


Copyright © 2021 Hong Lei

All right reserved. No Part of this book
may be reproduced, stored in a retrieval
system, or transmitted in any form or
means, electronics, mechanical,
photocopying, recording or otherwise
without the prior permission or
acknowledge of the author.



Contents
INTRODUCTION
C++ Overview
C++ Environment Setup
C++ Basic Syntax
Comments in C++
C++ Data Types
C++ Variable Types
Variable Scope in C++
C++ Constants/Literals
C++ Modifier Types
Storage Classes in C++
Operators in C++
C++ Loop Types
C++ decision making statements
C++ Functions
Numbers in C++
C++ Arrays
C++ Strings
C++ Pointers
C++ References
C++ Date and Time
C++ Basic Input/Output
C++ Data Structures
C++ Classes and Objects
C++ Inheritance
C++ Overloading (Operator and Function)



Polymorphism in C++
Data Abstraction in C++
Data Encapsulation in C++
Interfaces in C++ (Abstract Classes)
C++ Files and Streams
C++ Exception Handling
C++ Dynamic Memory
Namespaces in C++
C++ Templates
C++ Preprocessor
C++ Signal Handling
C++ Multithreading
C++ Web Programming
CONCLUSION



INTRODUCTION
C++ is a middle-level programming language developed by Bjarne
Stroustrup starting in 1979 at Bell Labs. C++ runs on a variety of platforms,
such as Windows, Mac OS, and the various versions of UNIX.
This C++ tutorial adopts a simple and practical approach to describe the
concepts of C++ for beginners to advanded software engineers.
Why to Learn C++
C++ is a MUST for students and working professionals to become a great
Software Engineer. I will list down some of the key advantages of learning
C++:

C++ is very close to hardware, so you get a chance to work at a
low level which gives you lot of control in terms of memory
management, better performance and finally a robust software
development.

C++ programming gives you a clear understanding about
Object Oriented Programming. You will understand low level
implementation of polymorphism when you will implement
virtual tables and virtual table pointers, or dynamic type
identification.

C++ is one of the every green programming languages and loved
by millions of software developers. If you are a great C++
programmer then you will never sit without work and more
importantly you will get highly paid for your work.

C++ is the most widely used programming languages in
application and system programming. So you can choose your
area of interest of software development.

C++ really teaches you the difference between compiler, linker
and loader, different data types, storage classes, variable types
their scopes etc.

There are 1000s of good reasons to learn C++ Programming. But one thing
for sure, to learn any programming language, not only C++, you just need to
code, and code and finally code until you become expert.



Hello World using C++
Just to give you a little excitement about C++ programming, I'm going to
give you a small conventional C++ Hello World program, You can try it
using Demo link
C++ is a super set of C programming with additional implementation of
object-oriented concepts.

Live Demo
#include <iostream>
using namespace std;

// main() is where program execution begins.
int main() {

cout << "Hello World"; // prints Hello World
return 0;

}

There are many C++ compilers available which you can use to compile and
run above mentioned program:

Apple C++. Xcode
Bloodshed Dev-C++
Clang C++
Cygwin (GNU C++)
Mentor Graphics
MINGW - "Minimalist GNU for Windows"
GNU CC source
IBM C++
Intel C++
Microsoft Visual C++
Oracle C++
HP C++

It is really impossible to give a complete list of all the available compilers.
The C++ world is just too large and too much new is happening.

http://tpcg.io/n4BVuS


Applications of C++ Programming
As mentioned before, C++ is one of the most widely used programming
languages. It has it's presence in almost every area of software development.
I'm going to list few of them here:

Application Software Development - C++ programming has
been used in developing almost all the major Operating Systems
like Windows, Mac OSX and Linux. Apart from the operating
systems, the core part of many browsers like Mozilla Firefox and
Chrome have been written using C++. C++ also has been used in
developing the most popular database system called MySQL.

Programming Languages Development - C++ has been used
extensively in developing new programming languages like C#,
Java, JavaScript, Perl, UNIX’s C Shell, PHP and Python, and
Verilog etc.

Computation Programming - C++ is the best friends of
scientists because of fast speed and computational efficiencies.

Games Development - C++ is extremely fast which allows
programmers to do procedural programming for CPU intensive
functions and provides greater control over hardware, because of
which it has been widely used in development of gaming engines.

Embedded System - C++ is being heavily used in developing
Medical and Engineering Applications like softwares for MRI
machines, high-end CAD/CAM systems etc.

