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Preface

This book complements the book 1000 Solved Problems in Modern Physics by
the same author and published by Springer-Verlag so that bulk of the courses for
undergraduate curriculum are covered. It is targeted mainly at the undergraduate
students of USA, UK and other European countries and the M.Sc. students of Asian
countries, but will be found useful for the graduate students, students preparing
for graduate record examination (GRE), teachers and tutors. This is a by-product
of lectures given at the Osmania University, University of Ottawa and University
of Tebriz over several years and is intended to assist the students in their assign-
ments and examinations. The book covers a wide spectrum of disciplines in classical
physics and is mainly based on the actual examination papers of UK and the Indian
universities. The selected problems display a large variety and conform to syllabi
which are currently being used in various countries.

The book is divided into 15 chapters. Each chapter begins with basic concepts
and a set of formulae used for solving problems for quick reference, followed by a
number of problems and their solutions.

The problems are judiciously selected and are arranged section-wise. The solu-
tions are neither pedantic nor terse. The approach is straightforward and step-by-step
solutions are elaborately provided. There are approximately 450 line diagrams, one-
fourth of them in colour for illustration. A subject index and a problem index are
provided at the end of the book.

Elementary calculus, vector calculus and algebra are the prerequisites. The areas
of mechanics and electromagnetism are emphasized. No book on problems can
claim to exhaust the variety in the limited space. An attempt is made to include
the important types of problems at the undergraduate level.

It is a pleasure to thank Javid, Suraiya and Techastra Solutions (P) Ltd. for
typesetting and Maryam for her patience. I am grateful to the universities of UK and
India for permitting me to use their question papers; to R.W. Norris and W. Seymour,
Mechanics via Calculus, Longmans, Green and Co., 1923; to Robert A. Becker,
Introduction to Theoretical Mechanics, McGraw-Hill Book Co. Inc, 1954, for one
problem; and Google Images for the cover page. My thanks are to Springer-Verlag,
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in particular Claus Ascheron, Adelheid Duhm and Elke Sauer, for constant encour-
agement.

Murphy, Texas Ahmad A. Kamal
November 2010
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Chapter 1
Kinematics and Statics

Abstract Chapter 1 is devoted to problems based on one and two dimensions.
The use of various kinematical formulae and the sign convention are pointed out.
Problems in statics involve force and torque, centre of mass of various systems and
equilibrium.

1.1 Basic Concepts and Formulae

Motion in One Dimension

The notation used is as follows: u = initial velocity, v = final velocity, a = accele-
ration, s = displacement, t = time (Table 1.1).

Table 1.1 Kinematical equations

U V A S t

(i) v = u + at � � � X �
(ii) s = ut + 1/2at2 � X � � �
(iii) v2 = u2 + 2as � � � � X
(iv) s = 1

2 (u + v)t � � X � �

In each of the equations u is present. Out of the remaining four quantities only
three are required. The initial direction of motion is taken as positive. Along this
direction u and s and a are taken as positive, t is always positive, v can be positive
or negative. As an example, an object is dropped from a rising balloon. Here, the
parameters for the object will be as follows:

u = initial velocity of the balloon (as seen from the ground)
u =+ve, a =−g. t =+ve, v=+ve or −ve depending on the value of t , s =+ve

or −ve, if s =−ve, then the object is found below the point it was released.
Note that (ii) and (iii) are quadratic. Depending on the value of u, both the

roots may be real or only one may be real or both may be imaginary and therefore
unphysical.

1
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v–t and a–t Graphs

The area under the v–t graph gives the displacement (see prob. 1.11) and the area
under the a–t graph gives the velocity.

Motion in Two Dimensions – Projectile Motion

Equation: y = x tan α − 1

2

gx2

u2 cos2 α
(1.1)

Fig. 1.1 Projectile Motion

Time of flight: T = 2u sin α

g
(1.2)

Range: R = u2 sin 2α

g
(1.3)

Maximum height: H = u2 sin2 α

2g
(1.4)

Velocity: v =
√

g2t2 − 2ug sin α.t + u2 (1.5)

Angle: tan θ = u sin α − gt

u cos α
(1.6)

Relative Velocity

If vA is the velocity of A and vB that of B, then the relative velocity of A with respect
to B will be

vAB = vA − vB (1.7)

Motion in Resisting Medium

In the absence of air the initial speed of a particle thrown upward is equal to that
of final speed, and the time of ascent is equal to that of descent. However, in the
presence of air resistance the final speed is less than the initial speed and the time of
descent is greater than that of ascent (see prob. 1.21).
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Equation of motion of a body in air whose resistance varies as the velocity of the
body (see prob. 1.22).

Centre of mass is defined as

rcm = �miri

�mi
= 1

M
�mi r i (1.8)

Centre of mass velocity is defined as

V c = 1

M
�mi ṙi (1.9)

The centre of mass moves as if the mass of various particles is concentrated at
the location of the centre of mass.

Equilibrium

A system will be in translational equilibrium if �F = 0. In terms of potential
∂V

∂x
= 0, where V is the potential. The equilibrium will be stable if

∂2V

∂x2
< 0.

A system will be in rotational equilibrium if the sum of the external torques is zero,
i.e. �τi = 0

1.2 Problems

1.2.1 Motion in One Dimension

1.1 A car starts from rest at constant acceleration of 2.0 m/s2. At the same instant
a truck travelling with a constant speed of 10 m/s overtakes and passes the car.

(a) How far beyond the starting point will the car overtake the truck?
(b) After what time will this happen?
(c) At that instant what will be the speed of the car?

1.2 From an elevated point A, a stone is projected vertically upward. When the
stone reaches a distance h below A, its velocity is double of what it was at a
height h above A. Show that the greatest height obtained by the stone above A
is 5h/3.

[Adelaide University]

1.3 A stone is dropped from a height of 19.6 m, above the ground while a second
stone is simultaneously projected from the ground with sufficient velocity to
enable it to ascend 19.6 m. When and where the stones would meet.

1.4 A particle moves according to the law x = A sin π t , where x is the displace-
ment and t is time. Find the distance traversed by the particle in 3.0 s.



4 1 Kinematics and Statics

1.5 A man of height 1.8 m walks away from a lamp at a height of 6 m. If the man’s
speed is 7 m/s, find the speed in m/s at which the tip of the shadow moves.

1.6 The relation 3t = √
3x + 6 describes the displacement of a particle in one

direction, where x is in metres and t in seconds. Find the displacement when
the velocity is zero.

1.7 A particle projected up passes the same height h at 2 and 10 s. Find h if g =
9.8 m/s2.

1.8 Cars A and B are travelling in adjacent lanes along a straight road (Fig. 1.2).
At time, t = 0 their positions and speeds are as shown in the diagram. If car A
has a constant acceleration of 0.6 m/s2 and car B has a constant deceleration of
0.46 m/s2, determine when A will overtake B.

[University of Manchester 2007]

Fig. 1.2

1.9 A boy stands at A in a field at a distance 600 m from the road BC. In the field
he can walk at 1 m/s while on the road at 2 m/s. He can walk in the field along
AD and on the road along DC so as to reach the destination C (Fig. 1.3). What
should be his route so that he can reach the destination in the least time and
determine the time.

Fig. 1.3

1.10 Water drips from the nozzle of a shower onto the floor 2.45 m below. The drops
fall at regular interval of time, the first drop striking the floor at the instant the
third drop begins to fall. Locate the second drop when the first drop strikes the
floor.

1.11 The velocity–time graph for the vertical component of the velocity of an object
thrown upward from the ground which reaches the roof of a building and
returns to the ground is shown in Fig. 1.4. Calculate the height of the building.
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Fig. 1.4

1.12 A ball is dropped into a lake from a diving board 4.9 m above the water. It
hits the water with velocity v and then sinks to the bottom with the constant
velocity v. It reaches the bottom of the lake 5.0 s after it is dropped. Find

(a) the average velocity of the ball and
(b) the depth of the lake.

1.13 A stone is dropped into the water from a tower 44.1 m above the ground.
Another stone is thrown vertically down 1.0 s after the first one is dropped.
Both the stones strike the ground at the same time. What was the initial veloc-
ity of the second stone?

1.14 A boy observes a cricket ball move up and down past a window 2 m high. If
the total time the ball is in sight is 1.0 s, find the height above the window that
the ball rises.

1.15 In the last second of a free fall, a body covered three-fourth of its total path:

(a) For what time did the body fall?
(b) From what height did the body fall?

1.16 A man travelling west at 4 km/h finds that the wind appears to blow from
the south. On doubling his speed he finds that it appears to blow from the
southwest. Find the magnitude and direction of the wind’s velocity.

1.17 An elevator of height h ascends with constant acceleration a. When it crosses
a platform, it has acquired a velocity u. At this instant a bolt drops from the
top of the elevator. Find the time for the bolt to hit the floor of the elevator.

1.18 A car and a truck are both travelling with a constant speed of 20 m/s. The
car is 10 m behind the truck. The truck driver suddenly applies his brakes,
causing the truck to decelerate at the constant rate of 2 m/s2. Two seconds later
the driver of the car applies his brakes and just manages to avoid a rear-end
collision. Determine the constant rate at which the car decelerated.

1.19 Ship A is 10 km due west of ship B. Ship A is heading directly north at a speed
of 30 km/h, while ship B is heading in a direction 60◦ west of north at a speed
of 20 km/h.
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(i) Determine the magnitude and direction of the velocity of ship B relative
to ship A.

(ii) What will be their distance of closest approach?
[University of Manchester 2008]

1.20 A balloon is ascending at the rate of 9.8 m/s at a height of 98 m above the
ground when a packet is dropped. How long does it take the packet to reach
the ground?

1.2.2 Motion in Resisting Medium

1.21 An object of mass m is thrown vertically up. In the presence of heavy air
resistance the time of ascent (t1) is no longer equal to the time of descent (t2).
Similarly the initial speed (u) with which the body is thrown is not equal to the
final speed (v) with which the object returns. Assuming that the air resistance
F is constant show that

t2
t1

=
√

g + F/m

g − F/m
; v

u
=
√

g − F/m

g + F/m

1.22 Determine the motion of a body falling under gravity, the resistance of air
being assumed proportional to the velocity.

1.23 Determine the motion of a body falling under gravity, the resistance of air
being assumed proportional to the square of the velocity.

1.24 A body is projected upward with initial velocity u against air resistance which
is assumed to be proportional to the square of velocity. Determine the height
to which the body will rise.

1.25 Under the assumption of the air resistance being proportional to the square
of velocity, find the loss in kinetic energy when the body has been projected
upward with velocity u and return to the point of projection.

1.2.3 Motion in Two Dimensions

1.26 A particle moving in the xy-plane has velocity components dx/dt = 6 + 2t
and dy/dt = 4 + t
where x and y are measured in metres and t in seconds.

(i) Integrate the above equation to obtain x and y as functions of time, given
that the particle was initially at the origin.

(ii) Write the velocity v of the particle in terms of the unit vectors î and ĵ .
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(iii) Show that the acceleration of the particle may be written as a = 2î + ĵ .
(iv) Find the magnitude of the acceleration and its direction with respect to

the x-axis.
[University of Aberystwyth Wales 2000]

1.27 Two objects are projected horizontally in opposite directions from the top of
a tower with velocities u1 and u2. Find the time when the velocity vectors are
perpendicular to each other and the distance of separation at that instant.

1.28 From the ground an object is projected upward with sufficient velocity so that
it crosses the top of a tower in time t1 and reaches the maximum height. It then
comes down and recrosses the top of the tower in time t2, time being measured
from the instant the object was projected up. A second object released from
the top of the tower reaches the ground in time t3. Show that t3 = √

t1t2.

1.29 A shell is fired at an angle θ with the horizontal up a plane inclined at an angle
α. Show that for maximum range, θ = α

2 + π
4 .

1.30 A stone is thrown from ground level over horizontal ground. It just clears three
walls, the successive distances between them being r and 2r . The inner wall
is 15/7 times as high as the outer walls which are equal in height. The total
horizontal range is nr, where n is an integer. Find n.

[University of Dublin]

1.31 A boy wishes to throw a ball through a house via two small openings, one in
the front and the other in the back window, the second window being directly
behind the first. If the boy stands at a distance of 5 m in front of the house and
the house is 6 m deep and if the opening in the front window is 5 m above him
and that in the back window 2 m higher, calculate the velocity and the angle
of projection of the ball that will enable him to accomplish his desire.

[University of Dublin]

1.32 A hunter directs his uncalibrated rifle toward a monkey sitting on a tree, at a
height h above the ground and at distance d. The instant the monkey observes
the flash of the fire of the rifle, it drops from the tree. Will the bullet hit the
monkey?

1.33 If α is the angle of projection, R the range, h the maximum height, T the time
of flight then show that
(a) tan α = 4h/R and (b) h = gT 2/8

1.34 A projectile is fired at an angle of 60˚ to the horizontal with an initial velocity
of 800 m/s:

(i) Find the time of flight of the projectile before it hits the ground
(ii) Find the distance it travels before it hits the ground (range)

(iii) Find the time of flight for the projectile to reach its maximum height
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(iv) Show that the shape of its flight is in the form of a parabola y = bx+cx2,
where b and c are constants [acceleration due to gravity g = 9.8 m/s2].

[University of Aberystwyth, Wales 2004]

1.35 A projectile of mass 20.0 kg is fired at an angle of 55.0◦ to the horizontal
with an initial velocity of 350 m/s. At the highest point of the trajectory the
projectile explodes into two equal fragments, one of which falls vertically
downwards with no initial velocity immediately after the explosion. Neglect
the effect of air resistance:

(i) How long after firing does the explosion occur?
(ii) Relative to the firing point, where do the two fragments hit the ground?

(iii) How much energy is released in the explosion?
[University of Manchester 2008]

1.36 An object is projected horizontally with velocity 10 m/s. Find the radius of
curvature of its trajectory in 3 s after the motion has begun.

1.37 A and B are points on opposite banks of a river of breadth a and AB is at right
angles to the flow of the river (Fig. 1.4). A boat leaves B and is rowed with
constant velocity with the bow always directed toward A. If the velocity of the
river is equal to this velocity, find the path of the boat (Fig. 1.5).

Fig. 1.5

1.38 A ball is thrown from a height h above the ground. The ball leaves the point
located at distance d from the wall, at 45◦ to the horizontal with velocity u.
How far from the wall does the ball hit the ground (Fig. 1.6)?

Fig. 1.6
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1.2.4 Force and Torque

1.39 Three vector forces F1, F2 and F3 act on a particle of mass m = 3.80 kg as
shown in Fig. 1.7:

(i) Calculate the magnitude and direction of the net force acting on the
particle.

(ii) Calculate the particle’s acceleration.
(iii) If an additional stabilizing force F4 is applied to create an equilibrium

condition with a resultant net force of zero, what would be the magnitude
and direction of F4?

Fig. 1.7

1.40 (a) A thin cylindrical wheel of radius r = 40 cm is allowed to spin on a
frictionless axle. The wheel, which is initially at rest, has a tangential
force applied at right angles to its radius of magnitude 50 N as shown in
Fig. 1.8a. The wheel has a moment of inertia equal to 20 kg m2.

Fig. 1.8a

 

Calculate

(i) The torque applied to the wheel
(ii) The angular acceleration of the wheel

(iii) The angular velocity of the wheel after 3 s
(iv) The total angle swept out in this time

(b) The same wheel now has the same force applied but inclined at an angle
of 20◦ to the tangent as shown in Fig. 1.8b. Calculate

(i) The torque applied to the wheel
(ii) The angular acceleration of the wheel

[University of Aberystwyth, Wales 2005]
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Fig. 1.8b

1.41 A container of mass 200 kg rests on the back of an open truck. If the truck
accelerates at 1.5 m/s2, what is the minimum coefficient of static friction
between the container and the bed of the truck required to prevent the con-
tainer from sliding off the back of the truck?

[University of Manchester 2007]

1.42 A wheel of radius r and weight W is to be raised over an obstacle of height
h by a horizontal force F applied to the centre. Find the minimum value of F
(Fig. 1.9).

Fig. 1.9

1.2.5 Centre of Mass

1.43 A thin uniform wire is bent into a semicircle of radius R. Locate the centre of
mass from the diameter of the semicircle.

1.44 Find the centre of mass of a semicircular disc of radius R and of uniform
density.

1.45 Locate the centre of mass of a uniform solid hemisphere of radius R from the
centre of the base of the hemisphere along the axis of symmetry.

1.46 A thin circular disc of uniform density is of radius R. A circular hole of
radius ½R is cut from the disc and touching the disc’s circumference as in
Fig. 1.10. Find the centre of mass.
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Fig. 1.10

1.47 The mass of the earth is 81% the mass of the moon. The distance between the
centres of the earth and the moon is 60 times the radius of earth R = 6400 km.
Find the centre of mass of the earth–moon system.

1.48 The distance between the centre of carbon and oxygen atoms in CO molecule
is 1.13 Å. Locate the centre of mass of the molecule relative to the carbon
atom.

1.49 The ammonia molecule NH3 is in the form of a pyramid with the three H
atoms at the corners of an equilateral triangle base and the N atom at the apex
of the pyramid. The H–H distance = 1.014 Å and N–H distance = 1.628 Å.
Locate the centre of mass of the NH3 molecule relative to the N atom.

1.50 A boat of mass 100 kg and length 3 m is at rest in still water. A boy of mass
50 kg walks from the bow to the stern. Find the distance through which the
boat moves.

1.51 At one end of the rod of length L , a body whose mass is twice that of the rod is
attached. If the rod is to move with pure translation, at what fractional length
from the loaded end should it be struck?

1.52 Find the centre of mass of a solid cone of height h.

1.53 Find the centre of mass of a wire in the form of an arc of a circle of radius R
which subtends an angle 2α symmetrically at the centre of curvature.

1.54 Five identical pigeons are flying together northward with speed v0. One of
the pigeons is shot dead by a hunter and the other four continue to fly with
the same speed. Find the centre of mass speed of the rest of the pigeons
which continue to fly with the same speed after the dead pigeon has hit the
ground.

1.55 The linear density of a rod of length L is directly proportional to the distance
from one end. Locate the centre of mass from the same end.
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1.56 Particles of masses m, 2m, 3m . . . nm are collinear at distances L , 2L ,
3L . . . nL , respectively, from a fixed point. Locate the centre of mass from
the fixed point.

1.57 A semicircular disc of radius R has density ρ which varies as ρ = cr2, where
r is the distance from the centre of the base and cis a constant. The centre of
mass will lie along the y-axis for reasons of symmetry (Fig. 1.11). Locate the
centre of mass from O , the centre of the base.

Fig. 1.11

1.58 Locate the centre of mass of a water molecule, given that the OH bond has
length 1.77 Å and angle HOH is 105◦.

1.59 Three uniform square laminas are placed as in Fig. 1.12. Each lamina mea-
sures ‘a’ on side and has mass m. Locate the CM of the combined structure.

Fig. 1.12

1.2.6 Equilibrium

1.60 Consider a particle of mass m moving in one dimension under a force with the
potential U (x) = k(2x3 − 5x2 + 4x), where the constant k > 0. Show that
the point x = 1 corresponds to a stable equilibrium position of the particle.

[University of Manchester 2007]

1.61 Consider a particle of mass m moving in one dimension under a force with the
potential U (x) = k(x2 − 4xl), where the constant k > 0. Show that the point
x = 2l corresponds to a stable equilibrium position of the particle.
Find the frequency of a small amplitude oscillation of the particle about the
equilibrium position.

[University of Manchester 2006]
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1.62 A cube rests on a rough horizontal plane. A tension parallel to the plane
is applied by a thread attached to the upper surface. Show that the cube
will slide or topple according to the coefficient of friction is less or greater
than 0.5.

1.63 A ladder leaning against a smooth wall makes an angle α with the horizontal
when in a position of limiting equilibrium. Show that the coefficient of friction
between the ladder and the ground is 1

2 cot α.

1.3 Solutions

1.3.1 Motion in One Dimension

1.1 (a) Equation of motion for the truck: s = ut (1)

Equation of motion for the car: s = 1

2
at2 (2)

The graphs for (1) and (2) are shown in Fig. 1.13. Eliminating t between
the two equations

s

(
1 − 1

2

as

u2

)
= 0 (3)

Fig. 1.13

Either s = 0 or 1 − 1

2

as

u2
= 0. The first solution corresponds to the result

that the truck overtakes the car at s = 0 and therefore at t = 0.

The second solution gives s = 2u2

a
= 2 × 102

2
= 100 m

(b) t = s

u
= 100

10
= 10 s

(c) v = at = 2 × 10 = 20 m/s
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1.2 When the stone reaches a height h above A

v2
1 = u2 − 2gh (1)

and when it reaches a distance h below A

v2
2 = u2 + 2gh (2)

since the velocity of the stone while crossing A on its return journey is again u
vertically down.

Also, v2 = 2v1 (by problem) (3)

Combining (1), (2) and (3) u2 = 10
3 gh (4)

Maximum height

H = u2

2g
= 10

3

gh

2g
= 5h

3

1.3 Let the stones meet at a height s m from the earth after t s. Distance covered by
the first stone

h − s = 1

2
gt2 (1)

where h = 19.6 m. For the second stone

s = ut = 1

2
gt2 (2)

v2 = 0 = u2 − 2gh

u = √
2gh = √

2 × 9.8 × 19.6 = 19.6 m/s (3)

Adding (1) and (2)

h = ut, t = h

u
= 19.6

19.6
= 1 s
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From (2),

s = 19.6 × 1 − 1

2
× 9.8 × 12 = 14.7 m

1.4 x = A sin π t = A sin ωt

where ω is the angular velocity, ω = π

Time period T = 2 π

ω
= 2 π

π
= 2 s

In 1
2 s (a quarter of the cycle) the distance covered is A. Therefore in 3 s the

distance covered will be 6A.

1.5 Let the lamp be at A at height H from the ground, that is AB = H , Fig. 1.14.
Let the man be initially at B, below the lamp, his height being equal to BD = h,
so that the tip of his shadow is at B. Let the man walk from B to F in time t
with speed v, the shadow will go up to C in the same time t with speed v′:

Fig. 1.14

BF = vt; BC = v′t

From similar triangles EFC and ABC

FC

BC
= EF

AB
= h

H

FC

BC
= EF

AB
= h

H
→ v′t − vt

v′t
= h

H

or

v′ = Hv

H − h
= 6 × 7

(6 − 1.8)
= 10 m/s

1.6
√

3x = 3t − 6 (1)

Squaring and simplifying x = 3t2 − 12t + 12 (2)
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v = dx

dt
= 6t − 12

v = 0 gives t = 2 s (3)

Using (3) in (2) gives displacement x = 0

1.7 s = ut + 1

2
at2 (1)

∴ h = u × 2 − 1

2
g × 22 (2)

h = u × 10 − 1

2
g × 102 (3)

Solving (2) and (3) h = 10g = 10 × 9.8 = 98 m.

1.8 Take the origin at the position of A at t = 0. Let the car A overtake B in time t
after travelling a distance s. In the same time t , B travels a distance (s − 30) m:

s = ut + 1

2
at2 (1)

s = 13t + 1

2
× 0.6 t2 (Car A) (2)

s − 30 = 20t − 1

2
× 0.46 t2 (Car B) (3)

Eliminating s between (2) and (3), we find t = 0.9 s.

1.9 Let BD = x . Time t1 for crossing the field along AD is

t1 = AD

v1
=
√

x2 + (600)2

1.0
(1)

Time t2 for walking on the road, a distance DC, is

t2 = DC

v2
= 800 − x

2.0
(2)

Total time t = t1 + t2 =
√

x2 + (600)2 + 800 − x

2
(3)

Minimum time is obtained by setting dt/dx = 0. This gives us x = 346.4 m.
Thus the boy must head toward D on the round, which is 800–346.4 or 453.6 m
away from the destination on the road.
The total time t is obtained by using x = 346.4 in (3). We find t = 920 s.

1.10 Time taken for the first drop to reach the floor is

t1 =
√

2 h

g
=
√

2 × 2.45

9.8
= 1√

2
s
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As the time interval between the first and second drop is equal to that of the
second and the third drop (drops dripping at regular intervals), time taken by

the second drop is t2 = 1

2
√

2
s; therefore, distance travelled by the second

drop is

S = 1

2
gt2

2 = 1

2
× 9.8 ×

(
1

2
√

2

)2

= 0.6125 m

1.11 Height h = area under the υ − t graph. Area above the t-axis is taken positive
and below the t-axis is taken negative. h = area of bigger triangle minus area
of smaller triangle.
Now the area of a triangle = base × altitude

h = 1

2
× 3 × 30 − 1

2
× 1 × 10 = 40 m

1.12 (a) Time for the ball to reach water t1 =
√

2 h

g
=
√

2 × 4.9

9.8
= 1.0 s

Velocity of the ball acquired at that instant v = gt1 = 9.8 × 1.0 =
9.8 m/s.
Time taken to reach the bottom of the lake from the water surface

t2 = 5.0 − 1.0 = 4.0 s.

As the velocity of the ball in water is constant, depth of the lake,

d = vt2 = 9.8 × 4 = 39.2 m.

(b) < v >= total displacement

total time
= 4.9 + 39.2

5.0
= 8.82 m/s

1.13 For the first stone time t1 =
√

2 h

g
=
√

2 × 44.1

9.8
= 3.0 s.

Second stone takes t2 = 3.0 − 1.0 = 2.0 s to strike the water

h = ut2 + 1

2
gt2

2

Using h = 44.1 m, t2 = 2.0 s and g = 9.8 m/s2, we find u = 12.25 m/s

1.14 Transit time for the single journey = 0.5 s.
When the ball moves up, let υ0 be its velocity at the bottom of the window, v1
at the top of the window and v2 = 0 at height h above the top of the window
(Fig. 1.15)
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Fig. 1.15

v1 = v0 − gt = v0 − 9.8 × 0.5 = v0 − 4.9 (1)

v2
1 = v2

0 − 2gh = v2
0 − 2 × 9.8 × 2 = v2

0 − 39.2 (2)

Eliminating v1 between (1) and (2)

v0 = 6.45 m/s (3)

v2
2 = 0 = v2

0 − 2g (H + h)

H + h = v2
0

2g
= (6.45)2

2 × 9.8
= 2.1225 m

h = 2.1225 − 2.0 = 0.1225 m

Thus the ball rises 12.25 cm above the top of the window.

1.15 (a) Sn = g

(
n − 1

2

)
S = 1

2
gn2

By problem Sn = 3s

4

g

(
n − 1

2

)
=
(

3

4

)(
1

2

)
gn2

Simplifying 3n2 − 8n + 4 = 0, n = 2 or
2

3

The second solution, n = 2

3
, is ruled out as n < 1.

(b) s = 1

2
gn2 = 1

2
× 9.8 × 22 = 19.6 m

1.16 In the triangle ACD, CA represents magnitude and apparent direction of
wind’s velocity w1, when the man walks with velocity DC = v = 4 km/h
toward west, Fig. 1.16. The side DA must represent actual wind’s velocity
because

W1 = W − v

When the speed is doubled, DB represents the velocity 2v and BA represents
the apparent wind’s velocity W2. From the triangle ABD,
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Fig. 1.16

W2 = W − 2v

By problem angle CAD = θ = 45◦. The triangle ACD is therefore an isosce-
les right angle triangle:

AD = √
2CD = 4

√
2 km/h

Therefore the actual speed of the wind is 4
√

2 km/h from southeast direction.

1.17 Choose the floor of the elevator as the reference frame. The observer is inside
the elevator. Take the downward direction as positive.
Acceleration of the bolt relative to the elevator is

a′ = g − (−a) = g + a

h = 1

2
a′t2 = 1

2
(g + a)t2 t =

√
2h

g + a

1.18 In 2 s after the truck driver applies the brakes, the distance of separation
between the truck and the car becomes

drel = d − 1

2
at2 = 10 − 1

2
× 2 × 22 = 6 m

The velocity of the truck 2 becomes 20 − 2 × 2 = 16 m/s.
Thus, at this moment the relative velocity between the car and the truck will be

urel = 20 − 16 = 4 m/s

Let the car decelerate at a constant rate of a2. Then the relative deceleration
will be

arel = a2 − a1
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If the rear-end collision is to be avoided the car and the truck must have the
same final velocity that is

vrel = 0

Now v2
rel = u2

rel − 2 arel drel

arel = v2
rel

2 drel
= 42

2 × 6
= 4

3
m/s2

∴ a2 = a1 + arel = 2 + 4

3
= 3.33 m/s2

1.19 vBA = vB − vA

From Fig. 1.17a

vBA =
√

v2
B + v2

A − 2vBvA cos 60◦

=
√

202 + 302 − 2 × 20 × 30 × 0.5 = 10
√

7 km/h

The direction of vBA can be found from the law of sines for �ABC,
Fig. 1.17a:

(i)
AC

sin θ
= BC

sin 60

or sin θ = AC

BC
sin 60 = vB

vBA
sin 60◦ = 20 × 0.866

10
√

7
= 0.6546

θ = 40.9◦

Fig. 1.17a
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Fig. 1.17b

Thus vBA makes an angle 40.9◦ east of north.
(ii) Let the distance between the two ships be r at time t . Then from the

construction of Fig. 1.17b

r = [(vAt − vBt cos 60◦)2 + (10 − vBt sin 60◦)2]1/2 (1)

Distance of closest approach can be found by setting dr/dt = 0. This

gives t =
√

3

7
h. When t =

√
3

7
is inserted in (1) we get rmin = 20/

√
7 or

7.56 km.

1.20 The initial velocity of the packet is the same as that of the balloon and is point-
ing upwards, which is taken as the positive direction. The acceleration due to
gravity being in the opposite direction is taken negative. The displacement is
also negative since it is vertically down:

u = 9.8 m/s, a = −g = −9.8 m/s2; S = −98 m

s = ut + 1

2
at2;−98 = 9.8t − 1

2
× 9.8 t2 or t2 − 2t − 20 = 0,

t = 1 ± √
21

The acceptable solution is 1 + √
21 or 5.58 s. The second solution being neg-

ative is ignored. Thus the packet takes 5.58 s to reach the ground.

1.3.2 Motion in Resisting Medium

1.21 Physically the difference between t1 and t2 on the one hand and v and u
on other hand arises due to the fact that during ascent both gravity and air
resistance act downward (friction acts opposite to motion) but during descent
gravity and air resistance are oppositely directed. Air resistance F actually
increases with the velocity of the object (F ∝ v or v2 or v3). Here for sim-
plicity we assume it to be constant.
For upward motion, the equation of motion is

ma1 = −(F + mg)
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or

a1 = −
(

F

m
+ g

)
(1)

For downward motion, the equation of motion is

ma2 = mg − F

or

a2 = g − F

m
(2)

For ascent

v1 = 0 = u + a1t = u −
(

F

m
+ g

)
t1

t1 = u

g + F

m

(3)

v1
2 = 0 = u2 + 2a1h

u =
√√√√√

2h(
g + F

m

) (4)

where we have used (1). Using (4) in (3)

t1 =
√√√√

2h

g + F

m

(5)

For descent v2 = 2a2h

v =
√

2h

(
g − F

m

)
(6)

where we have used (2)

t2 = v

a2
=
√√√√

2h

g − F

m

, (7)

where we have used (2) and (6)
From (5) and (7)

t2
t1

=

√√√√√√
g + F

m

g − F

m

(8)
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It follows that t2 > t1, that is, time of descent is greater than the time of ascent.
Further, from (4) and (6)

v

u
=

√√√√√√
g − F

m

g + F

m

(9)

It follows that v < u, that is, the final speed is smaller than the initial speed.

1.22 Taking the downward direction as positive, the equation of motion will be

dv

dt
= g − kv (1)

where k is a constant. Integrating

∫
dv

g − kv
=
∫

dt

∴ −1

k
ln

(
g − kv

c

)
= t

where c is a constant:

g − kv = ce−kt (2)

This gives the velocity at any instant.
As t increases e−kt decreases and if t increases indefinitely g − kv = 0, i.e.

v = g

k
(3)

This limiting velocity is called the terminal velocity. We can obtain an expres-
sion for the distance x traversed in time t . First, we identify the constant c
in (2). Since it is assumed that v = 0 at t = 0, it follows that c = g.

Writing v = dx

dt
in (2) and putting c = g, and integrating

g − k
dx

dt
= ge−kt

∫
gdt − k

∫
dx = g

∫
e−kt dt + D

gt − kx = −g

k
e−kt + D

At x = 0, t = 0; therefore, D = g

k
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x = gt

k
− g

k2

(
1 − e−kt

)
(4)

1.23 The equation of motion is

d2x

dt2 = g − k

(
dx

dt

)2

(1)

dv

dt
= g − kv2 (2)

∴ 1

k

∫
dv

g

k
− v2

= t + c (3)

writing V 2 = g

k
and integrating

ln
V + v

V − v
= 2kV (t + c) (4)

If the body starts from rest, then c = 0 and

ln
V + v

V − v
= 2kV t = 2gt

V

∴ t = V

2g
ln

V + v

V − v
(5)

which gives the time required for the particle to attain a velocity υ =0. Now

V + v

V − v
= e2kV t

∴ v

V
= e2kV t − 1

e2kV t + 1
= tanh kV t (6)

i.e.

v = V tanh
gt

V
(7)

The last equation gives the velocity υ after time t . From (7)

dx

dt
= V tanh

gt

V

x = V 2

g
ln cosh

gt

V
(8)

x = V 2

g
ln

egt/v + e−gt/v

2
(9)
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no additive constant being necessary since x = 0 when t = 0. From (6) it is
obvious that as t increases indefinitely υ approaches the value V . Hence V is
the terminal velocity, and is equal to

√
g/k.

The velocity v in terms of x can be obtained by eliminating t between (5)
and (9).

From (9),

ekx = ekV t + e−kV t

2
Squaring 4e2kx = e2kV t + e−2kV t + 2

= V + υ

V − υ
+ V − υ

V + υ
+ 2 from (5)

= 4V 2

V 2 − υ2

∴ υ2 = V 2(1 − e−2kx )

= V 2
(

1 − e
− 2gx

V 2

)
(10)

1.24 Measuring x upward, the equation of motion will be

d2x

dt2 = −g − k

(
dx

dt

)2

(1)

d2x

dt2 = d

dt

(
dx

dt

)
= dv

dt
= dv

dx
· dx

dt
= v

dv

dx

∴ v
dv

dx
= −g − kv2 (2)

∴ 1

2k

∫
d
(
v2
)

(g/k) + v2
= −

∫
dx

Integrating, ln

(
(g/k) + v2

c

)
= −2kx

or
g

k
+ v2 = ce−2kx (3)

When x = 0, v = u; ∴ c = g

k
+ u2 and writing

g

k
= V 2, we have

V 2 + v2

V 2 + u2
= e

− 2 gx
V 2 (4)

∴ v2 = (V 2 + u2)e
− 2 gx

V 2 − V 2 (5)

The height h to which the particle rises is found by putting υ = 0 at x = h
in (5)
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V 2 + u2

V 2 = e
2 gh
V 2

h = V 2

2g
ln

(
1 + u2

V 2

)
(6)

1.25 The particle reaches the height h given by

h = V 2

2g
ln

(
1 + u2

V 2

)
(by prob. 1.24)

The velocity at any point during the descent is given by

v2 = V 2
(

1 − e
− 2 gx

V 2

)
(by prob. 1.23)

The velocity of the body when it reaches the point of projection is found by
substituting h for x :

∴ v2 = V 2
{

1 − V 2

V 2 + u2

}
= u2V 2

V 2 + u2

Loss of kinetic energy = 1

2
mu2 − 1

2
mv2

= 1

2
mu2

{
1 − V 2

V 2 + u2

}
= 1

2
mu2

(
u2

V 2 + u2

)

1.3.3 Motion in Two Dimensions

1.26 (i)
dx

dt
= 6 + 2t

∫
dx = 6

∫
dt + 2

∫
tdt

x = 6t + t2 + C

x = 0, t = 0; C = 0

x = 6t + t2

dy

dt
= 4 + t

∫
dy = 4

∫
dt +

∫
tdt
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y = 4t + t2

2
+ D

y = 0, t = u; D = u

y = u + 4t + t2

2

(ii) �v = (6 + 2t)î + (4 + t) ĵ

(iii) �a = dv

dt
= 2î + ĵ

(iv) a =
√

22 + 12 = √
5

tan θ = 1

2
; θ = 26.565◦

Acceleration is directed at an angle of 26◦34′ with the x-axis.

1.27 Take upward direction as positive, Fig. 1.18. At time t the velocities of the
objects will be

v1 = u1 î − gt ĵ (1)

v2 = −u2 î − gt ĵ (2)

If v1 and v2 are to be perpendicular to each other, then v1 · v2 = 0, that is

(
u1 î − gt ĵ

)
·
(
−u2î − gt ĵ

)
= 0

∴ −u1u2 + g2t2 = 0

or t = 1

g

√
u1u2 (3)

The position vectors are r1 = u1t î − 1
2 gt2 ĵ, r2 = −u2t î − 1

2 gt2 ĵ .

The distance of separation of the objects will be

r12 = |�r1 − �r2| = (u1 + u2)t

Fig. 1.18
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or

r12 = (u1 + u2)

g

√
u1u2 (4)

where we have used (2).

1.28 Consider the equation

s = ut + 1

2
at2 (1)

Taking upward direction as positive, a = −g and let s = h, the height of the
tower, (1) becomes

h = ut − 1

2
gt2

or

1

2
gt2 − ut + h = 0 (2)

Let the two roots be t1 and t2. Compare (2) with the quadratic equation

ax2 + bx + c = 0 (3)

The product of the two roots is equal to c/a. It follows that

t1t2 = 2h

g
or

√
t1t2 =

√
2h

g
= t3

which is the time taken for a free fall of an object from the height h.

1.29 Let the shell hit the plane at p(x, y), the range being AP = R, Fig. 1.19. The
equation for the projectile’s motion is

y = x tan θ − gx2

2u2 cos2 θ
(1)

Now y = R sin α (2)

x = R cos α (3)

Fig. 1.19
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Using (2) and (3) in (1) and simplifying

R = 2u2 cos θ sin(θ − α)

g cos2 α

The maximum range is obtained by setting
dR

dθ
= 0, holding u, α and g

constant. This gives cos(2θ − α) = 0 or 2θ − α = π

2

∴ α = θ

2
+ π

4

1.30 As the outer walls are equal in height (h) they are equally distant (c) from the
extremities of the parabolic trajectory whose general form may be written as
(Fig. 1.20)

Fig. 1.20

y = ax − bx2 (1)

y = 0 at x = R = nr , when R is the range

This gives a = bnr (2)

The range R = c + r + 2r + c = nr , by problem

∴ c = (n − 3)
r

2
(3)

The trajectory passes through the top of the three walls whose coordinates are

(c, h),
(

c + r, 15
7 h

)
, (c +3r, h), respectively. Using these coordinates in (1),

we get three equations

h = ac − bc2 (4)

15h

7
= a(c + r) − b(c + r)2 (5)

h = a(c + 3r) − b(c + 3r)2 (6)

Combining (2), (3), (4), (5) and (6) and solving we get n = 4.
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1.31 The equation to the parabolic path can be written as

y = ax − bx2 (1)

with a = tan θ; b = g

2u2 cos2 θ
(2)

Taking the point of projection as the origin, the coordinates of the two open-
ings in the windows are (5, 5) and (11, 7), respectively. Using these coordi-
nates in (1) we get the equations

5 = 5a − 25b (3)

7 = 11a − 121b (4)

with the solutions, a = 1.303 and b = 0.0606. Using these values in (2), we
find θ = 52.5◦ and u = 14.8 m/s.

1.32 Let the rifle be fixed at A and point in the direction AB at an angle α with the
horizontal, the monkey sitting on the tree top at B at height h, Fig. 1.21. The
bullet follows the parabolic path and reaches point D, at height H , in time t .

Fig. 1.21

The horizontal and initial vertical components of velocity of bullet are

ux = u cos α; uy = u sin α

Let the bullet reach the point D, vertically below B in time t , the coordinates
of D being (d, H ). As the horizontal component of velocity is constant

d = ux t = (u cos α)t = udt

s

where s = AB:

t = s

u

The vertical component of velocity is reduced due to gravity.
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In the same time, the y-coordinate at D is given by

y = H = uyt − 1

2
gt2 = u(sin α)t − 1

2
gt2

H = u

(
h

s

)( s

u

)
− 1

2
gt2 = h − 1

2
gt2

or h − H = 1

2
gt2

∴ t =
√

2(h − H)

g

But the quantity (h–H ) represents the height through which the monkey drops
from the tree and the right-hand side of the last equation gives the time for a
free fall. Therefore, the bullet would hit the monkey independent of the bullet’s
initial velocity.

1.33 R = u2 sin 2α

g
, h = u2 sin2 α

g
, T = 2u sin α

g

(a) h

R
= 1

4
tan α → tan α = 4h

R

(b) h

T 2
= g

8
→ h = gT 2

8

1.34 (i) T = 2u sin α

g
= 2 × 800 sin 60◦

9.8
= 141.4 s

(ii) R = u2 sin 2α

g
= (800)2 sin(2 × 60)

9.8
= 5.6568 × 104m = 56.57 km

(iii) Time to reach maximum height = 1
2 T = 1

2 × 141.4 = 707 s
(iv) x = (u cos α)t (1)

y = (u sin α)t − 1

2
gt2 (2)

Eliminating t between (1) and (2) and simplifying

y = x tan α − 1

2

gx2

u2 cos2 α
(3)

which is of the form y = bx+cx2, with b = tan α and c = −1

2

g

u2 cos2 α
.

1.35 (i) T = u sin α

g
= 350 sin 55◦

9.8
= 29.25 s
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(ii) At the highest point of the trajectory, the velocity of the particle is
entirely horizontal, being equal to u cos α. The momentum of this particle
at the highest point is p = mu cos α, when m is its mass. After the
explosion, one fragment starts falling vertically and so does not carry
any momentum initially. It would fall at half of the range, that is

R

2
= 1

2

u2 sin 2α

g
= (350)2 sin(2 × 55◦)

2 × 9.8
= 5873 m, from the firing point.

The second part of mass 1
2 m proceeds horizontally from the highest point

with initial momentum p in order to conserve momentum. If its velocity
is v then

p = m

2
v = mu cos α

v = 2u cos α = 2 × 350 cos 55◦ = 401.5 m/s

Then its range will be

R′ = v

√
2h

g
(1)

But the maximum height

h = u2 sin2 α

2g
(2)

Using (2) in (1)

R′ = vu sin α

g
= (401.5)(350)(sin 55◦)

9.8
= 11746 m

The distance form the firing point at which the second fragment hits the
ground is

R

2
+ R′ = 5873 + 11746 = 17619 m

(iii) Energy released = (kinetic energy of the fragments) − (kinetic energy of
the particle) at the time of explosion

= 1

2

m

2
v2 − 1

2
m(u cos α)2

= 20

4
× (401.5)2 − 20

2
(350 cos 55◦)2 = 4.03 × 105 J
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1.36 The radius of curvature

ρ =
[
1 + (dy/dx)2]3/2

d2 y/dx2
(1)

x = vot = 10 × 3 = 30 m

y = 1

2
gt2 = 1

2
× 9.8 × 32 = 44.1 m.

∴ y = 1

2
g

x2

v2
0

v2
0 = 9.8 × 30

102
= 2.94 (2)

d2 y

dx2 = g

v2
0

= 9.8

102 = 0.098 (3)

Using (2) and (3) in (1) we find ρ = 305 m.

1.37 Let P be the position of the boat at any time, Let AP = r , angle BÂP = θ ,
and let v be the magnitude of each velocity, Fig. 1.5:

dr

dt
= −v + v sin θ

and
rdθ

dt
= v cos θ

∴ 1

r

dr

dθ
= −1 + sin θ

cos θ

∴
∫

dr

r
=
∫

[− sec θ + tan θ ] dθ

∴ ln r = − ln tan

(
θ

2
+ π

4

)
− ln cos θ + ln C (a constant)

When θ = 0, r = a, so that C = a

∴ r = a

tan
(

θ
2 + π

4

)
cos θ

The denominator can be shown to be equal to 1 + sin θ :

∴ r = a

1 + sin θ

This is the equation of a parabola with AB as semi-latus rectum.

1.38 Take the origin at O, Fig. 1.22. Draw the reference line OC parallel to AB, the
ground level. Let the ball hit the wall at a height H above C. Initially at O,
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Fig. 1.22

ux = u cos α = u cos 45◦ = u√
2

uy = u sin α = u sin 45◦ = u√
2

When the ball hits the wall, y = x tan α − 1

2

gx2

u2 cos2 α
Using y = H , x = d and α = 45◦

H = d

(
1 − gd

u2

)
(1)

If the collision of the ball with the wall is perfectly elastic then at P , the
horizontal component of the velocity (u′

x ) will be reversed, the magnitude
remaining constant, while both the direction and magnitude of the vertical
component v′

y are unaltered. If the time taken for the ball to bounce back from
P to A is t and the range BA = R

y = v′
y t − 1

2
gt2 (2)

Using t = R

u cos 45◦ = √
2

R

u
(3)

y = −(H + h) (4)

v′
yt = u sin 45◦ − g

d

u cos 45◦ = u√
2

− √
2

gd

u
(5)

Using (3), (4) and (5) in (2), we get a quadratic equation in R which has the
acceptable solution

R = u2

2g
+
√

u2

4g2
+ H + h
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1.3.4 Force and Torque

1.39 Resolve the force into x- and y-components:

Fx = −80 cos 35◦ + 60 + 40 cos 45◦ = 22.75 N

Fy = 80 sin 35◦ + 0 − 40 sin 45◦ = 17.6 N

(i) Fnet =
√

F2
x + F2

y =
√

(22.75)2 + (17.6)2 = 28.76 N

tan θ = Fy

Fx
= 17.6

22.75
= 0.7736 → θ = 37.7◦

The vector Fnet makes an angle of 37.7◦ with the x-axis.

(ii) a = Fnet

m
= 28.76 N

3.8 kg
= 7.568 m/s2

(iii) F4 of magnitude 28.76 N must be applied in the opposite direction to
Fnet

1.40 (a) (i) τ = r × F

τ = r F sin θ = (0.4 m)(50 N) sin 90◦ = 20 N − m

(ii) τ = Iα

α = τ

I
= 20

20
= 1.0 rad/s2

(iii) ω = ω0 + αt = 0 + 1 × 3 = 3 rad/s

(iv) ω2 = ω2
0 + 2αθ, θ = 32−0

2×1 = 4.5 rad

(b) (i) τ = 0.4 × 50 × sin(90 + 20) = 18.794 N m

(ii) α = τ

I
= 18.794

20
= 0.9397 rad/s2

1.41 Force applied to the container F = ma
Frictional force = Fr = μ mg

Fr = F

μ mg = ma

μ = a

g
= 1.5

9.8
= 0.153
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Fig. 1.23

1.42 Taking torque about D, the corner of the obstacle, (F)CD = (W )BD
(Fig. 1.23)

F = W
BD

CD
=
√

OD2 − OB2

CE − DE

=
√

r2 − (r − h)2

r − h
=

√
h(2r − h)

r − h

1.3.5 Centre of Mass

1.43 Let λ be the linear mass density (mass per unit length) of the wire. Consider an
infinitesimal line element ds = R dθ on the wire, Fig. 1.24. The corresponding
mass element will be dm = λds = λR dθ . Then

Fig. 1.24

yCM =
∫

y dm∫
dm

=
∫ π

0 (R sin θ)(λR dθ)∫ π

0 λR dθ

= λR2
∫ π

0 sin θ dθ

λR
∫ π

0 dθ
= 2R

π

1.44 Let the x-axis lie along the diameter of the semicircle. The centre of mass must
lie on y-axis perpendicular to the flat base of the semicircle and through O,
the centre of the base, Fig. 1.25.
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Fig. 1.25

For continuous mass distribution

yCM = 1

M

∫
y dm

Let σ be the surface density (mass per unit area), so that

M = 1

2
π R2σ

In polar coordinates dm = σ dA = σr dθ dr
where dA is the element of area. Let the centre of mass be located at a distance
yCM from O along y-axis for reasons of symmetry:

yCM = 1
1
2π R2σ

∫ R

0

∫ π

0
(r sin θ)(σr dθ dr) = 2

π R2

∫ R

0
r2
∫ π

0
sin θ dθ = 4R

3π

1.45 Let O be the origin, the centre of the base of the hemisphere, the z-axis being
perpendicular to the base. From symmetry the CM must lie on the z-axis,
Fig. 1.26. If ρ is the density, the mass element, dm = ρ dV , where dV is the
volume element:

ZCM = 1

M

∫
Z dm = 1

M

∫
Zρ dV (1)

In polar coordinates, Z = r cos θ (2)

dV = r2 sin θdθdφdr (3)

0 < r < R; 0 < θ <
π

2
; 0 < φ < 2π

The mass of the hemisphere

M = ρ
2

3
π R3 (4)

Using (2), (3) and (4) in (1)
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Fig. 1.26

ZCM

∫ R
0 r3dr

∫ π
2

0 sin θ cos θ dθ
∫ 2π

0 dφ

2π R3

3

= 3R

8

1.46 The mass of any portion of the disc will be proportional to its surface area.
The area of the original disc is π R2, that corresponding to the hole is 1

4π R2

and that of the remaining portion is π R2 − π R2

4 = 3
4π R2.

Let the centre of the original disc be at O, Fig. 1.10. The hole touches the
circumference of the disc at A, the centre of the hole being at C. When this
hole is cut, let the centre of mass of the remaining part be at G, such that

OG = x or AG = AO + OG = R + x

If we put back the cut portion of the hole and fill it up then the centre of the
mass of this small disc (C) and that of the remaining portion (G) must be
located at the centre of the original disc at O

AO = R = ACπ(R2/4) + AG 3π
4 R2

π R2/4 + 3π R2/4
= R

8
+ 3

4
(R + x)

∴ x = R

6

Thus the C:M of the remaining portion of the disc is located at distance R/6
from O on the left side.

1.47 Let m1 be the mass of the earth and m2 that of the moon. Let the centre of
mass of the earth–moon system be located at distance r1 from the centre of
the earth and at distance r2 from the centre of the moon, so that r = r1 +r2
is the distance between the centres of earth and moon, Fig. 1.27. Taking the
origin at the centre of mass
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Fig. 1.27

m1�r1 + m2�r2

m1 + m2
= 0

m1r1 − m2r2 = 0

r1 = m2r2

m1
= m2(r − r1)

81m2
= 60R − r1

81
r1 = 0.7317R = 0.7317 × 6400 = 4683 km

along the line joining the earth and moon; thus, the centre of mass of the
earth–moon system lies within the earth.

1.48 Let the centre of mass be located at a distance rc from the carbon atom and at
r0 from the oxygen atom along the line joining carbon and oxygen atoms. If
r is the distance between the two atoms, mc and mo the mass of carbon and
oxygen atoms, respectively

mcrc = moro = mo(r − rc)

rc = mor

mo + mo
= 16 × 1.13

12 + 16
= 0.646 Å

1.49 Let C be the centroid of the equilateral triangle formed by the three H atoms in
the xy-plane, Fig. 1.28. The N–atom lies vertically above C, along the z-axis.
The distance rCN between C and N is

rCN −
√

r2
NH3

− r2
CH3

rCN = r2
H1H2√

3
= 1.628

1.732
= 0.94 Å

rCN =
√

(1.014)2 − (0.94)2 = 0.38 Å

Now, the centre of mass of the three H atoms 3mH lies at C. The centre of
mass of the NH3 molecule must lie along the line of symmetry joining N and
C and is located below N atom at a distance
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Fig. 1.28 Centre of mass of
NH3 molecule

ZCM = 3mH

3mH + m N
× rC N = 3mH

3mH + 14mH
× 0.38 = 0.067 Å

1.50 Take the origin at A at the left end of the boat, Fig. 1.29. Let the boy of mass
m be initially at B, the other end of the boat. The boat of mass M and length
L has its centre of mass at C. Let the centre of mass of the boat + boy system
be located at G, at a distance x from the origin. Obviously AC = 1.5 m:

Fig. 1.29

AG = x = MAC + mAB

M + m

= 100 × 1.5 + 50 × 3

100 + 50
= 2 m

Thus CG = AG − AC

= 2.0 − 1.5 = 0.5 m

When the boy reaches A, from symmetry the CM of boat + boy system would
have moved to H by a distance of 0.5 m on the left side of C. Now, in the
absence of external forces, the centre of mass should not move, and so to
restore the original position of the CM the boat moves towards right so that the
point H is brought back to the original mark G. Since HG = 0.5 + 0.5 = 1.0,
the boat in the mean time moves through 1.0 m toward right.
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1.51 If the rod is to move with pure translation without rotation, then it should be
struck at C, the centre of mass of the loaded rod. Let C be located at distance
x from A so that
GC = 1

2 L − x , Fig. 1.30. Let M be the mass of the rod and 2M be attached
at A. Take torques about C

Fig. 1.30

2Mx = M

(
L

2
− x

)
∴ x = L

6

Thus the rod should be struck at a distance L
6 from the loaded end.

1.52 Volume of the cone, V = 1
3π R2h where R is the radius of the base and h

is its height, Fig. 1.31. The volume element at a depth z below the apex is
dV = πr2dz, the mass element dm = ρdV = πr2dz f

Fig. 1.31

dm = ρdv = ρπr2dz

z

r
= h

R
∴ dz = h

R
dr

For reasons of symmetry, the centre of mass must lie on the axis of the cone.
Take the origin at O, the apex of the cone:

ZCM =
∫

Z dm∫
dm

=

R∫
0

( hr
R

)
ρπr2

( h
r dr

)

1
3π R2hρ

= 3h

4
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Thus the CM is located at a height h − 3
4 h = 1

4 h above the centre of the base
of the cone.

1.53 Take the origin at O, Fig. 1.32. Let the mass of the wire be M . Consider mass
element dm at angles θ and θ + dθ

Fig. 1.32

dm = M R dθ

2αR
= M dθ

2α
(1)

From symmetry the CM of the wire must be on the y-axis.
The y-coordinate of dm is y = R sin θ

yCM = 1

M

∫
ydm =

90+α∫

90−α

R sin θ dθ

2α
= R sin α

α

Note that the results of prob. (1.43) follow for α = 1
2π .

1.54 VCM = �mivi

�mi
= 4mv0 + (m)(0)

5m
= 4v0

5

1.55 ρ = cx(c = constant); dm = ρ dx = cx dx

xCM =
∫

x dm∫
dm

=
∫ L

0 xcx dx∫ L
0 cx dx

= 2

3
L

1.56 xCM = �mi xi

�mi
= mL + (2m)(2L) + (3m)(3L) + · · · + (nm)(nL)

m + 2m + 3m + · · · + nm

= (1 + 4 + 9 + · · · + n2)L

1 + 2 + 3 + · · · + n
= (sum of squares of natural numbers)L

sum of natural numbers

= n(n + 1)(2n + 1)L/6

n(n + 1)/2
= (2n + 1)

L

3
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1.57 The diagram is the same as for prob. (1.44)

y = r sin θ

dA = r dθdr

dm = r dθdrρ = rdθdrcr2 = cr3 dr dθ

Total mass M =
∫

dm = c

R∫

0

r3dr

π∫

0

dθ = πcR4

4
(1)

yCM = 1

M

∫
y dm = 1

M

∫ ∫
(r sin θ)cr3 drdθ

= C

M

∫ R

0
r4dr

∫ π

0
sin θ dθ

= C

M

2

5
R5 = 8a

5π
(2)

where we have used (1).

1.58 The CM of the two H atoms will be at G the midpoint joining the atoms,
Fig. 1.33. The bisector of ̂HOH

Fig. 1.33

OG = (OH) cos

(
105◦

2

)
= 1.77 × 0.06088 = 1.0775 Å

Let the CM of the O atom and the two H atoms be located at C at distance
yCM from O on the bisector of angle HÔH

yCM = 2MH

M0
× OG = 2 × 1

16
× 1.0775 = 0.1349 Å

1.59 The CM coordinates of three individual laminas are

CM(1) =
(a

2
,

a

2

)
, CM(2) =

(
3a

2
,

a

2

)
, CM(3) =

(
3a

2
,

3a

2

)

The CM coordinates of the system of these three laminas will be

xCM = m a
2 + m 3a

2 + m 3a
2

m + m + m
= 7a

6
yCM = m a

2 + m a
2 + m 3a

2

m + m + m
= 5a

6
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1.3.6 Equilibrium

1.60 U (x) = k(2x3 − 5x2 + 4x) (1)

dU (x)

dx
= k(6x2 − 10x + 4) (2)

∴ dU (x)

dx
|x=1 = k(6x2 − 10x + 4) |x=1 = 0

which is the condition for maximum or minimum. For stable equilibrium posi-
tion of the particle it should be a minimum. To this end we differentiate (2)
again:

d2U (x)

dx2 = k(12x − 10)

∴ d2U (x)

dx2
|x=1 = +2k

This is positive because k is positive, and so it is minimum corresponding to
a stable equilibrium.

1.61 U (x) = k(x2 − 4xl) (1)

dU (x)

dx
= 2k(x − 2l) (2)

At x = 2l,
dU (x)

dx
= 0 (3)

Differentiating (2) again

d2U

dx2 = 2k

which is positive. Hence it is a minimum corresponding to a stable equilib-
rium. Force

F = −dU

dx
= −2k(x − 2l)

Put X = x − 2l, Ẍ = ẍ

acceleration Ẍ = F

m
= −2k

m
X = −ω2 X

∴ f = 1

2π

√
2k

m

1.62 Let ‘a’ be the side of the cube and a force F be applied on the top surface
of the cube, Fig. 1.34. Take torques about the left-hand side of the edge. The
condition that the cube would topple is
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Fig. 1.34

Counterclockwise torque > clockwise torque

Fa > W
a

2

or

F > 0.5W (1)

Condition for sliding is

F > μW (2)

Comparing (1) and (2), we conclude that the cube will topple if μ > 0.5 and
will slide if μ < 0.5.

1.63 In Fig. 1.35 let the ladder AB have length L , its weight mg acting at G, the
CM of the ladder (middle point). The weight mg produces a clockwise torque
τ1 about B:

Fig. 1.35
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τ1 = (mg)(BD) = (mg)

(
BD

BG
BG

)
= mg

L

2
cos α (1)

The friction with the ground, which acts toward right produces a counterclock-
wise torque τ2:

τ2 = (μ mg)AC = μmg
AC

AB
AB = μmgL sin α (2)

For limiting equilibrium τ1 = τ2

∴ mg
L

2
cos α = μmgL sin α

∴ μ = 1

2
cot α



Chapter 2
Particle Dynamics

Abstract Chapter 2 is concerned with motion of blocks on horizontal and inclined
planes with and without friction, work, power and energy. Elastic, inelastic and
partially elastic collisions in both one dimension and two dimensions are treated.
Problems on variable mass cover rocket motion, falling of rain drops, etc.

2.1 Basic Concepts and Formulae

Internal and External Forces

Forces acting upon a system due to external agencies are called external forces. As
an example a body placed on a surface is acted by earth’s gravitation which is an
external force.

Forces that act between pairs of particles which constitute the body or a system
are all internal to the system and are called internal forces. The size of a system
is entirely arbitrary and is defined by the convenience of the situation. If a system
is made sufficiently extensive then all forces become internal forces. By Newton’s
third law of motion internal forces between pairs of particles get cancelled. Hence
net internal force is zero. Internal forces cannot cause motion.

Inertial and Gravitational Mass

If mass is determined by Newton’s second law, that is, m = F/a, then it is called
inertial mass.

If the mass is determined by the gravitational force exerted on it by another body,
say the earth of mass M , that is, m′ = Fr2/GM, then it is called the gravitational
mass. It turns out that m = m′.

Frames of Reference

A frame of reference (coordinate system) is necessary in order to measure the
motion of particles. A reference frame is called an inertial frame if Newton’s laws

47
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are found to be valid in that frame. It is found that inertial frames move with constant
velocity with respect to one another.

Conservation Laws

(i) If the total force F is zero, then linear momentum p is conserved.
(ii) If the total external torque is zero, then the angular momentum J is conserved.

(iii) If the forces acting on a particle are conservative, then the total mechanical
energy (kinetic + potential) of the particle is conserved.

Conservative Force

If the force field is such that the work done around a closed orbit is zero, i.e.

∮
F · ds = 0 (2.1)

then the force and the system are said to be conservative. A system cannot be con-
servative if a dissipative force like friction is present. Since the quantity Fds due to
friction will always be negative and the integrand cannot vanish, by Stokes theorem
the condition for conservative forces given by (2.1) becomes

∇ × F = 0 (2.2)

Since the curl of a gradient always vanishes, it follows that F must be the gradient
of the scalar quantity V , i.e.

F = −∇V (2.3)

V is called the potential energy.

Centre of Mass

rc = 1

M

∑n

i=1
mi r i (2.4)

where rc is the position vector of the centre of mass from the origin and M = �mi

is the total mass. The centre of mass moves as if it were a single particle of mass
equal to the total mass of the system, acted upon by the total external force and
independent of the nature of the internal forces.

The reduced mass (μ) of two bodies of mass m1 and m2 is given by

μ = m1m2

m1 + m2
(2.5)
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A two-body problem is reduced to a one-body problem through the introduction
of the reduced mass μ.

Motion of a Body of a Variable Mass

It is well known that in relativistic mechanics the mass of a particle increases with
increasing velocity. However, in Newtonian mechanics too one can give meaning
to variable mass as in the following example. Consider an open wagon moving on
rails on a horizontal plane under steady heavy shower. As rain is collected the mass
of the wagon increases at constant rate. Other examples are rocket, motion of jet
propelled vehicles, an engine taking water on the run.

F = dp

dt
= d

dt
(mv) = m

dv

dt
+ v

dm

dt
(2.6)

Motion of a Rocket

If m is the mass of the rocket plus fuel at any time t and vr the velocity of the ejected
gases relative to the rocket then

Resultant force on rocket = (upward thrust on rocket) – (weight of the rocket)

m
dv

dr
= vr

dm

dt
− mg (2.7)

Therefore, acceleration of the rocket

a = dv

dt
= vr

m

dm

dt
− g (2.8)

Assuming that vr and g remain constant and at t = 0, v = 0 and m = m0,

vB = vr ln

(
m0

mB

)
− gt (2.9)

where m0 is the initial mass of the system and mB the mass at burn-out velocity vB
(the velocity at which all the fuel is burnt out is called the burn-out velocity).

Now

m = m0e−v/vr (2.10)

Time taken for the rocket to reach the burn-out velocity is given by

t = t0 = m0 − m

α
(2.11)

where α = −dm/dt is a positive constant.
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Elastic Collisions (One-Dimensional Head-On)

By definition total kinetic energy is conserved. If u1 and u2 be the respective initial
velocities of m1 and m2, v1 and v2 being the corresponding final velocities, then

u1 − u2 = v2 − v1 (2.12)

Thus, the relative velocity of approach before the collision is equal to the relative
velocity of separation after the collision:

v1 =
[

m1 − m2

m1 + m2

]
u1 + 2m2u2

m1 + m2
(2.13)

v2 = 2m1u1

m1 + m2
+
[

m2 − m1

m1 + m2

]
u2 (2.14)

Inelastic Collisions, Direct Impact

The bodies stick together in the course of collision and are unable to separate
out. After the collision they travel as one body with common velocity v given by

v = m1u1 + m2u2

m1 + m2
(2.15)

Energy wasted = 1

2
μ(u1 − u2)

2 (2.16)

where μ is the reduced mass.
Ballistic pendulum is a device for measuring the velocity of a bullet. The pen-

dulum consists of a large wooden block of mass M which is supported vertically
by two cords. A bullet of mass m hits the block horizontally with velocity v and
is lodged within it. As a result of collision the block is raised through maximum
height h (see prob. 2.44). Applying momentum conservation for the initial collision
process, and energy conservation for the subsequent motion, it can be shown that

v =
(

1 + M

m

)√
2gh (2.17)

Partially elastic collisions are collisions which fall in between perfectly elas-
tic collisions and totally inelastic collisions. The coefficient of restitution e which
defines the degree of inelasticity is given by

e = − relative velocity of separation

relative velocity of approach
= v1 − v2

u2 − u1
(2.18)

For perfectly elastic collisions e = 1, for totally inelastic collisions e = 0 and for
partially elastic collisions 0 < e < 1.
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Relations of Quantities in the Lab System (LS) and Centre of Mass System
(CMS)

Quantities that are unprimed refer to LS and primed refer to CMS.
Lab system CM system

m1 : u1; u∗
1 = m2u1

m1 + m2
(2.19)

m2 : u2 = 0; u∗
2 = m1u1

m1 + m2
(2.20)

Scattering Angle

Because of elastic scattering

v∗
1 = u∗

1; v∗
2 = u∗

2

The centre of mass velocity

vc = − m1u1

m1 + m2
= −u∗

2 (2.21)

tan θ = sin θ∗

cos θ∗ + m1/m2
(2.22)

tan θ∗ = sin θ

cos θ − m1/m2
(2.23)

If m1 < m2, all scattering angles for m1 in LS are possible.
If m1 = m2, scattering only in the forward hemisphere (θ ≤ 90◦) is possible.
If m1 > m2, the maximum scattering angle is possible, θmax, being given by

θmax = sin−1(m2/m1) (2.24)

Recoil Angle

tan ϕ = sin ϕ∗

cos ϕ∗ + 1
= tan

ϕ∗

2
(2.25)

Or φ = 1

2
ϕ∗ (2.26)

Recoiling angle is limited to ϕ ≤ 90◦.
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2.2 Problems

2.2.1 Motion of Blocks on a Plane

2.1 Three blocks of mass m1, m2 and m3 interconnected by cords are pulled by a
constant force F on a frictionless horizontal table, Fig. 2.1. Find

(a) Common acceleration ‘a’
(b) Tensions T1 and T2

Fig. 2.1

2.2 A block of mass M on a rough horizontal table is driven by another block of
mass m connected by a thread passing over a frictionless pulley. Assuming
that the coefficient of friction between the mass M and the table is μ, find
(a) acceleration of the masses (b) tension in the thread (Fig. 2.2).

Fig. 2.2

2.3 A block of mass m1 sits on a block of mass m2, which rests on a smooth table,
Fig. 2.3. If the coefficient of friction between the blocks is μ, find the maximum
force that can be applied to m2 so that m1 may not slide.

Fig. 2.3

2.4 Two blocks m1 and m2 are in contact on a frictionless table. A horizontal force
F is applied to the block m1, Fig. 2.4. (a) Find the force of contact between
the blocks. (b) Find the force of contact between the blocks if the same force is
applied to m2 rather than to m1, Fig. 2.5.

Fig. 2.4
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Fig. 2.5

2.5 A box of weight mg is dragged with force F at an angle θ above the horizontal.
(a) Find the force exerted by the floor on the box. (b) Find the acceleration
of the box if the coefficient of friction with the floor is μ. (c) How would the
results be altered if the box is pushed with the same force?

2.6 A uniform chain of length L lies on a table. If the coefficient of friction is μ,
what is the maximum length of the part of the chain hanging over the table such
that the chain does not slide?

2.7 A uniform chain of length L and mass M is lying on a smooth table and one-
third of its length is hanging vertically down over the edge of the table. Find
the work required to pull the hanging part on the table.

2.8 A block of metal of mass 2 kg on a horizontal table is attached to a mass of
0.45 kg by a light string passing over a frictionless pulley at the edge of the
table. The block is subjected to a horizontal force by allowing the 0.45 kg mass
to fall. The coefficient of sliding friction between the block and table is 0.2.
Calculate (a) the initial acceleration, (b) the tension in the string, (c) the distance
the block would continue to move if, after 2 s of motion, the string should break
(Fig. 2.6).

[University of New Castle]

Fig. 2.6

2.2.2 Motion on Incline

2.9 A block of mass of 2 kg slides on an inclined plane that makes an angle of
30◦ with the horizontal. The coefficient of friction between the block and the
surface is

√
3/2.

(a) What force should be applied to the block so that it moves down without
any acceleration?

(b) What force should be applied to the block so that it moves up without any
acceleration?

[Indian Institute of Technology 1976]
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2.10 A block is placed on a ramp of parabolic shape given by the equation y =
x2/20, Fig. 2.7. If μs = 0.5, what is the maximum height above the ground at
which the block can be placed without slipping?

Fig. 2.7

2.11 A block slides with constant velocity down an inclined plane that has slope
angle θ = 30◦.

(a) Find the coefficient of kinetic friction between the block and the plane.
(b) If the block is projected up the same plane with initial speed v0 =

2.5 m/s, how far up the plane will it move before coming to rest? What
fraction of the initial kinetic energy is transformed into potential energy?
What happens to the remaining energy?

(c) After the block comes to rest, will it slide down the plane again? Justify
your answer.

2.12 Consider a fixed inclined plane at angle θ . Two blocks of mass M1 and M2 are
attached by a string passing over a pulley of radius r and moment of inertia I1
as in Fig. 2.8:

(a) Find the net torque acting on the system comprising the two masses, pul-
ley and the string.

(b) Find the total angular momentum of the system about the centre of the
pulley when the blocks are moving with speed v.

(c) Calculate the acceleration of the blocks.

Fig. 2.8

2.13 A box of mass 1 kg rests on a frictionless inclined plane which is at an angle
of 30◦ to the horizontal plane. Find the constant force that needs to be applied
parallel to the incline to move the box

(a) up the incline with an acceleration of 1 m/s2

(b) down the incline with an acceleration of 1 m/s2

[University of Aberystwyth, Wales 2008]
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2.14 A wedge of mass M is placed on a horizontal floor. Another mass m is placed
on the incline of the wedge. Assume that all surfaces are frictionless, and the
incline makes an angle θ with the horizontal. The mass m is released from rest
on mass M , which is also initially at rest. Find the accelerations of M and m
(Fig. 2.9).

Fig. 2.9

2.15 Two smooth inclined planes of angles 45◦ and hinged together back to back.
Two masses m and 3m connected by a fine string passing over a light pul-
ley move on the planes. Show that the acceleration of their centre of mass is√

5/8 g at an angle tan−1 ½ to the horizon (Fig. 2.10).

Fig. 2.10

2.16 Two blocks of masses m1 and m2 are connected by a string of negligible mass
which passes over a pulley of mass M and radius r mounted on a frictionless
axle. The blocks move with an acceleration of magnitude a and direction as
shown in the diagram. The string does not slip on the pulley, so the tensions
T1 and T2 are different. You can assume that the surfaces of the inclines are
frictionless. The moment of inertia of the pulley is given by I = ½Mr2:

(a) Draw free body diagrams for the two blocks and the pulley.
(b) Write down the equations for the translational motion of the two blocks

and the rotational motion of the pulley.
(c) Show that the magnitude of the acceleration of the blocks is given by

a = g(
√

3m2 − m1)

M + 2(m2 + m1)

2.17 Two masses in an Atwood machine are 1.9 and 2.1 kg, the vertical distance of
the heavier body being 20 cm above the lighter one. After what time would the
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lighter body be above the heavier one by the same vertical distance? Neglect
the mass of the pulley and the cord (Fig. 2.11).

Fig. 2.11

2.18 A body takes 4/3 times as much time to slide down a rough inclined plane as it
takes to slide down an identical but smooth inclined plane. Find the coefficient
of friction if the angle of incline is 45◦.

2.19 A body slides down an incline which has coefficient of friction μ = 0.5.
Find the angle θ if the incline of the normal reaction is twice the resultant
downward force along the incline.

2.20 Two masses m1 and m2 are connected by a light inextensible string which
passes over a smooth massless pulley. Find the acceleration of the centre of
mass of the system.

2.21 Two blocks with masses m1 and m2 are attached by an unstretchable string
around a frictionless pulley of radius r and moment of inertia I . Assume that
there is no slipping of the string over the pulley and that the coefficient of
kinetic friction between the two blocks and between the lower one and the
floor is identical. If a horizontal force F is applied to m1, calculate the accel-
eration of m1 (Fig. 2.12).

Fig. 2.12

2.2.3 Work, Power, Energy

2.22 The constant forces F1 = î +2 ĵ +3k̂ N and F2 = 4î −5 ĵ −2k̂ N act together
on a particle during a displacement from position r2 = 7k̂ cm to position
r1 = 20î + 15 ĵ cm. Determine the total work done on the particle.

[University of Manchester 2008]
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2.23 The potential energy of an object is given by

U (x) = 5x2 − 4x3

where U is in joules and x is in metres.

(i) What is the force, F(x), acting on the object?
(ii) Determine the positions where the object is in equilibrium and state

whether they are stable or unstable.

2.24 A body slides down a rough plane inclined to the horizontal at 30◦. If 70% of
the initial potential energy is dissipated during the descent, find the coefficient
of sliding friction.

[University of Bristol]

2.25 A ramp in an amusement park is frictionless. A smooth object slides down
the ramp and comes down through a height h, Fig. 2.13. What distance d
is necessary to stop the object on the flat track if the coefficient of friction
is μ.

Fig. 2.13

2.26 A spring is used to stop a crate of mass 50 kg which is sliding on a horizontal
surface. The spring has a spring constant k = 20 kN/m and is initially in its
equilibrium state. In position A shown in the top diagram the crate has a veloc-
ity of 3.0 m/s. The compression of the spring when the crate is instantaneously
at rest (position B in the bottom diagram) is 120 mm.

(i) What is the work done by the spring as the crate is brought to a stop?
(ii) Write an expression for the work done by friction during the stopping of

the crate (in terms of the coefficient of kinetic friction).
(iii) Determine the coefficient of friction between the crate and the surface.
(iv) What will be the velocity of the crate as it passes again through position

A after rebounding off the spring (Fig. 2.14a, b)?
[University of Manchester 2007]
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Fig. 2.14a

Fig. 2.14b

2.2.4 Collisions

2.27 Observed in the laboratory frame, a body of mass m1 moving at speed v col-
lides elastically with a stationary mass m2. After the collision, the bodies move
at angles θ1 and θ2 relative to the original direction of motion of m1. Find the
velocity of the centre of mass (CM) frame of m1 and m2.
Hence show that before the collision in the CM frame m1 and m2 are
approaching each other, m1 with speed m2v/(m1 + m2) and m2 with speed
m1v/(m1 + m2).
In the CM frame after the collision m1 moves off with speed m2v/(m1 + m2)

at an angle θ to its original direction. Draw a diagram showing the direction
and speed of m2 in the CM frame after the collision.
Find an expression for the speed m1 after the collision in the laboratory frame
in terms of m1, m2, v and the angle θ .

[University of Durham 2002]

2.28 Consider an off-centre elastic scattering of two objects of equal mass when
one is initially at rest.

(a) Show that the final velocity vectors of the two objects are orthogonal.
(b) Show that neither ball can be scattered in the backward direction.

2.29 A small ball of mass m is projected horizontally with velocity v. It hits a
spring of spring constant k attached inside an opening of a block resting on a
frictionless horizontal surface. Find the compression of the spring noting that
the block will slide due to the impact (Fig. 2.15).
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Fig. 2.15

2.30 Two equal spheres of mass 4 m are at rest and another sphere of mass m is
moving along their lines of centres between them. How many collisions will
there be if the spheres are perfectly elastic (Fig. 2.16)?

Fig. 2.16

2.31 Two particles of mass m1 and m2 and velocities u1 and αu2(α > 0) make an
elastic collision. If the initial kinetic energies of the two particles are equal,
what should be the ratios u1/u2 and m1/m2 so that m1 will be at rest after the
collision?

2.32 Two bodies A and B, having masses mA and mB, respectively, collide in a
totally inelastic collision.

(i) If body A has initial velocity vA and B has initial velocity vB, write down
an expression for the common velocity of the merged bodies after the
collision, assuming there are no external forces.

(ii) If vA = 5î + 3 ĵ m/s and vB = −î + 4 ĵ m/s and mA = 3mB/2, show
that the common velocity after the collision is

v = 2.6î + 3.4 ĵ m/s

(iii) Given that the mass of body A is 1200 kg and that the collision lasts for
0.2 s, determine the average force vectors acting on each body during the
collision.

(iv) Determine the total kinetic energy after the collision.

2.33 A particle has an initial speed v0. It makes a glancing collision with a second
particle of equal mass that is stationary. After the collision the speed of the
first particle is v and it has been deflected through an angle θ . The velocity
of the second particle makes an angle β with the initial direction of the first
particle.
Using the conservation of linear momentum principle in the x- and y-
directions, respectively, show that tan β = v sin θ/(v0 − v cos θ) and show
that if the collision is elastic, v = v0 cos θ (Fig. 2.17a,b).
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Fig. 2.17a

Fig. 2.17b

2.34 A carbon-14 nucleus which is radioactive decays into a beta particle, a neu-
trino and N-14 nucleus. In a particular decay, the beta particle has momentum
p and the nitrogen nucleus has momentum of magnitude 4p/3 at an angle of
90◦ to p. In what direction do you expect the neutrino to be emitted and what
would be its momentum?

2.35 If a particle of mass m collides elastically with one of mass m at rest, and
if the former is scattered at an angle θ and the latter recoils at an angle ϕ

with respect to the line of motion of the incident particle, then show that
m

M
= sin(2ϕ + θ)

sin θ
.

2.36 A body of mass M rests on a smooth table and another of mass m moving
with a velocity u collides with it. Both are perfectly elastic and smooth and
no rotations are set up by this collision. The body M is driven in a direction at
angle ϕ to the initial line of motion of the body m. Show that the velocity of

M is
2m

M + m
u cos ϕ.

2.37 A nucleus A of mass 2 m moving with velocity u collides inelastically with a
stationary nucleus B of mass 10 m. After collision the nucleus A travels at 90◦



2.2 Problems 61

with the incident direction while B proceeds at an angle 37◦ with the incident
direction.

(a) Find the speeds of A and B after the collision.
(b) What fraction of the initial kinetic energy is gained or lost due to the

collision.

2.38 A neutron moving with velocity v0 collides head-on with carbon nucleus of
mass number 12. Assuming that the collision is elastic

(a) calculate the fraction of neutron’s kinetic energy transferred to the carbon
nucleus and

(b) calculate the velocities of the neutron and the carbon nucleus after the
collision.

2.39 Show that in an elastic collision between a very light body and a heavy body
proceeds with twice the initial velocity of the heavy body.

2.40 A moving body makes a completely inelastic collision with a stationary body
of equal mass at rest. Show that half of the original kinetic energy is lost.

2.41 A bullet weighing 5 g is fired horizontally into a 2 kg wooden block resting on
a horizontal table. The bullet is arrested within the block which moves 2 m. If
the coefficient of kinetic friction between the block and surface of the table is
0.2, find the speed of the bullet.

2.42 A particle of mass m with initial velocity u makes an elastic collision with a
particle of mass M initially at rest. After the collision the particles have equal
and opposite velocities. Find (a) the ratio M/m; (b) the velocity of centre of
mass; (c) the total kinetic energy of the two particles in the centre of mass;
and (d) the final kinetic energy of m in the laboratory system.

2.43 Consider an elastic collision between an incident particle of mass m with M
initially at rest (m > M). Show that the largest possible scattering angle θmax =
sin−1(M/m).

2.44 The ballistic pendulum is a device for measuring the velocity v of a bullet
of mass m. It consists of a large wooden block of mass M which is sup-
ported by two vertical cords. When the bullet is fired at the block, it is dis-
lodged and the block is set in motion reaching maximum height h. Show that
v = (1 + M/m)

√
2gh

2.45 A fire engine directs a water jet onto a wall at an angle θ with the wall. Cal-
culate the pressure exerted by the jet on the wall assuming that the collision
with the wall is elastic, in terms of ρ, the density of water, A the area of the
nozzle, and v the jet velocity.

2.46 Repeat the calculation of (2.45) assuming normal incidence and completely
inelastic collision.
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2.47 A ball moving with a speed of 9 m/s strikes an identical stationary ball such
that after collision, the direction of each ball makes an angle 30◦ with the
original line of motion (see Fig. 2.18). Find the speeds of the two balls after
the collision. Is the kinetic energy conserved in the collision process?

[Indian Institute of Technology 1975]

Fig. 2.18

2.48 A ball is dropped from a height h onto a fixed horizontal plane. If the coeffi-
cient of restitution is e, calculate the total time before the ball comes to rest.

2.49 In prob. (2.48), calculate the total distance travelled.

2.50 In prob. (2.48), calculate the height to which the ball goes up after it rebounds
for the nth time.

2.51 In the case of completely inelastic collision of two bodies of mass m1 and m2
travelling with velocities u1 and u2 show that the energy that is imparted is
proportional to the square of the relative velocity of approach.

2.52 A projectile is fired with momentum p at an angle θ with the horizontal on a
plain ground at the point A. It reaches the point B. Calculate the magnitude of
change in momentum at A and B.

2.53 A shell is fired from a cannon with a velocity v at angle θ with the horizontal.
At the highest point in its path, it explodes into two pieces of equal masses.
One of the pieces retraces its path towards the cannon. Find the speed of the
other fragment immediately after the explosion.

2.54 A helicopter of mass 500 kg hovers when its rotating blades move through
an area of 45 m2. Find the average speed imparted to air (density of air =
1.3 kg/m3 and g = 9.8 m/s2)

2.55 A machine gun fires 100 g bullets at a speed of 1000 m/s. The gunman holding
the machine gun in his hands can exert an average force of 150 N against the
gun. Find the maximum number of bullets that can be fired per minute.

2.56 The scale of balance pan is adjusted to read zero. Particles fall from a height
of 1.6 m before colliding with the balance. If each particle has a mass of 0.1 kg
and collisions occur at 441 particles/min, what would be the scale reading in
kilogram weight if the collisions of the particles are perfectly elastic?
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2.57 In prob. (2.56), assume that the collisions are completely inelastic. In this case,
what would be the scale reading after time t?

2.58 A smooth sphere of mass m moving with speed v on a smooth horizontal
surface collides directly with a second sphere of the same size but of half the
mass that is initially at rest. The coefficient of restitution is e.

(i) Show that the total kinetic energy after collision is
mv2

6

(
2 + e2

)
.

(ii) Find the kinetic energy lost during the collision.
[University of Aberystwyth, Wales 2008]

2.59 A car of mass m = 1200 kg and length l = 4 m is positioned such that its rear
end is at the end of a flat-top boat of mass M = 8000 kg and length L = 18 m.
Both the car and the boat are initially at rest and can be approximated as
uniform in their mass distributions and the boat can slide through the water
without significant resistance.

(a) Assuming the car accelerates with a constant acceleration a = 4 m/s2

relative to the boat, how long does it take before the centre of mass of the
car reaches the other end of the boat (and therefore falls off)?

(b) What distance has the boat travelled relative to the water during this time?
(c) Use momentum conservation to find a relation between the velocity of the

car relative to the boat and the velocity of the boat relative to the water.
Hence show that the distance travelled by the boat, until the car falls off,
is independent of the acceleration of the car.

[University of Durham 2005]

2.2.5 Variable Mass

2.60 A rocket has an initial mass of m and a burn rate of

a = −dm/dt

(a) What is the minimum exhaust velocity that will allow the rocket to lift off
immediately after firing? Obtain an expression for (b) the burn-out velocity;
(c) the time the rocket takes to attain the burn-out velocity ignoring g; and
(d) the mass of the rocket as a function of rocket velocity.

2.61 A rocket of mass 1000 t has an upward acceleration equal to 0.5 g. How many
kilograms of fuel must be ejected per second at a relative speed of 2000 m/s
to produce the desired acceleration.

2.62 For the Centaur rocket use the data given below:
Initial mass m0 = 2.72 × 106 kg
Mass at burn-out velocity, mB = 2.52 × 106 kg
Relative velocity of exhaust gases vr = 55 km/s
Rate of change of mass, dm/dt = 1290 kg/s.
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Find
(a) the rocket thrust,
(b) net acceleration at the beginning,
(c) time to reach the burn-out velocity,
(d) the burn-out velocity.

2.63 A 5000 kg rocket is to be fired vertically. Calculate the rate of ejection of gas
at exhaust speed 100 m/s in order to provide necessary thrust to

(a) support the weight of the rocket and
(b) impart an initial upward acceleration of 2 g.

2.64 A flexible rope of length L and mass per unit length μ slides over the edge
of a frictionless table. Initially let a length y0 of it be hanging at rest over the
edge and at time t let a length y moving with a velocity dy/dt be over the
edge. Obtain the equation of motion and discuss its solution.

2.65 An open railway car of mass W is running on smooth horizontal rails under
rain falling vertically down which it catches and retains in the car. If v0 is the
initial velocity of the car and k the mass of rain falling into the car per unit
time, show that the distance travelled in time t is (Wv0/k) ln(1 + kt/W ).

[with courtesy from R.W. Norris and W. Seymour, Mechanics via
Calculus, Longmans, Green and Co., 1923]

2.66 A heavy uniform chain of length L and mass M hangs vertically above a
horizontal table, its lower end just touching the table. When it falls freely,
show that the pressure on the table at any instant during the fall is three times
the weight of the portion on the table.

[with courtesy from R.W. Norris and W. Seymour, Mechanics via
Calculus, Longmans, Green and Co., 1923]

2.67 A spherical rain drop of radius R cm falls freely from rest. As it falls it accu-
mulates condensed vapour proportional to its surface. Find its velocity when
it has fallen for t s.

[with courtesy from R.W. Norris and W. Seymour, Mechanics via
Calculus, Longmans, Green and Co., 1923]

2.3 Solutions

2.3.1 Motion of Blocks on a Plane

2.1 (a) Acceleration = Force

Total mass

a = F

(m1 + m2 + m3)
(1)
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(b) Tension T1 = Force acting on m1

T2 = m1a = m1 F

(m1 + m2 + m3)
(2)

where we have used (1).

Applying Newton’s second law to m2

m2a = T2 − T1

or T2 = m2a + T1 = (m1 + m2)a

T2 = (m1 + m2)F

(m1 + m2 + m3)
(3)

where we have used (1) and (2).

2.2 (a) The equations of motion are

ma = mg − T (1)

Ma = T − μMg (2)

Solving (1) and (2)

a = (m − μM)g

m + M
(3)

T = Mm

M + m
(1 + μ)g (4)

Thus with the introduction of friction, the acceleration is reduced and ten-
sion is increased compared to the motion on a smooth surface (μ = 0).

2.3 Fmax = (m1 + m2)a (1)

The condition that m1 may not slide is

a = μg (2)

Using (2) in (1)

Fmax = (m1 + m2)μg
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2.4 (a) The force of contact Fc between the blocks is equal to the force exerted on
m2:

Fc = m2a (1)

where the acceleration of the whole system is

a = F

m1 + m2
(2)

∴ Fc = m2 F

m1 + m2

(b) Here the contact force F ′
c is given by

F ′
c = m1a = m1 F

m1 + m2

Notice that F ′
c �= Fc simply because m1 �= m2.

2.5 (a) When the box is dragged, the horizontal component of F is F cos θ and the
vertical component (upward) is F sin θ as in Fig. 2.19. The reaction force
N on the box by the floor will be

Fig. 2.19

N = mg − F sin θ (1)

(b) The equation of motion will be

ma = F cos θ − μN = F cos θ − μ(mg − F sin θ)

∴ a = F

m
(cos θ + μ sin θ) − μg (2)

(c) When the box is pushed the horizontal component of F will be F cos θ and
the vertical component F sin θ (downwards), Fig. 2.20. The reaction force
exerted by the floor on the box will be

N ′ = mg + F sin θ (3)

which is seen to be greater than N (the previous case).
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The equation of motion will be

ma′ = F cos θ − μN ′ = F cos θ − μ(mg + F sin θ)

∴ a′ = F

m
(cos θ − μ sin θ) − μg (4)

a value which is less than a (the previous case). It therefore pays to pull
rather than push at an angle with the horizontal. The difference arises due
to the smaller value of the reaction in pulling than in pushing. This fact
is exploited in handling a manual road roller or mopping a floor, which is
pulled rather than pushed.

Fig. 2.20

2.6 Let x be the length of the chain hanging over the table. The length of the chain
resting on the table will be L − x . For equilibrium, gravitational force on the
hanging part of the chain = frictional force on the part of the chain resting on
the table. If M is the mass of the entire chain then

Mg x

L
= M(L − x)

L
μg

∴ x = μL

μ + 1

2.7 First method: The centre of mass of the hanging part of the chain is located at
a distance L/6 below the edge of the table, Fig. 2.21. The mass of the hanging
part of the chain is M/3. The work done to pull the hanging part on the table

W = Mg

3

L

6
= MgL

18

Second method: We can obtain the same result by calculus. Consider an element
of length dx of the hanging part at a distance x below the edge. The mass of the
length dx is M dx

L . The work required to lift the element of length dx through a
distance x is

dW = M dx

L
g x
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Fig. 2.21

Work required to lift the entire hanging part is

W =
∫

dW =
L/3∫

o

Mg

L
x dx = MgL

18

2.8 (a) The equations of motion are

Ma = mg − T (1)

ma = T − Mgμ (2)

Solving (1) and (2)

a = (m − μM)g

M + m
= (0.45 − 0.2 × 2)9.8

2 + 0.45
= 0.2 m/s2

(b) T = m(g − a) = 0.45(9.8 − 0.2) = 4.32 N

(c) After 2 s, the velocity will be

υ1 = 0 + at = 0.2 × 2 = 0.4 m/s1

When the string breaks, the acceleration will be a1 = −μg = − 0.2×9.8 =
−1.96 m/s2 and final velocity v2 = 0:

S = v2
2 − v2

1

2a1
= 0 − (0.4)2

(2)(−1.96)
= 0.0408 m = 4.1 cm

2.3.2 Motion on Incline

2.9 (a) Gravitational force down the incline is Mg sin θ . Frictional force up the
incline is μmg cos θ . Net force
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F = μ Mg cos θ − Mg sin θ = Mg(μ cos θ − sin θ)

= 2 × 9.8

(√
3

2
cos 30◦ − sin 30◦

)
= 4.9 N

(b) F ′ = Mg sin θ + μ Mg cos θ = Mg(sin θ + μ cos θ)

= 2 × 9.8

(
sin 30◦ +

√
3

2
cos 30◦

)
= 24.5 N

2.10 y = x2

20

dy

dx
= tan θ = x

10

For equilibrium, mg sin θ − μmg cos θ = 0

∴ tan θ = μ = 0.5

x = 10 tan θ = 10 × 0.5 = 5

y = x2

20
= 52

20
= 1.25 m

2.11 (a) μ = tan θ = tan 30◦ = 0.577
(b) ma = −(mg sin θ + μ mg cos θ)

∴ a = −g(sin θ + μ cos θ) = −g(sin θ + tan θ cos θ)

= −9.8(2 sin 30◦) = −9.8

s = v2
0

−2a
= (2.5)2

2 × 9.8
= 0.319 m

Initial kinetic energy

K = 1

2
mv2

0

Potential energy U = mgh = mgs sin θ

∴ U

K
= 2 mgs sin θ

mυ2
0

= 2 × 9.8 × 0.319 × sin 30◦

(2.5)2
= 0.5

The remaining energy goes into heat due to friction.
(c) It will not slide down as the coefficient of static friction is larger than the

coefficient of kinetic friction.
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2.12 (a) The torque due to the external gravitational force on M1 will be M1gr ,
and the torque due to the external gravitational force on M2 will be the
component of M2g along the string times r , i.e. (M2g sin θ)gr . Now,
these two torques act in opposite directions. Taking the counterclockwise
rotation of the pulley as positive and assuming that the mass M1 is falling
down, the net torque is

τ = M1gr − (M2g sin θ)r = (M1 − M2 sin θ)gr (1)

and pointing out of the page.
(b) When the string is moving with speed υ, the pulley will be rotating with

angular velocity ω = v/r , so that its angular momentum is

Lpulley = Iω = Iv

r

and that of the two blocks will be

L M1 = r M1v L M2 = r M2v

All the angular momenta point in the same direction, positive if M1 is
assumed to fall. The total angular momentum is then given by

L total = v

[
(M1 + M2)r + I

r

]
(2)

(c) Using (1) and (2)

τ = dL

dt
= dυ

dt

[
(M1 + M2)r + 1

r

]
= [M1 − M2 sin θ ] gr

The acceleration a = dv

dt
= [M1 − M2 sin θ ] g

(M1 + M2) + 1
r 2

2.13 (i) ma = F − mg sin θ (equation of motion, up the incline)

F = ma + mg sin θ = m(a + g sin θ)

= (1.0)(1 + 9.8 × 0.5) = 5.9 N (θ = 30◦)

(ii) ma = F + mg sin θ (equation of motion, down the incline)

∴ F = ma − mg sin θ = m(a − g sin θ)

= (1.0)(1 − 9.8 × 0.5) = −3.9 N

The negative sign implies that the force F is to be applied up the incline.

2.14 The displacement on the edge is measured by s while that on the floor by x . As
the mass m goes down the wedge the wedge itself would start moving towards



2.3 Solutions 71

left, Fig. 2.22. Since the external force in the horizontal direction is zero, the
component of momentum along the x-direction must be conserved:

Fig. 2.22

(M + m)
dx

dt
− m

ds

dt
cos α = 0 (1)

Since the wedge is smooth, the only force acting down the plane is mg sin α

m

(
d2s

dt2
− d2 x

dt2
cos α

)
= mg sin α (2)

Differentiating (1)

(M + m)
d2 x

dt2
− m cos α

d2 s

dt2
= 0 (3)

Solving (2) and (3)

d2 s

dt2 = (M + m)g sin α

M + m sin2 α
(acceleration of m)

d2 x

dt2 = mg sin α cos α

M + m sin2 α
(acceleration of M)

2.15 The lighter body of mass m1 = m moves up the plane with acceleration a1 and
the heavier one of mass m2 = 3 m moves down the plane with acceleration
a2. Assuming that the string is taut, the acceleration of the two masses must
be numerically equal, i.e.
a2 = a1 = a. Let the tension in the string be T .
The equations of motion of the two masses are

F1 = m1a1 = ma = T − mg sin θ (1)

F2 = m2a2 = 3ma = 3mg sin θ − T (2)

Adding (1) and (2)

a = g

2
√

2
(3)
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aCM = m1 a1 + m2 a2

m1 + m2
= a1 + 3a2

4
(4)

In Fig. 2.23 BA represents a1 and AC represents 3a2. Therefore, BC the third
side of the �ABC represents |a1 + 3a2|. Obviously BÂC is a right angle so
that

|a1 + 3a2| = BC =
√

a2
1 + (3a2)2 = √

10a

∴ aCM = 1

4

√
10a =

√
10

4

g

2
√

2
=

√
5

8
g (5)

In Fig. 2.23, BD is parallel to the base so that AB̂D = 45◦. Let CB̂D = α.

Now tan(α + 45◦) = tan α + tan 45◦

1 − tan α tan 45◦ = tan α + 1

1 − tan α
(6)

Further, in the right angle triangle ABC,

tan ̂ABC = tan(α + 45◦) = AC

AB
= 3 (7)

Combining (6) and (7) tan α = 1

2
or α = tan−1

(
1

2

)
.

Thus aCM is at an angle tan−1
(

1

2

)
to the horizon.

Fig. 2.23

2.16 (a) Free body diagram (Fig. 2.24)

(b) m1a = T1 − m1g sin 30◦ (1)

m2a = m2 sin 60◦ − T2 (2)

(T2 − T1)r = Iα =
(

1

2
Mr2

)(a

r

)
(3)
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Fig. 2.24

(c) Combining (1), (2) and (3) and simplifying

a =
g
(√

3m2 − m1

)

M + 2(m2 + m1)

2.17 Let m1 = 2.1 kg and m2 = 1.9 kg, Fig. 2.25. As the pulley is weightless the
tension is the same on either side of the pulley. Equations of motion are as
follows:

Fig. 2.25

m1a = m1g − T (1)

m2a = T − m2g (2)

Adding (1) and (2)

(m1 + m2)a = (m1 − m2)g

∴ a = (m1 − m2) g

m1 + m2
= (2.1 − 1.9)9.8

2.1 + 1.9
= 0.49 m/s2
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Distance travelled by either mass, s = 40 cm. Time taken

t =
√

2s

a
=
√

2 × 0.4

0.49
= 1.28 s.

2.18 Equations of motion are

ma1 = mg sin θ − μmg cos θ (rough incline)

ma2 = mg sin θ (smooth incline)

∴ a1 = (sin θ − μ cos θ)g

a2 = g sin θ

t1 =
√

2s

a1
t2 =

√
2s

a2
∴ t1

t2
= 4

3
√

sin θ

sin θ − μ cos θ
=
√

sin 45◦
sin 45◦ − μ cos 45◦ = 1√

1 − μ

∴ μ = 7

16

2.19 The normal reaction N = mg cos θ

Resultant downward force F = mg sin θ − μmg cos θ

Given that N = 2F

mg cos θ = 2 mg(sin θ − 0.5 cos θ)

∴ tan θ = 1 → θ = 45◦

2.20 By prob. (2.17), each mass will have acceleration

a = (m1 − m2)g

m1 + m2

The heaver mass m1 will have acceleration a1 vertically down while the lighter
mass m2 will have acceleration a2 vertically up:

a2 = −a1

The acceleration of the centre of mass of the system will be

aCM = m1 a1 + m2 a2

m1 + m2
= (m1 − m2)a1

m1 + m2

∴ aCM = (m1 − m2)
2g

(m1 + m2)2
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2.21 Free body diagrams for the two blocks and the pulley are shown in Fig. 2.26.
The forces acting on m2 are tension T2 due to the string, gravity, frictional
force f2 due to the movement of m1 and the normal force which m1 exerts on
it to prevent if from moving vertically. The forces on m1 due to m2 are equal
and opposite to those of m1 on m2. By Newton’s third law the tensions T1 and
T2 in the thread are not equal as the pulley has mass. The equations of motion
for m1, m2 and the pulley are

m1a = F − f1 − f2 − T1 (1)

m2a = T2 − f2 (2)

α I = I
a

r
= r(T1 − T2) (3)

Balancing the vertical forces

N2 = m2g

N1 = N2 + m1g = (m1 + m2) g

Frictional forces are

f2 = μN2 = μm2g (4)

f1 = μN1 = μ(m1 + m2)g (5)

Combining (1), (2), (3), (4) and (5), eliminating f1, f2 and T

a = F − μ(m1 + 3m2)g

m1 + m2 + I
r2

Fig. 2.26

2.3.3 Work, Power, Energy

2.22 Net force F = F1 + F2 = (î + 2 ĵ + 3k̂) + (4î − 5 ĵ − 2k̂)

= 5î − 3 ĵ + k̂
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Displacement r12 = r1 − r2 = 7k̂ − (20î + 15 ĵ) = (−20î − 15 ĵ − 7k̂) cm

Work done W = F · r12 = (5î − 3 ĵ + k̂) · (−0.20î − 0.15 ĵ + 0.07k̂)

= − 0.48 J.

2.23 (i) U (x) = 5x2 − 4x3

F(x) = −dU

dx
= −(10x − 12x2) = 12x2 − 10x

(ii) For equilibrium F(x) = 0

x(12x − 10) = 0 or x = 5/6 m or 0

dF

dx
= 24x − 10

dF

dx
|x=0 = (24x − 10)|x=0 = −10

The position x = 0 is stable:

dF

dx

∣∣∣x= 5
6

= (24x − 10)

∣∣∣
x= 5

6

= +10

The position x = 5/6 is unstable.

2.24 Let the body travel a distance s on the incline and come down through a
height h.
Potential energy lost = mgh = mgs sin θ .
Work down against friction W = fs = μmg cos θ · s.

By problem μ mg cos θs = 70

100
mgs sin θ

∴ μ = 0.7 tan θ = 0.7 tan 30◦ = 0.404

2.25 At the bottom of the ramp the kinetic energy K available is equal to the loss
of potential energy, mgh:

K = mgh

On the flat track the entire kinetic energy is used up in the work done against
friction

W = fd = μmgd

∴ μ mgd = mgh

μ = h

d
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2.26 (i) Work done by the spring Ws = 1

2
kx2 = 1

2
× 20 × 103 × (0.12)2 = 144 J

(ii) Work done by friction Wf = 1
2 mv2 − Ws = 1

2 × 50 × 32 − 144 = 81 J
(iii) Wf = μmgs

∴ μ = Wf

mgs
= 81

50 × 9.8 × (0.60 + 0.12)
= 0.2296

(iv) If v1 is the velocity of the crate as it passes position A after rebonding

1

2
mv2

1 = Ws − μ mgs

1

2
× 50v2

1 = 144 − 0.2296 × 50 × 9.8 × (0.60 + .012) = 63

∴ v1 = 1.587 m/s

2.3.4 Collisions

2.27 In the CMS the velocity of m1 will be v∗
1 = v − vc and that of m2 will be

v∗
2 = −vc, Fig. 2.27. By definition in the CMS total momentum is zero:

Fig. 2.27

m1�v∗
1 + m2�v∗

2 = 0

∴ m1(v − vc) − m2vc = 0

∴ vc = v∗
2 = m1v

m1 + m2
(1)

∴ v∗
1 = v − vc = m2v

m1 + m2
(2)

Note that as the collision is elastic, the velocities of m1 and m2 after the colli-
sion in the CMS remain unchanged. The lab velocity v1 of m1 is obtained by
the vectorial addition of v∗

1 and v∗
c . From the triangle ABC, Fig. 2.28. After

collision

v2
1 = v∗2

1 + v2
c − 2v∗

1vc cos(180◦ − θ) (3)
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Fig. 2.28

Using (1) and (2) and simplifying

v1 = v

m1 + m2

√
m2

1 + m2
2 + 2m1m2 cos θ (4)

2.28 (a) Let the initial momentum of one object be p. After scattering let the
momenta be p1 and p2, with the angle θ between them, Fig. 2.29.

p = p1 + p2 (momentum conservation)

∴ ( p · p) = p2 = ( p1 + p2) · ( p1 + p2)

= p1 · p1 + p2 · p2 + p1 · p2 + p2 · p1 = p2
1 + p2

2 + 2 p1 + p2 (1)

p2

2m
= p2

1

2m
+ p2

2

2m
(energy conservation) or p2 = p2

1 + p2
2 (2)

Combining (1) and (2), 2 p1 · p2 = 0

∴ p1 and p2 are orthogonal

Fig. 2.29a

Fig. 2.29b
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Fig. 2.30

(b) Suppose one of the objects (say 2) is scattered in the backward direction
then the momenta would appear as in Fig. 2.30, and because by (a) the angle
between p1 and p2 has to be a right angle, both the objects will be scattered on
the same side of the incident direction (x-axis). In that case, the y-component
of momentum cannot be conserved as initially

∑
py = 0. Both the objects

cannot be scattered in the backward direction. In that case the x-component
of momentum cannot be conserved.

2.29 We work out in the CM system. The total kinetic energy available in the
CMS is

= K ∗ = 1

2
μv2 (1)

where μ = m M

m + M
(2)

is the reduced mass.

If the compression of the spring is x then the spring energy would be
1

2
kx2.

Equating the total kinetic energy available in the CM–system to the spring
energy

1

2
μv2 = 1

2
kx2

x = v

√
μ

k
= v

√
m M

k(m + M)

2.30 After the first collision (head-on) with the sphere 2 on the right-hand side,
sphere 1 moves with a velocity

v1 = 2m2u2 + u1(m1 − m2)

m1 + m2
= 0 + u1(m − 4m)

m + 4m
= −0.6u1 (1)

and the sphere 2 moves with a velocity

v2 = 2m1u1 + u2(m2 − m1)

m1 + m2
= 2mu1 + 0

m + 4m
= 0.4u1 (2)
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where u and v with appropriate subscripts refer to the initial and final
velocities.
The negative sign shows that the ball 1 moves toward left after the collision
and hits ball 3. After the second collision with ball 3, ball 2 acquires a velocity
v2 and moves toward right

v′
1 = 2m3u3 + υ1(m1 − m3)

m1 + m3
= 0 − u1(m1 − 4m)

m + 4m
= 0.36u1 (3)

But v′
1 < v2. Therefore ball 1 will not undergo the third collision with ball 2.

Thus in all there will be only two collisions.

2.31 Momentum conservation gives m1 u1 + m2 u2 = m2 v2 (1)

Conservation of kinetic energy in elastic collision gives

1

2
m1u2

1 + 1

2
m2u2

2 = 1

2
m2v

2
2 (2)

By the problem
1

2
m1u2

1
= 1

2
m2u2

2
(3)

u2 = αu1 (4)

∴ α2 = m1

m2
(5)

Using (3) in (2)

m2u2
2 = 1

2
m2v

2
2

∴ v2 = √
2u2 (6)

Using (4) and (6) in (1)

m1u1 + m2αu1 = √
2m2u2 = √

2m2αu1

or m1 + m2α = √
2αm2

Dividing by m2 and using (5) and rearranging

α
[
α −

(√
2 − 1

)]
= 0

since α �= 0, α = √
2 − 1

∴ α = u2

u1
= √

2 − 1

∴ u1

u2
= 1√

2 − 1
= √

2 + 1
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From (5)

m1

m2
= α2 =

(√
2 − 1

)2 = 3 − 2
√

2

2.32 (i) If the common velocity of the merged bodies is v then momentum con-
servation gives

(mA + mB)v = mAvA + mBvB

∴ v = mAvA + mBvB

mA + mB

(ii) v =
3

2
mB(5î + 3 ĵ) + mB(−î + 4 ĵ)

3

2
mB + mB

= 2.6î + 3.4 ĵ

(iii) � pA = mA(υ − υA) = mA

[
2.6î + 3.4 ĵ − (5î + 3 ĵ)

]

= mA

[
−2.4î + 0.4 ĵ

]

�pA = 1200
√

(−2.4)2 + (0.4)2 = 2920 N m

FA = �pA

�t
= 2920

0.2
= 14,600 N

� �pB = mB(�υ − �υB) = mB

[
2.6î + 3.4 ĵ − (−î + 4 ĵ)

]

= mB

[
3.6î − 0.6 ĵ

]

mB = 2

3
mA = 2

3
× 1200 = 800 kg

�pB = 800
√

(3.6)2 + (−0.6)2 = 2920 N m

FB = �pB

�t
= 2920

0.2
= 14,600 N

(iv) K ′ = 1

2
(mA + mB)υ2 = 1

2
(1200 + 800)

[
(2.6)2 + (3.4)2] = 18, 320 J

2.33 Let the velocity of the particle moving below the x-axis be v’. Momentum
conservation along x- and y-axis gives

mv0 = mv cos θ + mv′ cos β (1)

0 = mv sin θ − mv′ sin β (2)
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Cancelling m and reorganizing (1) and (2)

v′ cos β = v0 − v cos θ (3)

v′ sin β = v sin θ (4)

Dividing (4) by (3)

tan β = v sin θ

vo − v cos θ
(5)

If the collision is elastic, kinetic energy must be conserved:

1

2
mv2

0 = 1

2
mv2 + 1

2
mv′2 (6)

or v2
0 = v2 + v′2 (7)

Squaring (3) and (4) and adding

v′2 = v2 + v2
0 − 2v0v cos θ (8)

Eliminating v′2 between (7) and (8) and simplifying

v = v0 cos θ

2.34 The momenta of β and 14N are indicated in both magnitude and direction
in Fig. 2.31. The resultant R of these momenta is given from the diagonal
AC of the rectangle (parallelogram law). The momentum of u is obtained by
protruding CA to E such that AE = AC:

Fig. 2.31 Decay of 14C at
rest
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R =
√

AB2 + BC2 =
√

p2 + (4p/3)2 = 5p

3

tan θ = BC

AB
= 4p/3

p
= 4

3

∴ θ = 53◦

Thus the neutrino is emitted with momentum 5p/3 at an angle (180 − 53◦) or
127◦ with respect to the β particle.

2.35 Denoting the angles with (*) for the CM system transformation of angles for
CMS to LS is given by

tan θ = sin θ∗

cos θ∗ + m

M

(1)

But θ∗ = π − φ∗ = π − 2φ

∴ sin θ∗ = sin(π − 2φ) = sin 2φ

cos θ∗ = cos(π − 2φ) = − cos 2φ

(i) becomes

tan θ = sin 2φ
m

M
− cos 2φ

Furthermore
sin θ

cos θ
= sin 2φ

m

M
− cos 2φ

Cross-multiplying and rearranging

m

M
sin θ = sin θ cos 2φ + cos θ sin 2φ = sin(θ + 2φ)

∴ m

M
= sin(2φ + θ)

sin θ

2.36 In the lab system let M be projected at an angle φ with velocity v. In the
CMS the velocity v∗ for the struck nucleus will be numerically equal to vc,
the centre of mass velocity. Therefore, M is projected at an angle 2φ with

velocity v∗ = mv

M + m
. The CM system velocity vc = mv

M + m
. The velocities

v∗ and vc must be combined vectorially to yield v, Fig. 2.32. Since vc = v∗
the velocity triangle ABC is an isosceles triangle. If BD is perpendicular on
AC, then
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AC = 2AD = 2AB cos φ

∴ v = 2v∗ cos φ = 2mu cos φ

M + m

Fig. 2.32

2.37 (a) Kinetic energy of A before collision KA = 1

2
(2m)u2 = mu2. Since B

is initially stationary, its kinetic energy KB = 0. Hence before collision,
total kinetic energy K0 = mu2 + 0 = mu2.
Let A and B move with velocity υA and υB, respectively, after the colli-
sion, Fig. 2.33. Total kinetic energy after the collision,

Fig. 2.33

K ′ = K ′
A + K ′

B = 1

2
(2m)v2

A + 1

2
(10m)v2

B = mv2
A + 5mv2

B

If an energy Q is lost in the collision process, conservation of total energy
gives

mu2 = mv2
A + 5mv2

B + Q (1)

Applying momentum conservation along the incident direction and per-
pendicular to it

2mu = 10mvB cos 37◦ = 8mvB (2)

2mvB = 10mvB sin 37◦ = 6mvB (3)

From (2) and (3) we find
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vA = 3u

4
; vB = u

4

(b) From (1), Q = m(u2 − v2
A − 5v2

B)

= m

(
u2 − 9u2

16
− 5u2

16

)
= mu2

8

∴ Q

kA
= mu2/8

mu2
= 1

8

Since Q is positive, energy is lost in the collision process.

2.38 (a) In the elastic collision (head-on) of a particle of mass m1 and kinetic
energy K1 with a particle of mass m2 initially at rest, the fraction of
kinetic energy imparted to m2 is

K2

K0
= 4m1m2

(m1 + m2)2 = 4 × 1 × 12

(1 + 12)2 = 48

169

(b)

1
2 m2v

2
2

1
2 m1v

2
1

= 12

1

v2
2

v2
0

= 48

169

∴ v2 = 2

13
v0

K1 = K0 − K2 = K0 − 48

169
K0 = 121

169
K0

∴ 1

2
m1v

2
1 = 121

169
× 1

2
m1v

2
0

∴ v1 = −11

13
v0

Negative sign is introduced because neutron being lighter then the carbon
nucleus will bounce back.

2.39 Let the heavy body of mass M with momentum P0 collide elastically with a
very light body of mass m be initially at rest. After the collision both the bodies
will be moving in the direction of incidence, the heavier one with velocity vH
and the lighter one with velocity vL .
Momentum conservation gives

p0 = pL + pH (1)

Energy conservation gives

p2
0

2M
= p2

L

2m
+ p2

H

2M
(2)
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Eliminating pH between (1) and (2) and simplifying

PL = 2p0m

M + m

mvL = 2Mum

M + m

or vL = 2uM

M + m
= 2u (∵ m << M)

2.40 Let a body of mass m1 moving with velocity u make a completely inelastic
collision with the body of mass m2 initially at rest. Let the combined mass
moves with a velocity vc given by

vc = m1u

m1 + m2
= u

2
(∵ m1 = m2)

Energy lost = 1

2
mu2 − 1

2
(2m)

(u

2

)2 = 1

4
mu2 = 1

2
K0

where K0 = 1
2 mu2 is the initial kinetic energy.

2.41 Let the speed of the bullet be u. Let the block + bullet system be travelling
with initial speed v. If m and M are the masses of the bullet and the block,
respectively, then momentum conservation gives

mu = (M + m)v (1)

∴ v = mu

M + m
(2)

The initial kinetic energy of the block + bullet system

K = 1

2
(M + m)v2 = 1

2

m2u2

(M + m)

Work done to bring the block + bullet system to rest in distance s is

W = μ(M + m)gs = 1

2

m2u2

(M + m)

∴ u = (M + m)

m

√
2μ gs = (2.000 + 0.005)

0.005

√
2 × 0.2 × 9.8 × 2

= 1123m/s

2.42 (a) Let m1 = m with velocity u collide with m2 = M , initially at rest. For
elastic collision the final velocities will be

v1 = (m1 − m2)

m1 + m2
u = (m − M)

m + M
u (m < M) (1)
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v2 = 2m1

m1 + m2
u = 2mu

m + M
(2)

By problem − v1 = v2 (3)

Combining (1), (2) and (3)

M

m
= 3 (4)

(b) vc = mu

M + m
= mu

3m + m
= u

4
(5)

(c) K ∗ = K1
∗ + K2

∗ = 1

2
mv1

∗2 + 1

2
Mv2

∗2

But v1
∗ = Mu

M + m
= 3mu

3m + m
= 3u

4

v2
∗ = −vc = −u

4

∴ K ∗ = 1

2
m

(
3u

4

)2

+ 1

2
3m

(u

4

)2 = 3

8
mu2

(d) K1(final) = 1

2
mv2

1 = 1

8
mu2

where we have used (1) and (4).

2.43 We can work out this problem in the lab system. But we prefer to use the
centre of mass system. The CMS and LS scattering angles are related by

tan θ = sin θ∗

cos θ∗ + M

m

(1)

θmax is obtained from the condition

d tan θ

d θ∗ = 0 (2)

This gives cos θ∗ = m

M
(3)

∴ sin θ∗ =
√

M2 − m2

M
(4)
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Use (3) and (4) in (1) to get

1 + cot2 θ = cos ec2θ = M2

m2

∴ sin θmax = m

M

or θmax = sin−1
( m

M

)

2.44 Momentum of the bullet before collision = momentum of the block + bullet
system immediately after collision, Fig. 2.34:

Fig. 2.34

mv = (m + M)V (1)

where V is the initial speed of the block + bullet system. The kinetic energy
of the system immediately after the impact is

K = 1

2
(m + M)V 2 (2)

Due to the impact, the pendulum would swing to the right and would be raised
through the maximum height h vertically above the rest position of the pen-
dulum, Fig. 2.34. At this point, the kinetic energy of the pendulum is entirely
converted into gravitational potential energy:

1

2
(m + M)V 2 = (m + M)gh (3)

∴ V = √
2gh (4)

Using (4) in (1)

v =
(

1 + M

m

)√
2gh (5)
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By measuring h and knowing m and M , the original velocity of the bullet can
be calculated.

2.45 Let the area of the nozzle through where the jet comes be A m2. The mass of
water in the jet per second is ρ A v, where ρ is the density of water and v the
get velocity.
The momentum associated with this volume of water is

p = (ρ Av)v = ρ Av2 (1)

The momentum after hitting the wall will also be equal to ρ Av2 since the
collision is assumed to be elastic. Resolve the momentum along the x-axis
and y-axis, Fig. 2.35.

Fig. 2.35

The change of the x-component of momentum is

�px = p sin θ − (−p sin θ) = 2p sin θ (2)

The change in the y-component of momentum is

�py = p cos θ − p cos θ = 0 (3)

Then �p = �px = 2p sin θ = 2ρ Av2 sin θ (4)

Pressure exerted on the wall will be

P = �p

A
= 2ρv2 sin θ (5)

For normal incidence, θ = 90◦ and

P = 2ρv2 (6)
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2.46 For completely inelastic collision there is no rebounding of the jet. The pres-
sure on the wall is given by

P = ρv2 sin θ (1)

For normal incidence, θ = 90◦ and

P = ρv2 (2)

2.47 Resolve the momentum mv1 and mv2 along the original line of motion and
in a direction perpendicular to it. Along the original line of motion, the initial
momentum must be equal to the sum of the components of momentum after
the collision:

mv0 = mv1 cos 30◦ + mv2 cos 30◦ (1)

In the direction perpendicular to the original direction of motion, the sum of
components of momentum after the collision must be equal to zero because
before collision the balls do not have any component of momentum in the
perpendicular direction:

mv1 sin 30◦ − mv2 sin 30◦ = 0

or v1 = v2 (2)

This result could have been anticipated from symmetry.
Using (2) in (1)

v0 = 2v1 cos 30◦ = √
3v1

or v1 = v2 = v0√
3

= 9√
3

= 5.19 m/s

Total kinetic energy of the two balls before collision

K0 = 1

2
mv2

0 + 0 = 1

2
mv2

0 (3)

Total kinetic energy after the collision

K ′ = 1

2
mv2

1 + 1

2
mv2

2 = mv2
1 = 1

3
mv2

0 (4)

On comparing (3) and (4) we conclude that kinetic energy is not conserved.
The collision is said to be inelastic.
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2.48 Time taken for the ball to reach the plane in the initial fall

t0 =
√

2h

g
(1)

Velocity with which it reaches the plane

u1 = √
2gh (2)

The velocity with which it rebounds from the plane

v1 = eu1 = e
√

2gh (3)

Time to reach the plane again

t1 = 2v1

g
= 2e

√
2h

g
= 2et0

If this process is repeated indefinitely the total time

T = t0 + t1 + t2 + · · · + t∞ = t0 + 2et0 + 2e2t0 + · · ·
= t0[1 + 2e(1 + e + e2 + · · · )]

= t0

[
1 + 2e

1 − e

]
=
√

2h

g

1 + e

1 − e

where we have used the formula for the sum of infinite number of terms of a
geometric series.

2.49 Total distance traversed

S = h + 2h1 + 2h2 + · · · = h + 2e2h + 2e4h + 2e6h + · · ·

= h

[
1 + 2e2

1 − e2

]
= h

(1 + e2)

1 − e2

2.50 On the first bounce, v1 = e
√

2gh

On the second bounce, v2 = e2
√

2gh

On the nth bounce, vn = en
√

2gh

hn = v2
n

2g
= e2nh
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2.51 Let the two bodies of mass m1 and m2 be travelling with the velocities u1 and
u2 before the impact, and the combined body of mass m1 + m2 with velocity
v after the impact is

v = m1u1 + m2u2

m1 + m2
(1)

Energy wasted = total kinetic energy before the collision minus total kinetic
energy after the collision

W =
(

1

2
m1u1

2 + 1

2
m2u2

2
)

− 1

2
(m1 + m2)v

2

= 1

2
m1u1

2 + 1

2
m2u2

2 − 1

2

(m1u1 + m2u2)
2

m1 + m2
= 1

2

m1m2

m1 + m2
(u1 − u2)

2

2.52 Resolve the momentum along x- and y-axes at points A and B, Fig. 2.36. Take
the downward direction as positive:

px (A) = p cos θ px (B) = p cos θ

py(A) = −p sin θ py(B) = p sin θ

Then �px = px (B) − px (A) = p cos θ − p cos θ = 0

�py = py(B) − py(A) = p sin θ − (−p sin θ) = 2p sin θ

∴ �p = �py = 2p sin θ

Fig. 2.36

2.53 Let the shell of mass 2m explode into two pieces each of mass m. At the
highest point the entire velocity consists of the horizontal component (v cos θ)

alone. Since one of the components retraces its path, it follows that it has
velocity − v cos θ , and therefore a momentum −mv cos θ . Let the momentum
of the other pieces be p. Now, the momentum of the shell just before the
explosion was 2mv cos θ momentum conservation gives
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p − mv cos θ = 2mv cos θ

∴ p = 3mv cos θ

∴ velocity = p

m
= 3v cos θ

2.54 Volume of air moving down per second = Av, where v is the air velocity
moving down through an area A.
Mass of air moving down per second = ρ Av

F = �p

�t
=
(mass

sec

)
(�v) = ρ Av2

Reaction force upward = Helicopter’s weight

ρ Av2 = Mg

v =
√

Mg

ρ A
=
√

500 × 9.8

1.3 × 45
= 9.15 m/s

2.55 If v is the velocity of each bullet of mass m and n the number of bullets that
can be fired per second then rate of change of momentum will be

�p

�t
= mnv (1)

∴ �p

�t
= F = mnv (2)

n = F

mv
= 150

(0.1)(1000)
= 1.5/s

Thus the number of bullets that can be fired per minute will be 60 × 1.5 = 90.

2.56 If v is the velocity with which a particle of mass m falls on the balance pan,
momentum before impact is mv and after impact −mv so that

�p = −mv − mv = −2mv (1)

If height of fall is h then

v = √
2gh = √

2 × 9.8 × 1.6 = 5.6 m/s (2)
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If n particles fall per second, the force exerted on the pan is

F = +2mnv = (2)(0.1)

(
441

60

)
(5.6) = 8.232 N

= 8.232

9.8
kg wt = 0.84 kg wt

2.57 In this case, the particles will stick to the pan. Therefore the scale reading will
increase due to the weight of the particles that get accumulated in the pan.
For complete inelastic collision �p = mv as the final momentum is zero. Net
force on the scale = weight of the particle + force of impact. At time t , scale
reading (in newtons)

= mngt + mn
√

2gh

= mng

[
t +

√
2h

g

]

Scale reading in kg wt = mn

[
t +

√
2h

g

]

2.58 Let a sphere of mass m1 travelling with velocity u1 collide with the second
sphere of mass m2 at rest, with their centres in straight line. After the collision
let the final velocities be v1 and v2, respectively, for m1 and m2. By definition
the coefficient of restitution e is given by the ratio

e = Relative velocity of separation

Relative velocity of approach
= v2 − v1

v1
(1)

Momentum conservation requires that total momentum before collision =
total momentum after collision:

m1u1 = m1v1 + m2v2 (2)

Eliminating v2 between (1) and (2),

v1 = (m1 − em2)u1

m1 + m2
(3)

v2 = m1(1 + e)u1

m1 + m2
(4)

(i) Putting u1 = u, m1 = m and m2 = m

2

v1 = u

3
(2 − e) (5)

v2 = 2u

3
(1 + e) (6)
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Total energy after the collision

K ′ = K1 + K2 = 1

2
mv2

1 + 1

2

(m

2

)
v2

2 (7)

Using (5) and (6) in (7) and simplifying

K ′ = mu2

6
(2 + e2) (8)

(ii) Kinetic energy lost during the collision

�K = K0 − K ′ = 1

2
mu2 − mu2

6
(2 + e2) = mu2

6
(1 − e2)

2.59 (a) Distance traversed by the car before it falls off, s = 18 − 2 = 16 m:

t =
√

2s

a
=
√

2 × 16

4
= 2

√
2 s

(b) By Newton’s third law, the force exerted by the car is equal to that by
boat + car

(M + m)aB = ma

where M = 8000 kg, m = 1200, a = 4 m/s2

The acceleration of the boat aB = ma
M+m = 0.26 m/s2

The distance travelled by the boat in the opposite direction

sB = 1

2
aBt2 = 1

2
× 0.26 ×

(
2
√

2
)2 = 104 m

(c) Momentum conservation gives

mvc = (M + m)vB

vB

vC
= m

M + m
= 1200

8000 + 1200
= 0.13

which is independent of the car’s acceleration.

2.3.5 Variable Mass

2.60 (a) Resultant force on rocket = (upward thrust on rocket) − (weight of
rocket)

∴ m
dv

dt
= −vr

dm

dt
− g (1)
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Setting α = −dm

dt
and

dv

dt
= 0, minimum exhaust velocity

vr = g

α

(b) Dividing (1) by m

dv

dt
= −vr

m

dm

dt
− g (2)

∴ dv = −vr
dm

m
− g dt

Assuming that vr and g remain constant, and at t = 0, v = 0 and m = m0,

∫ vB

0
dv = −vr

∫ mB

m0

dm

m
− g

∫ t

0
dt

∴ vB = −vr ln

(
m0

mB

)
− gt (3)

where m0 is the initial mass of the system and mB the mass at burn-out
velocity vB

(c) Setting g = 0 in (2)

dv

dt
= −vr

m

dm

dt
(4)

− dm

m
= α = Positive constant

dm = −αdt

∴
∫

dm = −α

∫
dt + C

where C is the constant of integration

m = −αt + C

When t = 0, m = m0. Therefore, C = m0

m(t) = m0 − αt (5)
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Using (5) in (4)

dv

dt
= − α vr

mo − αt

dv = (vrα/m0)dt

1 − α

m0
t

Integrating between v = 0 and v

v = −vr ln

(
1 − αt

m0

)
(6)

Writing

(
1 − αt

m0

)
= m

m0
in (6) with the aid of (5), the rocket equation

simplifies to

v = −vr ln
m

m0

or m = m0e−v/vr (7)

(d) Time taken for the rocket to reach the burn-out velocity is given by (5):

t = t0 = m0 − m

α
(8)

2.61 a = 0.5 g = vr

m

dm

dt
− g

dm

dt
= 1.5

mg

vr
= 1.5 × 106 × 9.8

2000
= 7350 kg/s

2.62 (a) Rocket thrust = vr
dm

dt
= 55 × 103 × 1290 = 71 × 106 N.

(b) Net acceleration a = vr

m

dm

dt
− g = 71 × 106

2.72 × 106 − 9.8 = 16.3 m/s2.

(c) Time to reach the burn-out velocity t = m0 − mB

α

= 2.72 × 106 − 2.52 × 106

1290
= 155 s.

(d) Burn-out velocity vB = vi + vr ln
m0

mβ

− gt

= 0 + 55, 000 ln
2.72 × 106

2.52 × 106 − (9.8 × 155) = 2714 m/s = 2.7 km/s.

2.63 (a) Weight of the rocket

M0g = 5000 × 9.8 = 49, 000 N
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let x kg of gas be ejected per second. Then

xve = M0g

∴ x = M0g

ve
= 49, 000

1000
= 49 kg/s

(b) Upward acceleration required, a = 2g. Upward thrust required

F = M0a = (M0)(2g) = 2 M0g

Weight of the rocket W = M0g

Total force required = F + W = 2 M0g + M0g = 3 M0g

Let x ′ kg gas be ejected per second with ve = 1000 m/s

1000x ′ = 147, 000 x ′ = 147 kg/s

2.64 At any time, the total kinetic energy of the system is

K = 1

2
(μL)

(
dy

dt

)2

(1)

Let the potential energy at the surface of the table be zero. The potential energy
of the portion of the rope hanging down is

U = −(μy)g
( y

2

)
= 1

2
μ g y2 (2)

Total mechanical energy

E = K + U = constant

1

2
μL

(
dy

dt

)2

− 1

2
μ g y2 = constant

Differentiating with respect to time

1

2
μ L2

d2 y

dt2

dy

dt
− −1

2
μg2y

dy

dt
= 0

Cancelling the common factors,

d2 y

dt2
− g

L
y = 0 (3)



2.3 Solutions 99

Calling β2 = g/L , (3) becomes

d2 y

dt2 − β2 y = 0 (4)

which has the solution

y = Ceβt + De−βt (5)

where C and D are constants. When t = 0, y = y0

∴ y0 = C + D (6)

Further
dy

dt
= β

(
Ceβt − De−βt)

When t = 0,
dy

dt
= 0

∴ 0 = C − D

∴ C = D = y0

2
(7)

Using (7) in (5)

y = y0

2

(
eβt + e−βt) (8)

Thus the complete solution is

y = y0 cosh(βt) (9)

Note that initially both the terms in the parenthesis of (8) are important. As t
increases, the second term becomes vanishingly small and the first term alone
dominates. Thus y (length of the rope hanging down) increases exponentially
with time.
From (3) the acceleration

d2 y

dt2 = g

L
y

Thus acceleration continuously increases with increasing value of y. This then
is the case of non-uniform acceleration.
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2.65 Consider the equation for the variable mass

m
dv

dt
+ v

dm

dt
= F = 0 (1)

dm

dt
= k (2)

∴ m
dv

dt
+ kv = 0 (3)

Integrating (2)

m =
∫

dm =
∫

kdt = kt + C1

where C1 = constant.

At t = 0, m = W

∴ m = kt + W (4)

Using (4) in (3)

dv

v
= − k

m
dt = − kdt

kt + W
(5)

∴
∫

dv

v
= −

∫
kdt

kt + W

∴ ln v = − ln(kt + W ) + C2

where C2 = constant.

At t = 0, v = v0, C2 = ln v0 + ln W

∴ ln
(v0

v

)
= ln

(
1 + kt

W

)

∴ v0

v
= 1 + kt

W

v = ds

dt
= v0

1 + kt

W

The distance travelled in time t

S =
∫ s

0
ds = v0

∫ t

0

dt

1 + kt

W

= Wv0

k
ln

(
1 + kt

W

)
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2.66 The pressure on the table consists of two parts:

(a) The weight of the coil on the table producing the pressure and
(b) the destruction of momentum producing the pressure.

First consider part (b).
Let a length x be coiled up on the table. Since the chain is falling freely under
gravity, the velocity of the chain will be

√
2gx . In a small time interval δt , the

length which reaches the table is δt
√

2gx .
∴ The momentum destroyed in time δt is

δp = δt
M

L

√
2gx

√
2gx = δt

M

L
2gx

∴ The rate of destruction of momentum is

δp

δt
= M

L
2gx

Pressure due to part (a) will be
Mg

L
x

∴ Total pressure on the table = M

L
2gx + Mgx

L
= 3Mgx

L
= three times the

weight of the coil on the table.

2.67 Measuring x vertically down, the equation of motion is

d

dt

(
m

dx

dt

)
= mg (1)

where m is the mass of the rain drop after time t and x the distance through
which the drop has fallen. If ρ is the density and r the radius after time t :

m = 4

3
πr3ρ (2)

∴ dm

dt
= dm

dr

dr

dt
= 4πρr2 dr

dt
(3)

By problem
dm

dt
= kρ4πr2 (4)

Comparing (3) and (4)
dr

dt
= k (5)

Integrating r = kt + C1 (6)

where C1 = constant.
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At t = 0, r = R

∴ C1 = R

∴ r = kt + R (7)

Using (2) and (7) in (1)

d

dt

{
4

3
πρ(R + kt)3 dx

dt

}
= 4

3
πρ(R + kt)3g

Integrating (R + kt)3 dx

dt
= (R + kt)4g

4k
+ C2

But
dx

dt
= 0 when t = 0. C2 = − R4

4k
g

The velocity after time t is therefore

v(t) = g

4k

{
a + kt − R4

(R + kt)3

}



Chapter 3
Rotational Kinematics

Abstract Chapter 3 is devoted to rotational motion on horizontal and vertical
planes and on loop-the-loop.

3.1 Basic Concepts and Formulae

If s be the length of the arc and r the radius of the circle, the angle in radians is
given by

θ = s/r (3.1)

If the angular displacement �θ = θ2 − θ1 in the time interval �t = t2 − t1, then
the average angular velocity

ω̄ = θ2 − θ1

t2 − t1
= �θ

�t
(3.2)

The instantaneous angular velocity ω is defined as the limiting value of the ratio
as �t approaches zero.

ω = dθ

dt
(3.3)

In case the angular speed is not constant a particle would undergo an angular
acceleration α. If ω1 and ω2 are the angular speeds at time t1 and t2, respectively,
then the average acceleration of the particle is defined as

ᾱ = ω2 − ω1

t2 − t1
= �ω

�t
(3.4)

The instantaneous angular acceleration is the limiting value of the ratio as �t
approaches zero.

α = dω

dt
(3.5)

103
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Rotation with Constant Angular Acceleration

ω = ω0 + αt (3.6)

ω2 = ω2
0 + 2αθ (3.7)

θ = ω0t + 1

2
αt2 (3.8)

θ = (ω0 + ω)t

2
(3.9)

Linear and angular variables for circular motion, scalar form

s = rθ (3.10)

v = ωt (3.11)

aT = αr (3.12)

where aT is the tangential component of acceleration. The radial component of
acceleration is

aR = v2/R = ω2 R (3.13)

Total acceleration

a =
√

a2
T + a2

R (3.14)

Vector form:

v = ω × r (3.15)

a = α × r + ω × v (3.16)

Motion in a Horizontal Plane

Typical problems are as follows:

(i) A coin is placed at a distance r from the centre of a gramophone record rotating
with angular frequency ω = 2π f . Find the maximum frequency for which the
coin will not slip if μ is the coefficient of friction.
This problem is solved by equating the centripetal force to the frictional force.

(ii) An object of mass m attached to a string is whirled around in a horizontal circle
of radius r with a constant speed v. Find the tension in the string.
The problem is solved by equating the centripetal force to the tension in the
string.
T = mv2/r
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(iii) An elastic cord of length L0 and elastic constant k is attached to an object
of mass m. If it is swung around with a constant frequency f , find the new
length L .
Solution: Equate the centripetal force to the stretching force

mω2r = m(2π f )2L = (L − L0)k

Solve for k.
(iv) Find the difference in the level of the bob of a conical pendulum when the

number of steady revolutions per second is increased from n1 to n2.
Solution: A conical pendulum is a simple pendulum which is allowed to exe-
cute rotations about the vertical axis. Equating the horizontal and vertical com-
ponents of the tension T in the thread

T sin α = mω2 R

T cos α = mg

whence tan α = R/H = ω2 R/g

or ω =
√

R

H

∴ �H = H1 − H2 = g

[
1

ω2
1

− 1

ω2
2

]

Substitute ω1 = 2πn1 and ω2 = 2πn2.
(v) Find the maximum speed of a vehicle that can safely negotiate a circular curve

on a banked road.

