will be forced off, and Y will beleft initslast state. Using MCR blocks
to remove sections of programs will not increase the speed of program execution signifi-
cantly because the logic is till examined.

MC

X

<

POO0G

Note: If anormal input isused inside an MCR block it will be forced off. If the
output is also used in other MCR blocks the last one will be forced off. The
MCR is designed to fully stop an entire section of ladder logic, and is best
used thisway in ladder logic designs.

Figure 16.18 MCR Instructions

If the MCR block contained another function, such asa TON timer, turning off the
MCR block would force the timer off. As ageneral rule normal outputs should be outside
MCR blocks, unless they must be forced off when the MCR block is off.

16.6 INTERNAL BITS

Simple programs can use inputs to set outputs. More complex programs also use
internal memory locations that are not inputs or outputs. These Boolean memory locations
are sometimes referred to as’internal relays’ or ’control relays . Knowledgeable program-
merswill often refer to these as’ bit memory’. In the newer Allen Bradley PLCsthese can
be defined as variables with the type 'BOOL’. The programmer is free to use these mem-

plc timers- 16.19

ory locations however they see fit.

NOTE: Inthe older Allen Brad-
ley PLCs these addresses
begin with’'B3’ by default.
Thefirst bit in memory is
'B3:0/0’, wherethefirst zero
represents the first 16 bit
word, and the second zero
represents the first bit in the
word. The sequence of bits
is shown to the right.

bit memory bit memory
number | location number | location
0 B3:0/0 18 B3:1/2
1 B3:0/1 19 B3:1/3
2 B3:0/2 20 B3:1/4
3 B3:0/3 21 B3:1/5
4 B3:0/4 22 B3:1/6
5 B3:0/5 23 B3:1/7
6 B3:0/6 24 B3:1/8
7 B3:0/7 25 B3:1/9
8 B3:0/8 26 B3:1/10
9 B3:0/9 27 B3:1/11
10 B3:0/10 28 B3:1/12
11 B3:0/11 29 B3:1/13
12 B3:0/12 30 B3:1/14
13 B3:0/13 31 B3:1/15
14 B3:0/14 32 B3:2/0
15 B3:0/15 33 B3:2/1
16 B3:1/0 34 B3:2/2
17 B3:1/1 etc... etc...

An example of bit memory usage is shown in Figure 16.19. The first ladder logic
rung will turn on the internal memory bit’A_pushed’ (e.g., B3:0/0) when input "hand_A’
isactivated, and input 'clear’ is off. (Notice that the Boolean memory is being used as
both an input and output.) The second line of ladder logic similar. In this case when both
inputs have been activated, the output "presson’ is active.

plc timers- 16.20

hand_A clear
(1:0/0) (1:0/2) A_pushed
M Q (B3:0/0)
A_pushed
(B3:0/0)
hand_B clear
(1:0/1) ('-0{2) B_pushed
- N (B3.0/1)
B _pu
(B3:0/1)
A _pushed BJ)UShEd
(B3:0/0) (B3:0/1)
| | | | press_on
|| || (0:0/0)

Figure 16.19 An example using bit memory (older notations are in parentheses)

Bit memory was presented briefly here because it isimportant for design tech-
niques in the following chapters, but it will be presented in greater depth after that.

16.7 DESIGN CASES

The following design cases are presented to help emphasize the principles pre-
sented in this chapter. | suggest that you try to develop the ladder logic before looking at
the provided solutions.

16.7.1 Basic CountersAnd Timers

Problem: Develop the ladder logic that will turn on an output light, 15 seconds
after switch A has been turned on.

plctimers- 16.21

Solution:

A TON delay
[| Preset 15s

delay.DN
| 1 id Light Q
[

Figure16.20 A Simple Timer Example

Problem: Develop the ladder logic that will turn on alight, after switch A has been
closed 10 times. Push button B will reset the counters.

Solution:
A CTU count
Preset 10
Accum. O
count.DN)
Light Q
B count
RES

Figure16.21 A Simple Counter Example

16.7.2 More Timers And Counters

Problem: Develop a program that will latch on an output B 20 seconds after input
A has been turned on. After A is pushed, there will be a 10 second delay until A can have
any effect again. After A has been pushed 3 times, B will be turned off.

plc timers - 16.22

Solution:

A

|| On L

[

On TON t 0
Time base: 1.0
Preset 20

t 0.DN TON t1
Time base: 1.0
Preset 10

t 1.DN

On CTU count
Preset 3
Accum. 0

count.DN Light @

Figure 16.22 A More Complex Timer Counter Example

16.7.3 Deadman Switch

Problem: A motor will be controlled by two switches. The Go switch will start the
motor and the Sop switch will stop it. If the Sop switch was used to stop the motor, the
Go switch must be thrown twice to start the motor. When the motor is active alight should
be turned on. The Sop switch will be wired as normally closed.

plc timers- 16.23

Solution:
Motor Stop
I I \H C5:0 RES
Go Motor T count
| | \I\!\ CTU
| | | Preset 2
Accum. 1
count.DN Stop
|] [Motor
I I O
Motor .
| | Light Q
I

Consider:
What will happen if stop is pushed and the motor is not running?

Figure 16.23 A Motor Starter Example

16.7.4 Conveyor

Problem: A conveyor is run by switching on or off a motor. We are positioning
parts on the conveyor with an optical detector. When the optical sensor goes on, we want
to wait 1.5 seconds, and then stop the conveyor. After adelay of 2 seconds the conveyor
will start again. We need to use a start and stop button - alight should be on when the sys-
tem isactive.

plc timers- 16.24

Solution:
Go Stop Light
I
Light
Part Detect TON incoming
Preset 1.5s
Iir;comi ng.DN TON stopped
[Preset 2s

Motor

stopped.DN {(ncoming
RES

stopped.DN opped
RES

Consider: What is assumed about part arrival and departure?

incoming.DN ILlight

O

Figure 16.24 A Conveyor Controller Example

16.7.5 Accept/Reject Sorting

Problem: For the conveyor in the last case we will add a sorting system. Gages
have been attached that indicate good or bad. If the part is good, it continues on. If the part
is bad, we do not want to delay for 2 seconds, but instead actuate a pneumatic cylinder.

plc timers- 16.25

Solution:
Go =10 Light
I
Light
Part Detect TON incoming

Preset 1.5s
|ir;comi ng.DN |Pie\rt_Good TON stopped
[[

Preset 2s
incoming.DN Part_Good rejected
Ll /}/I/ TON
[I

Preset 0.5s
stopped.EN Light

bp I i g M otor
rejected.EN .
Cylind
stopped.DN . .
incoming [/ RES
‘ rejec%ed.DN
stopped.DN
stopped [RES
rejected.DN
7 rejected ([RES

Figure 16.25 A Conveyor Sorting Example

plc timers- 16.26

16.7.6 Shear Press

Problem: The basic requirements are,

1. A toggle start switch (TS1) and alimit switch on a safety gate (L S1) must both
be on before a solenoid (SOL 1) can be energized to extend a stamping cylinder
to the top of a part.

2. While the stamping solenoid is energized, it must remain energized until alimit
switch (LS2) isactivated. Thissecond limit switch indicates the end of astroke.
At this point the solenoid should be de-energized, thus retracting the cylinder.

3. When the cylinder isfully retracted alimit switch (LS3) is activated. The cycle
may not begin again until thislimit switch is active.

4. A cycle counter should also be included to allow counts of parts produced.
When this value exceeds 5000 the machine should shut down and alight lit up.

5. A safety check should be included. If the cylinder solenoid has been on for more
than 5 seconds, it suggests that the cylinder isjammed or the machine has a
fault. If thisisthe case, the machine should be shut down and a maintenance
light turned on.

plc timers- 16.27

Solution:
TS1 LISII ILIS3 Ei’:\l/r{t7cnt.DN SOL1 @
LS2 SoL1 @
extend.DN

SOL1 CTU part_cnt
Preset 5000
Accum. O
ISIOLl RTO extend
[
Preset 5s

extend.DN

LI GHT@
part_cnt.DN
RESET

extend @

- what do we need to do when the machine is reset?

Figure 16.26 A Shear Press Controller Example

16.8 SUMMARY

» Latch and unlatch instructions will hold outputs on, even when the power is
turned off.

* Timers can delay turning on or off. Retentive timerswill keep values, even when
inactive. Resets are needed for retentive timers.

» Counters can count up or down.

» When timers and counters reach a preset limit the DN bit is set.

plc timers- 16.28

* MCRs can force off a section of ladder logic.

16.9 PRACTICE PROBLEMS

1. What does edge triggered mean? What is the difference between positive and negative edge
triggered?

2. Arereset instructions necessary for al timers and counters?
3. What are the numerical limits for typical timers and counters?
4. If a counter goes below the bottom limit which counter bit will turn on?

5. @) Write ladder logic for amotor starter that has a start and stop button that uses latches. b)
Write the same ladder logic without latches.

6. Use atiming diagram to explain how an on delay and off delay timer are different.

7. For the retentive off timer below, draw out the status bits.

RTF
A .
Timer t
‘ | | (
‘ |] Preset 3.5s EN)
Accum. 0
—(DN)
A | | ! | I
I i ! ! i
I e S I e N
A | | | | ! |
I i : | : i
tEN E | | o
tDN : | | : | |
tTT | | | : ! |
| | | : ! i
I i ! | : i
	!	\
	!	\
	!	\
	!	\
	!	\
	!	\
tACC | | ! : ' —
I i ! | : i
0 3 6 10 16 18 ' 20

plc timers- 16.29

Accum. 1

Timer t
Preset 10s

RTO

8. Compl ete the timing diagrams for the two timers below.

t.EN
tTT
t.DN
t.ACC

(DN)

—EN)

Timer t
Preset 0.05s
Accum. O

TOF

t.EN
tTT
t.DN
t.ACC

225

200

150

45

15

plc timers- 16.30

9. Given the following timing diagram, draw the done bits for all four fundamental timer types.
Assume all start with an accumulated value of zero, and have a preset of 1.5 seconds.

LN S .
| | | | | | |
TON | | | | | | |
~— | | | | | | |
| | | | | | |
| | | | | | |
RTO| | | | | | | |
| | | | | | |
| | | | | | |
TOF| | | | | | | |
| | | | | | |
| | | | | | |
RTF| | | | | | | |
| | | | | | |
T
0 1 2 3 4 5 6 7

10. Design ladder logic that allows an RTO to behave like a TON.
11. Design ladder logic that uses atimer and counter to measure atime of 50.0 days.

12. Develop the ladder logic that will turn on an output (light), 15 seconds after switch (A) has
been turned on.

13. Develop the ladder logic that will turn on a output (light), after a switch (A) has been closed
10 times. Push button (B) will reset the counters.

14. Develop aprogram that will latch on an output (B), 20 seconds after input (A) has been turned
on. The timer will continue to cycle up to 20 seconds, and reset itself, until A has been turned
off. After the third time the timer has timed to 20 seconds, B will be unlatched.

15. A motor will be connected to aPL C and controlled by two switches. The GO switch will start
the motor, and the STOP switch will stop it. If the motor is going, and the GO switch isthrown,
thiswill also stop the motor. If the STOP switch was used to stop the motor, the GO switch
must be thrown twice to start the motor. When the motor isrunning, alight should be turned on
(asmall lamp will be provided).

16. In dangerous processes it is common to use two palm buttons that require a operator to use
both hands to start a process (this keeps hands out of presses, etc.). To develop thisthere are
two inputs that must be turned on within 0.25s of each other before a machine cycle may begin.

plc timers- 16.31

17. Design aconveyor control system that follows the design guidelines below.

- The conveyor has an optical sensor Sl that detects boxes entering aworkcell

- Thereis aso an optical sensor X that detects boxes leaving the workcell

- The boxes enter the workcell on a conveyor controlled by output C1

- The boxes exit the workcell on a conveyor controlled by output C2

- The controller must keep a running count of boxes using the entry and exit sen-
sors

- If there are more than five boxes in the workcell the entry conveyor will stop

- If there are no boxes in the workcell the exit conveyor will be turned off

- If the entry conveyor has been stopped for more than 30 seconds the count will be
reset to zero, assuming that the boxes in the workcell were scrapped.

18. Write aladder logic program that does what is described bel ow.
- When button A is pushed, alight will flash for 5 seconds.
- The flashing light will be on for 0.25 sec and off for 0.75 sec.
- If button A has been pushed 5 times the light will not flash until the system is
reset.
- The system can be reset by pressing button B

19. Write a program that will turn on aflashing light for the first 15 seconds after aPLC isturned
on. The light should flash for half a second on and half a second off.

20. A buffer can hold up to 10 parts. Parts enter the buffer on a conveyor controller by output con-
veyor. As parts arrive they trigger an input sensor enter. When a part is removed from the
buffer they trigger the exit sensor. Write aprogram to stop the conveyor when the buffer isfull,
and restart it when there are fewer than 10 partsin the buffer. As normal the system should also
include a start and stop button.

21. What is wrong with the following ladder logic? What will happen if it is used?

< X < X

L

22. We are using a pneumatic cylinder in a process. The cylinder can become stuck, and we need
to detect this. Proximity sensors are added to both endpoints of the cylinder’stravel to indicate
when it has reached the end of motion. If the cylinder takes more than 2 seconds to complete a
motion thiswill indicate a problem. When this occurs the machine should be shut down and a

light turned on. Develop ladder logic that will cycle the cylinder in and out repeatedly, and
watch for failure.

plc timers- 16.32

16.10 ASSIGNMENT PROBLEMS

1. Draw the timer and counter done bits for the ladder logic below. Assume that the accumulators
of all the timers and counters are reset to begin with.

A
N TON

1] Timer T_O

Preset 2s

RTO
Timer T 1

Preset 2s

TOF
Timer T_2

Preset 2s

CTuU
Counter C O
Preset 2
Acc.0

CTD
Counter C_1
Preset 2
Acc.0

T_O/DN
T_1DN
T _2/DN
C_O/DN

C_1/DN
»-{(SEC)

0 5 10 15 20

2. Write aladder logic program that will count the number of partsin abuffer. Asparts arrive they
activate input A. As parts leave they will activate input B. If the number of partsislessthan 8
then a conveyor motor, output C, will be turned on.

plc timers- 16.33

3. Explain what would happen in the following program when A is on or off.

i (e

TON

t
5s
E

4. Write asimple program that will use one timer to flash alight. The light should be on for 1.0
seconds and off for 0.5 seconds. Do not include start or stop buttons.

5. We are developing a safety system (using a PLC-5) for alarge industrial press. The pressis
activated by turning on the compressor power relay (R, connected to O:013/05). After R has
been on for 30 seconds the press can be activated to move (P connected to O:013/06). The
delay is needed for pressure to build up. After the press has been activated (with P) the system
must be shut down (R and P off), and then the cycle may begin again. For safety, thereisa sen-
sor that detects when aworker isinside the press (S, connected to 1:011/02), which must be off
before the press can be activated. Thereis aso a button that must be pushed 5 times (B, con-
nected to 1:011/01) before the press cycle can begin. If at any time the worker enters the press
(and S becomes active) the press will be shut down (P and R turned off). Develop the ladder
logic. State all assumptions, and show all work.

6. Write a program that only uses one timer. When an input A isturned on alight will be onfor 10
seconds. After that it will be off for two seconds, and then again on for 5 seconds. After that
the light will not turn on again until the input A isturned off.

7. A new printing station will add alogo to parts as they travel along an assembly line. When a
part arrives a‘part’ sensor will detect it. After thisthe‘clamp’ output is turned on for 10 sec-
onds to hold the part during the operation. For the first 2 secondsthe part is being held a
‘spray’ output will be turned on to apply the thermoset ink. For the last 8 seconds a ‘heat’ out-
put will be turned on to cure the ink. After thisthe part is released and allowed to continue
along the line. Write the ladder logic for this process.

8. Write aladder logic program. that will turn on an output Q five seconds after aninput A is
turned on. If input B ison the delay will be eight seconds. YOU MAY ONLY USE ONE
TIMER.

plctimers-17.1

17.1 PRACTICE PROBLEM SOLUTIONS

1. edge triggered means the event when alogic signal goes from false to true (positive edge) or
from true to false (negative edge).

2. no, but they are essential for retentive timers, and very important for counters.

3. Timerson PLC-5s and Micrologix are 16 bit, so they are limited to a range of -32768 to
+32767. ControlLogix timers are 32 bit and have arange of -2,147,483,648 to 2,147,483,647.

4. the un underflow bit. This may result in afault in some PLCs.

5.
first pass
@ motor
stop
start
@ motor
Start stop
I I Q motor
motor
6.
A . .
input
|
TON delays turning on ==
! |
TOE J,—» delays turning off
|
>

(DN)

—EN)

Accum. O

Timer t
Preset 3.5s

RTF

plctimers-17.2

t.EN
t.DN
tTT

t.ACC

plctimers-17.3

RTO

Timer t

Preset 10s

Accum. 1

A o
AN
IR DR N R ER -5
||||| - RN (N
B N B P I -~
—
| RN (E .
—
L N D __l_o
U e I I D __©
N B L_.m™
| | 1 o
<

Q

zZ - Z ®)

W k= Q <

TOF

(V]
||||||||| _ gll R R e)
m o
AN
> =
& 2
% o
Lo
—
n
N o
+— o -
- wm
£ 8
E A<
L0
__ _ e ol 8 __ _ ‘I||||4
J—
L0
__ _ _ R _____) _L_
—1 o
-
O
Z Z O
L E B <

plctimers-17.4

TON

RTO

10.

RTO

Timer t

Preset 2s

11.

TON

Preset 3600

Timer tick
Base 1.0

CTu

Counter wait

Preset 1200

O Light

12.

13.

plctimers-17.5

A
=)
sed in
sed_in tT| rOnZ'r delay
delay 15 sec
' delay.DN light
|| Q
B
| Nt RES
|
CTu
‘ A counter cnt
‘ presetR 10
‘ cnt.DN light
\ @

plctimers- 17.6

14.
TON
| ‘ A ‘ delay.DN timer delay
| ‘ | delay 20 s
TON
| ‘ delay.DN timer A_held
‘ ‘ delay 20 s
delay.DN B
()
CTuU
A_held.DN counter cnt
preset 3
cnt.DN B
()

15.

plctimers-17.7

g%
||

motor

go

CTU
Counterc O

1.DN

—°

Preset 2
Accumulator 1

CTuU
Counterc 1

Preset 3
Accumulator 1

c1

CTD
Counterc O

Preset 2
Accumulator 1

CTD

Counterc 1

Preset 3
Accumulator 1

left button
| T

plctimers-17.8

TON
Timer left

Preset 0.25s

ri ?h|t_button
|

left. TT

TON
Timer right

Preset 0.25s

ri ?ht.TT
|
[

17.

plctimers-17.9

CTU

Counter C 0
Preset 6

CTu

Counter C_1
Preset 1

CTD

Counter C 0
Preset 6

CTD

Counter C_1
Preset 1

OO

0O

Q)
N

TON

Timer T_O
Preset 30s

0

RES) C 0

18.

plctimers- 17.10

C5:0/DN

TON

T4:0TT

T4UTT

BES

T40/TT
| |

T4:2/IDN

timer T4:.0
delay 5s

TON

timer T4:1
delay 0.25s

TON

timer T4:2
delay 0.75s

CTuU

counter C5:0
preset 5

O light

RES

plctimers-17.11

19.
First scan
TON
T4:0
delay 15s
T4:0/TT &y
T4:2/DN
\1\;\ TON
! T4:1
delay 0.5s
T4:1/DN
|| TON
| T4:2
delay 0.5s
T4:2/TT -
N light
|
20.
start |St(|)p _
| O active
active
enter CTu
counter C5:0
preset 10
|e>it CTD
| counter C5:0
preset 10
|ax|:tive C|5:0/DN _
|] Mo () active

21. Thenormal output ‘Y’ isrepeated twice. In thisexample the value of * Y’ would always match
‘B’, and the earlier rung with ‘A’ would have no effect on ‘Y.

22.

plctimers- 17.12

GIVE SOLUTION

plc design - 18.1

18. STRUCTURED LOGIC DESIGN

Topics:
* Timing diagrams
* Design examples
* Designing ladder logic with process sequence bits and timing diagrams

Objectives:
» Know examples of applicationsto industrial problems.
» Know how to design time base control programs.

18.1 INTRODUCTION

Traditionally ladder logic programs have been written by thinking about the pro-
cess and then beginning to write the program. This always leads to programs that require
debugging. And, the final program is always the subject of some doubt. Structured design
techniques, such as Boolean algebra, |ead to programs that are predictable and reliable.
The structured design techniques in this and the following chapters are provided to make
ladder logic design routine and predictable for simple sequential systems.

Note: Structured design is very important in engineering, but many engineers will write
software without taking the time or effort to design it. This often comes from previous
experience with programming where a program was written, and then debugged. This
approach is not acceptable for mission critical systems such asindustria controls. The
time required for a poorly designed program is 10% on design, 30% on writing, 40%
debugging and testing, 10% documentation. The time required for a high quality pro-
gram design is 30% design, 10% writing software, 10% debugging and testing, 10%
documentation. Yes, awell designed program requires less time! Most beginners per-
ceive the writing and debugging as more challenging and productive, and so they will
rush through the design stage. If you are spending time debugging ladder logic pro-
grams you are doing something wrong. Structured design also allows others to verify
and modify your programs.

Axiom: Spend as much time on the design of the program as possible. Resist the tempta-
tion to implement an incompl ete design.

plc design - 18.2

Most control systems are sequential in nature. Sequential systems are often
described with words such as mode and behavior. During normal operation these systems
will have multiple steps or states of operation. In each operational state the system will
behave differently. Typical states include start-up, shut-down, and normal operation. Con-
sider aset of traffic lights - each light pattern constitutes a state. Lights may be green or
yellow in one direction and red in the other. The lights change in a predictable sequence.
Sometimes traffic lights are equipped with special features such as crosswalk buttons that
alter the behavior of the lightsto give pedestrians time to cross busy roads.

Sequentia systems are complex and difficult to design. In the previous chapter
timing charts and process sequence bits were discussed as basic design techniques. But,
more complex systems require more mature techniques, such as those shown in Figure
18.1. For simpler controllers we can use limited design techniques such as process
seguence bits and flow charts. More complex processes, such as traffic lights, will have
many states of operation and controllers can be designed using state diagrams. If the con-
trol problem involves multiple states of operation, such as one controller for two indepen-
dent traffic lights, then Petri net or SFC based designs are preferred.

sequential
problem

PETRI NET

performance
isitqportant

no Waiting with
singlg states

FLOW CHART

BLOCK LOGIC EQUATIONS SFC/GRAFSET

Figure18.1 Sequential Design Techniques

18.2 PROCESS SEQUENCE BITS

A typical machine will use a sequence of repetitive steps that can be clearly identi-

plc design - 18.3

fied. Ladder logic can be written that follows this sequence. The steps for this design
method are;

1. Understand the process.

2. Write the steps of operation in sequence and give each step a number.

3. For each step assign a bit.

4. Write the ladder logic to turn the bits on/off as the process moves through its
states.

5. Write the ladder logic to perform machine functions for each step.

6. If the process is repetitive, have the last step go back to the first.

Consider the example of aflag raising controller in Figure 18.2 and Figure 18.3.
The problem begins with awritten description of the process. Thisisthen turned into a set
of numbered steps. Each of the numbered steps is then converted to ladder logic.

plc design - 18.4

Description:

A flag raiser that will go up when an up button is pushed, and down when a
down button is pushed, both push buttons are momentary. There are
limit switches at the top and bottom to stop the flag pole. When turned
on at first the flag should be lowered until it isat the bottom of the pole.

Steps:
1. Theflag is moving down the pole waiting for the bottom limit switch.
2. Theflag isidle at the bottom of the pole waiting for the up button.
3. The flag moves up, waiting for the top limit switch.
4. Theflagisidle at the top of the pole waiting for the down button.

Ladder Logic:

firs} s|can
] (D sep

This section of ladder logic forcesthe flag raiser @ step 2
to start with only one state on, in this case it <en 3
should be the first one, step 1. @ P

step 1
O down
motor
step 1 bottom Iilmit switch
- (D) se?
Theladder logic for step 1 turns on the motor to lower the flag @ step 1

and when the bottom limit switch is hit it goes to step 2.

Note: recall that Timit switches should be normally
closed for safety when they stop motion.

step 2 flag up button
|| | |
| | (D step3
The ladder logic for step 2 only waits for the @ step 2
push button to raise the flag.

Figure18.2 A Process Sequence Bit Design Example

plc design - 18.5

step 3
O w
motor
step 3 top limit switch
I
= (D) sepd
The ladder logic for step 3 turns on the motor to @ step 3

raise the flag and when the top limit switchis
hit it goes to step 4.

step 4 flag down button

B N
| |] (D sten1

The ladder logic for step 4 only waits for the @ step 4
push button to lower the flag.

Figure 18.3 A Process Sequence Bit Design Example (continued)

The previous method uses latched bits, but the use of latches is sometimes discour-
aged. A more common method of implementation, without latches, is shown in Figure
18.4.

plc design - 18.6

step4 flag down button step2
| | I stepl
| N O s
stepl
FS
stepl bottomLS step3
I I step?2
4= N O e
step2
step2 flag up button stepd
| I step3
| N (O se
step3
step3 topLS stepl
I I st
4= N O s
step4
step 1
Q down
motor
step 3
O w
motor

Figure18.4 Process Sequence Bits Without Latches

Similar methods are explored in further detail in the book Cascading Logic
(Kirckof, 2003).

18.3TIMING DIAGRAMS

Timing diagrams can be valuable when designing ladder logic for processes that
are only dependant on time. The timing diagram is drawn with clear start and stop times.
Ladder logic is constructed with timersthat are used to turn outputs on and off at appropri-

plc design - 18.7

ate times. The basic method is;

1. Understand the process.

2. ldentify the outputs that are time dependant.