This list goes on, there are various areas where software developers are
happily using C++ to provide great softwares. I highly recommend you to
learn C++ and contribute great softwares to the community.



C++ Overview
C++ is a statically typed, compiled, general-purpose, case-sensitive, free-
form programming language that supports procedural, object-oriented, and
generic programming.
C++ is regarded as a middle-level language, as it comprises a combination
of both high-level and low-level language features.
C++ was developed by Bjarne Stroustrup starting in 1979 at Bell Labs in
Murray Hill, New Jersey, as an enhancement to the C language and
originally named C with Classes but later it was renamed C++ in 1983.
C++ is a superset of C, and that virtually any legal C program is a legal C++
program.
Note − A programming language is said to use static typing when type
checking is performed during compile-time as opposed to run-time.
Object-Oriented Programming
C++ fully supports object-oriented programming, including the four pillars
of object-oriented development −

Encapsulation
Data hiding
Inheritance
Polymorphism

Standard Libraries
Standard C++ consists of three important parts −

The core language giving all the building blocks including
variables, data types and literals, etc.

The C++ Standard Library giving a rich set of functions
manipulating files, strings, etc.

The Standard Template Library (STL) giving a rich set of
methods manipulating data structures, etc.

The ANSI Standard



The ANSI standard is an attempt to ensure that C++ is portable; that code
you write for Microsoft's compiler will compile without errors, using a
compiler on a Mac, UNIX, a Windows box, or an Alpha.
The ANSI standard has been stable for a while, and all the major C++
compiler manufacturers support the ANSI standard.
Learning C++
The most important thing while learning C++ is to focus on concepts.
The purpose of learning a programming language is to become a better
programmer; that is, to become more effective at designing and
implementing new systems and at maintaining old ones.
C++ supports a variety of programming styles. You can write in the style of
Fortran, C, Smalltalk, etc., in any language. Each style can achieve its aims
effectively while maintaining runtime and space efficiency.
Use of C++
C++ is used by hundreds of thousands of programmers in essentially every
application domain.
C++ is being highly used to write device drivers and other software that rely
on direct manipulation of hardware under realtime constraints.
C++ is widely used for teaching and research because it is clean enough for
successful teaching of basic concepts.
Anyone who has used either an Apple Macintosh or a PC running Windows
has indirectly used C++ because the primary user interfaces of these systems
are written in C++.



C++ Environment Setup
Local Environment Setup
If you are still willing to set up your environment for C++, you need to have
the following two softwares on your computer.

Text Editor
This will be used to type your program. Examples of few editors include
Windows Notepad, OS Edit command, Brief, Epsilon, EMACS, and vim or
vi.

Name and version of text editor can vary on different operating systems. For
example, Notepad will be used on Windows and vim or vi can be used on
windows as well as Linux, or UNIX.

The files you create with your editor are called source files and for C++ they
typically are named with the extension .cpp, .cp, or .c.

A text editor should be in place to start your C++ programming.

C++ Compiler
This is an actual C++ compiler, which will be used to compile your source
code into final executable program.

Most C++ compilers don't care what extension you give to your source code,
but if you don't specify otherwise, many will use .cpp by default.

Most frequently used and free available compiler is GNU C/C++ compiler,
otherwise you can have compilers either from HP or Solaris if you have the
respective Operating Systems.

Installing GNU C/C++ Compiler
UNIX/Linux Installation
If you are using Linux or UNIX then check whether GCC is installed on
your system by entering the following command from the command line −

$ g++ -v
If you have installed GCC, then it should print a message such as the
following −



Using built-in specs.
Target: i386-redhat-linux
Configured with: ../configure --prefix=/usr .......
Thread model: posix
gcc version 4.1.2 20080704 (Red Hat 4.1.2-46)
If GCC is not installed, then you will have to install it yourself using the
detailed instructions available at https://gcc.gnu.org/install/

Mac OS X Installation
If you use Mac OS X, the easiest way to obtain GCC is to download the
Xcode development environment from Apple's website and follow the
simple installation instructions.

Xcode is currently available at developer.apple.com/technologies/tools/.

Windows Installation
To install GCC at Windows you need to install MinGW. To install MinGW,
go to the MinGW homepage, www.mingw.org, and follow the link to the
MinGW download page. Download the latest version of the MinGW
installation program which should be named MinGW-<version>.exe.