Solution : vmax = √
gr tan θ

where r is the radius of curvature of the curve.
(vi) Find the condition that a carriage speeding with v negotiating a circular curve

of radius r on a level road may not overturn. Assume that a is half of the
distance between the wheels and h is the height of the centre of gravity (CG)
of the carriage above the ground.
Solution: The centripetal force mv2/r produces a torque on the inner rear
wheel tending to overturn the vehicle. This is countered by an opposite torque
caused by the weight of the carriage acting vertically down through the centre
of gravity. The condition for the maximum safe speed is given by equating
these two torques:

mv2
max

r
h = mg a

or vmax =
√

gra

h
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Motion in a Vertical Plane

Typical problems are of the following type:

(i) An object of mass m tied to a string is whirled in a vertical plane such that at
the top (A) of the circular path its speed is vA and at the bottom (B) it is vB.
Calculate vA and vB given the tension TB = xTA, where x is a number.
Solution: At the top the weight acts down while the centrifugal force acts up.
Therefore,

TA = mv2
A

r
− mg

while at the bottom both weight and centrifugal force act downwards. There-
fore,

TB = mv2
B

r
+ mg

We get one another equation from the conservation of mechanical energy:

mg2r = ½ mv2
B − ½ mv2

A

Finally, by problem

TB = xTA

The four equations can be solved to permit the determination of vA and vB.
(ii) The bob of a simple pendulum of length L is drawn on one side such that it

makes an angle θ with the vertical passing through the equilibrium position.
If the bob is released from rest it passes through the equilibrium position with
velocity v. Find v.
Here we use the principle gain in kinetic energy = loss in potential energy

1

2
mv2 = mgL(1 − cos θ)

whence v = √
2gL(1 − cos θ)

(iii) A particle of mass m is placed at A, the highest point of a smooth sphere of
radius R with the centre at O. If it is gently pushed, it will slide down along the
arc of a great circle and leave the surface at B, at depth h below A, Fig. 3.16.
Determine the position where the particle leaves the sphere.
Here we balance the radial component of g at B with the centripetal force.

mg cos θ = mv2/R

Energy conservation gives another equation:

mgh = ½ mv2
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Eliminating v between the two equations and noting that

cos θ = 1 − h/R

we find h = R/3.
(iv) A motorcyclist goes around in a vertical circle inside a spherical cage. Find the

minimum speed at the top so that he may successfully complete the circular
ride.
Here we equate the reaction on the cage to the total weight of the rider plus
motorcycle

mg = mv2/R

or v = √
gR

(v) Loop-the-Loop is a track which consists of a frictionless slide connected to a
vertical loop of radius R, Fig. 3.1. Let a particle start at a height h on the slide
and acquire a velocity v at the bottom of the loop.
If v <

√
2gR, the particle will not be able to climb up beyond the point B. It

will oscillate in the lower semicircle about the point D.

If
√

2gR < v <
√

5gR

the particle will be able to climb up the arc BC and leave at some point E and
describe a parabolic path. If v >

√
5gR, the particle will be able to execute a

complete circle. This corresponds to a height h = 2.5R.

Fig. 3.1 Loop-the-loop

3.2 Problems

3.2.1 Motion in a Horizontal Plane

3.1 Show that a particle with coordinates x = a cos t , y = a sin t and z = t traces
a path in time which is a helix.

[Adapted from Hyderabad Central University 1988]
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3.2 A particle of mass m is moving in a circular path of constant radius r such
that its centripetal acceleration a varies with time t as a = k2r t2, where k is a
constant. Show that the power delivered to the particle by the forces acting on
it is mk4r2t5/3

[Adapted from Indian Institute of Technology 1994]

3.3 A particle is moving in a plane with constant radial velocity of magnitude ṙ =
5 m/s and a constant angular velocity of magnitude θ̇ = 4 rad/s. Determine
the magnitude of the velocity when the particle is 3 m from the origin.

3.4 A point moves along a circle of radius 40 cm with a constant tangential accel-
eration of 10 cm/s2. What time is needed after the motion begins for the nor-
mal acceleration of the point to be equal to the tangential acceleration?

3.5 A point moves along a circle of radius 4 cm. The distance x is related to time t
by x = ct3, where c = 0.3 cm/s3. Find the normal and tangential acceleration
of the point at the instant when its linear velocity is v = 0.4 m/s.

3.6 (a) Using the unit vectors î and ĵ write down an expression for the position
vector in the polar form. (b) Show that the acceleration is directed towards the
centre of the circular motion.

3.7 Find the angular acceleration of a wheel if the vector of the total acceleration
of a point on the rim forms an angle 30◦ with the direction of linear velocity
of the point in 1.0 s after uniformly accelerated motion begins.

3.8 A wheel rotates with a constant angular acceleration α = 3 rad/s2. At time
t = 1.0 s after the motion begins the total acceleration of the wheel becomes
a = 12

√
10 cm/s2. Determine the radius of the wheel.

3.9 A car travels around a horizontal bend of radius R at constant speed V .
(i) If the road surface has a coefficient of friction μs, what is the maximum

speed, Vmax, at which the car can travel without sliding?
(ii) Given μs = 0.85 and R = 150 m, what is Vmax?

(iii) What is the magnitude and direction of the car’s acceleration at this
speed?

(iv) If μs = 0, at what angle would the bend need to be banked in order for
the car to still be able to round it at the same maximum speed found in
part (ii)?

[University of Durham 2000]

3.10 The conical pendulum consists of a bob of mass m attached to the end of
an inflexible light string tied to a fixed point O and swung around so that it
describes a circle in a horizontal plane; while revolving the string generates
a conical surface around the vertical axis ON, the height of the cone being
ON = H , the projection of OP on the vertical axis (Fig. 3.2). Show that the
angular velocity of the bob is given by ω = √

g/H , where g is the acceleration
due to gravity.
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Fig. 3.2 Conical pendulum

3.11 If the number of steady revolutions per minute of a conical pendulum is
increased from 70 to 80, what would be the difference in the level of the bob?

3.12 A central wheel can rotate about its central axis, which is vertical. From a
point on the rim hangs a simple pendulum. When the wheel is caused to rotate
uniformly, the angle of inclination of the pendulum to the vertical is θ0. If the
radius of the wheel is R cm and the length of the pendulum is 1 cm, obtain an
expression for the number of rotations of the wheel per second.

[University of Newcastle]

3.13 A coin is placed at a distance r from the centre of a gramophone record rotat-
ing with angular frequency ω = 2π f . Find the maximum frequency for which
the coin will not slip if μ is the coefficient of friction.

3.14 A particle of mass m is attached to a spring of initial length L0 and spring
constant k and rotated in a horizontal plane with an angular velocity ω. What
is the new length of the spring and the tension in the spring?

3.15 A hollow cylinder drum of radius r is placed with its axis vertical. It is rotated
about an axis passing through its centre and perpendicular to the face and a
coin is placed on the inside surface of the drum. If the coefficient of friction is
μ, what is the frequency of rotation so that the coin does not fall down?

3.16 A bead B is threaded on a smooth circular wire frame of radius r , the radius
vector �r making an angle θ with the negative z-axis (see Fig. 3.3). If the frame
is rotated with angular velocity ω about the z-axis then show that the bead will

be in equilibrium if ω =
√

g

r cos θ
.
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Fig. 3.3

3.17 A wire bent in the form ABC passes through a ring B as in Fig. 3.4. The ring
rotates with constant speed in a horizontal circle of radius r . Show that the
speed of rotation is

√
gr if the wires are to maintain the form.

Fig. 3.4 A

C

B

60°

30°

r

3.18 A small cube placed on the inside of a funnel rotates about a vertical axis at
a constant rate of f rev/s. The wall of the funnel makes an angle θ with the
horizontal (Fig. 3.5). If the coefficient of static friction is μ and the centre
of the cube is at a distance r from the axis of rotation, show that the largest
frequency for which the block will not move with respect to the funnel is

fmax = 1

2π

√
g(sin θ + μ cos θ)

r(cos θ − μ sin θ)

Fig. 3.5
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3.19 In prob. (3.18), show that the minimum frequency for which the block will not
move with respect to the funnel will be

fmin = 1

2π

√
g(sin θ − μ cos θ)

r(cos θ + μ sin θ)

3.20 A large mass M and a small mass m hang at the two ends of a string that
passes through a smooth tube as in Fig. 3.6. The mass m moves around in a
circular path which lies in a horizontal plane. The length of the string from the
mass m to the top of the tube is L , and θ is the angle this length makes with
the vertical. What should be the frequency of rotation of the mass m so that
the mass M remains stationary?

[Indian Institute of Technology 1978]

Fig. 3.6

3.21 An object is being weighed on a spring balance going around a curve of radius
100 m at a speed of 7 m/s. The object has a weight of 50 kg wt. What reading
is registered on the spring balance?

3.22 A railway carriage has its centre of gravity at a height of 1 m above the rails,
which are 1.5 m apart. Find the maximum safe speed at which it could travel
round the unbanked curve of radius 100 m.

3.23 A curve on a highway has a radius of curvature r . The curved road is banked
at θ with the horizontal. If the coefficient of static friction is μ,

(a) Obtain an expression for the maximum speed v with which a car can go
over the curve without skidding.

(b) Find v if r = 100 m, θ = 30◦, g = 9.8 m/s2, μ = 0.25

3.24 Determine the linear velocity of rotation of points on the earth’s surface at
latitude of 60◦.

3.25 With what speed an aeroplane on the equator must fly towards west so that the
passenger in the plane may see the sun motionless?
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3.2.2 Motion in a Vertical Plane

3.26 A particle is placed at the highest point of a smooth sphere of radius R and is
given an infinitesimal displacement. At what point will it leave the sphere?

[University of Cambridge]

3.27 A small sphere is attached to a fixed point by a string of length 30 cm and
whirls round in a vertical circle under the action of gravity at such a speed that
the tension in the string when the sphere is at the lowest point is three times
the tension when the sphere is at its highest point. Find the speed of the sphere
at the highest point.

[University of Cambridge]

3.28 A light rigid rod of length L has a mass m attached to its end, forming a simple
pendulum. The pendulum is put in the horizontal position and released from
rest. Show that the tension in the suspension will be equal to the magnitude of
weight at an angle θ = cos−1(1/3) with the vertical.

3.29 In a hollow sphere of diameter 20 m in a circus, a motorcyclist rides with
sufficient speed in the vertical plane to prevent him from sliding down. If the
coefficient of friction is 0.8, find the minimum speed of the motorcyclist.

3.30 The bob of a pendulum of mass m and length L is displaced 90◦ from the
vertical and gently released. What should be the minimum strength of the
string in order that it may not break upon passing through the lowest point?

3.31 The bob of a simple pendulum of length L is deflected through a small arc s
from the equilibrium position and released. Show that when it passes through
the equilibrium position its velocity will be s

√
g/L , where g is the accelera-

tion due to gravity.

3.32 A simple pendulum of length 1.0 metre with a bob of mass m swings with an
angular amplitude of 60◦. What would be the tension in the string when its
angular displacement is 45◦?

3.33 The bob of a pendulum is displaced through an angle θ with the vertical line
and is gently released so that it begins to swing in a vertical circle. When
it passes through the lowest point, the string experiences a tension equal to
double the weight of the bob. Determine θ .

3.2.3 Loop-the-Loop

3.34 The bob of a simple pendulum of length 1.0 m has a velocity of 6 m/s when
it is at the lowest point. At what height above the centre of the vertical circle
will the bob leave the path?



3.2 Problems 113

3.35 A block of 2 g when released on an inclined plane describes a circle of radius
12 cm in the vertical plane on reaching the bottom. What is the minimum
height of the incline?

3.36 A particle slides down an incline from rest and enters the loop-the-loop. If the
particle starts from a point that is level with the highest point on the circular
track then find the point where the particle leaves the circular groove above
the lowest point.

3.37 A small block of mass m slides along the frictionless loop-the-loop track as
in Fig. 3.7. If it starts at A at height h = 5R from the bottom of the track
then show that the resultant force acting on the track at B at height R will be√

65 mg.

Fig. 3.7

3.38 In prob. (3.37), the block is released from a height h above the bottom of the
loop such that the force it exerts against the track at the top of the loop is equal
to its weight. Show that h = 3R.

3.39 A particle of mass m is moving in a vertical circle of radius R. When m is
at the lowest position, its speed is 0.8944

√
5gR. The particle will move up

the track to some point p at which it will lose contact with the track and travel
along a path shown by the dotted line (Fig. 3.8). Show that the angular position
of θ will be 30◦.

Fig. 3.8
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3.40 A block is allowed to slide down a frictionless track freely under gravity. The
track ends in a circular loop of radius R. Show that the minimum height from
which the block must start is 2.5R so that it completes the circular track.

3.41 A nail is located at a certain distance vertically below the point of suspension
of a simple pendulum. The pendulum bob is released from a position where the
string makes an angle 60◦ with the vertical. Calculate the distance of the nail
from the point of suspension such that the bob will just perform revolutions
with the nail as centre. Assume the length of the pendulum to be 1 m.

[Indian Institute of Technology 1975]

3.42 A test tube of mass 10 g closed with a cork of mass 1 g contains some ether.
When the test tube is heated, the cork flies out under the pressure of the ether
gas. The test tube is suspended by a weightless rigid bar of length 5 cm. What
is the minimum velocity with which the cork would fly out of the test tube so
that the test tube describes a full vertical circle about the point of suspension?
Neglect the mass of ether.

[Indian Institute of Technology 1969]

3.43 A car travels at a constant speed of 14.0 m/s round a level circular bend of
radius 45 m. What is the minimum coefficient of static friction between the
tyres and the road in order for the car to go round the bend without skidding?

[University of Manchester 2008]

3.3 Solutions

3.3.1 Motion in a Horizontal Plane

3.1 x = a cos t (1)

y = a sin t (2)

z = t (3)

Squaring (1) and (2) and adding

x2 + y2 = a2(cos2 t + sin2 t) = a2

which is the equation of a circle.
Since z = t , the circular path drifts along the z-axis so that the path is a helix.

3.2 a = dv

dt
= k2r t2

v =
∫

dv = k2r
∫

t2dt = k2r t3

3

Power, P = Fv = mav = mk2r t2 k2r t3

3
= mk4r2t5

3
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3.3 v =
√

(ṙ)2 + (r θ̇ )2

=
√

52 + (3 × 4)2 = 13 m/s

3.4 aN = ω2r = aT = 10

ω =
√

10

40
= 0.5 rad/s

ω = ω0 + αt = 0 + aT t

r

t = ωr

aT
= 0.5 × 40

10
= 2 s

3.5 x = ct3

v = dx

dt
= 3ct2 = 3 × 0.3 × 10−2t2 = 0.4

t = 20

3
s

aN = v2

r
= (0.4)2

0.04
= 4 m/s2

aT = dv

dt
= 6ct = 6 × 0.3 × 10−2 × 20

3
= 0.12 m/s2

3.6 (a) x = r cos θ

y = r sin θ

�r = î x + ĵ y

θ = ωt

where θ is the angle which the radius vector makes with the x-axis and ω

is the angular speed.

�r = î(r cos ωt) + ĵ(r sin ωt)

(b) �̇r = −î(ωr sin ωt) + ĵ(ωr cos ωt)

�a = �̈r = −î(ω2r cos ωt) − ĵ(ω2r sin ωt)

= −ω2r (î cos ωt + ĵ sin ωt)

= −ω2(î x + ĵ y)

�a = −ω2�r

where we have used the expression for the position vector �r . The last rela-
tion shows that by virtue of minus sign �a is oppositely directed to �r , i.e. �a
is directed radially inwards.
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3.7 a =
√

a2
N + a2

T (Fig. 3.9)

aN

aT
= tan 30◦ = 1√

3

aN = aT√
3

(1)

aT = αR (2)

ω = αt (3)

∴ aN = ω2 R = aT√
3

= α R√
3

ω2 = α√
3

α2t2 = α√
3

α = 1√
3t2

= 1√
3.12

= 0.577 rad/s2

Fig. 3.9

3.8 a =
√

a2
N + a2

T

12
√

10 =
√

(ω2 R)2 + α2 R2 =
√

(α2t2 R)2 + α2 R2

= αR
√

α2 t4 + 1 = 3R
√

32 × 12 + 1

R = 4 cm

3.9 (i) Equating the centripetal force to the frictional force

mv2
max

R
= μ mg

∴ vmax = √
μ gR
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(ii) vmax = √
0.85 × 9.8 × 150 = 35.35 m/s

(iii) aN = v2

R
= (35.35)2

150
= 8.33 m/s towards the centre of the circle

(iv) tan θ = v2

gR
= (35.35)2

9.8 × 150
= 0.85

∴ θ = 40.36◦

3.10 Equating the horizontal component of the tension to the centripetal force

T sin α = mω2 R (1)

Furthermore, the bob has no acceleration in the vertical direction.

T cos α = mg (2)

tan α = R

H
= ω2 R

g

∴ ω =
√

g

H

3.11 Using the results of prob. (3.10), the difference in the level of the bob

�H = H1 − H2 = g

[
1

ω2
1

− 1

ω2
2

]
(1)

ω1 = 2π f1 = 140

60
π (2)

ω2 = 2π f2 = 160

60
π (3)

Using (2) and (3) in (1) and g = 980 cm, �H = 31.95 cm.

3.12 The centripetal force acting on the bob of the pendulum = mω2r , where r is
the distance of the bob from the axis of rotation, Fig. 3.10. For equilibrium, the
vertical component of the tension in the string of the pendulum must balance
the weight of the bob

∴ T cos θ0 = mω2r (1)

Further, the horizontal component of the tension in the string must be equal to
the centripetal force.

∴ T sin θ0 = mω2r (2)

Dividing (2) by (1)
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Fig. 3.10

tan θ0 = ω2r

g
= 4π2n2r

g
(3)

where n = number of rotations per second. From the geometry of Fig. 3.10,

r = R + L sin θ0

n = 1

2π

√
g tan θ0

R + L sin θ0

3.13 The equilibrium condition requires that the centripetal force = the frictional
force, mω2r = μ mg

∴ fmax = ω

2π
= 1

2π

√
μg

r

3.14 Let the spring length be stretched by x . Equating the centripetal force to the
spring force

mω2(L0 + x) = kx

∴ x = mω2 L0

k − mω2

Therefore, the new length L will be

L = L0 + x = kL0

k − mω2

and the tension in the spring will be

m ω2L = m ω2kL0

k − mω2
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3.15 As the drum rotates with angular velocity ω, the normal reaction on the coin
acting horizontally would be equal to mω2r , (Fig. 3.11). As the coin tends to
slip down under gravity a frictional force would act vertically up.
If the coin is not to fall, the minimum frequency of rotation is given by the
condition
Frictional force = weight of the coin

μmω2r = mg

∴ ω = 1

2π

√
g

μr

Fig. 3.11

3.16 The bead is to be in equilibrium by the application of three forces, the weight
mg acting down, the centrifugal force mω2 R acting horizontally and the nor-
mal force acting radially along NO. Balancing the x- and z-components of
forces (Fig. 3.12)

N sin θ = mω2 R

N cos θ = mg

Fig. 3.12
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Dividing the two equations

tan θ = ω2 R

g
= ω2r sin θ

g

ω =
√

g

r cos θ

3.17 Since the wire is continuous, tension in the parts AB and BC will be identical.
Equating the horizontal and vertical components of forces separately

mv2

r
= T sin 30◦ + T sin 60◦ (1)

mg = T cos 30◦ + T cos 60◦ (2)

As the right-hand sides of (1) and (2) are identical

mv2

r
= mg

or v = √
gr

3.18 Resolve the centripetal force along and normal to the funnel surface, Fig. 3.13.
When the funnel rotates with maximum frequency, the cube tends to move up
the funnel, and both the weight (mg) and the frictional force (μN ) will act
down the funnel surface, Fig. 3.13. Now

N = mg cos θ + mω2r sin θ

Taking the upward direction as positive, equation of motion is

mω2r cos θ − mg sin θ − μ(mg cos θ + mω2r sin θ) = 0

∴ fmax = ω

2π
= 1

2π

√
g

r

(sin θ + μ cos θ)

(cos θ − μ sin θ)

Fig. 3.13
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3.19 At the minimum frequency of rotation, the cube tends to go down the surface
and therefore the frictional force acts up the funnel. The equation of motion
becomes

mω2r cos θ − mg sin θ + μ(mg cos θ + mω2r sin θ) = 0

fmin = ω

2π
= 1

2π

√
g

r

(sin θ − μ cos θ)

(cos θ + μ sin θ)

3.20 Tension is provided by the weight Mg

T = Mg (1)

Three forces, weight (Mg), tension (T ) and normal reaction (mω2r ), are to be
balanced:

T sin θ = mω2r (2)

Further r = L sin θ (3)

Combining (1), (2) and (3)

ω2 = Mg

mL

Frequency of rotation

f = ω

2π
= 1

2π

√
Mg

mL

3.21 The two forces acting at right angles are (i) weight (mg) and (ii) reaction
(mv2/r ).

F =
√

(mg)2 + (mv2/r)2 = mg
√

1 + (v2/gr)2

Using v = 7 m/s, g = 9.8 m/s2, r = 100 m and m = 60 kg,

F = 60.075 kg wt.

3.22 Figure 3.14 shows the rear of the carriage speeding with v, negotiating a cir-
cular curve of radius r . ‘a’ is half of the distance between the wheels and h
is the height of the centre of gravity (CG) of the carriage above the ground.
The centripetal force mv2/r produces a counterclockwise torque about the
left wheel at A. The weight of the carriage acting vertically down through the
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Fig. 3.14

centre of gravity produces a clockwise torque. The condition for the maximum
speed vmax is given by equating these two torques:

mv2
max

r
h = mga

or vmax =
√

gra

h
=
√

9.8 × 100 × 0.75

1.0
= 27.11 m/s

3.23 (a) When a vehicle takes a turn on a level road, the necessary centripetal force
is provided by the friction between the tyres and the road. However, this
results in a lot of wear and tear of tyres. Further, the frictional force may
not be large enough to cause a sharp turn on a smooth road.
If the road is constructed so that it is tilted from the horizontal, the road
is said to be banked. Figure 3.15 shows the profile of a banked road at an
angle θ with the horizontal. The necessary centripetal force is provided
by the horizontal component of the normal reaction N and the horizontal
component of frictional force.
Three external forces act on the vehicle, and they are not balanced, the
weight W , the normal reaction N , and the frictional force. Balancing the
horizontal components

mv2

r
= μ mg cos2 θ + N sin θ

or N sin θ = mv2

r
− μ mg cos2 θ (1)

Balancing the vertical components

mg = N cos θ − μmg cos θ sin θ

or N cos θ = mg + μmg cos θ sin θ (2)
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Fig. 3.15

Dividing (1) by (2)

tan θ = v2/r − μ g cos2 θ

g + μ g cos θ sin θ

vmax = √
gr (μ + tan θ)

(b) For θ = 30◦, μ = 0.25, g = 9.8 m/s2 and r = 100 m, vmax = 28.47 m/s.

3.24 At latitude λ the distance r of a point from the axis of rotation will be r =
R cos λ

where R is the radius of the earth.
The angular velocity, however, is the same as for earth’s rotation

ω = 2π

T
= 2π

86, 400
= 7.27 × 10−5 rad/s

The linear velocity

v = ωr = ωR cos λ = 7.27 × 10−5 × 6.4 × 106 × cos 60◦

= 232.64 m/s

3.25 The speed of the plane must be equal to the linear velocity of a point on the
surface of the earth. Suppose the plane is flying close to the earth’s surface,
ω = 7.27 × 10−5 rad/s (see prob. 3.24)

v = ωR = 7.27 × 10−5 × 6.4 × 106 = 465.28 m/s

= 1675 km/h.

3.3.2 Motion in a Vertical Plane

3.26 Let a particle of mass m be placed at A, the highest point on the sphere of
radius R with the centre of O. Let it slide down from rest along the arc of
the great circle and leave the surface at B, at depth h below A, Fig. 3.16.
Let the radius OB make an angle θ with the vertical line OA. The centripetal
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Fig. 3.16

force experienced by the particle at B is mv2/R, where v is the velocity of the
particle at this point. Now the weight mg of the particle acts vertically down
so that its component along the radius BO is mg cos θ . So long as mg cos θ >

mv2/R the particle will stick to the surface. The condition that the particle
will leave the surface is

mg cos θ = mv2

R
(1)

or cos θ = v2

gR
(2)

Now, in descending from A to B, the potential energy is converted into kinetic
energy

mgh = 1

2
mv2 (3)

or
v2

g
= 2h (4)

using (4) in (2)

cos θ = 2h

R
(5)

Drop a perpendicular BC on AO.

Now cos θ = OC

OB
= R − h

R
(6)

Combining (5) and (6), h = R

3

Thus the particle will leave the sphere at a point whose vertical distance below

the highest point is
R

3
.
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3.27 At the highest point A the tension TA acts vertically up, the centrifugal force
also acts vertically up but the weight acts vertically down. We can then write

TA = mv2
A

r
− mg (1)

where m is the mass of the sphere, vA is its speed at the point A and r is the
radius of the vertical circle.
At the lowest point B both the centrifugal force and the weight act vertically
down and both add up to give the tension TB. If vB is the speed at B, then we
can write

TB = mv2
B

r
+ mg (2)

By problem

TB = 3TA (3)

Combining (1), (2) and (3), we get

v2
B = 3v2

A − 4gr (4)

Conservation of mechanical energy requires that loss in potential energy =
gain in kinetic energy. Therefore, in descending from A to B,

mg2r = 1

2
mv2

B − 1

2
mv2

A (5)

or v2
B = v2

A + 4gr (6)

From (4) and (6) we get

vA = √
4gr = √

4 × 980 × 30 = 343 cm/s

3.28 Measure potential energy from the equilibrium position B, Fig. 3.17. At A the
total mechanical energy E = mgL as the pendulum is at rest. As it passes
through C let its speed be v. The potential energy will be mgh, where h = BD
and CD is perpendicular on the vertical OB. Now

h = L − L cos θ = L(1 − cos θ) (1)

Energy conservation gives

mgL = mgL (1 − cos θ) + 1

2
mv2 (2)
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Fig. 3.17

The tension in the string at C will be

T = mv2

L
+ mg cos θ (3)

By problem, T = mg (4)

Combining (2), (3) and (4) we get cos θ = 1

3
or θ = cos−1

(
1

3

)
.

3.29 At the top of the sphere, v is in the horizontal direction and the frictional force
acts upwards. The condition that the motorcyclist may not fall is
Friction force = Weight

μ
mv2

r
= mg

v =
√

gr

μ
=
√

9.8 × 10

0.8
= 11 m/s

3.30 At the lowest point A, Fig. 3.18, the tension in the string is

TA = mv2
A

L
+ mg (1)

where vA is the velocity at point A.

Fig. 3.18
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Measure potential energy with respect to A, the equilibrium position. At the
point B, at height L the mechanical energy is entirely potential energy as the
bob is at rest. As the vertical height is L , the potential energy will be mgL.
When the bob is released, at the point A, the energy is entirely kinetic, poten-
tial energy being zero, and is equal to 1

2 mv2
A.

Conservation of mechanical energy requires that

1

2
mv2

A = mgL

or v2
A = 2 gL (2)

Using (2) in (1)

TA = 2mg + mg = 3mg

Thus the minimum strength of the string that it may not break upon passing
through the lowest point is three times the weight of the bob.

3.31 Let the ball be deflected through a small angle θ from the equilibrium
position A, Fig. 3.19.

θ = s

L
(1)

Fig. 3.19

where s is the corresponding arc. Drop a perpendicular BC on AO, so that the
height through which the bob is raised is AC = h.
Now, h = AC = OA − OC = L − L cos θ = L(1 − cos θ)

= L

[
1 − 1 + θ2

2! + · · ·
]

∴ h = Lθ2

2
= s2

2L
(2)

where we have used (1).
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From energy conservation, mgh = 1

2
mv2

∴ v = √
2gh = s

√
g

L

3.32 In coming down from angular displacement of 60◦ to 45◦, loss of potential
energy is given by

mg(h1 − h2) = mgL(1 − cos 60◦) − mgL(1 − cos 45◦)
= 0.207 mgL

Gain in kinetic energy = 1

2
mv2

∴ 1

2
mv2 = 0.207 mgL = 0.207 mg (∵ L = 1 m)

or v = 2.014 m/s

The tension in the string would be

T = mv2

L
+ mg cos 45◦

= mg

[
4.056

gL
+ 0.707

]
N = 1.12 mg N

3.33 When the bob is displaced through angle θ , the potential energy is mgL(1 −
cos θ). At the lowest position the energy is entirely kinetic

1

2
mv2 = mg L (1 − cos θ) (1)

The tension in the string will be

T = mg + mv2

L
= mg + 2mg (1 − cos θ) (2)

where we have used (1)
By problem

T = 2mg (3)

From (2) and (3) we find cos θ = 1

2
or θ = 60◦
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3.3.3 Loop-the-Loop

3.34 If the bob of the pendulum has velocity u at B, the bottom of the vertical circle
of radius r such that

√
2gr < u <

√
5gr (1)

then the bob would leave some point P on the are DA (Fig. 3.20). Here

√
2gr = √

2 × 9.8 × 1 = 4.427 m/s and
√

5gr = √
5 × 9.8 × 1 = 7 m/s

Fig. 3.20

Therefore (1) is satisfied for u = 6 m/s.
Drop a perpendicular PE on the horizontal CD. Let PE = h and PO make an
angle θ with OD. When the bob leaves the point P, the normal reaction must
vanish.

mv2

r
− mg sin θ = 0 (2)

Loss in kinetic energy = gain in potential energy

1

2
m u2 − 1

2
mv2 = mg(h + r) (3)

sin θ = h

r
(4)

Eliminating v2 between (2) and (3) and using (3), with u = 6 m/s and
r = 1.0 m,

h = 1

3

[
u2

g
− 2r

]
= 0.558 m
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3.35 Let the height of the incline be h. Then the velocity of the block at the bottom
of the vertical circle will be v = √

2gh. Minimum height is given by the
condition that v = √

5gr which is barely needed for the completion of the
loop.

√
2gh = √

5gr

or h = 5

2
r = 5

2
× 12 = 30 cm

3.36 The analysis is similar to that of prob. (2.34). The velocity of the particle at
the bottom of the circular groove will be given by

v = √
(2g)(2r) = √

4gr (1)

which satisfies the condition

√
2gr < u <

√
5gr

The particle leaves the circular groove at a height h above the centre of the
circle, Fig. 3.20.

h = 1

3

[
u2

g
− 2r

]
(2)

But u2 = 4gr (1)

∴ h = 2

3
r

Thus, the particle leaves the circular groove at a height of h + r = 5

3
r above

the lowest point.

3.37 Let the velocity at B be v.
Kinetic energy gained = potential energy lost

1

2
mv2 = mg(5R − R)

∴ m
v2

R
= 8 mg

which is the centrifugal force acting on the track horizontally. The weight acts
vertically down. Hence the resultant force

F =
√

(8 mg)2 + (mg)2 = √
65 mg
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3.38 Gain in kinetic energy = loss of potential energy

1

2
mv2 = mg(h − 2R)

v2 = 2g (h − 2R) (1)

The force exerted on the track at the top

F = mv2

R
− mg (2)

By problem

F = mg (3)

∴ mv2

R
− mg = mg

or v2 = 2gR (4)

Using (4) in (1) we find h = 3R.

3.39 Let the particle velocity at the lowest position be u = 0.8944
√

5gR and v at
point P.
Loss in kinetic energy = gain in potential energy

1

2
mu2 − 1

2
mv2 = mg(R + R sin θ)

or v2 =
(

0.8944
√

5gR
)2 − 2gR(1 + sin θ) (1)

The particle would leave at P (Fig. 3.7) when

mv2

R
= mg sin θ

or v2 = gR sin θ (2)

Using (2) in (1) and solving
sin θ = 2/3 or θ = 41.8◦

3.40 Let the minimum height be h. The velocity of the block at the beginning of
the circular track will be

v = √
2gh (1)

For completing the circular track

v = √
5gR (2)
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From (1) and (2)

h = 2.5R

3.41 Let the nail be located at D at distance x vertically below A, the point of
suspension, Fig. 3.21. Initially the bob of the pendulum is positioned at B at
height h above the equilibrium position C.

h = L(1 − cos θ) = L(1 − cos 60◦) = 1

2
L (1)

Fig. 3.21

where L = 1 m is the length of the pendulum. When the pendulum is released
its velocity at C will be

v = √
2gh = √

gL (2)

The velocity needed at C to make complete revolution in the vertical circle
centred at the nail and radius r is

v = √
5gr (3)

From (2) and (3)

r = 1

5
L (4)

Therefore x = AD = AC − DC = L − L

5
= 0.8 L

= 0.8 × 1 m = 80 cm

3.42 If M and m are the mass of the test tube and cork, respectively, and their
velocity V and υ respectively, momentum conservation gives
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MV = mv (1)

or v = M

m
V = 10

1
V = 10 V (2)

Condition for describing a full vertical circle is that the minimum velocity of
the test tube should be

V = √
5gr = √

5 × 980 × 5 = 156.5 cm/s

Therefore the minimum velocity of the cork which flies out ought to be

v = 10 V = 1565 cm/s = 15.65 m/s

3.43 Equating centripetal force to frictional force

mv2

r
= μ mg

μ = v2

gr
= (14)2

9.8 × 45
= 4

9





Chapter 4
Rotational Dynamics

Abstract Chapter 4 is concerned with the moment of inertia and rotational motion
on horizontal and inclined planes and Coriolis acceleration.

4.1 Basic Concepts and Formulae

Moment of Inertia/Rotational Inertia (M.I.) or (I)

Table 4.1 Moments of inertia (M.I.) of some regular bodies

Body Axis M.I.

Thin rod of length L Perpendicular to length through centre mL2/12
Perpendicular to length at one end mL2/3

Thin rectangular sheet of sides
a and b

Through centre parallel to side b ma2/12

Through centre perpendicular to sheet m(a2 + b2)/12
Thin hoop Through centre perpendicular to plane

of ring
mr2

Through centre along diameter mr2/4
Thin circular disc Through centre perpendicular to disc mr2/2
Solid sphere of radius r About any diameter 2mr 2/5
Thin spherical shell About any diameter 2mr2/3
Right cone of radius of base r Along axis of cone 3mr2/10

Circular cylinder of length L
and radius R

Through centre perpendicular to axis m
(

R2

4 + L2

12

)

Table 4.2 Translational and rotational analogues

Quantity Translation Rotation

Displacement s θ

Velocity v = ds/dt ω = dθ/dt
Acceleration a = dv/dt α = dω/dt
Mass/inertia m I
Momentum p = mv J = Iω
Impulse J = Ft J = τ t
Work W = Fs W = τθ

135
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Table 4.2 (continued)

Quantity Translation Rotation

Kinetic energy K = 1
2 mv2 K = 1

2 Iω2

Power P = Fv P = τω

Newton’s second law F = ma τ = Iα
Equilibrium condition

∑
Fext = 0

∑
τ ext = 0

Kinematics v = u + at ω = ω0 + αt
v2 = u2 + 2as ω2 = ω0

2 + 2αθ

s = ut + 1
2 at2 θ = θ0t + 1

2 αt2

s = 1
2 (u + v)t θ = 1

2 (ω0 + ω)t

The Perpendicular Axes Theorem

The sum of the moments of inertia of a plane lamina about any two perpendicular
axes in its plane is equal to its moment of inertia about an axis perpendicular to its
plane and passing through the point of intersection of the first two axes:

Iz = Ix + Iy (4.1)

The theorem is valid for plane lamina only.

The Parallel Axes Theorem

The M.I. of a body about any axis is equal to the sum of its M.I. about a parallel axis
through the centre of mass and the product of its mass and the square of the distance
between the two axes.

Conservation of angular momentum (J ) implies

J = I1ω1 = I2ω2 (4.2)

Motion of a body rolling down an incline of angle θ :

a = g sin θ

1 + k2

r2

(4.3)

where I = Mk2 and k is known as the radius of gyration.

t =
√

2s

a
(4.4)

Ktotal = Ktrans + Krot = 1

2
mv2

(
1 + k2

r2

)
(4.5)
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Table 4.3 k2/r2 values for various bodies

Hollow cylinder Hollow sphere Solid cylinder Solid sphere

k2/r2 1 2/3 1/2 2/5

The smaller the value of k2/r2, the greater will be the acceleration and smaller
the travelling time.

Coriolis Force

The Coriolis force arises because of the motion of the particle in the rotating frame
of reference (non-inertial frame) and is given by the term 2mω × vR. It vanishes if
vR = 0. It is directed at right angles to the axis of rotation, similar to the centrifugal
force. Note that the Coriolis force would reverse if the direction of ω is reversed.
However, the direction of the centrifugal force remains unchanged.

(i) Cyclonic motion is affected by the Coriolis force resulting from the earth’s
rotation. The cyclonic motion is found to be mostly in the counterclockwise
direction in the northern hemisphere and clockwise direction in the southern
hemisphere. The radius of curvature r for mass of air moving north or south is
approximately given by

r = v/(2ω sin λ) (4.6)

where v is the wind velocity, ω is the earth’s angular velocity and λ is the
latitude.

(ii) Free fall on the rotating earth:
A body in its free fall through a height h in the northern hemisphere undergoes
an eastward deviation through a distance

d = 1

8
ω cos λ

√
8h3

g
(4.7)

(iii) Foucault’s pendulum:
Foucault’s pendulum is a simple pendulum suspended by a long string from
a high ceiling. The effect of Coriolis force on the motion of the pendulum is
to produce a precession or rotation of the plane of oscillation with time. The
plane of oscillation rotates clockwise in the northern hemisphere and counter-
clockwise in the southern hemisphere. The period of rotation of the plane of
oscillation T ′ is given by

T ′ = 2π/ω sin λ = 24/ sin λ hours (4.8)
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4.2 Problems

4.2.1 Moment of Inertia

4.1 Calculate the moment of inertia of a solid sphere about an axis through its
centre.

4.2 Two particles of masses m1 and m2 are connected by a rigid massless rod of
length r to constitute a dumbbell which is free to move in a plane. Show that
the moment of inertia of the dumbbell about an axis perpendicular to the plane
passing through the centre of mass is μr2 where μ is the reduced mass.

4.3 Show that the moment of inertia of a right circular cone of mass M , height h
and radius ‘a’ about its axis is 3Ma2/10.

4.4 Calculate the moment of inertia of a right circular cylinder of radius R and
length h about a line at right angles to its axis and passing through the middle
point.

4.5 Show that the radius of gyration about an axis through the centre of a hollow

cylinder of external radius ‘a’ and internal radius ‘b’ is

√
2

5

(
a5 − b5

a3 − b3

)
.

4.6 Calculate the moment of inertia of a thin rod (a) about an axis passing through
its centre and perpendicular to its length (b) about an end perpendicular to the
rod.

4.7 Show that the moment of inertia of a rectangular plate of mass m and sides 2a

and 2b about the diagonal is
2

3

ma2b2

(a2 + b2)

4.8 Lengths of sides of a right angle triangular lamina are 3, 4 and 5 cm, and the
moment of inertia of the lamina about the sides I1, I2 and I3, respectively
(Fig. 4.1). Show that I1 > I2 > I3.

Fig. 4.1

4.9 A circular disc of radius R and thickness R/6 has moment of inertia I about
the axis perpendicular to the plane and passing through its centre. The disc is
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melted and recasted into a solid sphere. Show that the moment of inertia of the
sphere about its diameter is I/5.

4.10 Calculate the moment of inertia of a hollow sphere of mass M and radius R
about its diameter.

4.11 Use the formula for moment of inertia of a uniform sphere about its diameter(
I = 2

5
MR2

)
to deduce the moment of inertia of a thin hollow sphere about

the axis passing through the centre.

4.2.2 Rotational Motion

4.12 A solid cylinder of mass m and radius R rolls down an inclined plane of height
h without slipping. Find the speed of its centre of mass when the cylinder
reaches the bottom.

4.13 A star has initially a radius of 6 × 108 m and a period of rotation about its
axis of 30 days. Eventually it evolves into a neutron star with a radius of only
104 m and a period of 0.1 s. Assuming that the mass has not changed, find the
ratio of initial and final (a) angular momentum and (b) kinetic energy.

4.14 A uniform solid ball rolls down a slope. If the ball has a diameter of 0.5 m and
a mass of 0.1 kg, find the following:

(a) The equation which describes the velocity of the ball at any time, given
that it starts from rest. Clearly state any assumptions you make.

(b) If the slope has an incline of 30◦ to the horizontal, what is the speed of
the ball after it travels 3 m?

(c) At this point, what is the angular momentum of the ball?
(d) If the coefficient of friction between the ball and the slope is 0.26, what is

the maximum angle of inclination the slope could have which still allows
the ball to roll?

[University of Durham 2000]

4.15 (a) Show that the least coefficient of friction for an inclined plane of angle θ in

order that a solid cylinder will roll down without slipping is
1

3
tan θ . (b) Show

that for a hoop the least coefficient of friction is
2

3
tan θ .

4.16 A small mass m tied to a non-stretchable thread moves over a smooth horizon-
tal plane. The other end of the thread is drawn through a hole with constant
velocity, Fig. 4.2. Show that the tension in the thread is inversely proportional
to the cube of the distance from the hole.

[Osmania University]
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Fig. 4.2

4.17 An ice skater spins at 4π rad/s with her arms extended.

(a) If her moment of inertia with arms folded is 80% of that with arms
extended, what is her angular velocity when she folds her arms?

(b) Find the fractional change in kinetic energy.

4.18 A sphere of radius R and mass M rolls down a horizontal plane. When it
reaches the bottom of an incline of angle θ it has velocity v0. Assuming that
it rolls without slipping, how far up the incline would it travel?

4.19 A body of mass m is attached to a light string wound around a pulley of mass
M and radius R mounted on an axis supported by fixed frictionless bearings
(Fig. 4.3). Find the linear acceleration ‘a’ of m and the tension T in the string.

Fig. 4.3

4.20 A light string is wound several times around a spool of mass M and radius R.
The free end of the string is attached to a fixed point and the spool is held so
that the part of the string not in contact with it is vertical (see Fig. 4.4). If the
spool is let go, find the acceleration and the tension of the string.
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Fig. 4.4

4.21 Two unequal masses m1 and m2(m1 >m2) are suspended by a light string over
a pulley of mass M and radius R as in Fig. 4.5. Assuming that slipping does
not occur and the friction of the axle is negligible, (a) find the acceleration
with which the masses move; (b) angular acceleration of the pulley; (c) ratio
of tensions T1/T2 in the process of motion.

Fig. 4.5

4.22 Two wheels of moment of inertia I1 and I2 are set in rotation with angu-
lar speed ω1 and ω2. When they are coupled face to face they rotate with a
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common angular speed ω due to frictional forces. Find (a) ω and (b) work
done by the frictional forces.

4.23 Consider a uniform, thin rod of length l and mass M .

(a) The rod is held vertically with one end on the floor and is then allowed to
fall. Use energy conservation to find the speed of the other end just before
it hits the floor, assuming the end on the floor does not slip.

(b) You have an additional point mass m that you have to attach to the rod.
Where do you have to attach it, in order to make sure that the speed of the
falling end is not altered if the experiment in (a) is repeated?

[University of Durham 2005]

4.24 A thin circular disc of mass M and radius R is rotated with a constant angular
velocity ω in the horizontal plane. Two particles each of mass m are gently
attached at the opposite end of the diameter of the disc. What is the new
angular velocity of the disc?

4.25 If the velocity is v = 2î − 3 ĵ + k̂ and the position vector is r = î + 2 ĵ − 3k̂,
find the angular momentum for a particle of mass m.

4.26 A ball of mass 0.2 kg and radius 0.5 m starting from rest rolls down a 30◦
inclined plane. (a) Find the time it would take to cover 7 m. (b) Calculate the
torque acting at the end of 7 m.

4.27 A string is wrapped around a cylinder of mass m and radius R. The string
is pulled vertically upwards to prevent the centre of mass from falling as the
cylinder unwinds the string. Find

(a) the tension in the string.
(b) the work done on the cylinder when it acquires angular velocity ω.
(c) the length of the string unwound in the time the angular speed reaches ω.

4.28 Two cords are wrapped around the cylinder, one near each end and the cord
ends which are vertical are attached to hooks on the ceiling (Fig. 4.6). The
cylinder which is held horizontally has length L , radius R and weight W . If
the cylinder is released find

(a) the tension in the cords.
(b) acceleration of the cylinder.

[Osmania University]

4.29 A body of radius R and mass M is initially rolling on a level surface with
speed u. It then rolls up an incline to a maximum height h. If h = 3u2/4g,
figure out the geometrical shape of the body.

4.30 A solid cylinder, a hollow cylinder, a solid sphere and a hollow sphere of the
same mass and radius are placed on an incline and are released simultaneously
from the same height. In which order would these bodies reach the bottom of
the incline?
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Fig. 4.6

4.31 A tube of length L is filled with an incompressible liquid of mass M and
closed at both the ends. The tube is then rotated in a horizontal plane about
one of its ends with a uniform angular velocity ω. Show that the force exerted
by the liquid at the other end is F = 1

2 mω2L .

4.32 A uniform bar of length 6a and mass 8m lies on a smooth horizontal table.
Two point masses m and 2m moving in the same horizontal plane with speed
2v and v, respectively, strike the bar and stick to the bar (Fig. 4.7). The bar is
set in rotation. Show that

(a) the centre of mass velocity vc = 0
(b) the angular momentum J = 6mva
(c) the angular velocity ω = v/5a
(d) the rotational energy E = 3mv2/5

Fig. 4.7

4.33 A thin rod of negligible weight and of length 2d carries two point masses of m
each separated by distance d, Fig. 4.8. If the rod is released from a horizontal
position show that the speed of the lower mass when the rod is in the vertical

position will be v =
√

24 gd

5
.

4.34 If the radius of the earth suddenly decreases to half its present value, the mass
remaining constant, what would be the duration of day?
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Fig. 4.8

4.35 A tall pole cracks and falls over. If θ is the angle made by the pole with the

vertical, show that the radial acceleration of the top of the pole is aR = 3

2
g(1−

cos θ) and its tangential acceleration is aT = 3

2
g sin θ .

4.36 The angular momentum of a particle of a point varies with time as J = at2 î +
b ĵ , where a and b are constants. When the angle between the torque about
the point and the angular momentum is 45◦, show that the magnitude of the
torque and angular momentum will be 2

√
ab and

√
2b, respectively.

4.37 A uniform disc of radius R is spun about the vertical axis and placed on a
horizontal surface. If the initial angular speed is ω and the coefficient of fric-
tion μ show that the time before which the disc comes to rest is given by
t = 3ωR/4μg.

4.38 A small homogeneous solid sphere of mass m and radius r rolls without slip-
ping along the loop-the-loop track, Fig. 4.9. If the radius of the circular part
of the track is R and the sphere starts from rest at a height h = 6R above the
bottom, find the horizontal component of the force acting on the track at Q at
a height R from the bottom.

Fig. 4.9
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4.39 A particle is projected horizontally along the interior of a smooth hemispher-
ical bowl of radius r . If the initial angular position of the particle is θ0, find
the initial velocity required by the particle just to reach the top of the bowl
(Fig. 4.10).

Fig. 4.10

4.40 A spool of mass m, with a thread wound on it, is placed on an incline of 30◦ to
the horizontal. The free end of the thread is attached to a nail, Fig. 4.11. Find
the acceleration of the spool.

Fig. 4.11

4.41 A flywheel with initial angular velocity ω0 undergoes deceleration due to fric-
tional forces, with the torque on the axle being proportional to the square
root of its angular velocity. Calculate the mean angular velocity of the wheel
averaged over the total deceleration time.

4.42 A conical pendulum consisting of a thin uniform rod of length L and mass m
with the upper end of the rod freely hanging rotates about a vertical axis with
angular velocity ω. Find the angle which the rod makes with the vertical.

4.43 A billiard ball is initially struck such that it slides across the snooker table
with a linear velocity V0. The coefficient of friction between the ball and table
is μ. At the instant the ball begins to roll without sliding calculate

(a) its linear velocity
(b) the time elapsed after being struck
(c) the distance travelled by the ball

State clearly what assumptions you have made about the forces acting on the
ball throughout.
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4.44 Consider a point mass m with momentum p rotating at a distance r about an
axis. Starting from the definition of the angular momentum L ≡ r × p of this
point mass, show that

dL

dt
= τ,

where τ is the torque.
A uniform rod of length l and mass M rests on a frictionless horizontal surface.
The rod pivots about a fixed frictionless axis at one end. The rod is initially
at rest. A bullet of mass m travelling parallel to the horizontal surface and
perpendicular to the rod with speed v strikes the rod at its centre and becomes
embedded in it. Using the result above, show that the angular momentum of
the rod after the collision is given by

|L| = 1

2
lv

Is L = (l/2)mv also correct?
What is the final angular speed of the rod?
Assuming M = 5m, what is the ratio of the kinetic energy of the system after
the collision to the kinetic energy of the bullet before the collision?

[University of Durham 2008]

4.45 A uniform sphere of radius r initially at rest rolls without slipping down from
the top of a sphere of radius R. Find the angular velocity of the ball at the
instant it breaks off the sphere and show that the angle θ = cos−1(10/17)

with the vertical.

4.46 A uniform rod of mass m and length 2a is placed vertically with one end in
contact with a smooth horizontal floor. When it is given a small displacement,
it falls. Show that when the rod is about to strike, the reaction is equal to mg/4.

[courtesy from R.W. Norris and W. Seymour, Mechanics via Calculus,
Longmans & Co.]

4.47 The double pulley shown in Fig. 4.12 consists of two wheels which are fixed
together and turn at the same rate on a frictionless axle. A rope connected
to mass m1 is wound round the circumference of the larger wheel and a
second rope connected to mass m2 is wound round the circumference of the
smaller wheel. Both ropes are of negligible mass. The moment of inertia, I ,
of the double pulley is 38 kg m2. The radii of the wheels are R1 = 1.2 m and
R2 = 0.5 m.

(a) If m1 = 25 kg, what should the value of m2 be so that there is no angular
acceleration of the double pulley?

(b) The mass m1 is now increased to 35 kg and the system released from rest.
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(i) For each mass, write down the relationship between its linear acceleration
and the angular acceleration of the pulley. Which mass has the greater
linear acceleration?

(ii) Determine the angular acceleration of the double pulley and the tensions
in both ropes.

[University of Manchester 2008]

Fig. 4.12

4.48 Two particles, each of mass m and speed v, travel in opposite directions along
parallel lines separated by a distance d. Show that the vector angular momen-
tum of this system of particles is independent of origin.

4.49 A small sphere of mass m and radius r rolls without slipping on the inside of
a large hemisphere of radius R, the axis of symmetry being vertical. It starts
from rest. When it arrives at the bottom show that

(a) the fraction K (rot)/K (total) = 2/7
(b) the normal force exerted by the small sphere is given by N = 17mg/7

4.50 A solid sphere, a hollow sphere, a solid disc and a hoop with the same mass
and radius are spinning freely about a diameter with the same angular speed
on a table. For which object maximum work will have to be done to stop it?

4.51 In prob. (4.50) the four objects have the same angular momentum. For which
object maximum work will have to be done to stop it?

4.52 In prob. (4.50) the four objects have the same angular speed and same angular
momentum. Compare the work to be done to stop them.

4.53 A solid sphere, a hollow sphere, a solid cylinder and a hollow cylinder roll
down an incline. For which object the torque will be least?

4.54 A particle moves with the position vector given by r = 3t î + 2 ĵ . Show that
the angular momentum about the origin is constant.
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4.55 A metre stick of length l and mass M is placed on a frictionless horizontal
table. A hockey ball of mass m sliding along the table perpendicular to the
stick with speed v strikes the stick elastically at distance d from the centre of
the metre stick. Find d if the ball is to be brought to rest immediately after the
collision (Fig. 4.13).

Fig. 4.13

4.56 A uniform solid cylinder of mass m and radius R is set in rotation about its
axis and lowered with the lateral surface on to the horizontal plane with initial
centre of mass velocity v0. If the coefficient of friction between the cylinder
and the plane is μ, find

(a) how long the cylinder will move with sliding friction.
(b) the total work done by the sliding friction force on the cylinder.

4.57 Two identical cylinders, each of mass m, on which light threads are wound
symmetrically are arranged as in Fig. 4.14. Find the tension of each thread in
the process of motion. Neglect the friction in the axle of the upper cylinder.

Fig. 4.14

4.58 A uniform circular disc of radius r and mass m is spinning with uniform
angular velocity ω in its own plane about its centre. Suddenly a point on its
circumference is fixed. Find the new angular speed ω′ and the impulse of the
blow at the fixed point.
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4.59 A uniform thin rod of mass m and length L is rotating on a smooth horizontal
surface with one end fixed. Initially it has an angular velocity � and the motion
slows down only because of air resistance which is k dx times the square of
the velocity on each element of the rod of length dx . Find the angular velocity
ω after time t .

4.60 A sphere of radius a oscillates at the bottom of a hollow cylinder of radius b
in a plane at right angles to the axis which is horizontal. If the cylinder is fixed
and the sphere does not slide, find T , the time period of oscillations in terms
of a, b and g, the acceleration due to gravity.

4.61 (a) Show that the moment of inertia of a disc of radius R and mass M about
an axis through the centre perpendicular to its plane is

I = 1

2
MR2

(b) A disc rolls without slipping along a horizontal surface with velocity u.
The disc then encounters a smooth drop of height h, after which it con-
tinues to move with velocity v. At all times the disc remains in a vertical
plane (Fig. 4.15).

Show that v =
√

u2 + 4gh

3

[University of Manchester 2008]

Fig. 4.15

4.62 A circular ring of mass m and radius r lies on a smooth horizontal surface. An
insect of mass m sits on it and crawls round the ring with a uniform speed v

relative to the ring. Obtain an expression for the angular velocity of the ring.
[With courtesy from R.W. Norris and W. Seymour, Longmans,

Green and Co., 1923]

4.2.3 Coriolis Acceleration

4.63 (a) Given that earth rotates once every 23 h 56 min around the axis from the
North to South Pole, calculate the angular velocity, ω, of the earth. When
viewed from above the North Pole, the earth rotates counterclockwise
(west to east). Which way does ω point?
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(b) Foucault’s pendulum is a simple pendulum suspended by a long string
from a high ceiling. The effect of Coriolis force on the motion of the
pendulum is to produce a precession or rotation of the plane of oscillation
with time. Find the time for one rotation for the plane of oscillation of the
Foucault pendulum at 30◦ latitude.

4.64 An object is dropped at the equator from a height of 400 m. How far does it
hit the earth’s surface from a point vertically below?

4.65 An object at the equator is projected upwards with a speed of 20 m/s. How far
from its initial position will it land?

4.66 With what speed must an object be thrown vertically upwards from the surface
of the earth on the equator so that it returns to the earth 1 m away from its
original position?

4.67 A body is dropped from a height at latitude λ in the northern hemisphere.

Show that it strikes the ground a distance d = 1

3
ω cos λ

√
8h3

g
to the west,

where ω is the earth’s angular velocity.

4.68 An iceberg of mass 5 × 105 tons near the North Pole moves west at the rate
of 8 km/day. Neglecting the curvature of the earth, find the magnitude and
direction of the Coriolis force.

4.69 A tidal current is running due north in the northern latitude λ with velocity
v in a channel of width b. Prove that the level of water on the east coast is
raised above that on the western coast by (2bvω sin λ)g where ω is the earth’s
angular velocity.

4.70 If an object is dropped on the earth’s surface, prove that its path is a semicu-
bical parabola, y2 = z3.

4.71 A train of mass 1000 tons moves in the latitude 60◦ north. Find the magnitude
and direction of the lateral force that the train exerts on the rails if it moves
with a velocity of 15 m/s.

4.72 A train of mass m is travelling with a uniform velocity v along a parallel
latitude. Show that the difference between the lateral force on the rails when
it travels towards east and when it travels towards west is 4mvω cos λ, where
λ is latitude and ω is the angular velocity of the earth.

4.73 A body is thrown vertically upwards with a velocity of 100 m/s at a 60◦ lati-
tude. Calculate the displacement from the vertical in 10 s.
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4.3 Solutions

4.3.1 Moment of Inertia

4.1 Imagine the sphere of mass M and radius R to be made of a series of circu-
lar discs, a typical one being of thickness dx at distance x from the centre,
Fig. 4.16. The area of the disc is π(R2 − x2), and if the density of the sphere is
ρ, the mass of the disc is ρ π(R2 − x2) dx . The elementary moment of inertia

of the disc about the axis OX is
1

2
(mass)(radius)2

∴ dI = 1

2
πρ (R2 − x2)dx(R2 − x2)

Hence the moment of inertia of the sphere is

I =
∫

dI =
R∫

0

πρ

2
(R2 − x2)2dx = 8πρ

15
R5 = 2

5
MR2

as ρ = 3M

4π R3

Fig. 4.16

4.2 Let the mass m1 and m2 be at distance r1 and r2, respectively, from the centre
of mass. Then

r1 = m2r

m1 + m2
, r2 = m1r

m1 + m2

Moment of inertia of the masses about the centre of mass is given by

I = m1r2
1 + m2r2

2

= m1

(
m2r

m1 + m2

)2

+ m2

(
m1r

m1 + m2

)2

= m1m2

m1 + m2
r 2 = μ r2

where μ = m1m2

m1 + m2
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4.3 Consider the cone to be made up of a series of discs, a typical one of radius r
and of thickness dz at distance z from the apex. Volume of the disc is dV =
πr2dz. Its mass will be dm = ρdV = πρr2dz, where ρ is the mass density
of the cone. The moment of inertia dI of the disc about the z-axis is given by
(Fig. 4.17)

dI = 1

2
r2dm = π

2
ρr4dz

But
r

a
= z

h
(from the geometry of the figure)

or r = az

h

where h is the height of the cone and a is the radius of the base

∴ dI = π

2
ρ

a4

h4 z4dz

I =
∫

dI = π

2
ρ

a4

h4

h∫

0

z4dz = π

10
ρ a4h

But ρ = 3M

πa2h

∴ I = 3Ma2

10

Fig. 4.17

4.4 Consider a slice of the cylinder of thickness dz at distance z from the centre of
mass of cylinder O. The moment of inertia about an axis passing through the
centre of the slice and perpendicular to z-axis will be

dI = 1

4
dm R2
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Fig. 4.18

Then the moment of inertia about an axis parallel to the slice and passing
through the centre of mass is given by the parallel axis theorem, Fig. 4.18.

dIC = 1

4
dm R2 + dm z2

= π R2ρ

(
R2

4
+ z2

)
dz

where dm = π R2ρdz is the mass of the slice and ρ is the density.

∴ IC =
∫

dIC = π R2ρ

+h/2∫

−h/2

(
R2

4
+ z2

)
dz

= π R2ρ

[
R2

4
h + h3

12

]

But ρ = M

π R2h

∴ IC = M

12

(
3R2 + h2

)

4.5 The moment of inertia of the larger solid sphere of mass M

I1 = 2

5
Ma2 (1)

The moment of inertia of the smaller solid sphere of mass m, which is removed
to hollow the sphere, is

I2 = 2

5
mb2 (2)
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As the axis about which the moment of inertia is calculated is common to both
the spheres, the moment of inertia of the hollow sphere will be

I = I1 − I2 = 2

5
(Ma2 − mb2) = (M − m)k2 (3)

where (M − m) is the mass of the hollow sphere and k is the radius of gyration.

Now M = 4

3
π a3ρ and m = 4

3
π b3ρ (4)

Using (4) in (3) and simplifying we get

k =
√

2

5

(a5 − b5)

(a3 − b3)

4.6 (a) Let AB represent a thin rod of length L and mass M , Fig. 4.19. Choose the
x-axis along length of the rod and y-axis perpendicular to it and passing
through its centre of mass O. Consider a differential element of length dx
at a distance x from O. The mass associated with it is M (dx/L). The
contribution to moment of inertia about the y-axis by this element of length
will be M (dx/L) x2. The moment of inertia of the rod about y-axis passing
through the centre of mass is

IC =
∫

dIC =
+L/2∫

−L/2

M
dx

L
x2 = M L2

12

(b) Moment of inertia about y-axis passing through the end of the rod (A or B)
is given by the parallel axis theorem:

IA = IB = IC + M

(
L

2

)2

= M L2

3

Fig. 4.19
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4.7 The moment of inertia of the plate about x-axis is Ix = (1/3) Mb2 and about
y-axis is Iy = (1/3) Ma2. It can be shown that the moment of inertia about the
line BD is

IBD = 1

3
Mb2 cos2 θ + 1

3
Ma2 sin2 θ (1)

where θ is the angle made by BD with the x-axis. From Fig. 4.20, cos θ =
a√

a2 + b2
and sin θ = b√

a2 + b2
.

∴ IBD = 1

3

M b2a2
(
a2 + b2

) + 1

3

M a2b2
(
a2 + b2

) = 2

3
M

a2 b2
(
a2 + b2

)

Fig. 4.20

4.8 The moment of inertia about any side of a triangle is given by the product of
the one-sixth mass m of the triangle and the square of the distance (p) from the
opposite vertex, i.e. I = mp2/6. The perpendicular BD on AC is found to be
equal to 12/5 from the geometry of Fig. 4.21.

Fig. 4.21
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I1 = m

6
(AB)2 = m

6
42 = 8m

3

I2 = m

6
(BC)2 = m

6
32 = 3m

2

I3 = m

6
(BD)2 = m

6

(
12

5

)2

= 24m

25

∴ I1 > I2 > I3

4.9 If the radius of the sphere is r then the volume of the sphere must be equal to
that of the disc:

4

3
π r3 = π R2 R

6

∴ r = R

2

The moment of inertia of the disc I = ID = (1/2) m R2

The moment of inertia of the sphere

IS = 2

5
mr2 = 2

5
m

R2

4
= 1

5
× 1

2
m R2 = 1

5
ID

4.10 Consider a strip of radius r on the surface of the sphere symmetrical about the
z-axis and width Rdθ , where R is the radius of the hollow sphere, Fig. 4.22.

Fig. 4.22

Area of the strip is 2πr · Rd θ = 2π R2 sin θ d θ . If σ is the surface mass den-
sity (mass per unit area) then the mass of the strip is dm = 2π R2σ sin θ d θ .
Moment of inertia of the elementary strip about the z-axis

dI = dm r2 = 2π R4σ sin3 θ d θ

Moment of inertia contributed by the entire surface will be
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I = ∫
dI = 2π R4 σ

π∫
0

sin3 θ d θ

= 2π R4σ
4

3

But σ = M

4π R2

∴ I = 2

3
MR2

4.11 By prob. (4.5), the radius of gyration of a hollow sphere of external radius a
and internal radius b is

k =
√

2

5

(a5 − b5)

(a3 − b3)
(1)

The derivation of (1) is based on the assumed value of moment of inertia for

a solid sphere about its diameter

(
I = 2

5
MR2

)
. Squaring (1) and multiplying

by M , the mass of the hollow cylinder is

I = Mk2 = 2

5
M

(a5 − b5)

(a3 − b3)
(2)

Let a = b + � (3)

where � is a small quantity. Then (2) becomes

I = 2

5
M

[
(b + �)5 − b5

]
[
(b + �)3 − b3

] = 2

5
M

[
b5 + 5b4� + · · · − b5

]
[
b3 + 3b3� + · · · − b3

]

where we have neglected higher order terms in �. Thus

I = 2

5
M

5b4�

3b2�
= 2

3
Mb2 = 2

3
MR2

where b = a = R is the radius of the hollow sphere.

4.3.2 Rotational Motion

4.12 Potential energy at height h is mgh and kinetic energy is zero. At the bottom
the potential energy is assumed to be zero. The kinetic energy (K ) consists of

translational energy

(
1

2
mv2

)
+ rotational energy

(
1

2
Iω2

)

:
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K = 1

2
mv2 + 1

2
Iω2 = 1

2
mv2 + 1

2
× 1

2
m R2 v2

R2 = 3

4
mv2

Gain in kinetic energy = loss of potential energy

3

4
mv2 = mgh

or v =
√

4g h

3

4.13 (a) Initial angular momentum

L1 = I1ω1 = 2

5
MR2

1
2π

T1

Final angular momentum L2 = I2ω2 = 2

5
MR2

2
2π

T2

L1

L2
= R2

1

R2
2

T2

T1
=
(

6 × 108

104

)2 (
0.1

30 × 86,400

)
= 138.9

(b) Initial kinetic energy (rotational)

K1 = 1

2
I1ω

2
1

= 1

2
× 2

5
M R2

2

(
2π

T1

)2

Final kinetic energy K2 = 1

2
I2ω

2
2 = 1

2
× 2

5
MR2

2

(
2π

T2

)2

K1

K2
=
(

R1

R2

T2

T1

)2

=
(

6 × 108

104
× 0.1

30 × 86,400

)2

= 5.36 × 10−6

4.14 (a) Let M be the mass of the sphere, R its radius, θ the angle of incline.
Let F and N be the friction and normal reaction at A, the point of con-
tact, Fig. 4.23. Denoting the acceleration dx2/dt2 by ẍ , the equations of
motion are

M ẍ = Mg sin θ − F (1)

Mg cos θ − N = 0 (2)

Torque Iα = FR (3)

or
2

5
MR2 a

R
= FR

or F = 2

5
M ẍ (4)
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Fig. 4.23

Using (4) in (1)

a = ẍ = 5

7
g sin θ (5)

Thus the centre of the sphere moves with a constant acceleration. The
assumption made in the derivation is that we have pure rolling without
sliding

(b) v = √
2as =

√
2 × 5

7
× 9.8 × sin 30◦ × 3 = 4.58 m/s

(c) L = Iω = 2

5
M R2 v

R
= 2

5
MvR

= 2

5
× 0.1 × 4.58 × 0.25 = 0.0458 kg m2/T

(d) Using (5) in (1)

F = 2

7
Mg sin θ (4.9)

∴ F

N
= 2

7
tan θ (4.10)

For no slipping F/N must be less than μ, the coefficient of friction
between the surfaces in contact. Therefore, the condition for pure rolling
is that μ must exceed (2/7) tan θ .

μ = 2

7
tan θ (4.11)

∴ tan θ = 7μ

2
= 7

2
×0.26 = 0.91 (4.12)

or θ = 42.3◦ (4.13)

4.15 (a) Equation of motion of the cylinder for sliding down the incline is

mas = mg sin θ − μmg cos θ (1)

or as = g(sin θ − μ cos θ) (2)
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When the cylinder rolls down without slipping, the linear acceleration is
given by

aR = Rα = R
τ

ICM
= R

(μ mg cos θ R)

(1/2)m R2
= 2μ g cos θ (3)

The least coefficient of friction when the cylinder would roll down with-
out slipping is obtained by setting

aR = as

∴ 2μg cos θ = g(sin θ − μ cos θ)

or μ = 1

3
tan θ

(b) For the loop (2) is the same for sliding. But for rolling

aR = Rτ

ICM
= R

(μ mg cos θ R)

m R2 = μ g cos θ

Setting aR = as

μg cos θ = g(sin θ − μ cos θ) (4.14)

μ = 1

2
tan θ (4.15)

4.16 Since the thread is being drawn at constant velocity v0, angular momentum of
the mass may be assumed to be constant. Further the particle velocities v and
r are perpendicular. The angular momentum

J = mvr = constant

∴ v α
1

r

Now the tension T arises from the centripetal force

T = mv2

r

∴ T α
1

r2

1

r
or α

1

r3

4.17 (a) Conservation of angular momentum gives

I1ω1 = I2ω2 (4.16)

(I1)(4π) = 80

100
I1ω2 (4.17)

∴ ω2 = 5π (4.18)
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(b) �K

K1
= K2 − K1

K1
= K2

K1
− 1

= (1/2) I2ω
2
2

(1/2) I1ω
2
1

− 1 = (0.8)

(
5π

4π

)2

− 1 = 1

4

4.18 At the bottom of the incline translational energy is (1/2) Mv2
0 while the rota-

tional energy is

1

2
Iω2 = 1

2
× 2

5
M R2 v2

0

R2 = 1

5
Mv2

0

Total initial kinetic energy = 1

2
Mv2

0 + 1

5
Mv2

0 = 7

10
Mv2

0

Let the sphere reach a distance s up the incline or a height h above the bottom
of the incline. Taking potential energy at the bottom of the incline as zero, the
potential energy at the highest point reached is Mgh. Since the entire kinetic
energy is converted into potential energy, conservation of energy gives

7

10
Mv2

0 = Mgh

But h = s sin θ , so that

s = 7

10

v2
0

g sin θ

4.19 Equation of motion is

Ma = mg − T (1)

The resultant torque τ on the wheel is TR and the moment of inertia is
(1/2) M R2.

Now τ = Iα

∴ T R = 1

2
M R2 a

R

or T = 1

2
Ma (2)

Solving (1) and (2)

a = 2mg

M + 2m
T = Mmg

M + 2m
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4.20 Equation of motion is

Ma = Mg − T (1)

Torque τ = T R = Iα = 1

2
M R2 a

R
(2)

∴ T = 1

2
Ma (3)

Solving (1) and (3) a = 2

3
g T = Mg

3

4.21 (a) Obviously m1 moves down and m2 up with the same acceleration ‘a’ if
the string is taut. Let the tension in the string be T1 and T2 (Fig. 4.5). The
equations of motion are

m1a = m1g − T1 (1)

m2a = T2 − m2g (2)

Taking moments about the axis of rotation O

T1 R − T2 R = Iα = M R2

2
α (3)

where α is the angular acceleration of the pulley and I is the moment of
inertia of the pulley about the axis through O.

But α = a

R

∴ T1 − T2 = Ma

2
(4)

Adding (1) and (2)

(m1 + m2)a = T2 − T1 + (m1 − m2)g (5)

Using (4) in (5) and solving for ‘a’, we find

a = (m1 − m2)g

m1 + m2 + (1/2) M
(6)

(b) α = a

R
= (m1 − m2)g

(m1 + m2 + (1/2) M) R

(c) Using (5) in (1) and (2), the values of T1 and T2 can be obtained from
which the ratio T1/T2 can be found.
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T1

T2
= m1(4m2 + M)

m2(4m1 + M)

4.22 (a) Conservation of angular momentum gives

I1ω1 + I2ω2 = Iω = (I1 + I2)ω

The two moments of inertia I1 and I2 are additive because of common
axis of rotation.

∴ ω = I1ω1 + I2ω2

I1 + I2

(b) Work done = loss of energy

W = 1

2
(I1 + I2)ω

2 −
(

1

2
I1ω

2
1 + 1

2
I2ω

2
2

)

= 1

2
(I1 + I2)

(I1ω1 + I2ω2)
2

(I1 + I2)
2 − 1

2
I1ω

2
1 − 1

2
I2ω

2
2

= −1

2

I1 I2(ω1 − ω2)
2

(I1 + I2)

4.23 (a) Measure the potential energy from the bottom of the rod in the upright
position, the height through which it falls is the distance of the centre of
mass from the ground, i.e. (1/2) L (Fig. 4.24). When it falls on the ground
the potential energy is converted into kinetic energy (rotational).

mg
1

2
L = 1

2
Iω2 = 1

2
× 1

3
mL2ω2 = 1

6
mv2

where I is the moment of inertia of the rod about one end and v = ωL is
the linear velocity of the top end of the pole, v = √

3gL .

(b) The additional mass has to be attached at the bottom of the rod.

Fig. 4.24

4.24 If I1 and I2 are the initial and final moments of inertia, ω1 and ω2 the initial
and final angular velocity, respectively, the conservation of angular momen-
tum gives
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L = I1ω1 = I2ω2

M R2ω1 = (M R2 + 2m R2)ω2

∴ ω2 = ω1 M

M + 2m

4.25 L = r × p = m(r × v)

= m

∣∣∣∣∣∣
î ĵ k̂
1 2 −3
2 −3 1

∣∣∣∣∣∣
= (−7î − 7 ĵ − 7k̂)m = −7m(î + ĵ + k̂)

4.26 (a) a = g sin θ

1 + (
k2/r2

) = 9.8 sin 30◦

1 + (2/5)
= 3.5 m/s2

t =
√

2s

a
=
√

2 × 7

3.5
= 2 s

(b) τ = Iα = 2

5
m R2 a

R
= 2

5
m Ra = 2

5
× 0.2 × 0.5 × 3.5 = 0.14 kg m2/s2.

4.27 (a) The equation of motion is

ma = mg − T (1)

τ = T R = Iα = 1

2
m R2 a

R

∴ T = 1

2
ma (2)

Solving (1) and (2), a = 2g

3
· (3)

(b) Work done = increase in the kinetic energy

W = 1

2
Iω2 = 1

2

(
1

2
m R2

)
ω2 = 1

4
m R2ω2 (4)

(c) W =
∫

τdθ =τθ = mgRθ (5)

(where θ is the angular displacement) is an alternative expression for the work
done. Equating (4) and (5) and simplifying

θ = 1

4
ω2 R

g
(6)

Length of the string unwound = θ R = 1

4

ω2 R2

g
(7)
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4.28 As there are two strings, the equation of motion is

ma = mg − 2T (1)

The net torque

τ = τ1 + τ2 = 2TR = Iα

= 1

2
m R2 a

R
= 1

2
ma R

∴ T = ma

4
(2)

Solving (1) and (2)

(a) T = mg

6
(b) a = 2

3
g

4.29 The total kinetic energy (translational + rotational) at the bottom of the
incline is

K = 1

2
mu2 + 1

2
Iω2 = 1

2
mu2 + 1

2
mk2 u2

R2 = 1

2
mu2

(
1 + k2

R2

)
(1)

where k is the radius of gyration.
At the maximum height the kinetic energy is transformed into potential
energy.

1

2
mu2

(
1 + k2

R2

)
= mgh = mg

3u2

4g

Solving we get k = R/
√

2. Therefore the body can be either a disc or a solid
cylinder.

4.30 Time taken for a body to roll down an incline of angle θ over a distance s is
given by

t =
√

2s

a

where a = g sin θ

1 + (
k2/R2

) . The quantity k2/R2 for various bodies is as follows:

Solid cylinder
1

2
hollow cylinder 1

Solid sphere
2

5
hollow sphere

2

3
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These bodies reach the bottom of the incline in the ascending order of accel-
eration ‘a’ or equivalently ascending order of k2/R2. Therefore the order in
which the bodies reach is solid sphere, solid cylinder, hollow sphere and hol-
low cylinder. The physical reason is that the larger the value of k the greater
will be I , and larger fraction of kinetic energy will go into rotational motion.
Consequently less energy will be available for the translational motion and
greater will be the travelling time.

4.31 Consider an element of length dx at distance x from the axis of rotation
(Fig. 4.25). The corresponding mass will be

dm = ρ Adx

where ρ is the liquid density and A is the area of cross-section of the tube.
The centrifugal force arising from the rotation of dm will be

dF = (dm)ω2x = ω2ρ Axdx

The total force exerted at A, the other end of the tube, will be

F =
∫

dF = ω2ρ A
∫ L

0
x dx = 1

2
ω2ρ AL2; ρ = M

L A

∴ F = 1

2
Mω2L

Fig. 4.25

4.32 (a) Total initial momentum

= (2m)v − m(2v) = 0

Therefore the centre of mass system is the laboratory system and vc = 0
(b) J = (2m)(v)(a) + (m)(2v)(2a) = 6mva
(c) J = Iω (conservation of angular momentum)

6mva =
[

1

12
8m(6a)2 + 2ma2 + m(2a)2

]
ω = 30ma2ω



4.3 Solutions 167

The first term in square brackets is the M.I. of the bar, the second and the
third terms are for the M.I. of the particles which stick to the bar.

Thus ω = v

5a

(d) E = 1

2
Iω2 = 1

2
30 ma2

( v

5a

)2 = 3

5
mv2

4.33 Let the potential energy be zero when the rod is in the horizontal position. In
the vertical position the loss in potential energy of the system will be mg(d +
2d) = 3mgd. The gain in rotational kinetic energy will be

1

2
Iω2 = 1

2
(I1 + I2)ω

2 = 1

2

[
md2 + m(2d)2

]
ω2 = 5

2
md2ω2

Gain in kinetic energy = loss of potential energy

5

2
md2ω2 = 3mgd

∴ ω =
√

6g

5α

The linear velocity of the lower mass in the vertical position will be

v = (ω)(2d) =
√

24

5
gd

4.34 Conservation of J gives

I1ω1 = I2ω2

2

5
M R2 2π

T1
= 2

5
M

(
R

2

)2 2π

T2

∴ T2 = T1

4
= 24

4
= 6 h

4.35 The moment of inertia of the pole of length L and mass M about O is
(Fig. 4.26)

I = M L2

3
(1)

The torque τ = Iα = Mgx (2)
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Fig. 4.26

where x is the projection of the centre of mass on the ground from the point
O and α is the angular acceleration.

Now x = L

2
sin θ (3)

Using (1) and (3) in (2)

α = 3

2

g

L
sin θ (4)

α = dω

dt
= dω

dθ

dθ

dt
= ω

dω

dθ
= 3g

2L
sin θ

Integrating

∫
ω dω = 3

2

g

L

∫
sin θ dθ + C

where C = constant.

ω2

2
= −3

2

g

L
cos θ + C (5)

When θ = 0, ω = 0

∴ C = 3

2

g

L
(6)

Using (6) in (5) ω2 = 3g

2L
(1 − cos θ)

Radial acceleration aR = ω2L = 3

2
g(1 − cos θ)

Tangential acceleration of the top of the pole aT = αL = 3

2
g sin θ
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4.36 J = at2î + b ĵ (1)

∴ τ = d J
dt

= 2at î (2)

Take the scalar product of J and τ .

J · τ = 2a2t3 =
(√

a2t4 + b2
)

(2at) cos 45◦

Simplify and solve for t . We get

t =
√

b

a
(3)

Using (3) in (2), |τ | = 2
√

ab

Using (3) in (1), |J | = √
2b

4.37 Consider a ring of radii r and r + dr , concentric with the disc (r < R). If the
surface density is σ , the mass of the ring is dm = 2πrdrσ . The moment of
inertia of the ring about the central axis will be

dI = (2πr drσ)r2 = 2πσr3dr (1)

and the corresponding torque will be

dτ = αdI = 2πσαr3 dr (2)

The frictional force on the ring is μdm g = μ(2πr drσ)g and the correspond-
ing torque will be

dτ = μ(2πr drσ)gr = 2πσμgr2dr (3)

Calculating the torques from (2) and (3) for the whole disc and equating them

R∫

0

2πσαr3dr =
R∫

0

2πσμgr2dr

∴ α = 4μg

3R
(4)

but 0 = ω − αt

∴ t = ω

α
= 3ωR

4μg
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4.38 The horizontal component of force at Q is mv2/R. The drop in height in com-
ing down to Q is

(6R − R) = 5R

Gain in kinetic energy = loss in potential energy

7

10
mv2 = (mg)(5R)

∴ mv2

R
= 50

7
mg

4.39 Let the velocity on the top be v. Energy conservation gives

1

2
mv2

0 = mgr cos θ0 + 1

2
mv2 (1)

where r cos θ0 is the height to which the particle is raised. Angular momentum
conservation gives

mvr = mv0r sin θ0 (2)

Eliminating v between (1) and (2) and simplifying

v0 =
√

2gr

cos θ0

4.40 Equation of motion is

ma = mg sin θ − T (1)

Torque τ = TR = Iα = 1

2
m R2 a

R

∴ T = 1

2
ma (2)

Using (2) in (1)

a = 2

3
g sin θ = 2

3
g sin 30◦ = g

3

4.41 < ω > =
∫

ωdt∫
dt

(1)

τ = Iα = C
√

ω

where C is a constant.
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∴ α = C1
√

ω

where C1 = constant

α = dω

dt
= C1

√
ω

∴ dt = dω

C1
√

ω
(2)

Using (2) in (1)

< ω >=
∫ ω0

0

√
ωdω∫ ω0

0
dω√

ω

= ω0

3

4.42 OC = L is the length of the rod with the centre of mass G at the midpoint,
Fig. 4.27. As the rod rotates with angular velocity ω it makes an angle θ with
the vertical OA through O. Drop a perpendicular GD = r on the vertical OA
and a perpendicular GB on OC.

r = L

2
sin θ

The acceleration of the rod at G at any instant is ω2r = ω2 (L/2) sin θ , hori-
zontally and in the plane containing the rod and OA. The component at right
angles to OG is ω2 (L/2) sin θ cos θ and the angular acceleration α about O in
the vertical plane containing the rod and OA will be ω2 sin θ cos θ

Torque m g r = mg
L

2
sin θ = Iα = m

L2

3
ω2 sin θ cos θ

mL

2
sin θ

[
g − 2L

3
ω2 cos θ

]
= 0

θ = 0 or cos−1
(

3g

2ω2L

)

If 3g > 2ω2 L , i.e. ω2 <
3g

2L
, the only possible solution is θ = 0, i.e. the rod

hangs vertically. If ω2 >
3g

2L
, then θ = cos−1 3g

2ω2L
.
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Fig. 4.27

4.43 (a) For pure sliding equation of motion is

ma = −μmg

or a = −μg (1)

v = v0 − μgt (2)

At the instant pure rolling sets in

Torque Iα = F R (3)

2

5
m R2α = μmgR

∴ α = 5

2

μg

R
(4)

ω = αt = 5

2

μgt

R
(5)

Using (5) in (2)

v = v0 − 2

5
ωR = v0 − 2

5
v

∴ v = 5

7
v0

(b) v = v0 − μgt

t = v0 − v

μg
= v0 − (5/7) v0

μg
= 2v0

7μg

(c) v2 = v2
0 + 2as
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= v2
0 − 2μgs

(
5

7
v0

)2

= v2
0 − 2μgs

s = 12

49

v2
0

μg

The assumption made is that we have either pure sliding or pure rolling.
Actually in the transition both may be present.

4.44 L = r × p

Differentiating

dL
dt

= r × d p
dt

+ p × dr
dt

= r × F + p × v = τ + 0 = τ

because the momentum and velocity vectors are in the same direction.
Angular momentum conservation requires that

|Li| = |Lf| = mv

(
l

2

)

L = (l/2)mv is not correct because L is perpendicular to v.

L conservation gives

mv
l

2
= 1

3
Ml2ω + mω

l2

4

∴ ω = 6mv

(4M + 3m)l
(1)

Krot = 1

2
Iω2 + 1

2
m

(
ωl

2

)2

= 3m2v2

2(4M + 3m)

where we have used (1).

∴ Krot
1
2 mv2

= 3m

4M + 3m
= 3

23

where we have used M = 5m (by problem).

4.45 Let the small sphere break off from the large sphere at angle θ with the verti-
cal, Fig. 4.28. At that point the component of (gravitational force) – (centrifu-
gal force) = reaction = 0
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Fig. 4.28

mg cos θ = mv2

R + r
(1)

Loss in potential energy = gain in kinetic energy

mg(R + r)(1 − cos θ) = 7

10
mv2 (2)

Solving (1) and (2)

g(R + r) = 17

10
v2 = 17

10
ω2r2

∴ ω =
√

10

17
g
(R + r)

r2
and θ = cos−1

(
10

17

)

4.46 Let N be the reaction of the floor and θ the angle which the rod makes with
the vertical after time t , Fig. 4.29. The only forces acting on the rod are the
weight and the reaction which act vertically and consequently the centre of
mass moves in a straight line vertically downwards.
Equation of motion for the centre of mass is

Fig. 4.29
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mg − N = m
d2

dt2 (a − a cos θ)

or mg − N = ma

[
cos θ

(
dθ

dt

)2

+ sin θ
d2θ

dt2

]
(1)

The work–energy theorem gives

mga(1 − cos θ) = 1

2
m

(
dθ

dt

)2 [a2

3
+ a2 sin2 θ

]

where the square bracket has been written using the parallel axis theorem.

(
dθ

dt

)2

= 6g(1 − cos θ)

a(1 + 3 sin2 θ)
(2)

∴ d2θ

dt2 = 3g

a

[
sin θ(7 − 6 cos θ − 3 sin2 θ)

(1 + 3 sin2 θ)2

]
(3)

By substituting

(
dθ

dt

)2

and

(
d2θ

dt2

)
from (2) and (3) in (1), the reaction N is

obtained as a function of θ . When the rod is about to strike the floor,

θ = π

2
;
(

dθ

dt

)2

= 3g

2a
and

d2θ

dt2
= 3g

4a

Thus the reaction from (1) will be

N = m

[
g − 3g

4

]
or

1

4
mg

4.47 (a) For αnet = 0, the two torques which act in the opposite sense must be
equal (Fig. 4.30), i.e.

τ1 = τ2

or m1gR1 = m2gR2

m2 = m1 R1

R2
= 25 × 1.2

0.5
= 60 kg

(b) (i) a1 = αR1, a2 = αR2 (1)

as R1 > R2, a1 > a2

(ii) Equations of motion are
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m1a1 = m1g − T1 (2)

m2a2 = T2 − m2g (3)

T1 R1 − T2 R2 = Iα (4)

Combining (1), (2), (3) and (4) and substituting m1 = 35 kg, m2 = 60 kg,
R1 = 1.2 m, R2 = 0.5 m, I = 38 kg m2 and g = 9.8 m/s2, we find

a1 = (m1 R1 − m2 R2)R1g

m1 R2
1 + m2 R2

2 + I

= (35 × 1.2 − 60 × 0.5)1.2g

35 × 1.22 + 60 × 0.52 + 38
= 0.139g

a2 = a1
R2

R1
= 0.139 × 0.5

1.2
= 0.058 g

T1 = m1(g − a1) = 35g(1 − 0.139) = 295.3 N

T2 = m2(g + a2) = 60g(1 + 0.058) = 622.1 N

α = T1 R1 − T2 R2

I
= 295.3 × 1.2 − 622.1 × 0.5

38
= 1.14 rad/s2

4.48 J = J1 + J2

= xî × (−mv ĵ) + (x + d)î × (mv ĵ)

= mvdî × ĵ = mvdk̂

which is independent of x and therefore independent of the origin.

Fig. 4.30

4.49 (a) Krot = 1

2
Iω2 = 1

2
· 2

5
mr2 v2

r2
= 1

5
mv2

Ktotal = 1

2
mv2 + 1

5
mv2 = 7

10
mv2

∴ Krot

Ktotal
= (1/5) mv2

(7/10) mv2
= 2

7
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(b) In coming down to the bottom of the hemisphere loss of potential
energy = mgh = mgR. Gain in kinetic energy = (7/10) mv2.

∴ 7

10
mv2 = mgR

or
mv2

R
= 10mg

7

The normal force exerted by the small sphere at the bottom of the large
sphere will be

N = mg + mv2

R
= mg + 10mg

7
= 17mg

7

4.50 Work done W = τθ = Iαθ = Iω2

2

Along the diameter for hoop, I = m R2/2, while for the solid sphere, hollow
sphere and the disc, I = (2/5) m R2, (2/3) m R2 and (1/4) m R2, respectively,
maximum work will have to be done to stop the hollow sphere, ω being iden-
tical as it has the maximum moment of inertia.

4.51 Work done W = τθ = Iαθ = Iω2

2
= J 2

2I

where we have used the formula J = Iω. Maximum work will have to be
done for the disc since I is the least, τ being identical.

4.52 W = 1

2
Iω2 = 1

2
(Iω)ω = 1

2
Jω

Since J and ω are the same for all the four objects, work done is the same.

4.53 τ = Iα = I
a

R
= MgR sin θ

1 + (
R2/k2

)

For solid sphere, hollow sphere, solid cylinder and hollow cylinder the quan-
tity 1 + (R2/k2) is 7/2, 5/2, 3, 2, respectively. Therefore τ will be least for
solid sphere.
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4.54 r = 3t î + 2 ĵ

v = dr
dt

= 3î

L = r × p = m(r × v) = m(3t î + 2 ĵ) × 3î

= 6 m( ĵ × î) = −6 mk̂ (constant)

4.55 Angular momentum conservation gives

J = mvd = Iω (1)

Linear momentum conservation gives

mv = Mvc (2)

Energy conservation gives

1

2
mv2 = 1

2
Iω2 + 1

2
Mv2

c (3)

I = Ml2

12
(4)

Eliminating ω and vc from (1) and (2) and using (3)

1

2
mv2 = 1

2

m2v2d2

I
+ 1

2

m2v2

M
(5)

Simplifying and using (4) in (5)

d = l

2

√
M − m

3m

4.56 (a) Let the initial velocity be v0, then at instant t the velocity

v = v0 − at = v0 − μgt (1)

Torque τ = Iα = F R

1

2
m R2α = μ mgR

α = 2μg

R

μgt = αRt

2
= ωR

2
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Therefore (1) becomes

v = v0 − ωR

2
= v0 − v

2

∴ v = 2

3
v0 (2)

Using (2) in (1)

2

3
v0 = v0 − μ gt

or t = v0

3 μg

(b) Work done W = �K = 1

2
mv2 − 1

2
mv2

0

= 1

2
m

[
4

9
v2

0 − v2
0

]
= − 5

18
mv2

0

4.57 Equation of motion is

ma = mg − 2T (1)

where ‘a’ is the linear acceleration and T the tension in each thread.

Torque Iα = 2T r (∵ there are two threads)

1

2
mr2α = 2T r

or α = 4T

mr
(2)

As both the cylinders are rotating,

a = 2αr = 8T

m
(3)

or ma = 8T (4)

Using (4) in (1) we get

T = 1

10
mg
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Note that if the lower cylinder is not wound then

a = 4T

m
and T = 1

6
mg

4.58 C is the centre of the disc and A the point which is fixed, Fig. 4.31. The forces
acting at A have no torque at A, so that the angular momentum is conserved.
Initially the moment of inertia of the disc about the axis passing through its
centre and perpendicular to its plane is

Ic = I = 1

2
mr2 (1)

When the point A is fixed the moment of inertia about an axis parallel to the
central axis and passing through A will be

IA = Ic + mr2 = m

(
1

2
r2 + r2

)
= 3

2
mr2 (2)

by parallel axis theorem.
Angular momentum conservation requires

IAω′ = Icω (3)

Substituting (1) and (2) in (3) we obtain

ω′ = ω

3
(4)

If X and Y are the impulses of the forces at A perpendicular and along
CA, then

X = m rω′ = mr
ω

3
and Y = 0

Thus the impulse of the blow at A is mr
ω

3
at right angles to CA.

Fig. 4.31
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4.59 The torque of the air resistance on an element dx at distance x from the fixed
end, about this end, will be

dτ = k(ωx)2x dx = kω2x3dx

τ =
∫

dτ = −kω2

L∫

0

x3dx = Iα

i.e. − kω2L4

4
= 1

3
mL2 dω

dt

∴ −3kL2dt = 4m
dω

ω2

∴ −3kL2t = −4m

ω
+ C

where C is the constant of integration. Initial condition: when t = 0, ω = �.

Therefore C = 4m

�

∴ −3kL2t = 4m

(
1

�
− 1

ω

)

∴ ω = 4m�

4m + 3�kL2t

4.60 OA is the vertical radius b of the cylinder and a the radius of the sphere which
is vertical in the lowest position and shown as CA, Fig 4.32.
In the time the centre of mass of the sphere C has moved to C′ through an
angle θ , the sphere has rotated through φ so that the reference lime CA has
gone into the place of C′D.

If there is no slipping

a(φ + θ) = bθ (1)

The velocity of the centre of mass is (b − a)θ̇ and the angular velocity of the
sphere about its centre is

φ̇ = (b − a)

a
θ̇ (2)

Taking A as zero level, the potential energy

U = mg(b − a)(1 − cos θ) (3)
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Fig. 4.32

The kinetic energy = T (trans) + T (rot)

T = 1

2
m(b − a)2θ̇2 + 1

2
I φ̇2

= 1

2
m(b − a)2θ̇2 + 1

2
· 2

5
ma2 (b − a)2

a2 θ̇2

= 7

10
m(b − a)2θ̇2 (4)

where we have used (2).
Total energy

E = T + U = 7

10
m(b − a)2θ̇2 + mg(b − a)(1 − cos θ) = constant (5)

Differentiating with respect to time and cancelling common factors

dE

dt
= 7

5
m(b − a)θ̈ · θ̇ + g sin θ · θ̇ = 0 (6)

or θ̈ + 5g

7(b − a)
sin θ = 0 (7)

For small oscillation angles sin θ → θ .

∴ θ̈ + 5g θ

7(b − a)
= 0 (8)

which is the equation for simple harmonic motion with frequency
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ω =
√

5g

7(b − a)
(9)

and time period

T = 2π

√
7(b − a)

5g
(10)

4.61 (a) Let the disc be composed of a number of concentric rings of infinitesi-
mal width. Consider a ring of radius r , width dr and surface density σ

(mass per unit area). Then its mass will be (2πrdr)σ . The moment of
inertia of the ring about an axis passing through the centre of the ring and
perpendicular to its plane will be

dI = (2πr dr)σr2

Then the moment of inertial of the disc

I =
∫

dI = 2πσ

R∫

0

r3dr = 1

2
π σ R4 (1)

If M is the mass of the disc, then

σ = M

π R2
(2)

∴ I = 1

2
M R2 (3)

(b) The total kinetic energy T of the disc on the horizontal surface is

T (initial) = 1

2
Mu2 + 1

2
Iω2

= 1

2
Mu2 + 1

2
· 1

2
M R2 u2

R2
= 3

4
Mu2 (4)

T (final) = 3

4
Mv2 = 3

4
Mu2 + Mgh

by energy conservation

Solving, v =
√

u2 + 4

3
gh

4.62 In Fig. 4.33, O is the centre of the ring, P the instantaneous position of the
insect and G the centre of mass of the system. Suppose the insect crawls
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Fig. 4.33

around the ring in the counterclockwise sense. The only forces acting in a
horizontal plane are the reactions at P which are equal and opposite. Conse-
quently G will not move and the angular momentum about G which was zero
initially will remain zero throughout the motion due to its conservation.

m · PG(v − PGω) − IGω = 0 (1)

where ω is the angular velocity of the ring.

Now PG = Mr

M + m
, OG = mr

M + m
(2)

Iω = ICM + M(OG)2 = Mr2 + M
m2r2

(M + m)2 (3)

Using (2) and (3) in (1) and simplifying we obtain

ω = mv

(M + 2m)r
(4)

4.3.3 Coriolis Acceleration

4.63 (a) ω points in the south to north direction along the rotational axis of the
earth.

ω = 2π

T
= 2π

86, 160
= 7.292 × 10−5 rad/s

(b) The period of rotation of the plane of oscillation is given by

T ′ = 2π

ω′ = 2π

ω sin λ
= T0

sin λ
= 24

sin 30◦ = 48 h
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4.64 The object undergoes an eastward deviation through a distance

d = 1

3
ω cos λ

√
8h3

g
= 1

3
× 7.29 × 10−5 × cos 0◦

√
8 × 4003

9.8
= 0.1756 m

= 17.56 cm

4.65 y′ = 4

3

u3

g2 ω cos λ

= 4

3
× (20)3

(9.8)2 × 7.29 × 10−5 cos 0◦ = 0.0081 m = 8.1 mm

4.66 y′ = 4

3

u3

g2
ω cos λ, λ = 0◦

u =
[

3y′g2

4ω cos λ

]1/3

=
[

3

4
× 1 × (9.8)2

7.27 × 10−5

]1/3

= 99.7 m/s

4.67 Consider two coordinate systems, one inertial system S and the other rotating
one S′, which are rotating with constant angular velocity ω

Acceleration in Acceleration in Coriolis centrifugal
inertial frame = rotating frame + acceleration + acceleration
d2r
dt2 = d2r ′

dt2 + 2 �ω × dr ′

dt
+ ω × ω × r

(1)

Let the k axis in the inertial frame S be directed along the earth’s axis. Let
the rotating frame S′ be rigidly attached to the earth at a geographical lati-
tude λ in the northern hemisphere. Let the k′ axis be directed outwards at the
latitude λ along the plumb line, whose direction is that of the resultant pass-
ing through the earth’s centre. With the choice of a right-handed system, the
i ′-axis is in the southward direction and the j ′-axis in the eastward direction,
Fig. 4.34. Assume g the acceleration due to gravity to be constant. It includes
the centrifugal term ω × (ω × r) since g is supposed to represent the resultant
acceleration of a falling body at the given place.

d2r ′

dt2
= g − 2ω × vR (2)

Since we are considering the fall of a body in the northern hemisphere, the
components of angular velocity are

ωx = −ω cos λ

ωy = 0
ωz = ω sin λ

⎫
⎬
⎭ (3)
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Fig. 4.34

ω × vR =

∣∣∣∣∣∣∣

i ′ j ′ k′
−ω cos λ 0 ω sin λ

ẋ ′ ẏ′ ż′

∣∣∣∣∣∣∣
= −ω sin λẏ′i ′ + (ω sin λẋ ′ + ω cos λż′) j ′ − (ω cos λẏ′)k ′

But
d2r′

dt2 = g − 2(ω × v)

∴ ẍ ′ i ′ + ÿ′ j ′ + z̈′ k′ = −g k ′ + 2ω sin λẏ′i ′ − 2(ω sin λẋ ′ + ω cos λż′) j ′

+ 2ω cos λẏ′k′ (4)

Equating coefficients of i ′, j ′ and k′on both sides of (4), we obtain the equa-
tions of motion

ẍ ′ = 2ω sin λẏ′ (5)

ÿ′ = −2(ω sin λẋ ′ + ω cos λż′) (6)

z̈′ = −g + 2ω cos λ (7)

Now the quantities ẋ ′ and ẏ′ are small compared to ż′. To the first approxima-
tion we can write

(vR)x = 0; (vR)y = 0; (vR)z = ż′ = −g (8)

Setting ẋ ′ = ẏ′ = 0 in (5), (6) and (7), we obtain the equations for the com-
ponents of aR:

(aR)x = ẍ ′ = 0 (9)

(aR)y = ÿ′ = −2ω ż′ cos λ (10)

(aR)z = z̈′ = −g (11)

Equation (9) shows that no deviation occurs in the north–south direction.



4.3 Solutions 187

Integrating (11)

ż′ = −gt (12)

and z′ = −1

2
gt2 (13)

with the initial condition that at t = 0, ż′ = 0, z′ = 0.

Using (12) in (10) and integrating twice

ẏ′ = ω gt2 cos λ (14)

because (ẏ′)0 = 0.

y′ = 1

3
ω gt3 cos λ (15)

because (y′)0 = 0.

Setting −z′ = h = (1/2) gt2, or t = √
2h/g, in (15) the body undergoes

eastward deviation through a distance

d = y′ = 1

3
ω cos λ

√
8h3

g
(16)

4.68 Fcoriolis = −2mω × vR

Fcor = 2mωvR sin θ = 2 × 5 × 108 × 7.27 × 10−5 × 8000

86, 400
(∵ θ = 90◦)

= 6730 N due north

4.69 Coriolis action on a mass m of water towards the eastern side (Fig. 4.35) is

mÿ′ = 2mvω sin λ (1)

Fig. 4.35

West



188 4 Rotational Dynamics

Let N be the normal reaction and let the water level be tilted through an angle
θ . Resolve N into horizontal and vertical components and balance them with
the Coriolis force and the weight, respectively.

N sin θ = 2m vω sin λ

N cos θ = mg

Dividing the equations, tan θ = d

b
= 2 v ω sin λ

or d = 2bvω

g
sin λ

4.70 By eqn. (15) prob. (4.67)

y′ = 1

3
ωgt3 cos λ (1)

z′ = 1

2
gt2 (2)

Eliminate t between (1) and (2) to find

y′2

z′3 = 8

9

ω2 cos2 λ

g

or y′2 = Cz′3 (semi-cubical parabola)

where C = constant.

4.71 Fcor = 2m v ω sin λ

= 2 × 106 × 15 × 7.27 × 10−5 sin 60◦

= 1889 N on the right rail.

4.72 The difference between the lateral forces on the rails arises because when
the train reverses its direction of motion Coriolis force also changes its sign,
the magnitude remaining the same. Therefore, the difference between the lat-
eral force on the rails will be equal to 2m v ω cos λ − (−2m v ω cos λ) or
4mvω cos λ.

4.73 The displacement from the vertical is given by

y′ =
(

1

3
gt3 − ut2

)
ω cos λ

=
(

1

3
× 9.8 × 103 − 100 × 102

)
× 7.27 × 10−5 cos 60◦

= −0.245 m = −24.5 cm

Thus the body has a displacement of 24.5 cm on the west.



Chapter 5
Gravitation

Abstract Chapter 5 involves problems on gravitational field and potential for
various situations variation of g, rocket motion, orbital motion of planets, satellites
and meteorites, circular and elliptic motion, bound and unbound orbits, Kepler’s
laws, equation of motion under various types of forces.

5.1 Basic Concepts and Formulae

F = −Gm1m2/r2 (gravitational force) (5.1)

The negative sign shows that the force is attractive.
When SI units are used the gravitational constant

G = 6.67 × 10−11 kg−1 m3 s−2

The intensity or field strength g of a gravitational field is equal to the force exerted
on a unit mass placed at that point.

g = −Gm/r2 (5.2)

The (negative) gravitational potential at a given point, due to any system of
masses, is the work done in bringing a unit mass from infinity up to that point.
The zero potential is chosen conventionally at infinity. Symbolically

g = −∂V

∂r
(5.3)

V = −Gm/r (5.4)

The potential energy

U = −G Mm/r (5.5)

189
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Spherical Shell

The gravitational intensity due to a spherical shell of radius a.

g(r) = 0 (r < a)

= −G M/r2 (r > a) (5.6)

where r is measured from the centre of the shell. The potential

V (r) = −G M/a (r < a)

= −G M/r (r > a) (5.7)

Uniform Solid Sphere

g(r) = −G Mr/a (r ≤ a)

= −G M/r2 (r ≥ a) (5.8a)

V (r) = −G M

2a

(
3 − r2

a2

)
(r ≤ a)

= −G M/r (r ≥ a) (5.8b)

Potential energy of a uniform sphere

U = −3G M2/5a (5.9)

Variation of g on Earth

(a) Altitude : g = g0/(1 + h/R)2 (5.10)

g = g0

(
1 − 2h

R

)
(h << R) (5.10a)

(b) Latitude (λ) (at sea level)

g0 = 9.83215 − 0.05178 cos2 λ (5.11)

Formula (5.11) is accurate to better than two parts in a million.
(c) Rotation of earth:

g′ = g − Rω2 cos2 λ (5.12)

where ω = 7.27 × 10−5 /s and R = 6.4 × 106 m
(d) Depth (d) (constant density model)

g = g0 (1 − d/R) (5.13)
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Relation Between g and G

g = G M/r2

where M is the mass of parent body and r ≥ R.

Kepler’s Laws

(i) All planets move in an elliptic path, with the sun at one focus. This is a conse-
quence of inverse square law of gravitation and the constancy of total energy
and angular momentum.

(ii) A line drawn from the sun to the planet sweeps out equal areas in equal times.
This is a consequence of the constancy of angular momentum.

(iii) The squares of the period of rotation of planets about the sun are proportional
to the cubes of the semi-major axes of the ellipses. This is a consequence of
the inverse square law of gravitation for circular orbits.

Central force is a conservative force which acts along a line connecting the cen-
tres of particles.

If F is a central force then curl F = 0.
Areal velocity (C) and the angular momentum (J ):

J = 2mC (5.14)

where m is the mass of the orbiting body.

Orbits of Planets and Satellites

Circular orbits:

Orbital velocity v0 = √
G M/r = √

gr (5.15)

Escape velocity ve = √
2v0 = √

2G M/R = √
2g0 R (5.16)

Time period

T = 2π

√
r3/G M (5.17)

If the planet’s mass cannot be ignored in comparison with the sun’s mass then
(5.17) is modified as

T = 2π

√
r3/G(M + m) (5.18)
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Total energy:

E = −G Mm/2r (5.19)

Elliptic Orbits

Orbital velocity

v2 = G M

(
2

r
− 1

a

)
(5.20)

where r is the distance of the planet/satellite from the centre of parent body and a is
the semi-major axis.

The eccentricity

ε =
√

1 + 2E J 2

G2 M2m3
(5.21)

Total energy

E = −G2 M2m3

2J 2 (1 − ε2) (5.22)

E = −G Mm/2a (5.23)

When the orbiting body is at the maximum distance from the parent body then
r = rmax is called aphelion and the minimum distance r = rmin is called perihe-
lion for the planetary motion. For the satellites the corresponding terms are apogee
and perigee. At both perigee (perihelion) and apogee (aphelion) the velocity of the
orbiting body is perpendicular to the radius vector and they constitute the turning
points.

ε = rmax − rmin

rmax + rmin
(5.24)

ε = vmax − vmin

vmax + vmin
(5.25)

Classification of Orbits

Circle: ε = 0 E < 0
Ellipse: 0 < ε < 1 E < 0
Parabola: ε = 1 E = 0
Hyperbola: ε > 1 E > 0
To determine the law of force, given the orbit by (r , θ ) equation. Let f represent
force per unit mass. Using the formula
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1

p2 = 1

r2 + 1

r4

(
dr

d θ

)2

(5.26)

f = − h2

p3

dp

dr
(5.27)

where p is the impact parameter and h is the angular momentum per unit mass.

5.2 Problems

5.2.1 Field and Potential

5.1 Calculate the gravitational force between two lead spheres of radius 10 cm in
contact with one another, G = 6.67 × 10−11 MKS units. Density of lead =
11,300 kg/m3.

[University of Dublin]

5.2 Considering Fig. 5.1, what is the magnitude of the net gravitational force
exerted on the uniform sphere, of mass 0.010 kg, at point P by the other two
uniform spheres, each of mass 0.260 kg, that are fixed at points A and B as
shown.

[The University of Wales, Aberystwyth 2005]

Fig. 5.1

5.3 Two bodies of mass m and M are initially at rest in an inertial reference frame at
a great distance apart. They start moving towards each other under gravitational
attraction. Show that as they approach a distance d apart (d << r ), their rela-

tive velocity of approach will be

√
2G(M + m)

d
, where G is the gravitational

constant.
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5.4 If the earth suddenly stopped in its orbit assumed to be circular, find the time
that would elapse before it falls into the sun.

5.5 Because of the rotation of the earth a plumb bob when hung may not point
exactly in the direction of the earth’s gravitational force on the plumb bob. It
may slightly deviate through a small angle.

(a) Show that at latitude λ, the deflection angle θ in radians is given by

θ =
(

2π2 R

gT 2

)
sin 2λ

where R is the radius of earth and T is the period of the earth’s rotation.
(b) At what latitude is the deflection maximum?
(c) What is the deflection at the equator?

5.6 Show that the gravitational energy of earth assumed to be the uniform sphere
of radius R and mass M is 3GM2/5R. What is the potential energy of earth
assuming it to be a uniform sphere of radius R = 6.4 × 106 m and of mass
M = 6.0 × 1024 kg.

5.7 Assuming that the earth has constant density, at what distance d from the earth’s
surface the gravity above the earth is equal to that below the surface.

5.8 Assuming the radius of the earth to be 6.38×108 cm, the gravitational constant
to be 6.67 × 10−8 cm3 g/m/s2, acceleration due to gravity on the surface to be
980 cm/s2, find the mean density of the earth.

[University of Cambridge]

5.9 How far from the earth must a body be along a line towards the sun so that the
sun’s gravitational pull balances the earth? The sun is about 9.3 × 107 km away
and its mass is 3.24 × 105 Me, where Me is the mass of the earth.

5.10 Assuming the earth to be a perfect sphere of radius 6.4 × 108 cm, find the
difference due to the rotation of the earth in the value of g at the poles and at
the equator.

[Northern Universities of UK]

5.11 Derive an expression for the gravitational potential V (r) due to a uniform
solid sphere of mass M and radius R when r < R.

5.12 Derive an expression for the potential due to a thin uniform rod of mass M
and length L at a point distant d from the centre of the rod on the axial line of
the rod.

5.13 Show that for a satellite moving close to the earth’s surface along the equator,
moving in the western direction will require launching speed 11% higher than
that moving in the eastern direction.
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5.14 A thin wire of linear mass density λ is bent in the form of a quarter circle of
radius R (Fig. 5.2). Calculate the gravitational intensity at the centre O.

Fig. 5.2

5.15 A tidal force is exerted on the ocean by the moon. This is estimated by the
differential (�g) which is the difference of the acceleration at B and that at C
due to the moon (Fig. 5.3). If R is the radius of the earth, d the distance of
separation of the centre of earth and moon, M and m the mass of the earth and

moon, respectively, show that �g ≈ 2Gm R

d3 .

Fig. 5.3

5.16 Assume that a star has uniform density. Show that the gravitational pressure
P ∝ V −4/3, where V is the volume.

5.17 Find the gravitational field due to an infinite line mass of linear density λ, at
distance R.

5.18 If the earth–moon distance is d and the mass of earth is 81 times that of the
moon, locate the neutral point on the line joining the centres of the earth and
moon.

5.19 A particle of mass m was taken from the centre of the base of a uniform
hemisphere of mass M and radius R to infinity. Calculate the work done in
overcoming gravitational force due to the hemisphere.

5.20 The cross-section of a spherical shell of uniform density and mass M and of
radii a and b is shown in Fig. 5.4. How does the gravitational field vary in the
region a < r < b?
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Fig. 5.4

5.21 Find the variation of the magnitude of gravitational field along the z-axis due
to a disc of radius ‘a’ and surface density σ , lying in the xy-plane.

5.22 Figure 5.5 shows a spherical shell of mass M and radius R in a force-free
region with an opening. A particle of mass m is released from a distance R in
front of the opening. Calculate the speed with which the particle will hit the
point C on the shell, opposite to the opening.

Fig. 5.5

5.2.2 Rockets and Satellites

5.23 A particle of mass m is fired upwards from the surface of a planet of mass M

and radius R with velocity v =
√

G M

2R
. Show that the maximum height which

the particle attains is R/3.

5.24 Consider a nebula in the form of a ring of radius R and mass M . A star of
mass m(m << M) is located at distance r from the centre of the ring on its
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axis, initially at rest. Show that the speed with which it crosses the centre of

the ring will be v =
√

(2 − √
2)

G M

R
.

5.25 If W1 is the work done in taking the satellite from the surface of the earth of
radius R to a height h, and W2 the extra work required to put the satellite in

the orbit at altitude h, and if h = R/2 then show that the ratio
W1

W2
= 1.0.

5.26 An asteroid is moving towards a planet of mass M and radius R, from a long
distance with initial speed v0 and impact parameter d (Fig. 5.6). Calculate the
minimum value of v0 such that the asteroid does not hit the planet.

Fig. 5.6

5.27 The orbits of earth and Venus around the sun are very nearly circular with
mean radius of the earth’s orbit rE = 1.50×1011 m and mean radius of Venus’
orbit rv = 1.08 × 1011 m. If the earth’s period of orbit round the sun is 365.3
days and Venus is 224.7 days

(i) Show that these figures are approximately consistent with Kepler’s third
law.

(ii) Derive a formula to estimate the mass of the sun (G = 6.67 ×
10−11 N m2/kg2).

[The University of Aberystwyth, Wales]

5.28 The greatest and least velocities of a certain planet in its orbit around the sun
are 30.0 and 29.2 km/s. Find the eccentricity of the orbit.

5.29 A binary star is formed when two stars bound by gravity move around a com-
mon centre of mass. Each component of a binary star has period of revolu-
tion about their centre of mass, equal to 14.4 days and the velocity of each
component of 220 km/s. Further, the orbit is nearly circular. Calculate (a) the
separation of the two components and (b) the mass of each component.



198 5 Gravitation

5.30 A satellite is fired from the surface of the moon of mass M and radius R with
speed v0 at 30◦ with the vertical. The satellite reaches a maximum distance of
5R/2 from the centre of the planet. Show that v0 = (5G M/4R)1/2.

5.31 If a satellite has its largest and smallest speeds given by vmax and vmin, respec-
tively, and has time period equal to T , then show that it moves on an elliptic

path of semi-major axis
T

2π

√
vmaxvmin.

5.32 A satellite of radius ‘a’ revolves in a circular orbit about a planet of radius b
with period T . If the shortest distance between their surfaces is c, prove that
the mass of the planet is 4π2(a + b + c)/GT 2.

5.33 When a comet is at a distance 1.75 AU from the sun, it is moving with velocity
u = 30 km/s and its velocity vector is at an angle of 30◦ relative to its radius
vector r centred on the sun (see Fig. 5.7).
What is the angular momentum per unit mass of the comet about the sun?
The closest distance from the sun that the comet reaches is 0.39 AU. What is
the speed of the comet at this point?
Is the comet’s orbit bound or unbound?
(1 AU = 1.5 × 1011 m, mass of the sun = 2 × 1030 kg)

[University of Durham 2002]

Fig. 5.7

5.34 (a) Assuming that the earth (mass ME) orbits the sun (mass MS) in a circle
of radius R and with a speed v, write down the equation of motion for the
earth. Hence show that G MS = v2 R

(b) A comet is in orbit around the sun in the same plane as the earth’s orbit,
as shown in Fig. 5.8. Its distance of closest approach to the sun’s centre is
R/2, at which point it has speed 2v.
Using the condition for the Earth’s orbit given in (a), show that the
comet’s total energy is zero. (Neglect the effect of the earth on the comet.)
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(c) Use conservation of angular momentum to determine the component of
the comet’s velocity which is tangential to the earth’s orbit at the point P,
where the comet’s orbit crosses that of the earth.

(d) Use conservation of energy to find its speed at the point P. Hence show
that the comet crosses the earth’s orbit at an angle of 45◦.

[University of Manchester 2008]

Fig. 5.8

5.35 The geocentric satellite ‘Apple’ was first launched into an elliptic orbit with
the perigee (nearest point) of rp = 6570 km and apogee (farthest point) at
rA = 42,250 km. The respective velocities were vp = 10.25 km/s and vA =
1.594 km/s. Show that the above data are consistent with the conservation of
angular momentum of the satellite about the centre of the earth.

5.36 (a) Assuming that the earth is a sphere of radius 6400 km, with what velocity
must a projectile be fired from the earth’s surface in order that its subse-
quent path be an ellipse with major axis equal to 80,000 km?

(b) If the projectile is fired upwards at an angle 45◦ to the vertical, what would
be the eccentricity of this ellipse?

5.37 A satellite of mass m is orbiting in a circular orbit of radius r and velocity v

around the earth of mass M . Due to an internal explosion, the satellite breaks
into two fragments each of mass m/2. In the frame of reference of the satellite,
the two fragments appears to move radially along the line joining the original
satellite and the centre of the earth, each with the velocity v0/2. Show that
immediately after the explosion each fragment has total energy −3G M/16r

and angular momentum
m

2

√
G Mr , with reference to the centre of the

earth.

5.38 A particle describes an ellipse of eccentricity e under a force to a focus.
When it approaches the nearer apse (turning point) the centre of force is
transferred to the other focus. Prove that the eccentricity of the new orbit is
ε(3 + ε)/(1 − ε).
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5.39 A particle of mass m describes an elliptical orbit of semi-major axis ‘a’ under
a force mk/r2 directed to a focus. Prove that

(a) the time average of reciprocal distance

1

T

∫
dt

r
= 1

a

(b) the time average of square of the speed
1

T

∫
v2dt = G M

a

5.40 A small meteor of mass m falls into the sun when the earth is at the end of
the minor axis of its orbit. If M is the mass of the sun, find the changes in the
major axis and in the time period of the earth.

5.41 A particle is describing an ellipse of eccentricity 0.5 under the action of a
force to a focus and when it arrives to an apse (turning point) the velocity is
doubled. Show that the new orbit will be a parabola or hyperbola accordingly
as the apse is the farther or nearer one.

5.42 When a particle is at the end of the minor axis of an ellipse, the force is
increased by half. Prove that the axes of the new orbit are 3a/2 and

√
2b,

where 2a and 2b are the old axes.

5.43 A satellite is placed in a circular orbit of radius R around the earth.

(a) What are the forces acting on the satellite? Write down the equilibrium
condition.

(b) Derive an expression for the time period of the satellite.
(c) What conditions must be satisfied by a geocentric satellite?
(d) What is the period of a geosynchronous satellite?
(e) Calculate the radius of orbit of a geocentric satellite from the centre of the

earth.

5.44 A satellite moves in an elliptic path with the earth at one focus. At the perigee
(nearest point) its speed is v and its distance from the centre of the earth is r .
What is its speed at the apogee (farthest point)?

5.45 A small body encounters a heavy body of mass M . If at a great distance the
velocity of the small body is v and the impact parameter is p, and ϕ is the
angle of encounter, prove that tan(ϕ/2) = G M/v2 p.

5.46 Obtain an expression for the time required to describe an arc of a parabola
under the action of the force k/r2 to the focus, starting from the end of the
axis.

5.47 A comet describes a parabolic path in the plane of the earth’s orbit, assumed
to be circular. Show that the maximum time the comet is able to remain inside
the earth’s orbit is 2/3π of a year.
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5.48 Find the law of force for the orbit r = a sin nθ .

5.49 Find the law of force to the pole when the orbit described by the cardioid
r = a(1 − cos θ).

5.50 In prob. (5.49) prove that if Q be the force at the apse and v the velocity,
3v2 = 4aQ.

5.51 A particle moves in a plane under an attractive force varying as the inverse
cube of the distance. Find the equation of the orbit distinguishing three cases
which may arise.

5.52 Show that the central force necessary to make a particle describe the lemnis-
cate r2 = a2 cos 2θ is inversely proportional to r7.

5.53 Show that if a particle describes a circular orbit under the influence of an
attractive central force directed towards a point on the circle, then the force
varies as the inverse fifth power of distance.

5.54 If the sun’s mass suddenly decreased to half its value, show that the earth’s
orbit assumed to be originally circular would become parabolic.

5.3 Solutions

5.3.1 Field and Potential

5.1 F = G M1 M2

r2

If R is the radius of either sphere, the distance between the centre of the spheres
in contact is r = 2R:

M1 = M2 = M = 4

3
π R3ρ

F = G M2

4R2 = 4π2G R4ρ2

9

= 4π2

9
× 6.67 × 10−11 × (0.2)4(11300)2 = 5.98 × 10−5 N

5.2 As the mass of A and B are identical and the distance PA = PB, the magnitude
of the force FPA = FPB. Resolve these forces in the horizontal and vertical
direction. The horizontal components being in opposite direction get cancelled.
The vertical components get added up.

FPA = FPB = G
(0.01)(0.26)

(0.1)2
= 0.26G
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Each vertical component = 0.26 G × 6

10
= 0.156 G

Therefore FNet = 2×0.156 G = 2×0.156×6.67×10−11 N = 2.08×10−1 N

5.3 At distance r, FM = Fm = G Mm

r2

Acceleration of mass m am = Fm

m
= G M

r2

Acceleration of mass M aM = Fm

M
= Gm

r2

arel = am + aM = G(M + m)

r2

arel = dvrel

dt
= vrel

dvrel

dr
= G(M + m)

r2

Integrating
∫

vrel dvrel = v2
rel

2
= G(M + m)

∞∫

d

dr

r2 = G(M + m)

d

∴ vrel =
√

2G(M + m)

d

5.4 Gravitational force F = −G Mm

x2

where M and m are the masses of the sun and the earth which are a distance x
apart.
Earth’s acceleration

a = dv

dt
= F

m
= −G M

x2

∴ dv

dt
= vdv

dx
= −G M

x2

vdv = −G M
dx

x2

Integrating
∫

vdv = v2

2
= −Gm

∫
dx

x2 + C

where C = constant
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v2

2
= G M

x
+ C

Initially v = 0, x = r

∴ C = −G M

r

∴ v = dx

dt
= √

2G M

√
1

x
− 1

r

dt = 1√
2G M

dx√
1

x
− 1

r

Integrating

t =
∫

dt = 1√
2G M

r∫

0

dx√
1

x
− 1

r

Put x = r cos2 θ, dx = −2r sin θ cos θdθ

t = −2

√
r3

2G M

0∫

π/2

cos2 θd θ = 2

√
r3

2G M

[
θ

2
+ sin 2θ

4

]π/2

0
= π

2
√

2

√
r3

G M

But the period of earth’s orbit is

T = 2π

√
r3

G M

∴ t = T

4
√

2
= 365

4
√

2
= 64.53 days

Fig. 5.9

5.5 If the earth were at rest, then the gravitational force on a body of mass at P
would be in the direction PO, i.e. towards the centre of the earth, Fig. 5.9.
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However, due to the rotation of the earth about the polar axis NS, a part of
the gravitational force is used up to provide the necessary centripetal force to
enable the mass m at P in the latitude λ to describe a circular radius PA =
r = R cos λ, where PO = R is the earth’s radius. This is equal to mω2r , or
mω2 R cos λ towards the centre and is represented by CA, ω being the angular
velocity of earth’s diurnal rotation. In the absence of rotation the gravitational
force mg acts radially towards the centre O and is represented by PO. Resolve
this into two mutually perpendicular components, one along PA given by mg
cos λ and the other along PB given by mg sin λ and is represented by PB. Drop
CD perpendicular on the EW-axis. Then the resultant force mg′ is given by PD
both in magnitude and direction. A plumb line at P will make a small angle
θ(OP̂ D) with line PO.

mg′ =
√

(mg cos λ − mω2 R cos λ)2 + (mg sin λ)2

= m
√

g2 − 2gRω2 cos2 λ + ω4 R2 cos2 λ (1)

The third term in the radical is much smaller than the second term and is
neglected.

∴ g′ � (g2 − 2gRω2 cos2 λ)1/2

= g

(
1 − 2R

g
ω2 cos2 λ

)1/2

� g

(
1 − R

g
ω2 cos2 λ

)1/2

(2)

where we have expanded binomially and retained only the first two terms.
Now in �OPD

PD

sin PÔ D
= OD

sin θ
(3)

or
g − Rω2 cos2 λ

sin λ
= ω2 R cos λ

sin θ
(4)

sin θ � θ = ω2 R cos λ sin λ

g − Rω2 cos2 λ
(5)

θ � ω2

g
R cos λ sin λ (∵ the second term in the denominator of (5) is much

smaller than the first term)

� 2π2 R

gT 2
sin 2λ
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(a) θ will be maximum when sin 2λ is maximum, i.e. 2λ = 90◦ or λ = 45◦.
(b) At the poles λ = 90◦ and so θ = 0◦.
(c) At the equator λ = 0◦ and so θ = 0◦.

5.6 Consider a spherical shell of radius r and thickness dr concentric with the
sphere of radius R. If ρ is the density, then

ρ = 3M

4π R3 (1)

The mass of the shell = 4πr2drρ.
The mass of the sphere of radius r which is equal to 4πr3/3 may be considered
to be concentrated at the centre.
The gravitational potential energy between the spherical shell and the sphere of
radius r is

dU = −
G(4πr2drρ)

(
4π

3
r3ρ

)

r
= −16π2Gρ2r4dr

3
(2)

The total gravitational energy of the earth

U =
∫

dU = −16π2Gρ2

3

R∫

0

r4dr = −16π2Gρ2 R5

15

= −3

5

G M2

R
(3)

where we have used (1).

U = −6.67 × 10−11 × 0.6 × (6 × 1024)2

6.4 × 106
= 2.25 × 1032J

5.7 If g0 is the gravity at the earth’s surface, gh at height h and gd at depth d, then

gh = g0
R2

(R + h)2 (1)

gd = g0

(
1 − d

R

)
(2)

By problem, gd = gh at h = d, (3)

From (1) and (2) we get

d2 + d R − R2 = 0
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d =
(√

5 − 1
)

2
R = 0.118R = 0.118 × 6400 = 755 km

5.8 Weight mg = G Mm

R2

M = 4

3
π R3ρ

∴ ρ = 3g

4πG R
= 3 × 980

4π × 6.67 × 10−8 × 6.38 × 108
= 5.5 g/cm3

5.9 Let Ms and ME be the masses of the sun and earth, respectively. Let the body of
mass m be at distance x from the centre of the earth and d the distance between
the centres of the sun and the earth. The forces are balanced if

Gm ME

x2 = Gm Ms

(d − x)2

Given that Ms = 3.24 × 105 ME

x = d

570.2
= 9.3 × 107

570.2
= 1.631 × 105 km

5.10 By problem (5.5) g′ = g − Rω2 cos2 λ

Set λ = 0, ω = 7.27 × 10−5 rad/s, R = 6.4 × 108 cm

�g = g − g′ = Rω2 = 6.4 × 108 × (7.27 × 10−5)2 = 3.38 cm/s2

5.11 Figure 5.10 shows the cross-section of a solid sphere of mass M and radius
‘a’ with constant density ρ, its centre being at O. It is required to find the
potential V (r) at the point P, at distance r from the centre. The contribution
to V (r) comes from two regions, one V1 from mass lying within the sphere of
radius r and the other V2 from the region outside it. Thus

Fig. 5.10
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V (r) = V1 + V2 (1)

The potential V1 at P is the same as due to the mass of the sphere of radius r
concentrated at the centre O and is given by

V1 = −G
4πr3

3

ρ

r
= −4

3
πGr2ρ (2)

For the mass outside r , consider a typical shell at distance x from the centre
O and of thickness dx .
Volume of the shell = 4πx2 dx

Mass of the shell = (4πx2 dx)ρ

Potential due to this shell at the centre or at any point inside the shell, including
at P, will be

dV2 = −4πρx2 dx

x
= −4πGρx dx (3)

Potential V2 at P due to the outer shells (x > r) is obtained by integrating (3)
between the limits r and a.

V2 =
∫

dV2 = −4πGρ

a∫

r

x dx = −2πGρ(a2 − r2) (4)

Using (2) and (4) in (1) and using ρ = 3M

4πa3

V (r) = −G M

2a

(
3 − r2

a2

)
(5)

The potential (5) is that of a simple harmonic oscillator as the force

F = −dV

dr
= −G Mr

a3

i.e. the force is opposite and proportional to the distance.

5.12 Consider a length element dx of a thin rod of length L , at distance x from P
(Fig. 5.11). The mass element is (M/L) dx . The potential at P due to this mass
length will be

dV = −G M

L

dx

x



208 5 Gravitation

Fig. 5.11

The potential at p from the entire rod is given by

V =
∫

dV = −G M

L

d+ L
2∫

d− L
2

dx

x
= −G M

L
ln

2d + L

2d − L

5.13 The linear speed of an object on the equator

v = ωR = (7.27 × 10−5)(6.4 × 106) = 465.3 m/s

The orbital velocity of a surface satellite is

v0 = √
gr =

√
9.8 × 6.4 × 106 = 7920 m/s

When launched in the westerly direction the launching speed v0 will be added
to v as the earth rotates from west to east, while in the easterly direction it will
be subtracted.

westerly launching speed

easterly launching speed
= 7920 + 465

7920 − 465
= 1.125

or 11%.

5.14 Consider an element of arc of length ds = R dθ , Fig. 5.12. The corresponding
mass element dm = λds = λR dθ .

The intensity at the origin where λ is the linear density (mass per unit
length) due to dm will be

GλR dθ

R2 or
Gλ dθ

R

The x-component of intensity at the origin due to dm will be

dEx = Gλ

R
dθ sin θ
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Fig. 5.12

Therefore, the x-component of intensity due to the quarter of circle at the
origin will be

Ex = Gλ

R

π/2∫

0

sin θ dθ = Gλ

R

Similarly, the y-component of intensity due to the quarter of circle at the origin
will be

Ey = Gλ

R

π/2∫

0

cos θ dθ = Gλ

R

∴ E =
√

E2
x + E2

y = √
2

Gλ

R

5.15 gB = FB

M
= Gm M

d2 M
= Gm

d2

gC = Fc

M
= Gm M

(d + R)2 M
= Gm

(d + R)2

�g = gB − gC = Gm

d2
− Gm

(d + R)2
= Gm(2Rd + R2)

d2(d + R)2

Since d >> R, �g ≈ 2Gm R

d3

5.16 By problem (5.6) the gravitational energy is given by

U = −3

5

G M2

R
(1)

The volume of the star
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V = 4π R3

3
(2)

∴ R =
(

3V

4π

)1/3

(3)

∴ U = −3

5

(
4π

3V

)1/3

G M2 (4)

P = −∂U

∂V
= −1

5

(
4π

3

)
G M2

V 4/3

∴ P ∝ V −4/3

5.17 Consider a line element dx at A distance x from O, Fig. 5.13. The field point
P is at a distance R from the infinite line. Let PA = r . The x-component of
gravitational field at P due to this line element will get cancelled by a sym-
metric line element on the other side. However, the y-component will add up.
If λ is the linear mass density, the corresponding mass element is λdx

dE = dEy = −Gλdx sin θ

r2 (1)

Now, r2 = x2 + R2 (2)

x = R cot θ (3)

∴ r 2 = R2 cosec2θ (4)

dx = R cosec2θd θ (5)

Using (4) and (5) in (1)

dE = −Gλ

R
sin θdθ

Fig. 5.13
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Integrating from 0 to π/2 for the contribution from the line elements on the
left-hand side of O and doubling the result for taking into account contribu-
tions on the right-hand side

E = −2λ

R

π/2∫

0

sin θdθ = −2Gλ

R

5.18 Let the neutral point be located at distance x from the earth’s centre on the
line joining the centres of the earth and moon. If Me and Mm are the masses
of the earth and the moon, respectively, and m the mass of the body placed
at the neutral point, then the force exerted by Me and Mm must be equal and
opposite to that of Mm on m.

G Mem

x2
= G Mmm

(d − x)2

∴ Me

Mm
= 81 = x2

(d − x)2

Since d > x , there is only one solution

x

d − x
= +9

or x = 9

10
d

5.19 For a homogeneous sphere of mass M the potential for r ≤ R is given by

V (r) = −1

2

G M

R

(
3 − r2

R2

)
. At the centre of the sphere V (0) = −3

2

G M

R
.

For a hemisphere at the centre of the base V (0) = −3

4

G M

R
. The work done

to move a particle of mass m to infinity will be
3

4

G Mm

R
.

5.20 Let the point P be at distance r from the centre of the shell such that
a < r < b. The gravitational field at P will be effective only from matter
within the sphere of radius r . The mass within the shell of radii a and r is
4π

3
(r3 − a3)ρ. Assume that this mass is concentrated at the centre. Then the

gravitational field at a point distance r from the centre will be

g(r) = −4π

3

(r3 − a3)

r2
ρG

But ρ = 3M

4π(b3 − a3)
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∴ g(r) = −G M(r3 − a3)

r2(b3 − a3)

5.21 Let the disc be located in the xy-plane with its centre at the origin. P is a point
on the z-axis at distance z from the origin. Consider a ring of radii r and r +dr
concentric with the disc, Fig. 5.14. The mass of the ring will be

dm = 2πrdrσ (1)

The horizontal component of the field at P will be zero because for each point
on the ring there will be another point symmetrically located on the ring which
will produce an opposite effect. The vertical component of the field at P will
be

dgz = −G × 2πr dr σ cos θ

(r2 + z2)
(2)

But cos θ = z√
r2 + z2

(3)

g = gz =
∫

dgz = −2πσ G

a∫

0

zr dr

(r2 + z2)3/2
(4)

Fig. 5.14

Put r = z tan θ , dr = z sec2 θd θ

g = −2πG =
z/

√
a2+z2∫

0

sin θdθ

= −2πσG

[
1 − z√

z2 + a2

]

5.22 Initially the particle is located at a distance 2R from the centre of the spherical
shell and is at rest. Its potential energy is −G Mm/2R. When the particle
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arrives at the opening the potential energy will be −G Mm/R and kinetic

energy
1

2
mv2.

Kinetic energy gained = potential energy lost

1

2
mv2 = −G Mm

2R
−
(

−G Mm

R

)
= 1

2

G Mm

R

∴ v =
√

G M

R

After passing through the opening the particle traverses a force-free region
inside the shell. Thus, within the shell its velocity remains unaltered. There-

fore, it hits the point C with velocity v =
√

G M

R
.

5.3.2 Rockets and Satellites

5.23 Energy conservation gives

1

2
mv2 − Gm M

R
= −Gm M

r
+ 0

where r is the distance from the earth’s centre.

Using v =
√

G M

2R
, we find r = 4

3
R

Maximum height attained

h = r − R = R

3

5.24 In Fig. 5.15, total energy at P = total energy at O.

Fig. 5.15
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− Gm M√
2R

= 1

2
mv2 − Gm M

R

∴ v =
√

(2 − √
2)

G M

R

5.25 The potential energy of the satellite on the earth’s surface is

U (R) = −G Mm

R
(1)

where M and m are the mass of the earth and the satellite, respectively, and R
is the earth’s radius.
The potential energy at a height h = 0.5R above the earth’s surface will be

U (R + h) = −G Mm

R + h
= −G Mm

1.5R
(2)

Gain in potential energy

�U = −G Mm

1.5R
−
[
−G Mm

R

]
= G Mm

3R
(3)

Thus the work done W1 in taking the satellite from the earth’s surface to a
height h = 0.5 r

W1 = G Mm

3R
(4)

Extra work W2 required to put the satellite in the orbit at an attitude h = 0.5R
is equal to the extra energy that must be supplied:

W2 = 1

2
mv0 = 1

2
m

[
G M

R + h

]
= G Mm

3R
(5)

where v0 is the satellite’s orbital velocity.

Thus from (4) and (5),
W1

W2
= 1.0.

5.26 The initial angular momentum of the asteroid about the centre of the planet is
L = mv0d.

At the turning point the velocity v of the asteroid will be perpendicular to
the radial vector. Therefore the angular momentum L ′ = mvR if the asteroid
is to just graze the planet. Conservation of angular momentum requires that
L ′ = L . Therefore
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mvR = mv0d (1)

or v = v0d

R
(2)

Energy conservation requires

1

2
mv2

0 = 1

2
mv2 − G Mm

R
(3)

or v2 = v2
0 + 2G M

R
(4)

Eliminating v between (2) and (4) the minimum value of v0 is obtained.

v0 =
√

2G M R

d2 − R2

5.27 According to Kepler’s third law

T 2 ∝ r3

(i) T 2
E

r3
E

= (365.3)2

(1.5 × 1011)3
= 3.9539 × 10−29 days2/m3

T 2
v

r2
v

= (224.7)2

(1.08 × 1011)3
= 4.0081 × 10−29 days2/m3

Thus Kepler’s third law is verified

(ii)
T = 2π

√
r3

G M
(1)

where M is the mass of the parent body.

M = 4π2

G

r3

T 2 (2)

From (i) the mean value,

〈
T 2

r3

〉
= 3.981 × 10−29 days2/m3 = 2.972 ×

10−19 s2/m3

M = 4π2

6.67 × 10−11
× 1

2.972 × 10−19
= 1.99 × 1030 kg

5.28 At the perihelion (nearest point from the focus) the velocity (vp) is maximum
and at the aphelion (farthest point) the velocity (vA) is minimum. At both these
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points the velocity is perpendicular to the radius vector. Since the angular
momentum is constant

mvArA = mvprp

or rA = vprp

vA
(1)

where rA = rmax and rp = rmin
The eccentricity

ε = rmax − rmin

rmax + rmin
= rA − rp

rA + rp
= vp − vA

vp + vA
(2)

where we have used (1)

ε = 30.0 − 29.2

30.0 + 29.2
= 0.0135

A small value of eccentricity indicates that the orbit is very nearly circular.

5.29 (a) For circular orbit,

T = 2πa

v

T = 14.4 days = 1.244 × 106s

2a = vT

π
= 2.2 × 105 × 1.244 × 106

3.1416
= 8.7 × 1010 m

(b) Since the velocity of each component is the same, the masses of the com-
ponents are identical.

v2 = G(M + m)

a
= 2G M

a
(∵ m = M)

∴ M = av2

2G
= (4.35 × 1010)(2.2 × 105)2

2 × 6.67 × 10−11
= 1.58 × 1031 kg

5.30 At the surface, the component of velocity of the satellite perpendicular to the
radius R is

v0 sin 30◦ = v0

2
(Fig. 5.16)

Therefore, the angular momentum at the surface = mv0 R

2
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Fig. 5.16

At the apogee (farthest point), the velocity of the satellite is perpendic-
ular to the radius vector. Therefore, the angular momentum at the apogee
= (mv)(5R/2).
Conservation of angular momentum gives

5

2
mvR = m

2
v0 R

or v = v0

5
(1)

The kinetic energy at the surface K0 = 1

2
mv2

0 and potential energy U0 =
−G Mm

R
.