3. Draw atiming diagram for the outputs.

4. Assign atimer for each time when an output turns on or off.

5. Write the ladder logic to examine the timer values and turn outputs on or off.

Consider the handicap door opener design in Figure 18.5 that begins with a verbal
description. The verbal description is converted to atiming diagram, with t=0 being when
the door open button is pushed. On the timing diagram the critical times are 2s, 10s, 14s.
The ladder logic is constructed in acareful order. The first item is the latch to seal-in the
open button, but shut off after the last door closes. auto is used to turn on the three timers
for the critical times. Thelogic for opening the doors is then written to use the timers.

plc design - 18.8

Description: A handicap door opener has a button that will open two doors. When the but-
ton is pushed (momentarily) the first door will start to open immediately, the second
door will start to open 2 seconds later. The first door power will stay open for atotal of
10 seconds, and the second door power will stay on for 14 seconds. Use atiming dia-
gram to design the ladder logic.

Timing Diagram: A
| | |
door 1 ! i '
| | |
00N 2 el | i
| — -~
2s 10s 14s
Ladder Logic:
open button t 1|4.DN
N (O ato
auto
auto
TON
Timert 2
Delay 2s
TON
Timert 10
Delay 10s
TON
Timert_14
Delay 14s
t 10.TT
O door 1
t 27T tTZI.DN
| Q door 2

Figure 18,5 Design With aTiming Diagram

plc design - 18.9

18.4 DESIGN CASES

18.5 SUMMARY

* Timing diagrams can show how a system changes over time.
* Process sequence bits can be used to design a process that changes over time.
* Timing diagrams can be used for systems with atime driven performance.

18.6 PRACTICE PROBLEMS

1. Write ladder logic that will give the following timing diagram for B after input A is pushed.
After Aispushed any changesin the state of A will be ignored.

A
true
false ‘ \ ‘ \ t(sec)
>
0 2 5 6 8 9

2. Design ladder logic for the timing diagram below. When an input A becomes active the
sequence should start.

Kol] —
VA e B e T

>
t (ms)
100 300 500 700 900 1100 1900

3. A wrapping process isto be controlled with a PLC. The general sequence of operationsis
described below. Develop the ladder logic using process sequence hits.
1. Thefolder isidle until apart arrives.
2. When apart arrives it triggers the part sensor and the part is held in place by
actuating the hold actuator.

plc design - 18.10

3. Thefirst wrap is done by turning on output paper for 1 second.

4. The paper is then folded by turning on the crease output for 0.5 seconds.

5. An adhesive is applied by turning on output tape for 0.75 seconds.

6. The part is release by turning off output hold.

7. The process pauses until the part sensors goes off, and then the machine returns
toidle.

4. Draw atiming diagram for the following ladder logic.
start t 20.DN

'\H\ Q run

run TON
t3
3s
TON
t5
5s

TON
t9

9s

TON
t 10
10s
TON
t 15
155
TON
t 20
t 3EN t 9DN 20s

O A
t 10.DN t 15.DN

t 3DN tOoTT

() B

t 20EN t 15TT

plc design - 18.11

18.7 ASSIGNMENT PROBLEMS

1. Convert the following timing diagram to ladder logic. It should begin when input ‘A’ becomes
true.

X A

— — pr— t(SEC)

0 0.2 0.5 1213 14 16 20

2. Use the timing diagram below to design ladder logic. The sequence should start when input X
turns on. X may only be on momentarily, but the sequence should continue to execute until it
ends at 26 seconds.

A
A [I

0 3 5 11 22 26 t (sec)

3. Use the timing diagram below to design ladder logic. The sequence should start when input X
turns on. X may only be on momentarily, but the sequence should execute anyway.

N e B i
B | |

l l t’
2 3 5 7 11 16 2 2 (sec)

4. Write a program that will execute the following steps. When in steps b) or d), output C will be
true. Output X will be true when in step c).
a) Start in anidle state. If input G becomes true go to b)
b) Wait until P becomes true before going to step c).
¢) Wait for 3 seconds then go to step d).

plc design - 18.12

d) Wait for P to become false, and then go to step b).

5. Write a program that will execute the following steps. When in steps b) or d), output C will be
true. Output X will be true when in step c).
a) Start in anidle state. If input G becomes true go to b)
b) Wait until P becomes true before going to step). If input S becomes true then go to step a).
¢) Wait for 3 seconds then go to step d).
d) Wait for P to become false, and then go to step b).

6. A PLC isto control an amusement park water ride. The ride will fill atank of water and splash
atour group. 10 seconds later awater jet will be gjected at another point. Develop ladder logic
for the process that follows the steps listed below.

1. The process startsin ‘idl€e’.

2. The‘cart_detect’ opensthe ‘filling’ valve.

3. After adelay of 30 seconds from the start of the filling of the tank the tank ‘ out-
let” valve opens. When the tank is ‘full’ the ‘filling’ valve closes.

4. When the tank is empty the ‘outlet’ valveis closed.

5. After a 10 second delay, from the tank outlet valve opening, awater ‘jet’ is
opened.

6. After ‘2’ seconds the water ‘jet’ is closed and the process returnsto the ‘idle
state.

7. Write aladder logic program to extend and retract a cylinder after a start button is pushed.
There are limit switches at the ends of travel. If the cylinder is extending if more than 5 sec-
onds the machine should shut down and turn on afault light. If it isretracting for more than 3
seconds it should also shut down and turn on the fault light. It can be reset with a reset button.

8. Design a program with sequence bits for a hydraulic press that will advance when two palm
buttons are pushed. Top and bottom limit switches are used to reverse the advance and stop
after aretract. At any time the hands removed from the palm button will stop an advance and
retract the press. Include start and stop buttons to put the pressin and out of an active mode.

9. A machine has been built for filling barrels. Use process sequence bits to design ladder logic
for the sequential process as described below.
1. The process beginsin an idle state.
2. If the‘fluid_pressure’ and ‘barrel_present’ inputs are on, the system will open aflow valve
for 2 seconds with output ‘flow’.
3. The‘flow’ valve will then be turned off for 10 seconds.
4. The ‘flow’ valve will then be turned on until the ‘full’ sensor indicates the barrel isfull.
5. The system will wait until the *barrel_present’ sensor goes off before going to the idle state.

10. Design ladder logic for an oven using process sequence bits. (Note: the solution will only be
graded if the process sequence bit method is used.) The operations are as listed below.
1. The oven beginsin an IDLE state.
2. An operator presses a start button and an ALARM output is turned on for 1 minute.

plc design - 18.13

3. The ALARM output isturned off and the HEAT isturned on for 3 minutesto allow the tem-
perature to rise to the acceptable range.

4. The CONVEY OR output is turned on.

5. If the STOP input is activated (turned off) the HEAT will be turned off, but the CON-

VEY OR output will be kept on for two minutes. After this the oven returnsto IDLE.

11. We are developing a safety system (using a PLC-5) for alarge industria press. The pressis
activated by turning on the compressor power relay (R, connected to 0:013/05). After R has
been on for 30 seconds the press can be activated to move (P connected to O:013/06). The
delay is needed for pressure to build up. After the press has been activated (with P for 1.0 sec-
onds) the system must be shut down (R and P off), and then the cycle may begin again. For
safety, there is a sensor that detects when aworker isinside the press (S, connected to 1:011/
02), which must be off before the press can be activated. There is also a button that must be
pushed 5 times (B, connected to 1:011/01) before the press cycle can begin. If at any time the
worker entersthe press (and S becomes active) the press will be shut down (P and R turned
off). Develop the process sequence and sequence bits, and then ladder logic for the states. State
all assumptions, and show all work.

12. A machine isbeing designed to wrap boxes of chocolate. The boxes arrive at the machine on a
conveyor belt. The list below shows the process steps in sequence.
1. The box arrives and is detected by an optical sensor (P), after thisthe
conveyor is stopped (C) and the box is clamped in place (H).
2. A wrapping mechanism (W) is turned on for 2 seconds.
3. A dticker cylinder (S) isturned on for 1 second to put consumer labelling
on the box.
4. The clamp (H) isturned off and the conveyor (C) isturned on.
5. After the box leaves the system returns to an idle state.
Develop ladder logic programs for the system using the following methods. Don’'t
forget to include regular start and stop inputs.
i) atiming diagram
ii) process sequence bits

plc design - 19.1

19.1 PRACTICE PROBLEM SOLUTIONS

TON

B Timert_a
| Base 1s
Preset 2

TON

I Timert b
| Base 1s
Preset 3

TON

1T Timert ¢
| Base 1s
Preset 1

TON

T Timert d
| Base 1s
Preset 2

TON

I Timert e
| Base 1s
Preset 1

taTT
<::> output

teTT

plc design - 19.2

t 17T

TON
t1
0.100's

TON
t 3
0.300's

TON
t5
0.500's

TON
t 7
0.700 s

TON
t9
0.900's

TON
t 11
1.100's

TON
t 19
1.900's

19.DN

/(i—l'

/(i—l'

OX

t 11.DN

t 12!..TT
|

plc design - 19.3

3.
(for both solutions
step2
hold
s O
st
steps
step2
O b
step3
O crease
st
O
4,
A
A L i
B _
| >
3 9 10 15 20 0

plc design - 19.4

(without latches

fi s} pass part
| stepl
= ol O
part
stop
part paper_delay.DN stop
| || step2
“Ne | (e
step2
TON
step2 paper_delay
delay 1s

paper_delay.DN crease_delay.DN stop

| NS | (s

step3
TON
step3 crease del
delay 0.5s
crease_delay.DN tape_delay.DN stop

N | Gas

step4
TON
stepd tape delay
delay 0.75 s
ta1pe_del ayDN part stop
|

Ol Ul Sep5
B B (Oter

i
|

(with latches

plc design - 19.5

first pass
I Sf P L\stepl
sl!epl step?
step3
stop step4
stepS
part
L (stepl
step?2 TON
paper_delay
paper_delay.DN delay1s
L step2
step3 TON
crease _delay
delay 0.5s
crease_delay.DN
L (step3
stepd TON
tape delay
delay 0.75 s
tape delay.DN
L (stepd
step5 part
B
|

|/ Osteps

plc flowchart - 20.1

20. FLOWCHART BASED DESIGN

Topics:
* Describing process control using flowcharts
* Conversion of flowcharts to ladder logic
Objectives:
* Ba able to describe a process with a flowchart.
* Be able to convert aflowchart to ladder logic.

20.1 INTRODUCTION

A flowchart isideal for a process that has sequential process steps. The steps will
be executed in asimple order that may change as the result of some simple decisions. The
symbols used for flowcharts are shown in Figure 20.1. These blocks are connected using
arrows to indicate the sequence of the steps. The different blocks imply different types of
program actions. Programs always need a start block, but PL C programs rarely stop so the
stop block israrely used. Other important blocks include operations and decisions. The
other functions may be used but are not necessary for most PL C applications.

) sauso
Operation
<> Decision
@ Disk/Storage
C> Subroutine

Figure20.1 Flowchart Symbols

plc flowchart - 20.2

A flowchart is shown in Figure 20.2 for a control system for alarge water tank.
When a start button is pushed the tank will start to fill, and the flow out will be stopped.
When full, or the stop button is pushed the outlet will open up, and the flow in will be
stopped. In the flowchart the general flow of execution starts at the top. The first operation
isto open the outlet valve and close theinlet valve. Next, asingle decision block is used to
wait for a button to be pushed. when the button is pushed the yes branch is followed and
the inlet valve is opened, and the outlet valve is closed. Then the flow chart goesinto a
loop that uses two decision blocks to wait until the tank isfull, or the stop button is
pushed. If either case occurstheinlet valveis closed and the outlet valve is opened. The
system then goes back to wait for the start button to be pushed again. When the controller
ison the program should always be running, so only a start block is needed. Many begin-
nerswill neglect to put in checks for stop buttons.

plc flowchart - 20.3

START

Open outlet valve
Closeinlet valve

start button pushed?

Open inlet valve
Close outlet valve

-

yes Open outlet valve

Closeinlet valve

no

stop button pushed?

Figure20.2 A Flowchart for a Tank Filler
The general method for constructing flowchartsis:

1. Understand the process.
2. Determine the major actions, these are drawn as blocks.
3. Determine the sequences of operations, these are drawn with arrows.

plc flowchart - 20.4

4. When the sequence may change use decision blocks for branching.

Once aflowchart has been created ladder logic can be written. There are two basic
techniques that can be used, the first presented uses blocks of ladder logic code. The sec-
ond uses normal ladder logic.

20.2BLOCK LOGIC

Thefirst step isto name each block in the flowchart, as shown in Figure 20.3. Each
of the numbered steps will then be converted to ladder logic

plc flowchart - 20.5

STEP 1: Add labels to each block in the flowchart

START
F1

Open outlet valve
Closeinlet valve

start button pushed?

Open inlet valve

Close outlet valve
>
F6
F4 yes Open outlet valve
Closeinlet valve
0

F5

stop button pushed?

Figure20.3 Labeling Blocksin the Flowchart

Each block in the flowchart will be converted to ablock of ladder logic. To do this
we will usethe MCR (Master Control Relay) instruction (it will be discussed in more
detail later.) Theinstruction is shown in Figure 20.4, and will appear as a matched pair of
outputs labelled MCR. If thefirst MCR line is true then the ladder logic on the following
lines will be scanned as normal to the second MCR. If thefirst lineisfalse thelinesto the

plc flowchart - 20.6

next MCR block will all be forced off. If anormal output is used inside an MCR block, it
may be forced off. Therefore latches will be used in this method.

Note: We will use MCR instructions to implement some of the state based programs.
This allows us to switch off part of the ladder logic. The one significant note to
remember is that any normal outputs (not latches and timers) will be FORCED
OFF. Unless thisis what you want, put the normal outputs outside MCR blocks.

| MCR

If A istrue then the MCR will cause the ladder in between
to be executed. If A isfalse the outputs are forced off.

MCR

Figure20.4 The MCR Function

Thefirst part of the ladder logic required will reset the logic to an initial condition,
asshownin Figure 20.5. Theline will only be true for thefirst scan of the PLC, and at that
time it will turn on the flowchart block F1 which isthe reset all values off operation. All

other operations will be turned off.

plc flowchart - 20.7

STEP 2: Write ladder logic to force the PLC into the first state

first scan
| |

F3

F4

F5

F6

HOAOAC

Figure20.5 Initial Reset of States

The ladder logic for the first state is shown in Figure 20.6. When F1 istrue the
logic between the MCR lines will be scanned, if F1 isfalse thelogic will beignored. This
logic turns on the outlet valve and turns off the inlet valve. It then turns off operation F1,
and turns on the next operation F2.

plc flowchart - 20.8

STEP 3: Write ladder logic for each function in the flowchart

|| C

outlet

inlet

F1

F2

C

HOAOOG

Figure20.6 Ladder Logic for the Operation F1

The ladder logic for operation F2 is simple, and when the start button is pushed, it
will turn off F2 and turn on F3. The ladder logic for operation F3 openstheinlet valve and
moves to operation F4.

plc flowchart - 20.9

F2

@)

oL
N

T
w

<
@)

@)

outlet

inlet

T
w

n
N

<
@)

Qééé@@@é@@

Figure20.7 Ladder Logic for Flowchart Operations F2 and F3

The ladder logic for operation F4 turns off F4, and if the tank isfull it turns on F6,
otherwise F5 isturned on. The ladder logic for operation F5 isvery similar.

plc flowchart - 20.10

F4
] (3
@ F4
tank full F6
©
tank full -
©
G
F5
] (3
@ F5
stop
@ F6
stop
@ F4
G

Figure20.8 Ladder Logic for Operations F4 and F5

The ladder logic for operation F6 turns the outlet valve on and turns off the inlet
valve. It then ends operation F6 and returns to operation F2.

plc flowchart - 20.11

outlet

inlet

F6

F2

HOAOOG

Figure20.9 Ladder Logic for Operation F6

20.3 SEQUENCE BITS

In general thereis a preference for methods that do not use MCR statements or
latches. The flowchart used in the previous example can be implemented without these
instructions using the following method. The first step to this process is shown in Figure
20.10. As before each of the blocks in the flowchart are labelled, but now the connecting
arrows (transitions) in the diagram must aso be labelled. These transitions indicate when
another function block will be activated.

plc flowchart - 20.12

START

F1 Tl

Open outlet valve
Closeinlet valve

iIsthe NO
start button pushed?

no

Open inlet valve
Close outlet valve

>¢ T4
F6
F4 T6 Open outlet valve
Closeinlet valve
yes
o
T5
F5
isthe NC
stop button pushed?

Figure 20.10 Label the Flowchart Blocks and Arrows

The first section of ladder logic is shown in Figure 20.11. This indicates when the
transitions between functions should occur. All of the logic for the transitions should be
kept together, and appear before the state logic that followsin Figure 20.12.

plc flowchart - 20.13

FS

Q T1
F1

O T2
F6
F2 start
F2 Start

Q T3
F3

O T4
F5 stop
F4 full

Q T5
F4 full

O T6
F5 stop

Figure20.11 The Transition Logic

The logic shown in Figure 20.12 will keep a function on, or switch to the next
function. Consider the first ladder rung for F1, it will be turned on by transition T1 and
once function F1 ison it will keep itself on, unless T2 occurs shutting it off. If T2 has
occurred the next line of ladder logic will turn on F2. The function logic is followed by
output logic that relates output values to the active functions.

plc flowchart - 20.14

<:> F1

<:> F2

<:> F3

(:) F4

(:) F5

(:) F6

F1 *\LTZ

T1 |

F2 \4\LT3

T2 |

F3 T4

T3

F4 T5 76
T4 A
F5 T4 T6
- NIk
F6 \4\LT2

T6 |

F1

F2

F6

F3

F4

F5

Figure 20.12 The Function Logic and Outputs

plc flowchart - 20.15

20.4 SUMMARY

* Flowcharts are suited to processes with a single flow of execution.
* Flowcharts are suited to processes with clear sequences of operation.

20.5 PRACTICE PROBLEMS

1. Convert the following flow chart to ladder logic.

Start

e

no

A off

e

yes

2. Draw aflow chart for cutting the grass, then develop ladder logic for three of the actions/deci-
sions.

3. Design agarage door controller using aflowchart. The behavior of the garage door controller is
asfollows,

- thereisa single button in the garage, and a single button remote control.

- when the button is pushed the door will move up or down.

- if the button is pushed once while moving, the door will stop, a second push will
start motion again in the opposite direction.

- there are top/bottom limit switches to stop the motion of the door.

- there is alight beam across the bottom of the door. If the beam is cut while the
door is closing the door will stop and reverse.

- thereisagarage light that will be on for 5 minutes after the door opens or closes.

plc flowchart - 20.16

20.6 ASSSGNMENT PROBLEMS

1. Develop ladder logic for the flowchart below.

Start
Turn A on
no
yes
Turn A off
yes
no

2. Use aflow chart to design a parking gate controller.

keycard entry

cars enter/leave

-4

e

\O | light
/ AN
gate
car detector

- the gate will be raised by one output
and lowered by another. If the gate
gets stuck an over current detector
will make aPLC input true. If this
isthe case the gate should reverse
and the light should be turned on
indefinitely.

- if avalid keycard isentered aPLC
input will betrue. The gateisto
rise and stay open for 10 seconds.

- when acar isover the car detector a
PLCinput will gotrue. Thegateis
to open while this detector is
active. If it is active for more that
30 seconds the light should also
turn on until the gate closes.

plc flowchart - 20.17

3. A welding station is controlled by a PLC. On the outside is a safety cage that must be closed
while the cell is active. A belt moves the parts into the welding station and back out. An induc-
tive proximity sensor detects when a part isin place for welding, and the belt is stopped. To
weld, an actuator isturned on for 3 seconds. As normal the cell has start and stop push buttons.

a) Draw aflow chart
b) Implement the chart in ladder logic

Inputs Outputs

DOOR OPEN (NC) CONVEYOR ON
START (NO) WELD

STOP (NC)

PART PRESENT

4. Convert the following flowchart to ladder logic.

Start

Turn off motor

Start no
pushed

yes

Turn on motor

Stop no
pushed

yes

5. A machine is being designed to wrap boxes of chocolate. The boxes arrive at the machine on a
conveyor belt. The list below shows the process steps in sequence.
1. The box arrives and is detected by an optical sensor (P), after thisthe
conveyor is stopped (C) and the box is clamped in place (H).
2. A wrapping mechanism (W) is turned on for 2 seconds.
3. A dticker cylinder (S) isturned on for 1 second to put consumer labelling

plc flowchart - 20.18

on the box.
4. The clamp (H) isturned off and the conveyor (C) isturned on.
5. After the box leaves the system returns to an idle state.
Develop ladder logic for the system using a flowchart. Don't forget to include reg-
ular start and stop inputs.

plc flowchart - 21.1

21.1 PRACTICE PROBLEM SOLUTIONS

1.

first scan
l Chs
—® " F1 A on
4® F3
——(O F4 F2 yes
F1 @
i (MCR -
D A
O F A off
——(9 F1
(D) R2 . F4
- (MCR @m
. (MeR
@ F2
——(:> F3 o
= (MCR . (MCR
| MR Cha
@ A o _@ F1
@ F4
—O

M
n

e

3

plc flowchart - 21.2

Start

F1

Get mower and
gas can

get gas

Fill mower

F5 e —

Pull cord

F6
no

F7
Push Mower

es
F9 y

Stop mower

F1I0 Y

Put gas and
mower away

plc flowchart - 21.3

FS

O

oL
N

m Tl
H W

Tn
ol

T
\‘

T
(0¢]

T
(o]

F10

5600000k

3

3
2
3

gascan

oL
N

(1]

@)

F2||

3G

@)

T
w

gas,can empty
||

Tn
N

gas,can empty
|

n
N

cose

Tn
N

3

plc flowchart - 21.4

s

O fill gas tank

@ F4

4®F3

s

o

TON

Timert O
Delay 5s

@Fs

4@ F4

O pour gas

e
o

O pull cord

®F6

4@%
(vics

YHOWEF on

3

mower on

@F?

@FS

®F6

s

ST1

plc flowchart - 21.5

IS
remote or
button pushed?

ST2

turn on door close

turn off door close

ST6

ST7

IS
remote or
button pushed?

turn on door open

ST9

button or top
limit pushed?

turn off door open

plc flowchart - 21.6

first scan
| |

9
'_\

X

ST3

s

ST5

ST7

3

ST9

door open

door close

O OOEOOENE

ST2 TOF

t st2
preset 300s

ST7

t st2.DN _
] garage light

O

ST1

plc flowchart - 21.7

<
@)

button

remote

MC

@)

<
@)

QC%C%@@QC%@Q

A

X

X

-

door close

ST3

plc flowchart - 21.8

MC

button

remote

bottom limit

ST3

MC

ST4

light beam

light beam
| |

MC

Q(gQCgQQQCgQ g@@

ST3

ST5

ST3

ST4

ST4

ST7

ST4

ST3

plc flowchart - 21.9

ST6

button

remote

—

@)

<
@)

@)

<
@)

@)

<
@)

3

3

door close

9
()]

ST7

9
\I

ST8

door open

plc flowchart - 21.10

ST8
C
button
ST8
remote ST9
top limit
MC
ST9

@)

ST1

door open

<
@)

plc states - 22.1

22. STATE BASED DESIGN

Topics:
* Describing process control using state diagrams

* Conversion of state diagramsto ladder logic
* MCR blocks

Objectives:
* Be able to construct state diagrams for a process.
* Be able to convert a state diagram to ladder logic directly.
* Be able to convert state diagrams to ladder logic using equations.

22.1 INTRODUCTION

A system state is a mode of operation. Consider a bank machine that will go
through very carefully selected states. The general sequence of states might be idle, scan
card, get secret number, select transaction type, ask for amount of cash, count cash, deliver
cash/return card, then idle.

A State based system can be described with system states, and the transitions
between those states. A state diagram isshown in Figure 22.1. The diagram has two states,
Sate 1 and Sate 2. If the system isin state 1 and A happens the system will then go into
state 2, otherwise it will remain in State 1. Likewise if the system isin state 2, and B hap-
pens the system will return to state 1. As shown in the figure this state diagram could be
used for an automatic light controller. When the power isturned on the system will go into
the lights of f state. If motion is detected or an on push button is pushed the system will go
to the lights on state. If the system isin the lights on state and 1 hour has passed, or an off
push button is pushed then the system will go to the lights off state. The el se statements
are omitted on the second diagram, but they are implied.

plc states - 22.2

State 2

ese else

This diagram could describe the operation of energy efficient lightsin aroom operated
by two push buttons. State 1 might be lights off and state 2 might be lights on. The
arrows between the states are called transitions and will be followed when the condi-
tions are true. In this case if we were in state 1 and A occurred we would moveto
state 2. The else loop indicate that a state will stay activeif atransition areis not fol-
lowed. These are so obvious they are often omitted from state diagrams.

off pushbutton OR 1 hour timer

powerm

on_pushbutton
OR motion detector

Figure22.1 A State Diagram

The most essential part of creating state diagramsis identifying states. Some key
guestionsto ask are,

1. Consider the system,
What does the system do normally?
Does the system behavior change?
Can something change how the system behaves?
|s there a sequence to actions?
2. List modes of operation where the system is doing one identifiable activity that
will start and stop. Keep in mind that some activities may just be to wait.

Consider the design of a coffee vending machine. Thefirst step requires the identi-
fication of vending machine states as shown in Figure 22.2. The main stateistheidle state.
Thereisan inserting coins state where the total can be displayed. When enough coins have
been inserted the user may select their drink of choice. After thisthe make coffee state will

plc states - 22.3

be active while coffee is being brewed. If an error is detected the service needed state will
be activated.

STATES

idle - the machine has no coins and is doing nothing

inserting coins - coins have been entered and the total is displayed

user choose - enough money has been entered and the user is making coffee selection
make coffee - the selected type is being made

service needed - the machine is out of coffee, cups, or another error has occurred

Notes:

1. These states can be subjective, and different designers might pick others.
2. The states are highly specific to the machine.