While installing MinGW, at a minimum, you must install gcc-core, gcc-g++,
binutils, and the MinGW runtime, but you may wish to install more.

Add the bin subdirectory of your MinGW installation to
your PATH environment variable so that you can specify these tools on the
command line by their simple names.

When the installation is complete, you will be able to run gcc, g++, ar,
ranlib, dlltool, and several other GNU tools from the Windows command
line.

https://gcc.gnu.org/install/
https://developer.apple.com/technologies/tools/
http://www.mingw.org/


C++ Basic Syntax
When we consider a C++ program, it can be defined as a collection of
objects that communicate via invoking each other's methods. Let us now
briefly look into what a class, object, methods, and instant variables mean.

Object − Objects have states and behaviors. Example: A dog
has states - color, name, breed as well as behaviors - wagging,
barking, eating. An object is an instance of a class.

Class − A class can be defined as a template/blueprint that
describes the behaviors/states that object of its type support.

Methods − A method is basically a behavior. A class can
contain many methods. It is in methods where the logics are
written, data is manipulated and all the actions are executed.

Instance Variables − Each object has its unique set of instance
variables. An object's state is created by the values assigned to
these instance variables.

C++ Program Structure
Let us look at a simple code that would print the words Hello World.

Live Demo

#include <iostream>
using namespace std;

// main() is where program execution begins.
int main() {

cout << "Hello World"; // prints Hello World
return 0;

}

Let us look at the various parts of the above program −

The C++ language defines several headers, which contain
information that is either necessary or useful to your program. For
this program, the header <iostream> is needed.

The line using namespace std; tells the compiler to use the std

http://tpcg.io/n4BVuS


namespace. Namespaces are a relatively recent addition to C++.
The next line '// main() is where program execution begins.' is

a single-line comment available in C++. Single-line comments
begin with // and stop at the end of the line.

The line int main() is the main function where program
execution begins.

The next line cout << "Hello World"; causes the message
"Hello World" to be displayed on the screen.

The next line return 0; terminates main( )function and causes it
to return the value 0 to the calling process.

Compile and Execute C++ Program
Let's look at how to save the file, compile and run the program. Please
follow the steps given below −

Open a text editor and add the code as above.
Save the file as: hello.cpp
Open a command prompt and go to the directory where you

saved the file.
Type 'g++ hello.cpp' and press enter to compile your code. If

there are no errors in your code the command prompt will take
you to the next line and would generate a.out executable file.

Now, type 'a.out' to run your program.
You will be able to see ' Hello World ' printed on the window.

$ g++ hello.cpp
$ ./a.out
Hello World
Make sure that g++ is in your path and that you are running it in the
directory containing file hello.cpp.
You can compile C/C++ programs using makefile. For more details, you can
check our 'Makefile Tutorial'.
Semicolons and Blocks in C++
In C++, the semicolon is a statement terminator. That is, each individual

https://www.tutorialspoint.com/makefile/index.htm


statement must be ended with a semicolon. It indicates the end of one logical
entity.
For example, following are three different statements −
x = y;
y = y + 1;
add(x, y);
A block is a set of logically connected statements that are surrounded by
opening and closing braces. For example −
{

cout << "Hello World"; // prints Hello World
return 0;

}
C++ does not recognize the end of the line as a terminator. For this reason, it
does not matter where you put a statement in a line. For example −
x = y;
y = y + 1;
add(x, y);
is the same as
x = y; y = y + 1; add(x, y);
C++ Identifiers
A C++ identifier is a name used to identify a variable, function, class,
module, or any other user-defined item. An identifier starts with a letter A to
Z or a to z or an underscore (_) followed by zero or more letters,
underscores, and digits (0 to 9).
C++ does not allow punctuation characters such as @, $, and % within
identifiers. C++ is a case-sensitive programming language.
Thus, Manpower and manpower are two different identifiers in C++.
Here are some examples of acceptable identifiers −
mohd       zara    abc   move_name  a_123
myname50   _temp   j     a23b9      retVal
C++ Keywords
The following list shows the reserved words in C++. These reserved words
may not be used as constant or variable or any other identifier names.



asm else new this

auto enum operator throw

bool explicit private true

break export protected try

case extern public typedef

catch false register typeid

char float reinterpret_cast typename

class for return union

const friend short unsigned

const_cast goto signed using

continue if sizeof virtual

default inline static void

delete int static_cast volatile

do long struct wchar_t

double mutable switch while

dynamic_cast namespace template

Trigraph Replacement



??= #

??/ \

??' ^

??( [

??) ]

