

PYTHON TOOLS FOR SCIENTISTS

An Introduction to Using Anaconda,
JupyterLab, and Python’s Scientific Libraries

by Lee Vaughan

San Francisco

PYTHON TOOLS FOR SCIENTISTS. Copyright © 2023 by Lee Vaughan.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

First printing

26 25 24 23 22 1 2 3 4 5

ISBN-13: 978-1-7185-0266-6 (print)
ISBN-13: 978-1-7185-0267-3 (ebook)

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Katrina Horlbeck Olsen
Developmental Editor: Frances Saux
Cover Illustrator: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: John Mayhew
Production Services: Octal Publishing, LLC

For information on distribution, bulk sales, corporate sales, or translations, please contact No
Starch Press, Inc. directly at info@nostarch.com or:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900
www.nostarch.com

Library of Congress Control Number: 2022942882

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a trademarked
name, we are using the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

mailto:info@nostarch.com
http://www.nostarch.com/

This book is dedicated to the worldwide army of open source software
developers. I am immensely grateful for your hard work and the

immeasurable good it produces.

About the Author

Lee Vaughan is a programmer, educator, and author of Impractical

Python Projects (No Starch Press, 2019) and Real-World Python (No

Starch Press, 2021). As an executive-level scientist at ExxonMobil, he
constructed and reviewed computer models, developed and tested
software, and trained geoscientists and engineers. His books are
dedicated to helping self-learners develop and hone their Python skills
and have fun doing it!

About the Technical Reviewer

John Mayhew is a geoscientist with an extensive background in
mathematics, data analysis, and scientific computing. He is a co-founder
of the nonprofit organization Land of Jershon and currently serves on
its board of directors and as the CEO. He has also established a
charitable giving consultantship, East Gate Advocates, designed to
connect donors with nonprofit projects.

BRIEF CONTENTS

Acknowledgments

Introduction

PART I: SETTING UP YOUR SCIENTIFIC CODING

ENVIRONMENT

Chapter 1: Installing and Launching Anaconda

Chapter 2: Keeping Organized with Conda Environments

Chapter 3: Simple Scripting in the Jupyter Qt Console

Chapter 4: Serious Scripting with Spyder

Chapter 5: Jupyter Notebook: An Interactive Journal for Computational
Research

Chapter 6: JupyterLab: Your Center for Science

PART II: A PYTHON PRIMER

Chapter 7: Integers, Floats, and Strings

Chapter 8: Variables

Chapter 9: The Container Data Types

Chapter 10: Flow Control

Chapter 11: Functions and Modules

Chapter 12: Files and Folders

Chapter 13: Object-Oriented programming

Chapter 14: Documenting Your Work

PART III: THE ANACONDA ECOSYSTEM

Chapter 15: The Scientific Libraries

Chapter 16: The InfoVis, SciVis, and Dashboarding Libraries

Chapter 17: The GeoVis Libraries

PART IV: THE ESSENTIAL LIBRARIES

Chapter 18: NumPy: Numerical Python

Chapter 19: Demystifying Matplotlib

Chapter 20: pandas, seaborn, and scikit-learn

Chapter 21: Managing Dates and Times with Python and pandas

Appendix: Answers to the “Test Your Knowledge” Challenges

Index

CONTENTS IN DETAIL

ACKNOWLEDGMENTS

INTRODUCTION

Why Python?

Navigating This Book

Part I: Setting Up Your Scientific Coding Environment

Part II: A Python Primer

Part III: The Anaconda Ecosystem

Part IV: The Essential Libraries

Appendix

Updates and Errata

Leaving Reviews

PART I: SETTING UP YOUR SCIENTIFIC CODING

ENVIRONMENT

1

INSTALLING AND LAUNCHING ANACONDA

About Anaconda

Installing Anaconda on Windows

Installing Anaconda on macOS

Installing Anaconda on Linux

Getting to Know Anaconda Navigator

Launching Navigator

The Home Tab

The Environments Tab

The Learning Tab

The Community Tab

File Menu

Summary

2

KEEPING ORGANIZED WITH CONDA ENVIRONMENTS

Understanding Conda Environments

Working with Conda Environments Using Navigator

Launching Navigator

Creating a New Environment

Managing Packages

Duplicating Environments

Backing Up Environments

Removing Environments

Working with Conda Environments Using the Command Line
Interface

Launching the Command Line Interface

Creating a New Environment

Specifying an Environment’s Location

Managing Packages

Duplicating and Sharing Environments

Restoring Environments

Removing Environments

Cleaning the Package Cache

Summary

3

SIMPLE SCRIPTING IN THE JUPYTER QT CONSOLE

Installing seaborn

Installing and Launching the Jupyter Qt Console Using Navigator

Installing and Launching the Jupyter Qt Console Using the CLI

The Qt Console Controls

Choosing a Syntax Style

Using Keyboard Shortcuts

Using Tabs and Kernels

Printing and Saving

Multiline Editing

Summary

4

SERIOUS SCRIPTING WITH SPYDER

Installing and Launching Spyder with Anaconda Navigator

Installing and Launching Spyder Using the CLI

Launching Spyder from the Start Menu

Configuring the Spyder Interface

Using Spyder with Environments and Packages

The Naive Approach

The Modular Approach

Using Project Files and Folders

Creating a Project in a New Directory

Creating a Project in an Existing Directory

Using the Project Pane

The Help Pane

The IPython Console

Using the Console for Output and Plotting

Using Kernels with the Console

Clearing the Namespace

The History Pane

Special Consoles

The Editor Pane

Writing a Program Using the Editor

Defining Code Cells

Setting the Run Configuration

Autocompleting Text

The Code Analysis Pane

The Variable Explorer Pane

The Profiler Pane

The Debugger Pane

Summary

5

JUPYTER NOTEBOOK: AN INTERACTIVE JOURNAL FOR

COMPUTATIONAL RESEARCH

Installing Jupyter Notebook

The Naive Approach

The Modular Approach

Your First Jupyter Notebook

Creating Dedicated Project Folders

Navigating the Notebook Dashboard and User Interface

Naming a Notebook

Adding Text with a Markdown Cell

Adding Code and Making Plots with a Code Cell

Working with Output Cells

Adding an Image with a Markdown Cell

Saving the Notebook

Closing the Notebook

Getting Help

Keyboard Shortcuts

The Command Palette

Using Notebook Extensions

Installing Extensions

Enabling Extensions

Working with Widgets

Installing ipywidgets

Creating Widgets with Interact

Creating Widgets with Interactive

Manually Creating Widgets

Handling Events

Customizing Widgets

Embedding Widgets in Other Formats

Sharing Notebooks

Checking and Running Notebooks with the Kernel Menu

Downloading Notebooks

Sharing Notebooks via GitHub and Gist

Sharing Notebooks via Jupyter Notebook Viewer

Sharing Notebooks via Binder

Other Sharing Options

Trusting Notebooks

Turning Notebooks into Slideshows

Installing the RISE Extension

Creating a Slideshow

Using Speaker Notes

Summary

6

JUPYTERLAB: YOUR CENTER FOR SCIENCE

When to Use JupyterLab Instead of Notebook?

Installing JupyterLab

The Naive Approach

The Modular Approach

Building a 3D Astronomical Simulation

Using Dedicated Project Folders

The JupyterLab Interface

The Menu Bar

The Left Sidebar

Creating a New Notebook

Naming the Notebook

Using Markdown Cells

Adding Code and Making Plots

Adding a Console

Displaying an Image File

Exploring the Simulation

Opening Multiple Notebooks

Saving the Workspace

Clearing the Workspace

Closing the Workspace

Taking Advantage of the JupyterLab Interface

Creating Synchronized Views

Copying Cells Between Notebooks

Staying Focused by Using Single Document Mode

Using the Text Editor

Running a Script in a Terminal

Running a Script in a Notebook

Simultaneously Writing and Documenting Code

Using JupyterLab Extensions

Installing and Managing Extensions with the Extension
Manager

Installing and Managing Extensions Using the CLI

Installing ipywidgets for JupyterLab

Creating Custom Extensions

Sharing

Summary

PART II: A PYTHON PRIMER

7

INTEGERS, FLOATS, AND STRINGS

Mathematical Expressions

Mathematical Operators

The Assignment Operator

Augmented Assignment Operators

Precedence

The math Module

Error Messages

Data Types

Accessing the Data Type

Integers

Floats

Strings

Summary

8

VARIABLES

Variables Have Identities

Assigning Variables

Using Expressions

Operator Overloading

Using Functions

Chained Assignment and Internment

Using f-Strings

Naming Variables

Reserved Keywords

Variables Are Case Sensitive

Best Practices for Naming Variables

Managing Dynamic Typing Issues

Handling Insignificant Variables

Getting User Input

Using Comparison Operators

Summary

9

THE CONTAINER DATA TYPES

Tuples

Creating Tuples

Converting Other Types to Tuples

Working with Tuples

Lists

Creating Lists

Working with Lists

Sets

Creating Sets

Working with Sets

Creating Frozensets

Dictionaries

Creating Dictionaries

Combining Two Sequences into a Dictionary

Creating Empty Dictionaries and Values

Working with Dictionaries

Summary

10

FLOW CONTROL

The if Statement

Working with Code Blocks

Using the else and elif Clauses

Using Ternary Expressions

Using Boolean Operators

Loops

The while Statement

The for Statement

Loop Control Statements

Replacing Loops with Comprehensions

Handling Exceptions

Using try and except

Forcing Exceptions with the raise Keyword

Ignoring Errors

Tracing Execution with Logging

Summary

11

FUNCTIONS AND MODULES

Defining Functions

Using Parameters and Arguments

Positional and Keyword Arguments

Using Default Values

Returning Values

Naming Functions

Built-in Functions

Functions and the Flow of Execution

Using Namespaces and Scopes

Using Global Variables

Using a main() Function

Advanced Function Topics

Recursion

Designing Functions

Lambda Functions

Generators

Modules

Importing Modules

Inspecting Modules

Writing Your Own Modules

Naming Modules

Writing Modules That Work in Stand-Alone Mode

Built-in Modules

Summary

12

FILES AND FOLDERS

Creating a New Spyder Project

Working with Directory Paths

The Operating System Module

Absolute vs. Relative Paths

The pathlib Module

The Shell Utilities Module

Working with Text Files

Reading a Text File

Closing Files Using the with Statement

Writing to a Text File

Reading and Writing Text Files Using pathlib

Working with Complex Data

Pickling Data

Shelving Pickled Data

Storing Data with JSON

Catching Exceptions When Opening Files

Other Storage Solutions

Summary

13

OBJECT-ORIENTED PROGRAMMING

When to Use OOP

Creating a New Spyder Project

Defining the Frigate Class

Defining Instance Methods

Instantiating Objects and Calling Instance Methods

Defining a Guided-Missile Frigate Class Using Inheritance

Instantiating a New Guided-Missile Frigate Object

Using the super() Function for Inheritance

Objects Within Objects: Defining the Fleet Class

Reducing Code Redundancy with Dataclasses

Using Decorators

Defining the Ship Class

Identifying Friend or Foe with Fields and Post-Init Processing

Optimizing Dataclasses with __slots__

Making a Class Module

Summary

14

DOCUMENTING YOUR WORK

Comments

Single-Line Comments

Multiline Comments

Inline Comments

Commenting-Out Code

Docstrings

Documenting Modules

Documenting Classes

Documenting Functions and Methods

Keeping Docstrings Up to Date with doctest

Checking Docstrings in the Spyder Code Analysis Pane

Summary

PART III: THE ANACONDA ECOSYSTEM

15

THE SCIENTIFIC LIBRARIES

The SciPy Stack

NumPy

SciPy

SymPy

pandas

A General Machine Learning Library: scikit-learn

The Deep Learning Frameworks

TensorFlow

Keras

PyTorch

The Computer Vision Libraries

OpenCV

scikit-image

PIL/Pillow

The Natural Language Processing Libraries

NLTK

spaCy

The Helper Libraries

Requests

Beautiful Soup

Regex

Dask

Summary

16

THE INFOVIS, SCIVIS, AND DASHBOARDING LIBRARIES

InfoVis and SciVis Libraries

Matplotlib

seaborn

The pandas Plotting API

Altair

Bokeh

Plotly

HoloViews

Datashader

Mayavi and ParaView

Dashboards

Dash

Streamlit

Voilà

Panel

Choosing a Plotting Library

Size of Dataset

Types of Plots

Format

Versatility

Maturity

Making the Final Choice

Summary

17

THE GEOVIS LIBRARIES

The Geospatial Libraries

GeoPandas

Cartopy

Geoplot

Plotly

folium

ipyleaflet

GeoViews: The HoloViz Approach

KeplerGL

pydeck

Bokeh

Choosing a GeoVis Library

Summary

PART IV: THE ESSENTIAL LIBRARIES

18

NUMPY: NUMERICAL PYTHON

Introducing the Array

Describing Arrays Using Dimension and Shape

Creating Arrays

Accessing Array Attributes

Indexing and Slicing Arrays

Manipulating Arrays

Shaping and Transposing

Joining Arrays

Splitting Arrays

Doing Math Using Arrays

Vectorization

Broadcasting

The Matrix Dot Product

Incrementing and Decrementing Arrays

Using NumPy Functions

Reading and Writing Array Data

Summary

19

DEMYSTIFYING MATPLOTLIB

Anatomy of a Plot

The pyplot and Object-Oriented Approaches

Using the pyplot Approach

Creating and Manipulating Plots with pyplot Methods

Working with Subplots

Building Multipanel Displays Using GridSpec

Using the Object-Oriented Style

Creating and Manipulating Plots with the Object-Oriented
Style

Working with Subplots

Building Multipanel Displays Using GridSpec

Insetting Plots

Plotting in 3D

Animating Plots

Styling Plots

Changing Runtime Configuration Parameters

Creating and Using a Style File

Applying Style Sheets

Summary

20

PANDAS, SEABORN, AND SCIKIT-LEARN

Introducing the pandas Series and DataFrame

The Series Data Structure

The DataFrame Data Structure

The Palmer Penguins Project

The Project Outline

Setting Up the Project

Importing Packages and Setting Up the Display

Loading the Dataset

Displaying the DataFrame and Renaming Columns

Checking for Duplicates

Handling Missing Values

Exploring the Dataset

Predicting Penguin Species Using K-Nearest Neighbors

Summary

21

MANAGING DATES AND TIMES WITH PYTHON AND

PANDAS

Python datetime Module

Getting the Current Date and Time

Assigning Timestamps and Calculating Time Delta

Formatting Dates and Times

Converting Strings to Dates and Times

Plotting with datetime Objects

Creating Naive vs. Aware Objects

Time Series and Date Functionality with pandas

Parsing Time Series Information

Creating Date Ranges

Creating Periods

Creating Time Deltas

Shifting Dates with Offsets

Indexing and Slicing Time Series

Resampling Time Series

Summary

APPENDIX

ANSWERS TO THE “TEST YOUR KNOWLEDGE”

CHALLENGES

INDEX

ACKNOWLEDGMENTS

Thanks to Bill Pollock, founder and president of No Starch Press, for
letting me write yet another book. Thanks also to Frances Saux for
sticking with me through two whole books and providing the best
editing money can buy. To Gina Redman, Jill Franklin, and Octopod
Studios for another spectacular cover illustration. To Sarah De Vos for
marketing assistance, Katrina Horlbeck Olsen for production editing,
and the rest of the staff at No Starch Press who work tirelessly to
produce “the finest in geek entertainment.”

Special thanks to Anaconda Inc. co-founder and CEO, Peter Wang,
for his vision to “empower the whole world with data literacy.” To James
Bednar, director of custom services at Anaconda, for his invaluable time,
guidance, and advice with respect to the data visualization chapters.
Thanks also to Anaconda data scientist Albert DeFusco for technical
assistance in setting up the Anaconda distribution and for useful
discussions around project management best practices and
understanding the relationships among products like Anaconda Cloud
and Nucleus.

Thanks to John Mayhew for his thorough technical review and
helpful suggestions. Two heads really are better than one! Thanks also
to Mike Driscoll, content writer at Real Python, for advice on the
Jupyter Notebook and JupyterLab chapters.

Finally, extra special thanks to ExxonMobil geological modeler Andy
Maas for his frank and frustrated discussions on Python’s large selection
of plotting and coding tools. Although others shared his concerns, he
directly inspired this book. Hopefully, I’ve added some clarity to these
issues.

INTRODUCTION

This book is for scientists and budding scientists who want to use the
Python programming language in their work. It teaches the basics of
Python and shows the easiest and most popular way to gain access to
Python’s universe of scientific libraries, the preferred method for
documenting work, and how to keep various projects separate and
secure.

As a mature, open source, and easy-to-learn language, Python has an
enormous user base and a welcoming community eager to help you
develop your skills. This user base has contributed to a rich set of tools
and supporting libraries (collections of precompiled routines) for
scientific endeavors such as data science, machine learning, language
processing, robotics, computer vision, and more. As a result, Python has
become one of the most important scientific computing languages in
academia and industry.

Popularity, however, comes with a price. The Python ecosystem is
growing into an impenetrable jungle. In fact, this book sprang from
conversations with scientific colleagues in the corporate world. New to
Python, they were frustrated, stressed, and suffering from paralysis by

analysis. At every turn, they felt they had to make critical and difficult

decisions such as which library to use to draw a chart and which text
editor to use to write their programs. They didn’t have the time or

inclination to learn multiple tools, so they wanted to choose the option
with the fewest repercussions down the road.

This book is designed to address those concerns. Its goal is to help
you get started with scientific computing as quickly and painlessly as
possible. Think of it as a machete for hacking through the dense jungle
of Python distributions, tools, and libraries (Figure 1).

Figure 1: Hacking your way through the Python jungle

To reach this goal, I’ll help you make some decisions. As everyone’s
needs are unique, these won’t always be perfect, but they should
represent sensible, “no regret” choices that will position you to
customize your setup later, after you have more experience.

To begin, you’ll use the free Anaconda Distribution of Python. As the

most popular Python distribution platform, it has more than 30 million
users worldwide. Provided by Anaconda, Inc.
(https://www.anaconda.com/), it’s the platform of choice for Python data

science. Anaconda will make it easy to install Python, set up your

https://www.anaconda.com/

computing environment, and keep it organized and up to date over
time.

Please note that this book is intended for scientists who write scripts
for their own personal use or for that of their team. It’s not intended for
professional software developers or engineers working on enterprise

software. It also addresses only free, open source software. Your place of
work may use proprietary or commercial libraries that supersede those
listed here.

Finally, this book won’t show you how to do science, or data analysis,

or whatever your job entails. It won’t teach you how to use your
operating system, and it won’t provide detailed instructions on how to
use every important scientific library. Each of these requires large,
dedicated volumes, which you can readily find in bookstores or online.
Rather, this book will introduce you to basic tools and libraries useful
across a wide range of scientific disciplines, help you to install them, and
help you to get started using them. And, hopefully, it will take a lot of
the stress out of setting up and using Python for science.

Why Python?

Because you’re reading this book, you’ve probably already made up your
mind about using Python. If you’re still mulling it over, however, let’s
look at some reasons why you might want to choose Python for
scientific programming. Otherwise, feel free to skip to the next section,
“Navigating This Book” on page xxvii.

Python’s design philosophy stresses simplicity, readability, and
flexibility. These priorities make it a useful language for all stages of
research and scientific endeavors, including general computing, design
of experiments, building device interfaces, connecting and controlling
multiple hardware/software tools, heavy-duty number crunching, and
data analysis and visualization. Let’s take a look at some of the key
features of Python and why they are great selling points for science:

Free and open source: Python is open source, which means that the

original source code is freely available and may be redistributed and
modified by anyone. It is continuously developed by a team of
volunteers and managed by the nonprofit Python Software
Foundation (www.python.org/). A strong point of open source

software is that it’s hardened; that is, scrubbed of bugs and other

problems by a large, involved user base. In addition, these users often
publish and share their code so that the entire community has access
to the latest techniques. On the downside, open source software can
be more vulnerable to malicious users, less user friendly, and more
poorly documented and supported than commercial alternatives.

High level: Python is a high-level programming language. This

means that significant areas of the computing system, such as
memory management, are automated and hidden from view. As a
result, Python’s syntax is very readable by humans, making it easy to
learn and use.

Interpretive: Python is an interpretive language, which means it

executes instructions immediately—similar to applying a calculation
in a spreadsheet—without the need to compile the code. This gives
you instant feedback, makes Python highly interactive, and helps you
to catch errors as soon as they occur. It does slow the language down,
however, compared to compiled languages such as Java and C++.

Platform neutral: Python runs on Windows, macOS, and
Linux/Unix, and apps are available for Android and iOS.

Widespread support and shared learning: Millions of developers
provide a strong support system to Python. Thanks to this large
community, all the major Python products include online
documentation, and you can easily find help and guidance through
both free and fee-based online support sites and tutorials. Likewise,
the number of Python-related print and ebooks has exploded in
recent years and cover a wide range of subjects for beginners
through advanced users.

http://www.python.org/

Python’s helpful user base is important, as the key to
programming lies not in memorizing all the commands, but in
understanding what you want to do. You will spend as much time in

online search engines as you will in Python, and knowing how to
construct a task-specific question (such as “How do I post text on an

image in OpenCV?”) will become an essential skill (Figure 2).

Figure 2: The secret life of programmers

Among the more popular support sites is Stack Overflow
(https://stackoverflow.com/). In many cases, you’ll find that your query

has already been answered. If not, be sure to take the tour
(https://stackoverflow.com/tour/) and visit the Asking section

(https://stackoverflow.com/help/asking/) to review the proper way to

post questions.

You can also find sites dedicated to the use of Python in specific
sciences. For example, Practical Python for Astronomers

https://stackoverflow.com/
https://stackoverflow.com/tour/
https://stackoverflow.com/help/asking/

(https://python4astronomers.github.io/) is a useful site for astronomers,

and Analytics Vidhya (https://www.analyticsvidhya.com/) is designed for

data scientists.

Batteries included: A motto of Python is “batteries included,”
which means that it comes with all the possible parts required for full
usability. In addition to a large standard library of useful tools, Python

can be easily upgraded from a wide selection of third-party libraries.
These are Python programs written and tested by experts in a field
that you can apply in your own work. Some examples include
OpenCV, used to work with image and video data; TensorFlow, used
for machine learning projects; and Matplotlib, used for generating
charts and diagrams. These libraries will greatly reduce the amount
of code that you need to write to conduct experiments, analyze and
visualize data, design simulations, and complete your projects.

Scalable: Python can easily handle the large datasets commonly used
in science and engineering. Your main limitations will be the
processing speed and memory of your computer. For comparison,
Microsoft Excel spreadsheets have speed and stability issues with as
few as tens of thousands of datapoints. Complex Excel projects
become fragile as the number of spreadsheets grow, resulting in
errors that are difficult to recognize, find, and fix.

Python supports both procedural and object-oriented
programming that will help you write clear, logical code for both
small- and large-scale projects. Python will also catch errors for you
as soon as they occur.

Flexible: Python can handle multiple data formats and can run
instrumentation and sensors for scientific experiments and data
gathering. As a “glue” language, it’s easy to integrate with lower-level
languages such as C, C++, and FORTRAN, and it’s useful for
connecting multiple scripts or systems, including databases and web
services. The large number of third-party libraries available makes
Python extendable to many tasks.

https://python4astronomers.github.io/
https://www.analyticsvidhya.com/

Navigating This Book

This book is designed for both true beginners and those familiar with
Python but not Anaconda or some of the various scientific libraries. It’s
designed to be “one-stop shopping” that will get you up and running
with enough knowledge to begin working with data and writing your
own programs.

True beginners who want a quick start learning Python should first
read the chapters shown boxed in Figure 3, and then return to Part I to
finish Chapters 5 and 6.

Figure 3: The fast track to learning Python

More experienced users might want to skip around (for example,
omitting the Python primer). With that in mind, here’s a short synopsis
of the book’s contents.

Part I: Setting Up Your Scientific Coding Environment

Part I provides instructions on how to install, launch, and navigate
Anaconda, and how to use the conda package manager, an open source
package and environment management system that runs on Windows,

macOS, and Linux. In addition, you’ll be introduced to the world of
shells, interpreters, text editors, notebooks, and integrated development
environments (IDEs), including when and why you need them. Part I
includes the following chapters:

Chapter 1, Installing and Launching Anaconda: How to install
Anaconda on Windows, macOS, and Linux, followed by a tour of the
Anaconda Navigator graphical user interface (GUI) and the
alternative terminal-based command prompt.

Chapter 2, Keeping Organized with Conda Environments:
Introduces the concept of virtual environments that let you isolate
your projects and use different versions of Python and its scientific
libraries. You’ll set up your first conda environment, a directory that

contains a specific version of Python, into which you’ll install a
specific collection of conda packages. This will allow you to keep
your projects organized and prevent any conflicts among different
versions of Python and/or the various libraries.

Chapter 3, Simple Scripting in the Jupyter Qt Console:
Introduces the Jupyter (IPython) Qt console, a lightweight interface

useful for interactive coding, quick concept testing, and data
exploration.

Chapter 4, Serious Scripting with Spyder: Introduces Spyder, the

Scientific Python Development Environment included with Anaconda.

Spyder was designed by scientists, engineers, and data analysts, and
provides the advanced editing, analysis, debugging, and profiling
functionality of a comprehensive development tool with the data
exploration, interactive execution, deep inspection, and visualization
capabilities of a scientific application. If you’re completely new to
Python, skip down to Part II, where you’ll use this tool and the Qt
Console to learn the basics of Python.

Chapter 5, Jupyter Notebook: An Interactive Journal for
Computational Research: Introduces the Jupyter (IPython)

Notebook, a web-based interactive computing platform that combines

live code, equations, descriptive text, interactive visualizations, and

other types of media. Programs written in Jupyter can be extensively
documented in-place and turned into publishable articles, interactive
dashboards, and presentation-quality slideshows.

Chapter 6, JupyterLab: Your Center for Science: Introduces
JupyterLab, a web-based interactive development environment for

Jupyter notebooks, code, and data. JupyterLab’s flexible interface can
be configured to support a wide range of workflows in data science,
scientific computing, and machine learning. In fact, you may spend
most of your scientific computing “life” here, especially if you’re a
data scientist.

Part II: A Python Primer

Part II is a quick introduction to the Python programming language. If
you’re already familiar with the basics, you can skip this part and just
use it as a reference when needed. Part II includes the following
chapters:

Chapter 7, Integers, Floats, and Strings: Introduces some of
Python’s basic data types, operators, and error messages.

Chapter 8, Variables: Introduces variables and variable naming
conventions.

Chapter 9, The Container Data Types: Introduces Python’s tuple,
list, set, and dictionary data types.

Chapter 10, Flow Control: Introduces flow-control statements,
line structure, and methods for handling exceptions (errors).

Chapter 11, Functions and Modules: Introduces important
concepts like abstraction and encapsulation, used to make programs
easier to read and maintain.

Chapter 12, Files and Folders: Introduces modules and functions
for working with files, folders, and directory paths.

Chapter 13, Object-Oriented Programming: Introduces the
basics of object-oriented programming (OOP), used to make
programs easier to maintain and update.

Chapter 14, Documenting Your Work: Presents best practices for
in-code documentation.

Part III: The Anaconda Ecosystem

Part III introduces the Anaconda Python ecosystem and includes high-
level summaries of many important scientific and visualization libraries,
such as NumPy, pandas, and Matplotlib, and how to choose among the
many options available. Part III includes the following chapters:

Chapter 15, The Scientific Libraries: Overviews of the core
scientific libraries grouped by function, such as data analysis,
machine learning, language processing, computer vision, deep
learning, and so on. Guidelines are provided for choosing among
competing libraries, along with a discussion of methods and libraries
for dealing with very large datasets.

Chapter 16, The InfoVis, SciVis, and Dashboarding Libraries:
Overviews of the most important libraries used to plot statistical and
3-D data and generate dashboards. Guidelines are provided for
choosing among competing libraries.

Chapter 17, The GeoVis Libraries: Overviews of the most
important libraries used to plot geospatial data. Guidelines are
provided for choosing among competing libraries.

Part IV: The Essential Libraries

Part IV introduces you to the basics of working with NumPy,
Matplotlib, and pandas—the “Big Three” of Python scientific libraries.
These libraries are important and wildly popular ones on which many
others are based. Part IV includes the following chapters:

Chapter 18, NumPy: Numerical Python: Introduces NumPy, the

module used for mathematical calculations in Python. Many useful
scientific libraries such as pandas and Matplotlib are built on
NumPy. This section covers some of its key concepts and base
functionality.

Chapter 19, Demystifying Matplotlib: Covers the basics of
Matplotlib, the granddaddy of plotting in Python, including some of
its more confusing aspects.

Chapter 20, pandas, seaborn, and scikit-learn: Introduces pandas,

the Python library designed for data loading, manipulation, and
analysis. It offers data structures and operations for manipulating
numerical tables and time series and includes data visualization
functionality. This chapter is built around a machine learning
classification problem that also involves seaborn, used for easier
Matplotlib plotting, and scikit-learn, used for building predictive
models.

Chapter 21, Managing Dates and Times with Python and
Pandas: Addresses methods for working with dates and times in both
native Python and pandas.

Appendix

The appendix presents answers to the “Test Your Knowledge”
challenges throughout the book.

Updates and Errata

This book will likely have multiple printings, and you can check for any
updates or corrections at https://www.nostarch.com/python-tools-scientists.

In the event you find any typos or errors, please report them to
errata@nostarch.com. Be sure to include the book’s title and the page

numbers affected (ebook readers should mention the chapter and the
subsection).

As Python, Anaconda, and the scientific libraries are constantly
evolving, I provide links to their official sites where appropriate so that
you can always find the most up-to-date information regarding these
products.

https://www.nostarch.com/python-tools-scientists
mailto:errata@nostarch.com

Leaving Reviews

If you find this book helpful, please take the time to leave an online
review, even if it’s just a ranking with stars. Your unbiased opinion will
help other users navigate the increasingly crowded market of Python
programming books.

PART I
SETTING UP YOUR SCIENTIFIC CODING

ENVIRONMENT

In Part I, you’ll create a scientific coding environment to build upon for
years to come. You’ll start by installing Anaconda, a distribution of

Python that works on Windows, macOS, and Linux and provides access
to the science libraries we’ll use in this book. You’ll then learn to use the
conda package and environment manager to keep your projects
organized and up to date. After that, you’ll familiarize yourself with the
popular coding tools Jupyter Qt console, Spyder, Jupyter Notebook,
and JupyterLab.

These coding tools help you write code, run code, and review the
output, and are summarized in Table I-1. If you’re unsure of the
meaning of any of the terminology in the table, see the “Terminology”
sidebar.

Table I-1: Coding Tool Summaries

The Jupyter Qt console lets you execute commands inside windows
called IPython interpreters and immediately displays the results. You
can use this console to interact with and visualize data. It’s also great for
learning Python.

The famous Jupyter Notebook is a web application that allows you
to create and share documents that contain live code, equations,
visualizations, and narrative text. It’s a wildly popular tool for data
science that lets you do everything from exploring and cleaning data to
producing polished and interactive reports, presentations, and
dashboards. Using the cloud-based JupyterHub, you can serve Jupyter

notebooks to multiple users such as a class of students or a scientific
research group.

Spyder and JupyterLab are integrated development environments

(IDEs). An IDE is an application that provides programmers with a set

of tools for software development. For example, an IDE might include
tools for debugging software and timing how long the code, or parts of
the code, take to run. IDEs are built to work with specific application
platforms and remove barriers involved in the development life cycle.
They are generally used for more heavy-duty programming than is
normally done in consoles or notebooks. JupyterLab, the next-

generation user interface for Anaconda’s Project Jupyter, combines the
classic Jupyter Notebook with a user interface that offers an IDE-like
experience. It will someday replace Jupyter Notebook.

These coding tools are products of Interactive Python (IPython), a

command shell used for interactive computing. (A command shell exposes

the operating system’s services to a program or human user.) IPython is
still evolving, and in 2015 the project split so that the language-agnostic
parts, such as the notebook format, Qt console, web applications,
message protocol, and so on, were put in the Jupyter project.

The name Jupyter references the Julia, Python, and R languages,

though the project supports more than 40 languages. After the split,
some terms changed. Most notably, IPython Notebook became Jupyter
Notebook. There is also some overlap in the functionality of IPython
products. This can cause confusion, especially given the volume of
online articles and tutorials that reference the old terminology. If you’re
interested in the history of IPython and Jupyter Notebook, check out
the datacamp blog post “IPython or Jupyter?” at
https://www.datacamp.com/community/blog/ipython-jupyter/.

TERMINOLOGY

The following are some important terms that we’ll be using in
Part I.

Debugging

A multistep process for finding, isolating, and resolving problems
that prevent proper program operation, known as bugs. Debugging

https://www.datacamp.com/community/blog/ipython-jupyter/

is usually performed with a program called, appropriately, a
debugger. Debuggers run the problem program under controlled

conditions in a step-by-step mode to track its operations. This
typically involves running or halting the program at specific
points, skipping over certain parts, displaying memory content,
showing the position of errors that cause the program to crash,
and so on.

Extensible

Extensibility is a principle used in software engineering and systems

design that indicates whether a tool provides for future growth.
JupyterLab, for example, is designed as an extensible environment.
JupyterLab extensions are add-ons that provide new interactive

features to the JupyterLab interface. For instance, JupyterLab

LaTeX is an extension that lets you live-edit LaTeX documents,

JupyterLab Plotly is an extension for rendering Plotly charts, and

JupyterLab System Monitor lets you monitor your own resource

usage, such as memory and CPU time. You can even write custom
plug-ins for your own projects.

IDE

An IDE is a coding tool that integrates other specialized utilities
into a single programming environment. Among these specialized
tools are a text editor, a debugger, functions for autocompleting
code, functions for highlighting mistakes, file managers, project
managers, a performance profiler, a deployment tool, a compiler,
and so on. By combining common software-writing tools into a
single application, IDEs increase programmer productivity and
make it easier to manage big projects with lots of interrelated
scripts. The downside is that IDEs can be heavy, meaning they can

take up a lot of system resources. They can also be a bit intense for
beginners and those who need to write only relatively simple
scripts.

Introspection

The ability to determine the type of an object and check its
properties at runtime. In Python, an object is a code feature that has

attributes and methods; you’ll learn more about these in Chapter
13. Code introspection dynamically examines these objects and
provides information about them. When introspection is available,
hovering the cursor over an object in your code will launch a pop-
up window listing the type of object as well as useful tips about
using it.

Kernel

The computational engine at the core of an operating system. It is
always resident in memory, which means that the operating system
is not permitted to swap it out to a storage device. The kernel
manages disks, tasks, and memory and acts as a bridge between
applications and the data processing performed at the hardware
level.

Profiling

An analysis that measures the amount of time or memory required
for a program, or a program’s components, to run. Profiling
information can optimize code and improve its performance.
IDEs, such as Spyder, come with profiling tools built in.

Qt

Pronounced cute, this is a widget (“Windows gadget”) toolkit for

creating graphical user interfaces and cross-platform applications
that run on Windows, macOS, Linux, and Android.

Terminal

In modern usage, terminal refers to a terminal emulator rather than

actual hardware such as a monitor and keyboard. Emulators
provide a text-based interface at which to enter commands and
may also be referred to as a command line interface (CLI), command

prompt, console, or shell. The major operating systems all come with

some type of terminal. Windows includes the Command Prompt
executable, cmd.exe, for running Disk Operating System (DOS)

commands and to connect to other servers. macOS ships with the
aptly named Terminal, which you can use to run Unix commands

within the operating system or to access other machines using the
Zsh or Z shell. Unix normally includes a program called xterm,

which can run Bash or other Unix shells.

Terminals are not very user friendly, but they allow access to
information and software that sometimes is available only on a
central computer, such as a File Transfer Protocol (FTP) server.
Manipulating thousands of files and folders in the operating
system is also easier in a terminal than in a graphics window. You
can automate and expedite workflows on your computer, saving
you time and aggravation. Additionally, you can run Python
programs from a terminal as well as a lot of Anaconda operations
(as an alternative to performing them with the Anaconda
Navigator GUI). Best of all, knowing how to use a terminal will
greatly impress your colleagues.

After you finish Chapter 4 in Part I, you can proceed to Part II, “A
Python Primer,” for an introduction to Python programming. If you’re
comfortable with Python, complete Part I and go straight to Part III,
“The Anaconda Ecosystem,” to learn more about the essential packages
for scientific computing.

1
INSTALLING AND LAUNCHING ANACONDA

Anaconda, the world’s most popular data science platform, provides
access to a large collection of commonly used science libraries. This
chapter walks you through the Anaconda installation process for
Windows, macOS, and Linux. To verify the installation, you’ll launch
Navigator, the GUI interface for Anaconda, and take a quick tour of its
features.

About Anaconda

Among other features, Anaconda includes tools to help you write code
and work with datasets; the Python language itself; collections of
prewritten programs called packages; the Navigator GUI; and Nucleus, a

community learning and sharing resource. Much of this content,
summarized in Figure 1-1, is created and maintained by other
organizations and distributed through Anaconda.

Figure 1-1: The key components of Anaconda

If you’re new to programming, you might be unfamiliar with the
concept of packages. Packages are collections of modules, which are

single programs that perform tasks that other programs can use. For
example, a module might load an image and convert it from color to
grayscale. Another module might resize or crop the image. Several of
these image-manipulation modules might be grouped together into a
package, and groups of packages form a library (Figure 1-2). The

OpenCV computer vision library, for example, includes packages that
do simple image manipulations, others that work with streaming video,
and others still that perform machine learning tasks like detecting
human faces.

Figure 1-2: The definitions of modules, packages, and libraries

Unfortunately, the terms module, package, and library are used

interchangeably so often that they might as well refer to the same thing.

To make matters worse, package may also refer to a unit of distribution,

sharable with a community, that can contain a library, an executable, or
both. So, you shouldn’t get too hung up on the definitions.

Many of the scientific packages that ship with Anaconda require
numerous dependencies (specific versions of other supporting packages)

to run. They might require a specific version of Python, as well. To
keep the various Python installations and other packages from
interacting and breaking, and to keep them up to date, Anaconda uses a
binary package and environment manager called conda. You can use

conda to install thousands of packages from the Anaconda public
repository. There are also tens of thousands of packages from
community channels such as conda-forge. These are in addition to
several hundred packages that are automatically installed with
Anaconda.

Conda will make sure that all necessary dependencies are installed
with each library, saving you considerable trouble. It will also alert you
if you are missing a dependency. Lastly, to prevent various packages
from conflicting, conda lets you create conda environments, which are

secure, isolated laboratories for your science projects. Packages in a
conda environment will not interfere with packages in other locations,
and when you share an environment, you can be sure that all the
necessary packages are included. You’ll learn how to create conda
environments in Chapter 2.

When you download Anaconda, you get access to Anaconda.org, a

package management system that makes it easy to find, access, store,
and share public notebooks, environments, databases, and packages in
both conda and the Python Package Index (PyPI). You can use it to
share your work collaboratively on the cloud or search and download
popular Python packages and notebooks. You can also build new conda
packages using conda-build and then upload them to the cloud to share
with others (or to access them from anywhere).

Anaconda is developed and maintained by Anaconda, Inc. In addition
to the free Anaconda Distribution (previously called Anaconda Individual

http://anaconda.org/

Edition) that we’ll be using, the company also provides commercial

versions. You can find the official documentation for all editions at
https://docs.anaconda.com/anacondaorg/. Anaconda is also a distribution of

the R programming language, and conda provides package, dependency,
and environment management for languages such as Ruby, Lua, Scala,
Java, JavaScript, C/C++, FORTRAN, and more. In this book, however,
we’ll focus solely on its use with Python.

You’ll need about 5GB of free hard drive space to install Anaconda.
Otherwise, you’ll need to install Miniconda, a minimal installation that
requires around 400MB and comes with Python but not the other
preinstalled libraries. There is also no need to uninstall any existing
Python installations or packages prior to installing Anaconda.

In the event that you encounter problems, see the troubleshooting
guide at https://docs.anaconda.com/anaconda/user-guide/troubleshooting/ and

the FAQ at https://docs.anaconda.com/anaconda/user-guide/faq/. If you

encounter any divergence in the instructions, defer to those in the
installation wizard.

Installing Anaconda on Windows

You can find the official Windows-specific installation instructions at
https://docs.anaconda.com/anaconda/install/windows/. Step 1 is to download

the Anaconda Installer. You might need to choose between the 32- or
64-bit installer. Unless you have a very dated computer, you’ll want to
click the 64-bit option. If you’re unsure, you should be able to verify

your system type by navigating to Settings ▸ System ▸ About.

Clicking an installer downloads an .exe file into your Downloads

folder (this can take a few minutes to complete). At this point, you have
the option of checking the integrity of the installer using the SHA-256
checksum, which is a mathematical algorithm that checks files for

corruption. Comparing a newly generated checksum against one
generated ahead of time lets you detect errors introduced during data

https://docs.anaconda.com/anacondaorg/
https://docs.anaconda.com/anaconda/user-guide/troubleshooting/
https://docs.anaconda.com/anaconda/user-guide/faq/
https://docs.anaconda.com/anaconda/install/windows/

transmission. If you choose to run the checksum, see the instructions at
https://docs.anaconda.com/anaconda/install/hashes/.

To start the installation, right-click the downloaded .exe file and

choose the Run as Administrator option from the pop-up window. As
Administrator, you’ll have permission to install Anaconda anywhere you
want on your system. The installer will ask you for permission to make
changes to your computer. Click Yes. The setup wizard should now
appear. Click Next and then agree to the license.

The next window asks you to choose the installation type. Select the
recommended Just Me option and then click Next. Next, you’re asked
to choose an installation location. The installer will suggest a folder on
the C:\ drive under your username. Note that this path should contain

only 7-bit ASCII characters (numbers, letters, and certain symbols) and
no spaces. Make a note of this default location and then click Next.

In the Advanced Installation Options window, register Anaconda as

default Python and don’t add it to PATH. This is the recommended

approach. It just means that you’ll need to open Anaconda Navigator or
the Anaconda Command Prompt using the Start menu. By selecting the
environment variable checkbox Add Anaconda3 to my PATH, you’ll be
able to use Anaconda in the command prompt; however, this can cause
problems down the road. Also, you can always add Anaconda to your
PATH later. Click Install to continue. When the installation is
complete, click Next.

After the installation window closes, you might be presented with
the option to install the PyCharm or DataSpell IDE. If so, ignore it and
click Next. We’ll be using the Spyder IDE, which comes preinstalled on
Anaconda.

The installation should now be complete. In the final window, check
the tutorial boxes if you want to view these later, and then click Finish.
At this point, a window might open, welcoming you to Anaconda and
inviting you to register for Anaconda Nucleus. You should also see an
Anaconda3 folder in your Start Menu (Figure 1-3). This folder should

contain a number of items, such as Navigator and prompts, which are

https://docs.anaconda.com/anaconda/install/hashes/

terminals for entering text commands. You might also see icons for
launching Jupyter and Spyder.

To verify that Anaconda loaded correctly, click the Windows Start
button, navigate to the Anaconda3 app, and then launch Anaconda
Navigator from the drop-down menu. You can also enter anaconda-
navigator in the Anaconda Prompt terminal. This window doesn’t always
automatically pop up, so be sure to check the taskbar at the bottom of
your screen.

To see detailed information about your Anaconda distribution and
Python version, type conda info in Anaconda Prompt.

Figure 1-3: The Anaconda3 program folder on the Windows Start menu

Installing Anaconda on macOS

You can install Anaconda Individual Edition on macOS using either a
graphical setup wizard or through the command line. You can find
instructions for both at https://docs.anaconda.com/anaconda/install/mac-os/.

https://docs.anaconda.com/anaconda/install/mac-os/

Choose the installer for your version of the operating system by
scrolling to the bottom of the download page. When the download
completes, you have the option of verifying the data’s integrity using the
SHA-256 checksum algorithm (see the section “Installing Anaconda on
Windows” on page 9). Then, double-click the downloaded file and click
Continue to launch the installation process.

You’ll be taken through the obligatory Introduction, Read Me, and
License screens. The Important Information box in the Read Me screen
will include specific instructions in the event that you want to deviate
from any of the recommended default choices. When you finish with
these screens, click the Install button to install Anaconda in your ~/opt

directory. This is the recommended location, though you have the
option of changing it using the Change Install Location button.

On the next screen, choose Install for me only and then click
Continue. You might now have the option to install the PyCharm or
DataSpell IDE. We will be using the Spyder IDE that comes
preinstalled with Anaconda, so skip this step by clicking Continue. At
this point you should see a screen indicating a successful installation. I
highly recommend taking the time to look at the quick start guide and
tutorial.

To end the installation process, click Close.

To verify installation, click Launchpad and then select Anaconda
Navigator. Alternatively, use CMD-SPACE to open Spotlight Search
and then enter Navigator to open the program. You can also see detailed
information on the installed Anaconda distribution and Python version
by visiting the Mac terminal and entering conda info.

Installing Anaconda on Linux

Because there are so many flavors of Linux, I strongly recommend you
visit the official Anaconda installation instructions at
https://docs.anaconda.com/anaconda/install/linux/. If you are running Linux

on an IBM PowerPC or Power ISA computer, see

https://docs.anaconda.com/anaconda/install/linux/

https://docs.anaconda.com/anaconda/install/linux-power8/. These sites will

help you install the dependencies that you’ll need to use GUI packages
with your particular Linux distribution. The instructions presented in
this section are for the x86 architecture.

Linux has no graphical installation option for installing Anaconda, so
you’ll need to use the command line for most of the process. To begin,
scroll to the bottom of the download page and click the installer for
your system. When the download completes, you have the option of
verifying the data integrity using the SHA-256 checksum algorithm (see
the section “Installing Anaconda on Windows” on page 9). Open a
terminal and enter the following:

sha256sum /path/filename

Then, enter the following to begin installation:

bash ~/Downloads/Anaconda4-202x.xx-Linux-x86_64.sh

Note the date in the .sh filename above. This should be set to the

name of the file you downloaded. If you did not download the installer
to your Downloads directory, replace ~/Downloads/ with the correct path.

At the installer prompt, click Enter to view the license terms and
then click Yes to agree. Next, the installer will prompt you to click
Enter to accept the default install location, which is recommended, or
specify an alternate installation directory. If you accept the default, the
installer displays the following:

PREFIX=/home/<user>/anaconda<2 or 3>

It then continues the installation, which may take a few minutes to
complete. When the installer asks, “Do you wish the installer to
initialize Anaconda3 by running conda init?” the recommended answer
is “yes.” If for some reason you decide to say “no,” see the instructions
and FAQ on the installation website.

When the installer finishes, you’ll see a message, thanking you for
installing Anaconda. Ignore the link for installing the PyCharm or

https://docs.anaconda.com/anaconda/install/linux-power8/

DataSpell IDE, as we’ll be using the Spyder IDE that comes
preinstalled.

For the installation to take effect, you’ll need to either close and
open your terminal window or enter the command source ~/.bashrc. To
control whether each shell session has the base environment activated
by default, run conda config –set auto_activate_base True. If base activation is
not desired, set this to False. In general, you will want to use the base
environment as the default.

To verify installation, open a terminal and type conda list. If
Anaconda is working correctly, this will display a list of all installed
packages and their version numbers. You can also enter anaconda-navigator
to open Navigator.

Getting to Know Anaconda Navigator

Anaconda Navigator is a desktop GUI. It provides a friendly point-and-
click alternative to opening a command prompt or terminal and using
typed commands to manipulate Anaconda. You can use Navigator to
launch applications, search for packages on Anaconda.org or in a local

Anaconda repository, manage conda environments, channels, and
packages, and access a huge volume of training material. It works on
Windows, macOS, and Linux.

Launching Navigator

On Windows, the installer will create a Start menu shortcut for
Navigator. For Linux or macOS with Anaconda installed via the *.sh

installer (as we did previously), open a terminal and enter anaconda-
navigator. If you used the GUI (.pkg) installer on macOS, click the

Navigator icon in Launchpad.

The Home Tab

Navigator opens with a window similar to the one shown in Figure 1-4.
The app tiles, such as for Jupyter Notebook and Spyder, may be

http://anaconda.org/

arranged differently in your view.

Figure 1-4: The Anaconda Navigator Home tab

The initial window you see is the Home tab ➊. Additional pages are
listed below Home and include Environments, Learning, and
Community. When you launch Navigator, you’ll start in the base (root)

environment ➋. Environments are just folders or directories used to
isolate and manage packages. The base environment is the folder in
which Anaconda is installed, such as C:\Users\

<your_username>\anaconda3\ on Windows.

The scrollable main screen is filled with square tiles for applications

such as Datalore, Spyder, Command Prompts, and more ➌. Each tile
contains a logo icon, the name of the app, a description of the app, and

either a Launch ➍ or Install ➎ button depending on its current state.
The “gear” icon in the upper-right corner of each tile also lets you
install the app as well as update, remove, or install a specific version.
The nice thing about Anaconda is that when it installs an app, it
automatically finds and installs all the dependencies (other packages)
that the app needs to run, and it shows you a list of these in a pop-up
window.

If you install a package or tool from the Anaconda Prompt command
line interface, the Navigator Home tab might not reflect the change. To
ensure this tab is always up to date, you can click the Refresh button in

the upper right ➏.

At the lower left of the Home tab, you might see a link for Anaconda

Nucleus ➐. You can join here, or sign into an existing account using the

button in the upper-right corner ➑. Note that this button may be
named either “Sign in” or “Connect.” You need to sign in only if you’re
going to be accessing Anaconda Nucleus for sharing projects over the
cloud or if you’re accessing repositories such as Anaconda.org.

The Environments Tab

Now let’s take a look at the Environments tab (Figure 1-5). To open it,

click the Environments link ➊ beneath Home. Here, you’ll be able to
manage conda environments and install and uninstall libraries from
Anaconda, conda forge, and other sites. We’ll go into the details of this
in Chapter 2.

http://anaconda.org/

Figure 1-5: Anaconda Navigator Environments tab

At this point, you should only see the base (root) environment ➋.
The other environments shown, such as “Levy,” “golden_spiral,” and

“penguins,” are ones I’ve created previously using the Create button ➌
at the bottom of the screen. Note that there are additional buttons for
cloning, importing, and removing environments. Newer versions may
show an additional button for backing up environments to the cloud.

Only one environment can be active at a time. Clicking an
environment link deactivates the current environment (such as “base”)
and activates the one you’ve clicked (such as “penguins”). It can take a
few seconds for the screen to update. The right half of the screen will
now show you a list of the packages installed in that environment, along
with a description and version number. Also note that you can change

environments using the applications in the drop-down menu on the
Home tab.

If you click the Installed drop-down menu, you’ll see choices for Not

installed, Updatable, Selected, and All ➍. At the bottom of the screen,

you’ll see how many packages are currently installed and available ➎.
For the base environment, the packages preinstalled by Anaconda may
change slightly over time, so the number you see might be different.

NOTE

You can also see which packages come preinstalled with Anaconda by going

to https://docs.anaconda.com/anaconda/packages/pkg-docs/. You’ll

need to know your operating system and Python version.

When you select Not installed, you’ll see a list of packages available
from Anaconda but not currently installed in the selected environment.
To see packages available from other sources, such as conda-forge,

simply click the Channels button ➏ and select or add a new channel
(Figure 1-6). A channel is just the path that conda takes to look for

packages. Other options for working with packages include updating the
packages list for the enabled channels (Update index) and searching for
a package.

https://docs.anaconda.com/anaconda/packages/pkg-docs/

Figure 1-6: The Channels drop-down menu lets you add, update, and delete channels.

To remove a package from the active environment, click the
checkbox next to the package (Figure 1-7). This opens a menu that
offers choices such as marking a package for removal or installing a
specific version number, which opens another menu.

Figure 1-7: Marking a package for an action

We talk more about managing packages in the next chapter. You can
also visit the Anaconda documentation for more on this subject
(https://docs.anaconda.com/anaconda/navigator/tutorials/manage-packages/).

The Learning Tab

On the Learning tab (Figure 1-8), you can discover more about
Navigator, the Anaconda platform, and open data science. To open it,

click the Learning link beneath Home ➊.

Figure 1-8: The Anaconda Navigator Learning tab

Click the Documentation, Training, Webinars, or Video buttons ➋
to see related tile items ➌. You can turn on all the categories at once. To
turn off a highlighted category, just click it again. Clicking a tile item

https://docs.anaconda.com/anaconda/navigator/tutorials/manage-packages/

button will open it in a browser window ➍. The button choices are
Read, View, and Explore.

The Community Tab

On the Community tab (Figure 1-9) you can learn more about events,
free support forums, and social networking relating to Navigator. To

open it, click the Community link beneath Home ➊.

Figure 1-9: The Anaconda Navigator Community tab

Clicking the Events, Forum, or Social buttons ➋ changes the

displayed tiles. Depending on the type of tile, you can Learn More ➌,

Explore ➍, or Engage ➎. Clicking a tile button opens it in a browser
window.

File Menu

The File menu in the upper-left corner of the Navigator screen includes
options to let you set preferences (Figure 1-10) and quit the program.
Users of macOS will see additional options in the Preferences menu,
including Services, for linking to your computer’s system preferences
menu; Hide Anaconda-Navigator, for hiding the Navigator window;
Hide Others, to hide all window except Navigator; and Show All, for
showing all windows. For a detailed explanation of the Preferences
menu options, see https://docs.anaconda.com/anaconda/navigator/overview/.

The Quit option shuts down Navigator and releases the memory
resources used by Anaconda.

This completes the overview of Anaconda Navigator. You can find
more information in the official documentation at
https://docs.anaconda.com/anaconda/navigator/. In the next chapter, we’ll

use Navigator, along with the command line interface, to set up conda
environments that keep your projects separate, safe, and organized.

https://docs.anaconda.com/anaconda/navigator/overview/
https://docs.anaconda.com/anaconda/navigator/

Figure 1-10: The Anaconda Navigator File ▸ Preferences menu on Windows

Summary

With Anaconda installed on your computer, you now have easy access
to Python and its ecosystem of thousands of useful packages. You’re also

part of the Anaconda community, with storage options, lots of learning
opportunities, and the ability to upload and share packages you’ve built
yourself. Lastly, you’ve become familiar with the Navigator interface,
letting you run Anaconda with point-and-click convenience.

2
KEEPING ORGANIZED WITH CONDA ENVIRONMENTS

Each of your Python projects should have its own conda environment. Conda
environments let you use any version of any package you want, including
Python, without the risk of compatibility conflicts. You can organize your
packages based on project needs rather than cluttering your base directory with
unnecessary packages. And you can share your environments with others,
making it possible for them to perfectly reproduce your projects.

Anaconda Navigator, introduced in the previous chapter, provides an easy
point-and-click interface for managing environments and packages. For even
more control, conda lets you perform similar tasks using text commands in
Anaconda Prompt (for Windows) or in a terminal (for macOS or Linux).

In this chapter, we’ll use both Navigator and conda to create conda
environments, install packages, manage the packages, remove the environment,
and more. Before we begin, let’s take a closer look at why a conda environment
is useful.

Understanding Conda Environments

You can think of conda environments as separate Python installations. The
conda environment manager, represented by the cargo ship in Figure 2-1, treats

each environment much like a secure shipping container. Each “container” can
have its own version of both Python and any other packages you need to run

for a specific project. These containers are nothing more than dedicated
directories in your computer’s directory tree.

Figure 2-1: A conceptual diagram for the conda environment and package managers

As shown in Figure 2-1, you can have different versions of Python and
different versions of the same libraries loaded on your computer. If they’re in
separate environments, they’ll be isolated and won’t conflict with one another.
This is important because you might inherit legacy projects that run only with
older versions of some packages.

The conda package manager, represented by the crane in Figure 2-1, finds

and installs packages into your environments. Think of each package as a
separate item packed in a shipping container like that heavy box of National

Geographic magazines you should’ve recycled years ago.

The package manager ensures that you have the latest stable version of a
package or of a version that you specify. It also finds and loads all the
dependencies the main package needs to run at the correctly matched versions. A

dependency is just another Python package that provides supporting
functionality. For example, Matplotlib (for plotting) and pandas (for data
analysis) are both built on NumPy (Numerical Python) and won’t run without
it. For this reason, it’s best to install all the packages that you’re going to need
for a project at the same time, if possible, to avoid dependency conflicts.

If you’re worried that installing packages in each conda environment is poor
space management, set your mind to rest. No copies are created. Conda
downloads packages into a package cache, and each environment links to the
appropriate packages in this cache.

By default, this package cache is in the pkgs directory of your Anaconda

distribution. To find it, open Anaconda Prompt or a terminal (see the
instructions in Chapter 1) and enter conda info. Depending on your operating
system, you should find the package cache at C:\Users\

<username>\anaconda3\pkgs (Windows), ~/opt/anaconda3 (macOS), or

/home/<username>/anaconda3/pkgs (Linux).

Of course, <username> here refers to your personal username. The macOS

location shown is for the graphical installation. If you installed Anaconda using
the shell, you can find it at /Users/<username>/anaconda3. In any case, the conda

info command will reveal its location.

NOTE

By default, each user has their own package cache that’s not shared with anyone

else. It’s possible to set up a shared package cache to save disk space and reduce

installation times. If you want to share packages among multiple users, see the

instructions at https://docs.anaconda.com/anaconda/user-

guide/tasks/shared-pkg-cache/.

You can also use the conda info command (or conda info --envs) to show where
your conda environments are stored. In Windows, for example, the default
location is C:\Users\<username>\anaconda3\envs.

The base environment is created by default when you install Anaconda, and
it includes a Python installation and core system libraries and dependencies of
conda. As a general guideline, avoid installing additional packages into your base

environment. If you need to install additional packages for a new project, first

create a new conda environment.

https://docs.anaconda.com/anaconda/user-guide/tasks/shared-pkg-cache/

CONDA AND PIP

You’ll occasionally encounter a package that can’t be installed with conda.
In this case, you’ll need to do so using the Python package management

system (pip). Conda and pip work similarly with two exceptions. First, pip

works only with Python, whereas conda works with multiple languages.
Second, pip installs packages from the Python Package Index

(https://pypi.org/), otherwise known as PyPI, whereas conda installs

packages from the Anaconda repository (https://repo.anaconda.com/) and

Anaconda.org (https://anaconda.org/). You can also install packages from

PyPI in an active conda environment using pip. For your convenience,
conda will automatically install a copy of pip in each new environment
you create.

Unfortunately, issues can arise when conda and pip are used together
to create an environment, especially when the tools are used back to back
multiple times, establishing a state that can be difficult to reproduce.
Most of these issues stem from that fact that conda, like other package
managers, has limited abilities to control packages that it did not install.
When using conda and pip together, here are the general guidelines:

Install packages needing pip only after installing packages available
through conda.

Don’t run pip in the root environment.

Re-create the conda environment from scratch if changes are
needed.

Store conda and pip requirements in an environment (text) file.

For more details on this issue, see https://www.anaconda.com/blog/using-

pip-in-a-conda-environment/. For more on pip, see

https://packaging.python.org/guides/installing-using-pip-and-virtual-

environments/#creating-a-virtual-environment/. We’ll look at creating a

requirements text file later in this chapter.

Working with Conda Environments Using Navigator

https://pypi.org/
https://repo.anaconda.com/
http://anaconda.org/
https://anaconda.org/
https://www.anaconda.com/blog/using-pip-in-a-conda-environment/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#creating-a-virtual-environment/

Setting up your first conda environment is easy. In the sections that follow,
we’ll use the Anaconda Navigator GUI to work with conda environments.
Later in this chapter, we’ll use conda in Anaconda Prompt (or a terminal) to do
the same things. Anaconda Prompt and Navigator were introduced in Chapter
1.

Launching Navigator

In Windows, go to the Start menu and click the Anaconda Navigator desktop
app. In macOS, open Launchpad and then click the Anaconda-Navigator icon.
In Linux, open a terminal window and enter anaconda-navigator.

When Navigator starts, it automatically checks for a new version. If you see
an Update Application message box asking you if you would like to update
Navigator, click Yes. For a review of the Navigator interface, see Chapter 1.

Creating a New Environment

In Navigator, select the Environments tab and then click the Create button.
This opens the Create New Environment dialog (Figure 2-2). Because this is
your first environment, name it my_first_env.

Figure 2-2: The Navigator Create New Environment dialog

Note the Location information in Figure 2-2. By default, conda
environments are stored in the envs folder within your Anaconda installation.

For this reason, you must give each environment a unique name when using
Navigator. It’s also possible to create environments in other locations using the
command line interface. We’ll look at this option later in the section
“Specifying an Environment’s Location” on page 37.

The first package installed is Python. By default, this is the same version of
Python you used when you downloaded and installed Anaconda. If you want to
install a different version, you can use the pull-down menu to select it.

Click Create. In a minute or so, you should see the new environment on
the Environments tab. You should now have two environments, base (root) and

my_first_env. The arrow to the right of the name indicates that my_first_env is

now the active environment (Figure 2-3). Active means that this is the

environment in which you are now working, and any packages you load will be
put in this folder. Clicking a name in the list activates that name and
deactivates any other environments.

Figure 2-3: The newly created active environment (my_first_env) on the Navigator Environments tab

Also on the Environments tab is a listing of packages installed in
my_first_env and their version numbers (Figure 2-4). At the bottom of the

window, you can see that 12 packages were installed. These are all packages
associated with Python. Over time, the number of packages may change, so
you may see a different number.

Figure 2-4: The list of initially installed packages on the Navigator Environments tab

Congratulations, you just created your first conda environment! You can
start using Python right away. But if you need additional packages, such as
pandas and NumPy, you must install them in this environment. So let’s get to
it.

Managing Packages

After you create an environment, you can use the Environments tab to see
which packages are installed, check for available packages, find a specific
package and install it, and update and remove packages.

Finding and Installing Packages

To find an installed package, activate the environment you want to search by
clicking its name (see Figure 2-3). If the list of installed packages in the pane
on the right is long and you don’t want to scroll, start typing the name of the

package in the Search Packages box. This will reduce the number of packages
displayed until only the package you want remains.

To find a package that is not installed, change the selection of packages
displayed in the right pane by clicking the drop-down menu above it and
selecting Not installed (see Figure 2-5).

Figure 2-5: The list of available but uninstalled packages on the Navigator Environments tab

As shown in the lower left of Figure 2-5, there are currently 8,601 packages
automatically available after you create the new environment (this number may
change over time, so the one you see might be different). To see more
packages, you can add a channel using the Channels button on the
Environments tab.

Click Channels to open a dialog (Figure 2-6). Then, enter conda-forge for
access to the conda-forge community channel. This channel is made up of

thousands of contributors who provide packages for a wide range of software
(for more information, see https://conda-forge.org/docs/user/introduction.xhtml).

Figure 2-6: Adding conda-forge using the Channels dialog

Press ENTER and then click the Update channels button to add conda-
forge (Figure 2-7).

Figure 2-7: Updating channels with the Channels dialog

https://conda-forge.org/docs/user/introduction.xhtml

The pane on the right side of the Environments tab should now refresh to
show that you have tens of thousands of packages available. You can remove
channels by clicking the corresponding trash cans in the dialog (see Figure 2-
7).

NOTE

If a package you want isn’t available from Anaconda, you can try installing it from

the Python Package Index (PyPI.org/) using pip, which conda installs by default in

conda environments (see the “Conda and PIP” sidebar on page 24).

Remember that we wanted to add NumPy and pandas. Because NumPy is a
requirement for pandas, it’s included in the pandas dependencies list.
Consequently, you need to install only pandas. Enter pandas in the search box
at the top of the right pane (Figure 2-8). Then, click the checkbox next to the
pandas package and click Apply at the lower right. To install multiple packages
at the same time, click each of the corresponding checkboxes prior to clicking
Apply.

http://pypi.org/

Figure 2-8: Finding and installing the pandas package on the Environments tab

A new dialog opens and, after a few moments, displays a list of packages on
which pandas is dependent (Figure 2-9). As you can see, NumPy is among
them. Click the Apply button to complete the installation of pandas.

If you switch to the Installed list, the number of installed packages will have
increased, and the list will include both pandas and NumPy. Be aware that you
might need to clear the Search Packages box to see the full list.

Figure 2-9: The list of packages to be installed including dependencies

You might notice that some of the major libraries appear to be duplicated in
the Not installed list. For example, you can choose between “matplotlib” and
“matplotlib-base” (Figure 2-10). The “-base” options tend to be lighter
versions for when a package, like Matplotlib, is used by other packages as a
dependency. As a result, it might not be fully functional; thus, you should not
install this “-base” version when installing packages like Matplotlib or NumPy.
This way, you can be sure that everything will work with no surprises.

Figure 2-10: There are two choices for the matplotlib library in the list of uninstalled packages.

Updating and Removing Packages

Over time, newer versions of installed packages may become available. To
check for these, select the Updatable filter at the top of the right pane of the

Environments tab (Figure 2-11). The list you see might not exactly match the
one shown.

Figure 2-11: The right pane of the Environments tab, showing installed packages with available

updates

In this example, Python is out of date, so let’s update it to the current
version. If your version is already current, try updating another package in the
Updatable list.

First, click the checkbox next to Python and then, from the pop-up menu,
select Mark for update (Figure 2-12).

Figure 2-12: Click a package checkbox to open the menu for updating and removing packages.

Click the Apply button at the lower right. This will open the Update
Packages window, showing you which packages will be modified and which will
be installed (Figure 2-13).

Figure 2-13: The Update Packages window for updating Python

Click Apply to continue. After a few minutes, Python will vanish from the
Updatable list. Change the filter to Installed and you will see that the version
of Python has changed. The Python version in the base (root) environment has
not changed since all the changes you are making are to the active conda

environment only, which is my_first_env.

You should be careful about updating packages for no reason, as other
packages may be dependent on an older version. In the event you do break
your environment in this way, it’s not the end of the world; you can restore it
using an environment file, which we’ll discuss later in this chapter.

If you want to install a specific version of a package, click the checkbox by the

installed package name and use the menu in Figure 2-12. Click Mark for
specific version installation and then select the version number from the
pop-up window that appears. Click Apply to launch the installation.

If the list of updatable packages is long and you don’t want to click each
checkbox, you can use the command line for efficiency. On the Environments
tab, click the triangular arrow beside the active environment’s name (see Figure
2-3). Then, select Open Terminal and enter the following:

conda update --all

You’ll be shown a list of packages to be updated and asked to proceed or
not. Later in this chapter, when we look at the command line interface, we’ll
talk about this command in more detail. We’ll also discuss ways to lock or
freeze a package so that it doesn’t update.

To remove a package from an environment, click its checkbox, select the
Mark for removal option (see Figure 2-12), and then click Apply. This will
remove the package, including its dependencies. That last part is important. If you

remove pandas from my_first_env, you will also remove NumPy! To prevent

this, you need to explicitly install NumPy before installing pandas.

Duplicating Environments

The Clone and Import buttons at the bottom of the Environments pane
(Figure 2-14) let you make an exact copy of an environment and create a new
environment from a specifications file, respectively. To clone an environment,
you first must activate that environment by clicking its name. When using
Import, you’ll be prompted to name the new environment and point to a
specifications file. We’ll look at creating a new environment from a file in more
depth in the section “Duplicating and Sharing Environments” on page 44.

Figure 2-14: Buttons along the bottom of the middle pane of the Environments tab help you to

manage conda environments.

Backing Up Environments

In newer releases of Anaconda Navigator, you might see a Backup button
beside the Import button. This button lets you back up your environments to
the cloud and import them back. You can use this to checkpoint your work,
keep a copy for disaster recovery, or migrate from machine to machine. You’ll
need to have an Anaconda Nucleus account. For details, visit
https://www.anaconda.com/blog/keeping-your-conda-environments-safe-and-secure-

with-your-anaconda-nucleus-account/.

Removing Environments

To delete a conda environment, first click the name of the environment that
you want to remove and then click the Remove button (with the trash can
icon) at the bottom of the Environments tab (Figure 2-14). A pop-up window
will then show you the location of the environment and request confirmation.

https://www.anaconda.com/blog/keeping-your-conda-environments-safe-and-secure-with-your-anaconda-nucleus-account/

It’s good practice to make an environment file before deleting an
environment so that you can restore it if necessary. We go over how to do this
in a later section.

Also be aware that environments are folders, and any data that you store in
that folder will be deleted when you remove the environment. You should keep
data in a separate folder or folders.

Working with Conda Environments Using the Command
Line Interface

You can also work with conda environments in the command line interface, or

CLI (pronounced Clie). Advanced users might prefer the control offered by this

text-based interface to the point-and-click functionality offered by Navigator.

Launching the Command Line Interface

To begin in Windows, use the Start menu to launch Anaconda Prompt; in
macOS or Linux, open a terminal window. In the CLI, the conda command is
the primary interface for managing environments and installations of various
packages. Like Navigator, you can use it to do the following:

Query and search the Anaconda package index and current Anaconda
installation

Create and manage conda environments

Install and update packages into existing conda environments

As with Navigator, you should start by either creating a new conda
environment or activating an existing one. Table 2-1 lists some of the more
useful single-line conda commands for working with environments. These
commands let you reproduce and augment the functionality in Navigator.
You’ll need to replace words in all uppercase with a specific name. For
example, for ENVNAME, you should substitute the actual name of your
environment, such as my_first_env. You can also abbreviate many command

options that begin with two dashes (--) to a single dash plus the first letter of
the option. In other words, you can use -n instead of --name, and -e instead of --
envs. We’ll look at these commands in more detail in the sections that follow.

Table 2-1: Useful conda Commands for Working with Environments

Command Description

conda help Display an explanation of conda
positional arguments

conda info Verify installations, version numbers,
directory locations

conda update --name base conda Update conda to the current version

conda create --name ENVNAME python Create a new environment and install
Python

conda create --name ENVNAME python=3.x Create a new environment with a
specific Python version

conda create --prefix path\ENVNAME Create a new environment at a named
disk location

conda activate ENVNAME Activate the named environment

conda activate path\to\environment-dir Activate an environment at a named
disk location

conda deactivate Deactivate the current environment

conda list List all packages and versions in the
active environment

conda list --name ENVNAME List all packages and versions in a
named environment

conda list --revisions List the versions of an active
environment

conda install -n ENVNAME --revision REVNUM Restore an environment to a previous
version

conda remove --name ENVNAME --all Delete a deactivated environment

conda create --clone ENVNAME --name NEWENV Make an exact copy of an environment

conda env export --name ENVNAME > envname.ymlExport an environment to a readable
YAML file

conda env create --file ENVNAME.yml Create an environment from a YAML
file

conda list --explicit > pkgs.txt Export environment with exact
versions for one OS

Command Description

conda create --name NEWENV --file pkgs.txt Create environment based on exact
package versions

For a complete list of commands, see the “conda cheat sheet” at
https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c68

9e0bc00ca/conda-cheatsheet.pdf.

NOTE

This chapter assumes that you followed the instructions in Chapter 1 for installing

Anaconda. Doing so will ensure that Anaconda is correctly added with respect to

your PATH, the environment variable that specifies a set of directories where

executable programs are located on your computer. This is important for using

conda commands in the terminal with macOS and Linux.

Creating a New Environment

Let’s create a new conda environment named my_second_env, given that we’ve

already used Navigator to create my_first_env. In the Anaconda Prompt

window or terminal, enter the following:

conda create --name my_second_env python

This will create a new environment with the current version of Python.
Enter y when asked if you want to proceed (and continue to do this throughout
the chapter).

NOTE

You can disable the verification prompt by adding the --yes or -y flag to the end of a

command. This is helpful if you are automating processes, but you should avoid it

with day-to-day work to lessen the chance of error.

If you want to install a particular version of Python, say 3.9, you can use this
command (but don’t run it now):

conda create --name my_second_env python=3.9

https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf

This command is subtle. Because we used a single equal sign (=) when

assigning the Python version, the result is the latest version in the Python 3.9

tree (such as Python 3.9.4). To get exactly Python 3.9, you must use a double

equal sign (==) when assigning the version number.

To install multiple packages when creating an environment, list them after
the Python installation (don’t do this now, either):

conda create --name my_second_env python numpy pandas

To activate the new environment, enter the following:

conda activate my_second_env

Next, let’s check that the environment was created and is active:

conda env list

This will produce the list shown in Figure 2-15. The asterisk (*) marks the
active environment. You can also see my_first_env, which we created with

Navigator in the previous section, as well as environments that I created
earlier, some of which we’ll use later in this book.

So that you’re always cognizant of which environment is active, the
command prompt now includes the name of the environment (first line in
Figure 2-15).

To see the list of the packages currently installed in the environment, enter
conda list. This returns the package names, versions, build, and channel
information. To see the contents of a non-active environment, such as

my_first_env, use conda list -n my_first_env. Remember, -n is just shorthand for --

name.

Figure 2-15: The output of the conda env list command in the Anaconda Prompt window

Specifying an Environment’s Location

The conda environments that you create are stored by default in the envs folder

beneath your Anaconda installation. For example, on my Windows machine,
the environment we just created is stored at
C:\Users\hanna\anaconda3\envs\my_second_env. (My wife, Hannah, set up the

computer; hence, she’s listed as the user.)

It’s possible, however, to store the environment elsewhere. This lets you
place the conda environment in a project folder and consistently name it
something like conda_env (Figure 2-16).

Figure 2-16: An example directory tree for storing a conda environment outside of the default location

To create a conda environment outside of the default envs folder, replace the

--name (-n) flag with --prefix (-p):

conda create -p D:\Documents_on_D\anywhere_you_want\a_project\conda_env

To activate the environment, run the following:

conda activate D:\Documents_on_D\anywhere_you_want\a_project\conda_env

Placing your conda environment within a project directory provides several
benefits. First, you can immediately determine whether a project uses an
isolated environment. Second, it makes your project self-contained, as opposed
to having the environment, the data, and things like Jupyter notebooks stored
in different, unrelated locations. Third, you can use the same name, such as

conda_env, for all your environments, making them instantly recognizable to

anyone.

Like environments in the default location, your new environment will show
up when using the conda env list and conda info -e commands, though it won’t
have an official name, such as my_first_env or base (see the * in Figure 2-17).

Figure 2-17: The output of the conda info -e command showing the active environment on the D:\

drive

Not surprisingly, there are some drawbacks to specifying an install path
other than the default location when creating conda environments. For
instance, conda won’t be able to find your environment with the --name flag. For
example, to list the contents of my_first_env, located in the default location, you

can simply enter the following:

conda list -n my_first_env

For environments in other locations, you must use the --prefix flag plus the
full path:

conda list -p D:\Documents_on_D\anywhere_you_want\a_project\conda_env

Another issue is that your command prompt is now prefixed with the active
environment’s absolute path rather than the environment’s name. This can make

for some long and unwieldy prompts, as seen in the first line in Figure 2-17.

You can force conda to always use the environment name for the prompt by
modifying the env_prompt setting in the .condarc file. This is the conda configuration

file, an optional runtime configuration file that allows advanced users to

configure various aspects of conda, such as which channels are searched for
packages. You can read about it in the documentation at
https://conda.io/projects/conda/en/latest/user-guide/configuration/index.xhtml.

https://conda.io/projects/conda/en/latest/user-guide/configuration/index.xhtml

If you want to alter (or create) a .condarc file to shorten the long prefix in

your shell prompt, use this command:

conda config --set env_prompt ′({name})′

Now you will see only the environment name in the prompt, regardless of
where the environment is stored. This won’t be very enlightening if you use
the generic conda_env moniker, and you run the risk of getting confused and

working in the wrong environment. For this reason, you might want to stick
with the long prefix format or append each environment name with the project
name, such as conda_env_penguins or conda_env_covid.

Managing Packages

After you create an environment, you can use conda to check for all available
packages, find a specific package and install it, and update and remove
packages. As noted in the “Launching Navigator” section, you should install all
the packages you need for a project at the same time to ensure that there are
no dependency conflicts.

Table 2-2 lists some useful conda commands for working with packages.
The table mainly shows commands for working within active environments, as

this is considered a best practice. You’ll need to replace words in all uppercase
with a specific name.

Table 2-2: Useful conda Commands for Working with Packages

Command Description

conda search PKGNAME Search for a package in currently configured
channels

conda search PKGNAME=3.9 Search for a specific version in configured channels

conda search PKGNAME --info Get detailed info on a package including its
dependencies

conda install PKGNAME Install current version of a package in an active
environment

conda install PKGNAME=3.4.2 Install specific package version in an active
environment

conda install PKG1 PKG2 PKG3 Install multiple packages in an active environment

Command Description

conda install -c CHANNELNAME
PKGNAME=3.4.2

Install specific version from named channel in an
active environment

conda uninstall PKGNAME Remove a package from an active environment

conda update PKGNAME Update a specific package in an active environment

conda update --all Update all updatable packages in an active
environment

conda list List all packages in an active environment

conda list anaconda Show version number of installed Anaconda
distribution

conda clean --all Remove unused cached files including unused
packages

conda config --show Examine the conda configuration file

PKGNAME --version Show the version number of an installed package

For a complete list of commands, see the “conda Cheat Sheet” at
https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c68

9e0bc00ca/conda-cheatsheet.pdf.

Installing Packages

The recommended way to install packages using conda is from within an active

environment. Alternatively, you can install packages from outside an

environment by using --name or the --prefix flag with a directory path. This
approach isn’t advisable. Not only is it more trouble, but you run the risk of
installing packages in the wrong environment.

To demonstrate how to find and install packages using conda, let’s add to
my_second_env two packages, Matplotlib (for plotting) and pillow (used for

working with images). First, activate the environment:

conda activate my_second_env

It’s preferable to specify the version of each package when installing. This
will help you to explicitly capture what’s in your environment in the event that
you want to rebuild or share your project in the future. Because we have no

https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf

need to use an old version of Matplotlib or pillow, let’s search for the package
to see its current version number:

conda search matplotlib

This returns a long list of all the available versions of Matplotlib, shown
truncated for brevity in the example that follows. The far-right column
represents the channel information. Of course, the version numbers will
change through time, so you’ll see a different list:

--snip--
matplotlib 3.3.4 py39haa95532_0 pkgs/main
matplotlib 3.3.4 py39hcbf5309_0 conda-forge
matplotlib 3.4.1 py37h03978a9_0 conda-forge
matplotlib 3.4.1 py38haa244fe_0 conda-forge
matplotlib 3.4.1 py39hcbf5309_0 conda-forge
matplotlib 3.4.2 py37h03978a9_0 conda-forge
matplotlib 3.4.2 py38haa244fe_0 conda-forge
matplotlib 3.4.2 py39hcbf5309_0 conda-forge

The pkgs/main channel is the top priority channel in conda’s defaults

channel, which is set by default to the Anaconda Repository. In this example,
notice that the defaults channel has Matplotlib 3.3.4, whereas the conda-forge
channel has Matplotlib 3.4.2.

Packages on conda-forge may be more up to date than those on the defaults
channel, and you can find packages on conda-forge that aren’t in defaults. With
the defaults channel, however, you can be certain that the available packages
have been checked for compatibility, thus making it the “safest” alternative.

If you don’t specify a channel, Anaconda will automatically use the channel
at the top of the channels configuration list in your .condarc file. To see your

channels list, enter:

conda config --show channels

which produces this output:

channels:
 - conda-forge
 - defaults

As configured in this example, Anaconda will look for packages in the conda-
forge channel first.

If the package you’re looking for is in the highest priority channel, it will be
installed, even if more up-to-date versions are available in the next channel in the list.

In this case, if you install Matplotlib without specifying a version or channel,
you’ll end up with the most up-to-date version available, as conda-forge has
top priority.

When I repeat the previous exercise for the pillow package, I see that both
channels use the same version (8.2.0), so the channel doesn’t matter. Now, let’s
install both packages together in my_second_env, specifying the latest versions

(use the version numbers shown here or update them to whatever is current for
you):

conda install matplotlib=3.4.2 pillow=8.2.0

Now let’s verify the installation:

conda list

You should see the correct versions for the packages as well as the conda-
forge source channel. The defaults channel, however, will appear as a blank in
the “Channel” column.

If you want conda to install the newest version of a package in any listed

channel, you can turn off the channel priority order using this command:

conda config --set channel_priority: false

You can force conda to use a specific channel by using the --channel flag and
the name of the channel, like this (for the defaults channel):

conda install -c defaults matplotlib=3.3.4

To get the most up-to-date version available on that channel, you can leave
off the version number, though this is not advised.

To change the membership and ordering in the list of channels in your
configuration file, you can use flags like --remove, --append, and --prepend.
Generally, you’ll want the defaults channel on top, so let’s move it up by first
removing it and then adding it back:

conda config --remove channels defaults
conda config --prepend channels defaults

NOTE

You can add your own channel by signing up at https://anaconda.org/ and

uploading your own conda packages.

If you can’t find a package you need through Anaconda, try the Python
Package Index (https://pypi.org/). For more on this resource, see the “Conda

and PIP” sidebar on page 24. When you install a package using pip and then
use the conda list command, the channel designation for that package will be
“pypi.”

Finally, if you want to install a base package or set of packages in every
environment you create, you can edit your configuration file to automatically
add them. For example, to always install the highest version of Python by
default, run the following:

conda config --add create_default_packages python

Now every time you create a new conda environment, Python will be
included by default. If you do a lot of data science work, you’ll probably want
to add NumPy, pandas, and a plotting library, as well. You can review the
default packages list by entering this:

conda config --show

To remove a package from the default packages list, use the --remove flag in
place of --add. You can also override this option at the command prompt with
the --no-default-packages flag.

For more options for editing your configuration file, enter conda config --
help. For more information on installing packages and managing channels, go
to https://docs.conda.io/ and search for “installing with conda” and “managing

channels,” respectively.

Updating and Removing Packages

Over time, newer versions of installed packages may become available. The
following commands will help you to keep your environment up to date.

First, be sure that conda is up to date by running the following (from
anywhere):

conda update -n base conda

https://anaconda.org/
https://pypi.org/
https://docs.conda.io/

To check whether an update is available for a specific package, such as pip,
in an active environment, enter:

conda update pip

If updates are available, you’ll be shown the new package information, such as
its version, build, memory requirements, and channel, and you’ll be prompted
to accept or decline the update.

To update all the packages in an active environment to the current version,
enter:

conda update –-all

To update a non-active environment, enter the following, where ENV_NAME is
the name of the environment.

conda update -n ENV_NAME --all

Even though the update command tries to make everything as new as it can,
it might not be able to upgrade all packages to the latest versions. If there are
conflicting constraints in your environment, Anaconda might use an older
version of some packages to satisfy dependency constraints when updating.

With great power comes great responsibility. Be careful about updating the
Anaconda package itself, as upgrades to this metapackage are released less
frequently than those for other packages. Thus, you can unknowingly
downgrade packages with the update. Also never try to manage an exact set of
packages in the base (root) environment. The latter is the job of specific conda
environments.

For more on these topics, see https://www.anaconda.com/blog/keeping-

anaconda-date/, https://docs.anaconda.com/anaconda/install/update-version/, and

https://www.anaconda.com/blog/whats-in-a-name-clarifying-the-anaconda-

metapackage/.

NOTE

It’s possible to prevent some packages from updating by creating an exceptions list

and saving it as a file named pinned.txt in an environment’s conda-meta

directory. You can learn more at “Preventing packages from updating (pinning)”

at https://docs.conda.io/.

https://www.anaconda.com/blog/keeping-anaconda-date/
https://docs.anaconda.com/anaconda/install/update-version/
https://www.anaconda.com/blog/whats-in-a-name-clarifying-the-anaconda-metapackage/
https://docs.conda.io/

To remove a package, such as Matplotlib, from an active environment, enter:

conda remove matplotlib

To remove multiple packages at the same time, list them one after another.
Let’s do this now for my_second_env:

conda remove matplotlib pillow

To remove the same package from a non-active environment, provide the
name of the environment using the --name (-n) flag:

conda remove -n ENV_NAME matplotlib

Remember, working with non-active environments in this way is
discouraged due to the increased chance for error. Whether you work with
Navigator or conda, it’s shockingly easy to lose track of which environment
you’re working in and cause all kinds of mayhem.

To verify the results of updating and removing packages, use the conda list
command in the active environment.

Duplicating and Sharing Environments

You can exactly duplicate an environment by either cloning it or using a special
file that lists its contents, which makes it easy to share environments with
others, archive them, or restore deleted versions.

Cloning Environments

The simplest way to duplicate an environment is to use the --clone flag. For
example, to produce an exact copy of my_second_env called my_third_env, use

the following:

conda create --name my_third_env --clone my_second_env

To verify the results, enter:

conda env list

Using an Environment File

You can also duplicate an environment by recording its contents. An
environment file is a text file that lists all the packages and versions that are

installed in an environment, including those installed using pip. This helps you
both restore an environment and share it with others.

The environment file is written in YAML (.yml), a human-readable data-

serialization format used for data storage. YAML originally meant “Yet
Another Markup Language” but now stands for “YAML Ain’t Markup
Language” to stress that it’s more than just a document markup tool.

To generate an environment file, you must activate and then export the
environment. Here’s how to make a file for my_second_env:

conda activate my_second_env
conda env export > environment.yml

You can name the file any valid filename, such as my_second_env.yml, but be

careful because an existing file with the same name will be overwritten.

By default, this file is written to the user directory. For my Windows setup,
this is C:\Users\hanna. Here are the file contents (specific versions and dates

have been replaced with x, as these values are time dependent and your output
may differ):

name: my_second_env
channels:
 - conda-forge
 - defaults
dependencies:
 - ca-certificates=202x.xx.x=h5b45459_0
 - certifi=202x.xx.x=py39hcbf5309_1
 - openssl=1.1.1k=h8ffe710_0
 - pip=21.1.x=pyhd8ed1ab_0
 - python=3.x.x=h7840368_0_cpython
 - python_abi=3.x=1_cp39
 - setuptools=49.x.x=py39hcbf5309_3
 - sqlite=3.xx.x=h8ffe710_0
 - tzdata=202x=he74cb21_0
 - vc=14.c=hb210afc_4
 - vs20xx _runtime=14.28.29325=h5e1d092_4
 - wheel=0.xx.x=pyhd3deb0d_0
 - wincertstore=0.x=py39hcbf5309_1006
prefix: C:\Users\hanna\anaconda3\envs\my_second_env

You can now email this file to a coworker, and they can perfectly reproduce
your environment. If they use a different operating system, you can use the --
from-history flag to generate a file that will work across platforms:

conda env export --from-history > environment.yml

Here’s how the new environment file looks:

name: my_second_env
channels:
 - conda-forge
 - defaults
dependencies:
 - python
prefix: C:\Users\hanna\anaconda3\envs\my_second_env

In this case, the environment file includes only packages that you’ve
explicitly asked for, like Python, without their dependencies. Solving for
dependencies can introduce packages that might not be compatible across
platforms, so they are not included.

Remember when I said that it was best practice to specify a version number
when installing a package, even if you wanted to take the most recent version?
Well, look at -python in the last environment file listing: there’s no version number.

When you use the history flag, the environment file includes exactly what you

asked for. By not specifying a version, you told conda to install the current

version of Python. If someone uses your file after the release of a new version
of Python, not only will they not reproduce your environment (assuming you
haven’t updated it), but they also won’t know they haven’t reproduced it!

After you have an environment.yml file, you can use it to re-create an

environment. For example, a coworker could duplicate my_second_env by

entering this command:

conda env create -n my_second_env -f \directory\path\to\environment.yml

You can also add packages in the file to another environment, by providing
the environment name, represented here by ENV_NAME:

conda env update -n ENV_NAME -f \directory\path\to\environment.yml

For more on environment files, including how to manually produce them,
visit https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-

environments.xhtml#sharing-an-environment/.

Using a Specifications File

If your environment does not include packages installed using pip, you can also
use a specifications file to reproduce a conda environment on the same operating

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.xhtml#sharing-an-environment/

system. To create a specification file, activate an environment, such as
my_second_env, and enter the following command:

conda list --explicit > exp_spec_list.txt

This produces the following output, truncated for brevity:

This file may be used to create an environment using:
$ conda create --name <env> --file <this file>
platform: win-64
@EXPLICIT
https://conda.anaconda.org/conda-forge/win-64/ca-certificates-202x.xx.x-h5b45459_0.tar.bz2
https://conda.anaconda.org/conda-forge/noarch/tzdata-202xx-he74cb21_0.tar.bz2
--snip--

To re-create my_second_env using this text file, run the following:

conda create -n my_second_env -f \directory\path\to\exp_spec_list.txt

Note that the --explicit flag ensures that the targeted platform is annotated
in the file, in this case, # platform: win-64 in the third line.

Restoring Environments

Because conda keeps a history of all the changes made to an environment, you
can always roll back to a previous version. To see the list of available versions,
first activate the environment and then enter the following:

conda list --revisions

In the list of revisions, a plus sign (+) before a package name means that it
was added, a minus sign (–) means that it was uninstalled, and no symbol
before the name means that it was updated.

To restore the environment to a previous version, such as rev 3, use this
command:

conda install --revision 3

Alternatively, enter the following:

conda install --rev 3

If you restore to an older revision, this revision will get its own number, so
you can still restore back to an earlier one. For example, if the revisions list

shows eight revisions, and you restore to revision 6, when you regenerate the
revisions list, you’ll see nine revisions. Revision 9 will be identical to revision 6.

Removing Environments

To delete a conda environment, you first must deactivate it by running the
following:

conda deactivate

Then, to remove the deactivated environment, run this command,
substituting the name of the environment for ENVNAME:

conda remove -n ENVNAME --all

Alternatively, you can run the following:

conda env remove -n ENVNAME --all

To verify the removal, run:

conda env list

You can also use the info command to verify this:

conda info -e

The removed environment should be absent from the environments list.

Remember, for environments outside of Anaconda’s envs folder, you’ll need

to include the directory path:

conda remove -p PATH\ENVNAME --all

Cleaning the Package Cache

Over time, as you create and remove environments and install and uninstall
packages, your anaconda3 folder will consume more and more disk space. You

can recover some of this space by cleaning the package cache. As discussed in
“Understanding Conda Environments” on page 22, this is the folder that holds
all your installed packages.

To clean the package cache, run the conda clean command from any
environment. To get a preview of the files it flags for removal, you can make a

dry run:

conda clean --all --dry-run

To commit, use:

conda clean --all

This will remove the index cache, unused cache packages (packages that are
no longer linked to any environment), tarballs (files that combine and
compress multiple files), and lock files from under the pkgs directory. Windows

users will want to reboot after running this command.

For more options when running conda clean, see
https://docs.conda.io/projects/conda/en/latest/commands/clean.xhtml.

Summary

Every Python project should have its own conda environment to keep your
work organized, isolated, up to date, reproducible, and sharable. Although
Anaconda Navigator provides easy point-and-click manipulation of
environments, you’ll want to learn some command line interface commands
for complete control.

https://docs.conda.io/projects/conda/en/latest/commands/clean.xhtml

3
SIMPLE SCRIPTING IN THE JUPYTER QT CONSOLE

The Jupyter Qt console is a lightweight application that blends the

simplicity of a terminal with features possible only in a GUI, such as
viewing inline figures. It’s designed for quickly testing ideas, exploring
datasets, and working through tutorials rather than extended interactive
use.

When I say that the Qt console is “lightweight,” I mean that it has a
small memory footprint and doesn’t burden your CPU. Likewise, it
doesn’t overwhelm users with a bewildering number of controls and
options. The interface is clean and sparse (Figure 3-1), much like the
interactive shell that ships with Python, but with many improvements.
These include line numbers, the ability to open multiple tabs, the
support of rich media output (such as images, video, audio, and
interactive elements), command history retrieval across sessions, proper
multiline editing with syntax highlighting, session export, and more.

Figure 3-1: The Jupyter Qt console with two tabs (kernel 0 and kernel 1) and an inline figure

The sections that follow provide a broad introduction to the Qt
console. For a more in-depth study, you can find the official
documentation at https://qtconsole.readthedocs.io/.

https://qtconsole.readthedocs.io/

Installing seaborn

If you want to reproduce the plots shown in this chapter, you’ll need to
install the seaborn data visualization library. Use the my_first_env conda

environment created in the last chapter.

Open Anaconda Prompt (in Windows) or a terminal (in macOS and
Linux) and then enter the following:

conda activate my_first_env

conda install seaborn

You’ll also need knowledge of multiline editing, which you can find
in the “Multiline Editing” section later in this chapter.

Installing and Launching the Jupyter Qt Console
Using Navigator

There are two ways to install the Jupyter Qt console using Anaconda
Navigator. If you have trouble with the first method, proceed to the
second.

The easiest way is to use the Qt Console tile on the Home tab. First
activate the environment by selecting its name in the Applications on
pull-down menu near the top of the Home tab (Figure 3-2). In this
example, we’re using my_first_env, created in the last chapter. Next,

click the Install button on the Qt Console app tile. You might need to
scroll down the Home tab to find the tile.

Figure 3-2: The Anaconda Navigator Home tab showing the active environment

(my_first_env) and the Qt Console tile

NOTE

Ignore the package named jupyter console. This version of the console is

purely terminal based and doesn’t involve Qt for graphics.

After a few moments, the Install button should change to a Launch
button. Click this to launch the console. Note that, even though the tile
on the Home tab has an IPython (IP[y]) icon, the console window name
is Qt Console.

If for some reason you don’t see the installation tile on the Home
tab, click the Environments tab, switch the view to Not installed,
search for qtconsole in the Search Packages box, and then click the
button beside qtconsole in the list (Figure 3-3).

Figure 3-3: Installing the Jupyter Qt console through the Environments tab

Next, click the Apply button at the bottom of the screen and then
click Apply in the pop-up window that opens. You should now see the
Qt Console tile on your Home tab (Figure 3-3). If not, try clicking the
Refresh button in the upper-right corner of the Home tab.

By installing Qt console in each environment, you’ll be able to
import and use other packages in that environment.

Installing and Launching the Jupyter Qt Console
Using the CLI

To install the Jupyter Qt console in a new environment using the CLI
rather than Anaconda Navigator, first open Anaconda Prompt (in
Windows) or a terminal (in macOS and Linux) and activate the conda
environment. Let’s do this for my_first_env, created in the last chapter:

conda activate my_first_env

Next, use conda to install the console:

conda install qtconsole

Notice PyQt in the list of packages to be installed. This library enables
the use of graphics in the same window as code and explains the “Qt” in
Jupyter Qt console. Enter Y when prompted to complete the
installation.

To start the program, enter:

jupyter qtconsole

If the console doesn’t appear automatically, check your task bar.
Later, if you want to update the app, enter the following:

conda update qtconsole

NOTE

If you have both Navigator and Anaconda Prompt (or the Terminal) open

at the same time, and are working between them, you’ll need to click the

Refresh button on the Navigator Home screen after using conda to install

or remove packages. This will update the Install and Launch buttons on the

Navigator app tiles to the correct state.

The Qt Console Controls

The Qt console is interactive, which means that it behaves like an

electronic calculator. Any instructions you enter will be run
immediately. In fact, you can use the console as a calculator:

In [1]: 5 * 2 + (10 / 2)
Out[1]: 15.0

Notice how the console marks input versus output and includes line
numbers. Although you can’t see it in a black and white book, the Qt
console also uses different colors to distinguish among keywords,
comments, error messages, and so on. Called syntax highlighting, this

color-coding helps you to visually categorize your code.

You can also choose a light or dark background. Indeed, this would
be a good time to play with some of the screen configuration choices to
see which one you like best.

Choosing a Syntax Style

At the top of the Jupyter Qt console window, click View ▸ Syntax
Style. You’ll see a list of around 36 style types, including the popular
emacs, vim, and vs styles. Choose one and then enter the code you see in
Figure 3-4, which will let you see some of the theme’s color choices.
This book uses the default syntax style unless noted otherwise.

To compare styles, open new tabs using File ▸ New Tab with New

kernel. Then use Window ▸ Rename Current Tab to name the tab
for the style currently on display (such as “Monokai” in Figure 3-4). You
can copy the code from one tab to the next to see the highlighting
changes.

Figure 3-4: The Monokai syntax style

If you start Jupyter Qt console from the command line, you can
specify a style at the same time. For example, to choose Monokai, enter
the following:

jupyter qtconsole –-style monokai

Of course, there’s no need to specify the default style.

It’s even possible to configure the console and set your own style (see
“Colors and Highlighting” and “Fonts” at
https://qtconsole.readthedocs.io/_/downloads/en/stable/pdf/).

Using Keyboard Shortcuts

Jupyter Qt console supports keyboard shortcuts, or keybindings,

including the familiar CTRL-C and CTRL-V for copy and paste,

https://qtconsole.readthedocs.io/_/downloads/en/stable/pdf/

respectively (Table 3-1). You can launch a list of the keybindings by

clicking Help ▸ Show QtConsole help. To exit help, use the ESC key.

Table 3-1: Some Common Keybindings Available in Jupyter Qt Console

Keybinding Description

CTRL-C Copy highlighted text to clipboard without
prompts

CTRL-SHIFT-C Copy highlighted text to clipboard with
prompts

CTRL-V Paste text from clipboard

CTRL-Z Undo

CTRL-SHIFT-Z Redo

CTRL-S Save to HTML/XHTML

CTRL-L Clear terminal

CTRL-A Go to beginning of line

CTRL-E Go to end of line

CTRL-U Delete from cursor to the beginning of the
line

CTRL-K Delete from cursor to the end of the line

CTRL-P Previous line (like up arrow)

CTRL-N Next line (like down arrow)

CTRL-F Forward (like right arrow)

CTRL-B Back (like left arrow)

CTRL-D Delete next character or exit if input is
empty

ALT-D Delete next word

ALT-BACKSPACE Delete previous word

CTRL-. Force kernel to restart

CTRL-+ Increase font size

Keybinding Description

CTRL-hyphen Decrease font size

CTRL-T Open new tab with new kernel

CTRL-SHIFT-P Print

F11 Toggle full screen mode

CTRL-R Rename current tab

ALT-R Rename window

Among the more useful shortcuts are the up and down arrow keys.
These let you cycle through lines you’ve already entered to use them
again.

Using Tabs and Kernels

Jupyter Qt console supports multiple tabs, which you can open from the
File menu. You must select a kernel option, which is the active
“computational engine” that executes the code. There are three choices:

New tab with new kernel Opens a new tab with a new IPython
kernel.

New tab with same kernel Creates a child of a parent kernel loaded
on a particular tab. Objects initialized on the parent tab will be
accessible in both tabs.

New tab with existing kernel Opens a new tab and lets you choose
from kernels other than IPython.

Printing and Saving

If you’re one of those “old-school” people who likes to print programs

to paper and edit them with a red pen, you’ll like the File ▸ Print
command, which will produce a hardcopy of your code as it appears in
the console.

You can save the Qt console session as an HTML or XHTML file

using File ▸ Save to HTML/XHTML. If you have any inline figures

or images, you can choose to write them to an external PNG file. PNG
images can be either saved in an external folder or inlined to create a
larger but more portable file. In Windows, the external folder, named
ipython_files, is stored beneath the HTML file location.

With the XHTML option, your figures will be inlined as SVG files.
To switch the format of inline figures from the default PNG format to
SVG, see “Saving and Printing” at https://qtconsole.readthedocs.io/.

Although the Qt console is meant for interactive work, it’s possible
to copy code from the saved HTML/XHTML file or from an external
text editor into the console to run it again. You’ll need to strip out any
output lines, however, and you’ll lose the line number formatting
(compare Figure 3-5 to Figure 3-1).

https://qtconsole.readthedocs.io/

Figure 3-5: Code from an HTML file copied and run again in a new Qt console session

You can also use the %load magic command to take any script, such as
a text file or existing Python file, and paste its contents as your next
input in the Qt console. You then can edit it or execute it as is.

NOTE

A magic command is a special IPython enhancement added over normal

Python code that facilitates common tasks such as loading a file. Line magic

commands, as used in the Qt console, are prefixed by the percent symbol (%).

To see how the %load command works, open the text editor for your
platform and enter this:

print()
print(″This is just a test.″)

The print() function is a built-in Python routine (mini-program) that
prints output to the screen. We look at functions in greater detail in
Chapter 11.

Save this somewhere as test.py or test.txt. In the Qt console, type %load

plus the path to your file, as with my example in Figure 3-6. Press
ENTER to load the file, and again to execute the code.

Figure 3-6: Using the %load magic command to load and execute code from a text file

The %load command can also load code from other sources such as a
URL.

A subset of commonly used magic commands are listed in Table 3-2.
You can read more about them at
https://ipython.readthedocs.io/en/stable/interactive/magics.xhtml.

As you can see from this example, you don’t need a fancy tool to
write a Python program; a simple notepad application will suffice. But
you can do better. Text editors dedicated to programming such as

https://ipython.readthedocs.io/en/stable/interactive/magics.xhtml

Emacs, Vim, IDLE, Notepad++, Sublime Text, and many others have
built-in functionality that helps you code much more efficiently. We
look at Spyder’s text editor in the next chapter.

Table 3-2: Common Line Magic Commands

Command Description

%cd Change the current working directory

%cls (or %clear) Clear the screen

%conda Run the conda package manager within the
current kernel

%load Load code into current frontend

%lsmagic List the currently available magic functions (ESC
to exit)

%matplotlib qt Display Matplotlib plots in interactive Qt window
versus inline

%pprint Toggle pretty printing on/off

%precision Set floating-point precision for pretty printing

%pwd Return the current working directory path

%quickref Display reference material for magic functions
(ESC to exit)

%reset Remove all variables from the session memory

%timeit Time the execution of a Python statement or
expression

%MAGIC? Adding a “?” behind a magic command displays
its docstring

Multiline Editing

Multiline editing is a useful feature that’s not available in terminals but is

supported by Qt console. It lets you enter multiple lines without
executing them by using CTRL-ENTER in place of ENTER.

NOTE

This book uses Windows conventions. macOS users should substitute the

COMMAND key for CONTROL, and the OPTION key for ALT when

using keyboard shortcuts.

If you look closely at the code in Figure 3-1, you’ll notice that Line 4
looks odd. The second line is not numbered; instead, it’s three dots
precede it:

In [4]: chart = sns.FacetGrid(tips, row=′day′, ...
 ...: chart.map(sns.kdeplot, ′tip′);

Because I pressed CTRL-ENTER after typing Line 4, the line
didn’t execute. As a result, I was able to fully define the chart before
drawing it. Had I entered and executed each of these lines
independently, I would’ve gotten the unacceptable results shown in
Figure 3-7.

Figure 3-7: Executing each line individually causes the chart to plot without data

Additionally, at any point in a multiline block, you can force its
execution (without having to go to the bottom) by using SHIFT-
ENTER.

Multiline editing is a convenient feature that distinguishes Jupyter
Qt console from more basic interpreters. It’s wonderful for short code
snippets, but as your programs become longer, you’ll want the efficiency
and persistence of a true text editor.

Summary

The Jupyter Qt console is a lightweight application for writing code
snippets, quickly exploring datasets and testing ideas, and working
through coding tutorials. For writing large persistent programs, you’ll
want to use other coding tools such as Jupyter Notebook, JupyterLab,
or Spyder.

4
SERIOUS SCRIPTING WITH SPYDER

The Scientific Python Development IDE (Spyder) is an open source

interactive development environment designed by scientists for

scientists. It integrates numerous specialized tools, such as a text editor,
debugger, profiler, linter, and console, into a comprehensive tool for
software development.

Spyder is built for heavy-duty work and consequently has a larger
system footprint and more complicated interface (Figure 4-1) than the
Jupyter Qt console covered in the previous chapter. But that doesn’t
mean you can’t use Spyder for small tasks. It includes both a console, for
executing ad hoc code, and a text editor for writing persistent, easily
editable scripts of any size. We use Spyder in Part II of this book, which
provides a primer to Python programming in the event you need to
learn Python or refresh certain concepts.

Figure 4-1: The Scientific Python Development IDE (Spyder)

In general, if you plan on writing elaborate programs or developing
applications, you’ll want to use Spyder or a similar IDE.

Installing and Launching Spyder with Anaconda
Navigator

Spyder comes preinstalled in your base environment. To install it in a

different environment using Anaconda Navigator, first activate the
environment by selecting its name in the Applications on pull-down
menu near the top of the Home tab (Figure 4-2). In this example, we
are using my_first_env that we created in Chapter 2. Next, click the

Install button on the Spyder app tile to install it. You might need to
scroll down the Home tab to find the tile.

After a few minutes, the Install button should change to a Launch
button. Click it to start Spyder. Remember, if you want to install a
specific version of Spyder, click the gear icon at the upper right of the
tile to see a listing of available version numbers.

For more information on installing Spyder, see the Installation
Guide at https://docs.spyder-ide.org/current/installation.xhtml

Figure 4-2: The Anaconda Navigator Home tab showing the active environment

(my_first_env) and the Spyder tile

Installing and Launching Spyder Using the CLI

https://docs.spyder-ide.org/current/installation.xhtml

Spyder comes preinstalled in your base environment. To install it in a

new environment using conda, first open Anaconda Prompt (in
Windows) or a terminal (in macOS and Linux) and activate the conda
environment. Let’s do this for my_first_env by entering the following:

conda activate my_first_env

Next, use conda to install spyder:

conda install spyder

To install specific versions, such as 5.0.3, enter:

conda install spyder=5.0.3

To launch Spyder from the command line, enter:

spyder

For more information on installing Spyder, see the installation guide
at https://docs.spyder-ide.org/current/installation.xhtml

Launching Spyder from the Start Menu

On most platforms, the official documentation recommends launching
Spyder from Anaconda Navigator. In Windows, however, the
recommended method is to launch Spyder from the Start menu (Figure
4-3).

https://docs.spyder-ide.org/current/installation.xhtml

Figure 4-3: Spyder installations in the Windows Start menu under Anaconda3

There, you should see a listing of all your Spyder installations and
the environments in which they’re loaded, under the Anaconda3 folder.

Configuring the Spyder Interface

Figure 4-4 shows the Spyder interface with the major panes and
toolbars labeled. Note that I’ve changed its appearance from the
“factory settings” view to facilitate this walkthrough and make it easier
to see in a black-and-white book. Don’t be intimidated by all the
controls and panes. Spyder can be as easy or as difficult as you want to
make it.

So that you can more easily follow along, let’s configure your screen
to look closer to that shown in Figure 4-4. First, set the syntax
highlighting theme in the Preferences window by either clicking Tools

▸ Preferences from the top toolbar in Windows and Linux;

Python/Spyder ▸ Preferences on macOS; or the wrench icon on the
main toolbar near the top of the screen (Figure 4-4).

Find the Syntax highlighting theme menu, choose the Spyder
option, and then click Ok. This sets the background to white (use
Spyder Dark if you have sensitive eyes). Note that you have many color
choices for highlighting code, just as you did with the Jupyter Qt
console in the previous chapter.

Figure 4-4: The Spyder interface with key components labeled

Now, let’s move the File Explorer pane to the left side of the screen.

From the toolbar at the top of the interface, click View ▸ Unlock
panes and toolbars. This lets you drag them around just like moving
windows on your desktop. In the upper-right pane, find the gray tab
labeled Files and click it. The upper-right pane should now show a File
Explorer window. Grab the top of it and drag it to the left side of the
interface, as shown in Figure 4-4. You can grab the sides of the panes to
resize them.

From the top toolbar, click Run ▸ Run profiler, followed by

Source ▸ Run code analysis. These should automatically appear as
tabs in the upper-right pane, as in Figure 4-4. Using the profiler, you

can measure your code’s runtime, whereas code analysis checks for style
violations and potential bugs.

To save this or any layout, on the top toolbar choose View ▸
Window layouts ▸ Save current layout and give the layout a unique
name. This becomes the default layout when you start Spyder. To

choose another layout, look for it under View ▸ Window layouts.

As you can see, Spyder is highly configurable. You can undock panes
by dragging them outside of Spyder. You can turn panes and toolbars on

and off using View ▸ Panes and View ▸ Toolbars, respectively. With
time, your interface will evolve and become uniquely yours. Just
remember to save that window layout!

In the sections that follow, we’ll look at how to use Spyder with
different environments, set up Spyder projects, and use Spyder’s panes
and toolbars. Other good references are the Spyder home page
(https://www.spyder-ide.org/), documentation (http://docs.spyder-

ide.org/current/index.xhtml), and frequently asked questions

(https://docs.spyder-ide.org/5/faq.xhtml).

Using Spyder with Environments and Packages

Spyder is a package like any other and must be installed in some conda

environment. This means that you’ll get an error if you try to import
and use a package that’s not in the same environment as Spyder. To
manage this issue, let’s look at the easy but resource-heavy naive

approach and the lighter but more involved modular approach.

The Naive Approach

The simplest solution to using Spyder with environments is to install
Spyder directly into each conda environment and run it from there, as
we did in the previous installation examples. This works with all Spyder
versions and should require no extra configuration after the IDE is

https://www.spyder-ide.org/
http://docs.spyder-ide.org/current/index.xhtml
https://docs.spyder-ide.org/5/faq.xhtml

installed. Unfortunately, it results in multiple installations to manage
and isn’t as flexible or configurable as other alternatives.

For example, suppose that you start a new project with a new
environment in January and install the current version of Spyder into
that environment. Six months later, in July, you start an additional
project and load Spyder into that project’s new environment. This
version of Spyder might possibly be newer than the one you installed in
January. At this point, your pkgs folder has two separate Spyder

installations taking up space. If you don’t need to keep older versions,
one option is to run conda update spyder in your environments, to bring
them all up to the current version, and then run conda clean -all to
remove any versions not linked to an environment.

You may find the naive approach a suitable solution if you don’t plan
to use Spyder a lot, if you won’t be working on a lot of projects at the
same time, or if your system isn’t severely resource constrained. It
certainly fits the science first, programming second mindset. Otherwise,

check out the modular approach in the next section.

The Modular Approach

Another way to work with existing environments is to install Spyder in
one location and then change its default Python interpreter. The
interpreter is the python.exe file that resides in each conda environment

folder. Depending on your system, you might see it called python.exe,

pythonw.exe, python, or pythonw.

With the modular approach, you install Spyder only once and put it
in a dedicated environment (let’s call it spyder_env). This way, you can

update it separately from other packages and avoid conflicts. You can
perform either a minimal install of Spyder or a full install that includes
all of Spyder’s optional dependencies for full functionality.

Let’s use the command line to create the dedicated environment and
perform a full install, adding packages like NumPy, pandas, and so on:

conda create -n spyder_env spyder numpy scipy pandas matplotlib sympy cython

From now on, you will start Spyder from this dedicated
environment.

To allow the Spyder package in spyder_env to import and use

packages in another environment, you must install the lightweight
spyder_kernels package into the other environment, using either

Navigator or conda. For example, we have not installed Spyder in
my_second_env, created in Chapter 2. To use Spyder there, activate that

environment and run the install like this:

conda activate my_second_env
conda install spyder_kernels

Now, you can point your Spyder application, running in spyder_env,

to the interpreter in my_second_env so that it can find and use the

packages installed in my_second_env.

To change the Python interpreter in Spyder, click the name of the
current environment in the Status bar (see Figure 4-4) and then select
Change default environment in Preferences (you can also use the
“wrench” icon in the main toolbar). From the Preferences dialog, select
Python interpreter and then click the radio button next to Use the
following Python interpreter (Figure 4-5). Choose the environment
from the drop-down list or use the text box (or the Select file icon to the
right of the text box) to provide the path to the Python interpreter that
you want to use.

Figure 4-5: Changing the Python interpreter using the Preferences dialog

Click OK to change the interpreter and then click Consoles ▸
Restart kernel on the top toolbar for the changes to take effect. The
environment name on the Status bar should change from spyder_env to

my_second_env (Figure 4-6). Now, Spyder can find and import packages

from the selected environment, no matter the location of the Spyder
package.

Figure 4-6: The Spyder Status bar showing the name of the source environment for the

Python interpreter

Note that if you change the interpreter to an environment that does
not have either the Spyder or spyder-kernels package installed, you’ll
get an error message in the console when you try to restart it. Likewise,
if you try to start a new console, you’ll get the informative message
shown in Figure 4-7.

Figure 4-7: Starting a new console in an environment without the spyder-kernels package

produces a useful error message.

As you can imagine, using the modular approach with multiple
environments can become tedious, and you can lose track of which
environment you’re working in. Some of Spyder’s functionality, like the
Variable Explorer, might not work correctly for specific data types. And
if you need to lock down a specific version of Spyder in a particular
project, you could end up having to run multiple Spyder installations
anyway so that other projects use the most current version.

For more details on the modular approach, see the Spyder
development team’s guide for working with environments and packages
at https://github.com/spyder-ide/spyder/wiki/Working-with-packages-and-

environments-in-Spyder/.

Using Project Files and Folders

Spyder lets you create special project files to store everything you do.

These help you to stay organized and let you reload projects later to
seamlessly continue your work. Projects are managed (opened, closed,
created, and so on) using the Projects menu on Spyder’s top toolbar.

Creating a Project in a New Directory

https://github.com/spyder-ide/spyder/wiki/Working-with-packages-and-environments-in-Spyder/

To create a new project file as a new directory, on the top toolbar, click

Projects ▸ New Project. This opens the Create New Project dialog
shown in Figure 4-8. Name the new project my_spyder_proj, choose a

disk location, and then click Create.

Figure 4-8: The Create New Project dialog

This creates the directory structure shown in Figure 4-9. In addition
to the folders shown, Spyder will create eight files to help it manage
your project.

Figure 4-9: The initial directory structure after creating a new project with Spyder

To keep your project organized, you can add additional folders to
my_spyder_proj. Ideally, these will use standardized names that are clear

and concise so that you can easily work among projects and share them
with others. Let’s do this now as an example. If you already have your
own system, feel free to use that.

In Spyder’s File Explorer pane, right-click my_spyder_proj and then

select New ▸ Folder from the pop-up menu. Add the folders shown
below the existing .spyproject folder, as shown in Figure 4-10.

Figure 4-10: The new project folders displayed in the File Explorer pane

In the naming format shown, code is for your Python code; data is for

data files such as Excel spreadsheets, .csv files, images, and so on;

documents is for text documents, such as reports; output is for things like

figures and tables that your code produces; and misc is for everything

else.

To make your project truly self-contained, I recommend including
your conda environment, with its list of Python packages, in the project
folder. To do this, create the Spyder project in an existing directory, as
described in the next section.

Creating a Project in an Existing Directory

There are times when you’ll want to create your Spyder project in an
existing directory. A good example of this is when you want to include

your conda environment in the project so that this important folder is
bundled together with your other project files, allowing you to easily
share or archive the project.

When stored in a Spyder project, the environment folder should be
named something like env or conda_env. If you’re working multiple

projects, you’ll want to append a project name—abbreviated if long—
such as env_PROJ_NAME. This way, you can identify the correct

Spyder installation when launching from the Windows Start menu.
Recall that creating an environment outside of the default pkgs folder

has some minor drawbacks, so you’ll want to review “Specifying an
Environment’s Location” on page 37 before committing.

To include the conda environment folder in your Spyder project,
we’ll create both the project and environment folder using the
command line. Let’s name the project folder spyder_proj_w_env and use

conda to simultaneously create both folders. In this example, I’m
placing it under my C:\Users\hanna\ folder in Windows, but you can

put it anywhere you want.

NOTE

The subsequent instructions follow the naive approach, described in “Using

Spyder with Environments and Packages,” earlier in this chapter. If you’re

using the modular approach, you need only to install the spyder-kernels

package in your project’s conda environment. After that, start Spyder from

its own dedicated environment and then change its Python interpreter to

your project’s conda environment.

To begin, if Spyder is currently running, use File ▸ Quit on the top
toolbar to exit it. Next, open Anaconda Prompt (in Windows) or a
terminal (in macOS and Linux) and enter the following:

conda create -p C:\Users\hanna\spyder_proj_w_env\conda_env python=3.9 spyder=5.0.3

Remember, -p is short for --prefix, which lets you include a directory
path. We’ve also installed Python and Spyder at the same time,
specifying the version number as recommended. This represents a
minimal installation of Spyder. To install all of Spyder’s optional
dependencies for full functionality, you can append these package names
after Spyder in the previous command (I’ve omitted version numbers for

brevity):

numpy scipy pandas matplotlib sympy cython

Now, activate the new environment and start Spyder by entering the
following two lines, substituting the path to your environment:

conda activate C:\Users\hanna\spyder_proj_w_env\conda_env
spyder

At this point, you can create a new project by selecting Projects ▸
New Project from Spyder’s top toolbar. Only this time, select Existing
directory, leave the project name blank, and set the location to the path
to the new project folder, spyder_proj_w_env, as shown in Figure 4-11.

Figure 4-11: Creating a new Spyder project using an existing directory

You can now add the additional folders for code, data, and so on, as
we did in the previous section. At this point, you’ll have a self-contained
project (Figure 4-12).

Figure 4-12: The new Spyder project with embedded conda environment (conda_env folder)

Again, you can use any file organization system you prefer, but I
would strongly advise against dumping everything straight into the
project folder. This will create a confusing mess, especially with large
projects.

Using the Project Pane

When it comes to working with your project folders, you have several
choices. Figure 4-10 was taken from Spyder’s File Explorer pane. If
you’d rather see just your project folders when using Spyder, open the

Project pane by clicking View ▸ Panes ▸ Project from the top toolbar.
To close the File Explorer pane, use the “hamburger” icon in the upper-

right corner of the pane or use View ▸ Panes from the top toolbar and
then deselect the pane.

NOTE

You can also view your project folder from your operating system’s file

explorer while in Spyder. From either the Project or File Explorer pane,

right-click the project folder and then select Show in folder.

The Help Pane

Spyder’s Help pane is useful whether you’re a beginner or an
experienced programmer. To activate it, click the Help tab along the
bottom of the upper-right pane in Figure 4-4.

When you start Spyder for the first time, you’ll see a message in the
Help pane asking you to read a short introductory tutorial (Figure 4-
13). I highly recommend it, but if you want to wait, you’ll be able to
read it later using the Help menu on the top toolbar.

Figure 4-13: The Help pane at initial startup

In addition to the Introduction tour, the toolbar Help menu provides
access to the longer Spyder tutorial that displays in the Help pane
(Figure 4-14). You can also watch videos, access both the Spyder and
IPython documentation, see a summary of keyboard shortcuts, and
more.

Figure 4-14: The Help menu and the Spyder tutorial displayed in the Help pane

If you have the Help pane open while you code, it can find, render,
and display documentation for any object with a docstring (descriptive

text summary), including modules, classes, functions, and methods. This
lets you access documentation directly from Spyder, without having to
interrupt your workflow and look elsewhere.

The Source menu at the top of the Help pane lets you select
between the Editor and the IPython console (Figure 4-15). Manually
clicking an object, such as the print() function in Figure 4-15, and then
pressing CTRL-I (CMD-I in macOS) will display information on that
item. You can get help by manually entering an object’s name (such as
“print”) in the Object textbox at the top of the pane.

Figure 4-15: Help output for the print() function used in the Editor, invoked using CTRL-I

in Windows

To enable automatic help for both the Editor and Console, first click
the wrench icon on the main toolbar (see Figure 4-4), and then select
Help and click the radio buttons for Editor and IPython console under
Automatic connections. It then can be turned on and off using the
“lock” icon at the top of the Help pane. When on, simply typing a left
parenthesis character (() after a function or method name will show its
associated help document.

You can also access summary help for objects by hovering over them
in the Editor. Clicking the hover pop-up will open the full
documentation in the Help pane. Just be sure that the Source menu is
set to “Editor.”

Finally, the “hamburger” icon at the upper right of the Help pane
lets you toggle features in the display mode, such as rich or plain text,
dock and undock the pane, close the window, and so on.

The IPython Console

The IPython console, located in the lower-right pane in Figure 4-4,
represents a direct connection to Python that lets you run code
interactively. We reviewed most of its functionality in Chapter 3, so I
won’t repeat that here.

With Spyder, you can open multiple consoles, restart the kernel,
clear the namespace, view a history log, undock the window, and
perform similar tasks. You can select some or all these options by
clicking the named tab at the top of the IPython console pane, by using
the “hamburger” icon in the upper-right corner of the pane, or by
clicking Consoles on the top toolbar. You also get full GUI integration
with the enhanced Spyder Debugger and the Variable Explorer, which
we’ll look at in later sections.

Using the Console for Output and Plotting

When you use Spyder’s text editor, any text-based output will appear in
the console. Likewise, any Matplotlib-based graphics will display either
in the console, as you saw in Chapter 3, or in Spyder’s Plots pane. The
Plots pane is the default location, but you can force graphics to display
within the console by opening the Plots pane, clicking the “hamburger”

icon in the upper-right corner, and then deselecting Mute inline
plotting. You can also control the graphics display from the top toolbar

by choosing Tools ▸ Preferences ▸ IPython console ▸ Graphics
and then selecting from the Graphics backend menu (Figure 4-16).

Figure 4-16: The IPython console Graphics dialog

Displaying graphics in the console is a good choice if you want to
save a record of an interactive session. If you need to interact with the
plot, however, such as zooming, configuring subplots, manipulating
files, and saving them using different formats, you’ll want to open it in a
new window. You can do this by adding the magic command %matplotlib
qt after the imports at the top of your program.

NOTE

Some types of graphics can’t be displayed within Spyder but will instead

open in a browser or an external native window. These include web-based

graphics and Turtle and TKinter windows.

Using Kernels with the Console

The Python kernel is a computational engine that executes the code.
You have several options for working with kernels in the console,

including starting new kernels and interrupting running kernels. These
are accessible from either Consoles on the top toolbar, the named
console tab, or the “hamburger” icon on the IPython console pane.

You can also connect to external local and remote kernels (including
those managed by Jupyter Notebook or Qt console) through the
Consoles menu. To learn more, see https://docs.spyder-

ide.org/5/panes/ipythonconsole.xhtml.

Clearing the Namespace

The Python kernel keeps track of objects such as variables and functions
that you use when coding. This collection of objects, defined in the
console at any given time, is called the namespace. To keep the

namespace from becoming cluttered, Spyder allows you to clear it
whenever you want.

Let’s look at an example. The left pane in Figure 4-17 is the text
editor, and the right pane is the console. You can use both to write code.
In the editor, I set x = 5 and then pressed F5 to run the program.
Because I didn’t include a print() function, nothing seems to happen, but
internally, Python has assigned the x variable a value of 5.

Figure 4-17: Both the text editor (left) and console (right) share the same x value

Now I decide to stop and test a coding idea in the console. I want to
use an x value of 10, but I forget to type that in. Instead, I immediately

https://docs.spyder-ide.org/5/panes/ipythonconsole.xhtml

multiply x by 10 and get an output of 50 (Figure 4-17). Normally, this
would raise an error, as I haven’t named x yet, but because I did this
earlier in the editor (in what I think is a separate program), x is already
in the namespace. From my perspective, this result is unexpected.

Debugging this in a tiny snippet is easy, but imagine that you’re
working with longer, more complicated programs. A single occurrence
of the x variable might be buried in 200 lines of code. Even with small
programs, a common error is to run the program, delete something
important, and then not notice the mistake as the program runs
correctly, because the deleted object is resident in memory.

These persistent objects are easily forgotten and can come from
numerous sources including previously executed code, interactive work
in the console, or convenience imports of libraries (Spyder may do some
of those convenience imports automatically). To remove these objects
and clear the namespace without restarting the kernel, you can click
Remove all variables under the Consoles menu on the top toolbar, or
under the Console tab in the Console pane. You can also remove all the
variables by entering the following in the console:

%reset

If you want to view the objects defined in the global namespace of a
session, use:

dir()

Note that even after removing all variables, a dozen or so built-in
objects will remain. The namespace will never be completely empty.

As a rule, whenever you finish coding a program, you should check
that it runs independently by first removing all variables or starting a
new kernel.

The History Pane

The History pane (Figure 4-4) contains a timestamped record of all the
commands and code that you’ve run in a console. You can use this log to

retrace your steps and reproduce your work. It won’t show output or
messages, however, and if you run a program in the Editor pane, it will
show only that the file was run, not what commands were executed. And

no matter how many consoles you have open, there’ll be only one
History pane. All the commands from the various consoles will be listed
in the order in which they were executed, with no indication as to the
source console.

You can copy commands from the History pane and paste them in
both the console and the editor. Currently, only 1,000 lines of history
can be shown in the pane and there’s no way to clear the history. The
list of commands are stored in history.py in the .spyder-py3 directory in

your user home folder (such as C:/Users/<username> on Windows,

/Users/<username> for macOS, and /home/<username> on GNU/Linux).

Special Consoles

In addition to the IPython console, Spyder supports several special

consoles that you can launch from either Consoles on the top toolbar or

by using the “hamburger” icon on the IPython console pane. For
example, the Cython console lets you use Cython (a superset of the
Python language) to speed up your code and call C functions directly
from Python. The SymPy console enables the creation and display of
symbolic math expressions. You can also activate symbolic math usage

through Preferences ▸ IPython console ▸ Advanced Settings ▸
Use symbolic math, assuming you have the SymPy package installed.

For more on this, click Help ▸ Spyder tutorial on the top toolbar.

The Editor Pane

The text editor (Figure 4-4) is the heart and soul of Spyder. Whereas a
console is basically a “scratch pad” designed for throw-away, interactive
scripting with little to no persistence, Spyder’s Editor pane lets you
create programs that you can save and run (or edit) later. You can think
of it as a word processor with coding-friendly features like syntax

highlighting, real-time code and style analysis, on-demand completion,
common keyboard shortcuts, horizontal and vertical splitting, and
more.

Writing a Program Using the Editor

To take the editor for a test drive, use either the command line or
Navigator to activate the spyder_proj_w_env environment that you made

in “Creating a Project in an Existing Directory” earlier in the chapter
To try out plotting in the IDE, install the NumPy and Matplotlib
packages in the active environment using either Navigator or the
command line. In the command line, this looks like the following:

conda install matplotlib numpy -y

The -y (short for --yes) just confirms the installation command at
execution so that you don’t have do it manually during the process. I
show this for your convenience, but it’s always safer to manually confirm
installations and removals. This gives you another opportunity to
confirm that the correct environment is activated and that conda isn’t
having to downgrade an existing package, due to some dependency.

Next, launch Spyder from the same environment, using either the
Windows Start menu (be sure to pick the icon with the proper
environment name), Anaconda Navigator, or the command line. You’re
now ready to write your first program with the editor.

To evaluate Spyder’s plotting capability, let’s use the “Stem Plot”
example from the Matplotlib gallery
(https://matplotlib.org/stable/gallery/index.xhtml). Start a new file by

clicking File ▸ New file on the top toolbar or by using CTRL-N.
You’ll see a new “untitled” tab appear in the Editor pane.

Delete the boilerplate text in the editor pane and type in the code
that follows. Unlike the console, it’s okay to press ENTER to add new
lines. In script mode, your code is executed later using special
commands. If you’re a complete beginner, don’t worry about the code
details; for now, focus on how the Editor pane works:

https://matplotlib.org/stable/gallery/index.xhtml

″″″Stem plot example from matplotlib gallery″″″

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0.1, 2 * np.pi, 41)

y = np.exp(np.sin(x))

plt.stem(x, y)

print(″\nThis is a stem plot.″)

Although it’s possible to run this code now, let’s save it first using

File ▸ Save as on the top toolbar. Name the file stem_plot.py and save it

in the code folder of your Spyder project.

NOTE

The text editor supports many keyboard shortcuts. To see a list, on the top

toolbar, click Help ▸ Shortcuts summary. To search for a specific

shortcut, click Tools ▸ Preferences ▸ Keyboard shortcuts, also on the

top toolbar.

To execute the code, you have several choices. You can use the “play”
arrow on the left side of the Run toolbar (Figure 4-4), click inside the
Editor pane and press CTRL-ENTER, or press F5 (or FN-F5,
depending on your keyboard) from within the Editor pane.

If this is the first time you’ve run a program in Spyder, you’ll be
asked to choose a run configuration (Figure 4-18). Choose the default
selection, Execute in current console. We’ll talk about what this
means in “Setting the Run Configuration” later in the chapter.

Figure 4-18: The Run settings dialog

You should now see the results shown in Figure 4-19.

Figure 4-19: The Spyder interface after executing the stem_plot.py program

One thing to note in Figure 4-19 is that the text output, “This is a
stem plot,” appears in the console window. This is a cleaner outcome
compared to programming in the console, where your code, along with
any output—including error messages—are displayed together in the
same window.

After you run a program in the editor, it’s “known” to the console.
This means that it remembers things like named variables and defined
functions. To see an example, in the IPython console, enter the
following and then press ENTER:

plt.stem(x, y)

This should regenerate the stem plot in Figure 4-19.

Behavior such as this is useful when developing and debugging
complex programs and when exploring large datasets that you don’t
want to load more than once. It can also lead to unexpected results, as
discussed earlier in “Clearing the Namespace” earlier in the chapter.

Now, let’s look at another way to display a plot. In the Editor pane,
add the %matplotlib qt magic command below the imports, as follows:

″″″Stem plot example from matplotlib gallery″″″

import matplotlib.pyplot as plt
import numpy as np
%matplotlib qt
--snip--

Save the file as stem_plot.py and then use CTRL-ENTER to run the

program. In this case, the plot displays in an external window (check
your task bar for an icon if nothing pops up). This Qt window has a
toolbar with more options than are available inline (Figure 4-20).

Figure 4-20: The stem plot displayed in an external Qt window

This is a good time to revisit the global namespace. Close the Qt
window. Now, delete the %matplotlib qt magic command from the file and

save it by pressing CTRL-S. Whether you rerun the file from the editor
or use plt.stem(x, y) in the console as we did earlier, the Qt window pops
up again. Even though you removed it from the file, the old command is
still persistent in memory.

To restore the inline plotting, restart the kernel or run the magic
command %matplotlib inline, either in the console or through the editor.

Defining Code Cells

In the previous example, you typed a complete program into the Editor
pane and then ran it. You can also run it one line at a time, or run a
block of connected lines, referred to as a “code cell.”

To look at an example, create a new file, only this time, use the
rectangular “New file” icon on the left side of the Files toolbar (Figure
4-4). Name the file temperature_converter.py and save it in the code folder.

In this example, assume that you’re always having to convert
temperature measurements from one scale to another and you want to
put several conversion equations in one file, for convenience. You don’t
want to run the whole program every time, because you’re normally
performing just one conversion, such as Fahrenheit to Celsius, or
Celsius to Kelvin. In this case, code cells are a handy solution.

Enter the following code into the new file and save it. Use #%% to
separate the code into discrete cells:

#%% Convert Temperature: Fahrenheit to Celsius
degrees_f = 0
degrees_c = (degrees_f - 32) * 5 / 9
print(f″{degrees_f} F = {degrees_c} C″)

#%% Convert Temperature: Celsius to Fahrenheit
degrees_c = -40
degrees_f = (degrees_c * 9 / 5) + 32
print(f″{degrees_c} C = {degrees_f} F″)

#%% Convert Temperature Celsius to Kelvin
degrees_c = 0
degrees_k = degrees_c + 273.15
print(f″{degrees_c} C = {degrees_k} K″)

Adding a description to the right of the separator not only
documents what the cell does, it names that cell in the Outline pane. To

activate this pane, go to the top toolbar and click View ▸ Panes ▸
Outline. Figure 4-21 shows the Editor and Outline panes together.

Figure 4-21: The Editor pane (left) and Outline pane (right) for the temperature_converter.py

program

In the Editor pane in Figure 4-21, notice how the horizontal lines
divide the script into cells starting with the #%% separators. In the
Outline pane, the descriptions of the cells appear in order, from top to
bottom. If you click a description, the corresponding cell in the Editor
pane is highlighted and activated. You can also highlight a cell by
clicking in it in the text editor.

To see the options for running cells, hover your cursor over the icons
on the Run toolbar (Figure 4-4). This will also reveal the keyboard
shortcuts. To run just the middle cell that converts Celsius to
Fahrenheit, click in the cell, and then press CTRL-ENTER or click the
Run current cell icon from the toolbar. You can also run a selection of
code or a single line using an icon or the F9 key.