3. The previous/next states are not part of the states.

4. There is a clean difference between states.

Figure22.2 Definition of Vending Machine States

The states are then drawn in a state diagram as shown in Figure 22.3. Transitions
are added as needed between the states. Here we can see that when powered up the
machine will start in an idle state. The transitions here are based on the inputs and sensors
in the vending machine. The state diagram is quite subjective, and complex diagrams will
differ from design to design. These diagrams al so expose the controller behavior. Consider
that if the machine needs maintenance, and it is unplugged and plugged back in, the ser-
vice needed statement would not be reentered until the next customer paid for but did not
receive their coffee. In acommercia design we would want to fix this oversight.

plc states - 22.4

power up

reset button coin inserted

inserting
coins

L

coin return

right amount
entered

Figure22.3 State Diagram for a Coffee Machine

22.1.1 State Diagram Example

Consider the traffic lightsin Figure 22.4. The normal sequences for traffic lights
areagreen light in one direction for along period of time, typically 10 or more seconds.
Thisisfollowed by abrief yellow light, typically 4 seconds. Thisisthen followed by a
similar light pattern in the other direction. It is understood that a green or yellow light in
one direction impliesared light in the other direction. Pedestrian buttons are provided so
that when pedestrians are present a cross walk light can be turned on and the duration of
the green light increased.

Figure22.4 Traffic Lights

Thefirst step for developing a controller isto define the inputs and outputs of the
system as shown in Figure 22.5. First we will describe the system variables. These will
vary asthe system moves from state to state. Please note that some of these together can
define a state (alone they are not the states). The inputs are used when defining the transi-

plc states - 22.5

Button - S1

tions. The outputs can be used to define the system state.

We have eight items that are ON or OFF

L1
L2
L3
L4
LS
L6
S1
S2

UTPUTS

INPUTS

Note that each state will lead
to adifferent set of out-
puts. The inputs are often
part, or all of the transi-
tions.

A simple diagram can be drawn to show sequences for the lights

Figure22.5 Inputs and Outputs for Traffic Light Controller

plc states - 22.6

Previoudly state diagrams were used to define the system, it is possible to use a
state table as shown in Figure 22.6. Here the light sequences are listed in order. Each state
IS given aname to ease interpretation, but the corresponding output pattern is also given.
The system state is defined as the bit pattern of the 6 lights. Note that there are only 4 pat-
terns, but 6 binary bits could give as many as 64.

Step 1. Define the System States and put them (roughly) in sequence

stem State
L1L2L3L4L5L6 A binary number
0 = light off
1=lighton
State Table
State Description | # | L1 L2 L3 L4 L5 L6
Green East/West] 1 1 1
0 0 0 0 Here the four states
YellowEast/West 2 | 1 0 0 0 1 O determine how the 6
Green North/South 3 O O 1 1 o0 O outputs are switched
YelowNortvSouthl 4 1 g 1 0 1 o o on/off.

Figure22.6 System State Table for Traffic Lights

Transitions can be added to the state table to clarify the operation, as shown in Fig-
ure 22.7. Here the transition from Green E/W to Yellow E/W is S1. What this meansis
that a cross walk button must be pushed to end the green light. Thisis not normal, nor-
mally the lights would use adelay. The transition from Yellow E/W to Green N/Sis
caused by a4 second delay (thisisnormal.) The next transition is also abnormal, requiring
that the cross walk button be pushed to end the Green N/S state. The last state has a 4 sec-
ond delay before returning to the first state in the table. In this state table the sequence will
always be the same, but the times will vary for the green lights.

plc states - 22.7

Step 2: Define State Transition Triggers, and add them to the list of states

Description # | L1 L2 L3 L4 L5 L6 | transition
GreenEast’West 1 [1 0 0 0 0 1 {g
Yellow East/West) 2 1 O 0 0 1 0 delay delay 4 sec
GreenNorth/South 3 |0 0 1 1 0 O ‘;S;C
Yellow North/Southl 4 10 1 0 1 0 O

Figure22.7 State Table with Transitions

A state diagram for the system is shown in Figure 22.8. Thisdiagram is equivalent
to the state table in Figure 22.7, but it can be valuable for doing visual inspection.

Step 3: Draw the State Transition Diagram

delay 4sec

Wﬁeﬂ =i
first scan @

delay 4se

pushbutton EW (i.e. 01)

Figure22.8 A Traffic Light State Diagram

22.1.2 Conversion to Ladder Logic

22.1.2.1 - Block Logic Conversion

plc states - 22.8

State diagrams can be converted directly to ladder logic using block logic. This
technique will produce larger programs, but it isa simple method to understand, and easy
to debug. The previous traffic light example isto be implemented in ladder logic. The
inputs and outputs are defined in Figure 22.9, assuming it will be implemented on an
Allen Bradley Micrologix. first scan is the address of thefirst scan in the PLC. The loca
tions state 1 to state 4 are internal memory locations that will be used to track which
states are on. The behave like outputs, but are not available for connection outside the
PLC. Theinput and output values are determined by the PLC layout.

STATES OUTPUTS INPUTS
state 1 - green E/W L1-red N/S S1 - cross
state 2 - yellow E/W L2-yellowN/S S2-cross
state 3 - green N/S L3 - green N/S S:FS - first scan
state 4 - yellow N/S L4 - red E/W

L5 - yellow E/W

L6 - green E/'W

Figure22.9 Inputs and Outputs for Traffic Light Controller

Theinitial ladder logic block shown in Figure 22.10 will initialize the states of the
PLC, so that only state 1 ison. The first scan indicator first scan will execute the MCR
block when the PLC isfirst turned on, and the latcheswill turn on the valuefor state 1 and
turn off the others.

plc states - 22.9

RESET THE STATES
SFs MCR
] >—

sae 1

g (I
gy
by
MCR P

Figure22.10 Ladder Logicto Initialize Traffic Light Controller

Note: We will use MCR instructions to implement some of the state based programs.
Thisallows usto switch off part of the ladder logic. The one significant note to
remember is that any normal outputs (not |atches and timers) will be FORCED
OFF. Unless thisis what you want, put the normal outputs outside MCR blocks.

| MCR

If A istrue then the MCR will cause the ladder in between
to be executed. If A isfalse the outputs are forced off.

MCR

The next section of ladder logic only deals with outputs. For example the output O/
1isthe N/Sred light, which will be on for states 1 and 2, or B3/1 and B3/2 respectively.
Putting normal outputs outside the MCR blocks isimportant. If they were inside the

plc states- 22.10

blocks they could only be on when the MCR block was active, otherwise they would be
forced off. Note: Many beginners will make the careless mistake of repeating outputsin
this section of the program.

TURN ON LIGHTS AS REQUIRED

state 1 L1

>_
state 2
state 4 L2

>_
state 3 L3

>_
state 3 L4

>_
state 4
state 2 L5

>_
state 1 L6

>_

Figure22.11 Genera Output Control Logic

Thefirst state isimplemented in Figure 22.10. If state 1 is active thiswill be
active. Thetransition is S1 which will end state 1 and start state 2.

plc states- 22.11

FIRST STATE WAIT FOR TRANSITIONS

state 1 MCR
>_
a1 L1
U>7
s1 L2
L>_
MCR
>7

Figure22.12 Ladder Logic for First State

The second state is more complex because it involves atime delay, as shown in
Figure 22.13. When the state is active the TON timer will be timing. When the timer is
done state 2 will be unlatched, and state 3 will be latched on. The timer is nonretentive, so
if state 2 if off the MCR block will force al of the outputs off, including the timer, caus-
ing it to reset.

plc states - 22.12

SECOND STATE WAIT FOR TRANSITIONS

Statle_[Z MCR
| >
TON
t st2
delay 4s
t st2.DN state 2
U>—
t st2.DN state 3
|_>7
MCR
7 >

Figure22.13 Ladder Logic for Second State

The third and fourth states are shown in Figure 22.14 and Figure 22.15. Their lay-
out isvery similar to that of the first two states.

THIRD STATE WAIT FOR TRANSITIONS

state 3 MCR

’ >
state 3

/U>—

state 4

/|_>7

MCR

’ >_

S2

Figure22.14 Ladder Logic for State Three

plc states- 22.13

FOURTH STATE WAIT FOR TRANSITIONS

statle_{4 MCR
| >
t st4
RT
delay 4s
t_st4.DN state 4
U>—
t st4.DN state 1

t_st4.DN t st4

Figure22.15 Ladder Logic for State Four

The previous example only had one path through the state tables, so there was
never a choice between states. The state diagram in Figure 22.16 could potentially have
problemsif two transitions occur simultaneously. For example if state STB isactiveand A
and C occur simultaneously, the system could go to either STA or STC (or both in a poorly
written program.) To resolve this problem we should choose one of the two transitions as
having a higher priority, meaning that it should be chosen over the other transition. This
decision will normally be clear, but if not an arbitrary decision is still needed.

plc states - 22.14

first scan
Figure22.16 A State Diagram with Priority Problems

The state diagram in Figure 22.16 isimplemented with ladder logic in Figure
22.17 and Figure 22.18. The implementation is the same as described before, but for state
STB additional ladder logic is added to disable transition A if transition C is active, there-
fore giving priority to C.

plc states- 22.15

first scan
| |

L

U

U

C

Note: if A and C aretrue at the same timethen C
will have priority. PRIORITIZATION isimpor-
tant when simultaneous branches are possible.

A C

R N

plc states- 22.16

Figure22.17 State Diagram for Prioritization Problem

Figure22.18 State Diagram for Prioritization Problem

The Block Logic technique described does not require any special knowledge and
the programs can be written directly from the state diagram. The final programs can be
easily modified, and finding problemsis easier. But, these programs are much larger and
less efficient.

22.1.2.2 - Sate Equations

State diagrams can be converted to Boolean equations and then to Ladder Logic.
Thefirst technique that will be described is state equations. These equations contain three
main parts, as shown below in Figure 22.19. To describe them simply - astate will be on if
itisaready on, or if it has been turned on by atransition from another state, but it will be
turned off if there was atransition to another state. An equation is required for each state
in the state diagram.

plc states- 22.17

Informally,
State X = (State X + just arrived from another state) and has not left for another state

Formally,

n m
STATE, = | STATE,+ ¥ (T,; » STATE)) | o] (T, STATE)
j=1 k=1

where, STATE; = A variable that will reflect if statei ison
n = the number of transitionsto state |
m = the number of transitions out of state i

T = Thelogica condition of atransition from statej to i

T, k = Thelogical condition of atransition out of statei to k

Figure22.19 State Equations

The state equation method can be applied to the traffic light examplein Figure
22.8. Thefirst step in the processis to define variable names (or PLC memory locations)
to keep track of which states are on or off. Next, the state diagram is examined, one state at
atime. Thefirst equation if for ST1, or state 1 - green NS. The start of the equation can be
read asST1 will beonif itison, orif ST4ison, andit hasbeen onfor 4s, or if it isthefirst
scan of the PLC. The end of the equation can be read as ST1 will be turned off if it ison,
but S1 has been pushed and S2 is off. As discussed before, the first half of the equation
will turn the state on, but the second half will turn it off. The first scan is also used to turn
on ST1 when the PLC starts. It is put outside the terms to force ST1 on, even if the exit
conditions are true.

plc states- 22.18

Defined state variables:
ST1 = statel- green NS

ST2 = state 2 - yellow NS
ST3

state 3 - green EW
ST4 = dtate4 - yellow EW

The state entrance and exit condition equations:

ST1 = (ST1+ ST4- TON,(ST4, 4s)) - ST1-S1-S2+FS

ST2 = (ST2+ST1-S1-S2)- ST2- TON,(ST2, 4s)

ST3 = (ST3+ST2- TON,(ST2, 4s)) - ST3-S1- S2

ST4 = (ST4+ST3-S1- S2) - ST4- TON,(ST4, 4s)

Note: Timers are represented in these equationsin the form TONi (A, delay). TON indi-
catesthat it is an on-delay timer, A isthe input to the timer, and delay is the timer
delay value. The subscript i is used to differentiate timers.

Figure22.20 State Equations for the Traffic Light Example

The equations in Figure 22.20 cannot be implemented in ladder logic because of

the NOT over the last terms. The equations are ssimplified in Figure 22.21 so that all NOT
operators are only over asingle variable.

plc states- 22.19

Now, ssimplify these for implementation in ladder logic.

ST1 = (ST1+ ST4-TON,(ST4,4)) (ST1+S1+S2)+FS

ST2 = (ST2+ST1-S1-S2)- (ST2+TON,(ST2, 4))

ST3 = (ST3+ ST2- TON,(ST2, 4)) - (ST3+ S1+ S2)

ST4

(ST4+ST3-S1- S2) - (ST4+ TON,(ST4, 4))

Figure22.21 Simplified Boolean Equations

These equations are then converted to the ladder logic shown in Figure 22.22 and
Figure 22.23. At the top of the program the two timers are defined. (Note: it istempting to
combine the timers, but it is better to keep them separate.) Next, the Boolean state equa-
tions are implemented in ladder logic. After thiswe use the states to turn specific lights on.

plc states - 22.20

Figure22.22 Ladder Logic for the State Equations

DEFINE THE TIMERS
ST4 timer on
| | t st4
delay 4 sec
ST2 N timer on
] t 2
delay 4 sec
THE STATE EQUATIONS
ST1 1
>4 Q ST1X
ST4 t st2.DN
T >
2
first scan
ST2 ST2 QSTZX
SIS t st4.DN
ST 7h S —~
| N
ST3 ST3
O ST3X
ST2 t st4.DN 1
1
]
S2
ST4 ST4 <)smx
SIS t st2.DN
bR - =

plc states - 22.21

OUTPUT LOGIC FOR THE LIGHTS

ST1 L1
O

ST2

ST4 L2
O

ST3 L3
O

ST3 L4
O

ST4

ST2 L5
O

ST1 L6
O

Figure22.23 Ladder Logic for the State Equations

This method will provide the most compact code of al techniques, but there are
potential problems. Consider the examplein Figure 22.23. If push button Sl has been
pushed the line for ST1 should turn off, and the line for ST2 should turn on. But, the line
for ST2 depends upon the value for ST1 that has just been turned off. Thiswill cause a
problem if the value of ST1 goes off immediately after the line of ladder logic has been
scanned. In effect the PLC will get lost and none of the states will be on. This problem
arises because the equations are normally calculated in parallel, and then all values are
updated simultaneously. To overcome this problem the ladder logic could be modified to
the form shown in Figure 22.24. Here some temporary variables are used to hold the new
state values. After all the equations are solved the states are updated to their new values.

plc states - 22.22

THE STATE EQUATIONS

ST1 1
S Q ST1X
ST4 t_[st|4.DN si.
]
)
first scan
ST2 ST2 <>3T2x
Sl 2 t st2.DN
STl LA ~
|]
ST3 ST3
O ST3X
ST2 t_[st|2.DN s1
]
S2
ST4 ST4 <>ST4x
sl t st4.DN
ST3 N ~
|]

ST1)|f O ST1
STZ)T O ST2
ST3)|f O ST3
ST4)f

!

OST4

Figure22.24 Delayed State Updating

When multiple transitions out of a state exist we must take care to add priorities.

plc states - 22.23

Each of the alternate transitions out of a state should be give a priority, from highest to
lowest. The state equations can then be written to suppress transitions of lower priority
when one or more occur simultaneously. The state diagram in Figure 22.25 has two transi-
tions A and C that could occur simultaneously. The equations have been written to give A
ahigher priority. When A occurs, it will block C in the equation for STC. These equations
have been converted to ladder logic in Figure 22.26.

first scan

STA = (STA+STB-A)-STA- B

STB

(STB+STA-B+STC-D)-STB-A-STB-C+FS

STC = (STC+STB-C-A)-STC-D

Figure22.25 State Equations with Prioritization

plc states - 22.24

STA STA

Q STAX

Q STBX

STC

STC

STAX

Figure22.26 Ladder Logic with Prioritization

22.1.2.3 - Sate-Transition Equations

plc states - 22.25

A state diagram may be converted to equations by writing an equation for each
state and each transition. A sample set of equationsis seen in Figure 22.27 for the traffic
light example of Figure 22.8. Each state and transition needs to be assigned a unique vari-
able name. (Note: It isagood ideato note these on the diagram) These are then used to
write the equations for the diagram. The transition equations are written by looking at the
each state, and then determining which transitions will end that state. For example, if ST1
istrue, and crosswalk button Sl is pushed, and 2 is not, then transition T1 will be true.
The state equations are similar to the state equations in the previous State Equation
method, except they now only refer to the transitions. Recall, the basic form of these equa-
tionsisthat the state will be on if it isaready on, or it has been turned on by atransition.
The state will be turned off if an exiting transition occurs. In this example the first scan
was given it'sown transition, but it could have also been put into the equation for T4.

defined state and transition variables:

ST1 = statel- green NS T1 = transition from ST1to ST2
ST2 = state 2 - yellow NS T2 = transition from ST2to ST3
ST3 = state 3 - green EW T3 = transition from ST3 to ST4
ST4 = dtate4 - yellow EW T4 = transition from ST4 to ST1

T5 = transition to ST1 for first scan

state and transition equations:

T4 = ST4- TON,(ST4, 4) ST1 = (ST1+T4+T5)-T1
Tl =ST1-S1-2 ST2 = (ST2+T1) -T2

T2 = ST2- TON,(ST2, 4) ST3 = (ST3+7T2) T3

T3 = ST3-S1- 2 ST4 = (ST4+T3)- T4
T5 = FS

Figure22.27 State-Transition Equations

These equations can be converted directly to the ladder logic in Figure 22.28, Fig-
ure 22.29 and Figure 22.30. It is very important that the transition equations all occur
before the state equations. By updating the transition equations first and then updating the
state equations the problem of state variable values changing is negated - recall this prob-
lem was discussed in the State Equations section.

plc states - 22.26

UPDATE TIMERS

ST4 timer on
| | t st4
delay 4 sec
ST2 timer on
| I t st2
delay 4 sec
CALCULATE TRANSITION EQUATIONS
ST4 t_st4.DN T4
|
| O
sty St T1
|

2

BEN O
N ok
s3SI =2 T3
| O

FS T5

O

ST2 t st2.D

Figure22.28 Ladder Logic for the State-Transition Equations

CALCULATE STATE EQUATIONS

plc states - 22.27

ST1

ST2

ST3

ST4

Figure22.29 Ladder Logic for the State-Transition Equations

ST1 IT1
N
T4
T5
ST2 IT2
N
T1
ST3 IT3
|
T2
ST4 IT4
|
T3

plc states - 22.28

UPDATE OUTPUTS

ST1 L1
O

ST2

ST4 L2
O

ST3 L3
O

ST3 L4
O

ST4

ST2 L5
O

ST1 L6
O

Figure22.30 Ladder Logic for the State-Transition Equations

The problem of prioritization also occurs with the State-Transition equations.
Equations were written for the State Diagram in Figure 22.31. The problem will occur if
transitions A and C occur simultaneously. In the example transition T2 is given a higher
priority, and if it istrue, then the transition T3 will be suppressed when calculating STC. In
this example the transitions have been considered in the state update equations, but they
can also be used in the transition equations.

plc states - 22.29

T5 T4
B D
A C
T3
T2
T1
first scan (FS)
T1=FS STA = (STA+T2)-T5
T2 = STB-A STB = (STB+T5+T4+T1)-T2- T3
T3 =3IB-C STC = (STC+T3-T2) T4
T4 = STC-D
T5 = STA- B

Figure22.31 Prioritization for State Transition Equations

22.2 SUMMARY

» State diagrams are suited to processes with a single flow of execution.

» State diagrams are suited to problems that has clearly defines modes of execu-
tion.

* Controller diagrams can be converted to ladder logic using MCR blocks

» State diagrams can also be converted to ladder logic using equations

* The sequence of operations isimportant when converting state diagrams to lad-
der logic.

22.3 PRACTICE PROBLEMS

1. Draw a state diagram for a microwave oven.

plc states- 22.30

2. Convert the following state diagram to equations.

Inputs Outputs A(C+D)
A P

B Q

C R

D

E

F

state| P Q R
s (0 1 1
S1 1 0 1
2 |1 1 0

3. Implement the following state diagram with equations.

plc states - 22.31

4. Given the following state diagram, use equations to implement ladder logic.

state 1 A C*B
B
state 2 C+B

5. Convert the following state diagram to logic using equations.

6. You have been asked to program a PLC that is controlling a handicapped access door opener.
The client has provided the electrical wiring diagram below to show how the PLC inputs and
outputs have been wired. Button A islocated inside and button B is located outside. When
either button is pushed the motor will be turned on to open the door. The motor isto be kept on
for atotal of 15 secondsto allow the person to enter. After the motor isturned off the door will
fall closed. Inthe event that somebody gets caught in the door the thermal relay will go off, and
the motor should be turned off. After 20,000 cycles the door should stop working and the light

plc states - 22.32

should go on to indicate that maintenance is required.

24V DC 120V AC
Output Card
Power

Supply
COM.

00 O

01 O Relay
02 O

03 O

04 O I

05 O

06 O

07 O +24\/ DC
Power
comMO Supply
GND

rack 'machine’
slot O

24V AC
Power

Supply

plc states - 22.33

a) Develop a state diagram for the control of the door.

PLC Input Card
24V AC
O 00
button A o1
button B O o
O 03
thermal relay O o4
O 05
O 06
O 07
O com

rack 'machine’
dot 1

b) Convert the state diagram to ladder logic. (list the input and the output addresses

first)

c) Convert the state diagram to Boolean equations.

7. Design a garage door controller using @) block logic, and b) state-transition equations. The
behavior of the garage door controller is asfollows,
- thereisa single button in the garage, and a single button remote control.
- when the button is pushed the door will move up or down.
- if the button is pushed once while moving, the door will stop, a second push will
start motion again in the opposite direction.
- there are top/bottom limit switches to stop the motion of the door.
- there is alight beam across the bottom of the door. If the beam is cut while the
door is closing the door will stop and reverse.
- thereisagarage light that will be on for 5 minutes after the door opens or closes.

plc states - 22.34

8. Convert the following ladder logic to Boolean equations and then draw the state diagram for the
system. I's something missing from the system?

STA B <TAX
| N O
STB A
s
|
STB A C <TBX
| N O
STA B
STC B
Te B STCX
| N O
e
| |
STAX
Q STA
STBX
Q STB
STCX
Q STC

9. A program isto perform the following actions for a self-service security check. The device will
allow bagsto be inserted to the test chamber through an entrance door. If the bag passes the
check it can be removed through an exit door, otherwise an alarm is sounded. Crezate a state
diagram using the steps below.

1. The machine startsin an ‘idle’ state. The ‘open_entry’ output is activated to open the input
door. The ‘open_exit’ output is deactivated to close the output door.

2. When abag isinserted the ‘bag_detected’ input goes high. The ‘open_entry’ output should
be deactivated to close the door.

3. When the ‘entry_door_closed’ and *exit_door_closed’ inputs are active then a‘test’ output
will be set high to start a scan of the bags.

4. When the scan of the bagsis complete a‘scan_done’ input is set. The ‘test’ output should
be turned off.

plc states - 22.35

5. The scan resultsin two real values ‘nitrates’ and ‘mass . The calculation below is per-
formed. If the ‘risk’ isbelow 0.3, or above 23.5, then the machine enters an alarm state (step
8), otherwise it continuesto step 6.

risk = 4nitrates
6. The ‘open_exit’ output is activated to open the exit door. The machine waits until the
‘bag_detected’ input goes low.

7. The *open_exit’ output is deactivated to close the door. The machine waits until the
‘exit_door_closed’ input is high before returning to the ‘idle state.

8. In the darm state an operator input ‘key’ must be active to open the exit door. After this
input is released the door will close and return to the ‘idle’ state.

+ sgrt(mass)nitrates

22.4 ASSIGNMENT PROBLEMS

1. Describe the difference between the block logic, delayed update, and transition equation meth-
ods for converting state diagrams to ladder logic.

2. Write the ladder logic for the state diagram below using the block logic method.
A

— T

B

FS— »

3. Convert the following state diagram to ladder logic using the block logic method. Give the stop

plc states - 22.36

button higher priority.

D + STOP

4. Convert the following state diagram to ladder logic using the delayed update method.

part

=

jam

5. Use equations to develop ladder logic for the state diagram below using the delayed update

plc states - 22.37

method. Be sure to deal with the priority problems.

T5 T4
B D
A C
T3
T2
T1
first scan (FS)
T1=FS STA = (STA+T2)-T5
T2 = STB-A STB = (STB+T5+T4+T1) - T2- T3
T3 =SIB-C STC = (STC+T3-T2)- T4
T4 = STC-D

T5 = STA-B

plc states - 22.38

7. Write ladder logic to implement the state diagram below using state transition equations.

8. Convert the following state diagram to ladder logic using a) an equation based method, b) a
method that is not based on equations.

FS START

9. The state diagram below isfor asimple elevator controller. a) Develop aladder logic program
that implements it with Boolean equations. b) Develop the ladder logic using the block logic
technique. c) Develop the ladder logic using the delayed update method.

plc states - 22.39

10. Write ladder logic for the state diagram below &) using an equation based method. b) without
using an equation based method.

OFEHOOK OFFHOOK

OFFHOOK

OFFHOOK

DIALED

11. For the state diagram for the traffic light example, add a 15 second green light timer and speed
up signal for an emergency vehicle. A strobe light mounted on fire trucks will cause the lights
to change so that the truck doesn’t need to stop. Modify the state diagram to include this
option. Implement the new state diagram with ladder logic.

12. Design a program with a state diagram for a hydraulic press that will advance when two palm
buttons are pushed. Top and bottom limit switches are used to reverse the advance and stop
after aretract. At any time the hands removed from the palm button will stop an advance and
retract the press. Include start and stop buttons to put the pressin and out of an active mode.

13. In dangerous processes it is common to use two palm buttons that require a operator to use
both hands to start a process (this keeps hands out of presses, etc.). To develop thisthere are
two inputs (P1 and P2) that must both be turned on within 0.25s of each other before a machine
cycle may begin.