??! |

??< {

??> }

??- ~

Trigraphs
A few characters have an alternative representation, called a trigraph
sequence. A trigraph is a three-character sequence that represents a single
character and the sequence always starts with two question marks.
Trigraphs are expanded anywhere they appear, including within string
literals and character literals, in comments, and in preprocessor directives.
Following are most frequently used trigraph sequences −
All the compilers do not support trigraphs and they are not advised to be
used because of their confusing nature.
Whitespace in C++
A line containing only whitespace, possibly with a comment, is known as a
blank line, and C++ compiler totally ignores it.
Whitespace is the term used in C++ to describe blanks, tabs, newline
characters and comments. Whitespace separates one part of a statement from



another and enables the compiler to identify where one element in a
statement, such as int, ends and the next element begins.
Statement 1
int age;
In the above statement there must be at least one whitespace character
(usually a space) between int and age for the compiler to be able to
distinguish them.
Statement 2
fruit = apples + oranges;   // Get the total fruit
In the above statement 2, no whitespace characters are necessary between
fruit and =, or between = and apples, although you are free to include some
if you wish for readability purpose.



Comments in C++
Program comments are explanatory statements that you can include in the
C++ code. These comments help anyone reading the source code. All
programming languages allow for some form of comments.
C++ supports single-line and multi-line comments. All characters available
inside any comment are ignored by C++ compiler.
C++ comments start with /* and end with */. For example −
/* This is a comment */

/* C++ comments can also
* span multiple lines

*/
A comment can also start with //, extending to the end of the line. For
example −

Live Demo
#include <iostream>
using namespace std;

main() {
cout << "Hello World"; // prints Hello World

return 0;
}

When the above code is compiled, it will ignore // prints Hello World and
final executable will produce the following result −
Hello World
Within a /* and */ comment, // characters have no special meaning. Within a
// comment, /* and */ have no special meaning. Thus, you can "nest" one
kind of comment within the other kind. For example −
/* Comment out printing of Hello World:

cout << "Hello World"; // prints Hello World

*/

http://tpcg.io/Q4esaC


C++ Data Types
While writing program in any language, you need to use various variables to
store various information. Variables are nothing but reserved memory
locations to store values. This means that when you create a variable you
reserve some space in memory.
You may like to store information of various data types like character, wide
character, integer, floating point, double floating point, boolean etc. Based
on the data type of a variable, the operating system allocates memory and
decides what can be stored in the reserved memory.
Primitive Built-in Types
C++ offers the programmer a rich assortment of built-in as well as user
defined data types. Following table lists down seven basic C++ data types −

Type Keyword

Boolean bool

Character char

Integer int

Floating point float

Double floating point double

Valueless void

Wide character wchar_t

Several of the basic types can be modified using one or more of these type
modifiers −

signed



unsigned
short
long

The following table shows the variable type, how much memory it takes to
store the value in memory, and what is maximum and minimum value which
can be stored in such type of variables.

Type Typical Bit Width Typical Range

char 1byte -127 to 127 or 0 to 255

unsigned char 1byte 0 to 255

signed char 1byte -127 to 127

int 4bytes -2147483648 to 2147483647

unsigned int 4bytes 0 to 4294967295

signed int 4bytes -2147483648 to 2147483647

short int 2bytes -32768 to 32767

unsigned short int 2bytes 0 to 65,535

signed short int 2bytes -32768 to 32767

long int 8bytes -2,147,483,648 to
2,147,483,647

signed long int 8bytes same as long int

unsigned long int 8bytes 0 to 4,294,967,295



long long int 8bytes -(2^63) to (2^63)-1

unsigned long long
int

8bytes 0 to
18,446,744,073,709,551,615

float 4bytes

double 8bytes

long double 12bytes

wchar_t 2 or 4 bytes 1 wide character

The size of variables might be different from those shown in the above table,
depending on the compiler and the computer you are using.
Following is the example, which will produce correct size of various data
types on your computer.