The ability to run selected cells or single lines is useful when
designing and debugging programs. It’s also handy for, say, changing a
plot’s parameters and evaluating the results without reloading all the
input data. You can also use this to update part of a program without

rerunning all the code, but keep in mind that the console will
“remember” only the last thing that was run. If this becomes confusing,
you’ll want to refresh the console by restarting the kernel or removing
all variables from the namespace.

Setting the Run Configuration

When you run a program in the editor for the first time, either using

Run ▸ Run from the toolbar or by pressing F5, a dialog will open and
ask you to choose the method for executing the file (see Figure 4-18).
You’ll have three choices:

Execute in current console (the default)

Execute in dedicated console

Execute in an external system console

We’ll look at the first two in more detail next, but the
recommendation for beginners is to use the default option, Execute in
current console, and then verify that completed code executes
independently. This requires clearing the namespace by removing all
variables or restarting the kernel prior to checking the program.

Don’t worry about getting locked into a decision. You can change the

run configuration at any time by selecting Run ▸ Configuration per
file from the top toolbar.

Executing in the Current Console

When a file is executed in the current console, you can continue to
interact with the console after the file runs. This lets you inspect and
interact with any objects created during execution. This is a useful
feature for incremental coding, testing, and debugging. As you saw in
“Writing a Program Using the Editor,” it lets you call commands and
functions from the console without executing the file again.

This comes at a price, however. Objects can persist in the global
namespace from before execution of the code (see “Clearing the

Namespace” on page 76). One way to ensure that your code does not
depend on existing but transitory objects in the namespace is to execute
the file in a new console, as described next.

Executing in a Dedicated Console

Choosing the Execute in a dedicated console option means that a
new IPython console is opened every time you execute code in the
editor. With this option, you can be sure that there are no persistent
global objects polluting the namespace, such as undefined functions,
unnamed variables, or unimported packages. It’s a safe option, but it
provides a bit less flexibility for interacting with your code. It can also
generate a lot of console tabs to manage. So, if you’re aware of
namespace issues, the Executing in the current console option is
preferred.

Autocompleting Text

To save you keystrokes, both the text editor and console support the use
of autocompletion using the TAB key. For example, enter the following

long variable name in the editor:

supercalifragilisticexpialidocious = 'wonderful'

Now, slowly start typing it again and watch what happens.

When you start typing the name of an object such as a command,
function, variable, class, and so on, the editor will present you with a list
of objects that start with those letters (Figure 4-22). In the console, you
must press TAB to display the list.

Figure 4-22: Using the Autocomplete functionality

If the name is unique, or at the top of the list, you can press the TAB
or ENTER key immediately and Spyder will fill out the rest of the
name. If there are multiple choices, you can either keep typing until
only the name you want remains and then press TAB or ENTER; use
the arrow keys to select the correct name and press TAB or ENTER; or
double-click the correct name with the mouse. You can change the
number of characters that you need to type to see the list of suggested

completions by going to Tools ▸ Preferences ▸ Completion and
Linting on the top toolbar.

Autocompletion is a great feature because it supports writing
“Pythonic” code that’s easy to read. With autocompletion, you can use
highly descriptive variable and function names, like
photoshpere_temperature_in_celsius or step_2_apply_Gaussian_blur() without
incurring repetitive strain injuries.

The Code Analysis Pane

Python has certain guidelines for writing code that the community is
expected to follow. The goal is to produce Pythonic code that others

can easily pickup and understand. We examine these guidelines later in
Part II. For now, know that linters are tools that review your code and

provide feedback on where you might have violated a guideline. Spyder
uses the best-in-class Pylint linter in its Code Analysis pane.

Code analysis will help you to improve your code by detecting style
issues, bad practices, and potential bugs. You should not consider a
program complete—or ready to post on an online help site—until
you’ve run it through a linter.

Let’s look at how this works. Use Projects ▸ Open Project from
the top toolbar to open the spyder_proj_w_env project that you made

earlier in “Creating a Project in an Existing Directory.” Then, open the

stem_plot.py file in the editor using File ▸ Open from the top toolbar.

We made this file previously in “Writing a Program Using the Editor.”
Next, open the Code Analysis pane by clicking in the Editor pane and

pressing F8, or by using Source ▸ Run Code Analysis on the top
toolbar. You should get the results shown in Figure 4-23.

Figure 4-23: The Editor pane (left) and Code Analysis pane (right) for the stem_plot.py

program

At the top of the Code Analysis pane on the right, you can see that
the code was given a high evaluation score of 8.33 out of 10. The only
violation was for having trailing newlines (blank lines) at the end of the
program.

You can customize the code analysis by clicking Tools ▸
Preferences and then selecting from the General, Linting, Code style

and formatting, and Docstring style tabs. There’s lots to choose from,
including ignoring certain errors and warnings, changing the tool used
to format code, picking the convention used to lint docstrings,
underlining errors and warnings, and more.

You can also suppress messages by adding specific comments to your
code. For example, an expectation is that most variables in the global
space represent constants and should be named using all caps. In short

programs, you might choose to ignore this by inserting the following
comment at the top of your file:

pylint: disable=invalid-name

To find the proper message name, such as “trailing-newlines,” check
the results in the Code Analysis pane (see Figure 4-23).

For more on code analysis, see the “Panes in Depth” section of the
Spyder documentation (https://docs.spyder-ide.org/). For more on the

Python style guide, see https://pep8.org/.

The Variable Explorer Pane

The Variable Explorer pane lets you view and edit variables generated
during the execution of a program in the text editor, or those entered
directly in the IPython console. These are the namespace contents of
the current IPython console session, and you can use the Variable
Explorer to inspect, add, remove, and edit their values through a variety
of GUI-based editors.

Let’s try it out. First, on the top toolbar, click Consoles ▸ Restart
kernel to start a new IPython console session. This will delete any old
variables that might be persistent in memory. Now, in the upper-right
pane, click the Variable Explorer tab or, on the top toolbar, click View

▸ Panes ▸ Variable Explorer.

In the IPython console, enter the following:

https://docs.spyder-ide.org/
https://pep8.org/

In [1]: import numpy as np

In [2]: an_array = np.random.randn(10, 5)

In [3]: a_list = ['talc', 'gypsum', 'calcite']

In [4]: a_dictionary = {'gold': 'Au', 'silver': 'Ag'}

In [5]: a_sum = 1 + 2 + 3

In [6]: a_float = 10 / 3

In [7]: a_string = ″latchstring″

Each time you press ENTER, the Variable Explorer pane should
update until it looks like Figure 4-24.

Figure 4-24: The Variable Explorer pane

The pane shows you the name of the variable; its type, such as an
integer, string, dictionary, and so on; its size; and its value. Right-
clicking objects in the Variable Explorer displays options to plot and
analyze these further. The pane supports editing lists, strings,
dictionaries, NumPy arrays, pandas DataFrames, pandas Series, Pillow
images, and more, letting you plot and visualize them with one click.
For example, although the 10-row-by-5-column NumPy array is too
large to show in the Value column, if you double-click it, an Object

Viewer window appears that lets you view the array and manipulate its
contents (Figure 4-25).

Figure 4-25: Object Viewer display of the an_array object

Likewise, double-clicking anywhere within the list object’s row in the
Variable Explorer pane will launch an Object Viewer (Figure 4-26). By
right-clicking in a row in the Object Viewer, you can perform
operations such as inserting a row and adding a new item, like
“fluorite.”

If you use the a_list variable again in the current session, it will
contain the new item, “fluorite.” You can also use the Variable
Explorer’s toolbar to save the current session’s data as a .spydata file,

which you can load later to recover all the variables stored. However, be

aware that changing the value of an object in an Object Viewer doesn’t
alter your code. If you rerun the code that generated the a_list variable,
whether from a file or the console, it won’t contain “fluorite.”

Figure 4-26: Object Viewer displaying a list object

You can filter the items in the Variable Explorer by clicking the
“hamburger” icon at the upper right of the pane. If an item can be
plotted, you can generate a plot of its values, appropriate to its data
type, by right-clicking the object. For example, right-click the an_array
object and then choose Show image. This will produce a color heatmap
of the array (Figure 4-27).

Figure 4-27: A heatmap of the an_array object

One thing that Variable Explorer won’t do is let you see “local”
variables defined within functions (we look at functions in Chapter 11).
If you define a function using the following code, you won’t be able to
see the var1 and var2 variables in the pane.

In [1]: def a_function():
 ...: var1 = 42
 ...: var2 = ″spam″
 ...:

The Variable Explorer lets you keep track of your program’s global
variables. It helps you to develop and test programs by permitting the
inspection and editing of variables in a friendly GUI format. To read
more about the options available, see the Spyder documentation at
https://docs.spyder-ide.org/5/panes/variableexplorer.xhtml.

The Profiler Pane

The Profiler helps you to optimize your code by measuring the runtime
and number of calls for every function or method called in a file. You

https://docs.spyder-ide.org/5/panes/variableexplorer.xhtml

can use it to identify bottlenecks and quantitatively measure
performance improvements after you make changes.

Let’s look at an example of how this works. On the top toolbar, open

a new file in the editor by clicking File ▸ New file. Save this file in the
code folder of your spyder_proj_w_env project (or anywhere else you

want) as hoot.py. Now, enter the following code:

def search_list(my_iterable):
 if 'hoot' in my_iterable:
 print(″Hooty hoot!″)

def search_set(my_iterable):
 if 'hoot' in my_iterable:
 print(″Hooty hoot!″)

my_list = [i for i in range(1000)]
my_list[998] = 'hoot'

my_set = set(my_list)

search_list(my_list)
search_set(my_set)

In this example, we defined two functions, search_list and search_set,
that are identical in all but name. We’re going to use the Profiler to
prove that it’s a lot faster to search for an item in a Python set versus a

Python list, so we need to distinguish between the functions (we look at

sets and lists in more detail in Chapter 9).

We next created a list with the numbers 0 to 999 (Python starts
counting at 0, not 1) and replaced the next-to-last item (index 998) with
“hoot.” We then made a set from this list, named my_set. Now we call
each function and pass them either the list or set, as appropriate (pass

means that we enter the name of our list or set in the function’s
parentheses). When each function reaches the “hoot” item in the list or
set, it immediately prints “Hooty hoot!” in the console.

Run the file by clicking in the Editor pane and pressing F5. You
should see Hooty hoot! display twice in the IPython console.

To see how long each function took to run, click Run ▸ Run
profiler from the top toolbar. This launches the Profiler pane and

displays the run statistics (Figure 4-28).

Figure 4-28: The Profiler pane

The Total Time column shows the time taken by the specified item
and every function called by it (indented underneath it). The Local
Time column counts only the time spent in a particular callable object’s
own scope. Based on the Local Time, the list object took 14.8
microseconds to run versus only 400 nanoseconds for the set. Because
the two functions were identical except for their inputs, we can surmise
that a hashable set is a better data type than a list for doing membership
searches.

Note that you can select files by using the text box at the top of the
Profiler pane and run them with the green “play” arrow to the right of
the box (Figure 4-28). Other options include showing the program’s
output, saving the profiling data, loading profiling data for comparison,
and clearing comparisons.

To learn more about the Profiler, including the option to measure
the memory usage of your code, see https://docs.spyder-

ide.org/5/panes/profiler.xhtml.

The Debugger Pane

Debugging is the process of detecting and removing errors (“bugs”) in
code that can cause it to crash, return incorrect results, or otherwise

https://docs.spyder-ide.org/5/panes/profiler.xhtml

behave unexpectedly. Python automatically produces error messages
that can help you determine what part of your code is failing.

For a more sophisticated approach, Spyder integrates the enhanced
ipdb debugger that’s part of the Python standard library. With the
debugger tool, you can walk through your code line by line checking for
problems.

Going into the details of the debugger is beyond the scope of this
book, and you’ll probably write a lot of code without needing it. If
you’re curious, however, you can get a good overview at
https://docs.spyder-ide.org/5/panes/debugging.xhtml, and there are many

online tutorials and videos for the debugger that use real-life coding
examples.

Summary

Spyder is powerful enough for full-time developers, so there’s a lot here
we haven’t covered. But despite its sophistication, it’s easy for a beginner
to pick up and use, and its editor and IPython console are great if you’re
looking only to knock off short scripts. Although much of your scientific
programming will probably be performed in Jupyter Notebook, covered
next, there are many coding tasks for which Spyder is more appropriate,
and you’ll be glad to have it in your repertoire.

If you’re new to Python and want to start learning the language right
now, you can skip ahead to Part II, “A Python Primer.” When you
finish, don’t forget to circle back to Part I and check out the chapters on
Jupyter Notebook and JupyterLab (Chapters 5 and 6).

https://docs.spyder-ide.org/5/panes/debugging.xhtml

5
JUPYTER NOTEBOOK: AN INTERACTIVE JOURNAL FOR

COMPUTATIONAL RESEARCH

The classic Jupyter Notebook is the world’s most popular tool for data science.
As a savable web-based application, Notebook lets you capture the entire
computational process, from loading and exploring data to developing and
executing code, and even documenting and presenting the results. It’s no wonder
Notebook has become the default environment for code-based research.

To paraphrase James Bednar, director of custom services at Anaconda,
notebooks tell stories. They’re designed to capture and convey a code-based

narrative that has a linear flow and is composed of small, human-digestible steps.
They can include documentation that concisely and precisely explains what’s
going on. This helps scientists, researchers, developers, and students generate
reproducible code-based research.

Like a personal science journal, a Jupyter notebook can serve as a complete
record of a computational session. To make your work more understandable and
repeatable, you can interleave inputs and outputs with narrative text,
mathematical formulas, images, links, and more. You can also share your
notebooks directly or turn them into interactive slideshows or dashboards.

In this chapter, we delve into the details of Jupyter Notebook using the classic
version. In the next chapter, we’ll look at the newer implementation in
JupyterLab, the next-generation interface for Project Jupyter. Except for some
slight rearrangement of the menus, the newer version works the same and uses
the same file formats as classic Notebook. In fact, the two can be run side by side

on the same computer, and JupyterLab even comes with a button for launching
the classic version.

NOTE

In the pages that follow, Jupyter Notebook or Notebook (uppercase “N”) refers to

the application, whereas Jupyter notebook or notebook (lowercase “n”) refers to

an actual notebook file generated by the application. These files have a .ipynb

extension, which is short for “IPython notebook.”

To supplement this chapter, you can find a quick start guide at https://jupyter-

notebook-beginner-guide.readthedocs.io/en/latest/ and the full documentation at

https://jupyter-notebook.readthedocs.io/en/stable/notebook.xhtml.

Installing Jupyter Notebook

Jupyter Notebook is an open source package that comes preinstalled in
Anaconda’s base environment. However, it’s not a good idea to work on projects

in base, as that can get messy. To keep your project packages organized, safe, and

sharable, they need to be in dedicated conda environments.

To use Jupyter Notebook with conda environments, you have two main
options. You can install Jupyter Notebook directly in each conda environment,
or you can link each environment to the Notebook installation in the base

environment. To mimic what we did with Spyder in Chapter 4, let’s call the first
option the naive approach and the second the modular approach. Although the

modular approach is generally recommended, if a project needs to lock down a
specific version of Notebook, you’ll need to use the naive approach.

The Naive Approach

The naive approach is to install Jupyter Notebook directly in each of your conda
environments. Notebook can then import and use any packages installed in the
same environment.

This is the simplest approach, but it can become resource intensive over time
as your pkgs folder becomes populated with different versions of Notebook. You

might also struggle to keep all of the installations up to date and might not be
able to see or switch to other environments from within Notebook.

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/
https://jupyter-notebook.readthedocs.io/en/stable/notebook.xhtml

Installing and Launching Jupyter Notebook Using Anaconda Navigator

To install Jupyter Notebook in a new environment using Anaconda Navigator,
first launch Navigator using the Start menu in Windows, or Launchpad in
macOS, or by entering anaconda-navigator in a terminal in Linux. Then, in the
Applications on pull-down menu near the top of the Home tab (Figure 5-1),
activate the environment by selecting its name. In this example, we’re using
my_first_env, created in Chapter 2. If you skipped this step in Chapter 2, see

“Creating a New Environment” on page 36.

Figure 5-1: The Anaconda Navigator Home tab showing the active environment (my_first_env) and the

Notebook tile

Next, find the Jupyter Notebook app tile and then click the Install button.
You might need to scroll down the Home tab to find the tile. This will install the
most current version of Notebook available from the top channel in your
Channels listing, located near the top of the Home tab. If you want to install a
specific version of Jupyter Notebook, click the “gear” icon at the upper right of
the Notebook tile to see a listing of available version numbers (see Figure 5-1).

After a few moments, the Install button should change to a Launch button.
This button starts a local web server on your computer that displays the Jupyter
dashboard. Because it’s running locally, you don’t need an active internet
connection. You’ll need to leave Navigator open, however, because it’s running
the local server for Notebook that lets you interact with your web browser.

Installing and Launching Jupyter Notebook Using the CLI

To install Jupyter Notebook in a new environment using conda, first open
Anaconda Prompt (in Windows) or a terminal (in macOS and Linux) and
activate the conda environment. Let’s do this for my_second_env that we created

in Chapter 2.

If you skipped this step in Chapter 2, create the environment using the
following:

conda create --name my_second_env

Now, activate the environment by entering:

conda activate my_second_env

Next, use conda to install Notebook:

conda install notebook

To install a specific version, such as 6.4.1, you would use this:

conda install notebook=6.4.1

To launch Notebook, enter:

jupyter notebook

This starts a local web server on your computer that displays the Jupyter
dashboard. Because it’s running locally, you don’t need an active internet
connection. You’ll need to leave your Prompt window or terminal open,
however, because it’s running the local server for Notebook that lets you interact
with your web browser.

NOTE

There are conda packages named notebook and jupyter. The notebook package is

the classic Jupyter Notebook application. The larger jupyter package bundles Jupyter

Notebook, Qt console, and IPython kernel.

The Modular Approach

The modular approach links each conda environment back to the Notebook
package that was loaded in the base environment when you installed Anaconda.

This approach is resource efficient, lets you easily keep the Notebook package
up to date, and lets you see and choose among different environments from the
same Notebook.

You can use the modular approach with either Navigator or the CLI. For
simplicity, let’s use the CLI. Open Anaconda Prompt (in Windows) or a terminal
(in macOS or Linux) and enter the following to create a new environment
named my_jupe_env:

conda create --name my_jupe_env

Enter y when prompted to accept the installation. Next, activate the new
environment:

conda activate my_jupe_env

To link this environment with the Jupyter Notebook installation in the base

environment, use the following:

conda install ipykernel

Because we’re using the ipykernel package, we don’t need to explicitly install

Python in the environment. However, if you do need to use a specific version of
Python in your project, you’ll need to install it in the environment.

Now, deactivate my_jupe_env, which returns you to base, and then install the

nb_conda_kernels package (you’ll need to do this only once):

conda deactivate
conda install nb_conda_kernels

The nb_conda_kernels package enables a Jupyter instance in an environment
to automatically recognize any other environment that has the ipykernel package
installed. It’s this combination of nb_conda_kernels in the base environment and

ipykernel in other conda environments that allows you to use a single installation
of Jupyter Notebook.

To start Notebook from base you’ll need to enter this:

jupyter notebook

This starts a local web server on your computer that displays the Jupyter
dashboard. Because it’s running locally, you don’t need an active internet
connection. You’ll need to leave your Prompt window or terminal open,
however, because it’s running the local server for Notebook that lets you interact
with your web browser.

Your First Jupyter Notebook

To begin, let’s work through an example. In this case, we’ll use a notebook to
summarize the eruption cycle of the famous Old Faithful geyser in Yellowstone
National Park. We’ll load some data, prepare it, plot it, and then add a
decorative image.

If you launched Notebook in the previous sections, your browser opened a
dashboard page like the one in Figure 5-2. Shut it down now using the Quit
button in the upper-right corner of the page, and then close the browser tab. If

Navigator is open, close it by selecting File ▸ Quit.

Figure 5-2: The Jupyter dashboard appears in your browser when you start Jupyter Notebook.

Going forward, we’ll use the modular approach described in the previous
section, so be sure to install the nb_conda_kernels package in your base

environment if you haven’t done so already. To do this with the CLI, open
Anaconda Prompt (Windows) or a terminal (macOS or Linux) and then activate
base:

conda activate base

Then enter the following:

conda install nb_conda_kernels

The notebook package ships with Anaconda, so it’s already in the base

environment.

Creating Dedicated Project Folders

Jupyter notebooks are saved to the folder from which you started the application.
This means notebooks will tend to accumulate in your home or user directory.
In addition, Anaconda uses dedicated folders to keep track of your installed
packages and conda environments (see Chapter 2). Although Anaconda is
designed to work smoothly with this structure and help you navigate it, not
everyone wants their project files scattered around their directory tree. As we
discussed in the previous chapter, there are multiple benefits to keeping all your
project files together in a single folder.

For this project, let’s store the conda environment and Jupyter notebooks in a
folder named my_nb_proj, short for “my notebook project.” I’ll create this in my

user directory in Windows, and I suggest that you use a similar location on your
system. Although you can do this through Anaconda Navigator, the command
line is more succinct, so we’ll use that going forward.

To make the directories for the project, open Anaconda Prompt (in Windows)
or a terminal (in macOS or Linux) and enter the following (using your own
directory path):

mkdir C:\Users\hanna\my_nb_proj
mkdir C:\Users\hanna\my_nb_proj\notebooks
mkdir C:\Users\hanna\my_nb_proj\data

This makes a my_nb_proj directory with notebooks and data subdirectories.

Next, create a conda environment named my_nb_proj_env in the project

directory, activate it, and install some libraries (substitute your own path where
needed):

conda create --prefix C:\Users\hanna\my_nb_proj\my_nb_proj_env
conda activate C:\Users\hanna\my_nb_proj\my_nb_proj_env
conda install ipykernel pandas seaborn

As described previously, the ipykernel package lets you use the Jupyter
Notebook application in the base environment. The pandas package is Python’s

primary data analysis library, and seaborn is a plotting library that includes some
useful datasets. (We look at these libraries in more detail later in the book.)

At this point, your project directory structure should look like Figure 5-3. Of
course, with a real project, you might include additional folders for specific types
of data, non-notebook scripts, miscellaneous items, and more.

Figure 5-3: Directory structure for my_nb_proj

Jupyter Notebook likes to save to its current directory. The first time you
save a file, it’s easiest if you start Notebook from within that folder. Afterward,
you can launch Notebook from anywhere and still access the file. To launch
Notebook in your new notebooks folder, first activate the base environment (where

Jupyter Notebook is installed), and then use the cd command to change
directories:

conda activate base
cd C:\Users\hanna\my_nb_proj\notebooks

Because this folder is already in my user directory, I could have also used the
relative path:

cd my_nb_proj\notebooks

To start Notebook, enter:

jupyter notebook

You should now see the Jupyter dashboard in your browser.

Navigating the Notebook Dashboard and User Interface

The Jupyter Notebook dashboard, also called the Home page, opens with an

intuitive file explorer tab (see Figure 5-4). This tab displays notebook documents
and other files in the directory from which you launched Notebook, known as
the current directory. When you click a file or folder, you’re presented with

standard options like duplicating, renaming, deleting, and so on. The dashboard
also helps you to create new notebooks, exit the application, and manage
currently running Jupyter processes and clusters used for parallel processing.

Because we launched Notebook from the empty notebooks folder, no files or

folders are visible. Let’s fix that by creating a new notebook. Start by clicking the
New button at the upper right of the Files tab to open a drop-down menu, as
shown in Figure 5-4.

Figure 5-4: Choosing a kernel from the Jupyter dashboard New menu

The menu offers you a choice of kernels in the various conda environments
you’ve created, including ones not in the default envs folder. It’s able to do this

thanks to the nb_conda_kernels package installed in base and the ipykernel

package installed in each environment. At the bottom of the list, you have other
choices including creating a new text file, folder, or terminal.

To activate the kernel in your my_nb_proj environment, select Python [conda

env:my_nb_proj_env] from the list. This opens the notebook’s user interface
(UI). The notebook UI is where you interactively build your notebook
document. Its primary components are the menu bar, toolbar, and cells (Figure
5-5). I encourage you to take the quick interactive tour of these components by

clicking Help ▸ User Interface Tour in the menu.

Figure 5-5: The notebook user interface

At the right side of the menu bar, you’ll see the active kernel and conda
environment (Python[conda env:my_nb_proj_env]). If this is not the name you

expect, you’re using packages from a different environment, which might not
contain packages you need or their correct versions.

The modular nature of Jupyter Notebook is the key to its success. It’s built of
blocks, called cells, that can contain either code or “text” (such as headers,

bulleted lists, images, and hyperlinks). Code cells can be run independently or all
at once, and each has its own output area. This lets you break your
computational problem into pieces and organize related ideas into cells. When
you get a cell (or cells) working properly, you can move on. This is convenient
for interactive exploration and is especially useful for long-running processes
that you need to run only once per session.

Naming a Notebook

Let’s learn about the UI components and workflow by actively creating a
notebook. First, give your new notebook a name by clicking Untitled, located
just above the menu bar, entering geyser in the text box, and then clicking
Rename (Figure 5-6).

Figure 5-6: Renaming a notebook

At this point, you should see a new file and folder appear in your project’s
notebooks folder. The geyser.ipynb file is the notebook document. This is just a

plaintext JSON file saved with a .ipynb extension. The .ipynb_checkpoints folder

contains the geyser-checkpoint.ipynb file, which lets you restore your notebook

back to a previous version.

You’ll also see the notebook file appear in your dashboard (Figure 5-7). If you
click the box next to its name, you’ll launch a menu bar with options for working
with the file, such as moving, renaming, and deleting it (the “trash can” icon).

Figure 5-7: The Jupyter dashboard with the file actions menu active

To open the geyser notebook in the future, just click the filename in the
dashboard. The “book” icon will turn green to indicate an actively running

notebook, and you can use the drop-down menu just above the filename to filter
all running notebooks. Note that you can’t access notebook files that are outside
(above) the root of the directory tree shown in the dashboard. The root
directory is the directory from which you started Notebook.

Adding Text with a Markdown Cell

Now let’s provide a descriptive header for the notebook, to let people know what
it’s about and to cite the source of the geyser data. Click in the first cell, labeled
In []: on the left side. Next, on the toolbar, change the cell type from Code to
Markdown, as depicted in Figure 5-8.

Figure 5-8: Changing the cell type using the Toolbar

Markdown (https://daringfireball.net/projects/markdown/), a superset of the

HTML markup language, lets you add explanatory text to your notebook. You
can style this text in multiple ways, including text size, bold, italics, and strike-
through. You can change colors, use style sheets, make lists, and add hyperlinks.
You can even drag and drop images and videos into a Markdown cell.

Some commonly used Markdown styles are listed in Table 5-1. Insert your
own text for words in ALL-CAPS. To see additional styles, search for
“Markdown cells” at https://jupyter-notebook.readthedocs.io/.

Table 5-1: Common Markdown Styles

Style syntax Description

YOUR TEXT Heading size; # (largest) → ##### (smallest)

YOUR TEXT Makes text bold

YOUR TEXT Makes text italic

~~YOUR TEXT~~ Strikes through text

https://daringfireball.net/projects/markdown/
https://jupyter-notebook.readthedocs.io/

Style syntax Description

- YOUR TEXT Creates a bulleted list (also accepts + and *)

YOUR

TEXT

Changes text to the specified color (in
JupyterLab)

[Text](URL) Inserts a hyperlink to a website URL

![title](FILENAME)

![title](URL)

Inserts an image using a filename or URL
address. You can also drag and drop an image
into the cell.

NOTE

The Heading choice in the style menu has been deprecated and no longer works.

Notebook will direct you to the Markdown option for creating headers.

To make a header for your notebook, click in the cell and enter the following:

Old Faithful geyser eruption dataset
(Weisberg (2005) in *Applied Linear Regression*)

Be sure to include a space after the hash marks. Your cell should look like
Figure 5-9.

Figure 5-9: Creating a header using a Markdown cell

To run the cell, click the Run button on the toolbar or, on your keyboard,
press SHIFT-ENTER. Your cell should look like Figure 5-10. Notice that
“Applied Linear Regression” is in italics. To go back and edit the cell again, just
double-click it.

Figure 5-10: The formatted header

NOTE

SHIFT-ENTER executes a cell and advances the cursor to the next cell, creating a

new cell if necessary. CTRL-ENTER executes the current cell but does not advance to

the next one.

Adding Code and Making Plots with a Code Cell

Notebook supports in-browser code editing, and it includes features found in
Spyder, like automatic syntax highlighting, indentation, and tab
completion/introspection. In other words, you can execute code from the
browser, and see the output of the computations, including plots and images, in
dedicated output cells within the notebook.

To begin coding, click in the new code cell and enter the following:

%matplotlib inline
import pandas as pd
import seaborn as sns

df = sns.load_dataset('geyser') # Times are in minutes.
display(df.head())
df = df.rename(columns={'kind': 'eruption_cycle'})

This time, use CTRL-ENTER to run the cell. You may have noticed that
this is the opposite of the Jupyter Qt console, in which you execute code by
pressing ENTER and add multiple lines without execution using CTRL-
ENTER.

To add another cell in a different way, from the menu bar click Insert ▸
Insert Cell Below. Click in this new cell and enter and run the following code

to make a “violin plot”:

sns.violinplot(x=df.eruption_cycle, y=df.duration, inner=None);

The semicolon at the end of the line prevents Notebook from displaying the
textural information about the plot object. Your notebook should now look like

Figure 5-11.

Figure 5-11: The geyser.ipynb notebook with inline plot

Something important just happened. In the first cell, you imported packages,
loaded the seaborn “geysers” dataset as a pandas DataFrame, peeked at the first

five lines of the DataFrame (df.head()), and then changed the name of one of the
columns to something more meaningful. In the second cell, you plotted the
DataFrame.

The key here is that you isolated the (potentially) time-consuming steps of
data loading and preparation in their own cell. If you import packages and load
the dataset in the first cell (labeled In [1]:), you’re then free to “play” with the
data in subsequent cells. There’s no reason to wait for data to load with each
execution. You saw a similar cellular approach in Spyder (see “Defining Code
Cells” on page 81).

Another thing worth noting is that you used a magic command to make
Matplotlib plot inside the notebook (you didn’t need to explicitly import the

Matplotlib library, because it’s a dependency of seaborn). You can also add simple
interactivity to the plot by using %matplotlib notebook, though this can slow down
rendering. Magic commands were first introduced in Chapter 3. To see the list
of magics, including cell magics, run %lsmagic in a cell. Cell magics are preceded

by two percent signs (%%).

The plot itself shows that Old Faithful has a short and long eruption cycle.
The longer you wait, the longer the eruption tends to last, so as a tourist, your
patience is rewarded.

Working with Output Cells

By default, Notebook shows only the output of the last command in a code cell.
Depending on the circumstance, you can get around this by using either the
print() or display() functions. In the previous section, we used display() to show
the head (first few rows) of the DataFrame. It also works to put multiple
commands, separated by commas, on the same line. Alternatively, you can
import the IPython InteractiveShell at the start of your notebook and set its
interactivity option to “all”:

from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = ″all″

Besides all, other InteractiveShell options include none, last, last_expr, and
last_expr_or_assign (where “expr” stands for “expression” and “assign” stands for
“assignment”).

For more control over output cells, use the Cell menu (Figure 5-12). The
Current Outputs and All Output options let you hide output, clear output, or
toggle scrolling for a single cell or the entire notebook, respectively.

Figure 5-12: The Toggle Scrolling option adds a scrollbar to an output cell

The scrolling option is helpful if you’re displaying an object that’s too large
for the output cell. Figure 5-12 displays the full DataFrame in the geyser
notebook (using display(df)), and toggling on the scrollbar allows you to view the
last lines of the DataFrame.

Adding an Image with a Markdown Cell

To finish off the notebook, let’s add Jim Peaco’s ariel view of Old Faithful,
available from the National Park Service image gallery. Insert a new cell and
change its type to Markdown. Enter and run the following code, which
references the image’s web address:

![title](https://www.nps.gov/npgallery/GetAsset/393757C9-1DD8
-B71B-0BEF06BE19C76D4D/proxy/hires)

Assuming that you have an active internet connection, this produces the
output in Figure 5-13.

Figure 5-13: Bottom half of notebook with National Park Service image of Old Faithful

If you want control over the size of the image, use this command:

<img src=https://www.nps.gov/npgallery/GetAsset/393757C9-1DD8-B71B
-0BEF06BE19C76D4D/proxy/hires width=″250″>

If you don’t want to worry about broken links, unreliable internet
connections, or keeping track of external files, you can embed images in

notebooks using Edit ▸ Insert Image from the menu bar, by pasting from your
clipboard, or by dragging and dropping the image into the Markdown cell.
Embedded images make your notebook more portable but have the disadvantage
of increasing its file size and making code revisions less friendly.

Markdown cells, and notebooks in general, make it easy to include code,
equations, and graphics in formatted documents. In fact, many online articles,
such as those on Medium and Towards Data Science, are created using Jupyter

Notebook.

Saving the Notebook

Notebook automatically saves after a set period, usually 120 seconds. You can
override this by running the %autosave n magic command in a cell, where n is the
number of seconds and n=0 disables autosaving. This applies only to an individual
notebook and for the current session. You’ll need to run the cell containing the
magic command every time you open the notebook for it to take effect. For
instructions on how to globally change autosave settings for all notebooks,
search online for the autosavetime Jupyter extension (we’ll look at using extensions
later in this chapter).

To manually save your notebook at any time, use either the Save icon on the

toolbar, the keyboard shortcut CTRL-S, or File ▸ Save and Checkpoint from
the menu bar.

Each time you manually save your notebook, you create a checkpoint file in a

folder named .ipynb_checkpoints, located in the same folder as the initial .ipynb file.

You can reset your notebook to the checkpoint version by clicking File ▸
Revert to Checkpoint from the menu and then clicking on the date stamp for
the last checkpoint.

Checkpoints are important because autosaving updates only the .ipynb file.

This lets you safely work for a while without saving manually. If you find you’ve
gone down a blind alley or made some mistake, you can always restore back to an
earlier copy using the checkpoint file.

Closing the Notebook

To properly close your notebook, from the menu bar select File ▸ Close and
Halt. Next, in the dashboard, press the Quit button, and then close the window.

If you are logged in to another server, as opposed to working locally, you’ll
want to log out using either the Logout button at the upper right of the

notebook or at the upper right of the Jupyter dashboard.

Getting Help

The Help menu, though very intuitive, is useful enough to warrant a mention. In
addition to the Notebook interface tour and documentation, it provides handy
links to the documentation of many useful libraries like Python, NumPy, pandas,
Matplotlib, and more (Figure 5-14).

Figure 5-14: The Help menu

Keyboard Shortcuts

You can also bring up a list of keyboard shortcuts for both command mode and

edit mode. You may have noticed that cell borders start out blue and then switch

to green when you click inside them. Blue cells indicate that you’re in command

mode; green cells designate edit mode.

In command mode, the whole notebook is selected. In edit mode, the focus is
on a single cell. Although there’s some overlap, keyboard shortcuts for the
command mode (Table 5-2) help you manipulate cells, while shortcuts for the

edit mode (Table 5-3) help you work with text in cells.

Table 5-2: Selected Command Mode Keyboard Shortcuts

Shortcut Description

H Show all keyboard shortcuts

ENTER Enter cell Edit mode

SHIFT-ENTER Run cell and select cell below

CTRL-ENTER Run selected cell

F Find and replace

Y Change cell mode to Code

M Change cell mode to Markdown

1 through 6 Change cell to heading mode (1 = Largest; 6 = Smallest)

UP Select cell above

DOWN Select cell below

A Insert cell above

B Insert cell below

X Cut selected cell

C Copy selected cell

V Paste cells below

SHIFT-V Paste cells above

D, D Delete selected cell

Z Undo cell deletion

SHIFT-M Merge selected cells, or current cell with one below if
only one selected

S (or CTRL-S) Save and Checkpoint

L Toggle line numbers

O Toggle output of selected cells

I, I Interrupt the kernel

SPACE Scroll notebook down

SHIFT-SPACE Scroll notebook up

Table 5-3: Selected Edit Mode Keyboard Shortcuts

Shortcut Description

Shortcut Description

CTRL-M (or ESC) Enter Command mode

UP Move cursor up

DOWN Move cursor down

CTRL-UP Go to cell start

CTRL-DOWN Go to cell end

CTRL-LEFT Move one word left

CTRL-RIGHT Move one word right

CTRL-] Indent

CTRL-[Dedent

CTRL-/ Toggle comment

CTRL-D Delete whole line

CTRL-A Select all

CTRL-Z Undo

CTRL-Y Redo

CTRL-BACKSPACE Delete word before

CTRL-DELETE Delete word after

SHIFT-ENTER Run cell and select below

CTRL-ENTER Run selected cells

CTRL-SHIFT-hyphenSplit cell at cursor

INSERT Toggle overwrite flag

CTRL-S Save and Checkpoint

To see the complete list of available shortcuts, click Help ▸ Keyboard
Shortcuts or, on your keyboard, press H while in command mode. If these
shortcuts aren’t enough, you can customize the command mode shortcuts from
within the Notebook application itself, using the Edit keyboard Shortcuts
item. A dialog will guide you through the process of adding custom keyboard
shortcuts. Afterward, the keyboard shortcut set from within Notebook will be
saved to your configuration file.

The Command Palette

You can hover your cursor over items in the toolbar (Figure 5-5) to reveal their
purpose. These are straightforward except perhaps for the Command Palette
icon, shaped like a keyboard.

In Jupyter Notebook and JupyterLab, all user actions are processed through a
centralized command system. These include the menu bar, context menus,
keyboard shortcuts, and so on. For your convenience, the command palette
provides a keyboard-driven way to search for and run these commands (Figure
5-15).

Figure 5-15: A portion of the Command Palette

You can also open the command palette using P in command mode and
CTRL-SHIFT-P in edit mode. To exit the command palette, press the ESC key.

Using Notebook Extensions

You can expand the functionality of the Notebook environment by using
extensions written in JavaScript. These modules, referred to as nbextensions, are

basically add-ons or plug-ins that do things like autocomplete code, hide coding
cells, spellcheck Markdown cells, create a table of contents, open a “scratchpad”
cell for isolated experimentation, and more. You can also write your own custom
extensions. To see the complete list of available extensions, visit https://jupyter-

contrib-nbextensions.readthedocs.io/en/latest/nbextensions.xhtml.

NOTE

Classic Notebook extensions won’t work in the JupyterLab version, which has its own

set of extensions. You can read about these in the next chapter.

https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions.xhtml

Installing Extensions

The jupyter_contrib_nbextensions package is a collection of community-

contributed nbextensions. To load these extensions locally in your browser, you
need to install it in your base environment (if you’re using the modular approach)

or your project environment (if using the naive approach). For example, to install
in base using the CLI, first activate the environment with this command:

conda activate base

Then, enter the following:

conda install -c conda-forge jupyter_contrib_nbextensions

Finally, install the JavaScript and CSS files to a location where Notebook can
find them:

jupyter contrib nbextension install --user

CSS (short for Cascading Style Sheets) describe how the HTML elements in

notebooks are displayed. The --user flag installs into the user’s home Jupyter
directories. Alternatively, using the --system flag will install into system-wide
Jupyter directories.

After you’ve confirmed installation, restart the notebook server.

Enabling Extensions

You should now have an Nbextensions tab on the Jupyter Home page with a list
of selectable nbextensions, as illustrated in Figure 5-16.

Figure 5-16: The new Nbextensions tab (shown truncated) on the Jupyter dashboard

Clicking an extension name launches its README file. For example, if you
click the Tree Filter nbextension and scroll down, you’ll see a description of
what it does and a demonstration of how to use it (Figure 5-17).

Figure 5-17: Clicking an nbextension name launches its descriptive README file.

Clicking the checkbox beside an extension turns on that extension. You can
also enable and disable nbextensions from the CLI (where <extension_name>
represents the name of the extension):

jupyter nbextension enable <extension_name>

and:

jupyter nbextension disable <extension_name>

To learn more about the jupyter_contrib_nbextension package, visit
https://jupyter-contrib-nbextensions.readthedocs.io/. To find the latest extensions,

search online for “useful Jupyter Notebook extensions.”

https://jupyter-contrib-nbextensions.readthedocs.io/

Working with Widgets

Widgets, short for “Windows Gadgets,” are interactive objects such as sliders,

radio buttons, drop-down menus, checkboxes, and the like. Widgets let you
build a GUI for your notebook, making it easier to explore data, set up
simulations, accept user input, and so on.

In this section, we’ll use the ipywidgets extension to create widgets. Some

examples are shown in Figure 5-18. For a full list of widgets, along with their
configurable parameters, visit the documentation at
https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20List.xhtml.

Figure 5-18: Some of the many widget types available in ipywidgets

We won’t cover every type of widget here, but we’ll cover enough for you to
feel confident exploring on your own

Installing ipywidgets

The ipywidgets extension can be installed like any package. The instructions that
follow will use the CLI, but you can easily duplicate them using the Navigator
GUI.

If you’re using the naive approach, wherein the notebook package is installed
in your conda environment, open Anaconda Prompt (Windows) or a terminal

https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20List.xhtml

(macOS and Linux), activate the target environment, and then enter the
following:

conda install -c conda-forge ipywidgets

If you’re using the modular approach, wherein your Jupyter Notebook and
the IPython kernel are installed in different environments, you’ll need to also
install the widgetsnbextension package in the environment containing the Jupyter

Notebook server. The widgetsnbextension package configures the classic Jupyter
Notebook to display and use widgets. Let’s do this now for the base and

my_nb_proj_env environments (you’ll need to substitute your path to

my_nb_proj_env):

conda install -n base -c conda-forge widgetsnbextension
conda install -p C:\Users\hanna\my_nb_proj\my_nb_proj_env -c conda-forge ipywidgets

With the ipywidget package installed, you can easily create widgets either
manually or by using the interact or interactive classes.

Creating Widgets with Interact

The ipywidgets.interact class helps you generate widgets for exploring and
interacting with data. Let’s try it out in a new notebook.

Open Anaconda Prompt (in Windows) or a terminal (in macOS or Linux).
You should be in the base environment (if not, enter conda activate base). Because

we’re saving a new notebook, navigate to your my_nb_proj\notebooks directory

before launching Jupyter Notebook:

cd C:\Users\hanna\my_nb_proj\notebooks
jupyter notebook

From the Jupyter Dashboard, select New ▸ Python [conda
env:my_nb_proj_env]. When the untitled notebook appears in your browser,
rename it widgets and save it.

In the first cell, enter and run the following code:

 import numpy as np
 import matplotlib.pyplot as plt

➊ from ipywidgets import interact

 x = np.linspace(0, 6)

 def sine_wave(w=1.0):
 plt.plot(x, np.sin(w * x))
 plt.show()

➋ interact(sine_wave);

With this code, you import NumPy, Matplotlib, and the interact class from

ipywidgets ➊. You then use NumPy’s linspace() method to return an array of
evenly spaced numbers over the specified interval (0-6), and assign it to the x
variable (we look at NumPy in detail in Chapter 18). Next, you define a short
function that multiplies the x values by the sine of x times a scalar named w and

plots the results. Finally, you call interact() and pass it the sine_wave() function ➋.
This produces the slider widget shown in Figure 5-19. Sliding the control nob
redefines the value of w and automatically calls the sine_wave() function to update
the plot.

Figure 5-19: Changing the slider interactively updates the sine wave plot.

Note that you didn’t need to specify a slider widget. Ipywidgets detected that
we passed the sine_wave() function a floating-point value (w=1.0) and knew to use a
float slider. Had we passed an integer, it would’ve made an integer slider.

You can also use interact() as a Python decorator. We covered decorators in

Chapter 13; these are functions used to enhance the behavior of another
function. To use interact() as a decorator, insert a new cell at the bottom of your
widgets notebook and run the following code:

➊ @interact(w=1.0)
 def sine_wave(w):
 plt.plot(x, np.sin(w * x))
 plt.show()

You must run the proceeding cell for this to work, as we aren’t reimporting
the libraries or reassigning the x value. When you run the current cell, the

decorator ➊ calls the sine wave function for you.

In these examples, interact() tries to update the plot as you move the slider,
sometimes introducing latency in the display. To prevent interact() from
immediately updating, you can instead import the interact_manual() method from
ipywidgets and use it to call the sine_wave() function. In this case, the plot won’t
update until you stop moving the slider and press the Run Interact button
(Figure 5-20).

Figure 5-20: The interact_manual() method produces a button for manually running interact.

As you’ve seen, interact determines the type of widget to produce based on the
input. If you pass it a Boolean, such as x=True, it will produce a checkbox. A string,
like x=′Hello, World!′, produces a textbox. Passing a list or dictionary will generate a
drop-down menu. For example, insert a new cell at the bottom of your widgets

notebook and run the following code:

def languages(descriptor):
 return descriptor

options = {′The King′: ′Python′, ′Not bad′: ′Julia′, ′Up and Coming′: ′Go′}
interact(languages, descriptor=options);

You should get the output shown in Figure 5-21.

Figure 5-21: An interact-generated drop-down menu

The interact class abstracts away a lot of decisions, so it’s easy to use. For more
control, you’ll want to try the interactive class or manually generate the widgets.

Creating Widgets with Interactive

The ipywidgets.interactive class gives you access to information that is bound to
the widget, such as its keyword arguments and result. Unlike with interact(),
you’ll need to explicitly show the widget on the screen using the display()
method.

Let’s look at an example. Insert a new cell at the bottom of your widgets
notebook and enter the following code:

from ipywidgets import interactive

def my_function(x):
 return x

widget = interactive(my_function, x=5)
display(widget)

Run the cell and move the slider to a value of 8. Now, insert a cell below and
run this code:

print(widget.result)

The output should be 8. This lets you use the widget’s result in subsequent
code rather than just viewing the result.

Manually Creating Widgets

The interact and interactive classes make creating widgets almost automatic. But
if you want more control over the process, you can create them “manually” by
specifying which widget you want. You’ll be able to define the layout and style,
name the widgets, link them together, get events, and more.

Let’s work an example. Start by inserting a new cell at the bottom of your
widgets.ipynb notebook, and then run this code:

import ipywidgets as widgets

slider = widgets.IntSlider(value=0,
 min=0,
 max=20,
 step=2,
 description='A Slider',
 orientation='horizontal')
display(slider)

This produces the integer slider bar in Figure 5-22.

Figure 5-22: A named integer slider bar

By building the widget directly, you’re able to specify additional parameters
like the displayed name (description) and orientation (horizontal or vertical). To see
all the available parameters, add display(slider.keys) to the current cell or, in a new
cell, run slider.keys. You can find example use cases at the documentation link
cited earlier.

A slider bar by itself isn’t much use, but as with the interactive class, you have
access to the slider value, in this case through the .value attribute. In a new cell,
run this code:

print(f″Slider value = {slider.value}″)

This should produce the following output:

Slider value = 0

Handling Events

A user interacting with a widget creates an event. For example, a click event

occurs when you press a button widget. When you handle an event, you tell your
program what to do with the results. This usually involves writing an “event
handler” function.

To capture output and ensure that it’s displayed, you must send it to an Output
widget or put the information you want to display into an HTML widget. Let’s look
at an Output example.

Insert a new cell at the bottom of your widgets notebook and then run the
following:

 import ipywidgets as widgets

➊ from IPython.display import clear_output

 button1 = widgets.Button(description='Python')
 button2 = widgets.Button(description='Go')
 button3 = widgets.Button(description='Rust')

➋ output = widgets.Output()

 print(″Pick your favorite language:″)
 display(button1, button2, button3, output)

➌ def event_handler(button):
 with output:
 clear_output()
 print(″Your favorite language is {}″.format(button.description))

➍ button1.on_click(event_handler)
 button2.on_click(event_handler)
 button3.on_click(event_handler)

This produces the output in Figure 5-23. Clicking a button prints out the
button’s description (name).

Figure 5-23: Handling a button click event

Each time you click a button, the output will hang around in the output cell,

so import the clear_output() method from IPython ➊. This method will let you start
fresh each time a button is clicked. Next, make three button widgets and an

output widget to display the results ➋.

To handle the button click event, define a function called event_handler() that

takes a button object as an argument ➌. Using the output widget, first clear the
display to remove the output of any previous button clicks, and then print the
name of the clicked button. Finally, for each button, use the Button widget’s

on_click() method and pass it the event handler function ➍. This binds the
function to the button click event.

Customizing Widgets

The widgets provided by ipywidgets are attractive out of the box, but you can
modify them if you want. The widget layout attribute gives you control over
things like the widget size, borders, alignment, and position. You can also
arrange widgets in gridded patterns.

In the events-handling code example from the previous section, add the
following line above the button1 variable assignment and change the button1 code,

as indicated here:

layout = widgets.Layout(width='300px', height='50px', border='solid 2px')
button1 = widgets.Button(description='Python', layout=layout)

Run the cell and you should get the output shown in Figure 5-24. As you
might have guessed, px stands for pixel.

Figure 5-24: The new layout for the Python button (button1)

Conveniently, many widgets let you use predefined styles. In the previous
example, change the button1 assignment as follows and then run the cell:

button1 = widgets.Button(description='Python', button_style='danger')

The Python button should turn red. Other predefined button style choices
are primary (blue), success (green), info (teal), and warning (orange).

If you need even more control, the style attribute exposes non-layout-related
styling attributes of widgets. The properties of this attribute are widget specific;
you can list them by using the keys property. For example, for button1 in the
previous example, you would run button1.style.keys.

Suppose that you want the Python button to be pink, a color not available in
the predefined styles. In this case, you’d first change button1 back to its original
state and then set its background color using the style attribute:

button1 = widgets.Button(description='Python')
button1.style.button_color = 'pink'

These examples are just a small taste of what you can do. To see more
options, visit the documentation at
https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20Styling.xhtml.

Embedding Widgets in Other Formats

https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20Styling.xhtml

The Notebook menu bar provides a Widgets option for embedding interactive
widgets into static web pages, Sphinx documentation (the familiar “Read the
Docs” web pages), and HTML-converted notebooks on the nbviewer web app.

Following are the menu items:

Save Notebook Widget State Saves with the current widget state as
metadata, allowing the notebook file to be rendered with rendered widgets.

Clear Notebook Widget State Deletes the saved state (you’ll need to restart
the kernel).

Download Widget State Triggers the downloading of a JSON file
containing the serialized state of all the widget models currently in use.

Embed Widgets Provides a dialog containing an HTML page, which
embeds the current widgets. To support custom widgets, it uses the RequireJS
embedder.

To learn more about embedding, visit
https://ipywidgets.readthedocs.io/en/latest/embedding.xhtml#.

Sharing Notebooks

Scientific work is rarely done in isolation. You’ll need a way to share your
notebooks. In some cases, you’ll want to share an executable version; for example,

for coworkers who will run and modify the notebook (think coders). In other
cases, you’ll want to share a static copy of an executed notebook that contains all

the generated plots and outputs (think non-coders). This latter group might
include stakeholders who don’t want to install Notebook, deal with its data or
package dependencies, or wait for long-running notebooks to complete.

Notebooks are saved in JSON format and need to be rendered to be readable.
In the following sections, we’ll talk about some of the methods for downloading
and sharing notebooks.

Checking and Running Notebooks with the Kernel Menu

A problem with notebooks is that cells can be run out of order, they can be
deleted, and there’s no guarantee that the correct execution order is easily
repeatable. And as we saw in previous chapters on the Jupyter Qt console and
Spyder, imports and variable assignments that are resident in memory can cause
confusion and unintended consequences.

https://ipywidgets.readthedocs.io/en/latest/embedding.xhtml

Consequently, before sharing your work, it is strongly recommended that you
click Restart & Run All from the Kernel menu (Figure 5-25). If errors occur,
fix the first one, repeat the command, and move to the next.

Figure 5-25: The Notebook Kernel menu

Another useful menu item is Interrupt. This is handy for long-running
notebooks, in the event that you forgot to change a parameter or you recognize
some error in the code or input.

Downloading Notebooks

Notebooks are automatically saved as interactive *.ipynb files. You can email

these directly to a colleague who uses Notebook. Alternatively, the File ▸
Download as command lets you save your notebook in many different formats
(Figure 5-26). Some of these formats, like PDF via LaTeX, require certain
packages be installed (if they’re not, don’t worry, you’ll get an error message
informing you of what’s needed). Among the more important formats are
HTML and Python.

Figure 5-26: The Notebook File menu

The Python option saves your notebook as a text file with a .py extension in

your downloads folder. You can then run this file as a Python script in a console
or an IDE like Spyder. Markdown cells, cell numbers, and other non-code
material is commented out by using the # symbol.

For example, if you download the geyser notebook from the previous section
using Python (.py), you’ll get the following script:

#!/usr/bin/env python
coding: utf-8

Old Faithful geyser eruption dataset
(Weisberg (2005) in *Applied Linear Regression*)

In[1]:
get_ipython().run_line_magic('matplotlib', 'inline')
import pandas as pd
import seaborn as sns

df = sns.load_dataset('geyser') # Times are in minutes.
display(df.head())
df = df.rename(columns={'kind': 'eruption_cycle'})

In[2]:
sns.violinplot(x=df.eruption_cycle, y=df.duration, inner=None);

![title](https://www.nps.gov/npgallery/GetAsset/393757C9-1DD8-B71B-0BEF06BE19C76D4D/proxy/
hires)

If you open this geyser.py file in Spyder and run it, you’ll see the tabular

DataFrame output and the violin plot, but not the header or the image of Old
Faithful.

You can also export your notebook from the command line using the
nbconvert tool. This tool already powers the Download as menu option, but

when used in the CLI (invoked as jupyter nbconvert), you can conveniently convert
a batch of notebook files to another format with a single command. To learn
more, visit https://nbconvert.readthedocs.io/.

After you’ve downloaded your notebook in the appropriate format, you’ll still
need to share it. Email is one option, but for collaborative work, you’ll need to
include any external data files that you used. And if your notebook uses third-
party packages, you’ll want to share an environment or requirements file (see
Chapter 2) so that those with whom you’re sharing can set up an identical
environment. In the following sections, we’ll look at some convenient ways to
share notebooks via third-party websites.

Sharing Notebooks via GitHub and Gist

An easy and flexible way to deploy notebooks is to put them in a code repository.

These sites store source code archives, provide version control to track changes,
and have both public and private components. Although there are many free
hosts to choose from, the most popular is GitHub.

GitHub, Inc., a subsidiary of Microsoft, is a provider of internet hosting for
software development and version control using the Git program. Git lets you

store the notebooks you want to share in a folder on your computer, which you
can think of as a local repository. To make this folder function as a repository, Git

also stores snapshots (records of the state of versions at a specific point in time)
and metadata in a hidden folder named .git. This lets it keep track of contents

and changes to the files. You can also include supporting data files and folders.

The GitHub website lets you host clones of these Git repositories online for
the purpose of sharing, performing collaborative work, and providing a safe
backup. You can include a README.md file to describe what’s in the repository.

Other users can download your notebooks to run and edit them. They can
upload their changes using Git’s version control system, which ensures your
original work isn’t overwritten.

To see an example repository, follow this link:
https://github.com/rlvaugh/Impractical_Python_Projects/. Be sure to scroll down to

see the README file.

https://nbconvert.readthedocs.io/
https://github.com/rlvaugh/Impractical_Python_Projects/

You can run Git from the command line, but if you’re new to the process, or
just want to share notebooks, I recommend using the GitHub Desktop GUI. The

Desktop website (https://docs.github.com/en/desktop/) will walk you through the

steps for setting up a free account and creating your first repository. In addition,
a quick online search will reveal many excellent tutorials for using GitHub.

Alternatively, if you want a fast, easy, and lightweight option for sharing a
notebook, you can use GitHub Gist. Gist is basically a tool for sharing text, and

because notebooks are saved in JSON format, they qualify. Gist is a simple
solution for when you don’t need a big repository, yet you still get Git’s version
control system. In fact, a gist is a Git repository, with full commit history,

differences (diffs), fork and clone options, and more.

When you create a gist, you have the option to add multiple files but with
limits. For example, to add an Excel spreadsheet, you’ll need to save it as a
comma-separated values (CSV) file. Likewise, you can’t add image files. Nor can
you add directories. So, if your project is data heavy, you’ll probably want to
create a full GitHub repository using GitHub Desktop or Git with the command
line.

Given that our geyser.ipynb notebook is simple and stand-alone, let’s add it to

Gist. First, go to the website at https://gist.github.com/. If you already have a

GitHub account, click Sign in on the right side of the Gist banner (Figure 5-27).
Otherwise, click Sign up to create a free account.

Figure 5-27: The GitHub Gist startup banner

After you sign in, click the plus sign (+) on the banner (Figure 5-28) to create
a gist.

Figure 5-28: The GitHub Gist banner after sign-in

In the next window, you’ll see a large blank area for adding text (Figure 5-29).
You’ll also be prompted to add a filename with extension. Enter geyser.ipynb
and then, in the Gist description box, enter Old Faithful eruption notebook.

https://docs.github.com/en/desktop/
https://gist.github.com/

Figure 5-29: The Gist creation page

Now for the fun part. In the file explorer for your operating system, navigate
to the geyser.ipynb file that we built earlier and drag and drop it into the blank text

box area in the Gist creation page. You should see the JSON text file for your
notebook (Figure 5-30).

Figure 5-30: The results of dragging and dropping the notebook into Gist

Finish by clicking the arrow on the green button in the lower right to see the

save options. You can create a private (secret) or public gist (Figure 5-31). With
the secret option, only people who know your URL can see the contents. Let’s
keep this between us, so click Create secret gist.

Figure 5-31: The options for creating a gist

NOTE

If someone guesses or accidently discovers the URL to a secret gist, they’ll be able to

see it. For better security, you’ll need to use GitHub Desktop or Git to create a

private repository (see “Creating Your First Repository Using GitHub Desktop” at

https://docs.github.com/).

After a few seconds, you should see your notebook fully rendered as a static
HTML file. Output such as the violin plot will show up only if the notebook was
executed prior to saving.

If you scroll down, you’ll see a box for adding comments. If you scroll to the
top, you’ll see icons for actions such as deleting or editing files, as illustrated in
Figure 5-32. If you click Edit, the notebook will revert to the JSON format
(Figure 5-30). Although it’s possible to edit this text and change the notebook, I
doubt you’ll want to. Let’s look at some other options.

Figure 5-32: Options for working with the gist

https://docs.github.com/

By clicking the Download ZIP button, users can download your gist as a
folder on their machine, where they can edit and run the notebook. The Embed
pull-down menu provides options for embedding the gist in a website (such as a
blog post), copying a sharable link, or cloning the gist. The embed option works
in any text field that supports JavaScript. To the left of the Download ZIP
button, there’s an icon for saving the gist to your computer and using it in
GitHub Desktop.

NOTE

If your main reason for sharing notebooks on GitHub is to work collaboratively on

the notebook’s content, you should clear the output from your notebook before adding

it to the repository. This will make it easier to track changes to the code. To learn

more, visit https://mg.readthedocs.io/git-jupyter.xhtml.

To see the full documentation for Gist, visit
https://docs.github.com/en/github/writing-on-github/editing-and-sharing-content-with-

gists/creating-gists/. There’s also a notebook extension, called gist-it, for creating

gists (https://jupyter-contrib-

nbextensions.readthedocs.io/en/latest/nbextensions/gist_it/readme.xhtml).

With your notebooks in a repository, you’ll have additional options for
distributing them. Let’s look at some of the most popular.

Sharing Notebooks via Jupyter Notebook Viewer

Jupyter nbviewer, or Notebook Viewer, is a free service for rendering GitHub-

hosted notebooks online. It’s useful for when the GitHub rendering engine has
difficulty, such as with large notebooks, using a mobile device, or using some
JavaScript-based libraries. Colleagues and stakeholders can use nbviewer to view
inputs and outputs, but to execute code, they must download the notebook to a
local Jupyter installation.

To use nbviewer, you simply launch the website (https://nbviewer.jupyter.org/)

and paste the notebook’s URL into a text box (Figure 5-33). This renders the
notebook as a static HTML web page and gives you a stable link to that page
that you can share with others. This link will remain active so long as the
notebook location in the GitHub repository doesn’t change.

https://mg.readthedocs.io/git-jupyter.xhtml
https://docs.github.com/en/github/writing-on-github/editing-and-sharing-content-with-gists/creating-gists/
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/gist_it/readme.xhtml
https://nbviewer.jupyter.org/

Figure 5-33: The nbviewer web application

The application also supports browsing collections of notebooks and
rendering notebooks in other formats, such as slides and scripts. To share
multiple notebooks, first place them all in the same repository. Then, point
nbviewer to the repository’s address, and it will automatically create a navigable
index for users.

You can test nbviewer using the gist we made in the previous section. Just
copy the link using either the Embed menu or the clipboard icon (see Figure 5-
32) and then paste it into nbviewer.

Sharing Notebooks via Binder

Binder (https://mybinder.org) is a free website designed for use with public

repositories such as on GitHub. Binder lets you run notebooks stored in these
static repositories by building a Docker image of the repository. A Docker image

is a combination of a filesystem and parameters (see https://www.docker.com/).

When you share your notebook, via a URL, Binder provides both your code and
all the software needed to run it. The user doesn’t need to download or install
anything.

Binder’s base environment is barebones. If your project uses any third-party
packages, such as Matplotlib or NumPy, your GitHub repository should include
either an environment.yml or a requirements.txt file. These files list your project’s

package requirements (see the “Duplicating and Sharing Environments” on page
44). Binder will read the file and include any packages in the Docker image. It
will update this image if you commit new changes to GitHub.

After the image is built, you can use the Binder URL to share your notebook.
Binder uses a free JupyterHub (https://jupyter.org/hub) server to host your

repository. JupyterHub is an open source service that allows institutions to share
notebooks across large pools of users. With the public IP address that you

https://mybinder.org/
https://www.docker.com/
https://jupyter.org/hub

provide, users can interact with your code and environment within a live
JupyterHub instance.

Figure 5-34 shows the Binder start-up screen. I highly recommend viewing
the “Zero-to-Binder” beginner tutorial by clicking the Python link visible at the
top of this figure. Additional guidance (not shown) is included at the bottom of
the home page.

Figure 5-34: The Binder online form for sharing interactive notebooks

Users can execute your notebooks, so you’ll need to provide any data
dependencies. If these data files require 10MB or less of memory, the simplest
solution is to add them directly into your GitHub repository. Remember, this
must be a public repository for Binder to access it, so you don’t want to include
any sensitive information. And you need to keep in mind Binder downloads data
only when the Docker image is built, not when the Binder link is clicked. Images
are rebuilt only when there is a new commit to the repository.

For data sizes between 10MB and a few hundred megabytes, you need to add
a file called postBuild to your repository. This file is a shell script that is executed

as part of the Docker image construction and is executed only once when a new
image is built. To learn more, see the documentation at
https://mybinder.readthedocs.io/en/latest/using/config_files.xhtml#postbuild-run-code-

after-installing-the-environment/.

It’s impractical to place large files in your GitHub repository or include them
directly in the image that Binder builds. You’re better off using a library specific

https://mybinder.readthedocs.io/en/latest/using/config_files.xhtml#postbuild-run-code-after-installing-the-environment/

to the data format to stream the data as you’re using it. Alternatively, you can
download it on demand as part of your code. For security reasons, outgoing
traffic is restricted to HTTP or GitHub connections only, so you can’t use FTP
sites to fetch data using Binder.

If a user changes your notebook through Binder, they will not be able to save
or push changes to the GitHub repository. To save changes, they will need to

download the notebook to their computer by clicking File ▸ Download as ▸
Notebook (.ipynb).

Because of its data limits, saving issues, and lack of version control, Binder is
best for viewing and running notebooks. To collaboratively develop notebooks,

Git with GitHub is preferred.

Other Sharing Options

Other options for sharing notebooks include—but are not limited to—Jovian

(https://jovian.ai/docs/), Google Colaboratory

(https://colab.research.google.com/notebooks/intro.ipynb/), and Microsoft Azure

Notebooks (https://notebooks.azure.com/). These options tend to require more setup

than those we discussed previously and might not play well with GitHub. All
require you have an account, and Jovian needs to be locally installed. The
notebook interface will look a bit different in the Google and Microsoft options.

Colab lets users collaborate and run code that exploits Google’s cloud
resources. This includes using free GPUs, saving documents to Google Drive,
and running the TensorFlow machine learning library directly in the browser. In

fact, Google has a “Seedbank” repository of example deep learning notebooks
that you can open and run with the click of a button.

Jovian permits cell-level commenting and discussion to aid collaboration.
Azure helps you to create interactive presentations from your notebooks and
share them easily, though this is simple to do, regardless.

Finally, if you want total control over who can access your notebooks and how
they’re used, you can set up your own JupyterHub multiuser Hub. This lets you

offer notebook servers to a class of students, a corporate data science workgroup,
a scientific research project, and so on.

To use JupyterHub, you need a Unix server (typically Linux) running
somewhere that is accessible to your users on a network. This can require
configuring a public server, something best done by an IT team to ensure
security issues are properly addressed. To learn more, visit

https://jovian.ai/docs/
https://colab.research.google.com/notebooks/intro.ipynb/
https://notebooks.azure.com/

https://jupyterhub.readthedocs.io/en/latest/ and https://jupyter-

server.readthedocs.io/en/latest/operators/public-server.xhtml.

NOTE

If all you need is remote access to your personal machine, you can set up a public

server with a single user by following the instructions at https://jupyter-

notebook.readthedocs.io/en/stable/public_server.xhtml.

Trusting Notebooks

If you’re running Notebook locally on your own computer, your notebook is as
secure as your computer. But if you’re accessing a notebook remotely, sharing
your notebooks, or creating a server for multiple users, the potential for hackers
to exploit the notebook increases.

The problem is that a notebook includes output that exists in a context that
can execute code (via JavaScript). Ideally, code should not execute just because a
user opens a notebook, especially code that they didn’t write. But after a user
decides to execute code in the notebook, it should be considered trusted,
regardless of what it does.

To address this, the Jupyter developers have implemented security models
designed to prevent execution of untrusted code without explicit user input. To
ensure that a notebook is “trustworthy,” whenever it’s executed and saved, a
signature is computed from a digest of the notebook’s contents along with a
secret key. This is stored in a database, writable only by the current user. By
default, here’s where this database is located:

%APPDATA%/jupyter/nbsignatures.db in Windows

~/Library/Jupyter/nbsignatures.db in macOS

~/.local/share/jupyter/nbsignatures.db in Linux

Each signature represents a series of outputs, which were produced by code
that the user executed. As stated previously, any output generated and saved
during an interactive session is considered trustworthy.

When a user opens a notebook, the server computes its signature. If it finds it
in the user’s database, any HTML and JavaScript output will be trusted.
Otherwise, it’s untrusted.

https://jupyterhub.readthedocs.io/en/latest/
https://jupyter-server.readthedocs.io/en/latest/operators/public-server.xhtml
https://jupyter-notebook.readthedocs.io/en/stable/public_server.xhtml

When collaborating on a notebook, other users will have different keys, so
the notebook will be in an untrusted state when shared to them. There are three
recommended methods for managing this situation:

Rerun the notebook after opening (not always viable and you should trust
the sender).

Explicitly trust notebooks via File ▸ Trusted notebook (see Figure 5-26)
or, at the CLI, run jupyter trust /path/to/notebook.ipynb. These methods load
the notebook, compute a new signature, and add that signature to the user’s
database

Share a “notebook signatures database” and use a configuration dedicated to
the project.

For detailed instructions on the last approach, along with more information
on notebook and server security, see the documentation at https://jupyter-

notebook.readthedocs.io/en/stable/security.xhtml.

Turning Notebooks into Slideshows

When you complete your project, you can present the results directly from your
notebook by turning it into a slideshow. This works much like Microsoft
PowerPoint, with the notable difference being that you can run code live for a
dynamic and immersive experience. Let’s work through an example using the
modular approach, whereby you run Jupyter Notebook from the base

environment.

Installing the RISE Extension

To enable interactive coding in the slideshow, you’ll need to install the Reveal.js –

Jupyter/IPython Slideshow Extension (RISE). First, shut down any currently

running Jupyter notebooks. Next, open Anaconda Prompt (on Windows) or a
terminal (on macOS or Linux) and run the following in the base environment:

conda install -c conda-forge rise

Now, Notebook can find this extension and display it on the nbextensions tab
on the Dashboard page. Make sure that you install RISE in the conda
environment in which you installed Notebook.

https://jupyter-notebook.readthedocs.io/en/stable/security.xhtml

Creating a Slideshow

Let’s create a new notebook that we can use to demonstrate slideshow
capabilities. Because we’re saving a new file, we’ll launch Notebook from the
notebooks folder, created previously.

Activate the base environment (where Jupyter Notebook is installed). Next,

use the cd command and your personal path to open your notebooks directory and

then start Notebook:

conda activate base
cd C:\Users\hanna\my_nb_proj\notebooks
jupyter notebook

When the Notebook dashboard opens in your browser, click the New button
at the upper right of the Files tab to open a drop-down menu (Figure 5-4). To
activate the kernel in your my_nb_proj environment, select Python [conda

env:my_nb_proj_env] from the list. Remember, this lets us start Notebook
from the base environment and then work in another environment.

When the blank notebook appears, click Untitled near the top of the
window, rename the new notebook slideshow and save it. You should also see
the new RISE icon on the far-right side of the toolbar (Figure 5-35).

Figure 5-35: The RISE icon at the end of the toolbar

From the top menu, click View ▸ Cell Toolbar ▸ Slideshow. The first
empty cell in your notebook should now include a drop-down menu for selecting
the slide type, as illustrated in Figure 5-36.

Figure 5-36: An empty notebook cell in slideshow mode. Note the menu for selecting the slide type on

the right.

This menu gives you the six options, described in Table 5-4. The most used
are Slide, Skip, and Notes.

Table 5-4: The Slide Type Menu

Slide type Description

Slide Start a new slide. When presenting, use the left and right arrow
keys to switch slides.

Sub-slide Create a subpage with transition animation. Use up and down
arrow keys to switch.

Fragment Create a hidden part of a slide transitioned to using the
spacebar.

Skip Indicate that the selected slide should be skipped and not
shown. Useful for hiding code that does not generate an in-
show visualization.

Notes Indicate that the selected slide represents speaker notes.

- Indicate that the current cell should behave like the previous
cell.

Now, let’s make a short slideshow about logarithmic spirals, a common shape

found in nature (Figure 5-37).

Figure 5-37: Some examples of the logarithmic spiral in nature

Start by making a title slide. In the first cell, set the Slide Type menu to
Slide. Then, using the top toolbar, change the cell type to Markdown and enter
the following:

Spira mirabilis: The Miraculous Spiral

On your keyboard, press CTRL-ENTER to exit Markdown mode.

Insert a new cell beneath the title, set its types to Slide and Markdown, as
before, and then enter the following:

- Why does a hurricane look like a galaxy? Or the chambers in a nautilus
shell resemble the swirls in a pinecone?

- Growth in nature is a geometric progression, and spirals that increase
geometrically are *logarithmic*.

- Logarithmic spirals can be plotted using Python with the polar equation:
$r = ae^{b\theta}$
*Where:
r = radius
a is the scaling factor (size of spiral)
b is the growth factor that controls the ″openness″
θ controls length of spiral*

Press CTRL-ENTER to execute the code.

Insert a new cell and set its types to Slide and Code. Next, enter the
following code, which applies the polar equation and generates interactive slider
bars. These sliders let you assess the impact of the a, b, and θ parameters. Don’t
worry about all the details for now; we’ll go over the NumPy and Matplotlib
libraries later in the book.

import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interact

def log_spiral(a=1, b=0.2, t=4):
 theta_radians = np.arange(0, t * np.pi, 0.1)
 radii = [a * np.exp(b * rad) for rad in theta_radians]
 plt.polar(theta_radians, radii, 'o', c='black')

interact(log_spiral);

Next, insert a new cell below the previous cell and set its types to Notes and
Markdown. This cell can prompt you on the meaning of the parameters while
you’re describing the dynamic plot to your audience. Enter the following and
then press CTRL-ENTER to execute:

a: (scaling factor) controls size
b: (growth factor) controls openness
t: (theta) controls length

Cells representing “slide notes” must come immediately after the cell with
which they’re associated.

Finish the presentation with a new cell whose types are set to Slide and
Markdown. Enter the following and then press CTRL-ENTER:

The End

To launch the slideshow, first save the notebook, next click in the top cell, and
then click the RISE button (Figure 5-35). To operate the slideshow, use the
keyboard shortcuts in Table 5-5. For a full list of shortcuts, including ones for
operating a virtual chalkboard, click the ? icon visible at the lower left of each
slide.

Table 5-5: Selected RISE Keyboard Shortcuts

Shortcut Result

ALT-R Enter or exit RISE (slideshow mode)

SPACE Move forward to next slide

SHIFT-SPACE Move back to previous slide

SHIFT-ENTER Evaluate and select next cell if visible

HOME/END Jump to start/end

T Open speaker notes window

Use the spacebar to navigate to the code cell. If you haven’t executed this cell
already, do so now by pressing either CTRL-ENTER or SHIFT-ENTER. You
may need to manually adjust the window for the plot to fit correctly. Move the
sliders slowly to see how the parameters affect the plot. You can’t do this in
PowerPoint!

Using Speaker Notes

Slideshow comes with a Speaker Notes window that can help you run the
presentation. It shows the current slide, upcoming slide, speaker notes, and
current and elapsed time (Figure 5-38). You can have this window open on your
laptop screen while you’re projecting the slideshow. To enter this mode, press
the T key while in the slideshow.

Figure 5-38: The RISE Speaker Notes window

For remote meetings, Binder (discussed in “Sharing Notebooks via Binder”
on page 129) lets you host a live slideshow session for free within a browser, and
users won’t need Python or Jupyter to view it. For non-live viewing, the
slideshow can be exported to a single HTML file.

There’s a lot more to slideshows than I can cover here. The Jupyter Project
documentation doesn’t include much on the slideshow mode, but you can find
plenty of detailed tutorials and tips by searching online for “Jupyter Notebook
slideshow.”

Summary

Jupyter Notebook is wildly popular for good reason; it’s useful, easy, and fun! By
allowing you to store all your analysis and commentary in one place, notebooks
make it simple to document your work, share it, present it, and quickly pick up
where you left off.

Despite this, don’t become too enamored with notebooks, because they’re not

perfect. Their cellular organization encourages pollution of the global
namespace, discourages writing reusable functions and classes, and makes source
control and unit testing difficult. Those are some of the reasons why we learned

about Spyder in Chapter 4, and why we’ll look at JupyterLab next. With
knowledge of Notebook, Spyder, and JupyterLab, you’ll always be ready to apply
the best tool to the task at hand.

6
JUPYTERLAB: YOUR CENTER FOR SCIENCE

JupyterLab is a web-based interface for Project Jupyter. It combines every scientific

computing component you’ll need into a single interactive and collaborative
environment. Its flexible layout lets you efficiently execute complete computational
workflows, from loading data to generating a final report. Its architecture is also
hackable, meaning it’s extensible and open to developers.

If you’ve been reading this book from the beginning, you’ve already been
introduced to multiple JupyterLab components, such as a console (Chapter 3), a
text editor (Chapter 4), and Jupyter Notebook (Chapter 5). So, we won’t retrace
our steps here; instead, we’ll focus on the new interface and a few other features
JupyterLab brings to the table.

NOTE

JupyterLab is under active development, and new features are being added regularly. To

ensure that you’re up to date on the current state of JupyterLab, be sure to check out the

full documentation at https://jupyterlab.readthedocs.io/.

When to Use JupyterLab Instead of Notebook?

The JupyterLab developers created the new interface based on the results of a 2015
user experience survey that indicated the need for more flexibility and integration
in Jupyter Notebook. Users wanted easy access not only to notebooks but also to
text editors, terminals, data viewers, debuggers, Markdown editors, CSV editors, a
file browser, IPython cluster manager, and so on.

https://jupyterlab.readthedocs.io/

JupyterLab not only provides these tools, it lets you share a kernel among them.
In a single browser window, you can work with a notebook on one tab, edit a
related data file on another, check resources or processes in a terminal, test
concepts in a console, easily find and open files in a file manager, change the display
language, and more. And like Notebook, it’s free and open source.

Whereas Jupyter Notebook is great for data exploration, incremental software
development, and documentation, JupyterLab permits more serious software
development by providing many features found in traditional IDEs. But if you love
Notebook, don’t worry; JupyterLab is basically a new frontend that exists on top of
the existing Jupyter architecture. It uses the same server and file format as the
classic Jupyter Notebook, so it’s fully compatible with your existing notebooks. In
fact, you can run the classic Notebook app and JupyterLab side by side on the same
computer.

Installing JupyterLab

As we discussed in Chapter 2, it’s best to have a dedicated conda environment for
each of your projects. To work with these environments with JupyterLab, you have
two main options: you can either install JupyterLab directly in each conda
environment, or you can link each environment to the JupyterLab installation in
the base environment. We’ll call the first option the naive approach, and the second

the modular approach. Although the modular approach is generally recommended,

if a project needs to lock-down a specific version of JupyterLab, you’ll want to use
the naive approach.

The Naive Approach

With the naive approach, you install JupyterLab directly in a conda environment.
You then can import and use any packages installed in the same environment. This
is the simplest approach, but it can become resource intensive over time as your
pkgs folder becomes populated with different versions of JupyterLab.

Installing and Launching JupyterLab Using Anaconda Navigator

To install JupyterLab in a new environment using Anaconda Navigator, first launch
Navigator using the Start menu in Windows, or Launchpad in macOS, or by
entering anaconda-navigator in a terminal in Linux. Then, activate the environment by
selecting its name in the Applications on drop-down menu near the top of the
Home tab (Figure 6-1). In this example, we’re using the base environment.

Figure 6-1: The Anaconda Navigator Home tab showing the active environment (base, or root) and the

JupyterLab tile

Next, find the JupyterLab app tile and click the Install button. You might need
to scroll down the Home tab to find the tile. If you are unable to find the tile, then
install JupyterLab using the CLI, as described in the next section.

NOTE

If you see a Launch button rather than an Install button, JupyterLab now comes

preinstalled with Anaconda.

The Install button will install the most current version of JupyterLab available
from the top channel in your Channels listing, located near the top of the Home
tab. If you want to install a specific version, click the “gear” icon at the upper right
of the JupyterLab tile (see Figure 6-1) to see a listing of available version numbers.

If you need the absolute most current version of JupyterLab, make sure the
conda-forge channel is at the top of your channels list. Packages in the defaults
channel might be slightly older, but as compensation, they have passed the most
rigorous compatibility testing. For more on using channels see Chapter 2.

After a few moments, the Install button should change to a Launch button. This
button starts a local web server on your computer that displays the JupyterLab
interface. Because it’s running locally, you don’t need an active internet connection;
however, you will need to leave Navigator running.

Installing and Launching JupyterLab Using the CLI

To install JupyterLab in a new environment using conda, first open Anaconda
Prompt (in Windows) or a terminal (in macOS and Linux) and activate the conda
environment. Let’s do this for my_second_env that we created in Chapter 2. If you

skipped this step in Chapter 2, create the environment by doing the following:

conda create --name my_second_env

Now, activate the environment:

conda activate my_second_env

Next, use conda to install JupyterLab:

conda install -c conda-forge jupyterlab

To install a specific version, such as 3.1.4, you would use the following:

conda install -c conda-forge jupyterlab=3.1.4

To launch JupyterLab from the command line, enter:

jupyter lab

This starts a local web server on your computer that displays the JupyterLab
interface. Because it’s running locally, you don’t need an active internet connection.
You’ll need to leave your Prompt window or terminal open, however, as it’s running
the local server for Notebook that lets you interact with your web browser.

The Modular Approach

With the modular approach, you link each conda environment back to the
JupyterLab package in your base environment. This approach is resource efficient.

It also lets you easily keep the package up to date and choose among different
environments from the same instance of JupyterLab.

You can use the modular approach with either Navigator or the CLI. For
simplicity, let’s use the CLI. Open Anaconda Prompt (in Windows) or a terminal

(in macOS or Linux) and enter the following to create a new environment named
my_lab_env:

conda create --name my_lab_env

Enter y when prompted to accept the installation. Next, activate the new
environment:

conda activate my_lab_env

To link this environment with the JupyterLab installation in the base

environment, enter the following:

conda install ipykernel

Thanks to ipykernel, we didn’t need to explicitly install Python in the
environment. However, if you do need to use a specific version of Python in your

project, you’ll want to explicitly install it in the environment.

Now, deactivate my_lab_env, which returns you to base:

conda deactivate

If JupyterLab is already installed in base, you can skip the next step. Otherwise,

install JupyterLab using this command:

conda install -c conda-forge jupyterlab

To install a specific version, such as 3.1.4, you would use the following:

conda install -c conda-forge jupyterlab=3.1.4

Next, install the nb_conda_kernels package to base. You’ll need to do this only

once, so if you worked through Chapter 5, it should already be installed (you can
check by running conda list nb_conda_kernels after activating the environment):

conda install nb_conda_kernels

The nb_conda_kernels package enables a Jupyter instance in an environment to
automatically recognize any other environment that has the ipykernel package
installed. It’s this combination of nb_conda_kernels in the base environment and

ipykernel in other conda environments that allows you to use a single installation of
JupyterLab.

To launch JupyterLab from the active base environment enter the following:

jupyter lab

This launches a local web server on your computer that displays the JupyterLab
interface. Because it’s running locally, you don’t need an active internet connection.
You’ll need to leave your Prompt window or terminal open, however, as it’s running
a local server that lets you interact with your web browser.

Building a 3D Astronomical Simulation

It’s time to start working with JupyterLab! In this example, we’ll use JupyterLab to
build a 3D simulation of an astronomical oddity: a globular cluster. Globular clusters

are spherical collections of stars that orbit most spiral galaxies such as our Milky
Way. They are among the oldest features in a galaxy and can contain millions of
tightly packed stars.

Let’s start off fresh to avoid confusion. If you started JupyterLab in the previous

sections, go to the browser page it opened and shut it down by clicking File ▸ Shut

Down. If Navigator is open, close it by selecting File ▸ Quit.

Going forward, we’ll use the modular approach, so be sure to install JupyterLab
and the nb_conda_kernels package in your base environment, as described in the

previous section.

Using Dedicated Project Folders

Anaconda uses dedicated folders to keep track of your installed packages and conda
environments (see Chapter 2). Although Anaconda is designed to work smoothly
with this structure and help you navigate it, not everyone wants their project files
scattered around their directory tree. As we discussed in Chapter 4, there are
multiple benefits to keeping all of your project’s files and folders within a single
master folder.

Let’s work through an example in which we store the conda environment and
Jupyter notebooks in a folder named my_jlab_proj, short for “my JupyterLab

project.” I’ll create this in my user directory in Windows (C:\Users\hanna\), and I

suggest you use a similar location on your system.

NOTE

The root directory for JupyterLab’s file browser (that is, the highest directory in the

hierarchy) is the directory from which you launched JupyterLab. This is usually your

home directory that holds the anaconda3 folder. As a result, you won’t be able to access

files or folders above this directory structure within JupyterLab.

Although you can create directories and environments with Anaconda
Navigator, the command line is more succinct, so we’ll use that going forward. To
make the directories for the project, open Anaconda Prompt (in Windows) or a
terminal (in macOS or Linux) and enter the following (using your own directory
path up to \my_jlab_proj):

mkdir C:\Users\hanna\my_jlab_proj
mkdir C:\Users\hanna\my_jlab_proj\notebooks
mkdir C:\Users\hanna\my_jlab_proj\data

This makes a my_jlab_proj directory with notebooks and data subdirectories.

Next, create a conda environment named my_jlab_proj_env under the project

directory, activate it, and install some libraries (substitute your own path where
needed):

conda create --prefix C:\Users\hanna\my_jlab_proj\my_jlab_proj_env
conda activate C:\Users\hanna\my_jlab_proj\my_jlab_proj_env
conda install ipykernel matplotlib

As described previously, the ipykernel package lets you use a single JupyterLab
application installed in the base environment. The Matplotlib package is Python’s

primary plotting library. It includes the NumPy (Numerical Python) package as a
dependency. We explore these libraries in more detail in later chapters of this book.

At this point, your project directory structure should look like Figure 6-2. Of
course, with a real project, you might include additional folders for specific types of
data, non-notebook scripts, miscellaneous items, and more.

Figure 6-2: Directory structure for my_jlab_proj

To launch JupyterLab, first return to the base environment:

conda deactivate

Then, enter the following:

jupyter lab

The JupyterLab Interface

When you launch JupyterLab, a new tab should appear in your browser with a file
manager along the left side and a Launcher tab in the main work area (Figure 6-3).
If for some reason you don’t see the Launcher pane, on the menu bar at the top,

select File ▸ New Launcher.

The default view in Figure 6-3 is just a starting point. Indeed, JupyterLab’s
building blocks are so flexible and customizable that there’s no such thing as a
standard view, though there are some common features.

JupyterLab sessions reside in a workspace that contains the state of JupyterLab;

that is, the files that are currently open, the layout of the application areas and tabs,
and so on. The workspace consists of a main work area, or Launcher pane,

containing tabs of documents and activities; a menu bar; and a collapsible left sidebar.

The left sidebar contains a file browser and icons for the list of open tabs and
running kernels and terminals, a table of contents, and an extensions manager.

Figure 6-3: The JupyterLab workspace with major components labeled

Within the Launcher pane, you’ll see sections for Notebooks and Consoles.
Within them are tiles for kernels in your various conda environments (your view
will differ from Figure 6-3, as I’ve set up some environments on my own). You’ll
also see an Other section from within which you can open a terminal, text file,
Markdown file, Python file, or a contextual help page.

The Menu Bar

The menu bar at the top of JupyterLab (Figure 6-3) offers top-level menus that
expose available actions along with their keyboard shortcuts. These are specific to
which tab is active in the main work area; unavailable actions will be visible but
grayed out (half intensity). For convenience, some actions are duplicated in the left
sidebar. Following are the default menus:

File Actions related to files and folders, including shutting down and logging off

Edit Actions related to editing documents and working with notebook cells

View Actions to alter JupyterLab’s appearance and open the Command Palette

Run Actions for running code in notebooks and consoles

Kernel Actions for managing kernels

Tabs Actions for working with tabs, plus a listing of open tabs

Settings Settings for themes, languages, key maps, font sizes, and more

Help Links for JupyterLab help, plus a launcher for Classic Jupyter Notebook

JupyterLab extensions can also create new top-level menus in the menu bar.
These will be specific to the extension.

The Left Sidebar

The left sidebar provides access to commonly used tabs, such as a file browser, a list
of open tabs and running terminals and kernels, a table-of-contents generator, and a
manager for third-party extensions, as illustrated in Figure 6-4.

Figure 6-4: The left sidebar with the file browser active

When you close a notebook, code console, or terminal, the underlying kernel or
terminal running on the server continues to run. This enables you to perform long-
running actions and return later. The Running panel (Figure 6-5) lets you reopen

the document linked to a given terminal or kernel. You can also shut down any
open kernels or terminals.

Figure 6-5: The Running Terminals and Kernels panel

The table-of-contents extension, now built in to JupyterLab, makes it easy to see
and navigate the structure of a document. The table is automatically generated in
the left sidebar when you have a notebook, Markdown, LaTeX, or Python file open.
Each listed section is hyperlinked to the actual section within the document. You
can number headings, collapse sections, and navigate into the file.

The tool uses the headings from your Markdown cells to generate the table of
contents. The Toggle Auto-Numbering option, visible when you have a file open,
will go through a notebook and number the sections and subsections as designated
by the headings. This lets you move big sections around without having to go
through the document and renumber them.

The extensions manager helps you to manage any third-party extensions you
have installed. We’ll talk more about extensions, later.

The left sidebar is collapsible. Just click the icon for the active panel or select

View ▸ Show Left Sidebar from the menu bar to toggle it off.

Creating a New Notebook

Let’s make a new Jupyter notebook in the notebooks folder to hold our globular

cluster code and output. In the file manager view, also called the left sidebar,

navigate to the folder and open it. Then, in the Notebook section in the Launcher
pane, find and click the tile labeled Python[conda env:my_jlab_proj_env](if the tile labels
are truncated, hover your cursor over the tile to see the complete name). This

opens a new untitled notebook that uses the kernel in the specified environment
(Figure 6-6).

Figure 6-6: A new untitled notebook in the JupyterLab work area

Note that the tab for the notebook is marked with a colored top border (blue by
default). The work area permits only one current activity, and this lets you know
which tab is active.

If you read Chapter 5, you probably recognize the notebook interface, though
there are a few changes relative to classic Notebook. The icons and menu choices
along the top of the cell (the toolbar beneath the Untitled.ipynb tab), are more
streamlined and simplified, and they share functionality with the more fully
featured menu bar that runs along the top of the interface. Take a moment to hover
over the toolbar icons, and then click the main menu items such as File, Edit, and
Run to see the available options. These should be familiar to you from Chapter 5.

Naming the Notebook

Now, let’s rename the notebook. You can do this in one of several ways. You can use

File ▸ Rename Notebook from the main menu. Alternatively, you can open
contextual menus by right-clicking the Untitled.ipynb tab or by right-clicking the
filename in the file browser and selecting Rename (Figure 6-7).

Figure 6-7: The file browser’s contextual menu for working with files

NOTE

JupyterLab comes with a lot of convenient contextual menus. Just about anything that’s

clickable, including the blank area under notebook cells, has a menu available.

Use the context menu shown in Figure 6-7 to name the notebook
globular.ipynb. The notebook tab name should also change.

Using Markdown Cells

To make a descriptive header, click in the first cell and use the toolbar at the top of
the notebook (Figure 6-8) to change the cell type from Code to Markdown.

Figure 6-8: The Notebook toolbar

Now, enter the following and press CTRL-ENTER to run the cell:

Simulate a Globular Star Cluster with Matplotlib

For more on Markdown, see “Adding Text with a Markdown Cell” on page 102.

Adding Code and Making Plots

You could easily run the simulator code in a single cell, but for the sake of the
narrative, let’s spread it over multiple cells. Creating modular programs like this has
its advantages. For example, you can isolate the imports and data loads in the first
cell, so you don’t need to rerun them every time you make a change in subsequent
cells.

Start by adding a new cell using the “+” from the notebook toolbar (Figure 6-8).
New cells are automatically code cells, so you’re ready to start coding. The first
step is to import the libraries needed to build the simulation:

%matplotlib inline
import numpy as np
from matplotlib import pyplot as plt
plt.style.use('dark_background')

This code starts with a magic command that makes Matplotlib plot inline. This

means that it will plot to an output cell within the notebook. The next two lines

import NumPy and Matplotlib. The final line selects Matplotlib’s dark theme for
plots, so our white stars will have a black backdrop. Execute the cell by pressing
SHIFT-ENTER, which runs the cell and adds a new code cell below, or click the

triangular “play” icon (▸) in the toolbar (Figure 6-8).

Now define a generic function that creates a list of x, y, z coordinates arrayed in
a spherical volume. In the new cell, enter the following:

def spherical_coords(num_pts, radius):
 ″″″Return list of uniformly distributed points in a sphere.″″″
 ➊ position_list = []
 for _ in range(num_pts):

 ➋ coords = np.random.normal(0, 1, 3)
 coords *= radius
 position_list.append(list(coords))
 return position_list

The function takes as arguments the number of points (num_pts) and the radius of
the sphere (radius). This determines the size of the cluster and how many stars it

contains. You then create an empty list ➊ to hold the coordinates and loop through
the number of points, each time drawing three random values from a normal

distribution with a mean of 0 and a standard deviation of 1 ➋. These three values
will represent the x, y, z coordinates of a star. Multiplying the coordinates by the
radius stretches or shrinks the size of the cluster. At the end of each loop, you
append the coordinates to the list and end the function by returning the list.

Run the cell by pressing SHIFT-ENTER to add a new cell at the bottom of the
notebook.

Now, create a globular cluster and plot it. In the new cell, enter the following
code:

 rim_radius = 1
 num_rim_stars = 3000
 rim_stars = spherical_coords(num_rim_stars, rim_radius)

➊ core_stars = spherical_coords(int(num_rim_stars/4), rim_radius/2.5)

➋ fig, ax = plt.subplots(1, 1, subplot_kw={'projection':'3d'})
 ax.axis('off')

➌ ax.scatter(*zip(*core_stars), s=0.5, c='white')
 ax.scatter(*zip(*rim_stars), s=0.1, c='white')

➍ ax.set_xlim(-(rim_radius * 4), (rim_radius * 4))
 ax.set_ylim(-(rim_radius * 4), (rim_radius * 4))
 ax.set_zlim(-(rim_radius * 3), (rim_radius * 3))
 ax.set_aspect('auto')

The “rim” variables represent the radius and number of stars for the full cluster.
Generate the coordinates by calling your function. Then, call it again to generate
coordinates for stars in the densely packed core region at the center of the cluster

➊. Notice how you can alter the input arguments as you pass them to the function,
by dividing them by a scaling factor and ensuring that the number of stars variable
remains an integer. You can play with these scalers to change the appearance of the
core region.

Time to plot the stars. Don’t worry about Matplotlib’s arcane syntax for now;
we’ll go into this in more detail later in the book. Basically, plots, referred to as Axes

(ax for short), reside in Figure (fig) objects that serve as containers ➋. To make a
single 3D ax object you call the plt.subplots() method and set the projection type to
3d. Then, turn off the x-, y-, and z-axes of the plot; we want our cluster to float in
the blackness of space.

To post the star points, call the scatter() method twice: once for the rim stars,

and once for the core ➌. This lets you specify different point sizes for the two
regions. The scatter() method expects x, y, z points, but the data is currently a list of
lists, with each point’s coordinates in its own list:

[[-1.3416146295620397, 0.24853387721205472, -1.3228171973149565],
 [-0.23230429303889005, 0.04705622148151854, 0.7578767084376479]...]

To extract these coordinates, we’ll use Python’s built-in zip() function in
conjunction with its splat (*) operator that unpacks multiple variables. Finish by

setting the axis limits so their aspect ratio is equal and they’re big enough to hold

the cluster ➍. By relating the limits to the rim_radius variable, rather than specifying
an absolute size, the plot will automatically adjust if you change the radius value.

Press CTRL-ENTER to run the cell and generate the plot without adding a
new cell. Your finished notebook should look like Figure 6-9.

Figure 6-9: The completed globular cluster notebook

To save your work, on the toolbar, click the floppy disk icon, or use CTRL-S.

Adding a Console

Everything we’ve done to this point you could accomplish in the classic Jupyter
Notebook app. Now let’s see what JupyterLab can bring to the table, namely the
ability to work with multiple tabs connected to the same kernel.

As you work with code, especially code that you inherit from teammates, you’ll
want to investigate data types, list contents, function returns, and so on. Normally,
investigating side issues would clutter up your notebook. But JupyterLab lets you
open multiple tabs and connect these tabs to the running kernel. This allows you to

perform exploratory work outside of your notebook yet still within the workspace.

To open a console connected to the current kernel, right-click in any cell and
then, on the context menu that opens, select New Console for Notebook. A
console should appear beneath your notebook, as depicted in Figure 6-10.

Figure 6-10: A new console linked to the globular.ipynb notebook

To see the format of the coordinates in the rim_stars list, place your cursor in the
empty box at the bottom of the console, enter the following, and then run it by
pressing SHIFT-ENTER:

print(rim_stars[:3])

This displays the first three lines of the list:

[[0.9223767036280706, -1.0746823426729988, 0.30774451034833233],
[0.25440816717656933, 0.21302429871155004, 0.7991568645529153],
[-0.922974317327836, 0.49065537767349343, 0.5170958730770349]]

You can see that you’re dealing with a list of lists, and each nested list holds three
float values, representing x, y, and z coordinates. Because the notebook and console
share the same kernel, as soon as you run the notebook, any imports, variable
assignments, function definitions, and so on become resident in memory and
accessible to the console. You can even copy all of cell [3] into the console, tweak
the parameters, and plot the results there, leaving your notebook untouched.

To keep the console uncluttered, open its contextual menu and select Clear
Console Cells.

Displaying an Image File

What if you want to compare your output to a photograph of a globular cluster, to
help you tweak the input variables for a realistic-looking simulation? You could
always add an image to a Markdown cell, but you might need to scroll down to see
it, and you’ll have to remember to delete it later. To avoid that aggravation, you can
display the image in a separate JupyterLab window.

To begin, go to the Wikimedia Commons internet site
(https://commons.wikimedia.org/) and search for “The Great Globular Cluster in

Hercules – M13.” Save or download the image to your my_jlab_proj\data folder. I

used the 640-pixel resolution available at
https://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/The_Great_Globular_Clust

er_in_Hercules_-_M13.jpg/640px-The_Great_Globular_Cluster_in_Hercules_-

_M13.jpg.

Back in JupyterLab, navigate to the image in the file browser and open it by
right-clicking the filename and then selecting Open, or by double-clicking it. Next,
drag and stack both the new image pane and the console onto the right side of the
screen to produce the layout shown in Figure 6-11.

https://commons.wikimedia.org/
https://upload.wikimedia.org/wikipedia/commons/thumb/6/6f/The_Great_Globular_Cluster_in_Hercules_-_M13.jpg/640px-The_Great_Globular_Cluster_in_Hercules_-_M13.jpg

Figure 6-11: Our final workspace with file browser (left), notebook (center), console (upper right), and .jpg

image (lower right)

A workspace much like this, with the file browser, notebook, and console, is a
nice setup for a beginner.

Exploring the Simulation

You can change the appearance of the simulation by opening it in an external
window, changing the background color, adding gridlines, and so on. To explore the
simulation in 3D, change the first line in cell [1] to this:

%matplotlib qt

Then, select Run ▸ Run All Cells from the main menu. This opens an external
Qt window that will let you spin the cluster around to view it from all sides. Check
your task bar if the window doesn’t appear on its own.

If you want to see the plot’s 3D grid, it’s best to use a negative image. First, find
and comment-out the following two lines using the CTRL / or CMD / shortcut:

plt.style.use('dark_background')
ax.axis('off')

Then, change the star color to black:

ax.scatter(*zip(*core_stars), s=0.5, c='black')
ax.scatter(*zip(*rim_stars), s=0.1, c='black')

Save the notebook as globular_black.ipynb and run all cells. You might need to

restart the kernel to clear the dark background plot style. If so, from the menu bar

select Kernel ▸ Restart Kernel and Run All Cells. You should get the plot
shown in Figure 6-12.

Figure 6-12: The “black” cluster simulation with grid lines

NOTE

You can use the jupyterlab-matplotlib extension to interact with plots within a notebook

output cell. We’ll look at JupyterLab extensions later in this chapter.

Opening Multiple Notebooks

One advantage of JupyterLab is that it lets you work on multiple Notebook projects
at once. Let’s assume that you want to make an edit to the geyser.ipynb file that you

made in Chapter 5. With JupyterLab, you can navigate to the notebook in the file
manager and double-click it to open a new tab (Figure 6-13).

Figure 6-13: Two notebooks open in the same browser window

You now have two notebooks open in the same browser window, and they use
different kernels, as indicated in the upper-right corner of each notebook.

Saving the Workspace

Documents within a workspace, such as Jupyter notebooks and text files, can be

saved using standard commands like CTRL-S, File ▸ Save Notebook, and so
forth. In addition, the layout of your workspace (that is, the tabs you have open,

their arrangement, and their content) can be saved as a *.jupyterlab-workspace file.

If you plan on using your current layout multiple times, or if you plan on having
multiple project-dependent layouts, you’ll want to give each workspace a unique
name. To store this layout file in your project folder, go to the JupyterLab file
browser and ensure that you’re in the my_jlab_proj folder. Next, use the New Folder

icon (a folder with a “+” in it) to create a folder named workspaces (Figure 6-14).

Now open this folder.

Figure 6-14: Adding the workspaces folder

To preserve the current state of JupyterLab, on the menu bar, select File ▸ Save
Current Workspace As. A pop-up window will ask you for a name, in the
following format:

my_jlab_proj/new-workspace.jupyterlab-workspace

Change the new-workspace text to globular and then click Save:

my_jlab_proj/globular.jupyterlab-workspace

To restore to a saved workspace, just open the .jupyterlab-workspace file.

Clearing the Workspace

To clear the contents of a workspace, use the reset URL parameter. The example
here shows the general format:

http(s)://<server:port>/<lab-location>/lab/workspaces/<workspace-name>?reset

For example, to reset our globular workspace, in your browser’s address bar, use
reset, as shown here:

http://localhost:8888/lab/workspaces/globular?reset

This will configure your workspace similar to that shown in Figure 6-3. You can
still restore the previous layout if you saved it in a .jupyterlab-workspace file, as

described in the previous section.

For more on managing workspaces, visit
https://jupyterlab.readthedocs.io/en/stable/user/urls.xhtml.

Closing the Workspace

As with Jupyter Notebook, simply closing the browser tab does not stop

JupyterLab. To completely shut it down, on the menu bar, use File ▸ Shut Down.
If you are logged in to another server rather than working locally, you can log out

using File ▸ Log Out.

NOTE

Be aware that some service providers, such as universities, might have specific logout

procedures for their servers. Not following these protocols can waste allocated time

resources and can result in unexpected usage fees.

Taking Advantage of the JupyterLab Interface

Hopefully, the previous example gave you an appreciation for the JupyterLab
interface. In the sections that follow, we’ll take a closer look at some of its myriad
components and controls. Many of these are self-explanatory, so we’ll focus on the
most useful and less intuitive ones.

https://jupyterlab.readthedocs.io/en/stable/user/urls.xhtml

As you saw in the globular cluster exercise, the work area lets you tie tools
together in a customized layout. It also brings some nice features to Jupyter
notebooks, including the ability to rearrange a notebook by dragging and dropping
cells, dragging cells between notebooks to copy content, and creating multiple
synchronized views of the same notebook.

Creating Synchronized Views

Let’s look at the last case on synchronized views. It’s not uncommon to want to look
at both the top and bottom of a long notebook at the same time, or to scroll down
to see interactive output. To manage this, JupyterLab lets you open the same
notebook more than once.

To see how this works, in the globular cluster session, click in the globular

notebook and then select File ▸ New View for Notebook. Next, arrange the
layout so that the two notebooks are side by side. Then, shorten your browser
window so that you can’t see the entire notebook along with its output, mimicking a
long notebook. In the left-hand notebook, scroll up to see the code. In the right-
hand notebook, scroll down to see the plot, as in Figure 6-15. Now, rerun the cells
in the first notebook. The plot on the right should update.

Figure 6-15: A synchronized view of the same notebook in different tabs

Alternatively, you can move the output cell into a new pane. Simply open a
context menu in the output cell containing the globular cluster simulation and then

select Create New View for Output (Figure 6-16). You then can drag it wherever
you want in the workspace.

If you use sliders or other widgets to interactively change parameters and update
the visualization, these will be included in the new view. This lets you create
pseudo-dashboards within your workspace.

Copying Cells Between Notebooks

To drag and copy cells between notebooks, open a new notebook using File ▸ New

▸ Notebook. Drag the new notebook beside the globular notebook. From the

globular notebook, click your cursor on a cell number (such as [1]:) and drag it into

the new untitled notebook. You should see results similar to that shown in Figure 6-
17.

Figure 6-16: The globular cluster notebook with the output cell in a separate pane

Figure 6-17: Results of dragging the first cell from the left-hand notebook into the right-hand notebook

Staying Focused by Using Single Document Mode

A nice thing about classic Jupyter Notebook is that you can focus on a task without
the app “getting in your way.” The JupyterLab developers took note of this and
included a setting that lets you concentrate on a single document or activity without
having to close all the other tabs in the main work area.

To toggle on this setting, activate a tab by clicking it, and then, from the menu

bar, select View ▸ Simple Interface, or use the Simple toggle switch at the lower-
left corner of the JupyterLab window. The workspace should show only the active
tab. If you toggle this on and off for the globular workspace, you might detect a

drawback. When you return to the regular view, you may lose your preferred tab

arrangement (compare Figure 6-18 to 6-11).

Figure 6-18: The workspace tab arrangement after toggling off Simple Interface mode for the globular

session

If your view does change, you can restore the original layout either manually or
by using a saved .jupyterlab-workspace file. Because this is a bit tedious, you’ll only

want to use simple interface options when you plan to spend a long time in a single
document or activity.

Using the Text Editor

JupyterLab includes a text editor that you can use to write Python scripts. We
didn’t cover this in our globular session, so let’s work a simple example here using

the Pythagorean theorem. This is the famous a2 + b2 = c2 formula used to find the

hypotenuse of a right triangle.

If you’ve closed JupyterLab, start it from your base environment. Open

Anaconda Prompt (Windows) or a terminal (macOS or Linux), and then enter the
following:

jupyter lab

This should open the default layout shown in Figure 6-3.

If you already have JupyterLab up and running, return to the default workspace
by editing the URL so that it ends in /lab. For example:

http://localhost :8888/lab

If for some reason your workspace doesn’t look like the one in Figure 6-3, reset
it by adding the ?reset URL parameter, like this:

http://localhost:8888/lab?reset

Now, from the Launcher pane, start a new text file or Python file. A new tab
should open for the untitled file. Click in the file and enter this:

def pythagoras(a, b):
 return (a**2 + b**2)**0.5

for i in range(9):
 a = i
 b = i + 1
 print(f″a = {a}, b = {b}, c = {pythagoras(a, b)}″)

From the menu bar, select File ▸ Save As (or File ▸ Save Python File As if
you chose the Python file option) and name the file pythagoras.py. When you click

Save, the file should appear in your file browser. If you go back and click the File
menu again, you’ll note that the save options are now Save Python File and Save
Python File As, even if you started with a text file. JupyterLab now recognizes that
this as a Python file.

You’ll need to save scripts before you run them. You can tell if a file has been
saved by looking at the tab. Unsaved files will have a black dot adjacent to the
filename, and saved files will have an X (Figure 6-19).

Figure 6-19: An unsaved text file with • in the tab versus a saved text file with X in the tab

Although the JupyterLab text editor is not as robust as the one in Spyder
(Chapter 4), it’s more sophisticated than a simple editor such as Notepad. If you
click Settings on the menu bar, you’ll see several submenus for altering its
appearance and behavior, as illustrated in Figure 6-20.

Figure 6-20: The Settings menu

There’s a Key Map that lets you use the same keys as those used by the Sublime
Text, vim, and emacs editors. There are multiple Editor Theme choices, options to
change the font size, set tab indention levels, and automatically close brackets.
Under the Advanced Settings Editor, you can change the Editor’s configuration file.
Keyboard shortcuts are also available and depend on which key mapping you chose.
You can perform an online search for a list of each map’s key bindings.

By default, the editor uses the Plain Text syntax highlighting style, but you can

choose from an exhaustive list by selecting View ▸ Text Editor Syntax
Highlighting (or Text Editor Theme) from the menu bar. Going forward, I will
use the default Jupyter theme, key map, and syntax highlighting. For more on
highlighting, see Chapter 3.

Back to our script. You have several options for running the code that you wrote
in the editor. In the following sections, we’ll look at options involving a terminal
and a notebook.

Running a Script in a Terminal

To run the saved pythagoras.py file in a terminal emulator, on the menu bar, select

File ▸ New ▸ Terminal. Next, click in the terminal pane and enter the following:

python pythagoras.py

Press ENTER, and the script should run (Figure 6-21).

Figure 6-21: Running a Python file in a terminal pane

Depending on your machine, you might need to use python3 in place of python:

python3 pythagoras.py

If you edit the Python file and want to rerun it in the terminal, remember that
you can use the arrow keys to select previous commands, saving you keystrokes.

Running a Script in a Notebook

To run the saved pythagoras.py file in a notebook, on the menu bar, select File ▸
New ▸ Notebook. If prompted for a kernel, accept Python3 or choose the one in
my_jlab_proj_env from the pull-down menu. Next, click in the notebook cell and
enter the following:

%run pythagoras.py

Press CTRL-ENTER, and you should see the output in the notebook (Figure
6-22).

Figure 6-22: Running a Python file in a notebook

Note that you don’t need to save or rename the notebook to use it to run scripts.

Simultaneously Writing and Documenting Code

JupyterLab lets you document your code, check that the code in the document
runs, and preview the results, all in a single workspace. Let’s look at an example.

In the file browser, navigate to your user directory. Open a new text editor from

the menu bar using File ▸ New ▸ Text File. Rename it doc.md (.md files are

plaintext format files that use Markdown language, like Notebook’s Markdown
Cells), and then enter the following:

Example of Previewing Code Documentation in JupyterLab.

Now, in the Editor pane, open a context menu and then select Show Markdown
Preview.

Back in the editor, enter the following:

Let's run some code in a console.

import matplotlib.pyplot as plt

plt.plot([0, 1, 2, 3], [0, 1, 2, 3])
plt.savefig('doc_test.png')

In the editor pane, open a context menu and then select Create Console for
Editor. If prompted for a kernel, choose one with Matplotlib installed, such as
Python [conda env:my_jlab_proj_env]. Now, copy into the console the preceding code,
starting with the import statement, and then run it using SHIFT-ENTER.

Next, enter the following code into the editor to show the plot in the Markdown
preview:

Your layout should look similar to Figure 6-23.

You can also use the Create Console for Editor option to run code in the text
editor. After opening the console, highlight the code inside the editor and then

select Run ▸ Run Code from the menu.

JupyterLab’s versatile layouts and sharable kernels support efficient workflows
that boost productivity. If you find yourself constantly switching tabs and scrolling
through panes while writing code, you might not be taking full advantage of
JupyterLab’s capabilities.

Figure 6-23: Previewing code using an Editor, Console, and Markdown pane

Using JupyterLab Extensions

JupyterLab extensions are plug-and-play add-ons to “extend” the functionality of
JupyterLab. Each extension may contain one or more plug-ins (the basic unit of
extensibility). Extensions can be created by anyone, including yourself. To quote

the documentation, “[the] whole of JupyterLab itself is simply a collection of
extensions that are no more powerful or privileged than any custom extension.”

A small subset of popular JupyterLab extensions is listed in Table 6-1. Some
previous popular extensions, such as the Table of Contents and Debugger
extensions, are now built in to JupyterLab. There are also extensions for working
with plotting and dashboarding libraries such as Plotly, Bokeh, and Dash. We look
at those libraries in Chapter 16.

JupyterLab extensions contain JavaScript that’s run in the browser. There are
two types of extensions: source and prebuilt. Activating a source extension requires

installation of Node.js and a rebuild of JupyterLab. Prebuilt extensions such as
those published as Python packages do not require a rebuild of JupyterLab.
Extensions can also include a server-side component necessary for the extension to
function.

Table 6-1: Useful JupyterLab Extensions

Extension Description Website

nbdime Tools for
diffing and
merging
Jupyter
notebooks

https://nbdime.readthedocs.io/en/latest/

jupyterlab-git Version
control
using Git

https://github.com/jupyterlab/jupyterlab-git/

JupyterLab
GitHub

Access
notebooks
from
repositories

https://www.npmjs.com/package/@jupyterlab/github/

Jupyter-ML
Workspace

IDE
dedicated to
machine
learning

https://github.com/ml-tooling/ml-workspace/

JupyterLab
System
Monitor

Monitor
memory and
CPU usage

https://github.com/jtpio/jupyterlab-system-monitor/

jupyterlab_html View
rendered
HTML files

https://github.com/mflevine/jupyterlab_html

https://nbdime.readthedocs.io/en/latest/
https://github.com/jupyterlab/jupyterlab-git/
https://www.npmjs.com/package/@jupyterlab/github/
https://github.com/ml-tooling/ml-workspace/
https://github.com/jtpio/jupyterlab-system-monitor/
https://github.com/mflevine/jupyterlab_html

Extension Description Website

jupyterlab
matplotlib

Interactive
inline
Matplotlib

https://github.com/matplotlib/ipympl/

JupyterLab
LaTeX

Live-edit
LaTeX
documents

https://github.com/jupyterlab/jupyterlab-latex/

JupyterLab
Code
Formatter

Use
formatters
like Black or
Autopep8 to
enforce style
guidelines

https://github.com/ryantam626/jupyterlab_code_formatter/

jupyterlab-
spellchecker

Spellchecker
for
Markdown
cells and
text files

https://github.com/ocordes/jupyterlab_spellchecker/

jupyterlab-
google-drive

Cloud
storage via
Google
Drive

https://github.com/jupyterlab/jupyterlab-google-drive

NOTE

The classic Jupyter Notebook extensions we reviewed in Chapter 5 are not compatible

with JupyterLab. Even though many useful extensions have been ported over to

JupyterLab, others are still being updated. If an extension you want is unavailable, be

patient and check the Extension Manager periodically for changes. The extension’s

website might also include news on updates.

Installing and Managing Extensions with the Extension Manager

You can use the Extension Manager on the left sidebar (see Figure 6-3) to install
and manage extensions that are distributed as single JavaScript packages on npm,

the node package manager (https://www.npmjs.com/). The extension manager is off by

default, but you can turn it on it by clicking the Enable button (Figure 6-24).

https://github.com/matplotlib/ipympl/
https://github.com/jupyterlab/jupyterlab-latex/
https://github.com/ryantam626/jupyterlab_code_formatter/
https://github.com/ocordes/jupyterlab_spellchecker/
https://github.com/jupyterlab/jupyterlab-google-drive
https://www.npmjs.com/

Figure 6-24: Turning on the Extension Manager from the left sidebar

Installing extensions allows them to execute arbitrary code on the server, kernel,
and browser. Because third-party extensions are not reviewed and may introduce
security risks or contain malicious code, you’re asked to explicitly enable the action.

The extension manager pane has three sections: a search bar, a list of installed
extensions, and a “Discover” section for all the JupyterLab extensions on the NPM
registry. The results are listed according to the registry’s sort order (see
https://docs.npmjs.com/searching-for-and-choosing-packages-to-download#package-search-

rank-criteria/). An exception to this order is extensions released by the Jupyter

organization. These have a small Jupyter icon next to their names and will always
appear at the top of the search results list (Figure 6-25).

https://docs.npmjs.com/searching-for-and-choosing-packages-to-download#package-search-rank-criteria/

Figure 6-25: Extensions released by the Jupyter organization are clearly marked and appear at the top of

the search results.

To find an available extension, you can scroll down the list or use the Extension
Manager’s search box. To learn more about an extension, click its name. This opens
the extension’s website (usually on GitHub) in a new browser window.

You can use the manager’s Install button to install extensions. For source
extensions, you’ll need Node.js. To install it in your base environment from the

defaults channel, open Anaconda Prompt (Windows) or a terminal (macOS or Linux)

and enter the following:

conda install nodejs

To install it from the conda-forge channel, enter this:

conda install -c conda-forge nodejs

You’re now ready to install extensions.

Because most extensions are source extensions, when you click the manager’s

Install button, a drop-down menu should appear under the search bar, indicating
that the extension has been downloaded but that a rebuild is needed to complete
the installation. You should click Rebuild, but if you ignore this for some reason,
the next time you refresh your browser, change workspaces, or start JupyterLab,
you’ll be presented with a Build button. Click the button and you’ll be asked to
“Reload without Saving” or “Save and Reload.”

If you want to manage additional extensions at the same time, you can ignore the
rebuild notice until you have made all the changes you want. After that, click the
Rebuild button to start a rebuild in the background. When it’s complete, a dialog
will open, indicating that a reload of the page is needed to load the latest build into
the browser. At this point, the extension will appear in the Installed section of the
manager, where you’ll have options for uninstalling or disabling it (Figure 6-26).
Disabling an extension will prevent it from being activated, but without rebuilding
the application.

NOTE

Avoid installing extensions that you don’t trust, and watch out for any extensions trying

to masquerade as a trusted extension. Extensions released through the Jupyter

organization will have a small Jupyter icon to the right of the extension name.

During installation, JupyterLab will inspect the package metadata for any
companion packages such as Notebook server extensions or kernel packages. If
JupyterLab finds instructions for companion packages, it will present an
informational dialog to notify you about these. It will be up to you to take these
into account or not.

To read more about the Extension Manager, visit the documentation at
https://jupyterlab.readthedocs.io/en/stable/user/extensions.xhtml.

Figure 6-26: User-installed extensions can be uninstalled or disabled in the Extension Manager

Installing and Managing Extensions Using the CLI

There are other ways to install extensions besides the Extension Manager. Installing
a source extension will still require that you install Node.js and rebuilding
JupyterLab, however, and you’ll need to be aware of the same security issues (see
the previous section for details).

Clicking an extension name in the manager takes you to the extension’s website.
Here, you might find instructions for installing in the CLI. For example, to install
the jupyterlab-git extension, which lets you use version control with Git, open
Anaconda Prompt (Windows) or a terminal (macOS or Linux) and enter the
following:

conda install -c conda-forge jupyterlab-git

To uninstall the extension, use this:

conda remove jupyterlab-git

https://jupyterlab.readthedocs.io/en/stable/user/extensions.xhtml

Also in the CLI, you can use the jupyter labextension command to install or
uninstall source extensions from NPM, list all installed extensions, or disable an
extension.

To install an extension, use this format, where <extension-name> represents the
extension’s name:

jupyter labextension install <extension-name>

To install multiple extensions, enter this:

jupyter labextension install <extension-name> <another-extension-name>

To install a specific version of an extension, use the following:

jupyter labextension install <extension-name>@1.2.3

To uninstall extensions, use this:

jupyter labextension uninstall <extension-name> <another-extension-name>

If you are installing/uninstalling multiple extensions in several stages, you might
want to defer rebuilding JupyterLab by including the flag --no-build in the
install/uninstall step. When you are ready to rebuild, you can run the command:

jupyter lab build

You can list extensions using the following:

jupyter labextension list

NOTE

The jupyter labextension command uses the JavaScript package name for the extension,

which can be different from the name of the conda package used to distribute the

extension.

To disable an extension without rebuilding JupyterLab, use this:

jupyter labextension disable <extension-name>

Disabling an extension leaves the code loaded but prevents the plug-ins from
running.

You can enable a disabled extensions with the following:

jupyter labextension enable <extension-name>

Installed extensions are enabled by default unless there is a configuration
explicitly disabling them.

For help with the jupyter labextension command, enter:

jupyter labextension --help

To read more about this command, visit the documentation at
https://jupyterlab.readthedocs.io/en/stable/user/extensions.xhtml.

Installing ipywidgets for JupyterLab

In Chapter 5, we worked with the ipywidgets extension to use widgets in classic
Jupyter Notebook. Most of the time, installing ipywidgets automatically configures
JupyterLab to use widgets, as it depends on the jupyterlab_widgets package, which
configures JupyterLab to display and use widgets.

If you’re using the modular approach, by which JupyterLab and the IPython
kernel are installed in different environments, installing ipywidgets requires two
steps:

1. Install the jupyterlab_widgets package in the environment containing
JupyterLab.

2. Install ipywidgets in each kernel’s environment that will use ipywidgets.

For example, with JupyterLab installed in your base environment and the kernel

installed in your my_jlab_proj_env environment created earlier, use the following

commands, substituting your path to the my_jlab_proj_env folder:

conda activate base
conda install -c conda-forge jupyterlab_widgets
conda activate C:\Users\hanna\my_jlab_proj\my_jlab_proj_env
conda install -c conda-forge ipywidgets

Creating Custom Extensions

A JupyterLab extension is a package that contains one or more JupyterLab plug-ins.
You can write your own plug-ins and package them together into a JupyterLab
extension. The details for this are beyond the scope of this book, but you can find
what you need in the Extension Developer Guide at

https://jupyterlab.readthedocs.io/en/stable/extension/extension_dev.xhtml.

https://jupyterlab.readthedocs.io/en/stable/user/extensions.xhtml
https://jupyterlab.readthedocs.io/en/stable/extension/extension_dev.xhtml

Sharing

When we talk about sharing in JupyterLab, we’re mainly talking about sharing
notebooks. Because we covered this subject in “Sharing Notebooks” on page 122, I
won’t repeat it here. To supplement that section, however, you can find more about
using JupyterLab on JupyterHub at
https://jupyterlab.readthedocs.io/en/stable/user/jupyterhub.xhtml. For performing real-

time collaboration with JupyterLab, see
https://jupyterlab.readthedocs.io/en/stable/user/rtc.xhtml.

Summary

JupyterLab builds on Jupyter Notebook by providing an IDE-like environment for
developing code, exploring datasets, and conducting experiments. With its
extensible environment, JupyterLab takes us another step closer to true literate

programming, wherein the exposition of logic is integrated into ordinary human

language.

Although it’s open for business, JupyterLab is still under development, and you’ll
want to consult the official documentation for the most recent additions, changes,
and deprecations. In addition to work on the core program, development of third-
party extensions will continue. New tools such as nbdev (https://nbdev.fast.ai/) and

debuggers (https://jupyterlab.readthedocs.io/en/stable/user/debugger.xhtml) are turning

JupyterLab into a full-fledged IDE.

One development in late 2021 was the release of the cross-platform standalone
JupyterLab App (https://github.com/jupyterlab/jupyterlab-desktop/). With the App,

JupyterLab no longer “lives” in a web browser, but instead exists as a self-contained
desktop application. For convenience, it bundles a Python environment with several
popular libraries ready to use in scientific computing and data science workflows.
These include pandas, NumPy, Matplotlib, SciPy, and more. A current drawback,
however, is that the application provides only pip installations in place of conda
installations. This means that it’s not as easy to install some libraries compared to
the web version.

This concludes Part I of the book. At the end of Chapter 4, readers new to
Python were instructed to work through Part II, which is a Python primer. If
you’ve done that—or don’t need to—proceed to Part III, which provides an
overview of important scientific and visualization packages available through
Anaconda, including tips on how to choose the best ones for your needs.

https://jupyterlab.readthedocs.io/en/stable/user/jupyterhub.xhtml
https://jupyterlab.readthedocs.io/en/stable/user/rtc.xhtml
https://nbdev.fast.ai/
https://jupyterlab.readthedocs.io/en/stable/user/debugger.xhtml
https://github.com/jupyterlab/jupyterlab-desktop/

PART II
A PYTHON PRIMER

If you’ve never used the Python programming language before, this
primer will get you up to speed quickly. You’ll learn the language’s
basics, as well as helpful hints and tips for solving real-world problems
on your own. If you already know some Python, use this primer as
reference material to jog your memory when needed.

When you learn a human language in school, you begin with the
alphabet and parts of speech like nouns, verbs, and adverbs. Next, you
might learn how to diagram sentences using these building blocks,
stringing them together to form cohesive thoughts.

Learning a programming language works much the same way. Just as
human language uses grammatical rules to join parts of speech into
understandable expressions, Python uses syntactical rules to join objects
into executable programs. But this isn’t a linear process. Like a toddler
learning to speak, a whole lot happens at the same time.

From the start, you’ll acquire a lot of “nested” knowledge. You can’t
understand what a variable is without understanding what an object is,
and you can’t understand objects without understanding values, or
values without data types. Therefore, if you browse the tables of
contents in beginner programming books, you won’t see a consistent
approach to presenting the information.

In the chapters that follow, I’ll attempt to progress through the
language logically so that each step builds on the one that came before.
There’ll be times, however, when we’ll need to run functions before we
define them, or touch on a concept before fully developing it. That’s
okay. Humans learn by doing, and we’re good at filling in knowledge
gaps using context and interpolation.

Of course, this short introduction can’t cover all the features of
Python in detail, but it should give you a good foundation to begin

programming on your own. If you want a more thorough introduction
to Python, I suggest reading Python Crash Course, 2nd edition: A Hands-

On, Project-Based Introduction to Programming (No Starch Press, 2019) by

Eric Matthes. Alternatively, for a more technical and hard-core
introduction, try Learning Python, 5th edition (O’Reilly Media, 2013) by

Mark Lutz. To expand your knowledge beyond the beginner books, I
suggest Beyond the Basic Stuff with Python: Best Practices for Writing Clean

Code (No Starch Press, 2021) by Al Sweigart.

To find online tutorials, bootcamps, videos, and so on, visit
https://wiki.python.org/moin/BeginnersGuide/Programmers/. This Wiki

page includes a section for nonprogrammers
(https://wiki.python.org/moin/BeginnersGuide/NonProgrammers/) as well as

for those with a range of programming experience and will help guide
you to additional resources. I’ve also found the Real Python site

(https://realpython.com/) to be a great source of Python tutorials and

information. It includes both free and paid content.

And to be a true Pythonista, you’ll want to check out the Zen of

Python (https://www.python.org/dev/peps/pep-0020/), a collection of 19

guiding principles that influence the design of the Python language.
According to these principles, “There should be one—and preferably
only one—obvious way to do something.” In the spirit of providing a
single obvious “right way” of doing things and building consensus
around these practices, the Python community releases coding
conventions known as Python Enhancement Proposals, or PEPs.

The most important PEP is PEP 8

(https://www.python.org/dev/peps/pep-0008/), a set of standards for the

style of your Python code. It includes naming conventions; rules about
the use of blank lines, tabs, and spaces; maximum line lengths; the
format of comments; and so on. The goal is to improve the readability
of code and make it consistent across a wide spectrum of Python
programs. Another useful style guide is PEP 257
(https://www.python.org/dev/peps/pep-0257/), which covers code

https://wiki.python.org/moin/BeginnersGuide/Programmers/
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers/
https://realpython.com/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/

documentation. We look at both these guides in the chapters that
follow.

Finally, if books and online searches fail to meet your needs, the next
step is to ask someone for help. If no coworkers or classmates can help,
you can do this online, either for a fee or at free forums like Stack
Overflow (https://stackoverflow.com/). But be warned: the members of

these sites don’t suffer fools gladly. Be sure to read their “How do I ask
a good question?” pages before posting. You can find advice and counsel
for Stack Overflow at http://stackoverflow.com/help/how-to-ask/.

https://stackoverflow.com/
http://stackoverflow.com/help/how-to-ask/

7
INTEGERS, FLOATS, AND STRINGS

In this chapter, you’ll learn the difference between expressions and statements,
discover how to assign values to variables, and become familiar with the most
common types of data in Python: integers, floats, and strings. In the process,
you’ll likely be surprised by how much programming you can accomplish using
simple mathematical operations.

While working through this and the following chapters, I recommend
running the code examples rather than just reading them. Typing in the
commands will help you to remember them and reduce any apprehension you
might feel about coding. I’ll be using the console and text editor in Spyder for
the examples in this primer. I suggest you do the same so that you can follow
along. If you need a refresher on these tools, see Chapter 3 for the Jupyter Qt
console and Chapter 4 for the Spyder IDE.

Mathematical Expressions

In computer science, expressions are instructions that evaluate to a single value.

The most familiar expressions are mathematical, such as 1 + 2, which evaluates
to 3. Using Python, you can incorporate equations into your programs (and
even use an interactive console as a calculator). To do so, you’ll need to be
familiar with the mathematical operators.

Mathematical Operators

Symbols used to represent an action or process are called operators. These

perform a function or manipulate values in some way. Common operators are
the plus (+) and minus (-) signs, used for addition and subtraction, respectively.
Table 7-1 lists some of the available mathematical operators in Python. Most of
these should be familiar to you, with a few exceptions that we’ll expand on next.

Table 7-1: Mathematical Operators

Operator Description Example Result

+ Addition 5 + 3 8

- Subtraction 5 - 3 2

* Multiplication 5 * 3 15

/ Division 5/3 1.6666666666666667

// Division (floor or integer) 5 // 3 1

% Modulus (remainder) 5 % 3 2

** Power 5**3 125

Whereas the division operator (/) represents true division, floor division (//)

returns an integer with any fractional part ignored. Note that floor division will
not round up. If the result is 1.99999, you’ll still get 1 as the answer.

If you want only the fraction, or remainder, of the division operation, use the

modulo operator (%). The remainder may seem like a strange thing to separate

out, but it can be useful. For example, you can use it to identify even and odd
numbers. Enter the following code in a console:

In [1]: 4 % 2
Out[1]: 0

NOTE

The command for executing the code will depend on what tool you’re using. For the

Jupyter Qt console, this will be pressing ENTER (or SHIFT-ENTER if you’re

within indented code) on your keyboard.

In the previous example, dividing 4 by 2 using the modulo operator returned
0, meaning the operation resulted in no remainder and thus 4 is even. Other

uses for modulo include instructing your program to do something every nth

time and converting seconds to hours, minutes, and seconds.

The power, or exponent, operator also has a non-intuitive feature. Not only

can you raise numbers to a power, you can also calculate the root by using a
decimal value after the ** operator. For example, to take the square root of 9,
enter the following:

In [2]: 9**0.5
Out[2]: 3.0

To take the cube root of 27, enter:

In [3]: 27**(1/3)
Out[3]: 3.0

The Assignment Operator

Using Python as a hand calculator is a bit like calling in an air strike on an ant.
For programs to be truly useful, you need to store the output of expressions in a
reusable manner. That’s where assignment statements, assignment operators,
and variables come in.

Whereas expressions evaluate to a single value, statements carry out some

action. The assignment statement, for example, creates a new variable. Variables

are just references to data stored in memory. In an assignment statement, the

equal sign (=) is an assignment operator that assigns a value or expression to a

variable (Figure 7-1). A simple example is my_name = 'Lee'.

Figure 7-1: Rudiments of an assignment statement

In assignment statements, the item to the left of the equal sign is the
variable’s name. This acts as a label for accessing information in memory. The
item on the right is the variable’s value. These values don’t have to be numeric.
Text data, lists of items, even images and music can be stored as variables.

Now that you know about assignment statements, let’s use them to make our
math expressions more persistent and purposeful by assigning the results to a
variable. Because this is such a common programming task, Python helps you

out by providing special augmented assignment operators, which we’ll talk about

next.

Augmented Assignment Operators

For convenience, you can combine mathematical operators to form augmented

assignment operators that let you perform two operations at the same time. Here’s

an example without an augmented operator:

In [4]: x = 5

In [5]: x = x + 5

In [6]: x
Out[6]: 10

Note that you can add a variable to itself, and entering the variable name in
the console will display its value. In the text editor, you’ll need to use print(x) to
display the value to the screen.

With an augmented assignment operator (+=), you can add 5 to x without
having to repeat x:

In [7]: x += 5

In [8]: x

Out[8]: 15

To make an augmented assignment operator, just add the mathematical
operator (Table 7-1) before the equal sign (=). For example, to multiply x by 2,
you could enter the following:

In [9]: x *= 2

In [10]: x
Out[10]: 30

Notice how, because you assign the result of each expression to the variable
x, each expression can build on the one before.

Precedence

Mathematical expressions in Python use familiar rules of precedence (Table 7-
2). Expressions bounded by parentheses are always performed first, and
operations within the same precedence level are evaluated left to right.

Table 7-2: Mathematical Precedence

Level Operator Description

1 (highest) () Parentheses

2 ** Power

3 -n, +n Negative and positive arguments

4 *, /, //, % Multiplication, division, floor division,
modulus

5 +, - Addition and subtraction

Here’s an example of precedence in action. Follow along in your head and
see if you get the same answer as Python:

In [11]: 10**2 + (6 - 2) / 2 * 3
Out[11]: 106.0

The precedence level influences how you use whitespace within an expression.

For example, the expression that follows will execute, but you might find it less
readable than the previous version:

In [12]: 10 ** 2 + (6-2)/2*3
Out[12]: 106.0

You can find guidelines for improving the readability of expressions in PEP8
(https://pep8.org/). Although there are some set rules—such as never use more

than one space, always have the same amount of whitespace on both sides of a
mathematical operator, and surround assignment (=) and augmented
assignment operators (like +=) with a single space—you’re mostly free to use
your own judgement. If you have poor eyesight, you might prefer to use more
whitespace than is recommended.

The math Module

The Python standard library includes a math module that provides access to
underlying C library functions. Functions are like mini-programs that perform

some task or tasks. They hide the details of these programs from you so that
you can write cleaner code.

To use a function, enter the function name followed by parentheses. Values
or variables you enter in the parentheses will be input to the function. We look

https://pep8.org/

at functions in more detail in Chapter 11, including how to write your own
custom versions.