Develop ladder logic with a state diagram to control a process that has a start
(START) and stop (STOP) button for the power. After the power is on the palm
buttons (P1 and P2) may be used as described above to start acycle. The cycle
will consist of turning on an output (MOVE) for 2 seconds. After the press has
been cycled 1000 times the press power should turn off and an output (LIGHT)
should go on.

plc states - 22.40

14. Use a state diagram to design a parking gate controller.

light - the gate will be raised by one output

keycard entry \O/ J and lowered by another. If the gate
/7N gets stuck an over current detector

will make a PLC input true. If this

is the case the gate should reverse

and the light should be turned on
gate indefinitely.
- if avalid keycard isentered aPLC
input will betrue. The gateisto
cars enter/leave car detector rise and stay open for 10 seconds.
- - - when acar is over the car detector a
PLCinput will gotrue. Thegateis
to open while this detector is
active. If it isactive for more that
30 seconds the light should also
L turn on until the gate closes.

15. Thismorning you received a call from Mr. lan M. Daasprate at the Old Fashioned Widget
Company. In the past when they built a new machine they would used punched paper cards for
control, but their supplier of punched paper readers went out of businessin 1972 and they have
decided to try using PLCs thistime. He explains that the machine will dip wooden partsin var-
nish for 2 seconds, and then apply heat for 5 minutesto dry the coat, after this they are manu-
ally removed from the machine, and anew part is put in. They are also considering a premium
line of parts that would call for adip time of 30 seconds, and a drying time of 10 minutes. He
then refers you to the project manager, Ann Nooyed.

You call Ann and she explains how the machine should operate. There should be start and stop
buttons. The start button will be pressed when the new part has been loaded, and is ready to be
coated. A light should be mounted to indicate when the machine isin operation. The part is
mounted on awheel that is rotated by a motor. To dip the part, the motor isturned on until a
switch is closed. To remove the part from the dipping bath the motor isturned on until a second
switchisclosed. If the motor to rotate the wheel is on for more that 10 seconds before hitting a
switch, the machine should be turned off, and afault light turned on. The fault condition will
be cleared by manually setting the machine back to itsinitia state, and hitting the start button
twice. If the part has been dipped and dried properly, then adone light should be lit. To select a
premium product you will use an input switch that needs to be pushed before the start button is
pushed. She closes by saying shewill be going on vacation and you need to have it done before
shereturns.

You hang up the phone and, after a bit of thought, decide to use the following outputs and inputs,

plc states - 22.41

INPUTS OUTPUTS
I/1 - start push button O/1 - start button
1/2 - stop button O/2 - in operation
1/3 - premium part push button O/3 - fault light
1/4 - switch - part isin bath on wheel O/4 - part done light
1/5 - switch - part is out of bath on wheel O/5 - motor on

O/6 - heater power supply

a) Draw a state diagram for the process.

b) List the variables needed to indicate when each state is on, and list any timers
and counters used.

c) Write a Boolean expression for each transition in the state diagram.

d) Do asimple wiring diagram for the PLC.

€) Write the ladder logic for the state that invol ves moving the part into the dipping
bath.

16. Design ladder logic with a state diagram for the following process description.

a) A toggle start switch (TS1) and alimit switch on a safety gate (L S1) must both
be on before a solenoid (SOL 1) can be energized to extend a stamping cylinder
to the top of a part. Should a part detect sensor (PS1) also be considered?
Explain your answer.

b) While the stamping solenoid is energized, it must remain energized until alimit
switch (L S2) isactivated. Thissecond limit switch indicates the end of astroke.
At this point the solenoid should be de-energized, thus retracting the cylinder.

¢) When the cylinder isfully retracted alimit switch (LS3) is activated. The cycle
may not begin again until thislimit switch isactive. Thisis one way to ensure
that anew part is present, is there another?

d) A cycle counter should also be included to allow counts of parts produced.
When this value exceeds some variable amount (from 1 to 5000) the machine
should shut down, and ajob done light lit up.

€) A safety check should beincluded. If the cylinder solenoid has been on for more
than 5 seconds, it suggests that the cylinder is jammed, or the machine has a
fault. If thisis the case the machine should be shut down, and a maintenance
light turned on.

f) Implement the ladder diagram on a PLC in the laboratory.

g) Fully document the ladder logic and prepare a short report - This should be of
use to another engineer that will be maintaining the system.

plc states- 1.1

1.1 PRACTICE PROBLEM SOLUTIONS

Timer Done + Cancel Button +

Start Button

2.
Tl =FS
T2 = S1(BA)
T3 = S2(E(C+D+F))

T4 = SI(F+E)

T5 = SO(A(C + D))

Cance| Button

Time Button

Power Button

(S1+T1+T3+T5)T2T4
(S2+T2)T3

(S0 + T4T2)T5

P

Py

Time Button

S1+82
SO0+ S2
SO0+ S1

plc states- 1.2

Tl = STleA STl = (ST1L+T2+T4+T6)-T1-T3-T5
T2 = ST2eB ST2 = (ST2+T1-T3.T5). T2
T3 = STleC —
T4 = ST3eD ST3 = (ST3+T3-T5)- T4
T5 = ST1eE ST4 = (ST4+T5+FS)- T6
T6 = ST4eF
ST}l A O T1
ST%' B O T2
ST}l C O T3
ST?[D O T4
ST}l E O T5
STT F O T6
ST1 T\ Ts\‘\N T5\KN ST1
| | |
| | | | O
T2
T4
T6
ST2 Tz\KN ST2
|
| | O
T1,, T3, T5,
ST3 T4\KN ST3
|
| O
T3, T5,
ST4 TQ\ ST4
|
| | O
5
FS

plc states- 1.3

FS =first scan
Tl =ST2-A
T2 =ST1-B

T3 = ST3-(C-B)
T4 = ST2-(C+B)
ST1 = (ST1+T1) - T2+FS
ST2 = (ST2+T2+7T3)-T1-T4
ST3 = (ST3+T4-T1)-T3

Q T
STl B Q T2
ST3 C B
| | T3
|]
ST2
C O T4

B
T2
\H\ ST1 Q ST1
T1
first scan
T1 T4
N ST2 ST2
|
T2
T3

T3
N ST3 O ST3

T4 \H\Tl

plc states- 1.4

OTA

OTB

OTC

OTD

OTE

OTF

Osn

QST2

TA = ST2-A ST1 = (ST1+TA+TC)-TB- TD
TB = ST1-B ST2 = (ST2+TB+TF)-TA- TE
TC = ST3.C ST3 = (ST3+TD +TE)- TC- TF
TD = ST1-D-B
TE = ST2 E-A
TF = ST3.F-C

T2 A

lerl B

5J|r3 c

lerl D B

ST E A

5J|r3 F C

ST T8 ™

TA

e

ST2 T,lA TE

T Nk

TE

ST3 TC TF

I A

TE

OST3

plc states- 1.5

button A + button B

motor on
door opening

door idle

counter > 20,000

thermal relay + 15 sec delay

service mode

reset button - assumed

b) Legend _
button A Machine:0.l.Data.1
button B Machine:0.l.Data.2
motor Machine:1.0.Data.3
thermal relay Machine:0.l.Data.3
reset button Machine:0.l.Data4 - assumed
state 1
State 2
State 3

lamp Machine:1.0.Data.7

‘|fnssmn

plc states - 1.6

<
@)

state 2

state 3

\ state 1

<
@)

button A

button B

<
@)

QC&DQ QQ@%%@Q

Q@
2
D
[EEN

state 2

state 3

motor

Q
=
~—

Q
2
®
N

state 1

plc states- 1.7

}I = <E%§§
TON
t st2
preset 15s
t st2.DN <E::>qae1
thermal relay i : state 2
CTU
maintain
preset 20000
state 3

| ‘ maintain.DN

booc

State 2

state 1

plc states- 1.8

‘ state 3 MG
|
‘ reset button ?? @ state 1
|
i j State 3
@ counter
C

SO0 = (SO + S1(delay(15) + thermal))SO(buttonA + buttonB)

S1 = (S1+ SO(buttonA + buttonB))S1(delay(15) + thermal)S3(counter)
S3 = (S3+ S2(counter))S3(reset)
motor = S1

light = S3

plc states- 1.9

a) block logic method
remote OR button

remote OR button OR bottom li

door
opening
(state 4)

light sensor

remote OR button remote OR button OR top limit

plc states- 1.10

N FS L state 1
|
4@ State 2
4@ state 3
4@ state 4
state 2 O close doo
state 4 Q open_dool
State 2 TOF
light_on
preset 300s
state 4
light_on.DN .
Q garage light
state 1
®
remote state 1
Ok
button z date 2
®

plc states- 1.11

<

button

bottom_limit

light_beam

<
@)

state 3
b

<
@)

remote

button

<
@)

OO PROG OOG

Q
=
®
N

state 3

Q
=
®
N

state 4

Qa
2
®
w

state 4

state 4
]

plc states - 1.12

M

remote

button

top_limit

M

D OOG

state 4

state 1

plc states- 1.13

b) state-transition equations
remote OR button

remote OR button OR bottom li

door
opening
(state 4)

light sensor

remote OR button remote OR button OR top limit

using the previous state diagram.

ST1=state 1 T1 = state 1 to state 2
ST2 = state 2 T2 = state 2 to state 3
ST3 =state 3 T3 = state 2 to state 4
ST4 = state 4 T4 = state 3 to state 4
FS = first scan T5 = state 4 to state 1
ST1 = (ST1+T5)-T1 T1 = ST1- (remote + button)

ST2 = (ST2+T1)-T2-T3 T2 = ST2- (remote + button + bottomlimit)
T3 = ST2- (remote + button)

T4 = ST3- (lighbeam)

ST4 = (ST4+T3+T4)- TS5 75 = ST4. (remote + button + toplimit) + FS

ST3 = (ST3+T2) T4

remote

plc states - 1.14

button

remote

button

bottom limit

remote

ST3

button

light_beam

ST4

remote

button

top_limit

first scan

plc states- 1.15

™ ST1 ST1
i -
T5
T2 T3 ST2
Nk o
| |
T1
T4 I ST3 ST3
. >
T2
TS ST4 ST4
. >
T3
T4
ST2 O close do
ST4 Q open do
ST2 TOF
light_on
preset 300s
ST4
light_on.DN
T

Q garage light

plc states- 1.16

FS

priority is missing

FS

Bag_Detected
ldle i p-\ Closing Door

Entry_Door_Closed e Exit\Door_Closed
Scan_Donee ((Risk < 0.3) ¢ (Risk > 23.5))

Key
Exit_Dogr_Closed

Bag Detect

Scan_Donee ((Risk > 0.3) ¢ (Risk < 23.5))

plc numbers - 2.1

2. NUMBERS AND DATA

Topics:
* Number bases; binary, octal, decimal, hexadecimal
* Binary calculations; 2s compliments, addition, subtraction and Boolean opera-
tions
* Encoded values; BCD and ASCII
* Error detection; parity, gray code and checksums

Objectives:
* To be familiar with binary, octal and hexadecimal numbering systems.
* To be able to convert between different numbering systems.
* To understand 2s compliment negative numbers.
* To be able to convert ASCII and BCD values.
* To be aware of basic error detection techniques.

2.1 INTRODUCTION

Base 10 (decimal) numbers devel oped naturally because the original developers
(probably) had ten fingers, or 10 digits. Now consider logical systemsthat only have wires
that can be on or off. When counting with awire the only digitsare 0 and 1, giving a base
2 numbering system. Numbering systems for computers are often based on base 2 num-
bers, but base 4, 8, 16 and 32 are commonly used. A list of numbering systemsisgivein
Figure 2.1. An example of counting in these different numbering systemsis shown in Fig-
ure 2.2.

Base | Name Data Unit
2 Binary Bit

8 Octdl Nibble
10 Decimal Digit

16 Hexadecimal Byte

Figure2.1 Numbering Systems

plc numbers - 2.2

decimal binary octal hexadecimal
0 0 0 0
1 1 1 1
2 10 2 2
3 1 3 3
4 100 4 4
5 101 5 5
6 110 6 6
4 111 7 7| Note: Aswith al numbering systems
8 1000 10 8
9 1001 11 9 most significant digits are at left,
10 1010 12 a least significant digits are at right.
11 1011 13 b
12 1100 14 c
13 1101 15 d
14 1110 16 e
15 1111 17 f
16 10000 20 10
17 10001 21 11
18 10010 22 12
19 10011 23 13
20 10100 24 14

Figure 2.2 Numbers in Decimal, Binary, Octal and Hexadecimal

The effect of changing the base of a number does not change the actual value, only
how it iswritten. The basic rules of mathematics still apply, but many beginners will feel
disoriented. This chapter will cover basic topics that are needed to use more complex pro-
gramming instructions later in the book. These will include the basic number systems,
conversion between different number bases, and some data oriented topics.

2.2NUMERICAL VALUES

2.2.1 Binary

Binary numbers are the most fundamental numbering system in all computers. A
single binary digit (abit) corresponds to the condition of asingle wire. If the voltage on
thewireistruethebit valueis 1. If the voltage is off the bit valueisO. If two or more wires
are used then each new wire adds another significant digit. Each binary number will have
an equivalent digital value. Figure 2.3 shows how to convert a binary number to adecimal
equivalent. Consider the digits, starting at the right. The least significant digitis 1, andis

plc numbers - 2.3

in the Oth position. To convert thisto a decimal equivalent the number base (2) israised to
the position of the digit, and multiplied by the digit. In this case the least significant digit
isatrivial conversion. Consider the most significant digit, with avalue of 1 in the 6th
position. Thisis converted by the number base to the exponent 6 and multiplying by the
digit value of 1. Thismethod can also be used for converting the other number system to

decimal.

X=64 2°=32

113

Figure2.3 Conversion of a Binary Number to a Decimal Number

Decimal numbers can be converted to binary numbers using division, as shown in
Figure 2.4. This technique begins by dividing the decimal number by the base of the new
number. The fraction after the decimal givesthe least significant digit of the new number
when it is multiplied by the number base. The whole part of the number is now divided
again. This process continues until the whole number is zero. This method will also work
for conversion to other number bases.

plc numbers - 2.4

start with decimal number 932

932 _ 466 2(0.0)=0
for binary ™ \—»- 2 e
base 2
(bese2) 4766 = 233 2(0.0) = 0
2—2’3 = 116 2(05)=1
%@ - 58 2(0.0) = 0
523 = 29 2(0.0)=0
2 ;/14 2(05)=1
14 _ 2(0.0)= 0
527 (0.0) = 1110100100
g):/ 205 =1
3_ 2(05)=1
2
1
1_ 2(05)=1
5 0 (0.5)
done

multiply places after decimal by division
base, inthis caseit is 2 because of the binary.

* This method works for other number bases also, the divisor and multipliers
should be changed to the new number bases.

Figure2.4 Conversion from Decimal to Binary

Most scientific calculators will convert between number bases. But, it isimportant
to understand the conversions between number bases. And, when used frequently enough
the conversions can be done in your head.

Binary numbers come in three basic forms - a bit, abyte and aword. A bitisasin-
gle binary digit, abyteiseight binary digits, and aword is 16 digits. Words and bytes are

plc numbers - 2.5

shown in Figure 2.5. Notice that on both numbers the least significant digit is on the right
hand side of the numbers. And, in the word there are two bytes, and the right hand oneis
the least significant byte.

BYTE WORD
MSB LSB MSB LSB

N 4 N
0110 1011 0110 1015 0100 0010
mo |

significant significant
byte byte

Figure25 Bytesand Words

Binary numbers can al so represent fractions, as shown in Figure 2.6. The conver-
sionto and from binary isidentical to the previous techniques, except that for valuesto the
right of the decimal the equivalents are fractions.

binary: 101.011

2 1 0 -1 -2, _ 1 3. _ 1
12=4 02)=0 12)=1 02)=0 12)_Z 1(2)_é
= 5375 decimd

= 44+0+1+0+=+

i
QI

Figure2.6 A Binary Decimal Number

2.2.1.1 - Boolean Operations

In the next chapter you will learn that entire blocks of inputs and outputs can be
used as a single binary number (typically aword). Each bit of the number would corre-
spond to an output or input as shown in Figure 2.7.

plc numbers - 2.6

There are three motors M 1, M, and M 3 represented with three bits in a binary
number. When any bit is on the corresponding motor is on.

100 = Motor 1 isthe only one on
111 = All three motors are on

in total there are 2" or 22 possible combinations of motors on.

Figure 2.7 Motor Outputs Represented with a Binary Number

We can then manipulate the inputs or outputs using Boolean operations. Boolean
algebra has been discussed before for variables with single values, but it is the same for
multiple bits. Common operations that use multiple bits in numbers are shown in Figure
2.8. These operations compare only one bit at atime in the number, except the shift
instructions that move all the bits one place left or right.

Name Example Result

AND 0010 * 1010 0010

OR %) + 1010 1010

NOT 0010 1101

EOR 0010 eor 1010 1000

NAND 0010 * 1010 1101

shift left 111000 110001 (other results are possible)
shift ri ght 111000 011100 (other results are po$| bl e)
etc.

Figure2.8 Boolean Operations on Binary Numbers

2.2.1.2 - Binary Mathematics

Negative numbers are a particular problem with binary numbers. As aresult there
are three common numbering systems used as shown in Figure 2.9. Unsigned binary num-
bers are common, but they can only be used for positive vaues. Both signed and 2s com-
pliment numbers allow positive and negative values, but the maximum positive valuesis
reduced by half. 2s compliment numbers are very popular because the hardware and soft-
ware to add and subtract is ssimpler and faster. All three types of numberswill be found in
PLCs.

plc numbers - 2.7

Type Description Range for Byte
unsigned binary numbers can only have positive values. 0to 255
signed the most significant bit (MSB) of the binary number| -127 to 127
Is used to indicate positive/negative.
2s compliment | negative numbers are represented by complimenting| -128 to 127

the binary number and then adding 1.

Figure 2.9 Binary (Integer) Number Types

Examples of signed binary numbers are shown in Figure 2.10. These numbers use

the most significant bit to indicate when a number is negative.

decimal binary byte
2 00000010
1 00000001
0 00000000
-0 10000000 <~ Note: there are two zeros
-1 10000001
-2 10000010

Figure2.10 Signed Binary Numbers

An example of 2s compliment numbers are shown in Figure 2.11. Basically, if the
number is positive, it will be aregular binary number. If the number is to be negative, we
start the positive number, compliment it (reverse al the bits), then add 1. Basically when
these numbers are negative, then the most significant bit is set. To convert from anegative

2s compliment number, subtract 1, and then invert the number.

plc numbers - 2.8

decimal binary byte METHOD FOR MAKING A NEGATIVE NUMBER
2 00000010 1. write the binary number for the positive
1 00000001 - _
0 00000000 for -30 we write 30 = 00011110
-1 11111111 2. Invert (compliment) the number
-2 11111110

00011110 becomes 11100001

3.Add 1
11100001 + 00000001 = 11100010

Figure2.11 2s Compliment Numbers

Using 2s compliments for negative numbers eliminates the redundant zeros of
signed binaries, and makes the hardware and software easier to implement. As aresult
most of the integer operationsin a PLC will do addition and subtraction using 2s compli-
ment numbers. When adding 2s compliment numbers, we don’t need to pay special atten-
tion to negative values. And, if we want to subtract one number from another, we apply
the twos compliment to the value to be subtracted, and then apply it to the other value.

Figure 2.12 shows the addition of numbers using 2s compliment numbers. The
three operations result in zero, positive and negative values. Notice that in all three opera-
tion the top number is positive, while the bottom operation is negative (thisis easy to see
because the MSB of the numbersis set). All three of the additions are using bytes, thisis
important for considering the results of the calculations. In the left and right hand calcula-
tions the additions result in a 9th bit - when dealing with 8 bit numbers we call this bit the
carry C. If the calculation started with a positive and negative value, and ended up with a
carry bit, there is no problem, and the carry bit should be ignored. If doing the calculation
on acalculator you will see the carry bit, but when using a PLC you must look elsewhere
to find it.

plc numbers - 2.9

00000001 =1 00000001 =1 00000010 =2
+ 11111111 =-1 + 11111110=-2 + 11111111 =-1
C+00000000 =0 11111111 =-1 C+00000001 =1

ignore the carry bits Note: Normally the carry bit isignored during the oper-
ation, but some additional logic is required to make
sure that the number has not overflowed and moved
outside of the range of the numbers. Here the 2s com-
pliment byte can have values from -128 to 127.

Figure2.12 Adding 2s Compliment Numbers

The integers have limited value ranges, for example a 16 bit word ranges from -
32,768 to 32,767 whereas a 32 bit word ranges from -2,147,483,648 to 2,147,483,647. In
some cases calculations will give results outside thisrange, and the Overflow O bit will be
set. (Note: an overflow condition isamajor error, and the PLC will probably halt when
this happens.) For an addition operation the Overflow bit will be set when the sign of both
numbers is the same, but the sign of the result is opposite. When the signs of the numbers
are opposite an overflow cannot occur. This can be seen in Figure 2.13 where the numbers
two of the three calculations are outside the range. When this happens the result goes from
positive to negative, or the other way.

01111111 =127 10000001 =-127 10000001 =-127
+ 00000011=3 + 11111111 =-1 + 11111110=-2

10000010 = -126 10000000 =-128 01111111 = 127

C=0 c=1 c=1

O =1 (error) O =0 (no error) O =1 (error)

Note: If an overflow bit is set thisindicates that a calculation is outside and
acceptable range. When this error occurs the PLC will halt. Do not ignore the
limitations of the numbers.

Figure2.13 Carry and Overflow Bits

These bits also apply to multiplication and division operations. In addition the PLC
will also have bitsto indicate when the result of an operation is zero Z and negative N.

plc numbers- 2.10

2.2.2 Other Base Number Systems

Other number bases are typically converted to and from binary for storage and
mathematical operations. Hexadecimal numbers are popular for representing binary val-
ues because they are quite compact compared to binary. (Note: large binary numberswith
along string of 1s and Os are next to impossible to read.) Octal numbers are also popular
for inputs and outputs because they work in counts of eight; inputs and outputs arein
counts of eight.

An example of conversion to, and from, hexadecimal is shown in Figure 2.14 and
Figure 2.15. Note that both of these conversions are identical to the methods used for
binary numbers, and the same techniques extend to octal numbers also.

163=4096 162=256 161=16 16°=1

T
\

15(16%) = 61440
8(16%) = 2048
10(16Y = 160
3(169) = 3

63651

Figure2.14 Conversion of a Hexadecimal Number to a Decimal Number

5124 _ 35775 —— 16(0.75)=12'C

16
31—567 = 223125 ——® 16(0.3125)=5
% - 1375 —® 16(0.375)=6 165¢

% - 00625 —® 16(0.0625) =1

Figure2.15 Conversion from Decimal to Hexadecimal

plc numbers- 2.11

2.2.3 BCD (Binary Coded Decimal)

Binary Coded Decimal (BCD) numbers use four binary bits (a nibble) for each
digit. (Note: thisisnot a base number system, but it only represents decimal digits.) This
means that one byte can hold two digits from 00 to 99, whereas in binary it could hold
from 0 to 255. A separate bit must be assigned for negative numbers. This method is very
popular when numbers are to be output or input to the computer. An example of aBCD
number is shown in Figure 2.16. In the example there are four digits, therefore 16 bits are
required. Note that the most significant digit and bits are both on the left hand side. The
BCD number isthe binary equivaent of each digit.

decimal

179 Note: this example shows four digits
/ A\ in two bytes. The hex values

0001001001100011 BCD would also be 1263.

Figure2.16 A BCD Encoded Number

Most PLCs store BCD numbersinwords, allowing values between 0000 and 9999.
They a so provide functions to convert to and from BCD. It is a so possible to calculations
with BCD numbers, but thisis uncommon, and when necessary most PL Cs have functions
to do the calculations. But, when doing cal culations you should probably avoid BCD and
use integer mathematicsinstead. Try to be aware when your numbers are BCD values and
convert them to integer or binary value before doing any calculations.

2.3 DATA CHARACTERIZATION

2.3.1 ASCII (American Sandard Code for Information I nterchange)

When dealing with non-numerical values or data we can use plain text characters
and strings. Each character is given a unique identifier and we can use these to store and
interpret data. The ASCII (American Standard Code for Information Interchange) isavery
common character encryption system is shown in Figure 2.17 and Figure 2.18. The table
includes the basic written characters, as well as some special characters, and some control
codes. Each one is given a unique number. Consider the letter A, it isreadily recognized
by most computers world-wide when they see the number 65.

©O~NOUAWNRO decima

BEREBETMOO®E>©®~No AN RO hexadecima

[l el el el = PP RPERERE
T W1CJC)UJE;¢o<n ~No o b

Figure2.17 ASCII Character Table

binary

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000
00010001
00010010
00010011
00010100
00010101
00010110
00010111
00011000
00011001
00011010
00011011
00011100
00011101
00011110
00011111

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
us

plc numbers - 2.12

hexadecimal

binary

00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101
00101110
00101111
00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111

"T 8 ASCl

=S TR0 H

+

O©CoOoO~NOUPAWNEO ™"

NV I A

plc numbers- 2.13

o ©

£ £

o) _ - o} _
T g 3 § ¢ ¢ >
£ 0 < ° £ <
40 01000000 @ 96 60 01100000
41 01000001 A 97 61 01100001 a
42 01000010 B 98 62 01100010 b
43 01000011 C 99 63 01100011 c
44 01000100 D 100 64 01100100 d
45 01000101 E 101 65 01100101 e
46 01000110 F 102 66 01100110 f
47 01000111 G 103 67 01100111 g
48 01001000 H 104 68 01101000 h
49 01001001 | 105 69 01101001 i
4A 01001010 J 106 6A 01101010 |
4B 01001011 K 107 6B 01101011 k
4C 01001100 L 108 6C 01101100 |
4D 01001101 M 109 6D 01101101 m
4E 01001110 N 110 6E 01101110 n
4F 01001111 O 111 6F 01101111 o
50 01010000 P 112 70 01110000 p
51 01010001 Q 113 71 01110001 g
52 01010010 R 114 72 01110010 r
53 01010011 S 115 73 01110011 s
54 01010100 T 116 74 01110100 t
55 01010101 U 117 75 01110101 u
56 01010110 V 118 76 01110110 v
57 01010111 W 119 77 01110111 w
58 01011000 X 120 78 01111000 x
59 01011001 Y 121 79 01111001 vy
5A 01011010 Z 122 7A 01111010 z
5B 01011011 | 123 7B 01111011 {
5C 01011100 yen 124 7C 01111100 |
5D 01011101] 125 7D 01111101 }
5e 01011110 A~ 126 7E 01111110 rar.
5F 01011111 127 7F 01111111 | arr.