Live Demo

#include <iostream>
using namespace std;

int main() {
cout << "Size of char : " << sizeof(char) << endl;
cout << "Size of int : " << sizeof(int) << endl;
cout << "Size of short int : " << sizeof(short int) << endl;
cout << "Size of long int : " << sizeof(long int) << endl;
cout << "Size of float : " << sizeof(float) << endl;
cout << "Size of double : " << sizeof(double) << endl;
cout << "Size of wchar_t : " << sizeof(wchar_t) << endl;

return 0;
}

This example uses endl, which inserts a new-line character after every line
and << operator is being used to pass multiple values out to the screen. We

http://tpcg.io/iKNn78


are also using sizeof() operator to get size of various data types.
When the above code is compiled and executed, it produces the following
result which can vary from machine to machine −
Size of char : 1
Size of int : 4
Size of short int : 2
Size of long int : 4
Size of float : 4
Size of double : 8
Size of wchar_t : 4
typedef Declarations
You can create a new name for an existing type using typedef. Following is
the simple syntax to define a new type using typedef −
typedef type newname;
For example, the following tells the compiler that feet is another name for int
−
typedef int feet;
Now, the following declaration is perfectly legal and creates an integer
variable called distance −
feet distance;
Enumerated Types
An enumerated type declares an optional type name and a set of zero or
more identifiers that can be used as values of the type. Each enumerator is a
constant whose type is the enumeration.
Creating an enumeration requires the use of the keyword enum. The general
form of an enumeration type is −
enum enum-name { list of names } var-list;
Here, the enum-name is the enumeration's type name. The list of names is
comma separated.
For example, the following code defines an enumeration of colors called
colors and the variable c of type color. Finally, c is assigned the value
"blue".
enum color { red, green, blue } c;



c = blue;
By default, the value of the first name is 0, the second name has the value 1,
and the third has the value 2, and so on. But you can give a name, a specific
value by adding an initializer. For example, in the following
enumeration, green will have the value 5.
enum color { red, green = 5, blue };
Here, blue will have a value of 6 because each name will be one greater than
the one that precedes it.



C++ Variable Types
A variable provides us with named storage that our programs can
manipulate. Each variable in C++ has a specific type, which determines the
size and layout of the variable's memory; the range of values that can be
stored within that memory; and the set of operations that can be applied to
the variable.
The name of a variable can be composed of letters, digits, and the
underscore character. It must begin with either a letter or an underscore.
Upper and lowercase letters are distinct because C++ is case-sensitive −
There are following basic types of variable in C++ as explained in last
chapter −

Sr.No Type & Description

1 bool
Stores either value true or false.

2 char
Typically a single octet (one byte). This is an integer type.

3 int
The most natural size of integer for the machine.

4 float
A single-precision floating point value.

5 double
A double-precision floating point value.

6 void



Represents the absence of type.

7 wchar_t
A wide character type.

C++ also allows to define various other types of variables, which we will
cover in subsequent chapters like Enumeration, Pointer, Array,
Reference, Data structures, and Classes.
Following section will cover how to define, declare and use various types of
variables.
Variable Definition in C++
A variable definition tells the compiler where and how much storage to
create for the variable. A variable definition specifies a data type, and
contains a list of one or more variables of that type as follows −
type variable_list;
Here, type must be a valid C++ data type including char, w_char, int, float,
double, bool or any user-defined object, etc., and variable_list may consist
of one or more identifier names separated by commas. Some valid
declarations are shown here −
int    i, j, k;
char   c, ch;
float  f, salary;
double d;
The line int i, j, k; both declares and defines the variables i, j and k; which
instructs the compiler to create variables named i, j and k of type int.
Variables can be initialized (assigned an initial value) in their declaration.
The initializer consists of an equal sign followed by a constant expression as
follows −
type variable_name = value;
Some examples are −
extern int d = 3, f = 5;   // declaration of d and f.
int d = 3, f = 5;           // definition and initializing d and f.
byte z = 22;                // definition and initializes z.



char x = 'x';               // the variable x has the value 'x'.
For definition without an initializer: variables with static storage duration are
implicitly initialized with NULL (all bytes have the value 0); the initial value
of all other variables is undefined.
Variable Declaration in C++
A variable declaration provides assurance to the compiler that there is one
variable existing with the given type and name so that compiler proceed for
further compilation without needing complete detail about the variable. A
variable declaration has its meaning at the time of compilation only,
compiler needs actual variable definition at the time of linking of the
program.
A variable declaration is useful when you are using multiple files and you
define your variable in one of the files which will be available at the time of
linking of the program. You will use extern keyword to declare a variable at
any place. Though you can declare a variable multiple times in your C++
program, but it can be defined only once in a file, a function or a block of
code.
Example
Try the following example where a variable has been declared at the top, but
it has been defined inside the main function −