Therefore, the total mechanical energy at the surface is

E0 = 1

2
mv2

0 − G Mm

R
(2)

At the apogee kinetic energy K = 1

2
mv2 and the potential energy U =

−2G Mm

5R
.

Therefore, the total mechanical energy at the apogee is

E = 1

2
mv2 − 2

5

G Mm

R
(3)

Conservation of total energy requires that E = E0. Eliminating v in (3) with
the aid of (1) and simplifying we get

v0 =
√

5G M

4R
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5.31 For an elliptic orbit

v =
√

G M

(
2

r
− 1

a

)

∴ vmax =
√

G M

(
2

rmin
− 1

a

)
=
√

G M(2a − rmin)

armin
=
√

G Mrmax

armin
(1)

as rmax + rmin = 2a

vmin =
√

G M

(
2

rmax
− 1

a

)
=
√

G M(2a − rmax)

armax
=
√

G Mrmin

armax
(2)

Multiplying (1) and (2)

vmaxvmin = G M

a

or
√

vmaxvmin =
√

G M

a
= a

√
G M

a3 = 2πa

T

as T = 2π

√
a3

G M

∴ a = T

2π

√
vmaxvmin

5.32 T = 2π

√
r3

G M
(1)

But r = a + b + c (2)

Combining (1) and (2)

M = 4π2(a + b + c)3

GT 2

5.33 L = |r × p| = r p sin θ

L per unit mass = rv sin θ

= (1.75 × 1.5 × 1011)(3 × 104) sin 30◦

= 3.9375 × 1015 m2/s

When the comet is closest to the sun its velocity will be perpendicular to
the radius vector. The angular momentum L ′ = r ′v′. Angular momentum
conservation requires
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L ′ = L

∴ v′ = L ′

r ′ = L

r
= 3.9375 × 1015

0.39 × 1.5 × 1011
= 6.73 × 104 m/s = 67.3 km/s

Total energy per unit mass

E = 1

2
v2 − G M

r
= 1

2
(3×104)2 − 6.67 × 10−11 × 2 × 1030

1.75 × 1011
= −3.12×108J

a negative quantity. Therefore the orbit is bound.

5.34 (a) The centripetal force is provided by the gravitational force.

G ME MS

R2 = MEv2

R
or G MS = v2 R (1)

(b) Total energy of the comet when it is closest to the sun

E = 1

2
MC(2v)2 − G MC MS

R/2
(2)

Using (1) in (2) we find E = 0.
(c) At the distance of the closest approach, the comet’s velocity is perpendic-

ular to the radius vector. Therefore the angular momentum

L = MC(2v)

(
R

2

)
= MCvR (3)

Let vt be the comet’s velocity which is tangential to the earth’s orbit at P.
Then the angular momentum at P will be

L ′ = Mcvt R (4)

Angular momentum conservation gives

MCvt R = MCvR (5)

or vt = v (6)

(d) The total energy of the comet at P is

E ′ = 1

2
MC(v′)2 − G MS MC

R
= 0 (7)

where v′ is the comet’s velocity at P, because E ′ = E = 0, by energy
conservation.
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Using (1) in (7) we find

v′ = √
2v (8)

If θ is the angle between v′ and the radius vector R angular momentum
conservation gives

MCvR = MCv′ R sin θ = MC
√

2vR sin θ

or sin θ = 1√
2

θ = 45◦

5.35 At both perigee and apogee the velocity of the satellite is perpendicular to the
radius vector. In order to show that the angular momentum is conserved we
must show that

mvprp = mvArA

or vprp = vArA

where m is the mass of the satellite.

vprp = 10.25 × 6570 = 67342.5

vArA = 1.594 × 42250 = 67346.5

The data are therefore consistent with the conservation of angular momentum.

5.36 (a) v0 =
√

G M

(
2

r
− 1

a

)
(1)

G M = (6.67 × 10−11)(6 × 1024) = 4 × 1014

r = R = 6.4 × 106

a = 8 × 107 m

v0 = 1.095 × 104 m/s = 10.095 km/s

(b) ε =
√

1 + 2E J 2

G2 M2m3 (2)

J = m Rv0 sin 45◦ = m Rv0√
2

(3)

E = −G Mm

2a
(4)

Combining (1), (2), (3) and (4)
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ε =
√

1 − R

a
+ 1

2

R2

a2 (5)

Now
R

a
= 6400

80000
= 0.08

∴ ε = 0.96

5.37 The resultant velocity v of each fragment is obtained by combining the veloc-

ities
1

2
v0 and v0 vectorially, Fig. 5.17.

Fig. 5.17

v =
√(

1

2
v0

)2

+ v2
0 = 1

2

√
5v0

Kinetic energy of each fragment

K = 1

2

(m

2

)(√
5

2
v0

)2

= 5

16
mv2

0 = 5

16
m

G M

r

Potential energy of each fragment U = −
G M

(
1

2
m

)

r

∴ Total energy E = K + U = 5G Mm

16r
− 1

2

G Mm

r
= − 3

16

G Mm

r

If v makes on angle θ with the radius vector r , then v sin θ = v0. The angular
momentum of either fragment about the centre of the earth is

J = 1

2
mv0r = mr

2

√
G M

r
= 1

2
m

√
G Mr
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5.38 Velocity at the nearer apse is given by

v2 = G M

[
2

a(1 − ε)
− 1

a

]
= G M

a

(
1 + ε

1 − ε

)
(1)

as there is no instantaneous change of velocity. If a1 is the semi-major axis for
the new orbit

v2 = G M

[
2

a(1 − ε)
− 1

a1

]
(2)

As the nearer and farther apses are inter-changed

a1(1 − ε1) = a(1 + ε) (3)

Equating the right-hand side of (1) and (2) and eliminating a1 from (3) and
solving for ε1 we get

ε1 = ε(3 + ε)

1 − ε

5.39 (a) 1

T

∫
dt

r
= 1

T

∫
d θ

r θ̇
(1)

Now, J = mr2θ̇ (constant) (2)

∴ 1

T

∫
dt

r
= m

T J

∫
r d θ (3)

r = a(1 − ε2)

1 + ε cos θ
(4)

Using (4) in (3)

1

T

∫
dt

r
= ma(1 − ε2)

T J

2π∫

0

d θ

1 + ε cos θ

= ma(1 − ε2)

T J

2π√
1 − ε2

(5)

where we have used the integral
2π∫
0

d θ

a + b cos θ
= 2π√

a2 − b2

Further T = 2πma2
√

1 − ε2

J
(6)

Using (6) in (5)
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1

T

∫
dt

r
= 1

a
(7)

(b) 1

T

∫
v2dt = G M

T

∫ (
2

r
− 1

a

)
dt

= 2G M
1

T

∫
dt

r
− G M

T a

∫
dt = 2G M

a
− G M

a
= G M

a

where we have used (7) and put
∫

dt = T .

5.40 The distance between the focus and the end of minor axis is a. Let the new
semi-major axis be a1. Since the instantaneous velocity does not change

G M

(
2

a
− 1

a

)
= G(M + m)

(
2

a
− 1

a1

)

or a1 =
a
(

1 + m

M

)

1 + 2m

M

≈ a
(

1 + m

M

)(
1 − 2m

M

)

a1 = a
(

1 − m

M

)
(1)

The new time period

T1 = 2πa3/2
1√

G(M + m)
= 2πa3/2

√
G M

(
1 − m

M

)3/2 (
1 + m

M

)−1/2

≈ T

(
1 − 3m

2M

)(
1 − m

2M

)
≈ T

(
1 − 2m

M

)

where we have used binomial expansion and the value of the old time period.

5.41 Case 1: Apse is farther
It is sufficient to show that the total energy is zero.

r1 = a(1 + ε) = a(1 + 0.5) = 1.5a

v2
1 = G M

(
2

r1
− 1

a

)
= G M

(
2

1.5a
− 1

a

)
= G M

3a

New velocity v′
1 = 2v1.

New kinetic energy

K ′
1 = 1

2
m(v′

1)
2 = 1

2
m(2v1)

2 = 2G Mm

3a
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The potential energy is unaltered and is therefore

U1 = −G Mm

r1
= −2G Mm

3a

Total energy E ′
1 = K ′ + U1 = 2G Mm

3a
− 2G Mm

3a
= 0

Case 2: Apse is nearer
It is sufficient to show that the total energy is positive.

r2 = a(1 − ε) = a(1 − 0.5) = 0.5a

v2
2 = G M

(
2

r2
− 1

a

)
= G M

(
2

0.5a
− 1

a

)
= 3G M

a

New velocity v′
2 = 2v2.

New kinetic energy K ′
2 = 1

2
m
(
v′

2

)2 = 1

2
m(2v2)

2 = 6G Mm

a
Potential energy is unaltered and is given by

U2 = −G Mm

r2
= −G Mm

0.5a
= −2G Mm

a

Total energy E2 = K ′
2 + U2 = 6G Mm

a
− 2G Mm

a
= +4G Mm

a
,

which is a positive quantity.

5.42 The velocity of the particle in the orbit is given by

v2 = G M

(
2

r
− 1

a

)

When the particle is at one extremity of the minor axis, r = a

v2 = G M

(
2

a
− 1

a

)
= G M

a

Let the new axes be 2a1 and 2b1. By problem the force is increased by half,
but the velocity at r = a is unaltered.

v2 = 1.5 G M

(
2

a
− 1

a1

)
= G M

a

∴ 2a1 = 3a

2
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As v is unaltered in both magnitude and direction, the semi-latus rectum l =
b2

a
= a(1 − ε2). The constant h2 = (GM) (semi-latus rectum) is unchanged.

∴ G M
b2

a
= 3

2
G M

b2
1

a1

∴ b2
1 = 2b2

3

a1

a
= 2

3
· 3

4
b2

∴ 2b1 = √
2b

5.43 (a) The forces acting on the satellite are gravitational force and centripetal
force.

(b) Equating the centripetal force and gravitational force

mv2

R
= mg

∴ v = √
gR = 2π R

T

∴ T = 2π

√
R

g
= 2π

√
R3

G M
(1)

(c) The geocentric satellite must fly in the equatorial plane so that its cen-
tripetal force is entirely used up by the gravitational force. Second, it must
fly at the right altitude so that its time period is equal to that of the diurnal
rotation of the earth.

(d) 24 h.
(e) Using (1)

r =
[

T 2G M

4π2

]1/3

Using T = 86, 400 s, G = 6.67×10−11 kg−1 m3/s2, M = 6.4×1024 kg,
we find r = 4.23 × 107 m or 42,300 km.

5.44 At both perigee and apogee v is perpendicular to r . Angular momentum con-
servation gives mvArA = mvprp

rA = 2a − rp = 4r − r = 3r

vA = vr

3r
= v

3

5.45 The orbit of the small body will be a hyperbola with the heavy body at the
focus F , Fig. 5.18.
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Fig. 5.18

r = a(ε2 − 1)

ε cos θ − 1
(1)

As r → ∞, the denominator on the right-hand side of (1) becomes zero and
the limiting angle θ0 is given by

cos θ0 = 1

ε

or cot θ0 = 1√
ε2 − 1

The complete angle of deviation

φ = π − 2θ0

or
φ

2
= π

2
− θ0

tan
φ

2
= cot θ0 = 1√

ε2 − 1

But ε =
√

1 + 2Eh2

G2 M2

where h = pv and E = 1

2
v2

∴ tan
φ

2
= 1√

ε2 − 1
= G M

h
√

2E
= G M

pv2

5.46 In Fig. 5.19

r = 2a

1 + cos θ

r2θ̇ = h (constant, law of areas)
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Fig. 5.19

dt

d θ
= r2

h

Time taken for the object to move from P1 to P2 (Fig. 5.19) is given by

t =
∫

dt =
∫

r2d θ

h
= 4a2

h

θ∫

0

d θ

(1 + cos θ)2

= a2

h

θ∫

0

sec4
(

θ

2

)
d θ = 2a2

h

θ∫

0

(
1 + tan2 θ

2

)
d

(
tan

1

2
θ

)

= 2a2

h

(
tan

1

2
θ + 1

3
tan3 1

2
θ

)

But h = √
G M × semi - latus rectum = √

2aG M

∴ t =
√

2a3

G M

(
tan

1

2
θ + 1

3
tan3 1

2
θ

)

5.47 Required time for traversing the arc PQT is obtained by the formula derived
in problem (5.46), Fig. 5.20

t0 = 2t = 2

√
2a3

G M

(
tan

1

2
θ + 1

3
tan3 1

2
θ

)
(1)
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Fig. 5.20

For parabola

r = 2a

1 + cos θ
(2)

or cos θ = 2a

r
− 1 (3)

∴ tan
θ

2
=
√

1 − cos θ

1 + cos θ
=
√

R

a
− 1 (4)

where we have put r = R, the radius of earth’s orbit. Using (4) in (1)

t0 = 2

3

√
2

G M
(2a + R)

√
R − a (5)

t0 is maximized by setting
dt0
da

= 0. This gives

a = R

2
(6)

Using (6) in (5) gives

t0(max) = 4

3

√
R3

G M
= 2

3π
2π

√
R3

G M
= 2

3π
T

where T = 2π

√
R3

G M
= 1 year is the time period of the earth.

Thus t0(max) = 2

3π
years.
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5.48
1

p2
= 1

r2
+ 1

r4

(
dr

dθ

)2

(1)

r = a sin nθ (2)
(

dr

dθ

)2

= n2a2(1 − sin2 nθ) = n2a2
(

1 − r2

a2

)
(3)

Using (3) in (1)

1

p2
= n2a2

r4
+ 1 − n2

r2

Differentiating

− 2

p3

dp

dr
= −4n2a2

r5 − 2(1 − n2)

r3

or
1

p3

dp

dr
= 2n2a2

r5
+ 1 − n2

r3

Force per unit mass

f = − h2

p3

dp

dr
= −h2

(
2n2a2

r5 + 1 − n2

r3

)

5.49 1

p2 = 1

r2 + 1

r4

(
dr

dθ

)2

(1)

r = a(1 − cos θ)

dr

dθ
= a sin θ

(
dr

dθ

)2

= a2 sin2 θ = a2
[

1 −
(

1 − r

a

)2
]

= 2ra − r2 (2)

Using (2) in (1)

1

P2
= 2a

r3

or p2 = r3

2a
(3)

Force per unit mass

f = − h2

p3

dp

dr
(4)

Differentiating (3)
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2p
dp

dr
= 3r2

2a
(5)

Using (5) in (4)

f = −3

4

h2r2

ap4 = −3ah2

r4 (6)

where we have used (3). Thus the force is proportional to the inverse fourth
power of distance.

5.50 If u = 1

r
, then at the apse

du

d θ
= 0

or − 1

r2

dr

d θ
= 0

∴ − 1

r2 a sin θ = 0

from which either sin θ = 0 or r is infinite, the latter case being inadmissible
so long the particle is moving along the cardioid.

Thus θ = πor 0

When θ = π, r = 2a

and Q = 3ah2

r4 = 3ah2

16a4 = 3h2

16a3

Also p2 = r2

2a
= 8a3

2a
= 4a2

and v2 = h2

p2
= h2

4a2

Thus 4a Q = 3h2

4a2 = 3v2

When θ = 0, r = 0 and p = 0 and the particle is moving with infinite velocity
along the axis of the cardioid and continues to move in a straight line.

5.51 Let the force f = − k

r3
= −ku3

where u = 1

r

d2u

d θ2
+ u = − f

h2u2
= ku

h2



5.3 Solutions 231

Case (i):
k

h2 > 1

Let
k

h2
− 1 = n2

d2u

d θ2
− n2u = 0

which has the solution u = Aenθ + Be−nθ , where the constants A and B
depend on the initial conditions of projection. If these are such that either A
or B is zero then the path is an equiangular spiral

Case (ii):
k

h2 = 1, the equation becomes
d2u

d θ2 = 0, whose solution is v =
Aθ + B, a curve known as the reciprocal spiral curve.

Case (iii):
k

h2 < 1. Let 1 − k

h2 = n2, the equation becomes
d2u

d θ2 + n2u = 0

whose solution is u = A cos nθ + B sin nθ , a curve with infinite branches.

5.52 1

p2 = 1

r2 + 1

r4

(
dr

d θ

)2

(1)

r2 = a2 cos2 θ (2)

r
dr

d θ
= −a2 sin2 θ (3)

∴ 1

r4

(
dr

d θ

)2

= a4

r6
sin2 2θ = a4

r6

(
1 − r4

a4

)
= a4

r6
− 1

r2
(4)

From (1) and (4)

1

p2
= a4

r6

or p = r3

a2 (5)

∴ dp

dr
= 3r2

a2 (6)

f = − h2

p3

dp

dr
= −3h2a4

r7

where we have used (5) and (6).

5.53 The polar equation of a circle with the origin on the circumference is r =
2a cos θ where a is the radius of the circle, Fig. 5.21.
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Fig. 5.21

1

p2
= 1

r2
+ 1

r4

(
dr

dθ

)2

(1)

r = 2a cos θ (2)

dr

d θ
= −2a sin θ (3)

∴
(

dr

dθ

)2

= 4a2(1 − cos2 θ) = 4a2 − r2 (4)

∴ 1

r4

(
dr

dθ

)2

= 4a2

r4
− 1

r2
(5)

Using (5) in (1) and simplifying

p = r2

2a
(6)

dp

dr
= r

a
(7)

f = − h2

p3

dp

dr
= −h2a4

r5

5.54 Initially the earth’s orbit is circular and its kinetic energy would be equal to
the modulus of potential energy

1

2
mv2

0 = 1

2

mG M

r
(1)

Suddenly, sun’s mass becomes half and the earth is placed with a new quan-
tity of potential energy, its instantaneous value of kinetic energy remaining
unaltered.
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New total energy = new potential energy + kinetic energy

= −G

(
M

2

)
m

r
+ 1

2
mv2

0

= −G Mm

2r
+ 1

2

G Mm

r
= 0

As the total energy E = 0 the earth’s orbit becomes parabolic.





Chapter 6
Oscillations

Abstract Chapter 6 deals with simple harmonic motion and its application to var-
ious problems, physical pendulums, coupled systems of masses and springs, the
normal coordinates and damped vibrations.

6.1 Basic Concepts and Formulae

Simple Harmonic Motion (SHM)

In SHM the restoring force (F) is proportional to the displacement but is oppositely
directed.

F = −kx (6.1)

where k is a constant, known as force constant or spring constant. The negative sign
in (6.1) implies that the force is opposite to the displacement.

When the mass is released, the force produces acceleration a given by

a = F/m = −k/m = −ω2x (6.2)

where ω2 = k/m (6.3)

and ω = 2π f (6.4)

is the angular frequency.
Differential equation for SHM:

d2x

dt2 + ω2x = 0 (6.5)

Most general solution for (6.5) is

x = A sin(ωt + ε) (6.6)

235
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where A is the amplitude, (ωt + ε) is called the phase and ε is called the phase
difference.

The velocity v is given by

v = ±ω
√

A2 − x2 (6.7)

The acceleration is given by

a = −ω2x (6.8)

The frequency of oscillation is given by

f = ω

2π
= 1

2π

√
k

m
(6.9)

where m is the mass of the particle.
The time period is given by

T = 1

f
= 2π

√
m

k
(6.10)

Total energy (E) of the oscillator:

E = 1/2 m A2ω2 (6.11)

Kav = Uav = 1/4 m A2ω2 (6.12)

Loaded spring:

T = 2π

√√√√
(

M + m

3

)

k
(6.13)

where M is the load and m is the mass of the spring.
If v1 and v2 are the velocities of a particle at x1 and x2, respectively, then

T = 2π

√
x2

2 − x2
1

v2
1 − v2

2

(6.14)

A =
√

v2
1 x2

2 − v2
2 x2

1

v2
1 − v2

2

(6.15)



6.1 Basic Concepts and Formulae 237

Pendulums

Simple Pendulum (Small Amplitudes)

T = 2π

√
L

g
(6.16)

T is independent of the mass of the bob. It is also independent of the amplitude
for small amplitudes.

Seconds pendulum is a simple pendulum whose time period is 2 s.

Simple Pendulum (Large Amplitude)

For large amplitude θ0, the time period of a simple pendulum is given by

T = 2π

√
L

g

[
1 +

(
1

2

)2

sin2
(

θ0

2

)
+
(

1.3

2.4

)2

sin4
(

θ0

2

)
+
(

1.3.5

2.4.6

)2

sin6
(

θ0

2

)]

(6.17)

where we have dropped higher order terms.
Simple pendulum on an elevator/trolley moving with acceleration a. Time period

of the stationary pendulum is T and that of moving pendulum T ′.

(a) Elevator has upward acceleration a

T ′ = T

√
g

g + a
(6.18)

(b) Elevator has downward acceleration a

T ′ = T

√
g

g − a
(6.19)

(c) Elevator has constant velocity, i.e. a = 0

T ′ = T (6.20)

(d) Elevator falls freely or is kept in a satellite, a = g

T ′ = ∞ (6.21)

The bob does not oscillate at all but assumes a fixed position.
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(a) Trolley moving horizontally with acceleration a

T ′ = T

√
g√

g2 + a2
(6.22)

(b) Trolley rolls down on a frictionless incline at an angle θ to the horizontal plane

T ′ = T/ cos θ (6.23)

Physical Pendulum

Any rigid body mounted such that it can swing in a vertical plane about some axis
passing through it is called a physical pendulum, Fig. 6.1.

Fig. 6.1

The body is pivoted to a horizontal frictionless axis through P and displaced from
the equilibrium position by an angle θ . In the equilibrium position the centre of mass
C lies vertically below the pivot P. If the distance from the pivot to the centre of mass
be d, the mass of the body M and the moment of inertia of the body about an axis
through the pivot I , the time period of oscillations is given by

T = 2π

√
1

Mgd
(6.24)

The equivalent length of simple pendulum is

Leq = I/Md (6.25)

The torsional oscillator consists of a flat metal disc suspended by a wire from a
clamp and attached to the centre of the disc. When displaced through a small angle
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about the vertical wire and released the oscillator would execute oscillations in the
horizontal plane. For small twists the restoring torque will be proportional to the
angular displacement

τ = −Cθ (6.26)

where C is known as torsional constant. The time period of oscillations is given by

T = 2π

√
l

C
(6.27)

Coupled Harmonic Oscillators

Two equal masses connected by a spring and two other identical springs fixed to
rigid supports on either side, Fig. 6.2, permit the masses to jointly undergo SHM
along a straight line, so that the system corresponds to two coupled oscillators. The
equation of motion for mass m1 is

mẍ1 + k(2x1 − x2) = 0 (6.28)

Fig. 6.2

and that for m2 is

mẍ2 + k(2x2 − x1) = 0 (6.29)

Equations (6.28) and (6.29) are coupled equations.
Assuming x1 = A1 sin ωt and x2 = A2 sin ωt
(6.28) and (6.29) become

ẍ1 = −ω2 A1 sin ωt = −ω2x1 (6.30)

ẍ2 = −ω2 A2 sin ωt = −ω2x2 (6.31)

Inserting (6.30) and (6.31) in (6.28) and (6.29), we get on rearrangement

(2k − mω2)x1 − kx2 = 0 (6.32)

− kx1 + (2k − mω2)x2 = 0 (6.33)
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For a non-trivial solution, the determinant formed from the coefficients of x1 and x2
must vanish.

∣∣∣∣
2k − mω2 −k

−k 2k − mω2

∣∣∣∣ = 0

The expansion of the determinant gives a quadratic equation in ω whose solutions
are

ω1 = √
k/m (6.35)

ω2 = √
3k/m (6.36)

Normal coordinates: It is always possible to define a new set of coordinates called
normal coordinates which have a simple time dependence and correspond to the
excitation of various oscillation modes of the system. Consider a pair of coordinates
defined by

η1 = x1 − x2, η2 = x1 + x2 (6.37)

or x1 = 1

2
(η1 + η2), x2 = 1

2
(η2 − η1) (6.38)

Substituting (6.38) in (6.28) and (6.29) we get

m(η̈1 + η̈2) + k(3η1 + η2) = 0

m(η̈1 − η̈2) + k(3η1 − η2) = 0

which can be solved to yield

mη̈1 + 3kη1 = 0

mη̈2 + kη2 = 0 (6.39)

The coordinates η1 and η2 are now uncoupled and are therefore independent
unlike the old coordinates x1 and x2 which were coupled.

The solutions of (6.39) are

η1(t) = B1 sin ω1t, η2(t) = B2 sin ω2t (6.40)

where the frequencies are given by (6.35) and (6.36).
A deeper insight is obtained from the energies expressed in normal coordinates

as opposed to the old coordinates. The potential energy of the system

U = 1

2
kx1

2 + 1

2
k(x2 − x1)

2 + 1

2
kx2

2

= k(x1
2 − x1x2 + x2

2) (6.41)
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The term proportional to the cross-product x1x2 is the one which expresses the cou-
pling of the system. The kinetic energy of the system is

K = 1/2 mẋ2
1 + 1/2 mẋ2

2 (6.42)

In terms of normal coordinates defined by (6.38)

U = k

4
(η2

1 + 3η2
2) (6.43)

K = m

4
(η̇2

1 + η̇2
2) (6.44)

Thus, the cross-product term has disappeared and the kinetic and potential energies
appear in quadratic form. Each normal coordinate corresponds to an independent
mode of vibration of the system, with its own characteristic frequency and the gen-
eral vibratory motion may be regarded as the superposition of some or all of the
independent normal vibrations.

Damped Vibrations

For small velocities the resisting force fr (friction) is proportional to the velocity:

fr = −r
dx

dt
(6.45)

where r is known as the resistance constant or damping constant. The presence of
the dissipative forces results in the loss of energy in heat motion leading to a gradual
decrease of amplitude. The equation of motion is written as

m
d2x

dt2 + r
dx

dt
+ kx = 0 (6.46)

where m is the mass of the body and k is the spring constant.
Putting r/m = 2b and k/m = ω0

2, (6.46) becomes on dividing by m

d2x

dt2 + 2b
dx

dt
+ ω2

0x = 0 (6.47)

Let x = eλt so that dx/dt = λeλt and d2x/dt2 = λ2eλt

The corresponding characteristic equation is

λ2 + 2bλ + ω0
2 = 0 (6.48)

The roots are

λ = −b ±
√

b2 − ω2
0 (6.49)
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Calling R =
√

b2 − ω2
0

λ1 = −b + R λ2 = −b − R

Using the boundary conditions, at t = 0, x = x0 and dx/dt = 0 the solution to
(6.47) is found to be

x = 1

2
x0e−bt

[
(1 + b/R)eRt + (1 − b/R)e−Rt

]
(6.50)

The physical solution depends on the degree of damping.
Case 1: Small frictional forces: b < ω0 (underdamping)
b2 < k/m or (r/2m)2 < k/m

R is imaginary. R = jω′, where j = √−1

ω′2 = ω2
0 − b2 (6.51)

x = Ae−bt cos(ω′t + ε) (6.52)

where A = ω0x0/ω
′ and ε = tan−1(−b/ω′) (6.53)

Fig. 6.3 Underdamped
motion

Equation (6.52) represents damped harmonic motion of period

T ′ = 2π

ω′ = 2π√
ω2

0 − b2
(6.54)

T = 1/b is the time in which the amplitude is reduced to 1/e.
The logarithmic decrement � is

� = ln

(
A′

Ae−bT ′

)
= bT ′ (6.55)

Case 2: Large frictional forces (overdamping)
b > ω0. Distinct real roots.
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Both the exponential terms in (6.50) are negative and they correspond to expo-
nential decrease. The motion is not oscillatory. The general solution is of the form

x = e−bt (AeRt + Be−Rt ) (6.56)

Fig. 6.4 Overdamped motion

Case 3: Critical damping

b = ω, R = 0

Fig. 6.5 Criticallydamped
motion

The exponentials in the square bracket may be expanded to terms linear in Rt. The
solution is of the form

x = x0 e−bt (1 + bt) (6.57)

The motion is not oscillatory and is said to be critically damped. It is a transition
case and the motion is just aperiodic or non-oscillatory. There is an initial rise in
the displacement due to the factor (1 + bt) but subsequently the exponential term
dominates.

Energy and Amplitude of a Damped Oscillator

E(t) = E0e−t/tc (6.58)
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where tc = m/r

A(t) = A0e−t/2tc (6.59)

Quality factor

Q = ωtc = ωm/r (6.60)

ω′ = ω0

√
1 − 1

4Q2 (6.61)

The value of quality factor indicates the sharpness of resonance.

Q = ω0

ω2 − ω1
(6.62)

where ω0 is the resonance angular frequency and ω2 and ω1 are, respectively, the
two angular frequencies above and below resonance at which the average power has
dropped to one-half its resonance value. (Fig. 6.6).

Fig. 6.6 Resonance
frequency curve, ω0 is the
resonance angular frequency.
ω1 and ω2 are defined in the
text

Forced vibrations are set up by a periodic force F cos ωt .
Equation of motion of a particle of mass m

md2x

dt2
+ rdx

dt
+ kx = F cos ωt (6.63)

or

d2x

dt2 + 2b
dx

dt
+ ω2

0x = p cos ωt (6.64)

where

k/m = ω2
0, r/m = 2b and F/m = p (6.65)
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ω0 being the resonance frequency.

x = A cos(ωt − ε) (6.66)

tan ε = 2bω

ω2
0 − ω2

(6.67)

Mechanical impedance

Zm =
√

(ω2
0 − ω2)2 + 4b2ω2 (6.68)

A = p

Zm
(6.69)

Q = ω0

2b
(6.70)

Power

W = F2 − sin ε

2Zm
(6.71)

6.2 Problems

6.2.1 Simple Harmonic Motion (SHM)

6.1 The total energy of a particle executing SHM of period 2π s is 0.256 J. The
displacement of the particle at π/4 s is 8

√
2 cm. Calculate the amplitude of

motion and mass of the particle.

6.2 A particle makes SHM along a straight line and its velocity when passing
through points 3 and 4 cm from the centre of its path is 16 and 12 cm/s, respec-
tively. Find (a) the amplitude; (b) the time period of motion.

[Northern Universities of UK]

6.3 A small bob of mass 50 g oscillates as a simple pendulum, with amplitude 5 cm
and period 2 s. Find the velocity of the bob and the tension in the supporting
thread when velocity of the bob is maximum.

[University of Aberystwyth, Wales]
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6.4 A particle performs SHM with a period of 16 s. At time t = 2 s, the particle
passes through the origin while at t = 4 s, its velocity is 4 m/s. Show that the
amplitude of the motion is 32

√
2/π .

[University of Dublin]

6.5 Show that given a small vertical displacement from its equilibrium position
a floating body subsequently performs simple harmonic motion of period
2π

√
V/Ag where V is the volume of displaced liquid and A is the area of

the plane of floatation. Ignore the viscous forces.

6.6 Imagine a tunnel bored along the diameter of the earth assumed to have constant
density. A box is thrown into the tunnel (chute). (a) Show that the box executes
SHM inside the tunnel about the centre of the earth. (b) Find the time period of
oscillations.

6.7 A particle which executes SHM along a straight line has its motion represented
by x = 4 sin(π t/3 + π/6). Find (a) the amplitude; (b) time period; (c) fre-
quency; (d) phase difference; (e) velocity; (f) acceleration, at t = 1 s, x being
in cm.

6.8 (a) At what distance from the equilibrium position is the kinetic energy equal
to the potential energy for a SHM?

(b) In SHM if the displacement is one-half of the amplitude show that the
kinetic energy and potential energy are in the ratio 3:1.

6.9 A mass M attached to a spring oscillates with a period 2 s. If the mass is
increased by 2 kg, the period increases by 1 s. Assuming that Hooke’s law is
obeyed, find the initial mass M .

6.10 A particle vibrates with SHM along a straight line, its greatest acceleration is
5π 2 cm/s2, and when its distance from the equilibrium is 4 cm the velocity of
the particle is 3π cm/s. Find the amplitude and the period of oscillation of the
particle.

6.11 If the maximum acceleration of a SHM is α and the maximum velocity is
β, show that the amplitude of vibration is given by β2/α and the period of
oscillation by 2πβ/α.

6.12 If the tension along the string of a simple pendulum at the lowest position is
1% higher than the weight of the bob, show that the angular amplitude of the
pendulum is 0.1 rad.

6.13 A particle executes SHM and is located at x = a, b and c at time t0, 2t0 and

3t0, respectively. Show that the frequency of oscillation is
1

2π t0
cos−1 a + c

2b
.

6.14 A 4 kg mass at the end of a spring moves with SHM on a horizontal frictionless
table with period 2 s and amplitude 2 m. Determine (a) the spring constant;
(b) maximum force exerted on the spring.
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6.15 A particle moves in the xy-plane according to the equations x = a sin ωt ;
y = b cos ωt . Determine the path of the particle.

6.16 (a) Prove that the force F = −kxí acting in a SHO is conservative. (b) Find
the potential energy of an SHO.

6.17 A 2 kg weight placed on a vertical spring stretches it 5 cm. The weight is
pulled down a distance of 10 cm and released. Find (a) the spring constant;
(b) the amplitude; (c) the frequency of oscillations.

6.18 A mass m is dropped from a height h on to a scale-pan of negligible weight,
suspended from a spring of spring constant k. The collision may be considered
to be completely inelastic in that the mass sticks to the pan and the pan begins
to oscillate. Find the amplitude of the pan’s oscillations.

6.19 A particle executes SHM along the x-axis according to the law x = A sin ωt .
Find the probability dp(x) of finding the particle between x and x + dx .

6.20 Using the probability density distribution for the SHO, calculate the mean
potential energy and the mean kinetic energy over an oscillation.

6.21 A cylinder of mass m is allowed to roll on a smooth horizontal table with a
spring of spring constant k attached to it so that it executes SHM about the
equilibrium position. Find the time period of oscillations.

6.22 Two simple pendulums of length 60 and 63 cm, respectively, hang vertically
one in front of the other. If they are set in motion simultaneously, find the time
taken for one to gain a complete oscillation on the other.

[Northern Universities of UK]

6.23 A pendulum that beats seconds and gives correct time on ground at a certain
place is moved to the top of a tower 320 m high. How much time will the
pendulum lose in 1 day? Assume earth’s radius to be 6400 km.

6.24 Taking the earth’s radius as 6400 km and assuming that the value of g inside
the earth is proportional to the distance from the earth’s centre, at what depth
below the earth’s surface would a pendulum which beats seconds at the earth’s
surface lose 5 min in a day?

[University of London]

6.25 A U-tube is filled with a liquid, the total length of the liquid column being
h. If the liquid on one side is slightly depressed by blowing gently down, the
levels of the liquid will oscillate about the equilibrium position before finally
coming to rest. (a) Show that the oscillations are SHM. (b) Find the period of
oscillations.

6.26 A gas of mass m is enclosed in a cylinder of cross-section A by means of a
frictionless piston. The gas occupies a length l in the equilibrium position and
is at pressure P . (a) If the piston is slightly depressed, show that it will execute
SHM. (b) Find the period of oscillations (assume isothermal conditions).
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6.27 A SHM is given by y = 8 sin

(
2π t

τ
+ ϕ

)
, the time period being 24 s. At

t = 0, the displacement is 4 cm. Find the displacement at t = 6 s.

6.28 In a vertical spring-mass system, the period of oscillation is 0.89 s when the
mass is 1.5 kg and the period becomes 1.13 s when a mass of 1.0 kg is added.
Calculate the mass of the spring.

6.29 Consider two springs A and B with spring constants kA and kB, respectively,
A being stiffer than B, that is, kA > kB. Show that

(a) when two springs are stretched by the same amount, more work will be
done on the stiffer spring.

(b) when two springs are stretched by the same force, less work will be done
on the stiffer spring.

6.30 A solid uniform cylinder of radius r rolls without sliding along the inside
surface of a hollow cylinder of radius R, performing small oscillations. Deter-
mine the time period.

6.2.2 Physical Pendulums

6.31 Consider the rigid plane object of weight Mg shown in Fig. 6.7, pivoted about
a point at a distance D from its centre of mass and displaced from equilibrium
by a small angle ϕ. Such a system is called a physical pendulum. Show that
the oscillatory motion of the object is simple harmonic with a period given by

T = 2π

√
I

MgD
where I is the moment of inertia about the pivot point.

Fig. 6.7

6.32 A thin, uniform rod of mass M and length L swings from one of its ends
as a physical pendulum (see Fig. 6.8). Given that the moment of inertia of a
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Fig. 6.8

uniform rod about one end is I = 1

3
M L2, obtain an equation for the period

of the oscillatory motion for small angles. What would be the length l of a
simple pendulum that has the same period as the swinging rod?

6.33 The physical pendulum has two possible pivot points A and B, distance L
apart, such that the period of oscillations is the same (Fig. 6.9). Show that
the acceleration due to gravity at the pendulum’s location is given by g =
4π2L/T 2.

Fig. 6.9

6.34 A semi-circular homogeneous disc of radius R and mass m is pivoted freely
about the centre. If slightly tilted through a small angle and released, find the
angular frequency of oscillations.

6.35 A ring is suspended on a nail. It can oscillate in its plane with time period T1
or it can oscillate back and forth in a direction perpendicular to the plane of
the ring with time period T2. Find the ratio T1/T2.

6.36 A torsional oscillator consists of a flat metal disc suspended by a wire. For
small angular displacements show that time period is given by

T = 2π

√
I

C
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where I is the moment of inertia about its axis and C is known as torsional
constant given by τ = −Cθ , where τ is the torque.

6.37 In the arrangement shown in Fig. 6.10, the radius of the pulley is r , its moment
of inertia about the rotation axis is I and k is the spring constant. Assuming
that the mass of the thread and the spring is negligible and that the thread does
not slide over the frictionless pulley, calculate the angular frequency of small
oscillations.

Fig. 6.10

6.38 Two unstretched springs with spring constants k1 and k2 are attached to a solid
cylinder of mass m as in Fig. 6.11. When the cylinder is slightly displaced
and released it will perform small oscillations about the equilibrium position.
Assuming that the cylinder rolls without sliding, find the time period.

Fig. 6.11

6.39 A particle of mass m is located in a one-dimensional potential field U (x) =
a

x2
− b

x
where a and b are positive constants. Show that the period of small

oscillations that the particle performs about the equilibrium position will be

T = 4π

√
2a3m

b4

[Osmania University 1999]
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6.2.3 Coupled Systems of Masses and Springs

6.40 Two springs of constants k1 and k2 are connected in series, Fig. 6.12. Calculate
the effective spring constant.

Fig. 6.12

6.41 A mass m is connected to two springs of constants k1 and k2 in parallel,
Fig. 6.13. Calculate the effective (equivalent) spring constant.

Fig. 6.13

6.42 A mass m is placed on a frictionless horizontal table and is connected to fixed
points A and B by two springs of negligible mass and of equal natural length
with spring constants k1 and k2, Fig. 6.14. The mass is displaced along x-axis
and released. Calculate the period of oscillation.

Fig. 6.14

6.43 One end of a long metallic wire of length L is tied to the ceiling. The other end
is tied to a massless spring of spring constant k. A mass m hangs freely from
the free end of the spring. The area of cross-section and the Young’s modulus
of the wire are A and Y respectively. The mass is displaced down and released.

Show that it will oscillate with time period T = 2π

√
m(Y A + kL)

Y Ak
.

[Adapted from Indian Institute of Technology 1993]
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6.44 The mass m is attached to one end of a weightless stiff rod which is rigidly
connected to the centre of a uniform cylinder of radius R, Fig. 6.15. Assum-
ing that the cylinder rolls without slipping, calculate the natural frequency of
oscillation of the system.

Fig. 6.15

6.45 Find the natural frequency of a semi-circular disc of mass m and radius r
which rolls from side to side without slipping.

6.46 Determine the eigenfrequencies and describe the normal mode motion for two
pendula of equal lengths b and equal masses m connected by a spring of force
constant k as shown in Fig. 6.16. The spring is unstretched in the equilibrium
position.

Fig. 6.16

6.47 In prob. (6.46) express the equations of motion and the energy in terms of
normal coordinates. What are the characteristics of normal coordinates?

6.48 The superposition of two harmonic oscillations in the same direction leads to
the resultant displacement y = A cos 6π t sin 90π , where t is expressed in sec-
onds. Find the frequency of the component vibrations and the beat frequency.

6.49 Find the fundamental frequency of vibration of the HCl molecule. The masses
of H and Cl may be assumed to be 1.0 and 36.46 amu.
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1 amu = 1.66 × 10−27 kg and k = 480 N/m

6.50 Find the resultant of the vibrations y1 = cos ωt , y2 = 1/2 cos(ωt + π/2) and

y3 = 1

3
cos(ωt + π), acting in the same straight line.

6.2.4 Damped Vibrations

6.51 A mass attached to a spring vibrates with a natural frequency of 20 c/s
while its frequency for damped vibrations is 16 c/s. Determine the logarithmic
decrement.

6.52 The equation of motion for a damped oscillator is given by

4d2x/dt2 + rdx/dt + 32x = 0

For what range of values for the damping constant will the motion be (a)
underdamped; (b) overdamped; (c) critically damped?

6.53 A mass of 4 kg attached to the lower end of a vertical spring of constant
20 N/m oscillates with a period of 10 s. Find (a) the natural period; (b) the
damping constant; (c) the logarithmic decrement.

6.54 Solve the equation of motion for the damped oscillator d2x/dt2 + 2dx/dt +
5x = 0, subject to the condition x = 5, dx/dt = −3 at t = 0.

6.55 A 1 kg weight attached to a vertical spring stretches it 0.2 m. The weight is
then pulled down 1.5 m and released. (a) Is the motion underdamped, over-
damped or critically damped? (b) Find the position of the weight at any time
if a damping force numerically equal to 14 times the instantaneous speed is
acting.

6.56 A periodic force acts on a 6 kg mass suspended from the lower end of a vertical
spring of constant 150 N/m. The damping force is proportional to the instan-
taneous speed of the mass and is 80 N when v = 2 m/s. find the resonance
frequency.

6.57 The equation of motion for forced oscillations is 2 d2x/dt2 + 1.5dx/dt +
40x = 12 cos 4t . Find (a) amplitude; (b) phase lag; (c) Q factor; (d) power
dissipation.

6.58 An electric bell has a frequency 100 Hz. If its time constant is 2 s, determine
the Q factor for the bell.

6.59 An oscillator has a time period of 3 s. Its amplitude decreases by 5% each
cycle (a) By how much does its energy decrease in each cycle? (b) Find the
time constant (c) Find the Q factor.
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6.60 A damped oscillator loses 3% of its energy in each cycle. (a) How many cycles
elapse before half its original energy is dissipated? (b) What is the Q factor?

6.61 A damped oscillator has frequency which is 9/10 of its natural frequency. By
what factor is its amplitude decreased in each cycle?

6.62 Show that for small damping ω′ ≈ (1 − r2/8mk)ω0 where ω0 is the natural
angular frequency, ω′ the damped angular frequency, r the resistance constant,
k the spring constant and m the particle mass.

6.63 Show that the time elapsed between successive maximum displacements of a
damped harmonic oscillator is constant and equal to 4πm/

√
4km − r2, where

m is the mass of the vibrating body, k is the spring constant, 2b = r/m, r
being the resistance constant.

6.64 A dead weight attached to a light spring extends it by 9.8 cm. It is then slightly
pulled down and released. Assuming that the logarithmic decrement is equal
to 3.1, find the period of oscillation.

6.65 The position of a particle moving along x-axis is determined by the equation
d2x/dt2 + 2dx/dt + 8x = 16 cos 2t .

(a) What is the natural frequency of the vibrator?
(b) What is the frequency of the driving force?

6.66 Show that the time t1/2 for the energy to decrease to half its initial value is
related to the time constant by t1/2 = tc ln 2.

6.67 The amplitude of a swing drops by a factor 1/e in 8 periods when no energy
is pumped into the swing. Find the Q factor.

6.3 Solutions

6.3.1 Simple Harmonic Motion (SHM)

6.1 x = A sin ωt (SHM)

ω = 2π

T
= 2π

2π
= 1 rad/s

8
√

2 = A sin

(
1 · π

4

)

A = 16 cm = 0.16 m

E = 1

2
m A2ω2

∴ m = 2E

A2ω2
= 2 × 0.256

(0.16)2 × 12
= 20.0 kg
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6.2 (a) v = ω
√

A2 − x2 (1)

16 = ω
√

A2 − 32 (2)

12 = ω
√

A2 − 42 (3)

Solving (2) and (3) A = 5 cm and ω = 4 rad/s

(b) Therefore T = 2π

ω
= 2π

4
= 1.57 s

6.3 x = A sin ωt

v = dx

dt
= ωA cos ωt

vmax = Aω = 2π A

T
= 2π × 5

2
= 5π cm/s

At the equilibrium position the weight of the bob and the tension act in the
same direction

Tension = mg + mv2
max

L

Now the length of the simple pendulum is calculated from its period T .

L = gT 2

4π2
= 980 × 22

4π2
= 99.29 cm

Tension = m

(
1 + v2

max

gL

)
g = 50

(
1 + 25π2

980 × 99.29

)
g

= 50.13 g dynes = 50.13 g wt

6.4 The general equation of SHM is

x = A sin(ωt + ε)

ω = 2π

T
= 2π

16
= π

8

When t = 2 s, x = 0.

0 = A sin
(π

8
× 2 + ε

)

Since A �= 0, sin
(π

4
+ ε

)
= 0
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∴ π

4
+ ε = 0 ε = −π

4

Now v = dx

dt
= Aω cos(ωt + ε)

When t = 4, v = 4.

∴ 4 = Aπ

8
cos

(π

8
4 − π

4

)

∴ A = 32
√

2

π

6.5 Let the body with uniform cross-section A be immersed to a depth h in a liq-
uid of density D. Volume of the liquid displaced is V = Ah. Weight of the
liquid displaced is equal to VDg or AhDg. According to Archimedes princi-
ple, the weight of the liquid displaced is equal to the weight of the floating
body Mg.

Mg = Ahdg or M = Ah D

The body occupies a certain equilibrium position. Let the body be further
depressed by a small amount x . The body now experiences an additional
upward thrust in the direction of the equilibrium position. When the body is
released it moves up with acceleration

a = − Ax Dg

M
= − Ax Dg

Ah D
= −gx

h
= −ω2x

with ω2 = g

h

Time period T = 2π

ω
= 2π

√
h

g
= 2π

√
V

Ag

6.6 The acceleration due to gravity g at a depth d from the surface is given by

g = g0

(
1 − d

R

)
(1)

where g0 is the value of g at the surface of the earth of radius R.

Writing x = R − d (2)
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Equation (1) becomes g = g0
x

R
(3)

where x measures the distance from the centre. The acceleration g points oppo-
site to the displacement x . We can therefore write

a = g = −g0x

R
= −ω2x (4)

with ω2 = g0

R

Equation (4) shows that the box performs SHM. The period is calculated from

T = 2π

ω
= 2π

√
R

g0
= 2π

√
6.4 × 106

9.8
= 5074 s or 84.6 min

6.7 Standard equation for SHM is

x = A sin(ωt + ε)

x = 4 sin

(
π t

3
+ π

6

)

(a) A = 4 cm

(b) ω = π

3
. Therefore T = 2π

ω
= 6 s

(c) f = 1

T
= 1

6
/ s

(d) ε = π

6

(e) v = dx

dt
= 4π

3
cos

(
π t

3
+ π

6

)
= 4π

3
cos

(π

3
× 1 + π

6

)
= 0

(f) a = dv

dt
= −4π2

9
sin

(π

3
× 1 + π

6

)
= −4π2

9

6.8 (a) K = 1

2
mω2(A2 − x2) U = 1

2
mω2x2 K = U

∴ 1

2
mω2(A2 − x2) = 1

2
mω2x2

∴ x = A√
2

(b) K = 1

2
mω2

(
A2 − A2

4

)
= 1

2
mω2 3

4
A2
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U = 1

2
mω2 A2

4
∴ K : U = 3 : 1

6.9 T = 2π

√
M

k
(1)

2 = 2π

√
M

k
(2)

3 = 2π

√
M + 2

k
(3)

Dividing (2) by (3) and solving for M, we get M = 1.6 kg.

6.10 amax = ω2 A

5π2 = ω2 A (1)

v = ω
√

A2 − x2

3π = ω
√

A2 − 16 (2)

Solving (1) and (2), we get A = 5 cm and T = 2π

ω
= 2π

π
= 2 s.

6.11 α = ω2 A (1)

β = ωA (2)

∴ β2 = ω2 A2 = αA

or A = β2

α

Dividing (2) by (1)

β

α
= 1

ω

or T = 2π

ω
= 2πβ

α

6.12 By problem
mg + mv2/L

mg
= 1.01

∴ v2

gL
= 0.01

Conservation of energy gives

1

2
mv2 = mgh = mgL(1 − cos θ) � mgL

θ2

2
for small θ
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θ2 = v2

gL
= 0.01

∴ θ = √
0.01 = 0.1 rad

6.13 a = A sin ωt0
b = A sin 2ωt0
c = A sin 3ωt0
a + c = 2A sin 2ωt0 cos ωt0
a + c

2b
= cos ωt0

ω = 1

t0
cos−1

(
a + c

2b

)

f = 1

2π t0
cos−1

(
a + c

2b

)

6.14 (a) ω =
√

k

m

k = mω2 = 4π2m

T 2 = 4π2 × 4

22 = 39.478 N/m

(b) Fmax = mω2 A = k A = 39.478 × 2 = 78.96 N

6.15 x = a sin ωt

y = b cos ωt

∴ x2

a2 + y2

b2 = sin2 ωt + cos2 ωt = 1

Thus the path of the particle is an ellipse.

6.16 (a) To show that ∇ × F = 0.

∇ × F =

∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z
−K x 0 0

∣∣∣∣∣∣∣∣
= 0

(b) U = − ∫
Fdx = − ∫

(K ix) (−î dx) = 1

2
K x2
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6.17 (a) F = kx

∴ k = F

x
= 2 × 9.8

5 × 10−2
= 392 N/m

(b) 10 cm

(c) f = 1

2π

√
k

m
= 1

2π

√
392

2 × 9.8
= 0.712/ s

6.18 Let x0 be the extension of the spring. Deformation energy = gravitational
potential energy

1

2
kx2

0 = mgh + mgx0

Rearranging

x2
0 − 2mg

k
x0 − mgh = 0

The quadratic equation has the solutions

x01 = mg

k
+
√

m2g2

k2 + 2mgh

k

x02 = mg

k
−
√

m2g2

k2 + 2mgh

k

The equilibrium position is depressed by x0 = mg

k
below the initial position.

The amplitude of the oscillations as measured from the equilibrium position

is equal to

√
m2g2

k2
+ 2mgh

k
.

6.19 It is reasonable to assume that the probability density
dp(x)

dx
for finding the

particle is proportional to the time spent at a given point and is therefore
inversely proportional to its speed v.

dp(x)

dx
= C

v
(1)

where C = constant of proportionality.

But v = ω
√

A2 − x2 (2)
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The probability density

dp(x)

dx
= C

ω
√

A2 − x2
(3)

C can be found by normalization of distribution

A∫

−A

dp(x) = C

ω

A∫

−A

dx√
A2 − x2

= 1

or
Cπ

ω
= 1 → C

ω
= 1

π

∴ dp(x)

dx
= 1

π
√

A2 − x2

6.20 U = 1

2
kx2

Using the result of prob. (6.19)

〈U 〉 =
∫

Udp(x) =
A∫

−A

1

2
kx2 dx

π
√

A2 − x2

Put x = A sin θ, dx = A cos θ dθ

〈U 〉 =
(

k A2

2π

) π/2∫

−π/2

sin2 θ dθ = 1

4
k A2

Also, 〈K 〉 = 〈E − U 〉 = 1

2
k A2 − 1

4
k A2 = 1

4
k A2

6.21 Ktrans + Krot + U = constant

1

2
mv2 + 1

2
Iω2 + 1

2
kx2 = constant

But I = 1

2
m R2 and ω = v

R

∴ 3

4
m

(
dx

dt

)2

+ 1

2
kx2 = 0 constant

Differentiating

3

2
m

d2x

dt2

dx

dt
+ kx

dx

dt
= 0
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Cancelling dx/dt throughout and simplifying

d2x

dt2 +
(

2k

3m

)
x = 0

This is the equation for SHM

with ω2 =
(

2k

3m

)

T = 2π

ω
= 2π

√
3m

2k

6.22 The time period of the pendulums is

T1 = 2π

√
60

g
(1)

T2 = 2π

√
63

g
(2)

Let the time be t in which the longer length pendulum makes n oscillations
while the shorter one makes (n + 1) oscillations. Then

t = (n + 1)T1 = nT2 (3)

Using (1) and (2) in (3), we find n = 40.5 and t = 64.49 s.

6.23 Let g0 be the acceleration due to gravity on the ground and g at height above
the ground. Then

g = g0 R2

(R + h)2

At the ground, T0 = 2π

√
L

g0
. At height h, T = 2π

√
L

g

T = T0

√
g0

g
= T0

(
1 + h

R

)
= 2

(
1 + 320

6.4 × 106

)
= 2.0001 s

Time lost in one oscillation on the top of the tower = 2.0001 − 2.0000 =
0.0001 s. Number of oscillations in a day for the pendulum which beats
seconds on the ground

= 86400

2.0
= 43,200
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Therefore, time lost in 43,200 oscillations

= 42,300 × 0.0001 = 4.32 s

6.24 g = g0

(
1 − d

R

)
(1)

where g and g0 are the acceleration due to gravity at depth d and surface,
respectively, and R is the radius of the earth.

T = T0

√
g0

g
= T0

(
1 − d

R

)−1/2

= T0

(
1 + d

2R

)

Time registered for the whole day will be proportional to the time period. Thus

T

T0
= t

t0
= 1 + d

2R
86,400

86,400 − 300
= 1 + d

2R

Substituting R = 6400 km, we find d = 44.6 km.

6.25 (a) Let the liquid level in the left limb be depressed by x , so that it is elevated
by the same height in the right limb (Fig. 6.17). If ρ is the density of the
liquid, A the cross-section of the tube, M the total mass, and m the mass
of liquid corresponding to the length 2x , which provides the unbalanced
force,

Md2x

dt2
= −mg = −(2x Aρ)g

d2x

dt2
= −2Aρg

M
x = −2Aρgx

h Aρ
= −2gx

h
= −ω2x

This is the equation of SHM.

Fig. 6.17
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(b) The time period is given by

T = 2π

ω
= 2π

√
h

2g

6.26 (a) Let the gas at pressure P and volume V be compressed by a small length
x , the new pressure being p′ and new volume V ′ (Fig. 6.18) under isother-
mal conditions.

P ′V ′ = PV

or P ′(l − x)A = Pl A

where A is the cross-sectional area.

P ′ = Pl

l − x
− P

(
1 − x

l

)−1 � P
(

1 + x

l

)

where we have expanded binomially up to two terms since x << l. The
change in pressure is

�P = P ′ − P = Px

h

The unbalanced force

F = −�P A = − APx

l

and the acceleration

a = F

m
= − APx

ml
= −ω2x

which is the equation for SHM.

Fig. 6.18
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(b) The time period

T = 2π

ω
= 2π

√
ml

AP

6.27 y = 8 sin

(
2π t

T
+ φ

)

At t = 0; 4 = 8 sin φ

∴ φ = 30◦ = π

6

y = 8 sin

(
2π × 6

24
+ π

6

)
= 8 sin 120 = 4

√
3 cm

6.28 Time period of a loaded spring

T = 2π

√√√√M + m

3
k

(1)

where M is the suspended mass, m is the mass of the spring and k is the spring
constant

0.89 = 2π

√√√√1.5 + m

3
k

(2)

1.13 = 2π

√√√√2.5 + m

3
k

(3)

Dividing the two equations and solving for m, we get m = 0.39 kg.

6.29 (a) kA > kB

Let the springs be stretched by the same amount. Then the work done on
the two springs will be

WA = 1

2
kAx2 WB = 1

2
kBx2

WA

WB
= kA

kB

Thus WA > WB, i.e. when two springs are stretched by the same amount,
more work will be done on the stiffer spring.
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(b) Let the two springs be stretched by equal force. Thus the work done

WA = 1

2
kAx2 = 1

2
kA

(
F

kA

)2

= 1

2

F2

kA

WB = 1

2

F2

kB

∴ WA

WB
= kB

kA

Thus when two springs are stretched by the same force, less work will be
done on the stiffer spring.

Fig. 6.19

6.30 Ktrans + Krot + U = C = constant

1

2
mv2 + 1

2
Iω2 + mg(R − r)(1 − cos θ) = C

Now I = 1

2
mr2 ω = v

r

3

4
m

(
dx

dt

)2

+ mg(R − r)
θ2

2
= C

Differentiating with respect to time

3

2
m

d2x

dt2

dx

dt
+ mg(R − r)θ

dθ

dt
= 0

Now x = (R − r)θ

∴ 3

2

d2x

dt2 (R − r)
dθ

dt
+ gx

dθ

dt
= 0

Cancelling
dθ

dt
throughout
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d2x

dt2 + 2

3

gx

(R − r)
= 0

which is the equation for SHM, with

ω2 = 2

3

g

R − r

T = 2π

ω
= 2π

√
3(R − r)

2g

6.3.2 Physical Pendulums

6.31 If α is the angular acceleration, the torque τ is given by

τ = Iα = I
d2φ

dt2
(1)

The restoring torque for an angular displacement φ is

τ = −MgD sin φ (2)

which arises due to the tangential component of the weight. Equating the two
torques for small φ,

I
d2φ

dt2 = −MgD sin φ = −MgD φ

or
d2φ

dt2 + MgD

I
φ = 0 (3)

which is the equation for SHM with

ω2 = MgD

I
(4)

T = 2π

ω
= 2π

√
I

MgD

6.32 Equation for the oscillatory motion is obtained by putting I = 1

3
M L2 and

D = L

2
in (3) of prob. (6.31).
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d2θ

dt2 + MgD

I
θ = 0 (3)

d2θ

dt2 + 3

2

g

L
θ = 0

ω2 = 3

2

g

L

T = 2π

ω
= 2π

√
2L

3g
(4)

For a simple pendulum

T = 2π

√
l

g
(5)

Comparing (4) and (5), the equivalent length of a simple pendulum is l = 2

3
L .

6.33 From the results of prob. (6.31) the time period of a physical pendulum is
given by

T = 2π

√
I

MgD
(1)

where I is the moment of inertia about the pivot A, Fig. 6.9.

Now I = IC + M D2 and IC = Mk2 (2)

where k is the radius of gyration. Formula (1) then becomes

T = 2π

√
k2 + D2

gD
(3)

and the length of the simple equivalent pendulum is D + k2

D
.

If a point B be taken on AG such that AB = D + k2

D
, A and B are known as

the centres of suspension and oscillation, respectively. Here G is the centre of
mass (CM) of the physical pendulum.
Suppose now the body is suspended at B, then the time of oscillation is

obtained by substituting
k2

D
for D in the expression
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2π

√
k2 + D2

gD
and is therefore 2π

√√√√√√√
k2 + k4

D2

g
k2

D

i.e. 2π

√
D2 + k2

gD

Thus the centres of suspension and oscillation are convertible, for if the
body be suspended from either it will make small vibrations in the same
time as a simple pendulum whose length L is the distance between these
centres.

T = 2π

√
L

g
or g = 4π2 L

T 2

6.34 ω =
√

mgd

I
(1)

d = 4R

3π
(2)

the distance of the point of suspension from the centre of mass

I = m R2

2
(3)

Substituting (2) and (3) in (1) and simplifying

ω =
√

8g

3π R

6.35 T = 2π

√
I

mgd

T1 = 2π

√
mr2 + mr2

mgr
= 2π

√
2r

g

T2 = 2π

√√√√√
1

2
mr2 + mr2

mgr
= 2π

√
3

2

r

g

∴ T1

T2
=
√

4

3
= 2√

3

6.36 In Fig. 6.20 OA is the reference line or the disc in the equilibrium position. If
the disc is rotated in the horizontal plane so that the reference line occupies
the line OB, the wire would have twisted through an angle θ . The twisted wire
will exert a restoring torque on the disc causing the reference line to move to
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Fig. 6.20

its original position. For small twists the restoring torque will be proportional
to the angular displacement in accordance with Hooke’s law.

τ = −Cθ (1)

where C is known as torsional constant. If I is the moment of inertia of the
disc about its axis, α the angular acceleration, the torque τ is given by

τ = Iα = I
d2θ

dt2 (2)

Comparing (1) and (2)

I
d2θ

dt2
= −Cθ

or
d2θ

dt2
+ C

I
θ = 0 (3)

which is the equation for angular SHM with ω2 = C

I
. Time period for small

oscillations is given by

T = 2π

√
I

C
(4)

6.37 Total kinetic energy of the system

K = K (mass) + K (pulley) = 1

2
mẋ2 + 1

2
I θ̇2

Replacing x by rθ and ẋ by r θ̇

K = 1

2
mr2θ̇2 + 1

2
I θ̇2 = 1

2
(mr2 + I )θ̇2
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Potential energy of the spring

U = 1

2
kx2 = 1

2
kr2θ2

Total energy

E = K + U = 1

2
(mr2 + I )θ̇2 + 1

2
kr2θ2 = constant

Differentiating with respect to time

dE

dt
= (mr2 + I )θ̇ · θ̈ + kr2θ · θ̇ = 0

Cancelling θ̇

θ̈ + kr2θ

mr2 + I
= 0

which is the equation for angular SHM with

ω2 = kr2

mr2 + I
. Therefore

ω =
√

kr2

mr2 + I

6.38 Let at any instant the centre of the cylinder be displaced by x towards right.
Then the spring at C is compressed by x while the spring at P is elongated by
2x . If v = ẋ is the velocity of the centre of mass of the cylinder and ω = θ̇ its
angular velocity, the total energy in the displaced position will be

E = 1

2
mẋ2 + 1

2
IC θ̇2 + 1

2
k1x2 + 1

2
k2(2x)2 (1)

Substituting x = rθ , ẋ = r θ̇ , and IC = 1

2
mr2, where r is the radius of the

cylinder, (1) becomes

E = 3

4
mr2θ̇2 + 1

2
r2(k1 + 4k2)θ

2 = constant

dE

dt
= 3

2
mr2θ̇ θ̈ + r2(k1 + 4k2)θ θ̇ = 0

∴ θ̈ + 2

3m
(k1 + 4k2)θ = 0
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which is the equation for angular SHM with ω2 = 2

3m
(k1 + 4k2).

T = 2π

ω
= 2π

√
3m

2(k1 + 4k2)

6.39 U (x) = a

x2
− b

x

Equilibrium position is obtained by minimizing the function U (x).

dU

dx
= −2a

x3 + b

x2 = 0

x = x0 = 2a

b

Measuring distances from the equilibrium position and replacing x by x + 2a

b

F = −dU

dx
= 2a

x3
− b

x2

F = 2a

(x + 2a/b)3
− b

(x + 2a/b)2

= 2a

(2a/b)3

(
1 + bx

2a

)−3

− b

(2a/b)2

(
1 + bx

2a

)−2

Since the quantity bx/2a is assumed to be small, use binomial expansion
retaining terms up to linear in x .

F = −b4x

8a3

Acceleration a = F

m
= − b4x

8a3m
= −ω2x

where ω =
√

b4

8a3m

T = 2π

ω
= 4π

√
2ma2

b4
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6.3.3 Coupled Systems of Masses and Springs

6.40 Let spring 1 undergo an extension x1 due to force F . Then x1 = F

k1
. Similarly,

for spring 2, x2 = F

k2
.

The force is the same in each spring, but the total displacement x is the sum
of individual displacements:

x = x1 + x2 = F

k1
+ F

k2

keq = F

x
= F

x1 + x2
= F

F

k1
+ F

k2

= 1
1

k1
+ 1

k2

= k1k2

k1 + k2

∴ T = 2π

√
m

keq
= 2π

√
(k1 + k2)m

k1k2

6.41 The displacement is the same for both the springs and the total force is the
sum of individual forces.

F1 = k1x, F2 = k2x

F = F1 + F2 = (k1 + k2)x

keq = F

x
= k1 + k2

T = 2π

√
m

keq
= 2π

√
m

k1 + k2

6.42 Let the centre of mass be displaced by x . Then the net force

F = −k1x − k2x = −(k1 + k2)x

Acceleration a = F

m
= −(k1 + k2)

x

m
= −ω2x

T = 2π

ω
= 2π

√
m

k1 + k2

6.43 Spring constant of the wire is given by

k′ = Y A

L
(1)



274 6 Oscillations

Since the spring and the wire are in series, the effective spring constant keff is
given by

keff = k ′k
k + k

(2)

The time period of oscillations is given by

T = 2π

√
m

keff
(3)

Combining (1), (2) and (3)

T = 2π

√
m(Y A + kL)

Y Ak

6.44 In Fig. 6.15, C is the point of contact around which the masses M and m rotate.
As it is the instantaneous centre of zero velocity, the equation of motion is of
the form �τc = Icθ̈ , where Ic is the moment of inertia of masses M and m
with respect to point C. Now

Ic =
(

1

2
M R2 + M R2

)
+ md2 (1)

where d2 = L2 + R2 − 2RL cos θ. (2)

For small oscillations, sin θ � θ , cos θ � 1 and

Ic = 3M R2

2
+ m(L − d)2 (3)

Therefore the equation of motion become

[
3M R2

2
+ m(L − d)2

]
θ̈ = −mgL sin θ = −mgLθ

or θ̈ + mgL

3M R2/2 + m(L − d)2
θ = 0

∴ ω =
√

mgL

3M R2/2 + m(L − d)2 rad/s

6.45 Figure 6.21 shows the semicircular disc tilted through an angle θ compared to

the equilibrium position (b). G is the centre of mass such that a = OG = 4r

3π
,

where r is the radius.



6.3 Solutions 275

Fig. 6.21

We use the energy method.

K (max) = 1

2
IAω2

= 1

2
(IG + GA

2
)ω2

= 1

2
[I0 − ma2 + m(r − a)2]ω2 = 1

2

[
1

2
mr2 + mr(r − 2a)

]
ω2

= mr

(
3

4
r − a

)
ω2

Kmax = Umax

mr

(
3

4
r − a

)
ω2 = mga(1 − cos θ)

But a = 4r

3π

ω = 4

√
(1 − cos θ)g

(9π − 16)r

6.46 Referring to Fig. 6.16, take torques about the two hinged points P and Q.

mb2θ̈1 = −mgbθ1 − kb2(θ1 − θ2)

The left side gives the net torque which is the product of moment of inertia
about P and the angular acceleration. The first term on the right side gives
the torque of the force mg, which is force times the perpendicular distance
from the vertical through P. The second term on the right side is the torque
produced by the spring which is k(x1 − x2) times the perpendicular distance
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from P, that is, k(x1 − x2)b or k(θ1 − θ2)b2. The second equation of motion
can be similarly written. Thus, the two equations of motion are

mbθ̈1 + mgθ1 + kb(θ1 − θ2) = 0 (1)

mbθ̈2 + mgθ2 + kb(θ2 − θ1) = 0 (2)

The harmonic solutions are

θ1 = A sin ωt, θ2 = B sin ωt (3)

θ̈1 = −Aω2 sin ωt, θ̈2 = −Bω2 sin ωt (4)

Substituting (3) and (4) in (1) and (2) and simplifying

(mg + kb − mbω2)A − kb B = 0 (5)

− kbA + (mg + kb − mbω2)B = 0 (6)

The frequency equation is obtained by equating to zero the determinant
formed by the coefficients of A and B.

∣∣∣∣
(
mg + kb − mbω2

) −kb
−kb

(
mg + kb − mbω2

)
∣∣∣∣ = 0

Expanding the determinant and solving for ω we obtain

ω1 =
√

g

b
, ω2 =

√
g

b
+ 2k

m

6.47 In prob. (6.46) equations of motion (1) and (2) can be re-written in terms of
Cartesian coordinates x1 and x2 since x1 = bθ1 and x2 = bθ2.

mẍ1 + mgx1

b
+ k(x1 − x2) = 0 (1)

mẍ2 + mgx2

b
+ k(x2 − x1) = 0 (2)

It is possible to make linear combinations of x1 and x2 such that a combination
involves but a single frequency. These new coordinates X1 and X2, called
normal coordinates, vary harmonically with but a single frequency. No energy
transfer occurs from one normal coordinate to another. They are completely
independent.

x1 = X1 + X2

2
, x2 = X1 − X2

2
(3)
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Substituting (3) in (1) and (2)

m

2
(Ẍ1 + Ẍ2) + mg

2b
(X1 + X2) + k X2 = 0 (4)

m

2
(Ẍ1 − Ẍ2) + mg

2b
(X1 − X2) − k X2 = 0 (5)

Adding (4) and (5)

m Ẍ1 + mg

b
X1 = 0 (6)

which is a linear equation in X1 alone with constant coefficients.
Subtracting (5) from (4), we obtain

m Ẍ2 +
(mg

b
+ 2k

)
X2 = 0 (7)

This is again a linear equation in X2 as the single dependent variable. Since
the coefficients of X1 and X2 are positive, both (6) and (7) are differential

equations of simple harmonic motion having frequencies ω1 =
√

g

b
and

ω2 =
√

g

b
+ 2k

m
. Thus when equations of motion are expressed in normal

coordinates, the equations are linear with constant coefficients and each con-
tains only one dependent variable.
We now calculate the energy in normal coordinates. The potential energy
arises due to the energy stored in the spring and due to the position of the
body.

V = 1

2
k(x1 − x2)

2 + mgb(1 − cos θ1) + mgb(1 − cos θ2) (8)

Now b(1 − cos θ1) = b
θ2

1

2
= x2

1

2b

Similarly b(1 − cos θ2) = x2
2

2b

Hence V = k

2
(x1 − x2)

2 + mgx2
1

2b
+ mgx2

2

2b
(9)

Kinetic energy T = m

2

(
ẋ2

1 + ẋ2
2

)
(10)

Although there is no cross-product term in (10) for the kinetic energy, there
is one in the potential energy of the spring in (9). The presence of the cross-
product term means coupling between the components of the vibrating system.
However, in normal coordinates the cross-product terms are avoided. Using
(3) in (9) and (10)
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V = mg

4b
X2

1 +
(

mg

4b
+ k

2

)
X2

2 (11)

T = m

4
(Ẋ2

1 + Ẋ2
2) (12)

Thus the cross terms have now disappeared. The potential energy V is now
expressed as a sum of squares of normal coordinates multiplied by constant
coefficients and kinetic energy. T is expressed in the form of a sum of squares
of the time derivatives of the normal coordination.
We can now describe the mode of oscillation associated with a given normal
coordinate. Suppose X2 = 0, then 0 = x1 − x2, which implies x1 = x2. The
mode X1 is shown in Fig. 6.22, where the particles oscillate in phase with
frequency ω1 = √

g/b which is identical for a simple pendulum of length b.
Here the spring plays no role because it remains unstretched throughout the
motion.
If we put X1 = 0, then we get x1 = −x2. Here the pendulums are out of
phase. The X2 mode is also illustrated in Fig. 6.22, the associated frequency

being ω2 =
√

g

b
+ 2k

m
. Note that ω2 > ω1, because greater potential energy

is now available due to the spring.

Fig. 6.22

6.48 y = A cos 6π t sin 90π

Now sin C + sin D = 2 sin
1

2
(C + D) cos

1

2
(C − D)

Comparing the two equations we get

C + D

2
= 90π

C − D

2
= 6π

∴ C = 96π and D = 84π

ω1 = 2π f1 = 96π or f1 = 48 Hz

ω2 = 2π f2 = 84π or f2 = 42 Hz

Thus the frequency of the component vibrations are 48 Hz and 42 Hz. The beat
frequency is f1 − f2 = 48 − 42 = 6 beats/s.

6.49 The frequency is given by

f = 1

2π

√
k

μ



6.3 Solutions 279

where μ is the reduced mass given by

μ = mHmCl

mH + mCl
= 10. × 36.46

1.0 + 36.46

= 0.9733 amu = 0.9733 × 1.66 × 10−27 kg = 1.6157 × 10−27 kg

f = 1

2π

√
480

1.6157 × 10−27
= 8.68 × 1013 Hz

6.50 Each vibration is plotted as a vector of magnitude which is proportional to the
amplitude of the vibration and in a direction which is determined by the phase
angle. Each phase angle is measured with respect to the x-axis. The vectors are
placed in the head-to-tail fashion and the resultant is obtained by the vector
joining the tail of the first vector with the head of the last vector, Fig. 6.23.

y1 = OA = 1 unit, parallel to x-axis in the positive direction, y2 = AB = 1

2

unit parallel to y-axis and y3 = BC = 1

3
unit parallel to the x-axis in the

negative direction.

Fig. 6.23

The resultant is given by OC both in magnitude and in direction. From the
geometry of the diagram

y = OC =
√

OD2 + DC2 =
√(

2

3

)2

+
(

1

2

)2

= 5/6

α = tan−1(CD/OD) = tan−1
(

1/2

2/3

)
= tan−1(3/4) = 37◦

6.3.4 Damped Vibrations

6.51 The logarithmic decrement � is given by

� = bT ′ (1)
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where T ′ = 2π

ω′ is the time period for damped vibration and b =
√

ω2
0 − ω′ 2,

where ω0 and ω′ are the angular frequencies for natural and damped vibra-
tions, respectively.

� = 2π

√
ω2

0

ω′ 2 − 1 = 2π

√
f 2

f ′ 2 − 1 = 2π

√(
20

16

)2

− 1 = 3π

2

6.52 The equation for damped oscillations is 4
d2x

dt2
+ rdx

dt
+ 32x = 0

Dividing the equation by 4

d2x

dt2 + r

4

dx

dt
+ 8x = 0

Comparing the equation with the standard equation

d2x

dt2
+ r

m

dx

dt
+ k

m
x = 0

m = 4,
k

m
= 8 → k = 32

ω0 =
√

k

m
= √

8 = 2
√

2

The quantity b = r

2m
represents the decay rate of oscillation where r is the

resistance constant.

(a) The motion will be underdamped if

b < ω0 or
r

2m
<

√
k

m
or r < 2

√
km

i.e. r < 2
√

32 × 4 or r < 16
√

2

(b) The motion is overdamped if r > 16
√

2.
(c) The motion is critically damped if r = 16

√
2.

6.53 (a) ω0 =
√

k

m
=
√

20

4
= 2.23 rad/s

T = 2π

ω0
= 2π

2.23
= 2.8 s
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(b) ω′ = 2π

T ′ = 2π

10
= 0.628 rad/s

b =
√

ω2
0 − ω

′2 =
√

2.2362 − 0.6282 = 2.146
r

2m
= b or r = 2mb = 2 × 4 × 2.146 = 17.17 Ns/m

(c) � = bT ′ = 2.146 × 10 = 21.46

6.54
d2x

dt2
+ 2dx

dt
+ 5x = 0

Let x = eλt . The characteristic equation then becomes λ2 + 2λ + 5 = 0 with
the roots λ = −1 ± 2i

x = Ae−(1−2i)t + Be−(1+2i)t

or x = e−t [C cos 2t + D sin 2t]

where A, B, C and D are constants.

C and D can be determined from initial conditions. At t = 0, x = 5. Therefore
C = 5.

Also
dx

dt
= −e−t (C cos 2t + D sin 2t) + e−t (−2C sin 2t + 2D cos 2t)

At t = 0,
dx

dt
= −3

∴ −3 = −C + 2D = −5 + 2D

∴ D = 1

The complete solution is

x = e−t (5 cos 2t + sin 2t)

6.55 F = mg = kx

k = mg

x
= (1.0)(9.8)

0.2
= 49 N/m

Equation of motion is

m
d2x

dt2
+ r

dx

dt
+ kx = 0 (1)
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Substituting m = 1.0, r = 14, k = 49, (1) becomes

d2x

dt2 + 14
dx

dt
+ 49x = 0 (2)

ω0 =
√

k

m
=
√

49

1
= 7 rad/s

b = r

2m
= 14

2 × 1
= 7

(a) Therefore the motion is critically damped.
(b) For critically damped motion, the equation is

x = x0e−bt (1 + bt) (3)

With b = 7 and x0 = 1.5, (3) becomes

x = 1.5 e−7t (1 + 7t)

6.56 ω0 =
√

k

m
=
√

150

60
= 5

Damping force fr = r · v

or r = fr

v
= 80

2
= 40

b = r

2m
= 40

2 × 6
= 3.33 rad/s

ω(res) =
√

ω2
0 − 2b2 =

√
52 − 2 × (3.33)2 = 1.66 rad/s

f (res) = ω(res)

2π
= 0.265 vib/s

6.57 Equation of motion is

2d2x

dt2 + 1.5
dx

dt
+ 40x = 12 cos 4t

Dividing throughout by 2

d2x

dt2
+ 0.75

dx

dt
+ 20x = 6 cos 4t
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Comparing this with the standard equation

d2x

dt2 + 2b
dx

dt
+ ω2

0x = p cos ωt

b = 0.375; ω0 = √
20, p = 6, ω = 4

ZM =
√(

ω2
0 − ω2

)2 + 4b2ω2 =
√

(20 − 16)2 + 4 × 0.3752 × 42 = 5

(a) A = p

Zm
= 6

5
= 1.2

(b) tan ε = 2bω

ω2
0 − ω2

= 2 × 0.375 × 4

(20 − 16)
= 0.75 → ε = 37◦

(c) Q = ω0m

r
= ω0

2b
=

√
20

2 × 0.375
= 5.96

(d) F = pm = 6 × 2 = 12

W = F2

2Zm
sin ε = 122

2 × 5
sin 37◦ = 8.64 W

6.58 Q = 2π tc
T

= 2π tc f = 2π × 2 × 100 = 1256

6.59 (a) Energy is proportional to the square of amplitude

E = const.A2

dE

E
= 2dA

A
= 2 × 5

100
= 10%

(b) E = E0e−t/tc

∴ E

E0
= A2

A2
0

= e−t/tc

∴ A

A0
= 95

100
= e−t/2tc

t

2tc
= ln

(
100

95

)
= 0.05126

tc = 3

2 × 0.05126
= 29.26 s

(c) Q = 2π tc
T

= (2π)(29.26)

3.0
= 61.25
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6.60 (a) E = E0e−t/tc

∴ t

tc
= ln

(
E0

E

)
= ln 2 = 0.693

Put t = nT

∴ n = 0.693
tc
T

But − �E

E
= 3

100
= T

tc

∴ n = 0.693 × 100

3
= 23.1

(b) Q = 2π tc
T

= 2π × 100

3
= 209.3

6.61 ω′ = ω0

√
1 − 1

4Q2
= 9ω0

10

∴ Q = 1.147

Q = 2π tc
T

or
T

2tc
= π

Q
= 3.14

1.147
= 2.737

A

A0
= e−T/2tc = e−2.737 = 0.065

6.62 ω′2 = ω2
0 − b2 (1)

where b = r

2m
(2)

ω′ = ω0

(
1 − b2

ω2
0

)1/2

≈ ω0

(
1 − b2

2ω2
0

)
(3)

where we have expanded the radical binomially, assuming that b/ω0 << 1.

Now ω2
0 = k

m
(4)

∴ b2

2ω2
0

= r2

8mk
(5)

Substituting (5) in (3)

ω′ = ω0

(
1 − r2

8mk

)
(for small damping)



6.3 Solutions 285

6.63 The time elapsed between successive maximum displacements of a damped
harmonic oscillator is represented by T ′, the period.

T ′ = 2π

ω′ = 2π√
ω2

0 − b2
= 2π√

k

m
− r2

4m2

= 4πm√
4km − r2

= constant

6.64 Force = mg = kx

∴ k

m
= g

x
= 980

9.8
= 100

ω0 =
√

k

m
= √

100 = 10 rad/s

� = bT ′ = 2πb√
ω2

0 − b2
(1)

Substituting � = 3.1 and ω0 = 10 in (1), b = 4.428

T ′ = 2π√
ω2

0 − b2
= 2π√

102 − (4.428)2
= 0.7 s

6.65 d2x

dt2
+ 2dx

dt
+ 8x = 16 cos 2t (1)

This is the equation for the forced oscillations, the standard equation being

m
d2x

dt2
+ r

dx

dt
+ kx = F cos ωt (2)

Comparing (1) and (2) we find

m = 1 kg, r = 2, k = 8, F = 16 N , ω = 2

(a) ω0 = 2π f0 =
√

k

m
=
√

8

1
= 2

√
2

∴ f0 = 2
√

2

2π
=

√
2

π
/s

(b) ω = 2π f = 2

∴ f = 2

2π
= 1

π
/s
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6.66 E(t) = E0e−t/tc

∴ E(t1/2)

E0
= 1

2
= e−t1/2/tc

or t1/2 = tc ln 2

6.67 A(t) = A0e−t/2tc

A(t)

A0
= 1

e

If t = 2tc = 8T

∴ tc = 4T

Q = 2π
tc
T

= 2π × 4 = 25.1



Chapter 7
Lagrangian and Hamiltonian Mechanics

Abstract Chapter 7 is devoted to problems solved by Lagrangian and Hamiltonian
mechanics.

7.1 Basic Concepts and Formulae

Newtonian mechanics deals with force which is a vector quantity and therefore dif-
ficult to handle. On the other hand, Lagrangian mechanics deals with kinetic and
potential energies which are scalar quantities while Hamilton’s equations involve
generalized momenta, both are easy to handle. While Lagrangian mechanics con-
tains n differential equations corresponding to n generalized coordinates, Hamil-
tonian mechanics contains 2n equation, that is, double the number. However, the
equations for Hamiltonian mechanics are linear.

The symbol q is a generalized coordinate used to represent an arbitrary coordi-
nate x , θ , ϕ, etc.

If T is the kinetic energy, V the potential energy then the Lagrangian L is
given by

L = T − V (7.1)

Lagrangian Equation:

d

dt

(
dL

dq̇K

)
− ∂L

∂qK

= 0 (K = 1, 2 . . .) (7.2)

where it is assumed that V is not a function of the velocities, i.e.
∂v

∂ q̇K

= 0. Eqn (2)

is applicable to all the conservative systems.
When n independent coordinates are required to specify the positions of the

masses of a system, the system is of n degrees of freedom.

Hamilton H = �r
s=1 psq̇s − L (7.3)

where ps is the generalized momentum and q̇K is the generalized velocity.

287
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Hamiltonian’s Canonical Equations

∂ H

∂pr
= q̇r ,

∂ H

∂qr
= − ṗr (7.4)

7.2 Problems

7.1 Consider a particle of mass m moving in a plane under the attractive force
μm/r2 directed to the origin of polar coordinates r , θ . Determine the equations
of motion.

7.2 (a) Write down the Lagrangian for a simple pendulum constrained to move in
a single vertical plane. Find from it the equation of motion and show that
for small displacements from equilibrium the pendulum performs simple
harmonic motion.

(b) Consider a particle of mass m moving in one dimension under a force with
the potential U (x) = k(2x3 − 5x2 + 4x), where the constant k > 0. Show
that the point x = 1 corresponds to a stable equilibrium position of the
particle. Find the frequency of a small amplitude oscillation of the particle
about this equilibrium position.

[University of Manchester 2007]

7.3 Determine the equations of motion of the masses of Atwood machine by the
Lagrangian method.

7.4 Determine the equations of motion of Double Atwood machine which consists
of one of the pulleys replaced by an Atwood machine. Neglect the masses of
pulleys.

7.5 A particular mechanical system depending on two coordinates u and v has
kinetic energy T = v2u̇2 + 2v̇2, and potential energy V = u2 − v2. Write
down the Lagrangian for the system and deduce its equations of motion (do not
attempt to solve them).

[University of Manchester 2008]

7.6 Write down the Lagrangian for a simple harmonic oscillator and obtain the
expression for the time period.

7.7 A particle of mass m slides on a smooth incline at an angle α. The incline is not
permitted to move. Determine the acceleration of the block.

7.8 A block of mass m and negligible size slides on a frictionless inclined plane of
mass M at an angle θ with the horizontal. The plane itself rests on a smooth
horizontal table. Determine the acceleration of the block and the inclined plane.

7.9 A bead of mass m is free to slide on a smooth straight wire of negligible mass
which is constrained to rotate in a vertical plane with constant angular speed ω

about a fixed point. Determine the equation of motion and find the distance x
from the fixed point at time t . Assume that at t = 0 the wire is horizontal.
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7.10 Consider a pendulum consisting of a small mass m attached to one end of an
inextensible cord of length l rotating about the other end which is fixed. The
pendulum moves on a spherical surface. Hence the name spherical pendulum.
The inclination angle ϕ in the xy-plane can change independently.

(a) Obtain the equations of motion for the spherical pendulum.
(b) Discuss the conditions for which the motion of a spherical pendulum is

converted into that of (i) simple pendulum and (ii) conical pendulum.

7.11 Two blocks of mass m and M connected by a massless spring of spring con-
stant k are placed on a smooth horizontal table. Determine the equations of
motion using Lagrangian mechanics.

7.12 A double pendulum consists of two simple pendulums of lengths l1 and l2
and masses m1 and m2, with the cord of one pendulum attached to the bob
of another pendulum whose cord is fixed to a pivot, Fig. 7.1. Determine the
equations of motion for small angle oscillations using Lagrange’s equations.

Fig. 7.1

7.13 Use Hamilton’s equations to obtain the equations of motion of a uniform
heavy rod of mass M and length 2a turning about one end which is fixed.

7.14 A one-dimensional harmonic oscillator has Hamiltonian H = 1
2 p2 + 1

2ω2q2.
Write down Hamiltonian’s equation and find the general solution.

7.15 Determine the equations for planetary motion using Hamilton’s equations.

7.16 Two blocks of mass m1 and m2 coupled by a spring of force constant k are
placed on a smooth horizontal surface, Fig. 7.2. Determine the natural fre-
quencies of the system.

Fig. 7.2
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7.17 A simple pendulum of length l and mass m is pivoted to the block of mass M
which slides on a smooth horizontal plane, Fig. 7.3. Obtain the equations of
motion of the system using Lagrange’s equations.

Fig. 7.3

7.18 Determine the equations of motion of an insect of mass m crawling at a uni-
form speed v on a uniform heavy rod of mass M and length 2a which is
turning about a fixed end. Assume that at t = 0 the insect is at the middle
point of the rod and it is crawling downwards.

7.19 A uniform rod of mass M and length 2a is attached at one end by a cord of
length l to a fixed point. Calculate the inclination of the string and the rod
when the string plus rod system revolves about the vertical through the pivot
with constant angular velocity ω.

7.20 A particle moves in a horizontal plane in a central force potential U (r). Derive
the Lagrangian in terms of the polar coordinates (r, θ ). Find the corresponding
momenta pr and pθ and the Hamiltonian. Hence show that the energy and
angular momentum of the particle are conserved.

[University of Manchester 2007]
7.21 Consider the system consisting of two identical masses that can move hori-

zontally, joined with springs as shown in Fig. 7.4. Let x , y be the horizontal
displacements of the two masses from their equilibrium positions.

(a) Find the kinetic and potential energies of the system and deduce the
Lagrangian.

(b) Show that Lagrange’s equation gives the coupled linear differential equa-
tions
{

mẍ = −4kx + 3ky
m ÿ = 3kx − 4ky

Fig. 7.4
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(c) Find the normal modes of oscillation of this system and their period of
oscillation.

7.22 Two identical beads of mass m each can move without friction along a hor-
izontal wire and are connected to a fixed wall with two identical springs of
spring constant k as shown in Fig. 7.5.

Fig. 7.5

(a) Find the Lagrangian for this system and derive from it the equations of
motion.

(b) Find the eigenfrequencies of small amplitude oscillations.
(c) For each normal mode, sketch the system when it is at maximum

displacement.

Note: Your sketch should indicate the relative sizes as well as the directions of
the displacements.

[University of Manchester 2007]

7.23 Two beads of mass 2m and m can move without friction along a horizontal
wire. They are connected to a fixed wall with two springs of spring constants
2k and k as shown in Fig. 7.6:

(a) Find the Lagrangian for this system and derive from it the equations of
motion for the beads.

(b) Find the eigenfrequencies of small amplitude oscillations.
(c) For each normal mode, sketch the system when it is at the maximum dis-

placement.

Fig. 7.6
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7.24 Three identical particles of mass m, M and m with M in the middle are con-
nected by two identical massless springs with a spring constant k. Find the
normal modes of oscillation and the associated frequencies.

7.25 (a) A bead of mass m is constrained to move under gravity along a planar
rigid wire that has a parabolic shape y = x2/ l, where x and y are,
respectively, the horizontal and the vertical coordinates. Show that the
Lagrangian for the system is

L = m(ẋ)2

2

(
1 + 4x2

l2

)
− mgx2

l

(b) Derive the Hamiltonian for a single particle of mass m moving in one
dimension subject to a conservative force with a potential U (x).

[University of Manchester 2006]

7.26 A pendulum of length l and mass m is mounted on a block of mass M . The
block can move freely without friction on a horizontal surface as shown in
Fig. 7.7.

(a) Show that the Lagrangian for the system is

L =
(

M + m

2

)
(ẋ)2 + ml cos θ ẋ θ̇ + m

2
l2(θ̇)2 + mgl cos θ

(b) Show that the approximate form for this Lagrangian, which is applicable
for a small amplitude swinging of the pendulum, is

L =
(

M + m

2

)
(ẋ)2 + mlẋ θ̇ + m

2
l2(θ̇)2 + mgl

(
1 − θ2

2

)

(c) Find the equations of motion that follow from the simplified Lagrangian
obtained in part (b),

(d) Find the frequency of a small amplitude oscillation of the system.

[University of Manchester 2006]

Fig. 7.7
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7.27 (a) A particle of mass m slides down a smooth spherical bowl, as in Fig. 7.8.
The particle remains in a vertical plane (the xz-plane). First, assume that
the bowl does not move. Write down the Lagrangian, taking the angle ϑ

with respect to the vertical direction as the generalized coordinate. Hence,
derive the equation of motion for the particle.

Fig. 7.8

(b) Assume now that the bowl rests on a smooth horizontal table and has a
mass M , the bowl can slide freely along the x-direction.

(i) Write down the Lagrangian in terms of the angle θ and the x-
coordinate of the bowl, x .

(ii) Starting from the corresponding Lagrange’s equations, obtain an
equation giving ẍ in terms of θ , θ̇ and θ̈ and an equation giving θ̈

in terms of ẍ and θ .
(iii) Hence, and assuming that M >> m, show that for small displace-

ments about equilibrium the period of oscillation of the particle is
smaller by a factor [M/(M + m)]1/2 as compared to the case where
the bowl is fixed. [You may neglect the terms in θ2θ̈ or θ θ̇2 compared
to terms in θ̈ or θ .]

[University of Durham 2004]

7.28 A system is described by the single (generalized) coordinate q and the
Lagrangian L(q, q̇). Define the generalized momentum associated with q and
the corresponding Hamiltonian, H(q, p). Derive Hamilton’s equations from
Lagrange’s equations of the system. For the remainder of the question, con-
sider the system whose Lagrangian, L(q, q̇). Find the corresponding Hamil-
tonian and write down Hamilton’s equations.

7.29 Briefly explain what is the “generalized (or canonical) momentum conju-
gate to a generalized coordinate”. What characteristic feature should the
Lagrangian function have for a generalized momentum to be a constant of
motion? A particle P can slide on a frictionless horizontal table with a small
opening at O. It is attached, by a string of length l passing through the open-
ing, to a particle Q hanging vertically under the table (see Fig. 7.9). The two
particles have equal mass, m. Let τ denote the distance of P to the opening, θ

the angle between OP and some fixed line through O and g the acceleration of
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gravity. Initially, r = a, Q does not move, and P is given an initial velocity of
magnitude (ag)1/2 at right angles to OP.

Fig. 7.9

(a) Write the Lagrangian in terms of the coordinates r and θ and derive the
corresponding equations of motion.

(b) Using these equations of motion and the initial conditions, show that r̈ =
a3g/r3 − g.

(c) Hence, (i) show that the trajectory of P is the circle r = a, (ii) show that
P describes small oscillations about this circle if it is slightly displaced
from it and (iii) calculate the period of these oscillations:

[v2
p = ṙ2 + r2θ̇2, where vp is the speed of P]

7.30 A particle of mass m is constrained to move on an ellipse E in a vertical plane,
parametrized by x = a cos θ , y = b sin θ , where a, b > 0 and a �= b and the
positive y-direction is the upward vertical. The particle is connected to the
origin by a spring, as shown in the diagram, and is subject to gravity. The
potential energy in the spring is 1

2 kr2 where r is the distance of the point mass
from the origin (Fig. 7.10).

Fig. 7.10
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(i) Using θ as a coordinate, find the kinetic and potential energies of the
particle when moving on the ellipse. Write down the Lagrangian and
show that Lagrange’s equation becomes m(a2 sin2 θ + b2 cos2 θ)θ̈ =
(a2 − b2)(k − mθ̇2) sin θ cos θ − mgb cos θ .

(ii) Show that θ = ±π/2 are two equilibrium points and find any other equi-
librium points, giving carefully the conditions under which they exist.
You may either use Lagrange’s equation or proceed directly from the
potential energy.

(iii) Determine the stabilities of each of the two equilibrium points θ = ±π/2
(it may help to consider the cases a > b and a < b separately).

(iv) When the equilibrium point at θ = −π/2 is stable, determine the period
of small oscillations.

[University of Manchester 2008]

7.31 In prob. (7.12) on double pendulum if m1 = m2 = m and l1 = l2 = l, obtain
the frequencies of oscillation.

7.32 Use Lagrange’s equations to obtain the natural frequencies of oscillation of a
coupled pendulum described in prob. (6.46).

7.33 A bead of mass m slides freely on a smooth circular wire of radius r which
rotates with constant angular velocity ω. On a horizontal plane about a point
fixed on its circumference, show that the bead performs simple harmonic
motion about the diameter passing through the fixed point as a pendulum of
length r = g/ω2.

[with permission from Robert A. Becker, Introduction to theoretical
mechanics, McGraw-Hill Book Co., Inc., 1954]

7.34 A block of mass m is attached to a wedge of mass M by a spring with spring
constant k. The inclined frictionless surface of the wedge makes an angle α to
the horizontal. The wedge is free to slide on a horizontal frictionless surface
as shown in Fig. 7.11.

Fig. 7.11

(a) Show that the Lagrangian of the system is

L = (M + m)

2
ẋ2 + 1

2
mṡ2 + mẋṡ cos α − k

2
(s − l)2 − mg(h − s sin α),
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where l is the natural length of the spring, x is the coordinate of the wedge
and s is the length of the spring.

(b) By using the Lagrangian derived in (a), show that the equations of motion
are as follows:

(m + M)ẍ + ms̈ cos α = 0,

mẍ cos α + ms̈ + k(s − s0) = 0,

where s0 = l + (mg sin α)/k.

(c) By using the equations of motion in (b), derive the frequency for a small
amplitude oscillation of this system.

[University of Manchester 2008]

7.35 A uniform spherical ball of mass m rolls without slipping down a wedge of
mass M and angle α, which itself can slide without friction on a horizontal
table. The system moves in the plane shown in Fig. 7.12. Here g denotes the
gravitational acceleration.

Fig. 7.12

(a) Find the Lagrangian and the equations of motion for this system.
(b) For the special case of M = m and α = π/4 find

(i) the acceleration of the wedge and
(ii) the acceleration of the ball relative to the wedge.

[Useful information: Moment of inertia of a uniform sphere of mass m

and radius R is I = 2

5
m R2.]

[University of Manchester 2007]

7.3 Solutions

7.1 This is obviously a two degree of freedom dynamical system. The square of the
particle velocity can be written as

v2 = ṙ2 + (r θ̇ )2 (1)

Formula (1) can be derived from Cartesian coordinates

x = r cos θ, y = r sin θ

ẋ = ṙ cos θ − r θ̇ sin θ, ẏ = ṙ sin θ + r θ̇ cos θ
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We thus obtain

ẋ2 + ẏ2 = ṙ2 + r2θ̇2

The kinetic energy, the potential energy and the Lagrangian are as follows:

T = 1

2
mv2 = 1

2
m(ṙ2 + r2θ̇2) (2)

V = −μm

r
(3)

L = T − V = 1

2
m(ṙ2 + r2θ̇2) + μm

r
(4)

We take r , θ as the generalized coordinates q1, q2. Since the potential energy
V is independent of q̇i , Lagrangian equations take the form

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (i = 1, 2) (5)

Now
∂L

∂ ṙ
= mṙ ,

∂L

∂r
= mr θ̇2 − μm

r2
(6)

∂L

∂θ̇
= mr2θ̇ ,

∂L

∂θ
= 0 (7)

Equation (5) can be explicitly written as

d

dt

(
∂L

∂ ṙ

)
− ∂L

∂r
= 0 (8)

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 (9)

Using (6) in (8) and (7) in (9), we get

mr̈ − mr θ̇2 + μm

r2 = 0 (10)

m
d(r2θ̇ )

dt
= 0 (11)

Equations (10) and (11) are identical with those obtained for Kepler’s problem
by Newtonian mechanics. In particular (11) signifies the constancy of areal
velocity or equivalently angular momentum (Kepler’s second law of planetary
motion). The solution of (10) leads to the first law which asserts that the path
of a planet describes an ellipse.

This example shows the simplicity and power of Lagrangian method which
involves energy, a scalar quantity, rather than force, a vector quantity in New-
ton’s mechanics.
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7.2 The position of the pendulum is determined by a single coordinate θ and so we
take q = θ . Then (Fig. 7.13)

Fig. 7.13

T = 1

2
mv2 = 1

2
mω2l2 = 1

2
ml2θ̇2 (1)

V = mgl(1 − cos θ) (2)

L = T − V = 1

2
ml2θ̇2 − mgl(1 − cos θ) (3)

∂T

∂θ̇
= ml2θ̇ ,

∂T

∂θ
= 0 (4)

∂V

∂θ̇
= 0,

∂

∂θ
= mgl sin θ (5)

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 (6)

d

dt

(
∂

∂θ̇
(T − V )

)
− ∂

∂θ
(T − V ) = 0

d

dt
(ml2θ̇ ) + mgl sin θ = 0

or l θ̈ + g sin θ = 0 (equation of motion)

For small oscillation angles sin θ → θ

θ̈ = −gθ

l
(equation for angular SHM)

∴ ω2 = g

l
or time period T = 2π

ω
= 2π

√
l

g
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7.3 In this system there is only one degree of freedom. The instantaneous configu-
ration is specified by q = x . Assuming that the cord does not slip, the angular
velocity of the pulley is ẋ/R, Fig. 7.14.

Fig. 7.14

The kinetic energy of the system is given by

T = 1

2
m1 ẋ2 + 1

2
m2 ẋ2 + 1

2
I

ẋ2

R2 (1)

The potential energy of the system is

V = −m1gx − m2g(l − x) (2)

And the Lagrangian is

L = 1

2

(
m1 + m2 + I

R2

)
ẋ2 + (m1 − m2)gx + m2gl (3)

The equation of motion

d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0 (4)
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yields

(
m1 + m2 + I

R2

)
ẍ − g(m1 − m2) = 0

or ẍ = (m1 − m2)g

m1 + m2 + I
R2

(5)

which is identical with the one obtained by Newton’s mechanics.

7.4 By problem the masses of pulleys are negligible. The double machine is an
Atwood machine in which one of the weights is replaced by a second Atwood
machine, Fig. 7.15. The system now has two degrees of freedom, and its instan-
taneous configuration is specified by two coordinates x and x ′. l and l ′ denote
the length of the vertical parts of the two strings. Mass m1 is at depth x below
the centre of pulley A, m2 at depth l − x + x ′ and m3 at depth l + l ′ − x − x ′.
The kinetic energy of the system is given by

T = 1

2
m1 ẋ2 + 1

2
m2(−ẋ + ẋ ′)2 + 1

2
m3(−ẋ − ẋ ′)2 (1)

while the potential energy is given by

V = −m1gx − m2g(l − x + x ′) − m3g(l − x + l ′ − x ′) (2)

Fig. 7.15
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The Lagrangian of the system takes the form

L = T − V = 1

2
m1 ẋ2 + 1

2
m2(−ẋ + ẋ ′)2 + 1

2
m3(−ẋ − ẋ ′)2

+ (m1 − m2 − m3)gx + (m2 − m3)gx + m2gl + m3g(l + l ′) (3)

The equations of motion are then

d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0 (4)

d

dt

(
∂L

∂ ẋ ′

)
− ∂L

∂x ′ = 0 (5)

which yield

(m1 + m2 + m3)ẍ + (m3 − m2)ẍ ′ = (m1 − m2 − m3)g (6)

(m3 − m2)ẍ + (m2 + m3)ẍ ′ = (m2 − m3)g (7)

Solving (6) and (7) we obtain the equations of motion.

7.5 T = v2u̇2 + 2v̇2 (1)

V = u2 − v2 (2)

L = T − V = v2u̇2 + 2v̇2 − u2 + v2 (3)

∂L

∂ u̇
= 2v2u̇,

∂L

∂u
= −2u (4)

∂L

∂v̇
= 4v̇,

∂L

∂v
= 2v(u̇2 + 1) (5)

The equations of motion

d

dt

(
∂L

∂ u̇

)
− ∂L

∂u
= 0 (6)

d

dt

(
∂L

∂v̇

)
− ∂L

∂v
= 0 (7)

yield

2
d

dt
(v2u̇) + 2u = 0

or v2ü + 2u̇v̇ + 2u = 0 (8)

2v̈ + v(u̇2 + 1) = 0 (9)
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7.6 Here we need a single coordinate q = x :

T = 1

2
mẋ2, V = 1

2
kx2 (1)

L = 1

2
mẋ2 − 1

2
kx2 (2)

∂L

∂ ẋ
= mẋ,

∂L

∂x
= −kx (3)

d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0 (4)

mẍ + kx = 0 (5)

Let x = A sin ωt (6)

ẍ = −Aω2 sin ωt (7)

Inserting (6) and (7) and simplifying

− mω2 + k = 0

ω =
√

k

m
or T0 = 2π

ω
= 2π

√
m

k

where T0 is the time period.

7.7 Only one coordinate q = x (distance on the surface of the incline) is adequate
to describe the motion:

T = 1

2
mẋ2, V = −mgx sin α, L = 1

2
mẋ2 + mgx sin α

∂L

∂ ẋ
= mẋ,

∂L

∂x
= mg sin α

Equation of motion

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0

yields

d

dt
(mẋ) − ∂

∂x
(mgx sin α) = 0

or ẍ = g sin α

7.8 This is a two degree of freedom system because both mass m and M are mov-
ing. The coordinate on the horizontal axis is described by x ′ for the inclined
plane and x for the block of mass m on the incline. The origin of the coordinate
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system is fixed on the smooth table, Fig. 7.16. The x- and y-components of the
velocity of the block are given by

Fig. 7.16

vx = ẋ ′ + ẋ cos θ (1)

vy = −ẋ sin θ (2)

∴ v2 = v2
x + v2

y = ẋ ′2 + 2ẋ ẋ ′ cos θ + ẋ2 (3)

Hence, the kinetic energy of the system will be

T = 1

2
Mẋ ′2 + 1

2
m(ẋ ′2 + 2ẋ ẋ ′ cos θ + ẋ2) (4)

while the potential energy takes the form

V = −mgx sin θ (5)

and the Lagrangian is given by

L = 1

2
Mẋ ′2 + 1

2
m(ẋ ′2 + 2ẋ ẋ ′ cos θ + ẋ2) + mgx sin θ (6)

The equations of motion

d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0 (7)

d

dt

(
∂L

∂ ẋ ′

)
− ∂L

∂x ′ = 0 (8)

yield

m(ẍ ′ cos θ + ẍ) − mg sin θ = 0 (9)

Mẍ ′ + m(ẍ ′ + ẍ cos θ) = 0 (10)
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Solving (9) and (10)

ẍ = g sin θ

1 − m cos2 θ/(M + m)
= (M + m)g sin θ

M + m sin2 θ
(11)

ẍ ′ = − g sin θ cos θ

(M + m)/m − cos2 θ
= −mg sin θ cos θ

M + m sin2 θ
(12)

which are in agreement with the equations of prob. (2.14) derived from Newto-
nian mechanics.

7.9 T = 1

2
m(ẋ2 + ω2x2) (1)

because the velocity of the bead on the wire is at right angle to the linear veloc-
ity of the wire:

V = mgx sin ωt (2)

because ωt = θ , where θ is the angle made by the wire with the horizontal at
time t , and x sin θ is the height above the horizontal position:

L = 1

2
m(ẋ2 + ω2x2) − mgx sin ωt (3)

∂L

∂ ẋ
= mẋ,

∂L

∂x
= mω2x − mg sin ωt (4)

Lagrange’s equation

d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
(5)

then becomes

ẍ − ω2x + g sin ωt = 0 (equation of motion) (6)

which has the solution

x = Aeωt + Be−ωt + g

2ω2
sin ωt (7)

where A and B are constants of integration which are determined from initial
conditions.

At t = 0, x = 0 and ẋ = 0 (8)

Further ẋ = ω(Aeωt − Be−ωt ) + g

2ω
cos ωt (9)
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Using (8) in (7) and (9) we obtain

0 = A + B (10)

0 = ω(A − B) + g

2ω
(11)

Solving (10) and (11) we get A = − g

4ω2 , B = g

4ω2 (12)

The complete solution for x is

x = g

4ω2 (e−ωt − eωt + 2 sin ωt)

7.10 Let the length of the cord be l. The Cartesian coordinates can be expressed in
terms of spherical polar coordinates (Fig. 7.17)

Fig. 7.17

x = l sin θ cos φ

y = l sin θ sin φ

z = −l cos θ

V = mgz = −mgl cos θ (1)

v2 = ẋ2 + ẏ2 + ż2 = l2(θ̇2 + sin2 θφ̇2)

T = 1

2
ml2(θ̇2 + sin2 θφ̇2) (2)

L = 1

2
ml2(θ̇2 + sin2 θφ̇2) + mgl cos θ (3)

∂L

∂θ̇
= ml2θ̇ ,

∂L

∂θ
= ml2 sin θ cos θφ̇2 − mgl sin θ (4)

∂L

∂φ̇
= ml2 sin2 θφ̇,

∂L

∂φ
= 0 (5)
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The Lagrangian equations of motion

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 and

d

dt

(
∂L

∂φ̇

)
− ∂L

∂φ
= 0 (6)

give θ̈ − sin θ cos θφ̇2 + g

l
sin θ = 0 (7)

ml2 d

dt
(sin2 θφ̇) = 0 (8)

Hence sin2 θφ̇ = constant = C (9)

and eliminating φ̇ in (7) with the use of (9) we get a differential equation in θ

only.

θ̈ + g

l
sin θ − C2 cos θ

sin3 θ
= 0 (10)

The quantity Pφ = ∂L

∂φ̇
= ml2 sin2 θφ̇ (5)

is a constant of motion and is recognized as the angular momentum of the
system about the z-axis. It is conserved because torque is not produced either
by gravity or the tension of the cord about the z-axis. Thus conservation of
angular momentum is reflected in (5).

Two interesting cases arise. Suppose φ = constant. Then φ̇ = 0 and C = 0.
In this case (10) reduces to

θ̈ + g

l
sin θ = 0 (11)

which is appropriate for simple pendulum in which the bob oscillates in the
vertical plane.

Suppose θ = constant, then from (9) φ̇ = constant. Putting θ̈ = 0 in (7)
we get

ω = φ̇ =
√

g

l cos θ
=
√

g

H
(12)

and time period

T = 2π

ω
=
√

H

g
(13)

appropriate for the conical pendulum in which the bob rotates on horizontal
plane with uniform angular velocity with the cord inclined at constant angle θ

with the vertical axis.
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7.11 The two generalized coordinates x and y are indicated in Fig. 7.18. The kinetic
energy of the system comes from the motion of the blocks and potential energy
from the coupling spring:

Fig. 7.18

T = 1

2
mẋ2 + 1

2
M ẏ2 (1)

V = 1

2
k(x − y)2 (2)

L = 1

2
mẋ2 + 1

2
M ẏ2 − 1

2
k(x − y)2 (3)

∂L

∂ ẋ
= mẋ,

∂L

∂x
= −k(x − y) (4)

∂L

∂ ẏ
= M ẏ,

∂L

∂y
= k(x − y) (5)

Lagrange’s equations are written as

d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0,

d

dt

(
∂L

∂ ẏ

)
− ∂L

∂y
= 0 (6)

Using (4) and (5) in (6) we obtain the equations of motion

mẍ + k(x − y) = 0 (7)

mÿ + k(y − x) = 0 (8)

7.12 This problem involves two degrees of freedom. The coordinates are θ1 and θ2
(Fig. 7.19)

T = 1

2
m1v

2
1 + 1

2
m2v

2
2 (1)

v2
1 = (l1θ̇1)

2 (2)

v2
2 = (l1θ̇1)

2 + (l2θ̇2)
2 + 2l1l2θ̇1θ̇2 cos(θ2 − θ1) (by parallelogram law) (3)

For small angles, cos(θ2 − θ1) � 1
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Fig. 7.19

T � 1

2
m1l2

1 θ̇2
1 + 1

2
m2

[
l2
1 θ̇2

1 + l2
2 θ̇2

2 + 2l1l2θ̇1θ̇2

]
(4)

V = m1gl1(1 − cos θ1) + m2gl1(1 − cos θ1) + m2gl2(1 − cos θ2)

� m1gl1
θ2

1

2
+ m2g

2

[
l1θ

2
1 + l2θ

2
2

]
(5)

L =1

2
m1l2

1 θ̇2
1 + 1

2
m2

[
l2
1 θ̇2

1 + l2
2 θ̇2

2 + 2l1l2θ̇1θ̇2

]
− m1gl1

θ2
1

2

− m2g

2

(
l1θ

2
1 + l2θ

2
2

)
(6)

∂L

∂θ̇1
= m1l2

1 θ̇1 + m2l2
1 θ̇1 + m2l1l2θ̇2 (7)

∂L

∂θ1
= −m1gl1θ1 − m2gl1θ1 = −(m1 + m2)gl1θ1 (8)

∂L

∂θ̇2
= m2l2

2 θ̇2 + m2l1l2θ̇1 (9)

∂L

∂θ2
= −m2gl2θ2 (10)

Lagrange’s equations are

d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1
= 0,

d

dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2
= 0, (11)

using (7, (8), (9) and 10) in (11) we obtain the equations of motion

(m1 + m2)l1θ̈1 + m2l2θ̈2 + (m1 + m2)gθ1 = 0 (12)

l2θ̈2 + gθ2 + l1θ̈1 = 0 (13)
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7.13 Writing pθ and pφ for the generalized momenta, by (4) and (5) and V by (1)
of prob. (7.10)

∂L

∂θ̇
= Pθ = ml2θ̇ , θ̇ = Pθ

ml2 (1)

∂L

∂φ̇
= pφ = ml2 sin2 θφ̇, φ̇ = pφ

ml2 sin2 θ
(2)

H = �q̇i
∂L

∂q̇i
− L or H + L = 2T = �q̇i

∂L

∂ q̇i

2T = θ̇
∂L

∂θ̇
+ φ̇

∂L

∂φ̇
= 1

ml2

(
p2
θ + cosec2θp2

φ

)
(3)

∴ H = T + V = 1

2ml2

(
p2
θ + cos ec2θp2

φ

)
− mgl cos θ (4)

The coordinate φ is ignorable, and therefore pφ is a constant of motion deter-
mined by the initial conditions. We are then left with only two canonical equa-
tions to be solved. The canonical equations are

q̇ j = ∂ H

∂p j
, ṗ j = − ∂ H

∂q j

θ̇ = ∂ H

∂pθ

= pθ

ml2
(5)

ṗθ = −∂ H

∂θ
= p2

φ

ml2

cos θ

sin3 θ
− mgl sin θ (6)

where pφ is a constant of motion. By eliminating pθ we can immediately
obtain a second-order differential equation in θ as in prob. (7.10).

7.14 H = 1

2
p2 + 1

2
ω2q2 (1)

∂ H

∂p
= q̇ = p (2)

∂ H

∂q
= − ṗ = ω2q (3)

Differentiating (2)

q̈ = ṗ = −ω2q (4)

Let q = x , then (4) can be written as

ẍ + ω2x = 0 (5)
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This is the equation for one-dimensional harmonic oscillator. The general
solution is

x = A sin(ωt + ε) + B cos(ωt + ε) (6)

which can be verified by substituting (6) in (5). Here A, B and ε are constants
to be determined from initial conditions.

7.15 Let r , θ be the instantaneous polar coordinates of a planet of mass m revolving
around a parent body of mass M :

T = 1

2
m(ṙ2 + r2θ̇2) (1)

V = G Mm

(
1

2a
− 1

r

)
(2)

where G is the gravitational constant and 2a is the major axis of the ellipse:

pr = ∂T

∂ ṙ
= mṙ , ṙ = pr

m
(3)

pθ = ∂T

∂θ̇
= mr2θ̇ , θ̇ = pθ

mr2 (4)

H = 1

2m

(
p2

r + p2
θ

r2

)
+ G Mm

(
1

2a
− 1

r

)
(5)

and the Hamiltonian equations are

∂ H

∂pr
= pr

m
= ṙ ,

∂ H

∂r
= − p2

θ

mr3
+ G Mm

r2
= − ṗr (6)

∂ H

∂pθ

= pθ

mr2
,

∂ H

∂θ
= 0 = − ṗθ (7)

Two equations in (7) show that

pθ = constant = mr2θ̇ (8)

meaning the constancy of angular momentum or equivalently the constancy
of areal velocity of the planet (Kepler’s second law of planetary motion).

Two equations in (6) yield

r̈ = ṗr

m
= p2

θ

m2r3
− G Mm

r2
= r θ̇2 − G Mm

r2
(9)
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Equation (9) describes the orbit of the planet (Kepler’s first law of planetary
motion)

7.16 T = 1

2
m1 ẋ2

1 + 1

2
m2 ẋ2

2 (1)

V = 1

2
k(x1 − x2)

2 (2)

L = 1

2
m1 ẋ2

1 + 1

2
m2 ẋ2

2 − 1

2
k(x1 − x2)

2 (3)

Equations of motion are

d

dt

(
∂L

∂ ẋ1

)
− ∂L

∂x1
= 0 (4)

d

dt

(
∂L

∂ ẋ2

)
− ∂L

∂x2
= 0 (5)

Using (3) in (4) and (5)

m1 ẍ1 + k(x1 − x2) = 0 (6)

m2 ẍ2 − k(x1 − x2) = 0 (7)

It is assumed that the motion is periodic and can be considered as superposi-
tion of harmonic components of various amplitudes and frequencies. Let one
of these harmonics be represented by

x1 = A sin ωt, ẍ1 = −ω2 A sin ωt (8)

x2 = B sin ωt, ẍ2 = −ω2 B sin ωt (9)

Substituting (8) and (9) in (6) and (7) we obtain

(k − m1ω
2) A − k B = 0

− k A + (k − m2ω
2)B = 0

The frequency equation is obtained by equating to zero the determinant
formed by the coefficients of A and B:

∣∣∣∣
(k − m1ω

2) −k
−k (k − m2ω

2)

∣∣∣∣ = 0

Expansion of the determinant gives

m1m2ω
4 − k(m1 + m2)ω

2 = 0
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or

ω2[m1m2ω
2 − k(m1 + m2)] = 0

which yields the natural frequencies of the system:

ω1 = 0 and ω2 =
√

k(m1 + m2)

m1m2
=
√

k

μ

where μ is the reduced mass. The frequency ω1 = 0 implies that there is no
genuine oscillation of the block but mere translatory motion. The second fre-
quency ω2 is what one expects for a simple harmonic oscillator with a reduced
mass μ.

7.17 Let x(t) be the displacement of the block and θ(t) the angle through which
the pendulum swings. The kinetic energy of the system comes from the
motion of the block and the swing of the bob of the pendulum. The potential
energy comes from the deformation of the spring and the position of the bob,
Fig. 7.20.

Fig. 7.20

The velocity v of the bob is obtained by combining vectorially its linear
velocity (l θ̇ ) with the velocity of the block (ẋ). The height through which the
bob is raised from the equilibrium position is l(1−cos θ), where l is the length
of the pendulum:

v2 = ẋ2 + l2θ̇2 + 2l ẋ θ̇ cos θ (1)

T = 1

2
Mẋ2 + 1

2
m(ẋ2 + l2θ̇2 + 2l ẋ θ̇ ) (2)

(∵ for θ → 0, cos θ → 1)

V = 1

2
kx2 + mgl(1 − cos θ)

= 1

2
kx2 + mgl

θ2

2
(3)
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L = 1

2
Mẋ2 + 1

2
m(ẋ2 + l2θ̇2 + 2l ẋ θ̇ ) − 1

2
kx2 − mgl

θ2

2
(4)

Applying Lagrange’s equations

d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0,

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 (5)

we obtain

(M + m)ẍ + ml θ̈ + kx = 0 (6)

l θ̈ + ẍ + gθ = 0 (7)

7.18 Considering that at t = 0 the insect was in the middle of the rod, the coordi-
nates of the insect x , y, z at time t are given by

x = (a + vt) sin θ cos φ

y = (a + vt) sin θ sin φ

z = (a + vt) cos θ

and the square of its velocity is

ẋ2 + ẏ2 + ż2 = v2 + (a + vt)2(θ̇2 + φ̇2 sin2 θ)

∴ T = 2

3
Ma2(θ̇2 + φ̇2 sin2 θ) + m

2
{v2 + (a + vt)2(θ̇2 + φ̇2 sin2 θ)}

V = −Mga cos θ − mg(a + vt) cos θ + constant

L = T − V

The application of the Lagrangian equations to the coordinates θ and φ yields

d

dt

[
4

3
Ma2θ̇ + m(a + vt)2θ̇

]
−
[

4

3
Ma2 + m(a + vt)2

]
φ̇2 sin θ cos θ

= −{Ma + m(a + vt)}g sin θ (1)

and
d

dt

[{
4

5
Ma2 + m(a + vt)2

}
φ̇ sin2 θ

]
= 0 (2)

Equation (2) can be integrated at once as it is free from φ:

{
4

5
Ma2 + m(a + vt)2

}
φ̇ sin2 θ = constant = C (3)
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Equation (3) is the equation for the constancy of angular momentum about the
vertical axis.

When φ̇ in (2) is eliminated with the aid of (3) we obtain a second-order
differential equation in θ .

7.19 Let ρ be the linear density of the rod, i.e. mass per unit length. Consider an
infinitesimal element of length of the rod

Fig. 7.21

dT = ρω2(l sin θ + x sin φ)2dx

T =
∫

dT = ρω2
∫ 2a

0
(l2 sin2 θ + 2lx sin θ sin φ + x2 sin2 φ)dx

= ω2
(

Ml2 sin2 θ + 2Mla sin θ sin φ + 4

3
Ma2 sin2 φ

)
(1)

where we have substituted ρ = M/2a:

V = −Mg(l cos θ + a cos φ) (2)

L = ω2
(

Ml2 sin2 θ + 2Mla sin θ sin φ + 4

3
Ma2 sin2 φ

)

+ Mg(l cos θ + a cos φ) (3)

∂L

∂θ̇
= 0,

∂L

∂θ
= ω2(2Ml2 sin θ cos θ + 2Mla cos θ sin φ) − Mgl sin θ (4)

∂L

∂φ̇
= 0,

∂L

∂φ
= ω2

(
2Mla sin θ cos φ+ 8

3
Ma2 sin φ cos φ

)
−Mga sin φ (5)

The Lagrange’s equations

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0,

d

dt

(
∂L

∂φ̇

)
− ∂L

∂φ
= 0 (6)
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yield

2ω2(l sin θ + a sin φ) = g tan θ (7)

2ω2(l sin θ + 4

3
a sin φ) = g tan φ (8)

Equation (7) and (8) can be solved to obtain θ and φ.

7.20 Express the Cartesian coordinates in terms of plane polar coordinates (r , θ )

x = r cos θ, y = r sin θ (1)

ẋ = ṙ cos θ − r θ̇ sin θ (2)

ẏ = ṙ sin θ + r θ̇ cos θ (3)

Square (2) and (3) and add

v2 = ẋ2 + ẏ2 = ṙ2 + r2θ̇2 (4)

T = 1

2
mv2 = 1

2
m(ṙ2 + r2θ̇2) (5)

V = U (r) (6)

∴ L = T − V = 1

2
m(ṙ2 + r2θ̇2) − U (r) (Lagrangian) (7)

Generalized momenta:

pk = ∂L

∂q̇k
, pr = ∂L

∂ ṙ
= mṙ , pθ = ∂L

∂θ̇
= mr2θ̇ (8)

Hamiltonian:

H = T + V = 1

2
m(ṙ2 + r2θ̇2) + V (r) (9)

Conservation of Energy: In general H may contain an explicit time depen-
dence as in some forced systems. We shall therefore write H = H(q, p, t).
Then H varies with time for two reasons: first, because of its explicit depen-
dence on t , second because the variable q and p are themselves functions of
time. Then the total time derivative of H is

dH

dt
= ∂ H

∂t
+

n∑
β=1

∂ H

∂qβ

q̇β +
n∑

β=1

∂ H

∂pβ

ṗβ (10)
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Now Hamilton’s equations are

∂ H

∂pβ

= q̇β,
∂ H

∂qβ

= − ṗβ (11)

Using (11) in (10), we obtain

dH

dt
= ∂ H

∂t
+

n∑
β=1

[
∂ H

∂qβ

∂ H

∂pβ

− ∂ H

∂pβ

∂ H

∂qβ

]
(12)

whence

dH

dt
= ∂ H

∂t
(13)

Equation (13) asserts that H changes with time only by virtue of its explicit
time dependence. The net change is induced by the fact that the variation of q
and p with time is zero.

Now in a conservative system, neither T nor V contains any explicit depen-
dence on time.

Hence
∂ H

∂t
= 0. It follows that

dH

dt
= 0 (14)

which leads to the law of conservation of energy

H = T + V = E = constant (15)

The Hamiltonian formalism is amenable for finding various conservation
laws.
Conservation of angular momentum: The Hamiltonian can be written as

H =
n∑

β=1

pβ q̇β − L (16)

Using the polar coordinates (r , θ )

H = pr ṙ + pθ θ̇ −
(

1

2
mṙ2 + 1

2
mr2θ̇2 − U (r)

)
(17)

Using (7) and (8) in (17)
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H = p2
r

2m
+ p2

θ

2mr2 + U (r) (18)

Now the second equation in (11) gives

− ṗθ = ∂ H

∂θ
= 0 (∵ θ is absent in(18)) (19)

This leads to the conservation of angular momentum

pθ = J = constant (20)

7.21 Let each mass be m.

(a) T = 1

2
mẋ2 + 1

2
mẏ2 = 1

2
m(ẋ2 + ẏ2) (1)

V = 1

2
kx2 + 1

2
3k(x − y)2 + 1

2
ky2 = k(2x2 − 3xy + 2y2) (2)

L = T − V = 1

2
m(ẋ2 + ẏ2) − k(2x2 − 3xy + 2y2) (3)

(b) d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0 (4)

and
d

dt

(
∂L

∂ ẏ

)
− ∂L

∂y
= 0 (5)

yield

mẍ = −4kx + 3ky (6)

mÿ = 3kx − 4ky (7)

(c) Let x = A sin ωt and y = B sin ωt (8)

ẍ = −Aω2 sin ωt and ÿ = −Bω2 sin ωt (9)

Substituting (8) and (9) in (6) and (7) and simplifying we obtain

(4k − ω2m)A − 3k B = 0 (10)

− 3k A + (4k − ω2m)B = 0 (11)

The frequency equation is obtained by equating to zero the determinant
formed by the coefficients of A and B:

∣∣∣∣
(4k − ω2m) −3k

−3k (4k − ω2m)

∣∣∣∣ = 0 (12)
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Expanding the determinant

(4k − ω2m)2 − 9k2 = 0 (13)

This gives the frequencies

ω1 =
√

k

m
, ω2 =

√
7k

m
(14)

Periods of oscillations are

T1 = 2π

ω1
= 2π

√
m

k
(15)

T2 = 2π

ω2
= 2π

√
m

7k
(16)

If we put ω = ω1 =
√

k

m
in (10) or (11) we get A = B and if we put

ω = ω2 =
√

7k

m
in (10) or (11), we get A = −B. The first one corresponds to

symmetric mode of oscillation and the second one to asymmetric one.
The normal coordinates q1 and q2 are formed by the linear combination of

x and y:

q1 = x − y, q2 = x + y (17)

∴ x = q1 + q2

2
, y = q2 − q1

2
(18)

Substituting (18) in (6) and (7)

m

2
(q̈1 + q̈2) = −2k(q1 + q2) + 3k

2
(q2 − q1) (19)

m

2
(q̈2 − q̈1) = 3k

2
(q1 + q2) − 2k(q2 − q1) (20)

Adding (19) and (20), mq̈2 = −kq2 (21)

Subtracting (20) from (19), mq̈1 = −7kq1 (22)

Equation (21) is a linear equation in q2 alone, with constant coefficients. Simi-
larly (22) is a linear equation in q1 with constant coefficients. Since the coeffi-
cients on the right sides are positive quantities, we note that both (21) and (22)
are differential equations of simple harmonic motion having the frequencies
given in (14). It is the characteristic of normal coordinates that when the equa-
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tions of motion are expressed in terms of normal coordinates they are linear
with constant coefficients, and each contains but one dependent variable.

Another feature of normal coordinates is that both kinetic energy and
potential energy will have quadratic terms and the cross-products will be
absent. Thus in this example, when (18) is used in (1) and (2) we get the
expressions

T = m

4
(q̇2

1 + q̇2
2 ), V = k

4
(7q2

1 + q2
2 )

The two normal modes are depicted in Fig. 7.22.

(a) Symmetrical with ω1 =
√

k

m
and (b) asymmetrical with ω2 =

√
7k

m

Fig. 7.22

7.22 (a) See Fig. 7.23 : T = 1

2
m(ẋ2

1 + ẋ2
2) (1)

V = 1

2
kx2

1 + 1

2
k(x2 − x1)

2

= k

(
x2

1 − x1x2 + 1

2
x2

2

)
(2)

L = T − V = 1

2
m(ẋ2

1 + ẋ2
2) − k

(
x2

1 − x1x2 + 1

2
x2

2

)
(3)

d

dt

(
∂L

∂ ẋ1

)
− ∂L

∂x1
= 0,

d

dt

(
∂L

∂ ẋ2

)
− ∂L

∂x2
= 0 (4)

mẍ1 + k(2x1 − x2) = 0 (5)

mẍ2 + k(x1 − x1) = 0 (6)

(5) and (6) are equations of motion

(b) Let the harmonic solutions be x1 = A sin ωt, x2 = B sin ωt (7)

Then ẍ1 = −Aω2 sin ωt, ẍ2 = −Bω2 sin ωt, (8)

Using (7) and (8) in (5) and (6) we get

(2k − mω2)A − k B = 0 (9)

− k A + (k − mω2)B = 0 (10)

Fig. 7.23
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The eigenfrequency equation is obtained by equating to zero the determi-
nant formed by the coefficients of A and B:

∣∣∣∣
(2k − mω2) −k

−k (k − mω2)

∣∣∣∣ = 0 (11)

Expanding the determinant, we obtain

m2ω4 − 3mkω2 + k2 = 0

ω2 =
(

3 ± √
5

2

)
k

m
(12)

∴ ω1 = 1.618

√
k

m
, ω2 = 0.618

√
k

m
(13)

(c) Inserting ω = ω1 in (10) we find B = 1.618 A. This corresponds to a
symmetric mode as both the amplitudes have the same sign.
Inserting ω = ω2 in (10), we find B = −0.618 A. This corresponds
to asymmetric mode. These two modes of oscillation are depicted in
Fig. 7.24 with relative sizes and directions of displacement.

(a) Symmetric mode ω1 = 1.618

√
k

m

(b) Asymmetric mode ω2 = 0.618

√
k

m

Fig. 7.24

7.23 (a) Let x1 and x2 be the displacements of the beads of mass 2m and m,
respectively.

T = 1

2
(2m)ẋ2

1 + 1

2
(m)ẋ2

2 (1)

V = 1

2
· 2kx2

1 + 1

2
k(x2 − x1)

2 (2)

L = m

(
ẋ2

1 + 1

2
ẋ2

2

)
− k

(
3

2
x2

1 − x1x2 + 1

2
x2

2

)
(3)

Lagrange’s equations are

d

dt

(
∂L

∂ ẋ1

)
− ∂L

∂x1
= 0,

d

dt

(
∂L

∂ ẋ2

)
− ∂L

∂x2
= 0 (4)
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which yield equations of motion

2mẍ1 + k(3x1 − x2) = 0 (5)

mẍ2 − k(x1 − x2) = 0 (6)

(b) Let the harmonic solutions be

x1 = A sin ωt, x2 = B sin ωt (7)

ẍ1 = −Aω2 sin ωt, ẍ2 = −Bω2 sin ωt (8)

Substituting (7) and (8) in (5) and (6) we obtain

(3k − 2mω2)A − k B = 0 (9)

k A + (mω2 − k)B = 0 (10)

The frequency equation is obtained by equating to zero the determinant
formed by the coefficients of A and B:
∣∣∣∣
(3k − 2mω2) −k

k mω2 − k

∣∣∣∣ = 0

Expanding the determinant

2m2ω4 − 5km ω2 + 2k2 = 0

ω1 =
√

2k

m
, ω2 =

√
k

2m

(c) Put ω = ω1 =
√

2k

m
in (9) or (10). We find B = −A.

Put ω = ω2 =
√

k

2m
in (9) or (10). We find B = +2A.

The two normal modes are sketched in Fig. 7.25.

Fig. 7.25

(a) Asymmetric mode

ω1 =
√

2k

m
B = −A
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(b) Symmetric mode ω2 =
√

k

2m
B = +2A

7.24 There are three coordinates x1, x2 and x3, Fig. 7.26:

Fig. 7.26

T = 1

2
mẋ2

1 + 1

2
Mx2

2 + 1

2
mẋ2

3 (1)

V = 1

2
k
[
(x2 − x1)

2 + (x3 − x2)
2
]

= 1

2
k
(

x2
1 − 2x1x2 + 2x2

2 − 2x2x3 + x2
3

)
(2)

L = 1

2
mẋ2

1 + 1

2
Mẋ2

2 + 1

2
mẋ2

3 − 1

2
k
(

x2
1 − 2x1x2 + 2x2

2 − 2x2x3 + x2
3

)
(3)

Lagrange’s equations

d

dt

(
∂L

∂ ẋ1

)
− ∂L

∂x1
= 0,

d

dt

(
∂L

∂ ẋ2

)
− ∂L

∂x2
= 0,

d

dt

(
∂L

∂ ẋ3

)
− ∂L

∂x3
= 0 (4)

yield

mẍ1 + k(x1 − x2) = 0 (5)

Mẍ2 + k(−x1 + 2x2 − x3) = 0 (6)

mẍ3 + k(−x2 + x3) = 0 (7)

Let the harmonic solutions be

x1 = A sin ωt, x2 = B sin ωt, x3 = C sin ωt (8)

∴ ẍ1 = −Aω2 sin ωt, ẍ2 = −Bω2 sin ωt, ẍ3 = −Cω2 sin ωt (9)

Substituting (8) and (9) in (5), (6) and (7)

(k − mω2)A − k B = 0 (10)

− k A + (2k − Mω2)B − kC = 0 (11)

− k B + (k − mω2) C = 0 (12)
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The frequency equation is obtained by equating to zero the determinant
formed by the coefficients of A, B and C

∣∣∣∣∣∣
(k − mω2) −k 0

−k (2k − Mω2) −k
0 −k (k − mω2)

∣∣∣∣∣∣
= 0

Expanding the determinant we obtain

ω2(k − mω2) (ω2 Mm − 2km − Mk) = 0 (13)

The frequencies are

ω1 = 0, ω2 =
√

k

m
, ω3 =

√
k(2m + M)

Mm
(14)

The frequency ω1 = 0 simply means a translation of all the three particles
without vibration. Ratios of amplitudes of the three particles can be found out

by substituting ω2 and ω3 in (10), (11) and (12). Thus when ω = ω2

√
k

m
is

substituted in (10), we find the amplitude for the central atom B = 0. When
B = 0 is used in (11) we obtain C = −A. This mode of oscillation is depicted
in Fig. 7.27a.

Fig. 7.27

Substituting ω = ω3 =
√

k(2m + M)

Mm
in (10) and (12) yields

B = −
(

2m

M

)
A = −

(
2m

M

)
C

Thus in this mode particles of mass m oscillate in phase with equal amplitude
but out of phase with the central particle.

This problem has a bearing on the vibrations of linear molecules such as
CO2. The middle particle represents the C atom and the particles on either side
represent O atoms. Here too there will be three modes of oscillations. One will
have a zero frequency, ω1 = 0, and will correspond to a simple translation
of the centre of mass. In Fig. 7.27a the mode with ω1 = ω2 is such that the
carbon atom is stationary, the oxygen atoms oscillating back and forth in oppo-
site phase with equal amplitude. In the third mode which has frequency ω3,
the carbon atom undergoes motion with respect to the centre of mass and is
in opposite phase from that of the two oxygen atoms. Of these two modes
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only ω3 is observed optically. The frequency ω2 is not observed because in
this mode, the electrical centre of the system is always coincident with the
centre of mass, and so there is no oscillating dipole moment �er available.
Hence dipole radiation is not emitted for this mode. On the other hand in the
third mode characterized by ω3 such a moment is present and radiation is
emitted.

7.25 (a) y = x2

l
(1)

ẏ = 2x · ẋ

l
(2)

v2 = ẋ2 + ẏ2 = ẋ2
(

1 + 4x2

l2

)

T = 1

2
mv2 = 1

2
mẋ2

(
1 + 4x2

l2

)

V = mgy = mgx2

l

L = T − V = 1

2
mẋ2

(
1 + 4x2

l2

)
− mgx2

l

(b) L = 1

2
m(ṙ2 + r2θ̇2) − U (r)

pr = ∂L

∂ ṙ
= mṙ , ṙ = pr

m

pθ = ∂L

∂θ̇
= mr2θ̇ , θ̇ = pθ

mr2

H = 1

2m

(
p2

r + p2
θ

r2

)
+ U (r)

7.26 (a) At any instant the velocity of the block is ẋ on the plane surface. The
linear velocity of the pendulum with respect to the block is l θ̇ , Fig. 7.28.
The velocity l θ̇ must be combined vectorially with ẋ to find the velocity
v or the pendulum with reference to the plane:

v2 = ẋ2 + l2θ̇2 + 2ẋ l θ̇ cos θ (1)

The total kinetic energy of the system

T = 1

2
Mẋ2 + 1

2
m(ẋ2 + l2θ̇2 + 2ẋ l θ̇ cos θ) (2)

Taking the zero level of the potential energy at the pivot of the pendulum,
the potential energy of the system which comes only from the pendulum is
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Fig. 7.28

V = −mgl cos θ (3)

∴ L = T − V = 1

2
(M + m)ẋ2 + ml cos θ ẋ θ̇ + 1

2
ml2θ̇2 + mgl cos θ

(4)

where we have used (2) and (3).