Figure2.18 ASCII Character Table

Thistable has the codes from 0 to 127, but there are more extensive tables that
contain special graphics symbols, international characters, etc. It is best to use the basic
codes, as they are supported widely, and should suffice for al controls tasks.

plc numbers- 2.14

An example of astring of characters encoded in ASCII is shown in Figure 2.19.

e.g. The sequence of numbers below will convert to

A W e e T e s t
A 65
space 32
W 87
e 101
e 101
space 32
T 84
e 101
S 115
t 116

Figure2.19 A String of Characters Encoded in ASCI|

When the characters are organized into a string to be transmitted and LF and/or CR
code are often put at the end to indicate the end of aline. When stored in a computer an
ASCII value of zero is used to end the string.

2.3.2 Parity

Errors often occur when datais transmitted or stored. Thisisvery important when
transmitting data in noisy factories, over phone lines, etc. Parity bits can be added to data
as asimple check of transmitted data for errors. If the data contains error it can be retrans-
mitted, or ignored.

A parity bit isnormally a 9th bit added onto an 8 bit byte. When the datais
encoded the number of true bits are counted. The parity bit is then set to indicate if there
are an even or odd number of true bits. When the byte is decoded the parity bit is checked
to make sure it that there are an even or odd number of data bitstrue. If the parity bit is not
satisfied, then the byte is judged to bein error. There are two types of parity, even or odd.
These are both based upon an even or odd number of data bits being true. The odd parity
bit istrueif there are an odd number of bits on in a binary number. On the other hand the
Even parity is set if there are an even number of true bits. Thisisillustrated in Figure 2.20.

plc numbers - 2.15

data parity
bits bit
Odd Parity 10101110 1
10111000 0
Even Parity 00101010 0
10111101 1

Figure2.20 Parity Bitson aByte

Parity bits are normally suitable for single bytes, but are not reliable for datawith a

number of hits.

Note: Control systems perform important tasks that can be dangerousin certain circum-
stances. If an error occurs there could be serious consequences. As aresult error
detection methods are very important for control system. When error detection occurs
the system should either be robust enough to recover from the error, or the system
should fail-safe. If you ignore these design concepts you will eventually cause an

accident.

2.3.3 Checksums

Parity bits are suitable for afew bits of data, but checksums are better for larger
data transmissions. These are simply an algebraic sum of al of the data transmitted.
Before data is transmitted the numeric values of al of the bytes are added. Thissumis
then transmitted with the data. At the receiving end the data values are summed again, and
the total is compared to the checksum. If they match the datais accepted as good. An
example of thismethod is shown in Figure 2.21.

plc numbers- 2.16

DATA
124
43
255
9
27
47

CHECKSUM
505

Figure2.21 A Simplistic Checksum

Checksums are very common in data transmission, but these are al'so hidden from
the average user. If you plan to transmit data to or from a PLC you will need to consider
parity and checksum values to verify the data. Small errors in data can have major conse-
guences in received data. Consider an oven temperature transmitted as a binary integer
(1023d = 0000 0100 0000 0000b). If asingle bit were to be changed, and was not detected
the temperature might become (0000 0110 0000 0000b = 1535d) This small change would
dramatically change the process.

2.3.4 Gray Code

Parity bits and checksums are for checking data that may have any value. Gray
code is used for checking data that must follow a binary sequence. Thisis common for
devices such as angular encoders. The concept is that as the binary number counts up or
down, only one bit changes at atime. Thus making it easier to detect erroneous bit
changes. An example of agray code sequence is shown in Figure 2.22. Notice that only
one bit changes from one number to the next. If more than a single bit changes between
numbers, then an error can be detected.

ASIDE: When the signal level in awirerisesor drops, it induces a magnetic pulse that
excitesasignal in other nearby lines. This phenomenon is known as cross-talk. This
signal is often too small to be noticed, but several simultaneous changes, coupled with
background noise could result in erroneous values.

plc numbers- 2.17

decimal | 9ray code
0 0000
1 0001
2 0011
3 0010
4 0110
5 0111
6 0101
7 0100
8 1100
9 1101
10 1111
1 1110
12 1010
13 1011
14 1001
15 1000

Figure2.22 Gray Code for aNibble

24 SUMMARY

* Binary, octal, decimal and hexadecimal numbers were all discussed.

« 2s compliments alow negative binary numbers.

* BCD numbers encode digitsin nibbles.

» ASCII vaues are numerical equivalents for common al phanumeric characters.
» Gray code, parity bits and checksums can be used for error detection.

2.5PRACTICE PROBLEMS

1. Why are binary, octal and hexadecimal used for computer applications?
2. Isaword is 3 nibbles?
3. What are the specific purpose for Gray code and parity?

4. Convert the following numbers to/from binary

plc numbers- 2.18

a) from base 10: 54,321 b) from base 2: 110000101101

5. Convert the BCD number below to a decimal number,

0110 0010 0111 1001

6. Convert the following binary number to a BCD number,

0100 1011

7. Convert the following binary number to a Hexadecimal value,

0100 1011

8. Convert the following binary number to a octal,

0100 1011

9. Convert the decimal value below to a binary byte, and then determine the odd parity bit,
97

10. Convert the following from binary to decimal, hexadecimal, BCD and octal.

a) 101101 c) 10000000001
b) 11011011 d) 0010110110101

plc numbers- 2.19

11. Convert the following from decimal to binary, hexadecimal, BCD and octal.

a) 1 C) 20456
b) 17 d) 10

12. Convert the following from hexadecimal to binary, decimal, BCD and octal.

a) 1 C) ABC
b) 17 d) -A

13. Convert the following from BCD to binary, decimal, hexadecimal and octal.

a) 1001 c) 0011 0110 0001
b) 1001 0011 d) 0000 0101 0111 0100

14. Convert the following from octal to binary, decimal, hexadecimal and BCD.

a) 7 C) 777
b) 17 d) 32634

15.
a) Represent the decimal value thumb wheel input, 3532, as a Binary Coded Deci-
mal (BCD) and a Hexadecimal Value (without using a calculator).
i) BCD
i) Hexadecima
b) What is the corresponding decimal value of the BCD value,
10011110100110117

16. Add/subtract/multiply/divide the following numbers.

a) binary 101101101 + 01010101111011 i) octal 123 - 777

b) hexadecimal 101 + ABC J) 2s complement bytes 10111011 + 00000011
c) octal 123 + 777 k) 2s complement bytes 00111011 + 00000011
d) binary 110110111 - 0101111 [) binary 101101101 * 10101

e) hexadecimal ABC - 123 m) octal 123 * 777

f) octal 777 - 123 n) octal 777 /123

g) binary 0101111 - 110110111 0) binary 101101101 / 10101

h) hexadecimal 123-ABC p) hexadecimal ABC/ 123

plc numbers - 2.20

17. Do the following operations with 8 bit bytes, and indicate the condition of the overflow and
carry hits.

a) 10111011 + 00000011 d) 110110111 - 01011111
b) 00111011 + 00000011 €) 01101011 + 01111011
c) 11011011 + 11011111 f) 10110110 - 11101110

18. Consider the three BCD numbers listed bel ow.

1001 0110 0101 0001
0010 0100 0011 1000
0100 0011 0101 0001

a) Convert these numbersto their decimal values.

b) Convert the decimal values to binary.

c¢) Calculate a checksum for all three binary numbers.

d) What would the even parity bits be for the binary words found in b).
19. Isthe 2nd bit set in the hexadecimal value F49?
20. Explain where grey code occurs when creating Karnaugh maps.

21. Convert the decimal number 1000 to a binary number, and then to hexadecimal.

2.6 ASSIGNMENT PROBLEMS

1. Why are hexadecimal numbers useful when working with PLCs?

plc numbers - 3.1

3.1 PRACTICE PROBLEM SOLUTIONS

1. base 2, 4, 8, and 16 numbers translate more naturally to the numbers stored in the computer.

2. no, it isfour nibbles

3. Both of these are coding schemes designed to increase immunity to noise. A parity bit can be
used to check for a changed bit in abyte. Gray code can be used to check for avalue error ina
stream of continuous values.

4. a) 1101 0100 0011 0001, b) 3117

5. 6279

6. 0111 0101

7.4B

8.113

9. 1100001 odd parity bit = 1

10.
binary = 101101 11011011 10000000001 0010110110101
BCD 01000101 001000011001 0001 000000100101 0001 0100 0110 0001
decimal 45 219 1025 1461
hex 2D DB 401 5B5
octal 55 333 2001 2665

11.
decimal 1 17 20456 -10
BCD 0001 00010111 0010 0000 01000101 0110 -0001 0000
binary 1 10001 0100 1111 1110 1000 1111 1111 1111 0110
hex 1 11 4FE8 FFF6

octal 1 21 47750 177766

plc numbers - 3.2

12.
hex 1 17 ABC -A
BCD 0001 00100011 0010 0111 0100 1000 -0001 0000
binary 1 10111 0000 1010 1011 1100 1111 1111 1111 0110
decimal 1 23 2748 -10
octal 1 27 5274 177766
13.
BCD 1001 1001 0011 0011 0110 0001 0000 0101 0111 0100
binary 1001 101 1101 10110 1001 10 0011 1110
decimal 9 93 361 0574
hex 9 sD 169 23E
octal 11 135 551 1076
14.
octal 7 17 7 32634
binary 111 1111 111111111 0011 0101 1001 1100
decima 7 15 511 13724
hex 7 F 1FF 359C
BCD 0111 0001 0101 0101 0001 0001 0001 0011 0111 0010 0100

15. a) 3532 = 0011 0101 0011 0010 = DCC, b0 the number is not avalid BCD

plc numbers - 3.3

16.
a) 0001 0110 1110 1000 i) -654
b) BBD j) 0000 0001 0111 1010
c) 1122 k) 0000 0000 0011 1110
d) 0000 0001 1000 1000) 0001 1101 1111 0001
€) 999 m) 122655
f) 654 n) 6
g) 1111 1110 0111 1000 0) 0000 0000 0001 0001
h) -999 p) 9
17.
a) 10111011 + 00000011=1011 1110 d) 110110111 - 01011111=0101 1000+C+O
b) 00111011 + 00000011=0011 1110 €) 01101011 + 01111011=1110 0110

c) 11011011 + 11011111=1011 1010+C+O f) 10110110 - 11101110=1100 1000

18. &) 9651, 2438, 4351, b) 0010 0101 1011 0011, 0000 1001 1000 0110, 0001 0000 1111 1111, c)
16440, d) 1,0, 0

19. The binary valueis 1111 0100 1001, so the second bit isO

20. when selecting the sequence of bit changes for Karnaugh maps, only one bit is changed at a
time. Thisisthe same method used for grey code number sequences. By using the code the bits
in the map are naturally grouped.

21.
1000, = 1111101000, = 3e8,;

plc memory - 4.1

4. PLC MEMORY

Topics:
* ControlLogix memory types; program and data
» Data types; output, input, status, bit, timer, counter, integer, floating point, etc.
» Memory addresses; words, bits, datafiles, expressions, literal values and indirect.

Objectives:
* To know the basic memory types available
* To be able to use addresses for locations in memory

4.1 INTRODUCTION

Advanced ladder logic functions such as timers and counters allow controllersto
perform cal cul ations, make decisions and do other complex tasks. They are more complex
than basic input contacts and output coils and they rely upon data stored in the memory of
the PLC. The memory of the PLC is organized to hold different types of programs and
data. This chapter will discuss these memory types. Functions that use them will be dis-
cussed in following chapters.

4.2 PROGRAM VSVARIABLE MEMORY

The memory inaPLC isdivided into program and variable memory. The program
memory contains the instructions to be executed and cannot be changed whilethe PLC is
running. (Note: some PLCs allow on-line editing to make minor program changes while a
program is running.) The variable memory is changed while the PLC is running. In Con-
trolLogix the memory is defined using variable names (also called tags and aliases).

plc memory - 4.2

ASIDE: In older Allen Bradley PL Cs the memory was often organized asfiles. There
are two fundamental types of memory used in Allen-Bradley PLCs - Program and
Data memory. Memory is organized into blocks of up to 1000 elementsin an array
called afile. The Program file holds programs, such as ladder logic. There are eight
Datafiles defined by default, but additional datafiles can be added if they are needed.

Program Files DataFiles
2 00
Outputs
——)
11 | nputs
3
0O S2 | Status
. B3 Bits
|
: T4 Timers
|
' CS5 Counters
999
P —0) R6 Control
N7 | nteger
These are acollection of up to 1000 FS
slots to store up to 1000 pro- Float
grams. The main program will
be stored in program file 2. SFC
programs must be in file 1, and Thisiswherethe variable datais
file 0 isused for program and stored that the PLC programs
password information. All other operate on. Thl$ Isquite COmpll-
program files from 3 to 999 can cated, so adetailed explanation
be used for subroutines. follows.

plc memory - 4.3

4.3 PROGRAMS

The PLC hasalist of "Main Tasks' that contain the main program(s) run each scan
of the PLC. Additional programs can be created that are called as subroutines. Valid pro-
gram types include Ladder Logic, Structured Text, Sequential Function Charts, and Func-
tion Block Diagrams.

Program files can also be created for ' Power-Up Handling’ and ’ Controller
Faults'. The power-up programs are used to initialize the controller on the first scan. In
previous chapters this was done in the main program using the’ S:FS’ bit. Fault programs
are used to respond to specific failures or issues that may lead to failure of the control sys-
tem. Normally these programs are used to recover from minor failures, or shut down asys-
tem safely.

4.4 VARIABLES (TAGS)

Allen Bradley uses the terminology 'tags' to describe variables, status, and input/
output (1/0) valuesfor the controller. ’ Controller Tags' include status values and 1/O defi-
nitions. These are scoped, meaning that they can be global and used by all programs on the
PLC. These can also be local, limiting their use to a program that owns it.

Variable tags can be an alias for another tags, or be given a data type. Some of the
common tag types are listed below.

Type Description

BOOL Holds TRUE or FAL SE values

CONTROL Genera purpose memory for complex instructions
COUNTER Counter memory

DINT 32 bit 2s compliment integer -2,147,483,648 to 2,147,483,647
INT 16 bit 2s compliment integer -32,768 to 32,767

MESSAGE Used for communication with remote devices

PID Used for PID control functions

REAL 32 bit floating point value +/-1.1754944e-38 to +/-3.4028237e38
SINT 8 bit 2s compliment integer -128 to 127

STRING An ASCII string

TIMER Timer memory

Figure4.1

Selected ControlLogic Data Types

plc memory - 4.4

S2:nnn
B3:nnn
T4:nnn
C5:nnn
R6:nnn
N7:nnn

F8:nnn
1

Fixed types of
Datafiles

Rack
I/O slot number in rack

Interface to o;oog’/
outside world I:'nnn

For older Allen Bradley PLCs datafiles are used for storing different informa-
tion types, as shown below. These locations are numbered from O to 999.
Theletter in front of the number indicates the data type. For example, F8: is
read as floating point numbersin data file 8. Numbers are not given for O:
and I, but they are implied to be O0: and 11:. The number that followsthe:
isthe location number. Each file may contain from O to 999 locations that
may store values. For theinput I: and output O: files the locations are con-
verted to physical locations on the PLC using rack and slot numbers. The
addresses that can be used will depend upon the hardware configuration.
The status 2: fileis more complex and is discussed later. The other mem-
ory locations are ssimply slots to store datain. For example, F8:35 would
indicate the 36th value in the 8th data file which is floating point numbers.

outputs

inputs

processor status

bits in words

timers

counters

control words

integer numbers
floating point numbers

1 Other files 9-999 can be created and used.
I Theuse defined datafiles can have different

v datatypes.

Data values do not always need to be stored in memory, they can be define liter-
aly. Figure 4.2 shows an example of two different data values. The first is an integer, the
second is areal number. Hexadecimal numbers can be indicated by following the number
with H, aleading zero is aso needed when the first digitisA, B, C, D, E or F. A binary

number isindicated by adding a B to the end of the number.

plc memory - 4.5

8 - aninteger

8.5 - afloating point number

08FH - a hexadecimal value 8F
01101101B - a binary number 01101101

Figure 4.2 Literal Data Values
Datatypes can be created in variable size 1D, 2D, or 3D arrays.

Sometimes we will want to refer to an array of values, asshownin Figure4.3. This
datatypeisindicated by beginning the number with a pound or hash sign’#'. Thefirst
example describes an array of floating point numbers staring in file 8 at location 5. The
second exampleisfor an array of integersin file 7 starting at location 0. The length of the
array is determined elsewhere.

test[1, 4] - returns the value in the 2nd row and 5th column of array test

Figure4.3 Arrays

Expressions allow addresses and functions to be typed in and interpreted when the
program isrun. The examplein Figure 4.4 will get afloating point number from "test’,
perform asine transformation, and then add 1.3. The text string is not interpreted until the
PLC isrunning, and if thereisan error, it may not occur until the program is running - so
use this function cautiously.

expression - atext string that describes a complex operation.

“gin(test) + 1.3” - asimple calculation

Figure4.4 Expressions

These data types and addressing modes will be discussed more as applicable func-
tions are presented later in this chapter and book.

plc memory - 4.6

Figure 4.5 shows a simple example ladder logic with functions. The basic opera-
tion is such that while input A is true the functions will be performed. The first statement
will move (MQV) the literal value of 130 into integer memory X. The next move function
will copy the value from X to Y. The third statement will add integersvaluein X and Y and
store the resultsin Z.

A MOV
| source 130
destination X

MOV
source X
destination Y

ADD
sourceA X
sourceB Y
destination Z

Figure45 An Example of Ladder Logic Functions

4.4.1 Timer and Counter Memory

Previous chapters have discussed the basic operation of timers and counters. The
ability to address their memory directly allows some powerful tools. The bits and words
for timers are;

EN - timer enabled bit

TT - timer timing bit

DN - timer done bit

FS - timer first scan

LS - timer last scan

QV - timer value overflowed
ER - timer error

PRE - preset word

ACC - accumulated time word

Counter have the following bits and words.

plc memory - 4.7

CU - count up bit

CD - count down bit

DN - counter done bit

QV - overflow bit

UN - underflow bit

PRE - preset word

ACC - accumulated count word

As discussed before we can access timer and counter bits and words. Examples of
these are shown in Figure 4.6. The bit values can only be read, and should not be changed.
The presets and accumulators can be read and overwritten.

Words

timer.PRE - the preset value for timer T4:0

timer.ACC - the accumulated value for timer T4:0
counter.PRE - the preset value for counter C5:0
counter.ACC - the accumulated value for counter C5:0

Bits
timer.EN - indicates when the input to timer T4:0 istrue
timer.TT - indicates when the timer T4:0 is counting
timer.DN - indicates when timer T4:0 has reached the maximum
counter.CU - indicates when the count up instruction istrue for C5:0
counter.CD - indicates when the count down instruction is true for C5:0
counter.DN - indicates when the counter C5:0 has reached the preset

counter.OV - indicates when the counter C5:0 passes the maximum value (2,147,483,647)
counter.UN - indicates when the counter C5:0 passes the minimum value (-2,147,483,648)

Figure4.6 Examplesof Timer and Counter Addresses

Consider the ssimple ladder logic examplein Figure 4.7. It showsthe use of atimer
timing TT bit to seal on the timer when a door input has gone true. While the timer is
counting, the bit will stay true and keep the timer counting. When it reaches the 10 second
delay the TT bit will turn off. The next line of ladder logic will turn on alight while the
timer is counting for the first 10 seconds.

plc memory - 4.8

DOOR

K TON

| example
delay 10s

exampleTT

| |

|

exampleTT

Ny Q LIGHT
| |

Figure4.7 Door Light Example

4.4.2 PLC SatusBits

Status memory allows a program to check the PL C operation, and also make some
changes. A selected list of status bitsis shown in Figure 4.8 for Allen-Bradley Control-
Logix PLCs. More complete lists are available in the manuals. Thefirst six bits are com-
monly used and are given simple designations for use with simple ladder logic. More
advanced instructions require the use of Get System Vaue (GSV) and Set System Value
(SSV) functions. These functions can get/set different values depending upon the type of
data object is being used. In the sample list given one data object isthe’ WALLCLOCK-
TIME'. One of the attributes of the classis the DateTime that contains the current time. It
isalso possible to use the’ PROGRAM’ object instance’ MainProgram’ attribute
"LastScanTime' to determine how long the program took to run in the previous scan.

plc memory - 4.9

Immediately accessible status values

S.FS- First Scan Flag

S:N - The last calculation resulted in a negative value

S.Z - Thelast calculation resulted in a zero

SV - Thelast calculation resulted in an overflow

S.C - Thelast calculation resulted in a carry

SIMINOR - A minor (non-critical/recoverable) error has occurred

Examples of SOME values available using the GSV and SSV functions

CONTROLLERDEVICE - information about the PLC
PROGRAM - information about the program running
LastScanTime
MaxScanTime
TASK
EnableTimeout
LastScanTime
MaxScanTime
Priority
StartTime
Watchdog
WALLCLOCKTIME - the current time
DateTime
DINTI[OQ] - year
DINT[1] - month 1=january
DINT[2] - day 1to 31
DINT[3] - hour O to 24
DINT[4] - minute O to 59
DINT[5] - second 0 to 59
DINT[6] - microseconds O to 999,999

Figure4.8 Status Bits and Words for Control Logix

An example of getting and setting system status valuesis shown in Figure 4.9. The
first line of ladder logic will get the current time from the class’ WALLCLOCKTIME'. In
this case the class does not have an instance so it is blank. The attribute being recalled is
the DateTime that will be written to the DINT array time[0..6]. For example "time[3]’
should give the current hour. In the second line the Watchdog time for the MainProgram is
set to 200 ms. If the program MainProgram takes longer than 200msto execute afault will

plc memory - 4.10

be generated.

GSv

Class Name: WALLCLOCKTIME
Instance Name:

Attribute Name: DateTime

Dest: time[0]

Ssv

Class Name: TASK

Instance Name: MainProgram
Attribute Name: Watchdog
Source: 200

Figure 4.9 Reading and Setting Status bits with GSV and SSV

As aways, additional classes and attributes for the status values can be found in
the manuals for the processors and instructions being used.

plc memory - 4.11

A sdlected list of status bitsis shown below for Allen-Bradley Micrologic and PLC-
5 PLCs. More complete lists are available in the manuals. For example the first
four bits S2: O/x indicate the results of calculations, including carry, overflow, zero
and negative/sign. The 2: 1/15 will be true once when the PLC isturned on - this
isthefirst scan bit. The time for the last scan will be stored in S2:8. The date and
clock can be stored and read from locations S2:18 to S2:23.

S2:0/0 carry in math operation

S2:0/1 overflow in math operation

S2:0/2 zero in math operation

S2:0/3 sign in math operation

S2:1/15 first scan of program file

S2:8 the scan time (ms)

S2:18 year

S2:19 month

S2:20 day

S2:21 hour

S2:22 minute

S2:23 second

S2:28 watchdog setpoint

S2:29 fault routine file number

S2:30 STI (selectable timed interrupt) setpoint
S2:31 ST file number
S2:46-S2:54,52:55-S2:56 Pl (Programmable Input Interrupt) settings
S2:55 ST last scan time (ms)

S2:77 communication scan time (ms)

4.4.3 User Function Control Memory

Simple ladder logic functions can complete operations in a single scan of ladder
logic. Other functions such as timers and counters will require multiple ladder logic scans
to finish. While timers and counters have their own memory for control, a generic type of
control memory is defined for other function. This memory contains the bits and wordsin
Figure 4.10. Any given function will only use some of the values. The meaning of particu-
lar bits and words will be described later when discussing specific functions.

plc memory - 4.12

EN - enable bit

EU - enable unload
DN - done bit

EM - empty bit

ER - error bit

UL - unload bit

IN - inhibit bit

FD - found bit

LEN - length word
POS - position word

Figure4.10 Bitsand Wordsfor Control Memory

4.5 SUMMARY

* Program are given unique names and can be for power-up, regular scans, and
faults.

* Tags and aliases are used for naming variables and 1/0.

* Filesare like arrays and are indicated with [].

* Expressions allow equations to be typed in.

* Literal valuesfor binary and hexadecimal values are followed by B and H.

4.6 PRACTICE PROBLEMS

1. How are timer and counter memory similar?
2. What types of memory cannot be changed?

3. Develop Ladder Logic for a car door/seat belt safety system. When the car door is open, or the
seatbelt is not done up, a buzzer will sound for 5 seconds if the key has been switched on. A
cabin light will be switched on when the door is open and stay on for 10 seconds after it is
closed, unless a key has started the ignition power.

4. Write ladder logic for the following problem description. When button A is pressed a value of
1001 will be stored in X. When button B is pressed avalue of -345 will be stored in Y, when it
isnot pressed avalue of 99 will be stored in Y. When button Cis pressed X and Y will be added,
and the result will be stored in Z.

5. Using the status memory locations, write a program that will flash alight for the first 15 sec-

plc memory - 4.13

onds after it has been turned on. The light should flash once a second.
6. How many words are required for timer and counter memory?
7. A machineis being designed for aforeign parts supplier. As part of the contractual agreement

the logic will run until February 26, 2008. However, after that date the machine will enable a
‘contract_expired’ value and no longer run. Write the ladder logic.

4.7 ASSIGNMENT PROBLEMS

1. Could timer *T" and counter ‘C’ memory types be replaced with control ‘R’ memory types?
Explain your answer.

plc memory - 5.1

5.1 PRACTICE PROBLEM SOLUTIONS

1. both are similar. The timer and counter memories both use double words for the accumulator
and presets, and they use bitsto track the status of the functions. These bits are somewhat dif-
ferent, but parallel in function.