Groups of related functions are often gathered into modules. The math

module lets you efficiently perform common and useful mathematical
calculations including working with factorials, quadratic equations, and
trigonometric, exponential, and hyperbolic functions. It also includes constants
including π and e. A subset of the available functions is listed in Table 7-3.

To use the math module, you first must import it using an import statement.

Think of this as checking a book out of a library. As there are literally
thousands of available modules, you don’t want them all to load by default. This
would be like emptying all the book shelves in a library onto your desk at once.
Instead, you just take down books you need. Importing modules follows this
principle with respect to your computer’s memory.

Table 7-3: A Subset of Python Math Module Functions

Function Description

ceil(x) Returns the smallest integer greater than or equal to x

fabs(x) Returns the absolute value of x as a floating-point
number

factorial(x) Returns the factorial of x

floor(x) Returns the largest integer less than or equal to x

frexp(x) Returns the mantissa and exponent of x as the pair (m, e)

isnan(x) Returns True if x is a NaN (Not a Number)

exp(x) Returns e**x

log(x[, b]) Returns the logarithm of x to the base b (defaults to e)

log2(x) Returns the base-2 logarithm of x

log10(x) Returns the base-10 logarithm of x

pow(x, y) Returns x raised to the power y

sqrt(x) Returns the square root of x

acos(x) Returns the arc cosine of x

asin(x) Returns the arc sine of x

atan(x) Returns the arc tangent of x

atan2(y, x) Returns the arc tangent of y / x

Function Description

cos(x) Returns the cosine of x

hypot(x, y) Returns the Euclidean norm, sqrt(x**2 + y**2)

sin(x) Returns the sine of x

tan(x) Returns the tangent of x

degrees(x) Converts x from radians to degrees

radians(x) Converts x from degrees to radians

Let’s use the math module to calculate the cosine of 45 degrees:

In [13]: import math

In [14]: x = math.radians(45)

In [15]: math.cos(x)
Out[15]: 0.7071067811865476

Start by importing the math module, converting 45 to radians (all
trigonometric calculations in Python use radians), and assigning the result to
the variable, x. Note that you enter the name of the module followed by a dot
(.), and the radians() function with the angle you want to convert in the
parentheses. Using a dot in this manner is called dot notation. It tells Python to

use the math module’s radians() function. You can think of it as an apostrophe
indicating possession: “math’s radians() function.”

Finally, call the cos() function on x. You can also assign this value to a
variable as follows:

In [16]: cos_x = math.cos(x)

In [17]: cos_x
Out[17]: 0.7071067811865476

Next, let’s use math to access π and calculate the circumference of a circle with

a diameter of 100 units:

In [18]: 100 * math.pi
Out[18]: 314.1592653589793

The math module handles basic math well, but for more advanced
functionality, such as calculus, you’ll want to use external libraries like SymPy,

which we examine in later chapters. In the meantime, to learn more about math

and see a complete list of the available functions and constants, along with
detailed documentation, visit https://docs.python.org/3/library/math.xhtml.

NOTE

Recalling information that you’ve recently learned helps you retain the knowledge.

Take a few minutes to complete this short quiz. You can find answers and

suggestions in the appendix.

TEST YOUR KNOWLEDGE

1. True or false: Statements are computational instructions that evaluate
to a single value.

2. The expression 12%4 evaluates to:

a. 3

b. 48

c. 0

d. 12.4

3. The mathematical operator with the highest precedence is:

a. Power (**)

b. Floor division (//)

c. Parentheses (())

d. Negative and positive arguments (-n, +n)

4. Write a line of code that first takes the square root of 42 and then
raises the result to the 4th power.

Error Messages

As soon as you start coding, you’re going to make mistakes. One issue is that
computers are much more literal than people. You and I can be very flexible
when it comes to contextual meaning, grammar, and even spelling, but with
computers, what you see is what you get (Figure 7-2).

https://docs.python.org/3/library/math.xhtml

Figure 7-2: Computers take everything literally.

You can’t bend Python’s syntactic rules like you can the grammatical rules
that govern human speech. When you try to perform an illegal operation in
Python, such as divide a number by zero, it halts execution and displays an
error message, a process called raising an exception.

Let’s look at an example that a human could handle but Python can’t:

In [16]: 25 / 'five'
Traceback (most recent call last):

File ″C:\Users\hanna\AppData\Local\Temp/ipykernel_8852/1797604750.py″, line 1, in <module>
25 / 'five'

TypeError: unsupported operand type(s) for /: 'int' and 'str'

Python displayed an error message indicating a TypeError because you tried to
divide an integer (int) by a string of text (str). Although you and I can easily
guess the correct answer, Python won’t even try, because you mixed data types

(more on these in a moment). To Python, this is as silly as dividing 25 by
“Steve.”

Now, let’s try to divide by zero:

In [20]: x = 42 / 0
Traceback (most recent call last):

File ″C:\Users\hanna\AppData\Local\Temp/ipykernel_22688/3599633117.py″, line 1, in <module>
42 / 0

ZeroDivisionError: division by zero

This raises the aptly named ZeroDivisionError and again provides a record,
called a traceback, which describes where the interpreter encountered a problem

in your code. In this case, the traceback includes the assignment statement that
caused the exception and the type of error encountered. For some errors, it will
also provide a pointer (^) to where the exception occurs in the line.

NOTE

In many cases, it’s the line before the line referenced in the traceback that causes

the problem. So always remember to look up!

Knowing the type of error that the interpreter encountered will help you
debug your code when you make mistakes. Table 7-4 lists some of the common
error types that you’ll encounter (you can find more at
https://docs.python.org/3/library/exceptions.xhtml). Don’t worry if you don’t

understand them all now. They should make more sense by the end of this
primer.

Table 7-4: Some Common Python Error Types

Error type Thrown when…

SyntaxError a syntax error is encountered.

IndexError trying to access an item at an invalid index.

ModuleNotFoundError a module or package can’t be found.

KeyError a dictionary key can’t be found.

ImportError a problem occurs when loading a module or package.

StopIteration the next() function goes beyond the iterator items.

TypeError an operation or function is applied to data of an
inappropriate type.

ValueError a function’s argument is of an inappropriate type.

NameError an object (variable, function, and so on) can’t be found.

RecursionError the maximum recursion depth exceeded (long-running
loop terminated).

ZeroDivisionError the denominator in the division operation is zero.

MemoryError an operation runs out of memory.

KeyboardInterrupt the user presses the interrupt key (such as CTRL-C)
during execution.

Errors are no big deal. The last line in a traceback includes the error type
and a brief explanation (such as NameError: name 'load' is not defined). If you copy
and paste this line into a search engine, you’ll find lots of friendly explanations

https://docs.python.org/3/library/exceptions.xhtml

that are easier to understand than the overly technical ones provided in the
traceback report and the official documentation.

Later, we’ll look at ways to handle certain exceptions so that a program can
keep running rather than crash when it encounters one. It’s also possible to
write custom exceptions for a specific program in the event that the supplied
exceptions are insufficient.

Data Types

Just as errors have types, every value in Python is automatically assigned to a
specific data type. This lets Python distinguish between the letters of the
alphabet, like “abc,” and numbers, like “123.”

The same principles apply to humans. We wouldn’t try to multiply letters
together (unless we were doing algebra). Nor would we name our children
using numbers (unless we were Elon Musk). Without conscious thought, our
brains recognize different types of data, and after we’ve categorized that data,
we know how to use it.

In computer science, a data type is a classification that dictates what values

objects can hold (in other words, what input is acceptable) and how they can be
used (what operations can be performed using them, such as converting text to
lowercase). Whereas many programming languages use static typing that

requires you to explicitly declare the data type for any variable you create,
Python uses dynamic typing, wherein variables can be any data type and even

change types during execution. This makes Python a friendlier language,
though this comes at a cost. Languages using static typing are better at catching
bugs because they can check that data is being used correctly before the
program runs.

NOTE

Python permits optional static typing using type hints. We won’t cover these here,

but you can learn more at https://www.python.org/dev/peps/pep-0484/.

Let’s begin by looking at some of the built-in data types that you’ll use with
Python (Table 7-5). Because numbers and text occur in pretty much every
computer program, here we’ll focus on three data types: strings, integers, and

https://www.python.org/dev/peps/pep-0484/

floating-point numbers (floats); we cover other data types in subsequent chapters.

These three data types are highlighted in bold in Table 7-5.

Table 7-5: Some Common Data Types

Category Data type Examples

Numeric type Integer -1, 0, 1, 4000

Numeric type Float -1.5, 0.0, 0.33, 4000.001

Numeric type Complex a = 4 + 3j

Text type String 'a', "b", "Hello, world"

Sequence type Tuple (2, 5, 'Pluto', 4.56)

Sequence type List [2, 5, 'Pluto', 4.56]

Sequence type Range range(0, 10, 1)

Set type Set {2, 5, 'Pluto', 4.56}

Set type Frozenset frozenset({2, 5, 'Pluto',

4.56})

Mapping type Dictionary {'key': 'value'}

Boolean type Bool True, False

Additional binary types, not listed in Table 7-5, include Bytes, Bytearray, and

Memoryview. For more on all these built-in types, visit

https://docs.python.org/3/library/stdtypes.xhtml.

Accessing the Data Type

You can query for data type using the built-in type() function that ships with
Python. Enter a value or variable in the parentheses, as in the following code:

In [21]: type(0.5)
Out[21]: float

In [22]: type(0)
Out[22]: int

You can also use the isinstance() function to check whether a variable is an
instance of a particular data type. For example, to check whether the integer 42
is an integer or a string, enter 42 in the parentheses, along with the data type
you’re checking for, as follows:

https://docs.python.org/3/library/stdtypes.xhtml

In [23]: x = 42

In [24]: isinstance(x, int)
Out[24]: True

In [25]: isinstance(x, str)
Out[25]: False

Much like the human brain, Python can recognize data types based on
context. Numbers without a decimal are considered integers. Numbers with a
decimal point are floats, even if there are no values behind the decimal point
(such as 5.). Strings are identified by enclosing characters in quotation marks
(such as “Hello” or ‘123’).

Integers

The integer type represents whole numbers, such as 0, 42, and 5,280. The

length of an integer is limited only by your system’s maximum available
memory.

Python recognizes integers by the absence of a decimal point:

In [26]: whole_number = 42

In [27]: type(whole_number)
Out[27]: int

When working with large numbers, you can use an underscore (_) to
separate thousands, such as 15_000_000 for 15000000. Python doesn’t need this
separator to understand these values, but you’ll have an easier time reading
them. It reduces key-in errors and saves you from having to count lots of zeros:

In [28]: 30_000_000 * 2
Out[28]: 60000000

Later in this chapter, we’ll look at how to make the output more readable, as
well.

Floats

Floats, or floating-point numbers, have decimal points. They include 0.0, 0.42,

and 3.14159. With floats, you get 15 to 17 digits of precision. Small rounding
errors, caused by the universal CPU need to store digits in the binary number
system, mean that floats aren’t always perfectly accurate. For example, notice
that the following addition results in an extra 0.00000000000000004:

In [29]: 0.1 + 0.1 + 0.1
Out[29]: 0.30000000000000004

If you need more exact precision for scientific work, you can use the built-in
decimal module (https://docs.python.org/3/library/decimal.xhtml). For more on

floating-point accuracy, see https://docs.python.org/3/tutorial/floatingpoint.xhtml.

Converting Floats and Integers

Operations using integers sometimes return integers and sometimes return
floats. Try the following in the console:

In [30]: x = 42 * 2

In [31]: x
Out[31]: 84

In [32]: type(x)
Out[32]: int

In [33]: y = 42 / 2

In [34]: y
Out[34]: 21.0

In [35]: type(y)
Out[35]: float

Even though most operations between integers always yield an integer,
division may not (42 / 5, for example). Because dividing an integer by an integer
can result in a float, Python automatically converts the quotient into a floating-
point value, even if the result is still an integer.

The process of converting from one data type to another is known as type

casting. This can occur implicitly, as in the previous example, or explicitly, in

which you use predefined functions. Explicit type casting is commonly used on
user input, to ensure that the input values are the proper type for subsequent
operations.

With Python, you can convert integers to floats in several ways. One is to
combine them in the same mathematical operation. Notice that adding a float
value to an integer turns that integer into a float:

In [36]: x = 5

In [37]: type(x)
Out[37]: int

In [38]: x += 0.0

https://docs.python.org/3/library/decimal.xhtml
https://docs.python.org/3/tutorial/floatingpoint.xhtml

In [39]: type(x)
Out[39]: float

You can also use explicit type casting with the float() built-in function:

In [40]: x = float(5)

If x is an integer, the following would work as well:

In [41]: x = float(x)

To convert a float into an integer, use the int() built-in function:

In [42]: y = 5.8

In [43]: y = int(y)

In [44]: y
Out[44]: 5

Note that int() simply drops the decimal part and keeps the whole number
to the left of the decimal point. If you want to account for any fractional
remainder, you’ll need to use rounding.

Rounding

To round a floating-point number up or down to the nearest integer rather than

just remove the decimal part, you’ll want to use the built-in round()function. In
the following example, we use round() to convert the float 5.89 to the nearest
integer, 6:

In [45]: y = 5.89

In [46]: y = round(5.89)

In [47]: y
Out[47]: 6

In [48]: type(y)
Out[48]: int

The round() function rounds to no decimal places by default and returns an
integer. To specify the number of significant digits for rounding, include the
number after the value to round. In the following example, we round the value
of the y variable to one decimal place:

In [49]: y = 5.89

In [50]: y = round(y, 1)

In [51]: y
Out[51]: 5.9

Because you preserved a value after the decimal point, y is still a float.

When working in an interactive console, you can also round numbers
directly, without the need for a variable:

In [52]: round(5.678, 2)
Out[52]: 5.68

If a float value is halfway between integer values, the rounding function
rounds odd numbers up, and even numbers down, as follows:

In [53]: round(5.5)
Out[53]: 6

In [54]: round(4.5)
Out[54]: 4

As you can see from the previous examples, you should always be aware of
data types when working with numbers. Integers can automatically convert to
floats during the processing of your code, and vice versa. For example, doing
any operation that uses a float (such as 5 *= 1.0), or results in a float (such as 5 /=

3), will produce a float.

TEST YOUR KNOWLEDGE

5. Write an expression that raises a SyntaxError.

6. What error would you expect from the expression, round('Alice'):

a. a TypeError

b. a ValueError

c. a NameError

d. a SyntaxError

7. Round π to five decimal places.

8. Use Python to determine the data type of this object: (1, 2, 3).

9. True or false: The tiny inaccuracies that sometimes occur in floating-
point numbers are a Python-specific issue.

Strings

Strings, also known as string literals, are what we think of as text values. You can

recognize them by their quotation marks. The most famous string value in
programming, “Hello, World!”, is generally the first thing you learn to print.

Strings should be surrounded by quotes, which mark the beginning and end
of the string. In the console, enter:

In [55]: a_string = "Hello, World!"

In [56]: print(a_string)
Hello, World!

In [57]: type(a_string)
Out[57]: str

In [58]: type('1234')
Out[58]: str

In [59]: """Multiline strings can be encased in triple quotes \
 ...: so you don't have to type the marks over and over \
 ...: like a chump."""
Out[59]: "Multiline strings can be encased in triple quotes so you don't have
to type the marks over and over like a chump."

Generally, you should encase strings in single quotes, but if you need to
include a single quote within your string, say, as an apostrophe, you can use
double quotes, as in line In [55]. In line In [58], note how numbers are treated as
strings if they’re surrounded by quotes. You won’t be able to use these numbers
in mathematical expressions without converting them into a numeric type, like
integers or floats.

Triple quotes (""") let you stretch strings across multiple lines. Although
computers don’t care how long a line of code is, humans do. For readability,
PEP 8 recommends a maximum line length of 79 characters. If you want to
write a very long string, say, for in-code documentation, you can use triple
quotes at the start and end of the string, as in line In [59].

To honor the line length guideline, you can use the line continuation
character (\) to break lines between triple quotes. But note that, if you’re using
strings with single or double quotes, you’ll need to place it outside the strings, as

shown here:

In [60]: 'Hello, ' \
 ...: 'World!'
Out[60]: 'Hello, World!'

Triple quotes also allow you to add simple drawings to your program, such
as a grid to show board positions in a tic-tac-toe game:

"""

0 | 1 | 2

3 | 4 | 5

6 | 7 | 8

"""

Finally, you can convert other data types to strings using the str() function.
The following example converts an integer into a string:

In [61]: x = 42

In [62]: type(x)
Out[62]: int

In [63]: x = str(x)

In [64]: type(x)
Out[64]: str

NOTE

Behind the scenes, strings are sequences of characters in Unicode, an international

encoding standard in which each letter, digit, or symbol is assigned a unique

numeric value. Unicode ensures that computers everywhere see an A as an A, and a

☺ as a happy face.

Escape Sequences

Escape sequences are special characters that let you insert otherwise illegal text

into a string. In the previous section, we were able to include a single quote
apostrophe by first enclosing the string in triple quotes. With the backslash (\)
escape character, used within the quotes, we could use single quotes exclusively:

In [65]: print('I don\'t have a banana.')
I don't have a banana.

Note that the backslash doesn’t appear in the final string. To print a
backslash character, you’ll need to escape it with another backslash:

In [66]: print("I don't have an apple\\banana.")
I don't have an apple\banana.

Table 7-6 lists some useful escape sequences and their result.

Table 7-6: Useful Python Escape Sequences

Escape sequence Result

\' Single quote (')

\″ Double quote (")

\\ Backslash (\)

\a Ring ASCII bell (such as print('\a') in Windows 10)

\n ASCII linefeed (newline)

\r ASCII carriage return

\t ASCII tab

For the full list of escape sequences, visit the documentation at
https://docs.python.org/3/reference/lexical_analysis.xhtml.

Raw Strings

Raw strings don’t recognize escape sequences. These are helpful when you need

to deal with lots of backslashes, such as in a Windows path name. In a normal
string, you must escape backslashes with the \\ escape sequence, which can
become awkward:

In [67]: print('C:\\Users\\hanna\\anaconda3\\envs')
C:\Users\hanna\anaconda3\envs

With a raw string, what you see is what you get. To use one, just add an r
prefix to the string, before the first quotation mark:

In [68]: print(r'C:\Users\hanna\anaconda3\envs')
C:\Users\hanna\anaconda3\envs

Operator Overloading

Python can apply context to certain operators depending on whether they’re
used with numbers or strings. An operator doing different things on different

https://docs.python.org/3/reference/lexical_analysis.xhtml

data types is known as operator overloading. That sounds bad, but it’s not. To see

an example, enter the following code:

In [69]: 'Hello, ' + 'world!'
Out[69]: 'Hello, world!'

When used with strings, the + addition operator becomes the string

concatenation operator. Also note that spaces are legitimate characters, so I added

a space before the single quote at the end of Hello. Alternatively, the space could
have been added before world, or separated out entirely, as shown here:

In [70]: 'Hello,' + ' ' + 'world!'
Out[70]: 'Hello, world!'

Likewise, the * multiplication operator becomes the string replication

operator when a string is multiplied by an integer:

In [71]: 'Ha' * 7
Out[71]: 'HaHaHaHaHaHaHa'

This can be useful for drawing in scripts, such as generating a dividing line
within your code:

In [72]: '-' * 20
Out[72]: '--------------------'

Of course, you can’t mix and match these easily among data types. You can’t
add a number to a string, for instance, or multiply two words together.

String Formatting

In many cases, you’ll want to create a string that includes other strings. For
example, you might want to reference a variable in the print() function. Format

strings, also called f-strings, make this easy. You just need to prefix the string

with an f and put the variable name in curly brackets, as follows:

In [73]: solute = 'salt'

In [74]: solvent = 'water'

In [75]: print(f'{solute} dissolves in {solvent}')
salt dissolves in water

NOTE

If you’re working in the console, you can omit the print() function and apply the f-

string directly (such as: f'{solute} dissolves in {solvent}').

Within an f-string, expressions in curly brackets are evaluated at runtime:

In [76]: print(f"The circumference of a 10-inch circle is {10 * 3.14159}")
The circumference of a 10-inch circle is 31.4159

You can also specify the text’s alignment with f-strings, letting you create
tabular output. In the following example, 25 spaces are reserved and < justifies
these spaces to the left, ^ centers the text, and > justifies to the right:

In [77]: print(f'{"output1" : <25}')
 ...: print(f'{"output2" : ^25}')
 ...: print(f'{"output3" : >25}')
output1
 output2
 output3

You can use f-strings to format numeric values. To add commas to a long
number, use this format:

In [78]: long_number = 93000000

In [79]: print(f'{long_number:,}')
93,000,000

To use exponential notation, use the e qualifier:

In [80]: speed_of_light = 299792458

In [81]: print(f'{speed_of_light:e}')
2.997925e+08

To format numbers to a specific precision point, use the f qualifier. For
example, to print Euler’s number, e, to three decimal places, enter:

In [82]: e = 2.718281828459045

In [83]: print(f'{e:.3f}')
2.718

To convert a number to a percent, use the % qualifier. Include a number to
specify the number of decimal places to preserve:

In [84]: num = 0.456

In [85]: print(f'{num:.2%}')
45.60%

As you can see, f-strings make code very readable, so long as your variable
names make sense.

TEST YOUR KNOWLEDGE

10. If x = '30_000_000', what data type is x?

11. Which of the following is the result of running the code f'{3.14159:.2f}'
in Jupyter Qt console?

a. '3.14'

b. '314,159'

c. '3.141590e+00'

d. '314.15%'

12. Draw an owl in the text editor and print it to the screen. Each line of
code should not exceed 79 characters.

13. Write a program that converts 1,824 seconds into minutes and seconds
and then print the results.

String Slicing

Each character in a string has a unique index that locates it within the string.
Think of this as the character’s address. Python starts counting with 0; thus, the
index for the first character in a string is 0, not 1.

In the console, enter the following to retrieve the first and last characters in
the string 'PYTHON':

In [86]: x = 'PYTHON'

In [87]: x[0]
Out[87]: 'P'

In [88]: x[5]
Out[88]: 'N'

To use an index, enter the variable name (such as x) with the index that you
want in square brackets ([]). Note that, even though PYTHON has six characters,
the last index is 5, again because Python starts counting at 0.

If you ask for an index beyond the end of the string, you will get the (very
common) index out of range error:

In [89]: x[6]
Traceback (most recent call last):

File "<ipython-input-89-04aa5bc9ecce>", line 1, in <module>
x[6]

IndexError: string index out of range

You can also slice strings (and many other data types) using indexes. Slicing

lets you chop a string into smaller pieces. For example, you might take the first
three characters, the last two, the one in the middle, and so on.

To slice a string, enter endpoints that encompass the characters in which
you’re interested. For example, to get the first three characters in PYTHON, enter
the following:

In [90]: x[0:3]
Out[90]: 'PYT'

Note that you get the characters at indexes 0, 1, and 2, but not at index 3.
When slicing, Python takes everything up to but not including the ending index.

Because the starting and ending indexes are used so often, Python provides a
shorthand technique in which you leave off those indexes. Rerun the preceding
code, omitting the 0:

In [91]: x[:3]
Out[91]: 'PYT'

To return the whole string, you can use just the colon:

In [92]: x[:]
Out[92]: 'PYTHON'

You can also take larger strides through the string by specifying a step size.
The default step size is 1. If you want to start at the beginning and take every
other character, add another colon followed by a step size of 2:

In [93]: x[::2]
Out[93]: 'PTO'

The extra colon is needed because we are using the syntax x[start:end:step].
When no values are provided, Python defaults to taking the starting and ending
indexes, for convenience.

You can slice going forward or backward through a string. To slice in
reverse, you use negative indexes. For example, if you just want the end part of a

string, you can use negative indexes when slicing. To get the last character and
the last three characters, respectively, enter:

In [94]: x[-1]
Out[94]: 'N'

In [95]: x[-3:]
Out[95]: 'HON'

Note that the “first” index in reverse is -1, not 0 as you might expect.

To print the string in reverse, step backward one character at a time using -1:

In [96]: x[::-1]
Out[96]: 'NOHTYP'

Membership Operators

The in and not in operators tell you whether a character or substring exists
within a string. For example:

In [97]: 'e' in 'scientist'
Out[97]: True

In [98]: 'engineer' not in 'I am a scientist'
Out[98]: True

This functionality is useful with conditional statements, which we’ll cover in
more detail later. For example, if you’d like to know whether 'Waldo' is part of
the string contained in the variable x, you could enter the following:

In [99]: x = "Here's Waldo!"

In [100]: if 'Waldo' in x:
 ...: print("I found Waldo!")
I found Waldo!

String Methods

A nice thing about data types is that they come with methods (a type of
function) that helps you manipulate them. Methods represent actions that data
types can perform. For example, although the in operator tells you that a
character or substring is present, it doesn’t tell you how many times it occurs. If

you want to count number of occurrences, you can use the count() method.

To count the number of times lowercase “i” occurs in the string “I am a
scientist,” enter the string (or a variable representing the string), followed by a
dot (.) and the count() method with the character or substring you’re searching
for in the parentheses:

In [101]: 'I am a scientist'.count('i')
Out[101]: 2

Python comes with a long list of string methods (see
https://docs.python.org/3/library/stdtypes.xhtml#string-methods/). Some of the

more-used methods are listed in Table 7-7. You should replace text in bold with
your specific string or substring. Text in italics is optional. For example, the
start and end indexing options default to the starting and ending indexes of the

string, respectively, if you choose to ignore them.

Table 7-7: Common String Methods

Method Description

str.capitalize() Capitalizes the first character with the rest lowercase

str.count(sub, start, end) Counts occurrences of a character or substring

str.endswith(suffix, start,
end)

Returns True if string ends with the suffix

str.find(sub, start, end) Returns lowest index where substring is found within
slice

str.isalnum() Returns True if all string characters are alphanumeric

str.isalpha() Returns True if all string characters are alphabetic

str.isdigit() Returns True if all string characters are digits

str.islower() Returns True if all string characters are lowercase

str.isupper() Returns True if all string characters are uppercase

str.lower() Changes all cased characters to lowercase

str.replace(old, new,

count)

Replace old substring with new substring

str.split(sep=None,

maxsplit=-1)

Return list of words with “sep” character as the
delimiter

str.startswith(prefix,

start, end)
Return True if string starts with the prefix

https://docs.python.org/3/library/stdtypes.xhtml#string-methods/

Method Description

str.strip(chars) Removes leading and trailing characters; removes
whitespace if no character is specified

str.title() Capitalizes the first character in each word

str.upper() Changes all cased characters to uppercase

Because strings are immutable (unchangeable), these methods return copies of

strings rather than alter the original object. Enter the following into the
console:

In [102]: x = 'string'

In [103]: print(x.upper())
STRING

In [104]: x
Out[104]: 'string'

In this example, you assigned a lowercase string ('string') to the x variable.
You then called the upper() string method on x as you printed it. Python was able
to see and use the uppercase string, but when you use the x variable later, it’s
still in its original lowercase form.

To make x always refer to an uppercase string, you need to reassign it to
itself, as follows:

In [105]: x = x.upper()

In [106]: x
Out[106]: 'STRING'

To see another example of string immutability, let’s try to change the I in
'STRING' to A using its index:

In [107]: x[3] = 'A'
Traceback (most recent call last):

File "<ipython-input-106-124534701dc6>", line 1, in <module>
x[3] = 'A'

TypeError: 'str' object does not support item assignment

This raised a TypeError, as the string data type is immutable.

To (sort of) get around immutability, use the replace() method, which
requires the creation of a new variable:

In [108]: old_string = "I'm the old string."

In [109]: new_string = old_string.replace('old', 'new')

In [110]: new_string
Out[110]: "I'm the new string."

The split() method breaks up a string and returns a list data type (covered in

Chapter 9). For example:

In [111]: caesar_said = 'Tee-hee, Brutus.'

In [112]: words = caesar_said.split()

In [113]: print(words)
Out[113]: ['Tee-hee,', 'Brutus.']

If you look carefully at the results, you’ll notice that punctuation marks get
lumped in with words.

By default, split() uses a space as the delimiter character on which to split the

string. You can also specify a delimiter such as a hyphen or, as in the following
case, a comma with trailing whitespace:

In [114]: words = caesar_said.split(sep=', ')

In [115]: words
Out[115]: ['Tee-hee', 'Brutus.']

Note that, compared to line Out[113], the comma is no longer attached to Tee-
hee, but the period is still attached to the Brutus item.

To strip the punctuation marks, import the string module, which includes a
punctuation string, and use the built-in translate() function to eliminate them:

In [116]: from string import punctuation

In [117]: print(punctuation)
!"#$%&'()*+,-./:;<=>?@[\]^_'{|}~

In [118]: no_punc = caesar_said.translate(str.maketrans('', '', punctuation))

In [119]: no_punc
Out[119]: 'Teehee Brutus'

The maketrans() method takes three arguments; the first two are empty strings
(''), and the third is the list of punctuation marks to remove. This tells the
function to replace all punctuation with None.

Now, you can split the string on white space and get a list of words only:

In [120]: no_punc.split()
Out[120]: ['Teehee', 'Brutus']

Note that the remaining comma in line Out[120] is part of the list and is used
to separate items in the list, like Teehee and Brutus. It doesn’t count as part of a
string. Note also that the hyphen is missing from Teehee. This is because the
punctuation string includes a hyphen.

There are a lot of ways to strip unwanted characters from strings with
Python. For working with large bodies of text, you’ll want to use either regular

expressions (regex) or a natural language processing library. These tools are specially

designed for working with text, and we explore some of them in Chapter 15.

TEST YOUR KNOWLEDGE

14. Which of the following is the result of running the code
'latchstring'[2:8]?

a. 'atchstr'

b. 'tchstr'

c. 'gnirts'

d. 'atchst'

15. To get a subset of a string value, you should use:

a. negative indexes

b. string iteration

c. augmented operators

d. string slicing

16. Running the code 'latchstring'[12] results in:

a. a SyntaxError

b. a StopIteration error

c. an IndexError

d. a ValueError

17. Using the previous caesar_said example, use the translate() function to
remove all the punctuation, except for the hyphen.

18. Convert the string 'impractical python projects' to “title” format.

Summary

In this chapter, you learned that expressions are instructions that evaluate to a

single value, like a mathematical formula. Statements express some action to be

carried out but don’t evaluate to a value. Operators, which are symbols used to

represent an action or process, perform a function, or manipulate values in
some way.

You also learned that a variable is a label for data stored in memory. Variables

have names and values. Every value in Python is automatically assigned a data

type, and you learned about the three most basic types: integers, floats, and

strings.

In the next chapter, you’ll learn more about variables, which are objects that
let you connect to and manipulate data.

8
VARIABLES

Variables are one of the most important concepts for beginning
programmers to understand, so this chapter explores these features in
detail. Technically speaking, a variable is a reserved memory location
used to store values. It’s a reference, or pointer, to an object in memory,

but it’s not the object itself. Variables let you access and manipulate each
object’s associated metadata (attributes) and functionality (methods).

In the previous chapter, you learned how to assign variables. In this
chapter, you’ll learn more about assignment statements, discover how to
name variables clearly, use a built-in function to get a user’s input, and
practice comparing one variable to another.

Variables Have Identities

Python encapsulates data and the functions that operate on that data
into named entities known as objects. As the fundamental building block

for the language, everything in Python is an object, and every object has
an identity (memory address), a type, and a value. The number 42 is an

object as well as the sentence “Hello, world!” An object’s identity and
type never change, but its values can sometimes be changed.

Variables can be thought of as labels for objects. Just as you can be
referred to by multiple names and nicknames (Figure 8-1), an object in
Python can be referenced by many variables.

Figure 8-1: We can go by multiple names; so can objects in Python.

When you use an assignment statement, such as x = 5, the variable x
is initialized as a reference to the object on the right-hand side of the
equal sign. It’s also given an integer number as an identity. This number
is unique for all existing objects. You can view this number with the
built-in id() function that ships with Python. Note that the ID numbers
you see on your computer might be different from mine.

In [1]: x = 5

In [2]: id(x)
Out[2]: 140718638636928

You can overwrite a variable by assigning it a new value:

In [3]: x = 15

In [4]: id(x)
Out[4]: 140718638637248

The reassigned x now has a new identity. In the first example, the
variable x is a reference to an integer object with a value of 5. When you
overwrite x with the new value of 15, the old object continues to exist,
but if no variable is referencing it, its reference count goes to zero. At this

point, it’s subject to garbage collection, the process by which Python

periodically reclaims blocks of memory that are no longer in use. In
some other languages, you must manually designate and free memory
allocations in your code. Python’s ability to automatically manage
memory and “clean up its own mess” makes it a very friendly language!

Because variables are just references, multiple variables can point to
the same object:

In [5]: x = 42

In [6]: id(x)
Out[6]: 140718638638112

In [7]: y = x

In [8]: y
Out[8]: 42

In [9]: id(y)
Out[9]: 140718638638112

By assigning x to y in line In [7], both variables now reference the
same object, as evidenced by their having the same identity. This type of
memory-efficient behavior is called aliasing.

If you overwrite x, its identity will change, but y will still point to the
“old” object:

In [10]: x = 50

In [11]: id(x)
Out[11]: 140718638638368

In [12]: y
Out[12]: 42

In [13]: id(y)
Out[13]: 140718638638112

As a result, the old object has a reference count greater than one, so
it will not be deleted during garbage collection and will hang around for
you to use in expressions, functions, and so on.

Assigning Variables

Assigning a value to a variable is known as binding in Python. In

addition to the straightforward “x = y” method for assigning variables,
you can also do so using expressions, operator overloading, functions,
and more. Basically, both values and things that return values can be
assigned to a variable.

Using Expressions

The result of expressions can be assigned to a variable:

In [14]: x = 6 * 7

In [15]: x
Out[15]: 42

Operator Overloading

Likewise, you can use operator overloading when assigning variables. As
discussed in the previous chapter, operator overloading refers to the
ability of an operator to work in a different manner with different data
types. The classic example is using the + sign to add numbers and

concatenate strings.

Operator overloading works directly with strings or with other
variables. Here, we use it with strings:

In [16]: name = 'Hari ' + 'Seldon'

In [17]: print(name)
Hari Seldon

And here, with variables:

In [18]: first_name = 'Hari'

In [19]: surname = 'Seldon'

In [20]: full_name = first_name + ' ' + surname

In [21]: print(full_name)
Hari Seldon

In line In [20], notice how I added a space between names. Without
it, the printout would be HariSeldon.

Here’s another example of operator overloading:

In [22]: repeat_name = (full_name + ' ') * 5

In [23]: print(repeat_name)
Hari Seldon Hari Seldon Hari Seldon Hari Seldon Hari Seldon

Notice how you can use precedence with the operators. To see the
impact, run line In [22] again without the parentheses and print the

result.

Using Functions

Although we haven’t covered them yet, you can use functions in
assignment statements. Here, we’ll use the built-in count() string method
with an assignment statement:

In [24]: number_of_y_in_python = 'Python'.count('y')

In [25]: number_of_y_in_python
Out[25]: 1

In this case, the count() method returned the value 1, which was then
stored in the variable.

Chained Assignment and Internment

You can simultaneously assign the same value to multiple variables using
a chained assignment:

In [26]: answer_to_life = answer_to_the_universe = answer_to_everything = 42

Interestingly, Python doesn’t create a new object for each of these
variables; they all have the same identity:

In [27]: id(answer_to_life)
Out[27]: 140718641390624

In [28]: id(answer_to_the_universe)
Out[28]: 140718641390624

In [29]: id(answer_to_everything)
Out[29]: 140718641390624

To improve processing speed, Python creates a small cache of
memory addresses at startup. It uses some of these for a list of small
integer values (-5 to 256). The programming practice of using references
in place of copies of equal objects is called interning. Larger values not

in the cache will get new addresses. For example:

In [30]: big_var1 = 5**9

In [31]: big_var2 = 5**9

In [32]: id(big_var1)
Out[32]: 2642973757040

In [33]: id(big_var2)
Out[33]: 2642973756016

Some strings are also interned by Python as an optimization. As
Python code is compiled, identifiers such as variable names, function
names, and class names are interned. Other strings may be interned, as
well. Python automatically makes this determination on a code-by-code
basis.

An advantage of string interning is that when you’re comparing two
variables Python can compare memory addresses. This is faster than

comparing each string character by character.

Generally, Python’s default interning is more than sufficient, but you
should never rely on it. If you ever need to ensure that a string is

interned, import the system module (import sys) and use the sys.intern()
method, with your string in the parentheses (see
https://docs.python.org/3/library/sys.xhtml).

https://docs.python.org/3/library/sys.xhtml

Using f-Strings

You can use f-strings (see the section “String Formatting” on page 192)
with variables. Just prefix the assignment with f, followed by a starting
single or double quotation mark. Place the variables that you want to
use within curly brackets and then add the ending quotation mark.
Here’s an example:

In [34]: first_component = 'hydrogen'

In [35]: second_component = 'sulfide'

In [36]: compound = f'{first_component} {second_component}'

In [37]: print(compound)
hydrogen sulfide

You can even format the strings within the assignment statement.
For example:

In [38]: compound = f'{first_component.title()} {second_component.title()}'

In [39]: print(compound)
Hydrogen Sulfide

In this case, we called the title() string method on each variable in
the curly brackets. This method capitalizes the first letter in a word and
converts the remaining letters to lowercase.

Naming Variables

Programs are read far more often than they’re written. Your code
should be as readable as possible, and not just for other users, but for
yourself. It’s all too common to return to a program you wrote months
ago and have no idea how it works.

A common saying is that “code should be self-documenting.” This
means that readers should be able to understand your code without
relying on explanatory comments. To make your code “self-
documenting,” you’ll want to pay a lot of attention to how you name

variables. This involves ensuring that your names are legal and making
them as logical and compact as possible.

There are three main rules for naming variables:

Variables can contain only letters, numbers, or underscores (_)

The first character cannot be a number

The name cannot be a reserved keyword

Reserved Keywords

Python reserves a set of keywords for its own use (Table 8-1). You
cannot use these as variable names, function names, or as any other
identifiers.

Table 8-1: Python’s Reserved Keywords

Keyword Description

and Logical operator

as Used to alias an imported module or tool

assert Used in debugging

async Used to define an asynchronous function

await Specifies the point in an asynchronous function at which
control is given back to an event loop

break Breaks out of a loop

class For defining a class in object-oriented programming

continue Continue to the next iteration of a loop

def Define a function

del Delete an object

elif Else-if conditional statement

else Conditional statement

except Instructions on how to handle an exception

False Boolean value

Keyword Description

finally Used for a block of code that executes in spite of
exceptions

for Creates a for loop

from Imports specific parts of a module

global Declares a global variable

if Conditional statement

import Loads modules

in Checks whether a value is present

is Tests whether two variables are equal

lambda Creates an anonymous function on-the-fly

None A null value

nonlocal Declares a non-local variable

not Logical operator

or Logical operator

pass Statement that will do nothing

raise Raises an exception

return Exits a function and returns a value or values

True Boolean value

try Makes a try/except statement

while Creates a while loop

with Simplifies exception handling; auto-closes files after
loading

yield Suspends a generator function and returns a value

You don’t need to memorize all of these keywords; Python will raise
a SyntaxError if you try to use one as a variable name. Here’s what
happens if you try to assign the value 5 to the pass keyword:

In [40]: pass = 5
File "<ipython-input-40-85539e45a032>", line 1
pass = 5
^
SyntaxError: invalid syntax

You can also view the list of keywords through Python. Just run
import keyword followed by keyword.kwlist.

Besides keywords, you should avoid using the name of one of
Python’s built-in functions, like print() or id(), as a variable name.
There’s nothing to prevent this from happening, however. For example:

In [41]: print = 5

In [42]: print
Out[42]: 5

You’ll regret doing this, as print now refers to the integer 5. If you try
to use the print() function, Python will raise an error:

In [43]: print("Hello, World!")
Traceback (most recent call last):

File "<ipython-input-43-2223c92d0779>", line 1, in <module>
print(print)

TypeError: 'int' object is not callable

To fix this, you’ll need to delete the print variable using del(print).
This will restore the print() function and allow it to work again.

Many of these function names are ones that you’ll be tempted to use,
such as min, max, sorted, list, set, slice, and sum. We’ll look at a list of these
built-in functions and their purpose in Chapter 11. In the meantime,
you just need to be observant when naming variables. The console and
text editor in Spyder will highlight these special names with a unique
color. I can’t show this in a black-and-white book, but you can see for
yourself by entering the following code in the console:

In [44]: spam = 42

In [45]: list

The spam variable should be colored differently than the list variable
because list is a built-in function name. If list is colored purple in your
console, avoid using purple names for variables.

NOTE

If you insist on using a reserved keyword or built-in function name, you can

avoid conflicts by adding an underscore to the variable name, such as sum_,

max_, or class_. Even better, add a descriptor after the underscore, such as

max_pressure. Everybody wins!

Variables Are Case Sensitive

Python is a case-sensitive programming language. Not only must you
spell variable names correctly to access them, but you must also use the
same arrangement of uppercase and lowercase characters. For example:

In [46]: declination = 80

In [47]: print(declination)
80

In [48]: print(Declination)
Traceback (most recent call last):

File "<ipython-input-48-d1839757958b>", line 1, in <module>
print(Declination)

NameError: name 'Declination' is not defined

Python doesn’t recognize the Declination variable due to the
capitalized first letter, and it raises a NameError as a result.

Best Practices for Naming Variables

Here are some suggestions for ensuring that your variable names are
Pythonic. You can also find a section on naming conventions in Python’s
PEP8 style guide at https://pep8.org/#naming-conventions/.

You should use the underbar (_) to separate words within a variable
name. For example:

https://pep8.org/#naming-conventions/

In [49]: the_answer_to_life_the_universe_and_everything = 42

You should also use lowercase characters in most cases and reserve the

use of capitals for special objects, such as constants. Constants are values

that should not change during the program’s execution, and you can let
others know that a variable represents a constant by naming it with all
caps. For example, to assign the speed of light to a constant, you could
use the following:

In [50]: SPEED_OF_LIGHT = 299_792_458

Constants in Python have a contextual meaning that’s not enforced by

the Python interpreter. Using all caps for the name only alerts other
programmers of your intent. Otherwise, constants can be overwritten
like any other variable.

Variable names should be logical and descriptive but try to achieve
this goal using as few characters as possible. Long variable names are
not only difficult to type, but they can also cause lines to wrap, making
the code challenging to read.

Here’s an example of a name that’s clear to a fault:

In [51]: distance_from_earth_to_the_sun_in_kilometers = 149_597_870

There are several ways in which you can shorten this name, such as:

In [52]: earth_sun_distance_km = 149_597_870

or:

In [53]: earth_to_sun_km = 149_597_870

Alternatively, you can include important information, such as units,
in nonexecutable comments. These will help you to keep your variable

names under control. We examine comments in Chapter 14, but here’s
an example of an inline comment:

In [54]: SPEED_OF_LIGHT = 299_792_458 # Meters per second in a vacuum.

Python will ignore all the text after the # mark, but humans reading
your code will be able to glean more than what is conveyed in the
variable name.

Naming variables is an exercise in optimization. You’ll be surprised
how often you can return to a program and improve your names. You
should avoid taking this to extremes, however, as it’s easy to over-
optimize. If you’re used to working in Imperial units, it might be
obvious to you that mps means miles-per-second, but to most of the
world, it’s meters-per-second.

Likewise, eschew variables that end with a numerical suffix, like step1
or step2. These names aren’t meaningful, and if you add or delete a step,
you’ll need to refactor the whole program. It’s better to use descriptive
names that reference the step, such as denoised_image, or kalman_filtered.
Additionally, never use final in a name. This will anger the gods, and
you’ll surely need another variable after the “final” one.

You should also avoid the characters “l” (lowercase letter L), “O”
(uppercase letter o), or “I” (uppercase letter i) as single character
variable names. These characters can be confused for the numerals one
and zero. In fact, you should avoid single character names altogether,
except when the single letter is commonly understood, such as using x
and y for Cartesian coordinate values. It’s also acceptable to use short
names when performing simple tutorial exercises, like the ones we’ve
been using here.

Managing Dynamic Typing Issues

In the last chapter, we talked about how Python is a dynamically typed
language, which means that Python can use context to assign a data
type, and variables do not have a fixed type. This can lead to complex
and difficult-to-debug code, as a variable named x might represent an
integer, a string, or even a function at different places in a program.

One way to manage this issue is to change the name of the variable
when it changes data types. Compare this code:

In [55]: x = '42'

In [56]: x = int(x)

In [57]: x = float(x)
In [58]: type(x)

Out[58]: float

with this code:

In [59]: x_string = '42'

In [60]: x_integer = int(x_string)

In [61]: x_float = float(x_integer)

In [62]: type(x_float)
Out[62]: float

In both examples, the x variable starts out as a string and ends up as a
float. Careful and considerate naming practices in the second example,
however, help you to track what’s going on even if a program has many
branches and loops and the assignment statements are many lines apart.

NOTE

Linters that you can get through Spyder, like Pylint

(https://pylint.pycqa.org/), will alert you if you reassign a variable to a

different type.

There’s no reason to reuse variable names, because each assignment
will create a new object. And you don’t need to be as explicit as the
previous example and include the data type in the name. The important
thing is that you change names when you change data types.

Handling Insignificant Variables

Variables that serve as placeholders are often named using a single
lowercase letter, typically “i”. Here’s an example using a for loop (which
we cover in Chapter 10):

https://pylint.pycqa.org/

In [63]: for i in 'Python':
 ...: print(i)
P
y
t
h
o
n

Remember to use SHIFT-ENTER after print(i) to execute the code
in the Qt console.

Although there’s technically nothing wrong with this strategy, linters
that check your code’s conformance to the PEP8 guidelines (like we
discussed in Chapter 4) will flag the i as an “unused variable.” Although
you can ignore this, it gets annoying.

To keep from violating a coding standard, you can use an underscore
as a throwaway variable name, such as in this example:

In [64]: for _ in 'Python':
 ...: print(_)
P
y
t
h
o
n

This will keep the linters quiet and happy.

TEST YOUR KNOWLEDGE

1. Which variable names are valid?

a. _steve

b. br549

c. light-speed

d. O579

2. Which naming style is recommended for a constant?

a. GravConstant

b. GRAV_CONSTANT

c. GRAV_constant

d. grav_constant

3. When should you use a single underscore as a variable name?

a. When you want to use a reserved keyword

b. When you want to keep the variable private

c. When you need a placeholder for iteration

d. When you can’t think of a good name

4. When you change a variable’s data type, you should
___________ .

5. Create a new variable and then delete it.

Getting User Input

So far, we’ve been assigning values to variables. In many cases, you’ll

want to get input directly from a user; for example, for a unit conversion
program. Because this is such a common practice, Python provides the
built-in

input() function. Here’s how it works:

In [65]: first_name = input('Enter your first name: ')

Enter your first name: Robert

In [66]: first_name
Out[66]: 'Robert'

The input() function takes a question, known as a prompt, and

presents it to the user. This prompt should be as unambiguous as
possible so that the user knows what to enter (and in what format). The
function then pauses the program until the user enters a value. Because
the function expects strings, you don’t need to use quotation marks with
the input.

The input() function returns a string, which means that numbers

might need to be converted to integers or floats depending on what
your program will do with the input. To make the conversion, call
either the int() or float() function in the assignment statement. For
example, to ensure that the age variable is an integer, enter the
following:

In [67]: age = int(input('Enter your age in years: '))

Enter your age in years: 42

In [68]: type(age)
Out[68]: int

You might also want the input to be consistent. Because Python is
case sensitive, it’s common to convert input to lowercase to avoid
running into any problems later. Enter the following in the console:

In [69]: name = input('Enter your full name: ').lower()

Enter your full name: Chesterfield Walkingstick

In [70]: print(name)
chesterfield walkingstick

In this case, we called the lower() string method to automatically
convert the input to lowercase.

NOTE

When your program interacts with actual human users, if anything can go

wrong, it will. There’s nothing to stop a user from entering their age as

“forty-two” rather than “42.” Fortunately, Python provides things like

while loops, try statements, and conditional statements, that let you check

input for errors and either fix the problem directly or request that the user

reenter the value in the format that it expects. We explore these in later

chapters.

The input() function is a fairly primitive way to get user input. Later,
in the book, we’ll look at more sophisticated methods, such as using a

GUI with menus, radio buttons, text boxes, and so on.

Using Comparison Operators

Python provides comparison operators, also called relational operators

(see Table 8-2), that let you compare variables and determine the
relationship between them. Each operator returns either True or False.

Table 8-2: Python Relational Operators

Operator Description Example

== If values are equal, condition is
True

(a == a) is True

!= If values not equal, condition is
True

(a != b) is True

<> If values not equal, condition is
True

(a <> b) is True

> If left value is greater than right,
then True

(2 > 6) is False

< If left value is less than right, then
True

(2 < 6) is True

>= If left is greater than or equal to
right, then True

(2 >= 6) is False

<= If left is less than or equal to right,
then True

(2 <= 6) is True

is Object identity (a is a) is True

is not Negated object identity (a is not b) is True

The operators evaluate from left to right. For example, to check that
10 is larger than 2:

In [71]: 10 > 2
Out[71]: True

Comparison operators evaluate to a Boolean data type that has two

values: True and False. These values are always capitalized and unlike
strings, they don’t require quotes. You can check their type like any
other value:

In [72]: type(False)
Out[72]: bool

Because computers work in binary, True represents 1 (or 1.0), and False
represents 0 (or 0.0). You can test this for yourself in the console, as
follows:

In [73]: a = True
In [74]: int(a)
Out[74]: 1

In [75]: b = False

In [76]: float(b)
Out[76]: 0.0

As you can see from this example, you can store Booleans in
variables, use them in expressions, and convert them into integers and
floats without raising an exception.

The first two operators, both of which evaluate equality, work with
any data type:

In [77]: 42 == 42
Out[77]: True

In [78]: 'Steve' != 'Steve'
Out[78]: False

The other operators, such as > and <=, work only with floating-point
values and integers. For convenience, you can chain these together in a
single line, such as 2 < x < 5, which states that x is greater than 2 but less
than 5.

You can use these relationships to control what your program does.
Here’s an example using conditional statements, which we investigate in
Chapter 10. This example compares the pH values of three samples to
determine which is the most acidic:

In [79]: sample1_pH = 1.6

In [80]: sample2_pH = 6.0

In [81]: sample3_pH = 7.8

In [82]: if sample1_pH <= sample2_pH:
 ...: print('Sample 1 is more acidic.')
 ...: else:
 ...: print('Sample 2 is more acidic.')
Sample 1 is more acidic.

In the preceding example, the relational operators determine which
statement is printed. You can also chain together comparisons for
multiple variables, as demonstrated here:

In [83]: sample1_pH < sample2_pH < sample3_pH
Out[83]: True

The is and is not operators check whether two objects share the
same identity (in other words, point to the same object in memory).
This is not the same as the equal to (==) and not equal to (!=) operators,
that check equality. Let’s look at an example:

In [84]: x = 1_000_000

In [85]: y = 1_000_000

In [86]: x == y
Out[86]: True

In [87]: x is y
Out[87]: False

Because we assigned a large number to x and y, they are equal in
value but are not the same object. If we use small values, however, they
will be the same object, due to Python’s use of a startup memory cache,
as discussed in “Chained Assignment and Internment” on page 205. For
example:

In [88]: a = 256

In [89]: b = 256

In [90]: a is b
Out[90]: True

TEST YOUR KNOWLEDGE

6. If x = 257 and y = 257, what does the code x is y evaluate to?

a. True

b. False

7. Write a code snippet that prompts a user for their name and
then prints the name in reverse.

8. Write an assignment statement that generates a NameError.

9. Write an assignment statement that generates a TypeError.

10. In the console, what is the output of 'hydrogen sulfide'.title()?

a. 'Hydrogen Sulfide'

b. 'HYDROGEN SULFIDE'

c. AttributeError: 'str' object has no attribute 'title'

d. NameError: name 'title' is not defined

Summary

In this chapter, you got a closer look at how variables work and how to
use them. You learned more about assigning variables as well as some
rules and suggestions on how to name them, compare them, and solicit
user input.

Because variables are just labels for objects in memory, they can
sometimes behave unexpectedly, especially when working with mutable
objects. This will become apparent in the next chapter, in which we
explore the container data types such as lists, sets, and dictionaries.

9
THE CONTAINER DATA TYPES

According to Merriam-Webster, data is plural in form. If you’re working with

data, you’re working with collections of things such as the names of students in a

class or the luminosity of stars in the galaxy. You’re going to need somewhere to
hold all of these collections. That’s where the container data types like tuples,
lists, sets, and dictionaries come in handy. Each one serves a special purpose and
comes with special abilities. Together, they’ll help you to keep your rats, genes,
soil samples, and temperature measurements organized and under control.

In this chapter, we’ll explore the built-in data structures listed in Table 9-1,
along with some of their main characteristics. Remember, mutability refers to

whether something can be changed (mutated) after it’s created. Immutable
objects must be copied to a new object for their values to be altered, appended,
or removed.

Table 9-1: Container Data Types

Category Data type Mutability Features Examples

Sequence type Tuple Immutable Fast, efficient, and
unchangeable

(2, 5, 'Pluto', 4.56)

Sequence type List Mutable Flexible with many
built-in functions

[2, 5, 'Pluto', 4.56]

Set type Set Mutable No duplicate
elements, fast
searches

{2, 5, 'Pluto', 4.56}

Category Data type Mutability Features Examples

Set type Frozenset Immutable No duplicate
elements, fast
searches

frozenset({2, 5,

'Pluto', 4.56})

Mapping type Dictionary Mutable Maps unique keys
to values

{'key': 'value'}

Let’s begin by looking at the simplest of these, the tuple.

Tuples

A tuple (pronounced TOO-pul) is a fixed-length, iterable, immutable, ordered

sequence of values. These values are typically referred to as items or elements.

Here is an example of a tuple where each name represents an item:

('K. L. Putney', 'M. B. Clark', 'S. B. Vaughan')

NOTE

An iterable is a collection of items that you can loop through, such as strings, tuples,

lists, and sets. A sequence is a positionally ordered collection of items that acts as a

single storage unit.

Tuples are a lot like strings, but whereas strings can contain only characters,
tuples are heterogeneous and can hold any type of value, including mixtures of
different types. You can even make tuples of tuples.

Tuples are less commonly used than the list data type, and they have fewer

methods that work on them. But like the old saying goes, “horses for courses.”
There are times when tuples are preferable to other container types.

For example, because they’re immutable, tuples make good places to store
objects like passwords. When you use a tuple, other programmers will
understand that you don’t want those values to change. Tuples are also more
memory efficient than lists due to their immutability, and tuple operations are
smaller in size, making them slightly faster when working with many elements.

Creating Tuples

Tuples consist of a sequence of comma-separated values enclosed by
parentheses. But Python is smart, and just as it can recognize different data
types such as floats and integers by context, you can break the rules when
creating a tuple and leave off the parentheses:

In [1]: tup = 1, 2, 3

In [2]: tup
Out[2]: (1, 2, 3)

Most of the time, however, you’ll want to include the parentheses, both for
clarity and for when you use more complicated code such as a nested tuple (a
tuple stored in a tuple):

In [3]: nested = (1, 2, 3), ('Alice', 'Bob')

In [4]: nested
Out[4]: ((1, 2, 3), ('Alice', 'Bob'))

Because tuples can hold a single value, separating values with commas is
more important than using parentheses. To see why, enter the following in a
console and check the object’s type:

In [5]: what_am_I = (1)
In [6]: type(what_am_I)
Out[6]: int

In this case, Python thinks you’ve just typed an integer in parentheses! Now,
add a trailing comma:

In [7]: what_am_I = (1,)

In [8]: type(what_am_I)
Out[8]: tuple

The takeaway is that single-item tuples require a trailing comma.

Converting Other Types to Tuples

You can also create tuples by using the built-in tuple() function to convert other
data types. Enter the following in the console:

In [9]: x = tuple('Hello, World!')

In [10]: x
Out[10]: ('H', 'e', 'l', 'l', 'o', ',', ' ', 'W', 'o', 'r', 'l', 'd', '!')

This snippet turned the string Hello, World! into a tuple. Note that each
character in the string is now a separate element in the tuple.

NOTE

Because “tuple” is the name of a function, you should never use it as a variable

name.

You can also use tuple() to turn a list (indicated by square brackets []) into a
tuple, as demonstrated here:

In [11]: planet_list = ['Venus', 'Earth', 'Mars']

In [12]: planet_tup = tuple(planet_list)

In [13]: planet_tup
Out[13]: ('Venus', 'Earth', 'Mars')

In this case, the strings are preserved as words because each string was a
separate item in the list.

Working with Tuples

Tuples can be indexed and sliced just like strings (see Chapter 7). Because tuples
are immutable and can’t be modified, they don’t come with many built-in
methods. For added utility, however, you can take advantage of general-purpose
built-in functions from the Python Standard Library when you work with
them. Some of these functions and methods are listed in Table 9-2. You should
substitute real variable and value names for those shown in italics.

Table 9-2: Useful Built-in Functions and Tuple Methods

Function Description Example

tuple() Converts a sequence into a
tuple

tuple(seq_name)

len() Returns the length of a
sequence

len(tuple_name)

min() Returns the sequence item with
the minimum value

min(tuple_name)

max() Returns the sequence item with
the maximum value

max(tuple_name)

Function Description Example

Method Description Example

count() Returns the count of a specified
value

tuple_name.count(value)

index() Returns position of a specified
value

tuple_name.index(value)

Note that tuple methods are called after the tuple name using dot notation,

such as tuple_name.count(value). You saw tuple() in action in the previous section,
so let’s start by looking at len().

Getting a Tuple’s Length

After you make a tuple, it always has a fixed length. You can find this length by
using the built-in len() function. Let’s use the tuples that we created in the
previous section to see how this works:

In [14]: len(tup)
Out[14]: 3

In [15]: len(nested)
Out[15]: 2

The first result, 3, is intuitive, as there are three items in tup. But the length
of the nested tuple is only 2, when there are clearly five items present.

To understand what’s happening, let’s use indexing to look at the first item in
each tuple:

In [16]: tup[0]
Out[16]: 1

In [17]: nested[0]
Out[17]: (1, 2, 3)

Values enclosed by parentheses are considered a single item within the overall

sequence of items in the tuple. If you need to access a value within an item, you

can add another index. For example, to see the first element within each nested
item, enter the following:

In [18]: nested[0][0]
Out[18]: 1

In [19]: nested[1][0]

Out[19]: 'Alice'

In [20]: nested[1][0][0]
Out[20]: 'A'

This is shown diagrammatically in Figure 9-1. Because the items in the
second nested tuple are strings ('Alice', 'Bob'), which are in turn made up of
elements (the letters), you need to index to three levels to access all of the
elements in nested[1]. The first index gets the nested tuple, the second index gets
you a string in the nested tuple, and the third index gets you a character within
the string.

Figure 9-1: An example of indexing a nested tuple

Understanding this behavior is important in the event that you want to
iterate over a tuple to get its values one by one (we haven’t covered looping yet,
so bear with me). This is straightforward with a non-nested tuple:

In [21]: for i in tup:
 ...: print(i * 10)
10
20
30

For nested tuples, you need to loop through the elements in each nested

tuple to get to all of the items:

In [22]: for item in nested:
 ...: for element in item:
 ...: print(element * 5)
5
10
15
AliceAliceAliceAliceAlice
BobBobBobBobBob

The terms “item” and “element” have no special meaning. You could just as
easily call them “i” and “j” or “Fred” and “George.”

Getting a Tuple’s Minimum and Maximum Values

The min() and max() functions return the minimum and maximum values in a
tuple, respectively. Here’s an example:

In [23]: min(tup)
Out[23]: 1

In [24]: max(tup)
Out[24]: 3

That’s easy, but what if we try it on the nested tuple? Let’s see what happens:

In [25]: min(nested)
Traceback (most recent call last):

File ″C:\Users\hanna\AppData\Local\Temp/ipykernel_25576/1378168620.py″, line 1, in <module>
min(nested)

TypeError: '<' not supported between instances of 'str' and 'int'

Python raises a TypeError because it doesn’t know how to distinguish a
minimum string from a minimum integer. You can find a minimum value in a
tuple of strings, however. Check this out:

In [26]: test = ('c', 'bob', 'z')

In [27]: min(test)
Out[27]: 'bob'

In [28]: test = ('a', 'A')

In [29]: min(test)
Out[29]: 'A'

The min() and max() functions use the ASCII sorting order to sort strings. In
an ASCII table (see https://www.asciitable.com/), special characters, like

punctuation marks, come before the alphabet, and uppercase letters come
before lowercase letters.

Many other built-in functions work with multiple data types. The len()
function, for example, works with strings, tuples, sets, lists, and dictionaries.
The membership operators you learned about in Chapter 7 also work with
multiple types. Here’s an example:

https://www.asciitable.com/

In [30]: elements = 'carbon', 'calcium', 'oxygen'

In [31]: 'carbon' in elements
Out[31]: True

Unpacking Tuples

You can assign the values in a tuple to multiple variables at once using a process
called unpacking. Let’s pretend that you’ve written a function that returns a

Cartesian coordinate (x, y) pair as a tuple. You want to use the individual x and y
values later in the program. Here’s how you can get at those values:

In [32]: coordinates = (45, 160)

In [33]: x, y = coordinates

In [34]: x
Out[34]: 45

In [35]: y
Out[35]: 160

To use nested tuples, assign variables using the same parenthesis structure.
Let’s revisit our nested tuple:

In [36]: nested = (1, 2, 3), ('Alice', 'Bob'), 549

In [37]: (a, b, c), (d, e), f = nested

In [38]: a
Out[38]: 1

In [39]: e
Out[39]: 'Bob'

You don’t need to take all of the elements. Suppose that you want only the
first three numbers in the nested tuple. If you try to take them directly, you’ll
raise an exception:

In [40]: (a, b, c) = nested
Traceback (most recent call last):

File ″C:\Users\hanna\AppData\Local\Temp/ipykernel_25576/3799313898.py″, line 1, in <module>
(a, b, c) = nested

ValueError: not enough values to unpack (expected 3, got 2)

Python expects you to unpack every item in the tuple. To get around this,
you can unpack the tuple using the splat (or star) operator (*) with the

insignificant variable symbol (_). Splat allows for an arbitrary number of items,
so in this case, you’re telling Python to “get the rest” and assign them to _:

In [41]: (a, b, c), *_ = nested

In [42]: a
Out[42]: 1

In [43]: b
Out[43]: 2

In [44]: c
Out[44]: 3

In [45]: _
Out[45]: [('Alice', 'Bob'), 549]

You don’t need to use the values in _. These will be cleared from memory
later when Python performs routine garbage collection.

Operator Overloading with Tuples

You can use operator overloading on tuples, just as with strings. For example,
adding two tuples produces a new tuple containing the values of both tuples:

In [46]: tup1 = 1, 2, 3

In [47]: tup2 = 4, 5, 6

In [48]: tup3 = tup1 + tup2

In [49]: tup3
Out[49]: (1, 2, 3, 4, 5, 6)

Using the multiplication operator with an integer concatenates multiple
copies of a tuple along with copies of the references to the objects they contain:

In [50]: tup1 * 3
Out[50]: (1, 2, 3, 1, 2, 3, 1, 2, 3)

Unexpected Tuple Behaviors

There are loopholes in the rule that tuples are immutable. For instance, if a
tuple contains a mutable data type, you can change that item within a tuple.

Let’s try this using a mutable list (enclosed in square brackets; we’ll look more
at lists in the next section):

In [51]: tup_with_list = (1, 2, ['Alice', 'Bob'], 3)

In [52]: tup_with_list
Out[52]: (1, 2, ['Alice', 'Bob'], 3)

In [53]: tup_with_list[2][1] = 'Steve'

In [54]: tup_with_list
Out[54]: (1, 2, ['Alice', 'Steve'], 3)

In this example, we were able to change the second item in the list ([2][1])
from Bob to Steve, even though tuples are immutable. This falls under the
category of things you can do, but shouldn’t!

Printing Tuples

Running print() on a tuple can be frustrating, as the default display includes the
commas and quotation marks:

In [55]: names = 'Harry', 'Ron', 'Hermione'

In [56]: print(names)
('Harry', 'Ron', 'Hermione')

To fix this, you can use the join() string method to print only the strings in a
tuple:

In [57]: print(' '.join(names))
Harry Ron Hermione

In this example, we joined each item in the tuple using a space (' '). You can
use other characters to join items, such as the newline escape sequence (\n):

In [58]: print('\n'.join(names))
Harry
Ron
Hermione

The join() method works only for sequences composed of strings. To handle
mixed data types, include the map() built-in function:

In [59]: tup = 'Steve', 5, 'a', 5

In [60]: print(' '.join(map(str, tup)))
Steve 5 a 5

You can also use the splat operator (*) to print a tuple efficiently and
attractively:

In [61]: print(*tup, sep='\n')
Steve

5
a
5

Splat takes the tuple as input and expands it into positional arguments in the
function call. The last argument is the separator used between items for
printing. The default separator is a space (sep=' ').

TEST YOUR KNOWLEDGE

1. For tup = (1, 2, 3), what happens if you run this code: tup[3]?

2. If test = ('a', '!'), what is the result of running min(test)?

3. Use indexing to isolate the letter “y” in tup = ('Rust', 'R', 'Go', 'Julia'),
('Python').

4. Which of the following are characteristics of a tuple?

a. Fixed length

b. Ordered values

c. Contents are unchangeable

d. Holds only integers, floats, and strings

5. Make a “field trip” tuple containing these five items: pith helmet, rock
hammer, hand lens, hiking boots, and sunglasses. Then, write code
that removes the pith helmet from the tuple (because I’m not wearing
that!).

Lists

A list is a variable-length, iterable, mutable, ordered sequence of values. They
look like tuples except they’re enclosed in brackets rather than parentheses:

['K. L. Putney', 'M. B. Clark', 'S. B. Vaughan']

Because lists are mutable, you can change their values at will. You can add
items, change items, and delete items. Otherwise, lists are like tuples. They can
hold multiple data types, including mixtures of types. You can index them, slice
them, concatenate them, nest them, use built-in functions, and more. Lists are
true workhorses in Python, and you will use them all the time.

NOTE

Lists are objects that can be treated as values. That is, they can be stored in variables

and passed to functions. If you hear the term list value, be aware that it refers to

the whole list, not some value inside it.

Creating Lists

To create a list, enclose a value or comma-delimited values in square brackets
([]):

In [62]: dna_bases = ['adenosine', 'guanine', 'cytosine', 'thymidine']

In [63]: dna_bases
Out[63]: ['adenosine', 'guanine', 'cytosine', 'thymidine']

Because lists are mutable, you can begin with an empty list. For example,
you might set up an empty list to hold user input later in the program. Here’s
how:

In [64]: empty_list = []

You can also use the built-in list() function to convert other data types, like
tuples and strings, into lists:

In [65]: my_tuple = 1, 2, 3

In [66]: my_tuple
Out[66]: (1, 2, 3)

In [67]: my_list = list(my_tuple)

In [68]: my_list
Out[68]: [1, 2, 3]

NOTE

Because “list” is the name of a function, never use it as a variable name.

Working with Lists

Because lists are mutable, you can do a lot more with them than you can with
tuples, and they come with more built-in functionality. Table 9-3 summarizes
the list methods. You’ll need to substitute your own names for those in italics.

In addition, you can use the len(), min(), and max() built-in functions from Table
9-2 with lists.

Table 9-3: Built-in List Methods

Method Description Example

append() Add a single item to the end of
a list

list_name.append(item)

extend() Add iterable items to the end of
a list

list_name.extend(iterable)

insert() Insert an item before a given
index (i)

list_name.insert(i, item)

remove() Remove first item from list
with value = item

list_name.remove(item)

pop() Remove and return item at
given index

list_name.pop(index)

clear() Remove all items from a list list_name.clear()

index() Return index of first item with
value = item

list_name.index(item)

count() Return number of times an
item appears in a list

list_name.count(item)

sort() Sort list items in place list_name.sort()

reverse() Reverse list items in place list_name.reverse()

copy() Return a shallow copy of a list list_name.copy()

List methods don’t work like the string methods you learned about in
Chapter 7. Whereas string methods perform their task and return a new string,
list methods usually modify the list and return None. To sort a list, for example,
you should use list_name.sort(), not list_name = list_name.sort().

NOTE

All of the methods for printing tuples also work with lists, so refer to “Printing

Tuples” on page 228.

Adding Items to Lists

The append item lets you add an item to the end of a list.

In [69]: patroni = ['stag', 'otter', 'dog']

In [70]: patroni.append('doe')

In [71]: patroni
Out[71]: ['stag', 'otter', 'dog', 'doe']

To add multiple items to the end of a list, the items need to be in the form of

an iterable. Let’s try adding a heron and a hare to the patroni list:

In [72]: patroni.extend('heron', 'hare')
Traceback (most recent call last):

File ″C:\Users\hanna\AppData\Local\Temp/ipykernel_24452/4246633803.py″, line 1, in <module>
patroni.extend('heron', 'hare')

TypeError: extend() takes exactly one argument (2 given)

You get a TypeError because the extend() method is looking for one argument
(the thing between parentheses), not two. Now, try passing it a tuple of names,
instead:

In [73]: extra_patroni = 'heron', 'hare'

In [74]: patroni.extend(extra_patroni)

In [75]: patroni
Out[75]: ['cat', 'stag', 'otter', 'dog', 'doe', 'heron', 'hare']

Success! Both append() and extend() are useful when either looping through
values and adding some of them to a list, or when adding values returned from
a function.

Inserting Values into Lists

If you need to insert an item at a specific location in a list, not just at the end,
use the insert() method and pass it (add between the parentheses) the index

before which you want to place the item, and then the item, separated by a

comma. For example, to add an item to the start of the patroni list, use an index
of 0:

In [76]: patroni.insert(0, 'cat')

In [77]: patroni
Out[77]: ['cat', 'stag', otter, dog, 'doe']

The insert() method shifts the index for each item to accommodate the new
item. This is computationally expensive, however, and should be avoided when
possible.

Removing Items from Lists

If you want to remove an item from anywhere in a list, use the pop() method.
Let’s remove the cat patronus. Because pop() returns the item as well as
removing it, we can also use it in some way, such as by assigning it to a variable,
though this is optional. Let’s take a look:

In [78]: Umbridge_patronus = patroni.pop(0)

In [79]: Umbridge_patronus
Out[79]: 'cat'
In [80]: patroni
Out[80]: ['stag', 'otter', 'dog', 'doe', 'heron', 'hare']

We now have a new variable that holds the string cat, whereas the patroni list
no longer contains that item.

If you don’t specify an index, pop() removes the last item in the list.

Another way to remove items is to use the del operator, short for “delete.”
Just pass it the index:

In [81]: names = ['Harry', 'Ron', 'Hermione', 'Ginny']

In [82]: del names[1]

In [83]: names
Out[83]: ['Harry', 'Hermione', 'Ginny']

The del operator also permits slicing:

In [84]: del names[:2]

In [85]: names
Out[85]: ['Ginny']

You can also remove an item by naming it in the remove() method:

In [86]: my_list = ['a', 'b', 'c', 'a', 'b', 'c']

In [87]: my_list.remove('a')

In [88]: my_list
Out[88]: ['b', 'c', 'a', 'b', 'c']

Note that only the first occurrence of 'a' is removed. Also, if the specified
item doesn’t exist in the list, Python will raise a ValueError.

Changing the Value of Items in Lists

You can change the value of items within a list by using indexing. Let’s change
the hare patronus to a wolf:

In [89]: patroni[5] = 'wolf'

In [90]: patroni
Out[90]: ['stag', 'otter', 'dog', 'doe', 'heron', 'wolf']

Because hare came at the end of the list, we could have also used the built-in
len() function to find the end of the list and use its return value:

In [91]: patroni[len(patroni) - 1] = 'wolf'

You need to subtract one from the length of the list because iterating and
indexing in Python start at 0, so the final index is always one less than the
length of the list.

Finding the Index of Items in Lists

Similar to the remove() method, the index() method will return the zero-based
index of the first occurrence of a specified item in a list. It also raises a ValueError
if the item doesn’t exist. Let’s fetch the index of dog in the patroni list:

In [92]: patroni

Out[92]: ['stag', 'otter', 'dog', 'doe', 'heron', 'wolf']

In [93]: patroni.index('dog')
Out[93]: 2

You can also use slice notation on the list to limit the search to a particular
subsequence. Just add optional start and end arguments after the item name.
The returned index is still computed relative to the beginning of the full
sequence, however:

In [94]: patroni.index('dog', 2, 5)
Out[94]: 2

In this example, the index() method looked at the items between indexes 2
and 5 (dog up to wolf).

The count() method returns the number of times an item appears in a list:

In [95]: my_list.count('b')
Out[95]: 2

Sorting the Values in Lists

The sort() method sorts lists in place, either alphabetically or numerically. For
example:

In [96]: letters = ['c', 'a', 'c', 'b', 'd']

In [97]: letters.sort()

In [98]: letters
Out[98]: ['a', 'b', 'c', 'c', 'd']

Computers are very literal, however, and things might not go as planned.
Notice what happens if you try to alphabetize a list comprising letters with
different cases:

In [99]: letters_mixed_case = ['C', 'a', 'c', 'B', 'd']

In [100]: letters_mixed_case.sort()

In [101]: letters_mixed_case
Out[101]: ['B', 'C', 'a', 'c', 'd']

The Python default is to place capitalized letters before lowercase ones. So,
this mixed-case example is correct by Python’s standards but probably isn’t what
you expected or wanted. To force Python to compare apples to apples, you can
use the optional key argument to convert all strings to lowercase before sorting:

In [102]: letters_mixed_case.sort(key=str.lower)

In [103]: letters_mixed_case
Out[103]: ['a', 'B', 'C', 'c', 'd']

The sort() method also comes with a second optional argument for reversing

the order of items in the list:

In [104]: letters_mixed_case.sort(reverse=True)

In [105]: letters_mixed_case
Out[105]: ['d', 'c', 'a', 'C', 'B']

You can pass sort() a sort key to let it know what parameter you want to sort

by. In this example, we’re sorting based on the length of strings using the len

sort key:

In [106]: my_list = ['longest', 'long', 'longer']

In [107]: my_list.sort(key=len)

In [108]: my_list
Out[108]: ['long', 'longer', 'longest']

You can even write and pass sort() a custom function to do more complicated
sorting. To find out more, visit the sorting tutorial at
https://docs.python.org/3/howto/sorting.xhtml.

The Curious Case of Copy

The act of copying a list reveals perhaps the greatest “gotcha” in the Python
language. Pour yourself a cup of coffee, because this may be the most important
thing you learn all day.

Remember that variable names are references to an object, but not the
object itself? Likewise, when you copy an object using an assignment statement,
you copy only the reference to that object. When this behavior is combined
with mutable objects, mayhem can result.

Let’s assign a list to another list, a seemingly straightforward thing to do:

In [109]: my_patroni = ['cat', 'hare', 'doe']

In [110]: your_patroni = my_patroni

In [111]: your_patroni
Out[111]: ['cat', 'hare', 'doe']

You might think my_patroni and your_patroni are separate lists containing
identical values, but they’re not. Each name points to the same object in
memory. You can confirm this by checking the identity of each:

In [112]: id(my_patroni), id(your_patroni)
Out[112]: (2181240760640, 2181240760640)

They’re the same object. So, if you alter one, you alter the other:

In [113]: my_patroni[0] = 'stag'

In [114]: my_patroni
Out[114]: ['stag', 'hare', 'doe']

In [115]: your_patroni
Out[115]: ['stag', 'hare', 'doe']

https://docs.python.org/3/howto/sorting.xhtml

Changing the first item in my_patroni changed the same item in your_patroni.
This kind of behavior can keep you up bug-hunting all night.

To properly copy a mutable object, like a list, use the copy() method:

In [116]: my_patroni = ['cat', 'hare', 'doe']

In [117]: your_patroni = my_patroni.copy()

In [118]: your_patroni
Out[118]: ['cat', 'hare', 'doe']

Alternatively, you can use slice notation to copy the whole list from start to
finish:

In [119]: your_patroni = my_patroni[:]

Regardless of the method, each list object has a separate identity:

In [120]: id(my_patroni), id(your_patroni)
Out[120]: (2181240443968, 2181240620288)

That’s great, but we’re not through yet. The slice and copy() methods make a
shallow copy. This means that if a list contains nested lists, copy() duplicates only

references to the inner, nested lists. Let’s look at an example:

In [121]: my_patroni = [['cat', 'hare'], ['doe', 'stag']]

In [122]: your_patroni = my_patroni.copy()

In [123]: id(my_patroni), id(your_patroni)
Out[123]: (2181240513024, 2181240710976)

As expected, these two lists have different identities, meaning that they’re
different objects. Now let’s check the identity of the first nested list, at index 0:

In [124]: id(my_patroni[0]), id(your_patroni[0])
Out[124]: (2181240520640, 2181240520640)

This inner list is the same object in both lists. To prove it, change the first
item in this list to wolf. Remember, the first index references the first nested list,
and the second index references the first item in this list.

In [125]: my_patroni[0][0] = 'wolf'

In [126]: my_patroni
Out[126]: [['wolf', 'hare'], ['doe', 'stag']]

In [127]: your_patroni
Out[127]: [['wolf', 'hare'], ['doe', 'stag']]

Again, changing an item in one list has changed the same item in another.
Note that this behavior extends only to the nested lists. If you append a new

item to the my_patroni list, it won’t affect your_patroni:

In [128]: my_patroni.append('Manx cat')

In [129]: my_patroni
Out[129]: [['wolf', 'hare'], ['doe', 'stag'], 'Manx cat']

In [130]: your_patroni
Out[130]: [['wolf', 'hare'], ['doe', 'stag']]

To avoid this type of behavior, you should import the built-in copy module
and use its deepcopy() method:

In [131]: import copy

In [132]: their_patroni = copy.deepcopy(your_patroni)

In [133]: their_patroni
Out[133]: [['wolf', 'hare'], ['doe', 'stag']]

In [134]: id(your_patroni[0]), id(their_patroni[0])
Out[134]: (2181240520640, 2181240818368)

Now, the nested lists are separate objects, and you’ve created a true copy of
the original. No more “quantum entanglement” with “spooky action at a
distance.”

For a slight slowdown in your code, deepcopy() will ensure that you’re copying
any internal object references. This includes all mutable objects within a list at
every possible level, thereby avoiding bugs that can cost you much more time to
find and correct.

Checking for Membership

You can check whether an item occurs in a list using the in and not_in keywords.
These also work on other container data types, as shown here:

In [135]: my_patroni = ['cat', 'hare', 'doe']

In [136]: 'hare' in my_patroni
Out[137]: True

In [138]: 'wolf' in my_patroni
Out[138]: False

Doing this for large lists is not recommended, however. Checking for
membership in a list is computationally expensive and thus slow. Python must
check through every value in a list to perform this operation, whereas in other
collection data types such as sets and dictionaries, it can use very fast hash tables
for a noticeable improvement in performance. It’s easy to convert a list into a
set for this purpose, and we’ll do it later in this chapter.

TEST YOUR KNOWLEDGE

6. Create an empty list named patroni and then add a tiger, shark, and
weasel to it all at once.

7. Delete all of the items in the previous patroni list.

6. Which is the wrong way to add “shrew” to the patroni list?

a. patroni.append('shrew')

b. patroni += ['shrew']

c. patroni = patroni + 'shrew'

d. patroni = patroni + ['shrew']

9. Why shouldn’t you use patroni += 'shrew'?

a. You’ll raise TypeError: can only concatenate list (not ″str″) to list

b. Augmented operators work only with strings and mathematical
expressions

c. Each letter in “shrew” will become a separate item in the list

d. No one uses a shrew as a patronus

10. J.K. Rowling’s personal patronus is a:

a. Manx cat

b. Jack Russell terrier

c. Heron

d. Hummingbird

Sets

A set is a mutable, unordered, iterable collection of unique elements (no

duplicates allowed). Sets are designed to work like their mathematical

counterparts and thus support operations such as union, intersection, and
difference. Sets look like tuples and lists except that they’re enclosed in curly
brackets:

{'K. L. Putney', 'M. B. Clark', 'S. B. Vaughan'}

Sets are based on a data structure known as a hash table that makes adding

and searching for elements in them very fast (we looked at this data structure
back in “The Debugger Pane” on page 90). A deep discussion of hash tables is
beyond the scope of this book, but basically, hashing is a process whereby a key
or string of characters is transformed into a shorter, fixed-length value that’s
easier to find, and these values are stored in a hash table for easy look-up.

Besides being significantly faster than tuples and lists for membership tests,
sets let you efficiently remove duplicate values from those data types by
converting them into a set. On the other hand, sets are slightly slower during
iteration and take up more memory. And because sets are unordered, you can’t
access elements using indexes, as you can with the tuples and lists.

Creating Sets

Sets consist of a sequence of comma-separated values enclosed by curly brackets
({}):

In [139]: a_set = {1, 2, 3}

In [140]: a_set
Out[140]: {1, 2, 3}

You can also copy sets using the built-in set() function:

In [141]: new_set = set(a_set)

In [142]: new_set
Out[142]: {1, 2, 3}

The set() function also converts other data types to sets:

In [143]: a_string = ('Hello, World!')

In [144]: a_set = set(a_string)

In [145]: a_set
Out[145]: {' ', '!', ',', 'H', 'W', 'd', 'e', 'l', 'o', 'r'}

This snippet turned the string a_string into a set. Note that each character in
the string is now a separate element in the set, duplicates have been removed,
and the elements are unordered.

As a side note, to create an empty set you must use set(), not {}, as the latter
creates an empty dictionary, a data structure that we’ll cover in the next section.

NOTE

Because “set” is the name of a function, you should never use it as a variable name.

The elements in sets must be hashable, which means they must be

immutable. Because Python hashes each element in a set and stores the hash
value, if you change an element in place, it gets hashed again, and the new hash
value is stored in a different location in the hash table. This can cause conflicts
and lost elements that prevent the set from working correctly.

Integers, floats, and strings are immutable, as are tuples composed of
immutable items. You can check whether an object in Python is hashable using
the hash() function:

In [146]: hash('astrolabe')
Out[146]: -4570350835965251752

Because the string 'astrolabe' is immutable, it was assigned a hash value. If
you try this with a mutable list, however, you’ll raise a TypeError.

To use a mutable sequence in a set, you first must convert it to a tuple. In
this example, we convert a list to a tuple while assigning it to a set:

In [147]: my_set = {tuple(['a', 'list'])}

In [148]: my_set
Out[148]: {('a', 'list')}

This works only if the tuple doesn’t contain mutable items, such as a list:

In [149]: a_tuple = (1, 2, 3, ['Hello, World!'])

In [150]: my_set = set(a_tuple)
Traceback (most recent call last):

File ″C:\Users\hanna\AppData\Local\Temp/ipykernel_3856/1713377465.py″, line 1, in <module>
my_set = set(a_tuple)

TypeError: unhashable type: 'list'

If you have lists in your tuple, you’ll need to convert them into tuples, as
well.

Because sets use hash tables, they take up more memory than tuples and
lists. Enter the following code into the console to see the difference:

In [151]: import sys # For system module.

In [152]: a_list = list(range(10_000))

In [153]: a_tuple = tuple(a_list)

In [154]: a_set = set(a_list)

In [155]: sys.getsizeof(a_list)
Out[155]: 87616

In [156]: sys.getsizeof(a_tuple)
Out[156]: 80040

In [157]: sys.getsizeof(a_set)
Out[157]: 524504

A set of 10,000 elements takes up roughly six times the memory of a list and
6.5 times the memory of a tuple of the same size.

Working with Sets

Table 9-4 lists some common methods for working with sets. You should
substitute your own variable names for the ones shown in italics. In addition to

these methods, you can use many of Python’s built-in functions, such as min(),
max(), and len(), with sets.

Table 9-4: Useful Built-in Set Methods

Methods Operator syntax Description

set1.add(item) Add item to set

set1.clear() Reset to empty

set1.copy() Returns a shallow copy of
a set

set1.difference(set2) set1 - set2 Return unshared items

set1.difference_update(set2) set1 -= set2 Set set1 to items not in
set2

set1.discard(item) Removes selected item
from a set

Methods Operator syntax Description

set1.intersection(set2) set1 & set2 Return all items in both
sets

set1.intersection_update(set2) set1 &= set2 Set set1 to intersecting
items

set1.isdisjoint(set2) Return True if no shared
items

set1.issubset(set2) set1 <= set2 Return True if set2
contains set1

set1.issuperset(set2) set1 >= set2 Return True if set1
contains set2

set_name.pop() Remove arbitrary
element from a set

set_name.remove(item) Remove an item from a
set

set1.symmetric_difference(set2) set1 ^ set2 Return unshared set1 and
set2 items

set1.symmetric_difference_update(set2)set1 ^= set2 Set set1 to unshared
items

set1.union(set2) set1 | set2 Return all unique items
in both

set1.update(set2) set1 |= set2 Set set1 to unique set1
and set2 items

The operator syntax column represents shorthand syntax that you can use
with certain methods. These are obviously less readable than the full method
names.

Sets are good choices for datasets that can’t contain duplicates and that you
need to compare to other datasets. Let’s assume that you’re studying the fauna
in two farm ponds. We’ll make the dataset short for convenience, but imagine
it’s a much more extensive list (and uses proper taxonomical naming):

In [158]: pond1 = {'catfish', 'bullfrog', 'snail', 'planaria', 'turtle'}

In [159]: pond2 = {'bullfrog', 'crayfish', 'snail', 'leech', 'planaria'}

Next, add a gar to pond1:

In [160]: pond1.add('gar')

In [161]: pond1
Out[161]: {'bullfrog', 'catfish', 'gar', 'planaria', 'turtle', 'snail'}

If you try to add another gar to pond1, everything will appear to work, but
you’ll still have only one gar entry in the set because duplicates aren’t permitted.

Finding the Differences Between Two Sets

Let’s assume that you’ve finished and have too many animals in each set to
visually compare. That’s okay; you can use the difference() method to look at
animals that are unique to each pond. Figure 9-2 uses a Venn diagram to
demonstrate what this method returns.

Figure 9-2: The difference() set method

Applying this to our pond sets yields the following:

In [162]: pond1_unique_animals = pond1.difference(pond2)

In [163]: pond1_unique_animals
Out[163]: {'catfish', 'gar', 'turtle'}

In [164]: pond2_unique_animals = pond2.difference(pond1)

In [165]: pond2_unique_animals
Out[165]: {'crayfish', 'leech'}

Because there’s no such thing as a pond without a turtle, these results
suggest that you need to make another field trip to pond2.

Finding the Duplicate Items in Two Sets

To see which animals are common to both ponds, use the intersection() method,
described in Figure 9-3.

Figure 9-3: The intersection() set method

Using this method on our pond data yields the following:

In [166]: pond_common_animals = pond1.intersection(pond2)

In [167]: pond_common_animals
Out[167]: {'bullfrog', 'planaria', 'snail'}

You need to do this only for pond1 because you’ll get the same result for
pond2.intersection(pond1).

Combining Sets

Now, suppose that you sample a large lake and find more animal species than in
the small ponds:

In [168]: lake1 = {′bream′, ′planaria′, ′mussel′, ′catfish′, ′gar′, ′snail′, ′crayfish′,
′turtle′, ′bullfrog′, ′cottonmouth′, ′leech′, ′alligator′}

You’re curious if the lake environment behaves like a big pond that includes
the same animals plus a few more. To determine this, you first must combine
the pond animals into a single set using the union() method, as demonstrated in
Figure 9-4.

Figure 9-4: The union() set method

In [170]: pond_animals = pond1.union(pond2)

In [171]: print(pond_animals)
{'planaria', 'catfish', 'gar', 'snail', 'crayfish', 'turtle', 'bullfrog', 'leech'}

NOTE

You can combine multiple sets at once using this syntax: set1.union(set2, set3,

set4...).

Determining Whether One Set Is a Superset of Another

If the lake1 set contains all the animals in the pond_animals set, it’s considered to be
a superset. Figure 9-5 shows how supersets and subsets work.

Figure 9-5: The issuperset() and issubset() set methods

If you run issuperset() on the lake set, it will return True, indicating that all of
the pond animals are present in the lake:

In [172]: lake1.issuperset(pond_animals)
Out[172]: True

Creating Frozensets

The built-in frozenset() function takes an iterable object as input and makes it
immutable. The resulting “frozenset” is a set with elements that can’t be added,
removed, or altered.

Frozensets are mainly used as dictionary keys (which must be immutable) or
as elements in other sets, because sets can’t be inserted into sets. Frozensets are
“safer” than sets, as there’s no risk of accidentally changing elements in
frozensets later in your code.

To make a frozenset, pass the function an iterable, such as another set:

In [173]: a_set = {1, 2, 3}

In [174]: a_frozenset = frozenset(a_set)

In [175]: a_frozenset
Out[175]: frozenset({1, 2, 3})

You can use the same functions and methods on frozensets that you use on
sets, as long as they don’t change the frozenset. Mathematical set operations
such as intersection, difference, and union will all work on frozensets.

TEST YOUR KNOWLEDGE

11. Why shouldn’t you use count() with a set?

12. To get all the elements in set1 and set2 but not in both, which of the
following would you use?

a. set1.difference(set2)

b. set1.intersection(set2)

c. set1.symmetric_difference(set2)

d. set1.issubset(set2)

13. True or false: The best way to create an empty set is to use the set()
function.

14. Which method will not work on a frozenset?

a. frozenset1.union(frozenset2)

b. len(frozenset1)

c. frozenset1.pop()

d. frozenset1.copy()

Dictionaries

Short for dictionary, the dict data type is an ordered, iterable, mutable collection

of values indexed by keys rather than numbers. The keys can be almost any data

type and are mapped to one or more values. Dictionaries are considered the
most important Python structure for storing and accessing data.

A dictionary looks different than tuples, lists, and sets, as it has key-value
pairs. But like a set, it’s surrounded by curly brackets:

{'a_key': 'a_value', 'another_key': 'another_value'}

Keys have the same properties as elements in a set: they must be unique and
immutable because they get hashed. In fact, sets are just collections of
dictionary keys with no corresponding values. And like sets, dictionaries take up
more memory due to the use of a hashing process.

The dictionary key is like a word in a language dictionary and the values
represent the definition(s) for that word. Keys can be multiple objects (like a
word pair), as long as the multiple objects are immutable (tuples can be used
but not lists).

Values, on the other hand, can be mutable objects. And just as a word in a
language dictionary can have more than one definition, it’s fine to have multiple
values that map to a single key.

Because dictionaries associate, or map, one thing with another, they tend to
be used when items in a collection are labeled. You can use them as simple
databases whose data has a key-value relationship, such as student names and
student IDs.

Creating Dictionaries

A dictionary consists of comma-separated key-value pairs enclosed in curly
brackets ({}). The key-value pairs are separated by colons, as shown here:

{'hello': 'hola', 'goodbye': 'adios'}

The use of the colon distinguishes dictionaries from sets, which also use
curly brackets.

Now let’s make a dictionary that maps some letters to their equivalent Morse
code symbols:

In [176]: morse = {'e': '.', 'h': '....', 'l': '.-..', 'o': '---', 's': '...'}

In [177]: morse
Out[177]: {'e': '.', 'h': '....', 'l': '.-..', 'o': '---', 's': '...'}

As you can see, dictionaries preserve the insertion order of the key-value

pairs. This mainly affects readability when viewing the dictionary, and you
should take this into account when entering the data.

Now, using this morse dictionary, you can loop through a word and translate
it to Morse code:

In [178]: for letter in 'hello':
 ...: print(morse[letter])
....
.
.-..
.-..

Note that dictionary keys are case sensitive, so the following code will raise
an KeyError:

In [179]: morse['S']
Traceback (most recent call last):

File "C:\Users\hanna\AppData\Local\Temp/ipykernel_6456/1793354668.py", line 1, in <module>
morse['S']

KeyError: 'S'

If you’re doing something like looping through the letters in the dictionary,
you can avoid this error by converting the letters to lowercase as part of the key
index, as follows:

In [180]: for letter in 'SOS':
 ...: print(morse[letter.lower()])
...

...

You can also use the built-in dict() function to create a dictionary. An
advantage here is that you can use keyword arguments for the keys and avoid
typing as many single quotation marks:

In [181]: frank_sez = dict(bread='good', fire='bad')

In [182]: frank_sez
Out[182]: {'bread': 'good', 'fire': 'bad'}

NOTE

Because “dict” is the name of a function, you should never use it as a variable name.

Combining Two Sequences into a Dictionary

You can pair up two sequences such as a tuple or list into a dictionary. Of
course, the sequences should contain the same number of items and they should
be ordered appropriately, so that index 5 in one list pairs with whatever’s at
index 5 in the second list. Here’s an example translating English words to
Spanish words. The zip() built-in function pairs up the two lists item by item by
mapping similar indexes:

In [183]: english = ['then', 'but', 'cold']

In [184]: spanish = ['entonces', 'pero', ['frio', 'fria']]

In [185]: translation = {}

In [186]: for key, value in zip(english, spanish):
 ...: translation[key] = value

In [187]: translation
Out[187]:
{'then': 'entonces',
'but': 'pero',
'cold': ['frio', 'fria']}

Because the Spanish word for cold is both masculine and feminine, the two
forms are stored in a nested list (you could also use a tuple for memory
efficiency). You can access items in the list using standard list indexing:

In [188]: translation['cold'][0]
Out[188]: 'frio'

Of course, you’ll want either the masculine form or the feminine form to
consistently come first in the nested lists, so you always use the same index to
fetch it. Alternatively, you can nest a dictionary that specifies masculine (m)
versus feminine (f):

In [189]: english = ['then', 'but', 'cold']

In [190]: spanish = ['entonces', 'pero', {'m': 'frio', 'f': 'fria'}]

In [191]: translation = {}

In [192]: for key, value in zip(english, spanish):
 ...: translation[key] = value

In [193]: translation['cold']['f']
Out[193]: 'fria'

In [194]: translation['cold']['m']
Out[194]: 'frio'

By using a dictionary, you don’t need to map translations to arbitrary
indexes, and your code is much more readable and less prone to error. And if
you want to get really pithy, you can build the translation dictionary using:
translation = dict(zip(english, spanish)).

Creating Empty Dictionaries and Values

To make an empty dictionary, use curly brackets:

In [195]: empty_dict = {}

Values can also be empty. This is handy for setting-up placeholder keys to
which you will assign values at a later time, like when you load a new list or a
user provides some input. Here’s an example:

In [196]: empty_dict['color'] = None

In [197]: empty_dict['weight'] = ''

In [198]: empty_dict
Out[198]: {'color': None, 'weight': ''}

Working with Dictionaries

Table 9-5 summarizes some dictionary methods. You’ll need to substitute your
own names for those in italics. In addition, you can use many built-in functions
such as len(), min(), and max() with dictionaries.

Table 9-5: Built-in Dictionary Methods

Method Description Example

clear() Remove all dictionary elements dict_name.clear()

copy() Return a copy of a dictionary dict_name.copy()

fromkeys() Return a dictionary with the
specified keys and a value

dict_name =
dict.fromkeys(key_tuple, value)

get() Return the value of a specified
key

dict_name.get(key)

items() Return a tuple of all key-value
pairs

dict_name.items()

keys() Return a list of a dictionary’s
keys

dict_name.keys()

Method Description Example

pop() Remove the element with
specified key

dict_name.pop(key)

popitem() Remove the last inserted key-
value pair

dict_name.popitem()

setdefault() Insert specified key and value if
no key, else return value if key
exists

dict_name.setdefault(key, value)

update() Update dictionary with
specified key-value

dict_name.update({key: value})

values() Return a list of the values in a
dictionary

dict_name.values()

NOTE

Although you can change the value that’s mapped to a key, there are no dictionary

methods that let you add a value to an existing key. To do this, you’ll need to import

and use the collections third-party module. We’ll look at collections and other

helpful modules in Chapter 11.

Getting the Contents of Dictionaries

The keys(), values(), and items() methods return the contents of dictionaries in
list-like data types called dict_keys, dict_values, and dict_items(), respectively. You
can iterate (loop) over these structures, but otherwise they don’t behave like
true lists. Here’s how they work:

In [199]: chems = dict(HCl='acid', NaOH='base', HNO3='acid')

In [200]: chems.keys()
Out[200]: dict_keys(['HCl', 'NaOH', 'HNO3'])

In [201]: chems.values()
Out[201]: dict_values(['acid', 'base', 'acid'])

In [202]: chems.items()
Out[202]: dict_items([('HCl', 'acid'), ('NaOH', 'base'), ('HNO3', 'acid')])

If you want to use this output as a list, you can convert it using the list()
function:

In [203]: chems_keys = list(chems.keys())
In [204]: chems_keys
Out[204]: ['HCl', 'NaOH', 'HNO3']

This returns a list of key-value pair tuples when used with items():

In [205]: list(chems.items())
Out[205]: [('HCl', 'acid'), ('NaOH', 'base'), ('HNO3', 'acid')]

Getting the Value of a Dictionary Key

As you’ve seen, if you just want the value of a key in a dictionary, you can use
the key as you would an index with a list, as shown here:

In [206]: chems['HCl']
Out[206]: 'acid'

This works great until you ask for a key that doesn’t exist, in which case
Python will raise a KeyError. To avoid this, use the get() method, which lets you
provide a default value for non-existent keys:

In [207]: chems.get('KOH', 'unknown')
Out[207]: 'unknown'

The second argument ('unknown') passed to the get() method is the default
return value. Now, when you ask for a missing key like potassium hydroxide,
the method returns 'unknown'.

You can also check whether a key is present using the in keyword:

In [208]: 'NaOH' in chems
Out[208]: True

Adding Key-Value Pairs to a Dictionary

To add a key-value pair to a dictionary, you can use the indexing approach (see
line In [196]:) or use the update() method:

In [209]: chems.update({'KOH': 'base'})

In [210]: chems
Out[210]: {'HCl': 'acid', 'NaOH': 'base', 'HNO3': 'acid', 'KOH': 'base'}

To add multiple key-value pairs, separate them with commas:

In [211]: chems.update({'KOH': 'base', 'Ca(OH)2': 'base'})

Combining Dictionaries

You can also add a dictionary to another dictionary with update(), but a more
succinct method is to use the ** operator. Let’s chain three dictionaries together
to make a fourth:

In [212]: d1 = dict(Harry='good', Draco='bad')

In [213]: d2 = dict(Hermione='good', Tom='bad')

In [214]: d3 = dict(Ron='good', Dolores='bad')

In [215]: d4 = {**d1, **d2, **d3}

In [216]: d4
Out[216]:
{'Harry': 'good',
'Draco': 'bad',
'Hermione': 'good',
'Tom': 'bad',
'Ron': 'good',
'Dolores': 'bad'}

Removing Key-Value Pairs from a Dictionary

To remove a key-value pair, pass the key to the pop() method:

In [217]: chems.pop('Ca(OH)2')
Out[217]: 'base'

In [218]: chems
Out[218]: {'HCl': 'acid', 'NaOH': 'base', 'HNO3': 'acid', 'KOH': 'base'}

Notice that this method returns the value, so you can assign it to a variable
while popping if you want:

In [219]: val = chems.pop('KOH')

In [220]: val
Out[220]: 'base'

You can also use the del keyword to remove elements; for example, del
chems['KHO'].

Creating Default Values for Keys

The setdefault() method lets you check whether a key exists and set a value for
the key if it doesn’t. Otherwise, it returns the value of the key. Here’s an
example:

In [221]: solar_system = {'Sol': 0, 'Mercury': 1, 'Venus': 2, 'Earth': 3}

In [222]: solar_system.setdefault('Mars', 4)
Out[222]: 4

In [223]: solar_system
Out[223]: {'Sol': 0, 'Mercury': 1, 'Venus': 2, 'Earth': 3, 'Mars': 4}

Because the key 'Mars' didn’t exist, the method added it along with its order
in the solar system, 4. But if you try to change an existing key, like 'Earth', the
method will just return its value and make no changes:

In [224]: solar_system.setdefault('Earth', 42)
Out[224]: 3

In [225]: solar_system
Out[225]: {'Sol': 0, 'Mercury': 1, 'Venus': 2, 'Earth': 3, 'Mars': 4}

Suppose that you want to count the number of times the companies Pfizer,
Moderna, and Johnson & Johnson were mentioned in articles related to the
coronavirus in 2021. You plan to store the counts in a dictionary. The fromkeys()
method will help you to set up this dictionary by populating it with keys with
the same initial value. The default value is None, but in this case, use 0. You’ll
need to pass the keys in the form of a tuple, followed by a value:

In [226]: companies = ('Pfizer', 'Moderna', 'Johnson & Johnson')

In [227]: company_counts = dict.fromkeys(companies, 0)

In [228]: company_counts
Out[228]: {'Pfizer': 0, 'Moderna': 0, 'Johnson & Johnson': 0}

Performing a Reverse Lookup

Dictionaries are optimized to efficiently find the value or values for a given key.
But sometimes you might want to find all the keys that correspond to a given
value (such as looking up the name associated with a phone number). There’s
no built-in functionality for doing a “reverse lookup,” so you need to define a
function to perform the task. Let’s take a look:

In [229]: def lookup_keys(d, v):
 ...: keys = []
 ...: for k in d:
 ...: if d[k] == v:
 ...: keys.append(k)
 ...: return keys

We haven’t covered functions yet, so let me explain. We used the def
keyword to define a function named lookup_keys that has two parameters: d (for
dictionary) and v (for value). Python automatically indents four spaces when
you press ENTER, which designates that you’re working within the function.
Because the same value can be associated with multiple keys, we created an
empty list named keys to hold the values. Next, we looped through the keys in
the dictionary, and if the key’s value matched the specified value (v), we
appended it to the list. After the loop finished, we returned the list using the
return keyword, which ended the function and made the list accessible to the
rest of the program.

Let’s test the function using the solar_system dictionary from the previous
section. Pass it the name of the dictionary and 3, for the third planet, in
parentheses:

In [230]: lookup_keys(solar_system, 3)
Out[230]: ['Earth']

As you might expect, reverse lookups run slower than forward lookups.

Printing Dictionaries

If you print a dictionary using the print() function, you’ll get all the braces,
quotation marks, and commas used to build the dictionary. To get around this,
you can use “pretty printing” techniques.

If you do an online search for “pretty print a Python dictionary,” you’ll find
numerous methods such as pprint(), that yield more readable output than the
built-in print() function. Let’s look at one of them here, the json.dumps() method.

The json.dumps() method converts a Python object into a JSON string. This, in
turn, formats the dictionary into attractive JSON format. The method accepts
three parameters used for pretty printing: the dictionary name, a Boolean value
(True or False) for whether to sort the keys, and the number of spaces for
indentation.

In the following example, we import json, create a dictionary (d), and then
print it using the print() function followed by json.dumps(), for comparison:

In [231]: import json

In [232]: letter_order = dict(z=26, c=3, a=1, b=2, g=7, t=20)

In [233]: print(letter_order)
{'z': 26, 'c': 3, 'a': 1, 'b': 2, 'g': 7, 't': 20}

In [234]: print(json.dumps(letter_order, sort_keys=False, indent=4))
{
 "z": 26,
 "c": 3,
 "a": 1,
 "b": 2,
 "g": 7,
 "t": 20
}

The JSON output is easier to digest than the horizontal layout returned by
print(). It works only with data types that JSON supports, however, which means
that embedded sets and functions will fail.

Although we’re getting ahead of ourselves, it’s worth noting that you can
traverse, sort, and print a dictionary using a for loop, the built-in sorted()
function, and print(). You can even “pretty it up” with f-strings, as in this
example:

In [235]: for k in sorted(letter_order):
 ...: print(f'{k}: {letter_order[k]}')
a: 1
b: 2
c: 3
g: 7
t: 20
z: 26

You can indent the output similar to the json.dumps() method by adding spaces
or tabs (\t) after the first single quote in the print command. Give it a try.

TEST YOUR KNOWLEDGE

15. What would you use to initialize a dictionary in which all the values
are empty?

a. The setdefault() method

b. The fromkeys() method

c. The update() method

d. The built-in zip() function

16. Which statement about dictionaries is false?

a. Membership searches are very fast.

b. Dictionaries are optimized to find the key or keys for a given value.

c. You can pretty print dictionaries with the pprint() module.

d. Dictionaries are more memory intensive than lists.

17. Create a joke dictionary that maps setup lines to punchlines. Here’s a
few to get you started: “Did you hear about the kidnapping? He slept
for three hours.” “I started a band called ‘999 Megabytes.’” “You’ll
never get a gig.” “I heard you had to shoot your dog. Was he mad?”
“He wasn’t too happy about it!”

18. What data type is held in the square brackets in contacts[′Nix′, ′Goaty′] =

′goatynix@gmail.com′?

a. String

b. List

c. Tuple

d. Set

Summary

In this chapter you learned about the four data types for working with
collections in Python. A tuple is an immutable sequence type that holds a
collection of objects, indexed by integers, in a defined order. A list is a mutable
sequence type that holds a collection of objects, indexed by integers, in a
defined order. A set is a mutable set type that holds an unordered collection of
unique objects. A dictionary is a mutable mapping type that holds an ordered
collection of unique objects (keys) that map to associated objects (values).

Each of these built-in data structures has its uses as well as its own peculiar
behaviors. Tuples are memory efficient and good places to keep objects “safe”
because they’re unchangeable after they’re created. Lists, being mutable, are
flexible and useful for many jobs, though membership searches are slow. Sets
can be used to efficiently remove duplicates from a dataset, provide very fast
membership searches, and let you perform mathematical set operations, like
union and intersection. Dictionaries also provide fast membership searches and
let you easily set up associative databases for labeled data. If you are not sure
how a data type is going to behave, take the time to test it in the interactive
console before you incorporate it in your code.

There’s a lot more left to learn. Comprehensions, which we’ll cover in the next

chapter, provide shorthand methods for creating lists, sets, and dictionaries.
Importable modules, such as collections and itertools, provide useful tools for

working with container data types. We’ll look at these in Chapter 11. Then, in
Chapter 12, we’ll look at how to load external datasets into lists, sets, and so on,
rather than typing them in item by item. For now, it’s time to learn about flow

control.

10
FLOW CONTROL

So far, we’ve been focusing on the components of programs, such as
expressions, variables, and data types. We’ve strung a few of these together
into simple executable instructions, but these have been mostly linear in
nature; in other words, they were executed in the order in which they were
written. More complex programs will include branching instructions that skip
whole sections of code, jump back to the beginning, or decide among multiple
options. To handle these situations, you’ll need a way to control the flow of
your code.

The flow of execution refers to the order in which statements are run in a

program. Execution starts at the top of the code, with the first statement, after
which point the statements are read in order. But this order doesn’t have to be
from top to bottom. In fact, the flow in most programs changes directions like
cars in a busy intersection.

Flow control statements give Python the ability to make decisions about

which instructions to execute next. You can think of these statements as the
diamond shapes in flowcharts that indicate a decision is required to move
forward (Figure 10-1).

Figure 10-1: The diamond shape represents a decision in a flowchart.

This flowchart evaluates whether the number variable is greater than or equal
to 3. The resulting decision causes the code to choose one path or another, a
process called branching.

In this chapter, we’ll discuss the if, else, elif, while, for, break, and continue
flow control statements and clauses. We’ll also look at ways to monitor the
execution of flow and handle any exceptions that might occur.

The if Statement

The if statement is a conditional, or relational, statement. All control
statements, including if statements, end with a colon (:) and are followed by
an indented block of code. This indented clause executes only if the if
statement’s condition is True. Otherwise, the clause is skipped.

For example, this snippet checks whether 42 is less than 2. Only if the
condition tests True will it print a message:

In [1]: if 42 < 2:
 ...: print("That's crazy!")
In [2]:

All if statements must express a condition, which is an expression that is

either true or false. This example used a comparison operator (<) to express a
condition. Another option is to use Boolean values (covered in Chapter 8).

If you run this code, you should notice that nothing happens. This is
because the statement evaluated to False. That’s okay, but in most cases, you’ll
want to explicitly handle False outcomes, if only to make it clear that there’s no
missing code.

You can do that by adding an else clause, which executes if the if statement
does not. The diamond in Figure 10-1 represents an if-else statement that
works as follows:

In [3]: number = 2

In [4]: if number <= 3:
 ...: print(number)
 ...: else:
 ...: print('Out of range.')
2

The else clause represents the False branch in Figure 10-1. If the condition
in the if statement is not met, it prints the string ′Out of range.′

Working with Code Blocks

Lines of code immediately underneath if statements and else clauses are
indented. Indenting code tells the Python interpreter that a group of
statements belongs to a specific block of code. These blocks execute as a single

unit and end when the indentation level decreases back to zero or to the same
level as a containing block.

Most programming languages make use of specific syntax to structure their
code, such as braces ({}) for marking blocks, and semicolons (;) for ending
lines. Python uses whitespace, because it is easier to understand visually, as
demonstrated in Figure 10-2, which diagrams the previous if statement.

Figure 10-2: Example code blocks

The colon at the end of the first line lets Python know that a new code
block is coming up. Each line in this block must be indented by the same

amount. In the figure, Block 1 is the code that runs if the if statement’s
condition is True.

The following else clause returns to the previous indentation level. The
colon after else denotes the start of another block (the block that runs if the if
statement’s condition is False, or Block 2), and this, too, must be indented.

We’ve been dealing with a single level of indentation, but blocks can
contain more deeply indented, or nested, blocks. In the following example,

each input line after line In [7] represents a new block of code:

In [5]: genus = ′rattus′

In [6]: species = 'norvegicus'

In [7]: if genus == 'rattus':
 ...: if species == 'norvegicus':
 ...: print('The common brown rat.')
The common brown rat.

If you make a mistake indenting code, don’t worry, Python will let you
know. Depending on where the mistake occurred (such as outside or inside a
function), it will raise either a SyntaxError or an IndentationError.

NOTE

According to the PEP8 Style Guide (https://pep8.org/#indentation/), you

should use four spaces per indentation level, and spaces are preferred to using tabs.

By default, the Spyder text editor converts a tab into four spaces, so you can reduce

your repetitive strain injury exposure. You can find this option under Tools ▸

Preferences ▸ Editor ▸ Source Code ▸ Indentation characters.

Using the else and elif Clauses

The if statement comes with another optional clause, called elif (short for
“else-if”), which tests another condition when the if statement evaluates to
False. The elif clause lets you check multiple expressions for True and execute a
block of code as soon as one of the conditions evaluates to True. You then can
use the else clause as a final “catch all” that runs if none of the previous
conditions are met.

Let’s use elif and else to compare a single variable, representing the core
temperature of a nuclear reactor in degrees Celsius, to several possible

https://pep8.org/#indentation/

responses:

In [8]: core = 300

In [9]: if core < 200:
 ...: print("Core is shut down")
 ...: elif 200 <= core < 300:
 ...: print("Core is below optimum")
 ...: elif core == 300:
 ...: print("Core is at optimum")
 ...: elif 300 < core < 1800:
 ...: print("Core is above optimum")
 ...: else:
 ...: print("Meltdown! Run for your life!")
Core is at optimum

The code starts by assigning an optimum operating temperature of 300°

Celsius to the core variable. Next, an if statement tests whether the

temperature is below 200°. If so, the core should be shut down, so a message
to that effect is printed. Next, a series of elif clauses look at other outcomes,

such as a core temperature of exactly 300°, and print appropriate responses.
Finally, an else clause executes if all the proceeding conditions evaluate to
False. This will catch a core value greater than or equal to 1800. Closing an if
statement block with an else clause ensures that at least one clause is executed,
and you won’t be left with an empty response.

When using an else clause, you’ll want to be very careful that your code
properly handles the full range of possible values. For example, the following
code prints the meltdown warning, even though the core temperature is only

200°. See if you can figure out what went wrong:

In [10]: core = 200

In [11]: if core < 200:
 ...: print("Core is shutdown")
 ...: elif 200 < core < 300:
 ...: print("Core is below optimum")
 ...: elif core == 300:
 ...: print("Core is at optimum")
 ...: elif 300 < core < 1800:
 ...: print("Core is above optimum")
 ...: else:
 ...: print("Meltdown! Run your life!")
Meltdown! Run your life!

Because this code failed to explicitly handle a core value of exactly 200, it was
evaluated in the else clause, resulting in an incorrect message and a lot of
unnecessary excitement.

Also make sure that only one condition evaluates to True. An advantage of

using elif is that if a condition evaluates to True, the program will execute its
corresponding block and exit the statement immediately. This is efficient, but
if more than one elif condition evaluates to True, only the block associated
with the first True condition will execute.

To illustrate, here’s a poorly written piece of code that uses elif to
increment multiple count variables whose conditions overlap:

In [12]: dogs = ('poodle', 'bulldog', 'husky')

In [13]: cats = ('persian', 'siamese', 'burmese')

In [14]: popular_breeds = ('poodle', 'persian', 'siamese')

In [15]: dog_count = 0

In [16]: cat_count = 0

In [17]: popular_breeds_count = 0

In [18]: animal = 'poodle'

In [19]: if animal in dogs:
 ...: dog_count += 1
 ...: elif animal in cats:
 ...: cat_count += 1
 ...: elif animal in popular_breeds:
 ...: popular_breeds_count += 1

In [20]: dog_count
Out[20]: 1

In [21]: cat_count
Out[21]: 0

In [22]: popular_breeds_count
Out[22]: 0

This code starts by assigning tuples of dog breeds, cat breeds, and
combined popular breeds. It then assigns count variables for each category,
after which a poodle breed is assigned to the animal variable.

Next, a series of conditional statements evaluates the animal variable. If it’s
in the dogs tuple, the dog_count variable is incremented by 1. Otherwise, if it’s in
the cats tuple, the cat_count variable is incremented, and then, if it’s only in the
popular_breeds tuple, the popular_breeds_count is incremented.

When you run the code and check the counts, they’re incorrect. Despite
“poodle” being present in both the dogs and popular_breeds tuples, only the
dog_count variable was updated. Because the first elif clause evaluated to True,

the if statement terminated immediately, and the popular breeds evaluation
was never performed.

Using Ternary Expressions

For convenience, Python lets you combine an if-else block into a single
expression called a ternary expression whose syntax is as follows:

true expression if condition else false expression

Here’s an example:

In [23]: core = 1801

In [24]: 'Run for your lives!' if core >= 1800 else 'So far so good!'
Out[24]: 'Run for your lives!'

Ternary expressions let you write pithy code at the cost of readability. They
should be used with only simple and straightforward conditions and
expressions.

Using Boolean Operators

To further aid you in making comparisons, Python provides the and, or, and not
operators. These three operators compare Boolean values and evaluate to a
Boolean value.

The possible outcomes for Boolean operators can be shown in a truth
table, which we present in Table 10-1.

Table 10-1: Truth Table for and/or Operators

Expression Evaluation

True and True True

True and False False

False and True False

False and False False

True or True True

True or False True

False or True True

False or False False

As you can see, the and operator evaluates an expression to True only if both

Boolean values are True. The or operator evaluates to True if either of the

Boolean values is True. For example, you could say you had “cereal” for
breakfast if you had either corn flakes or raison bran, but you can’t say you had

“bacon and eggs” unless you had both bacon and eggs.

The not operator operates on only one expression or Boolean and evaluates

to the opposite Boolean value. For example:

In [25]: not False
Out[25]: True

With and, or, and not, you can build more complex comparisons for
directing your code’s flow of execution. Try out a few examples in the console:

In [26]: 'a' == 'a' and 10 > 2
Out[26]: True

In [27]: (10 > 2) and (42 > 2) and ('a' == 'b')
Out[27]: False

In [28]: (10 < 2) or ('a' != 'b')
Out[28]: True

Python will evaluate each expression, from left to right, until it has a single
Boolean value. It then evaluates these Booleans down to a single value, either
True or False. The order of operations is as follows:

math operators → comparison operators → not operator → and operator →
or operator

With Boolean operators, you can compare multiple variables within if
statements. Here’s an example in which you discriminate animals using the
number of legs and the sound produced:

In [29]: legs = 4

In [30]: sound = 'bark'

In [31]: if legs == 4 and sound == 'bark':
 ...: print('a dog')
 ...: elif legs == 4 and sound == 'meow':
 ...: print('a cat')
a dog

In the previous example, both conditions had to be True for the if statement
to execute. In the following example, only one of the conditions needs to be
True:

In [32]: today = 'Sunday'

In [33]: if today in ('Saturday', 'Sunday'):
 ...: print('Enjoy your weekend!')
Enjoy your weekend!

If today is either Saturday or Sunday, you’re in the weekend, and the print()
function is called.

Note that it’s easy to slip-up when using if statement syntax. The following
code looks logical, but it will evaluate to True no matter the value of the today
variable:

In [34]: today = 'Saturday'

In [35]: if today == 'Saturday' or 'Sunday':
 ...: print('Enjoy your weekend!')
Enjoy your weekend!

Loops

Loops permit the repetition of certain steps indented under a keyword. The
repetition continues until some condition is met, making loops much like if
statements, but they can run more than once.

Python uses the while and for keywords for loops. These correspond to
condition-controlled loops and collection-controlled loops, respectively.

The while keyword, plus a condition, forms a while statement. These are
used to execute a block of code repeatedly until the given condition evaluates
to False. At this point, the line immediately after the loop in the program is
executed. Here’s the syntax:

while some condition is True:
 do something

The for keyword is used to repeat a block of code a fixed number of times
or to iterate over a sequence of items. Here’s the basic syntax:

for something in something:
 do something

When the for loop runs out of items, its underlying condition becomes
False, and the loop ends and returns control to the first line of code under the
for loop’s block.

The while Statement

The while statement tests a condition and executes the block over and over
until the condition is False (Figure 10-3) or you explicitly end the loop with a
break statement (more on these later). In fact, a while loop can go on forever.

Figure 10-3: Flowchart for a generic while loop

A while loop is useful for performing some action until a target is reached.
For instance, you can simulate the population growth of a herd of deer until
the population reaches a target value, at which time the simulation loop could
stop and log details, such as the time it took to reach the target or the average
weight of an adult deer.

A much simpler example is testing for a password. In the code that follows,
we give a user a set number of times to enter the correct value.

In [36]: password = ''

In [37]: count = 0

In [38]: ➊ while password != 'Python':
 ...: password = input("Enter your password: ")
 ...: count += 1

 ...: ➋ if count > 3:
 ...: print("No more tries.")
 ...: break

In this example, we first create an empty password variable and set a count

variable to 0. We then start a loop using the while keyword ➊. If password does
not equal “Python,” the indented while clause will prompt the user to enter a

password. It then increments the count variable by 1 and uses an if statement to

check if the number of allowable counts has been exceeded ➋. If this evaluates
to True, the user is informed that they have exceeded the allowed number of
attempts, and the break keyword ends the loop. If count is less than or equal to 3,
the loop will continue prompting the user for a password. If the user enters
the correct password, the loop ends without fanfare.

Figure 10-4 documents this loop in a flowchart. Note how both the while
and if conditions are marked by diamonds. This is because they represent
decision points.

Figure 10-4: The flowchart for the password while loop

Each execution of a loop is called an iteration. The while loop can iterate

indefinitely because the number of loops isn’t explicitly specified at the start. A

while loop can run a million times or end after the first iteration depending on
whether its condition is met.

NOTE

If your program is ever caught in an infinite loop, you can use CTRL-C to stop the

program and escape.

TEST YOUR KNOWLEDGE

1. Each new code block should be indented _____ spaces.

2. True or false: The or operator evaluates an expression to True only if
both Boolean values are True.

3. Write a while loop that never ends, and then stop it using CTRL-C.

4. Which values can be used to represent False?

a. 0

b. 0.0

c. F

d. All the above

5. To form Pig Latin, one takes an English word that begins with a
consonant, moves the consonant to the end, and adds “ay” after it. If
the word begins with a vowel, one simply adds “way” to the end. Use
the Spyder text editor to write a program that takes a word as input
and uses indexing and slicing to return its Pig Latin equivalent. Keep
the program running until the user decides to quit.

The for Statement

The for statement lets you execute a loop a set number of times. This number
is often specified using the built-in range() function. This memory-efficient
function returns a sequence of evenly spaced numbers starting from 0 (by
default) and ending before a specified endpoint. Here’s what the range()
function’s syntax looks like:

range(start, stop, step).

The start and step parameters are optional. If omitted, the start parameter
defaults to 0, and the step defaults to 1.

Here’s an example where a for loop uses range() to print five numbers:

In [39]: for i in range(5):
 ...: print(i)
0
1
2
3
4

Note that 5 is not included in the output. This is because the function reads
up to the stop value but doesn’t include it. The block beneath the for statement

is indented, just as in a while loop.

Here’s an example using all three arguments (start, stop, step) in range() to
print every other number from 1 to 6:

In [40]: for i in range(1, 6, 2):
 ...: print(i)
1
3
5

Note that the i in the previous code is used by convention when iterating
over a range of numbers. Any legal variable name (such as num or number) will
work. An underscore (_) is preferred if you’re using a linter to check your
code; other names can sometimes trigger an unused variable warning.

You can use range()in conjunction with the len() function to obtain the
endpoint for an arbitrarily sized sequence. Here’s an example:

In [41]: my_list = ['a', 'b', 'c', 'd', 'e']

In [42]: for i in range(len(my_list)):
 ...: print(my_list[i])
a
b
c
d
e

This code starts by assigning a list of letters to the my_list variable. In the
following if statement, passing the range() function the length of this list, as
determined by the len() function, sets the number of iterations. With each

iteration, the current value of i is used as an index for the list, and the
corresponding letter is printed.

Although it works, this code isn’t very Pythonic. Fortunately, you can use
iterables directly in the for statement. Remember, iterables are objects that can
return their items one at a time. These include sequence types like range, list,
tuple, string, set, and more. As a result, you don’t need to keep track of the
iterable’s size or use a running index. Here’s the previous snippet in this
format:

In [43]: for item in my_list:
 ...: print(item)
a
b
c
d
e

Notice how the code reads almost like English. You can’t get more
Pythonic than that!

NOTE

Never add or delete items to a list while looping over it. If you want to change a

list during a loop, append the changes to a new list.

You can even loop over a string and print its characters without using an
intermediate variable to hold the string:

In [44]: for letter in "Python":
 ...: print(letter)
P
y
t
h
o
n

In the event that you need an item’s index during looping, the best solution
is to use the built-in enumerate() function. This function adds a counter to each
item of an iterable object and returns an enumerate object, allowing you to

loop over an iterable and keep track of the number of iterations. The first
index value starts from 0 by default, but you can override that by specifying a
starting index. The following example produces a numbered list of items
(starting at 1) from a list datatype:

In [45]: equipment_list = ['binoculars', 'rock hammer', 'hand lens']

In [46]: for index, item in enumerate(equipment_list, start=1):
 ...: print(index, item)
1 binoculars
2 rock hammer
3 hand lens

Some other uses for enumerate() include selecting every n items from a list,

ending a loop after n items, and using the indexes for line weights or symbol

sizes when plotting.

Loop Control Statements

Loop control statements are used inside loops to change the normal sequence of

execution. Earlier, you used a break statement to interrupt and end a while loop.
Python also uses continue and pass statements to control loops.

The break Statement

The break keyword lets you exit a loop’s code block at any time. A common
usage is to set while to True (while True:) and then “manually” break out of the
loop when a condition is met. Because True always evaluates to true, no
condition can stop the loop, so you must force the issue using break.

In nested loops, break terminates only the block it’s in, along with any inner
blocks. Outer loops will continue to run. For example, the following example
contains two nested loops:

In [47]: mythbusters = ['Kari', 'Grant', 'Tory']

In [48]: MYTHBUSTERS = ['Adam', 'Jamie']

In [49]: for star in mythbusters:
 ...: for big_star in MYTHBUSTERS:
 ...: if big_star == 'Adam':
 ...: break
 ...: print(star, big_star)
Kari Adam
Grant Adam
Tory Adam

Even though the break statement interrupted the inner for loop and
prevented “Jamie” from printing, the outer loop ran to completion.

The continue Statement

The continue keyword immediately returns control to the beginning of a loop,
skipping any loop clauses beneath it. For instance, the following example uses
a while loop to evaluate a user’s name and password. Enter the code in the
Jupyter Qt console and then run it using SHIFT-ENTER:

In [50]: while True:
 ...: name = input('Enter your username: ')
 ...: if name != 'Alice':

 ...: ➊ continue

 ...: ➋ pwd = input('Enter your password: ')
 ...: if pwd == 'Star_Lord':

 ...: ➌ break
 ...: else:
 ...: print('That password is incorrect')

The first step, of course, is to get the correct username. If the condition for
the first if statement evaluates to True (the name is not “Alice”), a continue

statement interrupts the loop and restarts the sequence ➊. If the name passes
the test, the continue statement is skipped, and the user is prompted for a

password ➋. If they enter the correct value, a break statement ends the loop ➌.
Otherwise, they’re alerted to the error, and the loop begins again.

The pass Statement

You can use the pass keyword to build “empty” loops, or blocks that take no
action. These keywords serve as placeholders for future code or flag places
where you intentionally omitted something. Take this snippet, for example, in
which we choose to not print the h in Python:

In [51]: word = 'Python'
In [52]: count = 0
In [53]: while count < len(word):
 ...: if count < 3:
 ...: print(word[count])

 ...: ➊ elif count == 3:
 ...: pass
 ...: else:
 ...: print(word[count])
 ...: count += 1
P
y
t
o
n

This code assigns “Python” to the word variable, and 0 to the count variable.
While the count value is less than the length of word, the loop prints each
character in word indexed at the current count value. If count is equal to 3,
however, it uses the pass keyword to continue the loop with no action.

You could have accomplished the same thing by only printing count < 3 and
count > 3, but this could be viewed in retrospect as an indexing mistake (see the
earlier core temperature example at lines In [10]-[11]). By including the

reference to h and using pass ➊, it’s clear that you knew what you were doing.
You basically said, “I know there’s a letter at this index and I’m not printing it
on purpose.”

Replacing Loops with Comprehensions

In Python, a comprehension is a way to construct a new sequence such as a list,

set, or dictionary from an existing sequence. For example, you might want to
create a new list containing the logarithms of the numbers in another list. As a
replacement for standard for loops, comprehensions are faster, more elegant,
and more concise.

A downside to comprehensions is that you can’t embed a print() function in
the loop to help you track what’s happening. They can also be quite difficult
to read when using complicated expressions, but for simple expressions, they
can’t be beat. Python supports comprehensions for lists, dictionaries, sets, and
something we’ll talk about in the next chapter: generators.

List Comprehensions

To make a new list using list comprehension, encase the comprehension

expression in square brackets. To use a condition to choose items from an
existing iterable, use this syntax:

new_list = [item for item in iterable if item satisfies condition]

Use this syntax if you want to alter these items, or generate new items,
before adding them to the new list:

new_list = [expression for item in iterable if condition]

For instance, here’s an example that takes a string, loops through it,
capitalizes each letter, and appends the capital letter to a new list:

In [54]: word = 'Python'

In [55]: letters = [letter.upper() for letter in word]

In [56]: letters
Out[56]: ['P', 'Y', 'T', 'H', 'O', 'N']

Here, we assigned a string to the word variable, and then we created the
letters list using the list comprehension [letter.upper() for letter in word].
Notice how the syntax is a little backward, as the loop variable (letter) appears
before it’s defined.

The following example extracts the capital “P” from “Python.” Notice how
you can use an if statement within the comprehension:

In [57]: cap = [letter.upper() for letter in word if letter.isupper()]

In [58]: cap
Out[58]: ['P']

The single-line list comprehension in line In [57] is equivalent to the
following code using a standard for loop:

In [59]: cap = []

In [60]: for letter in word:
 ...: if letter.isupper():
 ...: cap.append(letter)

In this case, list comprehension saved you three lines of code.

You also can create list comprehensions using nested for loops, as follows:

In [61]: first = ['Python is']

In [62]: last = ['fun', 'easy', 'neat']

In [63]: print([f + ' ' + l for f in first for l in last])
['Python is fun', 'Python is easy', 'Python is neat']

You can see more examples of list comprehensions at
https://docs.python.org/3/tutorial/datastructures.xhtml.

Dictionary Comprehensions

Dictionary comprehensions are like list comprehensions, except they use key-

value (k, v) pairs in place of items, are enclosed in curly brackets, and return a
dictionary rather than a list.

https://docs.python.org/3/tutorial/datastructures.xhtml

You can use dictionary comprehensions on existing dictionaries, in which
case you either choose key-value (k, v) pairs from the existing dictionary based
on some condition, or you use an expression on the keys and/or values based
on a condition. The general syntax is:

new_dict = {k:v for (k, v) in dictionary if k, v satisfy condition}

or:

new_dict = {k-expr:v-expr for (k, v) in dictionary if condition}

When using dictionary comprehension on another type of iterable, like a
list, you choose and/or change existing items in the iterable to serve as key-
value pairs in the new dictionary. The syntax is varied, but looks something
like this:

new_dict = {item:item-expr for item in iterable if condition}

Note that the expression can alter the item used for the key, for the value
or for both.

Here’s an example in which we extract even numbers from a list and map
them to their square:

In [64]: inputs = [1, 2, 3, 4, 5, 6]

In [65]: new_dict = {item:item**2 for item in inputs if item % 2 == 0}

In [66]: new_dict
Out[66]: {2: 4, 4: 16, 6: 36}

And here we zip two tuples (the mineral and hardness variables) together to
create part of Moh’s famous mineral hardness scale:

In [67]: mineral = 'talc', 'gypsum', 'calcite'

In [68]: hardness = 1, 2, 3

In [69]: mohs = {m: h for (m, h) in zip(mineral, hardness)}

In [70]: mohs
Out[70]: {'talc': 1, 'gypsum': 2, 'calcite': 3}

Note that you also can generate the mohs dictionary by calling the built-in
dict() function, as follows:

In [71]: mohs = dict(zip(mineral, hardness))

Set Comprehensions

Set comprehensions are enclosed in curly brackets and return unsorted sets. You

can choose existing items from an iterable using the following syntax:

new_set = {item for item in iterable if item satisfies condition}

Alternatively, you can alter the items or derive new items by applying a
condition-based expression before adding the item to the new set:

new_set = {expression for item in iterable if condition}

Here’s an example that returns all the unique characters in a string, given
that sets don’t allow duplicate values (this is the same as the set() function):

In [72]: pond_animals = ['turtle', 'duck', 'frog', 'turtle', 'snail', 'duck']

In [73]: unique_animals = {animal for animal in pond_animals}

In [74]: unique_animals
Out[74]: {'duck', 'frog', 'snail', 'turtle'}

And here we use an expression to calculate word lengths:

In [75]: unique_word_lengths = {len(word) for word in pond_animals}

In [76]: unique_word_lengths
Out[76]: {4, 5, 6}

Handling Exceptions

An exception occurs when Python encounters an error during execution. This

causes it to “raise an exception” and produce a Python object that represents
an error. If not dealt with immediately, exceptions cause a program to
terminate and display an error message.

Fortunately, exceptions can be “caught” and handled through flow control.
This gives you the opportunity to fix the problem, try again, supply a more
helpful error message, or suppress the error.

Using try and except

Python provides a try statement with an except clause to help you handle
exceptions. The try statement lets you isolate code that could potentially
contain an error and crash your program. If the code contains an error, the
except clause will deal with it by providing code that executes only when an
exception is raised.

The simplest exception handling merely prevents your program from
crashing unceremoniously. It presents an alert and (hopefully) a helpful
message. Here is an example that’s designed to handle incorrect input from a
user:

In [77]: try:
 ...: age = int(input("Enter your age in years: "))
 ...: except:
 ...: print("Please start again and enter a whole number.")

Enter your age in years: Harry
Please start again and enter a whole number.