(b) For small angles cos θ �1−θ2

2
, in the first approximation, and cos θ � 1,

in the second approximation. Thus in this approximation (4) becomes

L = 1

2
(M + m)ẋ2 + mlẋ θ̇ + 1

2
ml2θ̇2 + mgl

(
1 − θ2

2

)
(5)

(c) The Lagrange’s equations

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0,

d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0 (6)

lead to the equations of motion

ẍ + l θ̈ + gθ = 0 (7)

(M + m)ẍ + ml θ̈ = 0 (8)

(d) Eliminating ẍ between (7) and (8) and simplifying

θ̈ + (M + m)

M

g

l
θ = 0 (9)

This is the equation for angular simple harmonic motion whose frequency
is given by

ω =
√

(M + m)g

Ml
(10)
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7.27 (a) First, we assume that the bowl does not move. Both kinetic energy and
potential energy arise from the particle alone. Taking the origin at O, the
centre of the bowl, Fig. 7.29, the linear velocity of the particle is v = r θ̇ .
There is only one degree of freedom:

Fig. 7.29

T = 1

2
mv2 = 1

2
mr2θ̇2 (1)

V = −mgr cos θ (2)

L = 1

2
mr2θ̇2 + mgr cos θ (3)

Lagrange’s equation

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 (4)

becomes

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 (5)

which yields the equation of motion

mr2θ̈ + mgr sin θ = 0

or θ̈ + g

r
sin θ = 0 (equation of motion) (6)

For small angles, sin θ � θ . Then (6) becomes

θ̈ + g

r
θ = 0 (7)
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which is the equation for simple harmonic motion of frequency ω =
√

g

r
or time period

T = 2π

ω
= 2π

√
r

g
(8)

(b) (i) The bowl can now slide freely along the x-direction with velocity ẋ .
The velocity of the particle with reference to the table is obtained by
adding l θ̇ to ẋ vectorially, Fig. 7.29. The total kinetic energy then comes
from the motion of both the particle and the bowl. The potential energy,
however, is the same as in (a):

v2 = r2θ̇2 + x2 − 2r θ̇ ẋ cos(180 − θ) (9)

from the diagonal AC of the parallelogram ABCD

T = 1

2
Mẋ2 + 1

2
m (r2θ̇2 + ẋ2 − 2r ẋ θ̇ cos θ) (10)

V = −mgr cos θ (11)

L = T − V (Lagrangian)

= 1

2
Mẋ2 + 1

2
m(r2θ̇2 + ẋ2 − 2r ẋ θ̇ cos θ) + mgr cos θ (12)

(ii) and (iii).
In the small angle approximation the cos θ in the kinetic energy can be
neglected as cos θ → 1 but can be retained in the potential energy in order
to avoid higher order terms.
Equation (12) then becomes

L = 1

2
(M + m)ẋ2 − mr ẋ θ̇ + 1

2
mr2θ̇2 + mgr cos θ (13)

We have now two degrees of freedom, x and θ , and the corresponding
Lagrange’s equations are

d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0,

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 (14)
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which yield the equations of motion

(M + m)ẍ − mr θ̈ = 0 (15)

ẍ − r θ̈ − g θ = 0 (16)

Equations (15) and (16) constitute the equations of motion. Eliminating ẍ
we obtain

θ̈ +
(

M + m

M

)
g

r
θ = 0 (17)

which is the equation for simple harmonic motion with frequency ω =√
(M + m)

M

g

r
and time period

T = 2π

ω
= 2π

√
M

(M + m)

r

g
(18)

On comparing (18) with (8) it is observed that the period of oscillation is
smaller by a factor [M/(M + m)1/2] as compared to the case where the
bowl is fixed.

7.28 Take the differential of the Lagrangian

L(q1, . . . , qn, q̇1, . . . , q̇n, t)

dL =
n∑

r=1

(
∂L

∂qr
dqr + ∂L

∂q̇r
dq̇r

)
+ ∂L

∂t
dt (1)

Now the Lagrangian equations are

d

dt

(
∂L

∂q̇r

)
− ∂L

∂qr
= 0 (2)

and the generalized momenta are defined by

∂L

∂q̇r
= pr (3)

Using (3) in (2) we have

d

dt

(
∂L

∂q̇r

)
= ṗr (4)
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Using (2), (3) and (4) in (1)

dL −
n∑

r=1

( ṗr dqr + pr dq̇r ) + ∂L

∂t
dt (5)

Equation (5) can be rearranged in the form

d

(
n∑

r=1

pr q̇r − L

)
=

n∑
r=1

(q̇r dpr − ṗr dqr ) − ∂L

∂t
dt (6)

The Hamiltonian function H is defined by

H =
n∑

r=1

pr q̇r − L(q1, . . . , qn, q̇1, . . . , q̇n, t) (7)

Equation (6) therefore my be written as

dH =
n∑

r=1

(q̇r dpr − ṗr dqr ) − ∂L

∂t
dt (8)

While the Lagrangian function L is an explicit function of q1, . . . , qn,

q̇1, . . . , q̇n and t , it is usually possible to express H as an explicit function only
of q1, . . . , qn, p1, . . . , pn, t , that is, to eliminate the n generalized velocities
from (7). The n equation of type (3) are employed for this purpose. Each
provides one of the p’s in terms of the q̇ ′s. Assuming that the elimination of
the generalized velocities is possible, we may write

H = H(q1, . . . , qn, p1, . . . , pn, t) (9)

H now depends explicitly on the generalized coordinates and generalized
momenta together with the time. Therefore, taking the differential dH , we
obtain

dH =
n∑

r=1

(
∂ H

∂qr
dqr + ∂ H

∂pr
dpr

)
+ ∂ H

∂t
dt (10)

Comparing (8) and (10), we have the relations

∂ H

∂pr
= q̇r ,

∂ H

∂qr
= − ṗr (11)

∂ H

∂t
= −∂L

∂t
(12)
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Equations (11) are called Hamilton’s canonical equations. These are 2n is
number. For a system with n degrees of freedom the n Lagrangian equations
(2) of the second order are replaced by 2n Hamiltonian equations of the first
order. We note from the second equation of (11) that if any coordinate ql is not
contained explicitly in the Hamiltonian function H , the conjugate momentum
pl is a constant of motion. Such coordinates are called ignorable coordinates.

7.29 The generalized momentum pr conjugate to the generalized coordinate qr

is defined as
∂L

∂q̇r
= pr . If the Lagrangian of a dynamical system does not

contain a certain coordinate, say qs , explicitly then ps is a constant of motion.

(a) The kinetic energy arises only from the motion of the particle P on the
table as the particle Q is stationary. The potential energy arises from the
particle Q alone.
When P is at distance r from the opening, Q will be at a depth l–x from
the opening:

T = 1

2
mv2

p = 1

2
m(ṙ2 + r2θ̇2) (1)

V = −mg(l − r) (2)

L = T − V = 1

2
m(ṙ2 + r2θ̇2) + mg(l − r) (3)

For the two coordinates r and θ , Lagrange’s equations take the form

d

dt

(
∂L

∂ ṙ

)
− ∂L

∂r
= 0,

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 (4)

Equations (4) yield

r̈ = r θ̇2 − g (5)

d

dt
(mr2θ̇ ) = 0

∴ r2θ̇ = C = constant (6)

Equations (5) and (6) constitute the equations of motion.
(b) Initial conditions: At r = a, r θ̇ = √

ag

∴ θ̇ =
√

g

a
(7)

Using (7) in (6) with r = a, we obtain

C2 = a3g (8)
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Using (6) and (8) in (5)

r̈ = rc2

r4 − g = a3g

r3 − g (9)

(c) (i) Since Q does not move, P must be at constant distance r = a from
the opening. Therefore P describes a circle of constant radius a.

(ii) Let P be displaced by a small distance x from the stable circular orbit
of radius a, that is

r = a + x (10)

∴ r̈ = ẍ (11)

Using (10) and (11) in (9)

ẍ = g

[
a3

(a + x)3
− 1

]
= g

[(
1 + x

a

)−3 − 1

]

or ẍ � −3gx

a

or ẍ + 3gx

a
= 0 (12)

which is the equation for simple harmonic motion. Thus the particle P
when slightly displaced from the stable orbit of radius a executes oscilla-
tions around r = a.

This aspect of oscillations has a bearing on the so-called betatron oscil-
lations of ions in circular machines which accelerate charged particles to
high energies. If the amplitudes of the betatron oscillations are large then
they may hit the wall of the doughnut and be lost, resulting in the loss of
intensity of the accelerated particles.

7.30 (i) x = a cos θ, y = b sin θ, r2 = a2 cos2 θ + b2 sin2 θ (1)

ẋ = −aθ̇ sin θ, ẏ = bθ̇ cos θ (2)

T = 1

2
m(ẋ2 + ẏ2) = 1

2
m(a2 sin2 θ + b2 cos2 θ)θ̇2 (3)

V = mgy + 1

2
kr2 = mgb sin θ + 1

2
k(a2 cos2 θ + b2 sin2 θ) (4)

L = 1

2
m(a2 sin2 θ + b2 cos2 θ)θ̇2 − mgb sin θ

− 1

2
k(a2 cos2 θ + b2 sin2 θ) (5)
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Lagrange’s equation

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0

yields

m(a2 sin2 θ + b2 cos2 θ)θ̈ + m(a2 sin θ cos θ − b2 sin θ cos θ)θ̇2

+ mgb cos θ + k(−a2 sin θ cos θ + b2 sin θ cos θ) = 0

or m(a2 sin2 θ + b2 cos2 θ)θ̈ − (a2 − b2)(k − mθ̇2) sin θ cos θ

+ mgb cos θ = 0 (6)

(ii) Equilibrium point is located where the force is zero, or ∂V/∂θ = 0.

Differentiating (4)

∂V

∂θ
= mgb cos θ + k(b2 − a2) sin θ cos θ (7)

Clearly the right-hand side of (7) is zero for θ = ±π

2
Writing (7) as

[mgb + k(b2 − a2) sin θ ] cos θ (8)

Another equilibrium point is obtained when

sin θ = mgb

k(a2 − b2)
(9)

provided a > b.

(iii) An equilibrium point will be stable if
∂2V

∂θ2
> 0 and will be unstable if

∂2V

∂θ2
< 0. Differentiating (8) again we have

∂2V

∂θ2 = k(b2 − a2)(cos2 θ − sin2 θ) − mgb sin θ (10)

For θ = π

2
, (10) reduces to

k(a2 − b2) − mgb (11)

Expression (11) will be positive if a2 > b2 + mgb

k
, and θ = π

2
will be

a stable point.
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For θ = −π

2
, (10) reduces to

k(a2 − b2) + mgb (12)

Expression (12) will be positive if a2 > b2 − mgb

k
, and θ = −π

2
will be

a stable point.

(iv) T = 2π

√
A(θ)

V ′′(θ)

V ′′ (−π

2

)
= k(a2 − b2) + mgb, by (12)

A(θ) is the coefficient of
1

2
θ̇2 in (3)

∴ A(θ) = m(a2 sin2 θ + b2 cos2 θ)

∴ A
(
−π

2

)
= ma2

∴ T = 2π

√
ma2

k(a2 − b2) + mgb

7.31 In prob. (7.12) the following equations were obtained:

(m1 + m2) l1θ̈1 + m2l2θ̈2 + (m1 + m2)gθ1 = 0 (1)

l2θ̈2 + gθ2 + l1θ̈1 = 0 (2)

For l1 = l2 = l and m1 = m2 = m, (1) and (2) become

2l θ̈1 + l θ̈2 + 2gθ1 = 0 (3)

l θ̈2 + l θ̈1 + gθ2 = 0 (4)

The harmonic solutions of (3) and (4) are written as

θ1 = A sin ωt, θ2 = B sin ωt (5)

θ̈1 = −Aω2 sin ωt, θ̈2 = −Bω2 sin ωt (6)

Substituting (5) and (6) in (3) and (4) and simplifying

2(lω2 − g)A + lω2 B = 0 (7)

lω2 A + (lω2 − g)B = 0 (8)

The frequency equation is obtained by equating to zero the determinant
formed by the coefficients of A and B:
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∣∣∣∣
2(lω2 − g) lω2

lω2 (lω2 − g)

∣∣∣∣ = 0

Expanding the determinant

l2ω4 − 4 lg ω2 + 2g2 = 0

ω2 =
(

2 ± √
2
) g

l

∴ ω =
√(

2 ± √
2
) g

l

∴ ω1 = 0.76

√
g

l
, ω2 = 1.85

√
g

l

7.32 While the method employed in prob. (6.46) was based on forces or torques,
that is, Newton’s method, the Lagrangian method is based on energy:

T = 1

2
m (ẋ2

1 + ẋ2
2) (1)

For small angles ẏ1 and ẏ2 are negligibly small

V = 1

2
k(x1 − x2)

2 + mgb(1 − cos θ1) + mgb(1 − cos θ2)

For small angles 1 − cos θ1 = θ2
1

2
= x2

1

2b2
.

Similarly, 1 − cos θ2 = x2
2

2b2

∴ V = 1

2
k(x1 − x2)

2 + mg

2b
(x2

1 + x2
2) (2)

∴ L = 1

2
m(ẋ2

1 + ẋ2
2) − 1

2
k(x2

1 − 2x1x2 + x2
2) − mg

2b
(x2

1 − x2
2) (3)

The Lagrange’s equations for the coordinates x1 and x2 are

d

dt

(
∂L

∂ ẋ1

)
− ∂L

∂x1
= 0,

d

dt

(
∂L

∂ ẋ2

)
− ∂L

∂x2
= 0 (4)

Using (3) in (4) we obtain

mẍ1 +
(

k + mg

b

)
x1 − kx2 = 0 (5)

mẍ2 − kx1 +
(

k + mg

b

)
x2 = 0 (6)
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Assuming that x1 and x2are periodic with the same frequency but different
amplitudes, let

x1 = A sin ωt, ẍ1 = −Aω2 sin ωt (7)

x2 = B sin ωt, ẍ2 = −Bω2 sin ωt (8)

Substituting (7) and (8) in (5) and (6) and simplifying

(
k + mg

b
− mω2

)
A − k B = 0 (9)

− k A +
(

k + mg

b
− mω2

)
B = 0 (10)

The frequency equation is obtained by equating to zero the determinant
formed by the coefficients of A and B:

∣∣∣∣
(
k + mg

b − mω2
) −k

−k
(
k + mg

b − mω2
)
∣∣∣∣ = 0

Expanding the determinant and solving gives

ω1 =
√

g

b
and ω2 =

√
g

b
+ 2k

m
,

In agreement with the results of prob. (6.46).

7.33 Let the origin be at the fixed point O and OB be the diameter passing through
C the centre of the circular wire, Fig. 7.30. The position of m is indicated
by the angle θ subtended by the radius CP with the diameter OB. Only one
general coordinate q = θ is sufficient for this problem. Let φ = ωt be the
angle which the diameter OB makes with the fixed x-axis. From the geometry
of the diagram (Fig. 7.30) the coordinates of m are expressed as

Fig. 7.30



336 7 Lagrangian and Hamiltonian Mechanics

x = r cos ωt + r cos (θ + ωt) (1)

y = r sin ωt + r sin (θ + ωt) (2)

The velocity components are found as

ẋ = −r ω sin ωt − r(θ̇ + ω) sin (θ + ωt) (3)

ẏ = r ω cos ωt − r(θ̇ + ω) cos (θ + ωt) (4)

Squaring and adding and simplifying we obtain

ẋ2 + ẏ2 = r2ω2 + r2(θ̇ + ω)2 + 2r2ω(θ̇ + ω) cos θ (5)

∴ T = 1

2
mr2[ω2 + (θ̇ + ω)2 + 2ω(θ̇ + ω) cos θ ] (6)

Here V = 0, and so L = T . The Lagrange’s equation then simply reduces to

d

dt

(
∂T

∂θ̇

)
− ∂T

∂θ
= 0 (7)

Cancelling the common factor mr2 (7) becomes

d

dt
(θ̇ + ω + ω cos θ) + ω(θ̇ + ω) sin θ = 0 (8)

which reduces to

θ̈ + ω2 sin θ = 0 (9)

which is the equation for simple pendulum. Thus the bead oscillates about the
rotating line OB as a pendulum of length r = a/ω2.

7.34 (a) The velocity v of mass m relative to the horizontal surface is given by
combining ṡ with ẋ . The components of the velocity v are

vx = ẋ + ṡ cos α (1)

vy = −ṡ sin α (2)

∴ v2 = v2
x + v2

y = ẋ2 + ṡ2 + 2ẋ ṡ cos α (3)

Kinetic energy of the system

T = 1

2
Mẋ2 + 1

2
m (ṡ2 + ẋ2 + 2ṡ ẋ cos α) (4)

Potential energy comes exclusively from the mass m (spring energy +
gravitational energy)
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V = k

2
(s − l)2 + mg(h − s sin α) (5)

L = T − V = (M + m)

2
ẋ2 + 1

2
mṡ2 + mẋṡ cos α − k

2
(s − l)2

− mg(h − s sin α) (6)

(b) The generalized coordinates are q1 = x and q2 = s. The Lagrange’s
equations are

d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0,

d

dt

(
∂L

∂ ṡ

)
− ∂L

∂s
= 0 (7)

Using (6) in (7), equations of motion become

(M + m)ẍ + ms̈ cos α = 0 (8)

mẍ cos α + ms̈ + k(s − s0) = 0 (9)

where s0 = l + (mg sin α)/k.

Let x = A sin ωt and s − s0 = B sin ωt (10)

ẍ = −ω2 A sin ωt, s̈ = −Bω2 sin ωt (11)

Substituting (10) and (11) in (8) and (9) we obtain

A(M + m) + B cos α = 0 (12)

Amω2 cos α + B(mω2 − k) = 0 (13)

Eliminating A and B, we find

ω =
√

k(M + m)

m(M + m sin2 α)
(14)

Components of the velocity of the ball as observed on the table are

7.35 vx = ẋ + ẏ cos α (1)

vy = ẏ sin α (2)

v2 = v2
x + v2

y = ẋ2 + ẏ2 + 2ẋ ẏ cos α (3)

T (ball) = 1

2
mv2 + 1

2
Iω2 = 1

2
mv2 + 1

2
× 2

5
mr2ω2

= 1

2
mv2 + 1

5
mv2 = 7

10
mv2 (4)

T (wedge) = 1

2
(M + m)ẋ2 (5)
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∴ T (system) = 7

10
m(ẋ2 + ẏ2 + 2ẋ ẏ cos α) + 1

2
(M + m)ẋ2 (6)

V (system) = V (ball) = −mgy sin α (7)

L = 7

10
m(ẋ2+ ẏ2+2ẋ ẏ cos α)+ 1

2
(M + m)ẋ2 + mgy sin α (8)

Lagrange’s equations

d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0,

d

dt

(
∂L

∂ ẏ

)
− ∂L

∂y
= 0 (9)

become

7m

5
ẍ + 7

5
mÿ cos α + (M + m)ẍ = 0 (10)

7m

5
ÿ + 7

5
mẍ cos α − mg sin α = 0 (11)

Solving (10) and (11) and simplifying

ẍ = − 5mg sin α cos α

5M + (5 + 7 sin2 α)m
(for the wedge)

ÿ = 5(5M + 12m)g sin α

7(5M + (5 + 7 sin2 α)m)
(for the ball)

For M = m and α = π/4

ẍ = 5g

27

ÿ = 85
√

2

189



Chapter 8
Waves

Abstract Chapter 8 deals with waves. The topics covered are wave equation, pro-
gressive and stationary waves, vibration of strings, wave velocity in solids, liquids
and gases, capillary waves and gravity waves, the Doppler effect, shock wave, rever-
beration in buildings, stationary waves in pipes and intensity level.

8.1 Basic Concepts and Formulae

The travelling wave: The simple harmonic progressive wave travelling in the posi-
tive x-direction can be variously written as

y = A sin
2π

λ
(vt − x)

= A sin 2π

(
t

T
− x

λ

)

= A sin(ωt − kx)

= A sin 2π f
(

t − x

v

)
(8.1)

where A is the amplitude, f the frequency and v the wave velocity, λ the wave-
length, ω = 2π f the angular frequency and k = 2π/λ, the wave number.

Similarly, the wave in the negative x-direction can be written as

y = A sin
2π

λ
(vt + x) (8.2)

and so on.
The superposition principle states that when two or more waves traverse the same

region independently, the displacement of any particle at a given time is given by
the vector addition of the displacement due to the individual waves.

Interference of waves: Interference is the physical effect caused by the superposi-
tion of two or more wave trains crossing the same region simultaneously. The wave
trains must have a constant phase difference.

339
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Vibrating strings: Stationary waves are formed by the superposition of two
similar progressive waves travelling in the opposite direction over a taut string
clamped by rigid supports.

Wave equation:

∂2 y

∂t2
= F

μ

∂2 y

∂x2
(8.3)

Wave velocity:

v = √
F/μ (8.4)

where F is the tension in the string and μ is the linear density, i.e. mass per unit
length.

The general solution of (8.3) is

y = f1(vt − x) + f2(vt + x) (8.5)

Harmonic solution:

y = 2A sin kx cos ωt (8.6)

When the displacement in the y-direction is maximum (antinode) the amplitude
is 2A, the antinodes are located at x = λ/4, 3λ/4, 5λ/4 . . . and are spaced half a
wavelength apart. The amplitude has a minimum value of zero (nodes). The nodes
are located at x = 0, λ/2, λ . . . and are also spaced half a wavelength apart. Ends
of the strings are always nodes. Neighbouring nodes and antinodes are spaced one-
quarter wavelength apart.

The frequency of vibration is given by

f = v

λ
= N

2L

√
F

μ
= N

2L

√
F

ρ A
(8.7)

where ρ is the density and A the cross-sectional area of the string and N =
1, 2, 3, . . . . Vibration with N = 1 is called the fundamental or the first harmonic,
N = 2 is called the first overtone or the second harmonic, etc.

Power: The energy per unit length of the string is given by

E = 1
2μV 2

0 (8.8)

where V0 is the velocity amplitude of any particle on the string. Since the wave is
travelling with velocity v, the power (P) is given by

Pav = Ev = 1

2
μV 2

0 v = 1

2
V 2

0

√
Fμ (8.9)
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Waves in Solids

In solids, compressional and shearing forces are readily transmitted.

(i) Transverse waves in wires/strings in which the elastic properties of the material
are disregarded:

v = √
F/μ (8.4)

(ii) Transverse waves in bars/wires

V ∝ 1

λ

√
Y/ρ (8.10)

where Y is Young’s modulus of elasticity.
(iii) Longitudinal waves in wires and bars

V = √
Y/ρ (8.11)

(iv) Torsional vibrations in wires/bars

V = √
η/ρ (8.12)

where η is the shear modulus of elasticity.
In all these cases the material of restricted dimension is considered.

Waves in Liquids

The wave motion through liquids is influenced by the gravity and the characteristics
of the medium such as the depth and surface tension.

Canal Waves

If the wavelength is large compared with the wave amplitude, surface tension effect
is small. The controlling factors are then basically gravity (g) and the boundary con-
ditions. Furthermore, if the surface is sufficiently extensive so that the wall effects
are negligible then the depth (h) alone is the main boundary condition. The velocity
(v) of the canal waves is given by

V = √
gh (8.13)

Surface Waves

These are the waves found on relatively deep water. The velocity of deep water
waves is given by

V = √
gλ/2π (8.14)
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For long waves in shallow water

V = √
gh (8.15)

Capillary Waves

Surface waves are modified by surface tension S. If h is large compared with λ

V 2 = 2πs

ρλ
+ gλ

2π
(8.16)

The minimum value of λ is given by minimizing (8.16)

λmin = 2π

√
s

gρ
(8.17)

If λ is sufficiently large the second term dominates and the controlling factor being
mainly gravity. Thus, the velocity of the gravity waves is given by

V = √
gλ/2π (8.18)

If λ is very small, the first term in (8.16) dominates and the motion is mainly con-
trolled by capillarity and

V =
√

2πs

ρλ
(8.19)

Acoustic Waves

∂2ξ

∂t2 = V 2 ∂2ξ

∂x2 (plane wave equation for displacement) (8.20)

∂2 P

∂t2 = V 2 ∂2 P

∂x2 (plane wave equation for pressure) (8.21)

where

V = √
B/ρ0 (8.22)

B being the bulk modulus of elasticity.

Sound Velocity in a Gas

V =
√

γ P

ρ
(Laplace formula) (8.23)
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Sound Velocity in a Liquid

V =
√

γ Bτ

ρ
(8.24)

where BT is the isothermal bulk modulus.
The energy in length λ is given by

Eλ = 1

2
ρ0ω

2 A2λ (8.25)

The energy density

E = Eλ/λ = 1

2
ρ0ω

2 A2 (8.26)

The intensity, i.e. the time rate of flow of energy per unit area of the wave front

I = 1

2
ρV A2ω2 (8.27)

Intensity Level (IL):Decibel Scale

IL = 10 log(I/I0) (8.28)

where log is logarithmic to base 10, I0 is the reference intensity (the zero of the
scale) and IL is expressed in decibels.

Stationary Waves in Pipes

(i) Closed pipe (pipe closed at one end and opened at the other)

f1 = V/4L , f2 = 3V/4L , f3 = 5V/4L . . .

(ii) Open pipe_(pipe opened at both ends)

f1 = V/2L , f2 = V/L , f3 = 3V/2L . . .

Doppler effect is the apparent change in frequency of a wave motion when there
is relative motion between the source and the observer.

(a) Moving Source but Stationary Observer

If the source of waves of frequency f moves with velocity v and if vs is the sound
velocity in still air then the apparent frequency f would be

f / = f v

v ± vs
(8.29)

where the minus sign is for approach and plus sign for separation.
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(b) Source is At Rest, Observer in Motion

Let the observer be moving with speed v0. Then

f ′ = f
(v ± v0)

v
(8.30)

where the plus sign is for motion towards the source and the minus sign for motion
away from the source.

(c) Both Source and Observer in Motion

f ′ = f
(v ± v0)

(v ∓ vs)
(8.31)

(d) If the medium moves with velocity W relative to the ground along the line join-
ing source and observer,

f ′ = f
(v + W ± v0)

(v + W ∓ vs)
(8.32)

Shock waves are emitted when the observer’s velocity or the source velocity
exceeds the sound velocity and Doppler’s formulae break down. The wave front
assumes the shape of a cone with the moving body at the apex. The surface of the
cone makes an angle with the line of flight of the source such that

sin θ = v/vs (8.33)

The ratio vs/v is called Mach number. An example of shock waves is the wave
resulting from a bow boat speeding on water, a second example is a jet-plane or
missile moving at the supersonic speed, a third example is the emission of Cerenkov
radiation when a charged particle moves through a transparent medium with a speed
exceeding that of the phase velocity of light in that medium.

Echo is defined as direct reflection of short duration sound from the surface of a
large area. If d is the distance of the reflector, V the speed of sound then the time
interval between the direct and reflected waves is

T = 2d/v (8.34)

Reverberation: A sound once produced in a room will get reflected repeatedly from
the walls and become so feeble that it will not be heard. The time t taken for the
steady intensity level to reach the inaudible level is called the time of reverberation:

TR = 0.16V/K S (Sabine law) (8.35)
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where V is in cubic metres and S in square metre for the volume and surface area
of the room, respectively, and K is the absorption coefficient of the material of the
floor, ceiling, walls, etc. summed over these components.

Beats: When two wave trains of slightly different frequencies travel through the
same region, a regular swelling and fading of the sound is heard, a phenomenon
called beats.

At a given point let the displacements produced by the two waves be

y = A sin ω1t (8.36)

y = A sin ω2t (8.37)

By the superposition principle, the resultant displacement is given by

y = y1 + y2 = [2A cos 2π( f1 − f2)t/2] sin 2π( f1 + f2)t/2 (8.38)

The resulting vibration has a frequency

f = ( f1 + f2)/2 (8.39)

and an amplitude given by the expression in the square bracket of (8.38). The beat
frequency is given by f1 ∼ f2.

8.2 Problems

8.2.1 Vibrating Strings

8.1 Show that the one-dimensional wave equation is satisfied by the function
y = A

√
(x + vt).

8.2 Show that the equation y = 2A sin(nπx/L) cos 2π f t for a standing wave is a
solution of the wave equation

∂2 y

∂x2
= μ

F

∂2 y

∂t2

where F is the tension and μ the mass/unit length.

8.3 A cord of length L fixed at both ends is set in vibration by raising its centre a
distance h and let go. Obtain an expression for the displacement y at any point
x and time t as a series expansion assuming that initially the velocity is zero.
Also show that even harmonics are absent.

8.4 Show that the superposition of the waves y1 = A sin(kx − ωt) and y2 =
3A sin(kx + ωt) is a pure standing wave plus a travelling wave in the negative
direction along the x-axis. Find the amplitude of (a) the standing wave and (b)
the travelling wave.
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8.5 A sinusoidal wave on a string travelling in the +x direction at 8 m/s has a
wavelength 2 m. (a) Find its wave number, frequency and angular frequency.
(b) If the amplitude is 0.2 m, and the point x = 0 on the string is at its equi-
librium position (y = 0) at time t = 0, find the equation for the wave.

8.6 A sinusoidal wave on a string travelling in the +x direction has wave number
3/m and angular frequency 20 rad/s. If the amplitude is 0.2 m and the point
at x = 0 is at its maximum displacement and t = 0, find the equation of the
wave.

8.7 Show that when a standing wave is formed, each point on the string is
undergoing SHM transverse to the string.

8.8 The length of the longest string in a piano is 2.0 m and the wave velocity of
the string is 120 m/s. Find the frequencies of the first three harmonics.

8.9 Two strings are tuned to fundamentals of f1 = 4800 Hz and f ′
1 = 32 Hz. Their

lengths are 0.05 and 2.0 m, respectively. If the tension in these two strings is
the same, find the ratio of the masses per unit length of the two strings.

8.10 The equation of a transverse wave travelling on a rope is given by y =
5 sin π(0.02x − 4.00t), where y and x are expressed in centimetres and t is in
seconds. Find the amplitude, frequency, velocity and wavelength of the wave.

8.11 A string vibrates according to the equation y = 4 sin 1
2πx cos 20π t , where

x and y are in centimetres and t is in seconds. (a) What are the amplitudes
and velocity of the component waves whose superposition can give rise to this
vibration? (b) What is the distance between the nodes? (c) What is the velocity
of the particle in the transverse direction at x = 1.0 cm and when t = 9/4 s?

8.12 A wave of frequency 250 cycles/s has a phase velocity 375 m/s. (a) How
far apart are two points 60◦ out of phase? (b) What is the phase difference
between two displacements at a certain point at time 10−3 s apart?

8.13 Two sinusoidal waves having the same frequency and travelling in the same
direction are combined. If their amplitudes are 6.0 and 8.0 cm and have a phase
difference of π/2 rad, determine the amplitude of the resultant motion.

8.14 Show that the one-dimensional wave equation is satisfied by the following
functions:

(a) y = A ln(x + vt) and (b) y = A cos(x + vt).

8.15 (a) A cord of length L is rigidly attached at both ends and is plucked to a
height h at a point 1/3 from one end and let it go. Show that the dis-
placement y at any distance x along the string at time t in the subsequent
motion is given by

y = 35/2

2π2

[
sin

πx

L
cos

πvt

L
+ 1

4
sin

2πx

L
cos

2πvt

L
− 1

16
sin

4πx

L
cos

4πvt

L
. . .

]

(b) and that the third, sixth and ninth harmonics are absent.
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8.16 Given the amplitude A = 0.01 m, frequency f = 170 vibrations/s, the wave
velocity v = 340 m/s, write down the equation of the wave in the negative
x-direction.

8.17 (a) Show that the superposition of the waves y1 = A sin(kx − ωt) and y2 =
+A sin(kx + ωt) is a standing wave. (b) Where are its nodes and antinodes?

8.18 The wave function for a harmonic wave travelling in the positive x-direc-
tion with amplitude A, angular frequency ω and wave number k is y1 = A sin
(kx − ωt).
The wave interferes with another harmonic wave travelling in the same direc-
tion with the same amplitude, frequency and wave number, but with a phase
difference δ. By using the principle of superposition, obtain an expression for
the wave function of the resultant wave and show its amplitude is |2A cos 1

2δ|.
If each wave has an amplitude of 6 cm and they differ in phase by π/2, what
is the amplitude of the resultant wave?
For what phase differences would the resultant amplitude be equal to 6 cm?
Describe the effects that would be heard if the two waves were sound waves,
but with slightly different frequencies. How could you determine the differ-
ence between the frequencies of the two harmonic sound sources? [you may
use the result sin θ1 + sin θ2 = 2 cos 1

2 (θ1 − θ2) sin 1
2 (θ1 + θ2)].

[University of Durham]

8.19 Show that the average rate of energy transmission P̄ , of a travelling sine of
velocity v, angular frequency ω, amplitude A, along a stretched string of mass
per unit length, μ, is P̄ = 1

2μvω2 A2.

8.20 A fork and a monochord string of length 100 cm give 4 beats/s. The string is
made shorter, without any change of tension, until it is in unison with the fork.
If its new length is 99 cm, what is the frequency of the fork?

8.21 y(x, t) = 0.10
4+(2x−t)2 represents a moving pulse, where x and y are in metres

and t in seconds. Find out the velocity of the pulse (magnitude and direction)
and point out whether it is symmetric or not.

[adapted from Hyderabad Central University 1995]

8.22 (a) A piano string of length 0.6 m is under a tension of 300 N and vibrates
with a fundamental frequency of 660 Hz. What is the mass density of the
string?

(b) What are the frequencies of the first two harmonics?
(c) A flute organ pipe (opened at both ends) also plays a note of 660 Hz.

What is the length of the pipe? (you may take the speed of sound as V =
340 m/s).

[University of Manchester 2006]

8.23 (a) Sketch the first and second harmonic standing waves on a stretched string
of length L . Deduce an expression for the frequencies of the family of
standing waves that can be excited on the string.
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(b) The wave function of a standing wave on a string that is fixed at both ends
is given in SI units by y(x, t) = (0.024) sin(62.8x) cos(471t).
Find the speed of the waves on the string, and the distance between nodes
for the standing wave.
[hint: You may need to use sin θ1 + sin θ2 = 2 cos 1

2 (θ2 − θ1) sin 1
2 (θ1 +

θ2)].

8.24 A progressive wave travelling along a string has maximum amplitude
A = 0.0821 m, angular frequency ω = 100 rad/s and wave number k =
22.0 rad/m. If the wave has zero amplitude at t = 0 and x = 0 for its starting
conditions

(i) State the wave function that represents the progressive wave motion for
this wave travelling in the negative x-direction.

(ii) State the wave function for this wave travelling in the positive
x-direction.

(iii) Find the wavelength (λ), period (T ) and the speed (v) of this wave.
(iv) Find its amplitude at a time t = 2.5 s at a distance x = 3.2 m from its

origin, for this wave travelling in the negative x-direction.

[University of Wales 2008]

8.25 The speed of a wave on a string is given by v =
√

F
μ

. Show that the right-hand

side of this equation has the units of speed.

8.26 For a sinusoidal wave travelling along a string show that at any time t the
slope ∂y

∂x at any point x is equal to the negative of the instantaneous transverse

velocity ∂y
∂t of the string at x divided by the wave velocity v.

8.27 (a) Consider a small segment of a string upon which a wave pulse is travel-
ling.
Using this diagram, or otherwise, show that the wave equation for trans-
verse waves on a stretched string is

∂2 y

∂x2
= μ

F

∂2 y

∂t2

where μ is the mass per unit length and F is the tension.
(b) Show that the wave function representing a wave travelling in the posi-

tive x-direction, y(x − vt), is a solution of the wave equation. Obtain an
expression for the velocity, v, of the wave (Fig. 8.1).

8.28 Two wires of different densities are joined as in Fig. 8.2. An incident wave
y1 = A1 sin(ωt − k1x) travelling in the positive x-direction along the wire
at the boundary is partly transmitted. (a) Find the reflected and transmitted
amplitudes in terms of the incident amplitude. (b) When will the amplitude of
the reflected wave be negative?
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Fig. 8.1

Fig. 8.2

8.29 For the wave shown in Fig. 8.3 find its frequency and wavelength if its speed
is 24 m/s. Write the equation for this wave as it travels along the +x-axis if its
position at t = 0 is as shown in Fig. 8.3.

Fig. 8.3

8.30 In prob. (8.29) if the linear density of the string is 0.25 g/m, how much energy
is sent down the string per second?
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8.31 (a) Show that when a string of length L plucked at the centre through height

h, the energy in the nth mode is given by En = 16Mh2v2

n2π2 L2 , where v is the
wave velocity and M is the total mass of the string.

(b) Compare the energies in the first and the third harmonics of a string
plucked at the centre.

8.2.2 Waves in Solids

8.32 (a) A steel bar of density 7860 kg/m3 and Young’s modulus 2 × 1011 N/m2

and of length 0.25 m is rigidly clamped at one end and free to move at the
other end. Determine the fundamental frequency of the bar for longitudi-
nal harmonic vibrations.

(b) How do the frequencies compare with (i) rod free at both ends; (ii) bar
clamped at the midpoint; and (iii) bar clamped at both the ends.

8.33 A 2 kg mass is hung on a steel wire of 1 × 10−5 m2 cross-sectional area and
1.0 m length. (a) Calculate the fundamental frequency of vertical oscillations
of the mass by considering it to be a simple oscillator and (b) calculate the
fundamental frequency of vertical oscillations of the mass by regarding it as a
system of longitudinally vibrating bar fixed at one end and mass-loaded at the
other. Assume Y = 21011 N/m2 and ρ = 7800 kg/m2 for steel.

8.34 Show that for kl < 0.2, the frequency equation derived for the mass loaded
system for the bar of length l clamped at one end and loaded at the other
reduces to that of a simple harmonic oscillator (you may assume that the fre-
quency condition for this system is, kl tan kl = M/m).

8.2.3 Waves in Liquids

8.35 (a) Find the velocity of long waves for a liquid whose depth is λ/4 and com-
pare it with (b) the velocity for a similar wavelength λ in a deep liquid and (c)
that for canal waves.

8.36 Find the maximum depth of liquid for which the formula v2 = gh represents
the velocity of waves of length λ within 1%. You may assume that the velocity

of surface waves is given by v =
√

g tanh(kh)
k which is valid for relatively deep

waters.

8.37 In an experiment to measure the surface tension of water by the ripple method,
the waves were created by a tuning fork of frequency 100 Hz and the wave-
length was 3.66 mm. Calculate the surface tension of water.
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8.38 Compare the minimum velocities of surface waves at 10◦C for mercury and
water if the surface tensions are 544 and 74 dyne/cm, respectively, and the
specific gravity of mercury is 13.56.

8.39 It is only when a string is perfectly flexible that the phase velocity of a wave
on a string is given by

√
T/μ. The dispersion relations for the real piano wire

can be written as

ω2

k2 = T

μ
+ ak2

where α is a small positive quantity which depends on the stiffness of the
string. For perfectly flexible string, α = 0. Obtain expressions for phase
velocity (vp) and group velocity vg and show that vp increases as wavelength
decreases.

8.40 The dispersion relation for water waves of very short wavelength in deep water
is ω2 = S

ρ
k3, where S is the surface tension and ρ is the density.

(a) What is the phase velocity of these waves?
(b) What is the group velocity?
(c) Is the group velocity greater or less than the phase velocity?

8.41 The general dispersion relation for water waves can be written as

ω2 =
(

gk + s

ρ
k3
)

tanh kh

where g is acceleration due to gravity, ρ is the density of water, S is the surface
tension and h is the water depth. Use the properties of tanh x function viz. for
x >> 1, tanh x = 1 and for x << 1, tanh x = x .
Show that (a) in shallow water the group velocity and the phase velocity are
both equal to

√
gh if the wavelength is long enough to ensure that Sk2/v =

4π2S/λ2ρ << g. (b) Show that for deep water the phase velocity is given by

vp =
√

g
k + Sk/ρ and find the group velocity.

8.42 For water ρ = 103 kg/m3 and S = 0.075 N/m. Calculate vp and vg in deep
water for small ripples with λ = 1 cm and for large waves with λ = 1 m.

8.43 The relation for total energy E and momentum p for a relativistic particle is
E2 = c2 p2 + m2c4, where m is the rest mass and c is the velocity of light.
Using the relations, E = h̄ω and p = h̄k, where ω is the angular frequency
and k is the wave number and h̄ = h/2π , h being Planck’s constant. Show
that the product of group velocity vg and the phase velocity vp, vpvg = c2.

8.44 Taking the surface tension of water as 0.075 N/m its density as 1000 kg/m3,
find the wavelength of surface waves on water with a velocity of 0.3 m/s.
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Which one of these would be preferable to use in determining the surface
tension by means of ripples?

8.45 Waves in deep water travel with phase velocity given by vp
2 = g/k, where g

is the acceleration due to gravity and k is the wave number, 2π/λ. Obtain an
expression for the group velocity and show that it is equal to vp/2.

[University of Manchester 2006]

8.46 The dispersion relation for sound waves in air is ω =
√

γ RT
M k. Find the phase

velocity and the group velocity.

8.47 The phase velocity vp for deep water waves is given by vp
2 = (g/k + Sk/ρ).

Show that the phase velocity is minimum at λ = 2π
√

s
ρg .

8.2.4 Sound Waves

8.48 Let both displacement and pressure of a plane wave vary harmonically. Obtain
a relation between pressure amplitude and displacement amplitude. Also show
that the displacement is 90◦ out of phase with the pressure wave.

8.49 Assuming ρ = 1.29 kg/m3 for the density of air and v = 331 m/s for the
speed of sound, find the pressure amplitude corresponding to the threshold of
hearing intensity of 10−12 W/m2.

8.50 For ordinary conversation, the intensity level is given as 60 dB. What is the
intensity of the wave?

8.51 A small source of sound radiates energy uniformly at a rate of 4 W. Calculate
the intensity and the intensity level at a point 25 cm from the source if there is
no absorption.

8.52 The maximum pressure variation that the ear can tolerate is about 29 N/m2.
Find the corresponding maximum displacement for a sound wave in air having
a frequency of 2000 Hz. Assume the density of air as 1.22 kg/m3 and the speed
of sound as 331 m/s.

8.53 If two sound waves, one in air and the other in water, have equal pressure
amplitudes, what is the ratio of the intensities of the waves? Assume that the
density of air is 1.293 kg/m3, and the speed of sound in air and water is 330
and 1450 m/s, respectively.

8.54 The pressure in a progressive sound wave is given by the equation P =
2.4 sin π(x − 330t), where x is in metres, t in seconds and P in N/m2. Find
(a) the pressure amplitude, (b) frequency, (c) wavelength and (d) speed of the
wave.

8.55 A note of frequency 1200 vibrations/s has an intensity of 2.0 μ W/m2. What
is the amplitude of the air vibrations caused by this sound?
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8.56 Show that a plane wave having an effective acoustic pressure of a microbar in
air has an intensity level of approximately 74 dB. Assume that the density and
speed of air is 1.293 kg/m3 and sound velocity is 330 m/s.

8.57 Calculate the energy density and effective pressure of a plane wave in air of
70 dB intensity level. Assume the velocity of sound in air to be 331 m/s and
the air density 1.293 kg/m3.

8.58 Find the pressure amplitude for an intensity of 1 W/m2 at the pain threshold.
Assume that sound velocity is 331 m/s and gas density is 1.293 kg/m3.

8.59 Find the theoretical speed of sound in hydrogen at 0◦C. For a diatomic gas
γ = 1.4 and for hydrogen M = 2.016 g/mol; the universal gas constant
R = 8.317 J/mol/K.

8.60 The density of oxygen is 16 times that of hydrogen. For both γ = 1.4. If the
speed of sound is 317 m/s in oxygen at 0◦C what is the speed in hydrogen at
the same pressure?

8.61 Two sound waves have intensities 0.4 and 10 W/m2, respectively. How many
decibels is one louder than the other?

8.62 If one sound is 6.0 dB higher than another, what is the ratio of their intensities?

8.63 A small source radiates uniformly in all directions at a rate of 0.009 W. If there
is no absorption, how far from the source is the sound audible?

8.64 For the faintest sound that can be heard at 1000 Hz the pressure amplitude is
about 2×105 N/m2. Find the corresponding displacement amplitude. Assume
that the velocity of sound is 331 m/s and the air density is 1.22 kg/m3.

8.65 Two sound waves of equal pressure amplitudes and frequencies traverse two
liquids for which the velocities of propagation are in the ratio 3:2 and the
densities of the liquids are in the ratio 3:4. Compare the (a) displacement
amplitudes, (b) intensities and (c) energy densities.

8.66 One sound wave travels in air and the other in water, their intensities and
frequencies being equal. Calculate the ratio of their (a) wavelength, (b) pres-
sure amplitudes and (c) amplitudes of vibration of particles in air and water.
Assume that the density of air is 1.293 kg/m3, and sound velocity in air and
water is 331 and 1450 m/s, respectively.

8.67 Show that the characteristic impedance ρv of a gas is inversely proportional
to the square root of its absolute temperature T . What is the characteristic
impedance at (a) 0◦C and (b) 80◦C?

8.68 A beam of plane waves in water contains 50 W of acoustic power distributed
uniformly over a circular cross-section of 50 cm diameter. The frequency
of the waves is 25 kc/s. Determine (a) the intensity of the beam, (b) the
sound pressure amplitude, (c) the acoustic particle velocity amplitude, (d) the
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acoustic particle displacement amplitude and (e) the condensation amplitude.
Assume that the velocity of sound in water is 1450 m/s.

8.69 Derive Laplace formula for the sound velocity in a gas.

8.70 An empirical formula giving the velocity of sound in distilled water as a func-
tion of temperature at a pressure of one atmosphere in the range 0 − 60◦C is
v = 1403 + 5t − 0.06t2 + 0.0003t3 where t is the temperature of water in
◦C and v is in m/s. (a) Determine the velocity of sound in distilled water at
20◦C and (b) find the change of velocity of sound per degree Celsius at this
temperature.

8.2.5 Doppler Effect

8.71 A railway engine whistles as it approaches a tunnel, and the sound is reflected
back by the wall of the rock at the opening. If the train is proceeding at a
speed of 72 km/h and if the effect of the wind be neglected, find the ratio
of the relative frequencies of the reflected and direct sounds as heard by the
driver of the engine.

[University of Aberystwyth, Wales]

8.72 Two trains move towards each other at a speed of 90 km/h relative to the
earth’s surface. One gives a 520 Hz signal. Find the frequency heard by the
observer on the other train.

8.73 Two trains move away from each other at a speed of 25 m/s relative to the
earth’s surface. One gives a 520 Hz signal. Find the frequency heard by the
observer on the other train (sound velocity = 330 m/s).

8.74 A whistle of frequency 540 Hz rotates in a circle of radius 2 m at an angular
speed of 15.0 rad/s. What are the maximum and minimum frequencies heard
by a listener, standing at a long distance away at rest from the centre of the
circle (sound velocity = 330 m/s).

8.75 In the Kundt’s tube experiment, the length of the steel rod which is stroked is
120 cm long and the distance between heaps of cork dust is 8 cm when the rod
is caused to vibrate longitudinally in air. If the ends of the tube are sealed and
the air replaced by a gas and the experiment repeated, the distance between
heaps is observed to be 10 cm. (a) What is the velocity of sound in the gas if
the velocity in air is 340 m/s. (b) What is the velocity of sound in the rod?

8.76 A sound source from a motionless train emits a sinusoidal wave with a source
frequency of fs = 514 Hz. Given that the speed of sound in air is 340 m/s
and that you are a stationary observer. Find the wavelength of the wave you
observe

(i) When the train is at rest
(ii) When the train is moving towards you at 15 m/s
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(iii) When the train is moving away from you at 15 m/s>
[University of Aberystwyth, Wales 2007]

8.2.6 Shock Wave

8.77 (a) What is a shock wave?
(b) What is the Mach number when a plane travels with a speed twice the

speed of the sound?
(c) Calculate the angle of Mach cone in (b).

8.2.7 Reverberation

8.78 Calculate the reverberation time of a room, 10 m wide by 18 m long by 4 m
high. The ceiling is acoustic, the walls are plastered, the floor is made of con-
crete and there are 50 persons in the room. Sound absorption coefficients are
acoustic ceiling 0.60, plaster 0.03, concrete 0.02, the absorbing power per
person is 0.5.

8.2.8 Echo

8.79 A man standing in front of mountain at a certain distance beats a drum at
regular intervals. The drumming rate is gradually increased and he finds the
echo is not heard distinctly when the rate becomes 40/min. He then moves
nearer to the mountain by 90 m and finds that the echo is again not heard
when the drumming rate becomes 60/min. Calculate (a) the distance between
the mountain and the initial position of the man and the mountain and (b) the
velocity of sound.

[Indian Institute of Technology 1974]

8.80 A rifle shot is fired in a valley formed between two parallel mountains. The
echo from one mountain is heard 2 s after the first one.

(a) What is the width of the valley?
(b) Is it possible to hear the subsequent echoes from the two mountains simul-

taneously, at the same point? If so, after what time, given sound velocity
= 360 m/s.

[Indian Institute of Technology 1973]

8.2.9 Beat Frequency

8.81 Two whistles are sounded with frequencies of 548 and 552 cycles/s, respec-
tively. A man directly in the line between them walks towards the lower
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pitched whistle at 1.5 m/s. Find the beat frequency that he hears. Assume the
sound velocity of 330 m/s.

8.82 A tuning fork of frequency 300 c/s gives 2 beats/s with another fork of
unknown frequency. On loading the unknown fork the beats increase to 5/s,
while transferring the load to the fork of known frequency increases the num-
ber of beats per second to 9. Calculate the frequency of the unknown fork
(unloaded) assuming the load produces the same frequency change in each
fork.

[University of Newcastle]

8.2.10 Waves in Pipes

8.83 An open organ pipe sounding its fundamental note is in tune with a fork of
frequency 439 cycles/s. How much must the pipe be shortened or lengthened
in order that 2 beats/s shall be heard when it sounded with the fork? Assume
the speed of sound is 342 m/s.

[University of Durham]

8.84 A light pointer fixed to one prong of a tuning fork touches a vertical plate.
The fork is set vibrating and the plate is allowed to fall freely. Eight com-
plete oscillations are counted when the plate falls through 10 cm. What is the
frequency of the tuning fork?

[Indian Institute of Technology 1997]

8.85 Air in a tube closed at one end vibrates in resonance with tuning fork whose
frequencies are 210 and 350 vibrations/s, when the temperature is 20◦C.
Explain how this is possible and find the effective length of the tube. Assume
that the velocity in air at 0◦C is 33, 150 cm/s.

[University of London]

8.86 An open organ pipe is suddenly closed with the result that the second overtone
of the closed pipe is found to be higher in frequency by 100 vibrations/s than
the first overtone of the original pipe. What is the fundamental frequency of
the open pipe?

[University of Bristol]

8.3 Solutions

8.3.1 Vibrating Strings

8.1 The one-dimensional wave equation is

∂2 y

∂x2
= 1

v2

∂2 y

∂t2
(1)
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Given function is y = A
√

x + vt

∂y

∂x
= A

2
√

x + vt

∂2 y

∂x2
= − A

4(x + vt)3/2
(2)

∂y

∂t
= Av

2
√

(x + vt)

∂2 y

∂t2 = − A

4

v2

(x + vt)3/2 (3)

Equation (1) is satisfied with the use of (2) and (3).

8.2 The wave equation is

∂2 y

∂x2
= μ

F

∂2 y

∂t2
(1)

y = 2A sin
(nπx

L

)
cos(2πft) (standing wave)

∂y

∂x
= 2Anπ

L
cos

(nπx

L

)
cos(2πft)

∂2 y

∂x2 = −
(

2An2π2

L2

)
sin

(nπx

L

)
cos(2πft) = −n2π2 y

L2 (2)

∂y

∂t
= −4π f A sin

(nπx

L

)
sin(2πft)

∂2 y

∂t2
= −8π2 f 2 A sin

(nπx

L

)
cos(2πft) = −4π2 f 2 y

but

√
F

μ
= v = f λ

∴ μ

F

∂2 y

∂t2
= −4π2 f 2 y

v2
= −4π2 y

λ2
= −n2π2 y

L2
(3)

∵ L = nλ

2

Thus

μ

F

∂2 y

∂t2 = ∂2 y

∂x2

8.3 Let the string AB of length L be plucked at the point C, distant d from the end
A and be raised through height h, Fig. 8.4.
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P′(x,y)

Fig. 8.4

The general form of the displacement at any point x and time t is given by the
Fourier expansion

y =
∞∑

n=1

an sin
(nπx

L

)
cos

(
nπvt

L

)
(1)

The coefficient an is obtained from

an = 2

L

∫ L

0
y0 sin

(nπx

L

)
dx (2)

where y0 = y(x, 0).
We break the integral into two parts, one from 0 to d and the other from d to L .
In the interval from 0 to d the equation of the initial configuration of the string
for a typical point p(x, y) is

y

x
= h

d
or y = hx

d
for o < x < d

and in the interval d to L , the equation for P ′(x, y) is

y

L − x
= h

L − d
or y = h(L − x)

L − d
for d < x < L

so that by substituting (1) into (2) with t = 0

an = 2

L

[∫ d

0

hx

d
sin

(πnx

L

)
dx +

∫ L

d

h(L − x)

L − d
sin

πnx

L
dx

]
(3)
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Integrating by parts

an = 2hL2

n2π2d(L − d)
sin

(
nπd

L

)
(4)

Here d = 1

2
L , so that (4) becomes

an = 8h

n2π2
sin

(nπ

2

)

If n is an even integer then the corresponding an is zero. If n is an odd integer,
then the sine term alternates in sign as sin π

2 = 1, sin 3π
2 = −1, sin 5π

2 = 1 . . .,
so that we may write

an = 8h

π2n2 (−1)(n−1)/2 (5)

Using (5) in (1)

y = 8h

π2

[
sin

πx

L
cos

πvt

L
− 1

9
sin

3πx

L
cos

3πvt

L
+ 1

25
sin

5πx

L
cos

5πvt

L
− 1

49
sin

7πx

L
cos

7πvt

L
+· · ·

]

Note that the even harmonics are absent. Since the intensity of a wave is pro-
portional to the square of its amplitude, then for the sound emitted by the string,
the fundamental would have an intensity of 81 times the third harmonic and 625
times the fifth harmonic, etc.

Formula (4) shows that the nth harmonic will be absent if sin
( nπd

L

) =
0. an = 0 if d = L/n, 2L/n, 3L/n, i.e. nd/L is any integer or whenever
there is any node of the nth harmonic situated at D, Fig. 8.4. If the string is
divided into n equal parts and is plucked at any dividing point, the nth harmonic
will disappear from the resultant vibration. In particular, any force applied at
the midpoint of the string cannot produce even harmonics. Further after the
application of force at the midpoint of the string, if this point be lightly touched
the string ceases to vibrate. This is because odd harmonics cannot be sustained
with a node at the midpoint, and the even harmonics are already absent for
reasons discussed above.

8.4 y = y1 + y2

= A sin(kx − ωt) + 3A sin(kx + ωt)

= [A sin(kx − ωt) + A sin(kx + ωt)] + 2A sin(kx + ωt)

= 2A sin kx cos ωt + 2A sin(kx + ωt)

where we have used the identity

sin C + sin D = 2 sin

(
C + D

2

)
cos

(
C − D

2

)
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Thus the resultant wave = standing wave + travelling wave in the negative
direction.
The amplitudes are (a) 2A (b) 2A

8.5 (a) The wave number k = 2π
λ

= 2π
2 = π/m

Frequency f = v
λ

= 8
2 = 4 Hz

Angular frequency ω = 2π f = (2π)(4) = 8π rad/s

(b) y = A sin(kx − ωt) = A sin π(x − 8t)

8.6 Let y = A sin(kx − ωt + φ)

At x = 0, t = 0, the wave has the maximum displacement and y = A:

A = A sin(0 − 0 + φ)

or sin φ = 1 → φ = π

2

∴ y = A sin

(
kx − ωt + 1

2
π

)
= A cos(kx − ωt)

∴ y = 0.2 cos(3x − 20t)

8.7 y = 2A sin kx cos ωt (standing wave)

∂y

∂t
= −2Aω sin kx sin ωt

Acceleration, a = ∂2 y
∂t2 = −ω22A sin kx cos ωt = −ω2 y.

This is the defining equation for the SHM.

8.8 fN = Nv

2L

f1 = 1 × 120

2 × 2
= 30 Hz

f2 = 2 × 120

2 × 2
= 60 Hz

f3 = 3 × 120

2 × 2
= 90 Hz

f4 = 4 × 120

2 × 2
= 120 Hz
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8.9 f1 = 1

2L1

√
F

μ1

f2 = 1

2L2

√
F

μ2

∴ μ2

μ1
= (L1 f1)

2

(L2 f2)2
= (0.05 × 4800)2

(2.0 × 32)2
� 14

8.10 y = 5 sin π(0.02x − 4.00t) = 5 sin 2π(0.01x − 2.00t) (given equation) (1)

y = A sin 2π
( x

λ
− ft

)
(standard equation) (2)

Comparing (1) and (2)

A = 5 cm, f = 2 Hz
1

λ
= 0.01 or λ = 100 cm

v = f λ = 2 × 100 = 200 cm/s

8.11 y = 4 sin
1

2
πx cos 20π t (standing wave) (1)

y = 2A sin kx cos ωt (standard equation) (2)

Comparing (1) and (2)

(a) 2A = 4 or A = 2 cm, k = π

2
, ω = 20π

v = ω

k
= 20π

π/2
= 40 cm/s

(b) λ = 2π

k
= 2π

π/2
= 4 cm

Distance between nodes = λ

2
= 4

2
= 2 cm

(c)
∂y

∂t
= −(4)(20π) sin

1

2
πx sin 20π t

∂y

∂t

∣∣x=1.0, t=9/4 = −80π sin
π

2
sin 45π = 0

8.12 The wave is of the form

y = A sin(kx − ωt + φ)

(a) ω = 2π f = (2π)(250) = 500π rad/s

k = ω

v
= 500π

375
= 4π

3
m−1
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φ = 60◦ = π

3
rad

x = φ

k
= π/3

4π/3
= 0.25 m

(b) φ = ωt = (500π)(10−3) = π

2
rad = 90◦

8.13 y1 = A1 sin(kx − ωt)

y2 = A2 sin
(

kx − ωt + π

2

)
= A2 cos(kx − ωt)

y = y1 + y2

= A1 sin(kx − ωt) + A2 cos(kx − ωt)

=
√

A2
1 + A2

2

⎡
⎣ A1√

A2
1 + A2

2

sin(kx − ωt) + A2√
A2

1 + A2
2

cos(kx − ωt)

⎤
⎦

Put
A1√

A2
1 + A2

2

= cos α. Then
A2√

A2
1 + A2

2

= sin α

∴ y =
√

A2
1 + A2

2[sin(kx − ωt) cos α + cos(kx − ωt) sin α]
=
√

A2
1 + A2

2 sin(kx − ωt + α)

which has the amplitude A =
√

A2
1 + A2

2 = √
62 + 82 = 10 cm.

Graphical Method

This method was outlined in prob. (6.50). The waves are represented as vectors, the
magnitudes being proportional to the amplitudes, the orientation according to the
phase difference. Here the vectors O A and AB are laid in the head-to-tail fashion,
Fig. 8.5. The amplitude of the resultant wave is given by OB which is found to be
10 cm from the right angle triangle OAB

Fig. 8.5
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8.14 (a) y = A ln(x + vt)

∂y

∂x
= A

x + vt
,

∂2 y

∂x2 = − A

(x + vt)2

∂y

∂t
= Av

x + vt
,

∂2 y

∂t2
= − Av2

(x + vt)2

∴ 1

v2

∂2 y

∂t2
= − A

(x + vt)2
= ∂2 y

∂x2

Thus the wave equation is satisfied.
(b) y = A cos(x + vt)

∂y

∂x
= −A sin(x + vt)

∂2 y

∂x2
= −A cos(x + vt)

∂y

∂t
= −vA sin(x + vt)

∂2 y

∂t2 = −v2 A cos(x + vt)

∴ 1

v2

∂2 y

∂t2
= −A cos(x + vt) = ∂2 y

∂x2

Thus the wave equation is satisfied.

8.15 (a) By prob. (8.3)

y =
∞∑

n=1

an sin
(nπx

L

)
cos

(
nπvt

L

)
(1)

an = 2hL2

n2π2d(L − d)
sin

(
nπd

L

)
(2)

Here d = L

3
and (2) becomes

an = 9h

n2π2 sin
nπ

3
(3)

Inserting (3) in (1)

∴ y = 35/2h

2π2

[
sin

(πx

L

)
cos

(
πvt

L

)
+ 1

4
sin

(
2πx

L

)
cos

(
2πvt

L

)

− 1

16
sin

(
4πx

L

)
cos

(
4vt

L

)
. . .

]
(4)

(b) For n = 3, 6 or 9, the sine term in (3) becomes zero. Therefore, the third,
sixth and ninth harmonics will be absent.
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8.16 General equation for a progressive wave in the negative x-direction is

y = A sin(kx + ωt)

ω = 2π f = 2π × 170 = 340π rad/s

k = ω

v
= 340π

340
= π/m

∴ y = 0.01 sin π(x + 340t)

8.17 (a) y1 = A sin(kx − ωt)

y2 = A sin(kx + ωt)

y = y1 + y2 = 2A sin kx cos ωt
where we have used the identity stated in prob. (8.4).

(b) The nodes are formed when kx = nπ or
2π

λ
x = nπ

or x = nλ

2

x = 0,
λ

2
, λ, . . .

The antinodes are formed when kx = nπ

2
or x = nλ

4

x = 1

4
,

3

4
,

5

4
. . .

8.18 y1 = A sin(kx − ωt)

y2 = A sin(kx − ωt + δ)

y = y1 + y2 = A[sin(kx − ωt) + sin(kx − ωt + δ)]
= 2A cos

1

2
δ sin

(
kx − ωt + δ

2

)

Thus the amplitude of the resultant wave is 2A cos
1

2
δ.

For A = 6 cm and δ = π

2
, the amplitude of the resultant wave will be 2 ×

6 cos
π

4
or 6

√
2 cm.

For 2A cos
1

2
δ = 6

cos
1

2
δ = 6

2A
= 6

2 × 6
= 1

2
= cos

π

3

∴ 1

2
δ = π

3
or δ = 2π

3
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If two sound waves with slightly different frequencies are produced then beats
are heard. These consist of regular swelling and fading of the sound. In one
set of waves compressions and rarefactions will be spaced further apart, in
another they will be close enough. At some instant, two compressions arrive
together at the ear of the listener and the sound is loud. At a later time, the
compression of one wave arrives with the rarefaction of the other and the
sound will be faint. Beats are thus caused due to interference of sound waves
of neighbouring frequencies in time. The beat frequency is equal to the differ-
ence f1 ∼ f2 for the two component waves. Beats between two tones can be
detected by the ear up to a frequency of about 7/s.

8.19 Consider an infinitesimal element of length dx of the string of linear mass
density μ. The mass element μdx will execute SHM with amplitude A. The

maximum kinetic energy will be
1

2
(μdx)ω2 A2.

Energy transmitted across the string per second, i.e. power

P = 1

2

(
μ

dx

dt

)
ω2 A2 = 1

2
μvω2 A2

8.20 Let the fork of frequency f be in unison with 99 cm of the string. Then

f = 1

2 × 99

√
F

μ
(1)

When the length of the string was 100 cm the frequency must have been less
by 4 beats. Thus

f − 4 = 1

2 × 100

√
F

μ
(2)

Dividing (1) by (2) and solving

f

f − 4
= 100

99

We get f = 400/s.

8.21
y(x, t) = 0.10

(2x − t)2 + 4

∴ y(0, 0) = 0.10

4
= 0.025

Let y(x, t) = 0.025 = 0.10

4 + (2x − t)2
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Solving we find

v = x

t
= 0.5 m/s along the + x − direction.

Now, y(−x, t) = 0.10

4 + (2x + t)2
�= y(x, t)

Therefore, the pulse is not symmetric.

8.22 (a) f = N

2l

√
F

μ
(N = 1)

μ = F

4 f 2L2 = 300

(4)(660)2(0.6)2 = 4.78 × 10−4 kg/m

(b) The frequencies of the first two harmonics are f2 = 2 f = 1320 Hz and
f3 = 3 f = 1980 Hz.

(c) For open pipe length is

L = λ

2
= v

2 f
= 340

2 × 660
= 0.2576 m

8.23 (a) First harmonic – second harmonic (Fig. 8.6)

Fig. 8.6

v =
√

F

μ
, λ = 2L

N

fN = v

λN

fN = N

2L

√
F

μ
, N = 1, 2, 3, . . .

(b) The standard equation for the standing wave is

y(x, t) = 2A sin kx cos ωt (1)

Given equation is

y(x, t) = 0.024 sin(62.8x) cos(471t) (2)

Comparison shows that

k = 62.8 and ω = 471
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Wave velocity v = ω

k
= 471

62.8
= 7.5 m/s

λ = 2π

k
= 2π

62.8
= 0.1 m

Distance between nodes = λ

2
= 0.1

2
= 0.05 m

8.24 y = A sin(kx + ωt)

(i) y = 8.2 × 10−2 sin(22x + 100t) (negative x-direction)

(ii) y = 8.2 × 10−2 sin(100t − 22x) (positive x-direction)

(iii) λ = 2π

k
= 2π

22
= 0.2856 m

T = 2π

ω
= 2π

100
= 0.0628 m

v = ω

k
= 100

22
= 4.545 m/s

(iv) y = 8.2 × 10−2 × sin(22 × 3.2 + 100 × 2.5)

= 8.2 × 10−2 × sin(51 × 2π) = 0

8.25
[

F

μ

]1/2

=
[

M LT −2

M L−1

]1/2

=
[

LT −1
]

= [v]

8.26 Let the travelling wave be represented by

y = A sin(kx − ωt)

Then
∂y

∂x
= k A cos(kx − ωt) (1)

∂y

∂t
= −ωA cos(kx − ωt)

= −vk A cos(kx − ωt) = −v
∂y

∂x
(2)

Combining (1) and (2),
∂y

∂x
= −∂y

∂t
/v.

8.27 (a) Let a long string of linear density μ be stretched by a force F . Assume that
the damping is negligible. Take the x-axis in the direction of the undis-
placed string and y-axis in the direction perpendicular to it. If θ is the
angle between the tangent to the string and the x-axis, the tension in the
horizontal direction (x-axis) would be T cos θ and in the vertical direction
(y-axis) it would be T sin θ . Assuming that θ is very small, cos θ � 1 and
consequently the x-component of the tension remains constant. We are
therefore concerned only with the y-component of the tension.
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Referring to Fig. 8.1 note that the forces across �x the element of length
of the string make angles θ1 and θ2 with the x-axis. Let θ2 = θ and θ1 =
θ + dθ . To find the equation of motion of this element subject to these
forces, the difference in tension acting across �x in the y-direction is

dFy = F{sin(θ + dθ) − sin θ}
= F{sin θ cos(dθ) + cos θ sin(dθ) − sin θ}

but cos(dθ) � 1 and sin(dθ) � dθ, since dθ is small :
∴ dFy = F cos θ dθ = Fd(sin θ)

In the small angle approximation

sin θ � tan θ = ∂y

∂x

this last quantity being the gradient of the curve

∴ dFy = F
∂

∂x

∂

∂y
dx = F

(
∂2 y

∂x2

)
dx (1)

The mass of the element �x is μ dx , and its acceleration in the y-direction
is d2 y/dt2. Hence by Newton’s second law of motion

μdx
∂2 y

∂t2
= F

(
∂2 y

∂x2

)
dx

or
∂2 y

∂x2
= μ

F

∂2 y

∂t2
(2)

(b) Let y(x − vt) be a solution of (2)

∂y

∂t
(x − vt) = y′(x − vt)

∂

∂t
(x − vt) = −vy′(x − vt)

where y′ is another function of (x − vt) defined by y′(x − vt) =
dy(x − vt)

d(x − vt) .

The second derivative with respect to time gives

∂2 y(x − vt)

∂t2 = v2 y′′(x − vt) (3)

where y′′(x − vt) is yet another function of (x − vt) defined by

y′′(x − vt) = dy′(x − vt)

d(x − vt)
= d2 y′(x − vt)

d(x − vt)2
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proceeding along similar lines, differentiation of the function y(x − vt)
with respect to x yields

∂y(x − vt)

∂x
= y′(x − vt)

∂

∂x
(x − vt) = y′′(x − vt)

∂2 y(x − vt)

∂x2 = f ′′(x − vt) (4)

where y(x − vt) and y′′(x − vt) are the same functions of (x − vt) as in
(3). Substitution of (3) and (4) into (2) shows that y(x − vt) is a solution,
provided we set

v2 = F

μ

8.28 (a) The incident wave has the form

y1 = A1 sin(ωt − k1x) (1)

The reflected wave has the form

y2 = A2 sin(ωt + k1x) (2)

The transmitted wave has the form

y3 = A3 sin(ωt − k2x) (3)

The boundary conditions at the boundary (x = 0) are that the displace-
ment and its first derivative be single valued:

y1 |x = 0 + y2 |x = 0 = y3 |x = 0

A1 + A2 = A3 (4)

∂y1

∂x
|x = 0 + ∂y2

∂x
|x = 0 = ∂y3

∂x
|x = 0

− k1 A1 + k1 A2 = −k2 A3 (5)

Solving (4) and (5)

A2 = (k1 − k2)A1

k1 + k2
; A3 = 2k1 A1

k1 + k2
(6)

(b) A2 is negative when k2 > k1 or
ω

v2
>

ω

v1
or μ2 > μ1, i.e. wire 2 has

greater linear density than wire 1.
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8.29
5

2
λ = 15 cm

∴ λ = 6 cm

f = v

λ
= 2400

6
= 400 Hz

ω = 2π f = 2512 rad/s

k = 2π

λ
= 1.047/cm

A = 6 cm

y = A sin(ωt − kx) = 6 sin(2512t − 1.047x) cm

8.30 P = 1

2
ω2 A2μv = 2π2 f 2 A2μv

= 2π2 × (400)2(0.06)2(2.5 × 10−4)(24) = 68.2 W

8.31 (a) The amplitude of any point of the plucked string at time t may be
written as

y =
∞∑

n=1

an cos ωnt sin
(nπx

L

)
+

∞∑
n=1

bn sin ωnt sin
(nπx

L

)
(1)

The kinetic energy of vibration of an element of length of string dx in the
nth mode is given by

dKn = 1

2
(μdx)(ẏ)2

= 1

2
μω2

n(−an sin ωnt + bn cos ωnt)2 sin2(kn x)dx (2)

where we have used the value of velocity ẏ by differentiating (1) for the
nth mode with respect to t .
The potential energy of an element of string of length dx is

dUn = 1

2
ky2dx

= 1

2
μω2

n(an cos ωnt + bn sin ωnt)2 sin2 knx dx (3)

where we have used (1).
Adding (2) and (3), the total energy

dEn = dKn + dUn = 1

2
μω2

n(a
2
n + b2

n) sin2 kn x dx (4)
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The total energy of the entire string is obtained by integrating from 0 to L

En =
∫

dEn = 1

2
μω2

n(a2
n + b2

n)

∫ L

0
sin2(kn x)dx

Now
∫ L

0
sin2(kn x)dx =

∫ L

0
sin2

(nπx

L

)
dx = L

2

∴ En = 1

4
μLω2

n(a
2
n + b2

n) = 1

4
Mω2

n(a
2
n + b2

n)

where M is the total mass of the string.

(b) For the string plucked at the centre an = 8h

n2π2 (see prob. 8.3). Further

ωn = knv = nπv

L
and bn = 0. Thus the energy of vibration

En = M

4

[nπv

L

]2
[

8h

n2π2

]2

= 16Mh2v2

n2π2 L2

∴ E1

E3
= 9

1

8.3.2 Waves in Solids

8.32 (a) For the rod clamped at one end and free at the other (fixed–free)

fn = n

4L

√
γ

ρ
(n = 1, 3, 5, . . .)

f1 = 1

4L

√
γ

ρ
= 1

4 × 0.25

√
2 × 1011

7860
= 5044 Hz

(b) (i) For the rod free at both ends (free–free)

fn = n

2L

√
Y

ρ
(n = 1, 2, 3, . . .)

(ii) For the rod clamped at the midpoint

fn = n

2L

√
Y

ρ
(n = 1, 3, 5, . . .)

(iii) For the bar clamped at both ends (fixed–fixed)

fn = n

2L

√
Y

ρ
(n = 1, 2, 3, . . .)
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For the case (a) (bar clamped at one end only) the frequency of the fundamen-
tal is half that of a similar free–free (case (b) (i)) or fixed–fixed (case (b) (iii))
bar and only the odd-numbered harmonic overtones are present. This is to be
expected since the effect of clamping a free–free bar at its centre is to suppress
all its even harmonics.
For case (b) (ii) rod clamped at the midpoint only odd partials are present
similar to case (a) (fixed–free) and differs from case (b) (i) (free–free) where
all the partials are present. However the fundamental has the same frequency
in cases (b) (ii) and (b) (i).

8.33 (a) f = 1

2π

√
k

m

Now k = F

x
and Y = F/A

x/L
= F L

x A
= kL

A

∴ f = 1

2π

√
AY

mL
= 1

2π

√
1 × 10−5 × 2 × 1011

2 × 1.0
= 159 c/s

(b) For the given system

kL tan(kL) = M

m

Mass of the bar, M = ρ AL = 7800 × 1 × 10−5 × 1.0 = 0.078 kg. The
frequency condition becomes

kL tan(kL) = 0.078

2.0
= 0.039

The solution to the above equation is

kL = 0.196

∴ ωL

v
= 0.196

or f = ω

2π
= 1

2π

0.196

L

√
Y

ρ
= 0.196

2π × 1.0

√
2 × 1011

7800
= 158 c/s

Observe that the results of (b) are nearly the same as those for (a), showing
thereby for small values of kL , the mass loaded system approximates that of
a simple harmonic oscillator with the mass fixed at the end.

8.34 The frequency condition for this system is

kL tan(kL) = M

m
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Expanding tan (kL) by series

kL

[
kL + (kL)3

3
+ 2

(kL)5

15
+ · · ·

]
= M

m

If kL < 0.2, we may retain only the first term within the brackets:

k2L2 = M

m

ω2L2

v2
= M

m

f = ω

2π
= 1

2π

v

L

√
M

m
= 1

2π L

√
Y

ρ

M

m

But Y = kL

A
and M = ALρ

∴ f = 1

2π

√
k

m

8.3.3 Waves in Liquids

8.35 (a) v2 = g

k
tanh(kh) = gλ

2π
tanh

(
2π

λ

λ

4

)
= gλ

2π
tan h

(π

2

)

= 9.8

2π
× 0.917 λ

v = 1.2
√

λ m/s

(b) v =
√

g

k
=
√

gλ

2π
= 1.25

√
λ m/s

(c) v = √
gh =

√
gλ

4
=
√

9.8λ

4
= 1.56

√
λ m/s

8.36 The fractional error introduced by the use of the formula v = √
gh is

√
gh −

√
g

k
tanh(kh)

√
g

k
tanh(kh)

= 0.01
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Put kh = x, then
tanh x

x
= 0.96

This gives the solution x = 0.25 or h = x

k
= 0.25λ

2π
= 0.04λ.

8.37 Surface conditions are modified by the surface tension S. For the capillary
waves

v2 =
(

2π S

ρλ
+ gλ

2π

)
tanh

(
2πh

λ

)
(1)

If h >> λ, tanh

(
2π h

λ

)
→ 1, and

v2 = 2π S

ρλ
+ gλ

2π
(2)

Substituting λ = 0.366 cm, ρ = 1.0 g/cm3, g = 980 cm/s2 and v = f λ =
100 × 0.366 = 36.6 cm/s in (2) we find S = 74.7 dynes/cm.

8.38 For capillary waves when h >> λ

v2 = 2π S

ρλ
+ gλ

2π
(1)

The minimum value of the wavelength λm can be found out by minimizing (1):

∂(v2)

∂λ
= −2πS

ρλ2
m

+ g

2π
= 0

λm = 2π

√
S

gρ
(2)

Ignoring the second term in the right-hand side of (1) and using (2)

v =
(

gs

ρ

)1/4

For mercury and water

v1 : v2 =
(

S1

ρ1

)1/4

:
(

S2

ρ2

)1/4

=
(

544

13.56

)1/4

:
(

74

1

)1/4

= 0.858 : 1
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8.39
ω2

k2
= F

μ
+ αk2 (1)

The phase velocity vp = ω

k
=
√

F

μ
+ αk2 =

√
F

μ

[
1 + αμk2

F

]1/2

=
√

F

μ

[
1 + α

k2μ

2F
+ · · ·

]
(for small α) (2)

Since k = 2π/λ, vp increases as λ decreases.

The group velocity is given by

vg = vp + k dvp

dk
= vp + αk2

√
μ

F

8.40 (a) ω = S

ρ
k3/2

vp = ω

k
= S

ρ

√
k

(b) vg = vp + k dvp

dk

= S

ρ

√
k + kS

2ρ
√

k
= 3

2

S

ρ

√
k

(c) From (a) and (b) vg > vp

8.41 (a) ω2 =
(

gk + S

ρ
k3
)

tanh(kh) (1)

If kh << 1, then tanh (kh) = kh and (1) becomes

ω2 =
(

gk + S

ρ
k3
)

kh (2)

If the second term in the brackets is smaller than the first one(
S

ρ
k2 << g

)

ω2 = ghk2

∴ ω = k
√

gh (3)

vp = ω

k
= √

gh (4)
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vg = dω

dk
= √

gh (5)

∴ vg = vp

(b) kh >> 1, tanh(kh) = 1 and (1) becomes

ω2 = gk + S

ρ
k3

ω2

k2
= g

k
+ S

ρ
k

vp = ω

k
=
√

g

k
+ Sk

ρ
(6)

vg = vp + k
dvp

dk

= vp + k

2

(
S

ρ
− g

k2

)(
g

k
+ Sk

ρ

)−1/2

Using (6)

vg

vp
=

g

2k
+ 3

2

ks

ρ

g

k
+ ks

ρ

(7)

For short wavelengths k is larger, the first term in both the numerator and

denominator will be smaller and vg = 3

2
vp, while for long wavelengths, k is

smaller and vg = 1

2
vp.

8.42 With reference to prob. (8.41) for small ripples, λ is small and k is large so
that the second term in (6) dominates over the first term in the radical.

vp =
√

Sk

ρ
=
√

2π S

λρ
=
√

2π × 0.075

0.01 × 1000
= 0.217 m/s

vg = 3

2
vp = 0.325 m/s
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For large waves, first term in (6) is important:

vp =
√

g

k
=
√

gλ

2π
=
√

9.8 × 1.0

2π
= 1.25 m/s

vg = 1

2
vp = 0.625 m/s

8.43 E2 = c2 p2 + m2c4

h̄2ω2 = c2h̄2k2 + m2c4

∴ ω =
√

c2k2 + m2c4

h̄2

vp = ω

k
=
√

c2 + m2c4

h̄2k2

vg = dω

dk
= c2k√

c2k2 + m2c4

h̄2

= c2

√
c2 + m2c4

h̄2k2

∴ vpvg = c2

8.44 vp =
√

gλ

2π
+ 2πS

ρλ
(1)

Substituting vp = 30 cm/s, g = 980 cm/s2, S = 75 dynes/cm and ρ =
1 g/cm3, on simplification (1) reduces to the quadratic equation in λ:

λ2 − 5.767λ + 1.153 = 0

The two roots are λ1 = 5.56 cm and λ2 = 0.207 cm.
In determining surface tension it is preferable to use the shorter wavelength
because the surface effect will dominate over gravity:

8.45 vp = ω

k
=
√

g

k

vg = dω

dk
= 1

2

√
g

k

∴ vg = 1

2
vp
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8.46 ω =
√

γ RT

M
k

vp = ω

k
=
√

γ RT

M

vg = dω

dk
=
√

γ RT

M

∴ vg = vp

8.47 v2
p = g

k
+ Sk

ρ
(1)

Maximize (1)

d(v2
p)

dk
= − g

k2 + S

ρ
= 0

∴ k = 2π

λ
=
√

gρ

S

∴ λmin = 2π

√
S

gρ

8.3.4 Sound Waves

8.48 Let the displacement be represented by

y = A cos(kx − ωt) (1)

∂y

∂x
= −k A sin(kx − ωt)

but P = −B
∂y

∂x
= Bk A sin(kx − ωt)

where B is the bulk modulus:

B = v2ρ0

P = [kρ0v
2 A] sin(kx − ωt) (2)

P represents the change from standard pressure P0. The term in square bracket
represents maximum change in pressure and is called the pressure amplitude
Pmax. Then
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P = Pmax sin(kx − ωt) (3)

where Pmax = kρ0v
2 A (4)

If the displacement wave is represented by the cosine function, (1), then the
pressure wave is represented by the sine function, (3). Here the displacement
wave is 90◦ out of phase with the pressure wave.

8.49 I = 1

2
P2

max/ρ0v

∴ Pmax = √
2Iρ0v =

√
2 × 10−12 × 1.29 × 331 = 2.92 × 10−5 N/m2

8.50 IL = 10 log
I

I0

60 = 10 log
I

10−12

log I + log 1012 = 6 log I = −6

∴ I = 10−6 W/m2 = 1 μ W/m2

8.51 I = Power

4πr2
= 4

4π × 252
= 5.093 × 10−4 W/m2

IL = 10 log
I

I0
= 10 log

5.093 × 10−4

10−12
= 10 log(5.093 × 108)

= 10[log 5.093 + 8] = 87 dB

8.52 A = Pmax

kρ0v2 = Pmax

2πρ0 f v

where we have substituted k = 2π

λ
and v = f λ:

∴ A = 29

2π × 1.22 × 2000 × 331
= 5.7 × 10−6 m

8.53 I = P2
max

2ρ0v

By problem, Pmax(air) = Pmax(water)

∴ IWater

IAir
= ρAvA

ρWvW
= 1.293 × 330

1000 × 1450
= 2.94 × 10−4
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8.54 P = 2.4 sin π(x − 330t) = 2.4 sin 2π

(
1

2
x − 165t

)

P = Pmax sin 2π
( x

λ
− f t

)
(standard expression)

On comparing the two expressions we find

(a) 2.4 N/m2, (b) 165 Hz, (c) 2.0 m, (d) v = f λ = 165×2 = 330 m/s

8.55 I = 2π2ρ0 A2 f 2v

∴ A = 1

π f

√
I

2ρ0v
= 1

1200π

√
2 × 10−6

2 × 1.293 × 330
= 1.28 × 10−4 m

8.56 Pe = 1 microbar = 10−6 bar = 0.1 N/m2

I = P2
e

ρ0v
= (0.1)2

1.293 × 330
= 2.34 × 10−5 W/m2

IL = 10 log
I

I0
= 10 log

(
2.34 × 10−5

10−12

)

= 10(7 + log 2.34) = 73.7 dB � 74 dB

8.57 IL = 10 log
I

I0

70 = 10 log
I

10−12 = 10 [log I + 12]

log I = −5 I = 10−5W/m2

Energy density

E = I

v
= 10−5

331
= 3 × 10−8 J/m3

Effective pressure

Pe = √
Iρ0v =

√
10−5 × 1.293 × 331 = 0.0654 N/m2

8.58 Pmax = √
2Iρ0v = √

2 × 1 × 1.293 × 331 = 29.26 N/m2

8.59 v =
√

γ RT

M
=
√

1.4 × 8.317 × 273

2.016 × 10−3
= 1256 m/s
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8.60 v =
√

γ P

ρ
(Laplace formula)

∴ vH

vO
=
√

ρO

ρH
= √

16 = 4

∴ vH = 4vO = 4 × 317 = 1268 m/s

8.61 IL = 10 log

(
I2

I1

)
= 10 log

(
10

0.4

)
= 14 dB

8.62 IL = 10 log
I2

I1
= 6

log
I2

I1
= 0.6

∴ I2

I1
= 3.98 or 4

8.63 The threshold of hearing intensity is taken as 10−12 W/m2. Let r be the dis-
tance from the source at which the sound can be audible

I = power

4πr2 = 10−12

∴ r =
√

power

4π × 10−12 =
√

0.009

4π × 10−12 = 2.677 × 104 m = 26.8 km

8.64 Pmax = kρ0v
2 A = 2π

λ
ρ0v( f λ)A = 2πρ0v f A

∴ A = Pmax

2πρ0v f
= 2 × 10−5

2π × 1.22 × 331 × 1000
= 7.9 × 10−12 m

8.65 (a) A = Pmax

2πρ0 f v

A1

A2
= ρ2

ρ1

v2

v1
= 4

3
× 2

3
= 8

9

(b) I = 1

2

p2
max

ρ0v

I1

I2
= ρ2v2

ρ1v1
= 4

3
× 2

3
= 8

9
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(c) E = I

v

E1

E2
= I1

I2

v2

v1
= 8

9
× 2

3
= 16

27

8.66 (a) λ = v

f

∴ λA

λW
= vA

vW
= 331

1450
= 0.228 (∵ fA = fW)

(b) Pmax = √
2Iρ0v

∴ PA

PW
=
√

ρA

ρW

vA

vW
=
√

1.293

1000
× 331

1450
= 0.0172 (∵ IA = IW)

(c) A =
√

2I

ρvω2

AA

AW
=
√

ρW

ρA

vW

vA
=
√

1000

1.293
× 1450

331
= 33.88 (∵ IA = IW and fA = fw)

8.67 Characteristic impedance of a gas

Z = ρ0v (1)

Now v =
√

B

ρ0
or ρ0 = B

v2

∴ Z = B

v
= B

√
M

γ RT
(2)

Thus Z ∝ 1√
T

(a) At 0◦C, v = 331 m/s, ρ0 = 1.293 kg/m3

Z = ρ0v = 1.293 × 331 = 428 rayl

(b) Z ∝ 1√
T

∴ Z(80◦C) = Z(0◦C) ×
√

273

273 + 80
= 428 × 0.879 = 376 rayl
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8.68 (a) I = Power

area
= 50

π(0.25)2 = 255 W/m2

(b) Pmax = √
2Iρ0v = √

2 × 255 × 103 × 1450 = 2.72 × 104 N/m2

(c) A =
√

2I

ρ0υ4π2 f 2 =
√

2 × 255

1000 × 1450 × 4π2 × (25 × 103)2

= 1.19 × 10−7 m

(d) Umax = Aω = 1.19 × 10−7 × 2π × 25 × 103 = 0.019 m

(e) Smax = 2π A

λ
= 2π A f

v
= 2π × 1.19 × 10−7 × 25 × 103

1450
= 1.29 × 10−5

8.69 Consider sound waves of finite amplitude. Now, the bulk modulus is constant
only for infinitesimal volume changes:

B = −V
dp

dV
(1)

where the acoustic pressure p has been replaced by the pressure change dp.
Now, Vρ = mass = constant

∴ V
dρ

dP
+ ρ

dV

dP
= 0

or − V
dP

dV
= ρ

dP

dρ
= B

where we have used (1)

∴ v =
√

B

ρ
=
√

dP

dρ
(2)

When a second wave passes through a gas the changes in volume are assumed
to be adiabatic so that

P

ργ
= C = constant (3)

where γ is the ratio of specific heats of the gas at constant pressure to that at
constant volume. Differentiation of (3) gives

− γ Pργ−1dρ + ργ dP = 0

or
dP

dρ
= γ P

ρ
(4)
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Using (4) in (2), we get

v =
√

γ P0

ρ0
(Laplace formula) (5)

where P0 and ρ0 refer to equilibrium conditions of pressure and density.
The velocity υ0 at 0◦C can be found out by substituting γ = 1.4, P0 =
1.013 × 105 N/m2 and ρ0 = 1.293 kg/m3. We find v0 = 331.2 m/s, in good
agreement with the experiment.

With the assumption of isothermal changes we would have obtained the
formula v = √

P0/ρ0, (Newton’s treatment) which gives a value of 20%
lower.

8.70 (a) v|t=20 = 1403 + 5 × 20 − 0.06 × (20)2 + 0.0003 × (20)3 = 1481.4 m/s

(b)
dv

dt
= 5 − 0.12t + 0.0009t2

dv

dt
|t=20 = 5 − 0.12 × 20 + 0.0009 × (20)2 = 2.62 m/s/◦C

8.3.5 Doppler Effect

8.71 vs = 72 km/h = 72 × 5

18
m/s = 20 m/s

f0 = v fs

v + vs
(direct)

f ′
0 = v fs

v − vs
(reflected from the wall of the rock)

f ′
0

f0
= v + vs

v − vs
= 340 + 20

340 − 20
= 9

8

8.72 v0 = vs = 90 km/h = 90 × 5

18
= 25 m/s

v = 350 m/s

f ′ = f (v + v0)

v − vs
= 520(350 + 25)

350 − 25
= 600 Hz.

8.73 f ′ = f (v − v0)

v + vs
= 520

(330 − 25)

330 + 25
= 446.8 Hz.

8.74 Let the whistle rotate clockwise, Fig. 8.7. At point A the linear velocity of
the whistle will be towards the distant listener and at B away from the listener.
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Fig. 8.7

Maximum frequency will be heard when the whistle will be at A and minimum
when it is at B:

vs = ωr = 15 × 2 = 30 m/s

fmax = v fs

v − vs
= 330 × 540

330 − 30
= 594 Hz

fmin = v fs

v − vs
= 330 × 540

330 + 30
= 495 Hz

8.75 (a) The frequency of the rod is fixed, and so also for the air and the gas. The
distance between successive heaps of cork dust is equal to the distance

between two neighbouring nodes which is
1

2
λ, Fig. 8.8:

Fig. 8.8

vair = f λair

vgas = f λgas

∴ vgas = vair
λgas

λair
= 330 × 10

8
= 425 m/s

(b) vrod = f λrod = vair

λair
· λrod =

(
340

2 × 0.08

)
(2Lrod)

=
(

340

0.16

)
(2 × 1.2) = 5100 m/s

8.76 (i) v = f λ

∴ λ = v

f
= 340

514
= 0.66 m



386 8 Waves

(ii) λ′ = v − vs

f
= 340 − 15

514
= 0.63 m

(iii) λ′ = v + vs

f
= 340 + 15

514
= 0.69 m

8.3.6 Shock Wave

8.77 (a) If an object flies with a supersonic speed (speed greater than that of
sound) a shock wave is emitted, a booming sound. In the two-dimensional
drawing, Fig. 8.9, the wave fronts CB and DB represent the V -shaped
wave. In three dimensions the bunching of the wave fronts actually forms
a cone called the Mach cone. The shock wave lies on the surface of
the cone.

(b) The half-angle θ of the cone called the Mach cone is given by

sin θ = vt

vst
= v

vs
= 1

2

The Mach number = vs

vp
= 2

(c) The Mach angle θ = 30◦

Fig. 8.9 Shock wave

8.3.7 Reverberation

8.78 If V is the volume, S the surface area and K the absorption coefficient then
the reverberation time tR is given by

tR = 0.16V∑
i ki Si

(Sabine Law)

V = 10 × 18 × 4 = 720 m3



8.3 Solutions 387

�Ki Si = 10 × 18 × 0.6

+ 10 × 18 × 0.02 + (18 × 4 + 10 × 4) × 2 × 0.03 + 50 × 0.5

= 143.3

tR = 0.16 × 720

143.3
= 0.8 s

8.3.8 Echo

8.79 The drum rate, that is, frequency when the echo is inaudible, is 40/min or
2/3 per second. Therefore, the time period of drum beats t1 = 3

2 s. Time for
the echo, t1 = 2x

v
, where x is the initial distance from the mountain and v is

the sound velocity.

Thus
2x

v
= 3

2
(1)

On moving 90 m towards the mountain ht is x − 90 m from the mountain, the
drum rate is 60/min or 1/s and again the echo is not heard.
Thus

2(x − 90)

v
= 1 (2)

Solving (1) and (2) we get

x = 270 m and v = 360 m/s.

8.80 (a) If the width of the valley is d m and the rifle shot is fired at a distance x
from one of the mountains the echoes will be heard in time t1 and t2 s:

t1 = 2x

v
(1)

t2 = 2
(d − x)

v
(2)

Adding (1) and (2)

t1 + t2 = 2 + 4 = 2d

v
= 2d

360

Therefore d = 1080 m.
(b) Solving (1) with t1 = 2 s and v = 360 m we find x = 360 m and therefore

d − x = 720 m. Subsequent echoes will be heard after 6, 8, 10,. . . s.
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8.3.9 Beat Frequency

8.81 When the man moves towards the source

f0 = (v + v0) fs

v

When the man moves away from the source

f ′
0 = (v − v0) f ′

s

v

∴ f0 − f ′
0 = v0

v
( fs + f ′

s ) + fs − f ′
s

= 1.5

330
(548 + 552) + 548 − 552 = 1 s

∴ Beat frequency = 1/s.

8.82 Suppose the frequency of the unknown fork (unloaded) is n. Then n = 300±2
Case (i) Suppose n = 300 − 2 = 298
Let the frequency of the loaded unknown fork be n1 and the loaded known
fork be n2:

300 − n1 = 5 (1)

298 − n2 = 9 (2)

Also frequency changes in both the forks are the same

∴ 300 − n2 = 298 − n1

or n2 − n1 = 2 (3)

Subtracting (2) from (1)

n2 − n1 = −6 (4)

Obviously (3) and (4) are inconsistent.
Case (ii) Suppose n = 300 + 2 = 302

300 − n1 = 5 (5)

302 − n2 = 9 (6)

also 300 − n2 = 302 − n1

or n1 − n2 = 2 (7)

Subtracting (5) from (6)

n1 − n2 = 2 (8)

Thus (7) and (8) are consistent. Therefore, correct solution is n = 302.
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8.3.10 Waves in Pipes

8.83 L = v

2 f
= 342

2 × 439
= 0.3895 m

The new frequency with the changed length L1 is

f1 = 439 + 2 = 441

f2 = 439 − 2 = 437

L1 = v

2 f1
= 342

2 × 441
= 0.3877 m

L2 = v

2 f2
= 342

2 × 437
= 0.3913 m

The pipe must be shortened by 0.3895 − 0.3877 = 0.0018 m or 1.8 mm or
lengthened by 0.3913 − 0.3895 = 0.0018 m = 1.8 mm, so that 2 beats/s may
be heard when it is sounded with the fork.

8.84 Time taken for the plate to fall is

t =
√

2h

g
=
√

2 × 10

980
= 1

7
s

Time period

T = t

8
= 1

7 × 8
= 1

56
s

Frequency, f = 1

T
= 56 Hz

8.85 v = vt = v0

√
t + 273

273
= 33150

√
20 + 273

273
= 34343 cm/s

L = (2N + 1)
λ

4
= (2N + 1)v

4 f1
= (2N + 1) × 34, 343

4 × 210
(N = 0, 1, 2) . . . (1)

Also L = (2M + 1)
v

4 f2
= (2M + 1) × 34343

4 × 350
(M = 0, 1, 2 . . .) (2)

Equating right-hand sides of (1) and (2) and simplifying

(2N + 1)

(2M + 1)
= 3

5
(3)

The choice of N = 1 and M = 2 satisfies (3). Using N = 1 in (1) or M in (2)
gives L = 122.65 cm.
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Resonance with tuning forks of different frequencies is possible because
resonance for f = 210 occurs with the first overtone of the tube and for
f = 350 it occurs with the second overtone.

8.86 f = v

2L
(open pipe, fundamental)

f1 = v

L
(open pipe, first overtone)

f2 = 5v

4L
(closed pipe, second overtone)

f2 − f1 = 100 (by problem)

5v

4L
− v

L
= v

4L
= 100

∴ Fundamental frequency of open pipe, f = v

2L
= 200 Hz.



Chapter 9
Fluid Dynamics

Abstract Chapter 9 is concerned with fluid dynamics comprising equation of
continuity, Bernoulli’s equation, Torricelli’s theorem, Reynolds number, viscosity
and terminal velocity.

9.1 Basic Concepts and Formulae

Steady flow (laminar flow): In this type of flow, the velocity of the fluid (liquid or
gas) at a point is always the same although the velocity of the fluid may be different
at different points along the line of flow.

Irrotational flow: In this type of flow the element of fluid at each point has no net
angular velocity about that point. It implies the absence of eddies and vortices.

Incompressible fluid flow: A liquid is incompressible if its density is constant.
Stream lines are imaginary curves drawn through a fluid to indicate the direction

of motion of the flow of the fluid.
Tube of flow is a bundle of stream lines which define the boundary of the fluid.
Turbulent motion and Reynold’s number: For any liquid through a pipe there

exists a critical velocity at which the laminar flow suddenly changes into turbulent
type of flow. The stability of fluid flow is described by a dimensionless quantity
called Reynold’s number (R).

R = ρvd/η (9.1)

where η and ρ are the viscosity and density of the fluid, respectively, d is the diam-
eter of the pipe and v is the velocity. If

R < 2200, the flow is steady
R = 2200, the flow is unstable
R > 2200, the flow is usually turbulent

The Equation of Continuity

The principle of conservation of mass leads to the equation of continuity. For steady
flow, the mass of fluid passing all sections in a stream of fluid per unit time is

391
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constant. At two points 1 and 2,

ρ1 A1v1 = ρ2 A2v2 = constant (one-dimensional flow) (9.2)

For incompressible fluids, ρ1 = ρ2, and (9.2) is reduced to

Q = A1v1 = A2v2 = constant (9.3)

∇.ρv + ∂ρ

∂t
= 0 (equation of continuity in three dimensions) (9.4)

For steady incompressible flow, ρ = constant and (9.4) reduces to

∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= 0 (9.5)

Bernoulli’s equation for steady, non-viscous, incompressible flow

p

ρ
+ gh + 1

2
v2 = constant (9.6)

or P + ρgh + 1

2
ρv2 = constant (9.7)

In (9.6) the first term P/ρ is the pressure head or the potential energy per unit mass
of the liquid due to the pressure, the second term hg is the elevation head or the
potential energy per unit mass of the liquid due to gravity and the third term v2/2
is the kinetic energy per unit mass of the liquid. Thus, Bernoulli’s equation results
from the conservation of energy.

Torricelli’s theorem: A tank is filled with a liquid. An orifice is located at the
side of the tank, at a depth h below the surface of the liquid. Then the velocity of
emergence of the liquid from the orifice is given by

v = √
2gh (9.8)

The venturi meter: It works as a gauge to measure the flow speed of a liquid. Let a
liquid of density ρ flow through a pipe of cross-sectional area A with velocity v. At
the constriction, called throat, the area is reduced to a (Fig. 9.1). A manometer con-
taining a suitable liquid of density serves to register the pressure difference between
points 1 and 2. In Bernoulli’s equation the gravitational energy term will be absent
as the centre of the cross-sectional areas A and a is at the same horizontal level.
Finally, we obtain

v = a

√
2(ρ′ − ρ)gh

ρ(A2 − a2)
(9.9)
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Fig. 9.1

The pitot tube is a device to measure the flow speed of a gas. If ρ ′ is the density of
the liquid in the manometer, ρ the density of the flowing gas and h the difference in
height in the limbs of the manometer, then

v =
√

2ghρ′

ρ
(9.10)

Viscosity: The coefficient of viscosity of a liquid is the tangential force per unit
area per unit velocity gradient. The backward tangential force acting on any liquid
layer is

F = −ηA
dv

dy
(9.11)

where dv/dy is the velocity gradient which is identical with v/y for constant gra-
dient. The negative sign shows that the viscous drag acts opposite to the velocity of
the liquid.

Poiseuille’s Method for Viscosity Determination

Volume V flowing per second through a tube of radius a and length L under pressure
head P is given by

V = π Pa4

8ηL
(9.12)

Terminal velocity

Drag force F = 6πηrv (Stokes law) (9.13)

When a sphere of radius r and of density ρ0 is dropped in an extensive fluid of
density ρ its speed increases linearly as for a free fall (v = gt). However, due to
viscous drag v approaches asymptotically to a constant value vT given by

vT = 2gr2

9η
(ρ0 − ρ) (9.14)
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9.2 Problems

9.2.1 Bernoulli’s Equation

9.1 The radius of a water pipe decreases from 10 to 5 cm. If the average velocity in
the wider portion is 4 m/s, find the average velocity in the narrower region.

9.2 Verify if the continuity equation for steady incompressible flow is satisfied for
the following velocity components:

vx = 3x2 − xy + 2z2, vy = 2x2 − 6xy + y2, vz = −2xy − yz + 2y2

9.3 Air streams horizontally across an aeroplane wing of area 4 m2, weighing
300 kg. The air speed is 70 and 55 m/s over the top surface and the bottom
surface, respectively. Find (a) the lift on the wing; (b) the net force on it.

9.4 A venturi meter has a pipe diameter of 20 cm and a throat diameter of 10 cm.
If the water pressure in the pipe is 60,000 Pa and in the throat is 45,000 Pa,
calculate the rate of flow of water in m3/s.

9.5 A pitot tube which is used to determine the speed of an aircraft relative to
air is mounted on the wing of a plane. The tube contains alcohol of density
810 kg/m3 and registers a level difference of 15.0 cm. Assuming that the den-
sity of air at NTP is 1.293 kg/m3, find the plane’s speed in km/h relative to the
air.

9.6 A garden sprinkler has 80 small holes each 2.5 mm2 in area. If water is supplied
at the rate of 2 × 10−3 m3/s, find the average velocity of the spray.

9.7 For steady, incompressible flow which of the following values of velocity com-
ponents are possible?

(a) vx = 3xy + y2, vy = 5xy + 2x

(b) vx = 3x2 + y2, vy = −6xy

9.8 If the speed of flow past the lower surface of the wing of an aeroplane is
100 m/s, what speed of flow over the upper surface would give a pressure dif-
ference of 1000 Pa? Assume an air density of 1.293 kg/m3.

9.9 A venturi meter has a pipe diameter of 4 cm and a throat diameter of 2 cm. The
velocity of water in the pipe section is 10 cm/s. Find (a) the pressure drop; (b)
the velocity in the throat.

9.10 Water is observed to flow through a capillary of diameter 1.0 mm with a speed
of 3 m/s. Viscosity of water in CGS units is

(a) 0.018 at 0◦C

(b) 0.008 at 30◦C

(c) 0.004 at 70◦C
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Calculate the Reynold’s number and test at which of these three temperatures
is the flow likely to be streamlined. Assume that for Reynold’s number R <

2200 flow is steady.

9.11 A horizontal tube AB of length L , open at A and closed at B, is filled with an
ideal fluid. The end B has a small orifice. The tube is set in rotation in the hor-
izontal plane with angular velocity ω about a vertical axis passing through A,

Fig. 9.2. Show that the efflux velocity of the fluid is given by v = ωl

√
2L

l
− 1

where l is the length of the fluid.

Fig. 9.2

9.12 A pitot tube, Fig. 9.3, is mounted along the axis of a gas pipeline of cross-
sectional area A. Calculate the rate of flow of the gas across the section of the
pipe if h is the difference in the liquid column and ρL and ρg are the densities
of the liquid and the gas, respectively.

Fig. 9.3

9.13 Water flows in a horizontal pipe of varying cross-section. Two manometer
tubes fixed on the pipe, Fig. 9.4, at sections A1 and A2 indicate a difference
�h in the water columns. Calculate the rate of flow of water in the pipe.

9.14 A cylinder filled with water of volume V is fitted with a piston and is placed
horizontally. There is a small hole of cross-sectional area s at the other end of
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Fig. 9.4

the cylinder, s being much smaller than the cross-sectional area of the piston
(Fig. 9.5). Show that the work to be done by a constant force acting on the
piston to squeeze all water from the cylinder in time t is given by

W = 1

2

ρV 3

s2t2

where ρ is the density of water. Neglect friction and viscosity.

Fig. 9.5

9.15 A cylindrical vessel with water is rotated about its vertical axis with a constant
angular velocity ω. Show that

(a) the water pressure distribution along its radius is given by P = P0+
1
2ρω2r2, where ρ is the density of water and P0 is the pressure at the
central point.

(b) Show that the figure of revolution of water is a paraboloid.

9.16 A manometer is fixed to a water tap. When the valve is closed the manometer
shows the reading of 3.5×105 Pa. When the valve is open the reading becomes
3.1 × 105 Pa. Find the speed of water.

9.2.2 Torricelli’s Theorem

9.17 A water container is filled up to a height H . A small hole is punched at the
side wall at a depth h below the water surface. Show (a) that the distance from
the foot of the wall at which the stream strikes the floor is 2

√
h(H − h); (b)

the second hole through which the second stream has the same range must be
punched at a depth H − h.
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9.18 In prob. (9.17) show that the hole must be punched at a depth h = H/2 for
maximum range and that this maximum distance is H .

9.19 A large tank is filled with water at the rate of 70 cm3/s. A hole of cross-section
0.25 cm2 is punched at the bottom of the tank. Find the maximum height to
which the tank can be filled.

9.20 A tank of cross-sectional area A is filled with water up to a height h1. Water
leaks out from a small hole of area ‘a’ at the bottom. Find the time taken for
the water level to decrease from h1 to h2.

9.21 A large tank is filled with water. The total pressure at the bottom is 3.0 atm. If
a small hole is punched at the bottom what is the velocity of efflux?

9.22 Two tanks with a large opening are filled with a liquid. A hole of cross-
sectional area A1 is punched in tank 1 and another of cross-sectional area
A2 in tank 2 at depths h1 and h2, respectively. If A1 = 2A2 and the volume
flux is identical, then what should be the ratio h1/h2?

9.23 A wide container with a small orifice in the bottom is filled with water and
kerosene. If the water column measures 60 cm and kerosene column 40 cm,
calculate the efflux velocity of water. Take the specific gravity of water as 1.0
and kerosene as 0.8 and neglect viscosity.

9.24 A wide vessel filled with water is punched with two holes on the opposite side
each with cross-sectional area of 1.0 cm2. If the difference in height of the
holes is 51 cm, calculate the resultant force of reaction of the water flowing
out of the vessel.

9.2.3 Viscosity

9.25 Water is conveyed through a tube 8 cm in diameter and 4 km in length at the
rate of 120 l/min. Calculate the pressure required to maintain the flow. Coeffi-
cient of viscosity of water, η = 0.001 SI units. 1 atm = 1.013 × 105 Pa.

9.26 Two capillary tubes AB and BC are joined end to end at B. AB is 16 cm long
and of diameter 0.4 cm. BC is 4 cm long and of diameter 0.2 cm. The compos-
ite tube is held horizontally as in Poiseuille’s experiment, with A connected to
a vessel of water giving a constant head of 3 cm and C open to air. Calculate
the pressure difference between B and C.

9.27 Two raindrops fall through air with terminal velocity of vT cm/s. If the drops
coalesce what will be the new terminal velocity?

9.28 Q cm3 of water flows per second through a horizontal tube of uniform bore
of radius r and of length l. Another tube of half the length but radius 2r is
connected in parallel to the same pressure head. What will be the total quantity
of water flowing per second through these two tubes?
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9.29 In prob. (9.28) if the tubes are connected in series then what quantity will flow
through the composite tube?

9.3 Solutions

9.3.1 Bernoulli’s Equation

9.1 From continuity equation

A1v1 = A2v2

∴ v2 = A1v1

A2
= πr2

1 v1

πr2
2

= 102 × 4

52 = 16 m/s

9.2 vx = 3x2 − xy + 2z2

vy = 2x2 − 6xy + y2

vz = −2xy − yz + 2y2

∴ ∂vx

∂x
= 6x − y; ∂vy

∂y
= −6x + 2y; ∂vz

∂z
= −y

∇ · v = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= (6x − y) + (−6x + 2y) − y = 0

Thus the continuity equation for steady incompressible flow is satisfied.

9.3 Pressure difference across the wing

�p = 1

2
ρ(v2

1 − v2
2)

= 1

2
× 1.293 × (702 − 552) = 1212 Pa

(a) Lift = (pressure difference) (area)
= 1212 × 4 = 4848 N

(b) Net force = Lift − Weight of plane

= 4848 − (300 × 9.8)

= 1908 N in the upward direction

9.4 �P = 1

2
ρv2

(
A2

a2 − 1

)

A

a
= π R2

πr2
=
(

10

5

)2

= 4
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60,000 − 45,000 = 1

2
× 1000 × 15v2

or v = 1.414 m / s (throat)

Rate of flow of water

Q = vA = (1.414)(π × 0.012) = 0.0444 m3/s

9.5 v =
√

2ghρ ′

ρ
=
√

2 × 9.8 × 0.15 × 810

1.293
= 42.9 m/s = 154.5 km/h

9.6 Total area of the holes

A = 80 × 2.5 × 10−6 m2 = 2 × 10−4 m2

Q = Av

v = Q

A
= 2 × 10−3

2 × 10−4
= 10 m/s

9.7 (a) vx = 3xy + y2 vy = 5xy + 2x

∂vx

∂x
= 3y; ∂vy

∂y
= 5x

∂vx

∂x
+ ∂vy

∂y
= 3y + 5x �= 0

Therefore, steady incompressible flow is not possible.

(b) vx = 3x2 + y2 vy = −6xy

∂vx

∂x
= 6x; ∂vy

∂y
= −6x

∂vx

∂x
+ ∂vy

∂y
= 6x − 6x = 0

Thus, steady incompressible flow is possible.

9.8 �P = 1

2
ρ(v2

1 − v2
2)

v1 =
√

2�P

ρ
+ v2

2 =
√

2 × 1000

1.293
+ 1002 = 107.45 m/s
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9.9 (a) Q = vthroata = vpipe A

∴ vthroat = vpipe
A

a
= vpipe

D2

d2
= 10 × 42

22
= 40 m/s

(b) �p = 1

2
ρv2

(
A2

a2 − 1

)

= 1

2
× 1000 × 402

(
44

24 − 1

)
= 12 × 106 Pa

9.10 Reynold’s number R = ρDv

η
, where ρ is density, D diameter, v velocity and

η coefficient of viscosity.

(a) R = 1 × 0.1 × 300

0.018
= 1667

Flow is steady because R < 2200

(b) R = 1 × 0.1 × 300

0.008
= 3750

Flow is turbulent because R > 2200

(c) R = 1 × 0.1 × 300

0.004
= 7500

Flow is turbulent because R > 2200

9.11 Consider a mass element dm of the fluid at distance x from the vertical axis.
The centrifugal force on dm is

dF = dm ω2x = dm
dv

dt
= dm

dv

dx
v

vdv = ω2x dx∫
v dv = ω2

∫
x dx

v2

2
= ω2

2
x2
∣∣L
L – l

∴ v = ωl

√
2L

l
− 1

9.12 Applying Bernoulli’s equation to points A and B,

pA + 1

2
ρgv

2 = PB (1)

pA + ρLgh = PB (2)
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Comparing (1) and (2)

v =
√

2ghρL

ρg

9.13 Apply Bernoulli’s equation at the sections A1 and A2:

P1 + 1

2
ρv2

1 = P2 + 1

2
ρv2

2 (1)

∴ p2 − p1 = �p = �hρg = 1

2
ρ(v2

1 − v2
2)

∴ 2g�h = v2
1 − v2

2 (2)

Q = v1 A1 = v2 A2 (3)

v2 = v1 A1

A2
(4)

Using (4) in (2)

2g�h = v2
1
(A2

2 − A2
1)

A2
2

v1 = A2

√
2g�h

A2
2 − A2

1

Q = A1v1 = A1 A2

√
2g�h

A2
2 − A2

1

9.14 Volume of water flowing out per second

Q = sv (1)

where v is the speed and s is the cross-sectional area.
Volume flowing out

V = Qt = svt (2)

1

2
ρv2 = P = F

A
= F L

AL
= W

V
(3)

where L is the length of the cylinder and W is the work done.

∴ W = 1

2

ρV 3

s2t2
(4)

where we have used (2).
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9.15 (a) The components of mω2r parallel to the x-axis and z-axis are mω2x and
mω2z, respectively. Taking y in the upward direction

dp = ρ(ω2xdx + ω2zdz − gdy) (1)

In the x − z-plane, y = constant. Hence dy = 0.
Integrating (1)

p = ρω2x2

2
+ ρω2z2

2
+ C

where C is the constant of integration.

p = ρω2

2
(x2 + z2) + C

= 1

2
ω2r2 + C

p = p0 at r = 0, then C = p0

∴ p = p0 + 1

2
ρω2r2

(b) Particle at P is in equilibrium under centrifugal force and gravity, Fig. 9.6.
Let PM be tangent at P(r, y) making an angle θ with the r -axis. PN is
normal at P. If N is the normal reaction

N cos θ = mg

N sin θ = mω2r

∴ tan θ = ω2r

g

Fig. 9.6
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∴ dy

dr
= ω2r

g

y =
∫

dy = ω2

g

∫
rdr + c

y = ω2r2

2g
+ c

y = 0, r = 0, c = 0

y = 1

2

ω2r2

g

Figure of revolution of the curve is a paraboloid.

9.3.2 Torricelli’s Theorem

9.16 Using Bernoulli’s equation

P2 + 1

2
ρv2

2 = P1 + 1

2
ρv2

1

3.1 × 105 + 1

2
× 1000v2

2 = 3.5 × 105 + 0

v2 = 8.94 m/s

9.17 (a) Use Bernoulli’s equation at two points A and B at height hA and hB,
respectively, Fig. 9.7.

P + ρghA = P + ρghB + ρv2

2
(1)

where P is the atmospheric pressure, ρ is the density of water and v is the
efflux velocity.

Fig. 9.7
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Calling hA − hB = h (2)

v = √
2gh (3)

Using simple kinematics, the range

R = vt = √
2gh

√
2(H − h)

g

R = 2
√

h(H − h) (4)

(b) In (4) R is unchanged if we replace h by H − h. Therefore, the second
hole must be punched at a depth H − h to get the same range.

9.18 From prob. (9.17)

R = 2
√

h(H − h) (1)

Maximum range is obtained by setting dR/dh = 0 and holding H as constant.
This gives h = H/2 and substituting this value in (1), we get Rmax = H .

9.19 For the water level to remain stationary volume efflux = rate of filling = x

vA =
(√

2gh
)

A = x = 70 cm3/s

h = x2

2g A2
= (70)2

2 × 980 × (0.25)2
= 40 cm

9.20 Let the water level be at a height x at any instant. The efflux velocity will be
v = √

2gx . As the water flows out, the level of water comes down, Fig. 9.8.

Fig. 9.8
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Volume flux, Q = av = a
√

2gx

Volume flux is also equal to Q = A
dx

dt

We then have a
√

2gx = A
dx

dt

t =
∫

dt = A

a
√

2g

h1∫

h2

dx√
x

= A

a

√
2

g

[√
h1 −√

h2

]

9.21 Pressure at the bottom due to water column = (3 − 1) atm = 2 atm = 2 ×
105 Pa.

P = hρg

∴ h = P

ρg
= 2 × 105

1000g
= 200

g

v = √
2gh =

√
2g

200

g
= 20 m/s

Second method

Apply Bernoulli’s equation

P1 + 1

2
ρv2

1 = P2 + 1

2
ρv2

2

where the left side refers to the point inside the tank and right side to a point
outside the tank.

3 × 105 + 0 = 1 × 105 + 1

2
× 1000v2

2

∴ v2 = 20 m/s

9.22 Q = v1 A1 = v2 A2

(√
2gh1

)
(2A2) =

(√
2gh2

)
A2

∴ h1

h2
= 1

4

9.23 Apply Bernoulli’s equation to a point just outside the hole and a point at the
top of the kerosene surface. If P is the atmospheric pressure, h1 and h2 the
heights of water and kerosene columns, respectively, ρ1 and ρ2 the respective
densities,
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P + 1

2
ρ1v

2
1 = P + h1ρ1g + h2ρ2g

∴ v1 =
√

2g

(
h1 + h2ρ2

ρ1

)

Substituting h1 = 60 cm, h2 = 40 cm, ρ1 = 1, ρ2 = 0.8 and g = 980, we
find v1 = 425 cm/s or 4.25 m/s.

9.24 Volume efflux at A and B, Fig. 9.9

Fig. 9.9

QA = vAS

QB = vBS

(Mass efflux)A = ρvAS

(Mass efflux)B = ρvBS

Force FA = (rate of change of momentum)A

= ρvASvA = ρSv2
A

= ρS(2gh) = 2ρSgh

FB = 2ρSg(h + �h)

FB − FA = 2 ρ S g � h

(because the vector force is in the opposite direction)

= 2 × 1000 × 1.0 × 10−4 × 9.8 × 0.51 = 1.0 N

9.3.3 Viscosity

9.25 Volume of liquid flowing per second

V = πr4 P

8ηl
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P = 8ηlV

πr4
= 8 × 0.001 × 4000 × 0.002

3.14 × (0.04)4
= 0.0796 × 105 Pa

Pressure head h = P

ρg
= 0.0796 × 105

1000 × 9.8
= 0.8 m

9.26 PA − PB = 8ηl1 Q

π r4
= 8ηQ

π

(0.16)

(2 × 10−3)4
= 8ηQ (0.01)

π × 10−12
(1)

PB − P0 = 8ηQ × (0.04)

π × 10−12 (2)

Adding (1) and (2)

PA − P0 = 8ηQ × 0.05

π × 10−12 (3)

Dividing (2) by (3)

PB − P0

PA − P0
= 0.8

∴ PB − P0 = 0.8 × (PA − P0) = 0.8 × 3 = 2.4 cm of water.

9.27 The terminal velocity vT is given by

vT = 2

9
r2g

(ρ1 − ρ2)

η
(1)

where r is the radius of the drop, ρ1 and ρ2 are the densities of the drop and
air, respectively, g is the gravity and η is the coefficient of viscosity. If the new
radius is r ′ and the new terminal velocity v′

T, then

v′
T

vT
= r ′2

r2
(2)

Under the assumption that the drops are incompressible, the volume remains
constant:

4π

3
(r ′)3 = 2 × 4π

3
r3

∴ r ′ = 21/3r (3)

Using (3) in (2)

v′
T = 22/3vT = 41/3vT
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9.28 For the first tube Q1 = π P r4

8ηl
= Q

For the second tube Q2 = π P(2r)4

8ηl/2
= 32π P r4

8ηl
= 32Q

Total quantity of water flowing is

Q1 + Q2 = Q + 32Q = 33Q

9.29 Let the pressure at the beginning of the first tube be P1 and at the end P2. Since
the water flow must be continuous, the rate of flow in the two tubes must be
identical, that is, Q1 = Q2. Let the atmospheric pressure be P0.

P1 − P2 = 8ηl Q1

πr4
(for the first tube) (1)

P2 − P0 = 8η(l/2)Q2

π(2r)4
= 8ηl Q1

32πr4
(for the second tube) (2)

Adding (1) and (2)

P1 − P0 = 8ηl

πr4

33Q1

32
(3)

But P1 − P0 = 8ηl Q

πr4
(for single tube of length l and radius r ) (4)

Comparing (3) and (4), we get Q1 = 32Q

33
.



Chapter 10
Heat and Matter

Abstract Chapter 10 is devoted to kinetic theory of gases, collision cross-section,
mean free path, van der Waal’s equation, thermal expansion of solids, liquids and
gases; gas equation, heat conduction in composite slabs and sphere; Newton’s law of
cooling, radiation problems covering Boltzmann law and Wien’s law, specific heat
and latent heat, thermodynamics, indicator diagrams, the Carnot, Otto and Sterling’s
cycles, thermodynamic relations, elasticity and surface tension.

10.1 Basic Concepts and Formulae

The mean free path λ of a gas molecule is the average distance travelled by the
molecule between successive collisions

λ =
∑

xi/N (10.1)

The average time of collision T is related to λ and <v> the mean speed by

λ = <v>T = <v>/ f (10.2)

where f = 1/T (10.3)

is the collision frequency.

N (v) dv = 4π N [m/2πkT ]3/2v2 exp[−mv2/2kT ]dv (Maxwell’s law) (10.4)

Assuming Maxwell’s law of velocity distribution,

Most probable speed vp =
√

2kT

m
=
√

2RT

M
(10.5)

Average speed < v >=
√

8kT

πm
=
√

8RT

π M
(10.6)

Root-mean-square speed
√

< v2 > =
√

8kT

m
=
√

8RT

M
(10.7)

409
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where k is Boltzmann constant, T the absolute temperature, m the particle mass,
R the gas constant and M the molecular weight.

λ = v

4π
√

2 r2 N
(10.8)

where N= nV , n is the number of molecules per unit volume and V is the volume
of the gas.

Gas Laws

PV = n RT (gas equation) (10.9)

ρ1T1

P1
= ρ2T2

P2
(10.10)

Thermal Expansion

L = L0[1 + α�T ] (linear expansion) (10.11)

β = 2α, γ = 3α (10.12)

where α is the coefficient of linear expansion, β is the coefficient of areal expansion
and γ that of volume expansion.

Thermal Expansion and Elasticity

Force F = Y aα�T (10.13)

where Y is Young’s modulus and a the cross-sectional area.
The coefficient A of apparent expansion of a liquid

A = γ − g = γ − 3α (10.14)

where γ is the absolute volume coefficient of expansion of liquid and g that of the
container.

Apparent expansion of liquid = mass expelled

(mass left)(temperature rise)

Heat Transfer

Heat conduction through a slab:

− dQ

dr
= k1 A

(
T1 − T2

d

)
(10.15)
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Rate of heat flow is directly proportional to the temperature gradient dT/dx and
the cross-sectional area and inversely proportional to the thickness. The constant of
proportionality k is known as thermal conductivity.

Heat conduction is through a composite slab made of two slabs of thickness d1
and d2 and thermal conductivity k1 and k2, respectively, in series, the end tempera-
tures being T1 and T2. The equivalent conductivity is given by

keq = d1 + d2(
d1

k1

)
+
(

d2

k2

) (10.16)

The temperature of the interface is given by

T =

(
k1T1

d1

)
+
(

k2T2

d2

)

(
k1

d1

)
+
(

k2

d2

) (10.17)

The rate of flow of heat in a composite slab made of n slabs in parallel:

−dQ

dt
= (T1 − T2)

d

∑n

i=1
ki Ai (10.18)

keq =
∑

ki Ai∑
Ai

(10.19)

Convection

Rate of cooling:

− dθ

dt
= C(θ − θ0) (Newton’s law of cooling) (10.20)

where θ is the mean temperature, θ0 the room temperature and C a constant.

Radiation

Rate of energy loss:

− dE

dt
= σ A

(
T 4

1 − T 4
2

)
(Stefan–Boltzmann formula) (10.21)

where A is the area of the radiator, T1 is its absolute temperature, T2 is the absolute
temperature of the surroundings and σ is known as Stefan–Boltzmann constant.

Wien’s Law

λm · T = b = 3 × 10−3 m − K (10.22)
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The wavelength λm for the maximum intensity of black body spectrum is inversely
proportional to the absolute temperature of the body.

Thermodynamics

Process Quantity that remains constant
(i) Isobaric Pressure

(ii) Isochoric Volume
(iii) Isothermal Temperature
(iv) Adiabatic Heat

First law of Thermodynamics

�Q = �U + W (10.23)

�Q is positive if heat is absorbed by the system and negative if heat is evolved.
Internal energy U of a system tends to increase if energy is added as heat and tends to
decrease if energy is lost as work done by the system. Both Q and W are dependent
while U is path independent.
Work done by the system:

Isobaric process: W = ∫
P dV = P(V1 − V2)

Isochoric process: W = 0, �Q = �U

Isothermal process: W = −nRT ln

(
V2

V1

)
, dU = 0, dQ = dW

Adiabatic process: W = 1

γ − 1
(P2V2 − P1V1), dQ = 0, dU = −dW

where γ is the ratio of two specific heats (cp/cv).

The change in entropy

�S =
∫

dQ

T
(10.24)

Enthalpy (H ) is the total heat and is defined by

H = U + PV (10.25)

Gibb’s function (G) is defined by

G = U + PV − T S (10.26)

Number of degrees of freedom

f = 2

γ − 1
(10.27)
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Heat Engines Thermodynamic efficiency

e = Work done by the gas

Heat put into the system
= W

Qin
(10.28)

The Carnot cycle consists of two isothermal processes and two adiabatic processes.
The Sterling cycle consists of two isothermal processes and two isochoric pro-

cesses.
The Otto cycle consists of two adiabatic processes and two isochoric processes.

e = (QH − QC)/QH (10.29)

e = (TH − TC)TH (10.30)

where the symbols H and C are for hot and cold reservoirs.

Elasticity

Stress = force/area = F/A
Strain = elongation/original length = �L/L
Young’s modulus(Y ) = stress/strain = F L/A�L
Shear modulus (η) = shear stress/shear strain = Fy/A�x

Bulk modulus (K )= pressure increment/volume strain = �P

−�V/V
Poisson’s ratio (σ )= lateral contraction per unit length/longitudinal elongation

per unit length.
Relations for the elastic moduli:

Y = 9ηK

3K + η
= 2n(1 + σ) = 3K (1 − 2σ) (10.31)

σ = 3K − 2η

6K + 2η
(10.32)

Surface Tension

Excess pressure in a drop

P = 2S/r (10.33)

Excess pressure in a bubble

P = 4S/r (10.34)

Pressure in a bubble due to electric charges

P = σ2/2ε0 (10.35)

where σ is the charge density and ε0 is the permittivity.
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Energy released in coalescing n droplets each of radius r into a large drop of
radius R

�W = 4πr2(n − n2/3)S (10.36)

�W = 4π R2(n
1
3 − 1)S (10.37)

Capillary rise:

2S cos θ = (h + r/3)rρg (10.38)

where θ is the angle of contact, r is the radius of the bore and h is the height of the
liquid column.

10.2 Problems

10.2.1 Kinetic Theory of Gases

10.1 Define the mean free path of a gas both mathematically and in words. Calcu-
late the mean free path of a molecule in a gas if the number of collisions is
2 × 1010/s and the mean molecular velocity is 1000 m/s.

[University of Manchester 2008]

10.2 (a) Consider a gas that has a molecular weight of 28 and a temperature of
27◦C. What is the rms speed of molecule of the gas if it has a Maxwellian
velocity distribution? The ideal gas constant is 8.31 J/mol K.

(b) What is the mean free path of a molecule if the pressure is 2 atm (1 atm =
101.3 kPa), the temperature is 27◦C, and the cross-section is 0.43 nm2?
Using the average velocity from part (a) calculate the collision frequency
for the molecule. Boltzmann’s constant is 1.38 × 10−23 J/K.

10.3 (a) By considering a volume, V , of ideal gas, containing N spherical
molecules with radius r , show that the mean free path of the molecules
can be defined by the equation

λ = V

4π
√

2r2 N

(b) Hence, or otherwise, calculate the mean free path of air at 100◦C and
1.01 × 105 Pa. Assume that the molecules of air are spheres of radius
r = 2.0 × 10−10 m.
(k = 1.38 × 10−23 J/K)

[University of Aberystwyth, Wales]

10.4 Figure 10.1 shows the Maxwell–Boltzmann velocity distribution functions
of a gas for two different temperatures, of which first (curve f1) is for
T1 = 300 K.
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Fig. 10.1 Maxwell–
Boltzmann velocity
distributions

(a) Read the approximate value for the most probable speed of the molecules
from the diagram for each of the two cases.

(b) What is the temperature, T2, when the velocity distribution is given by f2?
(c) Indicate the average speeds in the diagram for each of the two

temperatures and give the ratio between the two average speeds.
(d) The gas consists of 5 mol of molecules. If the molecular velocity

distribution is given by f2, estimate the number of those molecules in
the gas which have a speed between vA = 800 m/s and vB = 900 m/s.

10.5 If the Maxwell–Boltzmann distribution of speeds is given by

f (v) = 4π
( m

2πkT

) 3
2
v2e

−mv2

2kT

show that the most probable speed is defined by the equation

vmp =
(

2kT

m

)1/2

10.6 For carbon dioxide gas (CO2, molar mass = 44.0 g/mol) at T = 300 K,
calculate

(i) the mean kinetic energy of one molecule
(ii) the root mean square speed, vrms

(iii) the most probable speed, vmp
(iv) the average speed, vav

(R = 8.31 J/K/mol, k = 1.38 × 10−23 J/K, NA = 6.02 × 1023/mol)

10.7 (a) Give three assumptions that are made when deriving the properties of an
ideal gas using a molecular model.
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(b) A weather balloon is loosely filled with 2 m3 of helium at 1 atm. and
27◦C. The balloon is then released, and by the time it has reached an
elevation of 7000 m the pressure has dropped to 0.5 atm. and the balloon
has expanded. If the temperature at this elevation is −48◦C, what is the
new volume of the balloon?

10.8 van der Waal’s equation can be written in terms of moles per volume as

n

V
=

⎛
⎜⎜⎝

p + a
n2

V 2

RT

⎞
⎟⎟⎠
(

1 − b
n

V

)

The van der Waal’s parameters for hydrogen sulphide gas (H2S) are a =
0.448 J m3/mol2 and b = 4.29 × 10−5 m3/mol. Determine an estimate of
the number of moles per volume of H2S gas at 127◦C and a pressure of
9.80 × 105 Pa as follows:

(a) Calculate as a first approximation using the ideal gas equation,
n

V
= p

RT
.

(b) Substitute this first approximation into the right-hand side of the equation

derived in part (a) to find a new approximation of
n

V
(on the left-hand

side) that takes into account real gas effects.

10.2.2 Thermal Expansion

10.9 Two parallel bars of different material with linear coefficient of expansion
α1 and α2, respectively, are riveted together at a distance d apart. An increase
in temperature �T will cause them to bend into circular arcs with a common
centre subtending an angle θ at the centre (Fig. 10.2). Find the mean radius of
curvature.

Fig. 10.2 Expansion of a bimetal strip of bars
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10.10 A 20 m long steel rail is firmly attached to the road bed only at its ends. The
sun raises the temperature of the rail by 30◦C, causing the rail to buckle.
Assuming that the buckled rail consists of two straight parts meeting in the
centre, calculate how much the centre of the rail rises? For steel α = 12 ×
10−6/◦C.

10.11 What should be the lengths of a steel and copper rod if the steel rod is 4 cm
longer than the copper rod at any temperature. α(steel) = 1.1 × 10−5/◦C;
α (copper) = 1.7 × 10−5/◦C.

10.12 A 1 l glass flask contains some mercury. It is found that at different tem-
peratures the volume of air inside that flask remains the same. What is the
volume of mercury in this flask? Coefficient of linear expansion of glass =
9×10−6/◦C; coefficient of volume expansion of mercury = 1.8×10−4/◦C.

[Indian Institute of Technology 1973]

10.13 A steel wire of cross-sectional area 0.5 mm2 is held between two fixed sup-
ports. If the tension in the wire is negligible and it is just taut at a temperature
of 20◦C, determine the tension when the temperature falls to 0◦C (assume
that the distance between the supports remains the same). Young’s modulus
of steel = 2.1 × 1011 dynes/cm2; α = 12 × 10−6/◦C.

[Indian Institute of Technology 1973]

10.14 A glass vessel just holds 50 g of toluene at 0◦C. What mass of toluene will it
hold at 80◦C if between 0 and 80◦C the expansion coefficients are constant.
The coefficient of linear expansion of glass is 8 × 10−6/◦C and the absolute
expansion of toluene is 11 × 10−4◦

C.
[University of Dublin]

Gas Laws

10.15 Determine the constant in the gas equation given that a gram molecule of a
gas occupies a volume of 22.4 l at NTP. [University of Durham]

10.16 A bubble of gas rises from the bottom of a lake 30 m deep. At what depth will
the volume be thrice as great as it was originally (atmospheric pressure =
0.76 m of mercury; specific gravity of mercury = 13.6)?

10.17 A balloon will carry a total load of 175 kg when the temperature and pressure
are normal. What load will the balloon carry on rising to a height at which
the barometric pressure is 50 cm of mercury and the temperature is −10◦C,
assuming the envelope maintains a constant volume?

[University of London]

10.18 Two glass bulbs of volume 500 and 100 cc are connected by a narrow tube
whose volume is negligible. When the apparatus is sealed off, the pressure



418 10 Heat and Matter

of the air inside is 70 cm of Hg and the temperature 20◦C. What does the
pressure become if the 100 cc bulb is kept at 20◦C and the other is heated
to 100◦C?

[University of Durham]

10.2.3 Heat Transfer

10.19 Two slabs of cross-sectional area A and of thickness d1 and d2 and thermal
conductivities k1 and k2 are arranged in contact face to face. The outer face
of the first slab is maintained at temperature T1

◦C, that of the second one at
T2

◦C and the interface at T ◦C. Calculate

(a) Rate of flow of heat through the composite slab
(b) The interface temperature
(c) The equivalent conductivity

10.20 n slabs of the same thickness, the cross-sectional area A1, A2, . . . , An and
thermal conductivities k1, k2, . . . , kn are placed in contact in parallel and
maintained at temperatures T1 and T2. Calculate

(a) the rate of flow of heat through the composite slab
(b) the equivalent conductivity

10.21 A bar of copper and a bar of iron of equal length are welded together end
to end and are lagged. Determine the temperature of the interface when the
free end of the copper bar is at 100◦C and the free end of the iron is at
0◦C and the conditions are steady. Thermal conductivities: copper = 92,
iron = 16 cal/m/s/◦C.

[University of Durham]

10.22 A block of ice is kept pressed against one end of a circular copper bar of
diameter 2 cm, length 20 cm, thermal conductivity 90 SI units and the other
end is kept at 100◦C by means of a steam chamber. How long will it take
to melt 50 g of ice assuming heat is only supplied to the ice along the bar,
L = 8 × 104 cal/kg.

[University of Dublin]

10.23 At low temperatures, say below 50 K, the thermal conductivity of a metal
is proportional to the absolute temperature, that is, k = aT , where a is a
constant with a numerical value that depends on the particular metal. Show
that the rate of heat flow through a rod of length L and cross-sectional area A

and whose ends are at temperatures T1 and T2 is given by Q = a A

2L
(T 2

1 −T 2
2 ).