2. Inputs cannot be changed by the program, and some of the status bits/words cannot be changed
by the user.

3.
Inputs | Outputs
door open buzzer
seat belt connected | light
key on
door open key on
| | TON
H Timer t_remind
seat belt connected Delay 55
t remind. TT
Q buzzer
door open
TOF
Timer t_light
Delay 10s
t lightDN keyon
i Ok

plc memory - 5.2

MQV
Source 1001
Dest X

MQV
Source -345
Dest Y

MQV
Source 99
Dest Y

ADD
Source A X
SourceB Y
Dest Z

plc memory - 5.3

5.

first scan RTF
t initial
delay 15s

t initia.DN RTO

- t_off
delay 0.5s

t_off.DN RTO
t on
delay 0.5s

t on.DN t_of@

t on.DN

- Lo REs

t initjia.DN t off.DN
j | ou@

6. three long words (3 * 32 bits) are used for atimer or a counter.
7.

GSvV

ClassName: WALLCLOCKTIME
Instance Name:

Attribute Name: DateTime

Dest: time[0] -->time:DINT[7]

GEQ GEQ GEQ L \contract_expired
time[0] time[0] time[0]
2008 2 26

plc basic functions - 6.1

6. LADDER LOGIC FUNCTIONS

Topics:

* Functions for data handling, mathematics, conversions, array operations, statis-
tics, comparison and Boolean operations.
* Design examples

Objectives:

* To understand basic functions that allow calculations and comparisons
* To understand array functions using memory files

6.1 INTRODUCTION

Ladder logic input contacts and output coils allow simple logical decisions. Func-
tions extend basic ladder logic to allow other types of control. For example, the addition of
timers and counters allowed event based control. A longer list of functionsis shownin
Figure 6.1. Combinatorial Logic and Event functions have already been covered. This
chapter will discuss Data Handling and Numerical Logic. The next chapter will cover
Lists and Program Control and some of the Input and Output functions. Remaining func-
tionswill be discussed in later chapters.

plc basic functions - 6.2

Combinatorial Logic

- relay contacts and coils
Events

- timer instructions

- counter instructions
Data Handling

- moves

- mathematics

- conversions
Numerical Logic

- boolean operations

- comparisons
Lists

- shift registers/stacks

- sequencers
Program Control

- branching/looping

- immediate inputs/outputs

- fault/interrupt detection
Input and Output

-PID

- communications

- high speed counters

- ASCII string functions

Figure 6.1 Basic PLC Function Categories

Most of the functions will use PLC memory locations to get values, store values
and track function status. Most function will normally become active when the input is
true. But, some functions, such as TOF timers, can remain active when the input is off.
Other functions will only operate when the input goes from false to true, thisis known as
positive edge triggered. Consider a counter that only counts when the input goes from
false to true, the length of time the input is true does not change the function behavior. A
negative edge triggered function would be triggered when the input goes from true to
false. Most functions are not edge triggered: unless stated assume functions are not edge
triggered.

plc basic functions - 6.3

NOTE: | do not draw functions exactly as they appear in manuals and programming soft-
ware. This helps save space and makes the instructions somewhat easier to read. All of
the necessary information is given.

6.2 DATA HANDLING

6.2.1 Move Functions

There are two basic types of move functions;

MOQV (value,destination) - moves a value to amemory location
MV M (value,mask,destination) - moves a value to a memory location, but with a
mask to select specific bits.

The simple MOV will take a value from one location in memory and placeitin
another memory location. Examples of the basic MOV are givenin Figure 6.2. When Aiis
true the MOV function moves a floating point number from the source to the destination
address. The datain the source addressis|eft unchanged. When B istrue the floating point
number in the source will be converted to an integer and stored in the destination address
in integer memory. The floating point number will be rounded up or down to the nearest
integer. When C istrue the integer value of 123 will be placed in the integer file test_int.

plc basic functions - 6.4

A MOV
|| Source test_real 1
Destination test_real 2

™o

B MOV
| | Sourcetest_real 1
Destination test_int

C MOV
| Source 123
Destination test_int

NOTE: when afunction changes a value, except for inputs and outputs, the value is
changed immediately. Consider Figure 6.2, if A, B and C are al true, then the value
intest_real 2 will change before the next instruction starts. Thisis different than
the input and output scans that only happen before and after the logic scan.

Figure 6.2 Examples of the MOV Function

A more complex example of move functionsis given in Figure 6.3. When A
becomes true the first move statement will move the value of 130 into int_0. And, the sec-
ond move statement will move the value of -9385 from int_1to int_2. (Note: The number
is shown as negative because we are using 2s compliment.) For the simple MOV s the
binary values are not needed, but for the MVM statement the binary values are essential.
The statement moves the binary bitsfrom int_3 to int_5, but only those bits that are also
on inthe mask int_4, other bitsin the destination will be left untouched. Notice that the
first bit int_5.0 istrue in the destination address before and after, but it is not true in the
mask. The MVM function is very useful for applications where individual binary bits are
to be manipulated, but they are less useful when dealing with actual number values.

plc basic functions - 6.5

MOV
| source 130
destint_O

MOV
sourceint_1
destint_ 2

MVM
sourceint_3
mask int_4
destint 5

MVM
sourceint_3
mask int_4
destint_6

before after
binary decimal binary decimal
int_0 0000000000000000 0O 0000000010000010 130
int_1 1101101101010111 -9385 1101101101010111 -9385
int_2 1000000000000000 -32768 mmmege 1101101101010111 -9385
int_3 0101100010111011 22715 pecomes ~ 0101100010111011 22715

int_4 0010101010101010 10922 0010101010101010 10922
int_5 0000000000000001 1 0000100010101011 2219
int_6 1101110111111111 1101110111111111

NOTE: the concept of amask is very useful, and it will be used in other functions.
Masks allow instructions to change a couple of bitsin abinary number without hav-
ing to change the entire number. You might want to do thiswhen you are using bitsin
anumber to represent states, modes, status, etc.

Figure 6.3 Example of the MOV and MVM Statement with Binary Values

6.2.2 Mathematical Functions

Mathematical functionswill retrieve one or more values, perform an operation and

plc basic functions - 6.6

store the result in memory. Figure 6.4 shows an ADD function that will retrieve values
fromint_1andreal 1, convert them both to the type of the destination address, add the
floating point numbers, and store the result in real_2. The function has two sources
labelled source A and source B. In the case of ADD functions the sequence can change,
but thisis not true for other operations such as subtraction and division. A list of other
simple arithmetic function follows. Some of the functions, such as the negative function
are unary, so thereisonly one source.

ADD

] source A int_1
sourceB rea 1
destination real_2

ADD(vaue,value,destination) - add two values
SUB(value,value,destination) - subtract

MUL (value,value,destination) - multiply

DIV (valuevalue,destination) - divide
NEG(value,destination) - reverse sign from positive/negative
CLR(value) - clear the memory location

NOTE: To save space the function types are shown in the shortened notation above.
For example the function ADD(value, value, destination) requires two source val-
ues and will storeit in adestination. It will use this notation in afew placesto
reduce the bulk of the function descriptions.

Figure6.4 Arithmetic Functions

An application of the arithmetic function is shown in Figure 6.5. Most of the oper-
ations provide the results we would expect. The second ADD function retrieves avalue
from int_3, adds 1 and overwrites the source - thisis normally known as an increment
operation. Thefirst DIV statement dividesthe integer 25 by 10, the result isrounded to the
nearest integer, in this case 3, and the result is stored in int_6. The NEG instruction takes
the new value of -10, not the original value of O, from int_4 invertsthe sign and storesit in
int_7.

plc basic functions - 6.7

ADD

source A int_0

sourceBint_1

dest. int_2

ADD addr. before after

sourceA 1

source B int_3 int 0 10 10

dest.int_3 int 1 25 25
int2 0 35

SUB - int3 0 1

source A int_1 int4 0 10

source B int_2 int5 0 250

dest. int_4 in6 0 3

MULT int7 O 10

source A int_0 int8 100 O

source B int_1

dest.int 5 flt 0 10.0 10.0
flt 1 250 25.0

DIV ft2 0 25

source Aint_1 fit 3 0 25

source B int_0 -

dest. int_6

NEG

source A int_4 Note: recall, integer

dest. int_7 values are limited

to ranges between -

CLR 32768 and 32767,

dest. int_8 and there are no

DIV fractions.

source A flt_1

source B flt_O

dest. flt 2

DIV

source A int_1

sourceB int_0

dest. flt 3

Figure6.5 Arithmetic Function Example

A list of more advanced functions are given in Figure 6.6. Thislist includes basic
trigonometry functions, exponents, logarithms and a square root function. The last func-
tion CPT will accept an expression and perform a complex calculation.

plc basic functions - 6.8

ACS(value,destination) - inverse cosine
COS(value,destination) - cosine
ASN(value,destination) - inverse sine
SIN(value,destination) - sine
ATN(value,destination) - inverse tangent
TAN(value,destination) - tangent

XPY (value,value,destination) - X to the power of Y
LN(value,destination) - natural log

L OG(value,destination) - base 10 log
SQR(value,destination) - square root

CPT (destination,expression) - does a calculation

Figure6.6 Advanced Mathematical Functions

Figure 6.7 shows an example where an equation has been converted to ladder
logic. Thefirst step in the conversion isto convert the variables in the equation to unused
memory locations in the PLC. The equation can then be converted using the most nested
calculations in the equation, such asthe LN function. In this case the results of the LN
function are stored in another memory location, to be recalled later. The other operations
are implemented in a similar manner. (Note: This equation could have been implemented
in other forms, using fewer memory locations.)

plc basic functions - 6.9

given

A= JInB+ eCacos(D)

LN
Source B
Dest. temp_1

XPY

SourceA 2.718
SourceB C
Dest temp_2

ACS
SourceA D
Dest. temp_3

MUL

SourceA temp_2
SourceB temp_3
Dest temp_4

ADD

SourceA temp_1
SourceB temp_4
Dest temp_5

SQR
SourceA temp_5
Dest. A

Figure6.7 AnEquationin Ladder Logic

The same equation in Figure 6.7 could have been implemented with a CPT func-
tion as shown in Figure 6.8. The equation uses the same memory locations chosen in Fig-
ure 6.7. The expression is typed directly into the PLC programming software.

plc basic functions - 6.10

99 CPT
[Dest. A

Expression

SQR(LN(B)+XPY (2.718,C)*ACS(D))

Figure6.8 Calculations with a Compute Function

Math functions can result in status flags such as overflow, carry, etc. care must be
taken to avoid problems such as overflows. These problems are less common when using
floating point numbers. Integers are more prone to these problems because they are lim-
ited to the range.

6.2.3 Conversions

Ladder logic conversion functions are listed in Figure 6.9. The example function
will retrieve a BCD number from the D type (BCD) memory and convert it to a floating
point number that will be stored in F8: 2. The other function will convert from 2s compli-
ment binary to BCD, and between radians and degrees.

| A FRD
‘ I I Source A D10:5

Dest. F8:2

TOD(vaue,destination) - convert from BCD to 2s compliment
FRD(value,destination) - convert from 2s compliment to BCD
DEG(value,destination) - convert from radians to degrees
RAD(vaue,destination) - convert from degrees to radians

Figure6.9 Conversion Functions

Examples of the conversion functions are given in Figure 6.10. The functions load
in asource value, do the conversion, and store the results. The TOD conversion to BCD
could result in an overflow error.

plc basic functions - 6.11

FRD
Source bed 1
Dest.int O
TOD
Sourceint_1
Dest. bed 0
DEG
Sourcerea 0
Dest. real 2
RAD
Sourcerea_1
Dest. real 3
Addr. Before after
int0 O 1793
int 1 548 548
real 0 3.141 3.141
real_ 1 45 45
real 2 O 180
real 3 0 0.785 _
bcd O 0000 0000 0000 0000 0000 0101 0100 1000 th&ee areshownin
bcd 1 00010111 1001 0011 0001 0111 1001 0011 binary BCD form

Figure6.10 Conversion Example

6.2.4 Array Data Functions

Arrays allow usto store multiple datavalues. In a PLC thiswill be a sequential
series of numbersin integer, floating point, or other memory. For example, assume we are
measuring and storing the weight of a bag of chipsin floating point memory starting at
weight[0] . We could read aweight value every 10 minutes, and once every hour find the
average of the six weights. This section will focus on techniques that mani pul ate groups of
dataorganized in arrays, also called blocks in the manuals.

plc basic functions - 6.12

6.2.4.1 - Satistics

Functions are available that allow statistical calculations. These functions are
listed in Figure 6.11. When A becomes true the average (AVE) conversion will start at
memory location weight[0] and average atotal of 4 values. The control word
weight_control is used to keep track of the progress of the operation, and to determine
when the operation is complete. This operation, and the others, are edge triggered. The
operation may require multiple scans to be completed. When the operation is done the
average will be stored in weight_avg and the weight_control.DN bit will be turned on.

A AVE

Dest weight_avg
Control weight_control
length 4

position 0

AV E(start value,destination,control length) - average of values
STD(start value,destination,control length) - standard deviation of values
SRT(start value,control,length) - sort alist of values

Figure6.11 Statistic Functions

Examples of the statistical functions are given in Figure 6.12 for an array of data
that starts at weight[0] and is 4 values long. When done the average will be stored in
weight_avg, and the standard deviation will be stored in weight_std. The set of values will
also be sorted in ascending order from weight[0] to weight[3]. Each of the function should
have their own control memory to prevent overlap. It is not agood ideato activate the sort
and the other calculations at the same time, as the sort may move values during the cal cu-
lation, resulting in incorrect calculations.

plc basic functions - 6.13

A AVE

| File weight[0]
Dest weight_avg
Control c_1
length 4
position O

B STD

| File weight[0]
Dest weight_std
Control c_ 2
length 4
position O

C SRT
| File weight[0]
Control c_3

Addr. before | after A| after B| after C length 4
position 0

weight[0]
weight[1]
weight[2]
weight[3]
weight_avg
weight_std

COoOBbNRFRW

ONBANPFP®

BNPRP W

N WN R
o

1.29 1.29

Figure6.12 Statistical Calculations

ASIDE: These function will alow areal-time calculation of SPC data for con-
trol limits, etc. The only PLC function missing is arandom function that
would allow random sample times.

6.2.4.2 - Block Operations

A basic block function is shown in Figure 6.13. This COP (copy) function will

plc basic functions - 6.14

copy an array of 10 values starting at n[50] to n[40]. The FAL function will perform math-
ematical operations using an expression string, and the FSC function will alow two arrays
to be compared using an expression. The FLL function will fill ablock of memory with a
single value.

COP
‘ I I Source n[50]

Dest n[40]
Length 10

COP(start value,destination,length) - copies a block of values

FAL (control,length,mode,destination,expression) - will perform basic math
operations to multiple values.

FSC(control length,mode,expression) - will do acomparison to multiple values

FL L (value,destination,length) - copies a single value to a block of memory

Figure6.13 Block Operation Functions

Figure 6.14 shows an example of the FAL function with different addressing
modes. Thefirst FAL function will do the following calculations n[5] =n[0] +5,
n[6]=n[1]+5, N[7]=n[2]+5, N[7]=n[3] +5, N[9]=n[4] +5. The second FAL statement will
be n[5]=n[0]+5, N[6]=n[0] +5, N[7]=n[0]+5, n[7]=n[0] +5, n[9] =n[0] + 5. With amode
of 2 theinstruction will do two of the calculations when there is a positive edge from B
(i.e., atransition from false to true). The result of the last FAL statement will be
N[5]=n[0]+5, n[5]=n[1] +5, n[5]=n[2]+5, N[5]=n[3] +5, n[5]=n[4] +5. The |last opera-
tion would seem to be useless, but notice that the mode isincremental. This mode will do
one calculation for each positive transition of C. The all mode will perform al five calcu-
lations in asingle scan whenever there is a positive edge on theinput. It isalso possible to
put in a number that will indicate the number of calculations per scan. The calculation
time can be long for large arrays and trying to do al of the calculations in one scan may
lead to awatchdog time-out fault.

plc basic functions - 6.15

FAL

A Control c 0
| | length 5 array to array
I position 0

Mode all

Destination n[c_0.POS + 5]

Expression n[c_0.POS] + 5

FAL
B Control c_ 1
I I length 5 element to array
position 0 array to element
Mode 2

Destination n[c_1.POS + 5]
Expression n[0] + 5

FAL
C Control c_2
| | length 5
! position 0 array to element
Mode incremental
Destination n[5]
Expression n[c_2.POS] + 5

Figure6.14 File Algebra Example

6.3 LOGICAL FUNCTIONS

6.3.1 Comparison of Values

Comparison functions are shown in Figure 6.15. Previous function blocks were
outputs, these replace input contacts. The example shows an EQU (equal) function that
compares two floating point numbers. If the numbers are equal, the output bit light istrue,
otherwise it isfalse. Other types of equality functions are also listed.

plc basic functions - 6.16

light
3 o

B

EQU(valuevaue) - equal

NEQ(value,value) - not equal

LES(value,value) - less than

LEQ(value,value) - less than or equal

GRT(valuevalue) - greater than

GEQ(value,value) - greater than or equa

CMP(expression) - compares two values for equality
MEQ(value,mask,threshold) - compare for equality using a mask
LIM(low limit,valuehigh limit) - check for a value between limits

Figure6.15 Comparison Functions

The example in Figure 6.16 shows the six basic comparison functions. To the right
of the figure are examples of the comparison operations.

plc basic functions - 6.17

00 O_0=0
EQU - 0 1=1
A _int_3 O int 3=5 O_2=0
Bint 2 int 2=3 O_3=0
NEO o1 0 4=1
0 5=1
Aint_3 O -
Bint 2
LES 02 0 0=1
Aint_3 () O_1=0
Bint 2 / int 3=3 0_2=0
int 2=3 O_3=1
LEQ ©3 0 _4=0
Aint_3 _/ O 5=1
Bint 2
0O 4
oRT 5 N 0_0=0
B ilrr:t_z / 0 171
- int 3=1 O0_2=1
GEQ 0—5 int_2=3 0_3:1
Aint 3 O 0_4=0
Bint_2 0_5=0

Figure6.16 = Comparison Function Examples

The ladder logic in Figure 6.16 is recreated in Figure 6.17 with the CMP function
that allows text expressions.

plc basic functions - 6.18

CMP /%—0
expression _/
int 3=int 2

CMP /%—1
expression _/
int 3<>int_ 2

CMP /%—2
expression _/
int 3<int 2

CMP /%—3
expression _/
int 3<=int_2

CMP /%—4
expression _/
int 3>int 2

CMP /%—5
expression _/
int 3>=int 2

Figure6.17 Equivaent Statements Using CMP Statements

Expressions can also be used to do more complex comparisons, as shown in Figure
6.18. The expression will determine if B is between A and C.

X
CMP ‘
expression O
(B>A)& (B<C) ‘

Figure6.18 A More Complex Comparison Expression

The LIM and MEQ functions are shown in Figure 6.19. The first three functions
will compare atest valueto high and low limits. If the high limit is above the low limit and
the test value is between or equal to one limit, then it will be true. If thelow limit is above

plc basic functions - 6.19

the high limit then the function is only true for test values outside the range. The masked
equal will compare the bits of two numbers, but only those bits that are true in the mask.

LIM

Iowllmltl_nt_O int 5.0
test valueint_1 -
high limitint_2

LIM

Iowllmltl_nt_z int 5.1
test valueint_1 -
high limitint_0

LIM

Iowllmltl_nt_2 int 5.2
test valueint_3 -
high limitint_0

MEQ

sourceint_O .

— int_ 5.3
mask int_1 Q -
compareint_2
MEQ
sourceint_0 ;

— t 5.4
mask int_1 Q nt_>
compareint_4

Addr. | before (decimal) before (binary) after (binary)

int0 | 1 0000000000000001| 0000000000000001
int1 |5 0000000000000101| 0000000000000101
int 2 | 11 0000000000001011 | 0000000000001011
int 3 | 15 0000000000001111 | 0000000000001111
int_4 0000000000001000| 0000000000001000
int5 0 0000000000000000 0000000000001101

Figure6.19 Complex Comparison Functions

plc basic functions - 6.20

Figure 6.20 shows a numberline that helps determine when the LIM function will
be true.

® high limit @Iowllmlt

® low limit ihlghllmlt

Figure6.20 A Number Line for the LIM Function

File to file comparisons are also permitted using the FSC instruction shown in Fig-
ure 6.21. The instruction uses the control word c_0. It will interpret the expression 10
times, doing two comparisons per logic scan (the Mode is 2). The comparisons will be
f[10]1<f[Q], f[11] <f[O] then f[12]<f[O], f[13]<f[O] then f[14]<f[O], f[15]<f[O] then
f[16] <f[0], f[17]<f[Q] then f[18] <f[Q], f[19]<f[O]. The function will continue until a
false statement is found, or the comparison completes. If the comparison completes with
no fal se statements the output A will then be true. The mode could have also been All to
execute all the comparisonsin one scan, or Increment to update when the input to the
function istrue - in this case the input isa plain wire, so it will always be true.

FSC A

Control c 0
Length 10
Position O

Mode 2
Expression f[10+c_0.POS] < f[0]

Figure6.21 File Comparison Using Expressions

plc basic functions - 6.21

6.3.2 Boolean Functions

Figure 6.22 shows Boolean algebra functions. The function shown will obtain data
words from bit memory, perform an and operation, and store the resultsin a new location
in bit memory. These functions are all oriented to word level operations. The ability to
perform Boolean operations allows logical operations on more than a single bit.

‘ A AND
|| sourceint_A
| sourceint_B
dest. int_X

AND(valuevalue,destination) - Binary and function
OR(vaue,value,destination) - Binary or function
XOR(value,value,destination) - Binary exclusive or function
NOT (value,destination) - Binary not function

Figure6.22 Boolean Functions

The use of the Boolean functionsis shown in Figure 6.23. The first three functions
require two arguments, while the last function only requires one. The AND function will
only turn on bitsin the result that are true in both of the source words. The OR function
will turn on abit in the result word if either of the source word bitsis on. The XOR func-
tion will only turn on abit in the result word if the bit is on in only one of the source
words. The NOT function reverses all of the bitsin the source word.

plc basic functions - 6.22

AND

source A n[0]
source B n[1]
dest. n[2]

OR

source A n[0]
source B n[1]
dest. n[3]

XOR

source A n[0]
source B n[1]
dest. n[4]

NOT
source A n[0]
dest. n[5]

addr. data (binary)

n[O] 0011010111011011

n[1] 1010010011101010
oft erT n[2] 0010010011001010

n[3] 1011010111111011

n[4] 1001000100110001

n[5] 1100101000100100

Figure6.23 Boolean Function Example

6.4 DESIGN CASES

6.4.1 Simple Calculation

Problem: A switch will increment a counter on when engaged. This counter can be
reset by a second switch. The value in the counter should be multiplied by 2, and then dis-
played as a BCD output using (0:0.0/0 - 0:0.0/7)

plc basic functions - 6.23

Solution:

SW1 CTU
| | Counter cnt

|| Preset O

MUL

SourceA cnt.ACC
SourceB 2

Dest. dbl

MVM

Source dbl

Mask 00FFh

Dest. output_word

SW2
| @ ont

Figure6.24 A Simple Calculation Example

6.4.2 For-Next

Problem: Design afor-next loop that is similar to ones found in traditional pro-
gramming languages. When A istrue the ladder logic should be active for 10 scans, and
the scan number from 1 to 10 should be stored in nO.

Solution:

GRT MOV
I SourceA n0 Source 0
SourceB 10 Dest n0

LEQ ADD
SourceA n0 SourceA n0
SourceB 10 SourceB 1
Dest. nO

Figure6.25 A Simple Comparison Example

plc basic functions - 6.24

As designed the program differs from traditional loops because it will only com-
plete one’loop’ each time the logic is scanned.

6.4.3 Series Calculation

Problem: Create a ladder logic program that will start when input A is turned on
and calculate the series below. The value of n will start at 1 and with each scan of the lad-
der logic n will increase until n=100. While the sequence is being incremented, any
changein A will beignored.

X =2(n=-1)

Solution:

A 0
J MOV

I I \H\ SourceA 1

Dest. n

go
LEQ
Source A n

go Source B 100

CPT

Dest. x
Expression
2*(n-1)

N ADD

| SourceA 1
SourceB n
Dest. n

Figure6.26 A Series Calculation Example

plc basic functions - 6.25

6.4.4 Flashing Lights

Problem: We are designing a movie theater marquee, and they want the traditional
flashing lights. The lights have been connected to the outputs of the PLC from O[0] to
O[17] - an INT. When the PLC is turned, every second light should be on. Every half sec-
ond the lights should reverse. The result will be that in one second two lights side-by-side
will be on half a second each.

Solution:
t b.DN TON
\H\ timert_a
Delay 0.5s
t aDN TON
I | timert b
Delay 0.5s
taTT MQV
I I Source pattern
Dest O
taTT NOT
\H\ Source pattern
Dest O

pattern = 0101 0101 0101 0101

Figure6.27 A Flashing Light Example

6.5 SUMMARY

* Functions can get values from memory, do simple operations, and return the
results to memory.

» Scientific and statistics math functions are available.

» Masked function allow operations that only change afew bits.

* Expressions can be used to perform more complex operations.

» Conversions are available for angles and BCD numbers.

* Array oriented file commands allow multiple operationsin one scan.

plc basic functions - 6.26

» VVaues can be compared to make decisions.
* Boolean functions allow bit level operations.
* Function change value in data memory immediately.

6.6 PRACTICE PROBLEMS

1. Do the calculation below with ladder logic,
n2=-(5-n0/n1)

2. Implement the following function,

x = any(-539)

3. A switch will increment a counter on when engaged. This counter can be reset by a second
switch. The value in the counter should be multiplied by 5, and then displayed as a binary out-
put using output integer 'O _lights'.

4. Create aladder logic program that will start when input A isturned on and calculate the series
below. The value of n will start at 0 and with each scan of the ladder logic n will increase by 2
until n=20. While the sequence is being incremented, any change in A will be ignored.

x = 2(log(n)—-1)

5. The following program uses indirect addressing. Indicate what the new valuesin memory will
be when button A is pushed after the first and second instructions.