In this example, the age value is converted to an integer, as we want age to
be a whole number in years. But the user entered letters instead (Harry), which
raised a ValueError exception because letters can’t be converted into integers.
You don’t see this error message, however, as we caught the exception using
the try statement, which does just what it says. It tries the code in isolation,
giving us the opportunity to do something before the program crashes. Here,
we printed a message to the user so that the program ends somewhat
gracefully.

In most cases, you want to specify the type of exception to handle rather
than catch all of the built-in exceptions, as we did in the previous snippet. You
can find a list of exception types on Table 7-4 on page 183. You can also create
the error you’re looking for in the console and read off the exception name
from the resulting Traceback message.

Let’s rewrite the previous snippet to catch a ValueError. Just place the proper
exception name after except, as follows:

In [78]: try:
 ...: age = int(input("Enter your age in years: "))
 ...: except ValueError:
 ...: print("Please start again and enter a whole number.")

You can also trap for multiple exception types by placing them after except
as a tuple with parentheses:

In [79]: except (ValueError, TypeError):

If you want to use a different message or take a different action with each
error type, simply use multiple stacked except clauses within a try statement, in
this format:

try:
 something...
except ValueError:
 do something...
except TypeError:
 do something else...

You can also incorporate Python’s error messages into your own
customized versions. Exceptions have arguments, which are official messages

from Python describing what happened. You can use an argument by
specifying a variable after the exception type, preceded by the keyword as.
Here’s an example:

In [80]: try:
 ...: age = int(input("Enter your age in years: "))
 ...: except ValueError as e:
 ...: print(e)
 ...: print("Please start again and enter a whole number.")

Enter your age in years: Steve
invalid literal for int() with base 10: "Steve"
Please start again and enter a whole number.

Now you have the best of both worlds: Python’s precise but technical
explanation combined with friendlier instructions for non-programmers.

Finally, you can add an else clause at the end of all the except clauses. This
lets you do something, like confirm a successful operation, if no exceptions are
raised elsewhere in the try block:

In [81]: try:
 ...: age = int(input("Enter your age in years: "))
 ...: except ValueError as e:
 ...: print(f'\n{e}')
 ...: print("Please start again and enter a whole number.")
 ...: else:
 ...: print(f"You entered an age of {age} years")

Enter your age in years: 42
You entered an age of 42 years

Forcing Exceptions with the raise Keyword

Python’s raise keyword allows you to force a specified exception if a condition
occurs. You can use it to raise built-in error types or your own custom errors.
It’s especially useful for validating inputs such as enforcing the use of
maximum values, or handling the input of a negative number when you’re
working with positive numbers.

To see how to create your own custom error, enter the following in
Spyder’s text editor and save it with any name you please:

word = input("Enter Harry's last name: ")
if word.lower()!= 'potter':
 raise Exception('I was looking for Potter!')

Here, you accept a name from the user, convert it to lowercase, and
compare it to “potter.” If the name doesn’t match, you use the raise keyword
and call the Exception class, passing it a custom message.

Now, run the file and input “Houdini” when prompted. You should see this
general output in the console (truncated for brevity):

Enter Harry's last name: Houdini
Traceback (most recent call last):

--snip--

 File "C:/Users/hanna/file_play/junk.py", line 1, in <module>
 raise Exception('I was looking for Potter!')

Exception: I was looking for Potter!

To force Python to raise one of its built-in exceptions, substitute the name
of the built-in exception class (see Table 7-4) for the Exception class you used
previously. In this example, we raise Python’s built-in TypeError exception:

number = 'Steve'
if isinstance(number, int):
 pass
else:
 raise TypeError("Only integers are accepted.")

You can read more about raise at
https://docs.python.org/3/tutorial/errors.xhtml.

Ignoring Errors

What if you want to ignore errors while looping? For example, suppose that
you’ve used Python’s None keyword to define missing or null sample values in

https://docs.python.org/3/tutorial/errors.xhtml

your dataset (data):

In [82]: data = [24, 42, 5, 26, None, 101]

You don’t want to strip this placeholder out of the dataset, because it
contains valuable information. It lets you know that the dataset is incomplete
as well as the location of the missing data. But if you try to iterate over the
data and do something to it such as divide each value by 2, the None value will
raise a TypeError and crash the program:

In [83]: for sample in data:
 ...: print(f'{sample / 2}’)
12.0
21.0
2.5
13.0
Traceback (most recent call last):

File "C:\Users\hanna\AppData\Local\Temp/ipykernel_5140/163932511.py", line 2, in <module>
print(f’{sample / 2}’)

TypeError: unsupported operand type(s) for /: 'NoneType' and 'int'

We can combine multiple flow control elements to handle this missing
data. Here, we use a try statement with an except clause within the for loop:

In [84]: for sample in data:
 ...: try:
 ...: x = sample / 2
 ...: print(x)
 ...: except TypeError:
 ...: print("missing data")
12.0
21.0
2.5
13.0
missing data
50.5

Now, the loop runs to completion and flags where data is missing.

However, what if you want to completely skip over the missing data? For
example, you want to pass the output to some other mathematical operation
where the “missing data” values would interfere? In this case, use the continue
statement, as follows:

In [85]: for sample in data:
 ...: try:
 ...: x = sample / 2
 ...: print(x)
 ...: except TypeError:

 ...: continue
12.0
21.0
2.5
13.0
50.5

The loop now treats the missing value as if it doesn’t exist because it
continues the loop when it encounters the value. Remember, continue
immediately returns control to the beginning of a loop.

Tracing Execution with Logging

To control the flow of your program, you need to know what it’s returning at
key locations. One way to keep track of this is to use the print() function. This
lets you print the output, the data type of a variable, or some other useful
information about an important step.

The print() function works well for small programs, but if you’re using it
only to quality-control your code, it can come with a price. To unclutter your
code and output, you might need to go back later and either delete all the
lines containing print() or comment them out (by placing a # at the start of the
line) so that they don’t run.

For large programs, a better choice is to use the logging module. This
module is part of the standard library that ships with Python, and it can
provide a customized report on what your program is doing at any location
you choose. Five logging levels let you categorize messages by importance.

These are listed in Table 10-3.

Table 10-3: Python’s Logging Levels

Level Function Description

DEBUG logging.debug() Detailed information for diagnosing problems

INFO logging.info() Confirmation that things are working as
expected

WARNING logging.warning() Unexpected event or potential future problem
in working code

ERROR logging.error() An error prevented the code from functioning
as intended

Level Function Description

CRITICAL logging.critical()A serious error that may halt the program

Large programs that require logged messages are difficult to write in a
console, so enter the following example in Spyder’s text editor and save it with
a name like logging.py. This code uses logging to check that a vowel-counting

program is working correctly:

 import logging

➊ logging.basicConfig(level=logging.DEBUG,
 format='%(asctime)s %(levelname)s - %(message)s')
 word = 'scarecrow'
 VOWELS = 'aeiouy'
 num_vowels = 0

 for letter in word:
 if letter in VOWELS:
 num_vowels += 1

 ➋ logging.debug('letter & vowel count = %s-%s', letter, num_vowels)

Save the file and press F5 (or click the Run button) to execute the code.
You should see this general output:

In [86]: runfile(′C:/Users/hanna/.spyder-py3/temp.py′, wdir=′C:/Users/hanna/.spyder-py3′)
202x-09-27 14:37:30,578 DEBUG - letter & vowel count = s-0
202x-09-27 14:37:30,580 DEBUG - letter & vowel count = c-0
202x-09-27 14:37:30,581 DEBUG - letter & vowel count = a-1
202x-09-27 14:37:30,581 DEBUG - letter & vowel count = r-1
202x-09-27 14:37:30,582 DEBUG - letter & vowel count = e-2
202x-09-27 14:37:30,582 DEBUG - letter & vowel count = c-2
202x-09-27 14:37:30,582 DEBUG - letter & vowel count = r-2
202x-09-27 14:37:30,583 DEBUG - letter & vowel count = o-3
202x-09-27 14:37:30,583 DEBUG - letter & vowel count = w-3

Let’s look at what you did. After importing the module, you used the
basicConfig() method to set up and format the debugging information you

wanted to see ➊. The DEBUG level is the lowest level of information and is used
for diagnosing details. Adding a timestamp (%(asctime)s) is not necessary here,
but it can become important when debugging long-running programs.

After setting up the word to count, a constant for vowels, and a count
variable, you started a for loop through the letters in the word and compared
each to the contents of VOWELS. If the letter matched, you incremented the
num_vowels counter by 1.

For each letter evaluated, you used logging.debug() to enter the custom text

message to display along with the current count ➋. The logging output
displayed in the console. You can see the timestamp, the logging level, and the
cumulative vowel count, along with which letters changed the count. In this
case, only vowels change the count, so the program appears to be working as
intended.

You can redirect the logged messages to a permanent text file rather than

displaying them on the screen. Just use the filename keyword in the
logging.basicConfig() function, as follows:

logging.basicConfig(filename='vowel_counter_log.txt',
 level=logging.DEBUG,
 format='%(asctime)s %(levelname)s - %(message)s')

As written, this code will save the log file to the same folder as your Python
file. To save it elsewhere, you’ll need to specify a path.

Both the print() function and logging can slow down your program. It’s
easier to disable the logging messages, however. With the logging.disable()
function, you can turn off all the messages for a certain level with one line of
code, as follows:

import logging
logging.disable(logging.CRITICAL)

Placing logging.disable() near the top of the program, just below the import
statement, allows you to find it easily and toggle messages on and off by
commenting them out with a hash mark, as follows:

import logging
#logging.disable(logging.CRITICAL)

The logging.disable() method will suppress all messages at the designated
level and lower. Because CRITICAL is the highest level, you can use it to disable
messages at every level. This is much easier than finding and deleting (or
commenting-out) multiple calls to print().

For more details on the logging module, check out the documentation at
https://docs.python.org/3/library/logging.xhtml. For a basic tutorial, visit

https://docs.python.org/3/howto/logging.xhtml.

https://docs.python.org/3/library/logging.xhtml
https://docs.python.org/3/howto/logging.xhtml

TEST YOUR KNOWLEDGE

6. Write a code snippet that asks a user for a username and password. If
the username is incorrect, keep asking until the user gets it right. If
only the password is incorrect, keep asking for the correct password
but don’t repeat the username request.

7. The for loop is just a concise version of a while loop. Write a while
loop that behaves like a for loop and prints the word “Python” five
times.

8. Use list comprehension to make a list of all the even numbers

between 1 and 10.

9. Use a for loop with the range() function to print a NASA-style
countdown from 10 to 0.

10. A secret message is hidden at the center of each of the following
words: “age,” “moody,” “knock,” “adder,” “project,” “stoop,”
“blubber.” Use a for loop to find and print the message.

11. Use the text editor to write a “guess my number” game that
randomly chooses an integer between 1 and 100 (using
random.randint()) and tells the player whether their answer is too high
or too low until they guess correctly. Inform the player when they
win and show them how many tries it took.

12. Use the text editor to write a “fortune cookie” program that presents
the user with a menu of three options: Quit, Open a Fortune
Cookie, or Open a Misfortune Cookie. Make a list of positive
fortunes and a list of funny “misfortunes” and use the random module’s
choice() function to randomly choose from each list. Print the results
to the screen.

Summary

The magic of programming lies in the ability of programs to make decisions
during execution. These decisions are facilitated by conditions that evaluate to
True or False. Using comparison and Boolean operators with conditional

statements like if, elif, and else, you can control what your code does and when

it does it.

Indentation (whitespace) is used to segregate code into functionally similar

segments, called blocks. Indentation levels let Python know when blocks start

and end. This, in turn, helps you control the flow of execution through a
program.

A while loop causes code to execute over and over until a certain condition
is met. The for loop, on the other hand, runs for a designated number of times
or until it exhausts the items in a container data type, such as a list. Both types
of loops can be manually interrupted with the break statement or forced to
jump back to the start using the continue statement.

A for loop can be simplified into a single line of code using comprehensions.

You can use these with lists, sets, and dictionaries. For simple expressions,
comprehensions are not only more concise than for loops, they’re faster, as
well.

Because errors can affect the flow of your code, Python provides try
statements with except clauses to help you handle errors by suppressing them,
fixing them, creating customized error messages, or getting a user to try again.
To help you find and debug errors and other issues, Python provides the
logging module. Compared to the print() function, logging is a more
sophisticated and manageable way to monitor the flow of execution of large
programs.

Another way to control flow is to write functions. We’ll look at these
important “mini-programs” in the next chapter.

11
FUNCTIONS AND MODULES

A function is a reusable set of instructions that performs a specific task. When

the function completes its task, the flow of execution returns to the proper place
in the greater code structure. Modules are programs, usually comprising

functions, that perform a task or group of related tasks. Whereas you can define
functions in place, you must import modules into a Python program to use
them.

Both functions and modules let you simplify code through the process of
abstraction. Abstraction is the act of moving the details of some process into a

seemingly simpler object away from the main routine. Later, you can perform
the task by calling the object’s name in a single line of code.

The best function and module names are short and descriptive. They allow
you to skim the main routines of programs and get an idea of what’s going on,
as if you were reading a summary. A good analogy is the table of contents of this
book. Although a great many details are hidden away in the actual chapter, the
headings and subheadings give you a good idea of what each chapter entails.

In previous chapters, you imported modules like math and os, and you used
built-in functions like print() and input(). Their code was abstracted to the point
that you never saw it. You just called a function, and something happened.
There’ll be times, however, when a pre-built solution is either unavailable or
insufficient, and you’ll need to create a function yourself.

By writing your own functions to reuse units of code, you can create more
readable, better organized, and less redundant programs. In this chapter, you’ll

write custom functions and modules and become familiar with additional built-
in functions and third-party modules designed to make your life easier.

Defining Functions

To write a function in Python, you define it by using the def keyword followed
by a name for the function, parentheses, and a colon. As always, code coming
after the colon must be indented, and the indented lines represent executable
code. Here’s an example in the IPython console in the Spyder IDE:

In [1]: def warning():
 ...: print("WARNING: Converting units from metric to Imperial!")

NOTE

In the console, you can complete a function by pressing ENTER twice or by using

SHIFT-ENTER. In the editor, a function’s code block ends when you return to the

same indentation level as the def keyword.

You’ve now encapsulated a warning message within the warning() function. To
use the message again, you need only call the function by entering its name and

parentheses. This saves you from typing out the full message over and over:

In [2]: warning()
WARNING: Converting units from metric to Imperial!

In a function name, the parentheses (), sometimes referred to as the call

operator, let Python know that an object can be invoked, which is a fancy way of

saying “execute this command.”

Like everything else in Python, functions are objects. They belong to the
function data type:

In [3]: type(warning)
Out[3]: function

You can assign functions to variables, use them in other functions, define
them in other functions, return them as values from other functions, and store
them in data structures (for example, as an item in a list).

According to Python’s PEP 8 Style Guide (https://pep8.org/), you should

surround top-level functions (those defined at indentation level 0) with two

https://pep8.org/

blank lines. Within functions, you should use blank lines (sparingly) to indicate
logical sections.

Using Parameters and Arguments

You can submit, or pass, input to a function; perform some operation on the

input; and then output, or return, the result. To do so, you use parameters and

arguments inside the parentheses and separate them by commas.

Parameters are special kinds of variables, defined by a function, that receive a

value when the function is called. They refer to the pieces of data provided as
input but are not the data itself. For example, the following code defines a
function that calculates a force value, using the famous equation F=MA, when

passed mass and acceleration parameters:

In [4]: def calc_force(mass, acceleration):
 ...: return mass * acceleration

Arguments are the actual data values input when calling the function. For

example, you could call the calc_force() function with these arguments:

In [5]: calc_force(15000, 9.78033)
Out[5]: 146704.94999999998

Figure 11-1 identifies the parameters in the calc_force() function definition
and the arguments passed to it when called.

Figure 11-1: Function definitions use parameters and function calls use arguments

Functions like calc_force() that return a value are called fruitful functions.

Functions that perform an action but don’t return a value are called void

functions. The warning() function in the previous section is an example of a void
function.

With fruitful functions, the return statement causes execution to exit the
function and resume at the point in the code immediately after the instruction
that called the function, known as its return address. Values listed after the return

keyword and on the same line are passed back to the code that called the
function. For the calc_force() function, this would be the value in line Out[5].

The return keyword always ends a function and prevents execution of any
subsequent code within the function.

NOTE

Technically, all functions need to evaluate to a return value. Void functions satisfy

this requirement by automatically returning Python’s null value, None, which

belongs to the NoneType data type.

Positional and Keyword Arguments

Function arguments can be of two types: positional and keyword. Positional

arguments must be entered in the correct order, as defined by the order of the
parameters in the function definition. As shown in Figure 11-1, the calc_force()
function uses positional arguments, such that the first argument submitted
corresponds to the mass, and the second to the acceleration.

Keyword (or named) arguments include a keyword and an equal sign before

the submitted value. These are used to add clarity and make a function’s
intention clear. Here’s how to call the calc_force() function using keywords:

In [6]: calc_force(mass=15000, acceleration=9.78)
Out[6]: 146700.0

NOTE

According to the Python Style Guide, no spaces should be used around the equal sign

in keyword arguments.

Another advantage to keyword arguments is that you don’t need to
remember the order in which the parameters were defined. Here, we enter

arguments in reverse order:

In [7]: calc_force(acceleration=9.78, mass=15000)
Out[7]: 146700.0

You can enter both positional and keyword arguments when calling a
function. However, after you use a keyword argument, you can’t go back to
using positional arguments in the same function call. So, this code works:

In [8]: calc_force(15000, acceleration=9.78)
Out[8]: 146700.0

But this code fails:

In [9]: calc_force(mass=15000, 9.78)

File "C:\Users\hanna\AppData\Local\Temp/ipykernel_3212/3649549750.py", line 1
calc_force(mass=15000, 9.78)
^
SyntaxError: positional argument follows keyword argument

You can force the use of keyword arguments by including an asterisk (*) as
the first parameter when defining a function:

In [10]: def calc_force(*, mass, acceleration):
 ...: return(mass * acceleration)

Now, if you attempt to use positional arguments, Python will raise an
exception and inform you that positional arguments are not accepted:

In [11]: calc_force(15000, 9.78)
Traceback (most recent call last):

File "C:\Users\hanna\AppData\Local\Temp/ipykernel_3212/2133932729.py", line 1, in <module>
calc_force(15000, 9.78)

TypeError: calc_force() takes 0 positional arguments but 2 were given

Using Default Values

You can specify a default value for one or more parameters. This lets you
simplify the function call if a parameter generally uses a particular value. It also
lets you guide users to an acceptable value if the user is not sure what to enter.

Default parameters should be placed after any non-default parameters.

Here’s an example of a function that uses a default value if the user presses
ENTER without responding to the prompt question:

In [12]: def default_input(prompt, default=None):

 ...: ➊ prompt = f'{prompt} [{default}]:'
 ...: response = input(prompt)

 ...: ➋ if not response and default:
 ...: return default
 ...: else:
 ...: return response

This function takes a prompt and a default value as arguments. The prompt
and default will be specified when the function is called, and the program will

display the default in square brackets ➊. The response variable holds the user’s
input. If the user enters nothing and a default value exists, the default value is

returned ➋. Otherwise, the user’s response is returned.

Let’s use this function to get a user’s birth country. For users currently in the
United States, we set the default value to “USA” so they can just press ENTER
rather than type in the name. Note how this default lets you control the response

when multiple choices are possible (such as “America,” “United States,” “United
States of America,” “US,” and so on):

In [13]: birth_country = default_input('Enter your country of birth:', 'USA')
Enter your country of birth: [USA]:

In [14]: birth_country
Out[14]: 'USA'

A user can override the default by entering a response:

In [15]: birth_country = default_input('Enter your country of birth:', 'USA')

Enter your country of birth: [USA]: Scotland

In [16]: birth_country
Out[16]: 'Scotland'

In most cases, you’ll want to avoid using mutable objects like dictionaries,
sets, or lists as default argument values in Python. This is because the default
mutable object is initialized only once, when the function is defined rather than

each time the function is called. This can produce unexpected outputs. Here’s an

example:

In [17]: def dog_breeds(new, current=['bulldog', 'dachshund']):
 ...: current.append(new)
 ...: return current

In [18]: my_dogs = dog_breeds('pomeranian')

In [19]: my_dogs
Out[19]: ['bulldog', 'dachshund', 'pomeranian']

In [20]: your_dogs = dog_breeds('poodle')

In [21]: his_dogs = dog_breeds('mutt')

In [22]: his_dogs
Out[22]: ['bulldog', 'dachshund', 'pomeranian', 'poodle', 'mutt']

The naive expectation here is that everyone who calls the dog_breeds()
function will start off fresh with a bulldog and dachshund and then add their
dog breeds to this list. But because the current list was created once when the
function was defined in line In [17], every subsequent call to the function
appends items to this same list.

Returning Values

When functions return a value, you can store the result in a variable using an
assignment statement. For example, the following code stores the value
returned from running the calc_force() function in a variable called force:

In [23]: force = calc_force(15000, 9.78033)

In [24]: force
Out[24]: 146704.94999999998

You can even return multiple values, separated by commas. You’ll need a
variable to hold each value, as in this example, in which the function accepts a
number as an argument and returns the square and cube of the number:

In [25]: def square_and_cube(a_number):
 ...: return a_number**2, a_number**3

In [26]: squared, cubed = square_and_cube(2)

In [27]: squared, cubed
Out[27]: (4, 8)

Finally, functions can include multiple return statements. Each statement
executes under a given condition, and as soon as one executes, the function
ends. Try this in the console:

In [28]: def goldilocks(a_number):
 ...: num = int(a_number)
 ...: if num > 42:
 ...: return "too high"
 ...: elif num < 42:
 ...: return "too low"
 ...: else:
 ...: return "just right!"

In [29]: goldilocks(43)

Out[29]: 'too high'

In [30]: goldilocks(41)
Out[30]: 'too low'

In [31]: goldilocks(42)
Out[31]: 'just right!'

In this example, the goldilocks() function accepts a number as an argument,
converts it to an integer, and then compares it to 42. Each of the three possible
outcomes (greater than, less than, or equal to) has its own return statement.

Naming Functions

The guidelines for naming functions are the same as those for naming variables
(see “Naming Variables” on page 206). You can use letters, underscores, and
numbers, as long as the first character isn’t a number. All characters should be
lowercase, and you should separate words with an underscore. You’ll want to
avoid reserved keywords and the names of built-in functions.

Because functions perform an action, a good naming strategy is to include a
verb and a noun that describe that action. Some examples are reset_password(),
register_image(), and plot_light_curve().

For more on naming and defining functions, visit the documentation at
https://docs.python.org/3/tutorial/controlflow.xhtml#defining-functions/.

Built-in Functions

Python comes with multiple built-in functions to make your coding life easier.
You’ve already worked with many of these, including print(), len(), type(), list(),
input(), round(), and more.

Table 11-1 lists some of the more frequently used built-in functions. To see
the full list, along with detailed descriptions of each function, visit
https://docs.python.org/3/library/functions.xhtml.

Table 11-1: Frequently Used Built-in Functions

Function Description

abs() Return the absolute value of a number.

all() Return True if all elements of an iterable are true or if the
iterable is empty.

any() Return True if any element of an iterable is true or False if
iterable is empty.

https://docs.python.org/3/tutorial/controlflow.xhtml#defining-functions/
https://docs.python.org/3/library/functions.xhtml

Function Description

chr() Return a string representing an input Unicode code point
(chr(97) returns ′a′).

dict() Create a new dictionary object.

dir() Without argument, return names in the current local scope. If
an object is passed as an argument, return list of attributes and
methods for that object.

enumerate() Adds a counter to each item of an iterable object and returns an
enumerate object.

filter() Return an iterator from those elements of an iterable for which
function returns True.

float() Return a floating-point number constructed from a number or
string.

frozenset() Return a frozenset object.

hash() Return the hash value of an object if it has one.

help() Invoke built-in help system (intended for interactive use).

hex() Convert an integer to a lowercase hexadecimal string prefixed
with “0x.”

id() Return the identity of an object.

input() Get user input using a prompt and return it as a string.

int() Return an integer number constructed from a number or
string.

isinstance() Return True if the specified object is of the specified type;
otherwise, return False.

len() Return the number of items in a sequence or collection (such as
a string, list, or set).

list() Create a new list object.

max() Return largest item in an iterable or the largest of two or more
arguments.

min() Return smallest item in an iterable or the smallest of two or
more arguments.

next() Retrieve the next item from an iterator.

open() Open a file and return a corresponding file object.

Function Description

ord() Return the Unicode code point of a character (ord(′a′) returns
97).

pow() Return a number raised to the power specified.

print() Print a specified message to the screen or other standard output
device.

range() Generate an immutable sequence of numbers for given start
and stop integers.

repr() Return a string containing a printable representation of an
object.

reversed() Return a reversed iterator.

round() Return a number rounded to n-digits precision after the

decimal point.

set() Create a new set object.

sorted() Return a new sorted list (forward or backward) from the items
in an iterable.

str() Return a string version of an object.

sum() Return the sum of all items in an iterable.

tuple() Create a new tuple object.

type() Return the type of an object.

zip() Iterate over several iterables in parallel, producing tuples with
an item from each.

It’s good practice to check whether a built-in function exists for a specific
task before writing code on your own.

TEST YOUR KNOWLEDGE

1. When you call a function that takes input, you pass it:

a. parameters

b. objects

c. arguments

d. the def keyword

2. Ideally, a function name should contain both a:

a. noun and an underscore

b. verb and an underscore

c. verb and a noun

d. number and an underscore

3. A function that returns no value is called a:

a. fruitful function

b. void function

c. warning function

d. module

4. Write a function that accepts a user’s name and then returns their
name stripped of vowels. You’ll want to make a string of vowels, loop
through the letters in the name, and compare each letter to the
contents of the vowel string.

5. Write a function that calculates momentum (mass * velocity) using
keyword arguments only.

Functions and the Flow of Execution

Like conditional statements and loops, functions can cause code to branch or
jump around. In the following example, we define two functions and call the
first function from within the second:

In [32]: def success():
 ...: print("You found the number 3!")

In [33]: def find_3():
 ...: for i in range(6):
 ...: if i == 3:
 ...: success()

In [34]: find_3()
You found the number 3!

When you call the find_3() function, the flow of execution moves into the
function. But rather than return a value—and control—back to the main

routine, this function calls another function, which could theoretically call
another function defined somewhere higher in the code.

The definition of these two functions doesn’t need to be in order and can be
separated by other code, as long as calls to the functions come after their

definition. On the Spyder main menu, click Consoles ▸ Restart kernel and
then enter the following code, which now defines find() before success(), with
some other code in between:

In [35]: def find_3():
 ...: for i in range(6):
 ...: if i == 3:
 ...: success()

In [36]: print("Here's some other code...")
Here's some other code...

In [37]: print("Here's some more code...")
Here's some more code...

In [38]: def success():
 ...: print("You found the number 3!")

In [39]: find_3()
You found the number 3!

As you can see, the order in which you defined the two functions didn’t
matter; what’s important is that you made the call to find_3() after they were
defined.

Using Namespaces and Scopes

A namespace is a collection of names. Behind the scenes, Python uses namespaces

to map names to corresponding objects in memory. This lets Python keep track
of all the names currently in use and prevent collisions, wherein two different

objects share the same name.

Different, isolated namespaces, called scopes, can exist at the same time within

a single program. When you start typing a program in the console or the text
editor, you are in the global scope, and all the object names share the same

namespace. Every time you define a function, you enter the function’s local

scope, and all the names used within the function share a new namespace that’s
hidden from both the global scope and the local scope of other functions. Thus,
it’s possible to use the same object name within one function as you do within
another function, or in the main program in the global scope (see Figure 11-2).

Figure 11-2: This program has a global scope (gray) and two isolated local scopes within functions

(white).

Let’s look at scope behavior in practice. Enter the following in the console:

In [40]: x = 42

In [41]: print(x)
42

In [42]: def local_scope():
 ...: x = 5
 ...: print(x)

In [43]: local_scope()
5

In [44]: print(x)
42

In the previous snippet, you used the same variable name (x) twice without a
problem. This is because the first x is in the global scope, and the second x is
safely tucked-away within the local scope of the function. As written, there’s no
way for the global scope to access the x in the local scope. So, when you print x
in line In [44], you get the value in the global scope, despite the fact that x
appears to have been reassigned to 5 in the function. After the function
terminates, all its local variables are “forgotten” by Python, so no name conflicts
occur.

Compartmentalizing the code using scopes also aids debugging. It’s easier to
track down the source of bad values because functions can only interact with the
rest of the program through the arguments they’re passed and the values they
return.

Using Global Variables

Any variable assigned in the global scope is visible to both the global and local
scopes. To indicate that you’re accessing a global variable without passing it to
the function as an argument, and to make it fully available to the function, you
must use the global statement to specify it as a global variable within the function,

as follows:

In [45]: x = 42

In [46]: def local_scope():
 ...: global x
 ...: x = 5
 ...: print(x)

In [47]: local_scope()
5

In [48]: print(x)
5

By adding the line global x in the definition of the local_scope() function, you
gave the function access to the x variable in the global scope. Now, when you
change the value of x in the function, that change is reflected in the global
scope, and printing x returns 5, not 42, as before.

NOTE

Variables in the global space can be changed from within a function, without the use

of the global statement, if they are mutable objects.

Because it’s possible to use global variables in the local scope of functions,
you should avoid using the same names for local and global variables. Likewise,
you should avoid using the same name for variables in local scopes. Even
though it’s impossible to share a local variable either globally or with another
function, this can become confusing. It’s rarely a good idea to use the same
name for two different things, even if they never interact.

Using global variables is generally discouraged, especially in large and
complex programs. Imagine that you have hundreds of lines of code with dozens
of functions. One of the functions changes a global variable to the wrong value,
either due to a bug or to a failure in logic. To find and correct this problem, you
must search through the entire program rather than focus on individual

functions or function calls.

NOTE

An exception to the “don’t use global variables” rule is the global constant. It’s okay

to assign constant values near the top of your program in the global scope. Because

constants shouldn’t change value, they shouldn’t introduce complexity into your code.

Using a main() Function

With the exception of short, simple programs, it’s common practice to
encapsulate the main code of a program into a function called main(). This code
runs the rest of the program by executing expressions and statements and
calling functions. Removing it from the global scope makes it easier to find and
manage.

You can define the main() function anywhere, but generally it’s near the start
or end of a program. If your code and function names are very readable, placing
main() at the start of a program can serve as a good summary of what the
program does.

Here’s a program that uses a main() function to calculate some statistics. Enter
the following in the Spyder text editor and save it as main_function_example.py:

from random import uniform

def main():
 data = generate_data()
 print(f"data = {data}")
 calc_mean(data)
 calc_max_value(data)
 calc_min_value(data)

def generate_data():
 samples = []
 for _ in range(10):

 ➊ sample = round(uniform(0.0, 50.0), 1)
 samples.append(sample)
 return samples

def calc_mean(data):
 print(f"\nMean = {round(sum(data) / len(data), 1)}")

def calc_max_value(data):
 print(f"Max = {max(data)}")

def calc_min_value(data):
 print(f"Min = {min(data)}")

main()

In this code, we first import the uniform() method from the random module so
that we can generate random float values to use as data (in real life, you’d load
or type some data into the program). Next, we define the main() function. All

this function does, in this case, is call other functions. Note how it reads like a
summary of what the program does.

The next function, generate_data(), returns a list of 10 random float values,
rounded to one decimal place, from a uniform distribution. To use the uniform
method, pass it the beginning and ending values of the range that you want to

use, in this case, 0.0 and 50.0 ➊. The next three functions will take this list as
input (an argument) and return the mean, maximum, and minimum values,
respectively.

At this point, you’ve defined only functions. If you want the program to do
something, you need to call the main() function before execution.

For code this simple, you could forgo use of a main() function and move its
contents into the global scope, below the definitions of the functions being

called. But as your code becomes longer and more complicated, a main() function
will help you keep it clean and organized and make it easy to find and review
what the program does.

Advanced Function Topics

At this point, you know enough about functions to handle most, if not all, of the
coding problems you’ll encounter. There’s always more to learn, however. This
section will give you a brief introduction to recursion, function design, lambda
functions, and generators. Recursion is a particularly ambitious topic, and if you
find it interesting or useful, I recommend reading more about it on your own.

Recursion

Recursion is a powerful programming technique in which a function calls itself.

Although recursion can be accomplished using more efficient for and while
loops, these loops can sometimes become complicated and messy.

For difficult problems, recursive functions can provide a simpler and more
readable way to construct code. You’ll commonly see recursion used for solving
factorials, finding numbers in a Fibonacci sequence, and calculating compound
interest for a loan using additional data, like regular payments.

Here’s a simple example of a recursive function named beer(). Notice that the
elif and else statements include calls to the beer() function.

In [49]: def beer(bottles):

 ...: ➊ if bottles <= 0:

 ...: print("No more bottles of beer on the wall!")
 ...: elif bottles == 1:
 ...: print(f"{bottles} bottle of beer on the wall!")
 ...: beer(bottles - 1)
 ...: else:
 ...: print(f"{bottles} bottles of beer on the wall!")
 ...: beer(bottles - 1)

In [50]: beer(3)
3 bottles of beer on the wall!
2 bottles of beer on the wall!
1 bottle of beer on the wall!
No more bottles of beer on the wall!

This function was inspired by the famous “99 Bottles of Beer” song. It
accepts a number—representing bottles of beer—as an argument, and then it
updates the number of bottles remaining and calls itself again until the number
reaches zero. The elif clause in the middle is needed only to correct the
grammar when one bottle remains.

The if statement ➊ does not include a recursive call to beer(), because this is

the base condition, or base case, for the function. A base condition is one that will

end the function if the condition is met.

You need a base case because recursions, like while loops, can go on forever.
To see an example, enter the following in the console:

In [51]: def keep_on_keeping_on():
 ...: print("Somebody stop me!")
 ...: keep_on_keeping_on()

In [52]: keep_on_keeping_on()

This example will raise the following exception:

RecursionError: maximum recursion depth exceeded while calling a Python object

Because the keep_on_keeping_on() function kept calling itself, it created an
infinite recursion, resulting in a stack overflow. This error occurs when you

attempt to write more data to a memory block than it can hold. Inclusion of a
reachable base case could have stopped this from happening, but not if it allows
too many recursive calls.

To prevent infinite recursions, the Python interpreter limits the depth of

recursion; that is, the number of recursive calls to a function, to a default value.

To see this value, in the console, use the system module (sys), as follows:

In [53]: import sys

In [54]: print(sys.getrecursionlimit())
3000

Although you can increase this recursion limit by passing the
sys.setrecursionlimit() function an integer, you need to do this with care, as the
highest possible limit is platform-dependent, and a high limit can still lead to a
crash. A better option is to rewrite your code without recursion.

NOTE

The actual recursion limit is usually a bit less than the value returned by

sys.getrecursionlimit(). On my machine, a RecursionError is raised after 2,967 calls,

despite the limit being set at 3,000.

Designing Functions

When it comes to writing functions, there’s a school of thought that believes a
function “should do one thing and one thing only.” Although keeping functions
short and simple is a good guideline, there are many cases for which longer,
more complex functions are the better choice.

Longer functions can merge related tasks under one umbrella while reducing
the overall number of lines of code. Thus, adding a bit of complexity locally to a

function can reduce the overall global complexity of a program.

Still, it’s a good idea to keep the “one task only” guide in mind when writing
functions. Here’s a simple example involving an embedded print() function:

In [55]: def area_of_square(side_length):
 ...: area = side_length**2
 ...: print(f"Area is {area}")
 ...: return area

In [56]: area_of_square(50)
Area is 2500
Out[56]: 2500

If this function is used as an intermediate step in a program—that is, if
you’re just calculating the area to pass it on to another function—do you really
want it printing the answer to the screen? Unnecessary printing increases the
runtime of programs and can clutter your screen with unneeded information.

On the other hand, suppose that you want to get a user’s name, convert it to
lowercase, and then sort the letters alphabetically to find anagrams for the name

in a dictionary. It would be silly to break these tasks into multiple functions to
honor the “one task only” guideline.

In his book Beyond the Basic Stuff with Python (No Starch Press, 2021), author

Al Sweigart recommends that functions be as short as reasonably possible but
no shorter. They should not exceed 200 lines of code and ideally contain fewer
than 30 lines.

Lambda Functions

Remember how you can reduce for loops to a single line of code using
comprehensions? Well, lambda functions let you do something similar with
functions.

A lambda function is a single-use, unnamed function consisting of a single

statement. They’re sometimes called an anonymous function because they’re

defined with the lambda keyword rather than a name of their own. The syntax is
as follows:

lambda parameter_1, parameter_2: expression

Words and characters that directly follow lambda are treated as parameters.
Expressions come after the colon, and returns are automatic, with no need for
the return keyword. Here’s an example that multiplies two numbers together:

In [57]: multiply = lambda a, b: a * b

In [58]: multiply(6, 7)
Out[58]: 42

A nice thing about lambda functions is that you can create them on the fly,
without the need for a variable assignment. Just put the function in parentheses
and add the arguments, also in parentheses, to the end:

In [59]: (lambda a, b: a * b)(6, 7)
Out[59]: 42

Lambda functions are often used in conjunction with the built-in filter()
function to select particular elements from a sequence. The lambda function
defines the filtering constraint that the filter() function then applies to the
sequence. Here’s an example in which we return all the numbers with a value
less than 10 from a list:

In [60]: numbers = [5, 42, 26, 55, 12, 0, 99]

In [61]: filtered = filter(lambda x: x < 10, numbers)

In [62]: print(list(filtered))
[5, 0]

Note that you need to type cast the filtered object to another data type such
as a list or tuple before you can print it.

Lambda functions are useful in data analysis when you need to pass a
function as an argument to a data transformation function. They’ll also save you
the effort of typing full function definitions while preserving the readability of
your code.

Generators

A generator is a special routine for controlling the iteration behavior of a loop. It

lets you generate a sequence one value at a time rather than all at once. Compare

this to a regular function, which must create the entire sequence in memory
before returning the result, regardless of the size of the sequence.

Generators use lazy evaluation, which means that they compute the value of

an item only when invoked, without having to load everything in memory first.
As a result, generator objects have a lower memory footprint than other
iterables, such as lists.

Generators are useful when working with sequences large enough to occupy
much (if not all) of your system’s RAM. They’re also a good choice when you
need to use a sequence only once.

The most familiar generator is the built-in range() function, which you’ve
used before. With range(), it doesn’t matter for system memory if you set the
upper limit to ten or a trillion, as each number is generated as it’s needed, and
then discarded.

Generator functions are defined like regular functions except that they use a
yield statement in place of a return statement. Here’s an example that yields the
cube of each number in a sequence:

In [63]: def cubes(my_range):
 ...: for i in range(1, my_range + 1):
 ...: yield i**3
In [64]:

Whereas the return statement ends and exits a function, the yield statement

suspends the function’s execution and sends a value back to the caller. Later, the

function can resume where it left off. When a generator reaches its end, it’s
“empty” and can’t be called again.

If you try to call a generator function and pass it an argument in the same
manner as a regular function, you might be surprised by the result:

In [65]: cubes(5)
Out[65]: <generator object cubes at 0x0000017FE06834A0>

The issue here is that the function returned a type of iterator called a
generator object. This object won’t begin executing its code until you request

elements from it, for example, by using it in a for loop or by calling the built-in
next() function.

Here’s an example that creates a generator object (cube_gen) and then uses
next() to get the next value from it. Behind the scenes, the generator pauses after
each call to the next() function and resumes when the function is called again.
This continues until the generator object is exhausted and raises a StopIteration
exception:

In [66]: cube_gen = cubes(5)

In [67]: next(cube_gen)
Out[67]: 1

In [68]: next(cube_gen)
Out[68]: 8

In [69]: next(cube_gen)
Out[69]: 27

In [70]: next(cube_gen)
Out[70]: 64

In [71]: next(cube_gen)
Out[71]: 125

In [72]: next(cube_gen)
Traceback (most recent call last):
File "C:\Users\hanna\AppData\Local\Temp/ipykernel_23936/2492540236.py", line 1, in <module>
next(cube_gen)

StopIteration

At this point, the generator object is empty and can’t be used again. If you
try to iterate over it with a for loop, you get nothing:

In [73]: for i in cube_gen:
 ...: print(i)

In [74]:

You must remake a generator to use it again:

In [75]: cube_gen = cubes(5)

In [76]: for i in cube_gen:
 ...: print(i)
1
8
27
64
125

If your generator uses a simple expression, you can define it more concisely
using a generator expression. A generator expression looks a lot like a list

comprehension, but instead of square brackets, you surround the expression
containing the for loop in parentheses:

In [77]: my_gen = (i for i in range(5))

In [78]: my_gen
Out[78]: <generator object <genexpr> at 0x000001C0DC3280B0>

Due to their efficiency, generator expressions are often used in place of list
comprehensions in functions like min, max, and sum:

In [79]: sum(x**2 for x in range(500))
Out[79]: 41541750

Finally, you can convert generators to lists or tuples using type casting. In
this example, we wrap the generator expression in the built-in list() function to
convert the results to a list:

In [80]: my_list = list(range(5))

In [81]: my_list
Out[81]: [0, 1, 2, 3, 4]

You might perform this action when using a very large sequence to generate
a smaller sequence with a memory footprint small enough to store in a list.

And here, we use the tuple() built-in function to convert the results to a
tuple:

In [82]: my_tuple = tuple(i**2 for i in my_list)

In [83]: my_tuple
Out[83]: (0, 1, 4, 9, 16)

Again, you might undertake this action when you need to efficiently produce
a relatively small tuple from a larger input sequence.

TEST YOUR KNOWLEDGE

6. A generator function always contains which keyword?

a. return

b. main

c. yield

d. range

7. Rewrite the generate_data() function in “Using a main() Function” on
page 295 so that it uses list comprehension rather than a for loop.

8. Write a lambda expression that prints the multiples of 5 in this list: [3,
10, 16, 25, 88, 75].

9. True or false: The purpose of defining a main() function at the end of
your code is to grant it access to any preceding functions.

10. To run a lambda function without assigning it to a variable, you must
enclose it in:

a. Curley brackets

b. Square brackets

c. Parentheses

d. You don’t need to enclose it at all

Modules

Modules are files—usually written in Python—that contain collections of related

functions. Modules can be embedded in Python programs and used to perform
both common and specialized tasks. Python’s standard library, for example,

includes the os module, which provides widespread utility related to operating
systems. It also includes the more specialized math module, which provides basic
mathematical functions.

Like functions, modules let you hide code that you don’t want to see in all its
gory detail. In fact, many modules, as well as built-in functions, aren’t even

written in Python. The standard library’s familiar len() function, for example, is

implemented in the C language. Here’s some of its source code:

static PyObject *
builtin_len(PyObject *module, PyObject *obj)
/*[clinic end generated code: output=fa7a270d314dfb6c input=bc55598da9e9c9b5]*/
{
 Py_ssize_t res;

 res = PyObject_Size(obj);
 if (res < 0) {
 assert(PyErr_Occurred());
 return NULL;
 }
 return PyLong_FromSsize_t(res);
}

Imagine having to include code like this in your programs every time you
want to get the length of a list or a string!

Through encapsulation, modules reduce complex code to one-line function
calls. This, in turn, helps you to write cleaner code that’s easier to read. And the
modules themselves let you break code into functional groups that are easier to
access and maintain.

Modules save you time, effort, and even money in so much as most third-
party modules are open source. Best of all, modules let you leverage the battle-
tested efforts of experts in a field. The OpenCV computer vision module, for
example, lets you identify faces, track objects, manipulate images and more,
even if you know very little about the subject. You can also write your own
modules if third-party versions aren’t available.

Importing Modules

Except for some modules in the standard library, you need to import modules
prior to use. By convention, you should place these imports at the top of Python
programs and insert an empty line after the last import. Consequently, you can
think of imports as the “headwaters” of the flow of execution.

Importing modules at the top makes it easy to see which modules are being
applied. This is important given that many times users will need to install the
modules before running the program, and they don’t want to go on a “module
scavenger hunt” through your code.

Let’s look at the import process using the random module, which lets you work
with pseudo-random numbers. The simplest way to import this module is to use
the import keyword followed by the module name:

In [84]: import random

Now, to use the functions in the random module, you need to use dot notation
and enter the module name, followed by a period, followed by the function
name. Here’s an example in which you use the choice() function to randomly
choose from items in a list:

In [85]: planets = ['Mars', 'Venus', 'Jupiter']

In [86]: planet = random.choice(planets)

In [87]: planet
Out[87]: 'Venus'

You can import multiple functions at a time using comma-separated values,
like this:

In [88]: from random import choice, randint, shuffle

To save yourself the effort of typing random each time and to make your code
lines shorter, you can just import choice, using the from keyword in the import
statement:

In [89]: from random import choice

In [90]: planet = choice(planets)

In [91]: planet
Out[91]: 'Mars'

This is more concise but somewhat less readable because you can forget
where choice() comes from (though you can always scroll up to the top to check).

Another way to reduce typing is to use an alias for the module name:

In [92]: import random as ran

In [93]: planet = ran.choice(planets)

In [94]: planet
Out[94]: 'Jupiter'

In general, I would avoid this, except for modules for which the alias is
widely used, such as sns for the seaborn plotting library and pd for the pandas
data analytics library, among others.

Likewise, never use the * wildcard to import all the functions in a module,
like this:

In [95]: from random import *

This basically says, “import all the functions available in the random module.”
You might encounter this in the literature or in other people’s code, but it’s
considered bad practice. It imports all the functions and classes in a module into
your namespace. As a result, names in the module might clash with the names of
functions you define or functions of other libraries that you import. Although
clashes rarely happen, it’s a good habit to keep your namespace as uncluttered as
possible, so avoid import *.

Finally, when importing multiple modules, the best practice is to import each
module on a separate line. This is more readable and lets you group modules in

the preferred order of Python standard library → third-party modules → user-
defined modules. Each group should be separated by a blank line, and a blank
line should follow the last import statement.

If you’re concerned that multiple imported modules might use the same
function name or names, import the modules by name—or with a short alias for
the name—and call them by using dot notation. This way, the module name will
be clearly linked to the function name, avoiding both confusion and collisions.

NOTE

Python libraries are collections of packages, and packages are collections of modules.

Consequently, all three are imported in the same way: using an import statement

made up of the import keyword and the name of the library, package, or module

being imported.

Inspecting Modules

You can use the built-in dir() function to see the functions available in a module.
Let’s look at the random module, used for generating random numbers. The
output is long, so I’ve truncated it here:

In [96]: import random

In [97]: dir(random)
Out[97]:
['BPF',
--snip--
'betavariate',
'choice',
'choices',
'expovariate',
'gammavariate',

'gauss',
'getrandbits',
'getstate',
'lognormvariate',
'normalvariate',
'paretovariate',
'randint',
'random',
'randrange',
'sample',
'seed',
'setstate',
'shuffle',
'triangular',
'uniform',
'vonmisesvariate',
'weibullvariate']

To view the source code for each function, you can use the getsource() method
from the inspect module. Let’s look at the random module’s choice() function, used
for randomly choosing an element from a sequence. Note that these modules
are open source and subject to updates and revisions, so your output might look
different:

In [98]: import inspect

In [99]: print(inspect.getsource(random.choice))
def choice(self, seq):
 """Choose a random element from a non-empty sequence."""
 try:
 i = self._randbelow(len(seq))
 except ValueError:
 raise IndexError('Cannot choose from an empty sequence') from None
 return seq[i]

You can see that choice() is just a function like you’ve defined before. There’s
really nothing magic about modules.

If you want to see only the module’s documentation, use the getdoc() method:

In [100]: print(inspect.getdoc(random.choice))
Choose a random element from a non-empty sequence.

As mentioned earlier, the built-in functions in the Python standard library
are written in C and thus can’t be accessed by inspect. To view their source code,
you’ll need to download it from https://www.python.org/downloads/source/.

Besides checking what a module is doing, inspecting the source code can
help you to learn how to write your own custom functions that expand on or
modify an existing module’s functionality.

Writing Your Own Modules

https://www.python.org/downloads/source/

A Python (.py) file can serve as a module. After you import it, it becomes a

special module object whose functions can be called with dot notation.

Let’s assume that you’re working on a project for which you need to
repeatedly solve the quadratic equation and calculate the volume of a sphere. As
these equations aren’t part of the standard math module, you’ll need to
implement them on your own. Rather than define functions for these tasks in
every program for which you’ll need to perform them, you can instead define
them once in a reusable module named mymath and import that where needed.
The filename is used as the module name.

Next, we need to determine where to save the module. When a module is
imported, the Python interpreter first searches for a built-in module with that

name. If no built-in module is found, it then searches for the filename in a list of
directories given by the sys module’s built-in sys.path variable. According to the

documentation, this path is initialized from these locations:

The directory containing the input script (or the current directory when no
file is specified).

PYTHONPATH (a list of directory names, with the same syntax as the shell

variable PATH).

The installation-dependent default (by convention including a site-
packages directory, handled by the site module).

Going forward, we’ll use the first option and store your custom modules in
your project’s directory. This will be the simplest and most straightforward
approach for beginners and non-developers such as scientists and engineers.
However, the module will be available only to scripts run from the project
directory. To use the module in other projects, you’ll need to either copy the file
to those directories or use one of the other options in the previous list. The
easiest way is to add the path to the PATH variable, like so:

In [101]: import sys

In [102]: sys.path.append(r'/path/to/my_module')

The mymath module will contain functions for solving quadratic equations and
for calculating the volume of a sphere. I’m going to save it in the
spyder_proj_w_env project that we created in the “Creating a Project in an

Existing Directory” on page 70. If you don’t want to use this project, feel free to
create your own project folder using the instructions in Chapter 4.

First, open the project by going to Spyder’s top toolbar and then clicking

Projects ▸ Open Project ▸ spyder_proj_w_env. You’ll want to see Spyder’s

File Explorer, Text Editor, and IPython Console, such as it is presented in
Figure 4-4.

Now, in the text editor, enter the following code:

import math

def quad(a, b, c):
 x1 = (-b - (b**2 - 4 * a * c)**0.5) / (2 * a)
 x2 = (-b + (b**2 - 4 * a * c)**0.5) / (2 * a)
 return x1, x2

def sphere_vol(r):
 vol = (4 / 3) * math.pi * r**3
 return round(vol, 2)

The quad() function accepts the standard a, b, and c coefficients for the
quadratic equation as arguments. It then calculates and returns both solutions to
the equation. The sphere_vol() function accepts a radius as an argument and
returns the volume of a sphere with that radius rounded to two decimal places.

NOTE

The mymath module imports the built-in math module. This is fine, but be careful

about writing and importing multiple modules that depend on one another. This

results in circular dependencies that get messy and can cause an ImportError.

Now, save the program as mymath.py in the code folder by clicking File ▸
Save as on the top toolbar. Alternatively, you could save it at the project folder
level (Figure 11-3) and still access it from scripts in the code folder. Personally, I

don’t like to clutter the project folder with individual files, hence the decision to
place it in code.

Figure 11-3: The mymath.py module can be saved in either the code folder or the main project folder.

If you’re ever curious about what folder the Python interpreter is currently
working in, import the operating system module (os) and use its getcwd() function
to return the current working directory. Here’s an example in the console:

In [103]: import os

In [104]: os.getcwd()
Out[104]: 'C:\\Users\\hanna\\spyder_proj_w_env\\code'

Because the current directory is the code folder, you don’t need to specify a

path to import or otherwise access other files in this folder.

Now, let’s test the module in the console:

In [105]: import mymath

In [106]: mymath.quad(2, 5, -3)
Out[106]: (-3.0, 0.5)

In [107]: mymath.sphere_vol(100)
Out[107]: 4188790.2

If you want to assign the results of the quad() function to a variable,
remember that the quadratic equation has two solutions, so you’ll need to use
two variables in the assignment statement:

In [108]: soln1, soln2 = mymath.quad(2, 5, -3)

In [109]: soln1, soln2
Out[109]: (-3.0, 0.5)

That’s all there is to it! Now, any programs in the code folder can import and

use the mymath module, just as they can use a built-in module.

NOTE

If you try to import a module that’s already been imported, nothing will happen. So,

if you change a module and want to reimport it, the best course of action is to restart

the kernel and then import the module again. In fact, anytime Python is behaving

strangely, you should consider restarting the kernel. As your IT support person likes

to say, “Have you tried rebooting?”

Naming Modules

When naming modules, the best practice is to use lowercase characters and
separate words with underscores. Names should preferably be one word only, as
names with underscores can be confused for variable names. You’ll also want to
avoid special symbols like the dot (.) and question mark (?). These symbols can
cause problems due to the way Python looks for modules. A filename like
my.module.py, for example, would indicate to Python that the module.py file

should be found in a folder named my.

Writing Modules That Work in Stand-Alone Mode

The mymath.py program you wrote in “Writing Your Own Modules” on page

307 just defines two functions. It works great as a module, but it’s not very
usable on its own, because there’s no call to the functions. So, let’s turn
mymath.py into a program that will run in stand-alone mode and work as a

module.

In Spyder, open mymath.py in the text editor and make a copy of it using File

▸ Save as from the top toolbar. Name the new file mymath2.py.

Now, add the code blocks at ➊ and ➋ to define and call a main() function:

 import math

➊ def main():
 a = 2
 b = 5
 c = -3
 r = 100
 soln1, soln2 = quad(a, b, c)
 vol = sphere_vol(r)
 print(f'solution1 = {soln1}')
 print(f'solution2 = {soln2}')

 print(f'sphere volume = {vol}')

 def quad(a, b, c):
 x1 = (–b - (b**–2 - 4 * a * c)**0.5) / (2 * a)
 x2 = (-b + (b**–2 - 4 * a * c)**0.5) / (2 * a)
 return x1, x2

 def sphere_vol(r):
 vol = (4 / 3) * math.pi * r**3
 return round(vol, 2)

➋ if __name__ == '__main__':
 main()

At ➊, you define a main() function to run the program, assigning variables to
serve as arguments to the module’s functions, calling the two functions, and
printing the results.

For Python to evaluate whether a program is being run in stand-alone mode
or as an imported module, it’s necessary for you to use the special built-in

__name__ variable ➋. If you run the program directly, __name__ is set to __main__, and
the main() function is called. If the program is imported, __name__ is set to the
module’s filename, main() is not invoked, and the program won’t execute until
you call one of its functions, like quad() or sphere_vol().

Save the program and run it using F5 or the “play” icon on the Run toolbar.
You should see the following output in the console:

In [110]: runfile('C:/Users/hanna/spyder_proj_w_env/code/mymath2.py', wdir='C:/Users/hanna/
spyder_proj_w_env/code')
solution1 = -3.0
solution2 = 0.5
sphere volume = 4188790.2

The program ran as if you had simply called main() as the last line.

Built-in Modules

Python comes with multiple built-in modules. Covering all these is beyond the
scope of this book, but Table 11-2 lists some commonly used ones, along with a
brief description of each. You’ve already worked with several of these, including
math, random, logging, and inspect. We’ll look at some of the other ones in chapters
to come.

Table 11-2: Frequently Used Built-in Python Modules

Module Description

Module Description

os Operating system tasks like directory and file creation, deletion,
identifying the current directory, and more.

sys System operation and runtime environment tasks like exiting
programs, getting paths, command line use, and more.

shutil Shell utilities for high-level file operations like copying, moving,
deleting directory trees, and more.

inspect Functions to get information about live objects such as modules,
classes, methods, functions, tracebacks, frame objects, and code
objects.

logging A flexible event logging system for monitoring a program’s flow of
execution.

math Basic mathematical operations and constants.

random Implements pseudo-random number generators for various
distributions.

statistics Functions for calculating mathematical statistics like mean,
geometric mean, median, mode, covariance, and more.

collections Provides specialized container datatypes providing alternatives to
Python’s general purpose built-in containers like dictionaries,
lists, sets, and tuples. Useful tools include namedtuple(), deque,
defaultdict, and Counter.

itertools Creates iterators for efficient looping. Includes fast functions for
zipping, computing cartesian products, generating permutations
and combinations, cycling, and more.

datetime Supplies tools for getting and manipulating dates and times.

re Tools for working with regular expressions, that specify a set of
matching strings. Used for searching and parsing text data.

http Collects several modules for working with the HyperText
Transfer Protocol

json Methods for working with JSON-formatted data.

threading Used for creating, controlling, and managing threads (smallest
sequence of programmed instructions) that allow different parts
of a program to run concurrently for speed and simplicity.

Module Description

multiprocessingPermits efficient use of multiple processors on a given machine.

It’s a good idea to be aware of built-in modules so that you don’t find
yourself reinventing the wheel and duplicating modules that already exist. You
can find the official documentation at
https://docs.python.org/3/tutorial/modules.xhtml. But don’t think you need to

memorize the modules or their contents. A simple online search for a particular
task will generally return information on modules as well as actual code samples
for accomplishing the task.

TEST YOUR KNOWLEDGE

11. Write a function that calculates the force of gravity using the equation

F = (G * mass1 * mass2) / radius2, where G is the gravitational constant

(6.67 × 10-11 N-m2/kg2). Treat G as a global constant.

12. Import the math module and list all the functions it contains.

13. The preferred way to import all the functions available in a module is

to use:

a. from module import *

b. import module

c. import module as *

d. from module import func1, func2, func3...

14. When you import a module, Python first searches for:

a. a module with that name in the current working directory

b. a module with that name in PYTHONPATH

c. a module with that name in the site-packages directory

d. a built-in module with that name

15. Write a function that accepts a variable in the global scope as an
argument. Then, rewrite the function to use the same variable as a
global variable.

https://docs.python.org/3/tutorial/modules.xhtml

Summary

Functions are callable collections of code that let you organize your program
into modular, logical groups. If you find yourself repeating code, you should
stop and write a function.

Recursion means to “run back,” and recursive functions call themselves over
and over. Recursive functions are used to solve complex problems that can be
broken down into smaller problems of the same type and would be difficult to
implement using a loop.

Lambda functions are one-off, unnamed functions consisting of single
statements. For simple tasks, they save you the effort of defining a complete
named function.

A generator is a function that returns an object that can be iterated over a
single time. Rather than compute all of its values at once, a generator waits to
be asked and then yields its values one at a time. As a result, a generator has a

low memory footprint, making them useful for large data sets that you need to
use only once.

A module is a Python file containing a collection of related functions.
Modules must be imported into other Python files to be used. Modules let you
take advantage of the expertise and efforts of others while keeping your code
clean and uncluttered. You can also write customized modules for your own
projects.

12
FILES AND FOLDERS

Files let you store data in a persistent and sharable manner. It’s all but impossible
to do any real work without them. Python comes with many modules and
methods for working with files, folders, and directory paths. These let you read
and write text files; preserve complex data after you exit your program; create,
move, and delete folders; and perform other system-level tasks.

In this chapter, we’ll use the built-in operating system (os), path library
(pathlib), and shell utilities (shutil) modules to work with files, folders, and
directory paths. We’ll then use built-in functions to open, read, write, and close
text files, and the built-in pickle, shelve, and json modules to preserve and store
more complex data types such as Python lists and dictionaries. Finally, we’ll look
at ways to handle exceptions when opening files.

Creating a New Spyder Project

Let’s make a new Spyder project to use in this chapter. If you need a refresher on
Spyder projects, see “Using Project Files and Folders” on page 68.

To begin, start Spyder (either from the Start menu or from Anaconda

Navigator) and then, in the top toolbar, click Projects ▸ New Project. In the
Create New Project dialog that opens (Figure 12-1), make sure the Location box
includes your home directory, set the Project name to file_play, and then click
the Create button.

Figure 12-1: The Spyder Create New Project dialog

You should now see this new folder in Spyder’s File Explorer pane.

Working with Directory Paths

Before you can work with files and folders (also called directories), you’ll need to

know how to find them and where to save them. And to do that, you’ll need an
address, otherwise known as a directory path.

A directory path is a string of characters used to uniquely identify a location in
a directory structure. A path starts with a root directory designated by a letter
(such as C:\) in Windows and a forward slash (/) in Unix-based systems.

Additional drives in Windows are assigned a different letter than C, those in

macOS are placed under /volume, and those in Unix under /mnt (for “mount”).

Pathnames appear differently depending on the operating system. Windows
separates folders with a backslash (\), whereas macOS and Unix systems use a

forward slash (/). Folders and filenames are also case sensitive in Unix.

These differences between operating systems can pose problems if you’re
trying to write code that can run on any system. If you’re writing a program in
Windows and enter pathnames with backslashes, other platforms won’t recognize
the paths. Fortunately, Python provides standard library modules such as os and
pathlib to help you deal with this.

The Operating System Module

The operating system (os) module has been described as a “junk drawer for
system-related stuff.” Table 12-1 summarizes some of the most used methods in

this module. For a complete list of the methods and details about their use, visit
the documentation at https://docs.python.org/3/library/os.xhtml.

Table 12-1: Useful os Module Methods

Method Description

os.getcwd() Return location of the current working directory (cwd)

os.chdir() Change cwd to a specified path

os.getsize() Return the size of a file in bytes

os.listdir() Return list of files and folders inside specified directory (defaults
to cwd)

os.mkdir() Create a new directory based on a specified path

os.makedirs() Create multiple nested directories based on a specified path

os.rename() Rename a specified file or directory

os.rmdir() Delete an empty directory

os.walk() Generate filenames in a directory tree

os.path.join() Join path components and return a string that contains a
concatenated path

os.path.split() Split a pathname into a head and tail (tail=last pathname
component)

os.path.abspath() Return a normalized absolute version of a specified path

os.path.normpath() Correct path separators for the system in use

os.path.isdir() Check whether a specified path corresponds to an existing
directory

os.path.isfile() Check whether a specified path corresponds to an existing file

os.path.isabs() Check whether a specified path is absolute or not

os.path.exists() Check whether a specified path exists or not

Several of these os methods are helpful for discovering pathnames you didn’t
already know. For example, to determine the name of the directory in which
you’re currently working (called the current working directory, or cwd), import the

os module and enter the following in the console:

In [1]: import os

In [2]: os.getcwd()
Out[2]: 'C:\\Users\\hanna\\file_play'

https://docs.python.org/3/library/os.xhtml

In this example, you used the os.getcwd() method to get the path to your
current working directory (your path will be different). This is a Windows
example, so backslashes separate directory names, and, because this is a string, the
backslashes must be escaped with a backslash (see “Escape Sequences” on page
190 for a refresher on the escape sequence). The os.getcwd() method will insert
these backslashes for you, but they will cause problems if you try to use this path
with another operating system.

The current working directory is assigned to a process (a running instance of a

program) when that process starts up. For a Python program, the current working
directory is always the folder that contains the running program.

You can use os.chdir() to move from the current working directory to another
directory, as follows:

In [3]: os.chdir('C:\\Users\\hanna')

In [4]: os.getcwd()
Out[4]: 'C:\\Users\\hanna'

As you can see, this new directory becomes the current working directory.

If you work in Windows and don’t want to type the double backslash, you can
enter an r before the pathname argument string to convert it to a raw string:

In [5]: os.chdir(r'C:\Users\hanna')

In [6]: os.getcwd()
Out[6]: 'C:\\Users\\hanna'

To make your program compatible with all operating systems, use the
os.path.join() method and pass it the folder names and filenames without a
separator character, as separate strings. The os.path methods are aware of the
system you’re using and return the proper separators. This allows for platform-
independent manipulation of file and folder names. Here’s an example:

In [13]: path = '/Users/'

In [14]: path2 = os.path.join(path, 'hanna', 'file_play')

In [15]: path2
Out[15]: '/Users/hanna\\file_play'

In [16]: os.chdir(path2)

In [17]: os.getcwd()
Out[17]: 'C:\\Users\\hanna\\file_play'

In this snippet, you assigned a pathname, as a string, to the path variable.
Notice how you can safely use forward slashes in Windows. Next, you made a

new path variable (path2) using the os.path.join() method. Even though the output
in line Out[15] looks messy, the os.path.join() method knows which operating
system you’re using and corrects the separators as needed (lines In[16] - Out[17]).

You can also take an existing path with the wrong separators and normalize it to

the system you’re using with os.normpath(). Here’s an example in which Unix
forward slashes are changed to Windows backslashes:

In [18]: path = 'C//Users//hanna'

In [19]: os.path.normpath(path)
Out[19]: 'C\\Users\\hanna'

Absolute vs. Relative Paths

The full directory path, from the drive to the current file or folder, is called the
absolute path. You can use shortcuts, called relative paths, to make working with

directories easier.

Relative paths are interpreted from the perspective of the current working
directory. Whereas absolute paths start with a forward slash or drive label, relative
paths do not. In the following code snippet, you can change directories without
entering an absolute path because Python is aware of folders within the current
working directory:

In [20]: import os

In [21]: os.getcwd()
Out[21]: 'C:\\Users\\hanna'

In [22]: os.chdir('file_play')

In [23]: os.getcwd()
Out[23]: 'C:\\Users\\hanna\\file_play'

Behind the scenes, the relative path is joined to the path leading to the current
working directory to make the complete absolute path shown in line Out[23].

In Windows, macOS, and Linux, you can identify folders and save yourself
some typing by using dot (.) and dot-dot (..). For example, in Windows, .\ refers
to the current working directory, and ..\ refers to the parent directory that holds
the current working directory. You can also use a dot to get the absolute path to
your current working directory:

In [24]: os.path.abspath('.')
Out[24]: 'C:\\Users\\hanna\\file_play'

If a file, folder, or user-defined module that you need to access is stored in the
same folder as your code, you can simply refer to the item’s name in your code,
without the need for a path or a “dot” shortcut. Following is an example in which
we create multiple nested folders within the file_play folder. Because file_play is the

current working directory and these folders will exist within it, there’s no need to
include a file path:

In [25]: os.makedirs(r'test1/test2/test3')

In this example, the os.makedirs() method created three nested folders (test1,

test2, and test3) using a raw string. You should now see three folders in your

Spyder project in the File Explorer pane (Figure 12-2).

Figure 12-2: The three new folders in the Spyder project

The pathlib Module

The os module is widely used, and you should familiarize yourself with its
methods and syntax. But it treats paths as strings, which can be cumbersome and
requires you to use functionality from across the standard library (it takes three
modules just to gather and move files between directories).

An alternative is to use the smaller and more focused pathlib module. This
module treats paths as objects rather than strings, and gathers the necessary path
functionality in one place. It’s also agnostic to the operating system, making it
useful for writing cross-platform programs.

The module’s Path and PurePath classes not only help you work with directory
paths, they also duplicate useful os module methods for tasks like the following:

Getting the current working directory: Path.cwd()

Making directories: Path.mkdir()

Renaming directories: Path.rename()

Removing directories: Path.rmdir()

NOTE

Path classes in pathlib are divided into pure paths and concrete paths. PurePath objects

act like strings and provide path-handling operations such as editing the path, joining

paths, finding the parent path, and so on, but they don’t access a filesystem. Concrete

paths inherit from PurePath and provide both pure path operations and new methods to

do system calls on path objects. Concrete paths let you access the filesystem to search

directories, remove directories, write to files, and so on.

Table 12-2 summarizes some of the more useful methods available through the
pathlib module. For the full list, visit the documentation at
https://docs.python.org/3/library/pathlib.xhtml. This documentation also includes a

complete mapping of various os methods to their corresponding Path and PurePath
equivalents.

Table 12-2: Useful Path and PurePath Methods for Working with Paths

Method Description

Path.cwd() Return path object for the cwd

Path.exists() Return Boolean that indicates whether path points to existing
file or folder

Path.home() Return path object representing the user’s home directory

PurePath.is_absolute()Return Boolean that indicates whether the path is absolute or
not

Path.is_dir() Return True if the given path points to a directory (or
symbolic link)

Path.iterdir() Yield contents of a given directory

PurePath.joinpath() Combine a given path with each of the other arguments in
turn

Path.mkdir() Create a new directory at the given path

Path.readlink() Return path for given symbolic link

Path.resolve() Make path absolute, resolving any symbolic links; return new
path

Path.rmdir() Remove an empty directory

Path.unlink() Remove a file or symbolic link

https://docs.python.org/3/library/pathlib.xhtml

Here’s how to make a path variable using Path. Start by importing the class
from the module, as follows:

In [26]: from pathlib import Path

In [27]: a_path = Path('folder1', 'folder2', 'file1.txt')

In [28]: a_path
Out[28]: WindowsPath('folder1/folder2/file1.txt')

Note that Path returned a WindowsPath object. If you’re using macOS or Linux,
you should see a PosixPath object. Also note that although the WindowsPath object
displays with forward slashes, it employs proper Windows backslashes behind the
scenes:

In [29]: print(a_path)
folder1\folder2\file1.txt

Path includes methods that can make your code more readable and convenient
to write. Suppose that you want to append a path to your home directory. Rather
than type in the full path, you can just use the home() method to get the path:

In [30]: home = Path.home()

In [31]: another_path = Path(home, 'folder1', 'folder2', 'file1.txt')

In [32]: print(another_path)
C:\Users\hanna\folder1\folder2\file1.txt

Alternatively, you can do all this in one line and use forward slashes rather
than commas to separate path components:

In [33]: another_path = Path.home() / 'folder1' / 'folder2' / 'file1.txt'

In [34]: another_path
Out[34]: WindowsPath('C:/Users/hanna/folder1/folder2/file1.txt')

Don’t worry about those forward slashes if you’re using Windows. As
demonstrated previously, the path object is aware of the platform in use and will
return the correct format for that system.

Each Path object includes handy attributes for working with files and folders.
These let you get information like the stem of a path or a file’s name or extension
(suffix). The parent attribute, for example, returns the most immediate ancestor of
a given file path. In the following example, we get the path leading up to the text

file in the another_path variable:

In [35]: print(another_path.parent)
C:\Users\hanna\folder1\folder2

You can access this attribute multiple times to walk up the ancestry tree of a
given file, like so:

In [36]: print(another_path.parent.parent.parent)
C:\Users\hanna

As mentioned previously, pathlib gives you access to basic filesystem operations
like moving, renaming, and removing files and folders. These methods don’t warn
you or wait for confirmation before executing, so you’ll want to be very careful
when using them. Otherwise, you could easily delete or overwrite data that you
want to keep.

The Shell Utilities Module

The built-in shell utilities module (shutil) provides high-level functions for
working with files and folders, such as copying, moving, and deleting. Table 12-3
summarizes a few of the most popular methods. For a list of all of the available
methods, along with detailed instructions for their use, visit the documentation at
https://docs.python.org/3/library/shutil.xhtml.

Table 12-3: Useful shutil Module Methods

Method Description

copy() Copy a file (if path is included, will copy to a new directory)

copy2() Same as copy() but preserves all the metadata of the source file

copytree() Recursively copy an entire directory tree rooted at a source
directory to a new destination directory and return the
destination directory path

disk_usage() Return disk usage statistics about a file system as a named tuple
with the attributes total, used, and free, in bytes

move() Move a file or directory to another location and return the
destination

rmtree() Delete an entire directory tree (very dangerous)

make_archive() Create an archive file (zip or tar) and return its name

Here’s an example in which I get the current disk usage on my system using a
dot to represent the absolute path:

In [37]: import shutil

https://docs.python.org/3/library/shutil.xhtml

In [38]: gb = 10**9

In [39]: total, used, free = shutil.disk_usage('.')

In [40]: print(f"Total memory (GB): {total / gb:.2f}")
Total memory (GB): 238.06

In [41]: print(f"Used memory (GB): {used / gb:.2f}")
Used memory (GB): 146.85

In [42]: print(f"Free memory (GB): {free / gb:.2f}")
Free memory (GB): 91.22

In the next example, we move the test2 folder to a new location under the

file_play folder. To accomplish this, we pass the current path (with the current

working directory represented by a dot folder), followed by the target path, to the
move() method (note that the path is configured for Windows):

In [43]: shutil.move('.\\test1\\test2', '.\\')
Out[43]: '.\\test2'

You should see this update reflected in Spyder’s File Explorer (compare Figure
12-2 to Figure 12-3). Child folders move with parent folders, so the test3 folder

remains beneath test2.

Figure 12-3: The test2 folder moved beneath the file_play folder

NOTE

Always be careful when using shutil methods; no warnings are provided, and

unexpected behavior can result. The rmtree() method is especially dangerous because it

permanently deletes folders and their contents. You can wipe much of your system,

lose important documents unrelated to Python projects, and break your computer!

Now that you have a feel for manipulating files and folders using Python, it’s
time to start writing and reading files. We’ll begin with simple text files and then
move on to more sophisticated data structures.

TEST YOUR KNOWLEDGE

1. The '.' folder represents:

a. The current working directory

b. The parent directory for the current working directory

c. The absolute path

d. The child directory for the current working directory

2. Which method should you be particularly careful about using?

a. shutil.move()

b. shutil.copytree()

c. Path.resolve()

d. shutil.rmtree()

3. True or false: a relative directory path is relative with respect to the root
directory.

4. You can use the os.path.join() method to:

a. Return a directory path as an object rather than a string

b. Return a directory path as a list rather than a string

c. Return the proper path separators for your operating system

d. Correct existing path separators for your operating system

5. The pathlib module treats paths as ___________ .

Working with Text Files

A plaintext file consists of human-readable characters encoded using some

standard such as ASCII, with no formatting information other than space, tab,
and newline characters. Some examples of plaintext files are text files (.txt),

Python files (.py), and comma-separated values files (.csv). Plaintext files are cross-

platform. You can open and read one using both Window’s Notepad and macOS’s
TextEdit app.

Python’s standard library includes built-in functions for reading and writing
text files. The pathlib module also includes methods for working with text files. In
the sections that follow, we’ll first use the built-in functions, and then we’ll look at
the pathlib alternatives.

Reading a Text File

Using Python, you can read strings from a text file in multiple ways. For example,
you can read individual characters, complete lines, the whole file, and so on. To
demonstrate, open your system’s text editor and enter the following. Be sure to
press ENTER after the first two lines:

This is the first line.
This is the second line.
This is the third line.

Save the file in the file_play folder as lines.txt.

NOTE

You can double-click a text file in the Spyder File Explorer to edit and review its

contents. You can also generate text files using File ▸ New file on the top toolbar. Use

the Save as command to choose the .txt extension.

Now, in the console, enter the following to open, read, and close the file:

In [44]: f = open('lines.txt', 'r')

In [45]: f
Out[45]: <_io.TextIOWrapper name='lines.txt' mode='r' encoding='cp1252'>

In the first line, we used the built-in open() function to open the file and assign
its contents to the f variable (short for “file”). The open() function took two
arguments. The first was the name of the text file. Because this file is in the
current working directory, you didn’t need to include a path. For files not in the
current working directory, you would need to pass either an absolute or relative
path.

The second argument was an access mode, which sets the type of operations

possible in the opened file, such as read, write, append, and so on. The 'r'
informs Python that you want to open the file as read-only. This protects the file

from modification. Although read-only is the default mode, explicitly including
the 'r' argument makes your intention clear. Table 12-4 includes some common
file access modes in Python.

Table 12-4: Selected Text File Access Modes

Mode Description

'r' Read from a text file. Raise an exception if the file doesn’t exist.

Mode Description

'w' Write to a text file. Creates a new file, else overwrites existing
files.

'x' Write to a text file but return an error if the file already exists.

'a' Append to a text file. Create a new file if one doesn’t exist.

'r+' Permit read and write mode.

'b' Add to mode for binary files (such as 'rb').

The open() function returned a File object of type _io.TextIOWrapper. This is a
type of object like a list or a tuple.

Now, let’s look at some of the file object methods for reading files (Table 12-
5). These are called on a file object using dot notation.

Table 12-5: Selected File Object Methods and Attributes

Method Description

close() Close a file.

closed Attribute that returns True if a file is closed.

read() Read the specified number of characters from a file and return a
string.

readline() Read the specified number of characters from a file and return a
string. By default, return all characters from the current position
to the end of a line.

readlines() Read all the lines in a file and return them as items in a list.

seek() Change the position of the file pointer to a specific position
within the file.

tell() Return the current position of the file read/write pointer within
a file.

write() Write the specified string to a file.

writelines() Write the strings in a specified list to a file.

Among the most important methods is close(). Closing files before terminating
the process is a good practice. If you don’t close files, you could run out of file
descriptors (numbers that uniquely identify open files in a computer’s operating
system), lock the files from further access in Windows, corrupt the files, or lose
data if you are writing to the files.

To close a file, call close() using dot notation:

In [46]: f.close()

You can work with file objects only while they’re open. After a file object is
closed, you can no longer work with it.

Now, let’s look at ways to get the file contents. In the following console
snippet, open the file again and use the read() method to read the first character.
This method returns a string data type (remember, in the console you can use the
up and down arrow keys to retrieve previous commands):

In [47]: f = open('lines.txt', 'r')

In [48]: f.read(1)
Out[48]: 'T'

In [49]: f.read(10)
Out[49]: 'his is the'

Passing the read() method the value 1 returned the first character in the file.
But passing it 10 did not return the first 10 characters in the file. That’s because
read() remembers where it left off. To find the current position in the file, use the
tell() method:

In [50]: f.tell()
Out[50]: 11

To manually change the position of the pointer in the file, pass the seek()
method a number, as follows:

In [51]: f.seek(12)
Out[51]: 12

In [52]: f.read(1)
Out[52]: 'f'

In [53]: f.close()

To restart at the beginning, you must either close and reopen the file or use
seek() to return to the beginning.

If you don’t specify the number of characters to read, Python returns the
entire file. This is not a problem for small files, but it can become an issue with
very large files. To demonstrate reading the entire file, reopen the file and call the
read() method with no arguments:

In [54]: f = open('lines.txt', 'r')

In [55]: f.read()

Out[55]: 'This is the first line.\nThis is the second line.\nThis is the third
line.'

In [56]: f.close()

Note that the file object includes the newline escape sequence (\n). This lets it
know how to print the lines correctly:

In [57]: f = open('lines.txt', 'r')

In [58]: print(f.read())

This is the first line.
This is the second line.
This is the third line.

In[59]: f.close()

You can use the readline() method to read a line at a time, as follows:

In [60]: f = open('lines.txt', 'r')

In [61]: print(f.readline())
This is the first line.

In [62]: print(f.readline())
This is the second line.

In [63]: print(f.readline())
This is the third line.

In [64]: f.close()

In this case, “lines” are defined by the presence of the newline escape sequence
(\n). Like the read() function, readline() remembers where it left off, so to start
back at the beginning, you must close and reopen the file.

Be careful when you’re using readline(). Don’t assume that the value you pass it
represents a line; it actually represents a character, just as with the read() method.
In fact, you can duplicate the results from lines In[48]-In[49]:

In [65]: f = open('lines.txt', 'r')

In [66]: f.readline(1)
Out[66]: 'T'

In [67]: f.readline(10)
Out[67]: 'his is the'

In [68]: f.close()

To read in a whole file at once, you can use the readlines() method. Unlike the
previous methods, which return strings, this method reads the file into a list. Each
line in the file becomes a separate item in the list. Here’s an example:

In [69]: f = open('lines.txt', 'r')

In [70]: lines = f.readlines()

In [71]: lines
Out[71]:
['This is the first line.\n',
'This is the second line.\n',
'This is the third line.']

In [72]: f.close()

Because the output is a list, you can get its length, iterate over it, and so on, as
with any list:

In [73]: len(lines)
Out[73]: 3

In [74]: for line in lines:
 ...: print(line)
This is the first line.

This is the second line.

This is the third line.

In the preceding methods, the end-of-line (EOL) markers are preserved.
These are control characters used by character-encoding specifications such as
ASCII to signify the end of a line of text. If you don’t want these, you can strip
them out using list comprehension:

In [75]: lines = [line.rstrip() for line in open('lines.txt', 'r')]

In [76]: lines
Out[76]:
['This is the first line.',
'This is the second line.',
'This is the third line.']

Compare the previous output to that in line Out[71.] The newline characters (\n)
are gone. The rstrip() string method removes specified trailing characters from
the right side of a string. If no character is specified, it removes any newline
characters or whitespace at the end of a line.

Closing Files Using the with Statement

Because closing files is so important (and easily overlooked), Python provides the
with statement, which automatically closes files after a nested block of code. In this
example, we load the text file using the with statement and the open() function, and
then we use the read() method to get the complete contents of the file and assign
them to the lines variable:

In [77]: with open('lines.txt') as f:
 ...: lines = f.read()
 ...: print(lines)
This is the first line.
This is the second line.
This is the third line.

Whenever possible, try to use a with statement when opening files to ensure
that the file is closed properly. To check that a file is closed, you can use its closed
attribute, which returns True or False:

In [78]: f = open('lines.txt', 'r')

In [79]: f.closed
Out[79]: False

In [80]: f.close()

In [81]: f.closed
Out[82]: True

Writing to a Text File

You can write a string to a text file using the write() and writelines() file object
methods (Table 12-5). Let’s try this out using a haiku poem by yours truly.

To write to a file, you first must open it using the write ('w') file access mode
(see Table 12-4). Enter the following in the console:

In [83]: f = open('haiku.txt', 'w')

Calling open() on a file in write mode either creates a new file with the specified
name (if one doesn’t exist) or completely overwrites an existing file with the same
name, erasing its contents. In this case, we need only to enter a filename because
we’re writing to the current working directory. To write elsewhere, you need to
either change directories using the chdir() method or include a directory path with
the filename.

Now that we have a file object, we can write strings to it, using a newline
character where we want carriage returns:

In [84]: f.write('Faraway cloudbanks\n')
Out[84]: 19

In [85]: f.write('That I let myself pretend\n')
Out[85]: 26

In [86]: f.write('Are distant mountains')
Out[86]: 21

In [87]: f.close()

The output represents the number of characters in each string, including the
newline character. Closing the file at the end frees up system resources and
prevents you from accidently writing more data to the file.

Let’s check that it worked by using the read() method:

In [88]: with open('haiku.txt', 'r') as f:
 ...: print(f.read())
Faraway cloudbanks
That I let myself pretend
Are distant mountains

Remember, when you open a file using the with statement, it closes
automatically.

Entering lines one by one is tedious. The writelines() method lets you write a

list of strings into a file, much like the readlines() method offers the ability to read

a text file into a list. The following example creates a new haiku as a list,
overwrites the existing haiku.txt file, writes the list to the file and then reads the

file:

In [89]: poem = ['In city fields\n',
 ...: 'Contemplating cherry trees\n',
 ...: 'Strangers are like friends\n']

In [90]: with open('haiku.txt', 'w') as f:
 ...: f.writelines(poem)

In [91]: with open('haiku.txt', 'r') as f:
 ...: print(f.read())
In city fields
Contemplating cherry trees
Strangers are like friends

Oops, we forgot to attribute the haiku to the master Issa. No problem. With
the append ('a') file access mode, you can add strings to an existing text file
without overwriting the original contents:

In [92]: with open('haiku.txt', 'a') as f:
 ...: f.write(' --Issa')

In [93]: with open('haiku.txt', 'r') as f:
 ...: print(f.read())
In city fields
Contemplating cherry trees
Strangers are like friends
 --Issa

You can also use writelines() to generate new file contents on the fly, as follows:

In [94]: with open('a_random_thought.txt', 'w') as f:
 ...: f.writelines(line for line in poem if line.startswith('C'))

In [95]: with open('a_random_thought.txt', 'r') as f:
 ...: print(f.read())
Contemplating cherry trees

In this example, we filtered the poem list so that only lines beginning with C were
written to the new file.

Reading and Writing Text Files Using pathlib

The Path class of the pathlib module also provides methods for working with files
and folders (Table 12-6). These methods incorporate built-in functions like open()
and can make simple reading and writing exercises more convenient (assuming
that you like working with path objects).

Table 12-6: Some Useful Path Methods for Working with Files and Folders

Method Description

Path.glob() Yield all matchings files for a given pattern (such as *.py)

Path.is_file() Return True if given path points to a regular file (or symbolic link)

Path.open() Open a file based on name or path + name

Path.read_bytes() Return the contents of a given file as a bytes object

Path.read_text() Return the contents of a given file as a string and close the file

Path.rename() Rename a file or directory and return new path

Path.replace() Rename a file or directory unconditionally and return new path

Path.touch() Create a file at the given path

Path.write_text() Open a specified file in text mode, write to it, and then close the
file

The Path.read_text() method calls open() behind the scenes and returns a file’s
contents as a string. It also closes the file automatically, like the with statement.
Here’s an example in the console using the lines.txt file from earlier in the chapter:

In [96]: from pathlib import Path

In [97]: p = Path('lines.txt')

In [98]: p.read_text()
Out[98]: 'This is the first line.\nThis is the second line.\nThis is the third
line.'

Note that you first must create a path object (p). For users unfamiliar with
pathlib, this can be confusing compared to the more tradition file-opening
techniques reviewed in the previous section.

Now, let’s create a file in the test1 folder and write to it using Path. In the
console, enter the following:

In [99]: path = Path(Path.cwd() / 'test1' / 'another_haiku.txt')

In [100]: lines2 = 'Desolate moors fray\nBlack cloudbank, broken, scatters\nIn the pines, the
graves'

In [101]: path.write_text(lines2)
Out[101]: 78

In [102]: print(path.read_text())
Desolate moors fray
Black cloudbank, broken, scatters
In the pines, the graves

The Path.write_text() method takes a string as an argument. Like open(), it will
overwrite an existing file with the same name. Unlike open(), it doesn’t permit use
of an append mode. It will, however, close the file automatically.

You can read more about pathlib at https://docs.python.org/3/library/pathlib.xhtml.

TEST YOUR KNOWLEDGE

6. Which statements or methods close a text file?

a. The with statement

b. The Path.read_text() method

c. The Path.write_text() method

d. The close() method

e. All of the above

7. Rename the another_haiku.txt file created in the previous section to

haiku_2.txt. Use either the os or pathlib modules.

8. Print the haiku.txt file starting at the 15th character.

9. Which file-access mode is used to add text to an existing text file?

a. w

b. r

c. a

d. b

10. True or false: The os.writelines() method writes a list to a file; the
Path.write_text() method writes a string to a file.

https://docs.python.org/3/library/pathlib.xhtml

Working with Complex Data

Text files are convenient and popular, but they’re hardly the only game in town.
The various file-writing methods we’ve reviewed so far accept only strings, or lists
of strings, as input. But Python includes many different data types, such as
dictionaries, that you’ll use in your everyday work, and you’ll need a way to save
these, as well.

To save these other data types, you need to use data serialization. This process

converts structured data such as a Python dictionary into a storable and sharable
format. This format retains the information needed to reconstruct the object in
memory when it’s read from storage or transmitted. This process is called de-

serialization.

In this section, we’ll look at modules, like pickle and json, that serialize and
deserialize data. The pickle module is Python’s native serialization module. It
converts objects into an ordered sequence of bytes (0s and 1s) known as a byte

stream. Pickling and unpickling allow us to easily transfer data from one server or

system to another and then store it in a file or database.

The json module converts Python objects to a serialized representation known
as JavaScript Object Notation, or JSON for short, and deserializes them on demand.

We used json for pretty-printing dictionaries back in Chapter 9. It works with just
about every language.

These two modules have their strengths and weaknesses (Table 12-7). Pickling
works on most Python objects and data types, whereas JSON is limited to certain
objects and data types.

Table 12-7: Pickle vs. JSON for Serialization

Characteristic Pickle JSON

Storage format Byte stream Human-readable string object

Python objects All objects Limited to certain objects

Python data types Almost every data type Only lists, dictionaries, nulls,
Booleans, numbers, strings,
arrays, and JSON objects

Compatibility Python only Language independent

Speed Relatively Slow Relatively fast

Security Has security issues Safe and secure

NOTE

Pickling is less secure than using JSON. You should be very careful about unpickling

data from an unknown source, as it may contain malicious data. Pickling is also

intended for relatively short-term data storage because revisions to the module might

not always be backward compatible.

Pickling Data

To pickle something means to preserve it. The pickle module
(https://docs.python.org/3/library/pickle.xhtml) pickles Python data objects in binary

files. Unlike text files, humans cannot read binary files.

Pickling is a lot like writing strings to a file, only you write pickled objects.
The access modes are the same except for the addition of a 'b' for “binary” (Table
12-8).

Table 12-8: Selected Binary File Access Modes

Mode Description

'rb' Read from a binary file.

'wb' Write to a binary file. Create or overwrite file, as
required.

'ab' Append to a binary file. Create or modify file, as required.

Let’s pickle some lists. In the console, enter the following:

In [103]: import pickle

In [104]: dragon_prefix = ['Hungarian', 'Chinese', 'Peruvian']

In [105]: dragon_suffix = ['Horntail', 'Fireball', 'Vipertooth']

In [106]: f = open('dragons.dat', 'wb')

In [107]: pickle.dump(dragon_prefix, f)

In [108]: pickle.dump(dragon_suffix, f)

In [109]: f.close()

After importing the pickle module and creating two dragon lists, we opened a
new binary file called dragons.dat. Next, we stored the two lists in this file using

the pickle.dump() function, passing it the name of the list and the name of the file
object as arguments. Finally, we closed the file (you should see it in your file_play

folder).

https://docs.python.org/3/library/pickle.xhtml

The pickle.dump() function wrote each list to the file as a separate object. To
retrieve these objects, we open the file again, in binary mode, and call the
pickle.load() function, as follows:

In [110]: f = open('dragons.dat', 'rb')

In [111]: dragon_prefix = pickle.load(f)

In [112]: dragon_suffix = pickle.load(f)

In [113]: print(dragon_prefix)
['Hungarian', 'Chinese', 'Peruvian']

In [114]: print(dragon_suffix)
['Horntail', 'Fireball', 'Vipertooth']

In [115]: f.close()

The pickle.load() function accepts the file object as an argument and returns (or
unpickles) the first pickled object, assigning it to the variable dragon_prefix. The
next call to pickle.load() returns the next pickled object. One thing to note here is
that you don’t need to know the original names of the lists (like “dragon_prefix”)
to extract the data. You could have called these “poodledoodle” and
“snickerdoodle,” and you would have retrieved the same lists in the same order.

But what if you want to retrieve the pickled objects in some other order, such
as retrieving only the dragon suffixes? For that, you’ll need the shelve module,
which takes pickling a step further.

Shelving Pickled Data

A database is a special file for storing data. Most databases resemble Python

dictionaries, in that they map keys to values. Unlike a dictionary, however,
databases persist after a program ends.

Python comes with the dbm module for creating and updating database files.
This module has a limitation, though, as its keys and values must be either strings
or bytes. The pickle module helps overcome this limitation by transforming
multiple data types into strings suitable for use in a database.

Because the need to store non-string objects in a database is so common, the
functionality has been incorporated into a module called shelve that helps you
store and access pickled objects in a file. It builds on pickle and implements a
serialization dictionary in which objects are pickled with an associated key,
composed of strings. The keys let you load your shelved data file and randomly
access the values, composed of pickled objects.

The shelve module produces a shelf, which is a persistent, dictionary-like object.

Although it’s possible to directly pickle a dictionary, using the shelve module is
more memory efficient.

NOTE

Because this process involves the pickle module, loading a shelf can execute unexpected

code, so it’s unsafe to load a shelf from an untrusted source.

Let’s look at how shelving works using the dragon data from the previous
section:

In [116]: import shelve

In [117]: s = shelve.open('dragon_shelf', 'c')

In [118]: type(s)
Out[118]: shelve.DbfilenameShelf

After importing the module, we used the shelve.open() method to create a new
shelf named dragon_shelf in the current working directory, assigned it to the
variable s, and then got the data type of s. To create the shelf, we used the 'c'
access mode. Other shelve access modes are listed in Table 12-9.

Table 12-9: Shelve Access Modes

Mode Description

'c' Open a shelf for reading and writing, creating it if necessary

'n' Create a new, empty shelf open for reading and writing,
overwriting if needed

'r' Open an existing shelf for reading only

'w' Open an existing shelf for reading and writing

Now, let’s add the dragon data to the shelf using a key-value combination.
This will pickle the data behind the scenes. Although we create the list here, we
could just as easily use a variable name assigned to a list, as we did in the earlier
pickle.dump() example.

In [119]: s['prefix'] = ['Hungarian', 'Chinese', 'Peruvian']

In [120]: s['suffix'] = ['Horntail', 'Fireball', 'Vipertooth']

In [121]: s.close()

Closing the shelf synchronizes the data by ensuring that any data in the memory

cache, or buffer, is written to the disk. It then releases system resources by
clearing the cache.

Two things to note here are that shelve will automatically add a .dat extension

to the filename, and it will create additional files that support the shelf
(highlighted in gray in Figure 12-4). These additional files are operating system
specific. On macOS, for example, you might see only a file named dragon_shelf.db.

Figure 12-4: Files related to dragon_shelf in Windows

NOTE

Binary files in Spyder’s File Explorer include “01” on the file icon. The text file icon

uses two straight lines.

Now, let’s reopen the shelf and retrieve some data:

In [122]: s = shelve.open('dragon_shelf', 'r')

In [123]: type(s['prefix'])
Out[123]: list

In [124]: print(f"Dragon suffixes: {s['suffix']}")
Dragon suffixes: ['Horntail', 'Fireball', 'Vipertooth']

In [125]: s.close()

After opening the dragon_shelf file in read-only mode, you can see that the

prefix key refers to a list object. You can also print the suffix list first, despite it

being the second list loaded into the shelf. Compare this to the pickle.load()
method from the previous section, which returns pickled objects in order.

Closing Shelves Using the with Statement

Shelving a large volume of data can use a lot of memory, so it’s important to close
a shelf when you’re finished. Because this easily can be overlooked, Python lets
you use the with statement when opening shelves so that the files automatically
close after some action. Here’s an example:

In [126]: with shelve.open('dragon_shelf', 'r') as s:
 ...: print(type(s['prefix']))
<class 'list'>

Because the with statement closed the shelf after its block executed, subsequent
actions on s will raise a ValueError:

ValueError: invalid operation on closed shelf

Using Shelve Methods

Shelf objects support most of methods and operations supported by dictionaries
(Table 12-10). This is by design and is intended to ease the transition from
dictionary-based scripts to those requiring persistent storage.

If you forget the key names in a shelf or if you’re using a shelf that you didn’t
create, you can use the keys() method to retrieve the names. Note that you need to
convert the output into a list with the list() function:

In [127]: with shelve.open('dragon_shelf', 'r') as s:
 ...: print(list(s.keys()))
['prefix', 'suffix']

Table 12-10: Shelve Module Methods

Method Description

close() Synchronize and close the shelf object

get() Return shelf values associated with a key

items() Return shelf key-value pairs as tuples

keys() Return list of shelf keys

pop() Remove specified shelf key and return associated shelf value

Method Description

sync() Write back all entries in the cache if shelf was opened with
writeback set to True

update() Update shelf from another dict or iterable

values() Return list of shelf values

Some other methods return an iterable that you can loop over. Here’s an
example using the items() method, which returns the key-value pairs as tuples:

In [128]: with shelve.open('dragon_shelf', 'r') as s:
 ...: print(s.items())
ItemsView(<shelve.DbfilenameShelf object at 0x000001D3956BAF70>)

Printing the output yielded an object name, not the key-value pairs that you
probably expected. To get the key-value tuples, loop over the output, as follows:

In [129]: with shelve.open('dragon_shelf', 'r') as s:
 ...: for item in s.items():
 ...: print(item)
('prefix', ['Hungarian', 'Chinese', 'Peruvian'])
('suffix', ['Horntail', 'Fireball', 'Vipertooth'])

You can read more about shelve and its methods at
https://docs.python.org/3/library/shelve.xhtml.

Storing Data with JSON

Using the json module (https://docs.python.org/3/library/json.xhtml), you can store

data as a single human-readable string. Here’s an example of a Python dictionary
stored in JSON format:

′{″key1″: ″value1″, ″key2″: ″value2″, ″key3″: ″value3″}′
It looks just like a regular Python dictionary except for one thing: it’s enclosed

in single quotes, making the whole thing a string.

Compared to pickle and shelve, the json module offers a faster and more secure
way to store and retrieve complex Python data types. It supports fewer data types
than pickle, however, because it’s limited to dictionaries, lists, nulls, Boolean
values, numbers (integers and floats), strings, and JSON objects.

JSON will also help you access information on the worldwide web. As a
lightweight data-interchange format that’s easy for humans to read and for
machines to parse, the application programming interfaces (APIs) for many
websites pass data using JSON format.

https://docs.python.org/3/library/shelve.xhtml
https://docs.python.org/3/library/json.xhtml

Saving Data in JSON Format

To see how json works, let’s create a Python dictionary for the crew capacity of
three famous spacecraft and save it in JSON format. Enter the following in the
console:

In [130]: import json

In [131]: crew = dict(Mercury=1, Gemini=2, Apollo=3)

In [132]: crew
Out[132]: {'Mercury': 1, 'Gemini': 2, 'Apollo': 3}

In [133]: capsules_data = json.dumps(crew)

In [134]: capsules_data
Out[134]: '{"Mercury": 1, "Gemini": 2, "Apollo": 3}'

In [135]: with open('capsules_data.json', 'w') as f:
 ...: f.write(capsules_data)

The json.dumps() method turns the dictionary into a JSON string. You can write
JSON strings to persistent files using the open() function in write mode, as you’ve
done before. The new capsules_data.json file should show up in the Spyder File

Explorer pane (Figure 12-5).

Figure 12-5: The capsules_data.json file in the File Explorer pane

Note how Spyder uses a special icon to denote the file. Because it’s human-
readable, you can open it and read its contents just like a text file.

Loading Data in JSON Format

Now, let’s open, load, and use the JSON file. We’ll continue to work in the
console, but this following example could easily be done in a saved program
written in a text editor or Jupyter Notebook:

In [136]: with open('capsules_data.json', 'r') as f:
 ...: crew = json.load(f)

In [137]: print(f"The Mercury capsule had {crew['Mercury']} seat.")
The Mercury capsule had 1 seat.

In [138]: print(f"The Apollo capsule had {crew['Apollo']} seats.")
The Apollo capsule had 3 seats.

Saving Tuples in JSON Format

There is no concept of a tuple in the JSON format. If you save a tuple in JSON
format, you’ll receive a list. In the console, enter the following to see an example:

In [139]: import json

In [140]: t = (1, 2, 3)

In [141]: type(t)
Out[141]: tuple

In [142]: t_json = json.dumps(t)

In [143]: t_json
Out[143]: '[1, 2, 3]'

In [144]: t2 = json.loads(t_json)

In [145]: t2
Out[145]: [1, 2, 3]

In [146]: type(t2)
Out[146]: list

In simple cases, you can handle this by converting the output back into a tuple:

In [147]: t2 = tuple(t2)

In [148]: t2
Out[148]: (1, 2, 3)

In [149]: type(t2)
Out[149]: tuple

For more sophisticated cases, you’ll want to do an online search for using
tuples with JSON.

Catching Exceptions When Opening Files

Reading and writing files falls under the category of user interactions, and as we
saw in Chapter 10, a lot of things can go wrong when users get involved. For
working with files, these include trying to open files or use paths that don’t exist,
trying to open files or folders without the proper permissions, trying to open a
folder instead of a file, and so on.

These problems can’t be fixed within your code, but you can catch these
exceptions and provide the user with some helpful advice, rather than allow the
program to crash and spew gobbledygook all over the screen.

Most of the common file-loading errors fall under the operating system
exception class called OSError. These include the errors shown in Table 12-11.

Table 12-11: Common Errors Associated with File Loading

Class Subclass

BlockingIOError

ChildProcessError

ConnectionError BrokenPipeError

ConnectionError ConnectionAbortedError

ConnectionError ConnectionRefusedError

ConnectionError ConnectionResetError

FileExistsError

FileNotFoundError

InterruptedError

IsADirectoryError

NotADirectoryError

PermissionError

ProcessLookupError

TimeOutError

Here’s an example in which we use OSError to catch the exception thrown by a
nonexistent file (fluffybunnyfeet.lol). For a refresher on using try and except, see

Chapter 10.

In [150]: try:
 ...: with open('fluffybunnyfeet.lol', 'r') as f:
 ...: data = f.read()
 ...: except OSError as e:
 ...: print(e)

 ...: else:
 ...: print('File successfully loaded.')
 ...: finally:
 ...: print('File load process complete.')
[Errno 2] No such file or directory: 'fluffybunnyfeet.lol'
File load process complete.

The except clause printed a useful message informing the user that the file
doesn’t exist (as this was a FileNotFoundError). The finally clause let the user know
that the file loading process has terminated. Note that the finally block executes
regardless of the outcome, whereas the else code block executes only for a
successful outcome.

Here’s an example of a successful outcome using the haiku.txt file that we

created earlier:

In [151]: try:
 ...: with open('haiku.txt', 'r') as f:
 ...: data = f.read()
 ...: except OSError as e:
 ...: print(e)
 ...: else:
 ...: print('File successfully loaded.')
 ...: finally:
 ...: print('File load process complete.')
File successfully loaded.
File load process complete.

For more on Python’s built-in exceptions, visit the documentation at
https://docs.python.org/3/library/exceptions.xhtml.

Other Storage Solutions

If your data is sufficiently complex, it might require more powerful storage
solutions. The eXtensible Markup Language (XML) is designed to store and

transport small to medium amounts of data and is widely used for sharing
structured information. YAML is another human-readable data-serialization

language used for configuration files and in applications where data is being
stored or transmitted. It has a minimal syntax compared to XML. SQLite is a

lightweight database that can provide a relational database management system
with zero-configuration. Hierarchical Data Format (HDF5) is for storing large

volumes of scientific array data. Covering these storage systems is beyond the
scope of this book, but you can find copious information for each online.

TEST YOUR KNOWLEDGE

https://docs.python.org/3/library/exceptions.xhtml

11. True or false: The shelve module helps you to store and access pickled
objects in a file.

12. Of the methods for saving and loading complex data discussed in this
chapter, the most secure is:

a. Pickling

b. Syncing

c. JSON format

d. Shelving

13. Rewrite the crew capacity program from the “Storing Data with JSON”
section of this chapter so that it automatically prints the name of the
capsule and the grammatically correct version of “seat” (seat or seats)

depending on the number of crew members.

14. Use the console to investigate how JSON handles quotation marks. Use
the lists ["don't", "do"] and ['don\'t', 'do'].

15. Built-in Python exceptions for opening and closing files fall under which
exception class?

a. IOError

b. FileNotFoundError

c. PermissionError

d. OSError

16. Use Python modules to move a copy of the lines.txt file to the test1 folder

and then archive it as a ZIP file.

Summary

Files let you save your work—including variables you assign in a program—in a
persistent and sharable manner. To work with files, you need a base
understanding of how your computer’s filesystem works, how to manipulate
directory paths, and how to open, read, and write files.

The absolute directory path refers to the full directory path, starting with the

root directory (such as C:\ on windows). The relative directory is defined relative

to the current working directory. You can use shortcuts, such as “.” for the

absolute directory and “.\” for the current working directory, to make working

with directories easier.

Python’s built-in os, pathlib, and shutil modules include useful high-level
methods for working with files and folders. These methods execute without
warning, however, so you’ll need to be careful when moving, renaming, or
deleting data.

Python has other built-in tools for working with human-readable text files. To
read a file, you first must open it as a file object using the open()function. Methods
such as read() and readlines() can then be called on this object. To write to a file,
you must open it in write mode and then call methods like write() and writelines().
To add data to an existing file without overwriting its contents, you must open it
in append mode.

You should always close files when you’re through with them to release system
resources and protect the file from being accidently overwritten. You can
manually close files using the close() method, or automatically by opening the file
using a with statement.

More complex data, such as Python dictionaries and lists, can be saved in
binary format using the pickle module, or as human-readable strings using the json
module. The shelve module helps you to store and access pickled objects in a shelf

file, which is a persistent, dictionary-like object that assigns each pickled object a
unique key name. Using the JSON format is faster and more secure than pickling,

but not all Python objects and data types can be stored with JSON.

Although it’s important to understand the basic tools for file and folder
management with Python, if much of your work involves data stored on disk,
you’ll want to read about the Python Data Analysis Library, otherwise known as

pandas. This library contains high-level tools for moving data from disk into

Python data structures and back again. Many file formats are accommodated,
including Excel, CSV, TXT, SQL, HTML, JSON, Pickle, and HDF5. We look at
pandas in Chapters 15 and 20.

13
OBJECT-ORIENTED PROGRAMMING

So far in this primer, you’ve been writing code using procedural programming
techniques built around performing actions and evaluating logic. You’ve learned
how to organize code using functions and modules, and you’ve used built-in
data types to organize data. In this chapter, you’ll learn how to use object-
oriented programming to define your own types to organize both code and data.

Object-oriented programming (OOP) is a language model that lets you bundle

together related data with functionality that acts on that data. The data consists
of attributes (akin to variables) that are manipulated by methods (akin to

functions). These “bundles” form custom data types called classes. Classes help

you split your program into different sections that deal with different pieces of
information rather than letting it all blend into an unstructured mess.

Classes let you create individual objects with specific properties and behaviors.

Using a class template, you can efficiently “stamp out” multiple objects, just as a
set of blueprints lets you build multiple versions of the same car. Each car will
start off with the same attributes, such as color and mileage, and have the same
methods, such as for accelerating and braking, but after they leave the factory,
these can change. Some cars may be repainted, others can lose wheel alignment
and pull to the left, their mileage will vary, and so on.

In this chapter, you’ll learn how to define classes that create objects, write
attributes and methods for the objects, and then instantiate those objects. You’ll
also write classes that inherit attributes and methods from other classes and use
dataclasses to reduce code redundancy. This introduction to the topic should

give you an understanding of the basics of OOP and an appreciation for how
you can benefit from it as a programmer.

When to Use OOP

OOP is easier to appreciate when you’re writing large, complex programs
because it helps you to structure your code into smaller parts that are easier to
understand. It also reduces code duplication and makes code easier to maintain,
update, and reuse. As a result, most commercial software is now built using
OOP.

Because Python is an object-oriented programming language, you’ve already
been using objects and methods defined by other people. But unlike languages
such as Java, Python doesn’t force you to use OOP for your own programs. It
provides ways to encapsulate and separate abstraction layers using other
approaches such as procedural or functional programming.

Having this choice is important. If you implement OOP in small programs,
most of them will feel overengineered. To quote computer scientist Joe
Armstrong, “The problem with object-oriented languages is they’ve got all this
implicit environment that they carry around with them. You wanted a banana,
but what you got was a gorilla holding the banana and the entire jungle!”

As a scientist or engineer, you can get a lot done without OOP, but that
doesn’t mean you should ignore it. OOP makes it easy to simulate many objects
at a time, such as a flock of birds or a cluster of galaxies. It’s also important when
things that are manipulated, like a GUI button or window, must persist for a
long time in the computer’s memory. And because most of the scientific
packages you’ll encounter are built using OOP, you’ll want more than a passing
familiarity with the paradigm.

Creating a New Spyder Project

Let’s make a new Spyder project to use in this chapter. If you need a refresher
on Spyder projects, see “Using Project Files and Folders” on page 68.

Start by launching Spyder from your base (root) environment (either from

the Start menu or from Anaconda Navigator). In the Start window, this may
show as Spyder (anaconda3). For a refresher on conda environments see
Chapter 2.

Next, on the top toolbar, click Projects ▸ New Project. In the Create New
Project dialog that opens (Figure 13-1), make sure the Location box includes
your home directory, set the Project name to oop, and then click the Create
button.

Figure 13-1: The Spyder Create New Project dialog

You should now see this new folder in Spyder’s File Explorer pane.

For convenience, we’ll use the default conda environments folder that’s
located within the anaconda3 folder to hold third-party libraries. If you want to

use an environments folder tied to this project, see the instructions in
“Specifying an Environment’s Location” on page 37.

Defining the Frigate Class

It’s a lot easier to demonstrate OOP than it is to talk about it, so let’s build some
ship objects that might be used in a (very) simple war game simulator. Each
unique type of ship will need its own class that can generate multiple versions of
that ship type. We then can track and manipulate each of these objects
independently. With OOP, the relationships among the ship class, the ship
objects, and the methods that act on those objects will be clear, logical, and
compact.

Let’s begin by defining a class to build the most common type of warship,
known as a “frigate” (Figure 13-2). Designed to be fast, maneuverable, and

versatile, frigates escort and protect larger vessels from air, surface, and
underwater threats.

Figure 13-2: Brazilian Tamandaré-class frigate

To build the frigates, you’ll need a virtual shipyard, so, in your oop project,

open up Spyder’s text editor and create a new file named ships.py. Save it

wherever you’d like.

To serve as a blueprint for the frigates, define a Frigate class using a class
statement. After the class keyword, enter a name for the class followed by
parentheses:

class Frigate(object):

 ➊ designation = 'USS'

 ➋ def __init__(self, name):
 self.name = name
 self.crew = 200
 self.length_ft = 450
 self.tonnage = 5_000
 self.fuel_gals = 500_000
 self.guns = 2

 ➌ self.ammo = self.guns * 300
 self.heading = 0
 self.max_speed = 24
 self.speed = 0

According to the PEP 8 Style Guide, class names should be capitalized. If
you need to use multiple words, use the CapWords convention, where each new

word is capitalized without spaces between them (also called CamelCase).

The Frigate class uses a single parameter, object. This object parameter
represents the base class of all types in Python. Because object is the default
parameter, you can omit stating it explicitly when defining a class.

Next, assign the string USS, for “United States Ship,” to an attribute named

designation ➊. This is the ship’s name prefix. You can also use HMS (“Her
Majesty’s Ship”), INS (“Indian Naval Ship”), or whatever you’d prefer. In
Python, an attribute is any variable associated with an object. Like in a function,
a class makes a fresh local namespace for the attributes.

Classes are objects, too, so they can have their own attributes. Class attributes

are common to all objects made from the class and behave sort of like global
variables. In this case, all the frigates you build will have the “USS” designation,
such as the “USS Saratoga.” Class attributes are efficient, as they let you store a
shared attribute in a single location.

Next, you define an initialization method ➋ that sets up the initial attribute

values for an object. Methods are just functions that are defined within classes.
The __init__() method is a special built-in method that Python automatically
invokes as soon as a new object is created. In this case, it takes two parameters,
self and the name of the object, which will be whatever you want to call the ship.

NOTE

The __init__() method is a dunder (double underscore) method, meaning its name

is preceded and followed by double underscores. Also called magic or special

methods, they let you create classes that behave like native Python data structures

such as lists, tuples, and sets. They’re also the magic behind operator overloading and

behavior customization of other functions. When you call the built-in len() function,

for example, a __len__ method is called behind the scenes.

The first argument of every class method, including __init__(), is always a
reference to the current instance of the class, called self by convention. (A new
object is known as an instance of a class, and the process of setting the initial

values and behaviors of the instance is called instantiation.)

You can think of self as a placeholder for the actual name you’ll give an
object. If you create a ship object and name it “Intrepid,” self will become
Intrepid. The self.speed attribute will become a reference to “Intrepid’s speed.” If
you instantiate another ship object named “Indefatigable,” self for that object
will become Indefatigable. This way, the scope of the Intrepid object’s speed
attribute is kept separate from that of the Indefatigable object.

Now it’s time to list some attributes for a frigate. You’ll want to give each
ship a name so that you can distinguish one ship from another. You’ll also want

to specify the value of key operational and combat characteristics, like fuel,
heading, and speed. Because these are associated with an instance of the class,
they’re called instance attributes, and are assigned inside the __init__() method

(with code such as self.name = name).

Some of these attributes, like the number of guns and the length of the ship,
represent values common to each ship that shouldn’t change over time. It’s best
not to make these class attributes, however, because they could change. For

example, an individual ship could be outfitted with an extra experimental gun,
or its helicopter pad could be extended off the stern. Other attributes such as
the heading and speed represent placeholders that are expected to change. In

general, you should set attributes to good default values, such as filling the fuel
tank to capacity.

NOTE

While it’s possible to use methods to assign new attributes later, it’s best to initialize

them all within the __init__ method. This way, all the available attributes are

conveniently listed in an easy-to-find location.

Take a moment to look through the list of attributes in the initialization
method. For brevity, I’ve left off some that you might need in a true simulation,
like the ship’s current location, it’s current “health,” and a maximum limit for
reverse speed. You might even want “cost” attributes for building and operating
ships, forcing you to stay in budget.

Note also that you can use expressions when assigning attributes, just as you
can with variables. For example, we’ve assumed the ship carries 300 rounds of

ammunition for each of its big guns ➌.

Now let’s define some methods for piloting the ship and firing its guns.

Defining Instance Methods

An instance method accesses or modifies the state of an object. They must have a

self parameter to refer to the current object.

Let’s define a helm() method to set the ship’s heading and speed, and clip the
speed to a maximum value. In the text editor, enter the following (the def
statements should be indented four spaces relative to the class definition):

 def helm(self, heading, speed):

 ➊ self.heading = heading

 self.speed = speed
 if self.speed > self.max_speed:

 ➋ self.speed = self.max_speed
 print(f"\n{self.name} heading = {self.heading} degrees")
 print(f"{self.name} speed = {self.speed} knots")

In addition to the self parameter, you’ll also pass the method a heading
(between 0 and 359 degrees) and a speed (in knots).

The code within the method definition updates the object’s existing
attributes using the values passed to it as arguments. To access and change an
attribute, use dot notation. You’ve used this syntax before to call methods in
modules such as os and random. To override the heading and speed attributes
initially assigned in the __init__() method, simply set them as equal to the values

passed to the method ➊.

At this point, you’ll want to validate the user inputs. To make sure the speed
value doesn’t exceed the ship’s maximum speed. Compare the self.speed attribute

to the self.max_speed attribute. If it’s greater, set it equal to self.max_speed ➋.
Complete the method by printing the heading and speed to the screen.

Now, let’s define a method called fire_guns() that fires all the big guns at once.
You won’t need to pass this method any arguments other than self:

 def fire_guns(self):

 ➌ if self.ammo >= self.guns:
 print("\nBOOM!")

 ➍ self.ammo -= self.guns
 print(f"\n{self.name} ammo remaining = {self.ammo} shells")
 else:
 print("\nInsufficient ammunition!")

First, check that you’re not out of ammunition ➌. If you’re not, print
“BOOM!” Then, decrement the self.ammo attribute by the number of guns

(self.guns) ➍ and display the number of rounds left. Otherwise, print a message
that you’re out of ammunition.

One thing to note here is that the methods we’ve defined are not returning
anything. Instead, they’re changing attribute values in place. This behavior is
very similar to the ill-advised technique of altering global variables within
functions (see Chapter 12). What makes these methods acceptable, however, is
that the attributes exist under the class umbrella rather than in the global
namespace. Because changes are confined to the local namespace of the class, it’s
easier to track and debug issues than if you used global variables.

Instantiating Objects and Calling Instance Methods

We’ve defined a Frigate class and some methods for working with a Frigate
object. Now, let’s instantiate a ship and start using it. Add the following code,
unindented, to ships.py and save the file:

garcia = Frigate('garcia')
print(f"\n----------{Frigate.designation} {garcia.name.upper()}----------")
print(f"\nCrew complement = {garcia.crew}")
garcia.fire_guns()
garcia.fire_guns()
garcia.helm(heading=180, speed=30)

This code first instantiates a new Frigate object named “Garcia” and assigns it
to the garcia variable. It then prints the name of the ship, calling the built-in
upper() method to print in uppercase characters.

Note that this code prints the “USS” designation by accessing the
designation class attribute using the class name (Frigate.designation). You might
have noticed that it would be easier to type “USS” here rather than access the
designation attribute. We’re using this attribute to demonstrate how class
attributes work, but also to highlight a common problem with class attributes:
in many cases, you can find an equally good alternative to avoid using them.

Next, the code prints the crew complement, using dot notation to access the
crew attribute. Finally, it fires the guns twice and then changes the ship’s
direction and speed.

If you run the file, you should get this output:

----------USS GARCIA----------

Crew complement = 200

BOOM!

garcia ammo remaining = 598 shells

BOOM!

garcia ammo remaining = 596 shells

garcia heading = 180 degrees
garcia speed = 24 knots

Using our Frigate class template, we can create as many ships as we want.
Let’s make another one named “Boone.” In the text editor, enter the following
and save it:

boone = Frigate('Boone')
print(f"\n----------{Frigate.designation} {boone.name.upper()}----------")
boone.fire_guns()
boone.fire_guns()
boone.helm(heading=270, speed=-1)

Now, run it to see this output:

----------USS BOONE----------

BOOM!

Boone ammo remaining = 598 shells

BOOM!

Boone ammo remaining = 596 shells

Boone heading = 270 degrees
Boone speed = -1 knots

You now have two ships that use similar code but have different speeds and
headings. With the Frigate class and OOP, you can easily create and track
hundreds of ships with dozens of attributes.

TEST YOUR KNOWLEDGE

1. OOP makes code easier to read, maintain, and update by:

a. Removing the need for functions

b. Reducing code duplication

c. Using methods instead of functions

d. Providing bananas to gorillas

2. What is the name of an object created from a class:

a. Child

b. Attribute

c. Instance

d. Method

3. True or False: A method is a function defined in a class and called with
dot notation.

4. In OOP, you can think of the self parameter as:

a. a placeholder for the name of the class being invoked

b. a placeholder for the name of the method being called

c. a placeholder for the name of the object being created

d. All of the above

5. Write a Parrot class with name, color, and age attributes and methods
for squawking and “parroting” (repeating) input.

Defining a Guided-Missile Frigate Class Using Inheritance

Today, guns on warships have largely been replaced by missile systems (Figure
13-3). We can easily build new guided-missile frigates by simply refitting the
existing Frigate class using the technique of inheritance.

Figure 13-3: The frigate HMS Iron Duke, firing her Harpoon anti-ship missile system

A key concept in OOP, inheritance lets you define a new child class based on

an existing parent or ancestor class. (Technically, the original class is called a
base class or superclass. The new class is called a derived class or subclass.) The new

subclass inherits all of the attributes and methods of the existing superclass.
This makes it easy to copy and extend an existing base class by adding new
attributes and methods specific to the subclass.

Let’s make a new guided-missile class called GMFrigate that inherits from and
modifies our current Frigate class. Enter the following at the bottom of your

ships.py program:

class GMFrigate(Frigate):

 ➊ designation = Frigate.designation

 def __init__(self, name):

 ➋ Frigate.__init__(Frigate, name)

 ➌ self.missiles = 100
 self.ammo = self.guns * 100

 def fire_missile(self):
 if self.missiles > 0:
 print("\nSSSSSSSSSSSttttt!")
 self.missiles -= 1
 print(f"\n{self.name} missiles remaining = {self.missiles}")
 else:
 print("\nMissiles depleted")
 self.missiles -= 1

To create a child class, pass the class statement the name of the parent, or
superclass, which in this case is Frigate. Remember that, when you first defined
Frigate, you passed it object. This means Frigate inherited from the object class,
which is the root of all Python objects. The object class provides the default
implementation of common methods that all derived classes might need. By
now passing Frigate instead of object, you get the attributes and methods under
object as well as the new ones you added to the Frigate class.

Guided-missile frigates will have the same “USS” designation as frigates, so
assign a designation class attribute to the same Frigate class attribute, referenced

using dot notation ➊. You could skip doing this and just use the
Frigate.designation attribute when you need it, but by explicitly reassigning the
class attribute, you add clarity to the code.

Next, we define the __init__() initialization method for the GMFrigate class,
which, like the Frigate class, has a self and name parameter. Immediately beneath

it, we call the initialization method from the Frigate class ➋ and pass it Frigate
instead of self, along with a name parameter. Passing in the Frigate class gives you
access to all the attributes in the Frigate.__init__()method, so you don’t need to
duplicate any code, such as for crew, tonnage, guns, and so on.

If you don’t define an __init__() method for a child class, it will use the
__init__() method from the parent class. If you want to override some of the
attribute values in the parent class, or add new attributes, you’ll need to include
an __init__() method for the child class, as we did in this example.

Our original frigate class did not allow for missiles, so add a new self.missile

attribute ➌. Set the complement of missiles to 100. Because these missiles take

up space, you have less room for other ammunition, so override the self.ammo

attribute by setting it to 100x the number of guns rather than 300x, as we used
before. Note that this won’t affect the ammunition count for ships instantiated
directly from the original Frigate class; they will use the superclass’s ammunition
setting.

Your ship will need a way to fire the missiles, so define a new method called
fire_missile(), which will behave much like the fire_guns() that you defined
earlier, but fires only one missile at a time.

Instantiating a New Guided-Missile Frigate Object

You can now instantiate a new guided-missile frigate. Let’s name it
“Ticonderoga”:

ticonderoga = GMFrigate('Ticonderoga')
print(f"\n------{ticonderoga.designation} {ticonderoga.name.upper()}------")
for _ in range(3):
 ticonderoga.fire_guns()
ticonderoga.fire_missile()
ticonderoga.helm(95, 22)

This code generates the following output:

------USS TICONDEROGA------

BOOM!

Ticonderoga ammo remaining = 198 shells

BOOM!

Ticonderoga ammo remaining = 196 shells

BOOM!

Ticonderoga ammo remaining = 194 shells

SSSSSSSSSSSttttt!

Ticonderoga missiles remaining = 99

Ticonderoga heading = 95 degrees
Ticonderoga speed = 22 knots

By having your new class inherit attributes and methods from the Frigate
class, you were able to follow the DRY (“don’t repeat yourself”) principle of

software development, aimed at reducing the repetition of software patterns.
You’ll need to be careful not to make any changes to the Frigate class, however,
unless you want those changes to be reflected in the GMFrigate class, as well.

NOTE

Python permits the use of multiple inheritance, by which a child class inherits from

more than one parent class. This is accomplished by passing the names of the parent

classes, separated by commas, to the class definition. Using multiple parents is

straightforward if none of the method names in the parent classes overlap. When

they do, Python uses a process called Method Resolution Order (MRO) to sort

them out. This can be tricky, so in most cases, you’ll want to stick to single

inheritance, no inheritance, or cases where all parent classes contain distinct

attribute and method names.

Using the super() Function for Inheritance

The super() built-in function removes the need for an explicit call to a base class
name when invoking base class methods. It works with both single and multiple
inheritance. For example, in the GMFrigate class definition, you called the Frigate
class’s __init__() method within the GMFrigate class’s __init__() method, as follows:

 def __init__(self, name):
 Frigate.__init__(Frigate, name)

This lets the GMFrigate class inherit from Frigate. Alternatively, you could have
used the super() function, which returns a proxy object that allows access to
methods of the base class:

 def __init__(self, name):
 super().__init__(name)

In this case, super() removes the need for an explicit call to the Frigate class.
When using single inheritance, super() is just a fancier way to refer to the base
type. It makes the code a bit more maintainable. For example, if you are using
super() everywhere and want to change the name of the base class (such as from
Frigate to Type26Frigate) you need to change the name only once, when defining
the base class.

Another use for super() is for accessing inherited methods that have been
overridden in a new class. Let’s look at an example in which we define a Destroyer
class that includes the guns found on a smaller corvette (another class of
warship), plus some larger guns. Start a new super_destroyer.py file in the text

editor and then enter the following:

 class Corvette:
 def fire_guns(self):
 print('boom!')

➊ class Destroyer(Corvette):
 def fire_guns(self):

 ➋ super().fire_guns()
 print('BOOM!')

First, we define a Corvette class with a method for firing its guns. Because
these guns are relatively small, they make a lowercase “boom.” Next, we define a

Destroyer class that inherits from Corvette class ➊. It has its own fire_guns() method
that prints “BOOM!” for its large guns.

To fire the small guns available on the destroyer, use the super() function ➋.
Because “super” refers to the base class, it calls the Corvette class’s fire_guns()

method.

Now, let’s instantiate a corvette and destroyer object and fire their guns:

print('-----A Corvette-----')
corvette = Corvette()
corvette.fire_guns()

print('\n-----A Destroyer-----')
destroyer = Destroyer()
destroyer.fire_guns()

Here’s the output. Notice that both versions of “boom” are printed by the
destroyer object:

-----A Corvette-----
boom!

-----A Destroyer-----
boom!
BOOM!

NOTE

The use of super() is somewhat controversial. On one hand, it makes code more

maintainable. On the other, it makes it less explicit, which violates the Zen of

Python edict “Explicit is better than implicit.”

Objects Within Objects: Defining the Fleet Class

Returning to our wargame simulation, let’s create a Fleet class for manipulating
all the ship objects we’ve been instantiating. That’s right: using OOP, objects
can control other objects.

In the editor, add the following code to the bottom of your ships.py file:

class Fleet():

 def __init__(self, name, list_of_ships):
 self.fleet_name = name
 self.ships = list_of_ships
 self.fleet_heading = 0
 self.fleet_max_speed = 0
 self.fleet_speed = 0

The initialization method for this class looks a lot like the one for the Frigate
class, except now it has a parameter for a list of ships. This will be a list data
type whose items are previously instantiated ship objects, like garcia and boone.

Now define some methods for the class:

 def find_fleet_max_speed(self):

 ➊ max_speeds = [ship.max_speed for ship in self.ships]
 print(f'\nMaximum ship speeds = {max_speeds} knots')

 ➋ self.fleet_max_speed = min(max_speeds)
 print(f'Fleet maximum speed = {self.fleet_max_speed} knots')

 def fleet_helm(self, heading, speed):
 self.fleet_heading = heading
 self.fleet_speed = speed

 ➌ if self.fleet_speed > self.fleet_max_speed:
 self.fleet_speed = self.fleet_max_speed
 print(f"\n{self.fleet_name} heading = {self.fleet_heading} degrees")
 print(f"{self.fleet_name} speed = {self.fleet_speed} knots")
 for ship in self.ships:
 ship.heading = self.fleet_heading
 ship.speed = self.fleet_speed

A fleet can travel no faster than its slowest ship, so define a method for
setting the fleet’s maximum speed, just as we did earlier for individual ships. The
first step is to use list comprehension to loop through the ships in the self.ships
list and append their maximum speeds, as found in the ship.max_speed attribute, to

a new list named max_speeds ➊.

When the list is complete, you print it and then set the self.fleet_max_speed
attribute to the maximum speed of the slowest ship, found by calling the built-

in min() function on the list ➋. End the method by printing the fleet’s maximum
speed attribute.

Next, define a method for setting the heading and speed of the fleet. Again,
this is similar to the technique we used for setting these values on an individual

ship. As before, we clip the speed to the maximum speed limit, in the event that

the user inputs an invalid speed ➌. We then print the information and loop
through each ship in the self.ships list, setting its heading and speed.

Let’s test the Fleet class by instantiating a “Seventh” fleet comprising the
Garcia, Boone, and Ticonderoga ship objects created earlier. Enter the
following and then save and run the program:

ships = [garcia, boone, ticonderoga]
seventh = Fleet("Seventh", ships)
print(f"\nShips in {seventh.fleet_name} fleet:")
for ship in seventh.ships:
 print(f"\t{ship.name.capitalize()}")

seventh.find_fleet_max_speed()
seventh.fleet_helm(42, 28)
print(f"\ngarcia helm = {garcia.heading, garcia.speed}")
print(f"boone helm = {boone.heading, boone.speed}")
print(f"ticonderoga helm = {ticonderoga.heading, ticonderoga.speed}")

This produces the following output:

Ships in Seventh fleet:
 Garcia
 Boone
 Ticonderoga

Maximum ship speeds = [24, 24, 24] knots
Fleet maximum speed = 24 knots

Seventh heading = 42 degrees
Seventh speed = 24 knots

garcia helm = (42, 24)
boone helm = (42, 24)
ticonderoga helm = (42, 24)

As all the ships are frigates, there’s no difference in their maximum speeds,
but if you had destroyers, aircraft carriers, and so on, you would see a mix of
values in the max_speeds list.

With the Fleet class and its fleet_helm() method, you can simultaneously assign
your ships the same heading and speed. You can also override these settings if
you want by calling the self.helm() method of individual ships, like this:

garcia.helm(heading=50, speed=24)
print(f"\ngarcia helm = {garcia.heading, garcia.speed}")
print(f"boone helm = {boone.heading, boone.speed}")
print(f"ticonderoga helm = {ticonderoga.heading, ticonderoga.speed}")

Now, the Garcia’s heading is different than those of the rest of the fleet:

garcia heading = 50 degrees
garcia speed = 24 knots

garcia helm = (50, 24)
boone helm = (42, 24)
ticonderoga helm = (42, 24)

Reducing Code Redundancy with Dataclasses

The built-in dataclass module introduced in Python 3.7 provides a convenient
way to make classes less verbose. Although primarily designed for classes that
store data, data classes work just like regular classes and can include methods
that interact with the data. Some use cases include classes for bank accounts, the
content of scientific articles, and employee information.

A dataclass comes with basic “boilerplate” functionality already
implemented. You can instantiate, print, and compare dataclass instances
straight out of the box, and many of the common things you do in a class, like
instantiating properties based on the arguments passed to the class, can be
reduced to a few basic instructions.

NOTE

Code linters will typically complain if you use more than seven or so instance

attributes in a class. This seems to contradict the purpose of a dataclass, which is to

store data. In addition, this limit can be difficult to honor in the scientific domain,

where many attributes are often needed. Although the linter recommendations can

be ignored, you should still strive to limit the number of instance attributes per class

to reduce complexity. You might be able to treat some as class attributes, move others

into parent classes, merge some into a single attribute, and so on.

Using Decorators

Dataclasses are implemented using a helpful and powerful Python tool called a
decorator. A decorator is a function designed to wrap around (encapsulate)

another function or class to alter or enhance the wrapped object’s behavior. It
lets you modify the behavior without permanently changing the object.
Decorators also let you avoid duplicating code when you’re running the same
process on multiple functions, such as checking memory use, adding logging, or
testing performance.

Decorator Basics

To see how decorators work, let’s define a function that squares a number.
Then, we’ll define a decorator function that squares that result. Enter the
following in the console:

In [1]: def square_it(x):
 ...: return x**2

In [2]: def square_it_again(func):
 ...: def wrapper(*args, **kwargs):
 ...: result = (func(*args, **kwargs))**2
 ...: return result
 ...: return wrapper

The first function, square_it(), takes a number, represented by x, and returns
its square. The second function, square_it_again(), will serve as a decorator to the
first function and is a little more complicated.

The decorator function has a func parameter, representing a function.
Because functions are objects, you can pass a function to another function as an
argument and even define a function within a function. When we call this
decorator function, we’ll pass it the square_it() function as an argument.

Next, we define an inner function, which we’ll call wrapper(). Because
square_it() takes an argument, we need to set up the inner function to handle
arguments by using the special positional and keyword arguments *args and
**kwargs.

Within the wrapper() function, we call the function we passed to the decorator
(func), square its output, assign the resulting number to the result variable, and
return result. Finally, we return the wrapper() function.

To use the square_it_again() decorator, call it, pass it the function that you
want to decorate (square_it()), and assign the result to a variable (square), which
also represents a function:

In [3]: square = square_it_again(square_it)

In [4]: type(square)
Out[4]: function

You can now call the new function and pass it an appropriate argument:

In [5]: print(square(3))
81

In this example, we manually called the decorator function. This
demonstrated how decorators work, but it’s a bit verbose and contorted. In the
next section, we’ll look at a more convenient method for using a decorator.

Decorator Syntactic Sugar

In computer science, syntactic sugar is clear, concise syntax that simplifies the

language and makes it “sweeter” for human use. The syntactic sugar for a
decorator is the @ symbol, which must be immediately followed by the name of
the decorator function. The next line must be the definition statement for the
function or class being wrapped, as follows:

@decorator_func_name
def new_func():
 do something

In this case, decorator_func_name represents the decorator function, and
new_func() is the function being wrapped. A class definition can be substituted for
the def statement.

To see how it works, let’s re-create our number-squaring example. Use the
arrow key to bring up the previously defined square_it_again() function in the
console. Because we must invoke the decorator before defining the function to

be wrapped, we must rewrite the code in the reverse order compared to the
previous example.

Now, add the decorator and define the square_it() function in the next line.
Note that, when using the @ symbol, you use the decorator function name with
no parentheses:

In [7]: @square_it_again
 ...: def square_it(x):
 ...: return x**2

To use the decorated function, simply call it and pass it a number:

In [8]: square_it(3)
Out[8]: 81

Notice that with the @ decorator we didn’t need to use the square function, as
in line In [3].