10.24 Find the radial flow of heat in a material of thermal conductivity placed
between two concentric spheres of radii r1 and r2 (r1 < r2) which are main-
tained at temperatures T1 and T2 (T1 > T2).
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10.25 Find the radial rate of flow of heat in a material of thermal conductiv-
ity k placed between a co-axial cylinder of length L and radii r1 and r2,
respectively (r1 < r2), maintained at temperatures T1 and T2, respectively
(T1 > T2).

10.26 A small pond has a layer of ice on the surface that is 1 cm thick. If the air
temperature is −10◦C, find the rate (in m/h) at which ice is added to the
bottom of the layer. The density of ice is 917 kg/m3, the thermal conductivity
of ice is 0.59 W/m/K, and the latent heat of fusion is 333 kJ/kg. Assume that
the underlying water is at 0◦C.

10.27 An object is cooled from 85 to 75◦C in 2 min in a room at 30◦C. What time
will be taken for the object to cool from 55 to 45◦C.

10.28 A calorimeter containing first 40 g and then 100 g of water is heated and sus-
pended in the same constant temperature enclosure. It is found that the time
to cool from 50 to 40◦C in the two cases was 15 and 33 min, respectively.
Calculate the water equivalent of the calorimeter.

10.29 Two steel balls of identical material and surface quality have their radii in
the ratio 1:2. When heated to 100◦C and left to cool, they lose their heat by
radiation. Find the rate of cooling dθ/dt for the balls.

10.30 A resistance thermometer gives readings of 24.9 � at the ice point, 29.6 �

at the steam point and 26.3 � at some unknown temperature. What is the
unknown temperature on the Celsius scale?

[The University of Wales, Aberystwyth 2004]

10.31 Solar constant (S) is defined as the average power received from the sun’s
radiation per square metre of earth’s surface. Calculate S assuming sun’s
radius (R) as 6.95×108 m, the mean earth–sun distance (r ) as 1.49×1011 m,
sun’s surface temperature T = 5740 K and Boltzmann’s constant σ = 5.67×
10−8 W/m2/K4.

10.32 Calculate the temperature of the solar surface if the radiant intensity at
the sun’s surface is 63 MW/m2. Stefan–Boltzmann constant σ = 5.67 ×
10−8 W/m2/K4.

10.33 Calculate the amount of heat lost per second by radiation by a sphere 10 cm
diameter at a temperature of 227◦C when placed in an enclosure at 27◦C
(σ = 5.67 × 10−8 W/m2/K4)

[Nagarjuna University 2002]

10.34 A body emits most intense radiation at λm = 480 nm. If the temperature of
the body is lowered so that total radiation is now 1/16 of the previous value,
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what is the wavelength of the most intense radiation under new conditions?
Wien’s constant b = 3 × 10−3 m K.

10.2.4 Specific Heat and Latent Heat

10.35 The latest heat of fusion of a material is 6 kJ/mol and the heat capacity (Cp)
in solid and liquid phases of the material is a linear function of temperature
Cp = 30.6 + 0.0103 T , with units J/mol/K. How much heat is required to
increase the temperature of 1 mol of the material from 20 to 200◦C if the
fusion phase transition occurs at 80◦C?

[University of Manchester 2007]

10.36 The variation of the specific heat of a substance is given by the expression
C = A + BT 2, where A and B are constants and T is Celsius temperature.
Show that the difference between the mean specific heat and the specific heat
at midpoint T/2 is BT 2/12.

10.37 The temperature of equal masses of three different liquids A, B and C is 12,
18 and 28◦C, respectively. When A and B are mixed the temperature is 16◦C.
When B and C are mixed, it is 23◦C. What would be the temperature when
A and C are mixed?

[Indian Institute of Technology 1976]

10.38 A 3.0 g bullet moving at 120 m/s on striking a 50 g block of wood is arrested
within the block. Calculate the rise of temperature of the bullet if (a) the
block is fixed; (b) the block is free to move. The specific heat of lead is
0.031 cal/g◦C.

10.39 Calculate the difference in temperature between the water at the top and bot-
tom of a 25 m high waterfall assuming that 15% of the energy of fall is spent
in heating the water (J = 4.18 J/Cal).

[University of Durham]

10.40 A piece of lead falls from a height of 100 m on to a fixed non-conducting
slab which brings it to rest. Show that its temperature immediately after
the collision is raised by approximately 7.1 K (the specific heat of lead is
30.6 cal/kg 0◦C between 0 and 100◦C).

10.2.5 Thermodynamics

10.41 (a) Define

(i) an isobaric process
(ii) an isochoric process
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(iii) an adiabatic process
(iv) an isothermal process

(b) Show that the work done on a gas during an adiabatic compression from
initial conditions (P1, V1) to final conditions (P2, V2) is given by the
equation

W = 1

γ − 1
(p2V2 − p1V1)

10.42 A sample containing 2 k mol of monatomic ideal gas is put through the cycle
of operations as in Fig. 10.3. Find the values of TA, TB and VC.

Fig. 10.3 A thermodynamic
cycle

10.43 Show that for a monatomic ideal gas undergoing an adiabatic process,
PV 5/3 = constant.

10.44 (a) State the first law of thermodynamics, expressing the law in its infinitesi-
mal form. Explain carefully each term used and note whether or not each
term is path dependent.

(b) Show that the work done on a gas during an isothermal compression
from an initial volume V1 to a final volume V2 is given by the equation

W = −nRT ln

(
V2

V1

)

(c) An ideal gas system, with an initial volume of 1.0 m3 at standard tem-
perature and pressure, undergoes the following three-stage cycle:
Stage 1 – an isothermal expansion to twice its original volume.
Stage 2 – a process by which its volume remains constant, its pressure
returns to its original value and 104 J of heat is added to the system.
Stage 3 – an isobaric compression to its original volume, with 3 × 104 J
of heat being removed from the system.

(i) How many moles of gas are present in the system?
(ii) Calculate the work done on the system during each of the three

stages.
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(iii) What is the resultant change in the internal energy over the whole
three-stage cycle?
(At STP, temperature = 0◦C = 273.15 K and pressure = 1 atm =
1.01 × 105 Pa, R = 8.31/J/K/mol.)

10.45 The initial values for the volume and pressure of a certain amount of nitrogen
gas are V1 = 0.06 m3 and p1 = 105 N/m2, respectively.

First, the gas undergoes an isochoric process (process 1–2), which triples
the pressure; then it is followed by an isobaric process (process 2–3), which
reduces the volume by a factor of three; finally, the volume of the gas is
tripled by an isothermal process (process 3–4).

(a) Give the initial and final temperatures, T1 and T4, of the nitrogen gas if
the temperature after the first (isochoric) process is T2 = 1083 K.

(b) Find the volume, V4, and pressure, p4, at the final state of the gas, then
sketch the three processes in a p–V diagram.

(c) How much heat is gained by the nitrogen gas during the first (isochoric)
process and how much heat is given away by the nitrogen gas during
the second (isobaric process)? The amount of heat required to raise the
temperature of 1 mol of nitrogen by 1 K while the gas pressure is kept
constant is cp = 29.12 J/(mol K).

(d) Find the change in the internal energy of the nitrogen gas by the end of
the final process compared to the initial value.

[University of Aberystwyth, Wales]

10.46 When a gas expands adiabatically, its volume is doubled while its absolute
temperature is decreased by a factor 1.32. Compute the number of degrees
of freedom for the gas molecules.

10.47 A heat engine absorbs heat of 105 k cal from a source, which is at 127◦C and
rejects a part of heat to sink at 27◦C. Calculate the efficiency of the engine
and the work done by it.

[Osmania University 2004]

10.48 A reversible engine has an efficiency of 1/6. When the temperature of the
sink is reduced by 62◦C its efficiency gets doubled. Find the temperatures of
the source and the sink.

10.49 Assuming that air temperature remains constant at all altitudes and that the
variation of g with altitude is negligible

(a) show that the pressure P at an altitude h above sea level is given by
p = p0 exp(−Mgh/RT ), where M is the molecular weight of the gas.

(b) show that n = n0 exp(−Mgh/RT ) where n is the number of molecules
per unit volume.

(c) taking the average molecular weight of air to be 29 g, calculate the height
at which the air pressure would be half the value at sea level.



10.2 Problems 423

10.50 (a) Write down the efficiency for a Carnot cycle as a function of

(i) the heat flows to and from the reservoirs and
(ii) the temperatures of the two reservoirs.

(b) Describe the working of an Otto engine and efficiency for the air stan-
dard Otto cycle as a function of temperature as well as volume. Start by
sketching this cycle in a standard P–V diagram. Explain the four steps
of this cycle in terms of associated temperature and volume changes as
well as the heat exchanged with external reservoirs.

(c) Compare the Carnot and the Sterling cycle using P–V diagram.

10.51 (a) 1 × 10−3 m3 of He at normal conditions (p0 = 1 bar, T0 = 0◦C) is
heated to a final temperature of 500 K. What is the entropy change for

(i) an isobaric and
(ii) an isochoric process?

Use CP
He = 21 J/(mol K) and CV

He = 12.7/(mol K).

(b) Calculate the change in entropy �S1 for 1 kg of water being heated from
0 to 50◦C. Compare this change in entropy �S2 for 0.5 kg of water at
0◦C being mixed with 0.5 kg of water at a temperature of 100◦C. Use
CV

H2O = 4.13 × 103 J/(kg K).

10.52 Consider a reversible isothermal expansion of an ideal gas in contact with the
reservoir at temperature T , from an initial volume V1 to a final volume V2.

(a) What is the change in the internal energy of the system?
(b) Calculate the work done by the system.
(c) What is the amount of heat absorbed by the system?
(d) Find the change of entropy of the system.
(e) Find the change of the entropy of the system plus the reservoir.

10.53 Internal energy, heat, enthalpy, work, and the Gibbs free energy (Gibbs func-
tion) are all measured in units of joules.

(a) What is the difference between these forms of energy? Write down the
equations relating these forms of energy.

(b) Which of the above are state variables? What properties distinguish a
state variable from other variables?

10.2.6 Elasticity

10.54 (a) A 100 MPa force is applied to the surface of a material (surface area,
1 m2) that exerts a shear across the material (Fig. 10.4). The sample has
a thickness of 10 cm and causes the surface to be displaced by 0.1 cm.
What is the shear modulus of the material?
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Fig. 10.4 Shear deformation

(b) What is the bulk modulus of a material if a 100 MPa increase in pressure
causes a 1% reduction in its volume?

[University of Manchester 2008]

10.55 A wire has a length of 10 m and a cross-sectional area of 20 mm2. When a
20 kg block of lead is attached to it, it stretches by 2.5 cm. Find

(i) the stress
(ii) the strain

(iii) Young’s modulus for the wire

10.56 Show that the isothermal elasticity KT = P and adiabatic elasticity KH =γ P .

10.57 For a given material, the Young’s modulus is 2.5 times the rigidity modulus.
Find its Poisson’s ratio.

10.58 A 1.2 m long metal wire is fixed securely at both ends to two solid supports
so that the wire is initially horizontal. When a 29 g mass is attached from
the midpoint of the wire, the midpoint is observed to move down by 20 mm.
If the diameter of the wire is 0.1 mm, estimate the Young’s modulus for the
wire material.

[The University of Wales, Aberystwyth 2004]

10.59 The rubber cord of a catapult has a cross-sectional area of 2 mm and an initial
length of 0.2 m and is stretched to 0.25 m to fire a small object of mass 15 g.
If the Young’s modulus is Y = 6 × 108 N/m2, what is the initial velocity of
the object that is released?

10.60 A 10 kg object is whirled in a horizontal circle on the end of a wire. The wire
is 0.3 m long and has a cross-section 10−6 m2 and has the breaking stress
4.8 × 107 N/m2. What is the maximum angular speed the object can have?

10.61 A steel wire is fixed at one end and hangs freely. The breaking stress for steel
is equal to 7.8×108 N/m2 and its density is 7800 kg/m2. Find the maximum
length of the wire so that it does not break under its own weight.



10.3 Solutions 425

10.2.7 Surface Tension

10.62 If the surface tension of the liquid–gas interface is 0.072 N/m, the density is
1 kg/L and the radius of the capillary is 1 mm, to what height will the liquid
rise up the capillary?

[University of Manchester 2007]

10.63 A mole of gaseous molecules in a bubble obeys the ideal gas law. What is the
volume of the bubble at a 100 m depth of water if the temperature is 293 K,
the atmospheric pressure is 101 kPa, density of water is 1000 kg/m3 and the
ideal gas constant is 8.314 J/mol/K.

[University of Manchester 2008]

10.64 Let n droplets each of radius r coalesce to form a large drop of radius R.
Assuming that the droplets are incompressible and S is the surface tension
calculate the rise in temperature if c is the specific heat and ρ is the density.

10.65 A soap bubble of surface tension 0.03 N/m is blown from 1 cm radius to 5 cm
radius. Find the work done.

10.66 A small hollow vessel which has a small hole in it is immersed in water to
a depth of 45 cm before any water penetrates into the vessel. If the surface
tension of water is 0.073 N/m, what should be the radius of the hole?

10.67 What will be the depth of water at which an air bubble of radius 0.3×10−3 m
may remain in equilibrium (surface tension of water = 0.072 N/m and g =
9.8 m/s2)?

10.68 A capillary tube of radius 0.2 mm and of length 6 cm is barely dipped
in water. Will the water overflow through the capillary? If not what hap-
pens to the meniscus (surface tension of water = 0.073 N/m and angle of
contact = 0◦)?

10.69 A soap bubble of radius 2.0 cm is charged so that the excess of pressure due
to surface tension is neutralized. If the surface tension is 0.03 N/m, what is
the charge on the bubble?

10.70 Two soap bubbles with radii r1 and r2 coalesce to form a bigger bubble of

radius r . Show that r =
√

r2
1 + r2

2 .

10.3 Solutions

10.3.1 Kinetic Theory of Gases

10.1 The mean free path λ of a gas molecule is the average distance travelled by
the molecule between successive collisions.

λ = x/N (1)
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where x is the total distance travelled and N is the number of collisions.
In terms of frequency f , average time of collision T and the mean molecular
velocity v,

λ = vT = v

f
= 1000

2 × 1010
= 5 × 10−8 m

10.2 (a)
√〈

v2
〉 =

√
3RT

M
=
√

3 × 8.31 × 300

28 × 10−3
= 516.8 m/s

(b) R = kn0 = 1.38 × 10−23 × 6.02 × 1023 = 8.3 J/mol K

N = PV

RT
= 2 × 1.013 × 105 × 1

8.3 × 300
= 81.365 mol/m3

n = number/m3 = 6.02 × 1023 × 81.365

28 × 10−3 = 2.15 × 1025/m3

λ = 1

σn
= 1

0.43 × 10−18 × 2.15 × 1025 = 1.082 × 10−7 m

f = v

λ
= 516.8

1.082 × 10−7 = 4.78 × 109/s

10.3 (a) Collision cross-section between two molecules each of radius r is equiv-
alent to collision of one molecule of radius 2r with another point size
molecule. Therefore the cross -section will be

σ = π(2r)2 = 4πr2 (1)

Consider a rectangular box of face area l m2 and length λ metres. Then
the volume of the box V = λ m3. If n is the number of molecules per
unit volume then λ is such that the total projected area arising from n
molecules will just fill up an area of 1 m2.

∴ nλσ = 1

or λ = 1

nσ
= V

4πr2 N
(2)

where we have used (1) and set n = N/V .
Equation (2) in based on the assumption that the target molecules are
stationary. In practice, the molecule hits moving targets. This leads to an
increase of collision frequency by a factor of

√
2 and therefore a decrease

in the cross-section by a factor
√

2. The corrected expression for mean
free path is then

λ = V

4π
√

2r2 N
(3)
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(b) R = N0k = 6.02 × 1023 × 1.38 × 10−23 = 8.3 J/mol K (1)

PV = NRT (2)

1.01 × 105 V = 8.13 × 373 N (3)

whence N = 33.3 mol/m3

n = number/m3 = 33.3 × 6.02 × 1023 = 2 × 1025/m3

λ = 1

nσ
√

2
= 1

2 × 1025 × 4π
(
10−10

)2 √
2

= 10−7 m.

10.4 (a) For curve f1, vmp = 425 m/s; for curve f2, vmp = 850 m/s (Fig. 10.5).

Fig. 10.5 Maxwell–
Boltzman velocity
distribution

(b) vmp ∝ √
T

∴ T2 = T1v
2
mp(1)

v2
mp(2)

= 300

(
850

425

)2

= 1200 K

(c) v̄ = √
4/πvmp

v̄1 = 1.1287 × 425 = 480 m/s

v̄2 = 1.1287 × 850 = 959 m/s

v̄1/v̄2 = 1/2

(d) and (e)

vmp =
√

2kT

m
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∴ m = 2kT

v2
mp

= 2 × 1.38 × 10−23 × 1200

(850)2 = 4.584 × 10−26 kg

= 4.584 × 10−26

1.66 × 10−27
amu = 27.6 amu

Therefore the gas is N2.
In 5 mol of gas total number (N ) of gas molecules will be

N = 5

28
× 6.02 × 1023 = 1.075 × 1023

Number of molecules N (v) dv in the interval v and v + dv will be

N (v)dv = 4πN
( m

2πkT

)3/2
v2 exp

[
−mv2

2kT

]
dv (Maxwellian distribution)

(2)

The mean value of the interval is v = 800 + 900

2
= 850 m/s

which happens to be identical with vmp found in (a). In this case (2) is
reduced to a simpler form

N (v)dv = 4N dv√
π e vmp

Number of N2 molecules in 5 mol will be

N = 5

28
× 6.02 × 1023 = 1.075 × 1023

The speed interval

dv = 900 − 800 = 100 m/s

Thus the required number of molecules is

N (v)dv = 4 × 1.075 × 1023 × 100√
π × 2.718 × 850

= 1.05 × 1022
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10.5 f (v) = 4π
( m

2πkT

)3/2
v2e−mv2/2kT

d f (v)

dv
= const.

d

dv

[
v2e−mv2/2kT

]
= 0

∴ e−mv2/2kT
[
2v − m

kT
v3
]

= 0

whence v = 0,∞,

√
2kT

m

The most probable speed is vmp =
√

2kT

m

10.6 (i) Ē = 3

2
kT = 3

2
× 1.38 × 10−23 × 300 = 6.21 × 10−21 J

(ii)
√

v2 =
√

3RT

M
=
√

3 × 8.31 × 300

44 × 10−3
= 412.3 m/s

(iii) vmp =
√

2RT

M
=
√

2 × 8.31 × 300

44 × 10−3
= 336.6 m/s

(iv) vav =
√

8RT

π M
=
√

8 × 8.31 × 300

44 × 10−3π
= 380.0 m/s

10.7 (a) Assumptions:

(i) The molecules of a gas behave like hard, smooth spheres and of neg-
ligible size compared to that of the container.

(ii) The molecules are in random motion undergoing collisions with one
another and with the walls of the container for negligible duration.

(iii) Newton’s laws of motion are applicable and the number of molecules
is large so that statistics may be applied.

(b) P1V1

T1
= P2V2

T2
(from the gas equation)

∴ V2 = P1

P2
· T2

T1
V1 = 1

0.5
× (273 − 40)

(273 + 27)
× 2 = 3.1 m3

10.8 (a)
n

V
= P

RT
= 9.8 × 105

8.31 × 400
= 294.8 mol/m3

(b)
n

V
=

⎡
⎢⎢⎣

P + a
n2

V 2

RT

⎤
⎥⎥⎦
(

1 − bn

V

)

=
[

9.8 × 105 + 0.448 × (294.8)2

8.31 × 400

]
(1 − 4.29 × 10−5 × 294.8)

= 302.66 mol/m3
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10.3.2 Thermal Expansion

10.9 Let the length of the bars be L0, each at 0◦C when they are straight. With the
rise of temperature �T , their lengths will be (Fig. 10.2)

L1 = θ R1 = L0(1 + α1�T ) (1)

L2 = θ R2 = L0(1 + α2�T ) (2)

Subtracting (2) from (1)

θ(R1 − R2) = θd = (α1 − α2)L0�T (3)

∵ R1 − R2 = d

Adding (1) and (2)

θ(R1 + R2) = 2L0 + (α1 + α2)L0�T � 2L0 (4)

∵ (α1 + α2)�T << 2

R = R1 + R2

2
= L0

θ
= d

(α1 − α2)�T
(5)

where we have used (3).

10.10 Let the initial length of the rod be 2x and the final total length be 2(x +�x).
Let the centre of the buckled rod be raised by y, then

�x = αx�T

From the geometry of Fig. 10.6,

y = [(x + �x)2 − x2]1/2 = [2x �x + (�x)2]1/2

� √
2x�x (∵ �x << 2x)

=
√

2αx2�T

=
√

2 × 12 × 10−6 × 202 × 30 = 0.5367 m

= 53.67 cm

Fig. 10.6 Buckling of rail

10.11 Let L0(S) and L0(Cu) be the lengths of steel and copper rod at 0◦C, respec-
tively. Let the respective lengths be L(S) and L(Cu) at temperature T ◦C.
Then
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L(S) = L0(S)(1 + αsT ) (1)

L(Cu) = L0(Cu)(1 + αCuT ) (2)

Subtracting (2) from (1)

L(S) − L(Cu) = L0(S) − L0(Cu) + [L0(S)αs − L0(Cu)αCu]T (3)

Now in the RHS, L0(S) – L0(Cu) is constant. If L(S) – L(Cu) is to remain
constant, then [L0(S)αs − L0(Cu)αCu] = 0, at any temperature T . This
gives us

L0(S)

L0(Cu)
= αcu

αs
= 1.7 × 10−5

1.1 × 10−5 = 17

11
(4)

Furthermore, L0(S) − L0(Cu) = 4 cm. (5)

Solving (4) and (5) we obtain

L0(S) = 11.33 cm; L0(Cu) = 7.33 cm

10.12 Let the volume of mercury in the flask be V0 cm3 and that of glass flask
1000 cm3 at initial temperature T1. At a higher temperature T2 the volume of
glass will be

Vg = 1000(1 + γg�T ) (1)

where �T = T2 − T1. The volume of mercury will be

V = V0(1 + γ�T ) (2)

The volume of air inside the flask at temperature T2 will be

Vg − V = 1000(1 + γg�T ) − V0(1 + γ�T )

= 1000 − V0 + (1000γg − V0γ )�T (3)

The RHS will be constant if

1000γg − V0γ = 0 (4)

for any value of �T . Therefore,

V0 = 1000
γg

γ
= 1000 × 27 × 10−6

1.8 × 10−4 = 150 cm3

where we have used γg = 3αg.
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10.13 Y = F/A

�L/L
(1)

or F = Y A�L

L
= Y A�L

L0(1 + α�T )
� Y A�L

L0
(2)

(∵ α�T << 1)

But �L = α L0�T

∴ F = Y Aα�T = 2.1 × 1010 × 0.5 × 10−6 × 12 × 10−6 × 20 = 2.52 N

where we have used SI units.

10.14 The coefficient of apparent expansion of a liquid

A = γ − g = γ − 3α = 11 × 10−4 − 3 × 8 × 10−6 = 1.076 × 10−3

Apparent expansion = mass expelled

(mass left) (temperature rise)

A = W

W0�T
= 50 − W0

W0�T

∴ W0 = 50

1 + A�T
= 50

1 + 1.076 × 10−3 × 80
= 46 g

Gas Laws

10.15 PV = n RT (gas equation)

∴ R = PV

nT
= (1.0129 × 105) (22.4 × 10−3)

(1.0) (273)

= 8.31 J/mol/K

10.16 P0 = 0.76 × 13, 600 × 9.8 = 1.0129 × 105 Pa
Pressure at depth 30 m, P = 30 × 1000 × 9.8 = 2.94 × 105 Pa.
∴ Total pressure inside the bubble, P1 = P0 + P

= (1.0129 + 2.94) × 105 = 3.9529 × 105 Pa

P2 V2 = P1V1 (Boyle’s law)

∴ P2(3V1) = P1V1

∴ P2 = P1/3 = 1.376 × 105 Pa

This corresponds to a water depth equivalent of 1.3176 × 105 − 1.0129 ×
105 = 0.3047 × 105 Pa.

Therefore water depth = 30 × 0.3047 × 105

2.94 × 105
= 3.11 m
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10.17
ρ1T1

P1
= ρ2T2

P2

M1 = Vρ1, M2 = V ρ2

∴ M1

M2
= ρ1

ρ2
= P1T2

P2T1

∴ M2 = P2

P1
· T1

T2
M1 = 50

76
× 273

263
× 175

= 119.5 kg

10.18 Let n moles be total mass of air in the two bulbs.
Initially, T = 273 + 20 = 293 K, P = 76 cm of Hg, V = V1 + V2 =
100 + 500 = 600 cc.

n = PV

RT
= 70 × 600

293R

Finally, let n1 and n2 moles be the mass of air in the small and large bulb,
respectively. Under new conditions

n1 = P1V1

RT1
= 100P1

293R

n2 = P2V2

RT2
= 500P2

293R
(∵ P2 = P1)

But n = n1 + n2 = 100P1

293R
+ 500P1

373R
= 70 × 600

293R

Cancelling off R, we find P1 = 85.23 cm of Hg.

10.3.3 Heat Transfer

10.19 (a) In the first slab, heat flow is given by

− dQ1

dt
= k1 A (T1 − T )

d1
(1)

In the second slab, heat flow is given by

− dQ2

dt
= k2 A(T − T2)

d2
(2)

Now the continuity of heat flow requires that heat flow must be the same
in both the slabs (Fig. 10.7). Thus
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Fig. 10.7 Heat flow in the
composite slab made of two
slabs in series

dQ1

dt
= dQ2

dt
= dQ

dt
(3)

Using (3) in (1) and (2)

T1 − T = −d1

k1 A

dQ

dt
(4)

T − T2 = −d2

k2 A

dQ

dt
(5)

Adding (4) and (5)

T1 − T2 = −1

A

[
d1

k1
+ d2

k2

]
dQ

dt
(6)

or − dQ

dt
= A(T1 − T2)

d1

k1
+ d2

k2

(7)

(b) Rewriting (7)

− dQ

dt
= A(T1 − T2)

d

d
d1

k1
+ d2

k2

= A(T1 − T2)k

d
(8)

with d = d1 + d2, and the equivalent conductivity

keq = d1 + d2

d1

k1
+ d2

k2

(9)

Formula (9) can be generalized to any number of slabs in series.

k =
∑

di

∑ di

ki

(10)

(c) Eliminating dQ/dt between (4) and (5)

T = (k1T1/d1) + (k2T2/d2)

(k1/d1) + (k2/d2)
(11)
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10.20 (a) The rate of flow of heat through the composite slab (Fig. 10.8) is
given by

− dQ

dt
= (T1 − T2)

d

n∑
l

ki Ai (1)

(b) Rewriting (1)

− dQ

dt
= (T1 − T2)

d

(
n∑
1

Ai

) (∑
ki Ai∑
Ai

)
(2)

The equivalent conductivity of the system is

keq =
∑

ki Ai∑
Ai

(3)

Fig. 10.8 Heat flow in a
composite slab made of n
slabs in parallel

10.21 T = (k1T1/d1) + (k2T2/d2)

(k1/d1) + (k2/d2)

as d1 = d2

T = k1T1 + k2T2

k1 + k2
= 92 × 100 + 16 × 0

92 + 16
= 85.18◦C

10.22 Heat transferred/second

−dQ

dt
= k A

(θ2 − θ1)

d
= kπr2 (θ2 − θ1)

d

= 90π(0.01)2 (100 − 0)

0.2
= 14.137 J/s

Heat required to melt 0.05 kg of ice

= 0.05 × 8 × 104 = 4000 cal = 16720 J

Time required = 16720/14.137 = 1183 s.
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10.23 Heat flow

dQ = A
dT

dx
k = A aT

dT

dx

or A aT dT = dQ dx

Integrating A a

T1∫

T2

T dT =
Q∫

0

dQ

L∫

0

dx

∴ Aa

2

(
T 2

1 − T 2
2

)
= QL

or Q = a A

2L

(
T 2

1 − T 2
2

)

10.24 dQ

dt
= −k A

dT

dr

∴ dT = −1

k

dQ

dt

dr

4πr2

When steady state is reached, dQ/dt will be independent of r and is constant
(Fig. 10.9). Integrating

T2∫

T1

dT = − 1

4πk

dQ

dt

r2∫

r1

dr

r2
= − 1

4πk

(
1

r2
− 1

r1

)
dQ

dt

∴ T2 − T1 = 1

4πk

(r1 − r2)

r1r2

dQ

dt

or T1 − T2 = 1

4πk

(r2 − r1)

r1r2

dQ

dt

∴ dQ

dt
= 4πk

r1r2

r2 − r1
(T1 − T2)

Fig. 10.9 Radial flow of heat
through two concentric
spheres

10.25 Rate of flow of heat

dQ

dt
= −k A

dT

dr
(1)
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Neglecting the area of the faces, area of the cylinder A = 2πr L . For steady
state, dQ/dt = constant. We can then write (1) as

dr

r
= − 2π Lk

dQ/dt
dT

Integrating

r2∫

r1

dr

r
= ln(r2/r1) = − 2π Lk

dQ/dt
(T2 − T1)

or dQ/dt = 2π Lk

ln(r2/r1)
(T1 − T2)

10.26 dQ/dt = k A(T1 − T2)/d

= (0.59A) × 10

0.01
= 590 A J/s (1)

Let x m/s ice be added at the bottom of the layer.
Mass of ice formed per second

M = ρ × A (2)

The required energy per second

E = ρ × AL (3)

Equating (1) and (3), ρ × AL = 590 A

∴ x = 590A

ρ AL
= 590

917 × 333 × 103
= 1.932×10−6 m/s = 0.00695 m/h

10.27 − dθ

dt
= C(θ − θ0) (Newton’s law of cooling)

θ1 − θ2

t
= C

[
θ1 + θ2

2
− θ0

]
(C = constant)

85 − 75

2
= C

[
85 + 75

2
− 30

]

∴ C = 0.1

55 − 45

t
= 0.1

[
55 + 45

2
− 30

]

∴ t = 5 min
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10.28 − dθ

dt
= K

ms
(θ − θ0) (K = constant) (1)

Let x be the water equivalent of the calorimeter.

50 − 40

15
= K

(x + 40 × 1)

[
50 + 40

2
− θ0

]
(2)

50 − 40

33
= K

(x + 100 × 1)

[
50 + 40

2
− θ0

]
(3)

Dividing (2) by (3)

x + 100

x + 40
= 11

5
or x = 10 g

10.29 −dθ

dt
= K

ms
(θ − θ0)

Now K ∝ surface area or ∝ r2 and m ∝ r3.

∴ dθ/dt ∝ 1/r

∴ (dθ/dt)1

(dθ/dt)2
= r2

r1
= 2

1

10.30 Assuming a linear variation of resistance with temperature

RT = R0(1 + αT ) (1)

29.6 = 24.9(1 + 100α) (2)

whence α = 1.8875 × 10−3 W/◦C (3)

26.3 = 24.9(1 + 1.8875 × 10−3 T ) (4)

whence T = 29.79◦C

10.31 If R is the radius of the sun, r the mean distance of the earth from the sun,
E the energy emitted from 1 m2 of the sun’s surface per second, T the abso-
lute temperature of the sun’s surface and σ the Boltzmann–Stefan constant,
then

S = 4π R2 E

4πr2 = R2σ T 4

r2

= (6.95 × 108)2(5.67 × 10−8)(5740)4

(1.49 × 1011)2
= 1339 W/m2
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10.32 Radiant intensity at the sun’s surface is the power emitted by 1 m2 of sun’s
surface.

σ T 4 = 63 × 106

T =
(

63 × 106

5.67 × 10−8

)1/4

= 5773 K

10.33 −dE

dt
= σ A

(
T 4

1 − T 4
2

)
(Stefan–Boltzmann formula)

= σ π r2
(

T 4
1 − T 4

2

)

= π(5.67 × 10−8)(0.05)2(5002 − 3002)

= 7.12 × 10−5 W

10.34 λmT = b = 3 × 10−3 m K (Wien’s law) (1)

dE

dt
= σ T 4 (Boltzmann law) (2)

If dE/dt goes down to 1/16 of its original value then by (2) the temperature
T → T/2. Therefore λm → 2λm by (1). Thus the wavelength under new
conditions λ′

m = 2λm = 2 × 480 = 960 nm.

10.3.4 Specific Heat and Latent Heat

10.35 Q =
80∫

20

mCpdT + mL +
200∫

80

mCpdT

=
200∫

20

mCpdT + mL
(∵ Cp relation for solid and

liquid phase is identical)

=
200∫

20

1 × (30.6 + 0.0103 T )dT + 1 × 6000

= 11710 J

10.36 C =
∫

CdT∫
dT

=
∫ T

0 (A + BT 2)dT

T
= 1

T

(
AT + BT 3

3

)
= A + BT 2

3

C (midpoint) = A + B(T/2)2 = A + BT 2

4

∴ C − C (midpoint) = A + BT 2

3
−
(

A + BT 2

4

)
= BT 2

12



440 10 Heat and Matter

10.37 Let the specific heats of liquids A, B and C be, respectively, CA, CB and CC.
When A and B are mixed, equilibrium of the mixture requires that

MCA(16 − 12) = MCB(18 − 16)

or CB = 2CA

When B and C are mixed

MCB(23 − 18) = MCC(28 − 23)

or CC = CB = 2CA

When A and C are mixed, let the equilibrium temperature be T .

MCA(T − 12) = MCC(28 − T ) = M2CC(28 − T )

∴ T = 22.67◦C

10.38 (a) The block is fixed. The kinetic energy of the bullet is entirely converted
into heat energy. Let m be the mass and v the velocity of the bullet.

Q = 1

2
mv2 = 1

2
(3 × 10−3)(120)2 = 21.6 J = 5.167 cal

Rise in temperature

�T = Q

mc
= 5.167

3 × 0.031
= 55.56◦C

(b) The block is free to move. In this case, after the collision some kinetic
energy will go into the block + bullet system.

1

2
mv2 = 1

2
(M + m)v2

1 + Q (energy conservation) (1)

mv = (M + m)v1 (momentum conservation) (2)

where M is the mass of the block and v1 the final velocity of the block
+ bullet system. Eliminating v1 and simplifying

Q = 1

2
mv2

(
M

M + m

)
= 1

2
× 3 × 10−3 × (120)2

(
50

50 + 3

)

= 20.38 J = 4.875 cal

�T = Q

mc
= 4.875

3 × 0.031
= 52.42◦C

10.39 Potential energy available from m kg of water through a fall of h metres is
mgh J. 15/100 mgh. Mechanical energy is converted into heat.



10.3 Solutions 441

∴ 15

100
mgh = mc�T × 4.18 = m × 1000�T × 4.18

∴ �T = 15 × 9.8 × 25

100 × 1000 × 4.18
= 0.0088◦C

10.40 Mechanical energy available, W = mgh
Heat absorbed, H = mc�T J.
Loss of mechanical energy = gain of heat energy

∴ mgh = mc�T J

∴ �T = gh

cJ
= 9.8 × 100

30.6 × 4.18
= 7.66◦C = 7.66 K

10.3.5 Thermodynamics

10.41 (a) (i) In an isobaric process pressure remains constant.
(ii) In an isochoric process volume remains constant.

(iii) In an adiabatic process heat is neither absorbed nor evolved by the
system.

(iv) In an isothermal process temperature remains constant.
(b) For adiabatic process use the relation

PV γ = P1V γ

1 = const. (1)

or P = P1V γ

1

V γ
(2)

Work done on the gas

W = −
v2∫

v1

PdV = −
v2∫

v1

P1V γ

1
dV

V γ
= −P1V γ

1

v2∫

v1

dV

V γ

P1V γ

1

γ − 1

(
V 1−γ

2 − V 1−γ

1

)
= 1

γ − 1

(
P1V γ

1 V 1−γ

2 − P1V1

)

∴ W = 1

γ − 1
(P2V2 − P1V1) (3)

where we have used the relation P1V γ

1 = P2V γ

2 .
W is positive if V1 > V2 (compression) and negative if V1 < V2
(expansion).

10.42 Applying the gas equation

TA = PAVA

n R
= (1.013 × 105)(44.8)

(2000)(8.31)
= 273 K
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As the process AB is isometric (isochoric), VB = VA.

TB = TA PB

PA
= 273 × 2

1
= 546 K

As the process CA is isobaric, Charles’ first law applies. Thus

VC

TC
= VA

TA
→ VC = VATC

TA

As BC is an isothermal process, TC = TB = 546 K.

∴ VC = VATB

TA
= (44.8)(546)

273
= 89.6 m3

10.43 For adiabatic process, dQ = 0 so that dU = −dW . The energy of 1 mol of
monatomic gas is given by

U = 3

2
RT

∴ dU = 3

2
R dT

dW = PdV = RT

V
dV

∴ 3

2
RdT = − RT

V
dV

∴ dT

T
+ 2

3

dV

V
= 0

Integrating

ln T + 2

3
ln V = constant

or T V 2/3 = constant

Eliminating T from the gas equation

PV 5/3 = constant

10.44 (a) Uf − Ui = �U = Q − W (First law of thermodynamics)

Let a system change from an initial equilibrium state i to a final equi-
librium state f in a definite way, the heat absorbed by the system being
Q and the work done by the system being W . The quantity Q − W
represents the change in internal energy of the system.
Both Q and W are path dependent while �U is path independent.
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(b) W =
∫

dW = −
∫

P dV (1)

PV = nRT1 = constant

or P = nRT1

V
(T = constant for isothermal process) (2)

Substituting (2) in (1)

W = −nRT
V2∫

V1

dV

V
= −nRT ln

(
V2

V1

)

(c) At the beginning of the cycle, P1 = 1.01 × 105 Pa, V1 = 1 m3, T1 =
273.15 K.
At the end of stage 1, P2 = 5.05 × 104 Pa, V2 = 2 m3, T2 = 273.15 K.
At the end of stage 2, P3 = 1.01×105 Pa, V3 = 2 m3, T3 = T2 P3/P2 =
546.3 K.

(i) n = P1V1

RT1
= 1.01 × 105 × 1.0

8.31 × 273.15
= 44.5 mol

(ii) Stage1, W1 = −nRT ln (V2/V1)

= −44.5 × 8.31 × 273.15 ln(2/1) = −70046 J

Stage2, W2 = P2�V = P3(V3 − V2) = P(V2 − V2) = 0

Stage3, W3 = P3(V1 − V3) = 1.01 × 105(1 − 2)

= −1.015 × 105 J

(iii) �U = 0, overall.

10.45 (a) and (b)
P1V1

T1
= P2V2

T2

∴ T1 = P1

P2

V1

V2
T2 = P1

3P1

V1

V1
1083 = 361 K

n = P1V1

RT1
= (105)(0.06)

(8.31)(361)
= 2 mol

P3V3

T3
= P2V2

T2

∴ T3 = P3

P2

V3

V2
T2 = P2

P2

(V2/3)

V2
1083 = 361 K

T4 = T3 = 361 K (∵ process 3 → 4 isothermal process)

P4V4

T4
= P3V3

T3
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∴ P4 = V3

V4

T4

T3
P3 = V3

3V3

T3

T3
P2 = P2

3
= 3P1

3
= P1 = 105 N/m2

V4 = nRT4

P4
= 2 × 8.31 × 361

105
= 0.06 m3

Thus the P , V , T coordinates of the initial and final points on the indi-
cator diagram are identical.

(c) Heat gained by N2 in the first (isochoric) process (Fig. 10.10):

Fig. 10.10 The P–V diagram

CV = CP/γ = 29.12/1.4 = 20.8 J/(mol K)

Q1 = nCv�T = 2 × 20.8 × (1083 − 311) = 32115 J

W12 = 0 (∵ process 1 → 2 is isochoric)

∴ �U1 = Q1 = 32115 J

Q2 = nCp�T = 2 × 29.12 × (361 − 1083) = −42049 J

W23 = P�V = P2(V3 − V2) = −3 × 105 × 2

3
× 0.06 = −12, 000 J

∴ �U2 = Q3 − W23 = −42049 + 12000 = −30049 J

�U3 = 0 (∵ process 3 → 4 is isothermal)

(d) Net change in energy

�U = �U1 + �U2 + �U3 = 32115 − 30049 + 0 = 2066 J

The expected value is zero.

10.46 Number of degrees of freedom, f = 2

γ − 1
we can find γ from the relation

T2V γ−1
2 = T1V γ−1

1

∴
(

V2

V1

)γ−1

= T1

T2
= 1.32

∴ 2γ−1 = 1.32
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whence γ = 1 + log 1.32

log 2.0
= 1.4

∴ f = 2

1.4 − 1
= 5

10.47 The efficiency of the engine is

e = 1 − T2

T1
= 1 − 300

400
= 0.25 or 25%

Work done by the engine

W = e × Q1 = 0.25 × 108 cal

= 0.25 × 108 × 4.18 J

= 1.05 × 108 J

10.48 e = 1 − T2

T1
= 1

6
(1)

∴ 5T1 − 6T2 = 0 (2)

When the temperature of the sink is reduced by 62◦C, the efficiency becomes

e′ = 2e (3)

e′ = 2e = 1 − (T2 − 62)

T1
= 1

3
(4)

∴ 2T1 − 3T2 − 186 = 0 (5)

Solving (2) and (5), T1 = 372 K = 99◦C, T2 = 310 K = 37◦C.

10.49 (a) PV = P0V0 (isothermal conditions) (1)

Dividing by m, the mass of air

PV

m
= P0V0

m

or
P

ρ
= P0

ρ0

∴ ρ = Pρ0

P0
(2)

where the density of air on earth’s surface is ρ0 and pressure is P0, the
corresponding quantities at height y being ρ and P .
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Now, for a small increase in height dy, the pressure decreases by dp and
is given by

dp = −ρg dy = − P

P0
ρ0g dy (3)

where we have used (2). The negative sign shows that the pressure
decreases as the height increases.
Integrating

h∫

0

dy = − P0

ρ0g

P∫

P0

dp

P

∴ h = − p0

ρ0g
ln

(
p

P0

)

∴ p = p0 exp

(
−ρ0gh

P0

)
(4)

Now, P0V0 = μRT (5)

since the temperature is assumed to be constant and μ is in moles. Fur-
thermore

ρ0 = μM

V0
(6)

where M is the molecular weight. Combining (5) and (6)

ρ0

P0
= M

RT
(7)

Substituting (7) in (4)

p = p0 exp

(
−Mgh

RT

)
(8)

(b) If n is the number density, that is, the number of molecules per unit
volume and m0 the mass of each molecule then

ρ = m0n

and ρ0 = m0n0

∴ ρ

ρ0
= n

n0
(9)
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Combining (9) with (2)

p

P0
= n

n0
(10)

Using (10) in (8)

n = n0 exp

(
−Mgh

RT

)
(11)

(c) P

P0
= 1

2
= exp

(
−Mgh

RT

)

∴ h = RT

Mg
ln 2 = 8.31 × 273 × 0.693

0.029 × 9.8
= 54224 m � 54 km

10.50 (a) For a Carnot cycle

(i) e = QH − QC

QH

(ii) e = TH − TC

TH

The symbols H and C are for hot and cold reservoirs.

(b) The Otto cycle, Fig. 10.11, consists of two reversible adiabatic processes
(paths AB and CD) and two reversible isochoric processes (path DA
and BC).

Suppose we start at the point C. The temperature TC at C is low,
slightly above atmospheric temperature. The cylinder is filled with air
charged with the combustible gas or vapour. The air is compressed adia-
batically to the point D. At D a spark causes combustion, heating the air
at constant volume to the point A. The heated air expands adiabatically
along the path AB. At B, a valve is opened and the pressure drops to that
of the atmosphere. The point C is reached at constant volume. The cycle
is complete.

Fig. 10.11 The Otto cycle
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During the isochoric heating and cooling no work can be done by or on
the gas:

�Q = �U =
2∫

1

dU = Cv

T2∫

T1

dT = Cv(T2 − T1) (1)

so that

Qout = Cv(TB − TC), Qin = Cv(TA − TD) (2)

where the heats (positive) are those which are given out and put into the
system, respectively. The thermodynamic efficiency

e = work done by the gas

heat put into the system
= W

Qin
(3)

Since the internal energy does not change over the entire cycle, by first
law of thermodynamics, net heat added to the system equals the work
done by the system, so that

W = Qin − Qout (4)

e = W

Qin
= Qin − Qout

Qin
= 1 − Qout

Qin
=
(

1 − TB − TC

TA − TD

)
(5)

In an adiabatic expansion or compression

T V γ−1 = constant (6)

∴ TAV γ−1
A = TBV γ−1

B , TDV γ−1
D = TCV γ−1

C (7)

or TA = TB

(
VB

VA

)γ−1

, TD = TC

(
VC

VD

)γ−1

(8)

From Fig. 10.11 we note that

VB

VA
= VC

VD
= r (compression ratio) (9)

Using (8) and (9) in (5)

e = (1 − r1−γ ) (10)

Thus the higher the compression ratio the greater is the efficiency.
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(c)

Fig. 10.12 (a) Carnot cycle consisting of two isothermic processes AB and CD; two adiabatic
processes BC and DA. (b) Sterling cycle consisting of two isothermic process AB and CD, two
isochoric processes BC and DA

10.51 (a) n = PV

RT
= 1.013 × 105 × 1 × 10−3

8.31 × 273
= 0.04465 mol

(i) dQ = nCPdT

�S =
Tf∫

Ti

dQ

T
= ncp

Tf∫

Ti

dT

T
= ncp ln

(
Tf

Ti

)

= 0.04465 × 21 × ln(500/273) = 0.567 J/K

(ii) dQ = nCvdT

�S =
Tf∫

Ti

dQ

T
= ncv

Tf∫

Ti

dT

T
= ncv ln

(
Tf

Ti

)

= 0.04465 × 12.7 × ln(500/273) = 0.343 J/K

(b) dQ1 = mCvdT

�S1 = m Cv

Tf∫

Ti

dT

T
= mCv ln

(
Tf

Ti

)

= 1.0 × 4.13 × 103 × ln(313/273) = 695 J/K

When 0.5 kg water at 0◦C is mixed with 0.5 kg water at 100◦C, the final
temperature would be 50◦C.

�S2 = 0.5 × 4.13 × 103 × ln(313/273)

+ 0.5 × 4.13 × 103 × ln(313/373)

= 282.35 − 362.15 = −79.8 J/K
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10.52 (a) The internal energy of an ideal gas is given by U = nCVT . In isothermal
expansion where the temperature and the amount of gas remain constant,
the internal energy does not change. Thus �U = 0.

(b) The work done is

W = −
V2∫

V1

PdV = −
V2∫

V1

(
nRT

V

)
dV

= −nRT

V2∫

V1

dV

V
= −nRT ln(V2/V1).

(c) Using the first law of thermodynamics, �Q = �U + W , and putting
�U = 0, we have

�Q = W = nRT ln(V2/V1)

(d) The change in entropy is

�S =
∫

ds =
∫

dQ

T
= 1

T

∫
dQ

because the temperature T does not change. Thus

�S = n R ln(V2/V1)

(e) By assumption the temperature of the reservoir does not change and
because it loses heat �Q to the gas, the entropy change of the reservoir
will be

�Sres = −�S = −n R ln(V2/V1)

Therefore the entropy change of the system plus the reservoir equals
zero, which is the definition of a reversible process.

10.53 (a) The internal energy U of a system tends to increase if energy is added
as heat Q and tends to decrease if energy is lost as work W done by the
system.
Heat is energy that is transferred from one body to another due to differ-
ence in temperature of the bodies.
Enthalpy (H ) is the total heat and is defined by

H = U + PV
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Work (W ) is energy that is transferred from one body to another body
due to a force that acts between them.
The function, G = U + PV −T S, is known as Gibb’s function or Gibb’s
energy.

Relations:

(i) Enthalpy

H = U + PV (1)

dH = dU + PdV + V dP = T ds + V dp (2)

∵ T ds = dU + PdV (3)

It follows that enthalpy is a function of entropy (S) and pressure
(P).

∴ H = f (S, P)

dH =
(

∂ H

∂S

)

P
dS +

(
∂ H

∂ P

)

S
dP (4)

Comparing (4) with (2)

(
∂ H

∂S

)

P
= T and

(
∂ H

∂ P

)

S
= V (5)

(ii) Gibb’s function:

G = U + PV − T S (6)

dG = dU + PdV + V dP − T dS − SdT

But T dS = dU + PdV

∴ dG = V dP − SdT (7)

Thus G is a function of two independent variables P and T .

G = f (P, T )

dG =
(

∂G

∂ P

)

T
dP +

(
∂G

∂T

)

P
dT (8)

Comparing (8) with (7)

(
∂G

∂ P

)

T
= V (9)

(
∂G

∂ P

)

P
= −S (10)
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(iii) Internal energy:

dQ = T dS (11)

dU = dQ − dW (12)

dW = PdV (isobaric process) (13)

∴ dU = dQ − PdV (14)

dU = T dS − PdV (15)

∴
(

∂U

∂S

)

V
= T (16)

∴
(

∂U

∂V

)

S
= −P (17)

(b) The quantities U , T , S, P and V are functions of the condition or state of
the body only, in other words, all the differentials are perfect differentials
and are state variables. Since the differentials which occur in (15) are
perfect differentials, they are valid for all changes whatever their nature.
On the other hand, dQ is not a perfect differential, but represents only
an infinitesimal quantity of heat, and for a cycle

∫
dQ is not zero, but is

equal to the work done. Similarly, dW is also not a perfect differential.
Note that the internal energy, the entropy and the volume are all pro-

portional to the mass of the substance under consideration, while the
temperature and the pressure are independent of it.

The condition of a given mass of a body (say 1 mol) can be defined by
U , T , S, P , V or combinations of them, of which only two are indepen-
dent. It follows that enthalpy and Gibb’s function are also acceptable as
state functions, apart from the internal energy but not the heat or work.

10.3.6 Elasticity

10.54 (a) η = shear stress

shear strain
= F/A

�x/y
= 100 × 106/12

0.1/10
= 1010 Pa

(b) K = �P

(−�V/V )
= 100 × 106

1/100
= 1010 Pa

10.55 (i) Stress = force

area
= mg

A
= 20 × 9.8

20 × 10−6 = 9.8 × 106 Pa

(ii) Strain = elongation

original length
= 2.5 × 10−2

10
= 2.5 × 10−3

(iii)Young’s modulus = stress

strain
= 9.8 × 106

2.5 × 10−3
= 3.92 × 109 Pa
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10.56 For a perfect gas of 1 mol

PV = RT (1)

Under isothermal conditions T = constant. Differentiating (1)

PdV + V dP = 0 (2)

The bulk modulus for the isothermal process

KT = −V

(
dP

dV

)

T
= P (3)

For adiabatic compression in which heat of compression remains in the gas

PV γ = constant (4)

where γ = Cp/Cv is the ratio of specific heats at constant pressure and
constant volume. Differentiating (4)

γ PV γ−1 dV + V γ dP = 0 (5)

Thus adiabatic elasticity KH is given by

KH = −V

(
dP

dV

)

H
= γ P (6)

It follows that

KH = γ KT (7)

The adiabatic elasticity is greater than the isothermal elasticity by a factor γ

which is always greater than unity.

10.57 Y = 2η(1 + σ)

∴ σ = Y

2η
− 1 = 1

2
× 2.5 − 1 = 0.25

10.58 From Fig. 10.13 the new length L ′ = 2AD = 2
√

AC2 + CD2

= 2
√

(0.6)2 + (0.02)2 = 1.200666 m

Elongation of the wire, �L = L ′ − L = 1.200666 − 1.20 = 0.000666 m.

Strain = �L/L = 0.000666/1.2 = 5.55 × 10−4
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Fig. 10.13 Load fixed to the
midpoint of a horizontal wire

For equilibrium

2T cos θ = mg

F = T = mg

2 cos θ
= 29 × 10−3 × 9.8

2 × (0.02/60)
= 426.3 N

Stress = F

A
= 426.3

π(0.05 × 10−3)2
= 5.43 × 1010 Pa

Y = stress

strain
= 5.43 × 1010

5.55 × 10−4 = 9.78 × 1013 Pa

10.59 Elastic energy E = 1

2
Y (strain)2 (volume)

E = 1

2
× 6 × 108

(
0.05

0.20

)2

(2 × 10−6 × 0.25) = 9.375 J

The elastic energy is converted into kinetic energy.

E = 1

2
mv2

v =
√

2E

m
=
√

2 × 9.375

15 × 10−3 = 35.3 m/s

10.60 F = mω2r

Breaking stress = F

A
= mω2r

A
= 4.8 × 107

ω =
√

4.8 × 107 A

mr
=
√

4.8 × 107 × 10−6

10 × 0.3
= 4 rad/s

10.61 Stretching force = weight of the wire = (volume) (density) ×g

F = L Aρg

where L is the length of wire, ρ the density, A the area of cross-section and
g the acceleration due to gravity.
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Breaking stress = maximum stretching force/area

= L Aρg

A
= Lρg

7.8 × 108 = L × 7800 × 9.8

∴ L = 1.021 × 104 m = 10.2 km

Note that the result is independent of cross-sectional area of the wire.

10.3.7 Surface Tension

10.62 S =
(

h + r

3

)
rρg

2 cos θ

Assuming that the contact angle θ = 0

h = 2s

r ρg
− r

3
= 2 × 0.072

10−3 × 103 × 9.8
− 10−3

3

= 0.01436 m

= 1.436 cm

10.63 Pressure due to water column of depth h is

P = hgρ

Total pressure of the bubble, ignoring surface tension,

P ′ = P + P0 = hgρ + P0

= 100 × 9.8 × 1000 + 1.01 × 105

= 10.81 × 105

P ′V = nRT

∴ V = nRT

P ′ = 1 × 8.314 × 293

10.81 × 105
= 2.25 × 10−3 m3

10.64 As the drops are incompressible, the volume is constant.

n
4

3
πr3 = 4π

3
R3

∴ R = rn1/3

Decrease in surface area = 4πr2n − 4π R2 = 4πr2
(
n − n2/3

)
Energy released = (decrease in surface area) (surface tension)



456 10 Heat and Matter

�W = 4πr2
(

n − n2/3
)

s

Also �W = 4π R2S
(

n1/3 − 1
)

Then there will be a rise in temperature as energy is converted into heat.
Energy conservation gives

mc �θ = 4π R2s
(

n1/3 − 1
)

4π

3
R3cρ �θ = 4πs R3

[
1

r
− 1

R

]

∴ �θ = 3s

ρc

[
1

r
− 1

R

]

10.65 W = 2 × 4π
(
r2

2 − r2
1

)
S

The factor of 2 arises as there are two surfaces.

W = 8π
(
(0.05)2 − (0.01)2

)
× 0.03

= 0.0018 J

10.66 The excess pressure must be equal to the pressure due to the water column
of depth h before the water leaks into the vessel.

2S

r
= ρ gh

∴ r = 2s

ρgh
= 2 × 0.073

1000 × 9.8 × 0.45
= 0.033 × 10−3 m = 0.033 mm

10.67 Balancing the excess pressure in the bubble with the pressure due to a water
column of depth h

2S

r
= ρgh

∴ h = 2s

rρg
= 2 × 0.072

0.3 × 10−3 × 1000 × 9.8
= 0.049 m = 4.9 cm

10.68 h = 2s

rρg
= 2 × 0.073

0.2 × 10−3 × 1000 × 9.8
= 0.07449 m = 7.45 cm

The tube is inadequate as it is only 6 cm long. Water will not overflow. But the
radius of meniscus r1 would now increase such that the following condition
is satisfied:
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h1r1 = hr, where r1 is the radius of the meniscus.

r1 = hr

h1
= 7.45 × 0.2

6.0
= 0.248 mm

10.69 When a bubble is charged, the charges stick to the bubble’s surface and due to
mutual repulsion tend to expand the surface while the surface tension tends
to decrease the surface. An equilibrium is reached with a smaller excess of
pressure.
Pressure due to electric charge is

P = σ 2

2ε0

where σ is the charge density and ε0 is the permittivity.
If the excess pressure due to surface tension is neutralized by the electric
charges then

σ 2

2ε0
= 4S

r
or σ =

√
8ε0S

r

The charge

q = 4πr2σ = 8π
√

2ε0sr3

= 8π
√

2 × 8.85 × 10−12 × 0.03 × (0.02)3 = 2.06 × 10−9 C

10.70 Under isothermal conditions

P1V1 + P2V2 = PV (1)

P1 = 4S

r1
, P2 = 4S

r2
, P = 4S

r
(2)

V1 = 4π

3
r3

1 , V2 = 4π

3
r3

2 , V = 4π

3
r3 (3)

Using (2) and (3) in (1) and simplifying we get

r =
√

r2
1 + r2

2 (4)





Chapter 11
Electrostatics

Abstract Chapter 11 deals with electrostatics comprising electric field and potential
for various configurations, electric dipole and quadrupole moments, Helmholtz
coils, electrostatic energy, Gauss’ law in integral and differential forms, capacitors,
parallel plates, cylindrical and spherical, various arrangements of capacitors.

11.1 Basic Concepts and Formulae

Coulomb’s law for charges q1 and q2 separated by r

F = 1

4πε0

q1q2

r2
(Electric force) (11.1)

ε0 = 8.85 × 10−12 C2/N/m2

1

4πε0
= 9.0 × 109 Nm2/C2

Electric field (E) for point charge q at distance r

E = 1

4πε0

q

r2 (11.2)

E for a sphere of radius R of uniform charge distribution

E = 1

4πε0
· qr

R2
(r ≤ R)

= 1

4πε0
· q

r2 (r ≥ R) (11.3)

E for hollow sphere of uniform charge distribution

E = 0 (r < R)

= 1

4πε0
· q

r2
(r > R) (11.4)
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E for an infinite non-conducting sheet

E = σ

2ε0
(11.5)

E for an infinite conducting sheet

E = σ

ε0
(outside the sheet)

= 0 (inside the sheet) (11.6)

Electric Potential

When a test charge q0 is moved from point A (at potential VA) to the point B (at VB)
then the difference in electric potential is defined by the work done WAB by the
relation

VB − VA = WAB/q0 (11.7)

If VB > VA, WAB is positive and if VB < VA, WAB is negative. By convention
VA = 0 when A is at infinite distance. Then the work required to move the test
charge q0 from infinity to the field point is

V = W/q0 (11.8)

Potential and field strength

VB − VA = WAB/q0 = Ed (11.9)

where d is the distance of separation
Potential due to a point charge

V = Er (11.10)

V = 1

4πε0

q

r
(11.11)

Potential due to a group of charges

V =
∑

n
Vn = V = 1

4πε0

∑ q0

rn
(11.12)

Potential due to uniform charge distribution in a non-conducting sphere
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V = q

8πε0 R

(
3 − r2

R2

)
(r ≤ R) (11.13)

= q

4πε0r
(r ≥ R) (11.14)

Calculation of E from V

E = −dV

dr
(11.15)

Surface charge density

σ = q

4πr2 (11.16)

Electric potential energy (U )

U = 1

4πε0

q1q2

r
(11.17)

Capacitors

C = q

V
(11.18)

where C is the capacitance.
Capacitance of a sphere

C = q

V
= 4πε0 R (11.19)

The parallel plate capacitor

C = ε0 KA

d
(11.20)

where A is the area of each plate, d is the distance of plates and K is the dielectric
constant.

Equilibrium of an Oil Drop

Let a charge −q be acquired by a small oil drop placed between two charged plates,
the upper one being positively charged. The drop is under the joint action of two
forces, the electric force acting upwards and the gravitational force acting down-
wards. If the drop is to remain suspended, then the condition for equilibrium is

q E = mg (11.21)
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Speed of a charged particle falling through a PD, V

v =
√

2qV

m
(11.22)

The electric dipole consists of two equal and opposite charges separated by
distance d.

The electric field on the perpendicular bisector of the dipole p = qd

E = P

2πε0x3 (x >> d) (11.23)

Potential due to a dipole

V = 1

4πε0

P cos θ

r2
(11.24)

where θ is the angle made by the vector r with the axis of the dipole, r being the
distance of the field point from the middle point of the dipole.

A Dipole in an Electric Field

Suppose a dipole is placed at a positive angle θ with the electric field E in the plane
of the page. Then the torque about the centre of the dipole is given by

τ = P × E (11.25)

its direction being perpendicular to the plane of the page and into the page.
The potential energy of the dipole is given by

U = −P · E (11.26)

Gauss’ Law

The flux (ϕE ) of the electric field (E)

ϕE =
∑

E · S (11.27)

where S is the surface area.
Gaussian surface is an imaginary closed surface. If infinitesimal areas are con-

sidered then the summation in (11.27) can be replaced by an integral over the sur-
face:

ϕE =
∮

E · ds (11.28)

Gauss’ law which relates the total flux ϕE through this surface to the net charge
q enclosed by the surface can be stated as
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ε0ϕE = q (11.29)

ε0

∮
E · ds = q (Gauss’ law) (11.30)

Capacitors in series

1

c
=
∑

n

1

cn
(11.31)

Capacitors in parallel

C =
∑

n
Cn (11.32)

Energy of a charged capacitor

W = 1

2
qV = 1

2

q2

C
= 1

2
CV 2 (11.33)

Parallel Plate Capacitor with Dielectric

If a dielectric slab of thickness t and dielectric constant K is introduced in a parallel
plate air capacitor, whose plates have area A and are separated by a distance d, the
capacitance becomes

C = ε0 A

d − t

(
1 − 1

K

) (11.34)

If a metal of thickness t is introduced in the air capacitor, the effective distance
between the plates is reduced and the capacitance becomes

C = ε0 A

d − t
(11.35)

Energy Loss in the Combined System of Capacitors

If the positive end of a capacitor of capacitance C charged to potential difference
V is connected in parallel with the positive end of the capacitor of capacitance C
charged to potential difference V , then common potential difference will be

V = C1V1 + C2V2

C1 + C2
(11.36)

and the energy loss will be

�W = 1

2

C1C2

C1 + C2
(V1 − V2)

2 (11.37)
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If the positive end is joined to the negative end the common potential will be

V = C1V1 − C2V2

C1 + C2
(11.38)

and the energy loss will be

�W = 1

2

C1C2

C1 + C2
(V1 + V2)

2 (11.39)

Dielectric Strength

Every dielectric material is characterized by dielectric strength which is the maxi-
mum value of the electric field that can be tolerated without breakdown resulting in
a conducting path between the plates of the capacitor.

Energy density (u) is defined as the electrostatic energy (U ) per unit volume.
For a parallel plate capacitor of area A and plate separation d, the volume enclosed
between the plates is Ad.

u = U

Ad
= 1

2

CV 2

Ad
(11.40)

But C = ε0 A/d and V = Ed

u = 1

2
ε0 E2 (11.41)

Force of attraction between the capacitor plates is given by

F = −1

2
ε0

AV 2

d2
(11.42)

Coalescing of Charged Drops

Let n identical droplets, each of charge q, coalesce to form a large drop of charge Q.
If the droplets are assumed to be incompressible, referring the parameters of the drop
primed and the droplets unprimed, the following relations will hold good:

Charge Q = q ′ = nq (11.43)

Surface charge density σ ′ = n1/3σ (11.44)

Capacitance C ′ = n1/3C (11.45)

Potential V ′ = n2/3V (11.46)

Energy stored W ′ = n5/3W (11.47)
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11.2 Problems

11.2.1 Electric Field and Potential

11.1 (a) Figure 11.1 shows two point clusters of charge situated in free space
placed on a line that is called the x-axis. The first, with a positive charge
of Q1 = +8e, is at the origin. The second, with a negative charge of
Q2 = −4e, is to the right at a distance equal to 0.2 m.

(i) What is the magnitude of the force between them?
(ii) Where would you expect to find the position of zero electric field:

to the left of Q1, between Q1 and Q2 or to the right of Q2? Briefly
explain your choice and then work out the exact position.

(b) The electron in a hydrogen atom orbits the proton at a radius of 5.3 ×
10−11 m.

(i) What is the proton’s electric field strength at the position of the elec-
tron?

(ii) What is the magnitude of the electric force on the electron?

[University of Aberystwyth, Wales]

Fig. 11.1

11.2 (a) A tiny ball of mass 0.6 g carries a charge of magnitude 8 μC. It is sus-
pended by a thread in a downward electric field of intensity 300 N/C.
What is the tension in the thread if the charge on the ball is

(i) positive?
(ii) negative?

(b) A uniform electric field is in the negative x-direction. Points a and b are
on the x-axis, a at x = 2 m and b at x = 6 m.

(i) Is the potential difference Vb − Va positive or negative?
(ii) If the magnitude of Vb − Va is 105 V, what is the magnitude E of the

electric field?

[University of Aberystwyth, Wales 2005]

11.3 Show that the electric potential a distance z above the centre of a horizontal
circular loop of radius R, which carries a uniform charge density per unit
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length λ, is given by

V = λR

2ε0

1

(z2 + R2)1/2

Obtain an expression for the electrostatic field strength as a function of z.
[University of Aberystwyth, Wales 2007]

11.4 (a) Starting from Coulomb’s law, show that the electric potential a distance r
from a point charge q is given by

V = q

4πε0r

(b) Four point charges are assembled as shown in Fig. 11.2. Calculate the
potential energy of this configuration (you may assume that the charges
are isolated and in a perfect vacuum). Does the potential energy depend
upon the order in which the charges are assembled?

(c) Is the charge configuration in (b) stable?

Fig. 11.2

11.5 A spherical liquid drop has a diameter of 2 mm and is given a charge of 2 ×
10−15 C.

(i) What is the potential at the surface of the drop?
(ii) If two such drops coalesce to form a single drop, what is the potential at

the surface of the drop so formed?

[Indian Institute of Technology 1973]

11.6 A pendulum bob of mass 80 mg carries a charge of 2 × 10−8 C at rest in a
horizontal uniform electric field of 20,000 V/m. Find the tension in the thread
of the pendulum and the angle it makes with the vertical.

[Indian Institute of Technology 1979]

11.7 An infinite number of charges, each equal to q, are placed along the x-axis at
x = 1, x = 2, x = 4, x = 8, etc. Find the potential and the electric field at the
point x = 0 due to the set of charges.

[Indian Institute of Technology 1974]
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11.8 In prob. (11.7) what will be the potential and electric field in the above set-up
if the consecutive charges have opposite sign?

[Indian Institute of Technology 1974]

11.9 A thin fixed ring of radius 1 m has a positive charge 1 × 10−5 C uniformly
distributed over it. A particle of mass 0.9 g and having negative charge of
1 × 10−6 C is placed on the axis, at a distance of 1 cm from the centre of
the ring. Show that the motion of the negative charge is approximately simple
harmonic. Calculate the time period of oscillation.

[Indian Institute of Technology 1982]

11.10 Three charges, each of value q, are placed at the corners of an equilateral
triangle. A fourth charge Q is placed at the centre of the triangle.

(i) If Q = −q will the charges at the corners move towards the centre or
fly away from it?

(ii) For what value of Q will the charges remain stationary?

[Indian Institute of technology 1978]

11.11 Two identically charged spheres are suspended by strings of equal length.
The strings make an angle 30◦ with each other. When suspended in a liquid of
density 0.8 g/cm3, the angle remains the same. What is the dielectric constant
of the liquid? The density of the material of the sphere is 1.6 g/cm3.

[Indian Institute of Technology 1976]

11.12 At the corner A of square ABCD of side 10 cm a charge 6×10−8 C is placed.
Another charge of −3×10−8 C is located at the centre of the square. Find the
work done in carrying a charge 5 × 10−9 C from the corner C to the corner
B of the square.

[Indian Institute of Technology 1972]

11.13 A pith ball carrying a charge of 3 × 10−10 C is suspended by an insulated
thread of length 50 cm. When a uniform electric field is applied in a horizon-
tal direction, the ball is found to deflect by 2 cm from the vertical. If the mass
of the ball is 0.5 g what is the magnitude and direction of the electric field?

[Indian Institute of Technology 1973]

11.14 A positively charged oil droplet remains in the electric field between two
horizontal plates, separated by a distance 1 cm. If the charge on the drop is
3.2 × 10−19 C and the mass of the droplet is 10−14 kg what is the potential
difference between the plates? Now if the polarity of the plates is reversed
what is the instantaneous acceleration of the droplet?

[Indian Institute of Technology 1974]

11.15 Suppose equal amount of charge of the same sign is placed on the earth
and the moon, what would be its magnitude if the gravitational attraction
between the two bodies may be nullified? Take mass of the earth and moon
to be 6 × 1024 and 7.4 × 1022 kg, respectively.
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11.16 A spark is produced between two insulated surfaces, maintained at a constant
difference of 5 × 106 V. If the energy output is 10−5 J, calculate the charge
transferred. How many electrons have flowed?

[Indian Institute of Technology 1974]

11.17 A rod 25 cm long has a uniform linear charge density (charge per unit length)
λ = 200 μC/m. Calculate the electric field (in N/C) at 10 cm from one end
along the axis of the rod.

11.18 A disc of radius R is uniformly charged to Q and placed in the xy-plane with
its centre at the origin. Find the electric field along the z-axis.

11.19 Electronic charge e may be determined by Millikan’s oil drop method. Oil
drops of radius r acquire a terminal speed v1 with downward electric field E
and a speed v2 with the upward electric field. Derive an expression for e in
terms of E , v1, v2, r and η, the viscosity of oil in air.

11.20 A circular wire of radius r has a uniform linear charge density λ = λ0 cos2 θ .
Show that the total charge on the wire is πλ0r .

11.21 The distance between the electron and the proton in the hydrogen atom is
about 0.53 Å. By what factor is the electrical force stronger than the gravita-
tional force? Does the distance matter?

11.22 The combined charge on two small spheres is +15 μC. If each sphere is
repelled by the other by a force of 5.4 N when the spheres are 30 cm apart,
find the charges on the spheres.

11.23 Charges are placed at the four corners of a square of side a, as in Fig. 11.3.
Find the magnitude and direction of the electric field at the centre of the
square.

Fig. 11.3

11.24 A thin, non-conducting rod of length L carries a total charge +Q spread
uniformly along it. Find the electric field at point p distant y from the axis of
the rod on the perpendicular bisector.



11.2 Problems 469

11.25 A thin non-conducting rod is bent to form an arc of a circle of radius r and
subtends an angle θ0 at the centre of the circle. If a total charge q is spread
uniformly along the rod, find the electric field at the centre of the circle.

11.26 A ring of radius r located in the xy-plane is given a total charge Q = 2πRλ.
Show that E is maximum when the distance z = r/

√
2.

11.27 A total charge q is spread uniformly over the inner surface of a non-
conducting hemispherical cup of inner radius a. Calculate (a) the electric
field and (b) the electric potential at the centre of the hemisphere.

11.28 The quadrupole consists of four charges q, q, −q, −q located at the corners
of a square on side a (Fig. 11.4). Show that at a point p, distant r from the
centre of the charges and in the same plane, the electric field varies inversely
as the fourth power of r , where r >> a.

Fig. 11.4

11.29 Show that the electrical and gravitational force between two bodies each of
mass m and charge q will be equal at any distance r if the ratio q/m =
8.6 × 10−10 C/kg.

11.30 Two small, equally charged spheres, each of mass m, are suspended from the
same point by silk threads of length L . Initially, the spheres are separated
by distance x << L . As the charge leaks out at the rate dq/dt , the spheres
approach each other with relative velocity v = a/

√
x , where a is a constant.

Find the rate at which charge leaks out.
Show that

dq/dt = 3

2
a

√
2πε0mg

L

11.31 A charge q is uniformly distributed over a thin ring of radius R. A very long
uniformly charged thread with linear charge density λ is placed on the axis
of the ring with one end coinciding with the centre of the ring. Show that the

force of interaction F will be equal to
qλ

4πε0 R
.

11.32 A very long wire with uniform charge density λ is placed along the x-axis
with one end of the thread coinciding with the origin. Show that the electric

field is given by E =
√

2λ

4πε0 y
at 45◦ with the x-axis at a distance y from the

end of the thread.
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11.33 If the electric potential is given by ϕ = cxy, calculate the electric field.

11.34 Charges Q and −2Q are placed at a fixed distance of separation. Show that
the locus of points in the plane of charges, where the potential is zero, will
be a circle.

[Indian Administrative Services]

11.35 Two identical thin rings, each of radius R, are coaxially placed a distance R
apart. If Q1 and Q2 are, respectively, the charges uniformly spread on the
two rings, find the work done in moving a charge q from the centre of one
ring to that of the other.

[Indian Institute of Technology 1992]

11.36 A thin rod of length 2a is placed along the y-axis in the xy-plane. The rod
carries a charge density λ (Fig. 11.5). The point P1 is located at (0, 2a) and
P2 at (x , 0).

(a) Find x if the potentials at P1 and P2 are equal.
(b) Find the corresponding potential.

Fig. 11.5

11.37 Three charges +q, +q and Q are located at the vertices of a right-angled
isosceles triangle, Fig. 11.6. If the total interaction energy is zero what should
be the value of Q?

Fig. 11.6

11.38 Four charges each of magnitude q are located at the four corners of a square
of side a such that like charges occupy the corners across the diagonals
(Fig. 11.7). Calculate the work done in assembling these charges.
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Fig. 11.7

11.39 Calculate the total potential energy of sphere of radius R carrying a uni-
formly distributed charge q.

11.40 A linear quadrupole (Fig. 11.8) consists of charge +2Q at the origin and two
charges −Q at (−d, 0) and (+d, 0).

(i) Write down the magnitude of the electric field at P on the x-axis where
x > d.

(ii) If x >> d show that the field varies inversely as the fourth power of
distance from the origin.

(iii) If Q = 2 μC and d = 0.01 mm, calculate the field at x = 20 cm.

Fig. 11.8 Linear quadrupole −Q −Q+2Q P

Xdd Xdd

11.41 (a) If the breakdown field strength of air is 5×106 V/m how much charge can
be placed on a sphere of radius 1 mm? (b) What would be the corresponding
electrical potential?

11.42 An electron is released from a distance 120 cm from a stationary point charge
+2 × 10−9 C. Calculate the speed of the electron when it is 18 cm from the
point charge.

11.43 Figure 11.8 shows the linear quadrupole. Show that the electric potential
V (r) at a distance r >> d from the central charge and in a direction normal
to the axis of the quadrupole varies inversely as the third power of r .

11.44 An electron of mass me = 9.1 × 10−31 kg is accelerated in the uniform
electric field E between two parallel charged plates, as shown in Fig. 11.9.
There is no electric field outside of the plates. The electric field has a mag-
nitude E = 2.0 × 103 N/C and electron charge e = −1.6 × 10−19 C. The
separation of the plates is 1.5 cm and the electron is accelerated from rest
near the negative plate and passes through a tiny hole in the positive plate.
Assume the hole is so small that it does not affect the uniform field between
the plates.
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(i) What is the force on the electron while it is between the plates?
(ii) What is its acceleration and with what speed does it leave the hole?

(iii) What is the force on the electron outside of the plates?

[University of Aberystwyth, Wales 2005]

11.45 What is the electric potential V at a distance r from a point charge Q? Write
down an expression describing the electric potential due to a continuous
charge distribution.

Consider a disk of radius R which carries a uniform surface charge distri-
bution.

(a) Find the total charge on the disc.
(b) Find the potential at a point on the axis of the disc lying at a distance x

from the disc.
(c) What is the form of the potential when x becomes much larger than R?

Comment on your result.

Fig. 11.9

11.46 In the Bohr’s hydrogen atom model, show that the orbital motion of the elec-
tron obeys Kepler’s third law of motion, that is, T 2 ∝ r3.
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11.47 Equal charges (Q) are placed at the four corners of a square of side a.
Show that the force on any charge due to the other three charges is given
by 1.914 Q2/4πε0a2.

11.48 (a) Calculate the electric field due to a dipole on its perpendicular bisector.
(b) Show that for the distance x >> d/2, where d is the distance between

the charges, the field varies inversely as the cube of distance.
(c) A molecule has a dipole moment of 6 × 10−30 cm. Calculate the differ-

ence in potential energy when the dipole is placed parallel to the electric
field of 3 × 106 V/m and then antiparallel to the field.

11.2.2 Gauss’ Law

11.49 (a) State Gauss’ law of electrostatics in mathematical form.
(b) Use Gauss’ law to show that the electric field magnitude due to an infi-

nite sheet of charge, carrying a surface density σ , is given by

E = σ

2ε0

(c) A small sphere of mass 2 mg carries a charge of 5 × 10−8 C. It hangs
by a silk thread attached to a vertical uniformly charged sheet such that,
under the influence of both gravity and the electric force, it makes an
angle of 10◦ with the sheet. Calculate the surface charge density of the
sheet.

11.50 (a) State Gauss’ law in differential and integral form.
(b) Show that the electric field outside a charged sphere is Q/4πε0r2, where

r is the distance from the centre of the ball.
(c) Show that the electric field inside a uniformly charged solid sphere, with

total charge Q and radius R, is Qr/4πε0 R3.

11.51 In prob. (11.50) the central part of the sphere is hollowed by creating a cavity
of radius 1

2 R concentric with the original sphere. If the charge density of the
hollowed sphere remains unchanged show that the electric field at the surface
is now 7/8 of the original value on the surface.

11.52 In prob. (11.50) show that the electric potential (a) varies as that to simple

harmonic motion for r < R. (b) V (0) = 3

2
V (R) where V (∞) = 0.

11.53 Figure 11.10 shows a non-conducting hollow sphere with inner radius b and
outer radius a. A total charge Q is uniformly distributed in the material b <

r < a. Find the electric field for (a) r < b; (b) b < r < a; (c) r > a.

11.54 A charge Q is uniformly distributed in a long cylinder of radius R and charge
density ρ. Find the electric field for the regions (a) r > R; (b) r < R.
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Fig. 11.10

11.55 (a) The electric field on the surface of a thin spherical shell of radius 0.5 m
is measured to be 800 N/C and points radially towards the centre of the
sphere. What is the net charge within the sphere’s surface?

(b) An electric field of 120 N/C points down over a football field. Calculate
the surface charge density on the field.

(c) What would be the total electric flux if the field is 100×75 m2.

11.56 (a) Using Gauss’ law derive Coulomb’s formula for the electric field due to
an isolated point charge q.

(b) A positive charge Q is uniformly distributed in a non-conducting sphere
of radius R. Calculate the electric flux passing through the spherical
surface of radius r concentric with the sphere for (i) r < R; (ii) r > R.

11.57 How is electric flux related to the electric field E? How is the total electric
flux over a closed surface related to the charge enclosed within the surface?

A thin spherical shell of radius R1 carries a total charge Q1 that is uni-
formly distributed on its surface. A second, larger concentric thin shell of
radius R2 carries a charge Q2 also uniformly distributed over the surface of
the shell. Use Gauss’ law to find the electric field in the regions.

(a) r < R1,
(b) R1 < r < R2, and
(c) R2 < r .

The electric charges are such that Q1 > 0 and the electric field is zero for
r > R2. Find the ratio Q1/Q2.

11.58 Two insulated spheres of radii 1 and 3 cm at a considerable distance apart are
each charged positively with 3 × 10−8 C. They are brought into contact and
separated by the same distance as before. Compare the forces of repulsion
before and after contact.

[Northern Universities of UK]

11.59 What is the maximum charge that can be given to a sphere of diameter 10 cm
if the breakdown voltage of air is 2 × 104 V/cm.

11.60 (a) Show that the capacitance, C , of a conducting sphere of radius a is given
by C = 4πε0a.

(b) Two isolated conducting spheres, both of radius a, initially carry charges
of q1 and q2 and are held far apart. The spheres are connected together
by a conducting wire until equilibrium is reached, whereupon the wire
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is removed. Show that the total electrostatic energy stored in the spheres
decreases by an amount �U , given by

�U = 1

16πε0 Q
(q1 − q2)

2

What happens to this energy?

11.61 Two spherical conductors of radii R1 and R2 and charges Q1 and Q2, respec-
tively, are brought in contact and separated. Show that their charge densities
will be inversely proportional to their radii.

11.62 A light spherical balloon is made of conducting material. It is suggested that
it could be kept spherical simply by connecting it to a high-voltage source.
The balloon has a diameter of 100 mm.

(a) What is the voltage of the source if the electric field on the balloon sur-
face is 5 × 106 V/m?

(b) What gas pressure inside the balloon would produce the same effect?
(c) The voltage source is removed and the balloon remains at the same volt-

age. Calculate the total electrostatic energy of the balloon.

11.63 A soap bubble of radius R1 is given a charge q. Due to mutual repulsion
of the surface charges the radius is increased to R2, the pressure remaining
constant. Show that the charge is given by

q =
[

32

3
π2ε0 pR1 R2

(
R1

2 + R1 R2 + R2
2
)]1/2

11.64 An insulating spherical shell of inner radius r1 and outer radius r2 is charged
so that its volume charge density is given by

ρ(r) = 0 for 0 ≤ r ≤ r1

ρ(r) = A

r
for r1 ≤ r ≤ r2

ρ(r) = 0 for r > r2

where A is a constant and r is the radial distance from the centre of the shell.
Find the electric field due to the shell throughout all space.

11.65 (a) Show that electrostatic field is conservative.
(b) An isolated soap bubble of radius 1 cm is at a potential of 10 V (assume

the bubble material is a conductor); calculate the total charge on the
bubble. If it collapses to a drop of radius 1 mm (no charge loss or gain
during the process), what is the change of the electrostatic energy of the
system?

[University of Aberystwyth, Wales 2008]
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11.66 A long cylinder of charge q has a radius a. The charge density within its
volume, ρ, is uniform (Fig. 11.11). Describe the form of the electric field
generated by the cylinder. Find the electric field strength at a distance r from
the axis of the cylinder in the regions (i) r > a and (ii) 0 < r < a.
If a non-relativistic electron moves in a circle at a constant distance R from
the axis of the cylinder, where R > a, find an expression for its speed.

[University of Manchester 2006]

Fig. 11.11

11.67 Consider an isolated non-conducting sheet with charge density σ . The elec-
tric field at 25 cm from the sheet is found to be 200 V/m, directed towards the
sheet. Calculate σ on the sheet. What electric field is expected at 2 cm from
its surface? How are the values of σ and E changed if a conducting sheet is
substituted.

11.2.3 Capacitors

11.68 Calculate the capacitance of a parallel plate capacitor of area A and thick-
ness d if a dielectric slab of thickness t , area A and dielectric constant k is
inserted. How is the capacitance modified if a metal of thickness t is intro-
duced?

11.69 Two capacitors C1 and C2 are connected in parallel and their combined
capacitance is measured as 9 μF. When they are combined in series their
capacitance is 2 μF. What are the individual capacitances?

11.70 Find the energy which may be stored in capacitors of 2 and 4 μF when taken
(a) singly, (b) in series and (c) in parallel when a potential difference of 100 V
is available.

[University of New Castle]

11.71 An air capacitor with plates 1 m2 and 0.01 m apart is charged with 10−6 C of
electricity. Calculate the change in energy which results when the capacitor
is submerged in oil of relative permittivity 2.0.

[University of Manchester]
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11.72 Two parallel plates, each of area 1 m2, are separated by a distance 0.001 m
and have a capacity of 0.1 μF. What must then the dielectric constant of the
material separating the plates be?

[University of Newcastle]

11.73 A capacitor of capacitance 5 μF is charged up to a PD of 250 V. Its terminals
are then connected to those of an uncharged capacitor of capacitance 20 μF.
What would be the resulting voltage?

[Northern Universities of UK]

11.74 From Fig. 11.12 find the value of capacitance C if the equivalent capacitance
between points A and B is 1 μF. All the capacitances are in microfarads.

[Indian Institute of Technology 1977]

Fig. 11.12

11.75 Three capacitors of capacitance 4, 3 and 2 μF, respectively, are connected in
series to a battery of 240 V. Calculate (a) the charge, (b) the potential and (c)
the electrostatic energy associated with each of the three capacitors, stating
in each case the units in which the results are expressed.

[Northern Universities of U.K.]

11.76 Each of the two capacitors A and B of capacitances 1.0 and 2.0 μF, respec-
tively, are charged initially by connecting them in turn to a 12 V battery. What
is the final potential difference of the combination if the capacitors are later
connected in parallel such that

(a) the positive plate of one is connected to the positive plate of the other;
(b) the positive plate of one is connected to the negative plate of the other.

[Indian Institute of Technology 1971]

11.77 Two capacitors of capacitances C1 and C2 charged to potential difference V1
and V2 are connected in parallel. Calculate the energy loss when (a) the pos-
itive ends are joined and (b) the positive end of one is joined to the negative
end of the other.

11.78 A capacitor of capacitance C is charged to potential V by connecting it to a
battery. Let q be the charge on it, E the electric field within the plates and
U the energy stored. When a dielectric of constant K is introduced filling
completely the space between the plates, how will the following quantities
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change (i) V , (ii) E , (iii) q, (iv) C and (v) U , when (a) the battery remains
connected and (b) the battery is disconnected?

11.79 In prob. (11.78) if the plate separation is increased, how would the following
quantities change (i) V , (ii) E , (iii) C , (iv) q and (v) U when (a) the battery
remains connected and (b) the battery is disconnected?

11.80 Show that the force of attraction between the plates of a parallel plate capac-

itor is given by F = 1

2

ε0 AV 2

d
, where A is the area, d the distance of sepa-

ration, V the voltage to which the plates are charged and ε0 the permittivity.

11.81 Let n identical droplets, each of radius r and charge q, coalesce to form a
large drop of radius R and charge Q. Assuming that the droplets are incom-
pressible, show that (a) the radius R = n1/3r ; (b) the capacitance C ′ of the
large drop is C ′ = n1/3C , where C is the capacitance of the droplet; (c)
the potential V ′ of the large drop is given by V ′ = n2/3V , where V is the
potential of the droplet; (d) the surface charge density σ ′ = n1/3σ ; (e) the
energy U ′ stored in the large drop is given by U ′ = n5/3U where U is the
energy stored in the droplet.

11.82 A cylindrical capacitor has radii a and b. Show that half of the stored electri-
cal potential energy lies within a cylinder whose radius is

√
ab.

11.83 A capacitor of capacitance C1 = 3.0 μF withstands the maximum voltage
V1 = 4.0 kV, while a capacitor of capacitance C2 = 6.0 μF the maximum
voltage V2 = 3.0 kV. If they are connected in series what maximum voltage
can the system withstand?

11.84 A Geiger–Muller tube consists of a thin uniform wire of radius ‘a’ of length
L surrounded by a concentric hollow metal cylinder of radius b with a gas
of dielectric constant K between them. Apply Gauss’ law to calculate the
capacitance of the tube.

11.85 Two spherical metallic shells of radii a and b (b > a) constitute a capacitor
with the outer shell grounded and contact is made with the inner one through

a hole in the outer one. Show that the capacitance is given by C = 4πε0ab

b − a
.

11.86 Show that for two concentric shells of radii a and b (b ≈ a), the capacitance
reduces to that of a parallel plate capacitor

11.87 In an R–C circuit the emf supplied by the battery is 120 V, R = 1 × 106 �

and C = 10 μF. The switch S is closed at t = 0. Find

(i) the time taken for the charge to reach 90% of its final value;
(ii) the energy stored in the capacitor at one time constant;

(iii) the Joule heating in the resistor at one time constant.

11.88 After how many time constants will the energy stored in the capacitor in
Fig. 11.13 reach one-half of its equilibrium value?
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Fig. 11.13

11.89 Two square metal plates measuring ‘a’ on the side are used as a parallel
plate capacitor with the plates slightly inclined at an angle θ . If the smaller
gap between the plates is D, then show that the capacitance is given by

C = ε0a2

D

(
1 − aθ

2D

)

11.90 Capacitors C1 = 8 μF, C2 = 4 μF and C3 = 3 μF are arranged as in
Fig. 11.14. A voltage of V = 100 V is applied. Determine

(a) the potential difference across C1, C2 and C3.
(b) the charge q1, q2 and q3 on C1, C2 and C3.
(c) the energy U1, U2 and U3 stored in the capacitors.

Fig. 11.14

11.91 Capacitors C1 = 8 μF, C2 = 4 μF and C3 = 3 μF are arranged as in
Fig. 11.15. A voltage of V = 100 V is applied. Determine

(a) the charges q1, q2 and q3 on C1, C2 and C3, respectively.
(b) the potential difference across C1, C2 and C3.
(c) the energy U1, U2 and U3 stored in the capacitors.

Fig. 11.15

11.92 Find the effective capacitance between points a and b in Fig. 11.16. Assume
that C1 = C2 = C3 = C4 = 2 μF and C5 = 1 μF.
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Fig. 11.16

Fig. 11.17

11.93 Consider a circuit consisting of a resistor R and a capacitor C in series
with a battery of emf ξ and a switch (Fig. 11.17). The capacitor is initially
uncharged and the switch is closed at time t = 0. By considering the potential
drop across each of the components of the circuit, verify that the charge Q
on the capacitor has the form

Q = Cξ

⎛
⎝1 − e

− r

RC

⎞
⎠

(a) What is the current flowing in the circuit?
(b) What is the power supplied by the battery as a function of t?
(c) What is the power dissipated in the resistor as a function of t?
(d) What is the rate at which energy is stored in the capacitor as a function

of t?

[University of Durham 2000]

11.94 For the circuit shown in Fig. 11.18,

(i) What is the initial battery current immediately after switch S is closed?
(ii) What is the battery current a long time after switch S is closed?

(iii) If the switch has been closed for a long time and is then opened, find
the current through the 600 k� resistor as a function of time.

Fig. 11.18
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11.95 A capacitor of capacitance C = 500 μF is charged to a voltage of 900 V and
is then discharged through a resistance R = 200 k� when a switch is closed.

(i) Find the initial charge stored in the capacitor.
(ii) Find the initial discharge current when the switch is closed.

(iii) Find the voltage across the capacitor in a time t = 25 s after the start of
discharge.

(iv) Find the time constant of this capacitor resistor network combination.
(v) Work out an equation to show the time it takes for the charge in the

capacitor to drop by one-half of its starting value and find this time.

[University of Aberystwyth, Wales 2008]

11.96 Charge q = 10−9 C is uniformly distributed in a sphere of radius R = 1 m.

(i) Find the divergence of the electric field inside the sphere.
(ii) A proton is moved from infinity to r = 0.8 m from the centre of the

sphere. Find the electric force experienced by the proton at r = 0.8 m.
(iii) Find the work done by the electric field of the charged sphere when the

proton is moved from infinity to its current position (r = 0.8 m).

11.97 (a) Write down the integral and differential forms of Gauss’ law in a dielec-
tric, defining all quantities used.

(b) A parallel plate capacitor is completely filled with a non-conducting
dielectric. Show that the electric displacement, D, is uniform between
the plates and calculate its value. (You may assume that the plates each
have area A and are separated by a small distance d. Each plate carries
a surface charge density σ C/m2.)

(c) The dielectric has a non-uniform relative permittivity

K (x) = ax + b

where a and b are constants and x is the perpendicular distance from one
plate. Using Gauss’ law, show that the electric field between the plates
satisfies

E(x) = E0

K (x)

where E0 is a constant. Find the value of E0.
(d) Show that the voltage across the capacitor is given by

V = E0

ε0a
ln

(
1 + Qd

b

)

and calculate the capacitance.
(e) Find the volume polarization charge density in the dielectric.
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11.98 Both gravitational field and electric field obey inverse square law. Using this
analogy show that the differential Gauss’ law for gravitation is given by ∇ ·
g = −ρ/G, where ρ is the mass density.

11.3 Solutions

11.3.1 Electric Field and Potential

11.1 (a)

(i) F = q1q2

4πε0r2
= (8 × 1.6 × 10−19)(−4 × 1.6 × 10−19)

4π × 8.85 × 10−12 × (0.2)2

= −1.8432 × 10−25 N

(ii) For the position of zero electric field the forces due to the two charges
must be equal in magnitude but oppositely directed. Clearly the neu-
tral point must be on the x-axis. On the left of Q1, the forces will
be oppositely directed but cannot be equal as |Q1| > |Q2|. Between
Q1 and Q2, the forces are exerted in the same direction. On the right
of Q2 conditions are favourable for a null point. Let the zero electric
field be situated at a distance x from Q2 on the right.

8e

(x + 0.2)2
− 4e

x2
= 0

whence x = 0.4828 on the right of Q2.

(b) E = e

4 πε0r2
= 1.6 × 10−19

4π × 8.85 × 10−12 × (5.3 × 10−11)2

= 5.12 × 1018 N/C
Force F = Ee = 5.12 × 1018 × 1.6 × 10−19 = 81.92 N

11.2 (a) As the electric field is downwards, the force on the positive charge will
be downwards and the force on the negative charge will be upwards.

(i) q = +8 μC

Fq = q E = +8 × 10−6 × 300 = 2.4 × 10−3 N

Fg = mg = 0.6 × 10−3 × 9.8 = 5.88 × 10−3 N

∴ Tension in the thread

T = Fg + Fq = 5.88 × 10−3 + 2.4 × 10−3 = 8.28 × 10−3 N
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(ii) q = −8 μC

Fq = q E = −2.4 × 10−3 N

Tension in the thread

T = 5.88 × 10−3 − 2.4 × 10−3 = 3.48 × 10−3 N

(b) As the electric field is in the negative x-direction, point b will be at a
higher potential than a.

(i) Therefore Vb − Va will be positive

(ii) E = Vb − Va

d
= 105

(6 − 2)
= 2.5 × 104 N/C

11.3 The total charge on the circular loop Q = 2π Rλ; the distance of the point
P(0, 0, Z) from the loop is r = (Z2 + R2)1/2. Therefore, the electric potential
P will be

V = Q

4πε0r
= λR

2ε0(Z2 + R2)1/2

E = −∂V

∂z
= λRZ

2ε0(Z 2 + R2)3/2

11.4 (a) F = q

4πε0r2 (Q = 1)

V = −
∫

F dr = − q

4πε0

∫
dr

r2 = q

4πε0r
+ C

When r = ∞, V = 0. Therefore C = 0

(b) U = q2

4πε0

[
1

d
− 1

d
+ 1

d
− 1

d
−

√
2

d
−

√
2

d

]

For six pairs of charges

U = − q2

√
2πε0d

The potential energy does not depend on the order in which the charges
are assembled.

(c) Consider the forces on the top left-hand charge due to the three other
charges.

Ex = Ey = − q2

8 πε0d2

∴ E =
√

E2
x + E2

y = √
2

q2

8 πε0d2
�= 0
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Therefore the charge is not in equilibrium. Same thing is true for the other
three charges.

11.5 (i) V1 = q

4πε0r
= 2 × 10−15 × 9 × 109

10−3 = 0.018 V

(ii) If n droplets each of radius r coalesce to form a large drop of radius R,
then assuming that the droplets are incompressible, the volume does not
change. Therefore

4

3
π R3 = n

4

3
πr3

or R = n1/3r (1)

As charge is conserved

Q = nq (2)

where Q and q are the charges on the drop and droplet, respectively. Then
the potential of the droplet is

V2 = Q

4πε0 R
= nq

4πε0n1/3r
= n2/3q

4πε0r

= n2/3 V1 = 22/3 V1 = 0.0286 V

where n = 2, and V1 = 0.018 V by (i).

11.6 Electric force

F = q E = 2 × 10−8 × 20, 000 = 4 × 10−4

Gravitational force mg = 80 × 10−6 × 9.8 = 7.84 × 10−4 N
Balancing the horizontal and vertical components of forces, Fig. 11.19

T sin θ = F (1)

T cos θ = mg (2)

where T is the tension in the thread.

Fig. 11.19
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tan θ = F

mg
= 4 × 10−4

7.84 × 10−4 = 0.51

θ = 27◦

Squaring (1) and (2) and adding and extracting the square root

T =
√

F2 + (mg)2 =
√

(4 × 10−4)2 + (7.84 × 10−4)2 = 8.8 × 10−4 N

11.7 Electric potential

V = 1

4πε0

(q

1
+ q

2
+ q

4
+ q

8
+ · · ·

)

= q

4πε0

(
1 + 1

2
+ 1

22 + 1

23 + · · ·
)

The terms in brackets form a geometric progression of infinite terms whose
sum is

S = a

1 − r
= 1

1 − 1

2

= 2

∴ V = q

2πε0

Electric field

E = 1

4πε0

[q

1
+ q

22 + q

42 + q

82 + · · ·
]

= 1

4πε0

q(
1 − 1

4

) = q

3πε0

11.8 V = 1

4πε0

(
q − q

2
+ q

4
− q

8
+ q

16
− q

32
+ · · ·

)

= q

4πε0

(
1 + 1

4
+ 1

16
+ · · ·

)
− q

8πε0

(
1 + 1

4
+ 1

16
+ · · ·

)

= 1

4πε0

(
q − q

2

) (
1 + 1

4
+ 1

16
+ · · ·

)

= q

8πε0

1

1 − 1

4

= q

6πε0
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E = 1

4πε0

(
q − q

22 + q

42 − q

82 + q

162 · · ·
)

= q

4πε0

(
1 + 1

42
+ 1

162
+ · · ·

)
− q

16πε0

[
1 + 1

42
+ 1

162
+ · · ·

]

= 1

4πε0

(
q − q

4

) (
1 + 1

42
+ 1

162
+ · · ·

)

= 3q

16πε0

1

1 − 1

16

= q

5πε0

11.9 By prob. (11.3), E = Qx

4πε0
(
x2 + R2

)3/2
, where we have replaced z by x and

substituted λ = Q/2π R. As x << R and F = qE,

F = Qqx

4πε0 R3
= −kx, where q is negative and k = Qq

4πε0 R3

= 10−5 × 10−6 × 9 × 109

13
= 0.09

Thus, the motion of the negatively charged particle is approximately simple
harmonic with angular frequency

ω =
√

k

m
=
√

0.09

0.9 × 10−3
= 10

T = 2π

ω
= 2π

10
= 0.628 s

11.10 Let a be the side of the equilateral triangle. The forces on the charge q placed
at C due to the charges at A and B are repulsive and represented by CE and
CD, respectively, each given by q2/4πε0a2. The resultant of these two forces
is given by CP, the diagonal of the parallelogram CDPE, Fig. 11.20

CP = 2CD cos 30◦ = 2q2

4πε0a2

√
3

2
=

√
3q2

4πε0a2

The force on q at C due to Q at the centre of the triangle is

Qq

4πε0(OC)2
= 3 Qq

4πε0a2

i. If Q = −q, this force will be attractive and will be directed along CO. As
the attractive force due to −q is greater than the combined repulsive force
due to charges +q at A and B, the charge at C will be attracted towards
O. Same is true for the charges placed at A and B.
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ii. For equilibrium, the attractive force must balance the repulsive force:

√
3q2

4πε0a2 − 3Qq

4πε0a2 = 0 → Q = −q/
√

3

Fig. 11.20

11.11 Referring to Fig. 11.21, the Coulomb force between the spheres in air is

F = q2

4πε0x2

In liquid F ′ = q2

4πε0 K x2 ; weight of the sphere in air = mg

Apparent weight of the sphere in liquid = mg

(
1 − ρ′

ρ

)
, where ρ is the

density of the material of sphere and ρ′ that of the liquid. For equilibrium
the vertical and horizontal components of the force must separately balance.
If T is the tension in the string when the sphere is in air and T ′ when it is in
the liquid,

T sin θ = F, T cos θ = mg

T ′ sin θ = F ′, T ′ cos θ = mg

(
1 − ρ′

ρ

)
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tan θ = F

mg
= F ′

mg

(
1 − ρ ′

ρ

)

F

F ′ = K = 1

1 − ρ′

ρ

= ρ

ρ − ρ′ = 1.6

1.6 − 0.8
= 2

Fig. 11.21

11.12 From the geometry of Fig. 11.22, AB = 0.1 m, OB = OC = 0.05
√

2 m,
AC = (0.1)

√
2 m.

Potential energy of q at B is U (B) = q

4πε0

[ q1

AB
+ q2

OB

]

Potential energy of q at C is U (C) = q

4πε0

[ q1

AC
+ q2

OC

]

Fig. 11.22
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Work done in carrying the charge q from C to B will be

WCB = U (B) − U (C) = qq1

4πε0

[
1

AB
− 1

AC

]

= 5 × 10−9 × 6 × 10−8 × 9 × 109
(

1

0.1
− 1

(0.1)
√

2

)

= 7.9 × 10−6 J

11.13 The problem is similar to prob. (11.6), Fig. 11.23. For equilibrium T sin θ =
q E , T cos θ = mg, tan θ = q E

mg
∼ 2

50
= 0.04

∴ E = 0.04 mg

q
= (0.04)(0.5 × 10−3)(9.8)

3 × 10−10 = 6.53 × 105 N/C

which is directed away from the equilibrium position.

Fig. 11.23

11.14 The electric field E = V/d where V is the PD and d is the distance of
separation of plates. The electric force on the droplet is F = q E = qV/d.
If the upper plate is negative then the condition for equilibrium against grav-
itational force acting downwards is

qV

d
= mg

V = mgd

q
= 10−14 × 9.8 × 0.01

3.2 × 10−19
= 3062.5 V

If the polarity of the plates is reversed, both the electric and gravitational
forces would act down. The net force would become
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F ′ = q E + mg = 2 mg

Acceleration a = F ′

m
= 2g = 2 × 9.8 = 19.6 m/s2

11.15 Let q be the charge on each body. Electric force = gravitational force

q2

4πε0r2 = G Mm

r2

q = √
4πε0GMm

=
[

6.67 × 10−11 × 6 × 1024 × 7.4 × 1022

9 × 109

]1/2

= 5.736 × 1013 C

11.16 Energy W = qV

q = W

V
= 10−5

5 × 106
= 2 × 10−12 C

Number of electrons flowed out = q

e
= 2 × 10−12

1.6 × 10−19
= 1.25 × 107

11.17 Consider an element dx of the rod at distance x from the point P on the axis
of the rod. In the length dx the charge is dq = λdx , Fig. 11.24.
The field at P due to dq will be

dE = λ dx

4πε0x2

The total electric field will be

E =
∫

dE =
0.35∫

0.1

λ dx

4πε0x2
= λ

4πε0
· 1

x

0.1|
0.35

= 200 × 10−6 × 9 × 109 ×
(

1

0.1
− 1

0.35

)
= 1.286 × 107 N/C

Fig. 11.24

11.18 Let p be the field point on the axis of the disc at distance z from the origin.
Consider a ring of radius r and width dr . The charge on the ring is dq =
2πr dr σ where σ is the charge density (charge per unit area), Fig. 11.25.
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The electric field at P can be resolved into a component along the z-axis
and perpendicular to it. The perpendicular components when added become
zero for reasons of symmetry. The components along the z-axis are added

dE|| = dq cos θ

4πε0(z2 + r2)
= 2π r dr σ

4πε0(z2 + r2)
· z

(z2 + r2)1/2

E =
∫

dE|| = σ

2ε0
z

R∫

0

rdr

(z2 + r2)3/2 = σ

2ε0

(
1 − z

(z2 + R2)1/2

)

Fig. 11.25

11.19 Equations of motion are

eE + mg − 6πηv1r = 0 (downward field)

eE − mg − 6πηv2r = 0 (upward field)

Adding and solving for e

e = 3πη

E
(v1 + v2)r

11.20 Consider an element of the circular wire ds (Fig. 11.26). Then dq = λds.

Now ds = r dθ

∴ dq = (λ cos2 θ) (rdθ)

∴ q =
∫

dq = λ0r

2π∫

0

cos2 θdθ = πλ0r
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Fig. 11.26

11.21 Electric force Fe = q2

4πε0r2 (11.48)

Gravitational force Fg = GMm

r2 (11.49)

Fe

Fg
= q2

4πε0

1

GMm
= (1.6 × 10−19)2(9 × 109)

(6.67 × 10−11)(1.66 × 10−27)(9.1 × 10−31)
(11.50)

= 2.29 × 1039 (11.51)

The distance is immaterial. Note that the gravitational force at the atomic and
sub-atomic levels is small simply because the masses are small.

11.22 q1 + q2 = 15 μC (1)

F = q1q2

4πε0r2 = 9 × 109

(0.3)2 q1q2 = 5.4

or q1 q2 = 54 (μC)2 (2)

Solving (1) and (2), q1 = 6 μC, q2 = 9 μC.

11.23 At P, the electric field due to +q is
q

4πε0(a/
√

2)2
or

2q

4πε0(a)2
and points

towards +2q. The field due to +2q is
4q

4πε0a2
and points towards +q. The

resultant field due to the pair (q, 2q) is
4q

4πε0a2
− 2q

4πε0a2
or E1 = 2q

4πε0a2

towards +q.

Similarly, the resultant filed due to the pair of charges (−q, −2q) will be

E2 = − 2q

4πε0a2
towards −2q or + 2q

4πε0a2
towards −q.
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Now E1 = E2 in magnitude and act at right angles (from the geometry

of the diagram). The overall field will then be E = √
2 E1 = 2

√
2q

4πε0a2 along

positive y-axis.

11.24 Consider an infinitesimal length dx at distance x from O, the centre of the
rod. The charge on dx will be dq = q (dx/L). The field at P due to dq shown
by an arrow can be resolved into x- and y-components. The x-component of
the field will be cancelled by a symmetric charge on the negative side at equal
distance. The y−components of the field will be added up, Fig. 11.27.

dEy = dE cos θ = qdx

4πε0 L(x2 + y2)

y

(x2 + y2)1/2

∴ E =
∫

dEy = qy

4πε0L

∫
dx

(x2 + y2)3/2

Put x = y tan θ, dx = y sec2 θdθ

E = q

4πε0 Ly

α∫

−α

cos θdθ = q

2πε0Ly
sin α = q

2πε0(4y2 + L2)1/2

where we have put sin α = L/2

(y2 + L2/4)1/2
.

Fig. 11.27

11.25 Consider an element of angle between θ and θ+dθ . Let OP be the bisector of
angle θ0 subtended by the arc AB at the centre O. The charge on the element

of the arc adθ will be q
dθ

θ0
. The electric field at O due to this element of arc

can be resolved E| | along PO and E⊥ perpendicular to it.
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The perpendicular components will be cancelled for reasons of symmetry
while the parallel components get added up, Fig. 11.28.

dE = dE‖ = q dθ

4πε0θ0a2 cos θ

E =
∫

dE‖ = q

4πε0θ0a2

θ0/2∫

−θ0/2

cos θdθ = q

2πε0a2

sin(θ0/2)

θ0

Fig. 11.28

11.26 The electric field at distance z from the centre of the ring on the axis of the
ring is given by prob. (11.3)

E = λr

2ε0

z

(z2 + r2)3/2

The maximum field is obtained by setting
∂ E

∂z
= 0.

This gives (z2 + r2)1/2(r2 − 2z2) = 0.
Since the first factor cannot be zero for any real value of z, the second

factor gives z = r/
√

2.

11.27 Consider a circular strip symmetric about z-axis of radius r and width adθ

(Fig. 11.29). The charge on the strip is

dq = q
2πr adθ

2π a2
= qr dθ

a
= q sin θ dθ

(a) At the centre of the hemisphere, the x-component of the field will be
cancelled for reasons of symmetry. The entire field will be contributed
by the z-component alone.



11.3 Solutions 495

dE = dEz = q sin θdθ cos θ

4πε0a2

∴ E =
∫

dEz = q

4πε0a2

π/2∫

0

sin θ cos θdθ = q

8πε0a2

(b) dV = q sin θdθ

4πε0a
; V =

∫
dv = q

4πε0a

π/2∫

0

sin θdθ = q

4πε0a

Fig. 11.29

11.28 The x-component of the field due to front charges will get cancelled and the
y-component is added up to

2q

4πε0

a/2
[(

r − a

2

)2 + a2

4

]1/2

along the negative y-axis, Fig. 11.30.
Similarly the field due to the other two charges will be

2q · a/2

4πε0

[(
r + a

2

)2 + a2

4

]3/2 along the positive y-axis.

Neglecting terms of the order of a2, the net field will be

E = qa

4πε0r3

[(
1 − a

r

)−3/2 −
(

1 + a

r

)−3/2
]

Using the binomial expansion up to retaining terms linear in a,

E = 3qa2

4πε0r4
. Then E α

1

r4



496 11 Electrostatics

Fig. 11.30

11.29 The electric force Fe = the gravitational force

q2

4πε0r2 = Gm2

r2

q

m
= (4πε0G)1/2 =

(
6.67 × 10−11

9 × 109

)1/2

= 8.65 × 10−9 C/kg

11.30 Consider the equilibrium of one of the spheres, Fig. 11.31. If T is the tension
in the string then

T cos θ = mg

T sin θ = q2

4πε0x2

∴ tan θ � θ = x

2L
= q2

4πε0mgx2

∴ q =
(

2πε0mg

L

)1/2

x3/2

Fig. 11.31
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∴ dq

dx
= 3

2

√
2πε0mg

L

√
x

dq

dt
= dq

dx

dx

dt
= dq

dx
v = dq

dx

a√
x

= 3

2
a

√
2πε0mg

L

11.31 Consider an element of length dx of the thread at distance x from the
centre of the ring. The force between the ring and the element dx can be
resolved into x- and y-components, Fig. 11.32. The y-component will get
cancelled for reasons of symmetry. The field is entirely contributed by the
x-component. The charge in length dx is λdx . The electric force between the
wire and the ring is given by

F = Fx =
∫

1

4 πε0

q λ dx cos θ

(R2 + x2)
= qλ

4πε0

∞∫

0

xdx

(x2 + R2)3/2

Put x = R cot θ , dx = −Rcosec2 θ dθ

F = − qλ

4πε0 R

0∫

π/2

cos θ dθ = qλ

4πε0 R

Fig. 11.32

11.32 Consider an element of wire dx at distance x from O, Fig. 11.33. The charge
in dx will be λdx . The x-component of the electric field will be

Ex =
∫

E sin θ =
∫

λdx sin θ

4πε0(x2 + y2)
= λ

4πε0

∞∫

0

x dx

(x2 + y2)3/2

Put x2 + y2 = z2, x dx = z dz

where y = constant.

Ex = λ

4πε0

∞∫

y

dz

z2
= λ

4πε0 y

Similarly, Ey =
∫

E cos θ = λ

4πε0 y
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E =
√

E2
x + E2

y =
√

2 λ

4πε0 y

tan α = Ey

Ex
= 1 → α = 45◦

Thus �E makes an angle 45◦ with the y-axis.

Fig. 11.33

11.33 φ = Cxy

Ex = −∂φ

∂x
= −cy, Ey = ∂φ

∂y
= −cx

∴ �E = −c(yî + x ĵ)

11.34 Let the charges Q and −2Q be located on the x-axis at distance x on the
opposite side of the y-axis. Let the point P(x, y) be at distance r1 from Q
and at r2 from −2Q, Fig. 11.34. By problem

1

4πε0

[
Q

r1
− 2Q

r2

]
= 0

or r2 = 2r1 (1)

Writing r2
1 = (x + a)2 + y2 (2)

and r2
2 = (a − x)2 + y2 (3)

and eliminating r1 and r2 in (1), (2) and (3) and simplifying

3x2 + 3y2 + 10xa + 3a2 = 0

or

(
x + 5

3
a

)2

+ y2 = 16

9
a2

which is the equation to a circle.
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Fig. 11.34

11.35 Let the charge q be taken from the centre of ring A to the centre of ring B,
Fig. 11.35

At A, UA = q Q1

4πε0 R
+ q Q2

4πε0(
√

2 R)

At B, UB = q Q2

4πε0 R
+ q Q1

4πε0(
√

2 R)

Work done, W = UB − UA = (
√

2 − 1) q (Q2 − Q1)

4
√

2πε0 R

Fig. 11.35

11.36 (a) Consider an infinitesimal length of the rod, at distance y from the origin,
Fig. 11.36. The charge in dy will be λdy. The distance of P1 from dy
will be 2a − y. The potential at P1 is

V1 = 1

4πε0

a∫

−a

λ dy

(2a − y)
= λ

4πε0
ln 3

The potential at P2 is

V2 = 1

4πε0

a∫

−a

λdy√
y2 + x2

= 2λ

4πε0
ln

(
a + √

a2 + x2

x

)
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By problem V2 = V1

∴
(

a + √
a2 + x2

x

)2

= 3 → x = √
3 a

V1 = V2 = λ × 9 × 109 × ln 3

= 9.89 × 109 V

Fig. 11.36

11.37 U = UQq + UQq + U = 1

4πε0

[
Qq

a
+ Qq

a
+ q2

√
2a

]
= 0 by problem.

Therefore Q = − q

2
√

2
·

11.38 Work done W = U12 + U23 + U34 + U41 + U13 + U24 where charges l and
3 are positive and 2 and 4 negative assuming that the potential energy is zero
for infinite separation of charges.

W = q2

4πε0

[
−1

a
− 1

a
− 1

a
− 1

a
+ 1√

2a
+ 1√

2a

]

= −q2

4πε0a

(
4 − √

2
)

11.39 (a) The charge density is given by ρ = 3q

4π R3
. Consider a shell of radius

r and thickness dr concentric with the sphere. The volume of the shell
is 4πr 2dr and the charge in it will be dq = 4πr2drρ, Fig. 11.37. The

charge of the sphere of radius r is dq ′ = 4

3
πr3ρ and may be considered
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to be concentrated at the centre. The interaction energy between the shell
and the sphere of radius r will be

dU = 1

4πε0

(dq)(dq ′)
r

= 1

4πε0

(4πr2drρ)

(
4

3
πr3ρ

)

r
= 4πρ2r4dr

3ε0

Total interaction energy

U =
∫

dU = 4πρ2

3ε0

R∫

0

r4dr = 4πρ2 R5

15ε0
= 3q2

20πε0 R

where we have substituted the value of ρ.

(b) U = 3

5

×9 × 109 × (92 × 1.6 × 10−19)2

1.5 × (238)1/3 × 10−15 = 1.259 × 10−11 J

= 78.7 MeV

Fig. 11.37

11.40 (i) E = Q

4πε0

[
2

x2
− 1

(x + d)2
− 1

(x − d)2

]

= − 2Q d2(3x2 − d2)

4πε0x2(x2 − d2)2

(ii) For x >> d, 3x2 − d2 � 3x2 and x2 − d2 � x2

E = − 6Q d2

4πε0x4

(iii) E = −6 × 9 × 109 × 2 × 10−6 × (10−4)2

(0.2)2
= 0.675 N/C
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11.41 (a) q = CV = 4πε0r V = 5 × 106 × 10−3

9 × 109
= 5.5 × 10−7 C

(b) V = q

4πε r
= 5.5 × 10−7 × 9 × 109

1 × 10−3 = 1.65 × 106 V

11.42 Initial potential energy U1 = − qe

4πε0r1

Final potential energy U2 = − qe

4πε0r2

�U = U1 − U2 = qe

4πε0

(
1

r2
− 1

r1

)

By work–energy theorem, gain in kinetic energy = loss in potential energy.

1

2
mv2 = qe

4πε0

(
1

r2
− 1

r1

)

v =
[

2qe

4πε0m

(
1

r2
− 1

r1

)]1/2

=
[

2 × 2 × 10−9 × 1.6 × 10−19 × 9 × 109

9.1 × 10−31

(
1

0.18
− 1

1.2

)]1/2

= 5.467 × 106 m/s

11.43 V (r) = Q

4πε0

[
2

r
− 1√

r2 + d2
− 1√

r2 + d2

]

= 2Q

4πε0

[
1

r
− 1

r

(
1 + d2

r2

)−1/2]
� Qd2

4πε0r3

Thus V (r) α
1

r3

11.44 (i) F = q E = (1.6 × 10−19)(2 × 103) = 3.2 × 10−16 N

(ii) Acceleration a = F

m
= 3.2 × 10−16

9.1 × 10−31
= 3.516 × 1014 m/s2

v = √
2as =

√
2 × 3.516 × 1014 × 0.015

= 3.25 × 106 m/s

(iii) Outside the plates there is no force on the electron as there is no electric
field.

11.45 V (r) = Q

4πε0r
(1)

For continuous distribution of charge, each element dq can be treated as point
charge so that the contribution dV to the potential can be written according
to (1), Fig. 11.38:
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Fig. 11.38

dV = 1

4πε0

dQ

r
(2)

For the potential due to the entire distribution of all the elements, (2) is
integrated:

V =
∫

dV = 1

4πε0

∫
dQ

r
(3)

In case of uniform charge distribution we can write dQ = λ ds, dQ = σdA
or dQ = ρdV depending on the geometry of the problem. Here λ is the
linear charge density, σ is the surface charge density and ρ is the volume
charge density.

(a) q = π R2σ

(b) Consider a ring of radius r and width dr concentric with the disc of
radius R. The charge on the ring is dq = σ2πrdr . The potential at P, at
a distance x on the axis of the disc, will be

dV = 1

4πε0

dq

y
= 1

4πε0

σ2πr dr√
r2 + x2

(4)

Potential due to the disc will be

V =
∫

dV = σ

2ε0

R∫

0

r dr√
r2 + x2

(5)

Put r2 + x2 = y2, r dr = y dy, then (5) becomes

V = σ

2ε0

∫
dy = σ

2ε0
y

√
x2+R2

|
x

= σ

2ε0

[√
x2 + R2 − x

]
(6)
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(c) If x >> R, (6) can be expanded binomially,

V → σ

2ε0

[
x

(
1 + R2

x2

)1/2

− x

]
= σ R2

4ε0x
= q

4πε0x
, an expression

which is appropriate for the point charge. This result is reasonable since
at very large distances the disc appears as a point.

11.46 For circular motion of electron, the speed

v = 2πr

T
(1)

For a stable orbit, the centripetal force = electric force.

mv2

r
= 1

4πε0

e2

r2
(2)

Eliminating v between (1) and (2)

T 2 = 16π3ε0m r3

or T 2 α r3 (Kepler’s third law)

11.47 Figure 11.39 shows the forces on charge 2 due to the charges 1, 3 and 4. The
forces

F12 = F32 = 1

4πε0

Q2

a2

F42 = 1

4πε0

Q2

(√
2a
)2 = 1

4πε0

Q2

(2a2)

Fig. 11.39
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Now |F32 + F12| = √
2 F12(∵ F12 and F32 act at right angle and are equal

in magnitude)
Further, F42 acts in the same direction as the combined force of F32 and

F12.

∴ |F12 + F32 + F42| = Q2

4πε0a2

(√
2 + 1

2

)
= 1.914 Q2

4πε0a2

11.48 (a) A dipole consists of two equal and opposite charges. To find the electric
field at A, on the perpendicular bisector of the dipole, at distance x . As
the point A is equidistant from the two charges, the magnitudes E+ and
E− are equal. The net electric field E at A is given by the vector addition
of E+ and E− (Fig. 11.40)

E = E+ + E− (1)

E+ = E− = 1

4πε0

q

r2
= 1

4πε0

q

[x2 + (d/2)2] (2)

Since both E+ and E− are equal and equally inclined to the y-axis, their
x-components gets cancelled and the combined field is contributed by
the y-component alone.

Fig. 11.40

E = Ey = E+ cos θ + E− cos θ = 2E+ cos θ

= 1

4πε0

qd

[x2 + (d/2)2]3/2 (3)

(b) For x >> d/2, E = 1

4πε0

p

x3
, where p = qd is the dipole. Thus

the electric field at large distance varies inversely as the third power of
distance, which is much more rapid than the inverse square dependence
for point charge.

(c) Potential energy U = −P · E = −pE cos θ , for parallel alignment,
θ = 0, and

U1 = −pE = −(6 × 10−32)(3 × 106) = −1.8 × 10−25 J
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For antiparallel arrangement, θ = 180◦ and U2 = +PE = +1.8 ×
10−25 J.
Therefore the difference in the potential energy �U = U2 −U1 = 3.6×
10−25 J.

11.3.2 Gauss’ Law

11.49 (a) If φE is the electric flux, E the electric field, q the charge enclosed and
dA the element of area then q = ε0

∮
E · dA. The integration is to be

carried over the entire surface. The circle on the integral sign indicates
that the surface of integration is a closed surface.

(b) Figure 11.41 shows a portion of a thin non-conducting infinite sheet of
charge of constant charge density σ (charge per unit area). To calculate
the electric field at points close to the sheet construct a Gaussian surface
in the form of a closed cylinder of cross-sectional area A, piercing the
plane of the sheet, Fig. 11.41. From symmetry, it is obvious that E points
are at right angle to the end caps, away from the plane, and are positive
at both the end caps. There is no contribution to the flux from the curved
wall of the cylinder as E does not pierce. By Gauss law

ε0

∮
E · dA = q

ε0(E A + E A) = q

where σ A is the enclosed charge. Thus E = σ/2ε0·

Fig. 11.41
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For a non-conducting sheet the field

E = σ

2ε0
(1)

The electric force acting on the sphere is

F = q E = qσ

2ε0
(2)

(c) The sphere is held in equilibrium under the joint action of three forces:

(1) Weight acting vertically down,

(2) Electric force F acting horizontally, and

(3) Tension in the thread acting along the thread at an angle θ with the
vertical.

From Fig. 11.42, F/mg = tan θ (3)
Combining (2) and (3)

σ = 2ε0mg tan θ

q
= 2 × 8.9 × 10−12 × 2 × 10−6 × 9.8 × tan 10◦

5 × 10−8

= 2.15 × 10−11 C/m2

Fig. 11.42
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11.50 (a) Integral form of Gauss’ law:

∫
E · ds = �Q

ε0

Differential form: ∇ · E = ρ

ε0

(b) r > R. Construct a Gaussian surface in the form of a sphere of radius
r > R, concentric with the charged sphere of radius R, Fig. 11.43a.
By Gauss’ law

∫
E · dA = (E) 4π r2 = Q

ε0

∴ E = Q

4πε0r2 (1)

Fig. 11.43

(a) (b)

(c) r < R. Construct a Gaussian surface in the form of a sphere of radius
r < R, concentric with the charged sphere of radius R, Fig. 11.43b. Let
charge q ′ reside inside the Gaussian surface. Then by Gauss’ law

ε0

∮
E · dA = (ε0 E) (4πr2) = q ′

E = q ′

4πε0r2
(2)

Now the charge outside the sphere of radius r does not contribute to the
electric field. Assuming that ρ is constant throughout the charge distri-
bution,

q ′

q
=

4

3
πr3

4

3
π R3

or q ′ = q
r3

R3
(3)

Using (3) in (2), E = 1

4πε0

qr

R3
(4)
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Thus for r < R, E varies linearly with r . Note that at r = R, both (1)
and (4) give the same value as they should.

11.51 The electric field on the surface of the original sphere is

ER = q

4πε0 R2

After creating the cavity, the charge in the remaining part of the sphere will
be

q ′ =

⎡
⎢⎢⎢⎣

4

3
π R3ρ − 4

3
π

(
R

2

)3

ρ

4

3
π R3ρ

⎤
⎥⎥⎥⎦ q = 7

8
q

∴ The electric field on the surface is now

E ′
R = q ′

4πε0 R2
= 7

8

q

4πε0 R2
= 7

8
E

11.52 (a) E = q

4 πε0r

r

R3

V (r) = −
∫

Edr = − q

4πε0 R3

∫
r dr = − qr2

8πε0 R3 + C

Now the potential at the surface (r = R) is

V (R) = q

4πε0 R
= − q

8πε0 R
+ C

∴ C = 3q

8πε0 R

∴ V (r) = q

8πε0 R

(
3 − r2

R2

)

(b) At the centre r = 0. From the result of (a)

V (0) = 3q

8πε0 R
= 3

2
V (R)

11.53 (a) E = 0 when r < b as no charge exists in this region.
(b) Region b < r < a: Consider a Gaussian surface, a sphere of radius

r , where b < r < a. Charge at distance a between b and r only will
contribute to the field. The charge residing in the shell of radii b and r is
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Q′ =
4

3
π (r3 − b3)Q

4π

3
(a3 − b3)

= (r3 − b3)

(a3 − b3)
Q

E = Q ′

4πε0r2 = Q′

4πε0r2

(r3 − b3)

(a3 − b3)

(c) Region r > a : E = Q

4πε0r2

11.54 (a) Construct a Gaussian surface in the form of a cylinder of radius r > R
and height h. By Gauss’ law

(ε0 E) (2πrh) = Q = ρπ R2h

∴ E = 1

2

ρ

ε0

R2

r

(b) Construct a Gaussian surface in the form of a cylinder of height h and
radius r < R coaxial with the cylinder of radius R and height h. By
Gauss’ law

(ε0 E) (2πrh) = Q′ = ρπ R2h

∴ E = 1

2

ρ

ε0

R2

r
(r < R)

11.55 (a) E = q

4 πε0r2

∴ q = 4 πε0r2 E = 1

9 × 109 × (0.5)2 × 800 = 2.22 × 10−8 C

(b) E = σ

ε0

∴ σ = Eε0 = 120 × 8.85 × 10−12 = 1.062 × 10−9 C/m2

(c) q = ε0φ

φ = E A = 120 × (100 × 75) = 9 × 105 N m2/C

11.56 (a) E0

∮
E · dA = q (Gauss’ law) (1)

Consider an isolated positive point charge. Construct a Gaussian surface,
a sphere of radius r centred at the charge. At every point on the spherical
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surface, the field is perpendicular to the surface. As both E and dA are
directed radially outwards, the angle θ between them is zero so that the
dot product E · dA reduces to EdA and (1) can be written as

ε0

∮
E·dA = ε0

∫
EdA = q (2)

As E is constant, it can be factored out of the integral:

ε0 E
∫

dA = (ε0 E) (4π r2) = q

∴ E = q

4πε0r2
(Coulomb’s law) (3)

(b) (i) r < R

By prob. (11.50), E = Qr

4πε0 R3

φ = E A = Q r

4πε0 R3 4π r2 = Q r3

ε0 R3

(ii) r > R

E = Q

4πε0r2

φ = E A = Q

4πε0r2 4πr2 = Q

ε0

11.57 φ = ∮
E · dA, q = ε0 A

(a) Construct a Gaussian surface, a sphere of radius r1 concentric with the
spherical shells. Since no charge is enclosed by the Gaussian surface
with r < R1, E = 0.

(b) Here the net charge enclosed by the Gaussian surface is Q1. As E is
normal to the spherical surface by Gauss’ law

(ε0 E) (4π r2) = Q1 or E = Q1

4πε0r2

(c) Here the net charge enclosed by the Gaussian surface is Q1 + Q2 and E
is normal to the spherical surface (Fig. 11.44). By Gauss’ law

(ε0 E)(4πr2) = Q1 + Q2 or E = Q1 + Q2

4πε0r2

In (c) if Q1 + Q2 = 0, then Q1/Q2 = −1.
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Fig. 11.44

11.58 Let the charges be q1 = q2 on the two spheres before contact.

Force F = q1q2

4πε0r2
= q2

1

4πε0r2
(1)

When the spheres are brought into contact and separated they are at a com-
mon potential. Let the new charges be q ′

1 and q ′
2, respectively

q ′
1 + q ′

2 = q1 + q2 = 2q1 (from charge conservation) (2)

Also V = q ′
1

4πε0 R1
= q ′

2

4πε0 R2
(3)

or
q ′

1

q ′
2

= R1

R2
(4)

Solving (2) and (4)

q ′
1 = 2q1 R1

R1 + R2
, q ′

2 = 2q1 R2

R1 + R2
(5)

After separation, force F ′ = q ′
1 q ′

2

4πε0r2
(6)

F

F ′ = q2
1

q ′
1 q ′

2
= (r1 + r2)

2

4r1 r2
= (1 + 3)2

4 × 1 × 3
= 4

3
(7)

11.59 V = q

4πε0r

∴ q = 4 πε0r V = (5)(2 × 104)

9 × 109
= 1.11 × 10−5 C

11.60 (a) V = q

4πε0a

∴ Capacitance C = q

V
= 4πε0a
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(b) q1 = 4πε0aV1, q2 = 4πε0aV2

U1 = 1

2
q1V1 = 1

2

q2
1

4πε0a
, U2 = 1

2

q2
2

4πε0a

Initially total energy U = U1 + U2 =
(
q2

1 + q2
2

)

8πε0a
(1)

When the spheres are connected they reach a common potential and
when disconnected let the charges be q ′

1 and q ′
2.

q ′
1 = 4πε0aV, q ′

2 = 4πε0aV

∴ q ′
2 = q ′

1

Final energy in the spheres

U ′
1 = 1

2
q ′

1 V = q
′2
1

8πε0a
, U ′

2 = q
′2
2

8πε0a

Total final energy U ′ = U ′
1 + U ′

2 = q
′2
1 + q

′2
2

8πε0a
(2)

q1 + q2 = q ′
1 + q ′

2 = 2q ′
1 (charge conservation) (3)

�U = U1 − U2 = 1

8πε0a

(
q2

1 + q2
2 − 2q

′2
1

)
(4)

Eliminating q ′
1 between (3) and (4) and simplifying

�U = 1

16πε0a
(q1 − q2)

2 (5)

This energy is dissipated in Joule heating of the wire.

11.61 When the spheres are brought into contact they reach a common potential,
say V . If the charges on them are now Q′

1 and Q′
2

V = Q′
1

4πε0 R1
= Q′

2

4πε0 R2
(1)

σ ′
1 = Q′

1

4π R2
1

= ε0V

R1
(2)

where we have used (1).
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Similarly

σ ′
2 = ε0V

R2
(3)

Thus σ ′ α 1

R
.

11.62 (a) V = Er = 5 × 106 × 0.1 = 5 × 105 V

(b) Pressure p = 1

2

σ 2

ε0
= 1

2ε0
(Eε0)

2 = 1

2
ε0 E2

= 1

2
× 8.85 × 10−12 × (5 × 106)2 = 110.6 N/m2

(c) If q is the charge and C the capacitance then the electrostatic energy

U = 1

2

q2

C
= 1

2

q2

4πε0r

Now q = 4πε0r2 E = (0.1)2 × 5 × 106

9 × 109 = 5.55 × 10−6 C

∴ U = 1

2
× 9 × 109

0.1
× (5.55 × 10−6)2 = 1.386 J

11.63 Work done in the isobaric expansion (constant pressure) is

W = P�v = 4π

3

(
R3

2 − R3
1

)
p (1)

where we have written υ for volume.
Increase in electrostatic energy

�U = 1

2

q2

C1
− 1

2

q2

C2
= q2

2

1

4πε0

(
1

R1
− 1

R2

)
(2)

where C is the capacitance of the spherical bubble. Equating (1) and (2) and
simplifying, we obtain

q =
[

32

3
π2ε0 p R1 R2

(
R2

1 + R1 R2 + R2
2

)]1/2

(3)
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11.64 q =
r2∫

r1

ρ(r) dυ =
∫

A

r
· 4πr2dr = 2π A

(
r2

2 − r2
1

)
(1)

Region (i), 0 ≤ r < r1, ρ(r) = 0

As no charge is enclosed, E = 0 (2)

Region (ii), r1 ≤ r ≤ r2, ρ(r) = A

r

By Gauss’ law

ε0

∮
E · dS =

r∫

r1

ρ(r)dυ =
r∫

r1

A

r
4πr2dr = 2π A

(
r2 − r2

1

)

∴ (ε0 E)(4πr2) = 2π A
(

r2
2 − r2

1

)

∴ E = A

2ε0r2

(
r 2 − r2

1

)
(3)

Region (iii), r > r2, ρ(r) = 0

ε0

∫
E · dS = q = 2π A

(
r2

2 − r2
1

)
by (1)

∴ (ε0 E)(4πr2) = 2π A
(

r2
2 − r2

1

)

∴ E = A

2ε0r2

(
r2 − r2

1

)
(4)

11.65 (a) In order to show that the electric field is conservative, it is sufficient to
establish the existence of a potential. Now, if potential V exists, it must
be such that

F · dr = −dV

where F = f (r)er is the central force and er is the unit vector along the
radius vector r

F · dr = f (r)er · dr = f (r) dr

∴ −dV = f (r) dr

or V = −
∫

f (r)dr

We conclude that the field is conservative and V represents the potential
given by the above relation.
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(b) Initial electrostatic energy

U1 = 1

2
qV = 1

2
CV 2 = 1

2
4πε0r1V 2

= 1

2
× 1

9 × 109
× 0.01 × 102 = 5.55 × 10−11 J

Final electrostatic energy

U2 = 1

2
4πε0r2V 2 = 1

2
× 1

9 × 109
× 0.001 × 102

= 5.55 × 10−12 J

∴ Energy decrease =U1− U2 = (5.55 − 0.555)×10−11 = 5×10−11 J

11.66 Construct a Gaussian cylindrical surface of radius r and length L coaxial
with the cylinder.

(i) r > a. The charge enclosed is q = πa2 Lρ. By Gauss’ law

ε0

∮
E · dA = q

∴ ε0 E (2πr L) = πa2Lρ

∴ E = a2ρ

2ε0r

(ii) 0 < r < a. By Gauss’ law

ε0

∮
E · dA = q ′

(ε0 E)(2πr L) = π(a2 − r2)Lρ

∴ E = (a2 − r2)ρ

2ε0r

Centripetal force = Electric force

mv2

r
= Ee = a2ρe

2ε0r

∴ v =
√

a2ρe

2ε0m
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11.67 For an infinite non-conducting charge sheet E = σ/2ε0

∴ σ = 2Eε0 = 2 × 200 × 8.85 × 10−12 = 3.54 × 10−9 C/m2

The electric field is independent of the distance.
For an infinite conducting sheet

σ = Eε0 = 200 × 8.85 × 10−12 = 1.77 × 10−9 C/m2

11.3.3 Capacitors

11.68 The field strength E0 between the plates of a parallel plate capacitor in vac-
uum is

E0 = V

d
= σ

ε0
(1)

where V is the applied voltage, σ the charge density (charge per unit area)
and ε0 the permittivity in vacuum. Now σ = q/A. Therefore the capacitance
in air or vacuum will be

C0 = q

V
= Aε0

d
(2)

With the introduction of the dielectric slab the electric field in the slab will
be E0/K , and the potential across the capacitor becomes

V = E0(d − K ) + E0t

K
= E0

[
(d − t) + t

K

]

= q

Aε0

[
(d − t) + t

K

]

∴ C = q

V
= ε0 A

d − t

(
1 − 1

K

) (3)

If a metal of thickness t is to be introduced, the effective distance between
the capacitor plates is reduced and the capacitance becomes

C = ε0 A

d − t
(4)

a result which is obtained by putting K = ∞ in (3).
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11.69 C1 + C2 = 9 (parallel) (1)

C1C2

C1 + C2
= 2 (series) (2)

(C1 − C2)
2 = (C1 + C2)

2 − 4C1C2 = (C1 + C2)
2 − 8(C1 + C2) = 9

where we have used (1)

∴ C1 − C2 = 3 (3)

Solving (1) and (3), C1 = 6 μF and C2 = 3 μF.