Live Demo

#include <iostream>
using namespace std;

// Variable declaration:
extern int a, b;
extern int c;
extern float f;

int main () {
// Variable definition:
int a, b;
int c;
float f;

http://tpcg.io/odXXRO


// actual initialization
a = 10;
b = 20;
c = a + b;

cout << c << endl ;

f = 70.0/3.0;
cout << f << endl ;

return 0;
}

When the above code is compiled and executed, it produces the following
result −
30
23.3333
Same concept applies on function declaration where you provide a function
name at the time of its declaration and its actual definition can be given
anywhere else. For example −
// function declaration
int func();
int main() {

// function call
int i = func();

}

// function definition
int func() {

return 0;
}
Lvalues and Rvalues
There are two kinds of expressions in C++ −

lvalue − Expressions that refer to a memory location is called
"lvalue" expression. An lvalue may appear as either the left-hand
or right-hand side of an assignment.



rvalue − The term rvalue refers to a data value that is stored at
some address in memory. An rvalue is an expression that cannot
have a value assigned to it which means an rvalue may appear on
the right- but not left-hand side of an assignment.

Variables are lvalues and so may appear on the left-hand side of an
assignment. Numeric literals are rvalues and so may not be assigned and can
not appear on the left-hand side. Following is a valid statement −
int g = 20;
But the following is not a valid statement and would generate compile-time
error −
10 = 20;



Variable Scope in C++
A scope is a region of the program and broadly speaking there are three
places, where variables can be declared −

Inside a function or a block which is called local variables,
In the definition of function parameters which is called formal

parameters.
Outside of all functions which is called global variables.

We will learn what is a function and it's parameter in subsequent chapters.
Here let us explain what are local and global variables.
Local Variables
Variables that are declared inside a function or block are local variables.
They can be used only by statements that are inside that function or block of
code. Local variables are not known to functions outside their own.
Following is the example using local variables −

Live Demo

#include <iostream>
using namespace std;

int main () {
// Local variable declaration:
int a, b;
int c;

// actual initialization
a = 10;
b = 20;
c = a + b;

cout << c;

return 0;
}
Global Variables

http://tpcg.io/QIjnPh


Global variables are defined outside of all the functions, usually on top of
the program. The global variables will hold their value throughout the life-
time of your program.
A global variable can be accessed by any function. That is, a global variable
is available for use throughout your entire program after its declaration.
Following is the example using global and local variables −

Live Demo

#include <iostream>
using namespace std;

// Global variable declaration:
int g;

int main () {
// Local variable declaration:
int a, b;

// actual initialization
a = 10;
b = 20;
g = a + b;

cout << g;

return 0;
}

A program can have same name for local and global variables but value of
local variable inside a function will take preference. For example −

Live Demo

#include <iostream>
using namespace std;

// Global variable declaration:
int g = 20;

int main () {

http://tpcg.io/dRHHpD
http://tpcg.io/dt7MP9


// Local variable declaration:
int g = 10;

cout << g;

return 0;
}

When the above code is compiled and executed, it produces the following
result −
10
Initializing Local and Global Variables
When a local variable is defined, it is not initialized by the system, you must
initialize it yourself. Global variables are initialized automatically by the
system when you define them as follows –

Data Type Initializer

int 0

char '\0'

float 0

double 0

pointer NULL

It is a good programming practice to initialize variables properly, otherwise
sometimes program would produce unexpected result.



C++ Constants/Literals
Constants refer to fixed values that the program may not alter and they are
called literals.
Constants can be of any of the basic data types and can be divided into
Integer Numerals, Floating-Point Numerals, Characters, Strings and Boolean
Values.
Again, constants are treated just like regular variables except that their
values cannot be modified after their definition.
Integer Literals
An integer literal can be a decimal, octal, or hexadecimal constant. A prefix
specifies the base or radix: 0x or 0X for hexadecimal, 0 for octal, and
nothing for decimal.
An integer literal can also have a suffix that is a combination of U and L, for
unsigned and long, respectively. The suffix can be uppercase or lowercase
and can be in any order.
Here are some examples of integer literals −
212         // Legal
215u        // Legal
0xFeeL      // Legal
078         // Illegal: 8 is not an octal digit
032UU       // Illegal: cannot repeat a suffix
Following are other examples of various types of Integer literals −
85         // decimal
0213       // octal
0x4b       // hexadecimal
30         // int
30u        // unsigned int
30l        // long
30ul       // unsigned long
Floating-point Literals
A floating-point literal has an integer part, a decimal point, a fractional part,
and an exponent part. You can represent floating point literals either in
decimal form or exponential form.