If decorators make your head spin a little, don’t worry. If you can type
@dataclass, you can use dataclasses. This decorator modifies regular Python
classes so that you can define them using shorter and sweeter syntax.

Defining the Ship Class

To see the benefits of dataclasses, let’s define a regular class and then repeat the
exercise using a dataclass. Our goal will be to make generic ship objects that we
can track on a simulation grid. For each ship, we’ll need to supply a name, a
classification (like “frigate”), a country of registry, and a location.

Defining Ship as a Regular Class

To define a regular class called Ship, in the text editor, enter the following and
then save it as ship_tracker.py:

class Ship:

 ➊ def __init__(self, name, classification, registry, location):
 self.name = name
 self.classification = classification
 self.registry = registry
 self.location = location

 ➋ self.obj_type = 'ship'
 self.obj_color = 'black'

This code looks a lot like the Frigate class we defined earlier. This time,

however, the __init__() method includes more parameters ➊. All this data will
need to be passed as arguments when instantiating an object based on this class.

Note how we’re forced to duplicate code by repeating each parameter name,
like classification, three times: once as a parameter and twice when assigning the
instance attribute. The more data you need to pass to the method, the greater
this redundancy.

In addition to the parameters passed to the initialization method, the Ship

class includes two “fixed” attributes representing the object type ➋ and color.
These are assigned using an equal sign, as with a regular class. Because these
attributes are always the same for a given object, there’s no need to pass them as
arguments.

Now, let’s instantiate a new ship object. Enter the following, save the file,
and run it:

garcia = Ship('Garcia', 'frigate', 'USA', (20, 15))
print(garcia)

This created a US frigate named garcia at grid location (20, 15). But when
you print the object, the output isn’t very helpful:

<__main__.Ship object at 0x0000021F5FF501F0>

The issue here is that printing information on an object requires you to
define additional dunder methods, like __str__ and __repr__, that return string
representations of objects for informational and debugging purposes. Another
useful method is __eq__, which lets you compare instances of a class. The list of
special methods in Python is long, but a few basic examples are listed in Table
13-1.

Table 13-1: Basic Special Methods

Special Method Description

__init__(self) Called when initializing an object from a class.

__del__(self) Called to destroy an object.

__repr__(self) Returns a printable string for the object to use in
debugging.

__str__(self) Returns a string for pretty-printing useful information
about an object. If not implemented, __repr__ is used
instead.

__eq__(self, other) Performs an equal to (==) comparison of two objects.

Defining these methods for each class you write can become a burden, which
is where dataclasses come in. Dataclasses automatically handle the redundancy
issues around attributes and dunder methods.

Defining Ship as a Dataclass

Now, let’s define the Ship class again as a dataclass. Do this in a new file named
ship_tracker_dc.py (for “ship tracker dataclass”):

 from math import dist
 from dataclasses import dataclass

 @dataclass

➊ class Ship:

 ➋ name: str
 classification: str
 registry: str
 location: tuple

 ➌ obj_type = 'ship'
 obj_color = 'black'

Start by importing the math and dataclass modules. We’ll use the dist method
from math to calculate the distance between ships, and dataclass to decorate our
Ship class. To use dist, you’ll need Python 3.8 or higher.

Next, prefix dataclass with the @ symbol to make it a decorator. Define the
Ship class on the following line to let the decorator know it’s wrapping this class

➊.

Normally, the next step would be to define the __init__() method with self
and other parameters, but dataclasses don’t need this. The initialization is
handled behind the scenes, removing the need for this code. You’ll still need to
list the attributes, however, but with a lot less redundancy than before.

For each attribute that must be passed as an argument, enter the attribute

name, followed by a colon, followed by a type hint ➋. A type hint, or type

annotation, tells people reading your code what types of data to expect. Static

analysis tools can use type hints to check your code for errors. Type hints were
introduced in PEP 484 (https://www.python.org/dev/peps/pep-0484/).

A class variable with a type hint is called a field. The @dataclass decorator

examines classes to find fields. Without a type hint, the attribute won’t become
a field in the dataclass. In this example, all the fields in the Ship class use the
string data type (str), except for location, which uses a tuple (for a pair of x, y
coordinates). For a reminder of some common data types see Table 7-5 on page
184.

NOTE

You can use default values with the type annotations. For example, location: tuple =

(0, 0) will place new Ship objects at coordinates x = 0, y = 0 if none are specified

when the object is created. When you use a default parameter, however, all

subsequent parameters must have default values.

Because we don’t need to pass the obj_type and obj_color attributes as
arguments when creating a new object, we define them using an equal sign

rather than a colon, and with no type hints ➌. By assigning them as we would in
a regular class, every Ship object will, by default, be designated a “ship” and have
a consistent color attribute for plotting.

Dataclasses can have methods, just like regular classes. Let’s define a method
that calculates the Euclidian distance between two ships. The def statement
should be indented four spaces relative to the class definition:

https://www.python.org/dev/peps/pep-0484/

 def distance_to(self, other):
 distance = round(dist(self.location, other.location), 2)
 return str(distance) + ' ' + 'km'

The distance_to() method takes the current ship object and another ship
object as arguments. It then uses the built-in dist method to get the distance
between them. This method returns the Euclidean distance between two points
(x and y), where x and y are the coordinates of that point. The distance is
returned as a string, so we can include a reference to kilometers.

Now, in the global scope with no indentation, create three ship objects,
passing them the following information:

garcia = Ship('Garcia', 'frigate', 'USA', (20, 15))
ticonderoga = Ship('Ticonderoga', 'destroyer', 'USA', (5, 10))
kobayashi = Ship('Kobayashi', 'maru', 'Federation', (10, 22))

As soon as you began entering the Ship() class arguments, a window should
have appeared in the Spyder text editor, prompting you on the proper inputs
(Figure 13-4).

Figure 13-4: The Spyder text editor pop-up, showing the names and data types for the parameters in

the Ship class.

Because classes you create are legitimate datatypes in Python, they behave
like built-in datatypes. As a result, the Spyder editor will use the type hints to
guide you when creating the ship objects. In the next chapter, we’ll look at how
to properly document classes so that the “No documentation available” message
in Figure 13-4 is replaced with a one-line summary of the class, such as “Object
for tracking a ship on a grid.”

It’s also worth noting that you don’t need to use the correct data type for a
parameter. Because Python is a dynamically typed language (see page 184 in

Chapter 7), you can assign an integer as the classification argument, and the
program will still run. Here’s an example with the incorrect parameter
highlighted in gray (don’t add this to your code):

test = Ship('Test', 42, 'HMS', (15, 15))

NOTE

Even though the Python interpreter ignores type hints, you can use third-party

static type-checking tools, like Mypy (https://mypy.readthedocs.io/), to analyze

your code and check for errors before the program runs.

The @dataclass decorator is a code generator that automatically adds methods
under the hood. This includes the __repr__ method. This means that you now
get useful information when you call print(garcia):

print(garcia)
Ship(name='Garcia', classification='frigate', registry='USA', location=(20, 15))

Now, let’s check that our data is there and the method works. Add the
following lines and rerun the script:

ships = [garcia, ticonderoga, kobayashi]
for ship in ships:
 print(f"The {ship.classification} {ship.name} is visible.")
 print(f"{ship.name} is a {ship.registry} {ship.obj_type}.")
 print(f"The {ship.name} is currently at grid position {ship.location}\n")

print(f"Garcia is {garcia.distance_to(kobayashi)} from the Kobayashi")

By putting the ship objects in a list, we can loop through the list, access
attributes using dot notation, and print the results:

The frigate Garcia is visible.
Garcia is a USA ship.
The Garcia is currently at grid position (20, 15)

The destroyer Ticonderoga is visible.
Ticonderoga is a USA ship.
The Ticonderoga is currently at grid position (5, 10)

The maru Kobayashi is visible.
Kobayashi is a Federation ship.
The Kobayashi is currently at grid position (10, 22)

Garcia is 12.21 km from the Kobayashi

The Ship dataclass lets you instantiate a ship object and store data such as the
ship’s name and location in type-annotated fields. By reducing redundancy and
automatically generating required class methods such as __init__() and __repr__(),
the @dataclass decorator lets you produce code that’s easier to read and write.

NOTE

https://mypy.readthedocs.io/

The @classmethod and @staticmethod decorators let you define methods inside a class

namespace that are not connected to a particular instance of that class. Neither of

these are commonly used and can often be replaced with regular functions. You

should be aware of their existence, however, as they’re commonly mentioned in OOP

tutorials and can be useful in some cases.

Plotting with the Ship Dataclass

To get a better feel for how you might use OOP, let’s take this project a step
further and plot our ship objects on a grid. To plot the ships, we’ll use the
Matplotlib plotting library. (We look at Matplotlib in more detail later in the
book.) To install the library in your base environment, open Anaconda Prompt
(in Windows) or a terminal (in macOS or Linux) and enter the following:

conda activate base
conda install matplotlib

Enter y if prompted, and don’t worry if you already have Matplotlib installed
because Anaconda will just update the package, if needed.

NOTE

If you’re working in Spyder and aren’t sure which conda environment is currently

active, enter conda info in the console. This will display the active environment and

its path.

In the text editor, save or copy your ship_tracker_dc.py file to a new file called

ship_display.py and edit it as follows:

 from math import dist
 from dataclasses import dataclass

➊ import matplotlib.pyplot as plt

 @dataclass
 class Ship:
 name: str
 classification: str
 registry: str
 location: tuple
 obj_type = 'ship'
 obj_color = 'black'

 def distance_to(self, other):
 distance = round(dist(self.location, other.location), 2)
 return str(distance) + ' ' + 'km'

 garcia = Ship('Garcia', 'frigate', 'USA', (20, 15))
 ticonderoga = Ship('Ticonderoga', 'destroyer', 'USA', (5, 10))
 kobayashi = Ship('Kobayashi', 'maru', 'Federation', (10, 22))

➋ VISIBLE_SHIPS = [garcia, ticonderoga, kobayashi]

➌ def plot_ship_dist(ship1, ship2):
 sep = ship1.distance_to(ship2)
 for ship in VISIBLE_SHIPS:

 ➍ plt.scatter(ship.location[0], ship.location[1],
 marker='d',
 color=ship.obj_color)
 plt.text(ship.location[0], ship.location[1], ship.name)

 ➎ plt.plot([ship1.location[0], ship2.location[0]],
 [ship1.location[1], ship2.location[1]],
 color='gray',
 linestyle="--")
 plt.text((ship2.location[0]), (ship2.location[1] - 2), sep, c='gray')
 plt.xlim(0, 30)
 plt.ylim([0, 30])
 plt.show()

➏ plot_ship_dist(kobayashi, garcia)

Start by adding a line to import Matplotlib ➊. After instantiating the three

ship objects, replace the remaining code starting at line ➋. This line assigns a
list of the three ship objects to the variable VISIBLE_SHIPS, which represents the
ships you can see on the simulation grid. We’ll treat this as a constant, hence the
all-caps format.

Next, define a function for calculating the distance between two ships (ship1

and ship2) and for plotting all the visible ships ➌. Call the Ship class’s distance_to()
method on the two ships, assign the result to a variable named sep (for
separation), and then loop through the VISIBLE_LIST, plotting each ship in a

scatterplot ➍. For this, Matplotlib needs the ship’s x and y locations, a marker
style ('d' represents a diamond shape), and a color (the ship.obj_color attribute).
Note how you can enter a return after the comma associated with each
argument, for more readable “stacked” input.

Now, use Matplotlib’s plt.plot() method to draw a dashed line between the

ships used for the distance measurement ➎. This method takes the x–y locations
of each ship, a color, and a line style. Follow this with the plt.text() method, for
adding text to the plot. Pass it a location, the sep variable, and a color as
arguments.

Complete the function by setting x and y limits to the plot and then calling
the plt.show() method to display the plot. Back in the global scope, call the

function and pass it the kobayashi and garcia ship objects ➏.

Save and run the file. You should see the plot shown in Figure 13-5.

Figure 13-5: The output of the ship_display.py program

Bundling data and methods into classes produces compact, intuitive objects
that you can manipulate en masse. Thanks to OOP, we could easily generate
and track thousands of ship objects on our grid.

Identifying Friend or Foe with Fields and Post-Init Processing

Sometimes you’ll want to initialize an attribute that depends on the value of
another attribute. Because this other attribute must already exist, you’ll need to
initialize the second attribute outside the __init__ function. Fortunately, Python
comes with the built-in __post_init__ function that’s expressly designed for this
purpose.

Let’s look at an example based on our war game simulation. Because alliances
can change through time, a ship registered to a certain country might switch
from ally to enemy. Although the registry attribute is fixed, its allegiance is
uncertain, and you might want to evaluate its friend-or-foe status post-
initialization.

To create a version of the Ship dataclass that accommodates this need, in the
text editor, enter the following and then save it as ship_allegiance_post_init.py:

from dataclasses import dataclass, field

@dataclass

class Ship:
 name: str
 classification: str
 registry: str
 location: tuple
 obj_type = 'ship'
 obj_color = 'black'

 ➊ friendly: bool = field(init=False)

 ➋ def __post_init__(self):
 unfriendlies = ('IKS')
 self.friendly = self.registry not in unfriendlies

In this case, we start by importing both dataclass and field from the dataclasses
module. The field function helps you change various properties of attributes in
the dataclass, such as by providing them with default values.

Next, we initialize the Ship class like we did in the ship_tracker_dc.py program,

except that we add a new attribute, friendly, that’s set to a Boolean data type with

a default value of False ➊. Note that we set this default value by calling the field
function and using the keyword argument init.

Now we define the __post_init__() method with self as a parameter ➋. We
then assign a tuple of unfriendly registry designations to a variable named
unfriendlies. Finally, we assign True or False to the self.friendly attribute by
checking whether the current object’s self.registry attribute is present in the
unfriendlies tuple.

Let’s test it out by making two ships, one friendly and one unfriendly. Note
that you don’t pass the Ship class an argument for the friendly attribute; this is
because it uses a default value and is ultimately determined by the __post_init__()
method:

homer = Ship('Homer', 'tug', 'USA', (20, 9))
bortas = Ship('Bortas', 'D5', 'IKS', (15, 25))

print(homer)
print(bortas)

This produces the following result:

Ship(name='Homer', classification='tug', registry='USA', location=(20, 9), friendly=True)
Ship(name='Bortas', classification='D5', registry='IKS', location=(15, 25), friendly=False)

You may have noticed that you didn’t need to explicitly call the __post_init__()
method. This is because the dataclass-generated __init__() code calls the method
automatically if it’s defined in the class.

NOTE

Inheritance mostly works the same with dataclasses as with regular classes. One

thing to be careful of is that dataclasses combine attributes in a way that prevents

the use of attributes with defaults in a parent class when a child contains attributes

without defaults. So, you’ll want to avoid setting field defaults on classes that are to

be used as base classes.

Optimizing Dataclasses with __slots__

If you’re using a dataclass for storing lots of data, or if you expect to instantiate
thousands to millions of objects from a single class, you should consider using
the class variable __slots__. This special attribute optimizes the performance of a
class by decreasing both memory consumption and the time it takes to access
attributes.

A regular class stores instance attributes in an internally managed dictionary
named __dict__. The __slots__ variable stores them using highly efficient, array-
related data structures implemented in the C programming language.

Here’s an example using a standard dataclass called Ship, followed by a
ShipSlots dataclass that uses __slots__. Enter this code in the text editor and save it
as ship_slots.py:

from dataclasses import dataclass

@dataclass
class Ship:
 name: str
 classification: str
 registry: str
 location: tuple

@dataclass
class ShipSlots:

 ➊ __slots__ = 'name', 'classification', 'registry', 'location'

 name: str
 classification: str
 registry: str
 location: tuple

The only difference between the two class definitions is the assignment of a

tuple of attribute names to the __slots__ variable ➊. This variable lets you
explicitly state which instance attributes you expect your objects to have. Now,

instead of having a dynamic dictionary (__dict__) that permits you to add

attributes to objects after the creation of an object, you have a static structure

that saves the overhead of one dictionary for every object that uses __slots__.
Because it’s considered good practice to initialize all of an object’s attributes at
once, the inability to dynamically add attributes with __slots__ is not necessarily
a bad thing.

Using __slots__ with multiple inheritance can become problematic, however.
Likewise, you’ll want to avoid using it when providing default values via class
attributes for instance variables. You can find more caveats in the official docs at
https://docs.python.org/3/reference/datamodel.xhtml#slots/ and in this Stack Overflow

answer at https://stackoverflow.com/questions/472000/usage-of-slots/.

Making a Class Module

In the previous chapter, we used modules to abstract away code. A program with
one or more class statements can serve as a module, too, letting you use the
classes without having to define them in your current code.

Let’s walk through an example using the ship_slots.py program you made in

the previous section. In the console, begin by importing the ship_slots.py

program:

In [9]: import ship_slots as slots

Now you can use its classes as if you’d defined them in the console:

In [10]: garcia = slots.Ship('Garcia', 'frigate', 'USS', (10, 20))

In 11]: garcia
Out[11]: Ship(name='Garcia', classification='frigate', registry='USS', location=(10, 20))

Creating a class module would be useful if you were building a complete war
games simulation. You could turn the various ship, fleet, and display classes into
modular class libraries and then import these modules when building individual
simulations. This would let you focus on the code for the current simulation
without encountering the “clutter” of the class statements.

If you forget class names or the arguments each class takes, just start
instantiating a new object. Spyder will launch a pop-up window to prompt you
on these values (Figures 13-6 and 13-7).

https://docs.python.org/3/reference/datamodel.xhtml#slots/
https://stackoverflow.com/questions/472000/usage-of-slots/

Figure 13-6: The Spyder pop-up window listing the classes in the ship_slots module

Figure 13-7: The Spyder pop-up window listing parameters and data types used by the Ship class

These prompts will be less detailed if you’re using regular classes instead of
dataclasses. In the next chapter, you’ll learn about documenting classes, and the
documentation comment in Figure 13-7 will be useful.

TEST YOUR KNOWLEDGE

6. The super() built-in function removes the need for:

a. Specifying the appropriate data type for each instance attribute

b. Class attributes common to every class instance

c. An explicit call to a base class name when invoking methods

d. An initialization (__init__()) method

7. The dataclass was designed for when you have:

a. Lots of methods that take lots of arguments

b. A class with lots of attributes but few methods

c. An initialization method that takes lots of arguments

d. a. and b.

e. b. and c.

8. The “syntactic sugar” symbol for a decorator is:

a. #

b. @

c. **

d. //

9. True or False: A type hint specifies the type of data you should use
with an attribute.

10. Post-initialization processing is used to:

a. Replace the __init__() method in a class definition

b. Initialize attributes outside the __init__() method

c. Optimize memory usage for large datasets

d. Optimize processing speed when creating many objects

11. The class variable __slots__ reduces memory footprint by:

a. Replacing the __dict__ dictionary normally used to store instance
attributes

b. Implementing C behind the scenes

c. Using a dynamic dictionary versus a static data structure

d. a. & b.

e. b. & c.

12. Edit the ship_display.py program so that it moves the Garcia across the

grid while continuously updating the distance to the Kobayashi (hint:
you’ll need a for loop).

Summary

Object-oriented programming helps you to organize code while reducing its

redundancy. Classes let you combine related data, and functions that act on that

data, into new custom data types.

Functions in OOP are called methods. When you define a class using a class

statement, you couple related elements together so that the relationship between
the data and the methods is clear, and so the proper methods are used with the
appropriate data. Consequently, you’ll want to consider using classes when you
have multiple kinds of data, multiple functions that go with each kind of data,
and a growing codebase that’s becoming increasingly complex.

A class serves as a template or factory for making objects, also called instances

of a class. You create objects by calling the class’s name using function notation.
As with regular functions, this practice introduces a new local name scope, and
all names assigned in the class statement generate object attributes shared by all

instances of the class. Attributes store data, and each object’s attributes might
change over time to reflect changes in the object’s state.

Classes can inherit attributes and methods from other classes, letting you

reuse code. In this case, the new class is a child or subclass, and the preexisting

class is the parent or base class. Inherited attributes and methods can be

overwritten in the subclass to modify or enhance the inherited behaviors. With
the super() function, you can call original methods from a base class in the event
that they’ve been modified in the subclass. Because Python lets classes inherit
from multiple parents, this can result in complex code that’s difficult to
understand.

Decorators are functions that modify the behavior of another function without

permanently changing the modified function. They also help you to avoid
duplicating code. The @dataclass decorator decorates class statements and makes
them more concise. Although dataclasses were designed for classes that mainly

store data, they can still be used as regular classes. A downside, however, is that
the use of multiple inheritance can be more difficult with dataclasses than with
regular classes.

The __slots__ class variable optimizes both memory usage and attribute
access speeds. It comes with some limitations, however, such as, but not limited
to, the inability to dynamically create attributes after initialization and increased
complexity when using multiple inheritance.

You can combine related class statements and save them as Python files.
These class libraries then can be imported in other programs as modules. IDEs

like Spyder will prompt users with the proper class names, arguments, methods,
and documentation, removing the need to see all of the class definition code.

There’s a lot more to OOP than what we’ve covered here; it is the entire

jungle, after all. If you think your projects would benefit from OOP and want to
explore the topic further, you can find the official Python tutorial on classes at
https://docs.python.org/3/tutorial/classes.xhtml, the official dataclass documentation

at https://docs.python.org/3/library/dataclasses.xhtml, and the PEP 557 dataclass

enhancement proposal at https://www.python.org/dev/peps/pep-0557/.

https://docs.python.org/3/tutorial/classes.xhtml
https://docs.python.org/3/library/dataclasses.xhtml
https://www.python.org/dev/peps/pep-0557/

14
DOCUMENTING YOUR WORK

Python is famous for the readability of its code, but this readability can
take you only so far. To collaborate with others, and to remind yourself
why you did what you did, you’ll need to rely on natural human language
to convey information, make your meaning as clear as possible, or
explain the purpose of your program. Python enables this through
comments and docstrings.

A comment is a non-executable annotation within a computer

program. A docstring, short for documentation string, is a multiline string,

unassigned to any variable, used to add documentation to Python
modules, classes, methods, and functions. Together, comments and
docstrings comprise code documentation.

Good documentation makes your intentions clear and saves future
users (including yourself) both time and effort. There should be no
reason to reverse engineer parts of the code or waste time trying to
understand arcane arguments or numbers applied without context.

Proper documentation might also include lessons learned during
programming and can flag potential problems such as those encountered
when working across operating systems. These will let you pass on
valuable knowledge and save others from discovering and dealing with
these problems on their own.

Given that code generated in a console is usually temporary, you’ll
need only to document persistent programs, such as those generated in a

text editor or Jupyter Notebook. These types of files are saved to disk
and reused, sometimes months later, so it’s important to record any
intentions and assumptions that aren’t clearly self-evident.

Comments

Comments are notes that you add to code to remind you of what you were

doing, explain the purpose of a new block of code, flag a to-do item, and
temporarily “turn off” code that you don’t want to run. They’re
especially helpful when other people need to understand and modify
your work.

Comments start with the hash (#) symbol, which tells Python to
ignore (not execute) any remaining code on the same line. Here’s an
example:

Step 1: Crop image to 50x50 pixels.

In consoles and text editors, comments display with a different color
than regular code. If you’re using the “Spyder” syntax highlighting
theme (see “Configuring the Spyder Interface” on page 64), comments
will be colored gray, and docstrings will be green.

Comments can occur on a single line, extend over multiple lines, or
be embedded in a line of code. The latter are called inline comments.

Like variable names, comments should be as concise as possible, and
it will take multiple iterations to get them right. If comments are too
long or if there are too many, they’ll become distracting, and users might
ignore them. If they’re too short and cryptic, their purpose will be
wasted. If they’re lacking, users might end up squandering time
deciphering the code. And that user could be you!

Of course, you’ll always want to avoid rude comments:

Added this to fix Steve's stupid mistake.

Comments like this offend people, adversely affect teamwork, and
make you look unprofessional.

Another commenting error is to violate the DRY (Don’t Repeat
Yourself) maxim and elaborate on code that’s already readable and
explicit. Here’s an example of a redundant comment that adds no value
and creates visual noise:

force = mass * acceleration # multiply mass variable by acceleration variable.

The following comments state the obvious and clutter the code
without adding much value, as the code itself is easy to understand:

As Step 1, enter the mass of the object.
mass = 549
As Step 2, enter the acceleration of the object.
acceleration = 42
As Step 3, calculate Force.
force = mass * acceleration

The cryptic inline comment that follows was probably meant as a
temporary reminder, but the coder forgot to remove it so now it adds
confusion rather than clarity:

acceleration = 42 # Intermediate for now.

Along these lines, comments that contradict the code are worse than no
comments at all. Consequently, you should keep comments up to date
and address any code changes. This is difficult to do in practice and is a
good argument for limiting the number of comments to those that are
strictly necessary.

You can find the official Python guidelines for comments in the PEP8
Style Guide for Python Code at https://pep8.org/. Most of this content will

be summarized in the sections that follow.

Single-Line Comments

A comment will often occupy a single line and summarize some code
that follows, like this:

https://pep8.org/

Use Cartesian product to generate permutations with repetition.
for perm in product([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], repeat=len(combo)):

Because users might not be familiar with the product function from the
built-in itertools module, the comment saves them the effort of looking it
up.

When writing single-line comments, you should insert a single space
after the hash mark and use complete sentences with periods. If the
comment contains multiple sentences, each period should be followed by
two spaces. Comments should start with capital letters unless the first
word is an identifier that begins in lowercase.

Additionally, all comments should be indented to the same level as the
code they address. For example, because matter can’t reach or exceed the
speed of light (C), the following comment explains the purpose of
reassigning the velocity variable to the speed of light minus 0.000001:

if velocity >= C:
 # Don't let the ship reach light speed.
 velocity = C - 0.000001

Because the referenced variable assignment occurs within the if

statement block, the comment is indented four spaces.

Multiline Comments

Comments that span multiple lines are known as multiline comments or

block comments. Python does not have an official syntax for multiline

comments. One way to handle them is to treat them as a series of single-
line comments beginning with hash marks, as follows:

This is a really long-winded comment that probably should be
shortened or left off or broken up and inserted before various
bits of code or in a docstring somewhere.

The drawback to this method is that it’s somewhat unreadable. An
alternative is to use a multiline string with triple quotes. This works
because Python ignores strings that aren’t assigned to a variable. It’s also
more readable:

"""
This is a really long-winded comment that probably should be
shortened or left off or broken up and inserted before various
bits of code or in a docstring somewhere.
"""

You can also place the triple quotes on the same lines as the
comments, as follows:

"""This is a really long-winded comment that probably should be
shortened or left off or broken up and inserted before various
bits of code or in a docstring somewhere."""

If a block comment contains more than one paragraph, separate the
paragraphs with a blank line.

Block comments break up the continuity of code and should be used
only in special circumstances. These include documenting important
lessons learned, adding license and copyright information, and inserting
temporary reminders such as TODO lists, FIXME flags, and warnings.

Inline Comments

An inline comment occurs at the end of a statement. A common use is to
specify measurement units, as follows:

C = 299_792_458 # Speed of light in a vacuum in meters per second.

By including a comment to specify the value’s unit instead of
including that unit in the name of the variable, we were able to use a
more concise variable name.

Inline comments should be separated from the code by at least two
spaces, and the # should be followed by a single space. If the comment
won’t fit on the same line as the code, use a single line or multiline
comment above the statement instead.

Inline comments are distracting and should be used sparingly. They
should never state the obvious and should add clarity. For example, some
functions and methods come with non-intuitive argument values, like
the built-in turtle module’s screen() method, which sets up a drawing
window. Normally, you pass it the size of the window that you want, in

pixels, such as width=800, height=900, but to use the whole screen, you just
pass it 1. An inline comment can make this clear:

screen.setup(width=1.0, height=1.0) # For fullscreen view.

An inline comment can also provide context to a variable assignment:

apogee = 25_500 # Highest point in the orbit.

Alternatively, the inline comment can provide a formatting tip:

url = https://www.python.org/ # Cut and paste from website address.

And here, the comment adds clarity to an argument in a user-defined
function:

trajectory = rocket(dx=25, dy=-100) # Negative y moves down the screen.

You’ll be tempted to use inline comments far more than they’re really
needed. In most cases, they can be avoided or minimized by using clear
object names.

Commenting-Out Code

Because Python ignores comments, you can use the # symbol to block
the execution of some code. This can help you test and debug code by
turning parts of it off and on.

For example, you might want your program to print out a good deal
of information, but during development, these printouts can slow down
the code and obscure other outputs that you want to see. While working
on the code, you can comment-out these lines by turning them into

comments, as follows:

print(key_used)
print(ciphertext)
print(plaintext)
print('Program complete.')

For convenience, you can highlight and comment-out blocks of code
using keyboard shortcuts. In Spyder, you can see the shortcuts for your

system by clicking File ▸ Edit on the top toolbar. For example, in
Windows, you can toggle code on and off with CTRL-1. To comment
out a block of code that includes an explanatory comment, use CTRL-4
to comment-out the block and CTRL-1 to restore it.

TEST YOUR KNOWLEDGE

1. How many spaces should proceed the hash mark of an inline
comment?

a. 1

b. 2

c. 0

d. Inline comments should use triple quotes

2. True or false: Multiline comments are more readable if they use
triple quotes.

3. In Python, the hash mark (#) denotes which of the following:

a. A comment

b. A number

c. A non-executable line of code

d. Weight in pounds

4. A good alternative to using inline comments is:

a. A multiline docstring

b. A single-line comment

c. Good naming conventions

d. Judicious use of constants

Docstrings

A docstring is a triple-quoted string literal that occurs as the first
statement in a module, function, class, or method definition. Because of

this positioning and the use of triple quotes, various types of help tools
can discover and display docstrings.

Docstrings usually consist of a summary line followed by a more
elaborate description:

"""
A one-line summary.

More info such as:
 function summaries
 method summaries
 attribute summaries
 exceptions raised
 and so on
"""

Because the summary line can be used by automatic indexing tools, it
should fit on one line and be separated from the rest of the docstring by
a blank line. The summary line can be on the same line as the opening
quotes or on the next line. Unless the entire docstring fits on a single
line, you should place the closing quotes on a line by themselves. The
docstring should be indented to the same level as the quotes at its first
line.

When docstrings are properly set up, you can access them with the
special __doc__ attribute. To see an example using the pickle module that
we used in Chapter 12, enter the following in the console:

In [1]: import pickle

In [2]: print(pickle.__doc__)

This will display the module’s docstring:

Create portable serialized representations of Python objects.

See module copyreg for a mechanism for registering custom picklers.
See module pickletools source for extensive comments.

Classes:

 Pickler
 Unpickler

Functions:

 dump(object, file)
 dumps(object) -> string
 load(file) -> object
 loads(string) -> object

Misc variables:

 __version__
 format_version
 compatible_formats

You can also see this in Spyder’s Help pane, by typing pickle in the
Object box (Figure 14-1).

Figure 14-1: The pickle module docstring displayed in Spyder’s Help pane

For simple functions or methods, the docstring can consist entirely of
the one-line summary. Even though this summary doesn’t span multiple
lines, you should still use triple quotes, as follows:

"""Accept number as n and return cube of n."""

This is about as terse as a docstring can get, but it’s sufficient for
simple functions and functions you define for your own use. However, if
you plan to work on enterprise-scale code or contribute to open source
projects, you’ll want to follow the instructions in PEP 257, which covers
docstring conventions (https://www.python.org/dev/peps/pep-0257/). Some

of these cases can be quite elaborate, with docstrings several screens
long.

In the sections that follow, we’ll look at docstring conventions
appropriate for scientists and engineers working alone or in close groups.

https://www.python.org/dev/peps/pep-0257/

In these cases, users will be applying the code more often than modifying
it, and simple docstrings should address their needs.

Documenting Modules

The docstring of a module should be placed at the top of the module
above any import statements. The first line should describe the module’s
purpose. The rest of the docstring should generally list the classes,
exceptions, functions, and any other objects that are exported by the
module, with a one-line summary of each. It’s okay if these summaries
provide less detail than the summary line in the object’s own docstring.

Here’s how the pickle module’s docstring looks in the actual code:

"""Create portable serialized representations of Python objects.

See module copyreg for a mechanism for registering custom picklers.
See module pickletools source for extensive comments.

Classes:

 Pickler
 Unpickler

Functions:

 dump(object, file)
 dumps(object) -> string
 load(file) -> object
 loads(string) -> object

Misc variables:

 __version__
 format_version
 compatible_formats
"""

As modules become larger and more complex, their docstrings can
become quite technical. This makes them difficult for beginners and
non-developers to both write and read. For programs written for your
own use or for that of your immediate team, simpler summaries might be
appropriate. Here’s a friendly module docstring (in bold) for the
mymath.py module we wrote in Chapter 11:

"""
Functions to solve the quadratic equation and get the volume of a sphere.

Functions:
quad(a, b, c) -> soln1, soln2
sphere_vol(radius) -> volume rounded to 2 decimal places
"""
import math

def quad(a, b, c):
 x1 = (-b - (b**2 - 4 * a * c)**0.5) / (2 * a)
 x2 = (-b + (b**2 - 4 * a * c)**0.5) / (2 * a)
 return x1, x2

def sphere_vol(r):
 vol = (4 / 3) * math.pi * r**3
 return round(vol, 2)

You can get this documentation using __doc__:

In [3]: import my_math

In [4]: print(my_math.__doc__)

Functions to solve the quadratic equation and get the volume of a sphere.

Functions:
quad(a, b, c) -> soln1, soln2
sphere_vol(radius) -> volume rounded to 2 decimal places

Likewise, the built-in help() function can retrieve this docstring with
more information, including the location of the file:

In [5]: help(my_math)
Help on module my_math:

NAME
my_math - Functions to solve the quadratic equation and get the volume of a sphere.

DESCRIPTION
 Functions:
 quad(a, b, c) -> soln1, soln2
 sphere_vol(radius) -> volume rounded to 2 decimal places
FUNCTIONS
 quad(a, b, c)
 sphere_vol(r)

FILE
 C:\Users\hanna\spyder_proj_w_env\code\my_math.py

This docstring gives the user a nice overview of the my_math module.
Don’t worry that the description of the functions is a little sparse. As

you’ll see in a later section, functions get their own docstrings, in which
you can expand on the function’s purpose, parameters, outputs, and so
on.

Documenting Classes

The docstring for a class should follow the same pattern as a module-
level docstring. It should summarize the class behavior and list the public
methods and instance variables. Any subclasses, constructors, and
methods should have their own docstrings. You should insert a blank line
after all docstrings that document a class.

Here’s an example of a docstring for a Starship class:

class Starship:
 """
 A class to represent a starship.

 Attributes

 name : str
 name of the ship
 torpedoes : int
 number of photon torpedoes
 phasers: int
 number of phaser banks
 crew: int
 number of crew members

 Methods

 info():
 Print the ship's attributes.

 fire_all():
 Return the sum of the weapon attributes as an integer.
 """

This docstring is simple, but that’s okay because one of the main uses
of docstrings is to provide dynamic hints when using the class (see
Figure 13-4). Consequently, you’ll want to present the information as
concisely as possible.

In this case, we start the docstring with a one-line summary followed
by a list of attributes. This listing includes the attribute name, its data

type, and a brief description. Next, we list the class methods along with a
single-line summary of each.

Documenting Functions and Methods

The docstring for a function or method should summarize its behavior
and document its arguments, return values, and side effects as well as any
exceptions raised and restrictions on when it can be called (if applicable).
You should indicate optional and keyword arguments as such.

In general, if your function or method takes no arguments and
returns a single value, a one-line summary should provide enough
documentation. This summary should use imperative mood; in other

words, use “Return” not “Returns”:

def warning():
 """Print structural integrity warning message."""
 print("She canna take it Capt'n! She's gonna blow!")

Here’s a longer docstring for a function that accepts two words and
returns True if the words are anagrams (composed of the same letters in
different orders) or False if they’re not. It provides information on the
function’s arguments and return value:

def is_anagram(word1, word2):
 """
 Check if two strings are anagrams and return a Boolean.

 Arguments:
 word1: a string
 word2: a string

 Returns:
 Boolean
 """
 return sorted(word1.lower()) == sorted(word2.lower())

print(is_anagram('forest', 'softer'))

Here’s the output of this code. Because “softer” is an anagram of
“forest,” the comparison returns True:

In [6]: runfile('C:/Users/hanna/oop/junk.py', wdir='C:/Users/hanna/oop')
True

If a function’s arguments have default values, you should mention
them. Here’s an example using the tax_rate parameter:

def calc_taxes(taxable_income, tax_rate=0.24):
 """
 Calculate Federal taxes based on taxable income and rate.

 Args:
 taxable_income: int
 Income after qualified deductions.
 tax_rate: float
 Federal tax rate as decimal value.
 Defaults to 24% tax bracket.

 Returns: int
 Federal taxes owed.
"""

Keeping Docstrings Up to Date with doctest

It’s easy to update a program and forget to edit the associated docstring.
With the doctest built-in module, you can embed usage examples in
docstrings to check whether there’s a divergence between the code and
its documentation.

The doctest module searches for pieces of text that look like
interactive Python sessions and then executes those sessions to verify
that they work exactly as shown. Let’s look at a simple function that takes
a starship’s warp factor value and adjusts it so that it falls within
acceptable operating limits. The code highlighted in bold represents the
embedded test cases:

def warp(factor):
 """Return input warp factor adjusted to allowable values.

 Args:
 factor: int
 warp factor

 Returns: int
 warp factor adjusted to operating limits

 Raise: ValueError
 factor value must be float or integer

 >>> warp(5)
 5
 >>> warp(3.5)

 3
 >>> warp(12)
 10
 >>> warp(-4)
 0
 >>> warp(0)
 0
 >>> warp('ten')
 Traceback (most recent call last):
 …
 ValueError: factor must be a number
 """
 if isinstance(factor, (int, float)):
 speed = int(factor)
 if speed < 0:
 speed = 0
 elif speed > 10:
 speed = 10
 return speed
 else:
 raise ValueError("factor must be a number")

if __name__ == "__main__":
 import doctest
 doctest.testmod()

The test cases check both acceptable and unacceptable values.
Unacceptable values are those that will fail the comparison statements,
such as 12 and -4.

You can run doctest in several ways. One way is by running the script
from the text editor by pressing F5. Another is to open the console,
import the doctest module and your custom module (without the .py

extension), and call the testmod() method, as follows:

In [7]: import doctest
In [8]: import set_warp

In [9]: doctest.testmod(set_warp)
Out[9]: TestResults(failed=0, attempted=6)

Because none of the tests failed, you got an abbreviated summary of
the test result. If you go back to the docstring and edit the expected
result for warp(-4) from 0 to 4, you’ll see this output when you rerun the
method (remember to save your script first):

In [10]: doctest.testmod(set_warp)
**
File "C:\Users/hanna/file_play\set_warp.py", line 21, in set_warp.warp

Failed example:
warp(-4)
Expected:
4
Got:
0
**
1 items had failures:
1 of 6 in set_warp.warp
Test Failed 1 failures.
Out[10]: TestResults(failed=1, attempted=6)

To print a detailed log of what the doctest module is trying, what it’s
expecting, and what it found, pass verbose=True to testmod(). Here’s the
result for a no-failure case:

In [11]: doctest.testmod(set_warp, verbose=True)
Trying:
 warp(5)
Expecting:
 5
ok
Trying:
 warp(3.5)
Expecting:
 3
ok
Trying:
 warp(12)
Expecting:
 10
ok
Trying:
 warp(-4)
Expecting:
 0
ok
Trying:
 warp(0)
Expecting:
 0
ok
Trying:
 warp('ten')
Expecting:
 Traceback (most recent call last):
 ...
 ValueError: factor must be a number
ok
1 items had no tests:
 set_warp
1 items passed all tests:
 6 tests in set_warp.warp
6 tests in 2 items.

6 passed and 0 failed.
Test passed.

You can also run doctest from Anaconda Prompt or a terminal. Just
navigate to the directory that holds your Python file and run the
following using the -v switch (for verbose mode):

python <your_filename.py> -v

Leave off the -v switch for a simple summary.

Besides checking that a module’s docstrings are up to date, you can
use doctest to verify that interactive examples from a test file or a test
object work as expected. This is known as regression testing, and it ensures

that previously developed and tested software still performs after a
change.

You can also use doctest to write tutorial documentation for a package,
liberally illustrated with input-output examples. To learn more, visit
https://docs.python.org/3/library/doctest.xhtml.

Checking Docstrings in the Spyder Code Analysis Pane

You can use the Spyder IDE to check how your docstrings conform to
established guidelines. The results are presented in the code analysis
pane, which was introduced on page 85 in Chapter 4, and within the text
editor itself.

Setting Spyder Preferences

To set up Spyder to check docstrings, on the top toolbar, click Tools ▸
Preferences. In the Preferences window, click Completion and linting.
Then, choose the Docstring style tab. You should see the window
shown in Figure 14-2. Ensure that the Enable docstring style linting
checkbox is selected.

https://docs.python.org/3/library/doctest.xhtml

Figure 14-2: Spyder’s Docstring style window

The Choose the convention used to lint docstrings drop-down
menu offers you three choices: PEP 257, NumPy, and Custom. As
previously discussed, PEP 257 is Python’s official docstring guide, so
we’ll use it here.

In addition to PEP 257, some members of the scientific community
use a NumPy docstring standard
(https://numpydoc.readthedocs.io/en/latest/install.xhtml). You can find

examples of this style at https://sphinxcontrib-

napoleon.readthedocs.io/en/latest/example_numpy.xhtml).

You can also choose to show or ignore certain errors, based on the
codes found at http://www.pydocstyle.org/en/stable/error_codes.xhtml.

NOTE

In addition to PEP 257 and NumPy, there are other docstring formats that

you can follow. Google has its own format and an excellent style guide

(https://google.github.io/styleguide/pyguide.xhtml). You can see

examples of this style at https://sphinxcontrib-

https://numpydoc.readthedocs.io/en/latest/install.xhtml
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.xhtml
http://www.pydocstyle.org/en/stable/error_codes.xhtml
https://google.github.io/styleguide/pyguide.xhtml
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.xhtml

napoleon.readthedocs.io/en/latest/example_google.xhtml. In addition,

reStructuredText is a popular format used mainly in conjunction with a tool

called Sphinx. Sphinx uses docstrings to generate documentation for Python

projects in formats such as HTML and PDF. If you’ve ever read the docs

(https://readthedocs.org/) for a Python module, you’ve seen Sphinx in

action.

Running the Analysis

To see how checking docstrings with Spyder works in practice, let’s write
some docstring-challenged code. Open the text editor, enter the
following, and save it as test_docs.py (you can do this in the oop Spyder

project from the previous chapter or somewhere else):

class Volcano():
 'A volcano object'
 def __init__(self, name, classification, active):
 """sfsds"""
 self.name = name
 self.classification = classification
 self.active = active

 def erupt(self):
 'lsjljl'
 if self.classification == 'stratovolcano' and self.active is True:
 print("\nRUMBLE!\n")

 def pyroclastic_cloud(self):
 if self.classification == 'stratovolcano' and self.active is True:
 print("\nWHOOSH!\n")

mountain = Volcano('Krakatoa', 'stratovolcano', True)
mountain.erupt()
mountain.pyroclastic_cloud()

Hopefully, you’ve noticed several documentation errors here, but if
you haven’t, don’t despair, Spyder will find and flag these for you. To
start, on the top toolbar, click Source. This will produce the menu
shown in Figure 14-3.

https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.xhtml
https://readthedocs.org/

Figure 14-3: The Source menu from Spyder’s top toolbar

Be sure that the Show docstring style warnings checkbox is
selected, and then, at the bottom of the menu, click the Run code
analysis option (or press the F8 shortcut). The code analysis pane should
appear (Figure 14-4).

Figure 14-4: The code analysis pane with messages related to the docstrings

Click the right-facing arrow (>) symbol next to the Convention
heading to expand the style messages for code and docstrings. In the
test_docs.py example, we’re missing two recommended docstrings: one for

the entire program, called the module docstring, and one for the
pyroclastic_cloud method.

The messages in the code analysis pane are from the code linting tool
and lack granularity with respect to docstrings. To see specific
documentation errors, hover your cursor over the orange triangles to the
left of the line numbers in the text editor (Figure 14-5). You’ll see
multiple error codes along with their descriptions.

Figure 14-5: The code analysis messages for Line 1

The message about the missing module docstring is repeated, but
with a different error code than in the code analysis pane. Then, for the
Volcano class definition, there are messages flagging a missing blank line,
the incorrect use of quotes, and the need for a period at the end of the
docstring.

If you hover your cursor over the Line 3 triangle, which refers to the
__init__() method, you’ll see a window with similar errors (Figure 14-6).

Figure 14-6: The code analysis messages for Line 3

Note that the tool checks for the presence of a summary description,

but it doesn’t evaluate the content of the description. A nonsensical

summary such as """sfsds""" will pass the test.

Spyder’s code analysis tool is a great way to ensure that your code,
and its documentation, conform to Python community standards.

TEST YOUR KNOWLEDGE

5. Which of the following help you access docstrings?

a. The __doc__ special attribute

b. help()

c. The Spyder Help pane

d. All the above

6. Import the built-in itertools module and get help on its product()
method.

7. Which Python Enhancement Proposals provide guidance on
code documentation?

a. PEP 248

b. PEP 8

c. PEP 549

d. PEP 257

8. Which of the following make docstrings accessible to automatic
help tools?

a. Use of triple quotes

b. Description of input and output data types

c. That it immediately follows a def statement

d. Final triple quote followed by a space

9. Spyder’s code analysis tool can check your docstrings for
conformity to:

a. PEP 8 conventions

b. PEP 257 and Google conventions

c. PEP 8 and Google conventions

d. PEP 257 and NumPy conventions

10. Write a docstring for the Frigate class defined in the ships.py

program from Chapter 13.

Summary

Good documentation maximizes the usability of your code as well as its
maintainability over time. In the Python community, well-written code is
synonymous with well-documented code. Comments and docstrings let
you add human language to programs to fill in any explanatory gaps
about their purpose, meaning, and usability.

Comments represent non-executable notes for annotating code or for
temporarily commenting-out lines so that they don’t run. You should use

comments sparingly to explain your intent, capture important
programming lessons learned, provide warnings, include legal
information such as for license and copyright data, specify units, and so
on. Most comments occupy a single line, or are placed inline, and start
with a # symbol. Multiline comments can use triple-quotes for
readability.

Docstrings are special triple-quoted strings that occur at the top of a
module or immediately after a class or def statement. They provide a user
with an overview of what the code does and how to use it, and you can
access them using automatic help tools. You should use docstrings with
every module, class, method, and function, and these should be kept up
to date as the code changes.

Various tools can help you check that your docstrings are up to date
and well formatted. With the built-in doctest module, you can embed
testable cases in docstrings. These let you check that code updates don’t
change expected behaviors. They can also provide example use cases for
new users. The Spyder IDE includes a tool for checking your docstrings
against the PEP 257 and NumPy guidelines. The results are displayed in
the code analysis pane and along the margin of the text editor, adjacent
to the problem lines.

PART III
THE ANACONDA ECOSYSTEM

The Python scientific ecosystem is robust, which means it attempts to

satisfy the same needs in multiple ways. As discussed in this book’s
introduction, this can lead to a bewildering maze of packages and tools
for users to negotiate. It’s easy to become overwhelmed by the literally
thousands of Python packages available to you through conda and
conda-forge.

Fortunately, only a few packages are considered essential to scientific
work. These libraries form the basic Python ecosystem for scientific
research and are shown, with a few overlapping, ancillary, and
competing libraries, in Figure III-1 (PyCharm and Spyder, for example,
are similar programming tools available through Anaconda).

At the core of this ecosystem is Python. In Figure III-1, at the outer
edge, Anaconda coils around Python and the other libraries and tools to
help you use them efficiently. Between Python and Anaconda are several
rings, or layers, meant to convey that some libraries are built atop
others.

The outer two rings hold tools that help you to write code, run code,
and review the output. These include the (by-now-familiar) Jupyter Qt

console, Jupyter Notebook, Spyder, and JupyterLab.

The innermost three rings hold some of the many scientific and
plotting libraries available through Anaconda. We’ll take a quick look at
many of these in Part III so that you can become conversant on what
they do, why you need them, and how you might choose among
overlapping or competing versions. In Part IV, we’ll take a deeper—
though not comprehensive—dive into some of the more important
ones.

Figure III-1: Basic Python ecosystem for scientific research (after

https://indranilsinharoy.com/, 2013)

https://indranilsinharoy.com/

15
THE SCIENTIFIC LIBRARIES

In this chapter, we’ll look at high-level summaries of the core Python libraries
for mathematics, data analysis, machine learning, deep learning, computer
vision, language processing, web scraping, and parallel processing (Table 15-1).
We’ll also look at some guidelines for choosing among competing products. In
subsequent chapters, we’ll dive deeper into the functionality of several of these
libraries and then apply them in real-world applications.

Table 15-1 organizes these libraries into subcategories, lists their websites,
and provides a brief description of each. As these are popular and, in many
cases, mature libraries, you should have no problem finding additional
guidance for each online and in bookstores.

Table 15-1: Essential Python Scientific Libraries for Python

Task Library Description Website

Math and
data
analysis

NumPy Numerical
computing
tools for arrays

https://numpy.org/

SciPy Library Friendly and
efficient
numerical
routines

https://www.scipy.org/

https://numpy.org/
https://www.scipy.org/

Task Library Description Website

SymPy Symbolic
math/computer
algebra tools

https://www.sympy.org/

Pandas Data
manipulation,
analysis, and
visualization
tools

http://pandas.pydata.org/

Machine
and deep
learning

Scikit-learn General-
purpose
machine
learning toolkit

https://scikit-learn.org/

TensorFlow Symbolic math
library for deep
learning neural
nets

https://www.tensorflow.org/

Keras Friendlier
wrapper for
TensorFlow

https://keras.io/

PyTorch Fast and
efficient
artificial neural
networks

https://pytorch.org/

Image
processing

OpenCV Real-time
computer
vision library

https://opencv.org/

Scikit-image Scientific
image
processing and
analysis tools

https://scikit-image.org/

Pillow Basic image
processing
tools

https://python-pillow.org/

https://www.sympy.org/
http://pandas.pydata.org/
https://scikit-learn.org/
https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://opencv.org/
https://scikit-image.org/
https://python-pillow.org/

Task Library Description Website

Language
processing

NLTK Symbolic and
statistical
language
processing
library

http://www.nltk.org/

spaCy Fast
production
grade language
processing
library

https://spacy.io/

Helper
libraries

requests Webscraper for
HTTP
requests

https://pypi.org/project/requests/

BeautifulSoupTools to extract
text from
HTML and
XML files

https://www.crummy.com/software/

re Library for
working with
regular
expressions

https://docs.python.org/3/library/re.xhtml

Dask Library for
parallel
computing
with Python

https://dask.org/

Spark “Heavier”
alternative to
Dask for Big
Data

https://spark.apache.org/

The SciPy Stack

http://www.nltk.org/
https://spacy.io/
https://pypi.org/project/requests/
https://www.crummy.com/software/
https://docs.python.org/3/library/re.xhtml
https://dask.org/
https://spark.apache.org/

The SciPy stack of open source libraries comes preinstalled on Anaconda and
includes NumPy, the SciPy library, Matplotlib, IPython, SymPy, and pandas
(Figure 15-1). These have been called “the bedrock of number-crunching and
visualization in Python” and are among the most used scientific libraries.

Figure 15-1: The core components of the SciPy ecosystem (courtesy of https://SciPy.org)

In the following sections, we take a high-level look at these libraries. Then,
in later chapters, we take deeper dives into NumPy, Matplotlib, and pandas.

NumPy

Short for Numerical Python, NumPy is Python’s dedicated library for

performing numerical calculations. It supports the creation of large,
multidimensional arrays and matrices and provides a large collection of high-
level mathematical functions to operate on these arrays. NumPy is considered
a basic package for scientific computing with Python, but I would also call it
foundational because many other important libraries such as pandas, Matplotlib,

SymPy, and OpenCV are built on top of it.

NumPy includes data structures, algorithms, and “glue” needed for most
scientific applications involving numerical data. Operations in NumPy are
faster and more efficient than competing functionality in the Standard Library
that ships with Python. Having knowledge of NumPy is important to being
able to use most, if not all, scientific Python packages, so we’ll take a closer
look at it in Chapter 18.

SciPy

The scientific library SciPy is designed for mathematics, science, and

engineering, and addresses many standard problem domains in scientific
computing. It’s built on and supplements NumPy and provides many user-
friendly and efficient numerical routines, such as routines for numerical

https://scipy.org/

integration, interpolation, optimization, linear algebra, statistics, fast Fourier
transforms, signal and image processing, and the solving of differential
equations. It extends the linear algebra routines and matrix decompositions
provided in NumPy and provides access to many physical constants and
conversion factors.

SymPy

SymPy is an open source library for symbolic mathematics. Its goal is to be a

full-featured computer algebra system (CAS).

Whereas most computer algebra systems invent their own language, SymPy
is written and executed in Python. This makes it easier for those familiar with
Python to use. It also allows you to use it as a library. So, in addition to using
SymPy in an interactive environment, you can import it into your own Python
application, where you can automate or extend it.

SymPy gives you the ability to do all sorts of computations symbolically. It
can simplify expressions; compute derivatives, integrals, and limits; solve
equations; work with matrices, and more. It includes packages for plotting,
printing (including pretty printed output of math formulas or LaTeX), code
generation, physics, statistics, combinatorics, number theory, geometry, logic,
and more.

A simple way to appreciate SymPy is to consider the irrational number √8,
calculated with Python’s basic math library:

In [1]: import math

In [2]: math.sqrt(8)
Out[2]: 2.8284271247461903

The output is a truncated numeric answer, as √8 can’t be represented by a
finite number. With SymPy, the square roots of numbers that are not perfect
squares are left unevaluated by default; thus, the symbolic results are
symbolically simplified by default (as 2 × √2):

In [2]: import sympy
 ...: sympy.pprint(sympy.sqrt(8))
Out[2]: 2⋅√2

As stated previously, SymPy includes lots of useful methods, such as for
solving equations. For example, to solve x2 – 2 = 0

In [3]: import sympy

In [4]: x = sympy.symbols('x')

In [5]: sympy.pprint(sympy.solve(x**2 - 2, x))
[-√2, √2]

SymPy conveniently comes with its own plotting modules:

In [6]: from sympy import symbols, cos
 ...: from sympy.plotting import plot3d

In [7]: x, y = symbols('x y')

In [8]: plot3d(cos(x * 2) * cos(y * 4) - (y / 4), (x, -1, 1), (y, -1, 1))

To see more of SymPy’s capability, go to
https://docs.sympy.org/latest/tutorial/index.xhtml.

You might be wondering, why use SymPy when there’s NumPy and the
SciPy Library? The short answer is that SymPy is for working with algebra
and doing theoretical math or physics; NumPy and SciPy are for performing
analyses on actual data.

pandas

The Python Data Analysis library is the most popular open source library for

data science. Called pandas for short, it contains data structures and

manipulation tools designed to facilitate data extraction, cleaning, analysis, and

https://docs.sympy.org/latest/tutorial/index.xhtml

visualization. It adopts significant parts of NumPy and works well with other
libraries like SciPy, statsmodels, scikit-learn, and Matplotlib.

In addition, pandas is very useful for working with tabular data and
common data sources, such as SQL relational databases and Excel
spreadsheets. It’s especially well suited for handling time-indexed data and
incorporates plotting functionality—based on Python’s core visualization
library, Matplotlib—that makes it easy to visualize your data.

The most common data structure in pandas is the DataFrame, a tabular

format similar to a spreadsheet, with columns, rows, and data. You can
construct DataFrames from many types of input, in the case shown in the
following example, from a list of lists using Jupyter Notebook:

import pandas as pd
data = [['Carbon', 'C', 6], ['Nitrogen', 'N', 7], ['Oxygen', 'O', 8]]
df = pd.DataFrame(data, columns=['Element', 'Symbol', 'Atomic #'])
df

Element Symbol Atomic #

0 Carbon C 6

1 Nitrogen N 7

2 Oxygen O 8

With DataFrames, you have the equivalent of an Excel spreadsheet or SQL
table in Python. DataFrames, however, tend to be faster, easier to use, and
more powerful because they’re an integral part of the Python and NumPy
ecosystems.

The pandas library is one of the most important for scientists, who, as the
old joke goes, spend 80 percent of their time finding and preparing data and
the other 20 percent complaining about it! Mastering pandas is therefore
essential, and you’ll get a good start in Chapter 20, which covers some of the
basics.

NOTE

Other libraries are beginning to challenge pandas by preserving its simplicity while

addressing some of its efficiency issues such as the inability to scale projects through

use of multicore processing, GPU processing, or cluster computing. Modin provides

full drop-in replacement for pandas, letting you use pandas with more access to

optimizations. Vaex (https://vaex.io/) helps you to explore and visualize large

datasets on normal hardware by using efficient lazy evaluation and clever memory

mapping. Dask (https://dask.org/) implements many of the same methods of

pandas and offers more functionality than Modin or Vaex. Dask is more complex to

use but helps you handle huge datasets and use computer clusters for improved

processing speeds.

A General Machine Learning Library: scikit-learn

Part of data analysis is the construction and validation of predictive models that

use known results to forecast future outcomes or explain past behaviors. This
falls under the category of machine learning, itself a category of artificial

intelligence (Figure 15-2). Machine learning deals with methods for pattern
recognition in datasets, making it possible for machine learning algorithms to
improve automatically through experience. These algorithms build supervised

models based on training data, and unsupervised models, in which the model

“discovers” patterns on its own. The algorithms can use these models to make
decisions without being explicitly programmed to do so.

The open source scikit-learn library is built on NumPy, SciPy, and
Matplotlib. Considered the premier general-purpose machine learning toolkit
for Python programmers, scikit-learn has been critical for enabling Python to
be a productive data science tool. Preinstalled on Anaconda, scikit-learn is also
easy to use, making it a great entry point to machine learning.

https://vaex.io/
https://dask.org/

Figure 15-2: Some of the branches of artificial intelligence

As shown in Figure 15-3, the scikit-learn library includes packages for
predictive data analysis, including classification (support for vector machines,
random forests, nearest neighbors, and so on), regression, clustering (k-means,

spectral, and so forth), dimensionality reduction (principal component analysis,
matrix factorization, feature selection, and more), preprocessing (feature
extraction and normalization), and model selection (metrics, cross-validation,
and grid search). Both supervised and unsupervised methods are addressed.
You can get a feel for how scikit-learn works in Chapter 20.

Figure 15-3: Examples of regression, classification, and clustering analysis using scikit-learn

(courtesy of https://scikit-learn.org/)

NOTE

Complementing scikit-learn is a library called statsmodels

(https://www.statsmodels.org/), which contains algorithms for classical statistics

and economics. Whereas scikit-learn is more concerned with predictions,

statsmodels is more about statistical inference, p-values, and uncertainty estimates.

The Deep Learning Frameworks

Deep learning is a branch of machine learning that goes beyond the methods

incorporated in scikit-learn. Rather than modify parameters of a fixed model

https://scikit-learn.org/
https://www.statsmodels.org/

through structured training sets intended for learning, deep learning networks

are capable of learning unsupervised from data that is unstructured or

unlabeled. Thus, deep learning systems imitate the nonlinear workings of the
human brain in processing data and creating patterns for use in decision
making.

The best-known of these systems are referred to as artificial neural networks

(ANNs). These networks generally require very complex mathematical

operations with millions to billions of parameters and are only possible thanks
to the speed and efficiency of graphics processing units (GPUs) developed for
videogames. Example applications include self-driving cars and Google
Translate.

Python libraries designed for deep learning are referred to as deep learning
frameworks. These interfaces abstract away the details of the underlying

algorithms, allowing you to define models quickly and easily using collections
of prebuilt and optimized components. Of the many frameworks available,
three dominate: TensorFlow, Keras, and PyTorch.

Although these three systems are still evolving, they already have good
documentation, training sets, tutorials, and support, and you can count on all
three to provide robust deep learning solutions.

TensorFlow

The oldest, most popular deep learning framework for Python is an open
source library called TensorFlow. Created by Google to support its large-scale

applications, TensorFlow is an end-to-end platform for multiple machine
learning tasks. Thanks to its large user base, good documentation, and ability
to run on all major operating systems, TensorFlow is popular in industry and
academia, across a variety of domains. You can find many articles on the web to
help you implement solutions to complex problems. You can also complete a
certification program online.

TensorFlow is very powerful and can handle large datasets efficiently by
distributing the computations across hundreds of mutli-GPU servers. It
provides lots of functionality, including a tool called TensorBoard that helps you

to create beautiful visualizations that are easy to understand and from which
you can derive useful analytics.

Keras

Although TensorFlow is well documented and comes with walkthroughs to
guide you, it’s still considered one of the most challenging deep learning
frameworks, with an intricate interface and a steep learning curve. Fortunately,
François Challet, a Google engineer, has written another library, Keras, that

acts as an interface for TensorFlow. Although it’s now part of TensorFlow’s
core application programming interface (API), you can also use Keras in a
stand-alone manner.

Like TensorFlow, Keras is open source and works on all platforms. Unlike
TensorFlow, Keras is written in Python, which makes it more user friendly.
Designed for quick prototyping and fast experimentation on smaller datasets,
its lightweight, simplistic interface takes a minimalist approach, making it easy
to construct neural networks that can work with TensorFlow. And because
Keras can act as a wrapper, you can always “drop down” into TensorFlow when
you need to use a feature not included in Keras’s simpler interface.

Keras runs seamlessly on both CPUs and GPUs. It is primarily used for
classification, speech recognition, and text generation, summarization, and
tagging. By minimizing actions and making models easy to understand, Keras
is a great deep learning tool for beginners.

PyTorch

PyTorch, developed by Facebook’s AI Research Lab, is a direct competitor to

TensorFlow. PyTorch works on all platforms and has recently incorporated
Caffe, a popular deep learning framework developed at Berkeley and geared

toward the image processing field. PyTorch comes preinstalled on Anaconda.

PyTorch is becoming the preferred framework for academic research,
though it’s still widely used among industry giants such as Facebook,
Microsoft, and Wells Fargo. It excels at prototyping and is great for projects
that have more of a non-production implementation. Among its strengths are
flexibility, debugging capabilities, and short training durations.

Unlike TensorFlow, PyTorch is described as feeling more “native” to
Python, making it easy to develop and implement machine learning models. Its
syntax and application are very Pythonic, and it integrates seamlessly with
essential libraries like NumPy. Although Keras seems to hold the upper hand
with respect to ease of use, especially for those new to deep learning, PyTorch
is faster, more flexible, and has better memory optimization.

Another strength of PyTorch is debugging. Keras hides a lot of the nitty-
gritty details of building a neural network through encapsulation into various
functions. This means that you can build an artificial neural network with only
a few lines of code. With PyTorch, you need to specify a lot more details
explicitly in your code; thus, finding an error becomes a much simpler task. It’s
also simpler to change weights, biases, and network layers and rerun the
model.

Overall, PyTorch is considered easier to use than TensorFlow, but harder to
use than Keras. TensorFlow’s visualization capabilities are also held in higher
esteem.

CHOOSING A DEEP LEARNING FRAMEWORK

According to Mark Twain, “All generalizations are wrong including this
one.” Many personal and project-related issues can affect which deep
learning framework you choose. Still, if you search the internet enough,
you can find some general guidelines for the selection of a deep learning
framework:

If you’re brand new to deep learning, consider Keras, followed by
PyTorch.

If you’re new and part of a research community, consider PyTorch.

If you’re an experienced researcher, you’ll probably prefer PyTorch.

Developers wanting a quick plug-and-play framework will prefer
Keras.

If you’re experienced and want an industry job, consider
TensorFlow.

If you’re working with large datasets and need speed and
performance, choose either PyTorch or TensorFlow.

If debugging is a concern, use PyTorch, as standard Python
debuggers can be used (though with Keras, debugging is seldom
needed due to the simple interface).

If you need multiple backend support, choose Keras or TensorFlow.

Keras and TensorFlow provide more deployment options and
simplify model export to the web; with PyTorch you must use Flask

or Django as the backend server.

For fast prototyping, use Keras, followed by PyTorch.

If visualization is a priority, choose Keras or TensorFlow.

If you’re already working with Keras or TensorFlow, use Keras for
deep neural networks and TensorFlow for machine learning
applications.

The Computer Vision Libraries

Computer vision is a branch of artificial intelligence focused on training
computers to see and process digital images and videos in much the same way
as human vision. The goal is for computers to gain a high-level understanding
of the state of the world from images and return appropriate outputs. For
example, a self-driving car should detect when you’ve drifted out of your lane
and either warn you or automatically steer the car back. This requires
detecting, tracking, and classifying features in images. In addition to
autonomous cars, common applications include face detection and recognition,
skin cancer diagnoses, event detection, and camera autofocusing.

There are quite a few Python libraries dedicated to computer vision and
image manipulation, but three, OpenCV, scikit-image, and Pillow, should
easily cover most of your needs. Let’s take a quick look at these in the
following sections.

OpenCV

OpenCV, short for Open-Source Computer Vision, is the world’s most popular

open source computer vision library. Its key focus is on real-time applications,
like identifying faces in streaming video, but it can do everything from simple
image editing to machine learning applications. OpenCV is written in C++ for
speed but has a Python wrapper that works on Windows, Linux, Android, and
macOS.

OpenCV has a modular structure that includes thousands of optimized
algorithms, including ones for simple image processing, video analysis, 2D
feature framework, object detection, object tracking, camera calibration, 3D
reconstruction and more. OpenCV converts images into efficient NumPy

arrays and, because it’s written in optimized C/C++, it can take advantage of
fast multicore processing.

OpenCV has been around for more than 20 years and has a large and
supportive user base. Many major companies such as Google, Yahoo,
Microsoft, Intel, IBM, Sony, and Honda actively use OpenCV. Thanks to its
maturity and popularity, you can find many books and online tutorials to help
you use the library.

scikit-image

The open-source scikit-image library is the image processing toolbox for SciPy.

Its mission is to be the reference library for scientific image analysis in Python.

It comes preinstalled with Anaconda.

The scikit-image library includes lots of algorithms and utilities for use in
industry, research, and education. It’s written in Python and, like OpenCV,
uses NumPy arrays as image objects by transforming the original pictures.
Although it lacks some of the sophisticated OpenCV algorithms for working
with images in real time, it still has a lot of algorithms useful for scientists,
including feature and blob detection. It also contains a few algorithm
implementations that OpenCV does not.

The library is fairly easy to use and well documented with lots of examples
and use cases. All of the code is peer reviewed and of high quality. It provides a
consistent interface to many machine-learning models, making it relatively
easy to learn a new model. It also provides many options—with sensible
defaults—for tuning the models for optimal performance. You can find a
gallery of examples at https://scikit-image.org/docs/stable/auto_examples/.

PIL/Pillow

Pillow is the “friendly” fork of the Python Image Library (PIL), one of the oldest

core libraries for image manipulation in Python. Pillow runs on all major
operating systems, comes preinstalled on Anaconda, and is primarily designed
for basic image processing.

If you don’t need functionality from OpenCV or scikit-image, Pillow is
widely used for image transformations in web projects given that it is more
lightweight and usable. It supports a large selection of image file types and
predefined image enhancement filters for sharpening, blurring, contouring,

https://scikit-image.org/docs/stable/auto_examples/

smoothing, finding edges, resizing, manipulating pixels, and more. It’s
especially useful for automatically processing large numbers of images.

CHOOSING AN IMAGE MANIPULATION LIBRARY

Here are some tips for choosing a library for manipulating images. Only
open source libraries are considered.

If your job or research involves computer-vision applications in real

time, you’ll want to learn OpenCV.

If your datasets include a mixture of static images and streaming
video, you should consider both OpenCV and scikit-image. Some of
the latter’s methods and utilities can complement OpenCV. For a
short example of how these two can work together, visit Adrian
Rosebrock’s tutorial on detecting low-contrast images
(https://www.pyimagesearch.com/2021/01/25/detecting-low-contrast-

images-with-opencv-scikit-image-and-python/).

If you mainly work with static images, scikit-image or Pillow should
suffice and save you all the “overhead” of OpenCV. Between the
two, scikit-image will be more appropriate if you regularly work with
images and perform fairly sophisticated analyses and manipulations.

For basic image manipulation, such as loading images, cropping
images, or simple filtering, Pillow should be sufficient. Likewise, you
can realize a large number of simple operations directly within
NumPy and SciPy’s ndimage module.

The Natural Language Processing Libraries

Natural language processing (NLP) is a branch of linguistics and artificial

intelligence concerned with giving computers the ability to derive meaning
from written and spoken words. Some familiar applications of NLP include
speech recognition; text-to-speech conversion; machine translations; chatbots;
spam detection; word segmentation (called tokenization); sentiment analysis,

https://www.pyimagesearch.com/2021/01/25/detecting-low-contrast-images-with-opencv-scikit-image-and-python/

optical character recognition (OCR), in which an image of handwriting or
printed text is converted into digital text; and, of course, Amazon’s Alexa.

Among the more popular NLP libraries are NLTK, spaCy, Gensim,
Pattern, and TextBlob. NLTK and spaCy are all-purpose NLP libraries and
are discussed in more detail in the sections that follow. Others, like Gensim,
are more specialized and focus on subdisciplines such as semantic analysis
(detecting the meaning of words), topic modeling (determining a document’s
meaning based on word statistics), and text mining.

NLTK

The Natural Language Tool Kit, or NLTK for short, is one of the oldest, most

powerful, and most popular NLP libraries for Python. NLTK is open source
and works on Windows, macOS, and Linux. Created in 2001 as part of a
computational linguistics course at the University of Pennsylvania, it has
continued to develop and expand with the help of dozens of contributors.
NLTK comes preinstalled on Anaconda.

Because it’s designed by and for an academic research audience, NLTK is
versatile but can be somewhat slow for quick-paced production usage. It’s also
considered a bit difficult to learn, though this is mitigated to a fair degree by
the free and useful online textbook, Natural Language Processing with Python

(http://www.nltk.org/book/), written by its developers.

A strength of NLTK is that it comes packaged with lots of corpora (bodies
of text) and pretrained models. As a result, it can be considered the de facto
standard library for academic researchers in NLP.

spaCy

The spaCy library is younger than NLTK and designed to work well with

machine learning frameworks like scikit-learn, TensorFlow, PyTorch, and
other NLP libraries like Gensim. It’s advertised as being “industrial strength,”
meaning that it’s scalable, optimized, and very fast for production applications.
Like NLTK, it has great documentation and comes prepackaged with useful
language models. Its support community is not as large as that for NLTK but
it’s growing rapidly and may someday overtake NLTK in popularity.

CHOOSING AN NLP LIBRARY

http://www.nltk.org/book/

Although there are dozens of libraries in the NLP stack, you need to
know only a few to be proficient in the field. Some guidelines for
choosing an NLP library are presented here:

If you’re in academia or otherwise doing research, you’ll probably
want to take the time to learn NLTK.

The spaCy library will be useful for mixing NLP with machine
learning models.

If you need highly optimized performance, consider spaCy.

If all you plan to do is scrape websites and analyze the results,
consider Pattern (https://github.com/clips/pattern/), a specialized web

miner with basic NLP capabilities.

If you’re a beginner or plan to use NLP lightly in your work,
consider TextBlob (https://textblob.readthedocs.io/en/dev/). TextBlob is a

user-friendly frontend to the NLTK and Pattern libraries, wrapping
both in high-level, easy-to-use interfaces. It’s good for learning and
for quick prototyping, and as you become more confident, you can
add functionality to refine your prototypes.

If you’re into topic modeling and statistical semantics (analyzing and
scoring documents on their similarity), you may want to consider
Gensim (https://radimrehurek.com/gensim/). Gensim can handle very

large file sizes by streaming documents to its analysis engine and
performing unsupervised learning on them incrementally. Its
memory optimization and fast processing speed are achieved
through the use of the NumPy library. Gensim is a specialized tool,
and not for general-purpose NLP.

If you want to perform NLP on multiple languages at once, consider
Polyglot (https://polyglot.readthedocs.io/en/latest/index.xhtml).

The Helper Libraries

Helper libraries assist you in using the scientific libraries discussed in this

chapter. The ones discussed here help you download data, prepare it for use,
and analyze it as quickly as possible.

https://github.com/clips/pattern/
https://textblob.readthedocs.io/en/dev/
https://radimrehurek.com/gensim/
https://polyglot.readthedocs.io/en/latest/index.xhtml

Requests

Data wrangling (or munging) refers to the process of transforming data from its

“raw” form into a more usable format for analysis. This involves processes such
as checking, correcting, remapping, and so on. You can do a lot of this with the
pandas library, discussed previously, but first you need to get your hands on the
data.

Given that the lion’s share of human knowledge is available online, you’re
probably going to need a way to pull data off the World Wide Web. Note that
I’m not talking about simply downloading an Excel spreadsheet from an online
database, which is easy enough, or about manually copying and pasting text
from a web page. I’m referring to automatically extracting and processing
content, a process called web scraping. Let’s look at two open source libraries to

help with this, requests and Beautiful Soup, and a third, re, that helps you
clean and correct the data.

The popular and trusted requests library is designed to make HyperText

Transfer Protocol (HTTP) requests simpler and more human friendly. HTTP is

the foundation of data communication for the World Wide Web, where
hypertext documents include hyperlinks to other resources that users can easily
access with, for example, a mouse click or by tapping the screen in a web
browser. The requests library comes preinstalled with Anaconda.

Let’s look at an example where you scrape Dr. Martin Luthor King, Jr.’s “I
Have a Dream” speech from a website
(http://www.analytictech.com/mb021/mlk.htm) using Jupyter Notebook:

import requests

url = 'http://www.analytictech.com/mb021/mlk.htm'
page = requests.get(url)

After importing requests, you provide the url address as a string. You can
copy and paste this from the website from which you want to extract text. The
requests library abstracts the complexities of making HTTP requests in
Python. The get() method retrieves the url and assigns the output to a page
variable, which references the Response object the web page returned for the
request. This object’s text attribute holds the web page, including the speech,
as a readable text string.

At this point, the data is in HyperText Markup Language (HTML), the

standard format used to create web pages:

http://www.analytictech.com/mb021/mlk.htm

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>

<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<title>Martin Luther King Jr.'s 1962 Speech</title>
</head>
--snip--
<p>I am happy to join with you today in what will go down in
history as the greatest demonstration for freedom in the history
of our nation. </p>
--snip--

As you can see, HTML has a lot of tags such as <head> and <p> that let your

browser know how to format the web page. The text between starting and
closing tags is called an element. For example, the text “Martin Luther King Jr.’s

1962 Speech” is a title element sandwiched between the starting tag <title> and
the closing tag </title>. Paragraphs are formatted using <p> and </p> tags.

Because these tags are not part of the original text, they should be removed
prior to any further analysis, such as natural language processing. To remove
the tags, you’ll need the Beautiful Soup library.

Beautiful Soup

Beautiful Soup is an open source Python library for extracting readable data

from HTML and XML files. It comes preinstalled with Anaconda.

Let’s use Beautiful Soup (simplified as bs4) on the HTML file returned by

requests in the previous section:

import bs4

soup = bs4.BeautifulSoup(page.text, 'html.parser')
p_elems = [element.text for element in soup.find_all('p')]
speech = ' '.join(p_elems)
print(speech)

After importing bs4, we call the bs4.BeautifulSoup() method and pass it the
string containing the HTML. The soup variable now references a BeautifulSoup
object, which means that you can use the find_all() method to locate the speech
buried in the HTML document between paragraph tags (<p>). This makes a
list, which you can turn into a continuous text string by joining the paragraph
elements on a space (' '). The (truncated) printed results follow:

I am happy to join with you today in what will go down in
history as the greatest demonstration for freedom in the history

of our nation. Five score years ago a great American in whose
symbolic shadow we stand today signed the Emancipation Proclamation.
This momentous decree came as a great beckoning light of hope to
--snip--

You now have text that you can easily read as well as analyze with Python’s
many language processing tools.

Regex

No matter where you get your raw data, it will probably contain spelling
errors, formatting issues, missing values, and other problems that will keep you
from using it immediately. You’ll need to process it in some way, such as
reformatting, replacing, or removing certain parts, and you’ll want to do it in
bulk. Fortunately, regular expressions provide you with a wide variety of tools for

parsing raw text and performing these tasks.

A regular (or rational) expression, usually shortened to regex, is a sequence

of characters that specifies a search pattern. You’re probably familiar with these

patterns if you’ve ever used “find” or “find and replace” operations in a text
editor. Using pattern matching, regex helps you to isolate and extract text you
want from text you don’t want.

Regex can do tedious but important things that you’d normally assign to an
assistant or technician. For example, it can scan text for information related to
your field of study. If you’re a seismologist interested in earthquakes, you can
write programs that scan news feeds for reports on these events, grab the data,
format it, and store it in a database.

Python has a built-in module called re which you can use to work with
regular expressions. Let’s look at an example in which you’re searching texts
for 10-digit phone numbers. Within this database, people have entered phone
numbers in multiple ways, such as with the area code in parentheses, using
dashes, using spaces, and so on, but you want to use 10 consecutive numbers
with no spaces. Here’s how re and Python can help you to extract and format
the numbers:

import re

data = 'My phone number: (601)437-4455, also my number: (601) 437-4455, \
 again my number: 601-437-4455, still my number: 601.437.4455'

nums = re.findall(r'[\(]?[1-9][0-9\ \.\-\(\)]{10,}[0-9]', data)

print(nums)

After importing re and entering the data, you assign a variable, named nums,
and call the re.findall() method. This diabolical syntax looks like some kind of
code, pun intended, and like any code you must know the key. Without going
into the gory details, you’re basically telling the findall() method the following:

The matched text string might start with the (symbol or the number one
to nine [\(]?[1-9].

There can be a number, space, period, dash, or parentheses in between [0-
9\ \.\-\(\)].

The matched string must contain at least 10 characters {10,}.

Finally, it must end with a number between zero and nine [0-9].

This first attempt finds all the input numbers:

['(601)437-4455', '(601) 437-4455', '601-437-4455', '601.437.4455']

Next, you need to remove the non-number characters using the re.sub()
method, which substitutes a character you provide for the targeted characters.
The ^ tells the method to find everything but digits between zero and nine and
replace them with nothing, signified by '':

nums_nospace = re.sub('[^0-9]', '', str(nums))
print(nums_nospace)

This produces a continuous string of numbers:

6014374455601437445560143744556014374455

You can now use list comprehension to loop through this string and extract
the 10-digit groupings you desire:

phone_list = [nums_nospace[x:x+10] for x in range(0, len(nums_nospace), 10)]
print(phone_list)

This yields a list of numbers (as strings) in the format you desire:

['6014374455', '6014374455', '6014374455', '6014374455']

This simple example demonstrates both the power of regex and the
daunting nature of its syntax. In fact, regex is probably the most unPythonic
thing in Python. Fortunately, because just about everyone struggles with the

syntax, there are a lot of tools, tutorials, books, and cheat sheets available to
help you use it.

You can find a nice “how to” tutorial at
https://docs.python.org/3/howto/regex.xhtml and at https://realpython.com/regex-

python/. Chapter 7 of Al Sweigart’s book, Automate the Boring Stuff with Python,

2nd edition (No Starch Press, 2019), provides a high-level overview of pattern
matching with regular expressions, and Jeffrey Friedl’s Mastering Regular

Expressions (O’Reilly, 2006) covers them in-depth. You can find cheat sheets

with examples in many places online, including
https://learnbyexample.github.io/python-regex-cheatsheet/. Other websites such as

https://regexr.com/ and https://www.regexpal.com/ let you play with regular

expressions to learn how they work.

If you have to wrangle a lot of text, regular expressions will dramatically
reduce the amount of code that you need to write, saving you both time and
frustration. With a little effort, you’ll achieve complete mastery over your data,
solve problems, and automate things you probably never realized could be
automated.

Dask

Dask is an open source library for parallel computing written in Python. It was

developed to scale Python ecosystem libraries such as pandas, NumPy, scikit-
learn, Matplotlib, Jupyter Notebook, and so on, from a single computer to
multicore machines and distributed clusters. Dask comes preinstalled on
Anaconda.

To understand the benefits Dask provides, let’s talk terminology for a
moment. A thread is the smallest sequence of programmed instructions that

can be managed independently by a scheduler. Parallel processing refers to

dividing different parts of a computing task—the threads—among two or more
processors for the purpose of accelerating program execution.

In the old days, the central processing unit (CPU) of computers had a single
microprocessor, or core, that executed code one step at a time, like an army

marching in single file. Nowadays, computers come with at least a dual-core
CPU consisting of a chip with two complete microprocessors that share a
single path to memory and peripherals. High-end workstations can have eight
or more cores. So, theoretically, your programs no longer need to walk single

https://docs.python.org/3/howto/regex.xhtml
https://realpython.com/regex-python/
https://learnbyexample.github.io/python-regex-cheatsheet/
https://regexr.com/
https://www.regexpal.com/

file; they can run abreast. That is, if there are non-dependent threads, they can
run simultaneously, saving lots of time.

But Python has limitations when it comes to parallel computing. Even
though computers now have more than one CPU, Python uses Global

Interpreter Lock (GIL) to boost the performance of single threads by

encouraging only a single thread to execute at a time. This hinders the use of
multiple CPU cores for speedier computing.

With Dask, you can use Python and perform parallel computations locally
on a multicored machine or remotely across thousands of machines. And Dask
does it efficiently, as well, by managing memory at the same time. To maintain
a low-memory footprint, it stores large datasets on disk and copies off chunks
of data for processing. It also discards intermediate values as soon as possible
after they are generated. As a result, Dask permits manipulation of datasets of
100GB and larger on laptops, and larger than 1TB on workstations.

Dask is composed of two parts: distributed data structures, with APIs
similar to pandas DataFrames and NumPy arrays, and a task grapher/scheduler
(Figure 15-4). It implements many of the same methods as pandas, which
means that it can fully replace it in many cases. Dask also offers NumPy and
scikit-learn replacements and has the capability to scale any Python code.

Figure 15-4: Dask collections generate graphs that are executed by schedulers (courtesy of

https://dask.org/).

Dask will add extra complexity to your projects, thus you should use it
mainly when you have huge datasets and need to use cluster computing.
Documentation for Dask is excellent, and there are many tutorials available
online to help you use the library.

NOTE

https://dask.org/

You might hear about Apache Spark, a more mature and “heavier” alternative to

Dask that has become a dominant and well-trusted tool in the Big Data enterprise

world. It’s an all-in-one project that has its own ecosystem and is written in Scala

with some support for Python. You can find a comparison of the two libraries at

https://docs.dask.org/en/latest/spark.xhtml. In general, if you’re already using

Python and associated libraries like NumPy and pandas, you’ll probably prefer

working with Dask.

Summary

Python supports scientific work through its easy-to-use core language and the
many libraries built upon it. Not only are these packages free, but they’re also
robust, reliable, and well documented, thanks to the enormous and active user
community.

You learned about some of the most important and popular libraries for
science, including NumPy and SciPy, for numerical and array calculations;
pandas, for data analysis; scikit-learn, for machine learning; Tensorflow, Keras,
and PyTorch, for neural networks; OpenCV, for computer vision; and NLTK,
for language processing. In Chapter 16 and Chapter 17, we cover libraries for
working with geographic data and creating visualizations. In Chapters 18, 19,
20, and 21, we dive deeper into NumPy, Matplotlib, pandas, and scikit-learn.

https://docs.dask.org/en/latest/spark.xhtml

16
THE INFOVIS, SCIVIS, AND DASHBOARDING

LIBRARIES

Visualizing data is an integral part of science. Humans are visual
creatures by nature, and viewing data graphically is more efficient and
intuitive than reading through lists of strings or numbers. Effective
plots help you to clean, prepare, and explore data. You can use them to
reveal outliers and spurious samples, identify patterns, and compare
datasets. Perhaps most important, they help you to communicate clearly
with others and convey your ideas in an easily consumed manner. It’s
little wonder that graphics have been called the “pinnacle of
communication.”

Data visualization is a very broad category that includes everything
from simple charts used for data exploration and reporting, to complex
interactive web applications that operate in real time. With Python, you
can easily cover this range. In fact, when it comes to creating graphics,
Python suffers from an embarrassment of riches. With more than 40
different plotting libraries, there’s something for everyone. But that’s
part of the problem.

Wading through Python’s plotting APIs is exhausting. Users can be
overwhelmed by all the choices, which cover a wide range of

functionality, both unique and overlapping. As a result, they usually
focus more on learning APIs than on their real job: exploring their data.
In fact, this book was inspired by conversations with other scientists
who were frustrated by this very problem.

Another issue with Python’s plotting libraries is that the vast majority
force you to write code to create even the simplest of visualizations.
Compare this to software like Tableau or Excel, in which sensible,
attractive graphs require just a few clicks of a mouse with little cognitive
burden on the user.

Fortunately, many users share similar needs, and with a little
forethought you can avoid going down suboptimal paths. In general,
this involves selecting a high-level tool that covers the most common
tasks succinctly and conveniently, typically by providing a simpler API
on top of an existing tool.

In the sections that follow, we’ll take a broad look at some of
Python’s most popular and useful plotting and dashboarding libraries.
Then, we’ll review some logical questions that should help guide you to
the best plotting library, or libraries, for your needs.

NOTE

The plotting examples in this chapter are intended to demonstrate the

complexity of the code and the types of plots produced. You’re not expected to

run the code snippets, as many of the libraries discussed do not come

preinstalled with Anaconda. But if you do want to test them for yourself,

you can find installation instructions in the product web pages. I

recommend that you install them all in a dedicated conda environment (see

Chapter 2), rather than dump them in your base environment.

InfoVis and SciVis Libraries

We can divide visualizations into three main categories: InfoVis, SciVis,

and GeoVis (Figure 16-1). InfoVis, short for Information Visualization,

refers to 2D or simple 3D static or interactive representations of data.
Common examples are statistical plots such as pie charts and
histograms. SciVis, short for Scientific Visualization, refers to graphical

representations of physically situated data. These visualizations are
designed to provide insight into the data, especially when it’s studied by
novel and unconventional means. Examples are magnetic resonance
imaging (MRI) and simulations of turbulent fluid flow. GeoVis, short
for Geovisualization, refers to the analysis of geospatial (geographically

located) data through static and interactive visualization. Examples
include satellite imagery and map creation.

Figure 16-1: Three visualization categories with examples

Tables 16-1 lists some of Python’s more important InfoVis and SciVis
plotting libraries. We’ll take a closer look at some of these in the
sections that follow before turning to the dashboard libraries. Then, in
Chapter 17, we’ll repeat this exercise for the GeoVis libraries.

Table 16-1: Python’s Major InfoVis and SciVis Libraries

Type Library Description Website

InfoVis Matplotlib Publication-quality
2D and simple 3D
plots

https://matplotlib.org/

https://matplotlib.org/

Type Library Description Website

seaborn Matplotlib
wrapper for easier,
prettier plots

https://seaborn.pydata.org/

pandas Matplotlib
wrapper for easy
DataFrame
plotting

http://pandas.pydata.org/

Altair Easy and simple
2D plots for small
datasets

https://altair-viz.github.io/

ggplot Simple “grammar
of graphics” plots
with pandas

https://yhat.github.io/ggpy/

Bokeh Web interactivity
tool with large or
streaming datasets

https://bokeh.org/

Chartify Bokeh wrapper for
easier charting

https://github.com/spotify/chartify/

Plotly Dynamic,
interactive
graphics for web
apps

https://plotly.com/python/

HoloViews Viz data structures
usable by many
libraries

http://holoviews.org/

hvPlot Easy interactive
plotting library
built on
HoloViews/Bokeh

https://hvplot.holoviz.org/

https://seaborn.pydata.org/
http://pandas.pydata.org/
https://altair-viz.github.io/
https://yhat.github.io/ggpy/
https://bokeh.org/
https://github.com/spotify/chartify/
https://plotly.com/python/
http://holoviews.org/
https://hvplot.holoviz.org/

Type Library Description Website

Datashader Tools for
rasterizing giant
datasets for easy
visualization

https://datashader.org/

SciVis

VTK Visualization
toolkit for 3D
computer graphics

https://vtk.org/

Mayavi 3D scientific
visualization tool
with interactivity

https://docs.enthought.com/mayavi/

ParaView 3D scientific
visualization tool
with interactivity

https://www.paraview.org/

NOTE

If you’re curious about how we got into this mess, take a few minutes to look

at James Bednar’s blog post “Python Data Visualization 2018: Why So

Many Libraries?” (https://www.anaconda.com/blog/python-data-

visualization-2018-why-so-many-libraries/). You should also check out

his ebook, Python Data Visualization, and PyViz site

(https://pyviz.org/), which are designed to help users decide on the best

open source Python data visualization tools for their purposes, with links,

overviews, comparisons, examples, and exhaustive tool lists.

Matplotlib

The Matplotlib library is an open source, comprehensive library for

creating manuscript-quality static, animated, and interactive
visualizations in Python. These are mainly 2D plots, such as bar charts,
pie charts, scatterplots, and so on, though some 3D plotting is possible
(Figure 16-2). Matplotlib is almost 20 years old and was designed to

https://datashader.org/
https://vtk.org/
https://docs.enthought.com/mayavi/
https://www.paraview.org/
https://www.anaconda.com/blog/python-data-visualization-2018-why-so-many-libraries/
https://pyviz.org/

provide early versions of Python with a familiar MATLAB-type
interface. MATLAB is a proprietary scientific programming language
that has been displaced in popularity by Python.

Figure 16-2: A small sampling of Matplotlib plot types (courtesy of https://matplotlib.org/)

Matplotlib’s focus is on creating static images for use in publications
and interactive figures for data exploration and analysis. These
interactive figures use GUI toolkits like Qt, rather than web
applications. The library comes preinstalled with Anaconda.

Matplotlib is the King, Grandaddy, and Big Kahuna of Python
visualization. It’s a massive, exhaustive library, and many alternative
products are built on top of it, just as others are built on NumPy
(including Matplotlib). Likewise, the internal visualization tools of
libraries like pandas leverage Matplotlib methods.

The Matplotlib motto is that it “makes easy things easy and hard
things possible.” It works on all operating systems and handles all the
common image formats. It has broad functionality, allowing you to
build just about any kind of chart you can imagine, and it’s very
compatible with other popular science libraries like pandas, NumPy,
and scikit-learn, thanks to collaborations between the Matplotlib and
IPython communities.

https://matplotlib.org/

Matplotlib is a powerful but low-level plotting engine. This means
that you have lots of flexibility and options for precisely controlling
plots by assembling them component by component. But this freedom
comes with complexity. When creating anything beyond a simple plot,
your code can become ugly, dense, and tedious.

The unfriendliness of Matplotlib’s API is offset somewhat by its
popularity and maturity. A simple online search will yield example code
for just about any plot that you want to make. Its greatest resource is
undoubtably the Matplotlib gallery

(https://matplotlib.org/gallery/index.xhtml/), a “cookbook” of code recipes

for making a huge variety of plots.

Other issues with Matplotlib are the appearance and “explorable
nature” of its plots. Although Matplotlib plots come with interactive
features like zooming, panning, saving, and posting the cursor’s location

(Figure 16-3), they are somewhat antiquated compared to what’s
directly available in more modern libraries.

Figure 16-3: Matplotlib plot in an external Qt window (left) versus inline in a Jupyter

notebook (right)

By default, Matplotlib’s interactivity is designed to work in external

windows rather than inline on the same screen as your code. You can

force inline interactivity in Jupyter Notebook and JupyterLab, but the

https://matplotlib.org/gallery/index.xhtml/

results can be buggy. For example, the Save button might simply open a
blank web page rather than downloading the plot. Other libraries also
provide more intelligent cursor hovering capabilities that can display
custom information about posted data.

As a testament to Matplotlib’s dominance and usefulness, a number
of external packages extend or build on Matplotlib functionality (see
https://matplotlib.org/3.2.1/thirdpartypackages/). Two of these,

mpldatacursor and mplcursors, let you add some interactive data cursor

functionality to plots using only a few lines of code.

Likewise, there are add-on visualization toolkits that rely on
Matplotlib under the hood. One of the most important is seaborn, which

is designed to simplify plotting and to generate more attractive plots
than those produced by Matplotlib’s defaults. Both seaborn and pandas
are wrappers over Matplotlib, which lets you access some of Matplotlib’s
methods with less code.

seaborn

The seaborn library is a free, open source visualization library built on

Matplotlib. It provides a higher-level (that is, easier-to-use) interface for
drawing attractive and informative statistical graphics such as bar charts,

scatterplots, histograms, and so on. It also comes with built-in functions
for density estimators, confidence bounds, and regression functions.
Not surprisingly, it’s well integrated with data structures in pandas and
NumPy. Seaborn comes preinstalled with Anaconda.

A goal of seaborn is to make visualization a central part of exploring
and understanding data through the use of dataset-oriented plotting
functions. It makes default plots more attractive and supports the
building of complex visualizations. It helps reveal data patterns through
the use of high-level multiplot grids and different color pallets (visit
https://seaborn.pydata.org/examples/index.xhtml for some examples).

Seaborn is designed to work well with the popular DataFrame
objects in pandas, and you can easily assign column names to the plot

https://matplotlib.org/3.2.1/thirdpartypackages/
https://seaborn.pydata.org/examples/index.xhtml

axes. It’s also considered preferrable to Matplotlib for making
multidimensional plots.

In the example that follows, the last line of code generated an
attractive scatterplot including a linear regression line with 95 percent
confidence interval, marginal histograms, and distributions:

import seaborn as sns
tips = sns.load_dataset('tips')
sns.jointplot(data=tips, x='total_bill', y='tip', kind='reg');

One of the best features of seaborn is the pairplot. This built-in plot

type lets you explore the pairwise relationships in an entire dataset in
one figure, with the option of viewing histograms, layered kernel
density estimates, scatterplots, and more. Following is an example of a
pairplot created using the Palmer Archipelago dataset for identifying
penguin species. The data is loaded as a pandas DataFrame (see the
pandas section in Chapter 15 for an overview of the pandas library).

import seaborn as sns
penguins = sns.load_dataset('penguins')

sns.pairplot(data=penguins, hue='species', markers=['o', 'X', 's']);

Another built-in plot type, stripplot, is a scatterplot in which one

variable is categorical. It’s perfect for comparing the lengths of bills
among penguin species:

sns.set_theme(style='whitegrid')
strip = sns.stripplot(x='bill_length_mm', y='species', data=penguins);

Unlike Matplotlib, seaborn lets you manipulate data during the

plotting operation. For example, you can calculate the number of body
mass samples in the penguins dataset by calling the built-in length
function (len) from within the barplot() method:

bar = sns.barplot(data=penguins, x='species', y='body_mass_g', estimator=len)
bar.set(xlabel='Penguin Species', ylabel='Number of Samples');

Let’s take a look at how easy it is to customize a plot using seaborn.
Table 16-2 lists the top 10 countries most affected by COVID-19 (based

on number of cases) in roughly the first year of the virus’s spread. The
Fatality Rate column lists the number of deaths per 100 confirmed
cases. The Deaths per 100,000 column calculates deaths based on a
country’s general population.

Table 16-2: COVID-19 Statistics

Country Region Cases Deaths Deaths/100K
popl

Fatality
rate

United
States

North
America

31,197,873 562,066 171.80 0.018

India Asia 13,527,717 170,179 12.58 0.013

Brazil Latin
America

13,482,023 353,137 168.59 0.026

France Europe 5,119,585 98,909 147.65 0.019

Russia Asia 4,589,209 101,282 70.10 0.022

UK Europe 4,384,610 127,331 191.51 0.029

Turkey Middle East 3,849,011 33,939 41.23 0.009

Italy Europe 3,769,814 114,254 189.06 0.030

Spain Europe 3,347,512 76,328 163.36 0.023

Germany Europe 3,012,158 78,500 94.66 0.026

Source: https://coronavirus.jhu.edu/data/mortality

Let’s save Table 16-2 as a comma-separated value (.csv) file and use it

with seaborn to look at the relationship among deaths, the death rate
per 100,000 people, and the fatality rate:

import pandas as pd
import seaborn as sns

sns.set_style('whitegrid')
df = pd.read_csv('johns_hopkins_covid_stats_apr_2021.csv')
scatter = sns.scatterplot(data=df,
 x='Deaths',
 y='Deaths/100K Popl',
 hue='Country',

https://coronavirus.jhu.edu/data/mortality

 style='Country',
 size='Fatality Rate',
 sizes=(50, 200))
scatter.legend(loc='center right', bbox_to_anchor=(1.4, 0.5), ncol=1);

After importing pandas and seaborn, you set the style of the plot to
give it a white background with gridlines. The data, in .csv format, is

then loaded as a pandas DataFrame named df. Creating a scatterplot
(scatter) takes a single command. The marker color (hue) and shape
(style) are based on the country and their size reflects the fatality rate,
with a size range of 50 to 200. You finish by creating a legend and
calling the plot. Note how, by using the DataFrame column names from
Table 16-2, the code is easy to read and understand.

Despite being an abstraction layer on top of Matplotlib, seaborn
provides access to underlying Matplotlib objects, so you can still achieve
precise control over your plots. Of course, you’ll need to know
Matplotlib to some degree to tweak the seaborn defaults in this manner.

Seaborn plots are considered more attractive, and thus better for
publications and presentations, than those produced by Matplotlib. It’s a
good choice if all you want are static images made with simpler code
and better defaults.

NOTE

Even if you choose to use Matplotlib instead of the seaborn wrapper, you can

still import seaborn and use its themes to improve the visual appearance of

your plots. For examples, see https://www.python-graph-

gallery.com/106-seaborn-style-on-matplotlib-plot and

https://seaborn.pydata.org/generated/seaborn.set_theme.xhtml?

highlight=themes.

The pandas Plotting API

The pandas library discussed in the previous chapter has its own
plotting API, Pandas.plot() (https://pandas.pydata.org/pandas-

docs/stable/user_guide/visualization.xhtml). This API has emerged as a de

facto standard for creating 2D charts because it can use Matplotlib and
many other libraries as its plotting backend. This makes it possible to
learn one set of plotting commands using pandas and then apply them
with a wide range of libraries for static or interactive plots.

Plotting in pandas is arguably the easiest way to create visualizations
using Python. It’s especially good at quick “throwaway” plots for data
exploration. Let’s take a look:

import pandas as pd

female_ht_vs_wt = {'height': [137, 152, 168, 183, 198, 213],
 'weight': [31.2, 45.2, 58.8, 72.3, 85.5, 108.3]}
df = pd.DataFrame(female_ht_vs_wt)
df.plot(kind='scatter', x='weight', y='height')
df.plot.bar('weight');

https://www.python-graph-gallery.com/106-seaborn-style-on-matplotlib-plot
https://seaborn.pydata.org/generated/seaborn.set_theme.xhtml?highlight=themes
https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.xhtml

After importing pandas and making a Python dictionary of some
measurements of female height verses weight, we turn the dictionary
into a pandas DataFrame. The last two lines of code can then
immediately build two plots! What could be easier?

The plots are very plain and lack any kind of interactivity, but never
fear, pandas plays well with the other plotting libraries. With little
effort, you can switch to an alternative plotting tool for additional
functionality. By changing the plotting backend for pandas to
HoloViews, a library we’ll discuss shortly, you can produce an
interactive plot that lets you zoom, pan, save, and hover the cursor over
points to see their values. Here’s an example of the code and its results:

import pandas as pd

pd.options.plotting.backend = 'holoviews'
female_ht_vs_wt = {'height': [137, 152, 168, 183, 196, 213],
 'weight': [31.2, 45.2, 58.8, 72.3, 84.5, 108.3]}
df = pd.DataFrame(female_ht_vs_wt)
df.plot(kind='scatter', x='weight', y='height')

Note that, despite changing the plotting library, you didn’t need to
change a single line of the original plotting code. To see some other
drop-in replacements for the Pandas .plot() API, see
https://pyviz.org/high-level/index.xhtml#pandas-plot-api/.

Altair

Altair is an open source statistical visualization library in Python that’s

closely aligned with pandas DataFrames. It’s popular with people
looking for a quick way to visualize small datasets.

Altair handles a lot of plotting details automatically, letting you focus
on what you want to do rather than the button-pushing “how to do it”
part. Much like the female height-verses-weight example in the
previous section, you only need to link your data columns to encoding
channels, such as the x- and y-axes, to make a plot. But this ease of use
comes with a few downsides. The plots are not as customizable as those
made in Matplotlib, and there’s no 3D plotting capability.

https://pyviz.org/high-level/index.xhtml#pandas-plot-api/

On the other hand, all Altair plots can be made interactive, meaning
that you can zoom, pan, highlight plot regions, update linked charts
with the selected data, enable tooltips that let you hover the cursor over

points for detailed information, and so on. Altair visualizations require a
JavaScript frontend to display charts and so should be used with Jupyter
notebooks or an integrated development environment (IDE) with
notebook support.

Unlike Matplotlib and other imperative plotting libraries that build

plots step by step with no intermediate stages, Altair is declarative by

nature, and generates a plot object, in JSON format, from which the
plot can be reconstituted. JSON, short for JavaScript Object Notation,
is a file and data interchange format that uses human-readable text to
store and transmit data objects. Thus, Altair does not produce plots
consisting of pixels, but plots consisting of data plus a visualization
specification.

Because declarative plotting objects store your data and associated
metadata, it’s easy to manipulate the data during the plot render
command or visualize it alongside or overlaid with other data. It can
also result in very large visualization file sizes or entire datasets stored in
your Jupyter notebook. Although there are some workarounds to help
you manage memory and performance issues, the library’s
documentation recommends plotting no more than 5,000 rows of data
(see https://altair-viz.github.io/user_guide/faq.xhtml#altair-faq-large-

notebook/).

Another drawback of using JSON is that it can be hacked if used
with untrusted services or untrusted browsers. This can make the
hosting web application vulnerable to a variety of attacks.

Bokeh

Bokeh is an open source visualization library that supports the creation

of interactive, web-ready plots from very large or streaming datasets.
Bokeh (pronounced “BO-kay”) takes plots defined using Python and
automatically renders them in a web browser using HTML and

https://altair-viz.github.io/user_guide/faq.xhtml#altair-faq-large-notebook/

JavaScript, the dominant programming languages used for interactive
web pages. It’s one of the better-maintained and supported libraries and
comes preinstalled with Anaconda.

Bokeh can output JSON objects, HTML documents, or interactive
web applications. It has a three-level interface that provides increasing
control over plots, from the simple and quick to the painstakingly
detailed. However, unlike Matplotlib, Bokeh does not have high-level
methods for some common diagrams such as pie charts, donut charts, or
histograms. This requires extra work and the use of additional libraries
such as NumPy. Support for 3D plotting is also limited. Thus, from a
practical standpoint, Bokeh’s native API is mainly useful for publishing
plots as part of a web app or HTML/JavaScript-based report, or for
when you need to generate highly interactive plots or dashboards.

Bokeh works well in Jupyter notebooks and lets you use themes, for

which you stipulate up front how you want your plots to look, such as
font sizes, axis ticks, legends, and so on. Plots also come with a toolbar
(Figure 16-4) for interactivity, including zooming, panning, and saving.

Figure 16-4: The Bokeh plot toolbar (courtesy of https://bokeh.org/)

Finally, if you keep your data in pandas, you can use a library called
Pandas-Bokeh (https://github.com/PatrikHlobil/Pandas-Bokeh/), which

consumes pandas data objects directly and renders them using Bokeh.
This results in a higher-level, easier-to-use interface than Bokeh alone.
Other high-level APIs built on Bokeh include HoloViews, hvPlot, and
Chartify for plotting, and Panel for creating dashboards. We’ll look at
most of these later in the chapter.

https://bokeh.org/
https://github.com/PatrikHlobil/Pandas-Bokeh/

Plotly

Plotly is an open source web-based toolkit for making interactive,

publication-quality graphics. It’s similar to Bokeh in that it builds
interactive plots, generating the required JavaScript from Python. And
like Bokeh and Matplotlib, Plotly is a core Python library on which
multiple higher-level libraries are built.

Plotly graphs are stored in the JSON data format. This makes them
portable and readable using scripts of other programming languages
such as R, Julia, MATLAB, and more. Its web-based visualizations can
be displayed in Jupyter notebooks, saved as standalone HTML files, or
incorporated into web applications. Because Plotly uses JSON, it suffers
similar memory and security issues as Altair (see “Altair” on page 429).

Unlike Matplotlib and seaborn, Plotly is focused on creating
dynamic, interactive graphics in Python for embedding in web apps.
You can create basic plots as well as more unique contour plots,
dendrograms, and 3D charts (Figure 16-5).

Figure 16-5: A 3D scatterplot made with Plotly Express

Figure 16-6 shows an example of a 3D mesh. You can even display
LaTeX equations in legends and titles.

Figure 16-6: A sandal plotted as a 3D mesh in Plotly/Dash

Plotly also recognizes sliders, filters, and mouseover and cursor-click
events. With only a few lines of code, you can create attractive
interactive plots that save you time when exploring datasets and can be
easily modified and exported. The toolkit also permits complex
visualizations of multiple sources, in contrast to products like Tableau,
which accept only one data table as input per chart.

Plotly is written in JavaScript and powers Dash

(https://dash.plotly.com/introduction), an open source Python framework

for building web analytic applications (called dashboards). Dash is
written on top of Plotly.js and greatly simplifies the building of highly
customized dashboards in Python. These apps are rendered in a web
browser and can be deployed to servers and shared through URLs.
Dash is cross-platform and mobile ready. We’ll look at Dash a little
more in “Dashboards” on page 445.

https://dash.plotly.com/introduction

Plotly also comes with a high-level, more intuitive API called Plotly

Express (https://plotly.com/python/plotly-express/) that provides shorthand

syntax for creating entire figures at once. It has more than 30 functions
for creating different types of graphics, each carefully designed to be as
consistent and easy to learn as possible, allowing you to effortlessly
switch from a scatterplot to a bar chart to a sunburst chart, and so on
throughout a data exploration session. As such, Plotly Express is the
recommended starting point for creating common figures with Plotly.

Plotly Express charts are easy to style so that they do really useful
things. Suppose that you want to look at monthly rainfall totals over a
two-decade period and see how the months of August and October
compare to the rest. With Plotly Express, you can easily highlight the
lines for these months so that they stand out. And with the interactive
toolbar, you can toggle spike lines and the hover feature to query values
(Figure 16-7).

Figure 16-7: A Plotly Express line chart with highlighted lines, spike lines, and hover box

Another useful feature of Plotly Express is that legends are “alive.”
Click a category in a legend once and you temporarily remove it from

https://plotly.com/python/plotly-express/

the plot. Click it twice and all other lines will vanish, leaving that
category isolated. This was done for the August (Aug) category in Figure
16-8. You can even animate the plot to see how things change over
time. What a great way to untangle confusing “spaghetti” plots!

Figure 16-8: Double-clicking a legend category isolates that category by removing the other

data.

Let’s revisit the COVID-19 dataset that captures fatality statistics
from the first year of the virus’s spread. You’ll want to compare the code
and results that follow to the seaborn example on page 427.

import pandas as pd
import plotly.express as px

df = pd.read_csv('johns_hopkins_covid_stats_apr_2021.csv')
fig = px.scatter(data_frame=df,
 x='Deaths',
 y='Deaths/100K Popl',
 color='Country',
 size='Fatality Rate',
 text='Country')
fig.update_layout(showlegend=False)
fig.show()

Like the previous seaborn code, it’s very readable and easy to
understand. Also note that Plotly Express has a specific parameter called
data_frame that lets you know without a doubt that it’s built for working
with pandas.

A nice feature here is that you can easily post the country name over
the markers, letting you use a consistent marker shape for easy size
comparisons. You don’t get the automatic “size” legend that you get
with seaborn, but Plotly Express makes up for this by automatically
permitting mouseover events, as shown in the plot for the United
Kingdom.

Another useful Plotly Express feature is the facet plot, which lets you

view the previous scatterplot by geographical region:

--snip--
fig = px.scatter(data_frame=df,
 x='Deaths',
 y='Deaths/100K Popl',
 color='Country',
 size='Fatality Rate',
 text='Country',

 ➊ facet_col='Region')
fig.update_layout(showlegend=False)
fig.show()

We did this by adding a single argument ➊ to the px.scatter()
method.

Plotly Express is designed mainly for exploratory data analysis. Your
data must be in very specific formats (it’s targeted at pandas
DataFrames), your overall ability to customize plots is limited, and you
might have trouble putting the visualizations into a presentation. To be
able to do everything you’ll probably want to do, you’ll need to
occasionally drop down into the full Plotly API or use Plotly Express in
conjunction with other libraries like Matplotlib or seaborn.

There also exists an independent third-party wrapper library around
Plotly called cufflinks (https://github.com/santosjorge/cufflinks/) that

provides bindings between Plotly and pandas. This helps you create
plots from pandas DataFrames using the Pandas.plot() interface but with
Plotly output.

Both Plotly and Plotly Express facilitate building charts for the web
directly from pandas DataFrames. And plots you create in Jupyter
notebooks can essentially be copied and pasted into a Dash app for
quick implementation of a dashboard. You can see an example of some
scientific charts built with Plotly at https://plotly.com/python/scientific-

charts/.

https://github.com/santosjorge/cufflinks/
https://plotly.com/python/scientific-charts/

HoloViews

HoloViews is an open source library (note that I didn’t say plotting

library) designed to make visualization simple by abstracting away the
process of plotting. HoloViews makes it easier to visualize data
interactively by providing a set of declarative plotting objects that store
your data with associated metadata. The goal is to support the entire life
cycle of scientific research, from initial exploration to publication to
reproduction of the work and new extensions.

HoloViews lets you combine various container types into data
structures for visually exploring data. Some example container types are
Layout, for displaying elements side by side as separate subplots; Overlay,

for displaying elements on top of one another; and DynamicMap, for

dynamic plots that automatically update and respond to user
interactions. To appreciate the DynamicMap container, check out
https://holoviews.org/user_guide/Streaming_Data.xhtml and

https://holoviews.org/user_guide/Responding_to_Events.xhtml to view

animated examples.

HoloViews generates final plots using a proper plotting library such
as Matplotlib, Plotly, or Bokeh, as a backend. This lets you focus on
your data rather than waste time writing plotting code. And as a
plotting “middleman,” HoloViews integrates well with libraries like
seaborn and pandas and is particularly useful for visualizing large
datasets—up to billions—using libraries like Dask and Datashader (such

as https://holoviz.org/tutorial/Plotting.xhtml).

One vision of Python’s plotting future is to use a set of libraries to
streamline the process of working with small and large datasets in a web
browser (Figure 16-9). This would include doing exploratory analysis,
making simple widget-based tools, or building full-featured dashboards.

Figure 16-9: The HoloViz-maintained libraries (courtesy of holoviz.org)

https://holoviews.org/user_guide/Streaming_Data.xhtml
https://holoviews.org/user_guide/Responding_to_Events.xhtml
https://holoviz.org/tutorial/Plotting.xhtml
http://holoviz.org/

In this coordinated effort, HoloViews and GeoViews provide a
single, concise, and high-level API for libraries like Matplotlib, Bokeh,
Datashader, Cartopy, and Plotly. Panel provides a unified approach to
dashboarding, and Datashader allows for the plotting of very large
datasets. Param supports declaring user-relevant parameters for working
with widgets inside or outside of a notebook context. This arrangement
permits you to easily switch between backends without having to learn
commands for each new plotting library.

Recognizing that a typical figure is an object composed of many
visual representations combined together, HoloViews makes it trivial to
compose elements in the two most common ways: concatenating
multiple representations into a single figure or overlaying visual
elements within the same set of axes. When making multiplot figures,
HoloViews helps by automatically linking axes and selections across
each figure. It’s also useful for creating charts that update dynamically,
especially those using sliders. With the Bokeh backend, you can
combine various widgets with zooming and panning tools to aid data
exploration.

Let’s take a look at a Jupyter Notebook example, adapted from the
HoloViews gallery (https://holoviews.org/gallery/index.xhtml), that uses

both HoloViews and Panel to generate a plot. For data, we’ll again use
the Palmer Archipelago dataset that quantifies the morphologic
variations among three penguin species. Thanks to Panel, you’ll be able
to use drop-down menus to switch out and decorate the displayed data
inside the single plot.

 import seaborn as sns # For access to penguins dataset.
 import holoviews as hv
 import panel as pn, panel.widgets as pnw
 hv.extension('bokeh')

➊ hv.opts.defaults(hv.opts.Points(height=400, width=500,
 legend_position='right',
 show_grid=True))

 penguins = sns.load_dataset('penguins')
 columns = penguins.columns
 discrete = [x for x in columns if penguins[x].dtype == object]
 continuous = [x for x in columns if x not in discrete]

https://holoviews.org/gallery/index.xhtml

➋ x = pnw.Select(name='X-Axis', value='bill_length_mm', options=continuous)
 y = pnw.Select(name='Y-Axis', value='bill_depth_mm', options=continuous)
 size = pnw.Select(name='Size', value='None', options=['None'] + continuous)
 color = pnw.Select(name='Color', value='None',
 options=['None'] + ['species'] + ['island'] + ['sex'])
 @pn.depends(x.param.value, y.param.value,
 color.param.value, size.param.value)

➌ def create_figure(x, y, color, size):
 opts = dict(cmap='Category10', line_color='black')
 if color != 'None':
 opts['color'] = color
 if size != 'None':
 opts['size'] = hv.dim(size).norm() * 20
 return hv.Points(penguins, [x, y], label="{} vs {}".
 format(x.title(), y.title())).opts(**opts)

 widgets = pn.WidgetBox(x, y, color, size, width=200)
 pn.Row(widgets, create_figure).servable('Cross-selector')

After importing seaborn (for the data), HoloViews, and Panel, you
tell HoloViews which plotting library to use. Bokeh is the default, but
you can easily change this to Matplotlib or Plotly by changing the line
to hv.extension('matplotlib') or hv.extension('plotly'). Most of the time,
changing the backend doesn’t require any change to the rest of the
code.

The next line ➊ is optional but demonstrates a nice feature of
HoloViews: the ability to set your own defaults for how you want your
plots to look. In this case, you set the size of the figure, position of the
legend, and background grid to be used for all scatterplots.

Next, you load the penguins dataset, which conveniently ships with
the seaborn library as a pandas DataFrame. To provide the user with
menu choices, go through the columns in the penguins DataFrame and
assign the contents to either a list called discrete or a list called continuous.
The discrete list holds objects, such as species name, island name, or the
penguin’s sex. The continuous list is for numerical data, like the bill
lengths and bill depths.

Starting at ➋, you must specify what choices the Panel widget will
show for the x- and y-axes and the marker size and color, including the
default options for what’s initially shown. After this, you define a

function to create the figure ➌ and return a HoloViews Points element.

The final two lines create the figure with the menu widgets.

The output from this program is shown in Figure 16-10. Note the
pull-down menus along the left side of the plot and the interactive
toolbar along the right. Because we set the size and color default values
to 'None', the points all look the same.

You can now use the menu widgets to color the points by species
(Figure 16-11), which generates a legend at the lower-right corner of
the plot. Setting the size option to body mass allows you to qualitatively
incorporate a third measurement into the 2D scatterplot. Now you can
see that the Gentoo species is clearly larger than the other two.

Figure 16-10: Bill depth versus bill length for three different penguin species

Figure 16-11: Bill depth versus bill length, colored by species and sized by body mass

In Figure 16-12, we’ve used the drop-down menus to change out
both the data and size parameters. As you can see, this is a great way to
interactively explore and familiarize yourself with a dataset without
generating lots of plots.

Figure 16-12: Bill length versus body mass, colored by species and sized by flipper length

A key point here is that the code references the DataFrame to make
a HoloViews Points element. This object is basically the DataFrame plus

knowledge of what goes on the x- and y-axes. This makes the
DataFrame plottable. But unlike plot objects in other libraries, the
hv.Points element holds onto your raw data. This makes it usable later in
a processing pipeline (for a dynamic demonstration, see the HoloViews
Showcase at http://holoviews.org/Tutorials/Showcase.xhtml).

Just as Plotly has Plotly Express, the HoloViz libraries have hvPlot, a

simpler plotting alternative built on top of HoloViews. This fully
interactive high-level API complements the primarily static plots
available from libraries built on Matplotlib, such as pandas and
GeoPandas, that require support from additional libraries for interactive
web-based plotting. It’s designed for the PyData ecosystem and its core
data containers, which allow users to work with a wide array of data
types (Figure 16-13).

http://holoviews.org/Tutorials/Showcase.xhtml

Figure 16-13: The hvPlot library provides a high-level plotting API for HoloViews.

The hvPlot library’s interactive Bokeh-based API supports panning,
zooming, hovering, and clickable/selectable legends. In the following
example, hvPlot is used in conjunction with pandas to produce an
interactive plot:

import hvplot.pandas
from bokeh.sampledata.degrees import data as degrees

degrees.hvplot.line(x='Year', y=['Art and Performance',
 'Business', 'Biology',
 'Education', 'Computer Science'],
 value_label='% of Degrees Earned by Women',
 legend='top')

This is just as simple as plotting in pandas, but note the toolbar
along the right side of the chart with icons for panning, zooming,
saving, and hovering. The latter lets you query the graph details using
the cursor, as shown by the pop-up window for the computer science
variable. These options aren’t available when plotting from native
pandas.

For more on these libraries, check out HoloViz (https://holoviz.org/),

the coordinated effort to make browser-based data visualization in
Python easier to use, easier to learn, and more powerful.

Datashader

Datashader is an open source library designed for visualizing very large

datasets. Rather than passing the entire dataset from the Python server
to a browser for rendering, Datashader rasterizes (pixelates) it to a much
smaller heatmap or image, which is then transferred for rendering.
Whereas popular libraries like Matplotlib can suffer from performance
issues with only 100,000 points, Datashader can handle hundreds of
millions, even billions, of them. For example, Figure 16-14 plots 300
million data points.

https://holoviz.org/

Figure 16-14: A Datashader-created plot of 300 million data points from the 2010 census

(courtesy of Datashader)

Datashader makes it possible to work with very large datasets on
standard hardware such as your laptop. Although the computationally
intensive steps are written in Python, they’re transparently compiled to
machine code using a tool called Numba (https://numba.pydata.org/) and

distributed across multiple processors using Dask.

The Datashader documentation highlights the tool’s function in a
preprocessing stage for plotting. What this means is that Datashader is
often used with other plotting libraries to perform the heavy lifting
associated with large datasets. Thus, although it’s more focused on
performance and efficiency than on directly generating basic statistical
plots, it can work with other tools to help you plot large datasets—say,
in a scattergram—by handling the common over-posting of points
problem, where the density of the distributed points is obscured (Figure
16-15).

https://numba.pydata.org/

Figure 16-15: Datashader (right) handles over-posted points well (courtesy

https://holoviews.org/).

In another example, imagine that you’re using Bokeh to copy your
data directly into the browser so that a user can interact with the data
even without a live Python process running. If the dataset contains
millions or billions of samples, you’ll run up against the limitations of
the web browser. But with Datashader, you can prerender this huge
dataset into a fixed-size raster image that captures the data’s
distribution. Bokeh’s interactive plot can then dynamically re-render
these images when zooming and panning, making it easier to work with
the huge dataset in the web browser (Figure 16-16).

https://holoviews.org/

Figure 16-16: Generating interactive Datashader-based plots using HoloViews + Bokeh

(courtesy of https://datashader.org/)

You can see a fantastic instance of Datashader in action in the
“gerrymandering” example at https://examples.pyviz.org/. Working in

concert with HoloViews and multiple plotting libraries, Datashader
produces a map of Houston’s population, color-coded by ethnicity, that
turns plotting into fine art, with a gorgeous watercolor-like rendering
that has to be seen in color to be appreciated.

For a nice example of using Datashader with statistical plots, see
https://holoviews.org/user_guide/Large_Data.xhtml. Peter Wang, co-

creator of Datashader, gives an easily digestible video overview of the
library at https://www.youtube.com/watch?v=fB3cUrwxMVY/.

In all of these examples, be aware that you’ll lose some interactivity
with Datashader. You’ll still be able to zoom and pan, but mouseover
events and the like will no longer work without special support, because
the browser doesn’t hold all of your datapoints ready for inspection. In
return, you’ll be able to visualize millions of datapoints without
watching your computer grind to a halt.

Mayavi and ParaView

A common scientific practice is to visualize point clouds, such as those
you might find in a Light Detection and Ranging (LIDAR) scan.
General-purpose workhorse libraries like Matplotlib are capable of
performing this task to a certain degree, but performance deteriorates
quickly when interactively visualizing point clouds and other 3D plots.
Matplotlib, for example, will be slow and might even crash your
computer if you try to interact with a large number of samples. Even if
the 3D representations successfully render, they won’t look very nice,
and you’ll probably have trouble understanding what you see.

Datashader can help with this, but for graphics-intensive 3D and 4D
visualizations such as those used for physical processes, you need a
dedicated library like Mayavi (pronounced MA-ya-vee) that can handle
physically situated regular and irregularly gridded data. This discriminates

https://datashader.org/
https://examples.pyviz.org/
https://holoviews.org/user_guide/Large_Data.xhtml
https://www.youtube.com/watch?v=fB3cUrwxMVY/

Mayavi from Datashader somewhat, as the latter is focused more on
visualizations of information in arbitrary spaces, not necessarily the

three-dimensional physical world.

Mayavi2 is an open source, general-purpose, cross-platform tool for
3D scientific data visualization. It’s been designed with scripting and
extensibility in mind from the ground up. You can import Mayavi2 into
a Python script and use it as a simple plotting library like Matplotlib. It
also provides an application (Figure 16-17) that is usable by itself.

Mayavi2 is written in Python, uses powerful Visualization Toolkit
(VTK) libraries, and provides a GUI via Tkinter. It’s cross-platform and
runs on any platform where both Python and VTK are available (almost
any Unix, macOS, or Windows systems). To a limited extent, you can
use Mayavi in Jupyter notebooks. To see some examples of Mayavi2
plots, visit the gallery at
https://docs.enthought.com/mayavi/mayavi/auto/examples.xhtml.

https://docs.enthought.com/mayavi/mayavi/auto/examples.xhtml

Figure 16-17: Mayavi2 application for 3D visualization. Note the Python console in the

lower-right corner.

An alternative to Mayavi2 is ParaView (Figure 2-18). Although

designed for 3D, it does 2D as well, is very interactive, and has a Python
scripting interface.

Figure 16-18: ParaView application for 3D visualization. Note the Python console in the

lower-left corner.

ParaView was developed by Sandia National Laboratories, whereas
Mayavi is a product of Enthought, whose Canopy distribution is a direct
competitor of Anaconda.

Dashboards

A dashboard is a type of easy-to-read interactive GUI, often presented in

real time. Dashboards are usually displayed on a single web page linked
to a database, which allows the displayed information to be constantly
updated. Example scientific dashboards include weather stations,
earthquake monitoring, and spacecraft tracking (Figure 16-19).

Figure 16-19: NASA spacecraft tracking dashboard (courtesy of https://www.nasa.gov)

Dashboards can really open up the usability and interactivity of your
data, especially for nontechnical users. They also make the data
accessible from anywhere, as long as you have an internet connection.
This can be important when collaborating with external parties or
providing results to scattered stakeholders.

Dashboards need to perform multiple tasks like analyzing and
visualizing data, listening for and accepting user requests, and returning
web pages via a web server. You can cobble together different libraries
to handle these, or you can just use a dedicated dashboarding library.

Python supports higher-level web-based dashboarding with five main
libraries: Dash, Streamlit, Voilà, Panel, and Bokeh (Table 16-4). These
libraries let you create dashboards with pure Python, so you don’t have
to learn the underlying enabling languages like JavaScript and HTML.
We looked at Bokeh earlier, so here we’ll focus on the other four.

Table 16-4: Python’s Most Important Dashboarding Libraries

Library Description Website

https://www.nasa.gov/

Library Description Website

Plotly
Dash

Advanced production-
grade/enterprise dashboards

https://plotly.com/dash/

Streamlit Fast and easy web apps from
multiple plotting libraries

https://streamlit.io/

Voilà Jupyter notebook rendering as
standalone web apps

https://voila.readthedocs.io/

Panel Interactive web apps with nearly
any library

https://panel.holoviz.org/

Bokeh Web interactivity with large or
streaming datasets

https://bokeh.org/

Before we take a quick look at these four tools, note that it’s possible
to do some aspects of dashboarding in other libraries. The plotting
stalwart Matplotlib supports several GUI toolkit interfaces, such as Qt,
that can generate native applications you can use as an alternative to a
web-based dashboard. Whereas several libraries make use of JavaScript
to help build dashboards, Bowtie (https://bowtie-py.readthedocs.io/) lets you

build them using pure Python. You can use ipywidgets with Jupyter

Notebook to build a dashboard, but you need to use a separate
deployable server, like Voilà, to share it.

For more insight, PyViz hosts a page on dashboarding that includes
blog posts, links to comparison articles, and lists of alternative or
supporting tools. You can find it at https://pyviz.org/dashboarding/.

NOTE

Bokeh, which we looked at previously, includes a widget and app library and

a server for both plots and dashboards. It also supports live streaming of

large datasets. However, if you intend to develop complex data visuals with

Bokeh, you’ll need some knowledge of JavaScript. Panel is built on Bokeh,

just as seaborn is built on Matplotlib, and in the same way provides a

https://plotly.com/dash/
https://streamlit.io/
https://voila.readthedocs.io/
https://panel.holoviz.org/
https://bokeh.org/
https://bowtie-py.readthedocs.io/
https://pyviz.org/dashboarding/

higher-level toolkit to make dashboarding easier. It also supports multiple

plotting libraries in addition to Bokeh.

Dash

Dash is an open source Python framework developed by Plotly as a

complete solution for deploying web analytic applications. Dash is built
on Plotly.js, React.js, and Flask (a lower-level framework for building

web apps from the ground up). Dash apps are rendered in a web
browser deployed to servers and shared through a URL. This makes
Dash platform agnostic and mobile ready. In 2020, Plotly released
JupyterDash (https://github.com/plotly/jupyter-dash/), a new library

designed for building Dash apps from Jupyter environments.

With Dash, it’s possible to build a responsive, custom interface with
pure Python in just a few hours. Responsive, by the way, means that the

web page will render well on a variety of devices and screen sizes. Dash
uses simple patterns to abstract away much of the dashboard-building
process, such as generating the required JavaScript, React components,
HTML, and server API. In fact, you can basically copy and paste Plotly
graphs straight from a Jupyter notebook into a Dash app.

As far as how your dashboard looks, Dash provides an attractive out-
of-the-box default stylesheet but also allows you to easily add third-
party styling. Dash-bootstrap-components (https://dash-bootstrap-

components.opensource.faculty.ai/) is an open source library that makes it

easier to build consistently styled apps with complex, responsive layouts.
You can also use any of the themes from Bootswatch themes
(https://www.bootstrapcdn.com/bootswatch/). These time-saving add-ons

will let you build professional-looking dashboards with little effort.

Because of its relative maturity, expanding user community, and
adoption by large enterprise organizations, Dash now has a large library
of specialized modules, a host of repositories, and great documentation
and tutorials to aid with the construction of customized dashboards.
Whereas most scientists might aim to produce simple single-page

https://github.com/plotly/jupyter-dash/
https://dash-bootstrap-components.opensource.faculty.ai/
https://www.bootstrapcdn.com/bootswatch/

dashboards, Dash can also build multipage, scalable, high-performance
dashboards capable of incorporating organization style guides in the
final layouts. This is a distinguishing feature of Dash versus friendlier
tools like Streamlit and Voilà.

On the flip side, Dash is primarily designed for Plotly, though it’s
possible to use other third-party plotting libraries (see
https://github.com/plotly/dash-alternative-viz-demo/). Dash also requires

you to work with HTML and Cascading Style Sheets (CSS) syntax,
which isn’t something Python users generally want to do. This has led
to the development of simpler tools, like Streamlit, which we’ll look at
next.

Streamlit

Streamlit is a relatively new open source library for quickly building

attractive dashboard web applications. As an all-in-one tool, it addresses
web serving as well as data analysis.

Streamlit’s simple API lets you concentrate on your data analysis and
visualization rather than on frontend and backend technology issues.
Sharing and deploying is fast and easy, and the learning curve is
arguably the shortest of any of Python’s dashboarding tools. As a result,
Streamlit’s popularity has risen rapidly, and new features are constantly
being added.

Whereas Dash focuses on production and enterprise settings,
Streamlit is designed for rapid prototyping. It lets you do more with less
code, and unlike Dash, which is designed to work primarily with Plotly,
Streamlit lets you easily mix and match plots from multiple libraries,
including Plotly, Altair, Bokeh, seaborn, and Matplotlib. This gives you
the option to choose the best tool for the particular plotting job and
allows contributing team members to use their preferred plotting
library.

For existing Python scripts, Streamlit is arguably the best way to
quickly and easily turn them into interactive dashboards. However, it
provides no support for Jupyter Notebook, and you’ll encounter some

https://github.com/plotly/dash-alternative-viz-demo/

friction moving your code into Streamlit. On the other hand, it’s very
compatible with major libraries like scikit-learn, TensorFlow/Keras,
NumPy, OpenCV, PyTorch, pandas, and more. If you’re happy with
Streamlit’s design defaults and don’t need to do a lot of customization,
it’s a great choice for getting a dashboard up and running quickly.

Voilà

Voilà is an open source library that lets you quickly convert a Jupyter

notebook into a stand-alone interactive dashboard sharable with others.
As a thin layer built over Jupyter, it represents a very specific use case
rather than a complete dashboarding solution.

Voilà allows nontechnical people associated with your project to use
your Jupyter notebooks without having to know Python or Jupyter or
have them installed on their computer. And if you already have a
notebook with all the interactivity you need, it’s the shortest path to
turning your work into a dashboard.

Voilà is mostly about rendering. A common approach is to add
interactivity (widgets) to a Jupyter notebook using a Python library like
bqplot, Plotly, or ipywidgets, all of which are supported by Voilà. (We
looked at ipywidgets in Chapter 5 on Jupyter Notebook.) You might
then need to format the notebook to suppress and hide unused code and
markdowns.

Voilà runs the code in the notebook, collects the outputs, and
converts them to HTML. By default, the notebook code cells are
hidden from view. The outputs are displayed vertically in the order in
which they appear in the notebook (Figure 16-20), but you can use
widget layout templates to change the position of the cell outputs, for

example, by dragging them into a horizontal configuration. The page is
then saved as a web application where the widgets on the page have
access to the underlying Jupyter kernel.

At this point, the dashboard is only on your computer. For others to
have access, you need to deploy your dashboard on the cloud using a
public cloud computing platform such as Binder, Heroku, Amazon Web

Services (AWS), Google Cloud Platform (GCP), IBM Cloud, or
Microsoft Azure.

Binder, a free open source web application for managing digital

repositories, is one of the most accessible ways to deploy Voilà
applications. Use cases involve workshops, scientific workflows, and
streamlined sharing among teams. Heroku (https://www.heroku.com/) is

also a good choice for the less tech-savvy and those with limited
budgets. It manages the supporting hardware and server infrastructure
allowing you to focus on perfecting your app. On the downside, the app
might run slowly due to low network performance. You can see more
deployment options at https://voila.readthedocs.io/en/stable/deploy.xhtml.

Voilà produces dashboards broadly similar to Streamlit and can be
simpler to use, assuming that you already have a Jupyter notebook ready
to go. Jupyter aficionados will also appreciate that Voilà shares Jupyter’s
widget library, whereas Streamlit requires you to learn its own set of
custom widgets. You can see some example dashboards at https://voila-

gallery.org/.

https://www.heroku.com/
https://voila.readthedocs.io/en/stable/deploy.xhtml
https://voila-gallery.org/

Figure 16-20: Dashboard elements retain Jupyter Notebook arrangement (courtesy of

https://voila-gallery.org).