11.70 (a) U1 = 1

2
C1V 2 = 1

2
× 2 × 10−6 × (100)2 = 0.01 J

U2 = 1

2
C2V 2 = 1

2
× 4 × 10−6 × (100)2 = 0.02 J

(b) C = C1C2

C1 + C2
= 2 × 10−6 × 4 × 10−6

(2 + 4) × 10−6 = 4

3
× 10−6 F

U = 1

2
CV 2 = 1

2
× 4

3
× 10−6 × (100)2 = 0.0067 F

(c) C = C1 + C2 = (2 + 4) × 10−6 = 6 × 10−6 F

U = 1

2
CV 2 = 1

2
× 6 × 10−6 × (100)2 = 0.03 J

11.71 C0 = ε0 A

d
= 8.85 × 10−12 × 1

0.01
= 8.85 × 10−10 F

U0 = 1

2

Q2

C0
= 1

2
× (10−6)2

8.85 × 10−10 = 5.65 × 10−4 J

U = 1

2

Q2

C
= 1

2

Q2

C0K
= U0

K
= 5.65 × 10−4

2
= 2.83 × 10−4 J

The energy is decreased by �U = U0 − U = (5.65 − 2.83) × 10−4 =
2.82 × 10−4 J, that is, by a factor of 2.

11.72 C = ε0 K A

d

∴ K = Cd

ε0 A
= 0.1 × 10−6 × 0.001

8.85 × 10−12 × 1.0
= 11.3
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11.73 Q = C1V = 5 × 10−6 × 250 = 1.25 × 10−3 C
For the parallel connection

C = C1 + C2 = 5 × 10−6 + 20 × 10−6 = 25 × 10−6 F

The resulting voltage

V ′ = Q

C
= 1.25 × 10−3

25 × 10−6 = 50 V

11.74 The combination of 2 μF and 2 μF in parallel is equivalent to 4 μF. This in
series with 8 μF gives a combined capacitance of 8/3 μF; 12 μF and 6 μF
in series gives an equivalent capacitance of 4 μF. 4 μF with 4 μF in parallel
gives 8 μF which in series with 1 μF yields 8/9 μF.

Combination of 8/9 μF and 8/3 μF in parallel gives 32/9 μF.
Effective value of C with 32/9 μF in series gives

32

9
C

C + 32

9

= 1, by problem

∴ C = 1
9

23
μF

11.75 Combined capacitance C for the three capacitors in series:

C = C1C2C3

C1C2 + C2C3 + C3C1
= (4 × 3 × 2) × 10−18

(4 × 3 + 3 × 2 + 2 × 4) × 10−12

= 0.923 × 10−6 F

(a) q = CV = 0.923 × 10−6 × 260 = 240 × 10−6 C

∴ q1 = q2 = q3 = 240 × 10−6 C

(b) V1 = q

C1
= 240 × 10−6

4 × 10−6 = 60 V

V2 = q

C2
= 240 × 10−6

3 × 10−6 = 80 V

V3 = q

C3
= 240

2
= 120 V

(c) W1 = 1

2
C1V 2

1 = 1

2
× 4 × 10−6 × (60)2 = 0.0072 J

W2 = 1

2
C2V 2

2 = 1

2
× 3 × 10−6 × (80)2 = 0.0096 J

W3 = 1

2
C3V 2

3 = 1

2
× 2 × 10−6 × (120)2 = 0.0144 J
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11.76 Charge on the first capacitor

q1 = C1V = 1 × 10−6 × 12 = 12 × 10−6 C

Charge on the second capacitor

q2 = C2V = 2 × 10−6 × 12 = 24 × 10−6 C

Capacitance for the parallel combination

(a) C = C1 + C2 = (1 + 2) × 10−6 = 3 × 10−6 F

q = q1 + q2 = (12 + 24) × 10−6 = 36 × 10−6 C

V = q

C
= 36 × 10−6

3 × 10−6
= 12 V

(b) q ′ = q2 − q1 = (24 − 12) × 10−6 = 12 × 10−6 C

V = q ′

C
= 12 × 10−6

3 × 10−6 = 4 V

11.77 (a) If the positive end of a capacitor of capacitance C1, charged to potential
difference V1, is connected in parallel to the positive end of the capacitor
of capacitance C2 charged to potential difference V2, then conservation
of charge gives the equation

(C1 + C2)V = C1V1 + C2V2 (1)

∴ V = C1V1 + C2V2

C1 + C2
(common potential) (2)

The energy loss

�W = 1

2
C1V 2

1 + 1

2
C2V 2

2 − 1

2
(C1 + C2) V 2

= 1

2

C1C2

C1 + C2
(V1 − V2)

2 (3)

where we have used (2).
(b) If the positive end is joined to the negative end, the common potential

difference will be

V = C1V1 − C2V2

C1 + C2
(4)

and the energy loss will be

�W = 1

2

C1C2

C1 + C2
(V1 + V2)

2 (5)
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11.78 (a) Battery remains connected

(i) V ′ = V ; potential remains unchanged.
(ii) E ′ = E ; electric field is unchanged.

(iii) q ′ = K q; charge is increased by a factor K . The additional charge
(K − 1)q is moved from the negative to the positive plate by the
battery, as the dielectric slab is inserted.

(iv) C ′ = K C ; capacitance is increased by a factor K .

(v) U ′ = 1

2
q ′V ′ = 1

2
KqV = KU

Energy is increased by a factor K .
(b) The battery is disconnected

(i) V ′ = V

K
; potential is decreased by a factor K

(ii) E ′ = E

K
; electric field is decreased by a factor K . Both (i) and (ii)

follow from the fact that q ′ = q so that C ′V ′ = CV and V ′ =
CV

C ′ = V

K
. Same reasoning holds good for E ′.

(iii) q ′ = q; charge remains unchanged as there is no path for charge
transfer.

(iv) C ′ = K C ; capacitance is increased by a factor K .

(v) U ′ = 1

2
q ′V ′ = 1

2

qV

K
= U

K

The energy is lowered by a factor K .

11.79 (a) The battery remains connected

(i) V ′ = V ; potential remains unchanged.
(ii) E ′ < E ; the electric field is decreased since E = V/d, and V is

constant.
(iii) C ′ < C ; capacitance is reduced since C ∝ 1/d.
(iv) q ′ < q; the charge is reduced since q = CV , with C decreas-

ing and V remaining constant. Some charge is transferred from the
capacitor to the charging battery.

(v) U ′ < U ; the energy is decreased since U = 1

2
qV , with q decreas-

ing and V remaining constant.

(b) Battery is disconnected

(i) V ′ > V , the potential increases because q = CV , with C decreas-
ing and q remaining constant.

(ii) E ′ = E , the electric field is constant because q = CV = ε0 AV

d
=

ε0 AE , with q remaining constant.
(iii) C ′ < C ; the capacitance is decreased since C ∝ 1/d.
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(iv) q ′ = q; the charge remains constant.

(v) U ′ > U ; energy increases because U = 1

2
qV , with V increasing

and q remaining constant.

11.80 As the plates carry equal but opposite charges, the force of attraction, which
is conservative, is given by

F = −dU

dx

But U = 1

2

q2

C

For the parallel plate capacitor,

C = ε0 A

x

where x is the distance of separation. Combining the above equations

F = − d

dx

[
1

2

q2x

ε0 A

]
= − q2

2ε0 A
= −1

2

ε0 AV 2

d2

where we have put x = d.

11.81 (a) As the drops are assumed to be incompressible, the volume does not
change.

4

3
π R3 = n

4

3
πr3

∴ R = n1/3 r

(b) C ′ = 4πε0 R = 4πε0r n1/3

∴ C ′ = n1/3 C
(c) Q = nq (charge conservation)

V ′ = Q

4πε0 R
= nq

4πε0n1/3r
= n2/3q

4πε0r
= n2/3 V

(d) σ ′ = Q

4π R2 = nq

4π r2n2/3 = n1/3 σ

(e) U ′ = 1

2
QV ′ = 1

2
nqn2/3V = n5/3U
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11.82 The electric field for a cylindrical capacitor is

E = q

2πε0lr
(1)

where l is the length and r the radius. The energy density (energy/unit vol-
ume)

u = 1

2
ε0 E2 = q2

8π2ε0l2r2
(2)

where we have used (1).
The energy stored between the coaxial cylinders of length l and radii R and
a is

U =
∫

udv =
R∫

a

u (2πrl) dr (3)

where dv = (2πrdr)l is the volume element. Using (2) in (3)

U = q2

4πε0l

R∫

a

dr

r
= q2

4πε0l
ln

R

a

Similarly, the energy stored between the coaxial cylinders of radii b and a is

U0 = q2

4πε0l
ln

b

a

∴ U

U0
= ln (R/a)

ln (b/a)

Set
U

U0
= 1

2

∴ ln (R/a)

ln (b/a)
= 1

2
→ ln

b

a
= 2 ln

R

a
= ln

R2

a2

or
b

a
= R2

a2 → R = √
ab

11.83 The charge on C1 is

q1 = C1V1 = 3 × 10−6 × 4000 = 0.012 C
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The charge on C2 is

q2 = C2V2 = 6 × 10−6 × 3000 = 0.018 C

The combined capacitance

C = C1C2

C1 + C2
= 3 × 6

3 + 6
× 10−6 = 2 × 10−6 F

Take the lower charge to find the maximum voltage V :

V = q1

C
= 0.012

2 × 10−6
= 6000 V

11.84 If the dielectric is present, Gauss’ law gives

ε0

∮
E · ds = q − q ′ = q

K
(1)

where −q ′ is the induced surface charge, q is the free charge and K is the
dielectric constant. Construct a Gaussian surface in the form of a coaxial
cylinder of radius r and length l, closed by end caps. Applying (1),

ε0 E (2πrl) = q

K

or E = q

2πε0rlk
(2)

In (1) the integral is contributed only by the curved surface and not the end
caps. The potential difference between the central rod and the surrounding
tube is given by

V = −
b∫

a

E · dr =
b∫

a

E dr =
b∫

a

q

2πε0l K

dr

r
= q

2πε0l K
ln

b

a

The capacitance is given by

C = q

V
= 2πε0l K

ln (b/a)

11.85 The field at point P is caused entirely by the charge Q on the inner sphere,
Fig. 11.45, and has the value

E = Q

4πε0r2
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The potential difference between the two spheres is given by

V = −
a∫

b

E · dr = − Q

4πε0

a∫

b

dr

r2 = Q (b − a)

4πε0ab

whence C = Q

V
= 4πε0ab

b − a

Fig. 11.45

11.86 By prob. (11.85)

C = 4πε0ab

b − a
(1)

Let b = a + � where � is a small quantity. Then (1) can be written as

C = 4πε0a(a + � a)

�a
� 4πε0a2

�a
(2)

Now the surface area A = 4πa2 and �a = d, the distance between the
surfaces, so that

C � ε0 A

d
(parallel plate capacitor)

11.87 (i) q = q0 e−t/RC

e−t/RC = q

q0
= 90

100

∴ t = RC ln
10

9
= 1 × 106 × 10 × 10−6 × 0.1056 = 1.056 s
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(ii) At one time constant t = RC

V = V0 e−1 = 120

2.718
= 44.15 V

U = 1

2
CV 2 = 1

2
× 10 × 10−6 × (44.15)2 = 0.097 J

(iii) H = i2 Rt = V 2

R
t = V 2C = (44.15)2 × 10 × 10−6 = 0.0195 J

11.88 Equilibrium energy U0 = 1

2
CV 2

0

Energy at time t

U = 1

2
CV 2 = 1

2
CV 2

0

(
1 − e−t/RC

)2 = U0

(
1 − e−t/RC

)2

U

U0
= 1

2
=
(

1 − e−t/RC
)2

Solving t = 1.228RC .
Thus after 1.228 time constants the energy stored in the capacitor will reach
half of its equilibrium value.

11.89 Let the capacitor be divided into differential strips which are practically par-
allel. Consider a strip at distance x of length a perpendicular to the plane
of paper and of width dx in the plane of paper, the area of the strip being
dA = adx , Fig. 11.46. At the distance x , the separation of the plates is seen
to be t = D + xθ . The capacitance due to the differential strip facing each
plate is

dC = ε0dA

D
= ε0adx

D + x θ

Fig. 11.46
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The capacitance is given by

C =
∫

dC =
a∫

0

ε0a dx

D + x θ
= ε0a

a∫

0

dx

D + x θ
= ε0a

D

a∫

0

(
1 + x θ

D

)−1

dx

= ε0a

D

a∫

0

(
1 − xθ

D
+ · · ·

)
dx � ε0a

D

(
x − x2θ

2D

)∣∣∣∣
a

0
= ε0a2

D

(
1 − aθ

2D

)

Note that for θ = 0, capacitance reduces to that for the parallel plate capaci-
tor.

11.90 (a) The equivalent capacitance of C1 and C2 in parallel is C12 = 8 + 4 =
12 μF.

The combined capacitance of C12 and C3 in series is C = C3C12

C3 + C12
=

3 × 12

3 + 12
= 2.4 μF.

Applied charge q = CV = 2.4 × 100 = 240 μC. Therefore charge on

C3 will be q3 = 240 μC. PD across C3 will be V3 = q3

C3
= 240

3
= 80 V.

The PD across C1 and C2 will be equal.

V1 = V2 = (V − V3) = (100 − 80) = 20 V

(b) Now
q1

C1
= q2

C2
(∵ V1 = V2)

∴ q1 = C1q2

C2
= 8

4
q2 = 2q2

Also q1 + q2 = 240

∴ q1 = 160 μC and q2 = 80 μC

(c) U1 = 1

2
C1V 2

1 = 1

2
× 8 × 10−6 × 202 = 0.0016 J

U2 = 1

2
C2V 2

2 = 1

2
× 4 × 10−6 × 202 = 0.0008 J
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U3 = 1

2
C3V 2

3 = 1

2
× 3 × 10−6 × 802 = 0.0096 J

Note that U1 + U2 + U3 = 0.012 J = U = 1

2
CV 2

11.91 (a) The combination of C1 and C2 in series yields C12 = 8 × 4

8 + 4
= 2.667 ×

10−6 F.

C = C12 + C3 = (2.667 + 3.0) × 10−6 = 5.667 × 10−6 F

q = CV = 5.667 × 10−6 × 100 = 5.667 × 10−4 C

q3 = C3V = 3 × 10−6 × 100 = 3 × 10−4 C

q1 = q2 = q − q3 = (5.667 − 3.0) × 10−4 = 2.667 × 10−4 C

(b) V3 = 100 V

V1 = q1

C1
= 2.667 × 10−4

8 × 10−6 = 33.33 V

V2 = q2

C2
= 2.667 × 10−4

4 × 10−6
= 66.66 V

(c) U1 = 1

2
C1V 2

1 = 1

2
× 8 × 10−6 × (33.33)2 = 0.00444 J

U2 = 1

2
C2V 2

2 = 1

2
× 4 × 10−6 × (66.66)2 = 0.00889 J

U3 = 1

2
C3V 2

3 = 1

2
× 3 × 10−6 × 1002 = 0.015 J

Note that U1 + U2 + U3 = U = 1

2
CV 2, as it should.

11.92 Let the effective capacitance between points a and b be C . Apply a potential
difference V between a and b and let C be charged to q, Fig. 11.47.
Let the charge across C1 and C5 be q1 and q5, respectively; the charges across
various capacitors are shown in Fig. 11.47.

Fig. 11.47
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The potential drop across C1 plus that across C4 must be equal to the
potential drop across C2 plus that across C3.

V1 + V4 = V2 + V3 = V (1)

∴ q1

C1
+ q1 − q2

C4
= q − q1

C2
+ q − q1 + q2

C3
(2)

By problem C1 = C2 = C3 = C4.

∴ 2q1 − q2 = C1V (3)

2q − 2q1 + q2 = C1V (4)

Adding (3) and (4)

2q = 2C1V → C = q

V
= C1 = 2 μF

11.93 Applying the loop theorem to the circuit, traversing clockwise from the neg-
ative terminal of the battery we have the equation

ξ − i R − q

C
= 0 (1)

where ξ is the emf of the battery and the second and the third terms represent
the potential drop across the resistor and the capacitor.

Now i = dq

dt
(2)

Using (2) in (1)

R
dq

dt
+ q

C
= ξ (3)

This differential equation describes the time variation of the charge on the
capacitor. Re-arranging (3)

dq

Cξ − q
= dt

RC
(4)

Integrating (4) − ln (Cξ − q) = t

RC
+ A (5)

where A is the constant of integration which can be determined from the
initial condition.
At t = 0, q = 0 since the capacitor was uncharged.

∴ A = − ln ξC (6)
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Using (6) in (5) and re-arranging

q = Cξ(1 − e−t/RC)

(a) i = dq

dt
= ξ

R
e−t/RC

(b) P = iξ = ξ 2

R
e−t/RC

(c) H = i2 R = ξ 2

R
e−2t/RC

(d) dU

dt
= d

dt

(
1

2

q2

e

)
= 1

2

d

dt

[
C2ξ 2

(
1 − e−t/RC

)2
]

= C

R
ξ2e−t/RC

11.94 (i) By prob. (11.93)

q = Cξ(1 − e−t/RC )

∴ i = dq

dt
= ξ

R
e−t/RC

R = (1200 + 600) × 103 = 1.8 × 106�

RC = 1.8 × 106 × 2.5 × 10−6 = 4.5

At t = 0, i = ξ

R
= 50

1.8 × 106 = 27.8 × 10−6 A = 27.8 μA

(ii) At t = ∞, i = 0

(iii) i = −ξ e−t/RC

R
= −50 × e−t/4.5

1.8 × 106 = −27.8 e−0.222t μA

11.95 (i) Time constant, RC = 200 × 103 × 500 × 10−6 = 100
When the switch is closed there is no emf in the circuit, and (3) in prob.
(11.93) reduces to

(ii) R
dq

dt
+ q

C
= 0 (1)

or
dq

q
= − dt

RC
(2)

Integrating, ln q = −t/RC + A
where A is the constant of integration. When t = 0, q = q0. Therefore
A = ln q0.
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∴ ln
q

q0
= − t

RC

∴ q = q0e−t/RC (3)

q

q0
= 1

2
= e−t/RC

∴ t = RC ln 2 = 100 ln 2 = 69.3 s.

(iii) In (3) put t = 0. Then

q = q0 = Cξ = 500 × 10−6 × 200 × 103 = 100 C

(iv) Differentiating (3) with respect to time

i = dq

dt
= − ξ

R
e−t/RC (4)

The negative sign shows that the current in the discharging process
flows opposite to that in the charging process. At t = 0

i = − ξ

R
= − 900

200 × 103 = −4.5 × 10−3 A

(v) From (4) V = iR = −ξe−t/RC

At t = 25 s, V = −900 e−25/100 = −701 V.

11.96 (i) By (4), prob. (11.50) the electric field inside the sphere is given by

E = q r
4πε0 R3

(1)

∴ div E = q

4πε0 R3
div r (2)

Now div r =
(

î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)
· (î x + ĵ y + k̂z)

=
(

∂x

∂x
+ ∂y

∂y
+ ∂z

∂z

)
= 1 + 1 + 1 = 3

∴ div r = 3q

4πε0 R3 = 3 × 10−9 × 9 × 109

13 = 27

(ii) F = QE = Qqr

4πε0 R3

= 1.6 × 10−19 × 10−9 × 9 × 109 × 0.8

13
= 1.152 × 10−18 N
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(iii) By prob. (11.52), V (r) = q

8πε0 R

(
3 − r2

R2

)
. The potential energy of

the proton at r will be U (r) = QV (r) = Qq

8πε0 R

(
3 − r2

R2

)
.

∴ U (r = 0.8 m) = 1.6 × 10−19 × 10−9 × 9 × 109

2 × 1.0

(
3 −

(
0.8

1.0

)2
)

= 1.7 × 10−19 J

Since U (r = ∞) = 0, work done = 1.7 × 10−19 J.

11.97 (a) If the dielectric is present, Gauss’ law gives

ε0

∮
E · ds = ε0 E A = q − q ′ (Integral form)

or E = 1

ε0 A
(q − q ′)

where q is the free charge and −q ′ the induced charge.

∇ · E = ρ/ε (Differential form)

(b) The displacement vector

D = q

A
(1)

where A is the area

E = E0

K
= q

K ε0 A
(2)

Combining (1) and (2)

D = K ε0 E (3)

As E is uniform in a parallel plate capacitor, D will be also uniform
via (3)

(c) By Gauss law

ε0

∮
K (x) E(x) · ds = q = ε0

∮
E0 · ds

∴ E(x) = E0

K (x)
(4)

E0 = q

ε0 A
= σ A

ε0 A
= σ

ε0
(∵ σ = q/A) (5)
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(d) V =
∫

E(x)dx = E0

d∫

0

dx

ax + b
(6)

Put y = ax + b, dx = dy/a. Then (6) becomes

V = E0

a

ad+b∫

b

dy

y
= E0

a
ln y|ad+b

b = σ0

ε0a
ln

(
1 + ad

b

)
(7)

where we have used (5).

The capacitance C = q

V
= Aε0a

ln

(
1 + ad

b

) (8)

where we have used (7) and q = σA.
(e) Vacuum polarization charge density

P(x) = ε0(k(x) − 1)E = ε0 E0

k(x)
(k(x) − 1)

= ε0 E0

[
1 − 1

ax + b

]
(9)

11.98 Newton’s law of gravitation is

F = −GMm

r2
êr = m g

The Gauss’ law for gravitation may be written as

∮
g · ds = −G M

r2
4πr2 = −4πG M

The divergence theorem gives

∮
∇ · g d3r =

∮
g · ds

∴ ∇ · g
4

3
πr3 = −4πG M

∴ ∇ · g = −4π Gρm

This is analogous to the law for electric field

∇ · E = ρq

ε0





Chapter 12
Electric Circuits

Abstract Chapter 12 is mainly concerned with the analysis of electric network
employing Kirchhoff’s laws. Problems are solved under resistivity, Joule heating,
emf, internal resistance, arrangement of cells, electric instruments such as ammeter,
voltmeter, potentiometer and Wheatstone bridge.

12.1 Basic Concepts and Formulae

Electric current (i) is defined as the rate at which the net charge q passes through a
cross-section of a conductor

i = q/t (12.1)

The instantaneous current is defined by

i = dq/dt

The current density ( j) is given by

j = i/A (12.2)

where A is the cross-sectional area.

The Drift Velocity

vd = i/nAe = j/ne (12.3)

where n is the number of electrons per unit volume

Resistance (R) and Resistivity (ρ)

R = ρL/A (12.4)

535
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where L is the length of the conductor. Unit of resistivity is �m.

Electrical Conductance (σ )

σ = 1/ρ (12.5)

The units of conductance are mho/m.

Variation of Resistance and Resistivity with Temperature

Rt = R0(1 + αT ) (12.6)

ρt = ρ0(1 + αT ) (12.7)

where α is the temperature coefficient of resistance or resistivity.

Resistors in Series

R =
∑

n
Rn (12.8)

Resistors in Parallel

1

R
=
∑

n

1

Rn
(12.9)

Joule’s law: The power (P) developed is given by

P = i2 R = iV = V 2/R (12.10)

Cells

Cells in series: If n cells each of emf ξ and internal resistor r are connected in series
then the current in the circuit is given by

i = nξ

R + nr
(12.11)

where R is the external resistance.
Cells in parallel: In this case the total emf is that of a single cell ξ . As the internal

resistances of the cells are in parallel, the equivalent internal resistance is r/n, with
the external resistance R in series. The current is

i = ξ

R + r/n
(12.12)
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Mixed Grouping of Cells

Let there be m rows of cells, with each row containing n cells in series. The emf for
each row of cells would be nξ and the equivalent internal resistance nr . The effective
emf for m rows would again be nξ, but since the rows are in parallel, the effective
internal resistance would be nr/m. The total resistance then becomes R + (nr/m)

(Fig. 12.1):

i = nξ

R +
(nr

m

) = mnξ

m R + nr
= Nξ

m R + nr
(12.13)

where N = m × n = total number of cells.

Instruments

Potentiometer may be used to measure the internal resistance of a cell: B =
battery, E = cell of internal resistance r , S = resistor, R = resistor, G = galvanome-
ter, AC = potentiometer, AX = l = balancing length.

If l1 = balancing length with K1 open and K2 closed and l2 with K1 closed,

r = R
(l1 − l2)

l2
(12.14)

Fig. 12.1

Wheatstone bridge consists of a network of four resistors P , Q, R and S, battery
E and galvanometer G, Fig. 12.2. Of the four resistors P , R and S are known whose
values are adjustable while Q is unknown. When the bridge is balanced, i.e. the
galvanometer shows null deflection:

P

Q
= R

S
or Q = P S

R
(12.15)
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Fig. 12.2

Kirchhoff’s Laws

1. Junction theorem: At any junction of an electric network (branched circuit), the
algebraic sum of the currents flowing towards that junction is zero, i.e. the total
current flowing towards the junction is equal to the total current flowing away
from it: ∑

i = 0 (12.16)

2. The loop theorem: The sum of the changes in the potential, encountered in
traversing a loop (closed circuit) in a particular direction (clockwise or coun-
terclockwise), is zero.

(i) If a resistor is traversed in the direction of current, the change in the potential
is −i R, while in the opposite direction it is +i R.

(ii) If a seat of emf is traversed in the direction of the emf, the change in potential
is +ξ, while in the opposite direction it is −ξ.

12.2 Problems

12.2.1 Resistance, EMF, Current, Power

12.1 All resistors in Fig. 12.3 are in ohms. Find the effective resistance between the
points A and B.

[Indian Institute of Technology 1979]

Fig. 12.3
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12.2 If a copper wire is stretched to make it 0.1% longer, what is the percentage
change in its resistance?

[Indian Institute of Technology 1978]

12.3 The equivalent resistance of the series combination of two resistors is p. When
they are joined in parallel, the equivalent resistance is q. If p = nq, find the
minimum possible value of n.

12.4 Five resistors are connected as in Fig. 12.4. Find the equivalent resistance
between A and C.

Fig. 12.4

12.5 Five resistors are arranged as in Fig. 12.5. Find the effective resistance
between A and B.

Fig. 12.5

12.6 Each of the resistances in the network, Fig. 12.6, is equal to R. Find the resis-
tance between the terminals A and B.

Fig. 12.6
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12.7 Find the equivalent resistance between the terminals x and y of the network
shown in Fig. 12.7.

Fig. 12.7

12.8 A circuit is set up as shown in Fig. 12.8, in which certain resistors are known;
the current in some of the branches has been measured by ammeter.
Calculate

Fig. 12.8

(i) The resistance R in CB
(ii) The potential difference between A and B

(iii) The heat developed per second between A and B.

[Northern Universities of U.K.]

12.9 Five resistances are connected as shown in Fig. 12.9. Find the equivalent resis-
tance between the points A and B.

Fig. 12.9



12.2 Problems 541

12.10 A network of infinite resistors is shown in Fig. 12.10. Find the effective resis-
tance of the network between terminal points A and B.

Fig. 12.10

12.11 What equal length of an iron wire and a constantan wire, each 1 mm diameter,
must be joined in parallel to give an equivalent resistance of 2 �? (resistivity
of iron and constantan are 10 and 49 μ� cm, respectively).

[University of London]

12.12 A coil of wire has a resistance of 20 � at 25◦C and 25.7 � at 100◦C. Calcu-
late the temperature coefficient.

[University of London]

12.13 A wire of resistance 0.1 �/cm is bent to form a square ABCD of side 10 cm.
A similar wire is connected between the corners B and D to form the diag-
onal BD. Find the effective resistance of this combination between A and
C. A battery of negligible internal resistance is connected across A and C.
Calculate the total power dissipated.

[Indian Institute of Technology 1971]

12.14 A 60 W-100 V tungsten lamp has a resistance of 20 � at air temperature
(0◦C). What is the rise in temperature of the filament under normal work-
ing conditions? The temperature coefficient of resistance of tungsten is
0.0052/◦C.

[University of London]

12.15 A skeleton cube is made of wires soldered together at the corners of the cube,
the resistance of each wire being 10 �. A current of 6 A enters at one corner

Fig. 12.11
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and leaves the diagonally opposite corner. Calculate the equivalent resistance
of the network and the fall of potential across it (Fig. 12.11).

[University of London]

12.16 A 25 W bulb and a 100 W bulb are joined in series and connected to the
mains (Fig. 12.12). Which bulb will glow brighter?

[Indian Institute of Technology 1979]

Fig. 12.12

12.17 A 25 W bulb and a 100 W bulb are joined in parallel and connected to the
mains (Fig. 12.13). Which bulb will glow brighter?

Fig. 12.13

12.18 Three resistors of 4, 6 and 12 � are connected together in parallel. This par-
allel arrangement is then connected in series with a 1 and 2 � resistors. If
a potential difference of 120 V is applied across the end of the circuit, what
will be the potential drop across the part of the circuit connected in parallel?

[University of Newcastle]

12.19 In the given circuit, Fig. 12.14, show that the maximum power delivered to
the external resistor R is P = ξ2/4r where r is the internal resistance of the
battery of emf ξ.
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Fig. 12.14

12.20 Two heater coils of power P1 and P2 (resistance R1 and R2, respectively)
take individually time t1 and t2 to boil a fixed quantity of water. Find the
time t in terms of t1 and t2, when they are connected to the mains in (a)
series and (b) parallel to boil the same quantity of water.

12.21 A battery having an emf 24 V and a resistance 2 � is connected to two resis-
tances arranged (a) in series and (b) in parallel. If the resistances are 4 and
6 �, respectively, calculate the watts expended in each resistance, in each of
the two cases.

[University of London]

12.22 Power at the rate of 104 kW has to be supplied through 30 km of cable of
resistance 0.7 �/km. Find the rate of energy loss, if the power is transmitted
at 100 kV.

[University of Dublin]

12.23 Three equal resistors, connected in series across a source of emf together,
dissipate 10 W of power. What would be the power dissipated, if the same
resistors are connected in parallel across the same source of emf?

[Indian Institute of Technology 1972]

12.24 A heater is designed to operate with a power of 1000 W in a 100 V line. It is
connected in combination with a resistance of 100 � and a resistance R to a
100 V mains as shown in Fig. 12.15. What should be the value of R so that
the heater operates with a power of 62.5 W?

[Indian Institute of Technology 1978]

Fig. 12.15
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12.2.2 Cells

12.25 Twelve cells having the same emf are connected in series and are kept in
a closed box. Some of the cells are wrongly connected. This battery is
connected in series with an ammeter and two cells identical with others. The
current is 3 A when the cells and the battery aid each other and is 2 A when
the cells and the battery oppose each other. How many cells in the battery are
wrongly connected?

[Indian Institute of Technology 1976]

12.26 Let there be m rows of cells with each row containing n cells in series, each
cell having internal resistance r . Show that maximum current in the external
resistance R will be available when R = nr/m.

12.27 Two cells with the same emf and internal resistances r1 and r2 are connected
in series to an external resistance R. Find the value of R so that the potential
difference across the first cell is zero.

12.28 A certain circuit consists of three resistors connected in parallel across 200 V
mains. The rate of production of heat in them is in the ratio of 5:3:2 and
together they generate heat at the rate of 1 kW h in 2 h. Find the power used
if the three resistances are connected in series across 248 V mains.

[Northern Universities of UK]

12.29 A battery of emf 2 V and internal resistance 0.1 � is being charged with a
current of 5 A. In what direction will the current flow inside the battery?
What is the potential difference between the two terminals of the battery?

[Indian Institute of Technology 1980]

12.30 A 6 V battery of negligible internal resistance is connected in series with a
3 � and a 5 � resistance. A further resistance of 2 � is connected in parallel
with the 5 � resistance.

(a) Find the current flowing in each resistance.
(b) Find the power dissipated in each resistance.
(c) Compare the total value for the power dissipated in the resistances with

the value for the power supplied by the battery.

[University of Newcastle]

12.2.3 Instruments

12.31 The terminals of a cell are connected to a resistance and the fall of poten-
tial across R is balanced against the fall across the potentiometer wire.
When R is 20 and 10 �, respectively, the corresponding lengths on the
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potentiometer are 150 and 120 cm. Calculate the internal resistance of the
cell (Fig. 12.16).

[University of London]

Fig. 12.16

12.32 A thin uniform wire 50 cm long and of 1 � resistance is connected to the
terminals of an accumulator of emf 2.2 V and the internal resistance 0.1 �

(Fig. 12.17). If the terminals of another cell can be connected to two points
26 cm apart on the wire without altering the current in the wire, what is the
emf of the cell?

[Northern Universities of UK]

Fig. 12.17

12.33 In a Wheatstone bridge, four resistors P , Q, R and S are arranged as in
Fig. 12.18. Show that

(a) condition for null deflection in the galvanometer G is
P

Q
= R

S

(b) if a non-zero current ig flows through the galvanometer then

ig

i
= Q R − P S

G(Q + S) + (P + R)(G + Q + S)
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Fig. 12.18

12.34 Figure 12.19 shows a network carrying various currents. Find the current
through the ammeter A.

Fig. 12.19

12.35 A galvanometer together with an unknown resistance in series is connected
across two identical batteries, each of 1.5 V. When the batteries are connected
in series, the galvanometer records a current of 1 A and when the batteries are
in parallel the current is 0.6 A. What is the internal resistance of the battery?

[Indian Institute of Technology 1973]

12.36 In a potentiometer experiment, it is found that no current passes through the
galvanometer when the terminals of the cell are connected across 52 cm of
the potentiometer wire. If the cell is shunted by a resistance of 5 �, a balance
is found when the cell is connected across 40 cm of the wire. Find the internal
resistance of the cell.

12.37 A potentiometer wire of length 100 cm has a resistance of 10 �. It is con-
nected in series with a resistance and cell of emf 2 V and of negligible inter-
nal resistance. A source of emf 10 mV is balanced against a length of 40 cm
of the potentiometer wire. What is the value of the external resistance?

[Indian Institute of Technology 1976]

12.38 A potential difference of 220 V is maintained across a 12,000 � rheostat ab
(see Fig. 12.20). The voltmeter V has a resistance of 6000 � and point c is at
one-fourth the distance from a to b. What is the reading in the voltmeter?

[Indian Institute of Technology 1977]

12.39 The balance point in a meter bridge experiment is obtained at 30 cm from the
left. If the right-hand gap contains resistance of 3.5 �, what is the value of
the resistance in the left-hand gap?
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Fig. 12.20

12.2.4 Kirchhoff’s Laws

12.40 A moving coil meter has a full scale reading of 1 mA and a resistance of
80 �. How could the meter be used to measure (a) 100 mA full scale and
(b) 80 V full scale?

[University of Manchester]

12.41 A pocket voltmeter has a resistance of 120 �. What will it read when con-
nected to a battery of emf 9 V and an internal resistance 15 �?

[University of Oxford]

12.42 When a galvanometer is shunted with a 1 � resistance, only 1% of the main
current passes through it. What is the resistance of the galvanometer?

12.43 A 10 V battery, having an internal resistance of 1.0 �, is joined in parallel
with another of 20 V and internal resistance of 2 �. Calculate the current
flowing through each battery, and the rates of expenditure of energy in the
two batteries and the 30 � resistance (Fig. 12.21).

[University of Cambridge]

Fig. 12.21

12.44 A battery of emf 1 V and internal resistance 2 � is connected to another
battery of emf 2 V and internal resistance 1 � in parallel with an external
resistance of 10 �. Find the currents?
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12.45 The electric current of 5 A is divided into three branches, forming a parallel
combination. The lengths of the wire in the three branches are in the ratio 2,
3 and 4; their diameters are in the ratio 3, 4 and 5. Find the current in each
branch, if the wires are of the same material.

[Indian Institute of Technology 1975]

12.46 Calculate the current through the 3 � resistor and the power dissipated in the
entire circuit shown in Fig. 12.22. The emf of the battery is 1.8 V and its
internal resistance is 2/3 �.

[Indian Institute of Technology 1971]

Fig. 12.22

12.47 A series circuit is made up of two cells of emf 1.5 and 3 V, respectively, and
two coils each of resistance 10 �, arranged in the order cell, coil, cell, coil.
The centre points of the two coils are joined by a sensitive galvanometer
which shows no deflection. If the cell of 1.5 V has an internal resistance of
5 �, calculate the internal resistance of the other cell.

[University of London]

12.48 (a) Figure 12.23 shows a series parallel resistive circuit connected to a 320 V
d.c. supply. For the circuit shown work out the following:

(i) The total equivalent resistance RT of the circuit and the total current
IT.

(ii) The voltage Vp1 across resistors R1 and R2.
(iii) The voltage Vp2 across resistors R3 and R4.
(iv) The currents I1 and I3.
(v) The total power for the whole circuit and the power dissipated in

resistor R3.

(b) Consider the case of a heavy duty battery whose emf ξ = 24 V and
internal resistance of r = 0.01 �. If the terminals were accidentally
short circuited by a heavy copper bar of negligible resistance what power
would be dissipated within the battery?

[University of Aberystwyth, Wales 2005]
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Fig. 12.23

12.49 A battery with emf ξ = 24 V has internal resistance r = 0.02 �. A load
resistor R = 140 � is connected to the terminals of a battery:

(i) Find the current flowing in the circuit under load conditions.
(ii) Find the terminal voltage of the battery under load conditions.

(iii) Find the power dissipated in the resistor R and in the battery’s internal
resistance r .

(iv) Find the open circuit voltage of the battery under no load conditions
and explain your answer.

12.50 Figure 12.24 shows a series parallel resistive circuit connected to a dc supply.

(i) Find the total equivalent resistance of the circuit.
(ii) Find currents IT, I1 and I3.

(iii) Find voltages V1, V2 and V3.
(iv) Find power dissipated in resistor R5 and the total power dissipated in

the circuit.

Fig. 12.24
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12.51 Apply Kirchhoff’s rules to the circuit shown in Fig. 12.25 to produce three
equations with three unknown branch currents. You do not have to solve
these equations for individual current.

[University of Aberystwyth, Wales 2008]

Fig. 12.25

12.52 (i) State Kirchhoff’s two rules
(ii) Apply Kirchhoff’s rules to the circuit shown in Fig. 12.26 to produce

three equations with three unknown branch currents. You do not have to
solve these equations for individual current.

[University of Aberystwyth, Wales 2007]

Fig. 12.26

12.53 Figure 12.27 shows a series parallel resistive circuit connected to a dc supply.
For the circuit shown work out the following:

(i) The voltages V1, V2 across resistors R1 and R2.
(ii) The voltage Vp across resistors R3 and R4.

(iii) The currents IT, I2 and I3.
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Fig. 12.27

12.54 Apply Kirchhoff’s rules to the circuit shown in Fig. 12.28 to produce three
equations with three unknown branch currents. You do not have to solve
these equations for individual I .

[University of Aberystwyth, Wales 2006]

Fig. 12.28

12.55 Apply Kirchhoff’s rules to the circuit shown in Fig. 12.29 and present the
simultaneous equations necessary to calculate the currents in each of the
branches of the circuit. You do not have to solve these equations for the
branch currents.

Fig. 12.29
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12.56 In the circuit shown in Fig. 12.30, the cells E1 and E2 have emfs 4 and 8 V
and internal resistances 0.5 and 1 �, respectively. Calculate the current in
each resistor and the potential difference across each cell.

[Indian Institute of Technology 1973]

Fig. 12.30

12.3 Solutions

12.3.1 Resistance, EMF, Current, Power

12.1 In the segment ACD, the two 3 � resistances give 6�, which with 6 � in

parallel yields
6 × 6

6 + 6
= 3 �. This together with 3 �, across DE in series, gives

6 � which together with 6 � across AE in parallel gives 3 �. By a similar
reasoning resistance along AFB is 6 �, which with 3 �, across AB in parallel
yields the effective resistance across AB:

RAB = 6 × 3

6 + 3
= 2 �

12.2 R = ρl

A
= ρl2

Al
= ρl2

v0

where v0 is the constant volume. Change in the resistance

�R = 2ρl
�l

v0

∴ �R

R
≡ 2

�l

l
≡ 2 × 0.1

100
= 0.2

100
or 0.2%
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12.3 Let the resistances be R1 and R2

R1 + R2 = p (series) (1)

R1 R2

R1 + R2
= q (parallel) (2)

Combining (1) and (2)

R1 − R2 = ±√n(n − 4)

Since R1 and R2 are real, n ≥ 4.

12.4 Let a current i enter at A and leave at C. Currents in various branches are
given by the junction theorem, Fig. 12.31. The potential difference

VAB + VBD = VAD

∴ 3i1 + 5i2 = 6(i − i1)

or 9i1 + 5i2 = 6i (1)

VAC = VAB + VBC = VAD + VDC

∴ 3i1 + 2(i1 − i2) = 6(i − i1) + 4(i − i1 + i2)

or 15i1 − 6i2 = 10i (2)

Solving (1) and (2), i2 = 0. Thus the middle branch BD is rendered ineffec-
tive.
Two resistances of 3 and 2 � in series in the upper branch are to be combined
in parallel with two other resistances of 6 and 4 � in series in the lower branch
to obtain the effective resistance between A and C. This is given by

Reff = (3 + 2)(6 + 4)

(3 + 2) + (6 + 4)
= 3.33 �

Fig. 12.31
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This particular problem could have been easily solved by noticing that Wheat-
stone bridge balance requirement is fulfilled since P/Q = R/S; here 3/2 =
6/4, in which case the current in the middle branch is zero (see prob. 12.33).

12.5 The network in Fig. 12.3 can be recast as shown in Fig. 12.32. Here again

the balancing condition for Wheatstone bridge is satisfied:
P

Q
= R

S
,

2

4
= 3

6
.

Therefore the middle branch resistor of 5 � is rendered ineffective. The total
resistance in the upper branch is 2 + 4 = 6 � and in the lower branch 3 + 6 =
9 �. The equivalent resistance for 6 and 9 � in parallel will be

Req = 6 × 9

6 + 9
= 3.6 �

Fig. 12.32

12.6 For convenience the given network can be recast as in Fig. 12.33. It is seen
that this network is exactly identical with that in prob. (12.5) in which the
Wheatstone bridge condition is satisfied. Therefore, the resistance in the mid-
dle branch CE is rendered ineffective. The total resistance in the upper branch
is obviously equal to 2R which is also the case for the lower branch.

Therefore, the effective resistance between D and F will be

Reff = 2R × 2R

2R + 2R
= R

Fig. 12.33



12.3 Solutions 555

12.7 Let Req be the equivalent resistance of the circuit. Let a current i enter at X
and emerge at Y. The distribution of currents in various branches is shown in
Fig. 12.34. The potential drop across X and Y

Vxy = i Req (1)

Now Vxy = VXA + VAY

= R(i − i1) + 2R(i − i1 − i2) = 3Ri − 3Ri1 − 2Ri2 (2)

From (1) and (2)

i Req = R(3i − 3i1 − 2i2) (3)

i1 and i2 can be expressed in terms of i :

VXB = VXC + VCB = VXA + VAB

∴ 2Ri1 = R(i − i1) + Ri2

or 3i1 − i2 = i (4)

Also, VAY = VAB + VBY = VAD + VDY

∴ Ri2 + R(i1 + i2) = 2R(i − i1 − i2)

or 3i1 + 4i2 = 2i (5)

Solving (4) and (5), i1 = 2i/5 and i2 = i/5.

Using the values of i1 and i2 in (3) we find Req = 7R/5.

Fig. 12.34
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12.8 (i) Let the current in AD, DE and R be i1, i2 and i3, respectively:

i3 = 5 − 2 = 3 A (by junction theorem)

VAD = VAC + VCD

∴ i1 × 6 = 5 × 4 + 5 × 2

∴ i1 = 5 A

∴ i2 = 2 + 5 = 7 A

VCB = VCD + VDB

3R = 2 × 5 + 7 × 5

∴ R = 15 �

(ii) VAB = VAC + VCB = 4 × 5 + 15 × 3 = 65 V

(iii) Heat developed per second = power =
∑

i2
n Rn

= 52 × 4 + 22 × 5 + 52 × 6 + 32 × 15 + 72 × 5

= 650 J/s = 650/4.18 Cal/s = 155.5 Cal/s

12.9 The combination of 3 and 7 � resistance in series is 10 �. This in parallel with
10 � resistance yields 5 �. This in series with another 5 � resistance gives
the combined resistance of 10 �. This being in parallel with 10 � resistance
across A and B gives the effective resistance of 5 � across A and B.

12.10 Let the effective resistance between A and B be R. Then by adding one
more section to infinite sections of resistors, the effective resistance will not
change, Fig. 12.35.
The middle r is in parallel with R and the other two r ’s are in series. Then

R = r + Rr

R + r
+ r

Simplifying R2 − 2Rr − 2R2 = 0

whose solution is R = r
(

1 + √
3
)

.

The second solution is ignored since R must be positive.

Fig. 12.35
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12.11 RI = ρl

A
= 10 × 10−6 l

π(0.05)2
= 1.274 × 10−3l

RC = ρ′l
A

= 49 × 10−6l

π(0.05)2
= 6.24 × 10−3l

In parallel arrangement

R = RI RC

RI + RC
= (12.739 × 62.42) × 10−6l2

(12.739 + 62.42) × 10−3l

= 10.58 × 10−3l = 2 �

∴ l = 1890 cm = 18.9 m

12.12 R2 = R0(1 + αt2)

R1 = R0(1 + αt1)

∴ R2

R1
= 1 + αt2

1 + αt1

∴ α = R2 − R1

R1(t2 − t1)
= 25.7 − 20.0

20 × (100 − 25)
= 3.8 × 10−3/◦C

12.13 Resistance of each side = 10 × 0.1 = 1 �. Resistance of the diagonal =√
2 �. The P.D., VAB = VAD as RAB = RAD. Hence no current flows

through the diagonal BD, Fig. 12.36. The effective resistance of the network
is obtained by combining the resistance of AB and BC in series (1 + 1) in
parallel with that of AD and DC in series (1 + 1):

Reff = 2 × 2

2 + 2
= 1 �

Power dissipated P = ξ2

R
= 22

1
= 4 W.

Fig. 12.36
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12.14 R = V 2

P
= (100)2

60
= 166.7 �

R = R0(1 + αt)

t = R − R0

R0α
= 166.7 − 20

20 × 0.0052
= 1410◦C.

12.15 Let a current of 6 A be sent through the corner a. Let a potential difference
Vab be established between a and b and current 6 A flow out from b. The
currents in various branches are indicated in Fig. 12.37 from symmetry con-
siderations. If Req is the equivalent resistance of this network across the body
diagonal ab

Vab = 6 Req

But Vab = Vac + Vcd + Vdb

= 2R + R + 2R = 5R

∴ 6 Req = 5R

or Req = 5

6
R = 5

6
× 10 = 8.33 �

Fig. 12.37

12.16 W = V 2/R

R1 = V 2

W1
= (220)2

25
= 1936 �

R2 = V 2

W2
= (220)2

100
= 484 �
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Joule heat in R1, H1 = i2 R1 = 1936 i2

Joule heat in R2, H2 = i2 R2 = 484 i2

Therefore, 25 W bulb glows brighter.

12.17 By prob. (12.16), R1 = 1936 � and R2 = 484 �:

H1 = i1V = iV R2

R1 + R2

H2 = i2V = iV R1

R1 + R2

Therefore, 100 W bulb glows brighter.

12.18 Effective resistance in parallel is given by (Fig. 12.38)

1

R
= 1

4
+ 1

6
+ 1

12
= 1

2
∴ R = 2 �

Total resistance, RAB = 2 + 1 + 2 = 5 �

Current in the circuit

i = VAB

RAB
= 120

5
= 24 A

VAC = i RAC = 24 × 2 = 48 V.

Fig. 12.38

12.19 i = ξ

R + r

P = i2 R = ξ2 R

(R + r)2

Maximum power delivered to R is obtained by setting
∂ P

∂ R
= 0. This gives

R = r :

∴ Pmax = ξ2r

(r + r)2
= ξ2

4r
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12.20 H = P1 t1 = V 2

R1
t1

where H is joule heat and t is time

∴ t1 = H

V 2
R1 (coil 1)

t2 = H

V 2 R2 (coil 2)

(a) t = H

V 2 R = H

V 2 (R1 + R2) = t1 + t2 (coils in series)

(b)
1

t1
= V 2

H R1
(coil 1)

1

t2
= V 2

H R2
(coil 2)

∴ 1

t1
+ 1

t2
= V 2

H

(
1

R1
+ 1

R2

)
= V 2

H R
= 1

t

or t = t1t2
t1 + t2

(coils in parallel)

12.21 (a) i = ξ

R1 + R2 + r
= 24

4 + 6 + 2
= 2 A

P1 = i2 R1 = 22 × 4 = 16 W

P2 = i2 R2 = 22 × 6 = 24 W

(b) Effective resistance of R1 and R2 in parallel is

R = R1 R2

R1 + R2
= 4 × 6

4 + 6
= 2.4 �

i = ξ

R + r
= 24

2.4 + 2
= 5.45 A

i1 = i R2

R1 + R2
= 5.45 × 6

4 + 6
= 3.27 A

i2 = i R1

R1 + R2
= 5.45 × 4

4 + 6
= 2.18 A

P1 = i2
1 R1 = (3.27)2 × 4 = 42.8 W

P2 = i2
2 R2 = (2.18)2 × 6 = 28.5 W
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12.22 Total resistance of the cable

R = 0.7 × 30 = 21 �

Voltage V = 100 kV = 105 V

Power P = 104 kW = 107 W

Current I = P

V
= 107

105
= 100 A

Power dissipated = i2 R = (100)2 × 21 = 2.1 × 105 W

Fractional power loss = 2.1 × 105

107 = 0.021 or 2.1%

12.23 Let each of the three resistances be r . In the series arrangement the effective
resistance, R1 = 3r :

P1 = ξ2

R1
= ξ2

3r
= 10

∴ ξ2

r
= 30 (1)

In the parallel arrangement the effective resistance R2 = r/3:

P2 = ξ2

R2
= 3ξ2

r
= 3 × 30 = 90 W

where we have used (1).

12.24 If the heater resistance is R0,

R0 = V 2

P
= (100)2

1000
= 10 �

The combined resistance of R0 and R in parallel is
10R

R + 10
. As this is in

series with 10 �, the effective resistance of the circuit

Re = 10 + 10R

R + 10
= 20R + 100

R + 10

If P ′ is the power of the heater

Re = 20R + 100

R + 10
= V 2

P ′ = (100)2

62.5

Solving for R, we find R = 5 �.
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12.3.2 Cells

12.25 Let n cells of emf ξ and internal resistance r be wrongly connected. The
effective emf of the battery is (12–2n) ξ. When the two cells and the battery
aid each other, the net emf is (12−2n)ξ+2ξ or (14−2n)ξ. The total internal
resistance is 14r . By problem, when the two cells and battery aid each other

(14 − 2n)ξ = 3 × 14r (1)

and when the two cells and battery oppose each other, the net emf is
(12−2n)ξ − 2ξ or (10−2n)ξ, the total internal resistance being 14r . By
problem

(10 − 2n)ξ = 2 × 14r (2)

Dividing (1) by (2)

14 − 2n

10 − 2n
= 3

2

whence n = 1.

12.26 The total number of cells is N = m × n. The emf for each row of cells
will be nξ and the combined internal resistance nr (Fig. 12.39). The effective
emf for m rows would again be nξ, but because the rows are in parallel, the
effective internal resistance would become nr/m. The total resistance then
becomes R + nr/m. The current through R will be

i = nξ

R + nr

m

= mnr

Rm + nr
= N r

Rm + nr
(1)

Writing m = N/n in (1) and holding N as constant, maximum current i is

found by setting
∂i

∂n
= 0. This gives

n2 = RN

r
= R m n

r

or R = n r

m

But the right-hand side is equal to the total internal resistance of the cells.
Thus the current is maximum when the cells are arranged such that their
total internal resistance is equal to the external resistance. In particular, for a
single cell, m = n = 1, and the condition for maximum current is R = r , a
result which is identical with that of prob. (12.19).
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Fig. 12.39

12.27 Let ξ be the emf of each cell, i the current flowing in the circuit, r1 and r2
be the internal resistance of the first and the second cells, respectively. The
potential drop across the first cell will be

V1 = ξ − ir1 = 0 (by problem) (1)

i = 2ξ

r1 + r2 + R
(2)

Combining (1) and (2)

ξ = ir1 = 2ξr1

r1 + r2 + R

∴ R = r1 − r2

12.28 Total power P = P1 + P2 + P3 = 103 W h

2 h
= 500 W

P1 : P2 : P3 = 5 : 3 : 2

∴ P1 = 250 W, P2 = 150 W, P3 = 100 W

R1 = V 2

P1
= (200)2

250
= 160 �, R2 = V 2

P2
= (200)2

150
= 267 �,

R3 = V 2

P3
= (200)2

100
= 400 �

In series total resistance R′ = R1 + R2 + R3 = 160 + 267 + 400 = 827 �.
Required power for the series arrangement

P ′ = V ′2

R′ = (248)2

827
= 74.4 W
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12.29 The current flows from positive to negative terminal inside the battery. The
potential difference between the two terminals of the battery would be

V = ξ + ir = 2 + 5 × 0.1 = 2.5 V

12.30 (a) The effective resistance in the circuit (Fig. 12.40) from 3 � in series with
5 and 2 � in parallel

R0 = R + R1 R2

R1 + R2
= 3 + 2 × 5

2 + 5
= 4.43 �

i = ξ

R0
= 6

4.43
= 1.35 A

(b) i1 = i R2

R1 + R2
= 1.35 × 2

5 + 2
= 0.386

P1 = i1
2 R1 = (0.386)2 × 5 = 0.74 W

i2 = i − i1 = 1.35 − 0.386 = 0.964 A

P2 = i2
2 R2 = (0.964)2 × 2 = 1.86 W

P = i2 R = (1.35)2 × 3 = 5.47 W

(c) Total power dissipated by the resistances
= P1 + P2 + P = 0.74 + 1.86 + 5.47 = 8.07 W � 8.1 W

Power supplied by the battery = ξi = 6 × 1.35 = 8.1 W

Fig. 12.40

12.3.3 Instruments

12.31 P.D across AB is
ξ R

R + r
= l

l0
ξ0
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ξ × 20

20 + r
= 150

l0
ξ0

ξ × 10

10 + r
= 120

l0
ξ0

Dividing the last two equations

2 (10 + r)

20 + r
= 5

4

whence r = 6.67 �.

12.32 For the section ABC

i = ξ1

R + r
= 2.2

1 + 0.1
= 2 A

In the section BCD also i = 2 A.

The resistance of 26 cm wire = 26

50
× 1 = 0.52 �.

Neglecting the internal resistance of the second cell

ξ2 = 2 × 0.52 = 1.04 V

as no current flows through the galvanometer

12.33 (a) VAB = VAD; VBC = VDC

∴ i1 P = i2 R (1)

i1 Q = i2S (2)

Dividing (1) by (2)

P

Q
= R

S
(3)

(b) Assume that a non-zero current flows through the galvanometer of resis-
tance G. Applying the junction theorem at A

i = i1 + i2 (4)

Applying the loop theorem to the loop ABDA and noting that there is no
emf in this loop

igG + i1 P − i2 R = 0 (5)
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Applying the loop theorem to the loop BCDB, which also does not have
an emf

(i1 − ig)Q − igG − (i2 − ig)s = 0 (6)

Combining (4), (5) and (6)

ig

i
= Q R − P S

G(Q + S) + (P + R) (G + Q + S)

Note that ig = 0 if Q R − P S = 0, which is identical with the condi-
tion (3).

12.34 Apply the junction theorem to obtain currents in various branches as indi-
cated in Fig. 12.41. Current flowing through the ammeter is 6 A.

Fig. 12.41

12.35 Let the internal resistance of each battery be r , galvanometer resistance G
and the external resistance R. Then in the series arrangement, total resistance
in the circuit (Fig. 12.42)

Fig. 12.42
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(12.17)

Reff = G + R + 2r

Effective emf, ξeff = 2 × 1.5 = 3 V

ξeff = i(G + R + 2r)

∴ 3 = 1 × (G + R + 2r) (1)

In the parallel arrangement, ξeff = 1.5 V and the combined internal resis-

tance is
r × r

r + r
= 0.5 r .

Total resistance in the circuit

Reff = G + R + 0.5 r

1.5 = 0.6 × (G + R + 0.5r)

or 2.5 = G + R + 0.5r (2)

Subtracting (2) from (1), r = 0.333 �.

12.36 When the key is closed P.D across R is

V = i R

and the emf of the cell is

ξ = i(R + r)

where r is the internal resistance of the cell.

ξ

V
= R + r

R
= 1 + r

R

When the key is open, let the balancing length be X1 cm from the end A
against the emf ξ. When the key is closed, let the balancing length be X2
against the P.D. of V volts:

ξ

V
= X1

X2
= 1 + r

R
52

40
= 1 + r

5
∴ r = 1.5 �.

12.37 Resistance (Fig. 12.43) of 40 cm of potentiometer wire = 40

100
× 10 = 4 �

P.D. across 40 cm wire due to 2 V cell is V = 2 × 4

10 + R
= 8

10 + R
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Fig. 12.43

This is balanced by 0.01 V due to the second cell:

∴ 8

10 + R
= 0.01

∴ R = 790 �

12.38 Resistance across ac (Fig. 12.20) is 1
4 × 12, 000 = 3000 �. The com-

bined resistance of voltmeter (6000 �) in parallel with 3000 � resistance is
6000 × 3000

6000 + 3000
= 2000 �.

Resistance across bc is 3
4 × 12, 000 = 9000 �. Effective resistance of the

circuit = 9000 + 2000 = 11, 000 �.
P.D. across ac is

V = 220 × 2000

11, 000
= 40 V

Thus the voltmeter reads 40 V.

12.39 R

3.5
= l

100 − l
= 30

100 − 30
= 3

7
∴ R = 1.5 �

12.40 (a) N = i

i1
= 100 mA

1 mA
= 100

S = G

N − 1
= 80

100 − 1
= 0.808 �

A shunt of 0.808 � should be provided for the moving coil meter.
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(b) Initially V = iG = 1 × 10−3 × 80 = 0.08 V

N = 80

0.08
= 1000

R = (N − 1)G = (1000 − 1) × 80 = 79, 920 �

A resistance of 79,920 � must be connected in series with the moving
coil galvanometer to give the required full scale deflection.

12.41 ξ = i(R + r) (by Ohm’s law)

9 = i(120 + 15)

∴ i = 1

15
A

The voltmeter would read

V = ξ − ir = 9 − 1

15
× 15 = 8 V

12.42 S = G

N − 1
i1

i
= 1

N
= 1

100

or N = 100

∴ G = (N − 1)S = (100 − 1) × 1 = 99 �

12.3.4 Kirchhoff’s Laws

12.43 By the junction theorem

i = i1 + i2 (1)

Applying the loop theorem to the loop B E1 AE2 B, traversing clockwise

ξ2 − i2r2 − ξ1 + i1r1 = 0

∴ 2i2 − i1 = 20 − 10 = 10 (2)

Applying the loop theorem to the loop B E1ARB

ξ1 = i1r1 + i R
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∴ 10 = i1 + 30i

or 31i1 + 30i2 = 10 (3)

where we have used (1). Solving (2) and (3)

i1 = −3.04 A, i2 = 3.48 A

Power dissipated through E1 is i2
1r1 = (3.04)2 × 1 = 9.24 W

Power dissipated through E2 is i2
2r2 = (3.48)2 × 2 = 24.2 W

Power dissipated through R is i2 R = (0.44)2 × 30 = 5.8 W

(∵ i = i1 + i2 = −3.04 + 3.48 = 0.44 A)

12.44 Referring to Fig. 12.44

i1 + i2 = i (junction theorem) (1)

Traversing the loop B E2 AE1 B counterclockwise the loop theorem gives

ξ2 − r2i2 − (ξ1 − r1i1) = 0

∴ 1 − 2i1 − (2 − 1i1) = 0

or i1 − 2i2 = 1 (2)

For the loop B E1ARB

ξ1 − i1r1 − i R = 0

∴ 2 − 1i1 − 10i = 0

or 11i1 + 10i2 = 2 (3)

Fig. 12.44
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where we have used (1). Application of Kirchhoff’s laws to the loop
B E2ARB does not yield anything extra. From (1), (2) and (3) we find
i1 = 0.44 A, i2 = −0.28 A and i = 0.16 A. The negative sign of i2 shows
that its direction is opposite to that has been assumed.

12.45 i1 + i2 + i3 = i = 5 A (1)

As ρ = const and R = π d2/4 (Fig. 12.45)

R1 : R2 : R3 = l1

d2
1

: l2
d2

2

: l3
d2

3

∴ R1 : R2 : R3 = 2

32 : 3

42 : 4

52 = 2

9
: 3

16
: 4

25
(2)

Since P.D across all the resistors is identical,

i1 R1 = i2 R2 = i3 R3 (3)

∴ i2 = i1
R1

R2
= 2

9
× 16

3
i1 = 32

27
i1 (4)

i3 = i1
R1

R3
= 2

9
× 25

4
= 25

18
i1 (5)

∴ i1 + 32

27
i1 + 25

18
i1 = i = 5 (6)

∴ i1 = 1.4 A, i2 = 1.66 A, i3 = 1.94 A

where we have used (1), (4) and (5).

Fig. 12.45

12.46 The P.D across 8 and 2 � resistors are equal, Fig. 12.46:

2i2 = 8i3 (1)

As P.D across 3 and 6 � resistors are equal

3i4 = 6i1 (2)

As P.D across 4 and 6 � resistors are equal

6i6 = 4i5 (3)
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Fig. 12.46

Applying junction theorem

i = i1 + i2 + i3 + i4 (4)

i2 + i3 = i5 + i6 (5)

VAB = VAD + VDB

∴ 3i4 = 8i3 + 4i5 (6)

Applying the loop theorem to CAFBC

ξ − ir − 3i4 = 0

2

3
i + 3i4 = 1.8 (7)

Solving (1), (2), (3), (4), (5), (6) and (7), i4 = 0.4 A and i = 0.9 A. Applying
the loop theorem to the entire circuit

ξ − ir − i R = 0 (8)

where R is the equivalent resistance of the circuit

R = ξ

i
= 1.8

0.9
− 2

3
= 4

3

Power dissipated in the entire circuit is

P = i2(R + r) = (0.9)2
(

4

3
+ 2

3

)
= 1.62 W

12.47 Let A and B be the midpoints of the coils. As no current flows through the
galvanometer, P.D across AB is zero. Applying the loop theorem to the main
circuit, Fig. 12.47
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Fig. 12.47

ξ1 + ξ2 − i(R + R + r1 + r2) = 0

∴ i = ξ1 + ξ2

2R + r1 + r2
= 1.5 + 3

2 × 10 + 5 + r2
= 4.5

r2 + 25
(1)

The P.D of the point B with respect to the negative terminal of the first cell is

VB = ξ1 −
(

10

2
+ r1

)
i = 1.5 − 10 i (2)

The P.D of the point A with respect to the negative terminal of the first cell is

VA = ξ1 + ξ2 −
(

10

2
+ r2 + 10 + r1

)
i

= 1.5 + 3 − (5 + r2 + 10 + 5)i = 4.5 − (20 + r2)

But VB = VA (∵ no current flows through the galvanometer)

∴ 1.5 − 10i = 4.5 − (20 + r2)i

∴ i = 3

10 + r2
(3)

From (1) and (2), r2 = 20 �

12.48 (a) (i) Req = R1 R2

R1 + R2
+ R3 R4

R3 + R4
= 8 × 2

8 + 2
+ 3.2 × 3.2

3.2 + 3.2
= 3.2 k�

(ii) Vp1 = 320 × 1.6

3.2
= 160 V

(iii) Vp2 = 320 × 1.6

3.2
= 160 V
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(iv) IT = ξ

Req
= 320

3.2 × 103 = 0.1 A

I1 = IT × R2

R1 + R2
= 0.1 × 2

8 + 2
= 0.02 A

I3 = IT × R4

R3 + R4
= 0.1 × 3.2

3.2 + 3.2
= 0.05 A

(v) W = I 2
T Req = (0.1)2 × 3.2 × 103 = 32 J

W3 = I 2
3 R3 = (0.05)2 × 8 × 103 = 20 J

(b) P = ξ 2

r
= (24)2

0.01
= 5.76 × 104 J

12.49 (i) i = ξ

R + r
= 24

140 + 0.02
= 0.1714 A

(ii) V = ξ − ir = 24 − 0.1714 × 0.02 = 23.9966 V

(iii) PR = i2R = (0.1714)2 × 140 = 4.113 W

Pr = i2r = (0.1714)2 × 0.02 = 5.87 × 10−4 W

(iv) V =ξ=24 V. Full voltage is available in the absence of load resistance.

12.50 (i) Req = R1 R2

R1 + R2
+ R5 + R3 R4

R3 + R4

= 80 × 80

80 + 80
+ 20 + 40 × 40

40 + 40
= 80 k�

(ii) IT = V

Req
= 300

80 × 103 = 3.75 × 10−3 A

I1 = IT × R2

R2 + R1
= 3.75 × 10−3 × 80

80 + 80
= 1.875 × 10−3 A

I3 = IT × R4

R4 + R1
= 3.75 × 10−3 × 40

40 + 40
= 1.875 × 10−3 A

(iii) V1 = V

Req
× R1 R2

(R1 + R2)
= 300

80
× 80 × 80

(80 + 80)
= 150 V

V2 = V R5

Req
= 300 × 20

80
= 75 V

V3 = V

Req
× R3 R4

(R3 + R4)
= 300

80
× 40 × 40

(40 + 40)
= 75 V

(iv) P5 = I 2
T R5 = (3.75 × 10−3)2 × 20 × 103 = 0.281 W

P = I 2
T Req = (3.75 × 10−3)2 × 80 × 103 = 1.125 W
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Fig. 12.48

12.51 i1 = i2 + i3 (junction theorem) (1)

Traversing the top loop counterclockwise (Fig. 12.48)

ξ1 − i2 R3 − ξ3 − i2 R2 − ξ2 − i1 R1 = 0 (loop theorem)

∴ 13 − 300 i2 − 3 − 200 i2 − 30 − 100 i1 = 0

or 100 i1 + 500i2 + 20 = 0 (2)

Traversing the bottom loop counterclockwise

ξ4 − i3 R4 − ξ5 + i2 R2 − ξ3 + i2 R3 = 0

∴ 5 − 400 i3 − 8 + 200 i2 − 3 + 300 i2 = 0

or 500 i2 − 400 i3 − 6 = 0 (3)

Required equations for the unknown currents are (1), (2) and (3).

12.52 (i) Kirchhoff’s rule 1 (junction theorem) At any junction of an electric
network (branched circuit) the algebraic sum of the currents flowing
towards that junction is zero (Fig. 12.49).
Kirchhoff’s rule 2 (loop theorem)
Sum of the changes in the potential encountered in traversing a loop
(closed circuit) in a particular direction (clockwise or counterclockwise)
is zero.
If a resistor is traversed in the direction of the current, the change in the
potential is −i R, while in the opposite direction it is +i R.
If a seat of emf is traversed in the direction of emf, the change in poten-
tial is +ξ, while in the opposite direction it is −ξ.



576 12 Electric Circuits

(ii) i1 = i2 + i3 (junction theorem) (1)

Traversing the top loop counterclockwise

− ξ1 − i2 R2 + ξ3 + ξ2 − i1 R1 = 0 (loop theorem)

∴ −11 − 200 i2 + 33 + 22 − 100 i1 = 0

or 100 i1 + 200i2 − 44 = 0 (2)

Traversing the bottom loop counterclockwise

− ξ4 − i3 R3 + ξ5 − ξ3 + i2 R2 = 0

∴ −44 − 300 i3 + 55 − 33 + 200 i2 = 0

or 200 i2 − 300 i3 − 22 = 0 (3)

Equations (1), (2) and (3) are the required equations in the three
unknown currents i1, i2 and i3.

Fig. 12.49

12.53 (i) The equivalent resistance of the circuit is

Req = R1 + R2 + R3 R4

R3 + R4

= 5 + 10 + 20 × 60

20 + 60
= 30 k�

V1 = V × R1

Req
= 300 × 5

30
= 50 V

V2 = V × R2

Req
= 300 × 10

30
= 100 V
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(ii) Vp = V × R3 R4

Req(R3 + R4)
= 300 × 20 × 60

30(20 + 60)
= 150 V

(iii) IT = V

Req
= 300

30 × 103
= 0.0 1 A

I2 = IT
R4

R4 + R3
= 0.01 × 60

60 + 20
= 0.0075 A

I4 = IT
R3

R4 + R3
= 0.01 × 20

60 + 20
= 0.0025 A

12.54 i1 − i2 − i3 = 0 (junction theorem) (1)

Traversing clockwise the top loop (Fig. 12.50)

Fig. 12.50

ξ1 + i1 R1 − ξ2 − ξ4 + i2 R2 + ξ3 = 0 (loop theorem)

∴ 5 + 10i1 − 10 − 20 + 20i2 + 15 = 0

or i1 + 2i2 − 1 = 0 (2)

Traversing clockwise the bottom loop

− ξ3 − i2 R2 + ξ4 − ξ6 + i3 R4 + ξ5 + i3 R3 = 0 (loop theorem)

∴ −15 − 20i2 + 20 − 30 + 40i3 + 25 + 30i3 = 0

or 7i3 − 2i2 = 0 (3)

The required equations are (1), (2) and (3) in three unknown currents.
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12.55 i1 − i2 − i3 = 0 (junction theorem) (1)

Traversing the top loop clockwise (Fig. 12.51)
ξ4 − i1 R4 − ξ5 − i2 R3 − ξ2 − i2 R2 = 0

∴ 50 − 200i1 − 30 − 80i2 − 10 − 120i2 = 0

or 20i1 + 20i2 − 1 = 0 (2)

Traversing the outer loop clockwise

ξ4 − i1 R4 − ξ5 − i3 R5 − ξ3 − i3 R1 + ξ1 − i3 R6 = 0

50 − 200i1 − 30 − 100i3 − 20 − 60i3 + 40 − 40i3 = 0

or 5i1 + 5i2 − 1 = 0 (3)

Fig. 12.51

The required equations are (1), (2) and (3) in three unknown currents i1,
i2 and i3. Note that by considering the bottom loop no new information is
provided as it is already contained in the other two loops. In general it is
sufficient to consider any two loops out of three.

12.56 Traversing the loop ABCDA clockwise

− i R − i1 R1 + ξ2 − ir2 − ξ1 − ir1 = 0

i1 = 2i/3, i2 = i/3

∴ −4.5 i − 3 × 2 i

3
+ 8 − i − 4 − 0.5i = 0

∴ i = 0.5 A, i1 = 0.33 A, i2 = 0.165 A

P.D over E1

V1 = ξ1 + ir1 = 4 + 0.5 × 0.5 = 4.25 V

P.D over E2

V2 = ξ2 − ir2 = 8 − 0.5 × 1 = 7.5 V



Chapter 13
Electromagnetism I

Abstract Chapters 13 and 14 are devoted to electromagnetism concerned with
motion of charged particles in electric and magnetic fields, Lorentz force, cyclotron
and betatron, magnetic induction, magnetic energy and torque, magnetic dipole
moment, Faraday’s law, Hall Effect, RLC circuits, resonance frequency, Maxwell’s
equations, Electromagnetic waves, Poynting vector, phase velocity and group veloc-
ity, dispersion relations, waveguides and cut-off frequency.

13.1 Basic Concepts and Formulae

Motion of Charged Particles in Electric and Magnetic Fields

Assuming that the magnetic field (B) acts perpendicular to the plane of orbit of a
particle of charge q and mass m moving with velocity v, the radius of curvature (r )
is given by

r = mv

q B
(13.1)

the angular velocity by

ω = v

r
= q B

m
(13.2)

the frequency by

f = ω

2π
= q B

2πm
(cyclotron frequency) (13.3)

the kinetic energy (K ) by

K = 1

2
q2 r2 B2

m
(13.4)

579
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Null deflection: If the electric and magnetic fields are crossed, i.e. arranged at
right angles then the charged particle is undeflected. The condition is

v = E/B (13.5)

Magnetic Induction (B)

B at the Centre of a Coil of N Turns and of Radius r, Carrying Current i

B = μ0 Ni

2r
(centre of coil) (13.6)

The field into the page is indicated by a cross X and out of page by a dot.

B at Distance r from a Long Straight Wire

B = μ0i

2πr
(long wire) (13.7)

B at Distance r from a Straight Wire of Finite Length

B = μ0i

4πr
(cos θ1 + cos θ2) (finite wire) (13.8)

where θ1 and θ2 are the inner angles subtended by the field point at the extremities
of the wire.

B on the Axis of a Solenoid

B = μ0 Ni

l
(solenoid) (13.9)

where N is the number of turns over the axial length l.

Magnetic Induction due to a Long Cylindrical Conductor of Radius R

B = μ0ir

2π R2
(r < R)

= μ0i

2πr
(r > R) (13.10)
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B due to a Hollow Cylindrical Shell of Radii a and b (a < b)

B = μ0i(r2 − a2)

2πr(b2 − a2)
(a < r < b)

= 0 (r < a)

= μ0i

2πr
(r > b) (13.11)

where r is measured from the axis.

B due to a Loop of N Turns and Radius r on the Axis

B = μ0i N R2

2(R2 + z2)3/2 (13.12)

Magnetic Force on a Current-Carrying Wire

The force on the current-carrying wire is directed perpendicular to both the length
of the wire and the field direction. The direction of motion of the wire is given by the
left-hand rule. If the current-carrying wire makes an angle θ with the field direction,
then the force on the wire would be

F = ilB sin θ (13.13)

Force on Two Parallel Wires Each of Length l Carrying Current i1 and i2
and Separated by Distance d

F = μ0li1i2

2πd
(13.14)

The two forces (F1 due to wire 1 on 2 and F2 due to wire 2 on 1) form an action–
reaction pair. For parallel currents the wires attract each other and for antiparallel
currents the wires repel each other.

Magnetic Dipole Moment, Magnetic Energy

Magnetic Material, Hall Effect

The magnetic moment produced by a circular current i enclosing an area A is given
by

μ = Ai (13.15)
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Magnetic energy density

u B = 1

2μ0
B2 (13.16)

Magnetic material

B = μ0(H + M) (13.17)

where H is the magnetic field strength and M is the magnetization.
Hall effect: When a strip of conductor carries a dc current along its length, a mag-

netic field set up in a perpendicular direction produces a magnetic field sideways.
The charge build up on one side establishes a potential across the width of the strip,
known as Hall potential and the phenomenon is called Hall effect.

If RH is the Hall coefficient, σ the electrical conductivity, then the mobility μ is
given by

μ = RHσ (13.18)

Lorentz Force

F = q E + qv × B (13.19)

Faraday’s Law

An emf is induced in a conductor when there is a change in the number of lines
‘linking it’ (passing through it) or when it cuts across field lines.

Consider a flat wire loop of any shape and of area A in a magnetic field B, the
field B making an angle θ perpendicular to the loop. The magnetic flux ϕ through
the loop is defined by

ϕ = B.A = B A cos θ (13.20)

The unit of flux is the weber (Wb), while that of the magnetic field is tesla (T).
1 T = 104 G, G standing for Gauss.

The electromotive force ξ in such a wire loop is equal to the rate of change of
flux through it:

ξ = −�ϕ

�t
(Faraday’s law) (13.21)

where �ϕ is the change in flux that occurs in time interval �t .



13.2 Problems 583

Lenz law: The reason for the minus sign in (13.21) is given by Lenz law which
states ‘the induced current will appear in such a direction that it opposes the change
that produced it’.

If the coil forms a closed circuit then only the induced current can be present,
otherwise in the case of an open circuit one can only speak of induced emf and its
direction.

In a coil of N turns

ξ = −N
�ϕ

�t
(13.22)

If the circuit is complete current will appear and will be given by

i = ξ

R
= − N

R

�ϕ

�t
(13.23)

where R is the resistance of the circuit. The corresponding charge flowing is given
by

�q = i�t = − N

R
�ϕ (13.24)

Consider a conducting rod of length l moving sideways in the plane of paper over
a U-shaped metal frame at constant speed v at right angles to a uniform magnetic
field of flux density B into the paper. Then the emf induced across the ends of the
rod is given by

ξ = −Blv (13.25)

13.2 Problems

13.2.1 Motion of Charged Particles in Electric and Magnetic Fields

13.1 Calculate the cyclotron frequency to accelerate alpha particles in a magnetic
field of 104 G. The mass of 4He2 is 4.002603 u.

13.2 If the pole pieces of a cyclotron are 50 cm in diameter, a flux density of
15,000 G, find approximate values for the energies to which (a) protons
and (b) α-particles could be accelerated. What oscillator frequency would
be required in each case?

[University of London]

13.3 In a mass spectrometer, the velocity filter employs electric field E and a
perpendicular magnetic field B. The deflection magnetic field, perpendicular
to a beam is B′. Ions with similar charges q and mass numbers m1 and
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m2 pass through the filter. Show that the separation between them will be
2E(m2 − m1)

q B B′

[Indian Administrative Services]

13.4 A singly charged particle of known velocity 2.5 × 107 m/s but unknown
mass moves in a bubble chamber in a circular path of radius 0.2 m in a field
of 0.2 T acting perpendicular to the path. Determine the mass of the particle
and identify it.

13.5 A particle of mass m and charge q travelling with a velocity v along the
x-axis enters a uniform electric field E directed along the y-axis. Show that
the trajectory will be a parabola.

13.6 Find the radius of a circular orbit of an electron of energy 5 keV in a field of
10−2 T.

[Osmania University 1992]

13.7 An electric field of 1500 V/m and a magnetic field act on an electron moving
with a speed of 3000 m/s. If the resultant field is to be zero what should be
the strength of the magnetic field (in Wb/m2).

[Osmania University 1987]

13.8 An electron moves in a circle of radius 1.9 m in a magnetic field of 3 ×
10−5 T. Calculate (a) the speed of electrons and (b) time taken to move round
the circle.

13.9 A cyclotron is powered by a 50,000 V 5 Mc/s radio frequency source. If its
diameter is 1.524 m, what magnetic field satisfies the resonance condition for
deuterons?. Also what energies will they attain? Take the mass of deuteron
as 2.0141 u.

13.10 Deuterons are accelerated in a conventional cyclotron. Given the resonance
frequency was 11.5 Mc/s and radius of the dee 30′′, calculate the resonance
frequency of protons and the maximum energy of protons that is obtainable
using the same magnetic field. (In a cyclotron the vacuum chamber is parti-
tioned into two D-shaped components)

13.11 A cyclotron has a magnetic field of 15,000 G. The extraction radius is 50 cm.
Calculate (a) the frequency of the rf necessary for accelerating deuterons and
(b) the energy of the extracted beam.

[University of Liverpool]

13.12 In the Bohr model of hydrogen atom the electron revolves in a circular orbit
of radius 0.53 Å with a time period of 1.5 × 10−16 s. Find the corresponding
current.
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13.13 As shown in Fig. 13.1, a beam of particles of charge q enters a region where
an electric field is uniform and directed downwards. Its value is 80 kV/m.
Perpendicular to E and directed into the page is a magnetic field B = 0.4 T.

(i) If the speed of the particles is properly chosen, the particles will not be
deflected by these crossed electric and magnetic fields. What speed is
selected in this case?

(ii) If the electric field is cut off and the same magnetic field is maintained,
the charged particles move in the magnetic field in a circular path of
radius 1.14 cm. Determine the ratio of the electric charge to the mass of
the particles.

Fig. 13.1

13.14 (a) Write an expression for the force acting on a charge q moving with
velocity v in an electric field E and magnetic field B.

(b) A charged particle of mass m and charge q is accelerated through a
potential difference of V and then injected into a region with a magnetic
field B perpendicular to the plane in which the charge moves. Derive an
expression for the radius of curvature, r , of the path of the particle when
in the magnetic field.

[University of Durham 2004]

13.15 In a certain mass spectrometer the magnetic field has a magnitude of 0.2 T.
It is intended that this spectrometer be used to separate two isotopes of ura-
nium, 235

92U(mass 3.90×10−25 kg) and 238
92U(mass 3.95×10−25 kg). In order

to be separated the radii of curvature described by singly charged (charge +e)
ions must differ by 2 mm. Calculate the electric potential through which the
ions must be accelerated in order to achieve this.

13.16 (a) Write down an expression for the force experienced by a particle with
charge q moving with velocity v in a magnetic field B. Under what
circumstances does the particle mass m, of describe a circle of radius r?

(b) A coil of cross-sectional area A composed of N turns is placed perpen-
dicular to a magnetic field which is uniform in space, with a strength that
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varies in time according to B = B0 cos(15t). Calculate the electromotive
force induced in the coil.

[University of Manchester 2007]

13.17 A water droplet of radius 1 μm is charged such that the electric field on its
surface is 5.8 mV/m. (a) How many electrons does the droplet carry? (b) How
strong a vertical electric field is required to prevent it from falling?

13.18 An electron of energy 1 eV enters an infinitely large region containing only a
homogeneous magnetic field of 10−3 T, at an angle of 60◦ to the direction of
the field. Calculate its subsequent motion assuming no energy losses. What
type of energy losses will occur even in complete vacuum?

[University of Manchester 1972]

13.19 A uniform electric field is established between the plates of a parallel plate
capacitor by holding one plate at ground and the other at a positive potential
V as shown. A uniform magnetic field B is established perpendicular to the
electric field (Fig. 13.2).
A charge −q is released from rest from the lower plate.

(i) Write down the equations of motion for the velocity components of the
charge.

(ii) Show that, at some time t later, the velocity of the electron in the x-
direction is related to the distance y moved along the y-axis by

vx = ωy

(iii) By applying the conservation of energy or otherwise to determine the
square of the velocity in the x–y-plane, show that

v2
y =

(
2qv

md
y − ω2 y2

)

[University of Aberystwyth, Wales]

Fig. 13.2
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13.20 Electrons are liberated with zero velocity from the negative plate of a parallel
plate condenser, in which there is a constant magnetic field B parallel to the
plates. If the separation of the plates is d and the potential across them is V ,

show that the electrons only arrive at the positive plate if d2 <
2mV

eB2

[University of Durham 1962]

13.2.2 Magnetic Induction

13.21 The magnetic field at 40 cm from a long straight wire is 10−6 T. What current
is carried by the wire?

13.22 A current I flows through a straight wire AB of finite length.

(a) Find the magnetic field B at distance r from the wire, the ends of the
wire making inner angles θ1 and θ2 with P , Fig. 13.3.

(b) Obtain the limit value for B for a very long wire.

Fig. 13.3

13.23 The magnetic field at the centre of a circular current loop is 10−5 T. If the
radius of the loop is 50 cm, find the current.

13.24 A square conducting loop, of side a carries a current I . Calculate the mag-
netic field at the centre of the loop.

13.25 Two wires are bent into semicircles of radius a, as in Fig. 13.4. The upper
half has resistance R � and the lower half resistance 4R �. Find the magnetic
induction at the centre of the circle.

Fig. 13.4
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13.26 A current I is sent through a thin wire as in Fig. 13.5. The radius of the
curved part of the wire is R. Show that the magnetic induction at the point O

will be B = μ0i

2π R

(
1 + 3π

4

)

Fig. 13.5

13.27 (a) A current I is sent through a thin wire as in Fig. 13.6. The straight wires
are very long and the radius of the curved part of the wire is R. Show
that the magnetic induction at the point O will be

B = μ0 I (π + 2)

4π R

Fig. 13.6

(b) A wire shown in Fig. 13.7 carries current I . Find the field of induction
B at the centre O.

Fig. 13.7

13.28 (a) A wire in the form of a polygon of n sides is circumscribed by a circle
of radius a. If the current through the wire is i , show that the magnetic
induction at the centre of the circle is given by

B = μ0ni

2πa
tan

(π

n

)

(b) Show that in the limit n → ∞ you get the expected result.
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13.29 A wire of length l can form a circle or a square. A current i is set up in both
the structures. Show that the ratio of magnetic induction at the centres of
these structures will be approximately 0.87.

13.30 (a) C is the common centre of the circular arcs of the circuit-carrying current
i , its arcs cutting a sector of angle, θ . Show that the magnetic induction
at C is

B = μ0iθ

4π

(
1

R1
− 1

R2

)

(b) C is the common centre of the semicircular arc of radii R1 and R2,
Fig. 13.8, carrying current i . Show that the magnetic induction at C is

B = μ0i

4

(
1

R1
− 1

R2

)

Fig. 13.8

13.31 A long wire is bent into the shape as in Fig. 13.9, without any cross-contact
at P. The current flows as indicated with the circular portion having radius
R. Show that the magnetic induction at C, the centre of the circle is B =
μ0i

2R

(
1 + 1

π

)

Fig. 13.9

13.32 A current I flows through a ring of radius r placed in the xy-plane. Show that
the magnetic induction at a point along the z-axis passing through the centre
of the ring is given by

B(z) = μ0 I R2

2(R2 + z2)3/2

13.33 Five hundred turns of a wire are wound on a thin tube 1 m long. If the wire
carries a current of 5 A, determine the field in the tube.

13.34 Two parallel wires, a distance d apart, carry equal currents I in opposite
directions. Calculate the magnetic induction B for points between the wires
at a distance x from one wire.

[Adapted from Hyderabad Central University 1993]
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13.35 A long hollow copper cylinder with inner radius a and outer radius b carries
a current I . Calculate the magnitude of the magnetic field at a point P (a <

r < b) (Fig. 13.10).

Fig. 13.10

13.36 Helmholtz coils consist of a pair of loops each with N turns and radius R.
They are placed coaxially at distance R and the same current I flows through
the loops but in the opposite sense. Show that the magnetic field at P, midway
between the centres A and C, Fig. 13.11, is given by

B = 8Nμ0 I

53/2 R

Fig. 13.11

13.37 A plastic of radius R has charge q distributed over its surface. If the disc
rotates at an angular frequency about its axis, show that the induction B at
the centre is given by

B = μ0ωq

2π R

13.38 Show that in the case of Helmholtz coils (prob. 13.36), the magnetic induc-
tion in the vicinity of the midpoint P is fairly uniform.

13.39 Consider a long straight rod of copper wire. It has a radius of 3 × 10−2 m
and 100 A flowing uniformly through it. Find a value for the magnetic field
(i) 1 m away and (ii) 6 × 10−3 m away from the central axis of the rod.

[University of Durham 2004]
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13.40 Use Ampere’s law to calculate the magnetic field for a long cylindrical con-
ductor of radius R and a current I flowing through it at a distance r from the
central axis of the conductor when (a) r > R and (b) r < R

13.41 Current I flows in two concentric circular arcs of radii r and 2r , Fig. 13.12.
Both arcs are quarter of a circle with P as the centre. Determine B at P.

[University of Durham]

Fig. 13.12

13.42 (a) A current I flows in a straight wire of length L . Show that the magnitude
of the magnetic field at a perpendicular distance x from the midpoint of
the wire is given by

|B| = μ0 I

4π

L

x
√

(L/2)2 + x2

where μ0 is the permeability of free space. What is the direction of the
B field?

(b) A loop of wire of length l carries a current I . Compare the magnetic
fields at the centre of the loop when it is bent into (a) a square and (b) an
equilateral triangle.

[University of Durham 2000]

13.43 Two identical, parallel co-axial coils of radius r , and having N turns, are
separated by a distance r along their common axis. They both carry a current
I in the same direction. Derive an expression for the magnetic field on the
axis at the mid-point in between the coils. Evaluate the field when N = 100,
r = 20 cm and I = 2 A.

13.44 State the relationship between the tangential component of the magnetic field
B summed around a closed curve C and the current Ic passing through the
area enclosed by the curve.
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A long cylinder conductor of radius R carries a current I along its length.
The current is uniformly distributed throughout the cross-section of the con-
ductor. Calculate the magnetic field at a distance r = R/2 from the axis of
the conductor. Find the distance r > R from the axis of the conductor where
the magnitude of the magnetic field is the same as at r = R/2.

[University of Durham]

13.45 (a) Show that (ignoring edge effects) the self-inductance, L , of a solenoid
with n turns per unit length, length l and cross-sectional area A, is
given by

L = μ0n2 Al

(b) A solenoid with 100 turns, length 10 cm and of radius 1 cm, carries a
current of 5A. Calculate the magnetic energy stored in the solenoid.

(c) The current in the solenoid of part (b) is reduced to zero at a uniform rate
over 5 s. Calculate the emf induced in the coil.

[University of Durham 2005]

13.46 (a) What is the magnetic field at a point 50 mm from a long straight wire
carrying a current of 3 A?

(b) A small current element I dl with dl = 2k̂ and I = 2 A is centred at the
origin. Find the magnetic field dB at the following points:

(i) on the x-axis at x = 3 m,
(ii) on the x-axis at x = −6 m,

(iii) on the z-axis at z = 3 m,
(iv) on the y-axis at y = 3 m.

[University of Aberystwyth, Wales 2005]

13.47 A thin torus, of radius 0.1 m, is wound uniformly with 100 turns of wire. If
a current of 2.0 A flows through the wire, what are the magnitudes of the B
and H fields generated within the torus if it contains (i) a vacuum and (ii)
a material with relative permeability 500? What is the magnetization in the
material (Fig. 13.13)?

Fig. 13.13
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13.48 It is believed that the earth’s magnetic field is produced by circulating current
in the core. If the mean radius of such currents is 1000 km, what is the order
of magnitude of current required to account for the earth’s dipolar magnetic
field of magnitude 6 × 10−5 T at the north magnetic pole?

[University of Manchester 1972]

13.49 A pair of circular coils each having 50 turns of radius 50 cm are separated
by 50 cm. A current of 10 A passes through the coils which are connected
in series. Midway between the coils, a flat metal disc of radius 10 cm, is
revolving at 1000 rpm What is the emf generated between the centre and the
rim of the disc(μ0 = 4π × 10−7 H/m)?

[University of Manchester 1959]

13.50 A conductor 1 m long moves with a velocity given by (3î + 2 ĵ + k̂) m/s
through a magnetic field given by (î +2 ĵ +3k̂) Wb/m2 How will the voltage
developed across the ends of the conductor vary with its orientation? For
what orientation will the voltage be zero?

[University of Durham 1962]

13.51 A proton travelling with velocity of v = (î + 3 ĵ)104 m/s is located at x =
2 m and y = 3 m at some instant t . Calculate the magnetic field at time t at
the position x = 2 m, y = 3 m.

13.2.3 Magnetic Force

13.52 Two long straight wires lie parallel to each other at a distance 5 cm apart. If
one carries a current of 2 A and the other a current of 3 A in the opposite
direction, find the force each wire exerts on the other (per metre of wire)?

13.53 Two parallel wires 20 cm apart attract each other with a force of 10−5 N/m
length. If the current in one wire is 10 A, find the magnitude and direction of
current in the other wire?

13.54 A 2 m long wire weighs 4 g and carries a 10 A current. It is constrained to
move only vertically above another wire carrying 15 A in the opposite direc-
tion. At what separation would its weight be supported by magnetic force?

13.55 Three long parallel wires, each carrying 20 A in the same direction, are
placed in the same plane with the spacing of 10 cm. What is the magnitude
of net force per metre on (a) an outer wire and (b) central wire?

13.56 Calculate the force acting on a bent wire (Fig. 13.14) carrying current i
placed in a uniform magnetic field B, normal to the plane of paper in terms
of i , B, l and R.
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Fig. 13.14

13.57 A long straight wire carries a current of 20 A, as shown in Fig. 13.15. A
rectangular coil with two sides parallel to the straight wire has sides 5 and
10 cm with the near side a distance 2 cm from the wire. The coil carries a
current of 5 A.

(i) Find the force on each segment of the rectangular coil due to the current
in the long straight wire.

(ii) What is the net force on the coil?

Fig. 13.15

13.58 (a) A very long straight wire PQ of negligible diameter carries a steady
current I1. A rigid square coil ABCD of side l and n turns is set up
with sides AB and DC parallel to the coplanar with PQ as shown in
Fig. 13.16. The side of the coil AB is at distance d from the wire PQ.
Derive an expression for the resultant force on the coil when a steady
current I2 flows through it. What is the direction of the force?

Fig. 13.16
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(b) Calculate the magnitude of the force when

I1 = 1 A, I2 = 4 A, d = 0.10 m, n = 10, and l = 0.05 m.

[University of Durham 2004]

13.59 Two parallel rails of negligible resistance are at distance d apart and are
connected by a resistor of resistance R. A conducting rod lies perpendicular
to the two rails and is free to slide on the rails. A constant magnetic field B
is perpendicular to the loop formed by the rails, rod and resistor. An external
agent drags the rod at velocity v along the rails. Find (a) the current flowing in
the resistor, (b) the total power delivered to the resistor and (c) the magnitude
of the applied force that is needed to move the rod with this velocity.

[University of Durham]

13.2.4 Magnetic Energy, Magnetic Dipole Moment

13.60 In prob. (13.37) show that the magnetic moment of the disc will be μ =
ωq R2

4
.

13.61 The earth has a magnetic dipole moment of 6.4 × 1021 A/m2. Show that this
dipole moment can be produced by passing a current of 5 × 107 A in a single
wire going around the magnetic equator.

13.62 Calculate the energy density at the centre of a circular loop of wire 10 cm
radius carrying a current of 100 A.

13.63 Given that the magnetic field at the centre of hydrogen atom is 13.5 Wb/m2,
calculate the magnetic energy density at the centre of hydrogen atom due to
the circulating electron.

13.64 A wire of length l forms a circular coil. If a current i is set up in the coil show
that when the coil has one turn the maximum torque in a given magnetic field

developed will be
1

4π
l2i B

13.65 A charge q is uniformly distributed over the volume of a uniform sphere of
mass m and radiusR, which rotates with an angular velocity ω about the axis
passing through its centre. Show that the ratio of the magnetic moment and

the angular momentum will be
μ

L
= q

2m
.

13.66 An electric dipole, whose dipole moment has magnitude 1.6 × 10−29 Cm is
placed in a electric field of 1000 V/m. The direction of the dipole moment
makes an angle of 30◦ to the direction of electric field. What is the potential
energy of the dipole?
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13.2.5 Faraday’s Law

13.67 A flexible circular wire expands such that its radius increases linearly with
time. It is located in a magnetic field perpendicular to the loop. Show that the
emf induced in the wire varies linearly with time.

13.68 An aeroplane, with a wing span of 30 m, is flying horizontally at a speed of
720 km/h, at a point where the vertical component of the earth’s field is 0.4
Oe. What is the emf developed between its wing tips.

[University of Durham]

13.69 A metal disc of radius 0.1 m spins about a horizontal axis lying in the mag-
netic meridian at a speed of 5 rev/s. If the horizontal component of the earth’s
field is B = 2 × 10−5 Wb/m2, calculate the potential difference between the
centre and the outer edge of the disc.

[University of Durham]

13.70 A coil is 30 turns of wire, each of area 10 cm2, is placed with its plane at right
angles to a magnetic field of 0.1 T. When the coil is suddenly withdrawn
from the field, a galvanometer in series with the coil indicates that 10−5 C
passes around the circuit. What is the combined resistance of the coil and the
galvanometer?

[University of Cambridge]

13.71 A wire loop of area 0.2 m2 has a resistance of 20 �. A magnetic field, normal
to the loop, initially has a magnitude of 0.25 T and is reduced to zero at a
uniform rate in 10−4 s. Estimate the induced emf and the resulting current.

13.72 A square wire with a loop of resistance 4 �, with sides 25 cm rotates 40 times
per second about a horizontal axis. The magnetic field is vertical and has a
magnitude of 0.5 T. Estimate the amplitude of the induced current.

13.73 A bar slides on rails separated by 20 cm, Fig. 13.17. If the current flowing
through the resistor R = 5 � is 0.4 A and the field B = 1 T, what is the speed
of the bar?

Fig. 13.17
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13.74 A uniform magnetic field of induction B fills a cylindrical volume of radius
R. A metal rod of length 2l is placed as in Fig. 13.18. If dB/dt is the rate of
change of B show that the emf that is produced by the changing magnetic
field that acts at the ends of the rod is given by

ξ = −dB

dt
l
√

R2 − l2

Fig. 13.18 Magnetic
induction at the centre of a
current-carrying wire made of
three-fourths of a circle and a
chord

13.75 A square wire of length l, mass m and resistance R slides without friction
on parallel conducting resistance rails as in Fig. 13.19. The rails are inter-
connected at the bottom by resistance rails so that R, the wire and rails form
a closed rectangular loop. The plane of the rails is inclined at an angle θ

with the horizontal and a vertical uniform magnetic field B exists within the
frame. Show that the wire acquires a steady velocity of magnitude

v = mgR sin θ

B2l2 cos2 θ

Fig. 13.19

13.76 A copper disc of 10 cm radius makes 1200 rotations per minute with its plane
perpendicular to a magnetic field. If the induced emf between the centre and
the edge of the disc is 6.28 mV, find the intensity of the field.

[Indian Administrative Services]
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13.77 Show that Faraday’s law ξ = dϕB/dt is dimensionally correct.

13.78 The magnetic field of an electromagnetic wave is given by the relation

B = 3 × 10−12 sin(4 × 106t)

where all quantities are in S.I. units. Find the magnitude of emf induced by
the field in a 200-turn coil of 15 cm2 area placed normal to the field.

13.79 Find the ratio of emf generated in a loop antenna by 100 MHz (typical televi-
sion frequency) to that of 1 MHz (typical radio frequency) if both have equal
field intensities.

13.80 Define magnetic flux and state Faraday’s law, describing the relationship
between the magnetic flux linked through a circuit and the current induced in
the circuit. What is the force on a straight wire of length l carrying a current
I in the presence of a magnetic field B?
Two long frictionless and resistanceless parallel rails, separated by a distance
a, are connected by a resistanceless wire. A magnetic field B is oriented
perpendicular to the plane containing the two rails. A frictionless conduction
slider of resistance R and mass m is placed perpendicular to the rails and
is given an initial velocity u along the rails. Obtain an expression for the
force F on the slider while it moves at velocity v. Hence, find the maximum
distance that the slider travels?

13.81 A flat, circular coil has 100 turns of wire, of radius 10 cm. A uniform mag-
netic field exists in a direction perpendicular to the plane of the coil. This
field is increasing at a rate of 0.1 T/s. Calculate the emf induced in the coil.

13.82 A rectangular coil in the plane of the page has dimensions a and b. A
long wire that carries a current I is placed directly on the coil, as shown
in Fig. 13.20.

(i) Obtain an expression for the magnetic flux through the coil as a function
of x for 0 ≤ x ≤ b.

(ii) For what value of x is the net flux through the coil a maximum? For
what value of x is the net flux a minimum?

Fig. 13.20
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(iii) Obtain an expression for the emf induced in the coil if the wire is placed
at x = b/4 and the current varies with time according to I = 2t .

13.83 Show that in the betatron the magnetic flux ∅ linking an electron orbit of
radius R is given instantaneously by ∅ = 2π R2 B where B is the instanta-
neous magnetic field.

[University of Newcastle upon Tyne 1965]

13.2.6 Hall Effect

13.84 What is the Hall effect and what is the significance of a positive Hall coeffi-
cient?
A potential difference is applied between the ends of a strip of copper and
a current of 100 A flows along its length. The strip is 20 cm long in the
x-direction of a rectangular system of coordinates, 2 cm wide in the y-
direction and 1 mm thick in the z-direction. A uniform magnetic field of
10 Wb/m2 is applied across the strip in the positive y- direction and the hall
EMF is found to be 5 μV
Derive (a) the magnitude and direction of the Hall field when the current
flows in the positive x-direction and (b) the concentration of free electrons.

[University of Manchester 1972]

13.85 The Hall coefficient and electrical conductivity of an n-type silicon are
−7.3×10−5 m3/C and 2×107 mho/m, respectively. Calculate the magnitude
of the mobility of the electrons.

[University of Durham 1962]

13.3 Solutions

13.3.1 Motion of Charged Particles in Electric and Magnetic Fields

13.1 104 G = 1 T

f = Bq

2πm
= 1 × 1.6 × 10−19

2π × 4.0026 × 1.66 × 10−27
= 3.83 × 106 Hz = 3.83 MHz

13.2 (a) Kp = 1

2

q2r2 B2

mp
= 1

2
× (1.6 × 10−19)2(0.25)2(1.5)2

1.66 × 10−27

= 2.17 × 10−13 J = 2.17 × 10−12

1.6 × 10−13
MeV = 13.56 MeV
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fp = Bq

2πmp
= 1.5 × 1.6 × 10−19

2π × 1.66 × 10−27 = 2.3 × 107 Hz = 23 MHz

(b) Kα � 1

2

(2e)2r2 B2

4mp
= Kp = 13.56 MeV

fα = (B)(2e)

2π × 4mp
= fp

2
= 11.5 MHz

13.3 q v B = E q → v = E

B
(1)

mv2

r
= q v B′ → r = mv

q B ′ (2)

Separation = 2r2 − 2r1 = 2(r2 − r1)

= 2 E

q B B ′ (m2 − m1) (3)

where we have used (1) and (2).

13.4 mv2

r
= Bev

m = Ber

v
= 0.2 × 1.6 × 10−19 × 0.2

2.5 × 107 = 2.56 × 10−28 kg

In terms of electron mass

m = 2.56 × 10−28

9.1 × 10−31 = 281 me

Hence the particle is a pion (π – meson)

13.5 Acceleration a = q E

m
(1)

y = 1

2
at2 (2)

x = vt (3)

Combining (1), (2) and (3)

y = q Ex2

2mv2 (4)

which is the equation to a parabola.

13.6 r =
√

2mK

q B
= (2 × 9.1 × 10−31 × 5 × 103 × 1.6 × 10−19)1/2

1.6 × 10−19 × 10−2
= 0.0238 m

= 2.38 cm
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13.7 q E = q v B

∴ B = E

v
= 1500

3000
= 0.5 T

13.8 (a) v = rqB

m
= 1.9 × 1.6 × 10−19 × 3 × 10−5

9.1 × 10−31 = 107 m/s

(b) t = 2πr

v
= 2π × 1.9

107 = 1.19 × 10−6s = 1.19 μs

13.9 B = 2πm f

q
= 2π × 2.0141 × 1.66 × 10−27 × 5 × 106

1.6 × 10−19 = 0.656 Wb/m2

K = 1

2

q2r2 B2

m
= 1

2
× (1.6 × 10−19)2(0.762)2(0.325)2

2.0141 × 1.66 × 10−27 = 4.696 × 10−13 J

= 2.9 MeV

13.10 For deuterons

B = 2π f m

q
= 2π × 11.5 × 106 × 2.014 × 1.66 × 10−27

1.6 × 10−19 = 1.509 Wb/m2

For protons

f = q B

2πm
= 1.6 × 10−19 × 1.509

2π × 1.66 × 10−27 = 2.316 × 107 c/s = 23.16 Mc/s

13.11 (a) f = Bq

2πm
= 1.5 × 1.6 × 10−19

2π × 3.32 × 10−27
= 11.5 × 106 c/s = 11.5 Mc/s

(b) K = 1

2

q2r2 B2

m
= 1

2

(1.6 × 10−19 × 0.5 × 1.5)2

3.32 × 10−27 = 21.69 × 10−13 J =
13.56 MeV

13.12 i = q

t
= 1.6 × 10−19

1.5 × 10−16 = 1.06 × 10−3 A

13.13 (i) Magnetic force, FM = qVB
Electric force, FE = q E
For no deflection, FM = FE

∴ qvB = q E

∴ v = E

B
= 80 × 103

0.4
= 2 × 105 m/s

(ii) mv2

r
= q v B

∴ q

m
= v

Br
= E

B2r
= 80 × 103

(0.4)2(1.14 × 10−2)
= 4.38 × 107 C/kg
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13.14 (a) F = qE + qv × B

(b) In the electric field energy acquired, K = qV

∴ p = √
2mK = √

2mqV. (1)

In the magnetic field

p = qBr (2)

Combining (1) and (2)

r =
√

2mV

q B2

13.15 Let the isotopes 235U and 238U be called 1 and 2, respectively. In the mag-
netic field the momenta are given by

p1 = qBr1, p2 = qBr2

p2 − p1 = qB (r2 − r1) = 1.6 × 10−19 × 0.2 × 2 × 10−3 (13.26)

= 6.4 × 10−21kg m/s. (1)

In the electric field

qV = p2
1

2m1
= p2

2

2m2
(2)

∴ p2 = p1

√
m2

m1
= p1

√
3.95 × 10−25

3.90 × 10−25 = 1.00639 p1. (3)

Combining (1) and (3)

p1 = 1.00159 × 10−19 kg m/s. (4)

Substituting (4) into (2)

V = (10−19)2

2 × 1.6 × 10−19 × 3.90 × 10−25
= 8 × 104 V

13.16 (a) F = q v × B
If B is perpendicular to v, then the particle would move in a circle.
Centripetal force = magnetic force

mv2

r
= qvB → r = mv

q B
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(b) ξ = − d

dt
(Nφ) = − d

dt
(NBA) = −N A

dB

dt

= −N A
d

dt
(B0 cos(15t)) = 15 NAB0 sin(15t)

13.17 (a) E = q

4πε0r

∴ q = 4πε0r E = 4π × 8.85 × 10−12 × 10−6 × 5.8 × 10−3

= 6.447 × 10−19 C

Number of electrons

n = q

e
= 6.447 × 10−19

1.6 × 10−19
= 4.029 or 4

(b) Minimum electric field E required to prevent the droplet from falling is
conditioned by equating the electric force to the gravitational force:

q E = mg

∴ E = mg

q
= 4

3
πr3 ρg

q
= 4

3
π ×

(
10−6

)3 × 1000 × 9.8

6.447 × 10−19

= 6.37 × 104 V/m

13.18 When a charged particle moves at an angle θ to the field direction, the par-
ticle will move in a helical path. The vector velocity v of the particle can be
resolved into two components, one parallel to B and one perpendicular to it:

v‖ = v cos θ and v⊥ = v sin θ (1)

The parallel component determines the pitch of the helix, that is, the distance
between the adjacent turns. The perpendicular component determines the
radius r of the helix:

v =
√

2K

m
=
√

2 × 1 × 1.6 × 10−19

9.1 × 10−31 = 5.93 × 105 m/s

r = mv sin θ

|q| B
= 9.1 × 10−31 × 5.93 × 105 sin 60◦

1.6 × 10−19 × 10−3
= 2.92 × 10−3m

= 2.92 mm

Time period T = 2π m

|q| B
= 2π × 9.1 × 10−31

1.6 × 10−19 × 10−3
= 3.57 × 10−8 s

Pitch = (v cos θ)T = 5.93 × 105 × cos 60◦ × 3.57 × 10−8 = 0.1 m
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13.19 (i) Choose the origin at o, Fig. 13.21. The electric field E acts along
the y-direction perpendicular to the plates which are located in the
x-direction. The electric force on the electron is directed along the
y-axis and the magnetic force along the z-axis. If the component of
initial velocity in the direction of B is zero then the path of electron
will be contained entirely in the xy-plane.

Fig. 13.21 Generating a
cycloid

Writing Lorentz force F = qE + qvB, in the component form

Fy = m
dvy

dt
= q E − q Bvx (1)

Fx = m
dvx

dt
= q Bvy (2)

Writing for convenience

ω = q B

m
and γ = E

B
(3)

Equations (1) and (2) can be rewritten as

dvy

dt
= ωγ − ωvx (4)

dvx

dt
= ωvy (5)

Differentiating (4) and using (5)

d2vy

dt2 = −ω
dvx

dt
= −ω2vy

or
d2vy

dt2
+ ω2vy = 0 (6)

With the initial conditions vx = vy = 0, at t = 0, (6) has the solution

vy = A sin ωt (7)

where A = constant:

∴ dvy

dt
= Aω cos ωt = ωγ − ωvx

At t = 0, vx = 0
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∴ Aω = ωγ → A = γ

∴ vy = γ sin ωt (8)

Substituting (8) into (5), integrating and using the initial condition vx =
0 at t = 0

vx = γ (1 − cos ωt) (9)

(ii) The coordinates x and y at any time t can be found out by integrating
separately (8) and (9) with the initial condition x = y = 0 at t = 0

y = γ

ω
(1 − cos ωt) (10)

x = γ

(
t − sin ωt

ω

)
(11)

Using (9) and (10) we get

vx = ωy (12)

(iii) The energy of the particle is unaffected in the static magnetic field.
Under the electric field in the y-direction the energy picked up will be

qVy

d
= 1

2
mv2 = 1

2
m
(
v2

x + v2
y

)

or v2
y = 2qVy

md
− ω2 y2 (13)

where we have used (12).

13.20 Referring to Fig. 13.21 and setting θ = ωt and R = γ /ω and (10) and (11)
of prob. (13.19) we get the parametric equations of cycloid

y = R(1 − cos θ) (1)

x = R(θ − sin θ) (2)

These equations define the path generated by a point on the circumference of
a circle which rolls along the x-axis. The maximum displacement of electron
along the y-axis is equal to the diameter of the rolling circle, that is, 2R.
Identifying 2R = d

d

2
= R = γ

ω
= E

/
B

eB
/

m
= Em

eB2 (3)

where we have set q = e, for the electron charge.

Also E = V

d
(4)
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Using (4) in (3)

d2 = 2mV

eB2 (5)

Thus the condition that the electrons are able to arrive at the positive plate is

d2 <
2mV

eB2

13.3.2 Magnetic Induction

13.21 B = μ0i

2πr

∴ i = 2π Br

μ0
= 2π × 10−6 × 0.4

4π × 10−7 = 2 A

13.22 (a) Consider a typical current element dx . The magnitude of the contribu-
tion dB of this element to the magnetic field at P is found from Biot–
Savart law and is given by (Fig. 13.22)

Fig. 13.22 Magnetic
induction due to a
current-carrying wire of finite
length

dB = μ0i dx sin θ

4π R2
(1)

Since the direction of the contribution dB at point for all such elements
is identical, i.e. at right angles to the plane of paper, the resultant field is

obtained by integrating dB from A to D in (1). Writing sin θ = r

R

B =
∫

dB = μ0ir

4π

⎡
⎣

b∫

−a

dx

(x2 + r2)3/2

⎤
⎦ = μ0ir

4πr2

x

(x2 + r2)1/2

b|
−a
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∴ B = μ0i

4πr
(cos θ1 + cos θ2) (2)

(b) For infinite wire θ1 → 0 and θ2 → 0, in this limit (2) becomes

B = μ0i

2πr

which is the expression for a long wire.

13.23 B = μ0i

2 r

∴ i = 2Br

μ0
= 2 × 10−5 × 0.5

4 π × 10−7 = 7.96 A

13.24 Magnetic field B1 due to current i in one segment is (Fig. 13.23)

B1 = μ0i

4π R
(cos θ1 + cos θ2)

Putting θ1 = θ2 = 45◦ and R = a/2

B1 = μ0i√
2πa

Fields due to four sides are equal and additive. Therefore net field

B = 4B1 = 2
√

2μ0i

π a

Fig. 13.23 Magnetic
induction at the centre of a
square conducting loop

13.25 The magnetic fields in the upper branch and lower branch act in the opposite

direction. The current in the upper branch is
4I

5
and in the lower branch is

I

5
. As the current is flowing through semicircles,
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B1 = μ0

4a

(
4I

5

)
= μ0 I

5a

B2 = μ0

4a

(
I

5

)
= μ0 I

20 a

Net field B = B1 − B2 = 3μ0 I

20 a

13.26 Field B at the centre is due to three-fourths of the circle (B1) added to that
due to the straight segment (B2)

B1 = 3

4
× μ0i

2R

B2 = μ0i

4πd
(cos θ1 + cos θ2)

From the geometry of Fig. 13.24, θ1 = θ2 = 45◦ and d = R√
2

.

Then B = B1 + B2 = μ0 i

2 π R

(
1 + 3π

4

)

Fig. 13.24 Magnetic
induction at the centre of a
current-carrying wire made of
three-fourths of a circle and a
chord

13.27 (a) The magnetic induction due to straight wires is

B1 = μ0 i

4π R
+ μ0i

4π R
= μ0i

2π R
(1)

because straight wires are of infinite length only on left side.
Induction at 0 due to semicircular portion is

B2 = μ0i

4R
(2)

Total magnetic induction

B = B1 + B2 = μ0i

2π R
+ μ0i

4R
= μ0i

4π R
(2 + π)
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(b) The straight portions of the wire do not contribute to the field at O as the
current is directed towards C and makes an angle θ = 0◦, for which the
Biot–Savart formula gives B = 0. Thus the entire induction comes from

the semicircular portion of the wire for which B = μ0i

4R
.

13.28 (a) Let the angle θ be subtended at the centre by one side AC of a regular
n-sided polygon, Fig. 13.25. Then

Fig. 13.25 Magnetic
induction at the centre of a
current-carrying regular
n-sided polygon

θ = 2π

n
or

θ

2
= π

n
(1)

The magnetic induction due to one side AC at the centre O is

B1 = μ0i

4πr
(cos α + cos α) = μ0i cos α

2π r
(2)

where r is the distance of O from AC.
The field B due to n sides will be additive and is given by

B = nB1 = μ0ni cos α

2π r
(3)

Now r = a sin α, so that in (3)

cos α

r
= cos α

a sin α
= 1

a
cot α = 1

a
tan

(
θ

2

)
= 1

a
tan

(π

n

)
(4)

where we have used (1). Using (4) in (3)

B = μ0ni

2 π a
tan

(π

n

)
(5)
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(b) In the limit n → ∞, tan
(π

n

)
→ π

n
and (5) becomes

B = μ0i

2a

an expression which is identical for B for a circular loop. This is reason-
able since as n → ∞, polygon → circle.

13.29 For square l = 4a and for circle l = 2πr

∴ a

r
= π

2
(1)

At the centre of the circle, Bc = μ0i

2r
.

At the centre of the square, Bs = 2
√

2 μ0i

πa
via prob. (13.24).

∴ Bc

Bs
= π

4
√

2

a

r
= π2

8
√

2
= 0.87

13.30 (a) The magnetic induction B at the centre of a circular wire is B = μ0i

2r
.

Hence for the arc which subtends an angle θ at the centre

B = μ0i

2r

θ

2π
= μ0 i θ

4π r

Induction at C due to the inner arc is

B1 = μ0iθ

4 π R1

and due to the outer arc

B2 = − μ0iθ

4 π R2

The negative sign arises due to the fact that the current has reversed. As
the radial part of the path points towards C, it does not contribute to B.
Therefore, the resultant induction is

B = B1 + B2 = μ0iθ

4π

(
1

R1
− 1

R2

)

Note that for clockwise current we take B as positive and for counter-
clockwise we take B as negative.
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(b) Put θ = π to obtain

B = μ0i

4

(
1

R1
− 1

R2

)

13.31 The total induction is given by adding Bs due to the straight conductor which
contributes on both sides of P and Bc due to the circular path, both being
directed out of page (Fig. 13.9)

Bs = μ0i

2 π R

Bc = μ0i

2R

B = Bs + Bc = μ0i

2π R
(π + 1)

13.32 dB = μ0i

4π

d s × r
r3 (Biot–Savart law) (1)

The magnetic induction dB at P on the z-axis due to an element of length dl of
the ring is shown in Fig. 13.26. Resolving dB along z-axis and perpendicular
to it, and summing over all such elements it is seen that the perpendicular
components vanish for reasons of symmetry and the parallel components get
added up.
Writing dl for ds and noting that the angle between R and dl is 90◦, (1) can
be written as

dBz = (dB) cos α = (μ0 irdl) cos α

4πr3 (2)

Writing dl = Rdφ, where φ is the azimuth angle and r cos α = R, (2)
becomes

Fig. 13.26 Magnetic
induction on the axis of a
current-carrying ring
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dBz = μ0i R2dφ

4π r3 (3)

Integrating

Bz = B =
∫

dBz = μ0i R2

4π r3

2π∫

0

dφ = μ0i R2

2 (R2 + z2)3/2 (4)

13.33 B = μ0 Ni

l
= 4π × 10−7 × 500 × 5

1.0
= 3.14 × 10−3 T

13.34 B = μ0 I

2π

[
1

x
+ 1

d − x

]

13.35 Apply Ampere’s law inside the hollow cylindrical conductor

(B) (2π r) = μ0 i π (r2 − a2)

π (b2 − a2)
(1)

where the right-hand side includes only the fraction of the current that passes
through the surface enclosed by the path of integration. Solving for B,

B = μ0i

2 π r

(r2 − a2)

(b2 − a2)
.

13.36 Magnetic field at P, due to loop A is

BA = μ0INR2

2(R2 + x2)3/2 (1)

where x = AP = R

2
. Similarly the magnetic field Bc due to the second loop

is given by an identical expression with x = CP = R

2
. As the currents are in

the opposite direction these two fields are added:

∴ B = BA + BC = μ0 INR2

(R2 + x2)3/2 (2)

Put x = R/2 to find

B = 8 Nμ0 I

53/2 R
(3)

13.37 Consider a ring of radius r , width dr , concentric with the disc. The charge
on the ring, Fig. 13.27
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dq = q
2πrdr

π R2 = 2qrdr

R2 (1)

The elementary current due to rotation of charge with frequency f is

di = f dq = ω

2π

2qrdr

R2 = ω qr dr

π R2 (2)

The induction at the centre due to the current in the ring is

dB = μ0di

2r
= μ0

2r

ω qrdr

π R2
= μ0ω qdr

2π R2
(3)

Total induction from the rotating disc

B =
∫

dB =
R∫

0

μ0ω qdr

2 π R2
= μ0ω q

2 π R
(4)

Fig. 13.27 Magnetic
induction at the centre of a
charged rotating disc

13.38 The field at any point P1 at distance x from P, the middle point will be

B = μ0 iNR2

2

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1[
R2 +

(
1

2
R + x

)2
]3/2 + 1[

R2 +
(

1

2
R − x

)2
]3/2

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1)

by prob. (13.36).
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Differentiate B with respect to x and evaluate

(
∂ B

∂x

)

x = 0
to find the first

derivative zero. Differentiate B once again to find

(
∂2 B

∂x2

)

x = 0
= 0. Thus

the field around P is seen to be fairly uniform.

13.39 (i) B = μ0i

2π r
(r > R) (1)

= 4π × 10−7 × 100

2π × 1.0
= 2 × 10−5 T

(ii) B = μ0ir

2π R2 (r < R) (2)

= 4π × 10−7 × 100 × 6 × 10−3

2π × (3 × 10−2)2 = 1.33 × 10−6 T

13.40 (a) � Bt �l = μ0 i (Ampere’s law)

� B�l = B� �l = B · 2π r = μ0i

where we enclose the current i by going round once the circle of radius
r . The magnetic induction will be tangential to the circle and the sum-
mation is simply the circumference of the circle, Fig. 13.28a:

(B)(2πr) = μ0i

∴ B = μ0i

2πr
(r > R)

(b) Consider a circular path C at distance r < R, Fig. 13.28b. The current
i0 inside a cross-section of radius r is proportional to the cross-sectional
area

i0 = i
πr2

π R2 = ir2

R2

By Ampere’s law

Fig. 13.28 Magnetic
induction due to a
current-carrying cylinder (a) (b)
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�Bt �l = (B) (2π r) = μ0i0 = μ0i
r2

R2

∴ B = μ0ir

2π R2
(r < R)

13.41 Let the radius of the inner arc of the loop be r and that of the outer arc 2r .
Both the arcs are quarter of a circle. The straight portions do not contribute
to B as their directions pass through P. As the currents in the two arcs flow
in the opposite sense, B will be down due to current in the outer arc and up
due to the current in the inner wire:

∴ Bnet = 1

4

μ0 I

2r
− 1

4

μ0 I

2 × 2r
= μ0 I

16 r
down

13.42 By prob. (13.22) at P, Fig. 13.29

B = μ0 I

4πx
(cos θ1 + cos θ2), (1)

put θ1 = θ2 then

cos θ1 = cos θ2 = L/2√
(L/2)2 + x2

So that (1) becomes

B = μ0 I

4πx

L√
(L/2)2 + x2

(2)

(a) Let the square be of side a = l/4. The distance of the centre of square
from the side is a/2. Put x = a/2 and L = a = l/4 in (2) to find for one
side

B1 = 2
√

2μ0 I

πl

As there are four equal sides, B = 4B1 = 8
√

2μ0 I

πl
·

The B-field will be perpendicular to the plane containing the wire and
the field point.

(b) Let each side of the equilateral triangle be a = l/3. Distance of the
centre of the triangle from any side is x = a/2

√
3. Put L = a = l/3

and x = a/2
√

3 in (1) to find for one side B1 = 9μ0 I

2πl
. Hence for three

sides
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Fig. 13.29 Magnetic field
due to a current-carrying
straight wire of finite length

B = 3B1 = 27μ0 I

2πl

∴ B (square)

B (triangle)
= 27/2

8
√

2
= 1.19

13.43 By prob. (13.36) B = 8Nμ0 I

53/2 R
= (8)(100)(4π × 10−7)(2)

53/2(0.2)
� 9 × 10−4 T

13.44

∮
B dl = μ0i (Ampere’s law)

By prob. (13.43)

B = μ0 I r

2π R2
(r < R) (1)

∴ For r = R

2
, B = μ0 I

4π R
(2)

Further B = μ0 I

2πr
(r > R). (3)

Equating (2) and (3) we find r = 2R. Thus at r = 2R, the magnetic field is
the same as at r = R/2.

13.45 (a) In the absence of magnetic material the number of flux linkages NφB(N
being the number of turns) is proportional to the current

NφB = Li (1)

If n is the number of turns per unit length, A the cross-sectional area and
l the length of the solenoid and B the magnetic induction

NφB = (nl)(B A) (2)

By Ampere’s theorem

B = μ0ni (3)

Combining (1), (2) and (3)

L = μ0n2 Al (4)
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(b) B = μ0ni = μ0 Ni

l

UB = uB Al = B2

2μ0
· Al = (μ0 Ni)2 Al

2μ0l2
= μ0 N 2i2πr2

2l

= (4π × 10−7) (100)2(5)2π (0.01)2

2 × 0.1
= 4.93 × 10−4 J

(c) φ = B A = μ0 Ni

l
· πr2 = 4π × 10−7 × 100 × 5 × π × (0.1)2

0.1
= 1.972 × 10−4Wb

ξ = −�φ

�t
= −1.972 × 10−4

5
= −3.94 × 10−5 V

13.46 (a) B = μ0i

2πr
= 4π × 10−7 × 3

2π × 50 × 10−3 = 1.2 × 10−7 T

(b) In the vector form the Biot and Savart law can be written as

dB = μ0i

4π

dl × r
r3

(i) dB = (4π × 10−7)(2)(2k̂ × 3î)

4π 33 = 4.44×10−8 ĵ (∵ k̂ × î = ĵ)

Thus dB = 4.44 × 10−8 T along positive y-axis

(ii) dB = (4π × 10−7)(2)(2k̂ × (−6î))

4π 63 = −1.11 × 10−8 ĵ

Thus dB = 1.11 × 10−8 T along negative y-axis

(iii) dB = 0 (∵ k̂ × k̂ = 0)

(iv) dB = (4π × 10−7)(2)(2k̂ × 3 ĵ)

4π 33 = −4.44 × 10−8 î

dB = 4.44 × 10−8 T along negative x-axis.

13.47 H = n0i = Ni

2πr
= 100 × 2

2π × 0.1
= 318.47 A/m for both vacuum and material.

B = Kμ0 H = 1 × 4π × 10−7 × 318.47 = 4 × 10−4 T (vacuum)

B = 500 × 4π × 10−7 × 318.47 = 0.2 T (material)

M = B − μ0 H

μ0
= 0 (vacuum)

M = B

μ0
− H = 0.2

4π × 10−7 − 318 = 1.59 × 105 (material)

13.48 Use the formula for B(z) on the axis of a circular coil of radius r carrying
current i :
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B(z) = μ0ir2

2(r2 + z2)3/2 (1)

Use the following values:
B = 6 × 10−5 T, μ0 = 4π × 10−7 A/m, r = 106 m and z = 6.4 × 106 m
(distance of the pole from earth’s centre) and solve for the current i . We find
i = 2.6 × 1010 A. Thus the order of magnitude of current is 1010 A.

13.49 The induction midway between Helmholtz coils is (prob. 13.36)

B = 8N μ0 I

53/2 R
(1)

Given N = 50, I = 10 A, R = 0.5 m and μ0 = 4π × 10−7 H/m

∴ B = 8.94 × 10−4 T (2)

Emf generated between the centre and the rim of the disc is

ξ = πr2 B f = π×(0.1)2×8.94×10−4×16.66 = 468×10−6 V = 468 μ V.

13.50 Given

l = 1.0 m, v = 3î + 2 ĵ + 3k̂, B = î + 2 ĵ + 3k̂

Voltage developed

ξ = |v × B| l sin φ = |v| |B| (sin θ)l sin φ

where θ is the angle between v and B, φ is the angle which l makes with B:

|v| =
(

32 + 22 + 12
)1/2 = √

14

|B| =
(

12 + 22 + 32
)1/2 = √

14

cos θ = v · B

|v| |B| = 3 + 4 + 3(√
14
) (√

14
) = 5

7

∴ sin θ = 0.4898

∴ ξ =
(√

14
) (√

14
)

(0.4898) (1) sin φ = 6.857 sin φ

ξ will be maximum for φ = 90◦ and zero for φ = 0 or 180◦.

13.51 The motion of the proton is equivalent to a current. The current density is
given by
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J = ev (1)

The magnetic field due to a current-carrying circuit is given by the Biot–
Savart law

dB = μ0 I

4π

(
dl ′ × R

R3

)
(2)

When dl ′ is the circuit element, R is the vector which points from dl ′ to the
field point. As there is only one proton there is no need to integrate to find
B. Replacing the current by the current density J , the Biot–Savart law is
modified as

B = μ0

4π

(
J × R

R3

)
(3)

Substituting (1) into (3)

B = μ0e

4π

(
v × R

R3

)

R =
(

î + 2 ĵ
)

m

v =
(

î + 3 ĵ
)

104 m/s

v × R = 104

∣∣∣∣∣∣
î ĵ k̂
1 3 0
1 2 0

∣∣∣∣∣∣
= −104k̂

B = 4π × 10−7

4π
× 1.6 × 10−19 ×

(
−104k̂

)

(√
5
)3

= 1.43 × 10−23k̂ T

13.3.3 Magnetic Force

13.52
F

l
= μ0i1i2

2π d
= 4π × 10−7 × 2 × 3

2π × 0.05
= 2.4 × 10−5 N

13.53
F

l
= μ0i1i2

2 π d

∴ i2 = 2πd

μ0i1

(
F

l

)
= 2π × 0.2 × 10−5

4π × 10−7 × 10
= 1.0 A

The currents are parallel.
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13.54 For equilibrium, magnetic force = gravitational force.

F = μ0 li1i2

2π d
= mg

∴ d = μ0 li1i2

2πmg
= 4π × 10−7 × 2 × 10 × 15

2π × 4 × 10−3 × 9.8
= 1.53 × 10−3 m

= 1.53 mm

13.55 (a) Net force per metre on the outer wire

F

l
= F1

l
+ F2

l
= μ0 i1i3

2 π d
+ μ0 i2i3

2 π × 2d

= μ0 i3(2i1 + i2)

4π d
= 4π × 10−7 × 20(2 × 20 + 20)

4π × 0.1
= 1.2 × 10−3 N

(b) Zero

13.56 F = ilB + (i)(π R)B + ilB = i(2l + π R)B.

13.57 (i) The force on the horizontal segments is zero as they are perpendicular
to the straight wire. For the vertical segments the force is repulsive for
antiparallel currents and attractive for parallel currents, the magnitude
being

F = μ0li1i2

2πd
(1)

where d is the distance of separation.
Force on the nearer vertical segment

F1 = − (4π × 10−7)(0.1)(20)(5)

(2π)(0.02)
= −1 × 10−4 N

Force on the farther vertical segment

F2 = + (4π × 10−7)(0.1)(20)(5)

(2π)(0.07)
= + 2.86 × 10−5 N

(ii) The net force on the coil, Fnet = F1 + F2 = −7.14 × 10−5 N

13.58 (a) Wire PQ will produce a field of induction B1 at the segment AB of the
coil. The magnitude of B1 will be

B1 = μ0 I1

2π d
(1)

The right-hand rule shows that the direction of B1 at the segment AB
is down, wire AB, which carries a current I2 finds itself immersed in
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an external field of magnetic induction B1. A length l of the segment
AB will experience a sideway magnetic force equal to il × B whose
magnitude is

F2 = I2l B1 = μ0l I1 I2

2πd
(2)

The vector rule of signs shows that F2 lies in the plane of the coil and
points to the right. A similar reasoning shows that the force on the seg-
ment CD will be

F3 = μ0l I1 I2

2π (d + l)
(3)

to the left in the plane of the coil. There is no force on the segments BC
and AD as they are perpendicular on PQ:

Fnet = μ0l I1 I2

2π

[
1

d
− 1

d + l

]
(4)

to the right

Fnet = (4π × 10−7)(0.05)(1)(4)(10)

2π

[
1

0.1
− 1

0.1 + 0.05

]

= 1.335 × 10−5N

where we have multiplied (4) by 10 for the number of coils.

13.59 (a) The flux φB enclosed by the loop, Fig. 13.30, is

φB = Blx (1)

where lx is the area of that part of the loop in which B is not zero. By
Faraday’s law

ξ = −dφB

dt
= − d

dt
(Blx) = −Bl

dx

dt
= Bl v (2)

Fig. 13.30
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where the speed v = −dx/dt for the speed with which the connecting
rod is pulled out of the magnetic field. The emf Blv sets up a current in
the loop given by

i = ξ

R
= Blv

R
(3)

(b) The total power delivered to the resistor is just the Joule heat given by

PI = i2 R = B2l2 v2

R

Note that energy conservation tells us that for steady motion of the rod
the external agent must provide power equal to the Joule heat. That this
is so is borne out from

P = F3v = B2l2v2

R
·

(c) The current the loop produces forces F1, F2 and F3 on the three sides of
the loop in accordance with

F = i l × B (4)

Because F1 and F2 are equal and opposite, they cancel each other, while
F3 which opposes the motion of the sliding rod is given by (4) and (3) in
magnitude as

F1 = ilB sin 90◦ = B2l2v

R
(5)

13.3.4 Magnetic Energy, Magnetic Dipole Moment

13.60 Elementary magnetic moment

dμ = (di)(dA) =
(

ω qrdr

π R2

)
(π r2) = ω qr3dr

R2

where dA is the area enclosed by r and the value of di is used from (2) of
prob. (13.37).
Therefore the magnetic moment of the disc is
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μ =
∫

dμ =
R∫

0

ω qr3dr

R2 = ω q R2

4

13.61 Magnetic moment

μ = NiA = (1)(i)(πr 2)

∴ i = μ

πr2 = 6.4 × 1021

π (6.4 × 106)2 = 4.98 × 107 A

13.62 Magnetic energy density

uB = 1

2μ0
B2

But B = μ0i

2r

∴ uB = 1

2μ0

(
μ0i

2r

)2

= 1

8

μ0i2

r2
= 4π × 10−7 × (100)2

8 × (0.1)2

= 0.157 J/m3

13.63 uB = 1

2μ0
B2 = (13.5)2

2 × 4π × 10−7 = 7.25 × 107 J/m3

13.64 τmax = iAB = (i) (πr2) B

But l = 2πr → r = l

2π

∴ τmax = π i

(
l

2π

)2

B = l2i B

4π

13.65 Let the sphere of radius R rotate about the z-axis, Fig. 13.31. Consider a
spherical shell of radius r(r < R) concentric with the sphere. Consider a
volume element symmetrical about the z-axis.

dV = 2πr2 sin θ d θ dr (1)

where θ is the polar angle and r is the distance of the volume element from
the centre. The charge dq residing in the volume element is

dq = 3 q

4 π R3
dV (2)

The current due to rotation of charge is



624 13 Electromagnetism I

Fig. 13.31 Magnetic moment
due to a rotating charged
sphere

di = ω

2π
dq = 3qω

4π

r2 sin θ dθ dr

R3 (3)

where we have used (2) and (1).
The magnetic moment due to di is

dμ = (di)(dA) =
(

3q ωr2 sin θ dθ dr

4π R3

)
(π r2 sin2 θ)

= 3

4

ω qr4dr sin3 θ dθ

R3 (4)

where dA is the area enclosed by the circle of radius r sin θ .
Total magnetic moment

μ =
∫

dμ = 3

4

ω q

R3

R∫

0

r4dr

π∫

0

sin3 θ dθ = 3

4

ω q

R3

(
R5

5

) (
4

3

)
= ω q R2

5

(5)

The angular momentum of a sphere about a diameter is

L = I ω = 2

5
m R2ω (6)

∴ μ

L
= q

2m
(7)
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13.66 U = −p · E = −p E cos θ = −(1.6 × 10−29)(1000) cos 30◦ = −1.38 ×
10−26 J.

13.3.5 Faraday’s Law

13.67
dr

dt
α t (by problem) (1)

ξ = −dφ

dt
= d

dt
(BA) (by Faraday’s law) (2)

But B ∝ 1

r
and A = πr2 (3)

∴ ξ ∝ dr

dt
(4)

or ξ ∝ t (5)

where we have used (1)

13.68 0.4 Oe = 0.4 × 80 A/m = 32 A/m

B = μ0 H = 4π × 10−7 × 32 = 4.02 × 10−5 T

v = 720 km/h = 200 m/s

ξ = Blv = 4.02 × 10−5 × 30 × 200 = 0.24 V

13.69 V = πr2 B f = π(0.1)2 × 2 × 10−5 × 5 = 3.14 × 10−6 V

13.70 R = BAN

q
= 0.1 × 0.001 × 30

10−5 = 300 �

13.71 ξ = −�φ

� t
= A�B

� t
= 0.2 × 0.25

10−4 = 500 V

i = ξ

R
= 500

20
= 25 A

13.72 The amplitude of the induced voltage

ξ0 = ωB A = 2π fBA = 2π × 40 × 0.5 × (0.25)2 = 7.85 V

Amplitude of the induced current

I0 = ξ0

R
= 7.85

4
= 1.96 A

13.73 ξ = i R = 0.4 × 5 = 2 V
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ξ = vl B

∴ v = ξ

l B
= 2

0.2 × 1.0
= 10 m/s

13.74 ξ = −dφ

dt
= − AdB

dt

A = area of the triangle sandwiched between the ends of the rod and the
radii connecting the centre with the ends, Fig. 13.18:

A = 1

2
(base)(altitude) = 1

2
l
√

R2 − (l/2)2

Thus ξ = −dB

dt

l

2

√
R2 − (l/2)2

13.75 Gravitational force on the loop

Fg = mg sin θ

Magnetic force on the loop

Fm = (B cos θ) il = B cos θ
ξ l

R

= B cos θ l

R
v B cos θ · l = vB2l2 cos2 θ

R

For steady speed, Fnet = Fm − Fg = 0

∴ v B2l2 cos2 θ

R
− mg sin θ = 0

or v = mg R sin θ

B2l2 cos2 θ

13.76 ξ = π R2 B f

∴ B = ξ

π R2 f
= 6.28 × 10−3

3.14 × (0.1)2 (1200/60)
= 0.01 T

13.77 [emf] = [electric field][distance]
= [force/charge][distance]
= [MLT−2 Q−1][L] = [M L2T −2 Q−1]

[dφB/dt] = [φB][T −1] = [B][area][T −1]
= [force/(velocity) charge][L2][T −1]
= [MLT−2/LT −1 Q][L2][T −1]
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= [M L2T −2 Q−1]
∴ [emf] = [dφB/dt]

13.78 The flux through the coil

φ = B · A = 15 × 10−4 × 3 × 10−12 sin(4 × 106t)

ξ = −N
dφ

dt
= −200 × 15 × 10−4 × 3 × 4 × 106 × 10−12 cos(4 × 106t)

= −3.6 × 10−6 cos(4 × 106 t) V

13.79 ξ ∝ dφ

dt
or ∝ dB

dt

B = B0 sin(ωt + φ)

∴ ξ ∝ ωB0 cos(ωt + φ)

∴ ξmax (television)

ξmax (radio)
= ω1

ω2
= f1

f2
= 100

1
= 100

∵ B0 is the same for both the waves.