While representing using decimal form, you must include the decimal point,
the exponent, or both and while representing using exponential form, you
must include the integer part, the fractional part, or both. The signed
exponent is introduced by e or E.
Here are some examples of floating-point literals −
3.14159       // Legal
314159E-5L    // Legal
510E          // Illegal: incomplete exponent
210f          // Illegal: no decimal or exponent
.e55          // Illegal: missing integer or fraction
Boolean Literals
There are two Boolean literals and they are part of standard C++ keywords −

A value of true representing true.
A value of false representing false.

You should not consider the value of true equal to 1 and value of false equal
to 0.
Character Literals
Character literals are enclosed in single quotes. If the literal begins with L
(uppercase only), it is a wide character literal (e.g., L'x') and should be stored
in wchar_t type of variable . Otherwise, it is a narrow character literal (e.g.,
'x') and can be stored in a simple variable of char type.
A character literal can be a plain character (e.g., 'x'), an escape sequence
(e.g., '\t'), or a universal character (e.g., '\u02C0').
There are certain characters in C++ when they are preceded by a backslash
they will have special meaning and they are used to represent like newline
(\n) or tab (\t). Here, you have a list of some of such escape sequence codes
−

Escape sequence Meaning

\\ \ character

\' ' character



\" " character

\? ? character

\a Alert or bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\ooo Octal number of one to three digits

\xhh . . . Hexadecimal number of one or more digits

Following is the example to show a few escape sequence characters –

Live Demo

#include <iostream>
using namespace std;

int main() {
cout << "Hello\tWorld\n\n";
return 0;

http://tpcg.io/8RqQ5S


}

When the above code is compiled and executed, it produces the following
result −
Hello   World
String Literals
String literals are enclosed in double quotes. A string contains characters that
are similar to character literals: plain characters, escape sequences, and
universal characters.
You can break a long line into multiple lines using string literals and
separate them using whitespaces.
Here are some examples of string literals. All the three forms are identical
strings.
"hello, dear"

"hello, \

dear"

"hello, " "d" "ear"
Defining Constants
There are two simple ways in C++ to define constants −

Using #define preprocessor.
Using const keyword.

The #define Preprocessor
Following is the form to use #define preprocessor to define a constant −
#define identifier value
Following example explains it in detail −

Live Demo

#include <iostream>
using namespace std;

#define LENGTH 10  

http://tpcg.io/N6xxDP


#define WIDTH  5
#define NEWLINE '\n'

int main() {
int area;

area = LENGTH * WIDTH;
cout << area;
cout << NEWLINE;
return 0;

}

When the above code is compiled and executed, it produces the following
result −
50
The const Keyword
You can use const prefix to declare constants with a specific type as follows
−
const type variable = value;
Following example explains it in detail −

Live Demo

#include <iostream>
using namespace std;

int main() {
const int  LENGTH = 10;
const int  WIDTH  = 5;
const char NEWLINE = '\n';
int area;

area = LENGTH * WIDTH;
cout << area;
cout << NEWLINE;
return 0;

}

When the above code is compiled and executed, it produces the following

http://tpcg.io/IA1cea


result −
50
Note that it is a good programming practice to define constants in
CAPITALS.



C++ Modifier Types
C++ allows the char, int, and double data types to have modifiers preceding
them. A modifier is used to alter the meaning of the base type so that it more
precisely fits the needs of various situations.
The data type modifiers are listed here −

signed
unsigned
long
short

The modifiers signed, unsigned, long, and short can be applied to integer
base types. In addition, signed and unsigned can be applied to char, and
long can be applied to double.
The modifiers signed and unsigned can also be used as prefix to long or
short modifiers. For example, unsigned long int.
C++ allows a shorthand notation for declaring unsigned,
short, or long integers. You can simply use the word unsigned,
short, or long, without int. It automatically implies int. For example, the
following two statements both declare unsigned integer variables.
unsigned x;
unsigned int y;
To understand the difference between the way signed and unsigned integer
modifiers are interpreted by C++, you should run the following short
program −

Live Demo

#include <iostream>
using namespace std;

/* This program shows the difference between
* signed and unsigned integers.