Panel

https://voila-gallery.org/

Panel is an open source Python library that lets you create custom

interactive web apps and dashboards by connecting user-defined widgets
to plots, images, tables, or text. Created and supported by Anaconda,
Panel is part of the HoloViz family of unified plotting tools (see Figure
16-9) and uses the Bokeh server.

Panel helps support your entire workflow so that you never need to
commit to only one way of using your data and your analyses, and you
don’t need to rewrite your code just to make it usable in a different way.
You can move seamlessly from exploring data, creating reproducible
steps, and telling a story in a notebook to creating a dashboard for a
target audience, or even creating a notebook from a dashboard.

Panel automatically creates frontends based on Python syntax
without requiring you to write in HTML or create style sheets with
CSS. It integrates better with Jupyter Notebook than Dash or
Streamlit. It’s arguably the next choice if you’re already using Jupyter
Notebook, and Voilà is not flexible enough for your needs.

Like Streamlit, Panel works with visualizations from multiple
libraries, including Bokeh, Matplotlib, HoloViews, and more, making
them instantly viewable either individually or when combined with
interactive widgets that control them. Being integrated with the
HoloViz family, including GeoViews, Panel is especially good for
handling geospatial data.

Panel objects are reactive, immediately updating to reflect changes to
their state. This makes it easy to compose viewable objects and link
them into simple one-off apps to do a specific exploratory task. You then
can reuse the same objects in more complex combinations to build more
ambitious apps. You can also share information between multiple pages
so that you can build full-featured multipage apps. To see some example
dashboards and how Panel works with multiple plotting libraries, visit
https://panel.holoviz.org/gallery/index.xhtml.

Choosing a Plotting Library

https://panel.holoviz.org/gallery/index.xhtml

Even the simplest plotting libraries in Python require a bit of time and
effort to learn, so you can’t realistically learn them all. But with so many
plotting choices available, how do you choose among them?

The throwaway answer is that it depends on what you’re trying to
do. But there’s more to it than that. You need to look beyond your
immediate needs. What will you be doing next year? What are your
teammates and clients using? How do you position yourself for the long
term, to reduce the number of libraries you need to learn?

The following sections are designed to help you choose the best
library, or combination of libraries, for you. They include the libraries
we’ve discussed so far and address the following criteria:

Size of dataset The number of data points you need to plot

Types of plots The types of plots you plan to make, from statistical
charts to complex 3D visualizations

Format The way you plan to present the data, such as static plots,
Jupyter notebooks, interactive dashboards, and so on

Versatility A library’s range of capabilities, such as ease of use, the
ability to make sophisticated plots, and dashboarding support

Maturity The age of the library

For the first four criteria, we’ll look at native, out-of-the-box
functionality. Although it’s always possible to extend the capabilities of a
given library by using another library (for example, to enable
interactivity), the assumption here is that the average user will want to
avoid these types of complications.

And remember, we’re only discussing a subset of the most popular
plotting libraries. If you have highly specialized requirements, you’ll
need to perform an online search to find the most appropriate tool
available.

Size of Dataset

The most important starting consideration for choosing a plotting
library is the size of the datasets that you plan to use. In today’s world of

big data, you can’t afford poor performance or memory issues during
visualization. Although there are ways to decimate and otherwise
manipulate large datasets so that they behave as smaller sets, you
generally want to avoid this if possible.

Figure 16-21 presents a rough range of data sizes that you can
practically plot with different libraries. These are more relative than

absolute, as maximum limits can depend on the type of plot you’re

making, the hardware you’re using, browser performance, whether
you’re working in a Jupyter notebook, and so on.

Figure 16-21: InfoVis and SciVis libraries versus size of dataset (in number of samples)

Most of the InfoVis libraries we’ve discussed can plot somewhere
between a hundred thousand and a million data points. Bokeh supports
both Canvas- and WebGL-based plotting, and the default Canvas
plotting limit may be in the hundreds of thousands. But if the WebGL
JavaScript API (https://get.webgl.org/) is used for Bokeh, assuming it’s

https://get.webgl.org/

supported for the particular type of plot involved, the limit should be
similar to that for Matplotlib and Plotly.

Larger datasets require Datashader, which renders plots as images.
The SciVis libraries Mayavi and ParaView can handle billions of
samples using compiled data libraries and native GUI apps. Because
HoloViews can use Matplotlib, Bokeh, or Plotly as its plotting backend,
as well as use Datashader, it can theoretically cover the whole range
shown in Figure 16-21.

Types of Plots

Knowing the types of plots that you plan to make, along with their
degree of interactivity, will help you in selecting the most user-friendly
tool for your needs. Figure 16-22 shows the capabilities of plotting
libraries, with simple statistical plots on the left and complex 3D
visualizations on the right.

Figure 16-22: InfoVis and SciVis libraries versus type of plot

All of the InfoVis libraries can handle statistical plotting. Even the
SciVis tools Mayavi and ParaView have this capability to some extent,
though they’re hardly the best choice. Likewise, although several
InfoVis libraries can generate 3D scatterplots (Figure 16-5) and meshes
(Figures 16-2 and 16-6), you still need Mayavi or ParaView for high-
performance visualization of large and complex 3D plots (such as
Figures 16-17 and 16-18). Of the three major plotting libraries, only
Bokeh has no built-in 3D capability, though it can be extended by
installing other libraries.

Format

Knowing how you will present your visualizations will help you choose
a library while keeping things as simple as possible. With the exception
of the specialty products like Mayavi, ParaView, and the dashboarding
tools, you can use most libraries to generate static plots and images to
print or use in a report. You’ll want to verify that you can output the
smooth SVG format if you need it, though most support this option.
Figure 16-23 shows more sophisticated options, ranging from Jupyter
notebooks to highly interactive web applications viewed in a browser.

Figure 16-23: The InfoVis and SciVis libraries versus publishing format

The dashboarding libraries are displayed so that the simplest, least
flexible ones are shifted to the left and the more powerful and
customizable are shifted to the right. Voilà, for example, works only
with Jupyter Notebook, whereas Dash can produce enterprise-level
visualizations. Bokeh operates over WebSockets, a library for maintaining

a persistent connection between a client and server, allowing for
constantly connected sessions that you can easily use for multiple back-
and-forth interactions.

Versatility

Sometimes organically and sometimes by design, plotting libraries grow
into “families” of a sort (Figure 16-24). The Plotly family, for example,
has Plotly Express for quick and simple plotting, and Dash for
dashboarding. In similar fashion, HoloViews has hvPlot and Panel, and
pandas and seaborn make plotting with Matplotlib as easy as possible.

With a truly versatile family, you can quickly produce plots using simple
syntax, drop down into the core library to add sophisticated elements,
and seamlessly share the result as a dashboard on the web.

Even though it’s possible to mix and match these to a point, having
to learn the syntax for multiple libraries is not very appealing. Both
Plotly and HoloViews give you full built-in soup-to-nuts functionality,
but that doesn’t mean you’re limited to just two options. The
Matplotlib family can “adopt” a dashboarding library, such as Streamlit,
Panel, or Voilà, whereas Chartify, Pandas-Bokeh, and hvPlot can serve
as an “easy” option for Bokeh.

Figure 16-24: Versatility of the InfoVis and SciVis libraries

Maturity

Figure 16-25 captures the relative age of the plotting libraries. The
longer a library has been around, the more likely it is to be reliable, well
documented, and have an established user base that produces helpful
tutorials, example galleries, and extensions. Over time, users encounter
bugs, learn usage patterns, and share their experiences. As a result,
you’ll be able to find answers to most questions at help sites like Stack
Overflow (https://stackoverflow.com/).

https://stackoverflow.com/

Paraview, Matplotlib, and pandas have been around for a long time,
whereas libraries like Voilà and Panel are more recent. Keep in mind
that maturity is a somewhat scalable criterion. Wildly popular libraries
will mature quickly. A good example of this is the newer dashboarding
libraries Dash and Streamlit, with rapidly growing user bases constantly
adding new features and supplementing the documentation.

Figure 16-25: Relative age of the InfoVis and SciVis libraries

Making the Final Choice

Although it’s true that the best plotting library might be dependent on
your use case as well as your background and skill level, no one wants to
jump from tool to tool with each new project. Still, there’s a good
chance you won’t be able to get by with a single visualization library,
especially if you need to do a range of things, including visualizing
complicated 3D simulations.

If you expect to use Python a lot, you should look for a library, such

as Matplotlib, Plotly, or the HoloViz family, that covers as much area as
possible in Figures 16-21 through 16-25. These libraries may be more
difficult to learn, but it will be worth it in the long run.

The case for learning Matplotlib is always strong due to its maturity,
versatility, good integration with the ecosystem, and the fact that so
many other libraries are built upon it. As a default plotting tool, it’s a
safe choice, but if you strongly favor a simpler library, all is not lost. As
mentioned previously, Figures 16-21 through 16-24 assume that you’re
using the native capability of the posted libraries. They further assume

that you want functionality, like zooming and panning, to work out of
the box. But many other libraries exist that, with little effort, can extend

their native capabilities. Earlier, you saw how, with one extra line of
code, HoloViews could add interactivity to the static plots generated by
the pandas plotting API.

With Anaconda, it’s easy to install plotting libraries and play with
them in Jupyter Notebook. You should take the time to experiment a
little using online tutorials. If you find that you prefer a fairly simple
library or one not discussed here, search for libraries that can add any
missing capability. You may be able to cobble together a Frankenstein
product that perfectly fits your needs.

As a final comment: the HoloViz concept is intriguing. Its goal is to
provide a unified, consistent, and forward-looking plotting solution for
Python. It’s worth serious consideration, especially if you have a long
career ahead of you.

NOTE

After you choose a plotting library, you’ll still need to pick a type of plot to

use with your data. A great place to start is the From Data to Viz website

at https://www.data-to-viz.com/. Here you’ll find a decision tree that

will help you determine the most appropriate chart based on the format of

your dataset. You’ll also find a Caveats page that will help you understand

and avoid some of the most common data presentation mistakes.

Summary

In this chapter, we reviewed the InfoVis libraries, used for 2D or simple
3D static or interactive representations of data, as well as the more
sophisticated SciVis libraries, used for graphical representations of
physically situated data. Because the InfoVis libraries address common
displays such as bar charts and scattergrams, there are many libraries
from which to choose.

The most popular InfoVis library is Matplotlib. Due to its maturity
and flexibility, other plotting libraries, like seaborn, “wrap” Matplotlib
to make it easier to use and to provide additional themes and styles.
Newer plotting libraries such as Bokeh, Plotly, and Holoviews, provide
much of the functionality of Matplotlib but also focus on web apps and
the building of interactive dashboards. Other tools, like Datashader,
address the need to efficiently plot large volumes of data.

The choice of a go-to plotting library is a personal one influenced by
the tasks that you need to complete and the effort you’re willing to
apply. Because most users will want to focus on learning as few packages
as possible, the best solution is to choose a plotting “family” that
provides broad coverage of plot types, formats, dataset sizes, and so on.
This will need to be weighed against the value of a mature (but possibly
disjointed) solution that comes with lots of support versus newer, less
well-documented libraries that try to provide a seamless, holistic
approach that will stand the test of time.

https://www.data-to-viz.com/

17
THE GEOVIS LIBRARIES

Geospatial data is anything that includes a reference to geographical

location, such as latitude and longitude, street address, and ZIP code.
It’s important to many fields of science, including geology, geography,
meteorology, climatology, biology, archeology, anthropology,
oceanography, economics, and sociology. As a result, there are lots of
Python libraries dedicated to working with geospatial data.

Geospatial data comprises vector and raster data (Figure 17-1). With

vector data, spatial elements (think polygons, lines, and points) are
represented by x and y coordinates. Examples include road centerlines,
country boundaries, and Starbucks locations. Raster data consists of a
matrix of rows and columns with some information associated with each
cell (think pixels). Examples include aerial photos and satellite images.
These data types can be applied to maps as layers, letting you show just

what you need for a given task, such as using only vector-based street
maps for navigation. You can also use vector data to calculate distances
and areas.

Figure 17-1: Representing the world with a combination of vector and raster data

Geographic Information Systems (GIS), Global Positioning Systems (GPS),

and remote sensing are examples of technology used to acquire, process,
and store geospatial data. Python’s flexibility makes it great for
wrangling this data from a file or a database into something usable.
Around 2008, major GIS platforms such as ArcGIS and QGIS adopted
Python for scripting, toolmaking, and analysis. As a result, Python is
now the dominant computer language for performing geospatial
analysis. And just as with statistical visualization, there are a daunting
number of Python libraries designed to help you visualize geospatial
data.

The Geospatial Libraries

The purpose of geospatial libraries is to keep track of and use spatial
object types (like points and polygons), spatial reference systems (for
projecting the Earth’s curved surface onto a plane), geography and
geometry formats (for measuring distances and areas accurately or
quickly), common GIS data formats (for input/output), spatial indexing
(to speed up processing), and map decorators (such as country borders
and coastlines). Most will let you create animations, either by
converting frames to MP4 or directly as live animation.

Table 17-1 lists some of the more important and popular geospatial
libraries, along with a few specialty libraries. We’ll take a high-level
look at several of these in the sections that follow.

Table 17-1: Python’s More Important Geospatial Libraries

Library Description Website

GeoPandas GIS library
meets “pandas
with geometry”

https://geopandas.org/

Cartopy Tools for
projection-
aware plots
with Matplotlib

https://scitools.org.uk/cartopy/

geoplot Cartopy
extension
(“seaborn for
geospatial”)

https://residentmario.github.io/geoplot/

Plotly Easy interactive
maps

https://plotly.com/python/maps/

folium Easy interactive
maps with low
resource usage

https://python-

visualization.github.io/folium/

https://geopandas.org/
https://scitools.org.uk/cartopy/
https://residentmario.github.io/geoplot/
https://plotly.com/python/maps/
https://python-visualization.github.io/folium/

Library Description Website

ipyleaflet Jupyter-
LeafletJS
bridge based on
ipywidgets

https://github.com/jupyter-

widgets/ipyleaflet/

GeoViews Geographic
plots with
HoloViews and
Cartopy.

http://geoviews.org/

KeplerGL Tools to
visualize large
datasets in
Jupyter

https://docs.kepler.gl/docs/keplergl-jupyter/

pydeck Large-scale
interactivity
tools optimized
for Jupyter

https://pydeck.gl/

PyGMT Python wrapper
for Generic
Mapping tools

https://www.pygmt.org/

Bokeh Reactive plots
including on
Google Maps

https://docs.bokeh.org/

EarthPy Helper
functions for
working with
spatial data

https://earthpy.readthedocs.io/

gmplot Matplotlib-like
interface to plot
on Google
Maps

https://github.com/gmplot/gmplot/

https://github.com/jupyter-widgets/ipyleaflet/
http://geoviews.org/
https://docs.kepler.gl/docs/keplergl-jupyter/
https://pydeck.gl/
https://www.pygmt.org/
https://docs.bokeh.org/
https://earthpy.readthedocs.io/
https://github.com/gmplot/gmplot/

Library Description Website

MovingPandasTools to track
and analyze
movement data

https://anitagraser.github.io/movingpandas/

cuSpatial GPU
acceleration
tool for
common spatial
operations

https://github.com/rapidsai/cuspatial/

NOTE

The plotting examples in this chapter are intended to demonstrate the

complexity of the code and the types of plots produced. You’re not expected to

run the code snippets, because most of the libraries discussed do not come

preinstalled with Anaconda. If you do want to test them for yourself, you

can find installation instructions in the product web page cited in each

section. I recommend that you install them all in a dedicated conda

environment (see Chapter 2) rather than dump them in your base

environment.

GeoPandas

GeoPandas is the most popular open source library for parsing geospatial

data in Python. As you can guess from the name, it extends the data
types used by pandas (see “pandas” on page 403) and makes working
with geospatial vector data similar to working with tabular data. It also
enables operations in Python that would otherwise require a dedicated
spatial database such as PostGIS.

A GeoDataFrame in GeoPandas looks a lot like a tabular DataFrame

in pandas but with a special “geometry” column for the location data
(Figure 17-2).

https://anitagraser.github.io/movingpandas/
https://github.com/rapidsai/cuspatial/

Figure 17-2: The geometry column (boxed) distinguishes a GeoDataFrame from a DataFrame.

This geometry column bundles together both the type of geometric

object (Table 17-2) and the coordinates (as longitude and latitude) needed

to draw it.

Table 17-2: Geometries Used in GeoPandas

Geometry type Description

Point A point

MultiPoint A set of points

LineString A line segment

MultiLineSting A sequence of connected line segments

LinearRing A closed collection of lines (zero-area
polygon)

Polygon A closed shape defined by a sequence of
points

MultiPolygon A collection of polygons

GeoPandas uses not only pandas but several other important open
source libraries to produce a simple and convenient framework for
handling geospatial data. It relies on the capabilities of Shapely

(https://pypi.org/project/Shapely/) for working with planar geometric

shapes (such as street centerlines or country boundary polygons), Fiona

https://pypi.org/project/Shapely/

(https://pypi.org/project/Fiona/) for reading and writing geographic data

file formats, pyproj (https://pypi.org/project/pyproj/) for handling

projections, Matplotlib for plotting, and descartes
(https://pypi.org/project/descartes/) for integrating Shapely geometry

objects with Matplotlib.

As a result, you can plot a map from a GeoSeries or GeoDataFrame
with only a couple of lines of code:

import geopandas as gpd

world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
world.plot();

In this Jupyter Notebook example, the world variable represents a
GeoDataFrame made from one of GeoPandas’ internal global datasets.
Of course, this simple plot can be customized further. Style options that
you can pass to Matplotlib, especially those for lines, will work with the
plot() method.

Here’s an example of a choropleth map—where regions are shaded
based on a data value—for population by country:

import geopandas as gpd

https://pypi.org/project/Fiona/
https://pypi.org/project/pyproj/
https://pypi.org/project/descartes/

world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
world = world[(world.name != 'Antarctica')] # Omit Antarctica.
world.plot(column='pop_est',
 legend=True,
 legend_kwds={'label': "Population by Country in Billions",
 'orientation': "horizontal"});

With the world data loaded as a GeoDataFrame, it’s easy to filter the
data and replot it. In the previous plot, we removed Antarctica, given
that it has no permanent population. Now let’s look at all the countries
with a population greater than 300 million by changing one line of
code:

world = world[(world.pop_est > 300000000) & (world.name != 'Antarctica')]

Rerunning the code block reveals only China, India, and the United
States:

Historically, you could plot only static maps with GeoPandas. Now,
thanks to Contextily (https://github.com/geopandas/contextily) for base

maps, and IPYMPL (https://github.com/matplotlib/ipympl) for interactive

Matplotlib plots in Jupyter, it’s possible to make interactive maps with
GeoPandas. Likewise, hvPlot, built on HoloViews (see Chapter 16),
uses an interactive Bokeh-based plotting API to add zooming, panning,
querying, sliders, and clickable legends to both pandas and GeoPandas
output (Figure 17-3).

https://github.com/geopandas/contextily
https://github.com/matplotlib/ipympl

Figure 17-3: An interactive hvPlot with toolbar and slider widget (courtesy of holoviz.org)

With the Contextily library installed and imported, GeoPandas can
support tile-based maps as well as the outline-based geo-maps shown

previously. A tile map (or web map tile) is a map displayed in a browser

by seamlessly joining dozens of individually requested image or vector
data files over the Internet. The street and terrain layers in Google
Maps are familiar examples of tile-based maps. Contextily provides easy
access to popular tile sources like OpenStreetMap and Stamen, letting
you add backgrounds similar to those in Google Maps (Figure 17-4).

Figure 17-4: A tile map of part of Tokyo, Japan

Like pandas, GeoPandas operates on a single core, but it also
supports spatial indexing, a technique that can significantly boost

performance when querying large geospatial datasets. GeoPandas can
generate spatial indexes, automatically in some cases and manually in
others, by letting you call the sindex attribute on a GeoDataFrame. In
addition, a new library, geofeather (https://pypi.org/project/geofeather/), can

significantly speed-up reading and writing standard spatial file formats
(such as shapefile).

http://holoviz.org/
https://pypi.org/project/geofeather/

GeoPandas is a good all-purpose tool if you’re not planning to
perform complex data transformations or work with millions of records.
Plotting with this tool requires knowledge of the somewhat arcane
Matplotlib syntax, and add-ons are needed to add interactivity.
GeoPandas works best with vector data but you can also perform
limited raster processing using rasterio

(https://rasterio.readthedocs.io/en/latest/). Fortunately, many other

geospatial libraries work well with GeoPandas, so you have the option
of organizing your data in GeoPandas and plotting it with a different
tool.

Cartopy

Cartopy is an open source library for producing maps and performing

geospatial analyses. It’s engineered for scientists and maintained by an
active development community. Cartopy is an extension of Python’s
standard plotting library, Matplotlib, and makes use of other libraries,
including NumPy, Shapely, and PROJ.4.

Cartopy prides itself on being very “projection aware.” That is, it can
handle a large number of projections (Figure 17-5) and transform
points, lines, vectors, polygons, and images between these projections.
It also pairs well with GeoPandas, allowing you to easily create
cartographically accurate maps while using raster data more easily than
in GeoPandas alone. If you use Matplotlib for basic plots, Cartopy lets
you extend your skills into cartography with little extra effort.

https://rasterio.readthedocs.io/en/latest/

Figure 17-5: A few of the many map projections available in Cartopy

As with many other geospatial libraries, you can make a basic map
using only a few lines of code:

import cartopy.crs as ccrs
import matplotlib.pyplot as plt

ax = plt.axes(projection=ccrs.Robinson())
ax.coastlines()
plt.show()

Depending on your setup, Cartopy can post up to a million points
quickly but performance noticeably drags with larger datasets. You can
see more Cartopy plot examples on its gallery page
(https://scitools.org.uk/cartopy/docs/latest/gallery/index.xhtml) and a list of

supported map projections at
https://scitools.org.uk/cartopy/docs/v0.19/crs/projections.xhtml.

Geoplot

Geoplot is a fairly new, high-level, open source geospatial plotting

library. As an extension to Cartopy and Matplotlib, it claims to be the
“seaborn of geospatial,” which means that it builds on the underlying
libraries to make mapping easy.

Geoplot is designed to work well with GeoPandas input and
provides a selection of easy-to-use geospatial visualizations (presumably,
90 percent of what you will ever need). And because geoplot is built on
Cartopy, it can take advantage of Cartopy’s extensive list of map
projections.

A standout feature for geoplot is the cartogram, a thematic map of

polygons, such as provinces or states, whose geographic size is warped
to be proportional to a selected variable, like population, gross domestic
product, or obesity level. In the following example from geoplot’s plot
reference page, you use geopandas and one of geoplot’s native datasets,

https://scitools.org.uk/cartopy/docs/latest/gallery/index.xhtml
https://scitools.org.uk/cartopy/docs/v0.19/crs/projections.xhtml

contiguous_usa, to easily generate a cartogram of the US population by
state:

import geopandas as gpd
import geoplot as gplt
import geoplot.crs as gcrs

contiguous_usa = gpd.read_file(gplt.datasets.get_path('contiguous_usa'))
gplt.cartogram(contiguous_usa, scale='population',
 projection=gcrs.AlbersEqualArea(),
 color='black');

In this cartogram, California, the most populous state, is shown at its
true size. The remaining states are reduced in size based on the relative
size of their population.

Geoplot also lets you produce Sankey diagrams. These are a type of
flow diagram in which the width of lines and arrows is proportional to
the volume of movement being visualized, such as the flow of traffic
over city streets (Figure 17-6). The most famous Sankey diagram
depicts Napoleon’s infamous Russian campaign and retreat from
Moscow.

Figure 17-6: Sankey diagram of streets in Washington DC by average daily traffic (courtesy of

geoplot)

Like GeoPandas, geoplot makes only static maps. With some extra
work, however, such as writing your figure to HTML and using the
mplleaflet library, you can enable interactivity like zooming and
panning.

Geoplot lets you easily make maps if you’re comfortable with giving
up a lot of design control. To move beyond the basic functionality and
produce highly customized maps, you’ll need to be familiar with
Matplotlib. And even though the core documentation is not bad, the
immaturity of geoplot means you might have trouble finding tutorials
or examples to match your specific use cases. Geoplot is also in
“maintenance” state, with no new features planned.

Plotly

Plotly and Plotly Express, introduced in Chapter 16, have extensive
geospatial data visualization capabilities. They offer many mapping
options and the Plotly Express API is easy to use. You can make an
animated choropleth map with a single line of code and deploy it to the
web using Dash.

Plotly maps are useful for quickly exploring data, identifying outliers,
and recognizing trends. You can use the convenience of GeoPandas, or
if you have latitude and longitude in columns, plot straight from a
pandas DataFrame. The following Jupyter Notebook example, using
Plotly Express, turns a Plotly dataset on worldwide volcanoes into a
highly interactive figure with only a few lines of code.

➊ import pandas as pd
 import plotly.express as px

 f = "https://raw.githubusercontent.com/plotly/datasets/master/volcano_db.csv"
 df = pd.read_csv(f, encoding="iso-8859-1")

➋ fig = px.scatter_geo(data_frame=df,
 lat='Latitude',
 lon='Longitude',
 hover_name='Type',
 hover_data={'Type':False,
 'Country':True,
 'Volcano Name':True},
 symbol='Type',
 color='Type',
 projection='orthographic')
 fig.show()

Most of the code consists of importing libraries ➊ and loading the

data before performing the actual plotting ➋. Within this plot, you can
use the cursor to grab and rotate the map as if it were a real three-
dimensional globe. You can hover the cursor over a volcano marker and
get a pop-up window listing the type of volcano along with other
information such as its location, country, and name. You also have the
option to make markers clickable so that pop-up windows appear only
when you deliberately use a mouse button.

If you look at the upper-right corner of this plot, you’ll see a toolbar
that lets you take screenshots, pan, zoom, and so on. These tools are
hugely helpful, especially when you need to resolve closely packed data
points, such as the numerous volcanoes in Iceland (Figure 17-7).

Figure 17-7: Plotly Express reposts data at the appropriate scale for the zoom level.

You can also make 3D surface plots with Plotly, whose automatic
toolbars permit rotations about multiple axes. Here’s an example for a
single volcano:

import pandas as pd
import plotly.graph_objects as go

df = pd.read_csv(
"https://raw.githubusercontent.com/plotly/datasets/master/volcano.csv")
fig = go.Figure(data=[go.Surface(z=df.values)])
fig.update_layout(title='Volcano',
 autosize=False,
 width=600, height=600,
 margin=dict(l=65, r=50, b=65, t=90))
fig.show()

Like most other geospatial libraries, Plotly and Plotly Express
support tile-based maps (see Figure 17-4) for adding streets, terrain,

imagery, and so on. Unlike GeoPandas, you can access these directly,
without the need for a separate library, like Contextily.

If you want to quickly build interactive plots in which you can query
a map by hovering the cursor over a region, or position user-input
widgets like sliders on the same screen as the map, Plotly and Plotly
Express are sound choices. And with Plotly’s Dash library (see “Dash”
on page 446), you can seamlessly convert your work into a dashboard.

folium

The open source folium library lets you visualize maps using Leaflet.JS, a

powerful JavaScript library for building interactive web-mapping
applications on most mobile and desktop platforms. First released in
2013, folium is extremely popular, and as a result, you’ll find a wealth of
material on the internet to help you learn how to use it and customize it
to your needs.

With folium, you can select from a number of tilesets from mapping

services like OpenStreetMap, Mapbox, and Stamen. Tilesets are
collections of raster or vector data broken up into a uniform grid of
square tiles with up to 22 preset zoom levels. They let you produce
beautiful leaflet maps with no effort at all:

import folium

map = folium.Map(location=[29.7, -95.2147])
map

This Jupyter Notebook example uses the OpenStreetMap tile by
default. The location coordinates for the center of the map are in

latitude and longitude (this can trip you up, as many libraries use the
modern longitude-latitude order). You can look up these values for an
address using tools like LatLong.net (https://www.latlong.net/geo-tools) or

by simply doing an online search for a geographic feature’s coordinates.
It’s also possible to query folium maps for this information using your
cursor. This map is also scalable; when you zoom in, you get more and
more detailed information until you exhaust the available tileset zoom
levels.

Another strength of folium is its support of markers. You’ve probably

seen these teardrop-shaped icons used to identify search locations on
Google maps. Folium comes with several predefined markers and will
also let you build a custom marker by using an image or by accessing
free icon libraries. You can also include a pop-up window with content.
Let’s look at an example:

import folium

map = folium.Map(location=[37.15, -111.1], tiles='stamen terrain')
folium.Marker(location=[37.1, -111.17],
 popup="Water Sample #2",
 icon=folium.Icon(color="black")).add_to(map)
map

https://www.latlong.net/geo-tools

This code uses the “Stamen Terrain” tile depicting the area around
Lake Powell in Utah. The marker represents the location of a water
quality sample, and clicking it reveals the sample number.

Now let’s revisit the volcanoes dataset used in “Plotly” on page 467.
If you’re running the code, you can download the volcano icon from
sites such as Free onlinewebfonts.com (https://onlinewebfonts.com/fonts) or

Iconfinder (https://iconfinder.com/).

import pandas as pd
import folium
from folium import plugins

f = "https://raw.githubusercontent.com/plotly/datasets/master/volcano_db.csv"
df = pd.read_csv(f, encoding="iso-8859-1")
map = folium.Map(tile='Stamen Terrain', control_scale=True)
for index, row in df.iterrows():
 volcano_icon = folium.features.CustomIcon('volcano_icon.png',
 icon_size=(25, 25))
 folium.Marker(location=(row['Latitude'], row['Longitude']),
 popup=row['Type'],
 icon=volcano_icon,
 tooltip=(row['Type'],
 row['Country'],

http://onlinewebfonts.com/
https://onlinewebfonts.com/fonts
https://iconfinder.com/

 row['Volcano Name'])
).add_to(map)
mini_map = folium.plugins.MiniMap(toggle_display=True)
map.add_child(mini_map)
map

This script produces another world map of volcano locations. Figure
17-8 is this map zoomed in to Iceland, similar to Figure 17-7. Note the
custom volcano icons, terrain background, hover window, index map at
lower right, and scale bar at lower left. All with just a few lines of code.

Figure 17-8: Icelandic volcanoes plotted with folium

Because folium embeds lots of information, file sizes can grow quite
large. For example, the previous code produced a 138MB notebook file.

Combining folium with the popular GeoPandas library is a great way
to visualize georeferenced data. Imagine that you’re studying the urban
“heat island” effect around Paris, France. You’ve recorded thousands of
temperature measurements east of the city and you’re using GeoPandas
to manipulate this data. With a folium heatmap, the measurements will

aggregate or separate depending on the map’s zoom level (Figure 17-9).
You can also add a time series, making it possible for you to see
temperature variations throughout the day, month, year, and so on. And
with folium’s MarkerCluster plug-in, you can adapt this same technique to
individual markers. Just don’t try adding a legend; folium’s support for
this feature extends only to choropleth maps.

Figure 17-9: A heatmap of temperature data zoomed out (left) versus zoomed in (right)

The folium library is designed for simplicity, performance, and
usability. By combining the data analysis capabilities of Python libraries
like GeoPandas with the mapping strengths of LeafletJS, folium lets you
generate maps with multiple layers of data representation. It’s extremely
easy to include useful backgrounds such as street maps and terrain maps,
and there are lots of plug-ins available to extend folium’s functionality
(see https://python-visualization.github.io/folium/plugins.xhtml#folium-

plugins/).

ipyleaflet

The ipyleaflet open source interactive widgets library is based on

ipywidgets (https://github.com/jupyter-widgets/ipywidgets/). Like folium,

ipyleaflet wraps Leaflet.JS to bring mapping capabilities to both Jupyter
Notebook and JupyterLab. Although folium is considered easier to use,
ipyleaflet is considered more customizable and provides more avenues
for interactivity.

https://python-visualization.github.io/folium/plugins.xhtml#folium-plugins/
https://github.com/jupyter-widgets/ipywidgets/

Everything in ipyleaflet, such as tile maps and markers, is interactive,
and you can dynamically update attributes from Python or the
Notebook interface. And because ipyleaflet is built upon ipywidgets,
you can write programs that use widgets to capture user input.

Suppose that you’re compiling statistics on terrestrial impact craters.
In this example, you use the measure control widget and your mouse to
interactively find both the radius and area of Aorounga Crater in the
Republic of Chad:

from ipyleaflet import Map, MeasureControl, basemaps

m = Map(basemap=basemaps.OpenTopoMap,center=(19.0933, 19.2431), zoom=11)
measure = MeasureControl(position='bottomleft',
 active_color = 'black',
 primary_length_unit = 'kilometers')
m.add_control(measure)
measure.completed_color = 'red'
m

Clicking the square () icon on the map activates the Measure
Distances and Areas tool. You can then click two locations to get the
linear measurement between them or draw a polygon to get an area, as
shown in the preceding example. You can even customize the units.

Another interesting control option is the SplitMap, which lets you

compare a different set of layers at the same location. Imagine that
you’re studying a night view of Europe and you’re curious about which

city is causing a bright cluster of lights. With only a few lines of code,
you can generate a dual-layer display to answer the question:

from ipyleaflet import Map, basemaps, basemap_to_tiles, SplitMapControl

m = Map(center=(42.6824, 365.581), zoom=5)
left_layer = basemap_to_tiles(basemaps.Esri.WorldStreetMap)
right_layer = basemap_to_tiles(basemaps.NASAGIBS.ViirsEarthAtNight2012)
control = SplitMapControl(left_layer=left_layer, right_layer=right_layer)
m.add_control(control)
m

The previous code produces a “split” map with cities and streets on
the left and the nighttime satellite view on the right. You can grab the
round “|||” marker at the center of the screen and drag it to each side
to extend one of the maps at the expense of the other (Figure 17-10).
This lets you peek beneath the nighttime map to see the cities and
roads, without the need to clutter one map by combining it with
another or by adjusting the upper map’s transparency. You can also
zoom in to see smaller cities.

Figure 17-10: The SplitMap boundary dragged to the right

The Magnifying Glass is a particularly fun feature that lets you view

details without changing the overall zoom level of a map. When it’s
active, you simply move a circle over a map with your cursor to get a
zoomed-in view within the circle (Figure 17-11). It works at any zoom
level and with all of the available base maps.

Figure 17-11: The Magnifying Glass option in ipyleaflet

Much of this functionality, along with things like marker clustering,
is also available in folium, though you might need to use a plug-in
(https://python-visualization.github.io/folium/plugins.xhtml#folium-plugins/)

to replicate what you can do in ipyleaflet. However, this functionality
overlap does not include ways to get user interactions such as selections
back into Python for further processing, as folium provides only a one-
way path from Python into a JavaScript map.

NOTE

Similar to ipyleaflet, Jupyter-gmaps

(https://github.com/pbugnion/gmaps/) is also built upon the Jupyter

interactive widgets framework but bridges between Jupyter and Google

Maps rather than Leaflet.JS.

GeoViews: The HoloViz Approach

The HoloViz-maintained libraries, discussed in Chapter 16 (see Figure
16-9), provide a unified solution for working with geospatial data. This
includes dashboards and other types of interactive visualization. Within
this collection of open source libraries, HoloViews provides a lot of
support for geospatial data, including the ability to perform basic
geoscience work.

For more advanced work, especially work involving map projections,
HoloViz includes a dedicated geospatial library called GeoViews. Built

on HoloViews, and with geographic plot types based on the Cartopy
library, GeoViews can use either Matplotlib or Bokeh as a plotting
backend.

GeoViews lets you work with large, multidimensional geographic
datasets, quickly visualizing subsets or combinations with access to the
underlying raw data. It’s designed to work with Iris and xarray libraries
and can accept multiple data formats including NumPy arrays, pandas
DataFrames, and GeoPandas GeoDataFrames. In these cases, the data
is wrapped in a HoloViews or GeoViews object that provides instant

https://python-visualization.github.io/folium/plugins.xhtml#folium-plugins/
https://github.com/pbugnion/gmaps/

interactive visualizations (see “HoloViews” on page 436). Geographic
projections use the extensive Cartopy coordinate reference system.

Like other geospatial libraries, GeoViews gives you access to all
kinds of useful databases, polygon sets (such as for country boundaries),
and tile maps of streets and terrain. Plots can be made from only a few
lines of code, as in this Jupyter Notebook example from the official web
page:

import geoviews as gv
import geoviews.feature as gf
from cartopy import crs

gv.extension('bokeh')
(gf.ocean + gf.land + gf.ocean * gf.land * gf.coastline * gf.borders).opts(
'Feature', projection=crs.Geostationary(), global_extent=True, height=325).cols(3)

GeoViews’ support for GeoPandas data structures allows for easy
plotting of shapefiles and choropleths. Here’s an example of plotting a
human population choropleth map using a GeoPandas dataset:

import geopandas as gpd
import geoviews as gv
from cartopy import crs

gv.extension('bokeh')
gv.Polygons(gpd.read_file(gpd.datasets.get_path('naturalearth_lowres')),
 vdims=['pop_est', ('name', 'Country')]).opts(width=600,
 projection=crs.Robinson())

Finally, here’s the volcanoes example with a twist. Because GeoViews
is part of HoloViz, you have the option of plotting with hvPlot, which I
personally find easier to use (much like Plotly Express versus Plotly):

 import pandas as pd
 import holoviews as hv
 import hvplot.pandas

 f = "https://raw.githubusercontent.com/plotly/datasets/master/volcano_db.csv"
 df = pd.read_csv(f, encoding="iso-8859-1")

 # Reassign the dataframe with only 3 volcano types:

➊ df = df[(df['Type'] == 'Cone') |
 (df['Type'] == 'Stratovolcano') |
 (df['Type'] == 'Shield volcano')]

➋ marker = hv.dim('Type').categorize({'Cone': 'triangle',
 'Shield volcano': 'circle',
 'Stratovolcano': 'square'})
 size = hv.dim('Type').categorize({'Cone': 6,
 'Shield volcano': 5,
 'Stratovolcano': 4})
 df.hvplot.points('Longitude', 'Latitude',
 color='Type',
 marker=marker,
 size=size,
 hover_cols=['Volcano Name'],
 coastline=True)

In this case, all the volcano types other than shield volcanoes,

stratovolcanoes, and cones were dropped from the DataFrame ➊. The
map was then customized to plot these volcano types with unique

shapes ➋, sizes, and colors. Although not shown here, you also have the
option of assigning a default shape and size.

Note the toolbar along the right side, with icons for panning,
zooming, saving, and so on, and the customizable hover window.
Unfortunately, there’s no tool for rotating a globe in an orthographic
projection as you can do with Plotly Express, as hvPlot uses only Bokeh
rather than Plotly as a plotting backend.

A major selling point for GeoViews is that it’s part of a holistic,
forward-looking solution designed to satisfy all your plotting and
mapping needs. On the downside, documentation is somewhat limited
compared to other libraries.

KeplerGL

KeplerGL JupyterLab extension is an advanced open source geospatial

library built on top of Mapbox GL (https://www.mapbox.com/) and

deck.gl (https://deck.gl/). The latter is a WebGL (GPU)-powered

https://www.mapbox.com/
https://deck.gl/

framework for visually exploring large datasets using a layered
approach. It has an extensive catalog of layer types for bitmaps, icons,
point clouds, grids, contours, terrain, and more (see
https://deck.gl/docs/api-reference/layers/).

Uber developed KeplerGL (https://kepler.gl/) as a web-based tool to

make it easier for users with a variety of experience and skill levels to
create meaningful data visualizations. It’s designed for working with
large geospatial datasets, especially those related to mobility. It includes
impressive functionality including a GUI (Figure 17-12) that lets you
drag and drop datasets, use built-in time–series animations, visualize in
3D, handle millions of data points, perform spatial aggregations on the
fly, and customize maps by tweaking colors, changing sizes, filtering,
and so on.

Figure 17-12: The KeplerGL interface for customizing maps works in JupyterLab (courtesy of

KeplerGL).

With the KeplerGL GUI running in Jupyter, you can eschew
Python completely. You can drag and drop a data file into the browser,
visualize it with different map layers, explore it by filtering and

https://deck.gl/docs/api-reference/layers/
https://kepler.gl/

aggregating it, and eventually export the final visualization as a static
map or an animated video. The website will walk you through the map-
making workflow (https://docs.kepler.gl/docs/user-guides/b-kepler-gl-

workflow/) and show you how to use the GUI’s friendly menus (Figure

17-13).

Figure 17-13: A KeplerGL interface menu for selecting a map layer type (courtesy of

KeplerGL)

KeplerGL provides a set of Mapbox basemaps for backgrounds
including ones for land, water, roads, building footprints, 3D buildings,
and labels. You have to register with Mapbox, and the free plan comes
with 50,000 map downloads per month, sufficient for most small
applications. You’re also restricted to using data in CSV, GeoJSON,
pandas DataFrame, or GeoPandas GeoDataFrame formats, which rules
out live streaming.

https://docs.kepler.gl/docs/user-guides/b-kepler-gl-workflow/

Setting up and using KeplerGL is a little more involved than other
geospatial libraries. It works in JupyterLab and (currently) must be
installed using Python’s standard package manager (pip) rather than with
conda or conda-forge.

pydeck

The pydeck graphics library is a set of Python bindings, optimized for a

Jupyter Notebook environment, for making spatial visualizations using
deck.gl. As mentioned in the previous section, deck.gl is a WebGL-
powered framework for visually exploring large datasets using a layered
approach.

The pydeck library grants you access to the full deck.gl layer catalog
in Python. You can create beautiful deck.gl maps (Figure 17-14) without
using a lot of JavaScript, and you can embed these maps in a Jupyter
notebook or export them to a stand-alone HTML file. The library has
been designed to work in tandem with popular JavaScript base map
providers, especially Mapbox, but other map tile solutions, like
OpenStreetMap, may come with different levels of compatibility.

Figure 17-14: Personal injury road accidents in Great Britain

(https://pydeck.gl/gallery/hexagon_layer.xhtml)

Pydeck supports large-scale updates, such as color changes or data
modification, to hundreds of thousands of visualized data points in 2D
and 3D. And like ipyleaflet, there’s support for two-way communication,
by which data selected in a visualization can be passed back to the
Jupyter Notebook kernel. For example, you can pass geometry data
loaded into a map from a government source into a pandas DataFrame.

Let’s visit our volcano database yet again. The following code
snippet, entered in a Jupyter notebook, loads the data as a pandas
DataFrame and then produces a global map zoomed-in on the Horn of
Africa:

 import pandas as pd
 import pydeck as pdk

 f = "https://raw.githubusercontent.com/plotly/datasets/master/volcano_db.csv"
 df = pd.read_csv(f, encoding="iso-8859-1")

➊ layer = pdk.Layer('ScatterplotLayer',
 df,
 get_position=['Longitude', 'Latitude'],
 auto_highlight=True,
 get_radius=10_000,
 radius_min_pixels=1,
 radius_max_pixels=10_000,
 get_fill_color='[255, 255, 255]',
 pickable=True)

➋ view_state = pdk.ViewState(longitude=42.59, latitude=11.82,
 zoom=5, min_zoom=1, max_zoom=8,
 pitch=0, bearing=0)
 r = pdk.Deck(layers=[layer], initial_view_state=view_state)

➌ r.to_html("scatterplot_layer.xhtml")

https://pydeck.gl/gallery/hexagon_layer.xhtml

After importing the libraries and reading the CSV file in as a
DataFrame, you call pydeck’s Layer method and choose a ScatterplotLayer

➊. In the process, you also make the points 10 km in radius, color them
white, and make them “pickable” so that you can hover the cursor over
each point to see the associated data in the DataFrame (as shown on the
map for the “Dama Ali” volcano).

Next, you need to set the view_state, which tells pydeck where to

center the map, how far in to zoom, and the pitch and bearing ➋. These
last two let you produce a tilted view, like the one in Figure 17-14. You
end by telling pydeck how to render the map and save it as an HTML

file ➌.

If you play with this example for a few minutes, some issues become
apparent. To assign each type of volcano a unique color, you need to
create a new column in the DataFrame using the following code:

color_lookup = pdk.data_utils.assign_random_colors(df['Type'])
df['color'] = df.apply(lambda row: color_lookup.get(row['Type']), axis=1)

Likewise, if you want a legend, you’ll need to use an external library
like Matplotlib to make one (search for matplotlib.pyplot.colorbar) and

then render it beside your pydeck visualization. Compare this to the
Plotly Express and hvPlot examples, in which both of these tasks were
either extremely intuitive or completely automatic.

These issues are partly a function of pydeck’s immaturity and might
be addressed by the time you read this. However, the current takeaway
is that pydeck is best reserved for data analytics use cases with large
datasets—and that’s where it excels.

With pydeck, you can use Python to access Google Earth Engine

(https://earthengine.google.com/), a cloud computing platform for

processing satellite imagery and other Earth observation data. Earth
Engine hosts a multi-petabyte catalog of geospatial datasets and satellite
imagery that includes historical earth images going back more than 40
years. It ingests images on a daily basis, stores them in a public data
archive, and then makes them freely available for global-scale data
mining by academic, nonprofit, business, and government users.

In addition to allowing access to a large warehouse of geospatial data,
Earth Engine provides the computational power, APIs, and other tools
needed to analyze the large datasets. According to the website, these
tools provide planetary-scale analysis capabilities that allow scientists,
researchers, and developers to detect changes, map trends, and quantify
differences on the Earth’s surface.

The pydeck-earthengine-layer wrapper

(https://github.com/UnfoldedInc/earthengine-layers/tree/master/py/)

connects pydeck to Google Earth Engine using deck.gl layers for the
Earth Engine API (https://earthengine-layers.com/). This makes it possible

to visualize enormous geospatial datasets with Python. The pydeck
wrapper, released in 2020, can be easily installed through conda-forge.
To use it, you’ll need to authenticate with an Earth Engine–enabled
Google Account (you can sign up at
https://earthengine.google.com/new_signup/).

Whereas Earth Engine visualizations are typically raster based,
pydeck gives you the ability to mix raster- and vector-based graphics to
open up new visualization opportunities. You can add interactivity, such

https://earthengine.google.com/
https://github.com/UnfoldedInc/earthengine-layers/tree/master/py/
https://earthengine-layers.com/
https://earthengine.google.com/new_signup/

as hover-based tooltips, and you can interpret Earth Engine data as
terrain elevations to display them in 3D. You can even upload and
manipulate your own datasets using Earth Engine platform

(https://earthengine.google.com/platform/).

To help you get started, Earth Engine comes with many prepackaged
datasets (https://developers.google.com/earth-engine/datasets/) and example

case studies (https://earthengine.google.com/case_studies/). With pydeck and

Earth Engine, you can monitor rainfall and floods, vegetation changes,
forest fires and deforestation, urban sprawl, and more, without the need
to download thousands of satellite images to your computer.

If you expect to work regularly with “planetary scale” datasets,
pydeck is a great solution. It’s also easier to install than KeplerGL
because you can use conda-forge. Though it can’t compete with Plotly
Express or hvPlot for making quick and simple plots on smaller
datasets, that gap should start to close as the product matures.

Bokeh

Bokeh, introduced in Chapter 16, is one of the major plotting libraries
for Python. Like the Matplotlib and Plotly libraries, it comes with its
own geospatial capabilities
(https://docs.bokeh.org/en/latest/docs/user_guide/geo.xhtml).

Bokeh can accept geospatial data from multiple sources, including
GeoPandas and GeoJSON. It can also consume XYZ tile services which
use the Web Mercator projection. With the gmap() method you can plot
glyphs over a Google Map, though you must pass the method a Google
API Key, and any use of Bokeh with Google Maps must be within
Google’s Terms of Service.

Although Bokeh lets you reproduce geospatial capabilities available
in other libraries, such as choropleths, heatmaps, map tiles, and so on,
you might find the process more difficult. A common user complaint is
that the documentation and learning resources are limited. Beginners
can also struggle with the “mid-level” API that is not exactly difficult,
but it’s not exactly easy, either. This can be mitigated somewhat by

https://earthengine.google.com/platform/
https://developers.google.com/earth-engine/datasets/
https://earthengine.google.com/case_studies/
https://docs.bokeh.org/en/latest/docs/user_guide/geo.xhtml

using a high-level API like hvPlot that uses Bokeh as its plotting
backend.

Choosing a GeoVis Library

At this point, you’ve probably concluded that choosing any kind of
visualization library in Python is like shopping for a new car. You’ll
never get all the features you want in one place, and for every really
useful feature there’s an offsetting limitation that forces you to
compromise.

There is hope, however. Thanks to “bridging” libraries like
Contextily, IPYMPL, hvPlot, and others, the lines between geospatial
plotting libraries are becoming increasingly blurred. In addition, most
libraries can work with GeoPandas, Python’s workhorse for parsing
geospatial data, and libraries like Datashader can help with plotting
large datasets.

Nevertheless, there are still some important differences that can
inform your decision of which library, or libraries, to use. As noted in
the previous chapter, maturity can be a discriminating factor among
plotting libraries. Figure 17-15 shows the age of the various GeoVis
libraries as of the year 2022. This plot is at the same scale as Figure 16-
26, and if you compare the two, you’ll see that even the oldest GeoVis
libraries are less than half the age of the oldest InfoVis and SciVis
library.

Figure 17-15: The relative ages of the GeoVis libraries

Still, the volume of discussion around mature and widely used
libraries such as GeoPandas, folium, and Plotly means you’ll find
abundant material on how to use them. They will be more battle-tested,
and you’re unlikely to be the first person to encounter a frustrating bug
or show-stopping limitation. At the same time, some younger libraries
have “old bones.” For example, geoplot is built on Cartopy, and
GeoViews is built on HoloViews and Cartopy, both of which have 10
times the number of users of GeoViews itself. Whether a library is
mature and well used depends to some degree on the libraries on which
it is built.

To further discriminate among libraries, let’s focus on strongpoints.
This book assumes that most scientists will want to abstract away as
much programming as possible and learn only one API. To this end, the

shaded cells in Figure 17-16 indicate an out-of-the-box distinguishing
feature of a library, based on a combination of factors such as the
developer’s claims, online tutorials and reviews, and my own personal
experience. The darker the shade the better, and qualifying factors are
annotated. Lack of shading does not necessarily mean a feature is absent
from a library but that 1) it’s subordinate to what you can find in
competing libraries, or 2) it requires the use of additional libraries for
implementation.

Figure 17-16: Strongpoints (shaded with qualifiers) of important Python geospatial libraries

As an example, one of Cartopy’s main selling points is its powerful
projection system, permitting highly accurate mapping together with
the ability to perform complex data transformations between reference
systems. This doesn’t mean the other libraries will plot New York City
in the middle of the Atlantic, it just means that they are subordinate to
Cartopy, and libraries built on it, when it comes to handling projections.
So, if this capability is very important to you, Cartopy, geoplot, and
GeoViews should be on your radar.

The folium and ipyleaflet libraries come with a large selection of
easily accessible map tiles. GeoPandas provides access to these through
the Contextily library. Although this isn’t a high hurdle to clear, it does
break the premise of science first, programming second.

If you expect to do a lot of remote sensing work, the pydeck library
comes with an easy connection to Google Earth Engine with its
petabytes of satellite imagery.

When it comes to ease of use, Plotly Express and folium can’t be
beat. They represent plotting “sweet spots” that do many things well, as
long as you’re not using huge datasets. To appreciate this, try to
reproduce the Plotly Express map in Figure 17-7 with other libraries
and the same amount of code, as shown on page 467.

If you’re already a seaborn and Matplotlib user, you should find
GeoPandas, Cartopy, and geoplot somewhat intuitive. GeoViews suffers
from limited documentation, but you can use hvPlot, also part of the
HoloViz family, as an easy-to-use “Plotly Express-like” plotting option
(see “GeoViews: The HoloViz Approach” on page 476).

GeoViews appears to check all the boxes to some degree. It’s a single,
do-it-all, cradle-to-grave library that, as part of the unified HoloViz
family, may position you well for the future. First released in 2016,
GeoViews has time to grow its popularity and, hopefully, its supporting
documentation.

In terms of data size, most libraries have no trouble plotting
hundreds of thousands of points, but many begin to choke on larger
datasets. This can be mitigated somewhat with Datashader. Though not
a geospatial library per se, it’s a must-have library for scientists who deal
with really large geospatial datasets. It breaks the visualization process
into multiple steps and runs in parallel to quickly create displays for
large datasets. Likewise, pydeck helps you manage the enormous
datasets available through sites like Google Earth Engine.

Finally, just because GeoPandas doesn’t tick many boxes doesn’t
mean you won’t be using it. It’s still the most popular way to wrangle
geospatial data. There are just better ways to plot and explore the
results.

Summary

Geospatial data comprises vector and/or raster data that includes a
reference to geographical location. In this chapter, we reviewed the
more important Python libraries for plotting this type of data.

The most popular open source Python library for parsing geospatial
data is GeoPandas, which also comes with plotting capability built on
top of Matplotlib. As many other packages work with GeoPandas, you
might find yourself using this library for preparing data while plotting
the results using a different tool.

As with the InfoVis libraries discussed in the Chapter 16, your
personal choice for a geospatial plotting library will depend largely on
what you need to plot—both now and in the future—and how much
effort you want to expend. To help you choose, Figure 17-16 provided a
summary of the out-of-the-box distinguishing features of the major
geospatial libraries. Keep in mind, however, that it’s always possible to
cobble-together a custom suite of packages using “bridging” libraries
that fill-in missing capabilities.

PART IV
THE ESSENTIAL LIBRARIES

Of all the Python libraries that are important to science, NumPy,
Matplotlib, and pandas are arguably the most essential. These three
libraries form a triptych, with each panel built on the one before.
Together, they serve as an immense canvas for most scientific and data
analysis work in Python.

What makes these libraries essential? For one thing, they’re mature,
reliable, and used across many disciplines. As established libraries, they
come with enormous support networks consisting of online forums,
tutorials, and example use cases as well as many excellent print and
ebooks dedicated to each. Further, they form the basis for other
important libraries. Some knowledge of NumPy, Matplotlib, and pandas
is needed to proficiently use Python in most scientific and engineering
endeavors.

In the following three chapters, we’ll look at each of these packages
in turn. As whole volumes can be dedicated to each library, we’ll focus
on the purpose of the libraries, the components that have proven
difficult or frustrating for new users, and the basic functionality needed
to begin applying the packages to your own projects.

18
NUMPY: NUMERICAL PYTHON

Short for Numerical Python, NumPy serves as Python’s foundational library for

numerical computing. It extends Python’s mathematical capability and forms
the basis of many scientific and mathematical packages. As a result, you’ll need
to understand NumPy in order to effectively use Python’s scientific libraries
such as Matplotlib (for plotting) and pandas (for data analysis).

NumPy is open source and comes preinstalled with Anaconda. It augments
the built-in tools in the Python Standard Library, which can be too simple for
many data analysis calculations. Using NumPy, you can perform fast operations,
including mathematical, logical, shape manipulation, sorting, selecting, I/O,
discrete Fourier transforms, basic linear algebra, basic statistical operations,
random simulation, and more.

At the core of NumPy is the array data structure, which is basically a grid of

values. By using precompiled C code, multidimensional arrays, and functions
that operate on arrays, NumPy speeds up the running of slower algorithms and
performs high-level mathematical calculations in a highly efficient manner.
NumPy also makes it easier to work with large, uniform datasets with millions
to billions of samples.

You can’t understand NumPy if you don’t understand arrays, so in this
chapter, we’ll focus on these features first and then look at some of the library’s
basic functionality. For further study, visit the official site (https://numpy.org/),

which contains both “quickstart” and more detailed tutorials and guides.

https://numpy.org/

Introducing the Array

In computer science, an array is a data structure that contains a group of
elements (values or variables) of the same size and data type (referred to as dytpes

in NumPy). An array can be indexed by a tuple of nonnegative integers, by
Booleans, by another array, or by integers.

Here’s an example of a two-dimensional array of integers, comprising a grid
of two rows and three columns. Because arrays use square brackets, they look a
lot like Python lists:

array([[0, 1, 2],
 [3, 4, 5]])

To select an element from this array, you can use standard indexing and
slicing techniques. For example, to select the element 2, you would index first
the row and then the column, using [0][2](remember: Python starts counting at
0, not 1).

There are several reasons why you might want to work with arrays.
Accessing individual elements by index is extremely efficient, making runtimes
constant regardless of the array size. In fact, arrays let you perform complex
computations on entire blocks of data without the need to loop through and
access each element one at a time. As a result, NumPy-based algorithms run
orders of magnitude faster than those in native Python.

In addition to being faster, arrays store data in contiguous memory blocks,
resulting in a significantly smaller memory footprint than built-in Python
sequences, like lists. A list, for example, is basically an array of pointers to
(potentially) heterogeneous Python objects stored in non-contiguous blocks,
making it much less compact than a NumPy array. Consequently, arrays are
often the preferred data structure for storing data reliably and efficiently. The
popular OpenCV computer vision library, for example, manipulates and stores
digital images as NumPy arrays.

Describing Arrays Using Dimension and Shape

Understanding arrays requires knowledge of their layout. The number of
dimensions in an array is the number of indexes needed to select an element from

the array. You can think of a dimension as an array’s axis.

The number of dimensions in an array, also called its rank, can be used to

describe the array. Figure 18-1 is a graphical example of one-, two-, and three-

dimensional arrays.

Figure 18-1: Graphical representations of arrays in one, two, and three dimensions

The shape of an array is a tuple of integers representing the size of the array

along each dimension, starting with the first dimension (axis 0). Example shape
tuples are shown below each array in Figure 18-1. The number of integers in
these tuples equals the array’s rank.

A one-dimensional array, also referred to as a vector, has a single axis. This is

the simplest form of array and is the NumPy equivalent to Python’s list data
type. Here’s an example of how the 1D array in Figure 18-1 looks in Python:

array([5, 4, 9])

Arrays with more than one dimension are basically arrays within arrays. An
array with both rows and columns is called a 2D array. The 2D array in Figure
18-1 has a shape tuple of (2, 3) because the length of its first axis (0) is 2 and the
length of its second axis (1) is 3.

A 2D array is used to represent a matrix. You might remember from math

class that these are rectangular grids of elements such as numbers or algebraic
expressions, arranged in rows and columns and enclosed by square brackets.
Matrices store data in an elegant and compact manner, and despite containing
many elements, each matrix is treated as one unit.

Here’s an example of the 2D array in Figure 18-1 rendered in Python:

array([[4.1, 2.0, 6.7],
 [0.3, 9.4, 2.2]])

An array with three or more dimensions is called a tensor. As mentioned

earlier, arrays can have any number of dimensions. Here’s an example of the 3D
array in Figure 18-1:

array([[[1, 0, 1, 1],
 [0, 1, 1, 1],
 [1, 1, 0, 1]],

 [[0, 0, 0, 0],
 [0, 0, 0, 0],
 [1, 1, 0, 1]]])

Tensors can be difficult to visualize in a two-dimensional display, but Python
tries to help you out. Note how a blank line separates the two stacked matrices
that comprise the 3D grid. You can also determine the rank of an array by
counting the number of square brackets at the start of the output. Three square
brackets in a row means that you’re dealing with a 3D array.

Creating Arrays

NumPy handles arrays through its ndarray class, also known by the alias array.
The ndarray name is short for N-dimensional, as this class can handle any number

of dimensions. NumPy ndarrays have a fixed size at creation and can’t grow like a
Python list or tuple. Changing the size of an ndarray creates a new array and
deletes the original.

NOTE

You should know numpy.array is not the same as array.array, found in the Python

Standard Library. The latter is only a one-dimensional array and has limited

functionality compared to NumPy arrays.

NumPy comes with several built-in functions for creating ndarrays. These let
you create arrays outright or convert existing sequence data types, like tuples
and lists, to arrays. Table 18-1 lists some of the more common creation
functions. We’ll look at some of these in more detail in the sections that follow.
You can find a complete listing of creation functions at
https://numpy.org/doc/stable/reference/routines.array-creation.xhtml.

Table 18-1: Array Creation Functions

Function Description

array Convert (copy) input sequence to an ndarray by inferring or
specifying a dtype

asarray Like array but with fewer options and does not create a copy by
default

https://numpy.org/doc/stable/reference/routines.array-creation.xhtml

Function Description

arange Like built-in range() function but returns an ndarray instead of a
list

linspace Return evenly spaced numbers over a specified interval

ones Produce an ndarray of all 1s with a given shape and dtype

ones_like Produce a ones ndarray of the same shape and dtype as an input
array

zeros Produce an ndarray of all 0s with a given shape and dtype

zeros_like Produce a zeros ndarray of the same shape and dtype as an input
array

empty Allocate new memory for a new unpopulated ndarray of a given
shape

empty_like Allocate new memory for a new unpopulated ndarray based on
an input array

full Produce an ndarray of a given shape and dtype with all values set
to a fill value

full_like Take an input array and produce a filled array of the same shape
and dtype

eye Return a square 2D array with ones on the diagonal and zeros
elsewhere

identity Like eye but without the option to specify the index of the
diagonal

Because arrays must contain data of the same type, the array needs to know
the dtype that’s being passed to it. You’ll have the choice of letting the functions
infer the most suitable dtype (although you’ll want to check the result) or
providing the dtype explicitly as an additional argument.

Some commonly used dtypes are listed in Table 18-2. The Code column lists
the shorthand arguments you can pass to the functions in single quotes, such as
dtype= 'i8 ', in place of dtype= 'int64 '. For a full list of supported data types, visit
https://numpy.org/doc/stable/user/basics.types.xhtml.

Table 18-2: Common NumPy Data Types

Type Code Description

https://numpy.org/doc/stable/user/basics.types.xhtml

Type Code Description

bool ? Boolean type (True and False).

object O Any Python object type.

string_ Sn Fixed-length ASCII string type with 1 byte per
character. The n parameter represents the
length of the longest string, such as 'S15'.

unicode_ Un Fixed-length Unicode type with number of
bytes platform specific. The n parameter
represents the longest length, such as 'U12'.

int8, uint8 i1, u1 Signed and unsigned 8-bit (1 byte) integer
types.

int16, uint16 i2, u2 Signed and unsigned 16-bit integer types.

int32, uint32 i4, u4 Signed and unsigned 32-bit integer types.

int64, uint64 i8, u8 Signed and unsigned 64-bit integer types.

float32 f4 or f Single-precision floating-point type.

float64 f8 or d Double-precision floating-point type
compatible with Python float.

float128 f16 or g Extended-precision floating-point type.

complex64 c8 Complex number represented by two 32-bit
floats.

complex128 c16 Complex number represented by two 64-bit
floats.

complex256 c32 Complex number represented by two 128-bit
floats.

For string and Unicode dtypes, the length of the longest string or Unicode
object must be included in the dtype argument. For example, if the longest string
in a dataset has 12 characters, the assigned dtype should be 'S12'. This is
necessary because all the ndarray elements should be of the same size. There’s no
way to create variable-length strings, so you must ensure that enough memory
is allocated to hold every possible string in the dataset. When using existing

input, such as when converting a list of strings to an array, NumPy can make

this calculation for you.

Because the amount of memory used by the dtypes is automatically assigned
(or can be input), NumPy knows how much memory to allocate when creating
ndarrays. The choices in Table 18-2 give you plenty of control over how data is
stored in memory, but don’t let that intimidate you. Most of the time, all you’ll
need to know is the basic type of data you’re using, such as a float or integer.

HOW NUMPY ALLOCATES MEMORY

The genius of NumPy is in how it allocates memory. The following figure
shows information stored in a 3x4 2D array of numbers from 0 to 11,
represented by the “Python View” diagram at the bottom of the figure.
You’re already familiar with parameters such as dtype, dimensions, and
data, so let’s focus on memory allocation and strides.

The values of an ndarray are stored as a contiguous block of memory in
your computer’s RAM, as shown by the Memory Block diagram in the
figure. This is efficient, as processors prefer items in memory to be in
chunks rather than randomly scattered about. The latter occurs when you
store data in Python data types like lists, which keep track of pointers to

objects in memory, creating “overhead” that slows down processing.

To help NumPy interpret the bytes in memory, the dtype object stores
additional information about the layout of the array, such as the size of the

data (in bytes) and the byte order of the data. Because we’re using the int32

dtype in the example, each number occupies 4 bytes of memory (32 bits/8
bits per byte).

Ndarrays come with an attribute, strides, which is a tuple of the number
of bytes to step in each dimension when traversing an array. This tuple
informs NumPy on how to convert from the contiguous Memory Block to
the Python View array shown in the figure.

In the figure, the memory block consists of 48 bytes (12 integers x 4
bytes each), stored one after the other. The array strides indicate how
many bytes must be skipped in memory to move to the next position along
a certain axis. For example, we must skip 4 bytes (1 integer) to reach the
next column, but 16 bytes (4 integers) to move to the same position in the
next row. Thus, the strides for the array are (16, 4).

Using the array() Function

The simplest way to create an array is to pass the NumPy array() function a
sequence, such as a list, which is then converted into an ndarray. Let’s do that
now to create a 1D array. We’ll begin by importing NumPy using the alias np
(this is by convention and will reduce the amount of typing needed to call
NumPy functions):

In [1]: import numpy as np

In [2]: arr1d = np.array([1, 2, 3, 4])

In [3]: type(arr1d)
Out[3]: numpy.ndarray

In [4]: print(arr1d)
[1 2 3 4]

You can also create an ndarray by passing the array() function a variable, like
this:

In [5]: my_sequence = [1, 2, 3, 4]

In [6]: arr1d = np.array(my_sequence)

In [7]: arr1d
Out[7]: array([1, 2, 3, 4])

To create a multidimensional array, pass array() a nested sequence, where
each nested sequence is the same length. Here’s an example that uses a list

containing three nested lists to create a 2D array:

In [8]: arr2d = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])

In [9]: print(arr2d)
[[0 1 2]
 [3 4 5]
 [6 7 8]]

Each nested list became a new row in the 2D array. To build the same array
from tuples, you would replace all the square brackets [] in line In [8] with
parentheses ().

NOTE

When you print an array, NumPy displays it with the following layout: the last axis

is printed from left to right, the second-to-last is printed from top to bottom, the rest

are also printed from top to bottom, with each slice separated from the next by an

empty line. So, 1D arrays are printed as rows, 2D arrays as matrices, and 3D

arrays as lists of matrices.

Now, let’s check some of the 2D array’s attributes, such as its shape

In [10]: arr2d.shape
Out[10]: (3, 3)

its number of dimensions

In [11]: arr2d.ndim
Out[11]: 2

and its strides:

In [12]: arr2d.strides
Out[12]: (12, 4)

Although the items in an array must be the same data type, this doesn’t mean
that you can’t pass these items to the array() function within a mixture of
sequence types, such as tuples and lists:

In [13]: mixed_input = np.array([[0, 1, 2], (3, 4, 5), [6, 7, 8]])

In [14]: mixed_input
Out[14]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])

This worked because NumPy reads the data type of the elements in a
sequence rather than the data type of the sequence itself.

You won’t have the same luck, however, if you try to pass nested lists of
different lengths:

In [15]: arr2d = np.array([[0, 1, 2], [3, 4, 5], [6, 7]])

C:\Users\hanna\AppData\Local\Temp/ipykernel_19556/570173853.py:1:
VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences
(which is a list-or-tuple of lists-or-tuples-or ndarrays with different
lengths or shapes) is deprecated. If you meant to do this, you must specify
'dtype=object' when creating the ndarray.
 arr2d = np.array([[0, 1, 2], [3, 4, 5], [6, 7]])

You can avoid this warning by changing the dtype to object, as follows:

In [16]: arr2d = np.array([[0, 1, 2], [3, 4, 5], [6, 7]], dtype='object')

In [17]: print(arr2d)
[list([0, 1, 2]) list([3, 4, 5]) list([6, 7])]

Note that you now have a 1D array of list objects rather than the 2D array of
integers you wanted. Just as with mathematical matrices, arrays need to have the
same number of rows and columns if you plan to use them for mathematical

calculations (there’s some flexibility to this, but we’ll save it for the section on
“broadcasting”).

Now, let’s look at arrays with more than two dimensions. The array()
function transforms sequences of sequences into two-dimensional arrays;
sequences of sequences of sequences into three-dimensional arrays; and so on.
So, to make a 3D array, you need to pass the function multiple nested
sequences. Here’s an example using nested lists:

In [18]: arr3d = np.array([[[0, 0, 0],
 ...: [1, 1, 1]],
 ...: [[2, 2, 2],
 ...: [3, 3, 3]]])

In [19]: arr3d
Out[19]:
array([[[0, 0, 0],
 [1, 1, 1]],

 [[2, 2, 2],
 [3, 3, 3]]])

In this example, we passed a list containing two nested lists that each
contained two nested lists. Notice how the output array has a blank line in the

middle. This visually separates the two stacked 2D arrays created by the
function.

Keeping track of all those brackets when creating high-dimension arrays can
be cumbersome and dangerous to your eyesight. Fortunately, NumPy provides
additional methods for creating arrays that can be more convenient than the
array() function. We’ll look at some of these in the next sections.

Using the arange() Function

To create arrays that hold sequences of numbers, NumPy provides the arange()
function, which works like Python’s built-in range() function, only it returns an
array rather than an immutable sequence of numbers.

The arange() function takes similar arguments to range(). Here, we make a 1D
array of the integers from 0 to 9:

In [20]: arr1d = np.arange(10)

In [21]: arr1d
Out[21]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

We can also add a start, stop, and step argument to create an array of the
even numbers between 0 and 10:

In [22]: arr1d_step = np.arange(0, 10, 2)

In [23]: arr1d_step
Out[23]: array([0, 2, 4, 6, 8])

Next, we start the sequence at 5 and stop at 9:

In [24]: arr1d_start_5 = np.arange(5, 10)

In [25]: arr1d_start_5
Out[25]: array([5, 6, 7, 8, 9])

Whereas range() always produces a sequence of integers, arange() lets you
specify the data type of the numbers in the array. Here, we use double-precision
floating-point numbers:

In [26]: arr1d_float = np.arange(10, dtype='float64')

In [27]: arr1d_float.dtype
Out[27]: dtype('float64')

Interestingly, arange() accepts a float for the step parameter:

In [28]: arr1d_float_step = np.arange(0, 3, 0.3)

In [29]: arr1d_float_step
Out[29]: array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7])

NOTE

When arange() is used with floating-point arguments, it’s usually not possible to

predict the number of elements obtained, due to the finite floating-point precision.

For this reason, it’s better to use the NumPy linspace() function, which receives as

an argument the number of elements desired instead of the step argument. We’ll

look at linspace() shortly.

With the arange() and reshape() functions, you can create a multidimensional
array—and generate a lot of data—with a single line of code. The arange()
function creates a 1D array, and reshape() divides this linear array into different
parts as specified by a shape argument. Here’s an example using the 3D shape
tuple (2, 2, 4):

In [30]: arr3d = np.arange(16).reshape(2, 2, 4)
In [31]: print(arr3d)
[[[0 1 2 3]
 [4 5 6 7]]

 [[8 9 10 11]
 [12 13 14 15]]]

Because arrays need to be symmetrical, the product of the shape tuple must
equal the size of the array. In this case, (8, 2, 1) and (4, 2, 2) will work, but (2,
3, 4) will raise an error because the resulting array has 24 elements, whereas you
specified 16 (np.arange(16)):

In [32]: arr3d = np.arange(16).reshape(2, 3, 4)
Traceback (most recent call last):

File "C:\Users\hanna\AppData\Local\Temp/ipykernel_19556/3404575613.py", line 1, in <module>
arr3d = np.arange(16).reshape(2, 3, 4)

ValueError: cannot reshape array of size 16 into shape (2,3,4)

Using the linspace() Function

The NumPy linspace() function creates an ndarray of evenly spaced numbers
within a defined interval. It’s basically the arange() function with a num (number of
samples) argument rather than a step argument. The num argument determines

how many elements will be in the array, and the function calculates the
intervening numbers so that the intervals between them are the same.

Suppose that you want an array of size 6 with values between 0 and 20. All
you need to do is pass the function a start, stop, and num value, as follows, using
keyword arguments for clarity:

In [33]: np.linspace(start=0, stop=20, num=6)
Out[33]: array([0., 4., 8., 12., 16., 20.])

This produced a 1D array of six floating-point values, with all the values
evenly spaced. Note that the stop value (20) is included in the array.

You can force the function to not include the endpoint by setting the
Boolean parameter endpoint to False:

In [34]: np.linspace(0, 20, 6, endpoint=False)
Out[34]:
array([0. , 3.33333333, 6.66666667, 10. , 13.33333333, 16.66666667])

If you want to retrieve the size of the intervals between values, set the
Boolean parameter retstep to True. This returns the step value:

In [35]: arr1d, step = np.linspace(0, 20, 6, retstep=True)

In [36]: step
Out[36]: 4.0

By default, the linspace() function returns a dtype of float64. You can override
this by passing it a dtype argument:

In [37]: np.linspace(0, 20, 6, dtype='int64')
Out[37]: array([0, 4, 8, 12, 16, 20], dtype=int64)

You’ll need to be careful when changing the data type, however, as the result
may no longer be a linear space due to rounding.

As with arange(), you can reshape the array on the fly. Here, we produce a 2D
array with the same linspace() arguments:

In [38]: np.linspace(0, 20, 6).reshape(2, 3)
Out[38]:
array([[0., 4., 8.],
 [12., 16., 20.]])

NOTE

It’s possible to create sequences with uneven spacing. The np.logspace() function, for

example, creates a logarithmic space with numbers evenly spaced on a log scale.

The linspace() function lets you control the number of elements in an array,
something that can be challenging to do when using arange(). Arrays of evenly
spaced numbers are useful when working with mathematical functions of
continuous variables. Likewise, linear spaces come in handy when you need to
evenly sample an object, such as a waveform. To see some useful examples of
linspace() in action, visit https://realpython.com/np-linspace-numpy/.

Along these lines, the meshgrid() function creates a rectangular grid out of two
given 1D arrays. The resulting indexing matrix holds in each cell the x and y
coordinates for each point in the 2D space. Whereas meshgrid() is useful when
plotting and interpolating 2D arrays, the mgrid() function calls meshgrid() to
produce a dense “meshgrid” with multiple dimensions.

Creating Prefilled Arrays

For convenience, NumPy lets you create ndarrays using prefilled ones, zeros,
random values, or values of your own choosing. You can even create an empty
array with no predefined values. These arrays are commonly used when you
need a structure for holding computation results, for training machine learning
applications, for creating image masks, for performing linear algebra, and so on.

To create a zero-filled array, simply pass the zero() function a shape tuple, as
follows:

In [39]: np.zeros((3, 3))
Out[39]:
array([[0., 0., 0.],
 [0., 0., 0.],
 [0., 0., 0.]])

To create an array filled with ones, repeat the process with the ones()
function:

In [40]: np.ones((3, 3))
Out[40]:
array([[1., 1., 1.],
 [1., 1., 1.],
 [1., 1., 1.]])

The np.eye() function creates an array where all items are equal to zero,
except for the kth diagonal, whose values are equal to one:

https://realpython.com/np-linspace-numpy/

In [41]: np.eye(N=3, M=3, k=0)
Out[41]:
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

In [42]: np.eye(N=3, M=3, k=1)
Out[42]:
array([[0., 1., 0.],
 [0., 0., 1.],
 [0., 0., 0.]])

By default, these functions return float64 values, but you can override this
using a dtype argument, such as dtype=int.

To fill an array with a custom value and data type, use the full() function
with following syntax:

In [43]: np.full((3, 3), fill_value=5, dtype='int64')
Out[43]:
array([[5, 5, 5],
 [5, 5, 5],
 [5, 5, 5]], dtype=int64)

The empty() function returns a new ndarray of a given shape and filled with
uninitialized (arbitrary) data of the given data type:

In [44]: np.empty((2, 3, 2))
Out[44]:
array([[[2.20687562e-312, 2.05833592e-312],
 [5.73116149e-322, 0.00000000e+000],
 [2.35541533e-312, 2.07955588e-312]],

 [[2.05833592e-312, 2.44029516e-312],
 [2.35541533e-312, 2.33419537e-312],
 [0.00000000e+000, 0.00000000e+000]]])

According to the documentation, empty() does not set the array values to zero
and may therefore be marginally faster than the zeros() function. On the other
hand, it requires the user to manually set all the values in the array, thus you
should use it with caution.

Finally, you can generate arrays of pseudo-random numbers using NumPy.
For floating-point values between 0 and 1, just pass random() a shape tuple:

In [45]: np.random.random((3,3))
Out[45]:
array([[0.16666842, 0.54555604, 0.08931106],
 [0.14603673, 0.84008062, 0.67797898],
 [0.17353608, 0.34648653, 0.97878551]])

In addition, you can generate random integers, sample values from a
“standard normal” distribution, shuffle an existing array’s contents in place, and
more. We’ll look at some of these options later in the chapter, and you can find
the official documentation at
https://numpy.org/doc/stable/reference/random/generator.xhtml.

Accessing Array Attributes

As objects, ndarrays have attributes accessible through dot notation. We’ve
looked at some of these already, and you can find more listed in Table 18-3.

Table 18-3: Important ndarray Attributes

Attribute Description

ndim The number of axes (dimensions) of the array

shape A tuple of integers indicating the size of the array in each
dimension

size The total number of elements in the array

itemsize The size in bytes of each element in the array

dtype An object describing the data type of the elements in the array

strides A tuple of bytes to step in each dimension when traversing an
array

For example, to get the shape of the arr1d object, enter the following:

In [46]: arr1d = np.arange(0, 4)

In [47]: arr1d.shape
Out[47]: (4,)

As a 1D array, there’s only one axis and thus only one index. Note the
comma after the index, which tells Python that this is a tuple data type and not
just an integer in parentheses.

The size of the array is the total number of elements it contains. This is the
same as the product of the elements returned by shape. To get the array’s size,
enter the following:

In [48]: arr1d.size
Out[48]: 4

To get the array’s dtype, enter:

https://numpy.org/doc/stable/reference/random/generator.xhtml

In [49]: arr1d.dtype
Out[49]: dtype('int32')

Note that, even if you have a 64-bit machine, the default dtype for numbers
may be 32-bit, such as int32 or float32. To ensure that you’re using 64-bit

numbers, you can specify the dtype when creating the array, as follows (for int64):

In [50]: test = np.array([5, 4, 9], dtype='int64')

In [51]: test.dtype
Out[51]: dtype('int64')

To get the array’s strides, access the strides attribute with dot notation:

In [52]: arr1d.strides
Out[52]: (4,)

When using strings in arrays, the dtype needs to include the length of the
longest string. NumPy can generally figure this out on its own, as follows:

In [53]: arr1d_str = np.array(['wheat', 'soybeans', 'corn'])

In [54]: arr1d_str.dtype
Out[54]: dtype('<U8')

Note how the unicode (U) dtype includes the number 8, which is the length of
soybeans, the longest string item.

To see the data type and number of bits each item occupies, call the name
attribute on dtype, as follows:

In [55]: arr1d_str.dtype.name
Out[55]: 'str256'

In this case, each item in the array is a string occupying 256 bits (8 characters
x 32 bits). This is different from the itemsize attribute, which just displays the
size of an individual character in bytes:

In [56]: arr1d_str.itemsize
Out[56]: 32

TEST YOUR KNOWLEDGE

1. What is not a characteristic of an array?

a. Enables fast computations with small memory footprint

b. Composed entirely of elements of a single data type

c. Can accommodate up to four dimensions

d. Provides an efficient alternative to looping

2. A two-dimensional array is also known as a:

a. Linear array

b. Tensor

c. Rank

d. Matrix

3. A strides tuple tells NumPy:

a. The number of different data types in the array

b. The number of bytes to step in each dimension when traversing an
array

c. The step size when sampling an array

d. The size of the array in bytes

4. You’ve been given a dataset of various-sized digital images and asked to
take 100 evenly spaced samples of pixel intensity from each. Which
NumPy function do you use to choose the sample locations?

a. arange()

b. empty()

c. empty_like()

d. full()

e. linspace()

5. Write an expression to generate a square matrix of 100 zeros.

Indexing and Slicing Arrays

The elements within an ndarray can be accessed using indexes and slices. This
lets you extract the value of elements as well as change the values using
assignment statements. Array indexing uses square brackets [], just like Python
lists.

Indexing and Slicing 1D Arrays

One-dimensional arrays are zero-indexed, so the first index is always 0. For
indexing and slicing in reverse, the first value is -1. Figure 18-2 describes the

indexes of five elements in an array.

Figure 18-2: The indexes of a 1D ndarray

If you’re familiar with list indexing, you won’t have any problems indexing
1D arrays. Let’s look at some examples in which we select elements using both
positive and negative indexing:

In [57]: arr1d = np.array([15, 16, 17, 18, 19, 20])

In [58]: arr1d[0]
Out[58]: 15

In [59]: arr1d[-6]
Out[59]: 15

In [60]: arr1d[-1]
Out[60]: 20

To access every other element in the array, include a step value of 2:

In [61]: arr1d[::2]
Out[61]: array([15, 17, 19])

To access multiple elements at once, use an array of comma-separated
indexes, as follows:

In [62]: arr1d[[0, 2, 4]]
Out[62]: array([15, 17, 19])

After you’ve selected these elements, you can assign them a new value and
change the values in the underlying array, like this:

In [63]: arr1d[[0, 2, 4]] = 0

In [64]: arr1d
Out[64]: array([0, 16, 0, 18, 0, 20])

You can also assign new values to a group of array elements with array slices.
In this next example, we use slicing to change the first three elements to a value
of 100:

In [65]: arr1d[:3] = 100

In [66]: arr1d
Out[66]: array([100, 100, 100, 18, 0, 20])

In the previous example, the value of 100 was propagated across the entire
slice. This process is known as broadcasting. Because array slices are views of the

source array rather than copies, any changes to the view will modify the original
array. This is advantageous when working with very large arrays, as it keeps
NumPy from making memory-intensive copies on the fly.

Note that this assignment behavior persists even when array slices are
assigned to a variable:

In [67]: arr1d = np.array([0, 1, 2, 3, 4])

In [68]: a_slice = arr1d[3:]

In [69]: a_slice
Out[69]: array([3, 4])

In [70]: a_slice[0] = 666

In [71]: arr1d
Out[71]: array([0, 1, 2, 666, 4])

In [72]: a_slice[:] = 42

In [73]: arr1d
Out[73]: array([0, 1, 2, 42, 42])

Because the slice itself is an array, it has its own set of indexes that are
different from those of the source array. Thus, a_slice[:] corresponds to
arr2d[3:].

To make an actual copy rather than a view, call the copy() method, as shown
here:

In [74]: a_slice = arr1d[1:3].copy()

In [75]: a_slice[:] = 55

In [76]: a_slice
Out[76]: array([55, 55])

In [77]: arr1d
Out[77]: array([0, 1, 2, 42, 42])

Now, the a_slice array is separate from arr1d, and changing its elements does
not affect the source array.

Alternatively, you can first call the array function on the slice and then mutate
the result:

In [78]: a_slice = np.array(arr1d[:])

In [79]: a_slice[:] = 55

In [80]: arr1d
Out[80]: array([0, 1, 2, 42, 42])

Changing the a_slice array had no effect on arr1d, because the arrays
represent separate objects.

Indexing and Slicing 2D Arrays

Two-dimensional arrays are indexed with a pair of values. These value pairs
resemble Cartesian coordinates, except that the row index (the axis-0 value)
comes before the column index (the axis-1 value), as shown in Figure 18-3.
Square brackets are used again.

Figure 18-3: Indexes of a 2D ndarray

Let’s create the 2D array in Figure 18-3 to study this further:

In [81]: arr2d = np.arange(1, 10).reshape(3, 3)

In [82]: arr2d
Out[82]:
array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

In a 2D array, each value in the index pair references a 1D array (a whole row
or column) rather than a single element. For example, specifying an integer
index of 1 outputs the 1D array that comprises the second row of the 2D array:

In [83]: arr2d[1]
Out[83]: array([4, 5, 6])

Slicing a 2D array also works along 1D arrays. Here we slice over rows,
taking the last two:

In [84]: arr2d[1:3]
Out[84]:
array([[4, 5, 6],
 [7, 8, 9]])

This produced a 2D array of shape (2, 3).

To obtain a whole column in the 2D array, use the following syntax:

In [85]: arr2d[:, 1]
Out[85]: array([2, 5, 8])

The colon (:) tells NumPy to take all the rows; the 1 then selects only
column 1, leaving you with only a 1D array from the center column of arr2d.

You can also extract a column with the following syntax, though in this case,
rather than outputting a 1D array containing the column’s values, you generate
a 2D array of shape (3, 1):

In [86]: arr2d[:, 1:2]
Out[86]:
array([[2],
 [5],
 [8]])

In [87]: arr2d[:, 1:2].shape
Out[87]: (3, 1)

As a rule of thumb, if you slice a 2D array using a mixture of integer indexes
and slices, you’ll get a 1D array. If you slice along both axes, you’ll get another
2D array. For a reference, see Figure 18-4, which shows the results of using
various expressions to sample a 2D array.

As with 1D arrays, 2D slices are views of the array that you can use to modify
the values in the source array. In this example, we select the middle column in
the array in Figure 18-3 and change all of its elements to 42.

In [88]: a2_slice = arr2d[:, 1]

In [89]: a2_slice
Out[89]: array([2, 5, 8])

In [90]: a2_slice[:] = 42

In [91]: arr2d

Out[91]:
array([[1, 42, 3],
 [4, 42, 6],
 [7, 42, 9]])

Figure 18-4: Example slices through a 2D ndarray

To select individual elements from 2D arrays, specify a pair of integers as the
element’s indexes. For example, to obtain the element from the intersection of
the second row and second column, enter the following:

In [92]: arr2d[1, 1]
Out[92]: 42

Note that this syntax is a less cumbersome version of the more traditional
nested list syntax in which each index is surrounded by brackets:

In [93]: arr2d[1][1]
Out[93]: 42

Indexing and Slicing Higher-Dimensional Arrays

The key to indexing and slicing arrays with more than two dimensions is to
think of them as a series of stacked arrays of a lower dimension. We’ll refer to these

stacked arrays as plans. As with 2D arrays, the order in which you index 3D

arrays is determined by their shape tuples.

Let’s start by looking at a 3D array with a shape of (2, 3, 4). You can think of
the first value in the shape tuple as the number of 2D arrays within that 3D
array. The next two numbers are treated as the shape tuple for these 2D arrays,
representing its rows and columns, respectively. Here’s an example:

In [94]: arr3d = np.arange(24).reshape(2, 3, 4)

In [94]: arr3d
Out[94]:
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],

 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])

When you look at the output, you should see two separate 2D arrays of
shape (3, 4) stacked one atop the other. These are demarcated by a space in the
output as well as by a new set of square brackets around the second 2D array.

Because the array contains two matrices, the 3D component to the shape
tuple is 2. This number comes first, so you can think of the shape tuple as
recording the number of plans, rows, and columns.

To see how this works, let’s use indexes to retrieve the value 20 in the array.
We can use the array’s shape tuple (plans, rows, columns) to guide us:

In [95]: arr3d[1, 2, 0]
Out[95]: 20

First, we had to choose the second 2D array, which has an index of 1 because
Python starts counting at 0. Next, we selected the third row using 2. Finally, we
selected the first column using 0. The key is to work your way through the
shape tuple in order. The dimension of the array will let you know how many
indexes you’ll need (three for a 3D array, four for a 4D array, and so on).

Slicing also follows the order of the shape tuple. For example, to get a view
of the arr3d array’s lower 2D array, you would enter 1 for the plan and then use
the colon shorthand notation to select all of its rows and columns:

In [96]: arr3d[1, :, :]
Out[96]:

array([[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]])

For reference, Figure 18-5 shows some example slices through a 3D array,
along with the resulting shapes.

Figure 18-5: Some example slices through a 3D ndarray

As always, changing the values of elements in a slice will change the source
array, unless the slice is a copy:

In [97]: arr3d[0, :, :] = 0

In [98]: arr3d
Out[98]:
array([[[0, 0, 0, 0],
 [0, 0, 0, 0],
 [0, 0, 0, 0]],

 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])

Before we move on, let’s practice indexing and slicing an array with more
than three dimensions. For example, look at the following 4D array:

In [99]: arr4d = np.arange(24).reshape(2, 2, 2, 3)

In [100]: arr4d
Out[100]:

array([[[[0, 1, 2],
 [3, 4, 5]],

 [[6, 7, 8],
 [9, 10, 11]]],

 [[[12, 13, 14],
 [15, 16, 17]],

 [[18, 19, 20],
 [21, 22, 23]]]])

Note how the array starts with four square brackets and uses two blank lines
to separate the two stacked 3D arrays. Because we’re dealing with a 4D array, to
select the 20 element, you will need to enter four indexes:

In [101]: arr4d[1, 1, 0, 2]
Out[101]: 20

Here, from left to right, you indexed a 4D array to a 3D array; a 3D array to
a 2D array; a 2D array to a 1D array; and a 1D array to a single element. This
might be more obvious in Figure 18-6, which demonstrates stepping through
these in order.

Figure 18-6: Indexing a 4D array down to a single element at [1, 1, 0, 2]

This style of ordering will hold true for any number of dimensions.

Finally, for 4D arrays, where the fourth dimension represents time, it can be
useful to think of the arrays arranged horizontally, rather than vertically (Figure
18-7).

Figure 18-7: Each 4D slice can represent the same 3D array sampled at a different time.

In this case, each single 4D slice would represent the same dataset (the 3D
array) measured at a different point in time. So, to look at the first set of
measurements, you would enter arr4d[0, :, :], and for the last set of
measurements, you could enter arr4d[-1, :, :].

Boolean Indexing

In addition to using numerical indexing and slicing, you can select elements in
arrays using conditions and Boolean operators. This lets you extract elements
without any prior knowledge of where they are in the array. For example, you
might have hundreds of monitor wells around a landfill, and you want to find all
the wells that detect the pollutant toluene above a certain threshold value. With
Boolean indexing, not only can you identify these wells, but you can also create
a new array based on the output.

To illustrate, the following condition searches an array for any elements that
are integers greater than or equal to four:

In [102]: arr1d = np.array([1, 2, 3, 4, 5])

In [103]: print(arr1d >= 4)
[False False False True True]

As you can see, Python will return an array of Boolean values containing True
values where the condition is satisfied. Note that this syntax works for ndarrays of
any dimension.

NumPy can also use the Booleans behind the scenes, allowing you to slice an
array based on a conditional:

In [104]: a_slice = arr1d[arr1d >= 4]

In [105]: a_slice
Out[105]: array([4, 5])

Comparing two arrays also produces a Boolean array. In this example we flag
as True all the values in arr_2 that are greater than those in arr_1:

In [106]: arr_1 = np.random.randn(3, 4)

In [107]: arr_2 = np.random.randn(3, 4)

In [108]: arr_2 > arr_1
Out[108]:
array([[True, True, False, True],
 [True, False, True, False],
 [False, True, True, True]])

A common use of Boolean indexing is to partition a grayscale image into
foreground and background segments, a process called thresholding. This

produces a binary image based on a cutoff value. Here’s an example in which we
create a 2D image array and then threshold on values above 4:

In [109]: img = np.array([
 [12, 13, 14, 4, 16, 1, 11, 10, 9],
 [11, 14, 12, 3, 15, 1, 10, 12, 11],
 [10, 12, 12, 1, 14, 3, 10, 12, 12],
 [9, 11, 16, 0, 4, 2, 3, 12, 10],
 [12, 11, 16, 14, 10, 2, 16, 12, 13],
 [10, 15, 16, 14, 14, 4, 16, 15, 12],
 [13, 17, 14, 10, 14, 1, 14, 15, 10]])

In [110]: img_thresh = (img > 4).astype(int)

Remember that True evaluates to 1, and False evaluates to 0. This lets us
convert a Boolean array to a numerical array by tacking on the astype() function
and passing it the integer data type.

After thresholding, the 0 values in the new array should form the number 4:

In [111]: print(img_thresh)
[[1 1 1 0 1 0 1 1 1]
 [1 1 1 0 1 0 1 1 1]
 [1 1 1 0 1 0 1 1 1]
 [1 1 1 0 0 0 0 1 1]
 [1 1 1 1 1 0 1 1 1]
 [1 1 1 1 1 0 1 1 1]
 [1 1 1 1 1 0 1 1 1]]

To assign values based on a Boolean array, you index the source array based
on a conditional and then assign a value. Here, we assign 0 to all the elements in
the array with a value less than 5:

In [112]: img[img < 5] = 0

In [113]: img
Out[113]:
array([[12, 13, 14, 0, 16, 0, 11, 10, 9],
 [11, 14, 12, 0, 15, 0, 10, 12, 11],
 [10, 12, 12, 0, 14, 0, 10, 12, 12],
 [9, 11, 16, 0, 0, 0, 0, 12, 10],
 [12, 11, 16, 14, 10, 0, 16, 12, 13],
 [10, 15, 16, 14, 14, 0, 16, 15, 12],
 [13, 17, 14, 10, 14, 0, 14, 15, 10]])

Likewise, you can change entire rows, columns, and plans in a Boolean array
using indexing. For example, img[0] = 0 changes all the elements in the first row
of the img array to 0.

The use of Booleans in arrays involves a few quirks. Extracting elements
from an array using Boolean indexing creates a copy of the data by default,
meaning that there is no need to use the copy() function. Another idiosyncrasy of
Boolean arrays is that you must replace the and and or keywords with the & and
|characters, respectively, when writing comparison statements.

TEST YOUR KNOWLEDGE

6. Create a 2D ndarray of size 30 and shape (5, 6). Then, slice the array to
sample the values highlighted in gray:

7. Resample the array from Question 6 to retrieve the elements
highlighted in gray:

8. Slicing an ndarray produces:

a. A new array object

b. A copy of the source array

c. A view of the source array

d. A Python list object

9. Slicing a 2D array with a combination of a scalar index and another
slice produces:

a. A 2D array

b. A 1D array

d. A single element (0D array)

e. None of the above

10. What is the rank of this array?

array([[[[0, 1, 2, 3],
 [4, 5, 6, 7]],

 [[8, 9, 10, 11],
 [12, 13, 14, 15]]],

 [[[16, 17, 18, 19],
 [20, 21, 22, 23]],

 [[24, 25, 26, 27],
 [28, 29, 30, 31]]]])

Manipulating Arrays

NumPy provides tools for working with existing arrays. Common
manipulations include reshaping arrays, swapping their axes, and merging and
splitting arrays. These come in handy for jobs like rotating, enlarging, and
translating images and for fitting machine learning models.

Shaping and Transposing

NumPy comes with functions to change the shape of arrays and to transpose
arrays (invert columns with rows) and swap axes. You’ve already been working
with one of these, the reshape() function.

One thing to be aware of with reshape() is that, like all NumPy assignments, it
creates a view of an array rather than a copy. In the following example, reshaping

the arr1d array produces only a temporary change to the array:

In [114]: arr1d = np.array([1, 2, 3, 4])

In [115]: arr1d.reshape(2, 2)
Out[115]:
array([[1, 2],
 [3, 4]])

In [116]: arr1d
Out[116]: array([1, 2, 3, 4])

This behavior is useful when you want to temporarily change the shape of
the array for use in a computation, without copying any data.

Likewise, assigning an array to a new variable just creates another reference
to the source array. In the following example, despite assigning the reshaped
arr1d array to a new variable named arr2d, changing values in arr2d also changes
the corresponding values in arr1d:

In [117]: arr2d = arr1d.reshape(2, 2)

In [118]: arr2d
Out[118]:
array([[1, 2],
 [3, 4]])

In [119]: arr2d[0] = 42

In [120]: arr2d
Out[120]:
array([[42, 42],
 [3, 4]])

In [121]: arr1d
Out[121]: array([42, 42, 3, 4])

Obviously, this type of behavior can really trip you up. As mentioned earlier,
if you want to create a distinct ndarray object from an existing array, use the copy()
function.

To modify an array in place rather than just create a view, use the shape()
function and pass it a shape tuple:

In [122]: arr1d.shape = (2, 2)

In [123]: arr1d
Out[123]:
array([[42, 42],
 [3, 4]])

Compare this code to In [114] – Out [116]. Here, the source array is
permanently changed.

Flattening an Array

There are times when you’ll want to use 1D arrays as input to some process,
even though your data is of a higher dimension. For example, standard plotting
routines typically expect simple data structures, such as a list or single flat array.
Likewise, image data is generally converted to 1D arrays before being fed to the
input layer of a neural network.

Going from a higher dimension array to a 1D array is known as flattening.

The ravel() function lets you do this while making a view of the array. Here’s an

example:

In [124]: arr2d = np.arange(8).reshape(2, 4)

In [125]: arr2d
Out[125]:
array([[0, 1, 2, 3],
 [4, 5, 6, 7]])

In [126]: arr1d = arr2d.ravel()

In [127]: arr1d
Out[127]: array([0, 1, 2, 3, 4, 5, 6, 7])

To create a copy of the array when flattening, you can use the flatten()
method of the ndarray object. Because this produces a copy rather than a view, it’s
a bit slower than ravel(). Here’s the syntax:

In [128]: arr2d.flatten()
Out[128]: array([0, 1, 2, 3, 4, 5, 6, 7])

You can also flatten the original array in place by using the shape() function
and passing it the number of elements in the array:

In [129]: arr2d.shape = (8)

In [130]: arr2d
Out[130]: array([0, 1, 2, 3, 4, 5, 6, 7])

Remember, you can get the size of an array by calling its size attribute using
dot notation.

Swapping an Array’s Columns and Rows

When analyzing data, it’s good to examine it in multiple ways. Figure 18-8
shows average temperature data by month for three Texas cities. How you
present the data, either by month or by location, can be beneficial depending on

the questions you’re trying to answer as well as how much space you have for
printing the information in a report.

Figure 18-8: The average monthly temperatures (°F) for three Texas cities displayed by month and by

city

Just as Microsoft Excel lets you easily invert columns and rows, NumPy
provides the handy transpose() function for this operation:

In [131]: arr2d = np.arange(8).reshape(2, 4)

In [132]: arr2d
Out[132]:
array([[0, 1, 2, 3],
 [4, 5, 6, 7]])

In [133]: arr2d.transpose()
Out[133]:
array([[0, 4],
 [1, 5],
 [2, 6],
 [3, 7]])

This is still a view of the original array. To create a new array, you can add
the copy() function, like so:

In [134]: arr2d_transposed = arr2d.transpose().copy()

For higher-dimension arrays, you can pass transpose() a tuple of axis numbers
in the order you desire. Let’s transpose a 3D array so that the axes are reordered
with the third axis first, the first axis second, and the second axis unchanged:

In [135]: arr3d = np.arange(12).reshape(2, 2, 3)

In [136]: arr3d
Out[136]:
array([[[0, 1, 2],
 [3, 4, 5]],

 [[6, 7, 8],
 [9, 10, 11]]])

In [137]: arr3d.transpose((2, 1, 0))
Out[137]:
array([[[0, 6],
 [3, 9]],

 [[1, 7],
 [4, 10]],

 [[2, 8],
 [5, 11]]])

Another method for swapping axes is swapaxes(). It takes a pair of axes and
rearranges the array, returning a view of the array. Here’s an example:

In [138]: arr3d
Out[138]:
array([[[0, 1, 2],
 [3, 4, 5]],

 [[6, 7, 8],
 [9, 10, 11]]])

In [139]: arr3d.swapaxes(0, 1)
Out[139]:
array([[[0, 1, 2],
 [6, 7, 8]],

 [[3, 4, 5],
 [9, 10, 11]]])

Joining Arrays

NumPy provides several functions that let you merge, or stack, multiple existing

arrays into a new array. Let’s begin by making two 2D arrays, the first composed
of zeros, and the second composed of ones:

In [140]: zeros = np.zeros((3, 3))

In [141]: ones = np.ones((3, 3))

Now let’s vertically stack the two arrays using the vstack() function. This will
add the second array to the first as new rows along axis 0:

In [142]: np.vstack((zeros, ones))
Out[142]:
array([[0., 0., 0.],
 [0., 0., 0.],
 [0., 0., 0.],
 [1., 1., 1.],
 [1., 1., 1.],
 [1., 1., 1.]])

The hstack() function adds the second array as new columns on the first:

In [143]: np.hstack((zeros, ones))
Out[143]:
array([[0., 0., 0., 1., 1., 1.],

 [0., 0., 0., 1., 1., 1.],
 [0., 0., 0., 1., 1., 1.]])

The row_stack() and column_stack() functions stack 1D arrays to form new 2D
arrays. For example:

In [144]: x = np.array([1, 2, 3])

In [145]: y = np.array([4, 5, 6])

In [146]: z = np.array([7, 8, 9])

In [147]: np.row_stack((x, y, z))
Out[147]:
array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

In [148]: np.column_stack((x, y, z))
Out[148]:
array([[1, 4, 7],
 [2, 5, 8],
 [3, 6, 9]])

You also can accomplish column stacking along axis 2 using the depth
stacking function (dstack((x, y, z)). This function is like hstack(), except that it
first converts 1D arrays to 2D column vectors.

Splitting Arrays

NumPy also lets you divide, or split, arrays. As with joining, you can perform

splitting both vertically and horizontally.

Here’s an example using the vsplit() function. First, let’s create an array:

In [149]: source = np.arange(24).reshape((4, 6))

In [150]: source
Out[150]:
array([[0, 1, 2, 3, 4, 5],
 [6, 7, 8, 9, 10, 11],
 [12, 13, 14, 15, 16, 17],
 [18, 19, 20, 21, 22, 23]])

To split the source array in half vertically (axis=0), pass the vsplit() function
the array and 2 as arguments:

In [151]: split1, split2 = np.vsplit(source, 2)

In [152]: split1
Out[152]:
array([[0, 1, 2, 3, 4, 5],
 [6, 7, 8, 9, 10, 11]])

In [153]: split2
Out[153]:
array([[12, 13, 14, 15, 16, 17],
 [18, 19, 20, 21, 22, 23]])

To split the source array in half horizontally (axis=1), pass hsplit() the array
and 2 as arguments:

In [154]: split1, split2 = np.hsplit(source, 2)

In [155]: split1
Out[155]:
array([[0, 1, 2],
 [6, 7, 8],
 [12, 13, 14],
 [18, 19, 20]])

In [156]: split2
Out[156]:
array([[3, 4, 5],
 [9, 10, 11],
 [15, 16, 17],
 [21, 22, 23]])

In the previous examples, the array split must result in an equal division. With

the split() function, you can split an array into multiple arrays along an axis. You
pass the function the original array and the indexes for the parts to be split,
along with an optional axis number (the default is axis 0). For example, to divide
the source array into three arrays of two, three, and one columns, you would
enter the following:

In [157]: a, b, c = np.split(source, [2, 5], axis=1)

In [158]: a
Out[158]:
array([[0, 1],
 [6, 7],
 [12, 13],
 [18, 19]])

In [159]: b
Out[159]:
array([[2, 3, 4],
 [8, 9, 10],
 [14, 15, 16],
 [20, 21, 22]])

In [160]: c
Out[160]:
array([[5],
 [11],
 [17],
 [23]])

The indexes[2, 5] told NumPy where along axis 1 to split the array. To
repeat this over the rows, just change the axis argument to 0.

Doing Math Using Arrays

Now that you know how to create and manipulate arrays, it’s time to apply them
to their main purpose: mathematical operations. NumPy uses two internal
implementations to efficiently perform math on arrays: vectorization and

broadcasting. Vectorization supports operations between equal-sized arrays, and

broadcasting extends this behavior to arrays with different shapes.

Vectorization

One of the most powerful features of ndarrays, vectorization lets you perform

batch operations on data without the need for explicit for loops. This means that
you can apply an operation on a entire array at once without selecting each
individual element from it.

For equal-sized arrays, arithmetic operations are applied elementwise, as
shown in Figure 18-9.

Figure 18-9: Mathematical operations involving equal-sized arrays are performed on corresponding

elements.

Because looping takes place behind the scenes with code implemented in C,
vectorization leads to faster processing. Let’s look at an example in which we
compare looping in Python to vectorization in NumPy.

Start by creating two datasets of 100,000 randomly-selected integers
between 0 and 500:

In [161]: data_a = np.random.randint(500, size=100_000)

In [162]: data_b = np.random.randint(500, size=100_000)

Now, make an empty list and then loop through the two datasets, appending
each item in data_a to the list if it also occurs in data_b:

In [163]: shared_list = []

In [164]: for item in data_a:
 ...: if item in data_b:
 ...: shared_list.append(item)

Note that this can also be written as shared_list = [item for item in data_a if
item in data_b] using list comprehension.

Depending on your hardware, you’ll need to wait around five seconds or
more for this loop to complete.

Here’s the first three values in the list (yours may differ, as these were
randomly generated):

In [165]: shared_list[:3]
Out[165]: [326, 159, 155]

Let’s repeat this exercise using the NumPy isin() function. This optimized
function compares each element in a target array to another array and returns a
Boolean. We can combine this with indexing to return the elements with values
of True:

In [166]: data_a[np.isin(data_a, data_b)]
Out[166]: array([326, 159, 155, ..., 136, 416, 307])

This computation ran almost instantly compared to the previous standard
Python loop.

Vectorization also permits more concise and readable code that can resemble
mathematical expressions. For example, to multiply two arrays together, you can
forgo writing nested loops and just state arr1 * arr2, as follows:

In [167]: arr1 = np.array([[1, 1, 1], [2, 2, 2]])

In [168]: arr1
Out[168]:
array([[1, 1, 1],
 [2, 2, 2]])

In [169]: arr2 = np.array([[3, 3, 3], [4, 4, 4]])

In [170]: arr2
Out[170]:
array([[3, 3, 3],
 [4, 4, 4]])

In [171]: arr1 * arr2
Out[171]:
array([[3, 3, 3],
 [8, 8, 8]])

This behavior applies to all basic arithmetic operations, such as adding,
subtracting, multiplying, and dividing.

Broadcasting

The technique of broadcasting allows operations on arrays of different shapes. To

understand how it works, consider Figure 18-10, in which a 1D array of four
elements is multiplied by a 1D array of a single element.

Figure 18-10: An example of broadcasting when multiplying a 1D ndarray by a scalar

As you can see, the smaller array is stretched across the larger array until
they have compatible shapes. The array of shape (1,) becomes an array of shape
(4,) with its single value repeated so that element-by-element multiplication can
occur. This same behavior applies to operations between scalars and arrays.

For broadcasting to work, the dimensions of the two arrays must be
compatible. Two dimensions are compatible when they are equal or one of them
is 1. NumPy determines this compatibility by comparing the array shape tuples,
starting with the trailing (rightmost) dimension and moving left. For example,
to check whether different 24-element 3D arrays are broadcastable, NumPy
would compare their shape tuples, as shown in Figure 18-11.

Figure 18-11: Checking 3D array dimensions for compatibility (gray-shaded values)

Starting with the trailing dimension ➊, NumPy determines that both pairs of
arrays are compatible, as at least one is equal to 1. This holds true for the next

comparison ➋, but the bottom pair fails in the last comparison ➌, because 6 and

3 are not equal. Consequently, we can’t perform any mathematical operations
between these two arrays.

By contrast, in Figure 18-12, a 2D and 1D array are compatible, so the 1D
array can broadcast down to fill in the missing rows.

Figure 18-12: An example of broadcasting when adding a 2D array to a 1D array

This allows for element-by-element addition. Broadcasting can occur along
rows, columns, or plans, as needed. For more on broadcasting, including a
practical example, visit https://numpy.org/doc/stable/user/basics.broadcasting.xhtml.

The Matrix Dot Product

In NumPy, basic multiplication between arrays is executed element for element.
In other words, each element in one array is multiplied by the corresponding
element in a second array. This includes the multiplication of 2D arrays, also
known as matrices.

You might remember from math class, however, that proper matrix
multiplication involves performing operations on rows and columns, not
elements. This is the matrix dot product, in which the horizontals in the first

matrix are multiplied by the verticals in the second matrix. The results are then
added, as shown by the gray-shaded values in Figure 18-13. Not only is this
process not by element, but it’s also noncommutative, as arr1 * arr2 is not equal to

arr2 * arr1.

Figure 18-13: The matrix dot product

For multiplying two matrices in this way, NumPy provides the dot() function.
Here’s an example using the matrices in Figure 18-13:

https://numpy.org/doc/stable/user/basics.broadcasting.xhtml

In [172]: arr1 = np.array([[0, 1], [2, 3]])

In [173]: arr2 = np.array([[4, 5], [6, 7]])

In [174]: np.dot(arr1, arr2)
Out[174]:
array([[6, 7],
 [26, 31]])

You can also use the alternate syntax arr1.dot(arr2) to compute the dot
product.

In addition to the dot product, NumPy comes with other functions for
performing linear algebra. To see the full list, visit
https://numpy.org/doc/stable/reference/routines.linalg.xhtml.

Incrementing and Decrementing Arrays

You can use augmented operators such as += to change the values in an array
without creating a new array. Here are some examples using a 1D array:

In [175]: arr1d = np.array([0, 1, 2, 3])

In [176]: arr1d += 10

In [177]: arr1d
Out[177]: array([10, 11, 12, 13])

In [178]: arr1d -= 10

In [179]: arr1d
Out[179]: array([0, 1, 2, 3])

In [180]: arr1d *= 2

In [181]: arr1d
Out[181]: array([0, 2, 4, 6])

In these cases, the scalar value is applied to every element in the array.

Using NumPy Functions

Like Python’s standard math module, NumPy comes with its own set of
mathematical functions. These include universal functions and aggregate
functions. A universal function, also known as a ufunc, acts in an element-by-

element fashion and generates a new array with the same size as the input.
Aggregate functions act on a whole array and produce a single value, such as the

sum of the elements in the array.

https://numpy.org/doc/stable/reference/routines.linalg.xhtml

Universal Functions

Universal functions that perform simple element-by-element transformations,
such as taking the log or squaring an element, are referred to as unary ufuncs.

To use them, call the function and pass it an ndarray, as follows:

In [182]: arr1d = np.array([10, 20, 30, 40])

In [183]: np.log10(arr1d)
Out[183]: array([1. , 1.30103 , 1.47712125, 1.60205999])

In [184]: np.square(arr1d)
Out[184]: array([100, 400, 900, 1600], dtype=int32)

Some of the more useful unary ufuncs are listed in Table 18-4. You can find a
complete list at https://numpy.org/doc/stable/reference/ufuncs.xhtml#ufuncs/.

Table 18-4: Useful NumPy Unary Universal Functions

Function Description

abs Compute absolute value of each element

fabs Compute absolute value of each element and return
float

all Test whether all array elements along an axis evaluate
to True

any Test whether any array element along an axis evaluates
to True

ceil Compute smallest integer greater than or equal to each
element

floor Compute largest integer less than or equal to each
element

clip Limit values in array to a specified min, max range

round Round values in array to a specified number of decimals

exp Compute the exponent (ex) of each element

log, log10, log2 Compute the natural, base 10, or base 2 log per
element

rint Round elements to the nearest integer preserving the
dtype

https://numpy.org/doc/stable/reference/ufuncs.xhtml#ufuncs/

Function Description

sign Compute sign of each element (positive=1, zero=0,
negative=-1)

sqrt Compute square root of each element

square Compute the square of each element

modf Return the fractional and integral parts of array as a
new array

isnan Return Boolean array indicating NaN (Not a Number)
values

degrees Convert elements representing radians to degrees

radians Convert elements representing degrees to radians

cos, sin, tan Compute cosine, sine, or tangent for each element

cosh, sinh, tanh Compute hyperbolic cosine, sine, or tangent for each
element

arccos, arcsin, arctan Compute inverse trigonometric functions per element

arccosh, arcsinh, arctanh Compute inverse hyperbolic trigonometric functions
per element

sort arr.sort() sorts in-place; np.sort() returns a sorted copy

Universal functions that accept two arrays as input and return a single array
are called binary ufuncs. The following binary functions find the maximum and

minimum values in two arrays and return them in new arrays:

In [185]: a = np.array([1, 2, 500])

In [186]: b = np.array([0, 2, -1])

In [187]: np.maximum(a, b)
Out[187]: array([1, 2, 500])

In [188]: np.minimum(a, b)
Out[188]: array([0, 2, -1])

Some other binary functions are listed in Table 18-5.

Table 18-5: Useful NumPy Binary Universal Functions

Function Description

add Add arrays element by element

Function Description

subtract Subtract second argument array from first argument array
by element

multiply Multiply arrays element by element

divide Divide arrays element by element

floor_divide Divide arrays and truncate the remainder

power Raise elements in first array to powers in second array

maximum, fmax Return the maximum value by element, ignoring NaN
values for fmax

minimum, fmin Return the minimum value by element, ignoring NaN
values for fmax

mod Return the modulus by element

copysign Copy sign of values in second array to values in first array

greater Return Boolean array for elementwise greater than

comparison

greater_equal Return Boolean array for elementwise greater than or equal

to comparison

less Return Boolean array for elementwise less than comparison

less_equal Return Boolean array for elementwise less than or equal to

comparison

equal Return Boolean array for elementwise equality comparison

not_equal Return Boolean array for elementwise negative equality
comparison

For more on universal functions visit:
https://numpy.org/doc/stable/user/basics.ufuncs.xhtml.

Statistical Methods

NumPy also comes with methods that compute statistics for an entire array or
for data along an axis. Reducing the elements in an array to a single value can be
referred to as aggregation or reduction.

Let’s try out some of these using a 2D array of randomly generated integers:

https://numpy.org/doc/stable/user/basics.ufuncs.xhtml

In [189]: arr = np.random.randint(100, size=(3, 5))

In [190]: arr
Out[190]:
array([[85, 77, 0, 10, 24],
 [16, 39, 94, 11, 21],
 [71, 54, 8, 73, 98]])

To calculate the mean value for all the elements in this array, call mean() on
the array using dot notation:

In [191]: arr.mean()
Out[191]: 45.4

You can also pass the array to the mean() function, like so:

In [192]: np.mean(arr)
Out[192]: 45.4

The optional axis argument lets you specify the axis over which to compute
the statistics. For example, specifying axis 1 means that the calculation is
performed across the columns, producing a 1D array with the same number of

elements as rows in the array:

In [193]: arr.mean(axis=1)
Out[193]: array([39.2, 36.2, 60.8])

Specifying axis 0 tells the function to compute the down the rows. In the

following example, this yields a 1D array of five elements, equal to the number
of columns:

In [194]: arr.sum(axis=0)
Out[194]: array([172, 170, 102, 94, 143])

These functions can also be called without the axis keyword:

In [195]: arr.mean(1)
Out[195]: array([39.2, 36.2, 60.8])

Table 18-6 lists some useful statistical methods for arrays. You can use the
whole array or specify an axis.

Table 18-6: Useful NumPy Statistical Methods

Function Description

argmin Index of the element with the minimum value

Function Description

argmax Index of the element with the maximum value

count_nonzero Counts the number of non-zero values in an array

cumprod Cumulative product of elements starting with index
1

cumsum Cumulative sum of elements starting with index 0

mean Arithmetic mean of elements

min Minimum value of elements

max Maximum value of elements

std Standard deviation of elements

sum Sum of the elements

var Variance of the elements

Note that NumPy also comes with the apply_along_axis() aggregate function
that lets you supply the statistical function, axis, and array as arguments. Here’s
an example using the previous array:

In [196]: np.apply_along_axis(np.mean, axis=1, arr=arr)
Out[196]: array([37.4, 31. , 74.4])

You can also define your own functions and pass them to apply_along_axis():

In [197]: def cube(x):
 ...: return x**3

In [198]: np.apply_along_axis(cube, axis=1, arr=arr)
Out[198]:
array([[614125, 456533, 0, 1000, 13824],
 [4096, 59319, 830584, 1331, 9261],
 [357911, 157464, 512, 389017, 941192]], dtype=int32)

Notice how, in these examples, you were able to work with the array without
explicitly iterating over every element. Again, this is one of the great strengths
of NumPy.

Generating Pseudorandom Numbers

NumPy comes with functions for creating arrays from different types of
probability distributions. These are useful for tasks such as generating
randomized data to test machine learning models, creating data distributions

with a known shape or distribution, randomly drawing data for a Monte Carlo
simulation, and so on. They’re also at least an order of magnitude faster than
similar functions in Python’s built-in random module.

Table18-7 lists some of the functions you can find in np.random. For the full
list, visit https://numpy.org/doc/stable/reference/random/index.xhtml.

Table 18-7: Useful NumPy Pseudorandom Functions

Function Description

beta Draw samples from a Beta distribution

binomial Draw samples from a binomial distribution

chisquare Draw samples from a chi-square distribution

gamma Draw samples from a Gamma distribution

normal Draw random samples from a normal (Gaussian) distribution

permutation Return a permuted range or random permutation of a sequence

power Draw from a power function distribution

rand Create an array of a given shape populated with random
samples from a uniform distribution over (0, 1)

randint Return random integers from low (inclusive) to high (exclusive)

randn Return a sample (or samples) from the “standard normal”
distribution

random Return random floats in the half-open interval (0.0, 1.0)

seed Change the seed for the random number generator

shuffle Randomly permute a sequence in-place

uniform Draw samples from uniform distribution over half-open
interval (low, high)

Reading and Writing Array Data

NumPy can load and save data from and to disk in both binary and text format.
Supported text formats are *.txt and *.csv. Generally, you will want to use the

pandas library, built on NumPy, to work with text or tabular data. We look at
pandas in Chapter 20.

https://numpy.org/doc/stable/reference/random/index.xhtml

For storing and retrieving data in binary format, NumPy provides the save()
and load() functions. To save an array to disk, just pass a filename and the array
as arguments, as shown here:

In [199]: arr = np.arange(8).reshape(2, 4)

In [200]: arr
Out[200]:
array([[0, 1, 2, 3],
 [4, 5, 6, 7]])

In [201]: np.save('my_array', arr)

This will produce the binary file my_array.npy (the .npy extension is added

automatically).

To reload this file, enter the following:

In [202]: np.load('my_array.npy')
Out[202]:
array([[0, 1, 2, 3],
 [4, 5, 6, 7]])

The np.savez() function lets you save several arrays into a single file in
uncompressed .npz format. Providing keyword arguments lets you store them

under the corresponding name in the output file:

In [203]: arr1 = np.arange(5)

In [204]: arr2 = np.arange(4)

In [205]: np.savez('arr_arch.npz', a=arr1, b=arr2)

In [206]: archive = np.load('arr_arch.npz')

In [207]: archive['a']
Out[207]: array([0, 1, 2, 3, 4])

If arrays are specified as positional arguments (no keywords), their names will

be arr_0, arr_1, and so on, by default.

To compress data when archiving, use the savez_compressed() function:

In [208]: np.savez_compressed('arr_arch_compressed.npz', a=arr1, b=arr2)

In the event you do want to read-in a text file, NumPy provides the
genfromtxt() (generate from text) function. To load a .csv file, for example, you

would pass the function the file path, the character (comma) that separates the
values, and whether the data columns have headers, as follows:

In [209]: arr = np.genfromtxt('my_data.csv', delimiter=',', names=True)

This will produce a structured array that contains records rather than

individual items. We haven’t discussed structured arrays, because they are a low-
level tool and we’ll be using pandas for operations such as loading .csv files.

However, you can read more about structured arrays at
https://numpy.org/doc/stable/user/basics.rec.xhtml.

TEST YOUR KNOWLEDGE

11. Why is there so much whitespace in the first two elements in this
output array: ([0, 2, -10000])?

12. Which function would you use to flatten a higher-dimension array to a
1D array?

a. meshgrid()

b. vsplit()

c. ravel()

d. thresh()

13. For the array [[0, 1, 2], [3, 4, 5], [6, 7, 8]], what does the slice arr2d[:2,
2] produce?

a. array([1])

b. array([2, 5])

c. array([6, 7])

d. array([3, 4, 5])

14. In NumPy, array multiplication is done:

a. Row by column

b. Column by row

c. Element by element

d. Row by row then column by column

15. Which array is broadcastable with an array of shape (4, 3, 6, 1)?

a. (4, 6, 6, 1)

b. (1, 6, 3, 1)

c. (4, 1, 6, 6)

d. (6, 3, 1, 6)

https://numpy.org/doc/stable/user/basics.rec.xhtml

Summary

When working with uniform datasets, NumPy’s ndarrays represent a faster, more
efficient alternative to competing data structures such as Python lists. Complex
computations can be performed without the use of for loops, and ndarrays require
significantly less memory than other Python data types.

This chapter touched on a lot of NumPy basics, but there’s still more to
learn. To expand your knowledge of NumPy, I recommend NumPy’s “Beyond
the Basics” page (https://numpy.org/doc/stable/user/c-info.beyond-basics.xhtml) and

Wes McKinney’s Python for Data Analysis: Data Wrangling with Pandas, NumPy,

and IPython, 2nd edition (O’Reilly, 2018).

Before you run off and start applying NumPy, you’ll want to check out the
next two chapters on Matplotlib and pandas. These libraries are built on top of
NumPy and provide higher-level wrappers for performing data analysis and
plotting.

https://numpy.org/doc/stable/user/c-info.beyond-basics.xhtml

19
DEMYSTIFYING MATPLOTLIB

Even among the large number of plotting packages available in Python,
Matplotlib stands out. Launched in 2003 to provide a MATLAB-like
graphing interface for science and engineering, it now dominates
plotting in Python. It has spawned numerous visualization add-ons, like
seaborn, and provides the underlying plotting functionality for popular
analytical tools like pandas. With knowledge of Matplotlib, you can
generate quick and simple plots as well as elaborate, complex charts
while controlling every aspect of the display.

The Matplotlib library comes preinstalled with Anaconda. Thanks to
its maturity, popularity, and open source status, it has a large supporting
community ready to offer you advice and code samples. The best
resource is the famous Matplotlib gallery
(https://matplotlib.org/stable/gallery/index.xhtml), which contains code

“recipes” for making just about any kind of plot you can imagine.

Like any powerful piece of software, Matplotlib can be, as one
author put it, “syntactically tedious.” The simplest plots are easy, but
difficulty ramps up quickly. And even though resources like the
Matplotlib gallery provide helpful code examples, if you want
something slightly different than what’s provided, you might find

https://matplotlib.org/stable/gallery/index.xhtml

yourself scratching your head. In fact, many people use Matplotlib by
copying and pasting other people’s code and then hacking at the edges
until they get something they like. As a user once told me, “No matter
how many times I use Matplotlib, it always feels like the first time!”

Fortunately, you can greatly alleviate this pain by taking the time to
learn some key aspects of the package. So, in this chapter, we’ll study
the fundamentals of Matplotlib plots, including its two plotting
interfaces and methods for making multipanel, animated, and
customized plots. Armed with this knowledge, you may find Matplotlib
a tool to embrace instead of to avoid or use reluctantly.

However, if you don’t aspire to be a plotting warrior, take a look at
the easier seaborn wrapper in the next chapter. And if seaborn is more
than you need, there’s also the easier—though less flexible—pandas
plotting option.

Anatomy of a Plot

The first step in understanding Matplotlib is mastering the sometimes-
awkward nomenclature used for its plots. To that end, let’s dissect a plot
and its components.

Plots in Matplotlib are held within a Figure object (on left in Figure
19-1). This is a blank canvas that represents the top-level container for
all plot elements. Besides providing the canvas on which the plot is
drawn, the Figure object also controls things like the size of the plot, its
aspect ratio, the spacing between multiple plots drawn on the same
canvas, and the ability to output the plot as an image.

Figure 19-1: The Figure, Axes, and Axis components of a Matplotlib plot

The plots themselves—that is, the things that you and I think of as
figures—are represented by the Axes class (Figure 19-1, center). This

class includes most of the figure elements, such as lines, polygons,

markers (points), text, titles, and so on, as well as the methods that act
on them. It also sets the coordinate system. A Figure can contain multiple

Axes objects, but each Axes object can belong to only one Figure.

The Axes object should not be confused with the Axis element that
represents the numerical values on, say, the x- or y-axis of a chart
(Figure 19-1, right). This includes the tick marks, labels, and limits. All
these elements are contained within the Axes class.

Each of the components in Figure 19-1 exists within a hierarchical
structure (Figure 19-2). The lowest layer includes elements in Figure
19-1 such as each axis, the axis tick marks, and labels, and the curve
(Line2D). The highest level is the Figure object, which serves as a container
for everything below it.

Figure 19-2: The hierarchy of the plot components in Figure 19-1

Because a Figure object can hold multiple Axes objects, you could have
more than one Axes object point to the Figure in Figure 19-2. The
common example is subplots, in which one Figure canvas holds two or
more different plots side by side.

The pyplot and Object-Oriented Approaches

There are two primary interfaces for plotting with Matplotlib. Using
the first, referred to as the pyplot approach, you rely on Matplotlib’s

internal pyplot module to automatically create and manage Figure and Axes

objects, which you then manipulate with pyplot methods for plotting.
Designed mainly for dealing with single plots, the pyplot approach
reduces the amount of code that you need to know and write. It’s a
MATLAB-like API that can be very convenient for quick, interactive
work.

Using the second approach, called the object-oriented style, you

explicitly create Figure and Axes objects and then call methods on the

resulting objects. This gives you the most control over customizing
your plots and keeping track of multiple plots in a large program. It’s
also easier to understand interactions with other libraries if you first
create an Axes object.

In the sections that follow, we’ll look at both approaches. However,
according to the Matplotlib documentation, to maintain consistency
you should choose one approach and stick to it. They suggest using the

object-oriented style, particularly for complicated plots as well as for
methods and scripts that are intended to be reused as part of a larger
project.

It can certainly be argued that one of the reasons beginners find
Matplotlib intimidating is that they see a mixture of these approaches in
existing code, such as on question-and-answer sites like Stack Overflow.
Because this is unavoidable, I suggest that you read over the
descriptions for both approaches so that you can make an informed
decision on which one to choose for yourself and you’ll have an
awareness of the alternate approach when you encounter it in legacy
code or in tutorials.

Using the pyplot Approach

To generate a simple plot using the pyplot approach, let’s use the Jupyter
Qt console. To launch a console from your base environment, open an
Anaconda prompt (in Windows) or a terminal (in macOS or Linux).

First, run the following (you can ignore this command if your
prompt includes “base” in the name):

conda activate base

Next, enter the following:

jupyter qtconsole

Now, import Matplotlib’s pyplot module into the console. For
convenience and by convention, you should use the alias plt:

In [1]: import matplotlib.pyplot as plt

By default, plots in the console will display inline (within the

console). To enable plot interactivity, such as zooming and panning, you
can use the magic command %matplotlib qt. Subsequent plots will render
in an external Qt window, which comes with a toolbar. To restore inline
plotting, use the %matplotlib inline magic command.

NOTE

In Jupyter Notebook, you can also use %matplotlib notebook to enable in-cell

interactivity. This can cause some latency in drawing plots, however, as

rendering is done on the server side.

Now, import NumPy and use it to generate a simple 1D array for
plotting:

In [2]: import numpy as np

In [3]: data = np.arange(5, 10)

In [4]: data
Out[4]: array([5, 6, 7, 8, 9])

To plot the data, pass it to the aptly named plot() method:

In [5]: plt.plot(data);

The semicolon at the end of the line suppresses display of the Figure
object’s name, which you don’t need. You should now see Figure 19-3 in
the console.

Figure 19-3: A simple autogenerated line plot

Two things are worth noting here: we didn’t explicitly refer to Figure
or Axes objects in the code, as pyplot took care of these behind the scenes.
Nor did we specify what elements to show in the plot, including the
ticks and values displayed along the x- and y-axes. Instead, Matplotlib
looked at your data and made intelligent choices about the type of plot
you wanted and how to annotate it.

Along these lines, the plot() method makes line charts, scatter()
makes scatterplots, bar() makes bar charts, hist() makes histograms, pie()
makes pie charts, and so on. We’ll look at many of these in the sections
to come, and you can also visit
https://matplotlib.org/stable/plot_types/index.

https://matplotlib.org/stable/plot_types/index

The automatic nature of these methods is useful when you want to
quickly explore a dataset, but the resulting plots are generally too plain
for presentations or reports. One issue is that the default configuration
of methods like plt.plot() assumes that you want the size of each axis to
match the range of the input data (such as x from 5 to 8, rather than 0 to
10, if the data is limited to values between 5 and 8). It also assumes that
you don’t want a legend, title, or axis labels, and that you want lines and
markers drawn in blue. This isn’t always the case, so pyplot provides
many methods to embellish charts with titles, axis labels, grids, and so
on. We’ll look at these next.

Creating and Manipulating Plots with pyplot Methods

Despite being considered a simpler approach than the object-oriented
style, pyplot can still produce some very elaborate plots. To demonstrate,
let’s use some pyplot methods to create a more sophisticated plot than
the one shown in Figure 19-3.

A catenary is the shape that a chain assumes when it’s hung from both

of its ends. It’s a common shape in nature and architecture, examples
being a square sail under wind pressure and the famous Gateway Arch
in St. Louis, Missouri. You can generate a catenary by entering the
following code in the console window, where cosh(x) represents the
hyperbolic cosine of the x values:

In [6]: import numpy as np

In [7]: x = np.arange(-5, 5, 0.1)

In [8]: y = np.cosh(x)

Now, let’s plot the catenary using a black line with a width of 3 and
add a title, axis labels, limits to the axis values, and a background grid.
Be sure to use CTRL-ENTER after the first six lines to prevent
premature generation of the plot. After the last line, you can press
ENTER.

In [9]: plt.title('A Catenary')
 ...: plt.xlabel('Horizontal Distance')

 ...: plt.ylabel('Height')
 ...: plt.xlim(-8, 8)
 ...: plt.ylim(0, 60)
 ...: plt.grid()
 ...: plt.plot(x, y, lw=3, color='k');

For the line color, 'k' represents the single character shorthand
notation for “black.” You can see more color choices at
https://matplotlib.org/stable/tutorials/colors/colors.xhtml and more on plot()

parameters at
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.xhtml. Your

output should look like Figure 19-4.

In Matplotlib, the elements rendered on a figure canvas, such as a
title, legend, or line, are called Artist objects. Standard graphical objects,
like rectangles circles, and text, are referred to as primitive Artists. The

objects that hold the primitives, like the Figure, Axes, and Axis objects, are
called container Artists.

Figure 19-4: A line plot of a catenary

Some of the more common pyplot methods for making plots and
working with Artists are listed in Tables 19-1 and 19-2, respectively. To

https://matplotlib.org/stable/tutorials/colors/colors.xhtml
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.xhtml

see the full list, visit https://matplotlib.org/stable/api/pyplot_summary.xhtml.

Clicking the method names in this online list will take you to detailed
information on the method parameters, along with example
applications. To read more about Artists in general, visit
https://matplotlib.org/stable/tutorials/intermediate/artists.xhtml.