A
] ADD
|| Source A 1
Source B n[0]
Dest. n[n[1]]
A
| ADD
| Source A n[n[0]]
Source B n[n[1]]
addr before | after 1st | after 2nd Dest. n[n[O]]
n[0] 1
n[1] 2
n[2] 3

6. A thumbwheel input card acquires afour digit BCD count. A sensor detects parts dropping

plc basic functions - 6.27

down achute. When the count matches the BCD value the chute is closed, and alight isturned
on until areset button is pushed. A start button must be pushed to start the part feeding.
Develop the ladder logic for this controller. Use a structured design technique such as a state
diagram.

Inputs Outputs
bcd _in - BCD input card chute_open
part_detect light
start_button

reset_button

7. Describe the difference between incremental, all and a number for file oriented instruction,
such as FAL.

8. What is the maximum number of elements that moved with afile instruction? What might hap-
pen if too many are transferred in one scan?

9. Write aladder logic program to do the following calculation. If the result is greater than 20.0,
then the output "solenoid’ will be turned on.

T

A=D-Be®

10. Write ladder logic to reset an RTO counter (timer) without using the RES instruction.

11. Write a program that will use Boolean operations and comparison functions to determine if
bits 9, 4 and 2 are set in the input word input_card. If they are set, turn on output bit match.

12. Explain how the mask works in the following MVVM function. Develop a Boolean equation.

\ MVM
Source S
‘ Mask M
Dest D

13. A machineis being designed for aforeign parts supplier. As part of the contractual agreement
the logic will run until February 26, 2008. However, after that date the machine will enable a
‘contract_expired’ value and no longer run. Write the ladder logic.

14. Use an FAL instruction to average the valuesin n[0] to n[20] and storethemin’'n_avg'.
15. The input bits from’input_card A’ are to be read and X ORed with the inputs from

"input_card_B’. Theresult isto be written to the output card " output_card’. If the binary pat-
tern of the least 16 output bitsis 1010 0101 0111 0110 then the output * match_bell” will be set.

plc basic functions - 6.28

Write the ladder logic.

16. Write some ssimple ladder logic to change the preset value of a counter 'cnt’. When the input
‘A’ is active the preset should be 13, otherwise it will be 9.

17. A machine gjects partsinto three chutes. Three optical sensors (A, B and C) are positioned in
each of the dotsto count the parts. The count should start when the reset (R) button is pushed.
The count will stop, and an indicator light (L) turned on when the average number of parts
counted is 100 or greater.

18. a) Write ladder logic to calculate and store the binary (geometric) sequence in 32 bit integer
(DINT) memory starting at n[0] up to n[200] so that n[0] =1, n[1] = 2, n[2] =4, n[3] = 16, n[4]
= 64, etc. b) Will the program operate as expected?

6.7 ASSIGNMENT PROBLEMS

1. Write aladder logic program that will implement the function below, and if the result is greater
than 100.5 then the output "too_hot’ will be turned on.

X = 6+ Ae cos(C + 5)

2. Write ladder logic to calculate the average of the values from thicknesg 0] to thickness[99]. The
operation should start after amomentary contact push button A is pushed. The result should be
stored in 'thickness_avg'. If button B is pushed, al operations should be completein asingle
scan. Otherwise, only ten values will be calculated each scan. (Note: thismeansthat it will take
10 scans to complete the calculation if A is pushed.)

3. Write aladder logic program that will calculate the standard deviation of numbersin the loca
tions f[Q] to f[29] without using the STD function.

4. A program isto perform the following actions for a self-service security check. The device will
allow bagsto be inserted to the test chamber through an entrance door. If the bag passes the
check it can be removed through an exit door, otherwise an alarm is sounded. Create a state
diagram using the steps below.

1. The machine startsin an ‘idle’ state. The ‘open_entry’ output is activated to
open the input door. The ‘open_exit’ output is deactivated to close the output
door.

2. When abag isinserted the ‘bag_detected’ input goes high. The ‘open_entry’
input should be deactivated to close the door.

3. When the ‘entry_door_closed’ and *exit_door_closed’ inputs are active then a
‘test” output will be set high to start a scan of the bags.

4. When the scan of the bagsis complete a‘scan_done’ input is set. The ‘test’ out-
put should be turned off.

5. The scan results in two real values ‘nitrates’ and ‘mass' . The calculation below

plc basic functions - 6.29

isperformed. If the ‘risk’ isbelow 0.3, or above 23.5, then the machine enters
an alarm state (step 8), otherwise it continues to step 6.

risk = 4" 4 sgrt(mass)nitrates

6. The ‘open_exit’ output is activated to open the exit door. The machine waits
until the *bag_detected’ input goes low.

7. The ‘open_exit’ output is deactivated to close the door. The machine waits until
the *exit_door_closed’ input is high before returning to the ‘idle state.

8. Inthe alarm state an operator input ‘key’ must be active to open the exit door.
After thisinput is released the door will close and return to the ‘idle’ state.

plc basic functions- 7.1

7.1 PRACTICE PROBLEM SOLUTIONS

DIV
SourceAn 0
SourceBn 1
Dest N7:2

SUB
Source A 5
SourceB n_2
Dest N7:2

NEG
Sourcen_2
Destn 2

LOG

Sourcey
Desttemp_1

ADD

Source Ay
SourceB temp_1
Dest temp_2

ADD

Source Ay
SourceB 1
Dest temp_3

DIV

Source A temp_2
Source B temp_3
Dest temp_4

MUL

Source Ay
Source B temp_4
Desttemp_5

ATN

Sourcetemp 5
Dest x

plc basic functions - 7.2

CTu

Counter cnt
Preset 1234

MUL
Source A 5

Source B cnt. ACC
Dest O _lights

EQ

Source A 20 Source -2
SourceB n Dest n

MOV

active

active

LEQ
Source A n
Source B 20

i : active

ADD

Source A n
SourceB 2
Dest n

LOG
Sourcen
Dest x

SUB

Source A X
SourceB 1
Dest x

MUL

Source A X
SourceB 2
Dest x

plc basic functions - 7.3

addr | before ‘ after 1st | after 2nd
Aol 1 1 1
n[1] 2 2 4
n[2] 3 2 2
first scan
+ start 2

S1

reset

bin
full
(light on)

parts
counting
(chute open)

exceeded

plc basic functions - 7.4

first scan
] (o) =
4@ 82
4@ &
2
Q chute
S3
O light
S1
®
start
Ok
(> S1
FRD
Source A bed _in
Dest. cnt.ACC

MC

3

plc basic functions - 7.5

S2
®
part detect
CTD
counter cnt
preset O
C5:0/DN
u ok
4@ 82
®
S3
G
reset
4@ %
®

7. an incremental mode will do one calculation when the input to the function is a positive edge -
goes from false to true. The all mode will attempt to complete the calculation in a single scan.
If anumber is used, the function will do that many cal culations per scan while the input is true.

8. The maximum number is 1000. If the instruction takes too long the instruction may be paused
and continued the next scan, or it may lead to a PLC fault because the scan takes too long.

plc basic functions - 7.6

10.

NEG
Source T
Dest A

DIV
Source A
Source C
Dest A

XPY

Source A 2.718
Source A
Dest A

MUL

Source B
Source A
Dest A

SUB

Source D
Source A
Dest A

GRT
Source A
Source 20.0

@ solenoid

MOV

Source 0
Dest timer.ACC

plc basic functions - 7.7

AND

Source A input_card

Source B 0000 0010 0001 0100 (binary)
Dest temp

EQU

Source B temp

Source A 0000 0010 0001 0100 (binary) 40 match

The datain the source location will be moved bit by bit to the destination for every bit

that is set in the mask. Every other bit in the destination will be retain the pre-
vious value. The source address is not changed.

D=(S& M)+ (D & M)

GSvV

ClassName: WALLCLOCKTIME
Instance Name:

Attribute Name: DateTime

Dest: time[0] -->time:DINT[7]

GEQ
time[O]
2008

GEQ
time[0]

GEQ

time[O]

26

@contract_expi red

CLRn_avg

FAL

Control control

Len21

Pos O

Mode All

Dest n_avg

Expression "n_avg + n[control.pos]| / 21"

15.

plc basic functions - 7.8

XOR

16.

A input_card_A
B input_card B
dest. output_card

match_bell

EQU

output_card
"1010 0101 0111 0110"

—O

MOV
13

cnt.pre

MOV
9

cnt.pre

17.

18.

plc basic functions - 7.9

R
I I @ cnt_ A
@ cnt_B
@ cnt C
A L
CTu
cnt A
L
B CTU
cnt_B
L
c CTU
cnt C
CMP
"(cnt_A.acc + cnt_B.acc + cnt_C.acc) >= 300" L

MQV

| 1
n[O]

FAL

control R

len 200

pos O

mode ALL

dest. "n[R.pos + 1]"
expression "n[R.pos] * 2"

b) No, after n[31] the value will overflow the positive limit of the 32 bit 2's com-
pliment integer and take on alarge negative value.

plc advanced functions - 8.1

8. ADVANCED LADDER LOGIC FUNCTIONS

Topics:
* Shift registers, stacks and sequencers
* Program control; branching, looping, subroutines, temporary ends and one shots
* Interrupts; timed, fault and input driven
* Immediate inputs and outputs
* Block transfer
* Conversion of State diagrams using program subroutines
* Design examples

Objectives:
* To understand shift registers, stacks and sequencers.
* To understand program control statements.
* To understand the use of interrupts.
* To understand the operation of immediate input and output instructions.
* To be prepared to use the block transfer instruction later.
* Be able to apply the advanced function in ladder logic design.

8.1 INTRODUCTION

This chapter covers advanced functions, but this definition is somewhat arbitrary.
The array functionsin the last chapter could be classified as advanced functions. The func-
tions in this section tend to do things that are not oriented to smple data values. Thelist
functions will allow storage and recovery of bits and words. These functions are useful
when implementing buffered and queued systems. The program control functions will do
things that don’t follow the ssmple model of ladder logic execution - these functions rec-
ognize the program is executed |eft-to-right top-to-bottom. Finally, the input output func-
tionswill be discussed, and how they allow usto work around the normal input and output
scans.

8.2LIST FUNCTIONS

8.2.1 Shift Registers

Shift registers are oriented to single data bits. A shift register can only hold so
many bits, so when anew bit is put in, one must be removed. An example of a shift regis-

plc advanced functions - 8.2

ter isgiven in Figure 8.1. The shift register isthe word ’example’, and it is 5 bits long.
When A becomes true the bits al shift right to the least significant bit. When they shift a
new bit is needed, and it is taken from new_bit. The bit that is shifted out, on the right
hand side, is moved to the control word UL (unload) bit c.UL. This function will not com-
pletein asingle ladder logic scan, so the control word c is used. The function is edge trig-
gered, so A would haveto turn on 5 more times before the bit just loaded from new_bit
would emerge to the unload bit. When A has a positive edge the 5 bitsin example will be
shifted in memory. In this case it is taking the value of bit example.0 and putting it in the
control word bit c.UL. It then shifts the bits once to the right, example.0 = example.1 then
example.1 = example.2 then example.2 = example.3 then example.3 = example.4. Then
the input bit is put into the most significant bit example.4 = new_bit. The bitsin the shift
register would be shifted to the left with the BSR function.

bits shift right
—>

0/0/0|-——~|0|0|0|0|0O|0O|0O|0Of0O|0O|0O|O|O|LSB

N / I—I\O\O

new_bit 5 c.UL

example

A BSR

| File example
Control ¢

Bit address new_bit
Length 5

BSL - shiftsleft from the LSB to the MSB. The LSB must be supplied
BSR - similar to the BSL, except the bit isinput to the MSB and shifted to the LSB

Figure 8.1 Shift Register Functions

There are other types of shift registers not implemented in the ControlLogix pro-
cessors. These are shown in Figure 8.2. The primary differenceisthat the arithmetic shifts
will put a zero into the shift register, instead of allowing an arbitrary bit. The rotate func-
tions shift bits around in an endless circle. These functions can aso be implemented using
the BSR and BSL instructions when needed.

plc advanced functions - 8.3

Arithmetic Shift Left (ASL)
carry msb Isb

0 0| 0] O] O] O] O] O] O
A \/

Arithmetic Shift Right (ASR)

O_LOOOOOOOQ

0

carry

Rotate L eft (ROL)

\/
Ol 0] O] O] 0] O] Ol O
. ay)
>

Rotate Right (ROR)

0/ 000 00 00O

Figure8.2 Shift Register Variations

8.2.2 Sacks

Stacks store integer words in atwo ended buffer. There are two basic types of
stacks; first-on-first-out (FIFO) and last-in-first-out (L1FO). Aswords are pushed on the
stack it gets larger, when words are pulled off it gets smaller. When you retrieve aword
from aL1FO stack you get the word that is the entry end of the stack. But, when you get a
word from a FIFO stack you get the word from the exit end of the stack (it has also been
there the longest). A useful analogy is apile of work on your desk. As new work arrives
you drop it on the top of the stack. If your stack is LIFO, you pick your next job from the
top of the pile. If your stack is FIFO, you pick your work from the bottom of the pile.
Stacks are very helpful when dealing with practical situations such as buffersin produc-
tion lines. If the buffer is only a delay then a FIFO stack will keep the datain order. If
product is buffered by piling it up then a LIFO stack works better, as shown in Figure 8.3.
In aFIFO stack the parts pass through an entry gate, but are stopped by the exit gate. Inthe
LIFO stack the parts enter the stack and lower the plate, when more parts are needed the
plate israised. In this arrangement the order of the partsin the stack will be reversed.

plc advanced functions - 8.4

entry gate exit gate
%
> —
/,
) SRRsRRRL
o o o o o O O O o O O 0O O

5

@

Figure8.3 Buffersand Stack Types

The ladder logic functions are FFL to load the stack, and FFU to unload it. The
example in Figure 8.4 shows two instructions to load and unload a FIFO stack. The first
time this FFL is activated (edge triggered) it will grab the word (16 bits) from the input
card word_in and store them on the stack, at stack[0]. The next value would be stored at
stack[1], and so on until the stack length isreached at stack[4]. When the FFU is activated
the word at stack[0] will be moved to the output card word_out. The values on the stack
will be shifted up so that the value previously in stack| 1] moves to stack[0], stack] 2]
moves to stack| 1], etc. If the stack isfull or empty, an aload or unload occurs the error bit
will be set c.ER.

plc advanced functions - 8.5

FFL

| | source word_in
FIFO stack[0]
Control ¢
length 5
position 0

FFU

| FIFO stack[0]
destination word_out
Control ¢

length 5

position 0

Figure8.4 FIFO Stack Instructions

The LIFO stack commands are shown in Figure 8.5. As values are loaded on the
stack the will be added sequentially stack[0], stack[1], stack[2], stack[3] then stack[4].
When values are unloaded they will be taken from the last loaded position, so if the stack
isfull the value of stack[4] will be removed first.

LFL

B source word_in
LIFO stack[Q]
Control ¢
length 5
position 0

LFU

| LIFO stack[0]
destination word_out
Control ¢

length 5

position 0

Figure85 LIFO Stack Commands

plc advanced functions - 8.6

8.2.3 Sequencers

A mechanical music box is asimple example of a sequencer. Asthe drum in the
music box turnsit has small pins that will sound different notes. The song sequenceis
fixed, and it always follows the same pattern. Traffic light controllers are now controlled
with electronics, but previously they used sequencers that were based on a rotating drum
with cams that would open and close relay terminals. One of these camsis shown in Fig-
ure 8.6. The cam rotates slowly, and the surfaces under the contacts will rise and fall to
open and close contacts. For atraffic light controllers the speed of rotation would set the
total cycletimefor the traffic lights. Each cam will control one light, and by adjusting the
circumferential length of rises and drops the on and off times can be adjusted.

As the cam rotates it makes contact
with none, one, or two terminals, as
determined by the depressions and

(\' risesin the rotating cam.

Figure8.6 A Single Camin aDrum Sequencer

A PLC sequencer uses alist of wordsin memory. It recalls the words one at atime
and moves the words to another memory location or to outputs. When the end of thelistis
reached the sequencer will return to the first word and the process begins again. A
sequencer is shown in Figure 8.7. The SQO instruction will retrieve words from bit mem-
ory starting at sequence| 0]. The length is 4 so the end of the list will be at sequence[0] +4
or sequencel 4] (thetotal length of 'sequence’ is actually 5). The sequencer is edge trig-
gered, and each time A becomes true the retrieve aword from the list and move it to
output_lights. When the sequencer reaches the end of the list the sequencer will return to
the second position in the list sequence] 1]. Thefirst item in the list is sequence[0], and it
will only be sent to the output if the SQO instruction is active on the first scan of the PLC,
otherwise the first word sent to the output is sequence] 1]. The mask value is 000Fh, or
0000000000001111b so only the four least significant bits will be transferred to the out-
put, the other output bits will not be changed. The other instructions allow words to be
added or removed from the sequencer list.

plc advanced functions - 8.7

|| SQO

File sequence] 0]

Mask 000F

Destination output_lights
Control ¢

Length 4

Position O

SQO(start,mask,destination,control ,length) - sequencer output from table to memory
SQI(start,mask,source,control ,length) - sequencer input from memory address to table
SQL (start,source,control,length) - sequencer load to set up the sequencer parameters

Figure8.7 The Basic Sequencer Instruction

An example of asequencer isgivenin Figure 8.8 for traffic light control. The light
patterns are stored in memory (entered manually by the programmer). These are then
moved out to the output card as the function is activated. The mask (003Fh =
0000000000111111b) is used so that only the 6 least significant bits are changed.

plc advanced functions - 8.8

advance
| | SQO
H Filelight_pattern
Mask 003Fh
Destination lights_output
Control ¢
Length 4
Position O
light_pattern[O] | 0| 0| 0| 0| 0| 0| 0| 0|0|0|0|0|1|0|0|1
0/0/0|0|0|0|0|0O|0O|I0|0|0Of1(1)|0]0
0/0/0|0|0|0|0|0O|0O|I0|0|0Of1(0]|1|0
0/0/0(/0|0|0|0|0O|0|0|1|0|l0O|0|0|1
light_pattern[1] | 0| 0/ 0/ 0| 0| 0| 0| 0| 0| 0| 0| 1|0|0| 0|1
gggzzz
560
e t@< =
Qéag%&
@g g

Figure8.8 A Sequencer For Traffic Light Control

Figure 8.9 shows examples of the other sequencer functions. When A goes from
falseto true, the SQL function will move to the next position in the sequencer list, for
example sequence_rem[1], and load a value from input_word. If A then remains true the
value in sequence_rem[1] will be overwritten each scan. When the end of the sequencer
list is encountered, the position will reset to 1.

The sequencer input (SQI) function will compare valuesin the sequence list to the
source compare_word while B istrue. If the two values match match_output will stay on
while B remains true. The mask value is 0005h or 0000000000000101b, so only the first
and third bits will be compared. This instruction does not automatically change the posi-
tion, so logic is shown that will increment the position every scan while Cistrue.

plc advanced functions - 8.9

A
|| SQL
N File sequence_rem[0]
Source input_word
Control c_ 1
Length 9
Position O
B
|| QI match_output
I File sequence_rem[0] Q
Mask 0005
Source compare_word
Control c_2
Length 9
Position O
N C ADD
| | SourceA c_2.POS
SourceB 1
Dest c_2.POS
Gr MOV
SourceA ¢ _2.POS Source 1
SourceB 9 Dest c_2.POS

Figure8.9 Sequencer Instruction Examples

These instructions are well suited to processes with a single flow of execution,
such astraffic lights.

8.3 PROGRAM CONTROL

8.3.1 Branching and L ooping

These functions allow parts of ladder logic programs to be included or excluded
from each program scan. These functions are similar to functions in other programming
languages such as C, C++, Java, Pascal, etc.

Entire sections of programs can be bypassed using the IMP instruction in Figure

plc advanced functions - 8.10

8.10. If Aistrue the program will jump over the next three lines to the line with the LBL
Label_01. If Aisfasethe IMP statement will beignored, and the program scan will con-
tinue normally. If A isfalse X will have the same value as B, and Y can be turned on by C
and off by D. If Aistruethen X and Y will keep their previous values, unlike the MCR
statement. Any instructions that follow the LBL statement will not be affected by the IMP
so Z will always be equal to E. If ajump statement is true the program will run faster.

LBL ||

A
||
| JMP If A istrue, the program
Label_01 will jumpto LBL:01.
B If A isfalsethe pro-
X gram goesto the next
line.
C
(D"
D
()
Label 01 e
N Q z

Figure8.10 A JMP Ingtruction

Subroutines jump to other programs, asis shown in Figure 8.11. When Aistruethe
JSR function will jump to the subroutine program in file 3. The JSR instruction two argu-
ments are passed, A and B. The subroutine (SBR) function receives these two arguments
and putsthem in X and Y. When B is true the subroutine will end and return to programfile
2 where it was called (Note: a subroutine can have multiple returns). The RET function
returns the value Z to the calling program whereit is put in location C. By passing argu-
ments (instead of having the subroutine use global memory locations) the subroutine can
be used for more than one operation. For example, a subroutine could be given an anglein
degrees and return avalue in radians. A subroutine can be called more than once in apro-
gram, but if not called, it will be ignored.

plc advanced functions - 8.11

A JSR (Jump subroutine)
MainProgram || Routine Name: TestSubroutine
| Input par A

Input par B

Return par C

A separate ladder logic program is stored in program file 3. Thisfea-
ture allows usersto create their own functions. In thiscaseif A is
true, then the program below will be executed and then when done
the ladder scan will continue after the subroutine instruction. The
number of data values passed and returned is variable.

SBR (subroutine arguments)

Input par X —Z

Input par Y

If "test’ istrue the subroutine will return and the values listed will
TestSubroutine be returned to the return par. For this example the valuethat isin
'Z’ will beplacedin’C'.

test RET
| | Return par Z

Figure8.11 Subroutines

The’FOR’ function in Figure 8.12 will (within the same logic scan) call a subrou-
tine 5 times (from 0 to 9 in steps of 2) when A istrue. In this example the subroutine con-
tains an ADD function that will add 1 to the value of i. So when this’ FOR’ statement is
complete the value of j will 5 larger. For-next loops can be put inside other for-next loops,
thisiscalled nesting. If A wasfalse the program not call the subroutine. When A istrue, al
5 loops will be completed in asingle program scan. If B istrue the NXT statement will
return to the FOR instruction, and stop looping, even if the loop is not complete. Care
must be used for this instruction so that the ladder logic does not get caught in an infinite,
or long loop - if this happens the PLC will experience afault and halt.

plc advanced functions - 8.12

A FOR
B Routine Name: LoopRoutine
index i
initial value 0
terminal value 9
step size 2

LoopRoutine

SBR

ADD
Source 1
Sourcei
Dest

| | BRK

Note: if A istruethen theloop will repeat 10 times, and the value of i will beincreased
by 10. If A isnot true, then the subroutine will never be called.

Figure8.12 A For-Next Loop

Ladder logic programs always have an end statement, as shown in Figure 8.13.
Most modern software automatically insertsthis. PLCs will experience faultsif thisis not
present. The temporary end (TND) statement will skip the remaining portion of a pro-
gram. If C istrue then the program will end, and the next line with D and Y will be
ignored. If Cisfalsethen the TND will have no effect and Y will be equal to D.

plc advanced functions - 8.13

A y B X
C
TND
D
@i

When the end (or End Of File) is encountered the PLC will stop scanning the
ladder, and start updating the outputs. Thiswill not betrueif it isasubroutine
or astep inan SFC.

Figure8.13 End Statements

The one shot contact in Figure 8.14 can be used to turn on aladder run for asingle
scan. When A has a positive edge the oneshot will turn on the run for a single scan. Bit
last_bit valueis used hereto track to rung status.

A last_bit value
| | ONS Q B

I e B 1L

Figure8.14 One Shot Instruction

plc advanced functions - 8.14

8.3.2 Fault Handling

A fault condition can stop a PLC. If the PLC is controlling a dangerous process
this could lead to significant damage to personnel and equipment. There are two types of
faults that occur; terminal (major) and warnings (minor). A minor fault will normally set
an error bit, but not stop the PLC. A mgjor failure will normally stop the PLC, but an inter-
rupt can be used to run a program that can reset the fault bit in memory and continue oper-
ation (or shut down safely). Not all major faults are recoverable. A complete list of these
faultsis available in PLC processor manuals.

The PLC can be set up to run a program when a fault occurs, such as a divide by
zero. These routines are program files under * Control Fault Handler’. These routines will
be called when afault occurs. Values are set in status memory to indicate the source of the
faults.

Figure 8.15 shows two example programs. The default program *MainProgram’
will generate afault, and the interrupt program called ' Recover’ will detect the fault and
fix it. When A is true a compute function will interpret the expression, using indirect
addressing. If B becomes true then the value in n[0] will become negative. If A becomes
true after this then the expression will become n[10] +10. The negative value for the
address will cause afault, and program file ' Recover’ will be run.

In the fault program the fault values are read with an GSV function and the fault
code is checked. In this case the error will result in a status error of 0x2104. When thisis
the case the n[0] is set back to zero, and the fault code in fault_data[2] is cleared. This
valueisthen written back to the status memory using an SSV function. If the fault was not
cleared the PLC would enter a fault state and stop (the fault light on the front of the PLC
will turn on).

plc advanced functions - 8.15

A
MainProgram I I gg n[1]
Expression
n[n[Q]] + 10
B
| | MOV
I Source -10
Dest n[Q]
GsSv
Object: PROGRAM
Instance: THIS
Recover Attribute: MAJORFAULTRECORD
Dest: fault_data (Note: DINT[11])
MOV
EQU Source 0
SourceA fault_data[2] Dest N7:0
SourceB 0x2104 i
CLR
Dest. fault_data[2]
SSV
Object: PROGRAM
Instance: THIS
Attribute: MAJORFAULTRECORD
Dest: fault_data

Figure8.15 A Fault Recovery Program

8.3.3 Interrupts

The PLC can be set up to run programs automatically using interrupts. Thisisrou-
tinely done for afew reasons;

* to run aprogram at aregular timed interval (e.g. SPC calculations)

plc advanced functions - 8.16

* to respond when along instruction is complete (e.g. analog input)
» when a certain input changed (e.g. panic button)

Allen Bradley alows interrupts, but they are called periodic/event tasks. By
default the main program isdefined asa’ continuous’ task, meaning that it runs as often as
possible, typically 10-100 times per second. Only one continuos task is alowed. A ' peri-
odic’ task can be created that has a given update time. ’ Event’ tasks can be triggered by a
variety of actions, including input changes, tag changes, EVENT instructions, and servo
control changes.