13.80 The flux φB enclosed by a loop of area A is given by φB = B A, where B
is the magnetic field. Faraday’s law of induction says that the induced emf ξ

is a circuit equal to the negative rate at which the flux through the circuit is
changing. In symbols ξ = −dφB/dt , the current being I = ξ/R, where R is
the resistance. The magnetic force on a straight wire is given by F = i l × B:

φB = B A = Blx (B⊥l)

By Faraday’s law

ξ = −dϕB

dt
= − d

dt
(Blx) = −Bl

dx

dt
= Blv

i = ξ

R
= Blv

R

∴ Force F = ilB = B2l2v

R

If the magnetic force acts as a resisting force then equation of motion will be

ma = − B2l2v

R

or m
dv

dt
= m

dv

ds

ds

dt
= mv

dv

ds
= − B2l2v

R
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∴ dv = −
(

B2l2

m R

)
ds

v =
∫

dv = − B2l2s

m R
+ C

where C = constant of integration.
When s = 0, v = u

∴ c = u

∴ s = (u − v)m R

B2l2

∴ smax = u m R

B2l2

where we have put v = 0.

13.81 ξ = −N
dφ

dt
= −N

d

dt
(B A) = −Nπr2 dB

dt
(Faraday’s law)

= −100 × π(0.1)2(0.1) = 0.314 V

13.82 (i) The flux on one side is equal and opposite to that on the other for 0 <

r < b− x , where r is the distance of any point from the long wire. Only
the flux through the portion b − x < r < x is not cancelled:

dφ = (adr)db = μ0 I adr

2π r

∴ φ = μ0 I a

2π

x∫

b−x

dr

r
= μ0 I a

2π
ln

(
x

b − x

)

(ii) φ → ∞ for x → b and φ = 0 for x = b/2
(iii) For I = 2t and x = b/4

φ = μ0a

2π
ln

(
1

3

)
2t

ξ = −dφ

dt
= μ0a ln 3

π

13.83 Betatron is a machine to accelerate electrons to high energy. It consists of
an evacuated ‘doughnut’ in which the electrons are made to circulate under
the influence of changing magnetic field. If a magnetic flux φ changes in an
electromagnet, it accelerates the electrons and at the same time holds them
in an orbit of fixed radius. The average force acting on the particle during a
single rotation is the work (induced voltage multiplied by charge) divided by
the distance 2π R. Equating this to the time rate of change of momentum, by
Faraday’s law of induction
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e
dφ

dt
= 2π R

dP

dt

e
dφ/dt

2π R
= dp

dt
= d

dt
(BeR)

where B is the magnetic field and R is the radius.
Integrating and assuming that initially the flux is zero and R is constant

φ = 2π R2 B

13.3.6 Hall Effect

13.84 Consider a strip of a conductor of width W and thickness t carrying a d.c
current i in the positive x-direction along its length, Fig. 13.32. A magnetic
field B set up in the z-direction into the page produces a deflection force in
the positive y-direction, as the drift velocity of electrons is in the negative
x-direction. Consequently charge concentration builds up towards the upper
edge of the strip. As the charges collect on one side of the strip they set up
an electric field that opposes sideways motion of additional charge carriers
inside the conductor. This build up of charges establishes a potential VH
across the width of the strip, called Hall potential and the phenomenon is
known as Hall effect. Eventually equilibrium conditions are reached and a
maximum voltage, known as Hall voltage, is quickly established. The sign
of the voltage gives the sign of charge carriers and its magnitude the number
density n of charge carriers:

Fig. 13.32 Hall effect

(a) EH = vd B = i B

ne
= i B

newb

= 100 × 10

1.25 × 1030 × 1.6 × 10−19 × 10−3 × 0.02
= 2.5 × 10−4 V/m

The field is along positive y-direction.
(b) When equilibrium is established the Lorentz force is zero:
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q E + qvd × B = 0

or E = −V d × B

E = −vd B (∵ vd⊥B)

E = VH

W
= vd B = j B

ne
= i B

W t ne

∴ n = i B

etVH
= 100 × 10

1.6 × 10−19 × 10−3 × 5 × 10−6

= 1.25 × 1030/m3

13.85 If RH is the Hall coefficient, σ the electrical conductivity, then the mobility
μ is given by

μ = RHσ = (−7.3 × 10−5) (2 × 103) = −0.146 m2/V/s

The magnitude is 0.146 m2/V/s.



Chapter 14
Electromagnetism II

Abstract Chapters 13 and 14 are devoted to electromagnetism concerned with
motion of charged particles in electric and magnetic fields, Lorentz force, cyclotron
and betatron, magnetic induction, magnetic energy and torque, magnetic dipole
moment, Faraday’s law, Hall effect, RLC circuits, resonance frequency, Maxwell’s
equations, electromagnetic waves, Poynting vector, phase velocity and group veloc-
ity, dispersion relations, waveguides and cut-off frequency.

14.1 Basic Concepts and Formulae

Self-Inductance (L)

L = Nϕ

i
= Total flux linkage

Current linked
(14.1)

ξ = −L
di

dt
(14.2)

For a long solenoid or toroid

L = μ0 N 2 A

l
(14.3)

where N is the number of turns, A is the area of cross-section of each turn and l is
the length of the coil.

The energy stored in an inductor is

W = 1/2Li2 (14.4)

L–R Circuit

Differential equation. L
di

dt
+ i R = ξ (for charging process) (14.5)

631
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Solution i = ξ

R

(
1 − e− Rt

L

)
(14.6)

Inductive time constant

τL = L/R (14.7)

Differential equation L
di

dt
+ iR = 0 (discharging process) (14.8)

Solution i = ξ

R
e−Rt/L (14.9)

C–R Circuit

Ri + q/c = ξ (charging) (14.10)

q = q0(1 − e−t/RC) (14.11)

Capacitive Time Constant

τ = RC (14.12)

Ri + q/C = 0 (discharging) (14.13)

q = q0e−t/RC (14.14)

Inductors in Series

Leq = L1 + L2 + 2M (coil currents in the same sense) (14.15)

Leq = L1 + L2 − 2M (coil currents in the opposite sense) (14.16)

where M is the mutual inductance

Leq = L1 + L2 (inductors well separated) (14.17)

Inductors in Parallel

Leq = L1L2/(L1 + L2) (14.18)

M = (L1L2)
1/2 (inductors are closely placed) (14.19)

The Alternating Current (AC)

The effective or root-mean-square value:

Ie = I0/
√

2 (14.20)

where I0 is the peak current
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Reactance: Inductive XL = ωL , Capacitance XC = 1/ωC (14.21a)

Impedance Z =
√

R2 + (XL − XC)2 (14.21b)

RLC Series Resonance Circuit

Ve = Ie

√(
ωL − 1

ωC

)2

+ R2 (14.22)

The phase α is given by the relation

tan α = XL − XC

R
= ωL − 1

ωC

R
(14.23)

(i) α is positive if ωL > 1/ωC , and V leads I .
(ii) α is negative if ωL < 1/ωC , and V lags behind I .

(iii) α is zero if ωL = 1/ωC , and V is in phase with I .

f0 = 1

2π
√

LC
(resonance frequency) (14.24)

P = IeVe cos α (power) (14.25)

Quality factor (sharpness of resonance):

Q = ω0L/R (14.26)

Table 14.1 gives the analogues for electrical and mechanical quantities.

Table 14.1 Analogies between mechanical and electrical vibrations

Characteristic Mechanical Electrical

Inertia Mass (m) Inductance (L)
Stiffness Stiffness constant (k) Inverse capacitance (1/c)
Force Force (F) EMF
Resistance Frictional factor (r ) Resistance (R)
Kinetic energy 1/2mv2 1/2Li2

Potential energy 1/2kx2 1/2q2/C
Reactance mω − k/ω ωL − 1/ωC

Impedance
√

r2 + (
mω − k

ω

)2
√

R2 +
(
ωL − 1

ωC

)2

Condition for oscillation r < 2
√

km R < 2
√

L/C
Resonance frequency 1

2π

√
k/m 1

2π
√

LC
Quality factor ω0m/r ω0 L/R
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Parallel Resonance Circuit

f0 = 1

2π

√
1

LC
− R2

L2 (14.27)

When R = 0

f0 = 1

2π
√

LC
(14.28)

Maxwell’s Equations

Differential Form

∇.B = 0 (Gauss’ law of magnetostatics) (14.29)

∇.D = ρ (Gauss’ law of electrostatics) (14.30)

∇ × E = −∂B

∂t
(Faraday’s law) (14.31)

∇ × H = J + ∂D

∂t
(Ampere–Maxwell law) (14.32)

Auxillary Equations

D = εE, D = ε0 E + P (14.33)

B = μ0H, B = μ0(H + M) (14.34)

J = σE, J = ρv (14.35)

where B = magnetic induction, ρ = charge density, E = electric field, D = dis-
placement vector, H = magnetic intensity, J = current density, σ = conductivity,
M = magnetization, v = velocity, P = polarization.

The concept of displacement current can be explained by the working of a par-
allel plate capacitor placed in a vacuum and connected to a battery. As the capac-
itor gets charged current flows through the wires but the usual current does not
pass between the plates of the capacitor plates. From considerations of continuity
Maxwell was led to postulate the existence of a displacement current equivalent to
the changing electric field in the space between the plates.

On the theoretical side, Maxwell examined Ampere’s law, ∇ × H = J , and
noticed that there is something strange about this equation. On taking the divergence
of this equation, the left-hand side will be zero, because the divergence of a curl is
always zero. This equation then requires that the divergence of J also be zero. But
if the divergence of J is zero, then the total flux of current out of closed surface is
also zero.
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Now the flux of current from a closed surface is the decrease of the charge inside
the surface. In general this cannot be zero because charges can be moved from one
place to another. This difficulty is avoided by adding the term ∂ D/∂t , where D =
ε0 E , on the right-hand side of (32).

Integral Form

ϕE =
∮

B.ds = 0 (Gauss’ law for magnetostatics) (14.36)

ϕE =
∮

E.ds = qenc

ε0
(Gauss’ law for electrostatics) (14.37)

∮
E.ds = −dϕB

dt
(Faraday’s law of induction) (14.38)

∮
B.ds = μ0ε0

dϕE

dt
+ μ0ienc (Ampere-Maxwell law) (14.39)

Electromagnetic Waves

The E- and H -waves are transverse to the direction of propagation and are perpen-
dicular to each other.

∇ × (∇ × E) = −∇2E + ∇(∇.E) (14.40)

Wave Equation

∇2E = −ω2μ0ε0E (14.41)

The Intrinsic Impedance

η =
√

μ

ε
(14.42a)

η0 =
√

μ0

ε0
= 377 � (free space) (14.42b)

The Poynting vector (S) represents the power in the electromagnetic wave and is
given by

S = E × H (14.43)

and points in the direction of propagation of the wave.
The skin thickness (δ) represents the depth to which an electromagnetic wave of

frequency f = ω/2π can penetrate a medium and is given by
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δ =
√

2

μσω
(14.44)

where μ is the permeability and σ is the conductivity.

Phase Velocity (vph) and Group Velocity (vg)

Phase velocity is just due to the nodes of the wave that are moving and not energy
or information. In fact the phase velocity can be greater than c, the velocity of light

vph = ω/k (14.45)

In order to know how fast signals will travel one must calculate the speed of
pulses or modulation caused by the interference of a wave of one frequency with
one or more waves of slightly different frequencies. The speed of the envelope of
such a group of waves is called the group velocity and is given by

vg = dω/dk (14.46)

Waveguides are hollow metallic structures in which the electromagnetic waves
are guided to travel from one place to another without much attenuation. Here, we
shall be concerned only with rectangular guide of cross-section of x = a and y = b,
with the wave propagated in the z-direction.

k2 = ω2

c2 −
(mπ

a

)2 −
(nπ

b

)2
(14.47)

where c is the velocity of light in free space, m and n are integers. Equation (14.47)
is valid both for TEmn and THmn waves.

For the simplest case m = 1 and n = 0. For TE10 wave.

vph = c√
1 −

(
λ0
2a

)2
(14.48)

where λ0 is the free space wavelength.

vg = c

√
1 −

(
λ

2a

)2

(14.49)

vph.vg = c2 (14.50)

λg = λ0√
1 −

(
λ0
2a

)2
(14.51)
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14.2 Problems

14.2.1 The RLC Circuits

14.1 A 2.5 μF capacitor is connected in series with a non-inductive resistor of
300 � across a source of PD of rms value 50 V, alternating at 1000/2π Hz.
Calculate

(a) thermal values of the current in the circuit and the PD across the capacitor.
(b) the mean rate at which the energy is supplied by the source.

[Joint Matriculation Board of UK]

14.2 A 3 � resistor is joined in series with a 10 mH inductor of negligible resis-
tance, and a potential difference (rms) of 5.0 V alternating at 200/π Hz is
applied across the combination.

(a) Calculate the PD VR across the resistor and VL across the inductor.
(b) Determine the phase difference between the applied PD and the current.

[Joint Matriculation Board of UK]

14.3 An inductance stores 10 J of energy when the current is 5 A. Find its value.

14.4 A tuning circuit in a radio transmitter has a 4 × 10−6 H inductance in series
with a 5 × 10−11 F capacitance. Find

(a) the frequency of the waves transmitted.
(b) their wavelength.

14.5 A 6 � resistor, a 12 � inductive reactance and a 20 � capacitive reactance
are connected in series to a 250 V rms AC generator. (a) Find the impedance.
(b) Estimate the power dissipated in the resistor.

14.6 At 600 Hz an inductor and a capacitor have equal reactances. Calculate the
ratio of the capacitive reactance to the inductive reactance at 60 Hz.

14.7 A capacitance has a reactance of 4 � at 250 Hz. (a) Find the capacitance.
(b) Calculate the reactance at 100 Hz. (c) What is the rms current, if it is
connected to a 220 V 50 Hz line?

14.8 When an impedance, consisting of an inductance L and a resistance R in
series, is connected across a 12 V 50 Hz supply, a current of 0.05 A flows
which differs in phase from that of the applied potential difference by 60◦.
Find the value of R and L . Find the capacitance of the capacitor which when
connected in series in the above circuit has the effect of bringing the current
into phase with the applied potential difference.

[University of London]

14.9 When a 0.6 H inductor is connected to a 220 V 50 Hz AC line, what is (a) the
rms current and (b) peak current?
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14.10 A simple alternator, when rotating at 50 revolutions/s, gives a 50 Hz alternat-
ing voltage of rms value 24 V. A 4.0 � resistance R and a 0.01 H inductance
L are connected in series across its terminals. Assuming that the internal
impedance of the generator can be neglected, find (a) the rms current flowing;
(b) the power converted into heat; (c) the rms potential difference across each
component.

14.11 An AC circuit consists of only a resistor R = 100 � and a source voltage
V = 0.5 Vm at time t = 1/360 s. Assuming that at t = 0, V = 0, find the
frequency.

14.12 Given that for a series LCR circuit the equation is

d2V

dt2 + R

L

dV

dt
+ 1

LC
V = 0

If a similar equation is to be used for a parallel LCR circuit as in Fig. 14.1,
then show that

Rp = L

C R

Fig. 14.1

14.13 Verify the equation c = 1√
μ0ε0

.

14.14 Show that in the usual notation the following combinations of physical quan-
tities have the units of time: (a) RC, (b) L/R, (c)

√
LC .

14.15 In an oscillating RLC circuit the amplitude of the charge oscillations drops
to one-half its initial value in 4 cycles. Show that the fractional decrement of
the resonance frequency is approximately given by �ω

ω
= 0.00038.

14.16 Derive the equation for the current in a damped LC circuit for low damping.
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14.17 Set up the equation for the RC circuit in series and show that the input power
is the sum of the powers delivered to the inductor and capacitor.

14.18 Set up the equation for the RLC circuit in parallel and show that at any time
the Joule heat in the resistor comes from the energy stored in the inductor
and capacitor.

14.19 For the electrical circuit shown below when the switch K is closed the charge
and current are observed to oscillate (Fig. 14.2). Show that the differential
equation governing the charge of the system can be written as

d2 Q

dt2 + 2γ
dQ

dt
+ ω2

0 Q = 0

where γ and ω2
0 are to be determined in terms of the capacitance, C , induc-

tance, L , and resistance, R.
For a resistance R = 100 �, capacitance C = 700 pF and inductance L =
80 mH calculate

(a) The natural frequency, f0, of the oscillation.
(b) The time constant, τ , for the decay.

Fig. 14.2

14.20 Solve the differential equation given in prob. (14.19) and obtain the time
period for damped harmonic motion.

14.21 A resistor, capacitor and inductor are connected in series across an AC volt-
age source shown as in Fig. 14.3.

(i) Find the magnitude of the inductive reactance XL of the inductor and
capacitive reactance XC of the capacitor.

(ii) Find the magnitude of the total impedance Z of the circuit and sketch
the impedance phasor diagram for this circuit.

(iii) Find the total current IT through the circuit.
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Fig. 14.3

(iv) Find the phase angle between supply voltage and current through the
circuit.

(v) Find the voltages across R, C and L and show these on a phasor dia-
gram.

(vi) What is the condition for resonance to occur in this type of circuit and
at what frequency would this occur?

[University of Aberystwyth, Wales 2001]

14.22 A 40 � resistor and a 50 μF capacitor are connected in series, and an AC
source of 5 V at 300 Hz is applied. What is the magnitude of the current
flowing through the circuit?

[University of Manchester 2007]

14.23 For the circuits shown in Fig. 14.4a, b consisting of resistors, capacitors and
inductors

(i) Derive the expression to represent the complex impedances for each of
the networks.

(ii) Work out the magnitude of the impedance for each of the networks
given that the frequency of the supply voltage is 150 Hz.

[University of Aberystwyth, Wales 2006]

Fig. 14.4a

Fig. 14.4b
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14.24

(a) Define what is meant by electric current and current density.
(b) When we refer to a quantity of charge we say that the value is quantized.

Explain what is meant by quantized.
(c) A thin copper bar of rectangular cross-section of width 5.6 mm and

height 50 μm has an electron density of n = 8.5 × 1028/m3.

If a uniform current of i = 2.4 × 10−4 A flows through the strip

(i) Find the magnitude of the current density in the strip.
(ii) Find the magnitude of the drift speed of the charge carriers.

(iii) Briefly explain why the current is relatively high for such a small drift
speed.

[University of Aberystwyth, Wales 2008]

14.25 Two series resonant circuits with component values L1C1 and L2C2, respec-
tively have the same resonant frequency. They are then connected in series;
show that the combination has the same resonant frequency.

[University of Manchester 1972]

14.26 An inductance and condenser in series have a capacitative impedance of
500 � at 1 kHz and an inductive impedance of 100 � at 5 kHz. Find the
values of inductance and capacitance.

[University of Manchester 1972]

14.27 A condenser of 0.01 μF is charged to 100 V. Calculate the peak current
that flows when the charged condenser is connected across an inductance
of 10 mH

[University of Manchester 1972]

14.28 An inductance of 1 mH has a resistance of 5 �. What resistance and con-
denser must be put in series with the inductance to form a resonant circuit
with a resonant frequency of 500 kHz and a Q of 150?

[University of Manchester 1972]

14.29 A parallel resonant circuit consists of a coil of inductance 1 mH and resis-
tance 10 � in parallel with a capacitance of 0.0005 μF. Calculate the reso-
nant frequency and the Q of the circuit.

[University of Manchester 1972]

14.30 The voltage on a capacitor in a certain circuit is given by V (t) = V0e−t/RC .
Find the fractional error in the voltage at t = 50 μs if R = 50 k� ± 5% and
C = 0.01 μF ± 10%.

[University of Manchester 1972]

14.31 A condenser of 10 μF capacitance is charged to 3000 V and then discharged
through a resistor of 10, 000 �. If the resistor has a temperature coefficient of
0.004/◦C and a thermal capacity of 0.9 cal/◦C, find (a) the time taken for the
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voltage on the condenser to fall to 1/e of its initial value; (b) the percentage
error which would have been introduced if thermal effects had been ignored.

[University of Manchester 1958]

14.32 Show that the fractional half-width of the resonance curve of an RLC circuit
is given by

�ω

ω
=

√
3

Q

where Q is the quality factor given by Q = ω L/R.

14.2.2 Maxwell’s Equations, Electromagnetic Waves,
Poynting Vector

14.33 A plane em wave E = 100 cos (6×108 t + 4x) V/m propagates in a medium.
What is the dielectric constant of the medium?

[Indian Administrative Services]

14.34 An infinite wire with charge density λ and current I is at rest in the Lorentz
frame S. Show that the speed of reference frame S′ where the electric field
is zero, i.e. that frame in which one observes pure magnetic field, is given by

v = λc2

I .

14.35 Show that for a magnetic field B the wave equation has the form ∇2B =
μ0ε0

∂2B
∂t2

14.36 Use Maxwell’s equation to show that ∇.
(

j + 1
ε0

∂E
∂t

)
= 0.

14.37 The free-space wave equation for a medium without absorption is

∇2E − μ0ε0
∂2E
∂t2

= 0

Show that this equation predicts that electromagnetic waves are propagated
with velocity of light given by c = 1/

√
μ0ε0.

14.38 An electromagnetic wave of wavelength 530 nm is incident onto a sheet of
aluminium with resistivity ρ = 26.5 × 10−9�m. Estimate the depth that the
wave penetrates into the aluminium. The expression for the skin depth, δ, is
δ = √

2/μ0σω.
[University of Manchester 2008]

14.39 Consider an electromagnetic wave with its E-field in the y-direction. Apply
the relation ∂ Ey

∂x = − ∂ Bz
∂t to the harmonic wave

E = E0 cos (kx − ωt), B = B0 cos (kx − ωt)

to show that E0 = cB0.
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14.40 Using Maxwell’s equations, show that in a conducting medium, the wave
equation can be written as

∇2 E = μσ
∂E

∂t
+ με

∂2 E

∂t2

and a similar expression for the B-field.
[University of Aberystwyth, Wales 2005]

14.41 Let l be the length of the coaxial cylindrical capacitor, a the radius of the
central wire and b the radius of the tube. The conductors are connected to a
battery of V volts and a current I is passed. Calculate (a) the capacitance per
unit length of the cable, (b) the inductance per unit length.

14.42 Consider a coaxial cable with radius a for the central wire and radius b for
the tube connected to a resistance R and battery of emf ξ . Calculate (a) E;
(b) B; and (c) S for the region a < r < b.

14.43 The general expression for magnetic energy density has the form uB =
1/2 B.H. Show that in the vacuum the above expression is reduced to u B =
B2

2μ0
.

14.44 Show that at any point in the electromagnetic field the energy density stored
in the electric field is equal to that stored in the magnetic field.

14.45 A current I is passed through a coaxial cable with inner radius a and outer
radius b. The cable can function both as a capacitor and as an inductor. If the
stored electric and magnetic energy is equal then show that the resistance R
is approximately given by

R = 377

2π
ln

(
b

a

)
�

14.46 A proton of kinetic energy 20 MeV circulates in a cyclotron with 0.5 m
radius. Calculate its energy loss to radiation per orbit and show that it is
negligible.

14.47 A 40-W point source radiates equally in all directions. Find the amplitude of
the E-field at a distance of 1 m.

14.48 A laser beam has a cross-sectional area of 4.0 mm2 and a power of 1.2 mW.
Find (a) intensity I , (b) E0, (c)B0.

14.49 A laser emits a 1-mm diameter highly collimated beam at a power level
314 mW. Calculate the irradiance.

14.50 Beginning with the expression for the Poynting vector show that the time-
averaged power per unit area carried by a plane electromagnetic wave in free
space is given by
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Save = E2
0

2μ0c

[University of Durham 2003]

14.51 A plane electromagnetic wave has Ex = Ey = 0 and

Ez =50 sin
[
4π×1014

(
t − x

3×108

)]
. Calculate the irradiance (flux density).

14.52 Show that E × H is in the same direction as the wave propagates and has

magnitude equal to |E × H| = |E|2
μ0c .

[University of Aberystwyth, Wales]

14.53 An electromagnetic plane wave in vacuum has E-field given by

Ez = 10 sin π(2 × 106x − 6 × 1014t), Ex = Ey = 0.

Find (a) frequency; (b) wavelength; (c) speed; (d) E-field amplitude;
(e) polarization.

14.54 Write down the equation for the associated magnetic field for the wave given
in prob. (14.53).

14.55 A radar monitors the speed v of approaching cars by sending out waves of
frequency ν. If the frequency received is ν′′, find the speed of the car. How
would the beat frequency change if the car is receding?

14.56 Microwaves of frequency 800 MHz are beamed by a stationary police man
towards a receding car speeding at 90 km/h. What beat frequency was regis-
tered by the radar?

14.57 State Ampere’s law.
A long solid conductor of radius a lies on the axis of a long cylinder of
inner radius b and outer radius c. The central conductor carries a current i
while the outer conductor carries a current −i . The currents are uniformly
distributed over the cross-sections of each conductor. By considering the
current enclosed by a circular loop of radius r centred on the axis of the
inner conductor use Ampere’s law to calculate the magnetic field in each of
the four regions (a) r < a, (b) a < r < b, (c) b < r < c, (d) r > c.

14.58 The CMS experiment at the Large Hadron Collider at CERN uses a large,
cylindrical, superconducting solenoid. This magnet is 12.5 m in length with
a diameter of 6 m. When powered, it generates a uniform magnetic field of
4 T. Estimate the energy stored in the magnetic field.

14.59 Given that the total power radiated by the sun in the form of electromagnetic
radiation is 4 × 1026 W, estimate the electric and magnetic field amplitude at
the surface of the sun. (The radius of the sun is 7 × 108 m).

[University of Durham 2003]
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14.60 At the orbit of the earth, the power of sunlight is 1,300 Wm−2. Estimate the
amplitude of the electric field if we assume that all the power arrives on the
earth in a monochromatic wave.

[University of Aberystwyth, Wales 2004]

14.61 A typical value for the amplitude of the E-field for sunlight at the surface of
Mars is 300 V/m Calculate the amplitude of the corresponding B-field and
estimate the flux of radiation at the surface of Mars.

[University of Manchester 2006]

14.62 Show that |E |
|H | = 377 �

[University of Aberystwyth, Wales]

14.63 Calculate the skin depth in copper (conductivity 6×107 �−1/m) of radiation
of frequency 20 kilocycles/s. Take μ, the relative permeability of copper, as
unity.

[University of Newcastle upon Tyne 1964]

14.64 Copper has an electrical conductivity σ = 5.6 × 107 �−1/m and a magnetic
permeability μ = 1. On this basis estimate the order of magnitude of the
depth to which radiation at a frequency of 3000 Mc/s can penetrate a large
copper screen.

[University of Bristol 1959]

14.65 Show that the skin depth in a good conductor is
[

1
2 ωσμμ0

]−1/2
where the

symbols have their usual meaning.
[University of Newcastle upon Tyne 1964]

14.66 If the maximum electric field in a light wave is 10−3 V/m, find how much
energy is transported by a beam of 1 cm2 cross-sectional area.

[University of Durham 1962]

14.67 Prove Poynting’s theorem, namely

div (E × H) + E.
∂D
∂t

+ H.
∂E
∂t

+ E. j = 0

What is the interpretation of this equation?
[University of Durham 1962][University of New Castle upon Tyne 1965]

14.68 From Maxwell’s equations, one can derive a wave equation for a dielectric
of the form

∇2 E − μ0ε0εr
∂2 E

∂t2
− μ0σN

∂ E

∂t
= 0

where E is the electric field, t is the time, εr is the relative permittivity and
σN is the electrical conductivity. Hence by substituting a travelling wave
solution into the wave equation derive a dispersion relation of the form
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k2 = μ0ε0εrω
2 + iμ0σN ω

where k is the wave vector and ω is the angular frequency.
[University of Durham 2006]

14.69 Show that the general identity

∇ × (∇ × E) = −∇2E + ∇(∇.E)

is true for the specific vector field F = x2z3 î .

14.70 Use the Poynting vector to determine the power flow in a coaxial cable by
a DC current I when voltage V is applied. Neglect the resistance of the
conductors. How are the results affected if this assumption is not made?

14.71 A wire with radius a and of conductivity σE carries a constant, uniformly
distributed current I in the z-direction. Apply Poynting’s theorem to show
that power dissipated in the wire is given by the familiar expression I 2 R for
Joule’s heat.

14.72 A super-conductor is a material which offers no DC resistance and satisfies
the equation

B = − me

ne2
∇ × J

where n is the number of conduction electrons per unit volume, B is the
magnetic field and J is the current density. Using Maxwell’s equations, show
that the equation for a superconductor leads to the relation

∇2B = μ0ne2

me
B

[University of Durham 2004]

14.73 An oscillating voltage of high frequency is applied to a load by means of
copper wire of radius 1 mm. Given that the skin depth is 6.6 × 10−5 m for
this frequency, what is the high-frequency resistance per unit length of the
wire in terms of its direct current resistance per unit length?

[University of Durham 1966]

14.74 Use Stokes’ theorem to derive the expression

Curl E = −∂B
∂t

[University of New Castle upon Tyne 1964]
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14.75 Explain the difference between the vectors B and H in the theory of mag-
netism. Derive the expression B = μ0(H + M). Indicate briefly how B
depends on it in the case of (a) paramagnetics and (b) ferromagnetics.

[University of Durham 1962]

14.76 Show that Gauss’ and Ampere’s laws in free space, subject to the Lorentz
condition, can be expressed in the usual notation as

−∇2φ + 1

c2

∂2φ

∂t2
= ρ

ε0
and −∇2A + 1

c2

∂2A

∂t2
= μ0J

respectively.
[The University of Aberystwyth, Wales 2005]

14.77 Using Faraday’s law, ∇ × E = −∂ B/∂t , for the propagation of electromag-
netic waves travelling along the z-axis, show that

Ey = Z0 Hx

where Z0 = √
μ0/ε0 = 376.6 �, is the wave impedance of free space.

14.78 (a) The electric field of an electromagnetic wave propagating in free space
is described by the equation

E(z, t) = E0[x̂sin(kz − ωt) + ŷcos(kz − ωt)]
where x̂ and ŷ are unit vectors in the x- and y-direction, respectively.
What is this wave’s direction of propagation? What is the polarization of
the wave?

(b) State and prove the boundary conditions satisfied by the magnetic inten-
sity H and the magnetic field B at the boundary between two media with
different magnetic properties.

(c) Show that

tan θ1

tan θ2
= μ1

μ2

where θ1 and θ2 are incident and refraction angles.

14.79 A plane wave is normally incident on a dielectric discontinuity. Use appro-
priate boundary conditions to calculate R, the reflectance, and T , the trans-
mittance, and show that T + R = 1.

14.80 An electromagnetic wave, propagating and linearly polarized in the xz-plane,
is incident onto an interface between two non-conducting media as shown
in Fig. 14.10. The electric fields and propagation vectors of the incident,
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reflected and transmitted waves are denoted by EI, ER, ET, kI, kR and kT
respectively. The wave is incident onto the interface at the origin and makes
an angle θ to the normal. Both incident and reflected waves propagate in the
medium with refractive index n1. The transmitted wave propagates in the
medium with refractive index n2 at refraction angle φ.
Use the boundary conditions satisfied by the electric field at the interface to
show that the reflectance, R, is given by

R =
(

n2 cos θ − n1 cos φ

n2 cos θ + n1 cos φ

)2

14.81 (a) Using the expressions for R in prob. (14.80) and Snell’s law, show that
the reflectance is zero when tan θ = n2

n1
(b) Calculate this angle for electromagnetic radiation in air incident onto

glass, which has a refractive index n = 1.5.

14.82 (a) For normal incidence the reflection coefficient, R, at the planar surface
between two dielectric media is given by

R = (n1 − n2)
2

(n1 + n2)2

where n1 and n2 are the refractive indices of the media. Sketch the form
of R against n1/n2. On the same figure sketch the form of T against
n1/n2 where T is the transmission coefficient. Indicate numerical values
of T and R where appropriate.

(b) At what value of n1/n2 does R = T ?
[University of Durham 2000]

14.83 Consider the solutions of linearly polarized harmonic plane waves

E = E0ei(ωt−k.r+ϕ), B = B0ei(ωt−k.r+ϕ)

where E0 and B0 are constant vectors associated with maximum amplitude
of oscillations. Show that (a) B is perpendicular to E; (b) B is in phase with
E and (c) the magnitudes of B and E are related by B = E/c for free space
in the SI system.

14.84 An uncharged dielectric cube of material of relative permittivity 6 contains
a uniform electric field E of 2 kV/m, which is perpendicular to one of the
faces. What is the surface charge density induced on this face?

[University of Manchester 2006]
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14.2.3 Phase Velocity and Group Velocity

14.85 Using the results of prob. (14.93) and the following table, estimate the frac-
tional difference between the phase and group velocity in air at a wavelength
of 5000 Å

Free space wavelength (Å) (n − 1) for air

4800 2.786 × 10−4

5000 2.781 × 10−4

5200 2.777 × 10−4

[University of Manchester 1972]

14.86 Given the dispersion relation ω = ak2, calculate (a) phase velocity and (b)
group velocity.

14.87 (a) Write down an expression for the phase velocity vp of an electromag-
netic wave in a medium with permittivity ε and permeability μ.

(b) The relative permittivity, εr, in an ionized gas is given by

εr = 1 − D2

ω2

where D is a constant and ω is the angular frequency.
Find an expression for the refractive index n and thus show that

ω2 = D2 + c2k2

where k is the wavenumber and c is the speed of light in vacuum.
(c) Hence show that vpvg = c2.
(d) In a particular gas, D has the value 1.2 × 1011/s. Determine the phase

and group velocities at 20 GHz.
Comment on the result.

14.88 Show that the group velocity vg can be expressed as

vg = vp + k
dvp

dk

where vp is the phase velocity and k = 2π/λ.

14.89 Show that the group velocity can be expressed in the form

vg = c

n
+ λc

n2

dn

dλ

where n is the refractive index.

14.90 Show that if the phase velocity varies inversely with the wavelength then the
group velocity is twice the phase velocity.
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14.91 Show that the group velocity can be expressed as

vg = c

n + ω
(

dn
dω

)

14.92 For a rectangular guide of width 2.5 cm what free-space wavelength of radi-
ation is required for energy to traverse 50 m of length of the guide in 1 μs.
What would be the phase velocity under these conditions?

14.93 Show that for light waves of angular frequency ω in a medium of refractive
index n, the group velocity vg and the phase velocity vp are related by the
expression

1

vg
= 1

vp
+ ω

c

dn

dω

where c is the velocity of light in free space.
[University of Manchester 1972]

14.94 Prove that the usual expression for the group velocity of a light wave in a
medium can be rearranged as vg = c dv

d(nv)
, where c is the phase velocity of

the waves in free space, v is the frequency and n is the refractive index of the
medium.

[University of Durham 1961]

14.95 Show that the group velocity associated with a free non-relativistic particle
is the classical velocity of the particle.

[University of Manchester 1972]

14.96 Calculate the group velocity of light of wavelength 500 nm in glass for which
the refractive index μ at wavelength λ (meters) is

μ = 1.420 + 3.60 × 10−14

λ2

[University of Manchester 1972]

14.2.4 Waveguides

14.97 For a rectangular guide of width 2.5 cm, calculate (a) the phase velocity; (b)
the group velocity; (c) guide wavelength for the free-space wavelength of
4 cm. Assume the dominant mode.

14.98 A rectangular guide has a width a = 3 cm. What should be the free-space
wavelength if the guide wavelength is to be thrice the free-space wavelength?

14.99 (a) Calculate the guide wavelength for a rectangular waveguide of width a =
5 cm if the free-space wavelength is 8 cm. (b) What is the cut-off wavelength
for the guide?
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14.100 Calculate the number of states of electromagnetic radiation between 5000
and 6000 Å in wavelength using periodic boundary conditions in a cubical
region 0.5 cm on a side.

[University of Manchester 1972]

14.101 Consider a car entering a tunnel of dimensions 15 m wide and 4 m high.
Assuming the walls are good conductors, can AM radio waves (530–
1600 kHz) propagate in the tunnel?

[The University of Aberystwyth, Wales 2006]

14.102 Calculate the least cut-off frequency for TEmn waves for a rectangular
waveguide of dimensions 5 cm × 4 cm.

14.103 Calculate how the wave and group velocities of the TE01 wave in a rectan-
gular waveguide with a = 1 cm and b = 2 cm vary with frequency.

[The University of Wales, Aberystwyth 2004]

14.104 Consider a rectangular waveguide of dimensions x = a and y = b, the
TMmn wave travelling in the z-direction which is the axis of the guide.
Given that the z-component Ez satisfies the equation

(
∂ z

∂xz
+ ∂z

∂yz

)
Ez = (k2 − ω2με)Ez

obtain (a) the solution for Ez and (b) the cut-off frequency.

14.105 Consider a rectangular waveguide of dimensions x = a and y = b, the
wave travelling along the z-direction, the axis of the guide. Given that the
z-component Hz satisfies the equation

(
∂2

∂x2
+ ∂2

∂y2

)
Hz = (k2 − ω2με)Hz

(a) obtain the solution for Hz . (b) Obtain the cut-off frequency. (c) What are
the similarities and differences between TMmn mode and TEmn mode?

14.3 Solutions

14.3.1 The RLC Circuits

14.1 (a) Reactance of capacitor

Xc = 1

2π fc
= 1

2π × (1000/2π) × 2.5 × 10−6 = 400 �

Impedance of the circuit

Z =
√

R2 + X2
c =

√
(300)2 + (400)2 = 500 �
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The rms current, Ie = Ve

Z
= 50

500
= 0.1 A

PD across the capacitor, Vc = Ie Xc = 0.1 × 400 = 40 V

(b) Power, P = Ve Ie cos α = Ve Ie
R

Z
= 50 × 0.1 × 300

500
= 3.0 W

14.2 (a) XL = 2π fL = 2π × 200

π
× 10 × 10−3 = 4 �

Z =
√

R2 + X2 =
√

32 + 42 = 5 �

Ie = Ve/Z = 5/5 = 1.0 A

VR = Ie R = 1.0 × 3 = 3.0 V

VL = Ie XL = 1.0 × 4 = 4.0 V

(b) Phase angle between Ve and Ie is given by

tan α = XL

R
= 4

3
⇒ α = 53◦

Ve leads Ie by 53◦

14.3 U = 1

2
L I 2

L = 2U

I 2
= 2 × 10

52
= 0.8 H

14.4 (a) f = 1

2π
√

LC
= 1

2π
√

4 × 10−6 × 5 × 10−11
= 1.125 × 10−7 Hz

(b) λ = c

f
= 3 × 108

1.125 × 107 = 26.67 m

14.5 (a) Z = √
(XL − XC)2 + R2 = √

(12 − 20)2 + 62 = 10 �

(b) P = IeVe
R

Z
= V 2

e R

Z2
= (250)2 × 6

102
= 3750 W

14.6 At ω0 = 600 rad/s, XL = XC

∴ ω0L = 1

ω0C
⇒ 1

LC
= ω2

0

At ω = 60 rad/s,
XC

XL
= 1/ωc

ωL
= 1

ω2 LC
= ω2

0

ω2
= (600)2

602
= 100
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14.7 (a) XC = 1

ωC
= 1

2π f C

C = 1

2π f XC
= 1

2π × 250 × 4
= 1.57 × 10−4 F

(b) X ′
C = 1

2π f ′ C
= 1

2π × 100 × 1.57 × 10−4 = 10 �

(c) Ie = Ve
X ′

C
= 220

10
= 22 A

14.8 Ve

Ie
=
√

ω2 L2 + R2 =
√

4π2 f 2L2 + R2

∴ 12

0.05
=
√

4π2 × (50)2 L2 + R2 (1)

Also tan α = ωL

R
= 2π fL

R

∴ tan 60◦ = √
3 = 2π × 50

L

R
(2)

Solving (1) and (2) we find R = 120 � and L = 0.66 H.
When the capacitor of capacitance C is connected in series with the above
circuit α = 0.

tan α = tan 0◦ = 1

R

(
ωL − 1

ω c

)

∴ C = 1

ω2 L
= 1

(2π × 50)2 × 0.66
= 15.37 × 10−6 F = 15.37 μF

14.9 (a) The rms current, Ie = Ve

ωL
= Ve

2π fL
= 220

2π × 50 × 0.6
= 1.17 A

(b) Peak current, I0 = √
2Ie = 1.414 × 1.17 = 1.65 A.

14.10 (a) Ie = Ve√
4π2 f 2 L2 + R2

= 24√
4π2 × (50)2 × (0.01)2 + 42

= 4.72 A

(b) Power, P = I 2
e R = (4.72)2 × 4 = 89 W

(c) VR = Ie R = 4.72 × 4 = 18.88 V

VL = 2π fLIe = 2π × 50 × 0.01 × 4.72 = 13.82 V

14.11 V = Vm sin ωt

0.5 Vm = Vm sin

(
2π f

1

360

)

∴ 2π f

360
= π

6
⇒ f = 30 Hz
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14.12 For the parallel RLC circuit, Fig. 14.1

Q = CV, I2 = −dQ

dt
= −C

dV

dt

V = Rp (I2 + I1) = −L
dI1

dt
dV

dt
= Rp

(
dI2

dt
+ dI1

dt

)
= −C Rp

d2V

dt2 − Rp
V

L

∴ d2V

dt2 + 1

RpC

dV

dt
+ V

LC
= 0 (parallel arrangement)

Compare the above equation with the given equation

d2V

dt2
+ R

L

dV

dt
+ V

LC
= 0

∴ Rp = L

CR
.

14.13 We can find the dimensions of μ0 and ε0 from the following set of formulae:

F = ilB (force on the current-carrying wire) (1)

B = μ0i

2πr
(magnetic field due to a current-carrying wire) (2)

F = Q2

4πε0r2
(electrostatic force between charges) (3)

i = Q/t (4)

Combining (1)–(4), [μ0ε0] = [T 2/L2]

or

[
1√
μ0ε0

]
=
[

L

T

]
= [v] = [c]

14.14 We first derive the dimensional formulae for R, C and L from the defining
equation Power = i2 R

[Power] = [Ml2T −3] = [A2 R] = [A2][R]
∴ [R] = [Ml2T −3 A−2] (1)

Energy of a capacitor E = 1

2

Q2

C
and Q = i t

∴ [C] = [M−1l−2T 4 A2] (2)
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Energy of an inductance, E = 1

2
Li2

∴ [L] = [Ml2T −2 A−2] (3)

Using (1), (2) and (3), it is observed that the given combinations have the
dimension of time and therefore are expressed in seconds

[RC] = [
L/R

] =
[√

LC
]

= [T ]

14.15 ω = 1√
LC

(1)

ω′ =
√

1

LC
−
(

R

2L

)2

(2)

ω − ω′

ω
= 1 − ω′

ω
= 1 −

√
1 − R2C

4L
� 1 −

(
1 − R2C

8L

)
= R2C

8L
(3)

where we have used (1) and (2) and expanded the radical binomially.

q = qme−Rt/2L , q/qm = 1

2

whence t = 2L

R
ln

(
qm

q

)
= 2L

R
ln 2 (4)

If n is the number of cycles and ν the oscillating frequency

t = n

ν
= 2πn

√
LC = 2L

R
ln 2

or
CR2

L
= (ln 2)2

(πn)2
(5)

Combining (3) and (5)

ω − ω′

ω
= �ω

ω
= (ln 2)2

8π2n2
= 0.006085

n2
= 0.00038

where we have put n = 4.

14.16 q = qme−Rt/2L cos ω′t (charge oscillation of damped oscillator)
Differentiating with respect to time

i = dq

dt
= −qmω′e−Rt/2L

(
R

2Lω′ cos ω′t + sin ω′t
)

= −qmω′e−Rt/2L (tan φ cos ω′t + sin ω′t)
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where we have set R/2Lω′ = tan φ. This gives

i = −qmω′e−Rt/2L

cos φ
(sin φ cos ω′t + cos φ sin ω′t)

= −qmω′e−Rt/2L sin(ω′t + φ)

cos φ

But for low damping φ → 0 as R/2Lω′ → 0.

∴ cos φ → 1, so that

i = −qmω′e−Rt/2L sin(ω′t + φ)

14.17 Equation of the circuit is

L
d2q

dt2 + 1

C
q = ξ (1)

Multiply (1) by i = dq/dt

Li
di

dt
+ 1

C
q

dq

dt
= ξ t

or
d

dt

(
1

2
Li2

)
+ d

dt

(
q2

2C

)
= Pinput (2)

Thus, the input power is the sum of the powers delivered to the inductor and
the capacitor.

14.18 The circuit equation is

L
d2q

dt2
+ R

dq

dt
+ 1

C
q = 0 (1)

Multiply (1) by i = dq

dt

Li
di

dt
+ Ri2 + 1

C
q

dq

dt
= 0

or
d

dt

(
1

2
Li2 + q2

2C

)
= −Ri2

or
dE

dt
= −i2 R (2)

where E = 1

2
Li2 + q2

2C
= total energy
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14.19 If U is the total field energy then

U = UB + UE = 1

2
Li2 + 1

2

Q2

C
(1)

which shows that at any time the energy is stored partly in the magnetic
field in the conductor and partly in the electric field in the capacitor. In the
presence of the resistance R the energy is transferred to Joule heat, being
given by

dU

dt
= −i2 R (2)

the minus sign signifying that the stored energy U decreases with time. Dif-
ferentiating (1) with respect to time and equating the result with (2) gives

Li
di

dt
+ Q

C

dQ

dt
= −i2 R (3)

Substituting i = dQ/dt and di/dt = d2 Q/dt2, (3) becomes

d2 Q

dt2
+ R

L

dQ

dt
+ Q

LC
= 0 (4)

Writing R/L = 2γ and 1/LC = ω2
0, (4) takes the required form

d2 Q

dt2
+ 2γ

dQ

dt
+ ω2

0 Q = 0 (5)

(a) f0 = 1

2π
√

LC
= 1

2π
√

80 × 10−3 × 700 × 10−12
= 2.128 × 104 Hz

(b) τ = L

R
= 80 × 10−3

100
= 8 × 10−4 s

14.20
d2 Q

dt2
+ 2γ

dQ

dt
+ ω2

0 Q = 0 (1)

Let Q = eλt so that dQ/dt = λeλt and d2 Q/dt2 = λ2eλt .
The characteristic equation is then

λ2 + 2γ λ + ω2
0 = 0

whose roots are λ = −γ ±
√

γ 2 − ω2
0 (2)

Calling α =
√

γ 2 − ω2
0

λ1 = −γ + α, λ2 = −γ − α
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The general solution becomes

Q = C1e(−γ+α)t + C2e(−γ−α)t (3)

The constants C1 and C2 are determined from the initial conditions. Suppose
at t = 0, Q = Q0 and

i = dQ/dt = 0

Q0 = C1 + C2 (4)

dQ

dt
= C1(−γ + α) − C2(γ + α) = 0 (5)

Solving (4) and (5), C1 = Q0(γ + α)/2α and C2 = Q0(α − γ )/2α

Substituting C1 and C2 in (3)

Q = 1

2
Q0e−γ t [(1 + γ /α)eαt + (1 − γ /α)e−αt] (6)

For underdamping condition resistance R is small so that γ < ω0 and α is
imaginary and may be written as α = jω′, where j is imaginary. The roots
of the characteristic equation are complex conjugate.

ω′2 = ω2
0 − γ 2 (7)

Equation (6) reduces to

Q = Q0e−γ t [cos ω′t + (γ /ω′) sin ω′t] (8)

Calling sin ε = −γ /ω0 and cos ε = ω′/ω0, (8) becomes

Q =
(

ω0 Q0

ω′

)
e−γ t cos(ω′t + ε) (9)

or Q = Ae−γ t cos(ω′t + ε) (10)

where the amplitude A = ω0 Q0/ω
′ and the phase ε = tan−1(−γ /ω′).

The constants A and ε which are real are determined by initial conditions.
Equation (9) represents a damped harmonic motion of period

T ′ = 2π√
ω2

0 − γ 2
(11)

As in the case of an undamped oscillation, the frequency is independent of
the amplitude but is always lower than that of the undamped oscillator. The
amplitude of oscillations Ae−γ t decreases exponentially and is no longer
constant.
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14.21 Phasor diagram, Fig. 14.5

Fig. 14.5

(i) XL = ωL = 2π fL = (2π)(80)(0.2) = 100.48 �

XC = 1

ωc
= 1

2π fc
= 1

(2π)(80)(10 × 10−6)
= 199.04 �

(ii) Z =√
R2 + (XL − XC)2 =√

(100)2 + (100.48 − 199.04)2 =140.4�

(iii) IT = V

Z
= 600

140.4
= 4.27 A(rms)

(iv) cos ϕ = R

Z
= 100

140.4
= 0.71225 → ϕ = 44.58◦

(v) VR = IT R = 4.27 × 100 = 427 Vrms

VC = IT XC = 4.27 × 199.04 = 850 Vrms

VL = IT X L = 4.27 × 100.48 = 429 Vrms

V 2 = V 2
R = (VL − VC)2

The voltages on R, C and L are shown in the phasor diagram, Fig. 14.6.
Here the voltage lags the current as XC > XL.

(vi) ω2 = 1

LC

Fig. 14.6

(vii) The circuit will be in resonance when XL = XC, that is, ωL = 1

ωc

or ω2 = 1

LC
.
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f0 = 1

2π
√

LC
= 1

2π
√

0.2 × 10 × 10−6
= 112.6 Hz

14.22 XC = 1

2π f C
= 1

(2π)(300)(50 × 10−6)
= 10.6 �

Z =
√

R2 + X2
C =

√
(300)2 + (10.6)2 = 300.19 �

I = V

Z
= 5

300.19
= 0.0166 A

14.23 Impedance of a capacitor

i. Let an AC emf be applied across a capacitor. The potential difference
across the capacitor will be

VC = V0 sin ωt (1)

where V0 is the amplitude of the AC voltage of angular frequency ωt =
2π f , across the capacitor.

qC = CVC = CV0 sin ωt (2)

The current ic = dqC

dt
= ωCV0 cos ωt = ωCV0 sin(ωt + 90◦) (3)

or ic = V0

Xc
sin (ωt + 90◦) (4)

where XC = 1/ωC (5)

Comparison of (4) with (1) shows that ic leads VC by 90◦ or quarter of a
cycle. Further, the current amplitude

I0 = V0

XC
(6)

By Ohm’s law XC is to be regarded as impedance offered by the capaci-
tor. In complex plane

Zc = −j

ωC
(7)

where j is imaginary.

Impedance of an inductance

On applying an AC across an inductance the potential difference will be

VL = V0 sin ωt (8)

where V0 is the amplitude of VL. By Faraday’s law of induction (ξ =
−L di/dt) we can write
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VL = L
diL

dt
(9)

Combining (8) and (9)

diL

dt
= V0

L
sin ωt (10)

∴ iL =
∫

diL = V0

L

∫
sin ωt dt = −

(
V0

ωL

)
cos ωt

∴ iL =
(

V0

XL

)
sin(ωt − 90◦) (11)

where XL = ωL (12)

is known as the inductive impedance. In complex plane X L = jωL ,
where j is imaginary. Comparison of (11) with (8) shows that the current
in the inductance lags behind the voltage by 90◦ or quarter of a cycle.

ii. ZL = √
R2 + ω2 L2 = √

(44)2 + (2π × 150 × 0.06)2 = 71.63 �

ZC =
√

R2 + 1

ω2C2
=
√

102 + 1

(2π × 150 × 10−4)2
= 14.58 �

14.24 (a) Electric current is the time rate of flow of charge; in symbols I = dQ/dt .
(b) The charge Q is an integral multiple of the unit of electron’s charge

e, that is, Q = ne, where n is a number. The charge Q is said to be
quantized

(c) (i) Current density j = i

A
= 2.4 × 10−4

(5.6 × 10−3)(50 × 10−6)
= 857 A/m2

(ii) Drift speed Vd = j

ne
= 857

(8.5 × 1028)(1.6 × 10−19)
= 6.3 ×

10−8 m/s
(iii) Collisions with atoms and ions of the conductor makes possible

large currents to pass.

14.25 By problem ω = 1√
L1C1

= 1√
L2C2

(1)

When the combinations L1C1 and L2C2 are connected in series, the combi-
nation will have inductance L and capacitance C given by

L = L1 + L2 (2)

C = C1C2

C1 + C2
(3)

Now LC = (L1 + L2)
C1C2

C1 + C2
(4)
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From (1) we have L2 = L1C1

C2
(5)

Substituting (5) in (4) we get on simplification LC = L1C1 = 1

ω2

It follows that ω = 1√
LC

14.26 Zc = 1

ωc
= 1

2π fc

∴ C = 1

2π fzc
= 1

2π × 1000 × 500
= 3.18 × 10−7 F = 0.318 μF

ZL = ωL = 2π fL

∴ L = ZL

2π f
= 100

2π × 5000
= 3.18 × 10−3 H = 3.18 mH

14.27 The maximum stored energy in the capacitor must equal the maximum stored
energy in the inductor, from the principle of energy conservation.

∴ 1

2

q2
m

C
= 1

2
Li2

m (1)

where im is the maximum current and qm is the maximum charge. Substitut-
ing CV0 for qm and solving for im in (1)

im = V0

√
C

L
= 100

√
0.01 × 10−6

10 × 10−3
= 0.1 A

14.28 For resonance

ω = 1√
LC

∴ C = 1

4π2 f 2L
= 1

4π2(5 × 105)2 × 10−3 = 1.013 × 10−9 F

Quality factor

Q = ωL

R

∴ R = 2π fL

Q
= 2π(500 × 103)(10−3)

150
= 20.944 �

∴ Resistance to be included in series is 20.944 − 5.0 = 15.944 �.
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14.29 For parallel resonance circuit

ω = ω0

√
1 − CR2

L

ω0 = 1√
LC

= 1√
10−3 × 5 × 10−6

= 1.414214 × 106 rad/s

f = ω

2π
= ω0

2π

√
1 − CR2

L

= 1.414214 × 106

2π

√
1 − 5 × 10−10 × 102

10−3

= 2.250736 × 105/s

Quality factor

Q = ωL

R
= 1.414 × 106 × 10−3

10
= 141.4

14.30 V = V0e−t/RC

ln V = ln V0 − t

RC
�V

V
= 0 − t

C

d

dR

(
1

R

)
�R − t

R

d

dC

(
1

C

)
�C

= t

C R

(
�R

R
+ �C

C

)
= 50 × 10−6

10−8 × 5 × 104

(
5

100
+ 10

100

)
= 0.015

14.31 (a) V = ξ e−t/RC

The voltage on the condensor will fall to l/e of its initial value when the
time

t = RC = 104 × 10−5 = 0.1 s

(b) Error on t will result from error on R.

�t = C�R

∴ �t/t = �R/R

Power P = i2 R = ξ2

e2 R
= (3000)2

(2.718)2 × 104
= 121.8 W

Energy U = P.t = 121.8 × 0.1 = 12.18 J

Heat H = 12.18/4.18 = 2.914 cal
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Rise in temperature

�T = Heat / thermal capacity = 2.914/0.9 = 3.24◦ C

R = R0(1 + α�T ) = 104(1 + 0.004 × 3.24)

= 1.01296 × 104

�R = R − R0 = 129.6

∴ �t

t
= �R

R0
= 129.6

104
= 0.01296

Percentage error = �t

t
× 100 = 1.3%

14.32 The amplitude im of the current oscillations is given by

im = Em√
(ω′L − 1/ω′c)2 + R2

At resonance, ω′ = ω and im = Em

R

Set im = Em√
(ωL − 1/ωc)2 + R2

= 1

2

Em

R

Squaring and simplifying

(
ωL − 1

ωc

)2

= 3 R2

or ω2 LC ± √
3ωRC − 1 = 0

The only acceptable solutions are

ω1 =
√

3

2

R

L
+
√

3R2

4L2 + 1

LC

ω2 = −
√

3

2

R

L
+
√

3R2

4L2
+ 1

LC

Subtracting the last equation from the previous one

�ω = ω1 − ω2 = √
3

R

L

∴ �ω

ω
=

√
3

ω

R

L
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14.3.2 Maxwell’s Equations and Electromagnetic Waves,
Poynting Vector

14.33 Ez = 100 cos(6 × 108t + 4x) (by problem) (1)

Ez = A cos(ωt + kx) (standard equation) (2)

Comparison of (1) and (2) shows that

ω = 6 × 108 and k = 4

v = ω

k
= 6 × 108

4
= 1.5 × 108 m/s

Dielectric constant, K = c

v
= 3 × 108

1.5 × 108 = 2.0

14.34
∮

E · ds = q/ε0 (Gauss’ law)

E(2π rl) = q/ε0

∴ E = λêr

2πr ε0
(1)

∮
B · ds = μ0 I (Ampere’s law)

2πrB = μ0 I

∴ B = μ0 I

2πr
êφ (2)

E ′
r = γ (Er − vBφ) (Lorentz transformation) (3)

= γ

(
λ

2πr ε0
− v μ0 I

2πr

)
= γ

2π r

(
λ

ε0
− vμ0 I

)

Thus E ′
r = 0 if vμ0 I = λ

ε0

or v = λ

Iμ0 ε0
= λc2

I

14.35 Maxwell’s equations in vacuum are

∇ · E = 0 (1)

∇ · B = 0 (2)

∇ × E = −∂B
∂t

(3)

∇ × B = μ0ε0
∂E
∂t

(4)
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Use the vector identify

∇ × (∇ × B) = ∇(∇ · B) − ∇2B

∴ ∇ ×
(

μ0ε0
∂E

∂t

)
= −∇2 B (∵ ∇ · B = 0 by(2)

∴ μ0ε0
∂

∂t
(∇ × E) = −μ0ε0

∂

∂t

∂B
∂t

= −∇2B

∴ ∇2B = μ0ε0
∂2B
∂t2

14.36 ∇ × B = μ0 j (Ampere’s law) (1)

Use the vector identity A · (A × B) = 0. Put A = ∇.

∴ ∇ · (∇ × B) = 0

∴ ∇ · j = 0 (2)

More generally, ∇ · j + ∂ρ

∂t
= 0 (continuity equation) (3)

and ∇ · E = ε0ρ (Gauss’ law) (4)

Combining (3) and (4)

∇ ·
(

j + 1

ε0

∂E
∂t

)
= 0

14.37 ∇2B = μ0ε0
∂2B

∂t2
(free-space wave equation)

Compare with the standard three-dimensional wave equation

∇2� = 1

v2

∂2�

∂t2 (5)

∴ v = 1√
μ0ε0

= 1√
(4π × 10−7)(8.854 × 10−12)

= 2.998 × 108 m/s = c

14.38 ω = 2πν = 2πc

λ
= 2π × 3 × 108

530 × 10−9
= 3.55 × 1015

σ = 1

ρ
= 1

26.5 × 10−9
= 3.77 × 107

δ =
√

2

μ0σω
=
√

2

4π × 10−7 × 3.77 × 107 × 3.55 × 1015

= 3.45 × 10−9 m = 3.45 nm
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14.39 E = E0 cos(kx − ωt) (1)

∂ Ey

∂x
= −k E0 sin(kx − ωt) (2)

B = B0 cos(kx − ωt) (3)

∂ BZ

∂t
= ωB0 sin(kx − ωt) (4)

But
∂ Ey

∂x
= −∂ Ez

∂t
(5)

Combining (2), (4) and (5), we get

E0 = ω

k
B0 = cB0

14.40 Maxwell’s equations for a non-ferromagnetic homogeneous isotropic
medium can be written as

∇ · E = ρ

ε
(1)

∇ · B = 0 (2)

∇ × E = −∂B
∂t

(3)

∇ × B = μσE + με
∂E
∂t

(4)

Taking the curl of (4)

∇ × (∇ × B) = μσ(∇ × E) + με
∂

∂t
(∇ × E) (5)

where the time and space derivatives are interchanged as E is assumed to be
a well-behaved function. Expression (3) can be substituted in (5) to obtain

∇ × (∇ × B) = −μσ
∂B
∂t

− με
∂2B
∂t2 (6)

Using the vector identity

∇ × (∇ × B) = ∇ (∇ · B) − ∇2B (7)

By virtue of (2), ∇ · B = 0 and (6) becomes

∇2B = με
∂2B
∂t2

+ μσ
∂B
∂t

(8)
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A similar procedure applied to (3) yields a similar equation for the E-field.
Taking the curl of (3)

∇ × (∇ × E) = − ∂

∂t
(∇ × B) (9)

Using (4) in (9)

∇ × (∇ × E) = −μσ
∂E
∂t

− με
∂2E
∂t2 (10)

But ∇ × (∇ × E) = ∇(∇ · E) − ∇2E (11)

and ∇ · B = ρ

ε
(1)

Combining (10), (11) and (1) we obtain for uncharged medium (ρ = 0)

∇2E = μσ
∂E
∂t

+ με
∂2E

∂t2

14.41 (a) ε0

∮
E · dS = q (Gauss’ law) (1)

ε0 E(2πrl) = q

or E = q/2πε0rl (2)

the flux being entirely through the cylindrical surface and zero through the
end caps. The potential difference between the conductors is

V =
b∫

a

Edr =
b∫

a

q

2πε0l

dr

r
= q

2πε0l
ln

(
b

a

)

Capacitance C = q

V
= 2πε0l

ln(b/a)
(3)

∴ Capacitance per unit length of the cable is

C

l
= 2πε0

ln(b/a)
(3a)

(b) The magnetic induction between the conductors is

B = μ0i

2π r
(4)

Energy density u = 1

2μ0
B2 = μ0i2

8π2r2
(5)

where we have used (4).
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Consider a volume element dV for the cylindrical shell of radii r and
r + dr and of length l. The energy contained in the volume element is

dU = u dV = μ0i2

8π2r2 (2πrl dr) = μ0i2l

4π

dr

r
(6)

U =
∫

dU = μ0i2l

4π

b∫

a

dr

r
= μ0i2l

4π
ln(b/a) (7)

But U = 1

2
Li2 (8)

Comparing (7) and (8)

L = μ0l

2π
ln(b/a)

∴ Inductance per unit length of the cable is

L

l
= μ0

2π
ln(b/a)

14.42 (a) By prob. (14.41) the potential difference between the conductors is

V = q

2πε0l
ln(b/a) = λ

2πε0
ln(b/a) (1)

where λ = q/ l is the charge density.

Now E = λ

2πε0r
= ξ

r ln(b/a)
(2)

where we have put V = ξ .

(b) B = μ0i

2πr
= μ0ξ

2π r R
(a < r < b) (3)

(c) The Poynting vector

S = 1

μ0
E × B = 1

μ0
EB = ξ2

2πr2 R ln(b/a)

where we have used (2) and (3).

14.43 uB = 1

2
B · H (1)

B = μH (2)
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Substituting (2) in (1)

u B = 1

2
μ H · H = 1

2
μ H2 = B2

2μ
(3)

In free space μ = μ0. Therefore in vacuum

uB = B2

2μ0

14.44 uE = 1

2
ε0 E2 (energy density in E-field) (1)

uB = 1

2

B2

μ0
(energy density in B-field) (2)

The fields for the plane wave are

E = Em sin(kx − ωt) (3)

B = Bm sin(kx − ωt) (4)

Substituting (3) in (1) and (4) in (2)

uE = 1

2
ε0 E2

m sin2(kx − ωt) (5)

uB = 1

2

B2
m

μ0
sin2(kx − ωt) (6)

Dividing (5) by (6)

uE

uB
= ε0μ0 E2

m

B2
m

(7)

But ε0μ0 = 1

c2
and Em = cBm

∴ uE

uB
= 1 or uE = uB

14.45 By prob. (14.41) the magnetic energy stored in a coaxial cable

UB = μ0i2l

4π
ln(b/a) (1)

where i is the current and l is the length of the cable. Further, its capacitance
is given by

C = 2πε0l

ln(b/a)
(2)
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The electric energy stored in the cable

UE = 1

2
ξ2C = 1

2
(i2 R2)

(
2πε0l

ln(b/a)

)
(3)

By problem UE = UM .

∴ 1

2
(i2 R2)

(
2πε0l

ln(b/a)

)
= μ0i2l

4π
ln(b/a) (4)

∴ R = 1

2π

√
μ0

ε0
ln(b/a) = 1

2π

√
4π × 10−7

8.85 × 10−12
ln(b/a)

= 376.7

2π
ln(b/a)�.

14.46 As the kinetic energy of proton (20 MeV) is much smaller than its rest mass
energy (938 MeV), non-relativistic calculations will be valid. In the classical
picture a charged particle undergoing acceleration ‘a’ emits electromagnetic
radiation. The electromagnetic energy radiated per second is given by

P = q2a2

6πε0c3 (1)

Now a = v2

R
= 1

2
mv2 2

mR
= 2K

mR
(2)

Substituting (2) in (1) and putting q = e for the charge of proton

P = 2e2 K 2

3πε0c3m2 R2 (3)

The energy radiated per orbit is given by multiplying P by this time period
2π R/v = 2π R

√
m/2K

∴ �K = 4e2 K 3/2

3
√

2ε0c3m3/2 R

= 4(1.6 × 10−19)2(20 × 1.6 × 10−13)3/2

3
√

2(8.85 × 10−12)(3 × 108)3(1.67 × 10−27)3/2(0.5)

= 1.89 × 10−31 J = 1.18 × 10−12 eV

which is quite negligible

14.47 Consider a sphere of radius r with its centre at the point source of power P .

Then the intensity of radiation at distance r will be I = P

4πr2
.
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I = P

4πr2
= c ε0 E2

0
2

∴ E0 =
[

P

2π r2cε0

]1/2
=
[

40

2π(1.0)2(3 × 108 × 8.85 × 10−12)

]1/2
= 49 V/m

14.48 (a) I0 = P

A
= 1.2 × 10−3

4 × 10−6 = 300 W/m2

(b) I0 = cε0 E2
0

2
→ E0 =

[
2I0

cε0

]1/2

=
[

2 × 300

3 × 108 × 8.85 × 10−12

]1/2

= 475 V/m

(c) B0 = E0

c
= 475

3 × 108 = 1.58 × 10−6 T = 1.58 μT

14.49 I = P

A
= P

πr2 = 314 × 10−3

3.14 × (0.5 × 10−3)2 = 4 × 105 W/m2

14.50 The average value of the Poynting vector < s > over a period of oscillation
of the electromagnetic wave is known as the radiant flux density, and if the
energy is incident on a surface it is called irradiance.

E = E0 cos(kx − ωt), B = B0 cos(kx − ωt)

∴ S = c2ε0E × B = c2ε0E0 × B0 cos2(kx − ωt)

∴ 〈S〉 = c2ε0 |E0 × B0|
〈
cos2(kx − ωt)

〉

But
〈
cos2(kx − ωt)

〉
= 1

T

T∫

0

cos2(kx − ωt)dt = 1

2

Further E⊥B and E0 = cB0.

∴ < s >= I = 1

2
cε0 E2

0 = 1

2

E2
0

μ0c

14.51 Ez = 50 sin

[
4π × 1014

(
t − x

3 × 108

)]

I = cε0 E2
0

2
= 1

2
(3 × 108)(8.85 × 10−12)(502) = 0.066 W/m2

14.52 |E × H| = |E × B|
μ0

= E2

μ0c
(∵ B = E/c)

E × H will be in the direction of S = (E × B)/μ0, which is the direction of
propagation.
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14.53 Ez = 10 sin π
(

2 × 106x − 6 × 1014t
)

= 10 sin
(

2π × 106x − 6π × 1014t
)

Compare this with the standard equation

Ez = Ez0 sin(kx − ωt)

(a) ω = 2π f = 6π × 1014 → f = 3 × 1014 Hz
(b) k = 2π × 106 → λ = 2π/k = 10−6 m
(c) v = ω/k = 6π × 1014/2π × 106 = 3 × 108 m/s
(d) Ez0 = 10 V/m
(e) The wave is linearly polarized in the z-direction and propagates along

the x-axis.

14.54 The wave propagates in the x-direction while the E-field oscillates along
the z-direction, that is, the E-field is contained in the xz-plane. Since B is
normal to both E and the direction of propagation it must be contained in the
xy-plane.
Thus, Bx = Bz = 0, and B = By(x, t). Now B = E/c.

∴ By(x, t) = 3.33 × 10−8 sin π(2 × 106x − 6 × 1014t) T

14.55 Let ν be the frequency of the incident microwave beam. Let the car be
approaching with speed v towards the observer. Then the frequency seen
by the car is given by the formula for Doppler shift

ν′ = ν(1 + v/c) (1)

Upon reflection the microwave returns as if it was emitted by a moving
source travelling with speed v towards the observer. Therefore the observed
frequency is

ν′′ = ν′(1 + v/c) = ν(1 + v/c)2 (2)

where we have used (1).

�ν = ν′′ − ν = ν(1 + v/c)2 − ν = 2ν
v

c

(
1 + v

2c

)

Assuming that v/c << 1

�ν = 2ν
v

c
(beat frequency) (3)

For a receding car, proceeding along similar lines,

�ν = ν′′ − ν = −2ν
v

c
(4)
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14.56 By prob. (14.55), �ν = ν′′ − ν = −2ν v
c

�ν = −2 × 800 × 106

3 × 108 ×
(

5

18
× 90

)
= −133 Hz

14.57 The relation between the current i and the magnetic field B expressed as∮
B · dl = μ0i is known as Ampere’s law. There are equal and opposite cur-

rents i in the conductors.

(a) r < a. The net current passing through the conductor bounded by the
closed path corresponds to that flowing through the inner conductor,
Fig. 14.7. Hence by Ampere’s theorem

Fig. 14.7 Magnetic field due
to current carrying coaxial
cylinder

∮
B · dl = (B)(2πr) = μ0i

(πr2)

πa2

or B = μ0ir

2πa2

(b) a < r < b. Here the current through the outer conductor does not con-
tribute to B.

∮
B · dl = (B)(2πr) = μ0i

or B = μ0i

2πr

(c) b < r < c. Here currents through both the conductors contribute to B.

∮
B · dl = (B)(2πr) = μ0i − μ0i

π(r2 − b2)

π(c2 − b2)

or B = μ0i

2πr

(c2 − r2)

(c2 − b2)

(d) r > c. As the net current flowing through the closed path is zero, B = 0.
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14.58 Magnetic energy density

uB = 1

2

B2

μ0
= 1

2

42

4π × 10−7 = 2

π
× 107 J/m3

Energy stored in the magnetic field UB = u B × volume = uBπr2l

= 2 × 107 × 32 × 12.5 = 2.25 × 109 J

14.59 If P0 is the power radiated by sun of radius r , then using the results of
prob. (14.51)

P0 = 〈S〉 4πr2 = 1

2μ0c
E2

m4πr2

∴ Em = 1

r

√
P0μ0c

2π

∴ Em = 1

7 × 108

√
4 × 1026 × 4π × 10−7 × 3 × 108

2π
= 2.21 × 105 V/m

Bm = Em

c
= 2.21 × 105

3 × 108 = 7.37 × 10−4 T = 7.37 G

14.60 By prob. (14.51)

〈S〉 = E2
m

2μ0c

∴ Em = √
2μ0c 〈S〉 =

√
2 × 4π × 10−7 × 3 × 108 × 1300 = 990 V/m

14.61 Bm = Em

c
= 300

3 × 108 = 1 × 10−6 T

〈S〉 = E2
m

2μ0c
= (300)2

2 × 4π × 10−7 × 3 × 108 = 119.4 W/m2

14.62
|E |
|H | = E μ0

B
= (Bc)μ0

B
= μ0√

μ0ε0
=
√

μ0

ε0

where we have used the equations B = μ0 H and c = 1√
μ0ε0

.

√
μ0

ε0
=
√

4π × 10−7

8.85 × 10−12 = 377 �

Units of
|E |
|H | are

Volt/metre

Ampere/metre
= Volt

Ampere
= Resistance
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14.63 Skin depth δ =
√

2

2π f σμ0μ

=
√

2

2π × 20 × 103 × 6 × 107 × 4π × 10−7 × 1

= 4.6 × 10−4m = 0.46 mm

14.64 δ =
√

2

2π f σμ0μ

=
√

1

π × 3 × 108 × 5.6 × 107 × 4π × 10−7 × 1
= 1.23 × 10−4 m

= 0.123 mm = 3.88 μm

14.65 Let us begin with the ‘curl H ’ Maxwell’s equation

∇ × H = J + ∂D
∂t

(1)

Assume that all the fields and currents in this equation are sinusoidal at a
single frequency ω. In that case (1) can be replaced by

∇ × H = J + jωD = J + jωεE (2)

where J is the current density, D = εE is the displacement vector and j is
imaginary

(√−1
)
.

The ‘curl E’ Maxwell’s equation is obtained in a similar way as (1).

∇ × E = −jωB (3)

Applying the curl operation to each side of (3)

∇ × (∇ × E) = −jω∇ × B (4)

Now ∇ × B can be replaced using (2) and the relation H = B/μ:

∇ × (∇ × E) = −jωμ(J + jωεE) (5)

We now use the vector identity

∇ × ∇ × E = ∇(∇ · E) = −∇2E (6)

Conductive materials do not contain any real charge density because any real
charge that many exist will repel itself and move outwards until it resides on
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the material’s outer surface. Therefore ∇ ·D = 0 and so also ∇ ·E = 0. Thus
the first term on the right by (6) vanishes. Therefore (5) becomes

∇2E = jωμ(J + jωεE) (7)

Assume that the material under consideration obeys Ohm’s law, J = σE E,
where σE is the conductivity. Then (7) becomes

∇2E = jωμ(σE + jωε)E (8)

For simplicity assume that the given material is an excellent conductor, so
that σE >> |ωε|. In that case, the displacement current term, masked by the
conduction current, can be neglected, yielding

∇2E = jωμσEE (9)

Since E = J/σE we can write

∇2J = jωμσEJ (10)

Suppose the current flows through this material in the z-direction. The cur-
rent density is independent of x and y. In that case (10) simplifies to

∂2 Jz

∂z2 = jωμσE Jz (11)

which has the solution

J x = Ae−(1+j)z/δ + Be(1+j)z/δ (12)

where A and B are constants, and δ given by

δ =
√

2

ωμσE
(13)

is known as the skin depth. Thus the magnitude of current density decreases
with depth. This effect is of practical importance as it affects resistive losses
accompanying a high-frequency current flow in an electronic circuit.

14.66 The average value of the Poynting vector is

〈S〉 = 1

2μ0
Em Bm = 1

2μ0
Em

(
Em

c

)
= E2

m

2μ0c

=
(
10−3

)2

2 × 4π × 10−7 × 3 × 108
= 1.327 × 10−9 W/m2

= 1.327 × 10−13. W/cm2.
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14.67 Poynting’s theorem is a mathematical statement based on Maxwell’s equa-
tions. The theorem is interpreted as energy balance equation in situations
where electromagnetic waves are present. We begin with the vector identity

∇ · (E × H) = H · (∇ × E) − E · (∇ × H) (1)

We now make use of Maxwell’s ‘curl’ equations

∇ × E = −∂B
∂t

(2)

∇ × H = J + ∂D
∂t

(3)

Substituting (2) and (3) in the RHS of (1)

∇ · (E × H) = −H · ∂B
∂t

− E · ∂D
∂t

− E · J (4)

which is the mathematical statement of Poynting’s theorem.

Further B = μH and D = εE (5)

∂

∂t
(E · E) = ∂

∂t
|E|2 = 2E · ∂E

∂t
(6)

Using (5) and (6) in (4) we obtain

∇ · (E × H) = − ∂

∂t

(
ε |E|2

2

)
− ∂

∂t

(
μ |H|2

2

)
− E · J (7)

We can integrate each side over any arbitrary volume V . Applying the diver-
gence theorem to the integral on the left

∫

S

(E × H) · dS = −
∫

ν

[
∂

∂t

(ε

2
|E|2

)
+ ∂

∂t

(μ

2
|H|2

)
+ E · J

]
dV (8)

and changing the sign of the equation and the order of differentiation and
integration we can rewrite (8) as

−
∫

s

(E × H) · dS = ∂

∂t

∫

V

ε |E|2
2

dV + ∂

∂t

∫

V

μ |H|2
2

dV +
∫

ν

E · J dV (9)

The first term on the right represents the rate of increase of electric energy
inside the volume V . The second term on the right represents the rate of
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increase of magnetic energy. The last term corresponds to the power con-
verted into Joule’s heat. Energy conservation demands that these three terms
be balanced by flow of energy into the volume and this is accounted for by
the term on the left.
The quantity S = E × H, representing the power density, is known as the
Poynting vector. The minus sign in (9) means that ds is the outward normal
and that (E × H) · ds represents power flowing outwards rather than inwards
for energy balance.

14.68 In one dimension the given equation reduces to

∂2 E

∂x2 − μ0ε0εr
∂2 E

∂t2 − μ0σN
∂E

∂t
= 0 (1)

Let the travelling wave be given by

E = E0ei(kx−ωt) (2)

∂2 E

∂x2 = −k2 E,
∂ E

∂t
= −iωE and

∂2 E

∂t2 = −ω2 E (3)

Inserting (3) in (1) and re-arranging and cancelling E

k2 = μ0ε0εrω
2 + iμ0σN ω (4)

14.69 F = x2z3 î

∇ × F =

∣∣∣∣∣∣∣∣∣∣

î ĵ k̂

∂

∂x

∂

∂y

∂

∂z

x2z3 0 0

∣∣∣∣∣∣∣∣∣∣
= 3x2z2 ĵ

∇ × 3x2z2 ĵ =

∣∣∣∣∣∣∣∣∣∣

î ĵ k̂

∂

∂x

∂

∂y

∂

∂z

0 3x2z2 0

∣∣∣∣∣∣∣∣∣∣
= −6x2zî + 6xz2k̂

∴ ∇ × (∇ × F) = −6x2zî + 6xz2k̂ (1)

− ∇2 F = −
(

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
x2z3î = −(6x2z + 2z3)î (2)

∇(∇ · F) = −
(

î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)(
î

∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)
· (x2z3î)

=
(

î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)
(2xz3) = 2z3 î + 6xz2k̂ (3)



680 14 Electromagnetism II

Thus ∇ × (∇ × F) = −6x2zî + 6xz2k̂ (1)

− ∇2 F + ∇(∇ · F) = −(6x2z + 2z3)î + 2z3î + 6xz2k̂

= −6x2zî + 6xz2k̂ (4)

Comparing (1) and (4), the identity

∇ × (∇ × E) = −∇2 E + ∇(∇ · E) is verified.

14.70 The electric field of the cable is radial and is given by

E = Er = V

r ln(b/a)
(1)

where a and b are the radii of the inner and outer cable. The corresponding
magnetic intensity is tangential and is given by

H = Hφ = I

2πr
(2)

As the angle between E and H is 90◦, the Poynting vector

|S| = |E × H| = EH (3)

So that S = Sz = VI

2πr2 ln(b/a)
(4)

and the direction of S is that of the current in the positive conductor.
The power flow is confined to the space between the conductors and for any
plane perpendicular to the axis of the conductor

P =
b∫

a

Sz2πrdr =
b∫

a

VI

ln(b/a)

dr

r
(5)

where we have substituted Sz from (4).

But

b∫

a

dr

r
= ln(b/a) (6)

∴ P = VI (7)

This is the entire power transmitted by the cable. It follows that the Poynting
theorem indicates that the entire flow of energy resides in the space between
the conductors.
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If the resistance of the cable cannot be neglected then V is no longer constant.
An axial component of E is necessary to maintain the flow of current to
compensate for the Ohmic energy loss.

14.71 The current density in the wire is (I/πa2)êz . Therefore the electric field in
the wire, including on the surface of the wire, will be (I/πa2σE)êz .
The magnetic field intensity by Ampere’s theorem is (I/2πa2)êφ .
The Poynting vector at the surface is given by

S = E × H =
(

I

πa2σE
êz

)
×
(

I

2πa
êφ

)
= − I 2

2π2a3σE
êr (1)

Now Poynting’s theorem is

−
∫

s
(E × H) · ds = ∂

∂t

∫

V

ε |E|2
2

dV + ∂

∂t

∫

V

μ |H|2
2

dV +
∫

V

E · J dV (2)

Since the fields are constant in time, the first two terms on the right of (2)
which contain time derivative ∂/∂t vanish. The power dissipated in the wire
is then

P =
∫

E · JdV = −
∫

(E × H) · ds = − I 2

2π2σEa3 (2πaL) = I 2L

πσEa2 = I 2 R

14.72 Given B = − me

ne2 ∇ × J (1)

Use the vector identity

∇ × (∇ × B) = −∇2B + ∇(∇ · B) (2)

Use Maxwell’s equations

∇ · B = 0 (3)

∇ × B
μ0

= J + ε0
∂E
∂t

(4)

Here
∂D
∂t

= ε0
∂E
∂t

= 0 (5)

so that (4) becomes

∇ × B = μ0J (6)

Using (3) and (6) in (2)
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μ0∇ × J = −∇2B (7)

Using (1) in (7)

∇2B = μ0ne2B
me

14.73 High-frequency resistance

Rs =
√

ωμ

2σ
(1)

Direct current resistance per metre

R = 1

σ A
= 1

σπr2 (2)

Further the skin thickness

δ =
√

2

μσω
(3)

For metals assume μ = μ0. Combining (1), (2) and (3)

Rs

R
= πr2

δ

√
μ0

2
= π(10−3)2

6.6 × 10−5

√
4π × 10−7

2
= 3.77 × 10−5

14.74 When a charge q moves in a magnetic field, it experiences a magnetic force

Fm = qv × B (1)

When an electric conductor is physically moved across a magnetic field, the
free electrons in the conductor will experience a force on them in the direc-
tion of the force. The flow of electrons implies the existence of a potential
difference between the ends of the conductor. The situation is the same as if
an electric field had been set up in the conductor which is expressed by the
relation

Em = Fm/q = v × B V/m (2)

Equation (2) implies that every moving magnetic field is accompanied by an
electric field.
From (2) and the definition of the emf ξ of a source, the instant emf of the
source is
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ξ =
∫

Em · dl =
∫

v × B · dl V (3)

This is the general expression for motional emf. Now Faraday’s law states
that∮

Em · dl = −dφ

dt
(4)

This equation states that every time-changing magnetic field has an electric
field associated with it. Now the total flux through the surface is

φ =
∫

s

B · n̂ds (5)

Therefore

dφ

dt
= d

dt

∫
B · n̂ ds (6)

If the source and only the induction are changing, d/dt outside the integral
may be replaced by ∂/∂t inside the integral. The expression becomes

dφ

dt
=
∫

∂B
∂t

· n̂ ds (7)

Combining (7) with (4)
∮

c

Em · dl = −
∫

∂B
∂t

· n̂ ds (8)

Transforming the line integral in (8) into surface integral by the use of
Stokes’ theorem∮

c

E · dl = −
∫

s

n̂ · (∇ × E) ds (9)

Combining (8) and (9)
∫

s

n · (∇ × E) ds = −
∫

n̂ · ∂B
∂t

ds (10)

Since this expression is true for any surface, the two integrals in (10) can be
equated to yield

∇ × E = −∂B
∂t

(11)

This is known as Faraday’s law in point form or differential form.
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14.75 Ampere’s law is expressed by
∮

B · dl = μ0i (1)

where B is known as magnetic induction or magnetic field. Its unit is weber
per metre square or tesla. If magnetic materials are placed in the field of
induction, the elementary magnetic dipoles, permanent or induced, will set
up its own field that will modify the original field. A large value of B in an
iron core is explained by a subsidiary vector, the magnetization M which is
the magnetic moment per unit volume of the core material. A hypothetical
current iM is introduced and Ampere’s law, (1), is modified accordingly:
∮

B · dl = μ0(i + iM) (2)

Writing
∮

B · dl = μ0i + μ0

∮
M · dl (3)

we find
∮ (

B − μ0M
μ0

)
· dl = i (4)

or
∮

H · dl = i (5)

where H = B − μ0 M

μ0
(6)

is known as the magnetic field strength.

∴ B = μ0(H + M) (7)

The unit of H is henry/metre.

(a) For paramagnetic material B is directly proportional to H, the relation
being B = km μ0 H , where km is the permeability of the magnetic
medium, which is a constant for a given temperature and density of the
material.

(b) In ferromagnetic materials the relationship between B and H is far from
linear. The B–H curve is known as the familiar hysteresis curve. km is a
function not only of the value of H but also because of hysteresis and is
a function of the magnetic and thermal history of the specimen.

14.76 Consider Maxwell’s equations

∇ · E = ρ/ε (1)
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and ∇ × H = J + ∂D
∂t

(2)

Define a new electric potential function φ(r, t) such that

E = −∇φ − ∂A
∂t

(3)

The reason for redefining the scalar potential in this fashion is that (3) is
consistent with Faraday’s law, ∇ × E = − (∂B/∂t), as can be verified by
substitution. On the other hand the electrostatic definition, E = −∇V is
inconsistent with Faraday’s law and therefore cannot be used in electrody-
namics. However, the relation B = ∇ × A, continues to be correct. Substi-
tuting (3) in (1), we obtain

∇2φ + ∂

∂t
(∇ · A) = −ρ

ε
(4)

Substituting B = ∇ × A in (2), we get

∇2A − ∇(∇ · A) = −μJ − με
∂E
∂t

(5)

It is convenient to choose a Lorentz gauge given by

∇ · A = − 1

c2

∂ϕ

∂t
(Lorentz condition) (6)

With the use of (6), (4) and (5) are simplified to

∇2ϕ − 1

c2

∂2ϕ

∂t2
= −ρ

ε
(7)

∇2A − 1

c2

∂2A
∂t2

= −μJ (8)

14.77 ∇ × E = −∂B
∂t

(Faraday’s law) (1)

Writing the curl in rectangular form gives

∂ Ey

∂z
= −∂ Bx

∂t

Integrating in time and choosing the constant of integration as zero, we
obtain

Bx = 1

v
f (z − vt) (2)
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Notice that the variation of B is exactly the same as the variation of E , except
that Ey and Bx are at right angles to each other and perpendicular to the
direction of propagation. From (2) and the relation Hx = Bx/μ0 we find

Hx = 1

μ0v
f (x − vt) (3)

so that Ey = μ0vHx (4)

Using the relation v = √
1/μ0ε0, we can write (4) in the form

Ey = Z0 Hx

with Z0 =
√

μ0

ε0
= 376.6 �.

14.78 (a) E(z, t) = E0[x̂ sin(kz − ωt) + ŷ cos(kz − ωt)]. This is a plane polar-
ized wave polarized in the xy-plane and propagating in the positive
z-direction.

(b) The magnetic lines will suffer refraction in passing from one magnetic
medium to another.

(i) The continuity of B lines is first specified as a necessary condi-
tion. Figure 14.8 shows a bundle of B lines in passing through the
interface between two magnetic media characterized by μ1 and μ2.

(ii) Since div B = 0, it is required that the magnetic flux associated
with the flux lines be constant in passing through the interface.

φ = B1 ds1 = B2 ds2

Fig. 14.8 The refraction of
magnetic lines

where ds1 and ds2 are the cross-section of the flux lines in medium
1 and 2, respectively. Dividing by ds, the corresponding area on the
interface, we get

B1
ds1

ds
= B2

ds2

ds
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which from Fig. 14.8 may be written as

B1 cos θ1 = B2 cos θ2 (1)

which may be written as

B1 · n̂ = B2 · n̂

which shows that the normal component of the B vector is the same
on both sides of the boundary.

(iii) Next we apply Ampere’s circuital law to the path across the inter-
face, Fig. 14.8. Assuming that no current exists in the interface, for
the path considered
∮

H · dl = 0

Breaking the integral into individual parts of the path

∮
H · dl =

b∫

a

H · dl +
c∫

b

H · dl +
d∫

c

H · dl +
a∫

d

H · dl = 0

In the limit the path shrinks approaching the interface

c∫

b

H · dl =
a∫

d

H · dl = 0

∴
b∫

a

H · dl +
d∫

c

H · dl = 0

Thus Ht1 = Ht2

i.e. H1 × n̂ = H2 × n̂ (2)

This implies that the tangential component of the H vector is the
same on both sides of the boundary.

(c) Dividing (2) by (1)

H1 sin θ1

B1 cos θ2
= H2 sin θ2

B2 cos θ2

∴ 1

μ1
tan θ1 = 1

μ2
tan θ2

∴ tan θ1

tan θ2
= μ1

μ2
(law of refraction)
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14.79 Consider a plane wave normally incident on a dielectric discontinuity, as in
Fig. 14.9. In the region z < 0, ε = ε1, and for z > 0, ε = ε2. The boundary
condition on E is that its tangential component is continuous, the boundary
condition on H is that its tangential component is also continuous.

Ei(z = 0) + Er(z = 0) = Et(z = 0) (1)

Hi(z = 0) + Hr(z = 0) = H t(z = 0)

Letting Ei = E0e−jkzex , Er = E1ejkzex , Et = E2e−jkzex ,

Hi = E0

η
e−jkzey and Hr = − E1

η
e−jkzey (2)

Fig. 14.9 Reflection of plane
waves normally incident on
the interface between two
dielectrics

and substituting in (1), we obtain

E0 + E1 = E2 (3)

E0

η1
− E1

η1
= E2

η2
(4)

where η1 = √
μ1/ε1 and η2 = √

μ2/ε2. Solving, we find

E1

E0
= ρ = η2 − η1

η2 + η1
(5)

E2

E0
= τ = 2η2

η2 + η1
(6)

Note the minus sign in the last relation for Hr in (2) arises because the Poynt-
ing vector S = E × H must be in the direction of propagation (right-hand
rule).
Substituting η1 = √

μ1/ε1 and η2 = √
μ2/ε2 in (5) and (6) and setting

μ1 = μ2 = μ0 for non-magnetic substances, and putting
√

ε1/ε2 = n1/n2
for the refractive index, we obtain
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R = ρ2 = (n2 − n1)
2

(n2 + n1)
2

(7)

T = τ 2 n1

n2
=
(

2n2

n2 + n1

)2 n1

n2
= 4n1n2

(n1 + n2)2 (8)

Adding (7) and (8) it follows that R +T = 1. This is simply the consequence
of conservation of energy.

14.80 Refer to Fig. 14.10. Consider a plane perpendicular to the propagation direc-
tion through the origin. Let the distance from this plane measured in the
direction of propagation be called l. If the coordinates of a point are x , z,
then

lI = x sin θ + z cos θ (1)

Fig. 14.10 Reflection and
Refraction of electromagnetic
wave

As the electric field is in the plane of incidence, for the incident wave

{
EI = E0ejkIlI(cos θ ex − sin ez)

HI = E0
η1

e−jkIlI ey
(2)

where k1 = ω
√

νε1 and η1 = √
μ1/ε1 are the values of the propagation

constant and characteristic impedance in region 1.

For the reflected wave lR = x sin θ ′ − z cos θ ′ (3)
⎧
⎨
⎩

ER = ERe−jkIlR(cos θR ex + sin θRez)

HR = − ER

η1
e−jkIlR ey

(4)
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For the transmitted wave the relations are

lT = x sin φ + z cos φ (5)
⎧
⎨
⎩

ET = ETe−jkTlT(cos φ ex − sin φez)

HT = ET

η2
e−jkTlTey

(6)

The boundary conditions at z = 0 require that the tangential E that is Ex
and tangential Hy be continuous. Setting Ex (z = 0) in region 1 equal to
Ex (z = 0) in region 2,

E0 cos θ e−jkIx sin θ + ER cos θR e−jkIx sin θR = ET cos φe−jkTx sin φ (7)

If this equation is to hold for all values of x then

kI sin θ = kI sin θR = kT sin φ (8)

It follows that θR = θ , that is, the angle of incidence is equal to angle of
reflection as in a plane mirror.
Further

sin φ

sin θ
= kI

kT
=

√
ε1√
ε2

= n1

n2
(9)

where n is the index of refraction of the material. Equation (9) then gives
Snell’s law (n1 sin θ = n2 sin φ) which holds irrespective of the nature of
polarization. Using (9) in (7) and cancelling the exponential terms we have

E0 cos θ + ER cos θ = ET cos φ (10)

Using (8), the boundary conditions on Hy yield

E0

η1
− ER

η1
= ET

η2
(11)

Solving (10) and (11) we get

ER

E0
= η2 cos φ − η1 cos θ

η2 cos φ + η1 cos θ
(12)

ET

E0
= 2η2 cos θ

η2 cos φ + η1 cos θ
. (13)

Substituting η1 = √
μ1/ε1, η2 = √

μ2/ε2, μ1 = μ2 = μ0 for non-
magnetic dielectric and using (9) in (12), we obtain
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R =
(

E1

E0

)2

=
(

n2 cos θ − n1 cos φ

n2 cos θ + n1 cos φ

)2

14.81 (a) Reflectance R = 0 if n2 cos θ − n1 cos φ = 0 (1)

Given tan θ = n2

n1
(Brewster’s law of polarization) (2)

sin θ

sin φ
= n2

n1
(Snell’s law of refraction) (3)

Combining (2) and (3), we have (Fig. 14.11)

sin φ = cos θ (4)

or φ = 90◦ − θ (5)

Fig. 14.11 R and T against n1/n2

Eliminating n2 between (1) and (2)

n2 cos θ − n1 cos φ = n1(sin θ − cos φ) = n1(sin θ − sin θ) = 0 where
we have used (5).

(b) tan θ = n2

n1
= 1.5

1
= 1.5

∴ θ = 56.31◦

14.82 (a) R = (n1 − n2)
2

(n1 + n2)
2

=
(

n1
n2

− 1
)2

(
n1
n2

+ 1
)2

= (x − 1)2

(x + 1)2
(1)

where x = n1

n2

T = 1 − R = 4x

(x + 1)2 (2)

(b) Setting R = T yields the quadratic equation x2 − 6x + 1 = 0, whose
solution is x = 3 + 2

√
2 or 5.828. Thus for n1/n2 = 5.828, we get

R = T = 0.5.
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14.83 Using Maxwell’s equations

∇ · E = 0 (1)

∇ · B = 0 (2)

∇ × E = −∂ B
∂t

(3)

(a) E = E0ei(ωt−k.r+φ) (4)

B = B0ei(ωt−k.r+φ) (5)

Let the wave be propagated in the z-direction. Then

∇ · E = −i k · E = 0

and ∇ · B = −i k · B = 0

This shows that both E and B are perpendicular to k, which is the direc-
tion of propagation. Therefore both E and B are transverse oscillations.

(b) B and E are in phase
(c) Using (3)

∇ × E = −i k × E = −iωB

∴ B = k × E
ω

= 1

c

k × E
k

∴ B = 1

c
ŝ × E (6)

where ŝ = k/k is a unit vector in the direction of propagation. The three
vectors E, B and k form a right-handed rectangular coordinate system.
From (6) we obtain B = E/c.

14.84 E = σ

2εrε0

∴ σ = 2ε0εr E = 2 × 8.85 × 10−12 × 6 × 2 × 103

= 2.124 × 10−7C/m2

14.3.3 Phase Velocity and Group Velocity

14.85 Using the result of prob. 14.93

1

Vg
− 1

Vp
= Vp − Vg

VgVp
= Vp − Vg

c2
− = ω

c

dn

dω
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∴ Vp − Vg

Vp
= ωc

VP

dn

dω
(1)

But ω = 2πν = 2πc/λ (2)

Vp = c/n (3)

dn

dω
= dn

dλ

dλ

dω
= − λ2

2πc

dn

dλ
(4)

Substituting (2), (3) and (4) in (1)

Vp − Vg

Vp
= −nλ

dn

dλ
(5)

n1 − 1
2.786 × 10−4

2.781 × 10−4

∣∣∣∣∣∣
n2 − 1
2.781 × 10−4

2.777 × 10−4

∣∣∣∣∣∣
n = n1+n2

2
1 + 2.784 × 10−4

1 + 2.779 × 10−4

∣∣∣∣∣∣
�n
5 × 10−7

4 × 10−7

∣∣∣∣∣∣
λ1(A)

4800
5000

∣∣∣∣∣∣
λ2(A)

5000
5200

∣∣∣∣∣∣
λ = λ1+λ2

2
4900 A
5100 A

∣∣∣∣∣∣
�λ = λ1 − λ2

−200 A
−200 A

∣∣∣∣∣∣

Using formula (5), the first set of data gives (Vp − Vg)/Vp = 1.22 × 10−5

and the second set 1.02 × 10−5.

14.86 ω = ak2

(a) vp = ω

k
= ak

(b) vg = dω

dk
= 2ak = 2vp

14.87 (a) vp = 1√
εμ

(1)

(b) n = √
εr

εr = n2 = 1 − D2

ω2

∴ n =
√

1 − D2

ω2 (2)

υp = c

n
= c√

1 − D2

ω2

(3)

Squaring (3) and re-arranging

ω2 = D2 + ω2c2

v2
p

= D2 + k2c2 (4)

∴ vp = ω/k
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(c) Differentiating with D with c constant, ω
dω

dk
= c2k

∴ vg = dω

dk
= c2k

ω
= c2

vp
= c

√
1 − D2

ω2

∴ vpvg = c2 (5)

(d) Substituting D = 1.2 × 1011/s, ω = 2π × 20 × 109 Hz and c = 3 ×
108 m/s in (3), we find vp = 1.016 × 109 m/s
Substituting υp = 1.016×109 m/s in (5) we find vg = 8.858×107 m/s.
It is observed that while vp > c, vg < c.

14.88 Vg = dω

dk
(1)

ω = vk (2)

∴ Vg = d

dk
(vk) = v + k

dv

dk
(3)

14.89 Vg = v + k
dv

dk
(by prob. 14.88) (1)

V = c/n (2)

Substituting (2) in (1)

Vg = c/n + ck
d

dk

(
1

n

)
= c

n
− ck

n2

dn

dk
(3)

Now
dn

dk
= dn

dλ

dλ

dk
= dn

dλ

d

dk

(
2π

k

)
= −2π

k2

dn

dλ
(4)

Using (4) in (3)

Vg = c

n
+ λc

n2

dn

dλ

14.90 v ∝ 1

λ
(by problem)

∴ v = Ak (where A = constant)

vg = v + k
dv

dk
= Ak + k

d

dk
(Ak) = Ak + Ak = 2Ak = 2v

14.91 vg = v + k
dv

dk
= v + k

dv

dω

dω

dk
= v + kvg

dv

dω
(1)
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Now v = c/n (2)

∴ dv

dω
= dv

dn

dn

dω
= − c

n2

dn

dω
(3)

Substituting (2) and (3) in (1) and using ω = kv and rearranging we get

vg = c

n + ω(dn/dω)

14.92 Vg = distance

time
= 50

1 × 10−6
= 5 × 107 m/s

Vg = c
√

1 − (λ/2a)2

∴ 5 × 107 = 3 × 108
√

1 − (λ/5)2

Solving for λ, we find the free-space wavelength λ = 4.93 cm.

Vp = c2

Vg
= (3 × 108)2

5 × 107 = 1.8 × 109 m/s

14.93 Vg = dω/dk (1)

Rewriting (1), 1/Vg = dk/dω

∴ 1

Vg
= d

dω

(
ω

Vp

)
= 1

Vp
− ω

V 2
p

dVp

dω
(2)

Substituting Vp = c/n in (2)

1

Vg
= 1

Vp
− ωn2c

c2

(
− 1

n2

dn

dω

)
= 1

Vp
+ ω

c

dn

dω
(3)

14.94 Vg = ∂ω

∂k

∴ 1

Vg
= ∂k

∂ω
= ∂ (2π/λ)

∂(2πν)
= ∂ (1/λ)

∂ν

But n = c

vp
= c

νλ
→ 1

λ
= nν

c

∴ Vg = ∂ν

∂
(

1
λ

) = ∂ν

∂ (nν/c)
= c∂ν

∂(n ν)
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14.95 vg = dω

dk
= d(ωh̄)

d(kh̄)
= dE

dp
= d

(
p2/2m

)

dp
= 1

2m

dp2

dp
= 2p

2m
= mv

m
= v

14.96 By prob. (14.85)

Vp − Vg

Vp
= −nλ

dn

dλ
(1)

where Vp = c

n
(2)

Re-arranging (1) with the aid of (2) and writing μ for n we find

Vg = c

[
1

μ
+ λ

d μ

d λ

]
(3)

μ = 1.420 + 3.60 × 10−14

λ2 (by problem) (4)

Substituting λ = 500 nm = 5 × 10−7 m in (4)

μ = 1.564 (5)

Differentiating μ with respect to λ in (4)

dμ

dλ
= −7.2 × 10−14

λ3

or λ
dμ

dλ
= −7.2 × 10−14

λ2
= −0.288 (6)

Substituting (5) and (6) in (3), we find Vg = 0.35 c.

14.3.4 Waveguides

14.97 (a) Assuming the dominant mode, for a = 2.5 cm, and b = 2.5 cm, for the
rectangular waveguide, and c = 3×108 m/s, the velocity of electromag-
netic waves in free space, the phase velocity is given by

Vp = c√
1 − (λ/2a)2

= 3 × 108
√

1 − (4/5)2
= 5 × 108 m/s

(b) Vg = c
√

1 − (λ/2a)2 = 3 × 108
√

1 − (4/5)2 = 1.8 × 108 m/s

(c) λg = λ√
1 − (λ/2a)2

= 4√
1 − (4/5)2

= 6.67 cm
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14.98 λg = λ√
1 − (λ/2a)2

(1)

λg = 3λ (by problem) (2)

Combining (1) and (2) and solving for λ with a = 3 cm we find the free-
space wavelength λ = 4

√
2 cm.

14.99 (a) λg = λ√
1 − (λ/2a)2

= 8√
1 − (8/10)2

= 13.33 cm

(b) The cut-off wavelength λc = 2a = 2 × 5 = 10 cm.

14.100 N = 8πν2dνV

c3 = 8πdλ · V

λ4

Mean λ = 5500Å = 5.5 × 10−7 cm

dλ = (6000 − 5000)Å = 10−7 cm

V = (0.5)3 cm3

N = 8π × 10−7 × (0.5)3

(5.5 × 10−7)4 = 3.43 × 1018

14.101 The cut-off frequency of the TMmn or TEmn mode is

ωmn = c

[(πm

a

)2 +
(πn

b

)2
]1/2

The lowest value we can have for νmn is for the choice m = 1, a = 15 and
n = 0, that is, for TM10 wave.

∴ ν10 = c

2
× 1

15
= 3 × 108

30
= 107 Hz = 104 kHz

This is much above the range of AM waves (530–1600 kHz). Hence AM
waves cannot propagate in the tunnel.

14.102 The cut-off frequency will be least for TE10 waves. Of course TM10 waves
do not exist.

ν10 = c

2π

π

a
= c

2a
= 3 × 108

2 × 0.05
= 3 × 109 Hz = 3 GHz

Note that we take the higher dimension (5 cm) for the lower value of cut-off
frequency.
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14.103 The relation between ω and k in a rectangular waveguide is

k2 = ω2

c2
−
(mπ

a

)2 −
(nπ

b

)2
(1)

For TE01 waves m = 0, n = 1, a = 1 cm and b = 2 cm. Equation (1) is
then reduced to

k2 = ω2

c2
−
( π

0.02

)2
(2)

The phase velocity is given by

vp = ω

k
(3)

The group velocity νg is given by

vg = dω

dk
(4)

vg = dω

dk
= kc2

ω
= c2

vp

or vpvg = c2 (5)

The cut-off frequency is given by

ω01 = πc

b
(6)

The ω − k plot for m = 0, n = 1, b = 0.02m is shown in Fig. 14.12. For
convenience the variables are chosen as dimensionless.

Fig. 14.12 Dispersion
diagram for the TE01 mode of
rectangular waveguide for
b = 2 cm

At high frequencies, the curve is asymptotic to the line ω−kc. Thus at high
frequencies, both the phase and group velocities approach c. However, the
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ω − k plot is always above the ω = kc line. This implies that the phase
velocity νp = ω/k is always larger than c.

The group velocity vg = dω/dk is determined by the slope of the curve
which is less than the slope of the line ω = kc, and so vg is always less
than c.

There is a minimum frequency, known as the cut-off frequency, below
which k becomes imaginary and the wave ceases to exist. As the frequency
approaches the cut-off frequency the phase velocity becomes infinite and
the group velocity becomes zero.

14.104 (a)
(

∂2

∂x2
+ ∂2

∂y2

)
Ez = (k2 − ω2με)Ez (1)

For TM waves Hz vanishes, and Ez must be a solution of (1). Let

Ez = (A cos kx x + B sin kx x)(C cos ky y + D sin ky y) e–jkz (2)

where A, B, C , D are arbitrary constants and kx and ky are constants to
be determined by boundary conditions. Substitution of (2) in (1) yields

(
k2

x + k2
y

)
= ω2με − k2 (3)

The form of (2) is further constrained by the boundary conditions.
Assuming that the walls of the waveguide are perfect conductors, Ez

which is tangential to the walls must vanish at x = 0, x = a, y = 0
and y = b, Fig. 14.13. In (2) Ez will not vanish at x = 0 unless A = 0.
Similarly the boundary condition at y = 0 is satisfied if C = 0. The
boundary conditions at x = a and y = b are satisfied by putting.

kx = mπ

a

ky = mπ

b
(4)

Fig. 14.13 Rectangular
hollow metal waveguide
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where m and n are positive integers. Finally, we get the result

Ez = K sin
(m π x

a

)
sin

(n π y

b

)
e−jkz (5)

where K = (B)(D) is another constant. Note that Ez vanishes if either
m = 0 or n = 0. In that case TMm0 or TM0n wave does not exist. The
other field components are given from equations which are obtained by
manipulating Maxwell’s equations.

Ex = − j

ω2με − k2

(
k
∂ Ez

∂x
+ ωμ

∂ Hz

∂y

)
(6)

Ey = − j

ω2με − k2

(
−k

∂ Ez

∂y
+ ωμ

∂ Hz

∂x

)
(7)

Using (5) in (6) and (7) and putting Hz = 0

Ex = − j K kmπ

(ω2με − k2)a
cos

mπx

a
sin

nπx

b
e−jkz (8)

Ey = − j K knπ

(ω2με − k2)b
sin

mπx

a
cos

nπy

b
e−jkz (9)

The solutions (5), (8) and (9) represent an infinitely large family of
waves, characterized by different values of the integers m and n. They
differ from one another by the values of the integers m and n. They also
differ in their velocity as well as field configuration.

(b) Combining (3) and (4) we get

k2 = ω2

c2 −
(mπ

a

)2 −
(nπ

b

)2
(10)

where we have substituted με = 1/c2. The cut-off frequency is
obtained by setting k = 0.

ωmn = πc

[(m

a

)2 +
(n

b

)2
]1/2

(11)

14.105 (a) For TE waves there is no Ez. Here, we must find boundary conditions
on Hz that cause the tangential component of Ez to vanish. The given
equation is

(
∂2

∂x2
+ ∂2

∂y2

)
Hz = (k2 − ω2με) Hz (1)
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The general solution is

Hz = (A cos kx x + B sin kx x)(C cos ky y + D sin ky y)e−jkz (2)

∴ ∂ Hz

∂x
= (−k2 A sin kx x + Bk2 cos kx x)

(C cos ky y + D sin ky y)e−jkz

For
∂ Hz

∂x
= 0 at x = 0, it is necessary that B = 0.

Similarly

∂ Hz

∂y
= (A cos kx x + B sin kx x)(−Cky sin ky y + D cos ky y)e−jkz

For
∂ Hz

∂y
= 0, D = 0. Therefore (2) becomes

Hz = K cos(kx x) cos(ky y) e−jkz (3)

where K is the product of A and B is another constant. Imposing
boundary conditions at x = a and y = b, we have

∂ Hz

∂x
= −K kx sin kx x cos ky y = 0

yielding

kx a = mπ (4)

and
∂ H

∂y
= −K ky cos kx x sin ky y = 0

yielding

kyb = nπ (5)

∴ Hz = K cos
(mπx

a

)
cos

(nπy

b

)
(6)

Substituting (2) in (1) we obtain

k2
x + k2

y = ω2με − k2 (7)

which is identical with (3) of prob. (14.104).

(b) Substituting the values of kx and ky from (4) and (5) in (7) and setting
k = 0 gives the cut-off frequency.



702 14 Electromagnetism II

ωmn = πc

[(m

a

)2 +
(n

b

)2
]1/2

(8)

which is identical with (11) of prob. (14.104).
(c) Thus the features which are identical for the TM and TE modes are

(i) ω − k plot
(ii) Phase

(iii) Group velocity
(iv) Cut-off frequency

However the important difference is that when either m = 0 or n = 0, the
TM mode fails to exist. On the other hand Hz does not vanish for m = 0
or n = 0 (see (6)). Because of this fact the TE10 is the mode which has the
lowest cut-off frequency. Here we have assumed that a > b. The cut-off
frequency for TE10 mode is given by

ω10 = π c

a
(9)

the free space wavelength being 2a.
The small dimension (b) has no bearing on the cut-off frequency for this

mode. The other advantage is that single mode operation is feasible over a
wide range of frequencies.



Chapter 15
Optics

Abstract Chapter 15 deals with geometric optics. Problems are solved under
internal reflection in slabs and prisms, fibre optics, matrix methods, Fraunhofer
diffraction by single slit, double slit and grating, missing orders, resolving power,
Rayleigh’s criterion, interference, colours in thin films, Newton’s rings, polarization,
Malu’s law and Brewster’s law.

15.1 Basic Concepts and Formulae

Geometrical Optics

Fermat’s principle: A ray of light traverses from one point to another by a route
which takes least time.

Momentum of photon p = hν/c (15.1)

Fraction ( f ) of light escaping from an isotropic point source in a medium of refrac-
tive index n through a flat surface is given by

f = 1

2

[
1 − 1

n

√
n2 − 1

]
(15.2)

Intensity of light (I ) at distance r from a point source of power W is related to
pressure P by

P = I

c
= W

4πr2c
(15.3)

Mirage is a type of illusion formed by light rays coming from the low region of
the sky in front of the observer on a sunny day.

Optical path length (O.P.L.) =
∑N

i=1
ni si (15.4)

where si is the path length of the ray in the i th medium.

703
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Fibre optics: The maximum acceptance angle θmax outside which entering rays
will not be totally reflected within the fibre is given by

n0 sin θmax =
√

n2
f − n2

c (15.5)

where n0 is the refractive index of the medium outside the fibre, nf that of the fibre
and nc that of the cladding material.

Snell’s law of refraction
n1 sini = n2 sin r (15.5a)

where i = angle of incidence and r = angle of refraction.

Prisms (Fig. 15.1)

Fig. 15.1

r1 + r2 = A (15.6)

δ = (i1 − r1) + (i2 − r2) = i1 + i2 − A (15.7)

For minimum angle of deviation

δ = D, i1 = i2, r1 = r2 (15.8)

n = sin
1

2
(A + D)/ sin

1

2
(A) (15.9)

If the prism of index n1 is placed in a medium of index n2 then n should be replaced
by n1/n2.

Lenses: Object distance (u), image distance (v) and focal length ( f )

1

u
+ 1

v
= 1

f
(15.10)
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Lens Maker’s Formula

Sign Convention

1

F
= (n − 1)

(
1

r1
− 1

r2

)
(lens maker’s formula) (15.11)

r is positive if the refracting surface facing the object is convex and r is negative
if the refracting surface facing the object is concave.

If the lens of refractive index n1 is immersed in a medium of index n2, then
n = n1/n2.

Combination of Two Thin Lenses: Let lense L1 of focal length f1 facing the
object at distance u1 and L2 of focal length f2 be located at a distance d behind L1.
Then the final image is located from L2 at a distance v2 given by

v2 = f2[ f1u1 − d(u1 − f1)]
f1u1 + (u1 − f1)( f2 − d)

(15.12)

Magnification = Height of the final image

Height of the object
(15.13)

If v2 is positive then the image is real, if v2 is negative, the image is virtual.

System matrix: I2 = R21 T2 R12 I1 (15.14)

where the initial image I1 in medium 1 is transformed into the final image I2 in
medium 2. R12 is the refraction matrix at the first surface (air to glass), T2 is the
translation matrix in the second medium (glass) and R21 is the refraction matrix at
the second surface (glass to air).

The matrix S = R21 T2 R12 (15.15)

is known as the system matrix.

Interference

Conditions: Light sources are coherent, i.e. their phase difference remains constant
and that the distance between the sources is reasonably small (of the order of a few
Angstroms for visible light).

Young’s Double-Slit Experiment

xm = mλ
D

d
(bright fringes), m = 0, 1, 2, . . . (15.16)
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xm =
(

m + 1

2

)
λ

D

d
(dark fringes), m = 0, 1, 2, . . . (15.17)

where xm is the distance of the mth fringe from the central fringe, D is the source–
screen distance, d is the separation of slits and λ is the wavelength of monochro-
matic light used.

If white light is used, the central fringe will be white, flanked by coloured fringes
on either side with the system of violet fringes closer to the central fringe and red
one farther. In three dimensions the shape of the fringes is that of hyperboloids, and
on the screening the shape would be that of a set of hyperbolas. However, because
of limited field of view the fringes appear as a set of equidistant straight lines. The
separation of fringes is known as bandwidth (β):

β = λD

d
(bandwidth) (15.18)

Shift of fringes (�): When a thin film of thickness t is introduced in the path of one
of the rays

(n − 1)t = mλ (15.19a)

� = D

d
(n − 1)t (15.19b)

and the entire system of fringes undergoes a lateral shift.
The intensity distribution of the fringes is given by

I = 4A2 cos2
(

πdx

λD

)
(15.20)

The principle of optical reversibility states that if there is no absorption of light, then
a light ray that is reflected or refracted will retrace its original path if its direction is
reversed.

Interference by Reflection from Thin Films

When reflection occurs from an interface beyond which the medium has a lower
index of refraction, the reflected ray does not undergo a phase change; when the
medium beyond the interface has a higher index, there is a phase change of π . The
transmitted wave does not undergo a change of phase in either case.

Thus for air–glass–air media (Fig. 15.2) for normal incidence

2tn = (m + ½)λ, m = 0, 1, 2, . . . (maxima) (15.21)

The term ½ λ is introduced because of the change of phase of 180◦ which is equiv-
alent to half a wavelength

2tn = mλ, m = 0, 1, 2, . . . (minima) (15.22)
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Fig. 15.2

Fig. 15.3

These equations are valid if n of the film is higher (for example, air–glass–air) or
lower (for example, glass–water–glass) than the indices of media on each side of the
film.

For oblique incidence, with refracting angle r , the left-hand side of (15.21) and
(15.22) must be multiplied by cos r .

For coating lenses, Fig. 15.3 shows a typical arrangement in which the indices of
the media are in the ascending order. Here the conditions are reversed:

2tn = mλ, m = 0, 1, 2 . . . (maxima) (15.23)

2tn = (m + ½)λ, m = 0, 1, 2 . . . (minima) (15.24)

Wedge film

β = λ

2nθ
(15.25)

where θ is the angle of the wedge.

Biprism β = λD

2d
(bandwidth) (15.26)
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Newton’s Rings (in Reflected Light)

Radius of the mth ring (rm) for the convex lens of radius R is given by

rm = √
mλR (dark rings, m = 0, 1, 2, . . .) (15.27a)

2t = mλ (dark rings) (15.27b)

rm =
√(

m + 1

2

)
λ (bright rings, m = 0, 1, 2, . . .) (15.28a)

2t = (m + ½)λ (bright rings) (15.28b)

where t is the thickness of air gap.

Michelson’s Interferometer

M1 and M2 are two plane mirrors mounted (Fig. 15.4), M1 being movable and M2
fixed. The plate P2 compensates for the extra pathlength in P1. The interference
fringes form from the superposition of the two beams and are viewed at E (see
prob. 15.38).

Fig. 15.4

The mirror displacement L when n fringes cross the field of view is given by

L = nλ

2
(15.29)

Diffraction (Fraunhofer)

Single slit a sin θ = mλ (minima, m = 1, 2, 3, . . .) (15.30)

where a is the slit width and θ is the diffraction angle.
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Relative intensities of the secondary maxima

Iθ = Imax

(
sin α

α

)2

(15.31)

where α = πa

λ
sin θ (15.32)

Iθ
Imax

=

⎛
⎜⎜⎝

sin

(
m + 1

2

)
π

(
m + 1

2

)
π

⎞
⎟⎟⎠

2

(15.33)

The secondary maxima lie approximately halfway between the minima.

Double-Slit and N-Slits (Grating)

I = Imax

(
sin α

α

)2 sin2 Nβ

sin2 β
(15.34)

where α = πa sin θ

λ
and β = πd sin θ

λ

a is the slit width and d is the slit spacing. In (15.32) the first factor arises due to
diffraction from a single slit, the second one is due to interference of light waves
from different slits.

For N = 1 we obtain the single-slit pattern and for large N we are dealing with
a grating.

Maximum number of order mmax = a/λ (15.35)

Condition for overlapping of spectral lines:

m1λ1 = m2λ2 = m3λ3 = . . . (15.36)

Missing orders: The missing orders occur when the condition for a maximum of
the interference and for a minimum of the diffraction are both fulfilled for the same
value of θ :

d sin θ = mλ, m = 0, 1, 2 . . .

a sin θ = pλ, p = 1, 2, 3, . . .

d

a
= m

p
(15.37)
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Since both m and p are integers, d/a must be in the ratio of two integers. Thus if
order 3 is missing then d/a = 3. Other interference fringes which are missing are
6, 9, . . . .

If the ratio d/a is not exactly equal to the ratio of two integers, then the intensity
of a particular order will not be zero but would be quite small.
Grating: Total number of lines (N ) on the grating

N = N ′W (15.38)

where N ′ is the number of lines per unit length and W is the grating width.

Resolving Power (R.P)

R = λ/dλ = Nm (15.39)

Dispersive Power of a Prism (D)

D = dθ

dλ
= dμ

μ − 1
(15.40)

Resolving power (R) for a prism of baselength B is given by

R = λ

dλ
= B

dμ

dλ
(15.41)

where dμ/dλ is the variation of refractive index of the prism with wavelength, λ is
the mean wavelength and dλ is the difference in wavelengths to be resolved.

Diffraction from a Disc of Radius a

I = I0

[
2J1(ρ)

ρ

]2

(15.42)

where ρ = 2π
a

λ
sin θ and J1(ρ) is the Bessel function of the first kind.

Rayleigh’s Criterion

The minimum angular resolution of a telescope of diameter D is

θ = 1.22
λ

D
(15.43)

where D is the diameter of the telescope.
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Zone Plate

1

a
+ 1

b
= nλ

r2
n

= 1

fn
(15.44)

where a and b are the distances of the object and image from the zone plate, rn is
the radius of the nth zone and f the focal distance.

Polarization

Let the x- and y-components of the electric vector be given by

Ex = a1 sin ωt (15.45)

Ey = a2 sin(ωt + δ) (15.46)

E2
x

a2
1

+ E2
y

a2
2

− 2
Ex Ey

a1a2
cos δ = sin2 δ (15.47)

(i) Plane-polarized (linearly polarized) light:

If δ = 2nπ where n = 0, 1, 2, . . . for which

Ey = a1

a2
Ex (15.48)

or δ = (2n + 1)π, for which

Ey = −a1

a2
Ex (15.49)

In either case the electric field oscillates on a straight line.
(ii) Elliptically polarized light:
If δ = (n + ½)π , where n = 0, 1, 2, . . . and a1 �= a2

E2
x

a2
1

+ E2
y

a2
2

= 1 (15.50)

If δ = π/2, 5π/2, 9π/2, . . . the tip of the electric vector rotates clockwise for
an observer towards whom light approaches, and the light is said to be left-handed
elliptically polarized.

If δ = 3π/2, 7π/2, 11π/2, . . . the ellipse is described in the counterclockwise
direction and the light is said to be right-handed elliptically polarized.
(iii) Circularly polarized light

If δ = (n + ½)π where n = 0, 1, 2, . . . and a1 = a2 = a

E2
x + E2

y = a2 (15.51)

Right-handed and left-handed circularly polarized light are described as in case (ii).
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(iv) Unpolarized light:
If the phase difference δ is random between two linearly polarized waves at
right angles to each other, light is said to be unpolarized.

Malus’ Law

Consider two polarizing sheets P1 and P2 parallel to each other. Let the polarized
light of intensity Im from P1 be incident on P2 whose polarizing axis is oriented at
angle θ with that of P1. Then the transmitted intensity I from P2 is given by

I = Im cos2 θ (Malus’ law) (15.52)

Brewster’s Law

When an unpolarized light beam is incident on a dielectric surface then for a partic-
ular angle of incidence, called polarizing angle θp, the reflected light is completely
plane polarized with its plane of vibration at right angles to the plane of incidence
(σ -component).

In this situation the reflected light and the refracted light beams are at right angles

tan θp = n = n2/n1 (Brewster’s law) (15.53)

where n is the refractive index of medium 2 with respect to medium 1.
At the polarizing angle the π -component of the beam (plane of vibration parallel

to the incident plane) is entirely refracted with an admixture of σ -component.
Brewster windows are used in laser technology to produce plane polarized light.
Birefringence: Optically isotropic substances exhibit optical properties such as

refractive indices independent of the direction of propagation of the electromag-
netic wave and the state of polarization of the wave. However, there are crystalline
solids such as calcite and quartz which exhibit optically anisotropic properties. Such
substances are called birefringent. In this case there are two refractive indices. If the
polarization is parallel to the optic axis, light will travel with one velocity, if the
polarization is perpendicular to the axis, light will travel with a different velocity.

Let a linearly polarized light be incident at the polarizing angle θ with the optical
axis. The polarization can be resolved into x- and y-components. Since the x- and
y-components travel with different speeds, their phases change at a different rate as
light travels down the material.

Full Wave Plate, Half-Wave Plate and Quarter Wave Plate

Full wave plate is the one in which the vibrations of two components which were in
phase initially remain in phase after light emerges from a thickness t of the material:

(nslow − nfast)t = mλ, m = 1, 2, 3 . . . (15.54)

where λ is the wavelength in vacuum.
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For half-wave plate

(nslow − nfast)t = (2m + 1)λ/2 (15.55)

This implies that if two components enter the slab in phase, they emerge from the
slab 180◦ out of phase. The half-wave plate rotates the polarization direction but
otherwise leaves the polarization unaffected.

For quarter wave plate

(nslow − nfast)t = (2m + 1)λ/4 (15.56)

Here, the two components have the phase difference of 90◦ as they emerge from the
slab of thickness t .

If two quarter wave plates are put together the combination acts as a half-wave
plate.

When an unpolarized beam is incident on a birefringent material, it is split up
into an ordinary ray which travels in a normal way, obeying Snell’s law, and an
extraordinary ray which is displaced, the two emerging rays being linearly polarized
at right angles to each other.

Polarimeter: When a polarized beam of light is passed through an optically active
liquid such as sugar solution then the polarizing plane rotates through an angle θ :

θ = αL D (15.57)

where α is the specific rotation, L is the length of the tube in decimetres and D is
the amount of solvent in grams per 100 c.c.

15.2 Problems

15.2.1 Geometrical Optics

General

15.1 Show that the fraction F of light that escapes from a point source within a
medium across a flat surface is given by

F = 1

2

[
1 − 1

μ

√
μ2 − 1

]

where μ is the refractive index.

15.2 Assuming that a 1000 W light bulb radiates equally in all directions, calculate
the radiation pressure on a perfectly absorbing surface at a distance of 2 m.
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15.3 Define optical path and state Fermat’s principle. Using Fermat’s principle,
derive Snell’s law of refraction at the plate interface between two materials of
refractive index n and n′.

15.4 Use the concept of optical path to briefly explain why a mirage occurs.
Early in the morning, on a sunny day, the heat of the sun produces a thin layer
of warm air above the surface of a long straight road. Consider a possible
light ray path such as that illustrated in Fig. 15.5. This connects an eye-level
point on the tree with an observer of height h = 2 m. If the layer of hot air
has refractive index n2 = 1.00020, while the cold air has refractive index
n1 = 1.00030.

(a) Show that the optical path length along ABCD is approximately

n2x + n1

√
(d − x)2 + 4h2

(b) By using Fermat’s principle, determine the actual distance that the ray
travels in the layer of hot air when d = 500 m.

(c) As the observer walks towards the tree, she finds that the mirage disap-
pears. At what distance from the tree does this occur?

Fig. 15.5

15.5 An optical fibre consists of an inner material (the fibre) with refractive index
nf and an outer material of lower refractive index nc, known as cladding, as in
Fig. 15.6.

Fig. 15.6
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(a) What is the purpose of cladding?
(b) Show that the maximum acceptance angle θmax is given by

n0 sin θmax =
√

n2
f − n2

c

(c) Discuss two main fibre loss mechanisms.

15.2.2 Prisms and Lenses

15.6 A triangular glass prism (n = 1.6) is immersed in a liquid (n = 1.1) as shown
in Fig. 15.7. A thin ray of light is incident as shown on face AB making an
angle of 20◦ with the normal. Calculate the angle that the ray emerging from
AC makes with the ground when it leaves AC and strikes the ground.

Fig. 15.7

15.7 (a) What is the critical angle for a block of glass, with refractive index ng =
1.45, in air?

(b) Two narrow beams of microwave radiation are incident normal to one
surface of a large wedge of chocolate as shown in Fig. 15.8. If the index
of refraction for chocolate relative to air for these microwaves is 1.2, cal-
culate the angle between the two emerging beams, shown as α on the

Fig. 15.8

°

°
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diagram. (You can assume that the chocolate does not melt because of the
microwaves.)

[University of Aberystwyth, Wales]

15.8 Each of the angles of a prism is 60◦ and the refraction index for sodium light
is 1.5. Sodium light is incident at the correct angle for minimum deviation.
Calculate the deviation of that portion of the light, which finally emerges from
the prism, after having suffered one internal reflection.

[University of Durham]

15.9 Write down the lens maker’s formula relating the focal length of a lens to the
object and image distances. Explain the sign convention used for the distances
involved.
Show that as two lenses are brought into contact, the focal length of the com-
bined system, f , can be expressed as

1

f
= 1

f1
+ 1

f2

where f1 and f2 are the focal lengths of the two separate lenses.
[University of Durham 2001]

15.10 An object is placed at a fixed distance D from the screen. Real images of the
object are formed on the screen for two positions of a lens, separated by a
distance d. Show that

(a) the ratio between the sizes of the two images will be
(D − d)2

(D + d)2

(b) The object size = √
I1 I2, where I1 and I2 are the sizes of the images

(c) f = D2 − d2

4D
(d) D > 4 f

15.11 (a) Derive the lens maker’s formula

1

f
= (n − 1)

(
1

r1
− 1

r2

)

for a thin lens.
(b) A biconvex lens of plastic of refractive index n = 1.2 is immersed in

water (n = 1.33). Would the lens act as a converging lens or diverging
lens?

15.12 A combination of two thin convex lenses are placed as in Fig. 15.9. An object
is placed 5 cm in front of the first lens which has a focal length of 10 cm. The
second lens is 10 cm behind the first lens and has a focal length of 12 cm.
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(a) Locate the image of the first lens with the aid of a ray diagram.
(b) Is the image real or virtual? Erect or inverted?
(c) Locate the final image for the lens combination.
(d) Is the final image real or virtual? erect or inverted?

Fig. 15.9

15.13 Let a glass sphere of radius r lie with its centre on the x-axis. A ray of light
parallel to the x-axis will form an image on the other side of the sphere. Show
that the distance of the image from the centre of the sphere will be equal to

μr

2(μ − 1)
, where μ is the refractive index of the glass.

15.14 The light from a 100 W bulb uniformly spreads out in all directions. Find the
intensity I of the electromagnetic waves and the amplitude E0 at a distance
of 5 m from the bulb.

15.15 An astronomical telescope has the focal lengths of objective and eyepiece in
the ratio 8:1. Both the lenses are convex. A tower 100 m tall is at a distance
of 10,000 m: (a) locate the image and (b) find the height of the image.

15.16 A 1000 W laser beam is concentrated by a lens of a cross-sectional area of
10−5 cm2. Find the corresponding (a) intensity and (b) the amplitude of the
electric field.

15.2.3 Matrix Methods

15.17 Derive expressions for the refraction matrix and translation matrix for a sin-
gle lens.

15.18 Obtain the matrix equation for a pair of surfaces of radii r1 and r2 and refrac-
tive index n, separated by distance d and placed in air.

15.19 Using the results of prob. (15.18) show that for a thin lens,

1

f
= 1

f1
+ 1

f2

15.2.4 Interference

15.20 Consider two point sources s1 and s2, Fig. 15.10, which emit coherent waves.
Show that curves such as that traced by p, for which the phase difference for
rays r1 and r2 is a constant, are hyperboloids in three dimensions.
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Fig. 15.10

15.21 A beam of monochromatic light with wavelength λ is incident upon two slits
S1 and S2 a distance d apart, as shown in Fig. 15.11. Derive an expression,
in terms of λ, L , d, and m for the distance ym from the central point to the
mth bright fringe of the interference pattern on a screen a distance L away
when L >> ym .

Two narrow slits separated by 2 mm are illuminated with a helium–neon
laser of wavelength 612 nm. Calculate the spacing of the fringes observed on
a screen 4 m.

Fig. 15.11

15.22 When a thin transparent plate of thickness t and refractive index μ is intro-
duced in the path of one of the two interfering monochromatic beams of
wavelength λ in Young’s double-slit experiment, then fringes are shifted.
Show that (μ − 1)t = nλ.

15.23 In Young’s double-slit experiment the bandwidth β is given by the expres-

sion: β = λL

d
, where L is the slit-screen distance, d is the slit separation and

λ is the wavelength of light used:

(a) Obtain an expression for the intensity distribution in the fringe system
of Young’s double-slit experiment.

(b) Hence show that the average intensity of the fringes is equal to 2I , where
I is the intensity of each beam.

15.24 In a Fresnel’s biprism experiment, the bandwidth of 0.195 mm is observed
at a distance of 1 m from the slit. The image of the coherent sources is then
produced at the same distance from the slit by placing a convex lens a 30 cm
from the slit. Two images are found to be separated by 0.7 cm. Calculate the
wavelength of light used.

[Kakatiya University 2002]
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15.25 The inclined faces of a biprism of refractive index 1.50 make an angle of
2◦ with the base. A slit illuminated by monochromatic light is placed at a
distance of 10 cm from the biprism. If the distance between two dark fringes
observed at a distance of 1 m from the prism is 0.18 mm, find the wavelength
of light used.

[University of Delhi]

15.26 A beam of monochromatic light of wavelength 5.82 × 10−7 m falls normally
on a glass wedge with the wedge angle of 20 s of an arc. If the refractive
index of glass is 1.5, find the number of interference fringes per centimetre
of the wedge length.

[Indian Administration Services]

15.27 Light of wavelength 6000 Å falls normally on a thin wedge film of refractive
index 1.4, forming fringes that are 2 mm apart. Find the angle of the wedge.

[Delhi University]

15.28 In Newton’s rings apparatus, the radii of the nth and (n + 20)th dark rings
are found to be 0.162 and 0.368 cm, respectively, when light of wavelength
546 nm is used. Calculate the radius of curvature, R, of the lower surface of
the lens.

[University of Manchester 2007]

15.29 The radius of the 10th dark ring in Newton’s rings apparatus changes from
60 to 50 mm when a liquid is introduced between the lens and the plate.
Calculate the refraction index of the liquid.

[Nagarjuna University 2003]

15.30 Newton’s rings may be formed in the reflective light by two curved surfaces
as in Fig. 15.12a,b with the monochromatic light of wavelength λ incident
from the top.

Show that the radius of the nth ring is given by the expression for the two
situations:

r2
n

(
1

R1
± 1

R2

)
= nλ (dark rings)

= (n + 1

2
)λ (bright rings)

Minus sign in the bracket of left side for situation (a) and plus sign for situa-
tion (b).

Fig. 15.12
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15.31 In Young’s experiment for what order does the band of wavelength of red
light (λ = 780 nm) coincide with (m + 1)th order in the band of blue light
(λ = 520 nm)?

15.32 Each of the parallel glass plates 1 and 2 reflects 25% of narrow monochro-
matic beam of light incident on it and transmits the remainder. Find the ratio
of the minimum and maximum intensities in the interference pattern formed
by the two beams I1 and I2 (Fig. 15.13).

[adapted from Hyderabad Central University 1991]

Fig. 15.13

15.33 A thin 4 × 10−5 cm thick film of refractive index 1.5 is illuminated by white
light normal to its surface. Which colour will be intensified in the visible
spectrum?

15.34 A parallel beam of light (λ = 5890 A◦) is incident on a thin glass plate of
refractive index 1.5 such that the angle of refraction in the plate is 60◦. Calcu-
late the smallest thickness of the plate which will appear dark by reflection.

[Srivenkateswara University 2000]

15.35 A beam of waves of wavelength ranging from 5800 to 3500 Å is allowed to
fall normaly on a thin air film of thickness 0.2945 μm. What is the colour
shown in reflection by the film?

[Osmania University]

15.36 Show that the minimum thickness of non-reflecting film is λ/4μ.
[Kakatiya University 2001]

15.37 A beam of parallel rays is incident at an angle of 30◦ with the normal on
a plane-paralleled film of thickness 4 × 10−5 cm and refractive index 1.50.
Show that the reflected light whose wavelength is 7542 Å will reinforce.