Table 19-1: Useful pyplot Methods for Creating Plots

Method Description Example

bar Make a bar chart plt.bar(x, height, width=0.8)

barh Make a horizontal bar chart plt.barh(x, height)

contour Draw a contour map plt.contour(X, Y, Z)

contourf Draw a filled contour map plt.contourf(X, Y, Z,

cmap='Greys')

hist Make a 2D histogram plt.hist(x, bins)

pie Display a pie chart plt.pie(x=[8, 80, 9], labels=

['A', 'B', 'C'])

plot Plot data as lines/markers plt.plot(x, y, 'r+') # Red

crosses

Polar Make a polar plot plt.polar(theta, r, 'bo') # Blue

dots

Scatter Make a scatterplot plt.scatter(x, y, marker='o')

stem Plot vertical lines to y
coordinate

plt.stem(x, y)

Table 19-2: Useful pyplot Methods for Manipulating Plots

Method Description Example

annotate Add text, arrows to Axes plt.annotate('text', (x, y))

axis Set axis properties (min,
max)

plt.axis([xmin, xmax, ymin,

ymax])

axhline Add a horizontal line plt.axhline(y_loc, lw=5)

https://matplotlib.org/stable/api/pyplot_summary.xhtml
https://matplotlib.org/stable/tutorials/intermediate/artists.xhtml

Method Description Example

axvline Add a vertical line plt.axvline(x_loc, lw=3,

c='red')

close Close a plot plt.close()

draw Update if interactive mode
off

plt.draw()

figure Create or activate a figure plt.figure(figsize=(4.0, 6.0))

grid Add grid lines plt.grid()

imshow Display data as an image pic = plt.imread('img.png')

plt.imshow(pic, cmap='gray'))

legend Place a legend on the Axes plt.plot(data, label='Data')

plt.legend()

loglog Use log scaling on each axis plt.loglog()

minorticks_off Remove minor ticks from
axis

plt.minorticks_off()

minorticks_on Display minor ticks on axis plt.minorticks_on()

savefig Save as .jpg, .png, .pdf, and so

on

plt.savefig('filename.jpg')

semilogx Use log scaling on x-axis plt.semilogx()

semiology Use log scaling on y-axis plt.semilogy()

set_cmap Set colormap plt.set_cmap('Greens')

show Show plot run from
terminal or when interactive
mode is off

plt.show()

subplot Create subplots on a figure plt.subplot(nrows, ncols, index)

text Add text to the Axes plt.text(x, y, 'text')

tight_layout Adjust padding in subplots plt.tight_layout(pad=3)

title Add a title to the Axes plt.title('text')

xkcd Turn on xkcd sketch-style* plt.xkcd()

Method Description Example

xlabel Set the x-axis label plt.xlabel('text')

xlim Set x-axis limits plt.xlim(xmin, xmax)

xticks Set tick information plt.xticks([0, 2], rotation=30)

ylabel Set the y-axis label plt.ylabel('text')

ylim Set y-axis limits plt.ylim(ymin, ymax)

yticks Set tick information plt.yticks([0, 2], rotation=30)

*For best results, the Humor Sans font should be installed.

Note that the code examples in the tables represent simple cases.
Most methods take many arguments, letting you fine tune your plots
with respect to properties like font style and size, line widths and colors,
rotation angles, exploded views, and much more (see
https://matplotlib.org/stable/api/pyplot_summary.xhtml).

Working with Subplots

So far, we’ve been working with single figures, but there’ll be times
when you’ll want to compare two plots side by side, or bundle several
charts into a summary display. For these occasions, Matplotlib provides
the subplot() method.

To see how this works, let’s begin by generating data for two
different sine waves:

In [10]: time = np.arange(-12.5, 12.5, 0.1)

In [11]: amplitude = np.sin(time)

In [12]: amplitude_halved = np.sin(time) / 2

One way to compare these waveforms is to plot them in the same
Axes, like so:

In [13]: plt.plot(time, amplitude, label='sine1')
 ...: plt.plot(time, amplitude_halved, lw=3, ls='--', label='sine2')
 ...: plt.legend();

https://matplotlib.org/stable/api/pyplot_summary.xhtml

This produces the output in Figure 19-5. By default, the curves plot
with different colors in the Qt console, but because this is a black-and-
white book, we used a different line width (lw) and line style (ls) for the
amplitude_halved data to distinguish it from the amplitude data. The label
parameter in plt.plot() also permits the use of a legend. For the list of
characters available for marker and line styles, visit
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.xhtml.

Figure 19-5: Two sine waves drawn in the same Axes object

If you’re comparing more than a few curves, a single plot can
become cluttered and difficult to read. In those cases, you’ll want to use
separate stacked plots created by the subplot() method. Figure 19-6
describes the syntax for this method, in which four subplots (Axes) are
placed in a single Figure container.

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.xhtml

Figure 19-6: Understanding the subplot() method

The subplots will be arranged in a grid, and the first two arguments
passed to the subplot() method specify the dimensions of this grid. The
first argument represents the number of rows in the grid, the second,
the number of columns, and the third argument is the index of the active

subplot (highlighted in gray in the figure).

The active subplot is the one you are currently plotting in when you
call a method like plot() or scatter(). Unlike most things in Python, the
first index is 1, not 0.

Matplotlib uses a concept called the current figure to keep track of

which Axes is currently being worked. For example, when you call
plt.plot(), pyplot creates a new “current figure” Axes to plot on. That’s
why you must press CTRL-ENTER in the console when working on a
plot. As soon as you press ENTER, the plot is complete, and a new
“current figure” is queued up. When you’re working with multiple
subplots, the index argument tells pyplot which subplot represents the
“current figure.”

NOTE

For convenience, you don’t need to use commas with the subplot()

arguments. For example, plt.subplot(223) works the same as plt.subplot(2,

2, 3), although it’s arguably less readable.

Now, let’s plot our sine waves as two separate stacked plots. The
process will be to call the subplot() method and alter its active subplot
argument to change the current subplot. For each current subplot, the
plot() method will post the data specific to that subplot, as follows:

In [14]: plt.subplot(2, 1, 1)
 ...: plt.plot(time, amplitude, label='sine1')
 ...: plt.legend(loc='upper right')
 ...:
 ...: plt.subplot(2, 1, 2)
 ...: plt.ylim(-1, 1)
 ...: plt.plot(time, amplitude_halved, label='sine2')
 ...: plt.legend(loc='best');

Note that if you don’t set the y limits on the second plot, pyplot will
automatically scale the graph so that the two subplots look identical.
Because we manually set the scale using the ylim() method, it’s clear that
the second sine wave has half the amplitude of the first (Figure 19-7).

Figure 19-7: Sine waves displayed in two horizontal subplots

These plots appear a bit cramped. Let’s give them some breathing
room by calling the tight_layout() method and passing it a pad value. The
larger the pad value, the larger the space between plots, though there is a
limit to how much space can be accommodated. Additional arguments
are available that let you fine tune the display; for example, by padding
the height and width between edges of adjacent subplots using h_pad and
w_pad.

Use the arrow keys to bring up the previous code and add the
tight_layout() method, as follows:

In [15]: plt.subplot(2, 1, 1)
 ...: plt.plot(time, amplitude, label='sine1')
 ...: plt.legend(loc='upper right')
 ...:
 ...: plt.subplot(2, 1, 2)
 ...: plt.ylim(-1, 1)
 ...: plt.plot(time, amplitude_halved, label='sine2')
 ...: plt.legend(loc='best')
 ...:
 ...: plt.tight_layout(pad=2)

This produces the plot in Figure 19-8. Now it’s clear which x-axis
goes with which subplot.

Figure 19-8: The result of calling tight_layout() on the figure

You’ve just seen how the subplot() method lets you subdivide a figure
into different drawing areas and then focus the plotting commands on a
single subplot. To help you manage even more sophisticated plots,
Matplotlib provides the GridSpec class, which we’ll look at next.

TEST YOUR KNOWLEDGE

1. An Axes object represents:

a. The x-, y-, and z-axes of a plot

b. Individual elements of a plot, such as titles and legends

c. The container for individual figure elements

d. A blank canvas

2. True or False: For complicated plots, and for methods and
scripts that are intended to be reused as part of a larger
project, the Matplotlib documentation recommends that you
use the object-oriented style.

3. Which code produces a grid of subplots four columns wide,
three rows high, and with the second subplot active?

a. plt.subplot(3, 4, 1)

b. plt.subplots(3, 4, 2)

c. plt.subplot(4, 3, 2)

d. plt.subplot(342)

4. The %matplotlib qt magic command is used to:

a. Enable graphics within the console

b. Allow interactive graphics within Jupyter Notebook

c. Open an external window with interactive controls

d. Restore inline graphics after using an external window

5. Make a Python dictionary of rocket heights using this data:
Atlas: 57, Falcon9: 70, Saturn V: 111, Starship: 120. Plot a bar
chart of the data, label the y-axis to indicate height in meters,
and set the bar width to 0.3.

Building Multipanel Displays Using GridSpec

The matplotlib.gridspec module includes a GridSpec class that lets you split
a Figure into a grid of subareas. This, in turn, helps you to create
subplots that have different widths and heights. The resulting multipanel

displays are useful for summarizing information in presentations and
reports.

Constructing a Martian Multipanel Display

Let’s work through an example: imagine that you’re studying an ancient
lakebed on Mars. You want to summarize some of your findings about
hematite, goethite, and jarosite, three iron-bearing minerals associated
with aqueous environments. You’ve sketched a layout for a compilation
figure (Figure 19-9), and now you want to create it using Matplotlib.

Figure 19-9: A sketch of the summary figure for a Mars study (generated with the xkdc()
method from Table 19-2)

NOTE

If you want to save the code, you can create this project in the Spyder text

editor or Jupyter Notebook rather than in the console. You’ve already played

with Matplotlib in these applications in Chapters 4, 5, and 6. If you’re

working in Jupyter Notebook, all of the code that defines a plot should be

contained in the same cell.

To start, if you haven’t done so already, import NumPy and
Matplotlib:

In [16]: import numpy as np

In [17]: import matplotlib.pyplot as plt

Now, call GridSpec to create a 3×3 grid and assign the resulting object
to a variable named gs, for grid spec. In the console, use CTRL-ENTER

after this statement, as we’ll now start defining the subplots:

In [18]: gs = plt.GridSpec(3, 3)

The previous code creates a grid with three rows and three columns.
To place a subplot within this grid, you index the gs object. Unlike with
the subplot() method, indexes start with 0, rather than 1.

Figure 19-10 shows the subplot locations along with their grid
indexes. To place the upper-left subplot (to hold the histogram, as
illustrated in Figure 19-9), use gs[0, :2]. This references the first row [0]
and columns one and two [:2]. Thus, the subplot spans the first two
columns of row one. Likewise, gs[:2, 2] spans the first two rows of
column three, and gs[2, 1] places that subplot in the center of row three.

Figure 19-10: Subplots for the sketch in Figure 19-9 with their GridSpec indexes annotated

Before building a subplot in the summary figure, you’ll need to
specify its grid location using the indexes in Figure 19-10. Let’s do this
now for the histogram. Because we don’t have any real Mars data, we’ll
use a dummy dataset drawn from a normal distribution (using the
NumPy random.normal() method):

 ...:
 ...: plt.subplot(gs[0,:2])
 ...: plt.title('Goethite Distribution Location 1')
 ...: plt.hist(np.random.normal(0.22, 0.02, size=500), bins=5)
 ...:

The arguments for the np.random.normal() method are the mean,
standard deviation, and number of draws from the normal distribution.
The plt.hist() method takes this output, along with the number of bins
for the histogram.

This will produce the chart in Figure 19-11, though you won’t see
this until the entire plot is finished. Your view might look slightly
different given that the histogram data is generated randomly.

Figure 19-11: The histogram subplot

Next, we’ll build the contour map below the histogram. Note that
we can build the subplots in whatever order we want, but following a
logical order makes it easier to go back and edit the code later. As
always, start by locating the subplot on the grid using plt.subplot():

 ...: plt.subplot(gs[1, :2])
 ...: plt.title('Goethite Concentration Location 1')

 ...: plt.text(1.3, 1.6, ➊ 'o--Sample A')
 ...: x, y = np.arange(0, 3, 0.1), np.arange(0, 3, 0.1)

 ...: X, Y = ➋ np.meshgrid(x, y)
 ...: Z = np.absolute(np.cos(X * 2 + Y) * 2 + np.sin(Y + 3))
 ...: plt.contourf(X, Y, Z, cmap='Greys')
 ...: plt.colorbar()
 ...:

To demonstrate placing text on plots, add an annotation identifying

the location of Sample A ➊. The text() method used to do this needs at
least an x, y location and a text string. The circle and line part of the
string (o--) represents a pointer to the sample location. Many other
arguments are available for the text() method, including ones for
fontsize, color, and rotation.

Next, generate some dummy coordinates and a mesh grid ➋ using

NumPy. The meshgrid() method creates a rectangular grid out of two
given one-dimensional arrays representing Cartesian or matrix
indexing. From this grid we can use an equation to generate
corresponding Z values. Calling the pyplot contourf() method and passing
it the coordinates and a gray colormap generates filled contours. Finish
by posting the colorbar.

This code will produce a map like the one presented in Figure 19-12.
If you want to get fancy, you can use an arrow artist to point to the
sample location (see
https://matplotlib.org/stable/tutorials/text/annotations.xhtml#annotating-

with-arrow/).

Figure 19-12: The contour map subplot

Next, we’ll generate the scatterplot in the upper-right corner of
Figure 19-9. This will plot the concentration of hematite versus
goethite at Location 1. Start by assigning the grid location, and then
add a title and labels for the x-axis and y-axis.

 ...: plt.subplot(gs[:2, 2])
 ...: plt.title('Loc1 Goe-Hem Ratio')
 ...: plt.xlabel('Hematite mg')
 ...: plt.ylabel('Goethite mg')
 ...: plt.scatter(np.random.normal(3, 1, 30), np.random.uniform(1, 30, 30))
 ...:

To generate scatterplots, you pass the plt.scatter() method a sequence
of x, y values. In this case, we’ll randomly generate these on the fly using
NumPy’s normal and uniform distribution methods, respectively. For
the normal method, the arguments are the mean, standard deviation,
and number of draws. For the uniform method, they represent the low
and high values and number of draws.

This will ultimately produce the subplot in Figure 19-13. Again,
because the data is randomly generated, every scatterplot will look
different.

https://matplotlib.org/stable/tutorials/text/annotations.xhtml#annotating-with-arrow/

NOTE

For datasets with more than a few thousand points, passing a marker type

to plt.plot() can be much more efficient than using plt.scatter(). The

reason for this is because plt.plot() renders points as clones, whereas

plt.scatter() renders each point individually, to permit altering marker

sizes to reflect data values or to differentiate datasets.

Figure 19-13: The scatterplot subplot

Now, let’s build three pie charts that record the percentage of
hematite, goethite, and jarosite in samples A, B, and C. We’ll string
these along the bottom of the summary figure.

Each pie chart will use the same wedge labels (representing the
categories in the chart), so these should be assigned at the outset to
avoid repeating code. In addition, we’ll use the plt.pie() method’s explode
parameter to separate the pie wedges. To specify the size of the gap
between the wedges, we’ll use a list named explode, which emphasizes the
jarosite wedge by pulling it slightly out of the rest of the pie:

 ...: labels = 'Goethite', 'Hematite', 'Jarosite'
 ...: explode = [0.1, 0.1, 0.2]
 ...:

To make a pie chart, pass the plt.pie() method the labels
(representing the categories in the chart), the sizes (representing the
percentages of each category), and the explode list:

 ...: plt.subplot(gs[2, 0])
 ...: plt.title('Sample A')
 ...: sizes = [35, 55, 10]
 ...: plt.pie(sizes, labels=labels, explode=explode)
 ...:
 ...: plt.subplot(gs[2, 1])
 ...: plt.title('Sample B')
 ...: sizes = [35, 45, 20]
 ...: plt.pie(sizes, labels=labels, explode=explode)
 ...:
 ...: plt.subplot(gs[2, 2])
 ...: plt.title('Sample C')
 ...: sizes = [35, 35, 30]
 ...: plt.pie(sizes, labels=labels, explode=explode)
 ...:

Complete the figure by calling the tight_layout() method to add some
space between the subplots. After this last line, if you’re in the console,
press ENTER or SHIFT-ENTER to generate the final multipanel plot,
which you can see in Figure 19-14.

 ...: plt.tight_layout();

Figure 19-14: The final multipanel summary plot

Thanks to GridSpec, the summary display contains subplots that span
multiple rows and columns.

Changing the Width and Height of the Subplots

Within certain bounds, you can set the width and height of the rows
and columns produced by GridSpec. You can do this through the
width_ratios and height_ratios parameters, which each accept a list of
numbers. Only the ratios between these numbers matter. For example,

to set the width ratios for each column in our 3×3 grid, [1, 2, 4] is the
same as [2, 4, 8].

To demonstrate, enter the following code to alter our Martian
multipanel display:

In [19]: widths = [2, 3, 2]

In [20]: heights = [2, 10, 3]

The widths list addresses column widths, starting at index 0. The
heights list repeats this for row heights.

Now, bring up the code from the previous section (using the arrow
key if in the console) and edit the call to plt.GridSpec, as follows:

In [21]: gs = plt.GridSpec(3, 3, width_ratios=widths, height_ratios=heights)

Rerun the code and you should see the plot in Figure 19-15. Note
the changes such as the shorter histogram and the taller contour map.

Figure 19-15: The multipanel display with new row and column widths and heights

To read more about GridSpec and see some example use cases, visit
https://matplotlib.org/stable/api/_as_gen/matplotlib.gridspec.GridSpec.xhtml.

For a tutorial on the pyplot approach, see
https://matplotlib.org/stable/tutorials/introductory/pyplot.xhtml.

Using the Object-Oriented Style

https://matplotlib.org/stable/api/_as_gen/matplotlib.gridspec.GridSpec.xhtml
https://matplotlib.org/stable/tutorials/introductory/pyplot.xhtml

The object-oriented plotting style generally requires a bit more code
than the previously described pyplot approach, but it lets you get the
absolute most out of Matplotlib. By explicitly creating Figure and Axes
objects, you’ll be able to more easily control your plots, better
understand interactions with other libraries, create plots with multiple
x- and y-axes, and more.

NOTE

You’ll appreciate the object-oriented style more if you’re familiar with

object-oriented programming. This programming paradigm is covered in

Chapter 13.

To familiarize ourselves with the object-oriented style, let’s re-create
the simple plot from Figure 19-3. If you’re using the Qt console, restart
it now.

The Matplotlib import statement stays the same regardless of the
plotting approach:

In [22]: import matplotlib.pyplot as plt

In [23]: import numpy as np

Now, regenerate the dataset with NumPy:

In [24]: data = np.arange(5, 10)

To start using the object-oriented style, enter the following and press
CTRL-ENTER in the console:

In [25]: fig, ax = plt.subplots()

As soon as you see this line of code in a program, you know you’re
dealing with the object-oriented style. The plt.subplots() method creates
a Figure instance and a set of subplots (a NumPy array of Axes objects). If
a number of subplots is not specified, a single subplot is returned by
default. Because two objects are returned, you need to unpack the

results to two variables, called fig and ax by convention. Remember that,
with the pyplot approach, these two entities are created behind the
scenes.

To display the plot, add the following line and then press ENTER:

 ...: ax.plot(data);

This produces the plot in Figure 19-16, which is identical to the one
in Figure 19-3.

Figure 19-16: A simple line plot generated using the object-oriented style

Because you assigned the plot to a fig variable, you can regenerate it
by simply entering fig in the console:

In [26]: fig

The object-oriented plotting style really isn’t mysterious. The key is
to assign the Figure and Axes objects created by pyplot to variables. You’ll
no longer get the benefit of the automated features of pyplot, but in
return you open the door to a host of object attributes and methods for
customizing plots.

Creating and Manipulating Plots with the Object-Oriented Style

To better understand the object-oriented style, let’s use it to re-create
the catenary example from “Creating and Manipulating Plots with
pyplot Methods” on page 542. To demonstrate some of the style’s
enhanced functionality, we’ll force the y-axis to pass through the center
of the plot.

If you’re using the Qt console, restart the kernel now. Then, import
NumPy and Matplotlib and regenerate the catenary data:

In [27]: import numpy as np

In [28]: import matplotlib.pyplot as plt

In [29]: x = np.arange(-5, 5, 0.1)

In [30]: y = np.cosh(x)

To create a single plot, enter the following and then press CTRL-
ENTER (in the console):

In [31]: fig, ax = plt.subplots()

Next, call the AXES object’s set() method and pass it keyword
arguments for a title, axis labels, and axis limits. This is a convenience
method that lets you set multiple properties at once rather than calling
specific methods for each. You can use either a single line that wraps, or
press ENTER after each comma to produce a more readable vertical
stack, as follows:

 ...: ax.set(title='A Catenary',
 ...: xlabel='Horizontal Distance',
 ...: ylabel='Height',
 ...: xlim=(-8, 8.1),
 ...: ylim=(0, 60))

Now let’s move the y-axis to the center of the chart instead of along
the side. In Matplotlib, spines are the lines connecting the axis tick marks

and noting the boundaries of the area containing the plotted data. The
default position for these is around a plot with the ticks and labels along
the left and bottom margins (see Figure 19-16). But spines can also be

placed at arbitrary positions. With the object-oriented style, we can
accomplish this using the set_position() method of the Spine subclass.

The following code first moves the left (y) axis to the 0 value on the
x-axis. Then, the line width is set to 2 so that the axis stands out a bit
from the background grid that we’re going to use later:

 ...: ax.spines.left.set_position('zero')
 ...: ax.spines.left.set_linewidth(2)

The following line turns off the right boundary of the plot by setting
its color to none:

 ...: ax.spines.right.set_color('none')

The next three lines repeat this overall process for the bottom axis
and top axis, respectively:

 ...: ax.spines.bottom.set_position('zero')
 ...: ax.spines.bottom.set_linewidth(2)
 ...: ax.spines.top.set_color('none')

To finish the plot, add the background grid and call the plot method,
passing it the x and y data and setting the line width to 3 and the color
to black ('k'):

 ...: ax.grid()
 ...: ax.plot(x, y, lw=3, color='k');

This produces the plot in Figure 19-17.

Figure 19-17: The line plot of a catenary built using the object-oriented style

If you omit the code related to the spines, you can reproduce the plot
in Figure 19-4 with essentially the same amount of code as used by the
pyplot approach. Thus, the verbosity of the object-oriented style has
much to do with the fact that you can do more with it, and people
generally take advantage of this.

Methods available in the pyplot approach have an equivalent in the
object-oriented style. Unfortunately, the method names are often
different. For example, title() in pyplot becomes set_title(), and xticks()
becomes set_xticks(). This is one reason why it’s good to pick one
approach and stick with it.

Some of the more common methods for making object-oriented
plots are listed in Table 19-3. You can find additional methods, such as
for making box plots, violin plots, and more, at
https://matplotlib.org/stable/plot_types/index.xhtml and in the Matplotlib

gallery, referenced previously in this chapter on page 538.

Table 19-3: Useful Object-Oriented Methods for Creating Plots

https://matplotlib.org/stable/plot_types/index.xhtml

Method Description ExampleMethod Description Example

bar Make a bar chart ax.bar(x, height)

barh Make a horizontal bar chart ax.barh(x, height)

contour Draw a contour map ax.contour(X, Y, Z)

contourf Draw a filled contour map ax.contourf(X, Y, Z, cmap='Greys')

hist Make a 2D histogram ax.hist(x, bins)

pie Display a pie chart ax.pie(x=[8, 80, 9], labels=['A',

'B', 'C'])

plot Plot data as lines/markers ax.plot(x, y, 'r+') # Red crosses

polar Make a polar plot fig, ax = plt.subplots(subplot_kw=

{'projection': 'polar'})

ax.plot(theta, r, 'bo') # Blue dots

scatter Make a scatterplot ax.scatter(x, y, marker='o')

stem Plot vertical lines to y
coordinate

ax.stem(x, y)

Common methods for working with Figure and Axes objects are listed
in Tables 19-4 and 19-5, respectively. In many cases, these work like the
pyplot methods in Table 19-2, though the method names might be
different.

Table 19-4: Useful Object-Oriented Methods for Working with Figure Objects

Method Description Example

add_subplot Add or retrieve an Axes ax = fig.add_subplot(2, 2, 1)

close() Close a figure plt.close(fig2)

colorbar Add a colorbar to an
Axes

fig.colorbar(image, ax=ax)

constrained_layoutAuto-adjust fit of
subplots

fig, ax =

plt.subplots(constrained_layout=True)

Method Description Example

gca Get the current Axes
instance on the
current figure

fig.gca()

savefig Save as .jpg, .png, .pdf,

and so on

fig.savefig('filename.jpg')

set_size_inches Set Figure size in
inches

fig.set_size_inches(6, 4)

set_dpi Set Figure dots per
inch

fig.set_dpi(200) # Default is 100.

show Show plot run from
terminal or when
interactive mode is off

plt.show()

subplots Create Figure with Axes fig, ax = plt.subplots(2, 2)

suptitle Add a super title to a
Figure

fig.suptitle('text')

tight_layout Auto-adjust subplots
fit

fig.tight_layout()

Table 19-5: Useful Object-Oriented Methods for Working with Axes Objects

Method Description Example

annotate Add text and arrows to Axes ax.annotate('text', xy=(5, 2))

axis Get or set axis properties ax.axis([xmin, xmax, ymin, ymax])

axhline Add a horizontal line ax.axhline(y_loc, lw=5)

axvline Add a vertical line ax.axvline(x_loc, lw=3, c='red')

grid Add grid lines ax.grid()

imshow Display data as an image pic = plt.imread('img.png')

ax.imshow(pic, cmap='gray'))

Method Description Example

legend Place a legend on the Axes ax.plot(data, label='Data')

ax.legend()

loglog Use log scaling on each axis ax.loglog()

minorticks_on Display minor ticks on axis ax.yaxis.get_ticklocs(minor=True)

ax.minorticks_on()

minorticks_off Remove minor ticks from
axis

plt.minorticks_off()

semilogx Use log scaling on x-axis ax.semilogx()

semiology Use log scaling on y-axis ax.semilogy()

set Set multiple properties at
once

ax.set(title, ylabel, xlim,

alpha)

set_title() Set the Axes title ax.set_title('text',

loc='center')

set_xticks() Set x-axis tick marks xticks = np.arange(0, 100, 10)

ax.set_xticks(xticks)

set_yticks() Set y-axis tick marks yticks = np.arange(0, 100, 10)

ax.set_yticks(yticks)

set_xticklabels Set x-axis labels after
calling set_xticks()

labels = [a', 'b', 'c', 'd']

ax.set_xticklabels(labels)

set_yticklabels Set y-axis labels after
calling set_yticks()

ax.set_yticklabels([1, 2, 3, 4])

tick_params Change ticks, labels, and
grid

ax.tick_params(labelcolor= 'red')

twinx New y-axis with shared x-
axis

ax.twinx()

twiny New x-axis with shared y-
axis

ax.twiny()

set_xlabel() Set label for x-axis ax.set_xlabel('text', loc='left')

Method Description Example

set_ylabel() Set label for y-axis ax.set_ylabel('text', loc='top')

set_xlim() Set limits of x-axis ax.set_xlim(-5, 5)

set_ylim() Set limits of y-axis ax.set_ylim(0, 10)

set_xscale() Set the x-axis scale ax.set_xscale('log')

set_yscale() Set the y-axis scale ax.set_yscale('linear')

text Add text to the Axes ax.text(x, y, 'text')

xaxis.grid() Add x-axis grid lines ax.xaxis.grid(True,

which='major')

yaxis.grid() Add y-axis grid lines ax.yaxis.grid(True,

which='minor')

As mentioned in the pyplot section, the code examples in all these
tables represent simple cases. Most methods take many arguments,
letting you fine tune your plots with respect to properties like font style
and size, line widths and colors, rotation angles, exploded views, and
much more. To learn more, visit the Matplotlib documentation at
https://matplotlib.org/.

Working with Subplots

Like the pyplot approach, the object-oriented style supports the use of
subplots (see “Working with Subplots” on page 545). Although there
are multiple ways to assign subplots to Figure and Axes objects, the
plt.subplots() method is convenient and returns a NumPy array that lets
you select subplots using standard indexing or with unique names such
as axs[0, 0] or ax1. Another benefit is that you can preview the subplots’
geometry prior to plotting any data.

NOTE

The object-oriented method for creating subplots is spelled subplots, whereas

the pyplot approach uses subplot.

https://matplotlib.org/

Calling plt.subplots() with no arguments generates a single empty
plot (Figure 19-18). Technically, this produced a 1×1 AxesSubplot object.

In [32]: fig, ax = plt.subplots()

Figure 19-18: Empty plot produced using the subplots()method of the object-oriented style

Producing multiple subplots is like the plt.subplot() method, only
without an index argument for the active subplot. The first argument
indicates the number of rows; the second specifies the number of
columns. By convention, multiple Axes are given the plural name, axs,
rather than axes so as to avoid confusion with a single instance of Axes.

Passing the plt.subplots() method two arguments lets you control the
number of subplots and their geometry. The following code generates
the 2×2 grid of subplots shown in Figure 19-19 and stores a list of two
AxesSubplot objects in the axs variable:

In [33]: fig, axs = plt.subplots(2, 2)
 ...: axs
Out[33]:
array([[<AxesSubplot:>, <AxesSubplot:>],
 [<AxesSubplot:>, <AxesSubplot:>]], dtype=object)

Figure 19-19: Four subplots in a 2×2 arrangement

To activate a subplot, you can use its index. In this example, we plot
on the second subplot in the first row, producing Figure 19-20:

In [34]: fig, axs = plt.subplots(2, 2)
 ...: axs[0, 1].plot([1, 2, 3]);

Figure 19-20: Plotting using subplot index [0, 1]

Alternatively, you can name and store the subplots individually by
using tuple unpacking for multiple Axes. Each row of subplots will need
to be in its own tuple. You can then select a subplot using a name, versus
a less-readable index. The following code reproduces Figure 19-20:

In [35]: fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
 ...: ax2.plot([1, 2, 3]);

Finally, the subplots() method takes additional keywords, including
figure keywords, that let you do things like share an axis among plots,
adjust the figure size and layout, and so on (Figure 19-21):

In [36]: fig, axs = plt.subplots(ncols=2,
 ...: nrows=2,
 ...: sharex=True,
 ...: sharey=True,
 ...: figsize=(6, 4),
 ...: tight_layout=True)

For more on these keywords, see the method’s documentation at
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.xhtml.

Figure 19-21: A 2×2 grid of subplots that share x- and y-axes

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.xhtml

Building Multipanel Displays Using GridSpec

The matplotlib.gridspec module (described in “Building Multipanel
Displays Using GridSpec” on page 549) also works with the object-
oriented style. Let’s use it now to reproduce the Martian multipanel
display in Figure 19-14. This will let you directly compare the pyplot and
object-oriented approaches.

Reconstructing the Martian Multipanel Display

To start fresh, restart the kernel in an open console (Kernel ▸ Restart
Current Kernel) or exit and reopen the console. If you’re restarting,
use CTRL-L to clear the window. To restart in Jupyter Notebook, use

Kernel ▸ Restart & Clear Output.

Now, import NumPy and Matplotlib and set up a 3×3 grid using
GridSpec. In the console, press CTRL-ENTER after line In [39] to
prevent generation of the plot (in Notebook, use ENTER):

In [37]: import numpy as np

In [38]: import matplotlib.pyplot as plt

In [39]: fig = plt.figure()
 ...: gs = fig.add_gridspec(3, 3)
 ...:

Next, build the histogram subplot. Name it ax1 and position it using
the grid indexes in Figure 19-10:

 ...: ax1 = fig.add_subplot(gs[0, :2])
 ...: ax1.set_title(' Goethite Distribution Location 1')
 ...: ax1.hist(np.random.normal(0.22, 0.02, size=500), bins=5)

Continuing to use CTRL-ENTER in the console, build the contour
map, as follows:

 ...: ax2 = fig.add_subplot(gs[1, :2])
 ...: ax2.set_title('Goethite Concentration Location 1')
 ...: ax2.annotate('o--Sample A', xy=(1.3, 1.6))
 ...: x, y = np.arange(0, 3, 0.1), np.arange(0, 3, 0.1)
 ...: X, Y = np.meshgrid(x, y)
 ...: Z = np.absolute(np.cos(X * 2 + Y) * 2 + np.sin(Y + 3))

 ...: contour_map = ax2.contourf(X, Y, Z, cmap='Greys')
 ...: fig.colorbar(contour_map)
 ...:

Next, we’ll build the scatterplot located in the upper-right corner of
the display:

 ...: ax3 = fig.add_subplot(gs[:2, 2])
 ...: ax3.set_title('Loc1 Goe-Hem Ratio')
 ...: ax3.set_xlabel('Hematite mg')
 ...: ax3.set_ylabel('Goethite mg')
 ...: ax3.scatter(np.random.normal(3, 1, 30),
 ...: np.random.uniform(1, 30, 30))
 ...:

Add the code for the pie wedge labels and the gaps between pie
wedges. This reduces code duplication because these variables are the
same for all the charts:

 ...: labels = 'Goethite', 'Hematite', 'Jarosite'
 ...: explode = [0.1, 0.1, 0.2]
 ...:

Finish the charts and then call the Figure object’s tight_layout() method
to prevent the plots from crowding one another. Generate the display
by pressing ENTER or SHIFT-ENTER in the console, and CTRL-
ENTER in Jupyter Notebook:

 ...: ax4 = fig.add_subplot(gs[2, 0])
 ...: ax4.set_title('Sample A')
 ...: sizes = [35, 55, 10]
 ...: ax4.pie(sizes, labels=labels, explode=explode)
 ...:
 ...: ax5 = fig.add_subplot(gs[2, 1])
 ...: ax5.set_title('Sample B')
 ...: sizes = [35, 45, 20]
 ...: ax5.pie(sizes, labels=labels, explode=explode)
 ...:
 ...: ax6 = fig.add_subplot(gs[2, 2])
 ...: ax6.set_title('Sample C')
 ...: sizes = [35, 35, 30]
 ...: ax6.pie(sizes, labels=labels, explode=explode)
 ...:
 ...: fig.tight_layout();

Note that the main changes from the pyplot approach are some
method names, such as set_title() for title(), and the use of subplot

names. The resulting display should be identical to Figure 19-14, except
for some variations in the randomly generated data.

To change the width and height of the subplots, refer to the section
“Changing the Width and Height of the Subplots” on page 554. This
task works the same for both plotting approaches.

The matplotlib.gridspec module gives you a lot of control over the
placement of subplots in multipanel displays. As always with Python,
however, there are multiple ways to do the same thing, and we’ll look at
one of these alternatives next.

Higher-Level Alternatives to GridSpec

The Matplotlib library includes some higher-level alternatives to using
GridSpec. With the subplot_mosaic() method, for example, you can lay out
your grid using logical names like upper_left and right. You then can use
these to index the axs object, as follows:

In [40]: fig, axs = plt.subplot_mosaic([['left', 'upper right'],
 ...: ['left', 'lower right']],
 ...: figsize=(4.5, 3.5),
 ...: tight_layout=True)
 ...: axs['upper right'].set_title('upper right');

This produces the display in Figure 19-22. The subplots are laid out
in the order in which they are assigned in line In [40].

Figure 19-22: Subplots created using the plt.subplot_mosaic() method

To read more about subplot_mosaic() and other multipaneling options,
see the sections “Working with Multiple Figures and Axes” at
https://matplotlib.org/stable/tutorials/introductory/usage.xhtml#sphx-glr-

tutorials-introductory-usage-py/ and “Arranging Multiple Axes in a

Figure” at
https://matplotlib.org/stable/tutorials/intermediate/arranging_axes.xhtml.

Insetting Plots

An inset plot—that is, a plot within a plot—is useful for showing greater

detail in part of an enclosing plot, a different treatment of the same
data, the geographical location of the data, and so on. An inset plot is
like a subplot, but it’s built using a different technique.

To make an inset, you first make a Figure object and then add Axes to it
using the add_axes() method. Enter the following code in the console or

https://matplotlib.org/stable/tutorials/introductory/usage.xhtml#sphx-glr-tutorials-introductory-usage-py/
https://matplotlib.org/stable/tutorials/intermediate/arranging_axes.xhtml

in Notebook; ignore the imports if you’ve already executed them in
your current session:

In [41]: import numpy as np

In [42]: import matplotlib.pyplot as plt

In [43]: %matplotlib inline

In [44]: x = np.arange(0, 25)

In [45]: y = x**3

Now, set up the Figure and Axes objects. In this case, ax2 represents the
inset plot:

In [46]: fig = plt.figure()
 ...: ax1 = fig.add_axes([0, 0, 1.0, 1.0])
 ...: ax2 = fig.add_axes([0.1, 0.6, 0.4, 0.3])
 ...:

The arcane-looking list passed to the add_axes() method represents
the Axes rect parameter. This defines the dimensions of the rectangular
Axes object. The values range from 0 to 1 and represent, respectively, the
left, bottom, width, and height of the rectangle.

Now make the main plot and the inset:

 ...: # Main plot
 ...: ax1.plot(x, y, 'k*-')
 ...: ax1.set_xlabel('x')
 ...: ax1.set_ylabel('y')
 ...:
 ...: # Inset plot
 ...: ax2.plot(x, np.sin(y), 'r*-')
 ...: ax2.set_xlabel('x')
 ...: ax2.set_ylabel('y')
 ...: ax2.set_title('Sine of Y')

You should get a plot like the one depicted in Figure 19-23.

Figure 19-23: A plot with an inset plot

Plotting in 3D

Although designed primarily for 2D plotting, Matplotlib includes an
Axes3D class that supports 3D scatterplots, histograms, surfaces, contour
maps, and more. Here’s an example:

In [47]: import numpy as np
 ...: import matplotlib.pyplot as plt
 ...:
 ...: z = np.arange(0, 200, 1)
 ...: x = z * np.cos(25 * z)
 ...: y = z * np.sin(25 * z)
 ...:

 ➊ ...: ax = plt.figure().add_subplot(projection='3d')
 ...:
 ...: ax.plot(x, y, z, 'black');

The key is to pass the projection='3d' keyword when creating an Axes

object ➊. You can also use this alternate two-line syntax if you find it
easier to read:

 ...: fig = plt.figure()
 ...: ax = plt.axes(projection ='3d')

Both will yield the plot shown in Figure 19-24.

Figure 19-24: A 3D line plot

To read more about 3D plotting, visit
https://matplotlib.org/stable/tutorials/toolkits/mplot3d.xhtml.

Animating Plots

Scientists commonly study dynamic phenomena such as ocean currents
and caribou migrations. Whether based on actual observations or
simulated behavior, the ability to visualize movement in plots, a process
called animation, can lead to insights and better understanding of the

phenomena. Animations also enhance presentations, helping your
audience to better understand the points you’re trying to convey.

As you might expect, Matplotlib provides numerous ways for
animating plots. For simple animations, you can manually update and
plot variables by iterating in a loop. For convenience and for working
with more complicated animations, you can use the matplotlib.animation
module (https://matplotlib.org/stable/api/animation_api.xhtml).

The animation module contains the FuncAnimation class, which animates
a visualization by repeatedly calling a function. The ArtistAnimation class
makes an animation using a fixed set of Artist objects such as a

https://matplotlib.org/stable/tutorials/toolkits/mplot3d.xhtml
https://matplotlib.org/stable/api/animation_api.xhtml

precomputed list of images. In general, FuncAnimation is simpler to use and
more efficient. We won’t cover ArtistAnimation here.

Animating Plots Using a for Loop

Perhaps the simplest way to animate a plot is to use a for loop. Let’s give
this a try using the sine wave example from “Working with Subplots” on
page 545. In the console, enter the following code, using CTRL-
ENTER after the first line and ENTER after the last line:

In [48]: import numpy as np
 ...: import matplotlib.pyplot as plt

 ➊ ...: import time
 ...: %matplotlib qt
 ...:
 ...: t = np.arange(-12.5, 12.5, 0.1)
 ...: amplitude = np.sin(t)
 ...:
 ...: fig, ax = plt.subplots()

 ➋ ...: line, = ax.plot(t, amplitude)
 ...: for i in range(30):
 ...: updated_amp = np.sin(t + i)

 ➌ ...: line.set_ydata(updated_amp)
 ...: fig.canvas.draw()
 ...: fig.canvas.flush_events()
 ...: time.sleep(0.1)

Start by importing NumPy and Matplotlib, as usual, but this time,

add the Standard Library’s time module ➊. The time.sleep() method will
let us control the speed of the animation later.

We’ll show the animation in the external Qt window, so call the
%matplotlib qt magic command. If you’re working in Jupyter Notebook,
you can use the %matplotlib notebook command to show the animation
within the notebook.

Next, reproduce the time (t) and amplitude data from before and then
assign the fig and ax variables. To animate plots using a for loop, you
need to update the displayed data before each iteration of the loop.

Because we’re plotting a line, assign a line variable to the plot ➋. Note
the comma after line, which indicates that this is a tuple unpacking
process.

Start a for loop that runs 30 times. With each loop, shift the time
series one second by adding the loop number (i) to the y data using the
equation np.sin(t + i). Assign the result to the updated_amp variable. To
update the line object prior to plotting, call its set_ydata()method and

pass it the updated_amp variable ➌.

To update a Figure object that has been altered but not automatically
redrawn, call canvas.draw(). Follow this with the
canvas_flush_events()method, which clears the plot so that the next
iteration can start with a blank screen.

Finish by calling the time.sleep() method and passing it 0.1. This is
the number of seconds to suspend program execution. Feel free to play
around with this number to see the effect on the animation; the larger
the number, the slower it will proceed.

To run the animation, in the console, press ENTER; in Jupyter
Notebook, press CTRL-ENTER. To return to inline plotting,
remember to use the %matplotlib inline magic command.

You also can accomplish this type of real-time animation by using the
pyplot approach. Here’s an example in which we continuously update a
scatterplot by adding a new point calculated with the quadratic
equation. Run it in the Qt console or the Spyder text editor:

In [49]: import numpy as np
 ...: import matplotlib.pyplot as plt
 ...: %matplotlib qt
 ...:
 ...: x = 0
 ...: for i in range(30):
 ...: x = x + 1
 ...: y = x**2
 ...: plt.scatter(x, y)
 ...: plt.title("Quadratic Function")
 ...: plt.xlabel("x")
 ...: plt.ylabel("x-squared")
 ...: plt.pause(0.1)

Note the use of plt.pause() in place of time.sleep(). The plt.pause()
method takes seconds as an argument and runs the GUI event loop for
this time interval. An active figure will be updated and displayed before
the pause, and the GUI event loop (if any) will run during the pause.

As the animation runs, the x- and y-axes automatically adjust to
accommodate the expanding plot limits. When the animation finishes,
you should see a plot like the one shown in Figure 19-25.

Figure 19-25: The finished pyplot animation

For complex animations, the Matplotlib documentation recommends
using the matplotlib.animation module rather than a for loop. We’ll cover
this technique next.

Animating Plots Using the FuncAnimation Class

The FuncAnimation class makes an animation by repeatedly calling a
function. It provides a more formal and flexible approach than the for
loop process used in the previous section.

Let’s animate two lines in the same plot using the object-oriented
style. Enter the following in the console or Jupyter Notebook (if you’re
using Notebook, replace the %matplotlib qt magic with %matplotlib
notebook):

In [50]: import numpy as np
 ...: import matplotlib.pyplot as plt

 ...: from matplotlib.animation import ➊ FuncAnimation

 ...: %matplotlib qt
 ...:
 ...: x = np.arange(-6, 6, 0.02)
 ...: y = np.sin(2 * x) / x

 ➋ ...: scaler = np.arange(1, 10, 0.1)
 ...:
 ...: fig, ax = plt.subplots()

 ...: line1 = ax.plot(x, y, color='k', lw=2) ➌[0]
 ...: line2 = ax.plot(x, y, color='r', ls='--')[0]
 ...:
 ...: def animate(frame):
 ...: line1.set_ydata(y / frame)
 ...: line2.set_ydata(y / frame * -0.2)
 ...:
 ...: animated = FuncAnimation(fig, animate, frames=scaler, interval=20)

Add FuncAnimation from the matplotlib.animation module to the imports

➊. Next, use NumPy to generate some data for plotting. The scaler
array will let you alter the x and y data, giving you something new to

print as the animation runs ➋.

Set up the fig and ax objects and then make a plot for each line,
setting the color for the first to black and the second to red. Also set the
line width of the first line to 2, and the line style for the second to
dashed.

For both lines, add a zero index [0] to the end of the plotting code ➌.
The plot command returns a sequence of line objects, and we want only
the first item in the sequence. This represents an alternative to the tuple
unpacking approach (line, = ax.plot(t, amplitude)) used to animate the
sine wave in the previous section.

Now it’s time to define a function that will update the data to create
each frame of the animation. We’ll call this function animate, with a
parameter named frame. The argument for this parameter will be the
scalar array, which will be passed by the frames parameter in the
FuncAnimation() class.

Use the set_ydata() method on each line and pass it the y data divided
by the scaler array. For the second line, multiply scaler by a negative
scalar so that line2 will look different than line1.

To complete the code, call FuncAnimation() and pass it the Figure object
on which it will draw (fig), the user-defined function (animate), and a

frames and interval argument. The frames argument represents the
source of the data passed to the user-defined function for each frame of
the animation. It can be either an iterable, an integer, a generator
function, or None. The interval argument sets the delay time between
frames in milliseconds. Increasing this number will slow down the
animation.

NOTE

You can assign the scalar NumPy array directly to the frames parameter,

like so: FuncAnimation(fig, animate, frames=np.arange(1, 10, 0.1),

interval=20). Although this removes the need for the scalar variable, the

code is arguably less readable.

Run the code by pressing ENTER in the console, or CTRL-
ENTER in Jupyter Notebook. You should see two animated line plots,
as shown in Figure 19-26. To stop the animation, click the Close button
at the upper right of the plot window. Otherwise, when calling
FuncAnimation(), set repeat=False to stop the animation after a single run-
through.

Figure 19-26: A screen capture from the functional animation

An optional parameter in FuncAnimation() worth mentioning is fargs.
Short for functional arguments, you use this when your user-defined

function takes multiple arguments. The first parameter is always
reserved for the frames parameter in FuncAnimation(), but you can pass
subsequent parameters (those that follow frames) as an ordered tuple of
arguments, such as the following:

 ...: ani = FuncAnimation(fig, func, frames=param1,fargs=(param2, param3))

Finally, to save the animation as a .gif, use the save() method with

optional frames per second (fps) and dots-per-inch (dpi) arguments, as
follows:

 ...: animated.save('animation.gif', fps=20, dpi=150)

Other supported file formats include .avi, .mp4, .mov, and other save

options include the methods to_html5_video() and to_jshtml(). To learn
more about the methods and parameters of FuncAnimation, visit
https://matplotlib.org/stable/api/_as_gen/matplotlib.animation.FuncAnimatio

n.xhtml.

Styling Plots

Up until now, you’ve changed the default settings for a plot, such as the
line width or marker color, by passing new values as you made the plot.
But what if you want to set these values for multiple plots at the same

time so that all your lines are colored black? Or what if you’d like to cycle

through a defined order of colors?

Well, one way to do this is to set the parameters at runtime, using an
instance of the RcParams class. The name of this class stands for runtime

configuration parameters, and you run it from a notebook, script, or

console using either the pyplot approach or the object-oriented style. It
stores settings in the matplotlib.rcParams variable, which is a dictionary-
like object.

https://matplotlib.org/stable/api/_as_gen/matplotlib.animation.FuncAnimation.xhtml

There’s a very long list of configurable parameters, which you can
view in multiple ways. To see a list of valid parameters, visit
https://matplotlib.org/stable/api/matplotlib_configuration_api.xhtml?

highlight=rcparams/. To see more details about the parameters, run import

matplotlib as mpl followed by print(mpl.matplotlib_fname()). This will reveal
the path to the matplotlibrc file on your computer, which you then can

open and view.

Changing Runtime Configuration Parameters

Let’s look at a pyplot example in which we standardize the size of figures,
use black for all plotted lines, and cycle through two different line
styles. This means that the first line plotted will always have a certain
consistent style, and that the second plotted will have another consistent
style. In the console, enter the following:

In [51]: import numpy as np
 ...: import matplotlib.pyplot as plt
 ...: import matplotlib as mpl
 ...: from cycler import cycler
 ...: %matplotlib inline
 ...:

Notice here that we import Matplotlib as mpl. Importing Matplotlib
in this manner gives us access to more features than in the pyplot module
alone. We also import cycler. The Cycler class will let us specify which
colors and other style properties we want to cycle through when making
multidata plots. You can read about it at
https://matplotlib.org/stable/tutorials/intermediate/color_cycle.xhtml.

To access a property in rcParams, treat it like a dictionary key. You can
find the valid parameter names by entering mpl.rcParams.keys() or by
visiting the sources listed in the previous section. In the next three lines,
we set the figure size, line color, and line styles:

 ...: mpl.rcParams['figure.figsize'] = (5, 4)
 ...: mpl.rcParams['lines.color'] = 'black'
 ...: mpl.rcParams['axes.prop_cycle'] = cycler('linestyle', ['-', ':'])
 ...:

https://matplotlib.org/stable/api/matplotlib_configuration_api.xhtml?highlight=rcparams/
https://matplotlib.org/stable/tutorials/intermediate/color_cycle.xhtml

NOTE

You can also set parameters through pyplot, using syntax like

plt.rcParams['lines.color'] = 'black'.

To cycle through the line styles, use the axes.prop_cycle key and then
pass the cycler factory function the parameter ('linestyle') and a list of
the styles (solid and dotted). These defaults have now been reset for all
plots that you will make in the current session.

Finish by generating some data and plotting it:

 ...: x = np.arange(0, 15, 0.1)
 ...: y = np.sin(x)
 ...:
 ...: plt.plot(x, y)
 ...: plt.plot(x + 1, y - 2);

Normally, this code would produce a plot with two solid lines, one
blue and one orange. Now, however, you get two black lines
distinguished by different line styles (Figure 19-27).

Figure 19-27: A plot built with global figure size, line color, and line style parameters

Note that if you were to plot three lines in the previous plot, the

third line would cycle back to using the solid line style, and you’d have
one dotted and two solid lines. If you want three different styles, you’ll
need to add the extra style to the cycler.

For convenience, Matplotlib comes with functions for
simultaneously modifying multiple settings in a single group using
keyword arguments. Here’s an example, using the previous plotting
data, in which we start by resetting the Matplotlib “factory defaults”:

In [52]: mpl.rcParams.update(mpl.rcParamsDefault)
 ...:

Now, let’s use the rc() convenience function to change the default
line width to 5 and the line style to dash-dot:

In [53]: mpl.rc('lines', lw=5, ls='-.')
 ...: plt.plot(x, y);

This produces the plot in Figure 19-28.

Figure 19-28: The new plotting parameters set with a convenience function

If you want to use a style for only a specific block of code, the style
package provides a context manager for limiting your changes to a

specific scope. For more on this, see “Temporary Styling” at
https://matplotlib.org/stable/tutorials/introductory/customizing.xhtml.

Creating and Using a Style File

You can save changes to the Matplotlib default style in a file. This lets
you standardize plots for a report or presentation and share the
customization within a project team. It also reduces code redundancy
and complexity by letting you preset certain plot parameters and
encapsulate them in an external file.

Let’s create a simple style file that sets some standards for plots, such
as the figure size and resolution, use of a background grid, and the
typeface and size to use for titles, axes labels, and tick labels. In the
Spyder text editor, or any text editor, enter the following:

scientific_style.mplstyle

figure.figsize: 4, 3 # width & height in inches
figure.dpi: 200 # dots per inch
axes.grid: True
font.family: Times New Roman
axes.titlesize: 24
axes.labelsize: 20
xtick.labelsize: 16
ytick.labelsize: 16

NOTE

For guidance on creating style files, use the matplotlibrc file on your

computer, mentioned previously. You can also find a copy at

https://matplotlib.org/stable/tutorials/introductory/customizing.xht

ml.

For Matplotlib to easily find this file, you need to save it in a specific
location. First, find the location of the matplotlibrc file by entering the

following in the console:

In [54]: import matplotlib as mpl

In [55]: mpl.matplotlib_fname()

https://matplotlib.org/stable/tutorials/introductory/customizing.xhtml
https://matplotlib.org/stable/tutorials/introductory/customizing.xhtml

Out[55]: 'C:\\Users\\hanna\\anaconda3\\lib\\site-packages\\matplotlib\\mpl-
data\\matplotlibrc'

This shows you the path to the mpl-data folder, which contains the

matplotlibrc file and a folder named stylelib, among others. Save your

style file into the stylelib folder as scientific_style.mplstyle (replacing the .txt

extension).

NOTE

If Matplotlib has trouble finding this file later, you might need to restart

the kernel. In the console, click Kernel ▸ Restart Current Kernel. In

Jupyter Notebook, click Kernel ▸ Restart.

Now, let’s use this file to create a standardized plot. After importing
pyplot, use its style.use() method to load the style file without its file

extension:

In [56]: import matplotlib.pyplot as plt

In [57]: plt.style.use('scientific_style')

Next, generate an empty figure using the object-oriented style. You
should see a plot like Figure 19-29.

In [58]: fig, ax = plt.subplots()
 ...: ax.set_title('Standardized Title')
 ...: ax.set_xlabel('Standardized X-labels')
 ...: ax.set_ylabel('Standardized Y-labels');

Figure 19-29: An empty standardized plot generated by the style file

When you saved your style file, you might have noticed that the
stylelib folder was full of preexisting mplstyle files. These files create

many different plot formats, and you can look through them for clues
on how to write your own style files. In the next section, we’ll use one of
these files to override some of Matplotlib’s default values.

Applying Style Sheets

Besides letting you customize your own plots, Matplotlib provides
predefined style sheets that you can import by using style.use(). Style

sheets look the same as the matplotlibrc file, but within one, you can set

only rcParams that are related to the actual style of the plot. This makes
style sheets portable between different machines because there’s no need
to worry about uninstalled dependencies. Only a few rcParams can’t be
reset, and you can view a list of these at
https://matplotlib.org/stable/api/style_api.xhtml#matplotlib.style.use/.

You can see examples of the available style sheets at
https://matplotlib.org/stable/gallery/style_sheets/style_sheets_reference.xhtml.

These take the form of a strip of thumbnails, as shown in Figure 19-30.

https://matplotlib.org/stable/api/style_api.xhtml#matplotlib.style.use/
https://matplotlib.org/stable/gallery/style_sheets/style_sheets_reference.xhtml

Some of the style sheets emulate popular plotting libraries like seaborn
and ggplot.

Figure 19-30: Example of the grayscale style sheet

NOTE

An important style sheet to be aware of is the seaborn-colorblind sheet.

This style sheet uses “colorblind-safe” colors designed for the 5 to 10 percent

of the population that suffers from color blindness.

Let’s try out a scatterplot using the grayscale style sheet that ships
with Matplotlib. First, in either the console or Jupyter Notebook,
import NumPy and Matplotlib and then call the grayscale file:

In [59]: import numpy as np
 ...: import matplotlib.pyplot as plt
 ...:
 ...: plt.style.use('grayscale')
 ...:

Now, generate some dummy data for making two different point
clouds:

 ...: x = np.arange(0, 20, 0.1)
 ...: noise = np.random.uniform(0, 10, len(x))
 ...: y = x + (noise * x**2)
 ...: y2 = x + (noise * x**3)
 ...:

Finish by setting up and executing the plot using the pyplot approach.
Use log scales for both axes.

 ...: plt.title('Grayscale Style Scatterplot')
 ...: plt.xlabel('Log X')

 ...: plt.ylabel('Log Y')
 ...: plt.loglog()

 ➊ ...: plt.scatter(x, y2, alpha=0.4, label='X Cubed')
 ...: plt.scatter(x, y, marker='+', label='X Squared')
 ...: plt.legend(loc=(1.01, 0.7));

You should see a plot similar to the one in Figure 19-31. The point
locations might differ due to the use of randomly generated data.

Figure 19-31: A scatterplot made using the grayscale style sheet

Note the use of the alpha keyword when calling plt.scatter() ➊. The
alpha attribute controls opacity, letting you regulate the transparency of
a line or marker. A value of 1 is completely opaque.

Making one dataset slightly transparent helps to resolve over-posting,

wherein markers from one dataset plot on top of markers from other
datasets, obscuring the over-posted markers. Semi-transparent markers
also become darker as they stack on top of one another, letting you
visualize data density (such as the blacker circles in Figure 19-31).

NOTE

To control the plot order of markers, use the zorder parameter (such as

zorder=2) when calling plt.scatter(). Artists with higher zorder values will

post over those with lower values.

Back to our style sheet: if you open the grayscale.mplstyle, you’ll see

that it looks a lot like the scientific_style.mplstyle file that we made in

“Creating and Using a Style File” on page 576. So, if an existing style
sheet is not quite right for your purposes, you can always copy the file,
edit it, and save it as a new style sheet!

TEST YOUR KNOWLEDGE

6. True or False: The ability to manipulate spines is an advantage
of the pyplot approach.

7. Add the summary title “Martian Goethite, Hematite, and
Jarosite Distributions” to the display in Figure 19-14. Use
whichever plotting approach you prefer.

8. Use the following code to produce three datasets for plotting:
np.random.normal(0, 1, 50).cumsum(). Generate three subplots in a
row and use a for loop to populate each with a different
dataset. Give each subplot a unique title and plot the data
using black crosses.

9. Generate a 2D NumPy array of randomized data using
np.random.rand(4, 4). Then, plot a heatmap using heat =
ax.imshow(data). Animate the heatmap using a for loop and a range
of 30.

10. Use the equation velocity = 9.81 * time to calculate the speed of
a falling object. Let the object fall for 15 seconds, and for every
second, post its position and velocity in a single plot, using a
different y-axis for each.

Summary

The goal of this chapter was to introduce the powerful Matplotlib
plotting library and (hopefully) address some of its more frustrating
aspects. A major source of confusion is that there are two main
interfaces for making plots; for consistency, you should choose one and
stick with it.

The pyplot approach works with implicit, “currently active,” Figure
and Axes objects, in which the Figure is a blank canvas, and the Axes holds
plot elements like lines, legends, titles, and so on. To simplify plotting,
pyplot creates these objects behind the scenes.

The pyplot approach works well when using Matplotlib interactively
and in small scripts, but when building larger applications, the object-
oriented style is preferred. Explicitly assigning Figure and Axes objects to
variables will help you keep track of multiple plots and ensure that the
code producing them is as clear as possible. You’ll also have more
control over certain plot elements.

For simpler, more automated plotting than the pyplot approach, you
can use the seaborn package, which is a wrapper around Matplotlib.
Additionally, the pandas data analysis package wraps Matplotlib for even
easier, though less sophisticated, plotting. Chapter 16 included
overviews of seaborn and pandas plotting, and we’ll look at them again
in the next chapter.

For further study and to learn advanced Matplotlib features, check
out the tutorials and user guide at the official website
(https://matplotlib.org/) and at Real Python (https://realpython.com/python-

matplotlib-guide/). You can find useful cheat sheets at

https://matplotlib.org/cheatsheets/.

https://matplotlib.org/
https://realpython.com/python-matplotlib-guide/
https://matplotlib.org/cheatsheets/

20
PANDAS, SEABORN, AND SCIKIT-LEARN

A common scientific practice is evaluating data and using it to generate
predictive models. In this chapter, we’ll use three of Python’s most popular
open source libraries to solve a zoological classification problem. Using this
hands-on, project-based approach will showcase the functionality and synergy
among the libraries and demonstrate what’s involved in doing science with
Python.

For data loading, analysis, and manipulation, we’ll use the pandas package
(https://pandas.pydata.org/). Built on NumPy and Matplotlib, pandas uses array-

based computing under the hood but has simpler syntax, making coding and
plotting faster, easier, and more error free. Unlike native Python, pandas can
intelligently read tabular text-file data, recognizing columns, rows, headers,
and so on. And unlike NumPy, on which it’s built, pandas can handle
heterogeneous data types such as mixtures of text and numbers.

We’ll also use the seaborn library (https://seaborn.pydata.org/), which wraps

Matplotlib to produce more attractive and easier visualizations. It represents a
nice plotting compromise between the highly customizable but verbose syntax
of Matplotlib and the bare-bones simplicity of pandas. Even better, seaborn is
tightly integrated with pandas for seamless plotting and effective data
exploration.

Lastly, the scikit-learn library (https://scikit-learn.org/) is Python’s primary

general-purpose machine learning toolkit. It provides algorithms for

https://pandas.pydata.org/
https://seaborn.pydata.org/
https://scikit-learn.org/

classification, regression, clustering, dimensionality reduction, preprocessing,
and model selection.

In the sections that follow, you’ll apply these libraries to a real-world
problem and observe how they work together. But, due to their enormous size
and scope, we won’t be able to study them in-depth. Whole books have been
dedicated to each, and the admittedly non-exhaustive pandas overview in Wes
McKinney’s Python for Data Analysis, 2nd edition requires no less than 270

pages!

If you’d like a complete picture, I list some additional resources in the
“Summary” section at the end of this chapter. You can also find useful tutorials
and examples in the official websites, cited previously.

Introducing the pandas Series and DataFrame

The pandas library contains data structures designed for working with
common data sources such as Excel spreadsheets and SQL relational databases.
Its two primary data structures are series and DataFrames. Other libraries, like
seaborn, are designed to integrate well with these data structures and supply
additional functionality, making pandas a great foundation to any data science
project.

The Series Data Structure

A series is a one-dimensional labeled array that can hold any type of data such

as integers, floats, strings, and so on. Because pandas is based on NumPy, a
series object is basically two associated arrays. One array contains the data
point values, which can have any NumPy data type. The other array contains
labels for each data point, called indexes (Table 20-1).

Table 20-1: A Series Object

Index Value

0 42

1 549

2 ' Steve
'

3 –66.6

Unlike the indexes of Python list items, the indexes in a series don’t need to
be an integer. In Table 20-2, the indexes are the names of elements, and the
values are their atomic numbers.

Table 20-2: A Series Object with Meaningful Indexes

Index Value

Silicon 14

Sodium 11

Argon 18

Cobalt 27

A series acts much like a Python dictionary in so much as indexes represent
keys. It can thus serve as a replacement for a dictionary in many contexts.
Another useful feature is that different series will align by index label when
doing arithmetic operations between them even if the labels don’t occur in the
same order.

As with a list or NumPy array, you can slice a series or select individual
elements by specifying an index. You can manipulate the series many ways,
such as filtering it, performing mathematical operations on it, and merging it
with other series. To see the many attributes and methods available for a series
object, visit https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.Series.xhtml.

The DataFrame Data Structure

A DataFrame is a more complex structure made up of two dimensions. It’s a

collection of objects organized using a tabular structure, like a spreadsheet,
with columns, rows, and data (Table 20-3). You can think of it as an ordered
collection of columns with two indexing arrays. Each column represents a
pandas series.

Table 20-3: A DataFrame Object

Columns

Index Country State County Population

0 USA Alabama Autauga 54,571

1 USA Alabama Baldwin 182,265

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.xhtml

Columns

Index Country State County Population

2 USA Alabama Barbour 27,457

3 USA Alabama Bibb 22,915

The first index, for the rows, works much like the index array in a series.
The second keeps track of the series of labels, with each label representing a
column header. DataFrames also resemble dictionaries; the column names
form the keys, and the series of data in each column forms the values. Like
series, DataFrames come with many attributes and methods. For more
information on these, see https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.xhtml.

By integrating index objects and labels into their structure, you can easily
manipulate DataFrames. We’ll look at some of this functionality as we work
through the classification problem. You can also get up to speed on the basics
by visiting the “10 Minutes to pandas” tutorial at
https://pandas.pydata.org/docs/user_guide/10min.xhtml.

The Palmer Penguins Project

The Palmer Penguins dataset consists of 342 observations of Antarctic penguins

from three islands in the Palmer Archipelago (Figure 20-1). It was made
available through the Palmer Station Antarctica LTER
(https://pallter.marine.rutgers.edu/).

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.xhtml
https://pandas.pydata.org/docs/user_guide/10min.xhtml
https://pallter.marine.rutgers.edu/

Figure 20-1: The location of Dream, Torgersen, and Biscoe Islands, Palmer Archipelago, Antarctica

Three different penguin species were sampled in the study. In order of
decreasing body size, these are the Gentoo, Chinstrap, and Adélie (Figure 20-
2).

Figure 20-2: The three penguin species in the Palmer Penguins dataset, as drawn by Charles Joseph

Hullmandel (courtesy of Wikimedia Commons)

The goal of this project will be to generate a model to predict the species of
penguin from a combination of morphological features such as flipper length
and body mass. In machine learning, this is considered a classification problem.

We’ll use pandas to load, explore, validate, and clean the data, seaborn to plot
the data, and scikit-learn to produce the predictive model.

The Project Outline

Data science projects like this one follow a series of logical steps, as listed here:

1. Frame the problem (the single most important step).

2. Collect raw data and set up the project.

3. Process the data (through cleaning, merging, infilling, reducing, and so
on).

4. Explore the data.

5. Perform in-depth analysis and develop models and algorithms.

6. Apply the models and present the project results.

Jupyter Notebook is ideal for this process, as it can handle all the steps in
order and is basically self-documenting. It can also be turned into a slideshow
for presentations (as discussed in Chapter 5).

Setting Up the Project

For this project, we’ll use Jupyter Notebook in a dedicated project folder. We’ll
install Notebook and the scientific and plotting libraries using the naive
approach, in other words, directly in a conda environment within the project
folder (see Chapter 5). In general, you use the naive approach when you want
to work with specific and persistent versions of a library or application. We’re

using it here for practice, as we’ve previously been focusing on the modular
approach, in which Notebook is installed in the base environment.

Start by making a folder named penguins under your user directory.

Although you can do this through Anaconda Navigator, the command line is
more succinct, so we’ll use that going forward.

To make the directories for the project, open Anaconda Prompt (in
Windows) or a terminal (in macOS or Linux) and enter the following (using
your own directory path):

mkdir C:\Users\hanna\penguins
mkdir C:\Users\hanna\penguins\notebooks

This makes a penguins directory with a notebooks subdirectory. Next, create a

conda environment named penguins_env under the project directory, activate it,

and install the libraries we’ll use (substituting your own path where needed):

conda create --prefix C:\Users\hanna\penguins\penguins_env
conda activate C:\Users\hanna\penguins\penguins_env
conda install python notebook pandas seaborn
conda install -c conda-forge scikit-learn

You now have a conda environment for the project that contains the
notebook, pandas, python, scikit-learn, and seaborn packages. Remember from
Chapter 2 that this environment is isolated and can’t “see” other packages on
your system, such as those in the base environment.

At this point, your penguins_env should be active, and your project directory

structure should look like Figure 20-3. We’ll be loading the dataset straight
from seaborn, so there’s no need for a data folder.

Figure 20-3: Directory structure for the penguins project

To create a notebook for the project, first navigate to the notebooks folder

using Anaconda Prompt or the terminal:

cd C:\Users\hanna\penguins\notebooks

To launch Notebook, enter the following:

jupyter notebook

You should now see the Jupyter dashboard in your browser. Click the New
button and choose Python[conda env:penguins_env] to create a new
notebook. A new notebook should appear in your browser. Click Untitled,
name it penguins_project, and then click the Save button. You’re ready to go!

NOTE

If you want to open the notebook in the future using Anaconda Navigator, launch
Navigator, use the Environments tab to activate penguins_env, and then click the
Launch button on the Jupyter Notebook tile. This will open the dashboard, where
you can navigate to the notebook folder and launch penguins_project.ipynb. If
you want to use Notebook in JupyterLab, see the instructions in Chapter 6 for
installing JupyterLab and launching Notebook.

Importing Packages and Setting Up the Display

In the first notebook cell, import Matplotlib, seaborn, and pandas. Enter the
following code and execute it using SHIFT-ENTER, which automatically
moves you to a new blank cell:

import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

Enable multiple outputs per cell:
%config InteractiveShell.ast_node_interactivity = 'all'

Set plotting styles
sns.set_style('whitegrid')
sns.set_palette(['black', 'red', 'grey'])

NOTE

Normally, we would perform all the imports here, but for the sake of the narrative,
we’ll import the scikit-learn components later, so we can discuss them just before
applying them.

By default, Notebook displays only one output per cell. The %config magic
command overrides this, allowing us to see multiple outputs, such as a data
table plus a bar chart, in a single output cell.

The default seaborn color palette is undeniably beautiful (see
http://seaborn.pydata.org/tutorial/function_overview.xhtml), but it loses its charm

somewhat in a black-and-white book. As a compromise, we’ll use the whitegrid
stylesheet and reset the palette to black, red, and gray, one for each of the three
penguin species in the dataset.

Loading the Dataset

Seaborn comes with a few practice datasets that are automatically downloaded
during installation. These are all comma-separated values (.csv) files stored in a

repository at https://github.com/mwaskom/seaborn-data/. If you ever need to get

the dataset names, you can retrieve them by running sns.get_dataset_names() in a
notebook or console (after importing seaborn, of course).

As a data analysis tool, pandas can read and write data stored in many types
of media, such as files and databases (Table 20-4). Example syntax is df =
pd.read_excel('filename.xlsx') and df.to_excel('filename.xlsx'), where df stands for

http://seaborn.pydata.org/tutorial/function_overview.xhtml
https://github.com/mwaskom/seaborn-data/

DataFrame. For more options, visit

https://pandas.pydata.org/docs/reference/io.xhtml.

In addition to the methods in Table 20-4, the read_table() method reads
tabular data, such as text (.txt) files, in which the values are separated by spaces

or tabs. Python can generally detect the separator in use, but you can also pass
it as an argument, for example, sep='\t' for a tab.

Table 20-4: Useful pandas I/O Methods

Input (Reader) Output
(Writer)

read_csv() to_csv()

read_excel() to_excel()

read_hdf() to_hdf()

read_sql() to_sql()

read_json() to_json()

read_html() to_html()

read_stata() to_stata()

read_clipboard() to_clipboard()

read_pickle() to_pickle()

Besides loading external sources, you can create a DataFrame from many
different types of input. These include 2D ndarrays, lists of lists or tuples, list of
dictionaries or series, an existing DataFrame, and more.

In spite of all these choices, we’ll use seaborn’s load_dataset() method to load
the penguins dataset. This specialized method reads a CSV-format dataset
from the seaborn repository and returns a pandas DataFrame object. Enter the
following in the new cell and press SHIFT-ENTER:

Load penguins dataset:
df = sns.load_dataset('penguins')

NOTE

In this notebook, I’m using simple comments, such as # Load penguins dataset, as cell
headers. To make proper headers, you can add a Markdown cell before each code
cell, as described in Chapter 5.

https://pandas.pydata.org/docs/reference/io.xhtml

In the previous code, we assigned the DataFrame to a variable named df.
This is handy, as the name reflects the datatype. There’s no reason why you
couldn’t use another name, however, such as penguins_df.

Displaying the DataFrame and Renaming Columns

The first thing you’ll want to do after loading the data is look at it. For larger
datasets such as penguins, pandas will show you part of the top and part of the
bottom of a DataFrame by default. To see an example, enter the following, and
then press CTRL-ENTER to execute the cell without leaving it:

View dataframe head and tail:
df

To see the entire DataFrame in a scrollable output cell, place this command
at the top of the cell and rerun it: pd.set_option('display.max_rows', None).

Calling the DataFrame displays all the columns along with the first five
rows and last five rows (Figure 20-4). When possible, column names should be
descriptive and short. However, this isn’t always an option, so let’s practice
changing a column header.

Figure 20-4: DataFrame head and tail display

In the same cell, add the following code to rename the sex header to gender.
The inplace argument tells pandas to alter the current DataFrame rather than

return a copy. Press CTRL-SHIFT to execute the code and move to a new
cell.

Rename sex column to 'gender' and verify change:
df.rename(columns={'sex': 'gender'}, inplace=True)
df.head()

The head() method displays the first five rows in a DataFrame, as shown in
Figure 20-5. To see more, just pass it the number of rows you want to see as an
argument.

Figure 20-5: The head of the DataFrame after changing the sex column header to gender

In Figure 20-4 the number of rows and columns is included at the bottom
of the output. You might immediately notice an issue: there are 344 rows, but
earlier, I stated that the dataset has 342 observations. The discrepancy could be
due to one of two common dataset problems: duplicate or missing values.

Checking for Duplicates

It’s not uncommon for data rows to become duplicated by accident. This can
happen during the initial creation of a dataset, in later edits, or during data
transfers and transformations. You should remove this redundant data before
you begin an analysis because it takes up memory, slows processing speeds, and
distorts statistics due to the overweighting of the duplicate values.

Fortunately, pandas comes with the duplicated() method for finding duplicate
rows. In the new cell, enter the following and then press CTRL-ENTER:

Check for duplicate rows:
duplicate_rows = df[df.duplicated(keep=False)]
print(f'Number of duplicate rows = {len(duplicate_rows)}')

You should get the following output, as there are no duplicate rows:

Number of duplicate rows = 0

Had there been any duplicates in the dataset, we could have removed them
using the drop_duplicates() method, like so:

df.drop_duplicates(inplace=True)

You can also look across specific columns for duplicate values. At the
bottom of the current cell, enter the following and execute it by pressing
SHIFT-ENTER:

Check for duplicates across specified columns:
df[df.duplicated(['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 'body_mass_g'])]

Note that the inner square brackets define a Python list with column names,
whereas the outer brackets represent “selection brackets” used to select data
from a pandas DataFrame. We specified four of the seven columns, producing
the output in Figure 20-6.

Figure 20-6: Row with duplicate values across the four columns with the float data type

As you’ll see in a moment, row 339 is a duplicate of row 3 (for the four
columns specified). But even though there are duplicate values here, they’re
not the kind that we need to treat as duplicates. Instead, they represent missing
values, which we’ll cover in the next section.

Handling Missing Values

The duplicate values in Figure 20-6 are represented by the Not a Number (NaN)

value. This is a special floating-point value recognized by all systems that use
the standard IEEE floating-point representation. For computational speed and
convenience, it serves as the default missing value marker for both NumPy and
pandas. NaN and Python’s built-in None value are essentially interchangeable. By
default, these null values are not included in computations.

Finding Missing Values

Missing data values reduce statistical power and can cause bias when estimating
parameters and making predictions. To find the missing values in the penguins

DataFrame, enter the following in a new cell and then press SHIFT-
RETURN:

Find null values
df.isnull().sum()
df[df.isnull().any(axis=1)]

The first method sums the missing values and displays the results as a table
(Figure 20-7). The penguins dataset is missing 11 gender calls and a total of 8
morphological measurements.

Figure 20-7: The output of df.isnull().sum()

The second call indexes the DataFrame where a value in any column is

missing (as opposed to all). Remember, pandas is built on NumPy, so axis 1

refers to columns and axis 0 refers to rows. You should get the result depicted
in Figure 20-8.

Figure 20-8: All the DataFrame rows containing missing data

Filling and Removing Missing Values

Missing values must be addressed before you try to conduct analyses or build
models from a dataset. Although ignoring the issue is a possibility, it’s much
better to either fill in the missing values or remove (drop) them completely.
Methods for doing this are listed in Table 20-5.

Table 20-5: Useful Methods for Handling Missing Data

Method Description

dropna Depending on arguments, remove row or column that
contains missing data based on whether any or all values are
null.

fillna Fill in missing value with a constant or an interpolation
method. Arguments include the ffill and bfill methods.

ffill “Forward fill” by propagating the last valid observation
forward.

bfill “Back fill” by replacing missing values with values from the
next row or column, as specified.

isnull Return Boolean indicating missing/NA values.

notnull Negate isnull.

Options for filling in the missing values with fillna() include replacing them
with the mean, median, or most frequent values in the dataset so that the
overall statistics aren’t skewed. For example, to use the mean value of a
column, you would use this syntax (don’t add this to your project code):

df['col1'] = df['col1'].fillna(df['col1'].mean())

NOTE

The pandas library tries to mimic the R programming language, and the na in the
fillna() method stands for the NA (not available) marker used for missing data in
R.

Filling in the missing data is important when a dataset is small and you need
to take into account every observation. And if only a single column among

many is missing a value, you might not want to “throw away” all the other
useful data in the row.

Because we have a robust dataset and can’t easily impute and replace
missing gender data, we’ll drop the rows with missing data. In the new cell,

enter the following and then press SHIFT-ENTER:

Drop Null Values
df = df.dropna(how='any')
df.isnull().sum()

Using an assignment statement when calling dropna() causes the current
DataFrame (df) to be overwritten. This allows the DataFrame to evolve over
time, but be aware that to erase changes and restore the DataFrame to its
previous state, you’ll need to run all the cells above the current cell. Passing a
how argument of any to dropna() means that any row with at least one missing
value will be deleted.

To check the results, rerun the isnull() method. You should get the output
in Figure 20-9.

Figure 20-9: A summary of null values after dropping nulls

The DataFrame no longer includes missing values.

Reindexing

Reindexing refers to the process of making data conform to a given set of labels

along a particular axis. Missing value markers will be automatically inserted in
label locations where no data for the label exists.

When we dropped the rows with null values in the previous section, we also
deleted their corresponding indexes. To see the result, run the following code
in the new cell and press SHIFT-ENTER:

Check index values after dropping rows.
df.head()

As you can see in Figure 20-10, there is a gap in the DataFrame index
(leftmost column) where row 3, which contained a null value, was dropped.

Figure 20-10: Dropping rows results in missing DataFrame indexes.

To restore the indexes, run the following and then execute the cell using
SHIFT-ENTER.

After dropping nulls, reindex:
df.reset_index(drop=True, inplace=True)
df.head()

In the reset_index() method, drop=True signals that the old index isn’t preserved
as a new column in the DataFrame, because there’s no need to keep that
information. The inplace=True argument means that the method adjusts the
current DataFrame rather than returning a copy. As an alternative, you could
simply reassign the DataFrame, like so:

df = df.reset_index(drop=True).

Calling the head() method shows that the indexes are now consecutively
ordered (Figure 20-11).

Figure 20-11: The DataFrame head after reindexing

Pandas includes several other reindexing functions, such as reindex() and
reindex_like(). You can find these, and other DataFrame functions, at
https://pandas.pydata.org/pandas-docs/stable/reference/frame.xhtml. For more on

missing values, see https://pandas.pydata.org/docs/user_guide/missing_data.xhtml.

Exploring the Dataset

At this point, you’ve cleaned the data by checking for duplicates, removing
missing values, and reindexing the DataFrame. Of course, there might still be
problems, such as incorrect values (a penguin body mass of one million grams,
for example). Catching and correcting these requires an exploration of the
dataset, and pandas and seaborn provide several methods to aid you in this
process. These same methods will help you to understand the dataset so that
you can formulate a plan for addressing the project goal.

Describing the DataFrame

Let’s explore the DataFrame using a combination of tables and graphs. To
begin, we’ll look at the data types in play and overall statistics. In a new cell,
enter the following and then press SHIFT-ENTER:

Display datatypes and data statistics:
df.dtypes
df.describe(include='all')

This produces the output shown in Figure 20-12.

https://pandas.pydata.org/pandas-docs/stable/reference/frame.xhtml
https://pandas.pydata.org/docs/user_guide/missing_data.xhtml

Figure 20-12: Output of the dtypes() and describe() methods

The describe() method returns a quick-look statistical overview of the
DataFrame. Passing it all produces a statistical summary of all the columns. If

you omit the include argument, you’ll see only a summary of the numeric
columns.

The NaN values present in the table represent not applicable values rather than

missing values. For example, you can’t take the mean of a categorical feature
like species, so the result is presented as NaN.

The stats table doesn’t tell you if every value in the dataset is valid, but it
does help bracket how good or bad things can be. If the minimum, maximum,
and mean values appear to be reasonable, the dataset is probably reliable.

Counting Observations Using countplot

Tables of data, although useful, can be dense and difficult to interpret. For
example, is the data skewed toward male or female penguins? The information
is there, but you must work to back it out.

In these cases, it’s beneficial to create a visualization of the data. The
seaborn library provides many statistical plot types for data exploration (Table
20-6). You can see examples of these in the seaborn gallery
(https://seaborn.pydata.org/examples/index.xhtml), and you can find a plotting

tutorial at https://seaborn.pydata.org/tutorial.xhtml.

Table 20-6: Useful seaborn Plotting Methods

Method Description

barplot() Categorical data presented with bars whose heights or lengths
are proportional to the values that they represent.

boxplot() Graphical representation of the locality, spread, and skewness
groups of numerical data through their quartiles.

countplot() A visualization of the counts of observations in each
categorical bin using bars.

histplot() Series of bars used to bin and display continuous data in a
categorical form.

jointgrid() Grid for drawing a bivariate plot with marginal univariate
plots.

jointplot() jointgrid() wrapper for drawing jointgrid() of two variables
using canned bivariate and univariate graphs.

lineplot() Graphical display of data along a number line where markers
recorded above the responses indicate the number of
occurrences.

pairgrid() Subplot grid for plotting pairwise relationships in a dataset.

pairplot() Easier-to-use wrapper for pairgrid().

relplot() Function for visualizing statistical relationships using scatter
plots and line plots

scatterplot() Graph that uses Cartesian coordinates to display values for two
variables. Additional variables can be incorporated through
marker coding (color/size/shape).

stripplot() A scatterplot for which one variable is categorical.

swarmplot() A stripplot with non-overlapping points.

https://seaborn.pydata.org/examples/index.xhtml
https://seaborn.pydata.org/tutorial.xhtml

Method Description

violinplot() A combination of boxplot and kernel density estimate showing
the distribution of quantitative data across several levels of one
(or more) categorical variables.

Let’s look at an example in which we plot the number of penguins and their
gender. In a new cell, enter the following and then press SHIFT-ENTER:

Plot species and gender counts:
sns.countplot(data=df, x='species', hue='gender')
plt.xticks(rotation=45)
plt.legend(loc='best');

This produces the output in Figure 20-13.

By visualizing the data, we can instantly see that the Chinstrap species is a
bit underrepresented, and the division between genders is close to equal.

Figure 20-13: Bar chart of penguin species and gender counts

What about the distribution of penguins per island? Are they one big happy

family, or do some prefer one island over another? To check, in a new cell,
enter the following code and then press SHIFT-ENTER:

Count and plot penguin species per island:
sns.countplot(data=df, x='island', hue='species')
plt.legend(loc='best');

This code counts the penguins per island, presents the results in a bar chart,
and colors the bars based on species (Figure 20-14).

Figure 20-14: Bar chart of the number of penguins sampled per island, colored by species

Based on Figure 20-14, we can see that the Adélie penguins live on all the
islands, but the Chinstraps are found only on Dream Island, and the Gentoos
only on Biscoe Island (see Figure 20-1 for island locations). So, if you have
measurements from Torgersen Island, you know you’re dealing with an Adélie.
And the dimensional space is reduced for the other two islands, as you need to
choose between only two species on both islands.

NOTE

An assumption here is that each island was thoroughly sampled. We’re saying that
if a penguin species is not present in the dataset for a particular island, that species
doesn’t live on that island. You’d want to verify this assumption in a real study, as
absence of evidence is not evidence of absence.

Another way to count each species per island is to use the pandas
get_dummies() method in combination with the groupby() method. The first
method converts categorical variables to dummy variables, which are numeric

variables used to represent categorical data. The second method is used to
group large amounts of data and compute operations on these groups.

In this case, we want to sum the penguin species per island, so we chain the

methods and pass them the species column grouped by the island column,

followed by the sum() method. In a new cell, enter the following code and then
press SHIFT-ENTER:

Count penguins per species per island
count_df = (pd.get_dummies(data=df, columns=['species']).groupby(
 'island', as_index=False).sum())
print(count_df.columns)
count_df[['island', 'species_Adelie', 'species_Gentoo', 'species_Chinstrap']]

The call to print() lets you see the names of the new “dummy” columns
(highlighted in bold):

Index(['island', 'bill_length_mm', 'bill_depth_mm', 'flipper_length_mm',
 'body_mass_g', 'species_Adelie', 'species_Chinstrap', 'species_
 Gentoo'],
 dtype='object')

The final line of code displays the new columns in the count_df DataFrame
(Figure 20-15).

Figure 20-15: The count_df DataFrame that sums columns per island per penguin species

An advantage of checking tabular data is that low values are just as apparent
as high values. With a bar chart, very low values may be mistaken for 0, due to
the shortness of the bars.

You can read more about the get_dummies() and groupby() methods at
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.xhtml
and https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.groupby.xhtml, respectively.

Getting the Big Picture with pairplot

Because visualizations are so effective for understanding data, seaborn provides
the pairplot() method for plotting pairwise relationships in a dataset. This
method creates a grid of axes where each variable shares the y-axis across a
single row and the x-axis across a single column. This lets you quickly spot
patterns in the data.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.xhtml
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.xhtml

To make a pairplot, in a new cell, enter the following code and then press
SHIFT-ENTER:

sns.pairplot(df, hue='species', markers=['o', '*', 'd']);

The arguments here are the name of the DataFrame, the column used to
color the plots, and the marker types. You can find a list of marker types at
https://matplotlib.org/stable/api/markers_api.xhtml.

Because the dataset contains only four numeric columns, the pairplot
(Figure 20-16) is very accessible and easy to consume.

Figure 20-16: The pairplot for the penguins dataset

https://matplotlib.org/stable/api/markers_api.xhtml

The pairplot makes it easy to see data distributions and relationships. For
example, the scatterplots where the points cluster into separate groups are
important because they indicate that classification strategies such as principal
component analysis (PCA) and k-nearest neighbors should be able to

distinguish one species from another. Scatterplots with linear relationships, like
flipper length versus body mass, suggest that regression techniques could
predict one of these features when the other is known.

Digging into Details with scatterplot

Despite being packed with information, even a pairplot can’t tell the whole
story. For example, what role does gender play in determining the body mass
and bill length of each species? To explore this, you’ll need more detailed plots.
In a new cell, enter the following and press SHIFT-ENTER:

Investigate bill length vs. body mass by species by gender:
sns.scatterplot(data=df,
 x='body_mass_g',
 y='bill_length_mm',
 hue='species',
 style='species',
 size='gender')

plt.legend(bbox_to_anchor=(1.3, 1.0));

In the call to scatterplot(), the hue, style, and size arguments control marker
color, shape, and size, respectively. The first two are based on species, and the
latter on gender; thus, data points representing female penguins are sized
differently than males of the same species. Calling legend() with the
bbox_to_anchor argument prevents the legend from posting over the plot and
obscuring some of the data. You should get the results in Figure 20-17.

Figure 20-17: A scatterplot of bill length versus body mass, colored by species and sized by gender

This plot shows that the female of each species tends to be smaller, with
shorter bills and lower body mass than the males. Bill length also appears to be
more strongly correlated with body mass for the Adélie and Gentoo species,
regardless of gender.

You can learn more about the scatterplot at
https://seaborn.pydata.org/generated/seaborn.scatterplot.xhtml.

Investigating Categorical Scatter Using boxplot and stripplot

We can explore the gender relationships further using different types of plots
such as box plots and strip plots. To make a box plot, in a new cell, enter the

following code and then press SHIFT-ENTER:

Plot body mass by species by gender:
box = sns.boxplot(x="body_mass_g",
 y="gender",
 orient='h',
 hue='species',
 data=df)

This produces the plot in Figure 20-18.

https://seaborn.pydata.org/generated/seaborn.scatterplot.xhtml

Figure 20-18: A box-and-whisker plot of penguin body mass by species by gender

Box plots provide insight on the symmetry, grouping, and skewness of data.
Each box encompasses the first through third quartiles of the data distribution,
with the vertical line within the box marking the median value. The “whiskers”
extend to show the rest of the distribution, except for points that are
considered “outliers,” which are represented by diamonds.

Based on the box plot in Figure 20-18, Adélie and Chinstrap penguins are
similar in size and smaller than Gentoo penguins, and the females tend to be
smaller for all species. There is overlap between the genders, however,
meaning body mass alone cannot positively differentiate males from females.

The seaborn strip plot posts the actual data points rather than summarizing
them, as in the box plot. Let’s examine bill length measurements in both
species and genders. In a new cell, enter the following code and then press
SHIFT-ENTER:

Plot bill length by species by gender:
strip = sns.stripplot(data=df,
 x='bill_length_mm',
 y='gender',
 hue='species',
 dodge=True)

The dodge argument shifts points for each species to reduce overlap, making
the plot easier to read (Figure 20-19).

Figure 20-19: A strip plot of penguin bill length by species by gender

Based on the plot, we can see that the Adélie penguins have markedly
shorter bills than the other two species. Gender differences are less distinct,
though female penguins of all species tend to have shorter bills, on average.

Combining Views Using jointplot

Another potentially characteristic feature of the penguins is the vertical
thickness of the bill, referred to as its depth. You can see in Figure 20-2 that

Gentoos have narrow, pointed bills, whereas the other two species have more
bulbous bills. Although there are numerous ways to compare these graphically,
let’s try out a joint plot using a kernel density estimation (KDE).

A KDE plot is a method for visualizing the distribution of observations in a
dataset, much like a histogram. But whereas a histogram approximates the
underlying probability density of the data by counting observations in discrete
bins, a KDE plot smooths the observations using a Gaussian kernel, producing
a continuous density estimate. This results in a less cluttered and more
interpretable plot when drawing multiple distributions. The joinplot() method
lets you plot two variables using bivariate and univariate KDE graphs.

In a new cell, enter the following and then press SHIFT-ENTER:

Plot bill depth vs. bill length by species:
sns.jointplot(data=df,
 x="bill_length_mm",
 y="bill_depth_mm",
 kind="kde",

 hue="species",
 alpha=0.75);

This produces the chart in Figure 20-20.

Figure 20-20: A joint plot of bill depth versus bill length by species

From the Gaussian curves along the edges of the joint plot, it’s clear that the
Adélie is distinguished by its shorter bill length, and the Gentoo by its
shallower bill depth.

You can customize joint plots in many ways. To see some examples, check
out the documentation at
http://seaborn.pydata.org/generated/seaborn.jointplot.xhtml.

Visualizing Multiple Dimensions Using radviz

The pandas library comes with its own plotting capability built on Matplotlib.
This includes the radviz() (radial visualization) method for plotting
multidimensional datasets in a 2D format (Figure 20-21).

http://seaborn.pydata.org/generated/seaborn.jointplot.xhtml

Figure 20-21: An example radviz plot for an automotive dataset

In a radial visualization, the dimensions in a DataFrame, such as a penguin’s
body mass or bill length, are evenly spaced around the circumference of a
circle. Data in these numerical columns are normalized to values between 0
and 1 so that all dimensions have equal weights. These are then projected into
the circular 2D space as if imaginary springs anchor them to the column labels
along the circumference. A point is plotted where the sum of the “spring”
forces acting on it equals zero.

Radial visualizations are intuitive by nature. Points with similar dimension
values will plot near the center, as will points with similar values whose
dimensions are opposite each other on the circle. Points with dimension values
greater than others will be “pulled” toward that side of the circle. The
penguins dataset has only four dimensions, but the radviz() method can handle
many more.

To make a radial visualization, in a new cell, enter the following and then
press SHIFT-ENTER:

 # Make radial visualization:

➊ sns.set_theme(context='talk')
 plt.figure(figsize=(7, 7))

➋ pd.plotting.radviz(df.drop(['island', 'gender'], axis=1),
 class_column='species',
 color=['black', 'red', 'grey'],
 marker='+',

 alpha=0.7)
 plt.legend(loc=(1.01, 0.7));

For a better-looking radviz plot, reset the default seaborn plotting

parameters using the set_theme() method and set the context to 'talk' ➊. The
context parameter controls the scaling of plot elements like label size and line
thickness. The base context is notebook, and the other contexts are paper, talk,
and poster, which are just versions of the notebook parameter scaled by different
values. Using the talk argument ensures that the plot labels are easy to read. To
better increase readability, manually set the figure size to 7" × 7".

Next, call pandas’ plotting.radviz() method ➋. This method accepts only one
categorical column, called the class_column, which in this case will be species.
The rest of the DataFrame columns are assumed to be numerical, so we must
remove the island and gender columns, which don’t contain numerical data. You
could do this by creating a copy of the DataFrame, but because we need only
this revised DataFrame for plotting, we’ll temporarily delete the columns,
using the drop() method, while passing the DataFrame to the radviz() method.

The drop() method takes two arguments: the column names as a list, and the
axis number, where 0 = row and 1 = column. Unless you pass it an inplace=True
argument, the DataFrame will be changed for only the current operation.

Because we’re not plotting with seaborn, we need to remind pandas of the
color scheme we’re using and then change the marker style and transparency
to make over-posted points easier to see. Moving the legend to the side also
helps. Notice how we’re able to mix in seaborn (sns) and Matplotlib’s pyplot (plt)
with pandas plotting. This is because both seaborn and pandas are built on top
of Matplotlib.

You should see the plot depicted in Figure 20-22.

Figure 20-22: Radviz plot for the penguins dataset

In the plot, the Gentoo data points form a distinct cluster skewed toward
body mass and flipper length. The similarly sized Chinstrap and Adélie
penguins are distinguished mainly by bill length, which “pulls” the Chinstrap
points to the right of center.

The radviz plot is another way of exploring the data, and it becomes more
useful with more dimensions. To read more about the pandas implementation,
visit https://pandas.pydata.org/docs/reference/api/pandas.plotting.radviz.xhtml.

It’s worth noting here that we changed the plotting style. I’ll be continuing
with this new look, but if you want to return to the previous 'whitegrid' style,
you’ll need to enter the following code in a new cell before making more plots:

Restore theme and palette:
sns.set_theme(context='notebook')
sns.set_style("whitegrid")
sns.set_palette(['black', 'red', 'grey'])

Quantifying Correlations Using corr()

The pandas DataFrame class comes with a corr() method that quantifies data
correlations by computing a pairwise correlation of columns, excluding

https://pandas.pydata.org/docs/reference/api/pandas.plotting.radviz.xhtml

NA/null values. This is useful when you plan to use regression techniques to
make predictions.

In a new cell, enter the following and then press SHIFT-ENTER:

correlations = df.corr()
sns.heatmap(correlations, center=1, annot=True);

The first line calls the corr() method and assigns the results to the
correlations variable. The next line plots the results as a seaborn heatmap
(Figure 20-23). The center argument is optional and tells the method the value
at which to center the colormap when plotting divergent data. With a value of
1, the best correlations will plot in black. The annot argument turns on the plot
annotations within each colored square.

Figure 20-23: The correlation heatmap

The heatmap confirms and quantifies correlations that we noted in the
pairplot (Figure 20-16). Flipper length and body mass are the most closely
correlated, followed by flipper length and bill length.

For more on the corr() method and seaborn heatmap, visit
https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.corr.xhtml and

https://seaborn.pydata.org/generated/seaborn.heatmap.xhtml.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.xhtml
https://seaborn.pydata.org/generated/seaborn.heatmap.xhtml

TEST YOUR KNOWLEDGE

1. Which of the following are advantages of pandas series or
DataFrames over NumPy arrays?

a. Ability to use heterogeneous data types

b. Ability to use either numbers or labels as indexes

c. Ability to load Python dictionaries

d. Ease of use with tabular data

2. True or False: Reindexing is required after renaming columns in a
DataFrame.

3. Convert the following dictionary into a DataFrame and rename the
last column to “whales”:

animals = {'canines': ['husky', 'poodle', 'bulldog'],
 'felines': ['Siamese', 'Persian', 'Maine Coon'],
 'cetaceans': ['humpback', 'sperm', 'right']}

4. Display the first row of the animals DataFrame from the previous
question.

5. Flip the rows and columns in the animals DataFrame (hint: look up the
pandas transpose() method).

Predicting Penguin Species Using k-Nearest Neighbors

The goal of this project is to develop a model that classifies penguins based on
the Palmer Archipelago dataset. Our data exploration has revealed that four
morphological features (bill length and depth, flipper length, and body mass)
form separate but overlapping clusters in numerous plots. This implies that a
machine learning classification algorithm should be able to handle the
problem.

It’s always best to start simple, and if you do a little research, you’ll find that
k-Nearest Neighbors (k-NN) is one of the most basic, beginner-friendly, yet

important classification algorithms in machine learning. It uses distance
measures to intuitively find the k nearest neighbors to a new, unknown data

point and then uses those neighbors to make a prediction.

In Figure 20-24, numerical data points for two categorical classes (A and B)
are plotted in a scattergram. A new and unlabeled data point (⋆) falls between

the two clusters. To classify this new point, the algorithm’s k parameter has

been set to 7. As most of the closest points belong to Class B, the new data
point will be assigned to B. Because this is a “voting” algorithm, k should

always be set to an odd number to avoid a tie.

Figure 20-24: Example of the k-NN algorithm choosing the seven nearest neighbors to a new data

point

Besides being intuitive and easy to explain, k-NN runs quickly, works well

with small datasets, is robust to noise, and can be tuned for greater accuracy.
It’s also versatile, given that it can be applied to both classification and
regression problems.

The algorithm needs a dense dataset, however, so that points aren’t too far
apart. The more data dimensions you have, like flipper length and body mass,

the more data you need for k-NN to work properly.

In addition, k-NN, like other machine learning algorithms, requires its own

data preparation routines. Because the algorithm works only with numerical
data, you’ll commonly need to convert categorical values to integers and
normalize numerical values between 0 and 1. Normalization is needed so that
dimensions with larger values don’t skew the distance calculations.

Converting Categorical Data to Numerical Data

As stated previously, the k-NN algorithm uses numerical data. To take

advantage of important non-numerical data, such as the island of origin and
gender, you need to convert these values into numbers.

Let’s do this first for the island column, using the pandas get_dummies()
method that we used previously when counting penguins per island. Next,
we’ll repeat the exercise manually for gender so that you can practice
DataFrame indexing. In a new cell, enter the following and then press SHIFT-

ENTER:

 # Prepare for k-NN.
 # Add numerical columns for island and gender labels:
 knn_df = pd.get_dummies(data=df, columns=['island'])

➊ knn_df['male'] = 0
 knn_df.loc[knn_df['gender'] == 'Male', 'male'] = 1

 knn_df['female'] = 0
 knn_df.loc[knn_df['gender'] == 'Female', 'female'] = 1

➋ knn_df.iloc[:300:30]

To use get_dummies(), pass it the DataFrame and the column label that you
want to convert. Assign the result to a new DataFrame named knn_df. The
method will create three new columns—one for each island—with values of
either 0 or 1, depending on the value in the island column (either Biscoe, Dream,
or Torgersen).

Next, for demonstration purposes, we’ll use a different approach to convert
the gender column to new male and female columns. We’ll create a new column
for each class and fill it with zeros. Then, using conditional statements, we’ll
find the rows where the targeted class exists and change the column values to
ones. For example, the column for male penguins will contain 1 for rows in the
gender column containing a male designation; for all other rows, the column
will contain 0.

Start by creating a new column named male. Assign to that column a value of

0 ➊. Next, use the pandas loc indexing operator to select a subset of the knn_df

DataFrame. Because pandas can use both label-based and integer-based
indexing for rows and columns, it comes with two indexing operators. The loc
operator is for strictly label-based indexing, and the iloc operator handles cases
in which the labels are strictly integers. In our case, the columns use labels
(such as “species”) and the rows use integers.

The current operation will convert Male values in the gender column to 1
values in the male column. So, select the gender column (knn_df['gender']) and
then use a conditional to overwrite the 0 values that we set in the previous line.

What you’re saying here is, “get the gender column and, if its value is Male, put a
1 in the male column.”

Repeat this code for the female column and then check the results by using

the iloc operator to sample rows throughout the DataFrame ➋. This works like
indexing a list, for which you start at the beginning, go up to index 300, and
use a step of 30 to select every 30th row.

You should get the output in Figure 20-24. Note the five new columns on
the right side of the DataFrame. The categorical island and gender columns
can now be used by the k-NN algorithm, so you can make use of all the data at

your disposal.

Figure 20-25: A sample of the new knn_df DataFrame with new numerical columns for islands and

gender

By converting the gender and island data to numbers, we’ve supplemented
our morphological data with two more dimensions.

If your goal was to predict the species of penguins sampled at sea, you’d
want to drop the island-related columns because you couldn’t be sure of a
penguin’s point of origin.

Setting Up the Training and Testing Data

The k-NN classifier is a supervised learning algorithm. This means that you

show it what the answer should look like by providing a set of examples known

as the “training” dataset. You can’t use all the available data for the training set,
however, as you’ll have no objective way to test the results. Consequently, you
need to randomly split out a smaller subset of the data that you can use to test
the model’s accuracy.

As a lazy learning algorithm, k-NN doesn’t have an actual training phase in

which it “learns” a discriminative function to apply to new data. Instead, it
loads, or memorizes, the data and performs calculations with it during the
prediction phase.

For convenience, scikit-learn provides the train_test_split() method as part
of the sklearn.model_selection module. In a new cell, enter the following and then
press SHIFT-ENTER:

 # Break out numerical and target data and split off train and test sets:
 from sklearn.model_selection import train_test_split

➊ X = knn_df.select_dtypes(include='number') # Use numerical columns.
 y = knn_df['species'] # The prediction target.

 # Split out training and testing datasets:

➋ X_train, X_test, y_train, y_test = train_test_split(X, y,
 test_size=0.25,
 random_state=300)

After importing the module, call the pandas select_dtypes() method on the

new knn_df DataFrame ➊. This method returns a subset of a DataFrame
including or excluding columns based on their data type. We want the
numerical columns for use with the k-NN algorithm, so set include equal to

'number' and assign the result to a variable named X.

Next, assign the species column to a variable named y. This represents the
categorical class you’re trying to predict. Note that the uppercase “X,”
lowercase “y” format follows the convention in the scikit-learn documentation.

Split out the training and testing data using the train_test_split() method ➋.
You’ll need to unpack four variables for both X and y training and testing.
Because we passed the method DataFrames, it will return DataFrames.

A key argument here is test_size, expressed as a proportion of the complete
dataset. By default, this is 0.25, or 25 percent. So, for our penguins dataset, this
represents 83 samples (332 × 0.25).

To avoid biasing, the train_test_split() method randomly shuffles the data
before splitting it. For reproducible output across multiple function calls, you
can pass an integer to the random_state argument. As written, this code lets you
produce one set of repeatable training and testing data. To generate a new
random set, you’ll need to either change the random_state value or not use it at
all.

Although we don’t need it here to get a good result, the train_test_split()
method comes with a stratify parameter that ensures the split preserves the
proportions of samples of each target class as observed in the original dataset.
So, if the original dataset sampled 25 percent of Class A and 75 percent of
Class B, the training and testing sets would reflect this proportion. This helps
you avoid sampling bias, wherein a sample is not representative of the true
population.

To read more about the train_test_split() method, visit https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.xhtml.

Normalizing the Data

Each numerical data column in the training and testing sets should be
normalized to values between 0 and 1. This prevents columns with large
numerical values from biasing the k-NN distance measurement.

Because column transformations, such as normalization, are a common
operation in machine learning, scikit-learn comes with two modules, compose
and preprocessing, to simplify the task. In a new cell, enter the following and
then press SHIFT-ENTER:

 # Normalize numerical columns to 0-1:
 from sklearn.compose import make_column_transformer
 from sklearn.preprocessing import MinMaxScaler

➊ column_transformer = make_column_transformer((MinMaxScaler(),
 ['bill_depth_mm',
 'bill_length_mm',
 'flipper_length_mm',
 'body_mass_g']),
 remainder='passthrough')
 X_train = column_transformer.fit_transform(X_train)

➋ X_train = pd.DataFrame(data=X_train,
 columns=column_transformer.get_feature_names_out())
 X_train.head()

 X_test = column_transformer.fit_transform(X_test)
 X_test = pd.DataFrame(data=X_test,
 columns=column_transformer.get_feature_names_out())
 X_test.head()

Start by importing the make_column_transformer() method and the MinMaxScaler()
method. The first method lets us transform columnar data; the second method
specifies how to do it.

To normalize the data, scale it so that the minimum and maximum values
fall between 0 and 1. Pass the make_column_transformer() method the MinMaxScaler()

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.xhtml

method ➊. Next, pass it the columns that you want to transform; in this case,
the numerical columns that aren’t already scaled to 0 and 1. By default, the
transformer drops columns that you didn’t specify in the previous argument. To

prevent this, set the remainder argument to passthrough.

Now you need to apply the transformer by calling its fit_transform() method
and passing it the X_train variable you made in the previous section. This
method transforms the data and concatenates the results, returning an array.
To convert this array back into a DataFrame, call pandas’ DataFrame class and

pass it the X_train array ➋. The column transformer renames the columns as
well as transforming them, so for the columns argument, call the
get_feature_names_out() method on the column_transformer object.

Call X_train.head() to see the results, and then repeat this code for the testing
set. The two DataFrame heads are shown in Figure 20-26. In both, the
columns should have new names, all the columns should contain numerical
data, and values should fall between 0.0 and 1.0.

Figure 20-26: The head of the normalized X_train and X_test DataFrames (shown horizontally

truncated)

To read more about the scikit-learn column transformer, visit https://scikit-
learn.org/stable/modules/generated/sklearn.compose.make_column_transformer.xhtml.

You now have numbers-only DataFrames that can be used for training and
testing. The x_test and y_test DataFrames let you relate these numerical
DataFrames back to a species call. With only seven dimensions, this is a low-
dimensional dataset. A high-dimensional dataset, common in machine learning,

could have 100,000-plus features!

https://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_transformer.xhtml

Running k-NN and Checking the Accuracy of the Prediction

At this point, the data is ready to be used with the k-NN classifier. It’s time to

name that penguin!

In a new cell, enter the following code and then press SHIFT-ENTER:

Run k-NN and check accuracy of prediction:
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

knn = KNeighborsClassifier(n_neighbors=5, p=2)
knn.fit(X_train, y_train)
predictions = knn.predict(X_test)

accuracy = accuracy_score(y_test, predictions)
print(f"Model accuracy = {accuracy}")

To run k-NN, you need to import the KNeighborsClassifier class from the

scikit-learn neighbors module (https://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.xhtml). To

check the results, import the accuracy_score() method from the metrics module.

Call the KNeighborsClassifier and pass it a k value of 5, and a p value of 2. The p
value tells the classifier to use Euclidian, or straight-line, distance
measurements. This is usually appropriate for low-dimensional datasets with
few outliers.

Next, call the classifier’s fit() method to train it and then run the predict()
method on the X_test dataset. This will take the measurement data you withheld
from training and predict the species.

Finish by calling the accuracy_score() method and passing it the y_test and
predictions variables. This method will compare the two datasets and store the
accuracy measure in the accuracy variable, which you then print (Figure 20-27).

Figure 20-27: The accuracy of the k-NN model

Right out of the gate, the model correctly matched about 99 percent of the
samples in the X_test dataset. But don’t get too excited. It’s only matched
samples in a randomly chosen subset of the penguins dataset. If you generate a new

test set by changing the train_test_split() method’s random_state argument from

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.xhtml

300 to 500 and rerun the cells, you’ll get an accuracy of 0.9642857142857143.
Although this is about as good as it gets for a real-world dataset, let’s use this
discrepancy to see how you might handle a larger mismatch in a different
project.

Optimizing the k Value Using Cross-Validation

The goal of supervised machine learning is to generalize beyond what we see in

training samples so that we can reliably classify new data. The k-NN classifier

uses numerous hyperparameters such as k, p, and weights to control the learning

process. In addition, the test_size and other parameters in the train_test_split()
method can have a big impact on model results. You can think of these
parameters as knobs that you can turn to “tune” or “dial in” the model fit.

You must be careful however, not to tune things too finely. Overfitting is a

common problem that can lurk behind an apparently accurate model (Figure
20-28).

Figure 20-28: An example of model fits with original training set (left) and superimposed with new,

unmatched training set (right)

In Figure 20-28, the chart on the left shows three fits (over, under, and best)
to a randomized training dataset. Any points that fall to the right of these lines

will be classified as belonging to Class B.

If the left-hand chart represents all the data we would ever have, the
overfitted model would be the most accurate. But look what happens when we
choose and post a new training set (right side of Figure 20-28). Some points
stay the same and others change, and the overfitted model no longer matches
the data as well. On the other hand, the underfitted model can neither model
the training data nor generalize sufficiently to match new data.

Typically, the smaller the k value, the “tighter” the fit of the model to the

data and the more likely that it is overfit; the larger the k value, the more likely

that the model is underfit.

In Figure 20-28, the more generalized “Best fit” model does a good job of
matching the two datasets. To achieve this generalized model, we’ll need to
find the best values for the important hyperparameters. But this isn’t
something that can be intuited when working in multidimensional space. It
requires iterative investigation, where parameters are changed multiple times
and the results are tabulated and scored.

In the code that follows, we’ll investigate a range of k values using cross-
validation (cv for short). This is a model validation technique for assessing how

the results of a statistical analysis will generalize to a new, unknown dataset. It
also helps flag issues like overfitting.

Cross-validation resamples different parts of the training set to create
testing sets. To ensure that the entire training set is evaluated, it repeats this
sampling multiple times. As it iterates, it changes the value of a
hyperparameter, like k, and scores the result based on model accuracy. When

the optimal parameters are identified, you input them in the k-NN classifier

and perform a final evaluation against the test dataset, which has been kept
separate from the cv process (Figure 20-29).

Figure 20-29: Building a predictive model using cross-validation (modified from scikit-learn.org)

To use cross-validation on our penguins dataset model, in a new cell, enter
the following and then press SHIFT-ENTER:

 # Run cross-validation on k:
 import numpy as np
 from sklearn.model_selection import cross_validate

 cv_metrics = {'train_score_ave': [],
 'cv_score_ave': []}

 num_neighbors = {'k': np.arange(1, 25)}
 for k in num_neighbors['k']:

 ➊ knn = KNeighborsClassifier(n_neighbors=k, p=2)
 scores = cross_validate(knn, X_train, y_train, return_train_score=True)
 cv_metrics['cv_score_ave'].append(np.mean(scores['test_score']))
 cv_metrics['train_score_ave'].append(np.mean(scores['train_score']))

➋ cv_metrics_df = pd.DataFrame(cv_metrics)
 cv_metrics_df.insert(loc=0, column='k', value=num_neighbors['k'])
 cv_metrics_df.head(10)

 best_k = cv_metrics_df.loc[cv_metrics_df['cv_score_ave'].idxmax()]
 print(f"Best k for current training and testing set: {int(best_k['k'])}")

We’ll use NumPy to make a range of k values to evaluate, and average, the

results of each cv iteration. The cross_validate() method is found in the scikit-
learn model_selection module.

Python dictionaries are great for storing data like test results, and they can
easily be turned into pandas DataFrames. After the imports, create a dictionary

http://scikit-learn.org/

named cv_metrics with keys for the average training set and cross-validation
score per iteration. The initial values for these dictionary keys are empty lists.

Next, make a num_neighbors dictionary with one key-value pair: k and a 1D

ndarray from 1 to 25. These represent the range of k values you’ll be testing.

Loop through the num_neighbors dictionary and pass the current k value to the

KNeighborsClassifier ➊. Then, call the cross_validate() method, pass it the knn
model and the training data, and set the return_train_score argument to True.
Finish each loop by appending the score results to the appropriate key in the
cv_metrics dictionary. Use the NumPy mean() method to average the scores for
each data point during the process.

Outside the loop, turn the cv_metrics dictionary into a DataFrame ➋ and
then add the num_neighbors dictionary as a new column on the leftmost side of the
DataFrame. Do this by calling the insert() method on the DataFrame and
passing it the first column position (loc=0), the column name, and the value,
obtained by passing the num_neighbors dictionary the k key. Finish by calling
head(10) to display the first 10 rows.

Rather than scroll through the DataFrame looking for the k value with the

best score, let pandas find it using the idxmax() method, which returns the index
of the first occurrence of a maximum value over a requested axis. This is axis 0
(row) by default. When you print the result, you should see the output in
Figure 20-30.

Comparing cross-validation and training scores can be insightful with
respect to model overfitting and underfitting. The process is computationally
expensive for high-dimensionality datasets, however, and the training scores
are not required to select the best parameters.

Figure 20-30: The first 10 rows in the cv_metrics DataFrame and the cv choice for best k value

To plot the cv results, in a new cell, enter the following and then press
SHIFT-ENTER:

Plot cross-validation results:
sns.set_palette(['black', 'red', 'grey'])
df_melt = cv_metrics_df.melt('k', var_name='cols', value_name='vals')
sns.lineplot(x='k', y="vals", hue='cols', data=df_melt);

The first line resets the seaborn color palette that we’ve been using for a
consistent look. The next line prepares the DataFrame for plotting. In seaborn,
plotting multiple columns against the same y-axis requires a call to the pandas
melt() method. This method returns a new DataFrame reshaped into a long
table with one row for each column. To learn about wide-form and long-form
data, see https://seaborn.pydata.org/tutorial/data_structure.xhtml.

With the new df_melt DataFrame, you can call seaborn’s lineplot() method to
get the plot in Figure 20-31. The top curve represents the average training
score.

https://seaborn.pydata.org/tutorial/data_structure.xhtml

Figure 20-31: A comparison of the average training scores and cross-validation scores with the k

value

If you expect to work extensively with pandas, consider learning its plotting
syntax. For example, you can re-create Figure 20-31 with a single line:
cv_metrics_df.plot.line(x='k'). The plots are less customizable than with seaborn
or Matplotlib, but they’re more than suitable for data exploration. To learn
more, visit
https://pandas.pydata.org/docs/getting_started/intro_tutorials/04_plotting.xhtml.

A model that is underfit will have both low training and low testing
accuracy, whereas an overfit model will have a high training accuracy but a low
testing accuracy. On the left side of Figure 20-31, where k = 1, the training set

is perfectly accurate because the training data point is compared only to itself.
The cv results, however, are less accurate. This indicates slight overfitting,
which we would expect with a low value of k.

On the right side of the figure, where k is greater than 20, accuracy falls off

for both curves. The model is trying to accommodate too many data points
and is becoming underfit.

When k = 4, the cv score reaches its highest average accuracy, and the two

curves begin to meet and run parallel to each other. In this case, values of k
between 5 and 10 will only add computational burden without increasing the
model accuracy.

If you change the random_state or the test_size parameters in the
train_test_split()method and rerun the code, you’ll see variations in the choice
of best k value. This is because the model starts out with such high accuracy

https://pandas.pydata.org/docs/getting_started/intro_tutorials/04_plotting.xhtml

that subtle stochastic effects can have a large relative impact with essentially no
absolute impact.

Optimizing Multiple Hyperparameters Using GridSearchCV

Running cross-validations can take time, so scikit-learn comes with a
convenience class called GridSearchCV. It takes a dictionary of parameter names
and values, cross-validates them, and reports the outcome. You can find the
documentation at https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.xhtml.

In a new cell, enter the following and then press SHIFT-ENTER:

from sklearn.model_selection import GridSearchCV

params = {'n_neighbors': np.arange(1, 20),
 'weights': ['uniform', 'distance'],
 'p': [1, 2]}

grid = GridSearchCV(estimator=knn,
 param_grid=params,
 scoring='accuracy',
 verbose=1)
grid_results = grid.fit(X_train, y_train)
print(f"Best parameter values: {grid_results.best_params_}")

A dictionary named params holds the hyperparameter ranges. In this example,
the k (n_neighbors) range is a NumPy array, and the weights and p parameters use

lists.

The GridSearchCV class needs to know the DataFrame you’re using (knn), the
name of the parameters dictionary (params), what to score on (accuracy), and how
much detail you want it to report. By passing it verbose=1, we suppressed most of
the extraneous output.

After fitting the model, you can print the best_params_ attribute to see the
results (Figure 20-32).

Figure 20-32: Results of running GridSearchCV

Next, in a new cell, pass the best parameters identified by the grid search to
the KNeighborsClassifier, fit the model, predict against the testing dataset, and

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.xhtml

evaluate the accuracy. This corresponds to the “retrained model” and “final
evaluation” steps shown in Figure 20-29.

knn = KNeighborsClassifier(n_neighbors=4, p=2, weights='uniform')
knn.fit(X_train, y_train)
predictions=knn.predict(X_test)

accuracy = accuracy_score(y_test, predictions)
print(f"Model accuracy = {accuracy}")

You should get the output shown in Figure 20-33.

Figure 20-33: Model accuracy after applying the optimized hyperparameters

You might notice that this score is worse than the one we got initially using
k=5 (Figure 20-27). That’s because this initial run on a single train-test dataset

was equivalent to a lucky roll of dice. The current model built with k=4 has
been tested over multiple datasets and should, when used repeatedly, yield the

same average accuracy as k=5 (see Figure 20-31) but with better computational
efficiency.

Along these lines, we’ve used only 75 percent of the penguins dataset to
train the model. How do we know that 80 percent wouldn’t produce better
results? To find out, you could use a loop to run multiple combinations of the
test_size and random_state parameters of the train_test_split() method and model
each.

The need to test many parameter and dataset combinations, along with
heavy memory use, renders the k-NN algorithm inappropriate for very large

datasets. Otherwise, it has numerous benefits, including being simple to use,
easy to understand, fast to train, versatile, and agnostic to assumptions about
the underlying data distributions.

TEST YOUR KNOWLEDGE

6. For a big picture overview of a dataset, call the:

a. seaborn relplot() method

b. pandas radviz() method

c. seaborn pairplot() method

d. seaborn jointplot() method

7. The k-NN algorithm is appropriate for:

a. Classification in high-dimensional datasets

b. Projects for which computer memory is at a premium

c. Classification in a noisy, low-dimensional dataset

d. All of the above

8. Using a very low k value with the k-NN algorithm can result in:

a. Excessive run times

b. An underfit model

c. An overfit model

d. A generalized model

9. In machine learning, a hyperparameter is:

a. A parameter chosen automatically by the algorithm

b. A parameter set at the top level of an algorithm

c. An adjustable parameter used to control the learning process

d. An overly excitable parameter

10. Cross-validation is used to:

a. Check the accuracy of a model against an independent test set

b. Find the best hyperparameters from an input range of
hyperparameters

c. Check a dataset for duplicate samples

d. Gain insight on model underfitting and overfitting

Summary

The Palmer penguins project provided a good overview of how pandas,
seaborn, and scikit-learn work, how they work together, and what you can
accomplish using them. At this point, though, you’ve barely glimpsed the
enormity of these packages. To expand your knowledge, I recommend the
official library documentation cited in the introduction to this chapter as well
as the following books:

Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython,

2nd edition, by Wes McKinney (O’Reilly Media, 2018), is an indispensable
guide by the creator of the pandas library.

Python Data Science Handbook: Essential Tools for Working with Data, by Jake

VanderPlas (O’Reilly Media, 2016), is a thorough reference for important
Python data science tools, including pandas.

Hands-on Machine Learning with Scikit-Learn, Keras, & TensorFlow: Concepts,
Tools, and Techniques to Build Intelligent Systems, 2nd edition, by Aurélien Géron

(O’Reilly Media, 2019), provides practical instruction for machine learning
novices.

Although the penguins project covered a lot of ground, it didn’t address one
of the most important forms of structured data used by scientists: time series
data. In the next and final chapter, we’ll look at methods for incorporating
dates and times in your programs and plots.

21
MANAGING DATES AND TIMES WITH PYTHON AND

PANDAS

In mathematics, a time series is a series of data points indexed in

chronological order. They are common components in scientific
datasets where observations are made over periods of time.

Although you and I recognize “11/11/1918” as a date, a computer
sees this value as a string. To intelligently work with calendar dates as
well as hours, minutes, seconds, and so on, Python and pandas treat
them as special objects. These objects are “aware” of the mechanics of
the Gregorian calendar, the sexagesimal (base 60) time system, time
zones, daylight-saving time, leap years, and more.

Native Python supports times series through its datetime module, and
pandas is oriented toward using arrays of dates, such as for an index or
column in a DataFrame. In addition to its built-in tools and algorithms
for working with both fixed-frequency and irregular time series, pandas
also uses the datetime module. Observations in fixed frequency time series

are those recorded at regular intervals such as once a day. Otherwise,
the time series is said to be irregular in nature.

We’ll look at both the Python and pandas approaches here, with the
goal of introducing you to the basics of working with time series and

making you conversant in the subject. For more detail, you can visit
https://docs.python.org/3/library/datetime.xhtml for Python’s datetime

module and https://pandas.pydata.org/pandas-

docs/stable/user_guide/timeseries.xhtml for the pandas tools.

Python datetime Module

Python’s built-in datetime module includes the date, time, and combined
datetime types. By treating time information as specific data types,
Python knows how to manipulate it properly and efficiently. This
includes working with time zones, daylight saving time (DST), leap
years, and different international formatting methods.

In this brief introduction, we’ll look at marking time series data with
timestamps, for specific time instants; time intervals, delineated by a

starting and ending timestamp; and fixed periods, such as a year. You can

keep track of elapsed time, too, such as the time relative to the start of an

experiment. We’ll also look at converting datetime objects to strings and
back again.

Getting the Current Date and Time

The datetime.now() method returns the current date and time based on
your computer’s clock. In an environment where you have NumPy,
pandas, and Matplotlib installed, start the Jupyter Qt console and enter
the following (you will see a different date, for obvious reasons):

In [1]: from datetime import date, time, datetime

In [2]: now=datetime.now()

In [3]: now
Out[3]: datetime.datetime(2022, 10, 27, 17, 51, 26, 382489)

In [4]: type(now)
Out[4]: datetime.datetime

The now() method returns dates in ISO 8601 format (year-month-
day). ISO 8601 is the global standard format for numeric dates.

https://docs.python.org/3/library/datetime.xhtml
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.xhtml

The now variable represents the datetime data type. Other types for
storing date and time information are shown in Table 20-1.

Table 21-1: Data Types in the Python datetime Module

Datatype Description

date Gregorian calendar date in year, month, day format

datetime Combined date and time types

time Twenty-four-hour (military) time in hours, minutes,
seconds, and microseconds

timedelta Difference between two datetime objects in days, seconds,
and microseconds

tzinfo Time zone information

To access date and time data in the now object, or any other timestamp,
use its datetime attributes, called with dot notation:

In [5]: now.day
Out[5]: 27

In [6]: now.hour
Out[6]: 17

In [7]: now.minute
Out[7]: 51

In [8]: now.microsecond
Out[8]: 382489

To extract the date and time objects, call datetime methods with the same

name:

In [9]: now.date()
Out[9]: datetime.date(2022, 10, 27)

In [10]: now.time()
Out[10]: datetime.time(17, 51, 26, 382489)

Assigning Timestamps and Calculating Time Delta

To assign a timestamp to a variable, pass datetime() the date and time in
the year-month-day-hour-minute-second-microsecond format:

In [11]: ts = datetime(1976, 7, 4, 0, 0, 1, 1)

To view it as a string, pass the variable to Python’s built-in str()
function:

In [12]: str(ts)
Out[12]: '1976-07-04 00:00:01.000001'

If you’re not interested in time data, just pass datetime() the date:

In [13]: ts = datetime(1976, 7, 4)

In [14]: str(ts)
Out[14]: '1976-07-04 00:00:00'

A timedelta object represents a duration, or the difference between two

dates or times. Subtracting two datetime objects yields the elapsed time.
To demonstrate, let’s calculate Python creator Guido van Rossum’s age
on October 28, 2022:

In [15]: delta = datetime(2022, 10, 28) - datetime(1956, 1, 31)

In [16]: delta
Out[16]: datetime.timedelta(days=24377)

In [17]: age = delta.days / 365.2425

In [18]: int(age)
Out[18]: 66

If you include both date and time information, the timedelta object
will present days, seconds, and microseconds, which are the only units
stored internally:

In [19]: dt1 = datetime(2022, 10, 28, 10, 36, 59, 3)

In [20]: dt2 = datetime(1956, 1, 31, 0, 0, 0, 0)

In [21]: delta = dt1 - dt2

In [22]: delta
Out[22]: datetime.timedelta(days=24377, seconds=38219, microseconds=3)

The timedelta object supports arithmetic operations like addition,
subtraction, multiplication, division, modulus, and more. To see the
complete list of supported operations, visit
https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.Timedelta.xhtml.

Formatting Dates and Times

As you’ve seen, the datetime output isn’t very human friendly.
Converting it to a string using the str() function helps, but you can
accomplish even more by using the datetime strftime() method.

The strftime() method uses C programming language (ISO C89)–
compatible specifications, or directives, preceded by the % sign. Some of

the most useful directives are listed in Table 21-2.

Table 21-2: Selected Datetime Format Specifications

Directive Description Examples

%a Weekday as abbreviated name Sun, So, Mon, Mo, Sat,
Sa

%A Weekday as full name Sunday, Sonntag

%d Two-digit weekday 01, 02, . . ., 05

%b Month as abbreviated name Jan, Feb, Dec, Dez

%B Month as full name February, Februar

%m Two-digit month 01, 02, . . ., 31

%y Two-digit year 00, 01, . . ., 99

%Y Year with century as a decimal
number

0001, . . . 2022, . . . 9999

%H Twenty-four-hour clock hour 01, 02, . . ., 23

%I Twelve-hour clock hour 01, 02, . . ., 12

%p AM or PM AM, am, PM, pm

%M Two-digit minute 01, 02, . . ., 59

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timedelta.xhtml

Directive Description Examples

%S Two-digit second (60, 61 account
for leap seconds)

01, 02, . . ., 59

%f Microsecond as decimal number
(zero-padded six digits)

000000, 000001, . . .,
999999

%w Integer weekday with 0 for Sunday 0, 1, . . ., 6

%W Week number of year (Monday =
1st day of week; days before 1st
Monday are week 0)

00, 01, . . . 53

%U Week number of year (Sunday = 1st
day of week; days before 1st Sunday
are week 0)

00, 01, . . . 53

%Z Time zone name (empty is naive
object)

(empty), UTC, GMT

%c Appropriate date and time
representation for locale

Wed Mar 30 09:14:12
2022

%x Appropriate date representation for
locale

07/31/1984, 31.07.1984

%X Appropriate time representation for
locale

13:30:15

%F Shortcut for %Y-%m-%d format 2022-03-30

%D Shortcut for %m/%d/%y format 03/30/22

Bold = locale-specific date formatting

In the console, enter the following to see some example formats:

In [23]: now = datetime.now()

In [24]: now.strftime('%m/%d/%y %H:%M')
Out[24]: '10/30/22 09:14'

In [25]: now.strftime('%x')
Out[25]: '10/30/22'

In [26]: now.strftime('%A, %B %d, %Y')

Out[26]: 'Sunday, October 30, 2022'

In [27]: now.strftime('%c')
Out[27]: 'Sun Oct 30 09:14:00 2022'

You can find more formatting directives at
https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.Period.strftime.xhtml.

Converting Strings to Dates and Times

Sometimes, you might need to import date and time information from a
file rather than creating it yourself. If the input data is in string format,
you’ll need to convert the strings into dates. This is basically the
opposite of the operation we performed in the previous section, and you
can do this using either the dateutil.parser.parse() method or the
datetime.strptime() method. The third-party dateutil date utility package
extends the datetime module and is automatically installed with pandas.

For common datetime formats, use the parse() method for
convenience. In the console, enter the following:

In [28]: from dateutil.parser import parse

The parse() method can handle most date representations. If you
enter the month before the day, as in the US, it will honor this
convention in the datetime object:

In [29]: parse('Oct 31, 2022, 11:59 PM')
Out[29]: datetime.datetime(2022, 10, 31, 23, 59)

For locales where the day comes before the month, set the dayfirst
argument to True:

In [30]: parse('2/10/2022', dayfirst=True)
Out[30]: datetime.datetime(2022, 10, 2, 0, 0)

Let’s look at a real-world example. Suppose that you’ve recorded, by
date, the type of animal captured in a trail camera. You’ve loaded the

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Period.strftime.xhtml

data as a list and want to replace the dates in string format with datetime
objects:

In [31]: data = ['2022/10/31', 'bobcat',
 '2022/11/1', 'fox',
 '2022/11/2', ['bobcat', 'opposum']]

In [32]: data_dt = data.copy()
In [33]: for i, date in enumerate(data):
 ...: if i % 2 == 0:
 ...: data_dt[i] = parse(date)

In [34]: data_dt
Out[34]:
[datetime.datetime(2022, 10, 31, 0, 0),
'bobcat',
datetime.datetime(2022, 11, 1, 0, 0),
'fox',
datetime.datetime(2022, 11, 2, 0, 0),
['bobcat', 'opposum']]

In this example, we made a copy (date_dt) of the initial data list and
then looped through the data list using the built-in enumerate() function to
get both the item in the list and its index. If the index is an even
number, which corresponds to the locations of the dates, we parsed the
date at that location in the data_dt list. Now we have the original data
plus a version for which the dates are datetime objects.

Although parse() is useful for common, known date formats, it can’t
handle every situation. For edge cases, you’ll need to use the datetime
module’s strptime() method and pass it the proper format specification.
For example, Suppose that your lab assistant input a bunch of dates
using an underscore to separate the date components:

In [35]: date = '2022_10_31'

The parse() method is unable to recognize this format and will raise
an error (ParserError: Unknown string format: 2022_10_31). To handle this
nonstandard format, use strptime() with directives from Table 21-2. Be
sure to place the underscores in the same relative position:

In [36]: datetime.strptime(date, '%Y_%m_%d')
Out[36]: datetime.datetime(2022, 10, 31, 0, 0)

As with parse(), you can convert a sequence of dates using strptime().
Here’s an example using list comprehension, in place of a for loop:

In [37]: dates = ('8/11/84', '9/11/84', '10/11/84')

In [38]: dates_dt = [datetime.strptime(date, '%m/%d/%y') for date in dates]

In [39]: dates_dt
Out[39]:
[datetime.datetime(1984, 8, 11, 0, 0),
datetime.datetime(1984, 9, 11, 0, 0),
datetime.datetime(1984, 10, 11, 0, 0)]

For more on the dateutil package, visit https://pypi.org/project/python-

dateutil.

Plotting with datetime Objects

Plotting dates can be messy due to the tendency of long date labels to
overlap. In addition, standard plotting defaults don’t consider proper
time intervals when displaying ticks. To see an example using
Matplotlib, in the console, enter the following:

In [40]: import datetime as dt
 ...: import numpy as np
 ...: import matplotlib.pyplot as plt

In [41]: dates = [dt.date(2022, 1, 31),
 ...: dt.date(2022, 2, 28),
 ...: dt.date(2022, 3, 31),
 ...: dt.date(2022, 4, 30)]

In [42]: obs = [5, 12, 25, 42]

In [43]: plt.plot(dates, obs);

This produces the unreadable results in Figure 21-1.

https://pypi.org/project/python-dateutil

Figure 21-1: Overlapping date labels on the x-axis

To handle dates when plotting, you must inform Matplotlib that it’s
dealing with datetime objects by importing the matplotlib.dates module.
This specialized module is built on the datetime and third-party dateutil
modules. Among its sophisticated plotting capabilities, it helps you
define time scales using locator methods, which find and comprehend

the types of dates you’re using, such as months and years.

Let’s rebuild the previous plot using matplotlib.dates. Remember to
use CTRL-ENTER to prevent early execution when entering the code
in line In [48]:

In [44]: import matplotlib.dates as mdates

In [45]: months = mdates.MonthLocator()

In [46]: days = mdates.DayLocator()

In [47]: date_fmt = mdates.DateFormatter('%Y-%m')

In [48]: fig, ax = plt.subplots()
 ...: plt.plot(dates, obs)
 ...: ax.xaxis.set_major_locator(months)
 ...: ax.xaxis.set_major_formatter(date_fmt)
 ...: ax.xaxis.set_minor_locator(days)

This produces the results in Figure 21-2.

Figure 21-2: A properly formatted plot of dates

The date labels are now readable and, if your eyesight is good
enough, you’ll be able to count the proper number of tick marks for
each day of the month. Locator functions are also available for other
units such as hours, minutes, seconds, and weekdays. To learn more,
visit the module documentation at
https://matplotlib.org/stable/api/dates_api.xhtml.

Creating Naive vs. Aware Objects

Python datetime objects may be categorized as either naive or aware

depending on whether they include time zone information. A naive
object does not contain time zone information and can’t locate itself
relative to other datetime objects. With knowledge of metadata such as
time zone and DST information, an aware object represents a specific
and unambiguous moment in time that can be located with respect to
other aware objects.

To generate an aware object, datetime and time objects have an
optional time zone attribute, tzinfo, that is used to capture information
about the offset from the coordinated universal time (UTC), the time zone

name, and whether DST is in effect.

https://matplotlib.org/stable/api/dates_api.xhtml

UTC is the successor to Greenwich Mean Time (GMT) and
represents the primary time standard by which the world regulates
clocks and time. Precision is usually in milliseconds, but
submicrosecond precision is possible when using satellite signals. UTC
does not change with the seasons, nor is it affected by DST. By working
in UTC, you can confidently share your work and remove the need for
fiddly time zone and similar corrections.