A timed interrupt will run a program at regular intervals. To set atimed interrupt
the program in file number should be put in S2:31. The program will be run every S2:30
times 1 milliseconds. In Figure 8.16 program 2 will set up an interrupt that will run pro-
gram 3 every 5 seconds. Program 3 will add the value of 1:000 to N7:10. This type of
timed interrupt is very useful when controlling processes where a constant time interval is
important. The timed interrupts are enabled by setting bit S2:2/1 in PLC-5s.

When activated, interrupt routines will stop the PLC, and the ladder logic is inter-
preted immediately. If multiple interrupts occur at the same time the ones with the higher
priority will occur first. If the PLC isin the middle of a program scan when interrupted
this can cause problems. To overcome this a program can disable interrupts temporarily
using the UID and UIE functions. Figure 8.16 shows an example where the interrupts are
disabled for a FAL instruction. Only the ladder logic between the UID and UIE will be
disabled, the first line of ladder logic could be interrupted. Thiswould be important if an
interrupt routine could change a value between n[0] and n[4]. For example, an interrupt
could occur while the FAL instruction was at n[7]=n[2] +5. The interrupt could change
the values of n[1] and n[4], and then end. The FAL instruction would then compl ete the
calculations. But, the results would be based on the old value for n[1] and the new value
for n[4].

plc advanced functions - 8.17

i)

FAL

| Control ¢

| length 5

position O

Mode al

Destination n[5 + ¢.POY]
Expression n[c.POS] + 5

UIE

Figure8.16 Disabling Interrupts

8.4 INPUT AND OUTPUT FUNCTIONS

8.4.1 Immediate |/O Instructions

The input scan normally records the inputs before the program scan, and the output
scan normally updates the outputs after the program scan, as shown in Figure 8.17. Imme-
diate input and output instructions can be used to update some of the inputs or outputs dur-
ing the program scan.

plc advanced functions - 8.18

» The normal operation of the PLC is

fast [input scan
linp] Input values scanned

Y

slow [ladder logic is checked] 3‘;}%@ ae ;pgsaﬁcé in

ladder logic is scanned

Y

Output values are
updated to match
values in memory

fast [outputs updated)]

Figure8.17 Input, Program and Output Scan

Figure 8.18 shows a segment within a program that will update the input word
input_value, determine a new value for output_value.1, and update the output word
output_value immediately. The process can be repeated many times during the program
scan alowing faster than normal response times. These instructions are less useful on
newer PLCs with networked hardware and software, so Allen Bradley does not support
IIN for newer PLCs such as ControlLogix, even though the |OT is supported.

plc advanced functions - 8.19

e.g. Check for nuclear reactor overheat input_value.03 overheat sensor

output_value.01 reactor shutdown

@input_value
input_value.3
o P Qoutput_val ue.l
|

output_value

|OT

These added statements can allow the ladder logic to examine a critical
input, and adjust a critical output many times during the execution of
ladder logic that might take too long for safety.

Note: When these instructions are used the normal assumption that all inputs and
outputs are updated before and after the program scan is no longer valid.

Figure8.18 Immediate Inputs and Outputs

8.5 DESIGN TECHNIQUES

8.5.1 Sate Diagrams

The block logic method was introduced in chapter 8 to implement state diagrams
using MCR blocks. A better implementation of this method is possible using subroutines
in program files. The ladder logic for each state will be put in separate subroutines.

Consider the state diagram in Figure 8.19. This state diagram shows three states
with four transitions. Thereis a potential conflict between transitions A and C.

plc advanced functions - 8.20

light_ 0= STA
light_1=STB
light 2=STC

first scan
Figure8.19 A State Diagram

The main program for the state diagram is shown in Figure 8.20. This program is
stored in the MainProgram so that it isrun by default. The first rung in the program resets
the states so that the first scan state is on, while the other states are turned off. The follow-
ing logic will call the subroutine for each state. The logic that uses the current state is
placed in the main program. It is also possible to put thislogic in the state subroutines.

plc advanced functions - 8.21

SFS
| | L) STB
U) STA
U) STC
STA
| | JSR
sta transitions
STB
| | JSR
stb_transitions
STC
JSR
stc_transitions
STA

L) light 0

L) light 1

L) light 2

DGO

Figure8.20 The Main Program for the State Diagram (Program File 2)

The ladder logic for each of the state subroutinesis shown in Figure 8.21. These
blocks of logic examine the transitions and change states as required. Note that state STB
includes logic to give state C higher priority, by blocking A when C is active.

plc advanced functions - 8.22

sta transitions

B
H U) STA
L)STB
stb_transitions
C
H U) STB
—(9
A C
|| |
Mk u) Ste

—=
stc_transitions

Figure8.21 Subroutinesfor the States

The arrangement of the subroutines in Figure 8.20 and Figure 8.21 could experi-
ence problemswith racing conditions. For example, if STA isactive, and both B and C are
true at the same time the main program would jump to subroutine 3 where STB would be
turned on. then the main program would jump to subroutine 4 where STC would be turned
on. For the output logic STB would never have been on. If this problem might occur, the
state diagram can be modified to slow down these race conditions. Figure 8.22 shows a
technique that blocks race conditions by blocking atransition out of a state until the transi-
tion into a state is finished. The solution may not always be appropriate.

plc advanced functions - 8.23

A*(B + D) C*(B +D)
first scan
Figure8.22 A Modified State Diagram to Prevent Racing

Another solution is to force the transition to wait for one scan as shown in Figure
8.23 for state STA. A wait bit is used to indicate when adelay of at least one scan has
occurred since the transition out of the state B became true. The wait bit is set by having
the exit transition B true. The B3/0-STA will turn off the wait B3/10-wait when the transi-
tion to state B3/1-STB has occurred. If the wait was not turned off, it would still be on the
next time we return to this state.

Program 3 for STA
sta wait
K (v) sm
B STA
| Y Q sa wat

Figure8.23 Subroutines for State STA to Prevent Racing

plc advanced functions - 8.24

8.6 DESIGN CASES

8.6.11f-Then

Problem: Convert the following C/Java program to ladder logic.

void main(){
intA;
for(A =1; A <10; A++){
if (A >=5) then A =add(A);

}
}
int add(int x){
X=Xx+1
return x;
}
Solution:
MainProgram | _
SFS| FOR
] function name: increment
index A
initial value 1
terminal value 10
step size2
SBR
Increment
GEQ ADD
A A
5 1
Dest A
RET

Figure8.24 C Program Implementation

plc advanced functions - 8.25

8.6.2 Traffic Light

Problem: Design and write ladder logic for asimple traffic light controller that has
asingle fixed sequence of 16 seconds for both green lights and 4 second for both yellow
lights. Use either stacks or sequencers.

Solution: The sequencer is the best solution to this problem.

OUTPUTS
t DN 0.0 NSG - north south green
| TON O.1 NSY - north south yellow
/(f/ ¢ 0.2 NSR - north south red
0.3 EWG - east west green
preset 4.0 sec 0.4 EWY - east west 3e| low
t.DN O.5EWR - east west red
| | SQO
| Filen[0] Addr. Contents (in binary)
mask Ox003F
Dest. O n[Q] 0000000000001001
Control ¢ n[1] 0000000000100001
Length 10 n[2] 0000000000100001
n[3] 0000000000100001
n[4] 0000000000100001
n[5] 0000000000100010
n[6] 0000000000001100
n[7] 0000000000001100
n[8] 0000000000001100
n[9] 0000000000001100

n[10] 0000000000010100

Figure8.25 An Example Traffic Light Controller

8.7 SUMMARY

» Shift registers move bits through a queue.

» Stacks will create avariable length list of words.

* Sequencers allow alist of words to be stepped through.

* Parts of programs can be skipped with jump and MCR statements, but MCR
statements shut off outputs.

plc advanced functions - 8.26

* Subroutines can be called in other program files, and arguments can be passed.

* For-next loops allow parts of the ladder logic to be repeated.

* Interrupts alow parts to run automatically at fixed times, or when some event
happens.

» Immediate inputs and outputs update I/O without waiting for the normal scans.

8.8 PRACTICE PROBLEMS

1. Design and write ladder logic for asimple traffic light controller that has asingle fixed
sequence of 16 seconds for both green lights and 4 seconds for both yellow lights. Use shift
registersto implement it.

2. A PLCisto be used to control a carillon (abell tower). Each bell corresponds to amusical note
and each has a pneumatic actuator that will ring it. The table below defines the tune to be pro-
grammed. Write a program that will run the tune once each time a start button is pushed. A
stop button will stop the song.

time sequence in seconds

-
0:000/00 0 1 2 3 45 6 7 8 9 1011 12 13 14 1516
0:000/00 O 00OOOOO1O0O0OO0OO0OO0OO0OO0OGO01
0:000/01 1 00 0O0OOOOOOOOOI11IO0O0O0
0:000/02 1 001 0O0O0O0OO0OI1I1O0O0O01O0O0
0:000/03 O 0001 00OO0OO0OO0O1O01O0O0T10O0
0:000/04 0 11000O0O0O0OOOOOOOCOD0 0
0:000/05 0O 00 0OOO1O0O0O0OO0OOOOOODQ 0
0:000/06 O 000O0O11O0O0O0O0O0OT1O0O0TO0ODPO
0:000/07 O 00OOOOOO1O0O0O0OOOOODPO

3. Consider a conveyor where parts enter on one end. they will be checked to be in aleft or right
orientation with avision system. If neither left nor right is found, the part will be placed in a
reject bin. The conveyor layout is shown below.

vision . .
left right reject
part movement
along conveyor >
Elar— Ca— S E =

I part sensor

plc advanced functions - 8.27

4. Why are MCR blocks different than JMP statements?

5. What is a suitable reason to use interrupts?

6. When would immediate inputs and outputs be used?

7. Explain the significant differences between shift registers, stacks and sequencers.

8. Design aladder logic program that will run once every 30 seconds using interrupts. It will
check to seeif awater tank is full with input tank_full. If it isfull, then a shutdown value
('shutdown’) will be latched on.

9. At MOdern Manufacturing (MOMs), pancakes are made by multiple machinesin three flavors;
chocolate, blueberry and plain. When the pancakes are compl ete they travel along asingle belt,
in no specific order. They are buffered by putting them on the top of a stack. When they arrive
at the stack the input ’ detected’ becomes true, and the stack isloaded by making output ’stack’
high for one second. As the pancakes are put on the stack, a color detector is used to determine
the pancakes type. A valueisputin’color_stack’ (1=chocolate, 2=blueberry, 3=plain) and bit
"unload’ is made true. A pancake can be requested by pushing a button (' chocolate’, ’ blue-
berry’, "plain’). Pancakes are then unloaded from the stack, by making 'unload’ high for 1 sec-
ond, until the desired flavor is removed. Any pancakes removed aren’t returned to the stack.
Design aladder logic program to control this stack.

10. a) What are the two fundamental types of interrupts?
b) What are the advantages of interruptsin control programs?
¢) What potential problems can they create?
d) Which instructions can prevent this problem?

11. Write aladder logic program to drive a set of flashing lights. In total there are 10 lights con-
nected to’lightg[0]’ to’lightg[9]’ . At any time every one out of three lights should be on. Every
second the pattern on the lights should shift towards’lightg9]’.

12. Implement the following state diagram using subroutines.

FS
3% |
>~

C D

13. A SQO control word ‘¢’ hasavalue of c.LEN =5, but the array of valuesis 6 long. Why?

plc advanced functions - 8.28

8.9 ASSIGNMENT PROBLEMS

1. Using 3 different methods write a program that will continuously cycle a pattern of 12 lights
connected to a PL C output card. The pattern should have one out of every three lights set. The
light patterns should appear to move endlessly in one direction.

2. Look at the manuals for the status memory in your PLC.
a) Describe how to run program ’ GetBetter’ when a divide by zero error occurs.
b) Write the ladder logic needed to clear a PLC fault.
c¢) Describe how to set up atimed interrupt to run’ Slowly’ every 2 seconds.

3. Write an interrupt driven program that will run once every 5 seconds and cal cul ate the average
of the numbersfrom 'f[0]’ to 'f[19]’, and store theresult in’f_avg'. It will also determine the
median and storeitin’f med'.

4. Writeaprogram for SPC (Statistical Process Control) that will run once every 20 minutes using
timed interrupts. When the program runsit will calculate the average of the datavaluesin
memory locations’f[0]’ to 'f[39]’ (Note: these values are written into the PLC memory by
another PL C using networking). The program will also find the range of the values by subtract-
ing the maximum from the minimum value. The average will be compared to upper (f_ucl_x)
and lower (f_Icl_x) limits. The range will also be compared to upper (f_ucl_r) and lower
(f_Icl_r) limits. If the average, or range values are outside the limits, the process will stop, and
an ‘out of control’ light will be turned on. The process will use start and stop buttons, and
when running it will set memory bit "in_control’.

5. Develop aladder logic program to control alight display outside atheater. The display consists
of arow of 8 lights. When a patron walks past an optical sensor the lightswill turnonin
sequence, moving in the same direction. Initially all lights are off. Once triggered the lights
turn on sequentialy until all eight lights are on 1.6 seconds latter. After adelay of another 0.4
seconds the lights start to turn off until all are off, again moving in the same direction as the
patron. The effect isamoving light pattern that follows the patron as they walk into the theater.

6. Write the ladder logic diagram that would be required to execute the following data manipula-
tion for a preventative maintenance program.

i) Keep track of the number of times amotor was started with toggle switch #1.

i) After 2000 motor starts turn on an indicator light on the operator panel.

iii) Provide the capability to change the number of motor starts being tracked, prior
to triggering of the indicator light. HINT: This capability will only require the
change of avalue in acompare statement rather than the addition of new lines
of logic.

iv) Keep track of the number of minutes that the motor has run.

v) After 9000 minutes of operation turn the motor off automatically and also turn
on an indicator light on the operator panel.

7. Parts arrive at an oven on a conveyor belt and pass a barcode scanner. When the barcode scan-
ner reads a valid barcode it outputs the numeric code as 32 bitsto 'scanner_value’ and sets

plc advanced functions - 8.29

input 'scanner_value valid’. The PLC must store this code until the parts pass through the
oven. When the parts leave the oven they are detected by a proximity sensor connected to
"part_leaving' . The barcode value read before must be output to " barcode output’. Write the
ladder logic for the process. There can be up to ten parts inside the oven at any time.

8. Write the ladder logic for the state diagram below using subroutines for the states.
A

— T

B

FS—»

9. Convert the following state diagram to ladder logic using subroutines.

10. Implement the following state diagram using JM P statements.

plc advanced functions - 9.1

9.1 PRACTICE PROBLEM SOLUTIONS

t.DN

TON
Timer t

NS

t.DN

Delay 4s

NS

BSR

File b[O]

Control cO

Bit address cO.UL
Length 10

BSR

File b[1]

Control c1

Bit address c1.UL
Length 10

BSR

Fileb[2]

Control c2

Bit address c2.UL
Length 10

b[0] = 0000 0000 0000 1111 (grn EW)
b[1] = 0000 0000 0001 0000 (yel EW)

BSR

File b[3]

Control c3

Bit address c3.UL
Length 10

b[2] = 0000 0011 1110 0000 (red EW)
b[3] = 0000 0011 1100 0000 (grn NS)
b[4] = 0000 0000 0010 0000 (yel NS)
b[5] = 0000 0000 0001 1111 (red NS)

BSR

File b[4]

Control c4

Bit address c4.UL
Length 10

BSR

File b[5]

Control ¢c5

Bit address c5.UL
Length 10

b[O].

plc advanced functions - 9.2

ONORORONONO.

grn_EW

yel EW

red EW

grn_NS

yel NS

red NS

plc advanced functions - 9.3

n[O] = 0000 0000 0000 0000
n[1] = 0000 0000 0000 0110
n[2] = 0000 0000 0001 0000
n[3] = 0000 0000 0001 0000
n[4] = 0000 0000 0000 0100
n[5] = 0000 0000 0000 1000
n[6] = 0000 0000 0100 0000
n[7] = 0000 0000 0110 0000
n[8] = 0000 0000 0000 0001

start

stop

n[9] = 0000 0000 1000 0000

n[10] = 0000 0000 0000 0100
n[11] = 0000 0000 0000 1100
n[12] = 0000 0000 0000 0000
n[13] = 0000 0000 0100 1000
n[14] = 0000 0000 0000 0010
n[15] = 0000 0000 0000 0100
n[16] = 0000 0000 0000 1000

n[17] = 0000 0000 0000 0001

play NEQ

Source A ¢.POS
SourceB 17

O vy
t.DN TON

\H\ Timer t

Delay 4s

SQO
Filen[Q]

Mask OxO00FF
Destination lights
Control ¢

Length 17
Position 0

plc advanced functions - 9.4

assume; . .
sensors.0 = left orientation

sensors.1 = right orientation
Sensors.2 = reject
sensors.3 = part sensor

BSR

File b[0]

Control cO

Bit address sensors.0
Length 4

BSR

File b[1]

Control c1

Bit address sensors.1
Length 4

BSR

File b[2]

Control c2

Bit address sensors.2
Length 4

O left

O right

O reject

4. In MCR blocks the outputs will al be forced off. Thisis not a problem for outputs such as
retentive timers and latches, but it will force off normal outputs. IMP statements will skip over

logic and not examineit or force it off.

5. Timed interrupts are useful for processes that must happen at regular time intervals. Polled
interrupts are useful to monitor inputs that must be checked more frequently than the ladder
scan time will permit. Fault interrupts are important for processes where the complete failure

of the PLC could be dangerous.

6. These can be used to update inputs and outputs more frequently than the normal scan time per-

mits.

7. The main differences are: Shift registers focus on bits, stacks and sequencers on words Shift

registers and sequencers are fixed length, stacks are variable lengths

plc advanced functions - 9.5

tank_full
Checker } ‘T I @shutdown

configuration
periodic task
update 30000ms

pancake arrives
(1:000/3)

Wait for
type detect

Test Done (B3/0)

Stacking
pancakes

delay (T4:1)

Tl = SleB3/1 Sl = (S1+T2+T5+FS)eT1leT6
T2 = S2eB3/2 S2=(S2+T1eT6+T4)eT2eT3
T3 = S2eB3/2 S3 = (S3+T3)e T4

T4 = S3e T4:0/DN A= (A+T6)eT7

T5 = S5e T4:1/DN S5 = (S5+T7)eT5

T6 = Sle1:000/3

T7 = S4«B3/0

plc advanced functions - 9.6

|S? TON
| timert s3
delay 1s
40 0:001/0
S5
TON
I I timert s5
delay 1s
L <) stack
I I source color_detect
LIFO n[0]
Control ¢
length 10
position 0
2
| LFU
| LIFO n[0]
destination waiting_color
Control ¢
length 10
position 0
EQU
SourceA waiting_color () Pancakes maich
SourceB req_color
chocolate
O pancake requested
blueberry
plain
chocolate MOV
Source 1
Dest req_color
blueberry MOV
I I Source 2
Dest req_color
plain MOV
I I Source 3
Dest req_color

plc advanced functions - 9.7

pancake requested

QTl

QTZ

©T3

©T4

QTS

QTG

OT?

N

sl% pancakes_match

sls t 3.DN

S5 t s5.DN

s1 detected

4 unload

K ik
T5

FS

OSl

-

OSB

©S4

IS

i ~+E
T3

I +
T6

S5 \4'1’?\
T7

OSS

plc advanced functions - 9.8

10. a) Timed, polled and fault, b) They remove the need to check for times or scan for memory
changes, and they allow events to occur more often than the ladder logic is scanned. c) A few
rungs of ladder logic might count on a value remaining constant, but an interrupt might change
the memory, thereby corrupting the logic. d) The UID and UIE

11.

oS MOV
| | source 1001001001 B
dest. B

L. TON

DN
R t

1s

| | BSR

] File B
Control ¢
Bit c.UL
Length 10

MVM

source B
mask OxXO3FF
dest lights

plc advanced functions - 9.9

12.
FS
| | D
| (H so
file2
—® ST1
—@ ST2
STO
JSR
File3
ST1
JSR
File4
ST2
JSR
File5
A
file3 @ ST1

@ STO
RET

file4 @ STO
3 c @ ST1
N Ch
@ ST1
ET

R

i | | D
files | O ST1

@ ST2
ET

R

13. Thefirst element of the array isloaded if the input to the SQO is true on the first scan, but
after that it is never used again. So in this example the array[0] value will be used thefirst time,
and the array[1] to array[5] values will be used for the normal sequence.

plciec61131 - 10.1

10. OPEN CONTROLLERS

Topics:
* Open systems
* |[EC 61131 standards
* Open architecture controllers

Objectives:
* To understand the decision between choosing proprietary and public standards.
* To understand the basic concepts behind the IEC 61131 standards.

10.21 INTRODUCTION

In previous decades (and now) PLC manufacturers favored “proprietary” or
“closed” designs. This gave them control over the technology and customers. Essentially,
aproprietary architecture kept some of the details of a system secret. Thistended to limit
customer choices and options. It was quite common to spend great sums of money to
install a control system, and then be unable to perform some simple task because the man-
ufacturer did not sell that type of solution. In these situations customers often had two
choices; wait for the next release of the hardware/software and hope for a solution, or pay
exorbitant fees to have custom work done by the manufacturer.

“Open” systems have been around for decades, but only recently has their value
been recognized. The most significant step occurred in 1981 when IBM broke fromiit’'s
corporate tradition and rel eased a personal computer that could use hardware and software
from other companies. Since that time IBM lost control of it’s child, but it has now
adopted the open system philosophy as a core business strategy. All of the details of an
open system are available for users and devel opers to use and modify. This has produced
very stable, flexible and inexpensive solutions. Controls manufacturers are also moving
toward open systems. One such effort involves Devicenet, which is discussed in alater
chapter.

A troubling trend that you should be aware of is that many manufacturers are mis-
labeling closed and semi-closed systems as open. An easy acid test for thistype of system
isthe question “ does the system allow me to choose alternate suppliers for all of the com-
ponents?’ If even one component can only be purchased from a single source, the system
is not open. When you have a choice you should avoid “ not-so-open” solutions.

plciec61131 - 10.2

10.2 1EC 61131

The IEC 1131 standards were devel oped to be a common and open framework for
PL C architecture, agreed to by many standards groups and manufacturers. They wereini-
tially approved in 1992, and since then they have been reviewed as the IEC-61131 stan-
dards. The main components of the standard are;

IEC 61131-1 Overview

|EC 61131-2 Requirements and Test Procedures
|EC 61131-3 Data types and programming

IEC 61131-4 User Guidelines

|EC 61131-5 Communications

|IEC 61131-7 Fuzzy control

This standard is defined loosely enough so that each manufacturer will be able to
keep their own look-and-feel, but the core data representations should become similar.
The programming models (IEC 61131-3) have the greatest impact on the user.

IL (Instruction List) - Thisis effectively mnemonic programming

ST (Structured Text) - A BASIC like programming language

LD (Ladder Diagram) - Relay logic diagram based programming

FBD (Function Block Diagram) - A graphical dataflow programming method
SFC (Sequential Function Charts) - A graphical method for structuring programs

Most manufacturers already support most of these models, except Function Block
programming. The programming model also describes standard functions and models.
Most of the functionsin the models are similar to the functions described in this book. The
standard data types are shown in Figure 10.1.

plciec61131 - 10.3

Name Type Bits Range
BOOL boolean 1 Otol
SINT short integer 8 -128to 127
INT integer 16 -32768 to 32767
DINT double integer 32 -2.1e-91t02.1€9
LINT long integer 64 -9.2e19t09.2e19
USINT unsigned short integer | 8 0to 255
UINT unsigned integer 16 0 to 65536
UDINT unsigned double integer| 32 01t04.3e9
ULINT unsigned long integer 64 010 1.8e20
REAL real numbers 32
LREAL long reals 64
TIME duration not fixed| not fixed
DATE date not fixed| not fixed
TIME_OF_DAY, TOD time not fixed| not fixed
DATE_AND_TIME, DT | dateandtime not fixed| not fixed
STRING string variable | variable
BYTE 8 hits 8 NA
WORD 16 bits 16 NA
DWORD 32 bits 32 NA
LWORD 64 bits 64 NA

Figure10.1 |EC 61131-3 Data Types

Previous chapters have described Ladder Logic (LD) programming in detail, and
Sequential Function Chart (SFC) programming briefly. Following chapters will discuss
Instruction List (IL), Structured Test (ST) and Function Block Diagram (FBD) program-

ming in greater detail.

10.3 OPEN ARCHITECTURE CONTROLLERS

Personal computers have been driving the open architecture revolution. A personal
computer is capable of replacing aPLC, given theright input and output components. Asa
result there have been many companies developing products to do control using the per-
sonal computer architecture. Most of these devices use two basic variations;

* astandard personal computer with anormal operating system, such as Windows
NT, runsavirtual PLC.
- the computer is connected to a normal PLC rack

plciec61131 - 10.4

- I/O cards are used in the computer to control input/output functions
- the computer is networked to various sensors
» aminiaturized personal computer is put into a PLC rack running a virtual PLC.

In al casesthe system is running a standard operating system, with some connec-
tion to rugged input and output cards. The PLC functions are performed by avirtua PLC
that interprets the ladder logic and simulates a PL C. These can be fast, and more capable
than a stand alone PLC, but also prone to the reliability problems of norma computers.
For example, if an employee installs and runs a game on the control computer, the control-
ler may act erratically, or stop working completely. Solutions to these problems are being
developed, and the stability problem should be solved in the near future.

10.4 SUMMARY

» Open systems can be replaced with software or hardware from a third party.
» Some companies call products open incorrectly.

» The IEC 61131 standard encourages interchangeable systems.

* Open architecture controllers replace a PLC with a compuiter.

10.5 PRACTICE PROBLEMS

1. Describe why traditional PLC ra