[Mumbai University]

15.38 (a) Explain with necessary theory how a Michelson interferometer may be
employed to find the difference in wavelength of D1 and D2 lines in the
sodium spectrum.

(b) The distance through which the mirror of the Michelson interferometer
has to be displaced between two consecutive positions of maximum dis-
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tinctness of D1 and D2 lines of sodium is 2.89 × 10−5 cm. Calculate �λ

assuming that λ1 ≈ λ2 = 5.89 × 10−5 cm.

15.39 In Michelson’s interferometer 100 fringes cross the field of view when the
movable mirror is displaced through 0.02948 mm. Calculate the wavelength
of the monochromatic light used.

[Delhi University]

15.40 The plates of Fabry – Perot interferometer have a reflectance amplitude of
r = 0.90. Calculate the resolving power of wavelengths near 600 nm when
the plates are separated by 2 mm.

[University of Wales, Aberystwyth 2005]

15.2.5 Diffraction

15.41 In Fraunhofer diffraction due to a narrow slit a screen is placed 2 m away
from the lens to obtain the pattern. If the slit width is 0.2 mm and the first
minima are 5 mm on either side of the central maximum, find the wavelength
of light.

[Delhi University]

15.42 The intensity Iθ for the single-slit diffraction pattern is given by Iθ = Im

(sin α/α)2, where α = πa

λ
sin θ , and Im is the intensity of the central maxi-

mum. Show that the intensity maxima can be found out from the condition,
tan α = α.

15.43 (a) Obtain the expression for �θ , the half-width at half central maximum of
single-slit Fraunhofer diffraction.

(b) Calculate �θ for
a

λ
= 4.

[Osmania University]

15.44 A beam of light contains a mixture of wavelengths λ1 and λ2. When the light
is incident on a single slit the first diffraction minimum of λ1 coincides with
the second minimum of λ2. How are the two wavelengths related?

15.45 A single slit is illuminated normally by a monochromatic light of wavelength
of 5600 Å and diffraction bands are observed on a screen 2 m away. If the
centre of the second dark band is 1.6 cm from the central bright band, deduce
the slit width.

15.46 (a) What are missing orders in the double-slit diffraction pattern? Explain.
(b) Deduce the missing order for a double-slit diffraction pattern, if the slit

widths are 0.16 mm and they are 0.8 mm apart.

[Brahampur University]
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15.47 What conditions must be satisfied for the central maximum of the envelope
of the double-slit diffraction pattern to contain exactly n interference fringes?
Find n given d = 0.20 mm and a = 0.0120 mm.

15.48 In a grating spectrum which spectral line in the fourth order will overlap with
the third order of 5400 Å?

[Osmania University]

15.49 What is the highest order spectrum which may be seen with monochro-
matic light of wavelength 6000 Å by means of a diffraction grating with
5000 lines/cm.

[Delhi University]

15.50 A grating has slits that are each 0.1 mm wide. The distance between the cen-
tres of any two adjacent slits is 0.3 mm. Which of the higher order maxima
are missing?

[Andhra University 1999]

15.51 A grating has 5 × 103 lines/cm. The opaque spaces are twice the transparent
spaces. Find the orders of the spectrum that will be absent.

[Osmania University 2004]

15.52 How many orders will be observed by a grating having 4000 lines/cm, if a
visible light in the range 4000–7000 Å is incident normally?

[Kanpur University]

15.53 Show that in a grating if the opaque and the transparent strips are of equal
width then all the even orders, except m = 0, will be missing.

15.54 Show that the intensity of the first secondary maxima relative to that of cen-
tral maxima in the single-slit diffraction is about 4.5%.

15.55 A plane diffraction grating in the first order shows an angle of minimum
deviation of 20◦ at the mercury blue line of wavelength 4358 Å. Calculate
the number of lines per centimetre.

[Andhra University 2003]

15.56 A diffraction grating used at normal incidence gives a green line, λ = 5400 Å
in a certain order superimposed on the violet line, λ = 4050 Å of the next
higher order. If the angle of diffraction is 30◦, how many lines are there per
centimetre in the grating?

[Delhi University]

15.57 Calculate the least width that a grating must have to resolve the compo-
nents of D lines (5890 and 5896 Å) in the second order. The grating has
800 lines/cm.

[Osmania University 2002]
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15.58 A grating of width 3′′ is ruled with 10,000 lines/in. Find the smallest wave-
length separation that can be resolved in the first-order spectrum at a mean
wavelength of 6000 Å.

[Kakatiya University2002]

15.59 Examine two spectral lines of wavelengths 5890 and 5896 Å which can be
clearly resolved in the (i) first order and (ii) second order by diffraction grat-
ing 2 cm wide and having 425 lines/cm.

[Delhi University]

15.60 The refractive indices of a glass prism for the C and F lines are 1.6545 and
1.6635, respectively. The wavelength of these two lines in the solar spectrum
are 6563 and 5270 Å, respectively. Calculate the length of the base of 60◦
prism which is capable of resolving sodium lines of wavelengths 5890 and
5896 Å.

[Vikram University]

15.61 Find the separation of two points on the moon that can be resolved by a
500 cm telescope. The distance of the moon is 3.8 × 105 km from the earth.
The eye is most sensitive to light of wavelength 5500 Å.

[Nagpur University]

15.62 Lycopodium particles that have an average diameter of 30 μm are dusted on a
glass plate. If a parallel beam of light of wavelength 589 nm is passed through
the plate, what is the angular radius of the first diffraction maximum?

[Kakatiya University 2004]

15.63 The intensity distribution for Fraunhofer diffraction of a circular spectrum of
radius R is of the form

I = I0

[
2J1(ρ)

ρ

]2

where ρ = 2πa

λ
sin θ and J1(x) is the Bessel function of the first kind. Show

that by Rayleigh’s criterion the minimum angular resolution of a telescope is

given by θ ≈ 1.22
λ

D
, where D is the diameter of the circular aperture.

15.64 Calculate the radii of the 1st and 25th circles on a zone plate behaving like a
convex lens of focal length 50 cm for λ = 5000 Å.

[Kakatiya University]
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15.2.6 Polarization

15.65 The values of refractive indices for ordinary and extraordinary rays no and ne
for calcite are 1.642 and 1.478, respectively. Calculate the phase retardation
for λ = 6000 Å with the plate thickness 0.04 mm.

[Kakatiya University 2003]

15.66 Two polarizing sheets have their polarizing directions parallel. Determine the
angle by which either sheet must be turned so that the intensity falls to half
of its value?

15.67 Sun rays incident obliquely on a pond are completely polarized by reflection.
Find the elevation of the sun (in degrees) above the horizon.

15.68 Light is incident from water (μ = 1.33) on the glass (μ = 1.5). Find the
polarizing angle for the boundary separating water and glass.

15.69 What is the minimum thickness of a quarter wave plate if the material has
μ0 = 1.553 and μe = 1.544 at a wavelength of 6000 Å.

[Andhra University 2003]

15.70 A tube 20 cm long containing sugar solution rotates the plane of polarization
through an angle of 13.2◦ If the specific rotation is 66◦, find the amount of
sugar present in a litre of the solution.

[Osmania University 2003]

15.71 A system of three polarizing sheets intercept a beam of initially unpolar-
ized light. The polarizing direction of the first sheet is parallel to the y-
axis, that of the second sheet is at an angle of θ counterclockwise from
the y-axis and that of the third sheet is parallel to the x-axis. The inten-
sity of light emerging from the three-sheet system is 11.52% of the original
intensity I0. Determine the angle θ . In which direction is the emerging light
polarized?

15.72 Describe briefly how a linear polarizer produces polarized light from an inci-
dent unpolarized beam. Is the transmission axis of a pair of polaroid sun-
glasses usually oriented horizontally or vertically for an observer standing
upright and why is this?
What is a Brewster window? Calculate the inclination of a Brewster window
with refractive index n = 1.5 in a laser cavity in which the gaseous medium
has a refractive index n = 1.0.

[Durham University]
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15.3 Solutions

15.3.1 Geometrical Optics

General

15.1 Let the point source be located at the centre O of a sphere of radius R, located
within the medium. Light proceeding within a cone of semi-angle equal to the
critical angle C can alone escape from a plane surface on the top, Fig. 15.14.

Fig. 15.14 Light from a point
source escaping through a
plane surface on the top

Consider a circular strip of radius r and width dr , symmetrical over the
sphere’s surface. The angle θ is measured with respect to the z-axis.

Area of the circular strip = 2πrdr

Surface area of the sphere = 4 π R2

Fraction d f = area of the strip

area of the sphere
= 2πrdr

4π R2

= 1

2

(R sin θ)(Rdθ)

R2
= 1

2
sin θ dθ

Fraction of light escaping within the semi-angle θ is then given by

f =
∫

d f =
∫ θ

0

1

2
sin θdθ = 1

2
(1 − cos θ)
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Substituting θ = C , the critical angle

cos θ = cos C =
√

1 − sin2 C =
√

1 − 1

μ2 = 1

μ

√
μ2 − 1

∴ f = 1

2

[
1 − 1

μ

√
μ2 − 1

]

15.2 The momentum carried by each photon is hν/c. If it is incident normally on a
black surface, it exerts an impulse of hν/c. The total pressure exerted would

be
1

c

∑
hν, where the summation extends over photons of all frequencies inci-

dent on the surface per unit area per second. If W is the power of the source,
then at distance r , the intensity I = W/4πr2. Then pressure

P = I

c
= W

4πr2c
= 1000

(4π)(22)(3 × 108)
= 6.63 × 10−8 Pa

15.3 Suppose a ray in going from A to B traverses distance, s1, s2, s3, . . . , sp in
media of indices n1, n2, n3, . . . , np, respectively. The total time of flight is
then (Fig. 15.15)

t =
p∑

i=1

si

νi
= 1

c

p∑
i=1

ni si (1)

The last summation is known as the optical path length (O.P.L).

Fermat’s principle states that a ray of light traverses from one point to another
by a route which takes least time.
A more, stringent formulation of Fermat’s principle is as follows. A ray of
light in traversing from one point to another, regardless of the media, adopts
such a route which corresponds to stationary value of the optical path length:

O.P.L =
∫ B

A
n(s) ds (2)

Fig. 15.15
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A function f (x) is said to have a stationary value at x = x0, if its derivation
d f/dx vanishes at x = x0. A stationary value could correspond to a maximum
or minimum.

Let a ray of light proceed from A(0, y1) in medium of index n1 and be incident
at C(x, 0) on the interface, get refracted and reach B(x2, y2) in the medium of
index n2:

O.P.L. = n1(AC) + n2(CB) = n1

√
x2 + y2

1 + n2

√
(x2 − x)2 + y2

2

d(O.P.L)

dx
= 0

∴ n1x√
x2 + y2

1

− n2(x2 − x1)√
(x2 − x)2 + y2

2

= 0

∴ n1 sin i − n2 sin r = 0

∴ sin i

sin r
= n2

n1
(Snell’s law) (3)

15.4 A mirage is a type of illusion formed by light rays coming from the low region
of the sky in front of the observer. On a sunny day, a road gets heated and a
temperature gradient is established in the vertical direction with the upper air
layer being slightly less warmer and the corresponding indices of refraction
being slightly larger. As the rays penetrate the atmospheric depth they start
bending due to refraction, becoming horizontal to the road and then bending
upwards. The blue of the sky in the background produces a virtual image of a
water pool, and the turbulence of air close to the road enhances the effect of a
water pool with waves on the surface. This phenomenon is known as mirage.

(a) Referring to Fig. 15.5, optical path length (O.P.L) =
2∑

i=1
ni si = n1AB +

n2BC + n1CD

= n1

√
(d − x)2/4 + h2 + n2x + n1

√
(d − x)2/4 + h2

O.P.L = n2x + n1

√
(d − x)2 + 4h2 (1)

(b)
d(O.P.L)

dx
= 0 (Fermat’s principle)

Using (1), n2 − n1(d − x)√
(d − x)2 + 4h2

= 0

Substituting n1 = 1.00030, n2 = 1.00020 and h = 2 m and solving

d − x = 282.8 (2)

or x = 500 − 282.8 = 217.2 m
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(c) From (2) it is observed that as d decreases, x also decreases. The smallest
value for x is zero, in which case the distance of the observer from the
tree would be d = 282.8 m when the mirage disappears.

15.5 (a) The purpose of the cladding is to improve the transmission efficiency
of the optical fibre. If cladding is not used then the signal is attenuated
dramatically.

(b) Let a ray be incident at an angle θ , Fig. 15.6, the angle of refraction at P
being θp. Let C be the critical angle at Q, interface of core and cladding:

sin C = n1

n2

where n1 and n2 are the indices of the cladding and core, respectively:

θp = 90 − θin

where θin is the angle of incidence at Q:

n0 sin θ = n2 sin θp = n2 sin(90 − θin) = n2 cos θin

For internal reflection θin > C or cos θr < cos C

∴ n0 sin θ ≤ n2 cos C

But n2 cos C = n2

√
1 − sin2 C =

√
n2

2 − n2
1

∴ n0 sin θ ≤
√

n2
2 − n2

1

This shows that there is a maximum angle of acceptance cone outside of
which entering rays will not be totally reflected within the fibre. For the
largest acceptance cone, it is desirable to choose the index of refraction
of the cladding to be as small as possible. This is achieved if there is no
cladding at all. However, this leads to other problems associated with the
loss of intensity.

(c) The transmission is reduced due to multiple reflections and the absorption
of the fibre core material due to impurities.

15.3.2 Prisms and Lenses

15.6 With reference to Fig. 15.6, using Snell’s law

n2 sin r1 = n1 sin 20◦
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∴ sin r1 = n1

n2
sin 20◦ = 1.1

1.6
× 0.342 = 0.2351

∴ r1 = 13.6◦

From the geometry of Fig. 15.16

r2 = 40 − 13.6◦ = 26.4◦ (∵ r1 + r2 = A, the apex angle)

n1 sin i2 = n2 sin r2

sin i2 = n2

n1
sin r2 = 1.6

1.1
sin 26.4◦ = 0.6467

∴ i2 = 40.3◦

∴ φ = 90◦ − 40.3◦ = 49.7◦

θ = 80 − 49.7◦ = 30.3◦

(∵ The exterior angle is equal to the sum of the interior angles).

Fig. 15.16 Triangular glass
prism

15.7 (a) sin C = 1

ng
= 1

1.45
= 0.6896

∴ C = 43.6◦

(b) In applying Snell’s law instead of measuring angles with respect to the
normal, we will measure them with respect to the interface, for conve-
nience. Then

1.2 cos 45◦ = 1.0 cos θ

whence θ = 31.9◦.

From Fig. 15.17 AC is parallel to EF and so BÂC = BĈA = 45◦. Thus
in the triangle, ADC,

α = 180◦ − 2(θ + 45◦) = 26.2◦
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Fig. 15.17 Refraction in a
prism

15.8 The net deviation of the ray

δ = (i1 − r1) + (360◦ − 2r2) + (i3 − r3) (1)

In the minimum angle position, r1 = r2 = A/2 = 60/2 = 30◦
From the geometry of Fig. 15.18, r3 = 30◦.

Fig. 15.18 Deviation of a ray
incident in the minimum
deviation position of the
prism after suffering one
internal reflection

By Snell’s law

Sin i1 = n sin r1 = 1.5 × sin 30◦ = 0.75

∴ i1 = 48.59◦

Similarly, i3 = 48.59◦

∴ δ = (48.59 − 30◦) + (360 − 2 × 30◦) + (48.59 − 30◦) = 337.18◦
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15.9
1

u
+ 1

v
= 1

f

where u, the object distance, and v, the image distance, are measured from the
centre of the lens. For real object and image u and v are positive, for virtual
object or image u and v are negative. f is positive for convex lens and negative
for concave lens.

Let the object o be placed at distance u1 from lens L1 of focal length f1. The
second tens L2 is placed at distance d behind L1, Fig. 15.19. The image I1 is
formed at distance v1 from the lens L1, alone. Then from the lens equation

1

u1
+ 1

ν1
= 1

f1
or ν1 = f1u1

u1 − f1
(1)

The image acts as an object for the second lens L2 (real or virtual)

− 1

v1 − d
+ 1

v2
= 1

f2

Fig. 15.19 Image due to combination of two lenses, a distance d apart

whence v2 = f2(v1 − d)

f2 + v1 − d

Substituting ν1 from (1) and simplifying

v2 = f2
[ f1u1 − d(u1 − f1)]

f1u1 + (u1 − f1)( f2 − d)
(2)

In the limit d → 0, (2) reduces to

v2 = f1 f2u1

f1u1 + f2u1 − f1 f2

or
1

u1
+ 1

v2
= 1

f
= 1

f1
+ 1

f2

15.10 The location of the object, the screen and the positions of the lens are indi-
cated in Fig. 15.20

(a) u1 + v1 = D (1)

u1 − u2 = d (2)
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Fig. 15.20 Real images
formed by a convex lens in
two positions

By symmetry v2 = u1 (3)

v1 = u2 (4)

Then (2) becomes

u1 − v1 = d (5)

size of image

size of object
= I1

O
= v1

u1
(6)

Similarly,
I2

O
= v2

u2
(7)

∴ I1

I2
= v1

v2

u2

u1
= v2

1

v2
2

(8)

From (1) and (5), v2 = D + d

2
and v1 = D − d

2

Therefore,
I1

I2
= (D − d)2

(D + d)2

(b) Multiplying (6) and (7)

I1

O

I2

O
= v1

u1

v2

u2
= u2

u1

u1

u2
= 1

∴ O = √
I1 I2

(c) 1

u1
+ 1

v1
= 1

f

∴ 2

D + d
+ 2

D − d
= 1

f

where we have used (1), (2) and (4).

∴ f = D2 − d2

4D
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(d) From the result of (c), we have

d2 = D

f
(D − 4 f )

Since d2 must be positive, it follows that D > 4 f .

15.11 (a) Consider a plano-convex lens of focal length f . Let a paraxial ray be
incident on the lens from a small object of height h. After striking the
plano-convex lens normally, it gets refracted at the convex surface and
passes through the principle focus F , behind the lens, Fig. 15.21. Let θ

be the angle of incidence at A, the angle being measured with the radius
of curvature of the curved surface r . Let φ be the angle of refraction:

Fig. 15.21
A

sin φ = n sin θ (Snell’s law)

φ = nθ (∵ angles are small) (1)

Also θ = h/r, φ − θ = h/ f (2)

Combining (1) and (2)

1

f
= n − 1

r
(3)

We use the convention that r is positive if the refracting surface facing
the object is convex and r is negative if the refracting index facing the
object is concave.

A thin lens may be considered as two plano-convex or two plano-
concave lenses in contact. Thus a thin biconvex lens whose faces have
radii of curvature r1 and r2 are considered as two plano-convex lenses
with their plane surfaces cemented together:

1

f1
= n − 1

r1
,

1

f2
= n − 1

−r2
(4)
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∴ 1

f1
+ 1

f2
= 1

F
= (n − 1)

(
1

r1
− 1

r2

)
(lens maker’s formula)

(5)

For a biconvex lens r1 is positive and r2 negative. For double-concave
lens r1 is negative and r2 positive.

(b) If the lens of refractive index n1 is immersed in a medium of index
n2, then n = n1/n2, n = 1.2/1.33 = 0.9, and the first bracket in (5)
becomes n − 1 = −0.1 resulting in a negative value of F . Thus the
plastic lens immersed in water acts as a diverging lens.

15.12 (a) The first image due to L1 alone is formed at I1 at a distance v1 given by
1

u1
+ 1

v1
= 1

f1

∴ v1 = u1 f1

u1 − f1
= 5 × 10

5 − 10
= −10 cm

The image is formed at 10 cm in front of the lens (Fig. 15.22).

Fig. 15.22 Image due to
combination of two convex
lenses

(b) The image is virtual (∵ v is negative) and erect.
(c) The final image I2 is located at distance ν2 from lens L2 given by the

result of prob. (15.9),

v2 = f2[ f1u1 − d(u1 − f1)]
f1u1 + (u1 − f1)( f2 − d)

(1)

Here u1 = 5 cm, d = 10 cm, f1 = 10 and f2 = 12 cm.
Substituting these values in (1) we find v2 = 30 cm behind the lens L2.

(d) The final image is real (∵ v2 is positive) and inverted.

15.13 Let a ray PA enter the sphere at A, refract at A and B and intersect the axis at
F (Fig. 15.23). Let φ be the angle of incidence and θ the angle of refraction
at A:

Sin φ = μ sin θ (Snell’s law) (1)

φ = μθ (∵ angles are small) (2)
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In �BFC,

FC

BC
= sin FB̂C

sin BF̂C
= sin(π − φ)

sin 2(φ − θ)
= sin φ

sin 2(φ − θ)
= φ

2(φ − θ)
(3)

since the angles are small. Hence the equivalent focal length

Feq = FC = BCφ

2(φ − θ)
= μr

2(μ − 1)
(4)

where we have used (2), (3) and (4).

Fig. 15.23

15.14 The intensity at a distance r is given by

I = W

4πr2 = 100

4π × 52 = 0.318 W/m2

I = 1

2
ε0cE2

0

∴ E0 =
√

2 I

ε0c
=
√

2 × 0.318

8.85 × 10−12 × 3 × 108 = 15.48 V/m

15.15 (a) If the object distance is u then the distance v1 at which the image is
formed by objective is given by

1

u
+ 1

v1
= 1

fo

or v1 = − u fo

u − fo
(1)

The distance of this image from the eyepiece, u1 is given by

u1 = fo + fe − u fo

u − fo
= u fe − f 2

o − fo fe

u − fo
(2)

where fo + fe is the distance between the objective and eyepiece.
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If the final image is formed at a distance v from the eyepiece then

1

v
+ 1

u1
= 1

fe

or
1

v
= 1

fe
− u − fo

u fe − f 2
e − fo fe

or v = − fe(u fe − f 2
o − fo fe)

f 2
o

(3)

Now u >> fe, fo

∴ v = −u

(
fe

fo

)2

= 104
(

1

8

)2

= 156.25 m

(b) M = Height of the final image

Height of the object
= v1

u
× v

u1

� − fe

fo
= −1

8
= −0.125

where we have used (1), (2) and (3).

∴ Height of final image = (height of the object).M

= −100 × 0.125 = −12.5 m

The negative sign indicates that the final image is virtual.

Note that the height of the image is only one-eighth of that of the
object, but the image is closer than the object by a factor of 64, so it
subtends an angle eight times large, that is, the image appears eight times
larger.

15.16 (a) The Intensity is given by

I = power

cross-section
= W

A

= 1000

10−5 × 10−4 = 1012 W/m2

(b) I = 1

2
ε0cE2

0

E0 =
√

2I

ε0c
=
√

2 × 1012

8.85 × 10−12 × 3 × 108

= 2.74 × 107 V/m
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15.3.3 Matrix Methods

15.17 Assume that light is always incident from the left, then the refracting surface
is convex if r is positive (from V to C) and concave if r is negative (from V
to C ′), Fig. 15.24.

Fig. 15.24 Light is incident
from left. Sign convention for
refraction at a curved optical
surface

The symbols used are object distance x0, object size y0, image distance xi,
image size yi and radius of curvature, r . The object–image equation can be
written as

n1

−x0
+ n2

xi
= n2 − n1

r
(1)

The convention results in negative value for the object distance. Paraxial rays
are considered so that α1 and α2 are small. Each ray is given a height and
an angle, Fig. 15.25. The distance ε on the axis, called sagitta, is nearly
zero. Considering counterclockwise angles as positive and clockwise angles
as negative (1) becomes

n1α1

l1
+ n2

(
−α2

l2

)
= n2 − n1

r
(2)

As l2 = l1, two simultaneous equations can be written in the variables α j

and l j ( j = 1, 2):

l2 = l1 (3)

Fig. 15.25 Passage of a light ray P1 in medium of refractive index n1 into medium of refractive
index n2 onto P2
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α2 = n1

n2
α1 −

(
n2 − n1

n2r

)
l1 (4)

In the matrix form (3) and (4) can be written as

(
l2
α2

)
=
⎛
⎝

1 0
1

r

(
n1

n2
− 1

)
n1

n2

⎞
⎠

(
l1
α1

)
(5)

The initial image in medium 1 described by the column vector I1 =
(

l1
α1

)
is

transformed into the final image in medium 2 described by the column vector

I2 =
(

l2
α2

)
. The transformation is accomplished by the refraction matrix

R12 =
⎛
⎝

1 0
1

r

(
n1

n2
− 1

)
n1

n2

⎞
⎠ (6)

In the matrix notation (5) is written as

I2 = R12 I1 (7)

Next consider a parallel translation of a ray through a distance d in some
homogeneous medium, Fig. 15.26.

Since α1 = α2, for small angles

l2 = l1 + α1d (8)

In matrix form (8) can be written as

(
l2
α2

)
=
(

1 d
0 1

)(
l1
α1

)
(9)

or I2 = T2 I1 (10)

Fig. 15.26 Sequences of
refraction, translation and
refraction for a thick lens
placed in air
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where the translation matrix is

T2 =
(

1 d
0 1

)
(11)

In Fig. 15.26, the overall transformation can be written as

I2 = R21 T2 R12 I1 (12)

where R12 is the refraction matrix at the first surface (air to glass), T2 is the
translation matrix in the second medium (glass) and R21 is the refraction
matrix at the second surface (glass to air). The matrix R21T2 R12 is known as
the system matrix.

15.18 Consider two curved surfaces of positive radii of curvature, r1 and r2. The
final image in Fig. 15.27 is obtained from the equation:

(
l3
α3

)
=
⎛
⎝

1 0
n − 1

r2
n

⎞
⎠

(
1
0

d
1

)⎛
⎝

1 0
1

r1

(
1 − n

n

)
1

n

⎞
⎠

(
l1
α1

)

Symbolically,

I3 = R23 T2 R12 I1

Let P12 = 1

r1

(1 − n)

n
and P23 = n − 1

r2

Then

(
l3
α3

)
=
(

1 0
P23 n

) (
1
0

d
1

)(1 0

P12
1

n

) (
l1
α1

)

=

⎛
⎜⎜⎝

1 + d P12
d

n

P23 + d P23 P12 + n P12
d P23

n
+ 1

⎞
⎟⎟⎠
(

l1
α1

)

Fig. 15.27 Refraction in a
double convex lens of
thickness d placed in air
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15.19 For a thin lens d = 0. The transformation matrix then becomes
(see prob. 15.18)

(
1 0
P23 + n P12 1

)
or

⎛
⎝

1 0

−(n − 1)

(
1

r1
− 1

r2

)
1

⎞
⎠ or

⎛
⎝

1 0

− 1

f
0

⎞
⎠

Thus − 1

f1
− 1

f2
= − 1

f
or

1

f1
+ 1

f2
= 1

f

15.3.4 Interference

15.20 A constant phase difference implies a constant difference in length between
r1 and r2, Fig. 15.28:

r1 − r2 = 2a (1)√
(x + d)2 + y2 −

√
(d − x)2 + y2 = 2a (2)

Transposing the second radical

√
(x + d)2 + y2 = 2a +

√
(d − x)2 + y2 (3)

Fig. 15.28 Locus of a point
with constant phase
difference from two coherent
point sources s1
and s2

Squaring and simplifying

x2(d2 − a2) − y2a2 = a2(d2 − a2) (4)

Dividing by a2(d2 − a2)

x2

a2 − y2

d2 − a2 = 1 (5)

Since 2d > 2a or d > a, d2 − a2 will be positive. Writing d2 − a2 = b2, (5)
becomes
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x2

a2 − y2

b2 = 1 (6)

This is the equation of a hyperbola with the centre at the origin and the foci
on the x-axis. In three dimensions, the locus of P would be a hyperboloid,
the figure of revolution of the hyperbola.

In an actual Young’s experiment on the observation of interference fringes
one looks at a limited field of view and consequently the central portions of
hyperbolas appear as straight lines as in Fig. 15.29 (within the dotted lines).

Fig. 15.29 Interference
fringes in Young’s
experiment

15.21 At any point P on the screen at a distance y from the axis, the phase difference
due to the waves coming from S1 and S2 will be due to the optical path
difference (S2P − S1P), Fig. 15.11:

δ = 2π

λ
(S2P − S1P) (1)

If (S2P − S1P) = nλ(n = 0, 1, 2, . . .), the phase difference δ = 2nπ , and
the intensity is maximum at P:

If (S2P − S1P) =
(

m + 1

2

)
λ, where m = 0, 1, 2, . . ., the phase differ-

ence, δ = (2m + 1)π and the intensity will be zero at P. With reference to
Fig. 15.11,

(S2P)2 = L2 + (x + d/2)2

(S1P)2 = L2 + (x − d/2)2

∴ (S2P)2 − (S1P)2 = (S2P + S1P)(S2P − S1P) = 2xd

In practice d is quite small, typically 0.5 mm, compared to L , typically 1.0 m,
and P is close to the axis, y << L , so that S1P as well as S2P are only
slightly greater than L . We can then set S2P + S1P = 2L . Therefore

S2P − S1P = 2xd

2L
= xd

L
(2)
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Therefore, the condition for maximum intensity at P is

xd

L
= mλ (bright fringes) (3)

and the condition for zero intensity at P is

xd

L
=
(

m + 1

2

)
λ (dark fringes) (4)

m is called the order of fringe system. On the axis, at y = 0, m = 0 and
we have the intensity maximum. The central bright band on the screen is
flanked on either side by a series of b bright and dark bands corresponding to
m = 1, 2, 3, . . ., the mth bright fringe being at a distance ym from the axis:

ym = mλL

d
(5)

and the (m + 1)th bright fringe being at a distance

y(m+1) = (m + 1) λL

d
(6)

The separation of the fringes β called the bandwidth is given by

�y = y(m+1) − ym = β = λL

d
(7)

β = λL

d
= 612 × 10−9 × 4

2 × 10−3
= 1.124 × 10−3 m = 1.124 mm

15.22 Let a transparent plate of thickness t and refractive index μ be introduced
in the path of one of the two interfering beams of monochromatic light,
Fig. 15.30. A ray travelling from S1 to O covers a distance t in the plate
while the rest of the distance (S1O− t) is covered in air. The effective optical
path length would be

μt + (S1O − t) or S1O + (μ − 1)t

The optical path length for the ray emanating from S2 would be S2O. Clearly

S1O + (μ − 1)t > S2O

Consequently, the central fringe corresponding to zero path difference is not
formed at O, the normal position of the central fringe in the absence of the
plate. The new position of the central fringe would be at O′ such that

S1O′ + (μ − 1)t = S2O′
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Fig. 15.30 Shift of fringes
when a transparent plate is
introduced in the path of one
of the rays in Young’s
double-slit experiment

But S2O′ − S1O′ = d

L
· OO′

Calling OO′ = �, the distance through which the central fringe shifts,

� = L

d
(μ − 1) t

Furthermore, (μ − 1)t = nλ.
This shift is towards the side on which the plate is placed.
Note that the bandwidth of the fringe system is unaffected and the entire
fringe system undergoes a lateral shift.
With the use of monochromatic light it is not possible to detect shift of
fringes. However, if white light is used then the central fringe being white
is easily distinguished from the coloured fringes and its shift can be easily
measured. Thus, by the use of the above procedure the thickness of the plate
can be accurately measured.

15.23 (a) Let two light waves of the same wavelength λ and amplitude A pass
through a given point and be represented by

y1 = A sin ωt (1)

y2 = A sin(ωt − δ) (2)

where ω = 2πν and δ = constant phase difference between the two
waves. The resulting displacement is then given by

y = y1 + y2

= A sin ωt + A sin(ωt − δ)

= 2A cos
δ

2
sin

[
ωt − δ

2

]
(3)
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where we have used the identity

sin B + sin C = 2 sin

(
B + C

2

)
cos

(
B − C

2

)
(4)

Equation (3) represents simple harmonic vibration of frequency ω/2π

and amplitude A′ = 2A cos(δ/2). The amplitude of the resulting wave
varies from 2A through 0 to −2A according to the value of δ. The result-
ing intensity I at the given point is proportional to the square of the
amplitude or A′2:

I ∝ 4A2 cos2 δ

2
(5)

If δ = (2n + 1)π(n = 0, 1, 2, . . .) then A′ = 0, i.e. the crests of one
wave coincide with the troughs of the other, the two waves interfere
destructively to give zero intensity, i.e. darkness.

If δ = 2nπ , then A′ = 2A, i.e. the two waves interfere constructively
to produce maximum intensity of 4A2. Here the crests of one wave are
an integral number of wavelengths ahead of crest of the other so that the
waves are reinforced:

By eqn (1), prob. (15.21), δ =
(

2π

λ

)
(S2 P − S1 P) =

(
2π

λ

)(
dx

L

)

∴ I = 4A2 cos2
(

πdx

λL

)
(6)

Figure 15.31 shows the intensity distribution of Young’s fringes. Here x
is measured on the screen. The bright central fringe occurs at x = 0,
in the centre of the fringe system. The other bright fringes are sep-
arated by distance, x = λ L/d, 2 λ L/d, 3 λ L/d . . . on either side.
Halfway between two neighbouring bright fringes, the centres of dark
fringes occur. The light intensity does not drop off suddenly but varies
as cos2 (δ/2). At maxima the intensity reaches a value of 4A2, and at
minima, it is equal to zero. At other points it is given by (6). Thus the
intensity in the interference pattern varies between 4A2 and zero. In the
absence of interference each beam would contribute A2 so that from two
incoherent sources, there would be a uniform intensity of 2A2, which is
indicated by the horizontal dotted line.

Fig. 15.31 Intensity
distribution of fringes in
young’s double-slit
experiment
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(b) Now the average intensity of the interference pattern is obtained by aver-
aging over the cos2 function in (6)

< I >=

∫ λL/d

0
I dx

∫ λL/d

0
dx

=
4A2

∫ λL/d

0
cos2(πdx/λL)dx

λL/d
= 2A2 (7)

The average intensity is equal to 2A2 as expected. Although at maximum
the intensity is double the average value, at minima, it becomes zero and
on the whole it averages out to 2A2. Hence there is no violation of energy
conservation.

15.24 u + v = D = 100 cm → v = 100 − u = 100 − 30 = 70 cm

I

O
= 0.7

O
= v

u
= 70

30
∴ 2d = O = 0.30 cm (distance between two coherent sources)

β = .λD

2d
(bandwidth)

∴ λ = 2dβ

D
= (0.3)(0.0195)

100
= 5.85 × 10−5cm = 5850 Å

15.25 D = y1 + y2 = 10 + 100 = 110 cm

2d = 2(μ − 1)y1α = 2 × (1.5 − 1) ×
(

2

57.3

)
× 10

= 0.349 cm

λ = (2d)β

D
= 0.349 × 0.018

110
= 5.711 × 10−5cm

= 5711 Å.

15.26 θ = 20 s =
(

20

3600

)
× 1

57.3
rad

= 9.695 × 10−5 rad

β = λ

2μθ
= 5.82 × 10−5cm

2 × 1.5 × 9.695 × 10−5
= 0.2 cm

Number of fringes per centimetre= 1

β
= 1

0.2
= 5.

15.27 θ = λ

2μβ
= 6 × 10−5cm

2 × 1.4 × (0.2 cm)
= 1.07 × 10−4 rad

= 1.07 × 10−4 × 57.3◦ = 22′′ of arc.
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15.28 The radius of the nth dark ring is given by

rn = √
nλR (1)

The radius of the (n + m)th dark ring is given by

rn+m = √
(n + m)λR (2)

Squaring (1) and (2), subtracting and solving for R, the radius of curvature
of lower lens

R = r2
n+m − r2

n

mλ
= r2

n+20 − r2
n

20λ

= (0.368)2 − (0.162)2

20 × 5.46 × 10−5 = 100 cm

15.29 rn = √
nλR (dark ring in air)

r ′
n = √

nλR/μ (dark ring in liquid)

∴ μ = r2
n

r ′2
n

= 602

502 = 1.44

15.30 First, we calculate the air thickness t of the air gap between the horizontal
surface and the lower surface of the lens where Newton’s ring is formed as
in Fig. 15.32.
DE = t is the thickness of air gap; CB = R, the radius of curvature of
the lens; and DA = DB = r is the radius of the ring. From a theorem in
geometry on intersecting chords

DE × DG = DA × DB

Fig. 15.32 Newton’s rings
with convex lens on a flat
surface
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or t × (2R − t) = r2

∴ t = r2

2R
(∵ t << 2R) (1)

(a) Centres of curvature on the same side.
An air film BC is formed sandwiched between two curved surfaces of
radii R1 and R2 in contact at O. The centres of curvature of lenses are
on the same side, Fig. 15.33a. The thickness of air film

t = BC = AC − AB

Fig. 15.33 a Newton’s rings
formed by two curved
surfaces with the centres of
curvature on the same side

Using (1)

AC = r2
m

2R1
; AB = r2

m

2R2

t = r2
m

2

(
1

R1
− 1

R2

)
(2)

where rm is the radius of the mth ring:

2t = mλ (dark rings) (3)

Eliminating t between (2) and (3)

r2
m

(
1

R1
− 1

R2

)
= mλ (m = 0, 1, 2, . . . dark rings) (4)

2t =
(

m + 1

2

)
λ (bright rings) (5)

r2
m

(
1

R1
− 1

R2

)
=
(

m + 1

2

)
λ (m = 0, 1, 2, . . . bright rings)

(6)

(b) Centres of curvature on the opposite side
The surfaces in contact at O are as in Fig. 15.33b; the thickness of air
film t is
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Fig. 15.33 b Newton’s rings
formed by two curved
surfaces with centres of
curvature on the opposite side

AC = BC + AB

t = r2
m

2

(
1

R1
+ 1

R2

)
(7)

2t = mλ (dark fringes) (8)

Eliminating t between (7) and (8)

r2
m

(
1

R1
+ 1

R2

)
= mλ (m = 0, 1, 2 . . . , dark fringes) (9)

2t =
(

m + 1

2

)
λ (bright fringes) (10)

Eliminating t between (7) and (10)

r2
m

(
1

R1
+ 1

R2

)
=
(

m + 1

2

)
λ (m = 0, 1, 2 . . . , bright fringes)

(11)

15.31 xm = m λ1 D

d
= (m + 1)λ2

D

d

m × 780 = (m + 1) × 520

∴ m = 2

15.32 Let the amplitude of the incident beam be a and intensity I :

I = a2

The intensity of the reflected beam from the first face, Fig. 15.13

I1 = 1

4
I (by problem)

∴ a1 = a

2
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The intensity of the transmitted beam at the first face will be

I ′
1 = 3

4
I

The corresponding amplitude will be

a′
1 =

√
3

2
a

The reflected beam at the second face will have amplitude

a′′
1 = 1

2
×

√
3

2
a =

√
3

4
a

The emerging beam from the first face will have amplitude

a2 =
√

3

2
a′′

1 =
√

3

2

√
3

4
a = 3

8
a

The two beams reflected from the first face will interfere:

Imin

Imax
= (a1 − a2)

2

(a1 + a2)2 =

(
a

2
− 3

8
a

)2

(
a

2
+ 3

8
a

)2 = 1

49

15.33 For constructive interference

2 μt =
(

m + 1

2

)
λ

∴ λ = 2μt

m + 1

2

= 2 × 1.5 × 4 × 10−5

m + 1

2

= 12 × 10−5

m + 1

2

cm

Only for m = 2, we get λ = 4.8×10−5 cm or 4800 Å, corresponding to blue
colour in the visible region.

15.34 2μt cos r = mλ (minima)

For smallest thickness, m = 1

t = mλ

2μ cos r
= 1 × 5890

2 × 1.5 × cos 60◦ = 3927 Å
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15.35 2μt cos r =
(

m + 1

2

)
λ (maxima), m = 0, 1, 2 . . .

r = 0, μ = 1

λ = 2t

m + 1
2

= 2 × (2945 Å)

m + 1
2

= 5890

m + 1
2

Å

For m = 0, λ = 11,980 Å

m = 1, λ = 3927 Å

m = 2, λ = 2356 Å

λ = 3927 Å falls within the range of visible spectrum. The colour is violet.

15.36 2μt cos r =
(

m + 1

2

)
λ

r = 0, m = 0

t = λ/4μ

15.37 For constructive interference

2μt cos r =
(

m + 1

2

)
λ, m = 0, 1, 2 . . .

sin r = sin i

μ
= sin 30◦

1.5
= 0.3333

∴ cos r = 0.9428

λ = 2μt cos r

m + 1

2

= 2 × 1.5 × 4 × 10−5 × 0.9428

m + 1

2

cm

For m = 1, we find λ = 7.542 × 10−5 cm = 7542 Å.

15.38 (a) The two mirrors M1 and M2 are adjusted such that their distance from
the beam splitter are approximately equal, Fig. 15.4. The wavelengths
λ1 and λ2 for the D1 and D2 lines of sodium differ only by a few
angstroms. Two different sets of fringes arise due to two wavelengths.
If M1 is slowly moved away there is a gradual separation of the two
sets, and finally the bright band of the one lies over the dark band of
the other, resulting in uniform illumination. Thus the fringes disappear
and reappear periodically. Between two successive disappearances the
mirror has to be moved by, say d cm. This corresponds to a path differ-
ence of 2d cm. Assuming that λ2 < λ1, this path difference must contain
exactly one more wavelength of λ2 than of λ1. Thus expressing λ1 and
λ2 in cm,
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2d

λ2
− 2d

λ1
= 1

∴ λ1 − λ2 = �λ = λ1λ2

2d

(b) �λ = (5.89 × 10−5)2

2 × 2.89 × 10−5 = 6 Å

15.39 λ = 2d

N
= 2 × 2.948 × 10−3 cm

100
= 5.896 × 10−5 cm = 5896 Å

15.40 Resolving power
λ

�λ
= gπ D

λ

where D = distance between the plates = 2 mm = 0.2 cm:

λ = 600 nm = 6 × 10−5 cm

g = 2r

1 − r2
= 2 × 0.9

1 − (0.9)2
= 9.4737

R.P = λ

�λ
= 9.4737 × 3.14 × 0.2

6 × 10−5 = 9.9 × 104

15.3.5 Diffraction

15.41 a sin θ = mλ (1)

∴ sin θ = mλ

a
= 1 × λ

a
= λ

a
(2)

If D is the slit screen distance and x the distance of the first minimum from
the central maximum, then

tan θ � sin θ = x/D (3)

Combining (2) and (3)

λ = ax

D
= 0.02 × 0.5

200
= 5 × 10−5 cm = 5000 Å

15.42 Iθ = Im

(
sin α

α

)2

Differentiating Iθ with respect to α and setting
dIθ
dα

= 0,

dIθ
dα

= Im(2α2 sin α cos α − 2α sin2 α)

α4
= 0
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∴ 2α sin α(α cos α − sin α) = 0

∴ tan α = α

15.43 (a) The half-width is the angle between the two points in the pattern where
the intensity is one-half the centre of the pattern:

Iθ
Im

= 1

2
=
(

sin αx

αx

)2

(1)

The solution of (1) found by numerical method is

αx = 1.40 rad (2)

αx = πa

λ
sin θx = 1.40 (3)

where θx = 1

2
�θ.

sin θx = 1.4λ

πa
or θx = sin−1

(
1.4λ

πa

)

or �θ = 2θx = 2 sin−1
(

1.4λ

πa

)

(b) �θ = 2 sin−1
(

1.4

4π

)
= 12.8◦

15.44 a sin θ = mλ

a sin θ1 = 1 · λ1

a sin θ2 = 2λ2

But θ1 = θ2

∴ λ1 = 2λ2

15.45 sin θ = x

D
= nλ

a

∴ a = nλD

x
= 2 × 5.6 × 10−5 × 200

1.6
= 0.014 cm

= 0.14 mm.

15.46 (a) Let m be the order of interference. If the slit width a is maintained con-
stant and the separation of the slits d is varied, the scale of the interfer-
ence pattern varies, but that of the diffraction pattern remains unchanged.
If the diffraction angle corresponds to the minimum given by (1) then a
particular order of interference maxima may be absent. This is called a
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missing order. Thus, a missing order is realized for an angle θ for which
the following two equations are simultaneously satisfied:

d sin θ = mλ(m = 1, 2, 3 . . .) (1)

a sin θ = nλ(n = 1, 2, 3 . . .) (2)

Dividing (1) by (2)

d

a
= m

n
(3)

Since m and n are both integers, missing orders will occur when d/a is
in the ratio of two integers. Expressing d as the sum of the slit width a
and the opaque space b between consecutive slits, that is

d = a + b (4)

(3) an be written as

a + b

a
= m

n
(5)

In particular, if a+b
a = 1, b = 0. In this case the first-order spectrum

will be absent and the resultant diffraction pattern will be similar to that
of a single slit.

If a+b
a = 2, a = b, that is the width of the slit is equal to the width of

the opaque space. Here the second-order spectrum will be absent.

(b) a + b

a
= m

n

0.16 + 0.8

0.16
= 6 = m

n

The above relation is satisfied for

n = 1, 2, 3, . . .

m = 6, 12, 18, . . .

Thus the order 6, 12, 18, etc. of the interference maxima will be missing,
in the diffraction pattern.

15.47 The central diffraction peak is limited by the first minima. The angular loca-
tions of these minima are given by

a sin θ = λ (∵ m = 1) (1)
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The angular locations of the bright interference fringes are given by

d sin θ = mλ (m = 0, 1, 2 . . .) (2)

We can locate the first diffraction minimum within the double-slit fringe pat-
tern by dividing (2) by (1)

n = d

a

n = 0.2

0.012
= 16.66

Therefore 16 interference fringes will lie within the central maximum.

15.48 m1λ1 = m2λ2

λ1 = m2λ2

m1
= 3

4
× 5460 = 4095 Å

15.49 d sin θ = mλ

For m = mmax, θ = θmax = 90◦, Given
1

d
= 5000

mmax = d

λ
= 1

5000
× 1

6 × 10−5
= 3.33

∴ mmax = 3

15.50
d

a
= m

n
(condition for missing orders)

0.3

0.1
= 3

1
= m

n

where m and n are integers. The above relation is satisfied for

m = 3, 6, 9

n = 1, 2, 3

Thus the maxima will be missing in the third, sixth, ninth, etc. orders.

15.51
d

a
= a + b

a
= a + 2a

a
= 3 = m

n

The above relation is satisfied for

m = 3, 6, 9, . . .

n = 1, 2, 3, . . .
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Thus the interference maxima will be missing in the third, sixth, ninth, etc.
orders.

15.52 n1(max) = d

λ1
= 1

Nλ1
= 1

4000 × 4 × 10−5
= 6.25

n2(max) = d

λ2
= 1

Nλ2
= 1

4000 × 7 × 10−5
= 3.57

The maximum order of spectrum varies between 3 (towards red) and 6
(towards violet).

15.53
d

a
= a + b

a
= a + a

a
= 2 = m

n
(condition for missing orders)

∴ m = 2n

The above condition is satisfied for

n = 1, 2, 3 . . .

m = 2, 4, 6 . . .

Thus all the even orders of interference fringes (2, 4, 6, . . .), except m = 0,
are missing.

15.54 The secondary maxima lie approximately halfway between the minima.
Now, the intensity at an angle θ is given by

Iθ = Im

(
sin α

α

)2

(1)

where α = π a

λ
sin θ (2)

Minima occur in (1) when

α = mπ (m = 1, 2, 3 . . .) (3)

Therefore the first secondary maximum would occur halfway between first
minimum and second minimum. Therefore,

α =
(

m + 1

2

)
π = 3 π

2
(4)

Substituting (4) into (1)

I

Im
=
(

sin(3π/2)

3πl2

)2

= 0.045 or 4.5%
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15.55 In Fig. 15.34 the grating space AD = d. In the �ABD, BÂD = i , the angle
of incidence. Also DÂC = θ , the angle of diffraction. In the �ABD, BD the
path difference between the incident rays, YD and XA is

BD = d sin i

Fig. 15.34 Diffraction by a
grating for a parallel beam of
light which is obliquely
incident

Similarly, the path difference between the diffracted rays is

DC = d sin θ

The total path difference

BD + DC = d(sin i + sin θ) (1)

For the mth primary maximum

d(sin θm + sin i) = mλ (2)

or sin

(
θm + i

2

)
= mλ

2d cos

(
θm − i

2

) (3)

The angle of deviation of the diffracted beam is

δm = θm + i (4)

For δm to be minimum, cos
θm − i

2
must be maximum, that is

(θm − i)/2 = 0 → θm = i (5)
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Then δm will be minimum, say Dm , and is given by

Dm = θm + i = 2i

or i = Dm/2 (6)

Substituting (5) and (6) into (3)

2d sin

(
Dm

2

)
= mλ (7)

N = 1

d
= 2 sin(20/2)

1 × 4.358 × 10−5
= 7969 lines/cm

15.56 Condition for overlapping is

mλ1 = (m + 1)λ2

5400 m = 4050 × (m + 1)

∴ m = 3

d sin θ = mλ1

N = 1

d
= sin θ

mλ1
= sin 30◦

3 × 5.4 × 10−5

= 3086 lines/cm

15.57 λ = 5893 Å = 5.893 × 10−5cm

�λ = λ1 − λ2 = 5896 − 5890 = 6 Å = 6 × 10−8cm

Resolving power

R = λ

dλ
= 5.893 × 10−5

6 × 10−8
= 982

R = Nm

∴ N = R

m
= 982

2
= 491 (Total number of lines)

If N ′ is the number of lines/cm, then the width of the grating

W = N

N ′ = 491

800
= 0.614 cm

15.58 Total number of lines on the grating

N = N ′W (1)
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where N ′ = number of lines/in. and W is the grating width (in inch)

∴ N = 10, 000 × 3 = 30, 000

R = λ

dλ
= Nm

∴ dλ = λ

Nm
= 6 × 10−5

3 × 104 × 1
= 2 × 10−9 cm = 0.2 Å

15.59 Total number of lines

N = N ′W = 2 × 425 = 850

λ = 5893 Å, dλ = 5896 − 5890 = 6 Å

(i) First order:

R = λ

dλ
= Nm

N = 1

m

λ

dλ
= 1

1
× 5893

6
= 982 lines

As the required number of lines (982) exceeds the total number of lines
(850) the lines are not resolved in the first order.

(ii) Second order

N = 1

m

λ

dλ
= 1

2
× 5893

6
= 491

As the required number of lines (491) is less than the total number of
lines, the lines are resolved in the second order.

15.60 The resolving power for a prism of base length B is given by

R = λ

�λ
= Bdμ

dλ
(1)

where dμ/dλ is the variation of refraction index of the prism with wave-
length, λ is the mean wavelength and �λ is the difference in wavelengths to
be resolved:

λ = 5893 Å,�λ = 5896 − 5890 = 6 Å

dμ

dλ
= 1.6635 − 1.6545

(6563 − 5270) × 10−8cm
= 696/ cm

Substituting the above values in (1) and solving for B, we find the length of
the base of the prism, B = 1.41cm.
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15.61 The limit of resolution of a telescope is

dθ = 1.22
λ

D
= 1.22 × 55 × 10−5

500
= 1.342 × 10−7rad

If the distance between two points is x and the moon–earth distance r , then

x = r dθ = 3.8 × 108 × 1.342 × 10−7 m = 51 m

15.62 θ = 1.22λ

d
= 1.22 × 5.89 × 10−7

30 × 10−6 = 0.024 rad

15.63 I = I0

[
2J1(ρ)

ρ

]2

where ρ = 2π

λ
a sin θ and J1(ρ) is the Bessel function of the first kind.

According to the Rayleigh criterion, the separation of the peaks is equal to the
distance between the first minimum and the centre of the diffraction pattern,
that is, the first minimum of the Bessel function is at ρ = 3.83, and we have

ρ = 3.83 = 2πa

λ

(
R1

X

)

or γ = R1

X
= 0.61

λ

a
= 1.22

λ

2a
= 1.22

λ

D

where 2a = D is the diameter of the lens, γ is the angle between the two
stars, the distance between the observation screen and the lens is X (equal
to focal length of the lens) and the position of the details of the diffraction
pattern is R1, Fig. 15.35a, b.

Fig. 15.35 a Intensity
distribution for diffraction
from a circular aperture
described by Bessel function

Fig. 15.35 b Resolution of
diffraction patterns for two
stars, the angle between them
being γ . For the explanation
of parameters X , R1 and ρ,
see the text
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15.64 rn = √
fnnλ

r1 =
√

50 × 1 × 5 × 10−5 = 0.05 cm

r25 =
√

50 × 25 × 5 × 10−5 = 0.25 cm

15.3.6 Polarization

15.65 Path difference introduced by the plate

�x = (n0 − ne)t = (1.642 − 1.478) × 4 × 10−5

= 6.56 × 10−6 m

Phase difference

δ = 2π�x

λ
= (2π)(6.56 × 10−6)

6 × 10−7 = 68.66 rad

15.66 Iθ = Imax cos2 θ (Malus’ law)

cos θ =
√

Iθ
Imax

=
√

1

2
= 1√

2

∴ θ = ±45,±135◦.

15.67 tan θp = μ = 1.33 (Brewster’s law)

∴ θp = 53◦

Therefore the elevation of the sun is 90 − 53◦ = 37◦

15.68 tan Qp = μwg = μg

μw
= 1.5

1.33
= 1.1278

∴ Qp = 48.4◦

15.69 t = λ

4(μ0 − μe)
= 6 × 10−5

4(1.553 − 1.544)
= 1.67 × 10−3 cm

15.70 θ = αL D

where θ is the angle of rotation of plane of polarization, α is the specific
rotation, L is the length of the tube in decimetres and D is the amount of
solvent in grams per 100 c.c:

L = 20 cm = 2 dm
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D = θ

αL
= 13.2◦

66◦ × 2
= 0.1 g/100 c.c. = 1.0 g/L

15.71 As the light passing through the first sheet is unpolarized, the intensity I1 of
the light transmitted by the first sheet is given by the one-half rule:

I1 = 1

2
I0 (1)

Because the polarizing direction of the first sheet is parallel to the y-axis,
the polarization of the light transmitted by it is also along y-axis.

Because the light reaching the second sheet is polarized, the intensity I2
of the light transmitted by that sheet is given by the cosine-squared rule.
The angle θ in the rule is the angle between the polarization direction of
the incoming light, parallel to the y-axis, and the polarizing direction of the
second sheet, θ being counterclockwise from the y-axis. Thus

I2 = I1 cos2 θ (Malus’ law) (2)

Because the light entering the third sheet is polarized and the polarizing
between the second and the third sheets is 90 − θ , the transmitted intensity
is again given by Malus’ law. Thus

I3 = I2 Cos2(90 − θ) = I2 sin2 θ (3)

From (3), (2) and (1)

I3 = I2 sin2 θ = I1 cos2 θ sin2 θ = I0

2
cos2 θ (1 − cos2 θ) (4)

or
I3

I0
= 0.1152 = 1

2
cos2 θ (1 − cos2 θ)

or cos4 θ − cos2 θ + 0.2304 = 0

∴ cos2 θ = 0.64 or 0.36

or cos θ = ±0.8 or ± 0.6

Taking only the positive value

θ = 36.87◦ or 53.13◦

The polarization is along the x-axis.

15.72 Let an unpolarized light beam be incident from air on a dielectric such as
glass. The E vector for the wave can be resolved into two components – one
parallel to the plane of incidence, that is, the plane of paper and the second
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one perpendicular to the plane of incidence. The former one is represented
by double arrow and is called π -component while the latter shown by dots is
known as σ -component; Fig. 15.36.

Fig. 15.36 Polarization by reflection • σ -component ↔ π -component

For a given dielectric, there is a particular angle of incidence ip, called the
polarizing angle or Brewster angle, at which the reflected beam is completely
polarized with its plane of vibration perpendicular to the plane of incidence,
that is, the reflected beam contains σ -component alone. Experiments show
that at the polarizing angle, the reflected and refracted beams are at right
angles. This leads to Brewster’s law

tan i p = μ

where μ is the refractive index. Note that at the polarizing angle the
π-component is entirely refracted containing some amount of σ-component
as well. Thus the transmitted light is only partially polarized. With the use
of a stack of glass plates the proportion of σ-component can be increased
in the reflected beam from multiple reflections and at the same time
π-component can be made richer in the transmitted beam. Thus the trans-
mitted beam is rendered plane polarized with the plane of vibration in the
plane of incidence.
Dielectrics such as glass, water can partially or fully polarize light by reflec-
tion. If the surface is horizontal, the light is partially or fully polarized hori-
zontally resulting in a bright spot (the glare) on the surface where reflection
takes place. Such a glare from horizontal surfaces is eliminated by mounting
the lenses in polarizing glasses with their polarizing direction vertical.

Fig. 15.37 Brewster
windows mounted on a laser
tube
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Brewster windows are used in laser technology (Fig. 15.37). The tubes of gas
lasers are sealed by mounting them in such a way that laser light is incident
at Brewster’s angle. Mirrors mounted outside the tube reflect the light back
and forth through the tube. A small hole in one mirror permits the laser light
to leave. Because the windows are tilted to the axis such that light is incident
at Brewster’s angle, the parallel component can traverse back and forth in the
tube with minimum attenuation. The perpendicular component after several
traversals gets substantially attenuated. Thus the light leaving the laser is
polarized in the parallel direction

tan θB = μ = 1.5

∴ θB = 56.3◦, which is also the inclination of the Brewster window.
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Chapter 1

Kinematics and Statistics

1.1 Overtaking of a truck travelling at constant speed by a car starting from rest at
constant acceleration.

1.2 Greatest height attained by a stone projected up from an elevated point.
1.3 Meeting of two stones one projected up from the ground and the other dropped

from a height.
1.4 Distance travelled by a particle in 3 s when x = A sin π t .
1.5 A man of height 1.8 m moves away at 7 m/s from a lamp 6 m high. To find the

speed at which the tip of shadow moves.
1.6 The displacement x of a particle is described by 3t = √

3x + 6. To find x
when v = 0.

1.7 A particle projected up passes the same height h in 2 and 10 s. To find h.
1.8 Overtaking of cars with constant acceleration and constant deceleration.
1.9 Choice of route in the field and on the road so that a boy may reach the desti-

nation in minimum time.
1.10 Location of water drops from the nozzle of a shower which fall at regular time

intervals.
1.11 Velocity–time graph for an object thrown upwards from the roof of a building.
1.12 A ball dropped into a lake from a diving board.
1.13 One stone is dropped from h = 44.1 m, another is thrown down 1 s later. To

find u of the second stone if both the stones strike the ground simultaneously.
1.14 A ball is seen to move up and down before a window 2 m high for t = 1 s

overall. To find the height above the window to which the ball rises.
1.15 In the last second of a free fall a body covered three-fourth of its total path. To

find t and h.
1.16 Relative velocity of wind.
1.17 Time for a bolt to hit the floor of an elevator which accelerates with constant a.
1.18 Deceleration of a car and truck to avoid a rear-end collision.
1.19 Relative velocity and distance of closest approach of two ships.

769
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1.20 A packet is dropped from an ascending balloon at 9.8 m/s at a height of 98 m.
To find time for the packet to reach the ground.

1.21 Time of ascent/time of descent and initial speed/final speed when a body is
thrown up with heavy air resistance.

1.22 Motion of a body in free fall with air resistance proportional to velocity.
1.23 In prob. (1.22) air resistance is proportional to the square of velocity.
1.24 Under the assumption of velocity square air resistance to find h to which a

body will rise when projected upwards with velocity u.
1.25 Loss in kinetic energy when a body thrown upwards returns with air resistance.
1.26 Given velocity components dx/dt = 6 + 2t and dy/dt = 4 + t , to find x(t)

and y(t), v and a.
1.27 Two objects are projected horizontally in opposite directions with velocity u1

and u2 from a tower. To find time when v1 is ⊥ to v2 and the distance of
separation.

1.28 An object projected up from the foot of a tower crosses the top of a tower in
time t1 and recrosses it in time t2. If t3 is the time for free fall from the top of
tower then t3 = √

t1t2.
1.29 Maximum range of a shell fixed at angle θ up an incline of α is obtained when

θ = α/2 + π/4.
1.30 A stone thrown from ground over horizontal ground just clears three walls

separated by r and 2r . The inner wall is 15/7 as high as the outer ones which
are equally high. To find n if R = nr .

1.31 The velocity and angle of projection so that a ball may be thrown through two
openings in the windows of a house.

1.32 Monkey and hunter problem.
1.33 To show (a) tan α = 4h/R and (b) h = gT 2/8.
1.34 T , R and time to reach ymax and shape of flight.
1.35 Explosion of a projectile at the highest point of the trajectory.
1.36 Radius of curvature of the trajectory of a projectile.
1.37 Path of a boat which is rowed with constant velocity equal to that of the river,

with the flow always directed towards the opposite point to the starting point.
1.38 A ball thrown from a height against a wall bounces and hits the ground. To

locate the landing spot.
1.39 Three forces acting on a particle as in the diagram.
1.40 Torque, angular acceleration and angular velocity.
1.41 Minimum coefficient of friction to prevent a container from sliding in an accel-

erated track.
1.42 Minimum force required for a wheel to climb up an obstacle.
1.43 Centre of mass of a semicircular wire.
1.44 Centre of mass of a semicircular disc.
1.45 Centre of mass of a solid hemisphere.
1.46 Centre of mass of a hollowed circular disc.
1.47 Centre of mass of the earth–moon system.
1.48 Centre of mass of CO molecule.
1.49 Centre of mass of NH3 molecule.
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1.50 A boy walks from the bow to the stern of a boat. To find the distance through
which the boat moves.

1.51 A loaded rod is struck so that it moves with pure rotation. To find the position
where it should be struck.

1.52 Centre of mass of solid cone.
1.53 Centre of mass of wire in the form of an arc of a circle.
1.54 Centre of mass of velocity of pigeons when one of them is shot dead and rest

fly with the same speed.
1.55 Centre of mass of a rod if linear density is proportional to the distance from

one end.
1.56 Centre of mass of a system of particles whose masses and distance from a

fixed point are in the ratio of natural numbers.
1.57 Centre of mass of a semicircular disc if density varies as r2 from the centre of

base.
1.58 Centre of mass of water molecule.
1.59 Centre of mass of the combined structure of three laminas.
1.60 Stable position of a particle in the given potential.
1.61 Equilibrium position moving in the given potential and frequency of small

amplitude oscillations.
1.62 Instability of a cube for sliding or toppling.
1.63 Limiting equilibrium for a ladder leaning against a smooth wall.

Chapter 2

Particle Dynamics

2.1 Motion of blocks in tandem on a horizontal table.
2.2 Motion of two blocks connected over a pulley.
2.3 A horizontal force is applied to a block over which sits another block.

Maximum force applied so that the upper block may not slide.
2.4 Contact force.
2.5 Pulling and pushing a box at an angle.
2.6 Maximum length of a chain hanging over a table without sliding.
2.7 Work done for pulling one-third of the chain hanging over the table.
2.8 Motion of a block on a rough table by a force due to weight of another block

which is connected by a string passing over a pulley.
2.9 Motion of a block on a rough incline.

2.10 A block is placed on a parabolic ramp. Maximum height at which block does
not slip.

2.11 Sliding of a block on a rough incline.
2.12 Net torque and total angular momentum and acceleration of blocks on a system

comprising an incline, two blocks, pulley and string.
2.13 Motion of a box up and down an incline.
2.14 Motion of a mass on a wedge incline placed on a smooth table.
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2.15 Motion of two blocks connected by a string passing over a pulley on the top
of two smooth inclines hinged together back to back.

2.16 Motion of two blocks connected by a string over a pulley on top of a double
incline.

2.17 Atwood machine.
2.18 Coefficient of friction by the time of descent on a rough and smooth incline.
2.19 Angle of incline if the normal reaction is twice the resultant force, given

μ = 0.5.
2.20 Acceleration of the centre of mass in Atwood machine.
2.21 Two blocks in vertical arrangement connected by a string over a pulley. To find

acceleration of the lower block under the application of a horizontal force.
2.22 Work done by constant forces F1 and F2 for displacement from r1 to r2.
2.23 Given U (x) = 5x2 − 4x3, to find (a) F(x) and (b) equilibrium positions and

to determine whether they are stable or not.
2.24 To find μ if 70% of the initial potential energy is dissipated during the descent

on a 30◦ incline.
2.25 A smooth object slides down a frictionless ramp of height h. To find the dis-

tance necessary to stop the object if the coefficient of friction is μ.
2.26 Collision of a crate with a fixed spring.
2.27 Kinematics of an elastic collision.
2.28 An off-centre elastic scattering of two objects of equal mass.
2.29 Impact of a ball on a spring attached to a block placed on a smooth table.
2.30 A sphere of mass m is placed in between and collinear with two other spheres

each of mass 9 m. If the small sphere moves in line with the centres of other
two, to find number of collisions that will occur if the spheres are perfectly
elastic.

2.31 An elastic head-on collision between two particles.
2.32 An inelastic oblique collision.
2.33 A glancing elastic collision of two identical particles.
2.34 Decay of 14C nucleus at rest.
2.35 Relation between scattering angle and recoil angle in elastic collision.
2.36 Velocity of the target particle in a glancing elastic collision.
2.37 An inelastic collision between a nucleus of mass 2 m with stationary nucleus

of mass 10 m.
2.38 Fraction of neutron’s kinetic energy in elastic head-on collision with carbon

nucleus.
2.39 In an elastic collision between a very heavy body and a very light body at rest,

the lighter body has twice the initial velocity of the heavy body.
2.40 Half of kinetic energy is lost in completely inelastic collision of one body with

one identical body at rest.
2.41 Speed of a bullet from its collision with a wooden block resting on a table.
2.42 The ratio M/m, Vc, KE in CMS in elastic collision.
2.43 In an elastic collision between M and m at rest (M > m), sin θm = m/M .
2.44 The ballistic pendulum.
2.45 Pressure exerted by fire engine jet (elastic collision with the wall).



Problem Index 773

2.46 Pressure exerted by fire engine jet (inelastic collision with the wall).
2.47 Symmetric elastic scattering of one ball with another identical ball at rest.
2.48 Total time for a ball dropped from a height h on a fixed plane to come to rest.
2.49 In prob. (2.48) total distance travelled.
2.50 In prob. (2.48) the height to which the ball goes up in the nth rebound.
2.51 For inelastic collision energy that is wasted is proportional to the square of the

relative velocity of approach.
2.52 Magnitude of change in initial and final momentum in projectile’s motion.
2.53 Explosion of a shell into three fragments at the highest point of trajectory.
2.54 Hovering of a helicopter.
2.55 Firing of a machine gun.
2.56 Scale reading of a balance pan when particles fall from a height and make

elastic collisions with the pan.
2.57 In prob. (2.56) collisions are completely inelastic.
2.58 A partly elastic collision.
2.59 Acceleration of a car in a boat.
2.60 Minimum exhaust velocity for rocket to lift off immediately after firing.
2.61 Rate of fuel consumption to produce desired acceleration.
2.62 The rocket thrust, initial net acceleration, burn out velocity and time to reach

burn-out velocity for Centaur rocket.
2.63 Rate of ejection of gas to provide necessary thrust.
2.64 Equation of motion for sliding of a rope over the edge of a table and its solu-

tion.
2.65 Variable mass problem applied to a running open car on horizontal rail under

rain falling vertically down.
2.66 Pressure exerted by a falling chain on a table.
2.67 Velocity of rain drops.

Chapter 3

Rotational Kinematics

3.1 Given the parametric equations to find the path.
3.2 Given a = f (r, t) in a circular orbit, to find power.
3.3 To find v where r = 3 m, r = 5 m/s and ω = 4 rad/s.
3.4 A point moves along a circle of r = 40 cm. Time needed for aN = at.
3.5 A point moves along a circle of r = 4 cm. Given x = 0.3t3, to find aN and at

when v = 0.4 m/s.
3.6 (a) Expression for r in polar form and (b) a is directed towards centre of circular

motion.
3.7 ∝ of a wheel if a (total) of a point on the rim forms an angle of 30◦ with v in

t = 1.0 s.
3.8 A wheel rotates with constant acceleration α = 3 rad/s2. a(total) =

12
√

10 cm/s2, to find R.
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3.9 A car travels around a horizontal bend of R = 150 m. To find vmax given
μs = 0.85.

3.10 Conical pendulum.
3.11 Difference in the level of the bob of conical pendulum when the frequency of

revolutions is increased.
3.12 A rotating wheel plus a simple pendulum system.
3.13 Slipping of a coin placed on a rotating gramophone record.
3.14 Elongation of a spring with a particle attached to it.
3.15 Balancing a coin placed on the inside of a hollow rotating drum vertically.
3.16 A bead is located on a vertical circular wire frame so that its position vector

makes an angle θ with the negative z-axis. If the frame is rotated, to find ω so
that the bead does not slide.

3.17 A wire bent in a triangular form passes through a ring which revolves in a
horizontal circle with a constant speed. To show that v = √

gh if the wires are
to maintain the form.

3.18 A small cube placed on the inside of a funnel which rotates with constant
frequency f . If μ is the coefficient of friction to find fmax for which the block
will not move.

3.19 In prob. (3.18) to find fmin for which the block will not move.
3.20 A large mass M and a small mass m hang at two ends of a string that passes

through a smooth tube. To find the frequency of rotation of mass m in a hori-
zontal circle so that M may be stationary.

3.21 An object of weight W is being weighed on a spring balance going around a
curve of known r and v. To find the weight registered.

3.22 Given the height of C.G of a carriage above the rails and the distance between
the rails to find vmax on an unbanked curve of known radius.

3.23 vmax for given r , θ and μ on a curve on a highway.
3.24 Linear velocity of rotation of points on earth’s surface at given latitude.
3.25 The speed of an aeroplane flying towards west such that the passenger may

see the sun motionless.
3.26 The point at which a particle sliding from the highest point of smooth sphere

would leave.
3.27 A sphere attached to a string is whirled in a vertical circle. To find the speed

at the highest point, given that tension at bottom is equal to thrice the tension
at the top.

3.28 A light rigid rod acting as simple pendulum when released from horizontal
position has tension in the suspension equal to its weight when cos θ = 1/3.

3.29 Minimum speed of a motor cyclist in a circus stunt.
3.30 Minimum breaking strength of the string of a simple pendulum.
3.31 When the bob of a simple pendulum is deflected through a small arc s, and

released, it would have velocity v = √
g/L at equilibrium position.

3.32 Tension in the string of a simple pendulum at θ = 45◦ when it swings with
amplitude θ = 60◦.

3.33 When a simple pendulum is released from an angle θ , it has tension T = 2 mg
at the lowest position. To determine θ .
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3.34 The bob of a simple pendulum of l = 1.0 m has v = 6 m/s when at the bottom
of the vertical circle. To find the point where it leaves the path.

3.35 A block released from height h on an incline enters the loop-the-loop track for
r = 12 cm. To find h.

3.36 To find the point from where a particle leaves the loop-the-loop track.
3.37 To find the force exerted by a block on the given point of the loop-the-loop

track.
3.38 In prob. (3.37), if F = mg at the top of the loop then h = 3R.
3.39 It v = 0.8944

√
5gR at the bottom of the loop-the-loop track then the particle

would leave at 41.8◦ with the horizontal.
3.40 In the loop-the-loop track minimum height for completion of circular track is

2.5R.
3.41 A nail is located at distance x vertically below the point of suspension of

a simple pendulum of length 1 m. The pendulum bob is released from the
position the string makes 60◦ with the vertical. To find x if the bob makes
complete revolutions.

3.42 Complete revolutions made by a test tube when the cork flies out under
pressure.

3.43 Minimum coefficient of friction between the tyres and road for a car to go
round a level circular bend without skidding.

Chapter 4

Rotational Dynamics

4.1 Moment of inertia of a solid sphere.
4.2 Moment of inertia of a dumbbell.
4.3 Moment of inertia of a right circular cone.
4.4 Moment of inertia of a right circular cylinder.
4.5 Radius of gyration of a hollow sphere of radii a and b.
4.6 Moment of inertia of a thin rod.
4.7 Moment of inertia of a rectangular plate.
4.8 Moment of inertia of a triangular lamina.
4.9 A disc of known M.I is melted and converted into a solid sphere. To show that

I (sphere) = I (disc)/5.
4.10 Moment of inertia of a hollow sphere.
4.11 M.I. of a hollow sphere assuming that of a solid sphere.
4.12 Rolling of a solid cylinder down an incline.
4.13 Angular momentum and kinetic energy of a neutron star.
4.14 Rolling of a solid ball down an incline.
4.15 Least coefficient of friction that (a) solid cylinder and (b) loop, roll down an

incline without slipping.
4.16 Tension in thread drawn through a hole in a table with constant velocity, the

other end being attached to a small mass on the horizontal plane.
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4.17 Spinning of an ice skater.
4.18 The distance to which a rolling sphere climbs up an incline.
4.19 A body attached to a string wound around a pulley is mounted on an axis. To

determine linear acceleration and tension in the string.
4.20 A string is wound several times around a spool, the free end of the string

being attached to a fixed point. To find acceleration of spool and tension in
string.

4.21 Two unequal masses are suspended by a string over a heavy pulley. To find a,
α and T1/T2.

4.22 Two wheels of M.I. I1 and I2 are set in motion with angular speed ω1 and ω2.
When coupled face to face they rotate with common angular speed ω. To find
ω and work done by frictional forces.

4.23 Toppling of a thin rod initially held vertically.
4.24 A circular disc of mass M rotates with angular velocity ω. Two particles each

of mass m are attached at opposite end of diameter of disc. To find new angular
velocity of disc.

4.25 Angular momentum from velocity and position vector.
4.26 Time and torque for a ball rolling down an incline.
4.27 A string is wrapped around a cylinder which is pulled vertically upward to

prevent the centre of mass from falling. To find the tension in the string, the
work done on the cylinder and length of string unwound.

4.28 Two cords are wrapped around a horizontal cylinder and vertically attached to
the ceiling. To find a and T when cylinder is released.

4.29 A body rolling on level surface with speed u climbs up an incline to maximum
height of h = 3u2/4g. To figure out the geometrical shape of the body.

4.30 Four bodies of same mass and radius are released on an incline from the
same height. To find the order in which three bodies reach the bottom of
incline.

4.31 A tube filled with a liquid and closed of both ends is rotated horizontally about
one end. To find the force by the liquid at the other end.

4.32 An inelastic collision of two point masses moving in opposite direction with a
bar lying on a horizontal table.

4.33 Vertical oscillation of a system of rod carrying two point masses.
4.34 Duration of day if earth’s radius suddenly decreases to half its present value.
4.35 aR and aT of a pole which cracks and falls over.
4.36 Magnitude of �τ and J from the expression for J and angle between J and τ.
4.37 Spinning of a disc about its axis on a horizontal surface.
4.38 Rolling of a solid sphere along the loop-the-loop track.
4.39 Motion of a particle along the interior of a smooth hemispherical bowl.
4.40 A spool with a thread wound on it is placed on an incline with the free end of

thread attached to a nail and released, to find a.
4.41 Mean angular velocity of a flywheel.
4.42 Conical pendulum.
4.43 Sliding of a billiard hall.
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4.44 Collision of a bullet with a rod lying on a horizontal surface.
4.45 Rolling of a sphere over the top of another sphere.
4.46 A rod vertically placed on a horizontal floor. To calculate the reaction when

the rod is about to strike.
4.47 A double pulley.
4.48 Vector angular momentum of two particles of opposite linear momentum is

independent of origin.
4.49 Rolling of a small sphere on the inside of a large hemisphere.
4.50 Four objects of same mass and radius are spinning with the same ω on a table

object for which maximum work to be done to stop it.
4.51 In prob. (4.50) four objects have same J . Object for which maximum work to

be done to stop it.
4.52 In prob. (4.50) the four objects have the same ω and J . Work done to stop

them.
4.53 Four objects of same m and R roll down an incline. Object for which torque

will be least.
4.54 To show ω and J are constant for the given position vector.
4.55 Elastic collision of a hockey ball with a stick lying on a table.
4.56 Motion of a rotating cylinder on a rough table.
4.57 A system of two identical cylinders on which threads are wound is arranged

as in the diagram. To find the tension in the process of motion.
4.58 A point on the circumferences of a spinning disc is suddenly fixed. To find the

new ω and blow.
4.59 Rotation of a thin rod on a horizontal surface with one end fixed.
4.60 Time period of oscillations of a sphere inside a hollow cylinder.
4.61 (a) M.I. of a disc and (b) rolling of the disc at different levels.
4.62 An insect crawls with uniform speed on a ring lying on a horizontal surface.

To find ω of the ring.
4.63 (a) Direction of ω and (b) Foucault’s pendulum.
4.64 Deviation of the fall of an object from a height on a point vertically below.
4.65 Point of landing of an object projected upwards on equator.
4.66 Speed with which an object is thrown vertically upwards so that it returns to

earth 1 m away.
4.67 Expression for the deviation due to Coriolis force when a body is dropped

from height h in northern latitude.
4.68 Magnitude and direction of Coriolis force on an iceberg.
4.69 Expression for the raising of level of water across a channel due to Coriolis

force.
4.70 To prove that the path of an object dropped is a semicubical parabola.
4.71 Magnitude and direction of lateral force exerted by the train on the rails.
4.72 Expression for difference in lateral force on the rails when it travels towards

east and toward west.
4.73 Displacement when a body is thrown vertically up with v = 100 m/s at λ =

60◦ in t = 10 s.
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Chapter 5

Gravitation

5.1 Gravitational force between two lead spheres in contact.
5.2 Magnitude of net force on the given sphere by two other spheres as in the

diagram.
5.3 Relative velocity of approach of two bodies at distance d when they start at

rest at great distance r .
5.4 Time for the earth to fall into the sun when suddenly stopped in the orbit.
5.5 Deflection of angle of plumb bob due to earth’s rotation.
5.6 Gravitational energy of the earth.
5.7 Height h above earth’s surface at which g is identical with that at depth d

below earth’s surface.
5.8 Mean density of the earth from R, g0 and G.
5.9 Neutral point on the line joining the centre of the earth and the sun.

5.10 Difference in g due to earth’s rotation
5.11 Gravitational potential due to a uniform sphere when r < R.
5.12 Gravitational potential due to uniform rod on axial line.
5.13 Launching speed in the western direction is higher than in the eastern

direction.
5.14 Gravitational intensity at the centre of a quadrant of a circular wire.
5.15 Tidal force of the moon.
5.16 To show that the gravitational pressure of a star P ∝ V −4/3.
5.17 Field due to infinite line mass of linear density λ at distance R.
5.18 Neutral point on the line joining centres of the earth and the moon.
5.19 Work done in overcoming gravitational attraction when a particle is moved

from the centre of base of hemisphere to infinity.
5.20 Variation of field in a spherical shell.
5.21 Variation of field along the axis of a disc.
5.22 Speed with which a particle enters an opening in a spherical shell and hits the

rear side.
5.23 A particle is fired from a planet with known velocity. To calculate the maxi-

mum height reached.
5.24 A star starting from rest at distance R crosses the centre of a nebula in the

form of a ring of radius R with speed v. To find v.
5.25 Ratio of the work done in taking the satellite from earth’s surface to a height

h and the extra work to put the satellite in orbit.
5.26 Minimum initial velocity of an asteroid such that it does not hit a planet at a

given impact parameter.
5.27 (i) Verification of Kepler’s third law for the given data for the earth and

Venus.
(ii) Derivation of formula for the mass of sun.

5.28 Eccentricity of the orbit of a planet from greatest and least velocities.
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5.29 Separation of two components and mass of each component of a binary
star.

5.30 A satellite fixed from the moon with velocity v0 at 30◦ to vertical reaches
maximum known height. To calculate v0.

5.31 Semi-major axis of a satellite is given by (T/2π)(vmax · vmin)
1/2.

5.32 Mass of a planet from the radii of the satellite and planet, the shortest distance
between the surfaces and period.

5.33 Angular momentum of the comet at a given point (r , θ ) from the sun and speed
of the comet at the closest distance of approach from given data.

5.34 The orbits of a comet and the earth are diagrammatically shown. To determine
total energy component of velocity and angle at which comets orbit crosses
that of the earth.

5.35 Verification of angular momentum conservation from data on the satellite
‘Apple’.

5.36 Verification with which a satellite is to be fired to meet the subsequent motion.
5.37 Total energy and angular momentum of the fragments produced from internal

explosion of a satellite.
5.38 When a particle approaches the nearer apse of an elliptic orbit the centre of

force is transferred to the other focus. To determine the eccentricity of the
new orbit.

5.39 Time average <1/r> and <v2> for a satellite.
5.40 Changes in the major axis and time period of the earth when a small meteor

falls into the sun and the earth is at the end of minor axis.
5.41 The velocity is doubled. To show that the new orbit will be a parabola or

hyperbola accordingly as the apse is farther or nearer.
5.42 The axes of the new orbit when a particle is at the end of minor axis and force

is increased by half.
5.43 In a circular orbit forces acting on the satellite, geosynchronous satellite.
5.44 Speed of a satellite at the apogee given its speed at the perigee.
5.45 Formula for the angle φ of encounter of a small body of velocity v with a

massive body of mass M and impact parameter P .
5.46 Time required to describe an arc of a parabola under the force k/r2 to the

focus.
5.47 Maximum time comet remains inside earth’s orbit.
5.48 Law of force for the orbit r = a sin nθ .
5.49 Law of force for the orbit r = a(1 − cos θ).
5.50 In prob. (5.49) if Q be the force at the apse and v the velocity then 3V 2 =

4aQ.
5.51 To determine orbit for inverse cube force.
5.52 Force necessary to describe the leminiscate is inversely proportional to the

seventh power of r .
5.53 Force directed towards a point on the circular orbit of a particle is inversely

proportional to the fifth power of r .
5.54 If the sun’s mass suddenly decreased to half its value, then earth’s orbit would

become parabolic.
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Chapter 6

Oscillations

Simple Harmonic Motion

6.1 Given E and T and x at t , to calculate A and m.
6.2 Given v1 and v2 at x1 and x2, to find A and T .
6.3 Given m, a and T for simple pendulum, to find, vmax and tension (max).
6.4 Given T = 16 s, at t = 2 s, x = 0 and at t = 4 s, v = 4 m/s, to find A.
6.5 To show that a floating body performs SHM vertically.
6.6 A box dropped is in a tunnel along earth’s diameter. To show that it performs

SHM and to find T .
6.7 Given the equation for SHM, to find A, T , f , ε, v, a at t = 1 s.
6.8 (a) Given KE = PE, to find x . (b) Given x = A/2, to show KE/PE = 3/1.
6.9 Mass M attached to a spring has T = 2 s. For M + 2, T = 3 s. To find M .

6.10 amax = 5π2 and at x = 4, v = 3π . To find A and T .
6.11 Given amax = α and vmax = β, to show that A = β2/α and T = 2πβ/α.
6.12 If tension in lowest position is 1.01 mg, angular amplitude of pendulum is

0.1 rad.
6.13 For SHM, x = a, b and c at t0, 2t0 and 3t0. To find f .
6.14 For SHM a 4 kg mass has T = 2 s and A = 2 m. To find k and Fmax.
6.15 Path of the particle from x = a sin ωt and y = b cos ωt .
6.16 To show F = −kxî is conservative and to find U .
6.17 K , A and f for vertical oscillations of a mass on a spring.
6.18 Amplitude of scale-pan oscillations when a mass is dropped from height h and

sticks to the pan.
6.19 Probability of finding a particle between x and x + dx for SHM.
6.20 Mean K and mean U for SHM.
6.21 SHM for rolling of a cylinder plus spring system.
6.22 Time taken to gain a complete oscillation for two simple pendulums of given

lengths.
6.23 Loss of time when a pendulum is taken from ground to top of a tower.
6.24 Loss of time for a pendulum when taken below earth’s surface.
6.25 Oscillations of a liquid in U -tube.
6.26 SHM for cylinder–piston system.
6.27 Given equation to SHM and T , and x = 4 cm at t = 0 s. To find displacement

at t = 6 s.
6.28 Determination of mass of spring from vertical oscillations of spring-mass

system.
6.29 Work done on stiffer spring when stretched by the (a) same amount and (b)

same force.
6.30 Oscillations of a solid cylinder rolling inside a large cylinder.
6.31 Physical pendulum.
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6.32 Length of a simple pendulum that has the same T as a swinging rod.
6.33 g by a physical pendulum.
6.34 Frequency of oscillations of a semicircular disc pivoted freely.
6.35 Ratio of time periods of two modes of oscillations of a ring suspended on a

nail.
6.36 Torsional oscillator.
6.37 Small oscillations of a pulley-spring-mass system.
6.38 Small oscillation of a cylinder attached to two springs.
6.39 Period of small oscillations of a particle in a one-dimensional potential field.
6.40 Effective spring constant of two springs in series.
6.41 Effective spring constant of two springs in parallel.
6.42 T for a block plus two spring system.
6.43 Oscillations of wire-spring-mass system.
6.44 Natural frequency of oscillation of a system consisting of a mass attached to

one end of a rod which is connected to the centre of a cylinder.
6.45 Natural frequency of an oscillating semi-circular disc.
6.46 Eigen frequencies and normal modes of coupled pendula.
6.47 Equations of motion and energy in normal coordinates. Characteristics of nor-

mal coordinates.
6.48 To find frequency components and beat frequency from the resultant

displacement.
6.49 Frequency of vibration of HCl molecule.
6.50 Resultant of three vibrations in the same straight line.
6.51 Logarithmic decrement for the vibrations of the mass-spring system.
6.52 Underdamped, overdamped and critically damped motion for the given

equation.
6.53 Natural period, damping constant and logarithmic energy decrement.
6.54 Solution of equation of motion for a damped oscillator.
6.55 Position of a weight attached to a vertical spring and nature of oscillations.
6.56 Resonance frequency when periodic force is applied.
6.57 To find amplitude, phase lag, Q-factor and power dissipation from the equa-

tion for forced oscillations.
6.58 Q-factor for electric bell given frequency and time constant.
6.59 An oscillator has T = 3 s. Its amplitude decreases by 5% each cycle. To find

energy decrease, time constant and Q-factor.
6.60 A damped oscillator loses 3% of energy in each cycle. Number of cycles

required for half of energy to be dissipated and Q-factor.
6.61 Decrease of amplitude in each cycle when ω′ = 9ω0/10.
6.62 For small damping ω′ � (1 − r2/8 mk)ω0.
6.63 Time elapsed between successive maximum displacements of a damped

oscillator.
6.64 Period of oscillation from logarithmic decrement.
6.65 ω0 and frequency of driving force from the given equation.
6.66 To show that t1/2 = tc ln 2.
6.67 Fraction of energy decrease in each cycle and Q-factor.
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Chapter 7

Lagrangian and Hamiltonian Mechanics

7.1 Equations of motion for a particle under force μm/r2.
7.2 Lagrangian for simple pendulum and proof for SHM.
7.3 Equations of motion for masses of Atwood machine by Lagrangian method.
7.4 Double Atwood machine.
7.5 Lagrangian and its equation of motion from given T and V .
7.6 Lagrangian for an SHO and time period.
7.7 Acceleration of a block on a fixed incline.
7.8 Acceleration of a block and inclined plane resting on smooth horizontal table.
7.9 Sliding of a bead on a straight wire which is constrained to rotate.

7.10 Spherical pendulum.
7.11 Equation of motion for a system of two blocks connected by spring on smooth

horizontal table.
7.12 A double pendulum.
7.13 Hamilton’s equations for spherical pendulum.
7.14 Hamilton’s equation and solution from H for one-dimensional SHO.
7.15 Planetary motion using Hamilton’s equations.
7.16 Natural frequencies of two coupled blocks.
7.17 Equations of motion of a simple pendulum pivoted to a block which slides on

a smooth horizontal plane.
7.18 Equations of motion of an insect on a rod turning about one fixed end.
7.19 A rod attached at one end by a cord to a fixed end. To find inclination of string

and rod when the system revolved about vertical through pivot.
7.20 Lagrangian in (r , θ ) coordinates for a central potential and corresponding pr

and pθ and H and conservation of E and J .
7.21 Coupled linear differential equations from Lagrangian equations and normal

modes for a system of two masses plus three springs.
7.22 Lagrangian eigenfrequencies and normal modes for a system of two identical

beads connected by two springs to a fixed wall.
7.23 Lagrangian and eigenfrequencies of a system of two beads of different masses

connected to a wall by two springs.
7.24 Normal modes of oscillation for a system of three particles connected by

springs.
7.25 Derivation of H for a single particle under conservative force.
7.26 Motion of a pendulum mounted on a block which can freely move on a hori-

zontal surface.
7.27 Sliding of a particle down a smooth spherical bowl when it is (a) fixed and (b)

free to move.
7.28 Hamilton and Hamiltonian equations from the given Lagrangian.
7.29 Lagrangian and equation of motion as in the given diagram.
7.30 Lagrangian and Lagrangian equation and equilibrium positions of a particle

moving on an elliptic orbit in vertical plane.
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7.31 Double pendulum with equal masses and lengths.
7.32 Coupled pendulums by Lagrangian method.
7.33 A bead sliding freely on a circular wire which rotates on a horizontal plane.
7.34 Equations of motion of a block-wedge spring system.
7.35 Rolling of a ball down a wedge which itself can slide on a horizontal table.

Chapter 8

Waves

8.1 Solution of a one-dimensional wave equation.
8.2 y = 2A sin(nπx/L) cos 2π f t for standing wave is a solution of wave equa-

tion.
8.3 String plucked at the centre.
8.4 Superposition of the waves y1 = A sin(kx − ωt) and y2 = 3A sin(kx − ωt).
8.5 A sinusoidal wave has v = 8 m/s and λ = 2 m. To find K , f , ω and wave

equation.
8.6 Equation of wave given k, ω and A.
8.7 When a standing wave is formed each point undergoes SHM transversely.
8.8 Frequencies of the first three harmonics for a plucked string.
8.9 Ratio of linear mass density of two strings.

8.10 A, f , v and λ of a transverse wave.
8.11 A and v of component waves of the given vibration. Distance between the

nodes and the transverse velocity at a given point at a given time.
8.12 Phase velocity and phase difference.
8.13 Amplitude of resultant motion.
8.14 Suitable functions for one-dimensional wave equation.
8.15 Displacement of a cord when plucked at x = L/3.
8.16 Equation of a wave in the negative x-direction.
8.17 Superposition of the waves y1 = A sin(kx − ωt) and y2 = A sin(kx + ωt) is

a standing wave.
8.18 Superposition of a harmonic wave with another wave travelling in the same

direction but differing by phase difference δ of the same amplitude.
8.19 Average rate of energy transmission of a travelling wave.
8.20 Frequency of the fork by beat frequency with a monochord.
8.21 Velocity of a moving pulse.
8.22 Mass density of piano string frequencies of the first two harmonics. Length of

a flute pipe.
8.23 (a) Sketch of first and second harmonic waves on a stretched string and (b) v

and distance between nodes for given standing wave.
8.24 Wave function for the progressive wave from given data on A, ω and k.
8.25 Units for (F/μ)1/2.
8.26 For a sinusoidal wave on a string slope ∂y/∂x is equal to ∂y/∂t divided by v.
8.27 Wave equation for transverse waves.
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8.28 Reflection of wave at the joint of two wires.
8.29 From the sketch to find f and λ if v is given and to find equation for the

wave.
8.30 Given the linear density of the string to find energy sent down the string per

second in prob. (8.29).
8.31 Energy of the string in the nth mode.
8.32 (a) Fundamental frequency of a steel bar for longitudinal vibrations and (b)

comparison of frequencies for (i) free at both ends; (ii) damped at midpoint of
bar (i); and (iii) clamped at both ends.

8.33 Fundamental frequency of vertical oscillations of a mass attached to a wire as
(a) a simple oscillator and (b) system of vibrator fixed at one end and mass
loaded at the other.

8.34 For a mass loaded bar the frequency condition kL tan kL = M/m reduces to
that of SHO for kL < 0.2.

8.35 Velocity of long waves compared with those in deep liquid and canal waves.
8.36 Maximum depth of liquid for which the formula v2 = gh represents velocity

of waves of length λ within 1%.
8.37 Surface tension of water by Ripple method.
8.38 Minimum velocities of surfaces waves for mercury and water.
8.39 vp and vg from dispersion relation for a piano wire.
8.40 vp and vg from dispersion relation for water waves of very short wavelength

in deep water.
8.41 Given general dispersion relation for water wave to show that vp = vg = √

gh
and for deep water vp = (g/k + Sk/ρ)1/2 and to find vg.

8.42 vp and vg in deep water for small ripples.
8.43 vpvg = c2 for a relativistic particle.
8.44 Wavelength of surface waves on water.
8.45 v2

p = g/k for deep water waves. To show that vg = vp/2.
8.46 vp and vg from dispersion relation of sound in air.
8.47 Given v2

p = (g/k + Sk/ρ) for deep water waves, to show vp is minimum for

λ = 2π(S/ρg)1/2.
8.48 Relation between pressure amplitude and displacement amplitude and that

they are out of phase by 90◦.
8.49 Pressure amplitude corresponding to the threshold of hearing intensity.
8.50 Intensity of wave from intensity level of ordinary conversation.
8.51 A point source of sound radiates energy of 4 W. To find I and I.L at 25 m from

source.
8.52 Maximum displacement from maximum pressure variation, f , ρ and v.
8.53 Ratio of intensities of two sound waves one in air and the other in water having

equal pressure amplitude.
8.54 Pressure amplitude, f , ρ and v from the equation. P = 2.4 sin π(x − 330t)

for progressive wave.
8.55 Amplitude of air vibrations by a note of given frequency and intensity.
8.56 To show a plane wave of effective acoustic pressure of a microbar has I.L of

74 dB.
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8.57 Energy density and effective pressure of a plane wave in air of 70 dB I.L.
8.58 Pressure amplitude for I = 1 W/m2 at pain threshold.
8.59 Theoretical speed of sound in H2 at 0◦C.
8.60 Given speed of sound in H2 at 0◦C, to calculate speed in O2.
8.61 Two sound waves have I1 = 0.4 and 10 W/m2. How many decibels is one

louder than the other?
8.62 Ratio of intensities if one sound is 6.0 dB higher than the other.
8.63 Distance to which sound is audible if the source radiates at the rate of 0.009 W.
8.64 Calculation of displacement amplitude from the pressure amplitude.
8.65 Two sound waves of equal pressure amplitude and frequencies traverse in liq-

uids with ρ1/ρ2 = 3/4 with v1/v2 = 3/2. To compare displacement ampli-
tudes, intensities and energy densities.

8.66 One sound wave travels in air and the other in water, their intensities and
frequencies being equal. To find ratio of wavelengths, pressure amplitude and
particle amplitudes.

8.67 Characteristic impedance.
8.68 Intensity of a beam of plane waves, pressure amplitude displacement ampli-

tude, acoustic particle velocity amplitude and condensation amplitude.
8.69 Laplace formula for sound velocity in a gas.
8.70 An empirical formula for sound velocity as a function of temperature.
8.71 The sound of whistle is reflected from the wall of the rock as the engine

approaches a tunnel. To find the ratio of frequencies of reflected and direct
sounds heard by the engine driver given the speed of the train.

8.72 Doppler effect when two train moves towards each other.
8.73 Doppler effect when two trains move away from each other.
8.74 Maximum and minimum frequencies heard by a listener from a rotating

whistle.
8.75 The Kundt’s tube experiment.
8.76 Wavelength of sound from a motion train when (i) train at rest; (ii) moving

towards you; and (iii) moving away from you.
8.77 Shock wave, Mach number and angle of Mach cone.
8.78 Reverberation time for a room, Sabine’s formula.
8.79 Echo of drum beating from a mountain.
8.80 Echo of rifle shot fired in the valley formed between two parallel mountains.
8.81 Beat frequency heard by a man who walks in line between two whistles sound-

ing neighbouring frequencies.
8.82 Frequency of the unknown frequency by beat frequency in transferring load

from one fork to another.
8.83 Beats produced by a fork sounding with an open organ pipe of an appropriate

length.
8.84 Falling plate experiment in sound.
8.85 Effective length of a resonance tube closed at one end.
8.86 When an open pipe is suddenly closed so that f3 of the closed pipe is higher

by 100 Hz than f2 of original pipe. To find f1 of original pipe.
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Chapter 9

Fluid Dynamics

9.1 Velocity of water in the narrower portion of pipe.
9.2 Verification of continuity equation from velocity components.
9.3 Work done in forcing water through pipe.
9.4 Lift on the wing of aeroplane.
9.5 Rate of flow of water using a venturi meter.
9.6 Speed of a plane using a Pitot tube.
9.7 Velocity of the spray in a sprinkler.
9.8 Test of steady incompressible flow.
9.9 Speed of flow past the lower and upper surface of the wing of an aeroplane.

9.10 Pressure drop and velocity in the throat of a venturimeter.
9.11 Application of Reynolds number to steady and turbulent flow.
9.12 A tube open at one end and closed at the other with small orifice is filled with

liquid. To find the efflux velocity when rotated in a horizontal plane, about an
axis through the open end.

9.13 Application of pitot tube.
9.14 Rate of flow of water in a horizontal pipe of varying cross-sections.
9.15 A cylinder with a small hole at the bottom is filled with water and fitted with

a piston. To find the work done by a constant force when the system is rotated
horizontally to squeeze all water from the cylinder.

9.16 A cylindrical vessel with water is rotated about its vertical axis. To find pres-
sure distribution and shape of free space of water.

9.17 Speed of water flowing from a water tap.
9.18 Application of Torricelli’s theorem.
9.19 Application of Torricelli’s theorem.
9.20 Application of Torricelli’s theorem.
9.21 Water leaks through a hole in the bottom of a tank. To find time for water level

to decrease from h1 and h2.
9.22 Velocity of efflux through a hole in a tank filled with water.
9.23 Application of Torricelli’s theorem to two tanks filled with a liquid and car-

rying hole of different areas and at different depths, the volume of flux being
identical.

9.24 Efflux velocity of water in a bottom orifice in a tank filled with water +
kerosene.

9.25 Two identical holes are punched on opposite sides at different height in a ves-
sel filled with water. To calculate resultant force of reaction of water flow.

9.26 Pressure required to maintain water flow through a tube.
9.27 Pressure difference across a composite tube in Poiseuille’s experiment.
9.28 Terminal velocity of rain drops.
9.29 Water flow through horizontal tubes connected in parallel.
9.30 Water flow through horizontal tubes connected in series.
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Chapter 10

Heat and Matter

10.1 Mean free path of molecule given collision frequency and mean molecular
speed.

10.2 rms of a molecule, mean free path and collision frequency.
10.3 Mean free path of gas molecules.
10.4 vmp and vav and T for two graphs for Maxwell–Boltzmann distribution.
10.5 Mort probable speed assuming Maxwell–Boltzmann distribution.
10.6 < E >, vrms, vmp and vav for CO2 gas.
10.7 Volume of a helium-filled weather balloon when it rises to high altitude.
10.8 Using van der Waal’s equation to estimate the molar density of H2S gas.
10.9 Thermal expansion of a bimetal bar.

10.10 Buckled rail due to thermal expansion.
10.11 Length of a steel and copper rod such that the difference is constant at any

temperature.
10.12 Volume of mercury in a flask such that the volume of air inside the flask is

constant at any temperature.
10.13 Tension in a wire with the decrease in temperature.
10.14 Specific gravity bottle experiment.
10.15 Determination of the gas constant.
10.16 Rising air bubble in a lake; Boyle’s law.
10.17 Load carried by a balloon to a given height.
10.18 Two glass bulbs in communication kept at different temperatures. To find the

pressure.
10.19 Conduction of heat through slabs in series.
10.20 Conduction of heat through slabs in parallel.
10.21 Temperature of interface of copper and iron bars in heat conduction.
10.22 Melting of ice kept at one end of a copper bar while the other end is heated.
10.23 Formula for heat conduction in a metal at low temperature given that thermal

conductivity is proportional to absolute temperature.
10.24 Radial flow of heat between concentric spheres.
10.25 Radial flow of heat in a material across a coaxial cylinders.
10.26 Rate of addition of ice at the bottom of a layer of ice in a pond when air

temperature drops to −10◦C.
10.27 Application of Newton’s law of cooling.
10.28 Water equivalent of calorimeter from Newton’s law of cooling.
10.29 Rate of cooling of steel balls of different radii.
10.30 Application of resistance thermometer.
10.31 Solar constant from the given data.
10.32 Temperature of sun’s surface from given data.
10.33 Rate of heat loss by radiation at a given temperature.
10.34 Application of Wien’s displacement law.
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10.35 Latent heat of fusion determination.
10.36 Mean specific heat and specific heat at midpoint.
10.37 Equilibrium temperature from the mixture of liquid (A, B), (B, C) and

(A, C).
10.38 Rise of temperature of the bullet in its collision with a block of wood (a)

fixed and (b) free to move.
10.39 Rise in temperature due to water fall.
10.40 Rise in temperature due to fall of a lead piece from a given height on a non-

conducting slab.
10.41 Work done on a gas during an adiabatic compression.
10.42 A thermodynamic cycle.
10.43 In an adiabatic process of a monatomic ideal gas PV 5/3 = const.
10.44 Work done on a gas during an isothermal compression.
10.45 P − V diagram for a sequence of thermodynamic processes.
10.46 Number of degrees of freedom for gas molecules.
10.47 Efficiency of a heat engine.
10.48 Temperatures of the source and sink of a heat engine.
10.49 Air pressure at a given attitude h, number density of gas molecules and p at

h/2.
10.50 P − V diagram for the Carnot cycle and the Sterling cycle.
10.51 Entropy change for isobaric and isochoric processes.
10.52 Change of values of thermodynamic parameters in reversible isothermal

expansion.
10.53 Internal energy, heat, enthalpy, work and Gibbs function.
10.54 Shear modulus of a material.
10.55 Stress, strain and Young’s modulus of a wire.
10.56 Isothermal elasticity and adiabatic elasticity.
10.57 Poisson’s ratio from the ratio of Young’s modulus and the rigidity modulus.
10.58 Young’s modulus from the depression of a wire caused by attaching known

load at midpoint of a horizontal wire.
10.59 Speed of an object released from a catapult.
10.60 Maximum angular speed of an object attached to the end of a wire whirled

in a horizontal plane.
10.61 Maximum length of a wire which will not break under its own weight when

it hangs freely.
10.62 Capillary rise.
10.63 Volume of air bubble at depth 100 m – gas equation.
10.64 Energy released in coalescing of droplets.
10.65 Work done in blowing a soap bubble to a larger size.
10.66 A hollow vessel with a small hole of radius r is immersed to a known depth

when water just penetrates into vessel, to find r .
10.67 Depth of water column at which an air bubble is in equilibrium.
10.68 Inadequate capillary tube length.
10.69 Effect of charge on soap bubble.
10.70 Radius of bigger bubble when two bubbles coalesce.
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Chapter 11

Electrostatics

11.1 (a) Force between two charges. Position of neutral point (b) E and F of
proton at the position of electron in H atom.

11.2 (a) Tension in the thread when a charged ball hangs in an electric field and
(b) Vb − Va positive or negative.

11.3 Electric potential along the axis of a charged circular loop.
11.4 Potential energy of four charges at the corners of a square and their stability.
11.5 V at the surface of a charged liquid drop, when two such drops coalesce, V

at the surface of new drop.
11.6 A charged pendulum bob is in equilibrium in a horizontal electric field. Ten-

sion and angle of the thread with the vertical.
11.7 An infinite number of charges, each equal to q are placed at x = 1, 2, 4, 8, . . .

units. V and E at x = 0.
11.8 In prob. (11.7) what will be V and E if consecutive charges have opposite

sign.
11.9 A charged particle is released from rest on the axis of a fixed oppositely

charged ring. To show that the particle has SHM and to find time period of
oscillation.

11.10 Three charges each of value q are at the corners of an equilateral triangle and
the fourth one at the centre. It Q = −q, charges move toward or away from
the centre. Value of Q for the charge to be stationary.

11.11 Two identically charged spheres are suspended by strings of equal length.
The strings make an angle of 30◦ with each other. When immersed in a
liquid the angle remains the same. To find the dielectric constant of the
liquid.

11.12 One charge is placed at one corner of a square and another at the center. Work
done to move the charge from the centre to an empty corner.

11.13 A charged pith ball suspended by a thread is deflected by a known distance
by a horizontal electric field. To find E .

11.14 Suspension of a charged oil drop under electric field and gravity.
11.15 Equal amount of charge on the earth and the moon to nullify gravitational

attraction.
11.16 An energy output of 10−5 J results from a spark between insulated surfaces

at P.D 5 × 106 V. To find q transferred and number of electrons flowed.
11.17 E at a given distance along the axis of a charged rod.
11.18 E along the axis of a charged disc.
11.19 Electronic charge by Millikan’s oil drop method.
11.20 Total charge on a circular wire which has cos2 θ charge density dependence.
11.21 Strength of electric force compared to gravitation force in H atom.
11.22 Charges on two spheres given their combined charge and force of repulsion

at the given distance.
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11.23 Four charges are placed at the four corners of a square as in the diagram. To
find E and its direction.

11.24 E on the perpendicular bisector of a thin charged rod.
11.25 A thin non-conducting charged rod is bent to form an arc of circle and sub-

tends an angle θo at the centre of circle. To find E at the centre of circle.
11.26 In prob. (11.3) to find the distance at which E is maximum.
11.27 E and V at the centre of a charged non-conducting hemispherical cup.
11.28 E varies as 1/r4 for an electric quadrupole.
11.29 Electric and gravitational forces between two bodies each of mass m and

charge q will be equal if q/m = 8.6 × 10−10/kg.
11.30 Two equally charged spheres are suspended from the same point by silk

thread of the same length. To find the rate at which charge leaks out given
the relative velocity of approach.

11.31 A long charged thread is placed on the axis of a charged ring with one end
coinciding with the centre of the ring. To find force of interaction.

11.32 A very long wire with charge density λ is placed on the x-axis with one end
coinciding with the origin. To calculate E from the y-axis.

11.33 E from the potential φ = cxy.
11.34 To show that the locus of zero potential points for two fixed charges is a

circle.
11.35 Two identical rings charged to Q1 and Q2 coaxially placed at a fixed dis-

tance. To find the work done in moving a charge q from the centre of one
ring to that of the other.

11.36 To find x if the potentials at (0, 2a) and P2(x , 0) are equal and to find the
potential.

11.37 Value of Q if the interaction energy of three charges +q1, +q2 and Q placed
at the vertices of a right-angled isosceles triangle is zero.

11.38 Work done in assembling the charges at the four corners of a square as in the
diagram.

11.39 Total potential energy of a charged sphere.
11.40 A linear quadrupole.
11.41 Charge that can be placed on a sphere for the given field strength and the

corresponding V .
11.42 Speed of electron when it approaches a positive charge.
11.43 For the linear quadrupole of prob. (11.40) for r >> d, E(r) ∝ 1/r3.
11.44 Force and acceleration of electron when it passes through a hole in a con-

denser plate.
11.45 Potential on the axis of a charged disc and the limiting case of x >> R.
11.46 Kepler’s third law of motion is applicable to electron in H atom.
11.47 Equal charges are placed on four corners of a square. To calculate F on one

of them due to other three.
11.48 E on the perpendicular bisector of a dipole. For x >> d/2, E ∝ 1/r3.
11.49 Application of Gauss’ law to an infinite sheet of charge. σ of the sheet by

deflection of a charged mass hanging by a silk thread.
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11.50 Application of Gauss’ law to calculate E inside and outside a charged
sphere.

11.51 In prob. (11.50) to find E on the surface of charged sphere with cavity.
11.52 In prob. (11.50) E ∝ r for r < R and that V (0) = 3

2 V (R).
11.53 E in three regions of a non-conducting charged sphere.
11.54 E for two regions of a long charged cylinder.
11.55 Net charge within the sphere’s surface given E . σ from E on a football field.

Total electric flux.
11.56 Derivation of Coulomb’s formula from Gauss’ law. Electric flux through

spherical surface concentric with a charged sphere.
11.57 Application of Gauss’ law to find E in the three regions of two charged con-

centric spherical shells.
11.58 Two insulated spheres positively charged at large distance are brought into

contact and separated by the same distance as before. To compare force of
repulsion before and after contact.

11.59 Maximum charge a sphere can withstand given the breakdown voltage.
11.60 (a) Capacitance of a conducting sphere and (b) �U when two charged

spheres are connected by a wire and wire is removed.
11.61 When two spherical charged conductors are brought in contact and separated

σ ∝ 1/r .
11.62 To find V if E on balloon is given. Pressure in balloon which would produce

the same effect. Total electrostatic energy of the balloon.
11.63 A soap bubble of radius R1 when charged expands to radius R2. To derive an

expression for the charge.
11.64 E in the three regions when an insulating shell is charged to specified charged

density.
11.65 (a) Electrostatic field is conservative and (b) �U when a charged soap bubble

collapses to a smaller size.
11.66 Form of E generated by a long charged cylinder. Speed of electron circling

around the axis of the cylinder.
11.67 To find σ for non-conducting and conducting infinite sheets.
11.68 Capacitance of a parallel plate capacitor. Modification of C when a thin metal

is introduced.
11.69 Values of C1 and C2, given their combined values in series and parallel

arrangement.
11.70 Energy in two capacitors: (a) singly; (b) in series; and (c) in parallel, given

P.D.
11.71 �U when a charged air capacitor is submerged in oil of given εr.
11.72 Value of K when A, d and C are given.
11.73 Resulting voltage when a charged capacitor is connected to an uncharged

one.
11.74 To find the equivalent capacitance of capacitors in the given arrangement.
11.75 To calculate q, V and U for three capacitors connected in series to a battery

of 260 V.
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11.76 Two capacitors are charged to a battery and connected in parallel. Find P.D
of the combination if (a) positive ends are connected and (b) positive end is
connected to negative terminal of the other.

11.77 Two capacitors are charged to P.D V1 and V2 and connected in parallel. �U
when (a) positive ends are joined and (b) positive end of one is joined to
negative end of the other.

11.78 Effect of dielectric on V , E , q, C and U , when the battery (a) remains con-
nected and (b) is disconnected.

11.79 In prob. (11.78) dependence of the given quantities on the distance of sepa-
ration of plates.

11.80 Force of attraction between the plates of a parallel plate capacitor.
11.81 n identical droplets each of radius r and charge q coalesce to form a large

drop. To find relations of radius, C , V , σ and U for the large drop and
droplet.

11.82 Half of the stored UE of a cylindrical capacitor of radii a and b lies within a
radius

√
ab of the cylinder.

11.83 Capacitor of capacitance C1 withstands maximum voltage V1 and C2 with-
stands maximum voltage V2. Maximum voltage that the system of C1 and C2
can withstand when connected in series.

11.84 Application of Gauss’ law to calculate the capacitance of Geiger–Muller
counter.

11.85 Capacitance of a capacitor formed by two spherical metallic shells.
11.86 For two concentric shells the capacitance reduces to that of a parallel plate

capacitor in the limit of large radii.
11.87 In the R – C circuit shown to find (i) time for charge to reach 90% of its final

value; (ii) U stored in the capacitor at t = τ ; and (iii) Joule heating in R at
t = τ .

11.88 In prob. (11.87) number of time constants after which energy in capacitor
will reach half of equilibrium value.

11.89 Capacitance of a parallel plate capacitor whose plates are slightly inclined.
11.90 and 11.91 In the given arrangements of capacitor to find P.D, q and U in the

capacitors.
11.92 To find the effective capacitance between two points in the given arrangement

of capacitors.
11.93 To obtain an expression for q(t) for an R − C circuit.
11.94 For the given R − C circuit, to find battery current at t = 0 and t = ∞ when

switch is closed. To find the current through R when switch is open after a
long time.

11.95 A charged capacitor is discharged through a resistance. To find U , i , Vc at
given time, τ and equation for t when q drops to half of its value.

11.96 Charge q is uniformly distributed in a sphere of radius R. (i) To find div E
inside the sphere; (ii) electric force on a proton at r < R; and (iii) work done
on proton to move it from infinity to a point at r < R.

11.97 The electric displacement D is uniform in a parallel plate capacitor. To obtain
E(x) for a non-uniform relative permittivity, using Gauss’ law.

11.98 To obtain the differential Gauss’ law for gravitation.
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Chapter 12

Electric Circuits

12.1 Effective resistance between two points A and B in the given arrangement.
12.2 Change in resistance when a wire is stretched.
12.3 Equivalent resistance is p for two resistors in series and q for parallel, mini-

mum value of n where p = nq.
12.4 Equivalent resistance for five resistors in the given arrangement.
12.5 Effective resistance of five resistors in the given arrangement.
12.6 Resistance between two terminals in the given network.
12.7 Equivalent resistance between two terminals in the given network.
12.8 Wheatstone bridge.
12.9 Five resistors are connected in the form of a square and a diagonal. To find

Req across a side.
12.10 Effective resistance for a network of infinite number of resistors.
12.11 What equal length of an iron wire and a constantan wire of equal diameter

must be joined in parallel to give equivalent resistance of 2 �?
12.12 Temperature coefficient of resistance.
12.13 A square ABCD is formed by bending a wire. B and D are joined by a similar

wire and a battery of negligible internal resistance is included between A and
C. To find Req and power dissipated.

12.14 Temperature dependence of resistance.
12.15 Equivalent resistance of a network in the form of a skeleton cube across the

body diagonal.
12.16 Brightness of two bulbs in series.
12.17 Brightness of two bulbs in parallel.
12.18 Three resistors in parallel are connected with two in series. If a PD of

120 V is applied across the ends of circuit, to find PD drop across parallel
arrangement.

12.19 Maximum power delivered to the external resistor.
12.20 Boiling of water by two heater coils when they are connected (a) in series

and (b) in parallel.
12.21 Calculation of power expended in two resistors connected in series and in

parallel.
12.22 Rate of energy loss in power transmission.
12.23 Power dissipated in three resistors in (a) series and (b) parallel.
12.24 The value of resistance in parallel with a heater so that the 1000 W heater

operates at 62.5 W.
12.25 Number of cells wrongly connected in a battery.
12.26 Condition for maximum current in m external resistances connected to m

rows of cells with each row containing n cells in series, each cell with internal
resistance r .

12.27 Internal resistances of two cells in series and the external resistance.
12.28 Rate of heat production in resistors in series and in parallel.
12.29 Charging of a battery.
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12.30 Comparison of power dissipated in resistance with the value for power sup-
plied by battery.

12.31 Internal resistance of a cell by potentiometer.
12.32 Emf of a cell by potentiometer method.
12.33 Condition for null deflection and iG/ i in galvanometer of Wheatstone bridge.
12.34 To find current in an ammeter in a network.
12.35 Internal resistance of a battery.
12.36 Internal resistance of a cell by potentiometer method.
12.37 External resistance by potentiometer method.
12.38 Reading in the voltmeter.
12.39 Metre bridge.
12.40 A moving coil meter reading up to 1 mA to be converted into (a) 100 mA full

scale and (b) 80 V full scale.
12.41 Pocket voltmeter.
12.42 Resistance of a galvanometer.
12.43 A battery of ξ1 and r1 with a second battery of ξ2 and r2 in parallel is joined

to an external resistance R. To calculate i1, i2, P1, P2 and P .
12.44 Emf of batteries by applying the loop theorem.
12.45 Application of Kirchhoff’s rules to determine currents in branches of a

circuit.
12.46 Currents in various resistors and PD across the cells in a network.
12.47 Equivalent resistance of the circuit and power dissipated.
12.48 Given the internal resistance of one cell to calculate the internal resistance of

the other cell.
12.49 Equivalent resistance, voltages, currents and power dissipated in a series par-

allel resistive circuit.
12.50 Current in the circuit and terminal voltage of battery under load conditions

and power dissipated in R and r .
12.51 Equivalent resistance, currents, voltages and power dissipated in a series-

parallel circuit.
12.52, 12.53, 12.54 Application of Kirchhoff’s rules to the circuit to produce three

equations with three unknown branch currents.
12.55 Application of Kirchhoff’s rules to the given circuit.
12.56 Application of Kirchhoff’s rules to the circuit to calculate currents in various

branches.

Chapter 13

Electromagnetism I

13.1 Cyclotron frequency for alpha particles.
13.2 Energy and oscillator frequency for p and α

13.3 Mass spectrometer, velocity filter.
13.4 Identification of pion.
13.5 A particle of mass m and charge q travelling along x-axis is acted by E along

y-axis. The trajectory.
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13.6 The radius of a circular orbit of an electron of K = 5 keV in B = 0.01 T.
13.7 Crossed E and B fields.
13.8 v and T for electron moving with R = 1.9 m in B = 3 × 10−5 wb/m2.
13.9 B and K for D in a cyclotron with V = 5 × 104 V, f = 5 MC/r and d =

1.524 m.
13.10 f = 11.5 MC/s, R = 30′′ for D. Kmax and f for p.
13.11 Given B = 15,000 G and R = 50 cm, f and K for D.
13.12 Current from charge and time.
13.13 Condition for no deflection in E and B fields.
13.14 Radius of curvature of a particle of mass m and charge q which enters a

magnetic field.
13.15 Separation of isotopes of uranium.
13.16 (a) Radius of curvature in a magnetic field and (b) emf produced in a time-

varying B.
13.17 (a) No. of electrons in charge q and (b) Emin to prevent a droplet from falling.
13.18 Time period and pitch in a magnetic field.
13.19 A change −q released from the plate of a capacitor in which E and B fields

are set up.
13.20 In prob. (13.19) condition that the electrons are able to reach the positive

plate
13.21 Current in a long wire deduced from observed B.
13.22 B for a wire of finite length. Limiting case for infinite wire.
13.23 B at the centre of a conducting circular wire.
13.24 B at the centre of square conducting loop of side a with current i .
13.25 Two semicircular wires of resistance R and 4R are joined. To find B at the

centre of the circle.
13.26 B at the centre of three-fourths of a conducting circular wire.
13.27 (a) B from a hair pin conducting wire and (b) B at the centre of a semicircular

wire.
13.28 B at the centre of a conducting wire in the form of a polygon.
13.29 Ratio of B at the centres of a conducting wire in the form of a circle and

square of the same length.
13.30 (a) B at the common centre of circular arcs of a circuit and (b) B at the

common centre of semicircular arcs of radii R1 and R2.
13.31 B at the centre of a circular conducting wire plus straight portion as in the

diagram.
13.32 B on the axis of a circular ring carrying current.
13.33 B inside a 1 m long tube wound by 500 turns of wire carrying 5 A.
13.34 B between parallel current-carrying wires at distance x from one of the wires.
13.35 B at p in a hollow copper cylinder with radii a and b (a < R < b) carrying

current I .
13.36 Magnetic field midway between Helmholtz coils.
13.37 B at the centre of a charged rotating disc
13.38 In prob. (13.36) the magnetic field is fairly uniform.
13.39 B due to cylinder carrying current of 100 A at R = 1.0 m and R = 6 mm.
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13.40 Application of ampere’s law to find B due to a current-carrying cylinder for
r < R and r > R.

13.41 To find B at the centre of two concentric arcs of radii r and 2r as in the
diagram.

13.42 (a) To find B distance x from the midpoint of wire of length L . (b) To com-
pare B at the centre of a loop when it is bent into (i) a square and (ii) an
equilateral triangle.

13.43 To calculate B midway between Helmholtz coils, given the values of N , R
and I .

13.44 B(r) for the current-carrying long cylinder.
13.45 (a) L of a solenoid; (b) magnetic energy; and (c) application of Faraday’s

law.
13.46 (a) B at a given distance from a long straight wire carrying current and (b)

dB at the given values of x , y and z from I dl at the origin.
13.47 B and H for a torus with and without magnetic material.
13.48 Current required to circulate the earth’s core to produce the known dipolar

magnetic field.
13.49 Emf generated by a revolving disc midway between Helmholtz coils.
13.50 Variation of voltage developed across a conductor moving with velocity v in

a known field B.
13.51 A proton travelling with velocity v = (î + 3 ĵ)104 m/s is located at x = 2 m

and y = 3 m at some instant t . To find B.
13.52 To find F/ l between two long straight wires separated by distance d carrying

i1 and i2 in opposite directions.
13.53 Two parallel wires of distance d apart attract each other with a force F/ l. If

i1 is given, to find i2 and its direction.
13.54 Equilibrium between two current-carrying parallel wires separated by d

vertically.
13.55 Three long parallel wires carrying 20 A are placed in the same plane with

equal spacing of 10 cm. To find F/ l for an outer wire and the central wire.
13.56 To calculate the force acting on a bent wire in a uniform magnetic field as in

the diagram.
13.57 A rectangular coil of given dimensions is placed parallel to a long wire car-

rying current. To find force on each segment of rectangular coil and net force
on it.

13.58 In a set-up similar to prob. (13.57) to derive an expression for the resultant
force on the coil and find its value from the given data.

13.59 A loop is formed by two parallel rails, a resistor and a rod across the rails in
a magnetic field. A force F drags the rod at velocity v. To find the current,
total power and F .

13.60 In prob. (13.37) to calculate the magnetic moment of the disc.
13.61 To show that the magnetic dipole moment of the earth can be produced by

wire carrying a current of 5 × 107 A around the magnetic equator.
13.62 Energy density at the centre of a current-carrying loop.
13.63 Magnetic energy density at the centre of H atom due to circulating electron.
13.64 Maximum torque of a circular coil in a magnetic field.
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13.65 The ratio μ/L for a charged sphere rotating with constant angular velocity.
13.66 Potential energy of an electric dipole is an electric field.
13.67 Emf induced in an expanding flexible circular wire placed in a magnetic field.
13.68 Emf developed between the wing tips of an aeroplane flying over earth’s

magnetic field.
13.69 Potential difference between the centre and the outer edge of a spinning disc

in the horizontal component of earth’s magnetic field.
13.70 A coil in the given magnetic field is suddenly withdrawn from the field and

a galvanometer in series with the coil records the charge passed around the
circuit. To find the resistance of the coil and the galvanometer.

13.71 The induced emf and current in a wire loop when the magnetic field is
reduced to zero in the given time.

13.72 Amplitude of the induced current when a square loop of wire rotates in a
magnetic field.

13.73 A bar slides on parallel rods in a magnetic field when a current flows through
the resistor. To find the speed of the bar.

13.74 A uniform magnetic field of induction fills a cylindrical volume. To calculate
the emf produced at the end of a rod placed in it when B changes

13.75 A square wire of length l, mass m and resistance R slides on frictionless
inclined rails. Magnetic field exists within the frame. To show that the wire
frame acquires steady velocity.

13.76 A copper disc spins in a magnetic field and induced emf is recorded. To
find B.

13.77 To verify that Faraday’s law is dimensionally correct.
13.78 Given the equation of B waves, to find emf in a coil.
13.79 Ratio of ξmax(television)/ξmax(radio) in a loop antenna.
13.80 Two rails are connected by a wire and are connected to a wire and a slider to

form a loop. To find F on the slider to move it with velocity v.
13.81 Application of Faraday’s law.
13.82 A wire carrying current is placed across a rectangular coil. To obtain the

magnetic flux and emf induced.
13.83 To obtain magnetic flux in a betatron.
13.84 The magnetic and direction of the Hall field and concentration of free

electrons.
13.85 Mobility of the electron given Hall coefficient and electrical conductivity.

Chapter 14

Electromagnetism II

14.1 Current, P.D and energy in an RC circuit.
14.2 P.D and phase difference in an LR circuit.
14.3 Given current and energy for an inductor, to find its value.
14.4 To find frequency and wavelength for an LC circuit.
14.5 Impedance and power dissipated in an RLC circuit.
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14.6 L and C have equal X , at f = 600 Hz, to find XC/X L at 60 Hz.
14.7 A capacitance has XC = 4 � at 250 Hz. To find C and XC at 100 Hz and at

220 V, 50 Hz line.
14.8 In an LR series circuit across a 12 V–50 Hz supply, i = 0.05 A flows with

φ = 60◦ with V . To find R and L , and to find C when connected in series
to produce to φ = 0.

14.9 irms and im when 0.6 H inductor is connected to 220 V–50 Hz AC line.
14.10 irms, Joule heat, Vrms in RL circuit for each component when f = 50 Hz

and irms are available.
14.11 An ac applied to R = 100 � given V = 0.5 Vm at t = 1/300 s. To find f .
14.12 To write an equation for the given LRC parallel circuit similar to that for

standard equation.
14.13 To verify the formula for velocity of light.
14.14 Quantities RC, L/R and

√
LC have units of time.

14.15 Fractional decrement of the resonance frequency in an RLC circuit.
14.16 Current in a damped LC circuit for low damping.
14.17 RLC circuit in series.
14.18 RLC circuit in parallel.
14.19 Differential equation for the charge of the given RLC circuit.
14.20 Solution of differential equation in prob. (14.19)
14.21 X L , XC , Z , IT , φ, CR , VC , VL and f0 for the given RLC circuit.
14.22 A 40 � resistor and 50 μF capacitor in series and an AC of 5 V–300 Hz

current in the circuit.
14.23 Z for the two networks involving L , R, C .
14.24 Definition of electric current, current density and quantization of charge,

drift speed.
14.25 f0 for two LC circuits in series is identical with individual circuits if

L1C1 = L2C2.
14.26 Values of L and C if XC at f1 and X L at f2 are given.
14.27 A condenser of 0.01 μF is charged to 100 V. To find im when condenser is

connected to an inductor of L = 10 mH.
14.28 An inductance of 1 mH has resistance of 5 �. Value of R and C to yield

f0 = 500 kHz in series and Q = 150.
14.29 f0 and Q of a parallel RLC circuit with L = 1 mH, R = 10 � and C =

0.005 μf.
14.30 In the discharge of a capacitor in an RC circuit to find error on V (t), given

error on R and C .
14.31 (a) Time for voltage on a condenser to fall to 1/e of initial value through a

resister and (b) percentage error introduced if thermal effects are ignored.
14.32 Fractional half-width of resonance curve of an RLC circuit.
14.33 Dielectric constant from a plane em wave equation.
14.34 Speed of a Lorentz frame in which a pure magnetic field is observed.
14.35 Wave equation for B wave.

14.36 To show that ∇
(

j + 1

ε0

∂ E
∂ t

)
= 0.
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14.37 Prediction that em waves propagate with velocity c.
14.38 Depth to which an em wave penetrates in aluminium.
14.39 To show that E0 = cB0
14.40 em wave equation for a conduction medium.
14.41 Capacitance and inductance per unit length for a coaxial cylinder.
14.42 E, B and S for a coaxial cable in the region between the central wire and

tube.
14.43 To obtain the equation uB = B2/2μ0
14.44 In em field uB = uE.
14.45 To obtain an expression for R if uB = uE in a coaxial cable.
14.46 Radiation energy loss of a low energy proton in a cyclotron.
14.47 Amplitude of an E wave at a distance from a point source.
14.48 Intensity, E0 and B0 of a laser beam.
14.49 Calculation of irradiance of a laser beam.
14.50 Time-averaged power per unit area carried by a plane em wave.
14.51 Irradiance of a plane em wave.
14.52 E × H is in the propagation direction.
14.53 Given the E field equation to find f , λ, v, E0 and polarization.
14.54 Equation for the B field associated with the E wave of prob. (14.53).
14.55 Speed of an approaching car by radar.
14.56 Beat frequency registered by a radar from a receding car.
14.57 Application of ampere’s law of a coaxial cylinder to calculate magnetic field

in four regions.
14.58 Energy stored in the magnetic field in the large Hadron collider’s magnet.
14.59 Electric and magnetic field amplitude at the surface of the sun.
14.60 Amplitude of the electric field at the orbit of the earth.
14.61 Amplitude of B field at the surface of Mars and flux of radiation.
14.62 To show that |E |/|H | = 377 �.
14.63 Skin depth in copper.
14.64 Penetration of microwave in a copper screen.
14.65 Derivation of formula for skin depth.
14.66 Energy transported per square centimetre area for a light wave having Em =

10−3 V/m.
14.67 Proof and interpretation of Poynting’s theorem.
14.68 Dispersion relation from Maxwell’s equations in dielectric.
14.69 To show that the identity ∇ × (∇ × E) = −∇2 E + ∇(∇ · E) is true for the

vector field F = x2z3 î .
14.70 Use of Poynting vector to determine power flow in a coaxial cable.
14.71 Application of Poynting’s theorem to show that power dissipated in a con-

ducting wire is given by i2 R.
14.72 Using Maxwell’s equations to show that the equation for a super-conductor

leads to the stated equation for B.
14.73 Ratio of high-frequency resistance to direct resistance.
14.74 Derivation of the expression curl E = −∂ B/∂t using Stokes’ theorem.
14.75 Derivation of the expression B = μ0(H + M).
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14.76 Gauss and Ampere’s laws in free space subject to the Lorentz condition.
14.77 To show Ey = Z0 Hx for propagation of em wave where Z0 = √

μ0/ε0
14.78 Given E wave’s direction of propagation and polarization of the wave.

Boundary condition for media of different magnetic properties.
14.79 Use of boundary conditions to calculate the reflectance and transmittance

of em waves at the dielectric discontinuity.
14.80 To obtain an expression for reflectance for an em wave in terms of angle of

incidence and refraction and the refraction indices of two dielectrics.
14.81 Using the result in prob. (14.80), to show that reflectance is zero when tan

θ = n2/n1.
14.82 To sketch R and T against n1/n2 for normal incidence.
14.83 (a) B is perpendicular to E; (b) B is in phase with E; and (c) B = E/c.
14.84 Charge density induced on the surface of uncharged dielectric cube contain-

ing electric field.
14.85 Fractional difference between phase and group velocity at λ = 5000 Å.
14.86 Given the dispersion relation ω = ak2, to calculate vph and vg .
14.87 To show that vpvg = c2.
14.88 vg = vph + kdvp/dk.
14.89 vg = c/n + (

λc/n2
)

dn/dλ.
14.90 If vph ∝ 1/λ then vg = 2vph.
14.91 vg = c/

[
n + ω (∂n/∂ω)

]
.

14.92 Value of vp and free space wavelength for radiation to traverse a length of a
rectangular waveguide in given time.

14.93 1/vg = 1/vph + (ω/c) dn/dω.
14.94 vg = cdv/d(nv).
14.95 vg = v for a non-relativistic classical particle.
14.96 Given a relation between refractive index and λ, to calculate vg.
14.97 vph, vg and λ for rectangular wave guide of given dimensions.
14.98 In a rectangular guide of width a = 3 cm, value of λ if λg = 3λ.
14.99 To calculate λg and λc given a and λ

14.100 Number of states of em radiation between 5000 and 6000 Å in a cube of
side 0.5 m.

14.101 Possibility of AM radio waves propagating in a tunnel of given dimensions.
14.102 Calculation of least cut-off frequency for TEmn wave for guide of given

dimension
14.103 Variation of vph and vg of TE01 wave in a wave guide of given dimensions.
14.104 Given the wave equation for Ez , to find Ez and fc.
14.105 Given the wave equation for Hz , to find Hz and fc.

Chapter 15

Optics

15.1 Fraction of light from a point source in a medium escaping across a flat sur-
face.
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15.2 Radiation on a perfectly absorbing surface.
15.3 Snell’s law by Fermat’s principle.
15.4 Fermat’s principle applied to mirage.
15.5 Maximum angle of acceptance for optical fibre.
15.6 Angle of emergence in a prism immersed in a liquid.
15.7 Angle between two emerging beams from a prism.
15.8 Deviation of emergent light from a prism which suffers one internal reflec-

tion.
15.9 Focal length of system of two lenses in contact.

15.10 Two positions of a convex lens for real imager for a fixed source–screen
separation.

15.11 Application of lens maker’s formula.
15.12 Image formation by two coaxial lenses.
15.13 Focal length of a glass sphere.
15.14 Intensity and amplitude of em waves at a given distance from a bulb.
15.15 Image location and its height of an object as observed by a telescope.
15.16 Intensity and amplitude of electric field of a laser beam.
15.17 Refraction matrix and translation matrix for a single lens.
15.18 Matrix equation for a pair of surfaces.
15.19 Using the result of prob. (15.18) to obtain the equation for a thin lens.
15.20 Locus of points at constant phase difference from two coherent sources.
15.21 Bandwidth in double-slit experiment.
15.22 Fringe shift in Young’s fringes when a thin film is introduced.
15.23 Intensity distribution in young’s double-slit experiment.
15.24 Wavelength of light in Fresnel’s biprism experiment.
15.25 Wavelength of light with the biprism.
15.26 Interference fringes in a glass wedge.
15.27 Interference with the wedge film.
15.28 Radius of curvature of a lens from Newton’s rings.
15.29 Refractive index of liquid from Newton’s rings.
15.30 Newton’s rings by two curved surfaces.
15.31 Order for which red band coincides with the blue band in Young’s experi-

ment.
15.32 Ratio of minimum and maximum intensities in reflection from two parallel

glass plates.
15.33 Intensification of colour from reflection of white light on a thin film.
15.34 Minimum thickness of plate which appears dark on reflection.
15.35 Colour shown in reflection by thin film.
15.36 Minimum thickness of non-reflecting film.
15.37 Constructive interference in the reflected light.
15.38 D1 and D2 lines of sodium, Michelson interferometer.
15.39 Wavelength of light by Michelson interferometer.
15.40 Resolving power of Fabry–Perot interferometer.
15.41 Single slit, wavelength of light.
15.42 Intensity distribution of single-slit diffraction pattern.
15.43 Half-width for central maximum.
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15.44 Coincidence of two different wavelengths of different orders from a single-
slit diffraction.

15.45 Width of slit from position of second dark band.
15.46 Missing orders for a double-slit diffraction pattern.
15.47 Interference fringes within the envelope of central maximum of double-slit

diffraction pattern.
15.48 Overlapping of fourth order with the third one in grating spectrum.
15.49 Highest order seen in a grating spectrum.
15.50 Missing of higher orders in grating spectrum.
15.51 Missing orders in grating spectrum.
15.52 Possible number of orders observed in a grating spectrum.
15.53 Condition for missing order in a grating experiment.
15.54 Intensity of secondary maxima relative to central maxima in single-slit

diffraction.
15.55 Grating with oblique incidence.
15.56 Number of lines/cm in a grating.
15.57 Least width of a grating to resolve D1 and D2 lines.
15.58 Smallest wavelength separation that can be resolved in grating spectrum.
15.59 Resolution of D1 and D2 lines in first and second orders.
15.60 Length of base of a prism which can resolve D1 and D2 lines.
15.61 Separation of two points on the moon by a telescope.
15.62 Radius of lycopodium particles from diffraction.
15.63 Fraunhofer diffraction of a circular aperture.
15.64 Radii of circles on a zone plate.
15.65 Phase retardation for ordinary and extraordinary rays.
15.66 Application of Malus’ law.
15.67 Elevation of the sun when rays are completely polarized.
15.68 Polarizing angle for water–glass interface.
15.69 Minimum thickness of quarter wave plate.
15.70 Polarimeter experiment.
15.71 Application of Malus’ law to three polarizing sheets.
15.72 Inclination of a Brewster window.
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