Although it’s possible for the tzinfo attribute to hold detailed,
country-specific time zone information, the datetime module’s timezone
class can represent only simple time zones with fixed offsets from UTC,
such as UTC itself or North American EST and EDT time zones.

To access more detailed time zone information, you can use the
third-party pytz library (https://pypi.org/project/pytz/), which is wrapped

by pandas. To make an aware timestamp, import pytz and pass the
datatime method the pytz library’s name for a time zone. You can find
these names using the common_timezones attribute, shown here sliced to the
last 10 items in the list:

In [49]: import pytz

In [50]: pytz.common_timezones[-10:]
Out[50]:
['Pacific/Wake',
'Pacific/Wallis',
'US/Alaska',
'US/Arizona',
'US/Central',
'US/Eastern',
'US/Hawaii',
'US/Mountain',
'US/Pacific',
'UTC']

First, let’s make an aware timestamp in UTC:

In [51]: aware = datetime(2022, 11, 2, 21, 15, 19, 426910, pytz.UTC)

In [52]: aware
Out[52]: datetime.datetime(2022, 11, 2, 21, 15, 19, 426910, tzinfo=<UTC>)

Note that the aware timestamp has time zone metadata (tzinfo=<UTC>).

https://pypi.org/project/pytz/

To convert an existing unaware timestamp to an aware timestamp,
call the localize() method on the pytz time zone and pass the method the
datetime object, like so:

In [53]: unaware = datetime(2022, 11, 3, 0, 0, 0)

In [54]: aware = pytz.timezone('Europe/London').localize(unaware)

In [55]: aware
Out[55]: datetime.datetime(2022, 11, 3, 0, 0, tzinfo=<DstTzInfo 'Europe/
London' GMT0:00:00 STD>)

To convert from one time zone to another, you can use the
astimezone() method:

In [56]: here = datetime(2022, 11, 3, 14, 51, 3,
 tzinfo=pytz.timezone('US/Central'))

In [57]: there = here.astimezone(pytz.timezone('Europe/London'))
In [58]: there
Out[58]: datetime.datetime(2022, 11, 3, 20, 42, 3, tzinfo=<DstTzInfo 'Europe/
London' GMT0:00:00 STD>)

The pytz library will consider the idiosyncrasies of your local area,
such as DST, when making the conversion.

NOTE

Because naive datetime objects are treated by many datetime methods as local

times, it’s preferable to use aware datetimes to represent times in UTC. As

such, the recommended way to create an object representing the current

time in UTC is by calling datetime.now(timezone.utc).

TEST YOUR KNOWLEDGE

1. Which date is written in the global standard numeric date
format?

a. 23-2-2021

b. 2021-2-23

c. 2-23-2021

d. 23/2/21

2. Which methods convert a string representation of a date into a
datetime object?

a. strftime()

b. str()

c. strptime()

d. parse()

3. Which directive produces the format '03/30/2022 21:09'?

a. '%m/%d/%y %H:%M'

b. '%M/%D/%Y %H:%m'

c. '%m/%d/%Y %H:%M'

d. '%m/%d/%y %H:%M'

4. What is the global time standard?

a. pytz

b. US/Eastern

c. UTC

d. GMT

5. Which method lets you convert naive datetime objects to a new
time zone?

a. mdates()

b. parse()

c. timedelta()

d. localize()

Time Series and Date Functionality with pandas

As you might expect, pandas has extensive capabilities for working with
time series. This functionality is based on the NumPy datetime64 and

timedelta64 data types with nanosecond resolution. In addition, features
have been consolidated from many other Python libraries, and new
functionality has been developed. With pandas, you can load time
series; convert data to the proper datetime format; generate ranges of
datetimes; index, merge, and resample both fixed- and irregular-
frequency data; and more.

The pandas library uses four general time-related concepts. These
are date times, time deltas, time spans, and date offsets (Table 21-3).
Except for date offsets, each time concept has a scalar class, for single

observations, along with an associated array class, which serves as an

index structure.

Table 21-3: Time-Related Concepts in pandas

Concept Scalar class Array class Data type Creation
method

Date times Timestamp DatetimeIndex datetime64[ns]

datetime64[ns,

tz]

to_datetime or

date_range

Time deltas Timedelta TimedeltaIndex timedelta64[ns] to_timedelta or

timedelta_range

Time spans Period PeriodIndex period[freq] Period or

period_range

Date offsets DateOffset None None Dateoffset

A date time represents a specific date and time with time zone

support. It’s similar to datetime.datetime from the Python standard library.
A time delta is an absolute time duration, similar to datetime.timedelta

from the standard library. Time spans are a period defined by a point in

time and its associated frequency (daily, monthly, and so on). A date

offset represents a relative time duration that respects calendar

arithmetic.

In the sections that follow, we’ll look at these various concepts and
the methods used to create them. For more detail, you can visit the
official documentation at https://pandas.pydata.org/pandas-

docs/stable/user_guide/timeseries.xhtml.

Parsing Time Series Information

To create a timestamp representing the time for a particular event, use
the Timestamp class:

In [59]: import pandas as pd
In [60]: ts = pd.Timestamp('2021, 2, 23 00:00:00')

In [61]: ts
Out[61]: Timestamp('2021-02-23 00:00:00')

Likewise, to create a DatetimeIndex object, use the DatetimeIndex class:

In [62]: dti = pd.DatetimeIndex(['2022-03-31 14:39:00',
 '2022-04-01 00:00:00'])

In [63]: dti
Out[63]: DatetimeIndex(['2022-03-31 14:39:00', '2022-04-01 00:00:00'],
dtype='datetime64[ns]', freq=None)

For existing data, the pandas to_datetime() method converts scalar,
array-like, dictionary-like, and pandas series or DataFrame objects to
pandas datetime64[ns] objects. This lets you easily parse time series
information from various sources and formats.

To see what I’m talking about, in the console, enter the following:

In [64]: import numpy as np
 ...: from datetime import datetime
 ...: import pandas as pd

In [65]: dti = pd.to_datetime(["2/23/2021",
 ...: np.datetime64("2021-02-23"),
 ...: datetime(2022, 2, 23)])

In [66]: dti
Out[66]: DatetimeIndex(['2021-02-23', '2021-02-23', '2022-02-23'],
dtype='datetime64[ns]', freq=None)

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.xhtml

In this example, we passed a list of dates in three different formats to
the to_datetime() method. These included a string, a NumPy datetime64
object, and a Python datetime object. The method returned a pandas
DatetimeIndex object that consistently stores the dates as datetime64[ns]
objects in ISO 8601 format (year-month-day).

The method can accommodate times as well as dates:

In [67]: dates = ['2022-3-31 14:39:00',
 ...: '2022-4-1 00:00:00',
 ...: '2022-4-2 00:00:20',
 ...: '']

In [68]: dti = pd.to_datetime(dates)

In [69]: dti
Out[69]:
DatetimeIndex(['2022-03-31 14:39:00', '2022-04-01 00:00:00',
'2022-04-02 00:00:20', 'NaT'],
dtype='datetime64[ns]', freq=None)

In this example, we passed a list of both dates and times, which were
all correctly converted. Note that we included an empty item ('') at the
end of the list. The to_datetime() method converted this entry into a NaT
(Not a Time) value, which is the timestamp equivalent of the pandas NaN
(Not a Number) value that you learned about in the previous chapter.

The to_datetime() method also works with pandas DataFrames. Let’s
look at an example in which you have recorded (in Microsoft Excel) the
date and time a trail camera captured an image of an animal. You’ve
exported the spreadsheet as a .csv file that you now want to load and

parse using pandas.

To create the .csv file, in a text editor such as Notepad or TextEdit,

enter the following and then save it as camera_1.csv:

Date,Obs
3/30/22 11:43 PM,deer
3/31/22 1:05 AM,fox
4/1/22 2:54 AM,cougar

Back in the console, enter the following to read the file in as a
DataFrame (substitute your path to the .csv file):

In [70]: csv_df = pd.read_csv('C:/Users/hanna/camera_1.csv')

In [71]: csv_df
Out[71]:
 Date Obs
0 3/30/22 11:43 PM deer
1 3/31/22 1:05 AM fox
2 4/1/22 2:54 AM cougar

To convert the Date column to ISO 8601 format, enter the following:

In [72]: csv_df['Date'] = pd.to_datetime(csv_df['Date'])

In [73]: csv_df
Out[73]:
 Date Obs
0 2022-03-30 23:43:00 deer
1 2022-03-31 01:05:00 fox
2 2022-04-01 02:54:00 cougar

These datetimes were recorded in the Eastern US time zone, but
that information is not encoded. To make the datetimes aware, first
make the following imports:

In [74]: import pytz

Next, assign a variable to a pytz tzfile object and then pass the
variable to the localize() method:

In [75]: my_tz = pytz.timezone('US/Eastern')
In [76]: csv_df['Date'] = csv_df['Date'].dt.tz_localize(my_tz)

You can do all this in one line, but using a my_tz variable makes the
code more readable and less likely to wrap. To check the results, print
the Date column:

In [77]: print(csv_df['Date'])
0 2022-03-30 23:43:00-04:00
1 2022-03-31 01:05:00-04:00
2 2022-04-01 02:54:00-04:00
Name: Date, dtype: datetime64[ns, US/Eastern]

Even though it’s a good idea to work in UTC, it’s also important to
have meaningful time data. For example, you’ll probably want to study

when these animals are on the prowl in local time, so you’ll want to

preserve the times recorded in the Eastern US. In this case, you’ll want
to make a new “UTC-aware” column based on the Date column so that
you can have the best of both worlds. Because the Date column is now
aware of its time zone, you must use tz_convert() instead of tz_localize():

In [78]: csv_df['Date_UTC'] = csv_df['Date'].dt.tz_convert(pytz.utc)

Print the columns to verify the conversion:

In [79]: print(csv_df[['Date', 'Date_UTC']])
 Date Date_UTC
0 2022-03-30 23:43:00-04:00 2022-03-31 03:43:00+00:00
1 2022-03-31 01:05:00-04:00 2022-03-31 05:05:00+00:00
2 2022-04-01 02:54:00-04:00 2022-04-01 06:54:00+00:00

NOTE

To remove time zone information from a datetime so that it becomes naive,

pass the tz_convert() method None, like so: csv_df['Date'] =

csv_df['Date'].dt.tz_convert(None).

Finally, if you look at the previous printout of the csv_df DataFrame,
you’ll see that the index values range from 0 to 2. This is by default, but
there’s no reason why you can’t use datetime values as the index instead.
In fact, datetime indexes can be helpful when doing things like plotting.
So, let’s make the Date_UTC column the index for the DataFrame. In the
console, enter the following:

In [80]: csv_df = csv_df.set_index('Date_UTC')
Out[80]:
 Date Obs
Date_UTC
2022-03-31 03:43:00+00:00 2022-03-31 03:43:00 deer
2022-03-31 05:05:00+00:00 2022-03-31 05:05:00 fox
2022-04-01 06:54:00+00:00 2022-04-01 06:54:00 cougar

To read more about the to_datetime() method, visit
https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.to_datetime.xhtml. You can find the

documentation for dt.tz_localize() and dt.tz_convert() at

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.xhtml

https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.Series.dt.tz_localize.xhtml and

https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.Series.dt.tz_convert.xhtml, respectively.

Creating Date Ranges

Time series with a fixed frequency occur often in science for jobs as

diverse as sampling waveforms in signal processing, observing target
behaviors in psychology, recording stock market movements in
economics, and logging traffic flow in transportation engineering. Not
surprisingly, pandas ships with many standardized frequencies and tools
that generate them, resample them, and infer them.

The pandas date_range() method returns a DatetimeIndex object with a
fixed frequency. To generate an index composed of days, pass it a start
and end date, as follows:

In [81]: day_index = pd.date_range(start='2/23/21', end='3/1/21')

In [82]: day_index
Out[82]:
DatetimeIndex(['2021-02-23', '2021-02-24', '2021-02-25', '2021-02-26',
'2021-02-27', '2021-02-28', '2021-03-01'],
dtype='datetime64[ns]', freq='D')

You can also pass it either a start date or an end date, along with the
number of periods to generate (such as a number of days). In the
following example, we start with a timestamp for a certain observation
and ask for six periods:

In [83]: day_index = pd.date_range(start='2/23/21 12:59:59', periods=6)

In [84]: day_index
Out[84]:
DatetimeIndex(['2021-02-23 12:59:59', '2021-02-24 12:59:59',
'2021-02-25 12:59:59', '2021-02-26 12:59:59',
'2021-02-27 12:59:59', '2021-02-28 12:59:59'],
dtype='datetime64[ns]', freq='D')

Note that the six datetimes represent days starting at 12:59:59.
Normally, you want the days to start at midnight, so, pandas provides a

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.dt.tz_localize.xhtml
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.dt.tz_convert.xhtml

handy normalize parameter to make this adjustment:

In [85]: day_index_normal = pd.date_range(start='2/23/21 12:59:59',
 periods=6,
 normalize=True)

In [86]: day_index_normal
Out[86]:
DatetimeIndex(['2021-02-23', '2021-02-24', '2021-02-25', '2021-02-26',
'2021-02-27', '2021-02-28'],
dtype='datetime64[ns]', freq='D')

After they’re normalized to days, the output datetime64 objects no
longer include a time component.

By default, the date_range() method assumes that you want a daily

frequency. Other frequencies are available, however, with many
designed for business applications (such as the end of a business month,
end of a business year, and so on).

Table 21-4 lists some of the time series frequencies more relevant for
science. For the complete list, including financial frequencies, see
“DateOffset objects” at https://pandas.pydata.org/pandas-

docs/stable/user_guide/timeseries.xhtml.

Table 21-4: Useful Time Series Frequencies

Freq string Offset type Description

N Nano By nanosecond

U Micro By microsecond

L or ms Milli By millisecond

S Second By second

T or min Minute By minute

H Hour By hour

D Day By calendar day

W-MON, W-TUE, . .
.

Week Weekly, optionally anchored on a day of
the week

MS MonthBegin By first calendar day of month

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.xhtml

Freq string Offset type Description

M MonthEnd By last calendar day of month

Q Quarter By quarter year

AS-JAN, AS-FEB,

. . .
YearBegin Yearly, anchored on first calendar day of

given month

A-JAN, A-FEB, . .
.

YearEnd Yearly, anchored on last calendar day of
given month

To specify an offset type, pass a frequency string alias from Table 21-
4 as the freq argument. You can also specify a time zone using the tz
argument. Here’s how to make an hourly frequency referenced to UTC:

In [87]: hour_index = pd.date_range(start='2/23/21',
 periods=6,
 freq='H',
 tz='UTC')

In [88]: hour_index
Out[88]:
DatetimeIndex(['2021-02-23 00:00:00+00:00', '2021-02-23 01:00:00+00:00',
'2021-02-23 02:00:00+00:00', '2021-02-23 03:00:00+00:00',
'2021-02-23 04:00:00+00:00', '2021-02-23 05:00:00+00:00'],
dtype='datetime64[ns, UTC]', freq='H')

For an existing time series, you can retrieve its frequency by using
the freq attribute, as shown here:

In [89]: hour_index.freq
Out[89]: <Hour>

The frequencies shown in Table 21-4 represent base frequencies.

Think of these as building blocks for alternative frequencies, such as bi-
hourly. To make this new frequency, just place the integer 2 before the H
in the freq argument, as follows:

In [90]: bi_hour_index = pd.date_range(start='2/23/21', periods=6, freq='2H')

In [91]: bi_hour_index
Out[91]:
DatetimeIndex(['2021-02-23 00:00:00', '2021-02-23 02:00:00',
'2021-02-23 04:00:00', '2021-02-23 06:00:00',

'2021-02-23 08:00:00', '2021-02-23 10:00:00'],
dtype='datetime64[ns]', freq='2H')

You can also combine offsets by passing frequency strings like
'2H30min', like this:

In [92]: pd.date_range(start='2/23/21', periods=6, freq='2H30min')
Out[92]:
DatetimeIndex(['2021-02-23 00:00:00', '2021-02-23 02:30:00',
'2021-02-23 05:00:00', '2021-02-23 07:30:00',
'2021-02-23 10:00:00', '2021-02-23 12:30:00'],
dtype='datetime64[ns]', freq='150T')

Creating Periods

Timestamps associate data with points in time. Sometimes, however,
data remains constant through a certain time span, such as a month, and

you want to associate the data with that interval.

In pandas, regular intervals of time such as a day, month, year, and so
on are represented by Period objects. With the period_range() method,
Period objects can be collected into a sequence to form a PeriodIndex. You
can specify a period’s time span using the freq keyword with frequency
aliases from Table 21-4.

Suppose that you want to keep track of a daily observation for the
month of September 2022. First, use the period_range() method to create
a time span with a frequency of days:

In [93]: p_index = pd.period_range(start='2022-9-1',
 end='2022-9-30',
 freq='D')

Next, create a pandas series and use the NumPy random.randn()
method to generate some fake data on the fly. Note that the number of
data points must equal the number of days in the index:

In [94]: ts = pd.Series(np.random.randn(30), index=p_index)

In [95]: ts
Out[95]:
2022-09-01 0.412853
2022-09-02 0.350678
2022-09-03 0.086216

--snip--
2022-09-28 1.944123
2022-09-29 0.311337
2022-09-30 0.906780
Freq: D, dtype: float64

You now have a time series, organized by day, for the month of
September.

To shift a period by its own frequency, just add or subtract an integer.
Here’s an example using a yearly time span:

In [96]: year_index = pd.period_range(2001, 2006, freq='A-DEC')

In [97]: year_index
Out[97]: PeriodIndex(['2001', '2002', '2003', '2004', '2005', '2006'],
dtype='period[A-DEC]')

In [98]: year_index + 10
Out[98]: PeriodIndex(['2011', '2012', '2013', '2014', '2015', '2016'],
dtype='period[A-DEC]')

Using a frequency of 'A-DEC' means that each year represents January
1 through December 31. Adding 10 shifted the periods up by 10 years.
You can only perform arithmetic in this manner between Period objects
with the same frequency.

Here’s an example of making monthly periods:

In [99]: month_index = pd.period_range('2022-01-01', '2022-12-31', freq='M')

In [100]: month_index
Out[100]:
PeriodIndex(['2022-01', '2022-02', '2022-03', '2022-04', '2022-05', '2022-06',
'2022-07', '2022-08', '2022-09', '2022-10', '2022-11', '2022-12'],
dtype='period[M]')

With the asfreq() method, you can convert an existing period to
another frequency. Here’s an example in which we convert the
month_index variable’s period to hours, anchored on the first hour of each
month:

In [101]: hour_index = month_index.asfreq('H', how='start')

In [102]: hour_index
Out[102]:
PeriodIndex(['2022-01-01 00:00', '2022-02-01 00:00', '2022-03-01 00:00',

'2022-04-01 00:00', '2022-05-01 00:00', '2022-06-01 00:00',
'2022-07-01 00:00', '2022-08-01 00:00', '2022-09-01 00:00',
'2022-10-01 00:00', '2022-11-01 00:00', '2022-12-01 00:00'],
dtype='period[H]')

To read more about the pandas Period class and the asfreq() method,
visit https://pandas.pydata.org/docs/reference/api/pandas.Period.xhtml and

https://pandas.pydata.org/docs/reference/api/pandas.Period.asfreq.xhtml,

respectively.

Creating Time Deltas

The timedelta_range() method creates TimedeltaIndex objects. It behaves
similarly to date_range() and period_range():

In [103]: pd.timedelta_range(start='1 day', periods = 5)
Out[103]: TimedeltaIndex(['1 days', '2 days', '3 days', '4 days', '5 days'],
dtype='timedelta64[ns]', freq='D')

In the television drama Lost, a character had to enter a code and push

a button every 108 minutes to avert some unknown catastrophe. With
the timedelta_range() method and a frequency argument, he could
schedule his day around this requirement. Assuming he last pushed the
button at midnight, he won’t be getting much uninterrupted sleep:

In [104]: pd.timedelta_range(start="1 day", end="2 day", freq="108min")
Out[104]:
TimedeltaIndex(['1 days 00:00:00', '1 days 01:48:00', '1 days 03:36:00',
'1 days 05:24:00', '1 days 07:12:00', '1 days 09:00:00',
'1 days 10:48:00', '1 days 12:36:00', '1 days 14:24:00',
'1 days 16:12:00', '1 days 18:00:00', '1 days 19:48:00',
'1 days 21:36:00', '1 days 23:24:00'],
dtype='timedelta64[ns]', freq='108T')

Shifting Dates with Offsets

In addition to working with frequencies, you can import offsets and use
them to shift Timestamp and DatetimeIndex objects. Here’s an example in
which we import the Day class and use it to shift a famous date:

In [105]: from pandas.tseries.offsets import Day

In [106]: apollo_11_moon_landing = pd.to_datetime('1969, 7, 20')

https://pandas.pydata.org/docs/reference/api/pandas.Period.xhtml
https://pandas.pydata.org/docs/reference/api/pandas.Period.asfreq.xhtml

In [107]: apollo_11_splashdown = apollo_11_moon_landing + 4 * Day()
In [108]: print(f"{apollo_11_splashdown.month}/{apollo_11_splashdown.day}")
7/24

You can also import DateOffset class and then pass it the time span as
an argument:

In [109]: from pandas.tseries.offsets import DateOffset

In [110]: ts = pd.Timestamp('2021-02-23 09:10:11')

In [111]: ts + DateOffset(months=4)
Out[111]: Timestamp('2021-06-23 09:10:11')

A nice thing about DateOffset objects is that they honor DST
transitions. You just need to import the appropriate class from
pandas.tseries.offsets. Here’s an example of shifting one hour across the
vernal DST transition in the US Central time zone:

In [112]: from pandas.tseries.offsets import Hour

In [113]: pre_dst_date = pd.Timestamp('2022-03-13 1:00:00', tz='US/Central')

In [114]: pre_dst_date
Out[114]: Timestamp('2022-03-13 01:00:00-0600', tz='US/Central')

In [115]: post_dst_date = pre_dst_date + Hour()

In [116]: post_dst_date
Out[116]: Timestamp('2022-03-13 03:00:00-0500', tz='US/Central')

Note that the final datetime (03:00:00) is two hours later than the

starting datetime (01:00:00), even though you shifted it one hour. This is

due to crossing the DST transition.

Along these lines, you can combine two time series even if they are
in different time zones. The result will be in UTC, as pandas
automatically keeps track of the equivalent UTC timestamps for each
time series.

To see the long list of available offsets, visit
https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.tseries.offsets.DateOffset.xhtml.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.tseries.offsets.DateOffset.xhtml

Indexing and Slicing Time Series

When you’re working with time series data, it’s conventional to use the
time component as the index of a series or DataFrame so that you can
perform manipulations with respect to the time element. Here, we make
a series whose index represents a time series and whose data is the
integers 0 through 9:

In [117]: ts = pd.Series(range(10), index=pd.date_range('2022',
 freq='D',
 periods=10))
In [118]: ts
Out[118]:
2022-01-01 0
2022-01-02 1
2022-01-03 2
2022-01-04 3
2022-01-05 4
2022-01-06 5
2022-01-07 6
2022-01-08 7
2022-01-09 8
2022-01-10 9
Freq: D, dtype: int64

Even though the indexes are now dates, you can slice and dice the
series, just as with integer indexes. For example, to select every other
row, enter the following:

In [119]: ts[::2]
Out[119]:
2022-01-01 0
2022-01-03 2
2022-01-05 4
2022-01-07 6
2022-01-09 8
Freq: 2D, dtype: int64

To select the data associated with the January 5, index the series
using that date:

In [120]: ts['2022-01-05']
Out[120]: 4

Conveniently, you don’t need to enter the date in the same format
that it was input. Any string interpretable as a date will do:

In [121]: ts['1/5/2022']
Out[121]: 4

In [122]: ts['January 5, 2022']
Out[122]: 4

Duplicate dates will produce a slice of the series showing all values

associated with that date. Likewise, you will see all the rows in a
DataFrame indexed by the same date using the syntax:
dataframe.loc['datetime_index'].

Additionally, if you have a time series with multiple years, you can
index based on the year and retrieve all the indexes and data that include
that year. This also works for other timespans, such as months.

Slicing works the same way. You can use timestamps not explicitly
included in the time series, such as 2021-12-31:

In [123]: ts['2021-12-31':'2022-1-2']
Out[123]:
2022-01-01 0
2022-01-02 1
Freq: D, dtype: int64

In this case, we started indexing with December 31, 2021, which
precedes the dates in the time series.

NOTE

Remember that pandas is based on NumPy, so slicing creates views rather

than copies. Any operation you perform on a view will change the source

series or DataFrame.

If you want the datetime component to be the data instead of the
index, leave off the index argument when creating the series:

In [124]: pd.Series(pd.date_range('2022', freq='D', periods=3))
Out[124]:
0 2022-01-01
1 2022-01-02
2 2022-01-03
dtype: datetime64[ns]

The result is a pandas series with an integer index and the dates
treated as data.

Resampling Time Series

The process of converting the frequency of a time series to a different
frequency is called resampling. This can involve downsampling, by which

you aggregate data to a lower frequency, perhaps to reduce memory
requirements or see trends in the data; upsampling, wherein you move to

a higher frequency, perhaps to permit mathematical operations between
two datasets with different resolutions; or simple resampling, for which
you keep the same frequency but change the anchor point from, say, the
start of the year (AS-JAN) to the year end (A-JAN).

In pandas, resampling is accomplished by calling the resample()
method on a pandas object using dot notation. Some of its commonly
used parameters are listed in Table 21-5. To see the complete list, visit
https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.DataFrame.resample.xhtml. Both series and

dataframe objects use the same parameters.

Table 21-5: Useful Parameters of the pandas resample() Method

ParameterDescription

freq DateOffset or Timedelta object, or string, indicating resampling
frequency (such as 'D', 'Q', '10min').

axis Axis on which to resample (0 or 'index', 1 or 'columns').
Defaults to 0.

closed When downsampling, indicates which interval end is
inclusive, either 'right' or 'left'. The default value changes
depending on freq type.

label When downsampling, which bin edge to use to label the
result, either 'right' or 'left'. The default value changes
depending on freq type.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.resample.xhtml

ParameterDescription

convention For PeriodIndex only, controls whether to use the start or end
of freq when converting frequencies from low to high.
Defaults to 'start'.

kind Pass 'timestamp' to convert the resulting index to a
DateTimeIndex or 'period' to convert it to a PeriodIndex. By
default, the input representation is retained.

on For a DataFrame, specifies the column to use instead of
index for resampling. The column must be datetime-like.

Upsampling

Upsampling refers to resampling to a shorter time span, such as from

daily to hourly. This creates bins with NaN values that must be filled; for
example, as with the forward-fill and backfill methods ffill() and bfill().
This two-step process can be accomplished by chaining together the
calls to the resample and fill methods.

To illustrate, let’s make a toy dataset with yearly values and expand it
to quarterly values. This might be necessary when, say, production
targets go up every year, but progress must be tracked against quarterly
production. In the console, enter the following:

In [125]: import pandas as pd

In [126]: dti = pd.period_range('2021-02-23', freq='Y', periods=3)

In [127]: df = pd.DataFrame({'value': [10, 20, 30]}, index=dti)

In [128]: df.resample('Q').ffill()

After importing pandas, establish an annual PeriodIndex named dti.
Next, create the DataFrame and pass it a dictionary with the values in
list form. Then, set the index argument to the dti object. Call the
resample() method and pass it Q, for quarterly, and then call the ffill()
method, chained to the end.

The results of this code are broken down in Figure 21-3, which,
from left to right, shows the original DataFrame, the resampling results,
and the fill results. The original annual values are shown in bold.

Figure 21-3: Resampling a DataFrame with a yearly range to a quarterly range using

resample() followed by ffill()

The resample() method builds the new quarterly index and fills the
new rows with NaN values. Calling ffill() fills the empty rows going
“forward.” What you’re saying here is, “The value for the first quarter
of each year (Q1) is the value to use for all quarters within that year.”

Backfilling does the opposite and assumes that the value at the start
of each new year (Q1) should apply to the quarters in the previous year
excluding the previous first quarter:

In [129]: df.resample('Q').bfill()

The execution of this code is described by Figure 21-4. Again,
original annual values are shown in bold.

Figure 21-4: Resampling a DataFrame with a yearly range to a quarterly range using

resample() followed by bfill()

In this case, the values associated with the first quarter are “back
filled” to the previous three quarters. You must be careful, however, as
“leftover” NaNs can occur. You can see these at the end of the value
column in the right-hand DataFrame in Figure 21-4. The last three
values are unchanged because no 2024Q1 data was available to set the
value.

To fill the missing data, let’s assume that the values keep increasing
by 10 each quarter and rerun the code using the fillna() method chained
to the end. Pass it 40 to fill the remaining holes:

In [130]: df.resample('Q').bfill().fillna(40)
Out[130]:
 value
2021Q1 10.0
2021Q2 20.0
2021Q3 20.0
2021Q4 20.0
2022Q1 20.0
2022Q2 30.0
2022Q3 30.0
2022Q4 30.0
2023Q1 30.0
2023Q2 40.0
2023Q3 40.0
2023Q4 40.0

Both bfill() and ffill() are synonyms for the fillna() method. You
can read more about it at https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.DataFrame.fillna.xhtml.

Downsampling

Downsampling refers to resampling from a higher frequency to a lower
frequency, such as from minutes to hours. Because multiple samples
must be combined into one, the resample() method is usually chained to a
method for aggregating the data (see Table 21-6).

Table 21-6: Useful Aggregation Methods in pandas

Method Description

count() Returns the number of non-null values

max() Returns the maximum value

mean() Returns the arithmetic mean of the values

median() Returns the median of the values

min() Returns the minimum value

std() Returns the standard deviation of the
values

sum() Returns the sum of the values

var() Returns the variance of the values

To practice downsampling, let’s use a real-world dataset from “The
COVID Tracking Project” at The Atlantic. This dataset includes

COVID-19 statistics from March 3, 2020, to March 7, 2021.

To reduce the size of the dataset, we’ll download the data for just the
state of Texas. Navigate to https://covidtracking.com/data/download/, scroll

down, and then click the link for Texas. For convenience, I recommend
moving this file to the same folder from which you launched Jupyter Qt
console; this prevents the need for a file path when loading the data.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.xhtml
https://covidtracking.com/data/download/

To begin, load the data as a pandas DataFrame. The input file has
many columns of data that we don’t need, so we’ll select only the date
and deathIncrease columns. The latter column is the number of COVID-
related deaths for the day.

In [131]: df = pd.read_csv("texas-history.csv",
 ...: usecols=['date','deathIncrease'])

In [132]: df.head()
Out[132]:
 date deathIncrease
0 2021-03-07 84
1 2021-03-06 233
2 2021-03-05 256
3 2021-03-04 315
4 2021-03-03 297

It’s good to keep an eye on what’s happening to the data by calling
the head() method on the DataFrame, which returns the first five rows
by default. Here, we see that dates are organized in descending order, but

we generally use and plot datetime data in ascending order. So, call the

pandas sort_values() method, pass it the column name, and set the
ascending argument to True:

In [133]: df = df.sort_values('date', ascending=True)

In [134]: df.head()
Out[134]:
 date deathIncrease
369 2020-03-03 0
368 2020-03-04 0
367 2020-03-05 0
366 2020-03-06 0
365 2020-03-07 0

Next, the dates look like dates, but are they? Check the DataFrame’s
dtypes attribute to confirm one way or the other:

In [135]: df.dtypes
Out[135]:
date object
deathIncrease int64
dtype: object

They’re not. This is important because the resample() method works
only with objects that have a datetime-like index, such as DatetimeIndex,
PeriodIndex, or TimedeltaIndex. We’ll need to change their type and set
them as the DataFrame’s index, replacing the current integer values.
We’ll also drop the date column because we no longer need it:

In [136]: df = df.set_index(pd.DatetimeIndex(df['date'])).drop('date',
 ...: axis=1)
In [137]: df.head()
Out[137]:
 deathIncrease
date
2020-03-03 0
2020-03-04 0
2020-03-05 0
2020-03-06 0
2020-03-07 0

At this point, we’ve wrangled the data so that our DataFrame uses a
DatetimeIndex with dates in ascending order. Let’s see how it looks by
making a quick plot using pandas plotting, which is quick and easy for
data exploration:

In [138]: df.plot();

This returns the plot depicted in Figure 21-5.

Figure 21-5: Texas COVID-19-related daily deaths for the period March 3, 2020, through

March 7, 2021

One aspect of Figure 21-5 that really stands out is the spike in values
near the start of August 2020. Because this is clearly a maximum value,

you can easily retrieve the value and its date index by using the max() and
idxmax() methods, respectively:

In [139]: print(df.max(), df.idxmax())
deathIncrease 675
dtype: int64 deathIncrease 2020-07-27
dtype: datetime64[ns]

This is most likely an anomalous value, especially given that the
CDC records only 239 deaths on this date, which is more consistent
with the adjacent data (see https://covid.cdc.gov/covid-data-

tracker/#trends_dailydeaths/). Let’s use the CDC value going forward. To

change the DataFrame, apply the .loc indexer, passing it the date (index)
and column name, as follows:

In [140]: df.loc['2020-7-27', 'deathIncrease'] = 239

https://covid.cdc.gov/covid-data-tracker/#trends_dailydeaths/

In [141]: df.plot();

The spike is gone now, and the plot looks more reasonable, as
demonstrated in Figure 21-6.

Figure 21-6: Texas COVID-19-related daily deaths with the anomalous spike removed

Another thing that’s noticeable is the “sawtooth” nature of the curve
caused by periodic oscillations in the number of deaths. These
oscillations have a high frequency, and it’s doubtful that the disease
progressed in this manner.

To investigate this anomaly, make a new DataFrame that includes a
column for weekdays:

In [142]: df_weekdays = df.copy()

In [143]: df_weekdays['weekdays'] = df.index.day_name()

Now, print out multiple weeks’ worth of data using pandas’ iloc[]
indexing:

In [144]: print(df_weekdays.iloc[90:115])
 deathIncrease weekdays
date
2020-06-01 6 Monday
2020-06-02 20 Tuesday
2020-06-03 36 Wednesday
2020-06-04 33 Thursday
2020-06-05 21 Friday
2020-06-06 31 Saturday
2020-06-07 11 Sunday
2020-06-08 0 Monday
2020-06-09 23 Tuesday
2020-06-10 32 Wednesday
2020-06-11 35 Thursday
2020-06-12 19 Friday
2020-06-13 18 Saturday
2020-06-14 19 Sunday
2020-06-15 7 Monday
2020-06-16 46 Tuesday
2020-06-17 33 Wednesday
2020-06-18 43 Thursday
2020-06-19 35 Friday
2020-06-20 25 Saturday
2020-06-21 17 Sunday
2020-06-22 10 Monday
2020-06-23 28 Tuesday
2020-06-24 29 Wednesday
2020-06-25 47 Thursday

As I’ve highlighted in gray, the lowest reported number of deaths
consistently occurs on a Monday, and the Sunday results also appear
suppressed. This suggests a reporting issue over the weekend, with a
one-day time lag. You can read more about this reporting phenomenon
at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363007/.

NOTE

If you were on social media during the pandemic, you might have noticed

people questioning the veracity of COVID data based on plots like Figure

21-5. This is a good example of how, with a simple application of data

science, you can easily solve mysteries and quickly quell conspiracy theories.

Because the oscillations occur weekly, downsampling from daily to

weekly should merge the low and high reports and smooth the curve.
Enter the following to test the hypothesis:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363007/

In [145]: df.resample('W').sum().plot();

This produces the plot in Figure 21-7. The high-frequency
oscillations are gone.

Figure 21-7: Texas COVID-19-related weekly deaths for the period March 3, 2020, through

March 7, 2021

Now, let’s downsample to a monthly period:

In [146]: df.resample('m').sum().plot();

This produces the even smoother plot in Figure 21-8.

Figure 21-8: Texas COVID-19-related monthly deaths for the period March 3, 2020, through

March 7, 2021

Note that you can also downsample to custom periods, such as '4D',
for every four days.

Changing the Start Date When Resampling

So far, we’ve been taking the default origin (start date) when aggregating

intervals, but this can lead to unwanted results. Here’s an example:

In [147]: raw_dict = {'2022-02-23 09:00:00': 100,
 ...: '2022-02-23 10:00:00': 200,
 ...: '2022-02-23 11:00:00': 100,
 ...: '2022-02-23 12:00:00': 300}

In [148]: ts = pd.Series(raw_dict)

In [149]: ts.index = pd.to_datetime(ts.index)

In [150]: ts.resample('2H').sum()
Out[150]:
2022-02-23 08:00:00 100
2022-02-23 10:00:00 300

2022-02-23 12:00:00 300
Freq: 2H, dtype: int64

Despite the first data point being recorded at 9 AM, the resampled

sums start at 8 AM. This is because the default for aggregated intervals

is 0, causing the two-hour ('2H') frequency timestamps to be 00:00:00, . . .
08:00:00, 10:00:00, and so on, skipping 09:00:00.

To force the output range to start at 09:00:00, pass the method’s origin
argument 'start'. Now it should use the actual start of the time series:

In [151]: ts.resample('2H', origin='start').sum()
Out[151]:
2022-02-23 09:00:00 300
2022-02-23 11:00:00 400
Freq: 2H, dtype: int64

The aggregation starts at 9 AM, as desired.

Resampling Irregular Time Series Using Interpolation

Scientific observations are often irregular in nature. After all,
wildebeests don’t show up at waterholes on a fixed schedule.
Fortunately, resampling works the same whether a time series has an
irregular or fixed frequency.

As with upsampling, regularizing a time series will generate new

timestamps with empty values. Previously, we filled these blank values
using backfilling and front filling. In the next example, we’ll use the
pandas interpolate() method.

Let’s begin by generating a list of irregularly spaced datetimes with a
resolution measured in seconds:

In [152]: raw = ['2021-02-23 09:46:48',
 ...: '2021-02-23 09:46:51',
 ...: '2021-02-23 09:46:53',
 ...: '2021-02-23 09:46:55',
 ...: '2021-02-23 09:47:00']

Next, in a single line, create a pandas series object where the index is
the datetime string converted to a DatetimeIndex:

In [153]: ts = pd.Series(np.arange(5), index=pd.to_datetime(raw))

In [154]: ts
Out[154]:
2021-02-23 09:46:48 0
2021-02-23 09:46:51 1
2021-02-23 09:46:53 2
2021-02-23 09:46:55 3
2021-02-23 09:47:00 4
dtype: int32

Now, resample this time series at the same resolution ('s') and call
interpolate() using 'linear' for the method argument:

In [155]: ts_regular = ts.resample('s').interpolate(method='linear')

In [156]: ts_regular
Out[156]:
2021-02-23 09:46:48 0.000000
2021-02-23 09:46:49 0.333333
2021-02-23 09:46:50 0.666667
2021-02-23 09:46:51 1.000000
2021-02-23 09:46:52 1.500000
2021-02-23 09:46:53 2.000000
2021-02-23 09:46:54 2.500000
2021-02-23 09:46:55 3.000000
2021-02-23 09:46:56 3.200000
2021-02-23 09:46:57 3.400000
2021-02-23 09:46:58 3.600000
2021-02-23 09:46:59 3.800000
2021-02-23 09:47:00 4.000000
Freq: S, dtype: float64

You now have timestamps for every second, and new values have
been interpolated between the original data points. The method argument
comes with other options, including nearest, pad, zero, spline, and more.
You can read about them at https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.Series.interpolate.xhtml.

Resampling and Analyzing Irregular Time Series: A Binary

Example

Let’s look at a realistic example of working with irregular time series.
Imagine that you’ve attached a sensor to the compressor of a
refrigeration unit to see how often it’s on (1) and off (0) during a day.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.interpolate.xhtml

To build the toy dataset, enter the following in the console:

In [157]: import pandas as pd

In [158]: raw_dict = {'2021-2-23, 06:00:00': 0,
 ...: '2021-2-23, 08:05:09': 1,
 ...: '2021-2-23, 08:49:13': 0,
 ...: '2021-2-23, 11:23:21': 1,
 ...: '2021-2-23, 11:28:14': 0}

In [159]: ts = pd.Series(raw_dict)

In [160]: ts.index = pd.to_datetime(ts.index)

In [161]: ts.plot();

This produces the plot in Figure 21-9. Note that it doesn’t reflect
the binary (0 or 1) nature of the data.

Figure 21-9: A plot of an irregular time series of compressor on-off data

In its raw, irregular form, the data is difficult to visualize and work
with. For example, if you try to check the state of the compressor at 11
AM, you’ll get an error:

In [162]: ts['2021-02-23 11:00:00']
KeyError --snip--

The problem is that series indexing doesn’t interpolate on the fly.
We need to first resample the data to a “working resolution,” in this
case, seconds:

In [163]: ts_secs = ts.resample('S').ffill()

In [164]: ts_secs
Out[164]:
2021-02-23 06:00:00 0
2021-02-23 06:00:01 0
2021-02-23 06:00:02 0
2021-02-23 06:00:03 0
2021-02-23 06:00:04 0
..
2021-02-23 11:28:10 1
2021-02-23 11:28:11 1
2021-02-23 11:28:12 1
2021-02-23 11:28:13 1
2021-02-23 11:28:14 0
Freq: S, Length: 19695, dtype: int64

In [165]: ts_secs.plot();

Figure 21-10: The plot of time series resampled to one-second frequency

Now the plot reflects the binary “on-off” nature of the data, and you
can extract the state at 11 AM:

In [166]: ts_secs['2021-2-23 11:00:00']
Out[166]: 0

To determine how many seconds the compressor was off and on
during the time period, call the value_counts() method on the series:

In [167]: ts_secs.value_counts()
Out[167]:
0 16758
1 2937
dtype: int64

To determine the fraction of the day that the compressor was on, just
divide the value_counts() output at index 1 by the number of seconds in a
day:

In [168]: num_secs_per_day = 60 * 60 * 24

In [169]: print(f"On = {ts_secs.value_counts()[1] / num_secs_per_day}")
On = 0.033993055555555554

The compressor ran for only three percent of the day. That’s some
good insulation!

Sliding Window Functions

The pandas library comes with functions for transforming time series
using a sliding window or with exponentially decaying weights. These

functions smooth raw data points so that long-term trends are more
apparent.

A moving average is a commonly used time series technique for

smoothing noise and gaps and revealing underlying data trends. Well-
known examples are the 50- and 200-day moving averages used to
analyze stock market data.

To make a moving average, a “window” of a specified length is used
to average rows in a DataFrame column. The window starts at the
earliest date and slides down the column one time unit at a time, and
then it repeats this process. Here’s an example for a three-day moving
average, with the averaged values in bold:

 value
date
2020-06-01 6 |
2020-06-02 20 | |
2020-06-03 36 | | |--> (6 + 20 + 36)/3 = 20.67
2020-06-04 33 | |--> (20 + 36 + 33)/3 = 29.67
2020-06-05 21 |--> (36 + 33 + 21)/3 = 30.0

To make a “monthly” 30-day moving average of our COVID data
from the section “Downsampling” on page 650, let’s first reimport it as
a new DataFrame named df_roll and replace the anomalous value. (If
you still have the data in memory, you can use df_roll = df.copy() in place
of the next five lines):

In [170]: df_roll = pd.read_csv("texas-history.csv",
 ...: usecols = ['date','deathIncrease'])

In [171]: df_roll = df_roll.sort_values('date', ascending=True)

In [172]: df_roll = df_roll.set_index(pd.DatetimeIndex(df_roll['date']))

In [173]: df_roll = df_roll.drop('date', axis=1)

In [174]: df_roll.loc['2020-7-27', 'deathIncrease'] = 239

Next, make a 30_day_ma column for this DataFrame and calculate the
values by calling the rolling() method on the deathIncrease column,
passing it 30 and then tacking on the mean() method. Finish by calling
plot():

In [175]: df_roll['30_day_ma'] = df_roll.deathIncrease.rolling(30).mean()

In [176]: df_roll.plot();

As you can see in Figure 21-11, the moving average curve is
smoother than the curve produced by monthly resampling (Figure 21-8)
but retains some of the periodic oscillations.

Figure 21-11: Texas COVID-related deaths with 30-day moving average curve

By default, the averaged values are posted at the end of the window,

which makes the average curve look offset relative to the daily data. To
post at the center of the window, pass True to the rolling() method’s center

argument:

In [177]: df_roll['30_day_ma'] = df_roll.deathIncrease.rolling(30,
 center=True).mean()

In [178]: df_roll.plot();

Now, the peaks and valleys in the averaged curve and the raw data
are better aligned, as illustrated in Figure 21-12.

Figure 21-12: Texas COVID-related deaths with 30-day moving average curve posted at the

center of the window interval

You can call other aggregation methods in Table 21-6 with rolling().
Here, we call the standard deviation method on the same 30-day sliding
window and display the new column with the others (Figure 21-13):

In [179]: df_roll['30_std'] = df_roll.deathIncrease.rolling(30,
 center=True).std()
In [180]: df_roll.plot();

Figure 21-13: A 30-day sliding window standard deviation and moving average for COVID-

related daily deaths in Texas

In addition to rolling averages with a fixed-sized window, pandas has
methods for using expanding windows (expanding()), binary moving
windows (corr()), exponentially weighted functions (ewm()), and user-
defined moving window functions (apply()). You can read about these at
https://pandas.pydata.org/pandas-docs/stable/reference/frame.xhtml for

DataFrames, and https://pandas.pydata.org/pandas-

docs/stable/reference/series.xhtml for series.

TEST YOUR KNOWLEDGE

6. What is the index structure associated with the pandas Timestamp
class?

a. datetime64

b. datetime64[ns]

c. TimedeltaIndex

https://pandas.pydata.org/pandas-docs/stable/reference/frame.xhtml
https://pandas.pydata.org/pandas-docs/stable/reference/series.xhtml

d. DatetimeIndex

7. Convert '2021-2-23 00:00:00' to a pandas Timestamp.

8. Localize the previous timestamp to the Europe/Warsaw time
zone.

9. Create a PeriodIndex for every hour in May 1, 2021.

10. Which of the following are examples of downsampling?

a. Minutes to seconds

b. Minutes to hours

c. Years to weeks

d. Days to months

Summary

Time series represent data indexed to a time reference. Both native
Python and pandas provide special “time-aware” data types and tools.
These let you easily handle issues like sexagesimal arithmetic, time zone
transitions, daylight saving time, leap years, datetime plotting, and
more. With the ability to manipulate time series, you can gain insights
into your data and solve otherwise imponderable problems.

Well, that does it for Python Tools for Scientists. This book had a

simple goal: to get you up and running as a scientist using Python.

If you’ve finished the book, you’ve learned how to set your computer
up for doing science with the Anaconda distribution, organize your
projects using conda environments and dedicated project folders, and
become familiar with coding tools like the Jupyter Qt console, Spyder,
Jupyter Notebook, and JupyterLab. If you were new to Python, you’ve
now learned the basics of the language. You’re aware of many of the
important scientific and visualization packages, and you should have
some ideas about how to choose among them. Finally, you’ve gotten
some hands-on experience with key libraries like NumPy, Matplotlib,
pandas, seaborn, and scikit-learn.

Moving forward, the absolute best way to progress your
programming knowledge and skill is to do projects, either for pay or for

play. Projects let you reduce the enormous Python universe into
manageable chunks, force you to focus your full attention on a select
group of tasks, and grow your confidence. They’ll lead to questions that
you never knew you had, and seeking the answers will help you further
your own education. Onward!

APPENDIX

ANSWERS TO THE “TEST YOUR KNOWLEDGE”

CHALLENGES

Chapter 7

1. False

2. c

3. c

4.

In [22]: (42**0.5)**4
Out[22]: 1764.0000000000002

5.

In [1]: 42 **= 2
 File "C:\Users\hanna\Local\Temp/ipykernel_24188/3589881457.py", line 1
 42 **= 2
 ^
SyntaxError: cannot assign to literal

6. a

7.

In [1]: import math

In [2]: round(math.pi, 5)
Out[2]: 3.14159

8.

In [1]: type((1, 2, 3))
Out[1]: tuple

9. False

10. String

11. a

12.

print (
 """

 ^-------^
 | > < |
 | V |
 \ /

 Hooty Hoot!

 """)

13.

In [35]: secs = 1824
In [36]: minutes, seconds = ((int(secs / 60)), (int(secs % 60)))
In [37]: print(f'{secs} seconds = {minutes} minutes, {seconds} seconds')
1824 seconds = 30 minutes, 24 seconds

14. b (supposedly the longest continuous string of consonants in
English)

15. d

16. c

17.

In [1]: from string import punctuation
In [2]: punc = punctuation.replace('-','')
In [3]: caesar_said = 'Tee-hee, Brutus.'
In [4]: hyph_only = caesar_said.translate(str.maketrans('', '',punc))
In [5]: hyph_only
Out[5]: 'Tee-hee Brutus'

18.

In [1]: 'impractical python projects'.title()
Out[1]: 'Impractical Python Projects'

Chapter 8

1. a, b, d

2. b

3. c

4. Change its name

5.

In [1]: x = 42
In [2]: del x

6. False

7.

In [1]: print(input("Enter your first name: ")[::-1])

Enter your first name: Lee
eeL

8.

In [1]: john == 'Harry'
Traceback (most recent call last):

File "<ipython-input-112-97bd679db026>", line 1, in <module>
john == 'Harry'

NameError: name 'john' is not defined

9.

In [1]: a = 'Alice'

In [2]: b = 42

In [3]: c = a / b
Traceback (most recent call last):

File "C:\Users\hanna\AppData\Local\Temp/ipykernel_24188/2258966649.py",
line 1, in <module>
c = a / b

TypeError: unsupported operand type(s) for /: 'int' and 'str'

10. a

Chapter 9

1. IndexError: tuple index out of range

2. '!'

3.

In [1]: tup = ('Rust', 'R', 'Go', 'Julia'), ('Python')
In [2]: tup[1][1]
Out[2]: 'y'

4. a, b, c

5.

In [1]: field_trip = 'pith helmet',
 ...: 'rock hammer',
 ...: 'hand lens',
 ...: 'hiking boots',
 ...: 'sunglasses'
In [2]: field_trip
Out[2]: ('pith helmet', 'rock hammer', 'hand lens', 'hiking boots',
'sunglasses')
In [3]: field_trip = field_trip[1:]
In [4]: field_trip
Out[4]: ('rock hammer', 'hand lens', 'hiking boots', 'sunglasses')

6.

In [1]: patroni = []
In [2]: patroni.extend(['tiger', 'shark', 'weasel'])
In [3]: patroni
Out[3]: ['tiger', 'shark', 'weasel']

7.

In [1]: patroni.clear()
In [2]: patroni
Out[2]: []

8. c

9. c

10. c

11. Sets remove duplicate values in a dataset; each unique value will
occur only once.

12. c

13. True

14. c

15. a

16. b

17.

In [1]: jokes = {"Did you hear about the kidnapping?":
 ...: "He slept for 4 hours!",
 ...: "You shot your dog? Was he mad?":
 ...: "He wasn't too happy about it!"}

In [2]: jokes["Did you hear about the kidnapping?"]
Out[2]: 'He slept for 4 hours!'

18. c

Chapter 10

1. Four spaces

2. False

3.

In [1]: while True:
 ...: print('Heeelllllppppppp!!!!')

4. a, b

5.

print('English to Pig Latin Translator')

VOWELS = 'aeiouy'

while True:
 word = input("Enter a word else enter '0' to stop: ")
 if word == '0':
 break
 if word[0] in VOWELS:
 pig_latin = word + 'way'
 else:
 pig_latin = word[1:] + word[0] + 'ay'
 print(f'\n{pig_latin}')

6.

In [1]: while True:
 ...: name = input('Enter your username: ')
 ...: if name != 'Alice':
 ...: continue
 ...: while True:
 ...: pwd = input('Enter your password: ')
 ...: if pwd == 'Star Lord':
 ...: break
 ...: else:

 ...: print('That password is incorrect')
 ...: break

7.

In [1]: count = 0

In [2]: while count < 5:
 ...: print('Python')
 ...: count += 1
Python
Python
Python
Python
Python

8.

In [1]: print([i for i in range(1, 10) if i % 2 == 0])
[2, 4, 6, 8]

9.

In [1]: for i in range(10, -1, -1):
 ...: print(i)
 ...:
10
9
8
7
6
5
4
3
2
1
0

10.

In [1]: words = ['age', 'moody', 'knock', 'adder', 'project', 'stoop',
'blubber']

In [2]: for word in words:
 ...: middle = int(len(word) / 2)
 ...: print(word[middle])

g
o
o
d
j
o
b

11.

import random

answer = random.randint(1, 100)
guess = int(input('Guess a number between 1 and 100: '))
attempts = 1

while guess != answer:
 if guess > answer:
 print('You guessed too high.')
 else:
 print('You guessed too low.')
 guess = int(input('Guess again: '))
 attempts += 1

print('\nYou got it!')
print(f'It only took you {attempts} tries.')

12.

import random

fortunes = ['Dogogone it, people LIKE you!',
 'You will learn a new coding skill today.',
 'You are a quick learner!',
 'Your wisdom makes you superior to others.']

misfortunes = ['Your eyes are like pools. Cesspools.',
 'Your ears are like flowers. Cauliflowers.',
 'Your breath would kill a thousand camels.',
 'Run up an alley and holler fish!']
print("""
 0 - Quit
 1 - A fortune cookie
 2 - A misfortune cookie
 """)

while True:
 choice = input('Choose a number from the menu: ')
 if choice.isdigit():
 choice = int(choice)
 if choice == 0:
 print('Thanks for playing!')
 break
 if choice == 1:
 print(random.choice(fortunes))
 elif choice == 2:
 print(random.choice(misfortunes))
 else:
 print('Choose from the menu options.')

Chapter 11

1. c

2. c

3. b

4.

In [1]: def vowel_voider():
 ...: name = input("Enter your last name: ")
 ...: new_name = ''
 ...: vowels = 'aeiouy'
 ...: for char in name:
 ...: if char not in vowels:
 ...: new_name += char
 ...: else:
 ...: continue
 ...: return new_name

5.

In [1]: def calc_momentum(*, mass, velocity):
 ...: return mass * velocity

In [2]: calc_momentum(mass=10, velocity=50)
Out[2]: 500

6. c

7.

In [1]: from random import uniform

In [2]: samples = [round(uniform(0, 50), 1) for x in range(10)]
In [3]: samples
Out[3]: [42.7, 37.8, 30.2, 35.0, 0.4, 35.1, 22.4, 9.8, 23.4, 30.0]

8.

In [1]: nums = [3, 10, 16, 25, 88, 75]
In [2]: filtered = filter(lambda x: x % 5 == 0, nums)
In [3]: print(list(filtered))
[10, 25, 75]

9. False. Calling main() at the end grants it access.

10. c

11.

In [1]: G = 0.0000000000667
In [2]: def calc_force_gravity(mass1, mass2, radius):
 ...: global G
 ...: f = (G * mass1 * mass2) / radius**2
 ...: return f

NOTE

You can also use G = 6.67e-11.

12.

In [1]: import math

In [2]: dir(math)

13. b

14. d

15.

In [1]: x = 25

In [2]: def use_x(x):
 ...: print(x**2)

In [3]: use_x(x)
625

In [4]: def use_x():
 ...: global x
 ...: print(x**2)

In [5]: use_x()
625

Chapter 12

1. c

2. d

3. False

4. c

5. Objects

6. e

7.

In [1]: from pathlib import Path

In [2]: p = Path('.\\test1\\another_haiku.txt')
In [3]: p.rename('.\\test1\\haiku_2.txt')
Out[3]: WindowsPath('test1/haiku_2.txt')

8. Remember, Python starts counting at 0:

In [93]: with open('haiku.txt') as f:
 ...: f.seek(14)
 ...: print(f.read())

Contemplating cherry trees
Strangers are like friends
 --Issa

9. c

10. True

11. True

12. c

13.

In [1]: import json

In [2]: crew = dict(Mercury=1, Gemini=2, Apollo=3)
In [3]: capsules_data = json.dumps(crew)

In [4]: with open('capsules_data.json', 'w') as f:
 ...: f.write(capsules_data)

In [5]: with open('capsules_data.json', 'r') as f:
 ...: crew = json.load(f)

In [6]: for key in crew:
 ...: if crew[key] == 1:
 ...: seat = 'seat'
 ...: else:
 ...: seat = 'seats'
 ...: print(f"The {key} capsule had {crew[key]} {seat}.")
The Mercury capsule had 1 seat.
The Gemini capsule had 2 seats.
The Apollo capsule had 3 seats.

14.

In [1]: test = ["don't", "do"]
In [2]: test_json = json.dumps(test)
In [3]: test_json
Out[3]: '["don\'t", "do"]'

In [4]: test = ['don\'t', 'do']
In [5]: test
Out[5]: ["don't", 'do']
In [6]: test_json = json.dumps(test)
In [7]: test_json
Out[7]: '["don\'t", "do"]'

15. d

16. Assumes that cwd is file_play:

In [1]: import shutil

In [2]: shutil.move('lines.txt', 'test1')
Out[2]: 'test1\\lines.txt'
In [3]: shutil.make_archive('.\\test1\\lines.txt', 'zip')
Out[3]: '.\\test1\\lines.txt.zip'

Chapter 13

1. b

2. c

3. True

4. c

5.

class Parrot():
 def __init__(self, name, color, age):
 self.name = name
 self.color = color
 self.age = age

 def squawk(self):
 print("\nSQUAWK!\n")

 def parroting(self):
 phrase = input("Enter something for parrot to repeat: ")
 print(f"\nSquawk! {phrase} Squawk!")

polly = Parrot('Polly', 'green', 80)
polly.squawk()
polly.parroting()

Output:

SQUAWK!

Enter something for parrot to repeat: Polly wants a cracker!

Squawk! Polly wants a cracker! Squawk!

6. c

7. e

8. b

9. True

10. b

11. d

12. New code in the ship_display.py program is highlighted in gray:

from math import dist
from dataclasses import dataclass
import matplotlib.pyplot as plt

@dataclass
class Ship:
 '''Object for tracking a ship on a grid.'''
 name: str
 classification: str
 registry: str
 location: tuple
 obj_type = 'ship'
 obj_color = 'black'

 def distance_to(self, other):
 distance = round(dist(self.location, other.location), 2)
 return str(distance) + ' ' + 'km'

garcia = Ship('Garcia', 'frigate', 'USA', (20, 15))
ticonderoga = Ship('Ticonderoga', 'destroyer', 'USA', (5, 10))
kobayashi = Ship('Kobayashi', 'maru', 'Federation', (10, 22))

VISIBLE_SHIPS = [garcia, ticonderoga, kobayashi]

def plot_ship_dist(ship1, ship2):
 sep = ship1.distance_to(ship2)
 for ship in VISIBLE_SHIPS:
 plt.scatter(ship.location[0], ship.location[1],
 marker='d',
 color=ship.obj_color)
 plt.text(ship.location[0], ship.location[1], ship.name)
 plt.plot([ship1.location[0], ship2.location[0]],
 [ship1.location[1], ship2.location[1]],
 color='gray',
 linestyle="--")
 plt.text((ship2.location[0]), (ship2.location[1] - 2), sep, c='gray')
 plt.xlim(0, 30)
 plt.ylim([0, 30])
 plt.show()

for i in range(30):
 garcia.location = (20, i)
 plot_ship_dist(kobayashi, garcia)i)

Before running the script in Spyder, go to the Plots pane and select
Mute inline plotting (Figure A-1). This will force plots to appear in

the Plots pane rather than inline within the console.

Figure A-1: Selecting Mute inline plotting from the Plots pane in Spyder

To close all the plots, click the large X icon on the Plots pane
toolbar.

As a challenge, see if you can make the Garcia move diagonally
across the screen.

Chapter 14

1. b

2. True

3. a, c

4. c

5. d

6.

In [1]: import itertools
In [2]: help(itertools.product)

7. b, d

8. a, c

9. d

10.

class Frigate():
 """A frigate class warship for use in a war game simulation.

 Attributes
 name (str): Name of the ship without a designation/registry.
 crew (int): Number of crew members.
 length_ft(int): Length of the ship in feet.
 tonnage (int): Weight of the ship in short tons (US).
 fuel_gals(int): Fuel tank capacity in US gallons.
 guns (int): Number of big guns.
 ammo (int): Number of rounds of ammo available.
 heading (int): The compass direction in which the bow is pointed.
 max_speed (float): Maximum speed of ship in knots.
 speed (float): Current speed of ship in knots.

 Methods defined here:
 __init__(self, name)
 Constructs all the necessary attributes for the ship object.

 Parameters
 name (str):
 Name of the ship without a designation/registry.

 helm(self, heading, speed)
 Sets and displays ship's current heading and speed.

 Parameters
 heading (int):
 The compass direction the bow is pointed.
 speed (float):
 The current speed of the ship in knots.

 Returns
 None

 fire_guns(self)
 Prints "BOOM!" and decrements and prints remaining ammo.

 Parameters
 None

 Returns
 None
 """

Chapter 18

1. c (arrays can hold any number of dimensions)

2. d

3. b

4. e

5.

In [1]: import numpy as np

In [2]: np.zeros((10, 10))

6.

In [1]: import numpy as np

In [2]: arr2d = np.arange(30).reshape(5, 6)

In [3]: arr2d[::2]

7.

In [4]: arr2d[1::2, 1::2]
In [5]: # also:
In [6]: arr2d[1:5:2, 1:6:2]

8. c

9. b

10. 4

11. Because the byte size for each element is set by the largest element
(–10000)

12. c

13. b

14. c

15. c

Chapter 19

1. c

2. True

3. d

4. c

5. Note: This solution uses the pyplot approach.

In [1]: rockets = {'Atlas': 57, 'Falcon9': 70, 'SaturnV': 111, 'Starship':
120}

In [2]: plt.ylabel('Height (m)')
 ...: plt.bar(rockets.keys(), rockets.values(), width=0.3);

6. False

7. Use the suptitle() method, like so, for the pyplot approach:

plt.suptitle('Martian Goethite, Hematite, and Jarosite Distributions')

and like this for the object-oriented style:

fig.suptitle('Martian Goethite, Hematite, and Jarosite Distributions')

8. This solution uses the object-oriented style:

In [64]: # Create dummy datasets:
 ...: x = np.random.normal(0, 1, 50).cumsum()
 ...: y = np.random.normal(0, 1, 50).cumsum()
 ...: z = np.random.normal(0, 1, 50).cumsum()
 ...:
 ...: # Make list of datasets and titles:
 ...: data = [x, y, z]
 ...: titles = ['Data X', 'Data Y', 'Data Z']
 ...:
 ...: # Create subplots:
 ...: fig, axs = plt.subplots(1, 3)
 ...: fig.tight_layout()

 ...:
 ...: # Loop through subplots and plot data using black crosses:
 ...: for i, ax in enumerate(axs):
 ...: ax.set_title(titles[i])
 ...: ax.plot(data[i], 'k+')

NOTE

Your plot will look different because the data is randomly generated.

9. This solution uses the object-oriented style:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib notebook

fig, ax = plt.subplots()

for _ in range(30):
 data = np.random.rand(4, 4)
 heat = ax.imshow(data)
 fig.canvas.draw()
 fig.canvas.flush_events()

NOTE

Your plot will look different because the data is randomly generated.

10. This solution uses the object-oriented style:

import matplotlib.pyplot as plt
%matplotlib inline

def calc_data(t, pos, vel, dt):
 """Return time, position, and velocity of object falling in a vacuum."""
 time = [] # seconds
 position = [] # meters
 velocity = [] # meters per second
 for _ in range(15): # Duration of fall in seconds.
 pos = pos + vel * dt
 vel = vel + -9.81 * dt # 9.81 m/s**2 for Earth gravity.
 t += dt
 position.append(pos)
 velocity.append(abs(vel)) # Convert to absolute value.
 time.append(t)
 return time, position, velocity

time, position, velocity = calc_data(t=0, pos=0, vel=0, dt=1)

Set up plot:
fig, ax1 = plt.subplots()
ax2 = ax1.twinx() # Share the x-axis with ax.
ax1.set_xlabel('Time (sec)')
ax1.set_ylabel('Distance (m)', color='green')

ax2.set_ylabel('Velocity (m/s)', color='red')
ax2.invert_yaxis() # So larger numbers plot toward bottom.

Plot data:
ax1.plot(time, position, 'go', label='Position')
ax1.legend()
ax2.plot(time, velocity, 'red', label='Velocity')
ax2.legend(loc='lower left');

Chapter 20

1. a, b, d

2. False

3.

import pandas as pd

animals = {'canines': ['husky', 'poodle', 'bulldog'],
 'felines': ['Siamese', 'Persian', 'Maine Coon'],
 'cetaceans': ['humpback', 'sperm', 'right']}

df = pd.DataFrame(animals)
df.rename(columns={'cetaceans': 'whales'}, inplace=True)
df.head()

canines felines whales

0 husky Siamese humpback

1 poodle Persian sperm

canines felines whales

2 bulldog Maine Coon right

4.

df.head(1)

canines felines whales

0 husky Siamese humpback

5.

df_t = df.T
df_t

0 1 2

canines husky poodle bulldog

felines Siamese Persian Maine Coon

whales humpback sperm right

6. b and c

7. c

8. c

9. c

10. b and d

Chapter 21

1. b

2. c and d

3. c

4. c

5. d

6. d

7.

In [1]: import pandas as pd

In [2]: date = '2021-2-23 00:00:00'

In [3]: dt = pd.to_datetime(date)

In [4]: dt
Out[4]: Timestamp('2021-02-23 00:00:00')

8.

In [1]: import pandas as pd
In [2]: dt_warsaw = dt.tz_localize('Europe/Warsaw')
In [3]: dt_warsaw
Out[3]: Timestamp('2021-02-23 00:00:00+0100', tz='Europe/Warsaw')

9.

In [1]: import pandas as pd

In [2]: hours = pd.period_range(start='2021-5-1',
 ...: periods=24,
 ...: freq='H')

In [3]: hours
Out[3]:
PeriodIndex(['2021-05-01 00:00', '2021-05-01 01:00', '2021-05-01 02:00',
 '2021-05-01 03:00', '2021-05-01 04:00', '2021-05-01 05:00',
 '2021-05-01 06:00', '2021-05-01 07:00', '2021-05-01 08:00',
 '2021-05-01 09:00', '2021-05-01 10:00', '2021-05-01 11:00',
 '2021-05-01 12:00', '2021-05-01 13:00', '2021-05-01 14:00',
 '2021-05-01 15:00', '2021-05-01 16:00', '2021-05-01 17:00',
 '2021-05-01 18:00', '2021-05-01 19:00', '2021-05-01 20:00',
 '2021-05-01 21:00', '2021-05-01 22:00', '2021-05-01 23:00'],
 dtype='period[H]')

10. b and d

INDEX

Symbols

= (assignment) operator, 177

\ (backslash escape character), 190–191

() (call operator), 284

** (combining dictionaries) operator, 252

/ (division) operator, 176

// (floor division) operator, 176

(hash) symbol, 378

\ (line continuation character), 189

% (modulo) operator, 176

+ (plus sign)

addition operator, 176

string concatenation operator, 192

** (power) operator, 177

* (splat) operator, 226, 228

* (string replication) operator, 192

- (subtraction) operator, 176

@ (syntactic sugar) symbol, 363–364

A

absolute paths, 319–320

abstraction, 283

accessing

array attributes, 504–506

data types, 185

access modes, 325–326

for binary files, 335

for shelves, 337

accuracy of prediction in k-NN, 615–616

accuracy_score() method, 615

add_axes() method, 567

adding

consoles in JupyterLab, 152–153

images in notebooks, 107–109

key-value pairs, 251

list items, 231–232

text in notebooks, 102–104

addition operator (+), 176

aggregate functions in NumPy, 529, 531–533

aggregation methods in pandas, 650

allocating memory in NumPy, 496

Altair, 429–456

Anaconda

components of, 7–9

ecosystem, 397–398

installing

on Linux, 12–13

on macOS, 11–12

space requirements, 9

on Windows, 9–11

Anaconda, Inc., 9

Anaconda Navigator

Community tab, 17–18

conda environments, 24–34

backing up, 33

creating, 25–26

duplicating, 33

package management in, 27–33

removing, 34

Environments tab, 15–17

File menu, 18–19

Home tab, 13–14

JupyterLab, installing and launching, 140–142

Jupyter Notebook, installing and launching, 95

Jupyter Qt console, installing and launching, 51–52

launching, 13, 25

Learning tab, 17

purpose of, 13

Spyder, installing and launching, 62–63

Anaconda.org, 9

Anaconda Prompt. See CLI

animating plots, 569–573

ANNs (artificial neural networks), 406

anonymous functions. See lambda functions

Apache Spark, 418

append() method, 231–232

apply_along_axis() function, 532

applying style sheets, 578–580

arange() function, 499–501

arguments

in exceptions, 276

of functions, 285–286

positional and keyword, 286–287

Armstrong, Joe, 348

array() function, 497

arrays, 491–492

accessing attributes, 504–506

http://anaconda.org/

broadcasting, 526–527

creating, 494–504

arange() function, 499–501

array() function, 497

functions for, 494

linspace() function, 501–502

prefilled, 502–504

describing with dimension and shape, 492–494

flattening, 519–520

incrementing and decrementing, 528

indexing and slicing

Boolean indexing, 515–517

multidimensional arrays, 511–514

1D arrays, 507–509

2D arrays, 509–511

joining, 521–522

matrix dot product, 527–528

printing, 497

purpose of, 492

reading and writing data, 533–535

shaping, 518–519

splitting, 522–524

transposing, 520–521

vectorization, 524–526

artificial intelligence, branches of, 405

artificial neural networks, 406

Artist objects (Matplotlib), 542

asfreq() method, 644

assigning variables, 177, 203–206

assignment operator (=), 177

astimezone() method, 634

attributes, 347

of arrays, accessing, 504–506

defining classes, 350–352

augmented assignment operators, 178

autocompleting text in Editor pane (Spyder), 84

aware objects in datetime module, 633–636

Axes object (Matplotlib), 538–539, 560–561

B

backing up conda environments in Anaconda Navigator, 33

backslash escape character (\), 190–191

base classes, 355

base condition, 297

base environment, 23

Beautiful Soup, 414

Bednar, James, 93, 422

best practices, naming variables, 209–211

bfill() method, 649

binary files, access modes, 335

binary universal functions in NumPy, 530–531

Binder, 129–130, 448

binding. See assigning variables

block comments, 380

blocks of code, 259–260

Bokeh, 430–456

dashboards, 446

geospatial data, 484

Boolean data type, 215

Boolean indexing, 515–517

Boolean operators, 263–264

Bowtie, 446

boxplot() method, 603–604

branching, 258

break statement, 270

broadcasting, 508, 526–527

built-in data types, 184–185

built-in functions, 290–292

built-in modules, 311–313

C

calling

functions, 284

instance methods, 353–355

call operator (), 284

cartograms, 465

Cartopy, 464–465

case sensitivity of variables, 209

catching exceptions when opening files, 342–343

categorical data, converting to numerical data, 610–612

catenary, 542

cells. See specific types of cells (code, Markdown, output, and so on)

chained assignment, 205–206

changing

runtime configuration parameters, 574–576

start date, 656

channels, defined, 16

checkpoints in notebooks, 109

choosing

deep learning frameworks, 408

geospatial libraries, 484–487

image manipulation libraries, 410

natural language processing libraries, 412

plotting libraries, 450–456

syntax styles in Jupyter Qt console, 53–54

circular dependencies, 309

class attributes, 350

classes, 347–348

dataclasses, 361–362

decorators, 362–364

defining, 365–368

optimizing, 372–373

plotting with, 368–370

post-initialization processing, 370–372

defining, 349–352, 364–365

docstrings for, 386–387

inheritance, 355–359

instance methods

calling, 353–355

defining, 352–353

instantiating objects, 353–355, 357–358

object control, 359–361

classification problems, 587. See also Palmer Penguins project

class modules, creating, 373–375

cleaning package cache, 48

clearing

namespace in IPython console (Spyder), 76–77

workspaces in JupyterLab, 157

CLI

conda environments, 34–48

cleaning package cache, 48

creating, 36–37

duplicating and sharing, 44–46

list of commands, 35

package management with, 39–44

removing, 47

restoring, 46–47

storage locations for, 37–39

extensions, installing, 169–170

JupyterLab, installing and launching, 142

Jupyter Notebook, installing and launching, 96

Jupyter Qt console, installing and launching, 52–53

launching, 34

Spyder, installing and launching, 63–64

cloning. See duplicating conda environments

close() method, 326

closing

files, 326, 329–330

notebooks, 109

shelves, 338

workspaces, in JupyterLab, 157

Code Analysis pane (Spyder), 85–86, 391–395

code blocks, 259–260

code cells, 101

in Editor pane (Spyder), 81–83

in JupyterLab, 150–152

in Jupyter Notebook, 104–106

code repositories, sharing notebooks, 125–128

Colab, 131

collection-controlled loops, 264

color blindness, 578

columns, renaming in pandas, 590–591

column_stack() functions, 522

combining

dictionaries, 252

sequences into dictionaries, 248–249

sets, 244

command line interface. See CLI

command mode keyboard shortcuts in Jupyter Notebook, 110–111

command palette in Jupyter Notebook, 112

commands (conda)

environment management, 35

package management, 39

command shell, defined, 2

comments, 210, 377, 378–382

commenting-out code, 381

inline, 380–381

multiline, 380

single-line, 379

Community tab (Anaconda Navigator), 17–18

comparison operators, 214–217

comprehensions, 271–274

computer vision libraries, 409

concrete paths, 320

conda, 8–9

pip and, 24

prompt, changing, 38–39

conda configuration file, 38

conda environment manager, purpose of, 22

conda environments

in Anaconda Navigator, 15–17, 24–34

backing up, 33

creating, 25–26

duplicating, 33

package management in, 27–33

removing, 34

base environment, 23

with CLI, 34–48

cleaning package cache, 48

creating, 36–37

duplicating and sharing, 44–46

list of commands, 35

package management with, 39–44

removing, 47

restoring, 46–47

storage locations for, 37–39

defined, 9

JupyterLab, installing, 140–143

Jupyter Notebook, installing, 94–97

organization of, 22–23

Palmer Penguins project setup, 587–588

purpose of, 21

Spyder, installing, 66–68

conda info command, 23

conda package manager, purpose of, 23

condition-controlled loops, 264

conditions in flow control statements, 259

configuring Spyder interface, 64–66

consoles, adding in JupyterLab, 152–153

constants, 209, 295

container data types

dictionaries, 246–256

list of, 220

lists, 229–238

sets, 239–246

tuples, 220–229

Contextily, 462–463

continue statement, 270

control statements. See flow control statements

converting strings to dates and times, 630–631

coordinated universal time, 633

copying

cells between notebooks in JupyterLab, 158–159

lists, 235–237

copy() method, 236

copy module, 237

correlations, quantifying, 608–609

corr() method, 608–609

counting in DataFrames, 600–601

count() method, 196

countplot() method, 597–601

cross_validate() method, 618

cross-validation, 616–620

cufflinks, 435

current date and time, retrieving, 626–627

current figure in Matplotlib, 546

current working directory, 317–319

custom extensions, creating in JupyterLab, 171

customizing widgets, 121–122

D

Dash, 433, 446–447

dashboards, 445–450

Dash, 446–447

Panel, 449–450

Streamlit, 447–448

Voilà, 448–449

Dask, 404, 416–418, 441

data

loading in JSON format, 341

requesting, 413–418

saving in JSON format, 340

databases, 336

dataclasses, 361–362

decorators, 362–364

defining, 365–368

optimizing, 372–373

plotting with, 368–370

post-initialization processing, 370–372

dataclass module, 361–362

DataFrames, 403, 585–586

converting categorical data to numerical data, 610–612

counting in, 600–601

describing, 596–597

displaying, 590–591

duplicates in, 592

missing values in, 592–596

quantifying correlations, 608–609

reindexing, 595–596

data normalization with scikit-learn, 613–615

data serialization

with json module, 339–342

with pickle module, 334–336

pickling vs. JSON, 334

datasets. See also DataFrames; Palmer Penguins project

exploring, 596–609

loading, 589–590

in seaborn, 589

size of, 451

for training algorithms, 612–613

Datashader, 441–443

data structures. See arrays

data types

accessing, 185

Boolean, 215

built-in, 184–185

containers, list of, 219–220

in datetime module, 627

dictionaries, 246–256

floats, 186–189

integers, 185–186

lists, 229–238

in NumPy, 495

sets, 239–246

strings, 189–200

tuples, 220–229

type casting, 186–187

data visualization

dashboards, 445–450

Dash, 446–456

Panel, 449–450

Streamlit, 447–448

Voilà, 448–449

geospatial libraries

Bokeh, 484

Cartopy, 464–465

choosing, 484–487

folium, 470–473

GeoPandas, 460–464

Geoplot, 465–467

GeoViews, 476–479

ipyleaflet, 473–476

KeplerGL, 479–481

list of, 459

Plotly, 467–469

purpose of, 458

pydeck, 481–484

plotting libraries, 419–420

Altair, 429–430

Bokeh, 430–456

choosing, 450–456

Datashader, 441–443

HoloViews, 436–441

for InfoVis, 421

Matplotlib, 422–456, 537–538

Mayavi, 443–445

pandas plotting API, 428–456

Plotly, 431–436

seaborn, 424–456

radial visualization, 605–608

types of, 420–445

data wrangling, 413

date offsets (pandas), 636, 645

date_range() method, 640–642

date ranges in pandas, 640–642

DatetimeIndex class (pandas), 637

datetime() method, 627–628

datetime module, 626

converting strings to dates and times, 630–631

current date and time, 626–627

data types, 627

durations, 627–628

formatting dates and times, 628–630

plotting with, 632–633

timestamps, 627–628

time zones, 633–636

date times (pandas), 636

dbm module, 336

Debugger pane (Spyder), 90

debugging, defined, 3, 90

decimal module, 186

decorators, 362–364

decrementing arrays, 528

deepcopy() method, 237

deep learning frameworks, 406–407

default key values, creating, 252–253

default parameters, 287–288

defining

classes, 349–352, 364–365

code cells

in Editor pane (Spyder), 81–83

in JupyterLab, 150–152

in Jupyter Notebook, 104–106

dataclasses, 365–368

functions, 284–285

instance methods, 352–353

def keyword, 284

deleting. See removing

delimiters in split() method, 198

dependencies

circular, 309

defined, 8, 23

depth of recursion, 298

derived classes, 355

describe() method, 597

describing DataFrames, 596–597

de-serialization, 334

designing functions, 298–299

dict() function, 248

dictionaries, 246–256

combining, 252

combining sequences into, 248–249

creating, 247–248

creating empty, 249

functions and methods for, 249–250

key-value pairs

adding, 251

removing, 252

key values

creating default, 252–253

retrieving, 251

printing, 254–255

retrieving contents, 250–251

reverse lookups, 253–254

sorting, 254

dictionary comprehensions, 273–274

difference() method, 243

differences between sets, finding, 243

dimension of arrays, 492–494

directories

current working directory, 317–319

for Jupyter notebooks, 98–100, 144–145

for Spyder project files, 69–72

directory paths

absolute and relative, 319–320

naming, 316

normalizing, 319

os module, 317–319

pathlib module, 320–322

shutil module, 322–324

dir() function, 306

disabling logging, 280

displaying

DataFrames, 590–591

image files in JupyterLab, 153–154

division operator (/), 176

docstrings, 74, 377, 382–395

for classes, 386–387

formats for, 392

for functions and methods, 387–388

for modules, 384–386

in Spyder Code Analysis pane, 391–395

updating, 388–391

doctest module, 388–391

documentation, 377–378

comments, 378–382

docstrings, 382–395

with JupyterLab text editor, 164–165

dot() function, 528

dot notation, 180

dot product for matrices, 527–528

downloading notebooks, 123–125

downsampling time series in pandas, 650–656

drop_duplicates() method, 592

dropna() method, 594

dstack() function, 522

dtypes. See data types

dunder (double underscore) methods, 351, 365

duplicated() method, 592

duplicates

in datasets, 592

finding, 243–244

duplicating conda environments

in Anaconda Navigator, 33

with CLI, 44–46

durations in datetime module, 627–628

dynamic typing, 184, 211

E

Earth Engine, 483–484

edit mode keyboard shortcuts in Jupyter Notebook, 111–112

Editor pane (Spyder), 78–84

autocompleting text, 84

defining code cells, 81–83

setting run configuration, 83–84

writing programs with, 78–81

elif clause, 260–262

else clause, 259, 260–262

embedding widgets, 122

empty dictionaries, creating, 249

empty() function, 503

enabling extensions in Jupyter Notebook, 113–115

end-of-line (EOL) markers, 329

enumerate() function, 269

environment files, creating, 44–46

environments. See conda environments

Environments tab (Anaconda Navigator), 15–17

error messages, 182–183

errors, ignoring, 277–278

escape sequences, 190–191

events, handling with widgets, 120–121

exceptions

catching when opening files, 342–343

handling, 274–278

ignoring errors, 277–278

try and except statements, 274–276

raising, 182–183, 274, 276–277

except statement, 274–276

exploring

datasets, 596–609

simulations in JupyterLab, 154–155

exponent operator (**), 177

expressions

assigning variables, 204

defined, 176

generator, 302

mathematical. See mathematical expressions

ternary, 262

extend() method, 231

extensibility, defined, 3

eXtensible Markup Language (XML), 343

Extension Manager, 166–169

extensions

in JupyterLab

creating custom, 171

installing and managing with CLI, 169–170

installing and managing with Extension Manager, 166–169

list of, 165–166

in Jupyter Notebook, 113–115

F

facet plots, 435

ffill() method, 648

Figure object (Matplotlib), 538–539

methods for, 559–560

File menu (Anaconda Navigator), 18–19

files. See also text files

binary files, accessing, 335

closing, 326, 329–330

opening, catching exceptions, 342–343

filling missing values in datasets, 594–595

fillna() method, 594, 650

filter() function, 300

finding

differences between sets, 243

duplicates in sets, 243–244

list index, 233–234

missing values in datasets, 593

packages

in Anaconda Navigator, 27–30

with CLI, 40–42

flattening arrays, 519–520

flatten() method, 519

float() function, 187

floats, 186–189

converting to/from integers, 186–187

rounding, 187–189

floor division operator (//), 176

flow control statements, 258

if statement, 258–264

loops, 264–274

flow of execution, 258

functions and, 292–297

tracing, 278–281

folders. See directories

folium, 470–473

formats for docstrings, 392

formatting

dates and times, 628–630

strings, 192–194, 206

for statement, 267–269

frequencies for time series, 641

From Data to Viz website, 456

fromkeys() method, 253

frozenset() function, 245–246

frozensets, creating, 245–246

fruitful functions, 285

f-strings, 192–194, 206

full() function, 503

FuncAnimation class (Matplotlib), 569, 571–573

functions, 283. See also methods

assigning variables, 204–205

base condition, 297

built-in, 290–292

calling, 284

creating, 253

creating arrays

arange() function, 499–501

array() function, 497

linspace() function, 501–502

list of, 494

prefilled, 502–504

default parameters, 287–288

defining, 284–285

designing, 298–299

for dictionaries, 249–250

docstrings for, 387–388

flow of execution, 292–297

generators, 300–303

global variables, 294–295

lambda, 299–300

for lists, 230–231

main(), 295–297

math module, 179–181

namespaces and scopes, 293–294

naming, 290

in NumPy

aggregate, 531–533

pseudorandom numbers, 533

universal, 529–531

parameters and arguments, 285–286

positional and keyword arguments, 286–287

recursion, 297–298

returning values, 289

for sets, 241–242

for tuples, 222

G

garbage collection, 203

generator expressions, 302

generators, 300–303

Gensim, 412

GeoPandas, 460–464

Geoplot, 465–467

geospatial data, 457–458

geospatial libraries

Bokeh, 484

Cartopy, 464–465

choosing, 484–487

folium, 470–473

GeoPandas, 460–464

Geoplot, 465–467

GeoViews, 476–479

ipyleaflet, 473–476

KeplerGL, 479–481

list of, 459

Plotly, 467–469

purpose of, 458

pydeck, 481–484

GeoViews, 476–479

GeoVis, 420

getcwd() function, 309

get_dummies() method, 600, 611

get() method, 251

Gist, sharing notebooks, 125–128

GitHub, sharing notebooks, 125–128

global scope, 293–294

global statement, 295

global variables, 294–295

globular clusters, 144

Google Earth Engine, 483–484

GridSearchCV class (scikit-learn), 620–622

GridSpec class, creating multipanel displays, 549–555, 564–567

groupby() method, 600

H

handling

events with widgets, 120–121

exceptions, 274–278

ignoring errors, 277–278

try and except statements, 274–276

hash() function, 240

hash symbol (#) , 378

hash tables, 239

HDF5 (Hierarchical Data Format), 343

head() method, 591, 596, 651

heatmaps in seaborn, 608–609

helper libraries, 413–418

Help menu (Jupyter Notebook), 109–110

Help pane (Spyder), 72–74

Heroku, 448

Hierarchical Data Format (HDF5), 343

History pane in IPython console (Spyder), 77

HoloViews, 436–441

HoloViz, 441

home() method, 322

Home tab (Anaconda Navigator), 13–14

hsplit() function, 523

hstack() function, 522

HTML (HyperText Markup Language), 413

HTTP (HyperText Transfer Protocol), 413

hvPlot, 440–441, 462

hyperparameters, 616, 620–622

I

identities of variables, 202–203

IDEs (integrated development environments), defined, 2, 3

idxmax() method, 618, 653

if statement, 258–264

Boolean operators, 263–264

code blocks, 259–260

elif clause, 260–262

else clause, 259, 260–262

ternary expressions, 262

ignoring errors, 277–278

image files, displaying in JupyterLab, 153–154

image manipulation libraries, 409

images, adding in notebooks, 107–109

immutability of strings, 197

importing

modules, 179, 304–306

packages, 589

incrementing arrays, 528

indexes

of list items, finding, 233–234

in series, 584–585

indexing

arrays

Boolean indexing, 515–517

multidimensional arrays, 511–514

1D arrays, 507–509

2D arrays, 509–511

time series in pandas, 646–647

index() method, 233–234

InfoVis plotting libraries, 420

Altair, 429–430

Bokeh, 430–431

Datashader, 441–443

HoloViews, 436–441

list of, 421

Matplotlib, 422–423

pandas plotting API, 428–429

Plotly, 431–436

seaborn, 424–428

inheritance, 355–359

initialization methods, 351

__init__() method, 351

inline comments, 380–381

in operator, 196

input() function, 213–214

inserting list items, 232

insert() method, 232

insetting plots, 567–568

insignificant variables, 212

inspecting modules, 306–307

installing

Anaconda

on Linux, 12–13

on macOS, 11–12

space requirements, 9

on Windows, 9–11

extensions

with CLI, 169–170

with Extension Manager, 166–169

in Jupyter Notebook, 113

ipywidgets, 115–116, 170–171

JupyterLab, 140–143

with Anaconda Navigator, 140–142

with CLI, 142

Jupyter Notebook, 94–97

with Anaconda Navigator, 95

with CLI, 96

Jupyter Qt console

with Anaconda Navigator, 51–52

with CLI, 52–53

packages

in Anaconda Navigator, 27–30

with CLI, 40–42

with conda and pip, 24

RISE extension, 132–133

seaborn, 50

Spyder

with Anaconda Navigator, 62–63

with CLI, 63–64

for conda environments and packages, 66–68

instance attributes, 351

instance methods

calling, 353–355

defining, 352–353

instantiating objects, 353–355, 357–358

instantiation, 351

integers, 185–186

converting to/from floats, 186–187

integrated development environments (IDEs), defined, 2, 3

interact class, creating widgets, 116–118

interactive class, creating widgets, 118–119

Interactive Python (IPython), 2

interfaces for Matplotlib, 539–540

object-oriented, 555–557

pyplot, 539–541

internment, 205–206

interpolate() method, 656–657

interpolation in pandas, 656–660

intersection() method, 243–244

int() function, 187

introspection, defined, 4

invoking, objects, 284

ipyleaflet, 473–476

IPython console (Spyder), 74–77

clearing namespace, 76–77

History pane, 77

kernels in, 76

output and plotting, 75

IPython (Interactive Python), 2

IPython notebooks. See notebooks

ipywidgets, installing, 115–116, 170–171

irregular time series in pandas, 656–660

isinstance() function, 185

isnull() method, 595

issubset() method, 245

issuperset() function, 245

items() method, 250–251, 339

iterables, 220

J

joining arrays, 521–522

join() method, 228

jointplot() method, 604–605

Jovian, 131

JSON (JavaScript Object Notation), 334

data

loading, 341

saving, 340

tuples, saving, 341–342

json.dumps() method, 254, 340

json module, 339–342

pickle vs., 334

Jupyter, 3

JupyterDash, 446

Jupyter-gmaps, 476

JupyterHub, 2, 131

JupyterLab, 94

code cells, defining, 150–152

consoles, adding, 152–153

defined, 2

extensions, 3

creating custom, 171

installing and managing with CLI, 169–170

installing and managing with Extension Manager, 166–169

list of, 165–166

image files, displaying, 153–154

installing, 140–143

with Anaconda Navigator, 140–142

with CLI, 142

vs. Jupyter Notebook, 140

left sidebar, 147–148

Markdown cells, 149–150

menu bar, 146–147

navigating, 145–146

notebooks

copying cells between, 158–159

creating, 148

naming, 149

opening multiple, 156

sharing, 171

project folders, creating, 144–145

purpose of, 139

simulations, exploring, 154–155

single document mode, 160

synchronized views, creating, 158

text editor

documentation with, 164–165

running scripts in notebooks, 163–164

running scripts in terminal, 162–163

writing scripts, 161–162

widgets, 170–171

workspace

clearing, 157

closing, 157

saving, 156–157

Jupyter Notebook. See also notebooks

command palette, 112

defined, 2

extensions, 113–115

Help menu, 109–110

installing, 94–97

with Anaconda Navigator, 95

with CLI, 96

vs. JupyterLab, 140

keyboard shortcuts, 110–112

navigating, 100–101

Palmer Penguins project setup, 587–588

purpose of, 93–94

widgets, 115

creating manually, 119–120

creating with interact class, 116–118

creating with interactive class, 118–119

customizing, 121–122

embedding, 122

handling events, 120–121

installing ipywidgets, 115–116

Jupyter Notebook Viewer, sharing notebooks, 128–129

Jupyter Qt console

defined, 2

installing and launching

with Anaconda Navigator, 51–52

with CLI, 52–53

as interactive, 53

keyboard shortcuts, 54–55

multiline editing, 58–59

printing and saving, 56–58

purpose of, 49

syntax highlighting, 53

syntax styles, choosing, 53–54

tab and kernel options, 55

K

KeplerGL, 479–481

Keras, 407–418

kernel density estimation (KDE), 604

Kernel menu (Jupyter Notebook), checking and running notebooks,
123

kernels

defined, 4

in IPython console (Spyder), 76

in Jupyter Qt console, 55

restarting, 310

keyboard shortcuts

in Jupyter Notebook, 110–112

in Jupyter Qt console, 54–55

keys() method, 250–251, 338

key-value pairs

adding, 251

creating default, 252–253

removing, 252

retrieving, 251

keyword arguments, 286–287

k-NN (k-Nearest Neighbor), 609–622

converting categorical data to numerical data, 610–612

normalizing data, 613–615

optimizing

with cross-validation, 616–620

with GridSearchCV class, 620–622

prediction accuracy, 615–616

running, 615–616

training dataset, 612–613

L

lambda functions, 299–300

launching

Anaconda Navigator, 13, 25

CLI, 34

JupyterLab

with Anaconda Navigator, 140–142

with CLI, 142

Jupyter Notebook

with Anaconda Navigator, 95

with CLI, 96

Jupyter Qt console

with Anaconda Navigator, 51–52

with CLI, 52–53

Spyder

with Anaconda Navigator, 62–63

with CLI, 63–64

from Start menu, 64

lazy evaluation, 300

Learning tab (Anaconda Navigator), 17

left sidebar (JupyterLab), 147–148

len() function, 223–224

length of tuples, 223–224

libraries

Beautiful Soup, 414

for computer vision (image manipulation), 409

dashboards

Dash, 446–447

list of, 446

Panel, 449–450

Streamlit, 447–448

Voilà, 448–449

Dask, 416–418

deep learning frameworks, 406–407

defined, 8

geospatial libraries

Bokeh, 484

Cartopy, 464–465

choosing, 484–487

folium, 470–473

GeoPandas, 460–464

Geoplot, 465–467

GeoViews, 476–479

ipyleaflet, 473–476

KeplerGL, 479–481

list of, 459

Plotly, 467–469

purpose of, 458

pydeck, 481–484

helper libraries, 413–418

Keras, 407

list of, 400

for machine learning, 404–406

for natural language processing, 411–412

NLTK, 411–412

NumPy, 401–418

OpenCV, 409–410

pandas, 403–404

Pillow, 410

plotting libraries, 419–420

Altair, 429–456

Bokeh, 430–456

choosing, 450–456

Datashader, 441–443

HoloViews, 436–441

Matplotlib, 422–456, 537–538

Mayavi, 443–445

pandas plotting API, 428–456

Plotly, 431–436

seaborn, 424–456

PyTorch, 408

for regular expressions, 415–416

requests, 413–414

scikit-image, 410

scikit-learn, 404–407

SciPy, 401

spaCy, 412

statsmodels, 406

SymPy, 402–403

TensorFlow, 407

line continuation character (\), 189

lineplot() method, 619

linspace() function, 501–502

Linux, Anaconda installation, 12–13

list comprehensions, 272–273

list() function, 230, 251

lists, 229–238

adding items to, 231–232

changing item values, 233

checking for membership, 237–238

converting data types to, 230

copying, 235–237

creating, 230

finding index of items, 233–234

functions and methods for, 230–231

inserting items, 232

removing items, 232–233

sorting, 234–235

load_dataset() method, 590

load() function, 534

loading

data in JSON format, 341

datasets, 589–590

localize() method, 634

local scope, 293–294

logging.disable() function, 280

logging levels, 279

logging module, 278–281

loop control statements, 269–271

loops, 264–274

animating plots, 569–571

break statement, 270

continue statement, 270

for statement, 267–269

pass statement, 271

replacing with comprehensions, 271–274

while statement, 265–267

M

machine learning, 404

with k-NN, 609–622

libraries, 404–406

macOS, Anaconda installation, 11–12

magic commands

defined, 57

list of, 58

magic methods, 351, 365

main() function, 295–297

make_column_transformer() method, 614

maketrans() method, 199

manually creating widgets, 119–120

maps. See geospatial libraries

Markdown cells

adding images in, 107–109

adding text with, 102–104

in JupyterLab, 149–150

markers, 470

mathematical expressions

assignment operator, 177

augmented assignment operators, 178

defined, 176

mathematical operators, 176–177

math module, 179–181

precedence, 178–179

math module, 179–181

Matplotlib, 422–456, 537–538

with datetime module, 632–633

interfaces for, 539–540

object-oriented, 555–557

pyplot, 539–541

multipanel displays, creating with GridSpec class, 549–555, 564–567

plots

3D plots, 568–569

animating, 569–573

creating with object-oriented approach, 557–561

creating with pyplot, 542–545

insetting, 567–568

styling, 573–580

subplots, 545–549, 561–564

terminology for, 538–539

matrix, 493

matrix dot product, 527–528

max() function, 224–225

maximum values of tuples, 224–225

max() method, 653

Mayavi, 443–445

mean() function, 531

melt() method, 619

membership operators, 196

memory allocation in NumPy, 496

menu bar (JupyterLab), 146–147

meshgrid() function, 502

meshgrid() method, 552

Method Resolution Order, 358

methods, 347. See also functions

for dictionaries, 249–250

docstrings for, 387–388

for file objects, 326

initialization, 351

instance methods, 352–355, 353–355

for lists, 230–231

object-oriented

for Axes objects, 560–561

creating plots, 559

for Figure objects, 559–560

in os module, 317

in pandas

aggregation methods, 650

handling missing values, 594

I/O methods, 590

in pathlib module, 321, 332

in pyplot

creating plots, 543

manipulating plots, 544

in seaborn

boxplot(), 603–604

countplot(), 597–601

jointplot(), 604–605

list of, 598

pairplot(), 601–602

scatterplot(), 602–603

stripplot(), 603–604

for sets, 241–242

in shelve module, 338–339

in shutil module, 323

strings, 196–200

for tuples, 222

mgrid() function, 502

Microsoft Azure Notebooks, 131

min() function, 224–225

Miniconda, 9

minimum values of tuples, 224–225

MinMaxScaler() method, 614

missing values in datasets, 592–596

Modin, 404

modular approach for installation

JupyterLab, 142–143

Jupyter Notebook, 96–97

Spyder, 66–68

modules, 283

built-in, 311–313

class modules, creating, 373–375

copy, 237

dataclass, 361–362

datetime, 626–636

dbm, 336

decimal, 186

defined, 8

docstrings for, 384–386

doctest, 388–391

importing, 179, 304–306

inspecting, 306–307

json, 334, 339–342

logging, 278–281

math, 179–181

naming, 310

os, 317–319

pathlib, 320–322, 332–333

pickle, 334–336

purpose of, 303–304

re, 415–416

shelve, 336–339

shutil, 322–324

stand-alone mode, 310–311

string, 199

writing, 307–310

modulo operator (%), 176

moving averages, 660–663

MRO (Method Resolution Order), 358

multidimensional arrays, 493

indexing and slicing, 511–514

multiline comments, 380

multiline editing in Jupyter Qt console, 58–59

multipanel displays, creating with GridSpec class, 549–555, 564–567

multiple inheritance, 358

multiple notebooks, opening in JupyterLab, 156

mutability, 220

hashability and, 240

tuples and, 227

N

naive approach for installation

JupyterLab, 140–142

Jupyter Notebook, 94–96

Spyder, 66

naive objects in datetime module, 633–636

namespaces

clearing in IPython console (Spyder), 76–77

in functions, 293–294

naming

directory paths, 316

functions, 290

modules, 310

notebooks

in JupyterLab, 149

in Jupyter Notebook, 101–102

variables, 206–213

natural language processing, 411–412

Natural Language Tool Kit, 411–412

navigating

JupyterLab, 145–146

Jupyter Notebook, 100–101

Navigator. See Anaconda Navigator

nbextensions. See extensions

nbviewer, sharing notebooks, 128–129

ndarray class, 494. See also arrays

nested code blocks, 260

NLP (natural language processing), 411–412

NLTK (Natural Language Tool Kit), 411–412

normalizing

pathnames, 319

data with scikit-learn, 613–615

notebooks. See also Jupyter Notebook

closing, 109

code cells, defining, 104–106

consoles, adding, 152–153

copying cells between in JupyterLab, 158–159

creating

in Jupyter Notebook, 100–101

in JupyterLab, 148

images, adding, 107–109

Markdown cells

adding images, 107–109

adding text, 102–104

naming

in JupyterLab, 149

in Jupyter Notebook, 101–102

opening multiple in JupyterLab, 156

output cells, 106–107

project folders, creating, 98–100, 144–145

purpose of, 93–94

running scripts in, 163–164

saving, 109

sharing, 122

via Binder, 129–130

checking and running from Kernel menu, 123

with Colab, 131

downloading, 123–125

via GitHub and Gist, 125–128

with Jovian, 131

with JupyterHub, 131

in JupyterLab, 171

via Jupyter Notebook Viewer, 128–129

with Microsoft Azure Notebooks, 131

trusting, 131–132

as slideshows

creating, 133–136

installing RISE extension, 132–133

speaker notes, 136

synchronized views, creating, 158

text, adding, 102–104

not in operator, 196

now() method, 626–627

np.eye() function, 503

np.savez() function, 534

Numba, 441

numerical data, converting categorical data to, 610–612

NumPy (Numerical Python), 401

arrays

accessing attributes, 504–506

broadcasting, 526–527

creating, 494–504

describing with dimension and shape, 492–494

flattening, 519–520

incrementing and decrementing, 528

indexing and slicing, 506–517

joining, 521–522

matrix dot product, 527–528

printing, 497

purpose of, 492

reading and writing data, 533–535

shaping, 518–519

splitting, 522–524

transposing, 520–521

vectorization, 524–526

data types, 495

functions

aggregate, 531–533

pseudorandom numbers, 533

universal, 529–531

memory allocation, 496

purpose of, 491–492

O

object-oriented approach (Matplotlib), 555–557

multipanel displays, 564–567

plots, 557–561

objects, 348

controlling with objects, 359–361

as instances, 351

instantiating, 353–355, 357–358

invoking, 284

variables and, 202

1D arrays, 493, 507–509

ones() function, 502

OOP (object-oriented programming), 347

classes

defining, 349–352, 364–365

docstrings for, 386–387

inheritance, 355–359

instance methods, 352–353

instantiating objects, 353–355, 357–358

class modules, creating, 373–375

dataclasses, 361–362

decorators, 362–364

defining, 365–368

optimizing, 372–373

plotting with, 368–370

post-initialization processing, 370–372

object control, 359–361

when to use, 348

OpenCV, 409–410

open() function, 325

opening

files, catching exceptions, 342–343

multiple notebooks in JupyterLab, 156

operators

assignment, 177

augmented assignment, 178

Boolean, 263–264

comparison, 214–217

mathematical, 176–177

membership, 196

overloading

in strings, 191–192

in tuples, 227

in variable assignment, 204

precedence, 178–179

optimizing

dataclasses, 372–373

k-NN

with cross-validation, 616–620

with GridSearchCV class, 620–622

os.chdir() method, 318

os.getcwd() method, 317

os module, 317–319

os.normpath() method, 319

os.path.join() method, 318

output cells in notebooks, 106–107

output in IPython console (Spyder), 75

overfitting, 616

overloading operators

in strings, 191–192

in tuples, 227

in variable assignment, 204

P

package cache, 23

cleaning, 48

packages

in Anaconda Navigator, 15–17

conda package manager, purpose of, 23

defined, 8

dependencies, defined, 23

finding

in Anaconda Navigator, 27–30

with CLI, 40–42

importing, 589

installing

in Anaconda Navigator, 27–30

with CLI, 40–42

with conda and pip, 24

managing

in Anaconda Navigator, 27–33

with CLI, 39–44

removing

in Anaconda Navigator, 30–33

with CLI, 42–44

Spyder, installing, 66–68

updating

in Anaconda Navigator, 30–33

with CLI, 42–44

pairplot() method, 601–602

pairplots, 424

Palmer Penguins project

displaying DataFrames, 590–591

duplicates in, 592

exploring dataset, 596–609

importing packages, 589

loading dataset, 589–590

missing values in, 592–596

predictions with, 609–622

purpose of, 586–587

renaming columns, 590–591

setup, 587–588

steps in, 587

pandas, 403–404, 583

aggregation methods, 650

alternatives to, 404

DataFrames, 585–586

converting categorical data to numerical data, 610–612

counting in, 600–601

describing, 596–597

displaying, 590–591

duplicates in, 592

missing values in, 592–596

quantifying correlations, 608–609

reindexing, 595–596

datasets, loading, 589–590

plotting API, 428–456

plotting syntax, 620

radial visualization, 605–608

resources for information, 623

series, 584–585

time series, 636–637

changing start date, 656

date offsets, 645

date ranges, 640–642

downsampling, 650–656

indexing and slicing, 646–647

interpolation, 656–660

parsing data, 637–640

resampling, 647–663

sliding window functions, 660–663

time deltas, 644

time spans, 642–644

upsampling, 648–650

Pandas-Bokeh, 431

Panel, 449–450

parallel processing, 417

parameters

default, 287–288

of functions, 285–286

ParaView, 444

parse() method, 630

parsing time series data in pandas, 637–640

pass statement, 271

pathlib module, 320–322

reading and writing text files, 332–333

pathnames, 316

absolute and relative, 319–320

normalizing, 319

os module, 317–319

pathlib module, 320–322

shutil module, 322–324

Pattern, 412

period_range() method, 643

periods (pandas), creating, 642–644

pickled data, shelving, 336–338

pickle.dump() function, 335

pickle.load() function, 335

pickle module, 334–336

pie charts, 553

PIL (Python Image Library), 410

Pillow libraries, 410

pip, conda and, 24

plaintext files, 325. See also text files

Plotly, 431–436, 467–469

Plotly Express, 433–436, 467–469

plots

with datetime module, 632–633

in Matplotlib

animating, 569–573

creating with object-oriented approach, 557–561

creating with pyplot, 542–545

insetting, 567–568

pyplot approach, 539–541

styling, 573–580

subplots, 545–549, 561–564

terminology for, 538–539

3D plots, 568–569

types of, 452

plotting

with dataclasses, 368–370

in IPython console (Spyder), 75

plotting libraries, 419–420. See also geospatial libraries

Altair, 429–456

Bokeh, 430–456

choosing, 450–456

Datashader, 441–443

HoloViews, 436–441

for InfoVis and SciVis, 421

Matplotlib, 422–456, 537–538

Mayavi, 443–445

pandas plotting API, 428–456

Plotly, 431–436

seaborn, 424–456

plt.pie() method, 553

plus sign (+)

addition operator, 176

string concatenation operator, 192

Polyglot, 412

pop() method, 232–233, 252

positional arguments, 286–287

postBuild files, 130

__post_init__ function, 370–372

post-initialization processing in dataclasses, 370–372

power operator (**), 177

precedence, 178–179

predictions with k-NN, 609–622

predict() method, 615

prefilled arrays, creating, 502–504

print() function, 278

printing

arrays, 497

dictionaries, 254–255

in Jupyter Qt console, 56–58

tuples, 228–229

processes, 318

Profiler pane (Spyder), 89–90

profiling, defined, 4

project files in Spyder, 68–72

project folders, creating

in JupyterLab, 144–145

in Jupyter Notebook, 98–100

Project pane (Spyder), 72

projects, creating in Spyder, 316, 348–349. See also Palmer Penguins

project

prompt (conda), changing, 38–39

pseudorandom numbers in NumPy, 533

pure paths, 320

pydeck, 481–484

PyPI (Python Package Index), 24

pyplot, 539–541

multipanel displays, 549–555

plots, 542–545

subplots, 545–549

Python. See also flow control statements; functions; libraries; modules;

variables

comments, 210

data types, 184–200

datetime module, 626

converting strings to dates and times, 630–631

current date and time, 626–627

data types, 627

durations, 627–628

formatting dates and times, 628–630

plotting with, 632–633

timestamps, 627–628

time zones, 633–636

dictionaries, 246–256

documentation, 377–378

comments, 378–382

docstrings, 382–395

error messages, 182–183

exception handling, 274–278

lists, 229–238

mathematical expressions, 176–181

objects, 202

reserved keywords, 207–209

resources for information, 174

scientific ecosystem, 397–398

sets, 239–246

standard library, 303

tuples, 220–229

Python Data Analysis library. See pandas

Python Image Library, 410

Python Package Index, 24

Python package management system. See pip

PyTorch, 408

pytz library, 634

Q

Qt console. See Jupyter Qt console

Qt, defined, 4

quantifying correlations, 608–609

quotation marks for strings, 189–190

R

radial visualization, 605–608

radviz() method, 605–608

raise keyword, 276–277

raising exceptions, 182–183, 274, 276–277

random() function, 504

random numbers in NumPy, 533

range() function, 300

rank of arrays, 492

raster data, 457

ravel() function, 519

raw strings, 191

RcParams class (Matplotlib), 574

reading

array data, 533–535

text files, 325–329

with pathlib, 332–333

readline() method, 328

readlines() method, 328

read() method, 327

recursion, 297–298

regular expressions (regex), 415–416

reindexing DataFrames, 595–596

relational operators. See comparison operators

relative paths, 319–320

re module, 415–416

remove() method, 233

removing

conda environments

in Anaconda Navigator, 34

with CLI, 47

key-value pairs, 252

list items, 232–233

missing values in datasets, 594–595

packages

in Anaconda Navigator, 30–33

with CLI, 42–44

renaming columns in pandas, 590–591

replace() method, 198

replacing loops with comprehensions, 271–274

requesting data, 413–414

requests library, 413–414

resample() method, 647–650

resampling time series in pandas, 647–663

reserved keywords, 207–209

reset_index() method, 595

reshape() function, 518

reshaping arrays, 518–519

resizing multipanel displays, 554–555

resources for information on Python, 174

restarting kernels, 310

restoring conda environments with CLI, 46–47

retrieving current date and time, 626–627

return address of functions, 286

returning function values, 289

return keyword, 286

reverse lookups, 253–254

RISE extension, installing, 132–133

rmtree() method, 324

rolling() method, 661

round() function, 187–189

rounding floats, 187–189

row_stack() functions, 522

rstrip() method, 329

run configuration, setting in Editor pane (Spyder), 83–84

running

k-NN, 615–616

scripts

in notebooks, 163–164

in terminal, 162–163

runtime configuration parameters, changing, 574–576

S

Sankey diagrams, 466

save() function, 534

savez_compressed() function, 534

saving

data in JSON format, 340

in Jupyter Qt console, 56–58

notebooks, 109

tuples in JSON format, 341–342

workspaces in JupyterLab, 156–157

scatterplot() method, 602–603

scatterplots, 552

scientific libraries. See libraries

Scientific Python Development IDE. See Spyder

scikit-image, 410

scikit-learn, 404–407, 584

cross-validation, 616–620

GridSearchCV class, 620–622

k-NN, 609–622

normalizing data, 613–615

prediction accuracy, 615–616

resources for information, 623

training datasets, 612–613

SciPy, 401

SciPy stack, 400

SciVis plotting libraries, 420

Mayavi, 443–445

scopes in functions, 293–294

scripts

running

in notebooks, 163–164

in terminal, 162–163

writing in JupyterLab text editor, 161–162

seaborn, 424–456, 584

datasets

loading, 590

practice datasets, 589

heatmaps, 608–609

installing, 50

methods

boxplot(), 603–604

countplot(), 597–601

jointplot(), 604–605

list of, 598

pairplot(), 601–602

scatterplot(), 602–603

stripplot(), 603–604

resources for information, 623

wide-form and long-form data, 619

seek() method, 327

select_dtypes() method, 612

sequences, 220, 248–249

serialization

with json module, 339–342

with pickle module, 334–336

pickling vs. JSON, 334

series, 584–585

set comprehensions, 274

setdefault() method, 252–253

set() function, 240

sets, 239–246

combining, 244

creating, 239–241

differences between, 243

duplicates in, 243–244

frozensets, 245–246

functions and methods for, 241–242

supersets, 245

shape() function, 519, 520

shape of arrays, 492–494

shaping arrays, 518–519

shared package cache, 23

sharing

conda environments

with CLI, 44–46

notebooks, 122

via Binder, 129–130

checking and running from Kernel menu, 123

with Colab, 131

downloading, 123–125

via GitHub and Gist, 125–128

with Jovian, 131

with JupyterHub, 131

in JupyterLab, 171

via Jupyter Notebook Viewer, 128–129

with Microsoft Azure Notebooks, 131

trusting, 131–132

shell utilities (shutil) module, 322–324

shelve module, 336–339

shelve.open() method, 336

shelves, closing, 338

shelving pickled data, 336–338

shutil module, 322–324

sidebar (JupyterLab), 147–148

simulations, exploring in JupyterLab, 154–155

single document mode (JupyterLab), 160

single-line comments, 379

size of datasets, 451

slicing

arrays

multidimensional arrays, 511–514

1D arrays, 507–509

2D arrays, 509–511

strings, 194–196

time series in pandas, 646–647

slideshows, notebooks as

creating, 133–136

installing RISE extension, 132–133

speaker notes, 136

sliding window functions, 660–663

__slots__ class variable, 372–373

sorted() function, 254

sorting

dictionaries, 254

lists, 234–235

sort() method, 234–235

spaCy, 412

spatial indexing, 463

speaker notes for slideshows, 136

special consoles in Spyder, 77

special methods, 351, 365

specifications files, creating, 46

spines, 557

splat (*) operator, 226, 228

split() function, 523

SplitMap, 474

split() method, 198

splitting arrays, 522–524

Spyder

Code Analysis pane, 85–86, 391–395

configuring interface, 64–66

Debugger pane, 90

defined, 2

Editor pane, 78–84

autocompleting text, 84

defining code cells, 81–83

setting run configuration, 83–84

writing programs with, 78–81

Help pane, 72–74

installing

with Anaconda Navigator, 62–63

with CLI, 63–64

for conda environments and packages, 66–68

IPython console, 74–77

clearing namespace, 76–77

History pane, 77

kernels in, 76

output and plotting, 75

launching

with Anaconda Navigator, 62–63

with CLI, 63–64

from Start menu, 64

Profiler pane, 89–90

project files and folders, 68–72

Project pane, 72

projects, creating, 316, 348–349

purpose of, 61

special consoles, 77

Variable Explorer pane, 86–89

SQLite, 343

stacking, arrays, 521–522

stack overflow, 298

stand-alone mode for modules, 310–311

standard library (Python), 303

start date, changing, 656

Start menu (Spyder), launching, 64

statements, 177

static typing, 184

statistical methods in NumPy, 531–533

statsmodels, 406

storage locations for conda environments, specifying, 37–39

Streamlit, 447–448

strftime() method, 628–630

str() function, 190

string concatenation operator (+), 192

string module, 199

string replication operator (*), 192

strings, 189–200. See also text

converting to dates and times, 630–631

escape sequences, 190–191

formatting, 192–194, 206

immutability of, 197

interning, 205

membership operators, 196

methods, 196–200

operator overloading, 191–192

quotation marks for, 189–190

raw, 191

slicing, 194–196

stripplot() method, 603–604

stripplots, 425

strptime() method, 631

structured arrays, 535

style files, creating, 576–578

style sheets, applying, 578–580

style.use() method, 577

styling plots, 573–580

runtime configuration parameters, 574–576

style files, 576–578

style sheets, 578–580

subclasses, 355

subplot() method, 545–549

subplot_mosaic() method, 566

subplots in Matplotlib

object-oriented approach, 561–564

pyplot, 545–549

subplots() method, 561–564

subtraction operator (-), 176

superclasses, 355

super() function, 358–359

supersets, 245

swapaxes() function, 521

swapping array axes, 520–521

SymPy, 402–403

synchronized views, creating in JupyterLab, 158

syntactic sugar, 363–364

syntax highlighting, 53

syntax styles, choosing in Jupyter Qt console, 53–54

T

tabs in Jupyter Qt console, 55

TensorFlow, 407

tensors, 493

terminal

defined, 4

running scripts in, 162–163

terminal window. See CLI

ternary expressions, 262

text. See also strings

adding in notebooks, 102–104

autocompleting in Editor pane (Spyder), 84

TextBlob, 412

text editor, JupyterLab

documentation with, 164–165

running scripts

in notebooks, 163–164

in terminal, 162–163

writing scripts, 161–162

text editor, Spyder. See Editor pane, (Spyder)

text files

closing, 329–330

reading, 325–329

with pathlib, 332–333

writing to, 330–331

with pathlib, 332–333

text() method, 551

threads, 417

3D arrays. See multidimensional arrays

3D plots, 568–569

thresholding, 515

tight_layout() method, 547, 554

tile maps, 463

timedelta object, 627–628

timedelta_range() method, 644

time deltas (pandas), 636, 644

time series

datetime module, 626

converting strings to dates and times, 630–631

current date and time, 626–627

data types, 627

durations, 627–628

formatting dates and times, 628–630

plotting with, 632–633

timestamps, 627–628

time zones, 633–636

pandas, 636–637

changing start date, 656

date offsets, 645

date ranges, 640–642

downsampling, 650–656

indexing and slicing, 646–647

interpolation, 656–660

parsing data, 637–640

resampling, 647–663

sliding window functions, 660–663

time deltas, 644

time spans, 636, 642–644

upsampling, 648–650

time spans (pandas), 636, 642–644

Timestamp class (pandas), 637

timestamps

in datetime module, 627–628

in pandas, 637

time zones

in datetime module, 633–636

in pandas, 639–640

to_datetime() method, 637–640

tracebacks, 182

tracing flow of execution, 278–281

training datasets, 612–613

train_test_split() method, 612–613

translate() function, 199

transpose() function, 520

transposing arrays, 520–521

trusting notebooks, 131–132

try statement, 274–276

tuple() function, 221–222

tuples, 220–229

converting data types to, 221–222

creating, 221

functions and methods for, 222

length of, 223–224

minimum and maximum values, 224–225

mutability and, 227

operator overloading, 227

printing, 228–229

saving in JSON format, 341–342

unpacking, 225–227

2D arrays, 493, 509–511

type annotations, 366–367

type casting, 186–187

type() function, 185

type hints, 184, 366–367

tz_convert() method, 639

tz_localize() method, 639

U

unary universal functions in NumPy, 529–530

Unicode, 190

union() method, 244

universal functions in NumPy, 529–531

unpacking tuples, 225–227

update() method, 251

updating

docstrings, 388–391

packages

in Anaconda Navigator, 30–33

with CLI, 42–44

upsampling time series in pandas, 648–650

user input, 213–214

UTC (coordinated universal time), 633

V

Vaex, 404

value_counts() method, 659

values() method, 250–251

Variable Explorer pane (Spyder), 86–89

variables, 201

assigning, 177, 203–206

comparison operators, 214–217

global, 294–295

identities of, 202–203

insignificant, 212

naming, 206–213

for user input, 213–214

vector data, 457

vectorization, 524–526

vectors, 493

visualizing data

dashboards, 445–450

Dash, 446–447

Panel, 449–450

Streamlit, 447–448

Voilà, 448–449

geospatial libraries

Bokeh, 484

Cartopy, 464–465

choosing, 484–487

folium, 470–473

GeoPandas, 460–464

Geoplot, 465–467

GeoViews, 476–479

ipyleaflet, 473–476

KeplerGL, 479–481

list of, 459

Plotly, 467–469

purpose of, 458

pydeck, 481–484

plotting libraries, 419–420

Altair, 429–430

Bokeh, 430–431

choosing, 450–456

Datashader, 441–443

HoloViews, 436–441

for InfoVis, 421

Matplotlib, 422–456, 537–538

Mayavi, 443–445

pandas plotting API, 428–456

Plotly, 431–436

seaborn, 424–456

radial visualization, 605–608

types of visualizations, 420–445

void functions, 285

Voilà, 448–449

vsplit() function, 523

vstack() function, 522

W

Wang, Peter, 443

web scraping, 413

while statement, 265–267

whitespace in mathematical expressions, 179

widgets, 115

creating

with interact class, 116–118

with interactive class, 118–119

manually, 119–120

customizing, 121–122

embedding, 122

handling events, 120–121

installing ipywidgets, 115–116

in JupyterLab, 170–171

Windows, Anaconda installation, 9–11

with statement

closing files, 329–330

closing shelves, 338

workspaces (JupyterLab)

clearing, 157

closing, 157

saving, 156–157

writelines() method, 331

write() method, 330

writing

array data, 533–535

with Editor pane (Spyder), 78–81

modules, 307–310

scripts in JupyterLab text editor, 161–162

to text files, 330–331

with pathlib, 332–333

X

XML (eXtensible Markup Language), 343

Y

YAML, 44, 343

yield statement, 301

Z

zero() function, 502

zip() function, 248

	Title Page
	Copyright Page
	Dedication
	About the Author
	About the Technical Reviewer
	BRIEF CONTENTS
	CONTENTS IN DETAIL
	ACKNOWLEDGMENTS
	INTRODUCTION
	Why Python?
	Navigating This Book
	Part I: Setting Up Your Scientific Coding Environment
	Part II: A Python Primer
	Part III: The Anaconda Ecosystem
	Part IV: The Essential Libraries
	Appendix

	Updates and Errata
	Leaving Reviews

	PART I: SETTING UP YOUR SCIENTIFIC CODING ENVIRONMENT
	1 INSTALLING AND LAUNCHING ANACONDA
	About Anaconda
	Installing Anaconda on Windows
	Installing Anaconda on macOS
	Installing Anaconda on Linux
	Getting to Know Anaconda Navigator
	Launching Navigator
	The Home Tab
	The Environments Tab
	The Learning Tab
	The Community Tab
	File Menu

	Summary

	2 KEEPING ORGANIZED WITH CONDA ENVIRONMENTS
	Understanding Conda Environments
	Working with Conda Environments Using Navigator
	Launching Navigator
	Creating a New Environment
	Managing Packages
	Duplicating Environments
	Backing Up Environments
	Removing Environments

	Working with Conda Environments Using the Command Line Interface
	Launching the Command Line Interface
	Creating a New Environment
	Specifying an Environment’s Location
	Managing Packages
	Duplicating and Sharing Environments
	Restoring Environments
	Removing Environments
	Cleaning the Package Cache

	Summary

	3 SIMPLE SCRIPTING IN THE JUPYTER QT CONSOLE
	Installing seaborn
	Installing and Launching the Jupyter Qt Console Using Navigator
	Installing and Launching the Jupyter Qt Console Using the CLI
	The Qt Console Controls
	Choosing a Syntax Style
	Using Keyboard Shortcuts
	Using Tabs and Kernels
	Printing and Saving
	Multiline Editing

	Summary

	4 SERIOUS SCRIPTING WITH SPYDER
	Installing and Launching Spyder with Anaconda Navigator
	Installing and Launching Spyder Using the CLI
	Launching Spyder from the Start Menu
	Configuring the Spyder Interface
	Using Spyder with Environments and Packages
	The Naive Approach
	The Modular Approach

	Using Project Files and Folders
	Creating a Project in a New Directory
	Creating a Project in an Existing Directory
	Using the Project Pane

	The Help Pane
	The IPython Console
	Using the Console for Output and Plotting
	Using Kernels with the Console
	Clearing the Namespace
	The History Pane
	Special Consoles

	The Editor Pane
	Writing a Program Using the Editor
	Defining Code Cells
	Setting the Run Configuration
	Autocompleting Text

	The Code Analysis Pane
	The Variable Explorer Pane
	The Profiler Pane
	The Debugger Pane
	Summary

	5 JUPYTER NOTEBOOK: AN INTERACTIVE JOURNAL FOR COMPUTATIONAL RESEARCH
	Installing Jupyter Notebook
	The Naive Approach
	The Modular Approach

	Your First Jupyter Notebook
	Creating Dedicated Project Folders
	Navigating the Notebook Dashboard and User Interface
	Naming a Notebook
	Adding Text with a Markdown Cell
	Adding Code and Making Plots with a Code Cell
	Working with Output Cells
	Adding an Image with a Markdown Cell
	Saving the Notebook
	Closing the Notebook

	Getting Help
	Keyboard Shortcuts
	The Command Palette

	Using Notebook Extensions
	Installing Extensions
	Enabling Extensions

	Working with Widgets
	Installing ipywidgets
	Creating Widgets with Interact
	Creating Widgets with Interactive
	Manually Creating Widgets
	Handling Events
	Customizing Widgets
	Embedding Widgets in Other Formats

	Sharing Notebooks
	Checking and Running Notebooks with the Kernel Menu
	Downloading Notebooks
	Sharing Notebooks via GitHub and Gist
	Sharing Notebooks via Jupyter Notebook Viewer
	Sharing Notebooks via Binder
	Other Sharing Options
	Trusting Notebooks

	Turning Notebooks into Slideshows
	Installing the RISE Extension
	Creating a Slideshow
	Using Speaker Notes

	Summary

	6 JUPYTERLAB: YOUR CENTER FOR SCIENCE
	When to Use JupyterLab Instead of Notebook?
	Installing JupyterLab
	The Naive Approach
	The Modular Approach

	Building a 3D Astronomical Simulation
	Using Dedicated Project Folders
	The JupyterLab Interface
	The Menu Bar
	The Left Sidebar
	Creating a New Notebook
	Naming the Notebook
	Using Markdown Cells
	Adding Code and Making Plots
	Adding a Console
	Displaying an Image File
	Exploring the Simulation
	Opening Multiple Notebooks
	Saving the Workspace
	Clearing the Workspace
	Closing the Workspace

	Taking Advantage of the JupyterLab Interface
	Creating Synchronized Views
	Copying Cells Between Notebooks
	Staying Focused by Using Single Document Mode

	Using the Text Editor
	Running a Script in a Terminal
	Running a Script in a Notebook
	Simultaneously Writing and Documenting Code

	Using JupyterLab Extensions
	Installing and Managing Extensions with the Extension Manager
	Installing and Managing Extensions Using the CLI
	Installing ipywidgets for JupyterLab
	Creating Custom Extensions

	Sharing
	Summary

	PART II: A PYTHON PRIMER
	7 INTEGERS, FLOATS, AND STRINGS
	Mathematical Expressions
	Mathematical Operators
	The Assignment Operator
	Augmented Assignment Operators
	Precedence
	The math Module

	Error Messages
	Data Types
	Accessing the Data Type
	Integers
	Floats
	Strings

	Summary

	8 VARIABLES
	Variables Have Identities
	Assigning Variables
	Using Expressions
	Operator Overloading
	Using Functions
	Chained Assignment and Internment
	Using f-Strings

	Naming Variables
	Reserved Keywords
	Variables Are Case Sensitive
	Best Practices for Naming Variables
	Managing Dynamic Typing Issues
	Handling Insignificant Variables

	Getting User Input
	Using Comparison Operators
	Summary

	9 THE CONTAINER DATA TYPES
	Tuples
	Creating Tuples
	Converting Other Types to Tuples
	Working with Tuples

	Lists
	Creating Lists
	Working with Lists

	Sets
	Creating Sets
	Working with Sets
	Creating Frozensets

	Dictionaries
	Creating Dictionaries
	Combining Two Sequences into a Dictionary
	Creating Empty Dictionaries and Values
	Working with Dictionaries

	Summary

	10 FLOW CONTROL
	The if Statement
	Working with Code Blocks
	Using the else and elif Clauses
	Using Ternary Expressions
	Using Boolean Operators

	Loops
	The while Statement
	The for Statement
	Loop Control Statements
	Replacing Loops with Comprehensions

	Handling Exceptions
	Using try and except
	Forcing Exceptions with the raise Keyword
	Ignoring Errors

	Tracing Execution with Logging
	Summary

	11 FUNCTIONS AND MODULES
	Defining Functions
	Using Parameters and Arguments
	Positional and Keyword Arguments
	Using Default Values
	Returning Values
	Naming Functions
	Built-in Functions

	Functions and the Flow of Execution
	Using Namespaces and Scopes
	Using Global Variables
	Using a main() Function

	Advanced Function Topics
	Recursion
	Designing Functions
	Lambda Functions
	Generators

	Modules
	Importing Modules
	Inspecting Modules
	Writing Your Own Modules
	Naming Modules
	Writing Modules That Work in Stand-Alone Mode
	Built-in Modules

	Summary

	12 FILES AND FOLDERS
	Creating a New Spyder Project
	Working with Directory Paths
	The Operating System Module
	Absolute vs. Relative Paths
	The pathlib Module
	The Shell Utilities Module

	Working with Text Files
	Reading a Text File
	Closing Files Using the with Statement
	Writing to a Text File
	Reading and Writing Text Files Using pathlib

	Working with Complex Data
	Pickling Data
	Shelving Pickled Data
	Storing Data with JSON
	Catching Exceptions When Opening Files
	Other Storage Solutions

	Summary

	13 OBJECT-ORIENTED PROGRAMMING
	When to Use OOP
	Creating a New Spyder Project
	Defining the Frigate Class
	Defining Instance Methods
	Instantiating Objects and Calling Instance Methods

	Defining a Guided-Missile Frigate Class Using Inheritance
	Instantiating a New Guided-Missile Frigate Object
	Using the super() Function for Inheritance

	Objects Within Objects: Defining the Fleet Class
	Reducing Code Redundancy with Dataclasses
	Using Decorators
	Defining the Ship Class
	Identifying Friend or Foe with Fields and Post-Init Processing
	Optimizing Dataclasses with __slots__

	Making a Class Module
	Summary

	14 DOCUMENTING YOUR WORK
	Comments
	Single-Line Comments
	Multiline Comments
	Inline Comments
	Commenting-Out Code

	Docstrings
	Documenting Modules
	Documenting Classes
	Documenting Functions and Methods
	Keeping Docstrings Up to Date with doctest
	Checking Docstrings in the Spyder Code Analysis Pane

	Summary

	PART III: THE ANACONDA ECOSYSTEM
	15 THE SCIENTIFIC LIBRARIES
	The SciPy Stack
	NumPy
	SciPy
	SymPy
	pandas

	A General Machine Learning Library: scikit-learn
	The Deep Learning Frameworks
	TensorFlow
	Keras
	PyTorch

	The Computer Vision Libraries
	OpenCV
	scikit-image
	PIL/Pillow

	The Natural Language Processing Libraries
	NLTK
	spaCy

	The Helper Libraries
	Requests
	Beautiful Soup
	Regex
	Dask

	Summary

	16 THE INFOVIS, SCIVIS, AND DASHBOARDING LIBRARIES
	InfoVis and SciVis Libraries
	Matplotlib
	seaborn
	The pandas Plotting API
	Altair
	Bokeh
	Plotly
	HoloViews
	Datashader
	Mayavi and ParaView

	Dashboards
	Dash
	Streamlit
	Voilà
	Panel

	Choosing a Plotting Library
	Size of Dataset
	Types of Plots
	Format
	Versatility
	Maturity
	Making the Final Choice

	Summary

	17 THE GEOVIS LIBRARIES
	The Geospatial Libraries
	GeoPandas
	Cartopy
	Geoplot
	Plotly
	folium
	ipyleaflet
	GeoViews: The HoloViz Approach
	KeplerGL
	pydeck
	Bokeh

	Choosing a GeoVis Library
	Summary

	PART IV: THE ESSENTIAL LIBRARIES
	18 NUMPY: NUMERICAL PYTHON
	Introducing the Array
	Describing Arrays Using Dimension and Shape
	Creating Arrays
	Accessing Array Attributes
	Indexing and Slicing Arrays

	Manipulating Arrays
	Shaping and Transposing
	Joining Arrays
	Splitting Arrays

	Doing Math Using Arrays
	Vectorization
	Broadcasting
	The Matrix Dot Product
	Incrementing and Decrementing Arrays
	Using NumPy Functions

	Reading and Writing Array Data
	Summary

	19 DEMYSTIFYING MATPLOTLIB
	Anatomy of a Plot
	The pyplot and Object-Oriented Approaches
	Using the pyplot Approach
	Creating and Manipulating Plots with pyplot Methods
	Working with Subplots
	Building Multipanel Displays Using GridSpec

	Using the Object-Oriented Style
	Creating and Manipulating Plots with the Object-Oriented Style
	Working with Subplots
	Building Multipanel Displays Using GridSpec
	Insetting Plots
	Plotting in 3D
	Animating Plots

	Styling Plots
	Changing Runtime Configuration Parameters
	Creating and Using a Style File
	Applying Style Sheets

	Summary

	20 PANDAS, SEABORN, AND SCIKIT-LEARN
	Introducing the pandas Series and DataFrame
	The Series Data Structure
	The DataFrame Data Structure

	The Palmer Penguins Project
	The Project Outline
	Setting Up the Project
	Importing Packages and Setting Up the Display
	Loading the Dataset
	Displaying the DataFrame and Renaming Columns
	Checking for Duplicates
	Handling Missing Values
	Exploring the Dataset
	Predicting Penguin Species Using K-Nearest Neighbors

	Summary

	21 MANAGING DATES AND TIMES WITH PYTHON AND PANDAS
	Python datetime Module
	Getting the Current Date and Time
	Assigning Timestamps and Calculating Time Delta
	Formatting Dates and Times
	Converting Strings to Dates and Times
	Plotting with datetime Objects
	Creating Naive vs. Aware Objects

	Time Series and Date Functionality with pandas
	Parsing Time Series Information
	Creating Date Ranges
	Creating Periods
	Creating Time Deltas
	Shifting Dates with Offsets
	Indexing and Slicing Time Series
	Resampling Time Series

	Summary

	APPENDIX ANSWERS TO THE “TEST YOUR KNOWLEDGE” CHALLENGES
	INDEX