*/
int main() {

short int i;           // a signed short integer

http://tpcg.io/nWAgjz


short unsigned int j;  // an unsigned short integer

j = 50000;

i = j;
cout << i << " " << j;

return 0;
}

When this program is run, following is the output −
-15536 50000
The above result is because the bit pattern that represents 50,000 as a short
unsigned integer is interpreted as -15,536 by a short.
Type Qualifiers in C++
The type qualifiers provide additional information about the variables they
precede.

Sr.No Qualifier & Meaning

1 const
Objects of type const cannot be changed by your program
during execution.

2 volatile
The modifier volatile tells the compiler that a variable's value
may be changed in ways not explicitly specified by the program.

3 restrict
A pointer qualified by restrict is initially the only means by
which the object it points to can be accessed. Only C99 adds a
new type qualifier called restrict.

Storage Classes in C++



A storage class defines the scope (visibility) and life-time of variables and/or
functions within a C++ Program. These specifiers precede the type that they
modify. There are following storage classes, which can be used in a C++
Program

auto
register
static
extern
mutable

The auto Storage Class
The auto storage class is the default storage class for all local variables.
{

int mount;
auto int month;

}
The example above defines two variables with the same storage class, auto
can only be used within functions, i.e., local variables.
The register Storage Class
The register storage class is used to define local variables that should be
stored in a register instead of RAM. This means that the variable has a
maximum size equal to the register size (usually one word) and can't have
the unary '&' operator applied to it (as it does not have a memory location).
{

register int  miles;
}
The register should only be used for variables that require quick access such
as counters. It should also be noted that defining 'register' does not mean that
the variable will be stored in a register. It means that it MIGHT be stored in
a register depending on hardware and implementation restrictions.
The static Storage Class
The static storage class instructs the compiler to keep a local variable in
existence during the life-time of the program instead of creating and



destroying it each time it comes into and goes out of scope. Therefore,
making local variables static allows them to maintain their values between
function calls.
The static modifier may also be applied to global variables. When this is
done, it causes that variable's scope to be restricted to the file in which it is
declared.
In C++, when static is used on a class data member, it causes only one copy
of that member to be shared by all objects of its class.

Live Demo

#include <iostream>

// Function declaration
void func(void);

static int count = 10; /* Global variable */

main() {
while(count--) {

func();
}

return 0;
}

// Function definition
void func( void ) {

static int i = 5; // local static variable
i++;
std::cout << "i is " << i ;
std::cout << " and count is " << count << std::endl;

}

When the above code is compiled and executed, it produces the following
result −
i is 6 and count is 9
i is 7 and count is 8
i is 8 and count is 7

http://tpcg.io/20HjiV


i is 9 and count is 6
i is 10 and count is 5
i is 11 and count is 4
i is 12 and count is 3
i is 13 and count is 2
i is 14 and count is 1
i is 15 and count is 0
The extern Storage Class
The extern storage class is used to give a reference of a global variable that
is visible to ALL the program files. When you use 'extern' the variable
cannot be initialized as all it does is point the variable name at a storage
location that has been previously defined.
When you have multiple files and you define a global variable or function,
which will be used in other files also, then extern will be used in another file
to give reference of defined variable or function. Just for
understanding extern is used to declare a global variable or function in
another file.
The extern modifier is most commonly used when there are two or more
files sharing the same global variables or functions as explained below.
First File: main.cpp
#include <iostream>
int count ;
extern void write_extern();

main() {
count = 5;
write_extern();

}
Second File: support.cpp
#include <iostream>

extern int count;

void write_extern(void) {
std::cout << "Count is " << count << std::endl;

}



Here, extern keyword is being used to declare count in another file. Now
compile these two files as follows −
$g++ main.cpp support.cpp -o write
This will produce write executable program, try to execute write and check
the result as follows −
$./write
5
The mutable Storage Class
The mutable specifier applies only to class objects, which are discussed
later in this tutorial. It allows a member of an object to override const
member function. That is, a mutable member can be modified by a const
member function.



Operators in C++
An operator is a symbol that tells the compiler to perform specific
mathematical or logical manipulations. C++ is rich in built-in operators and
provide the following types of operators −

Arithmetic Operators
Relational Operators
Logical Operators
Bitwise Operators
Assignment Operators
Misc Operators

This chapter will examine the arithmetic, relational, logical, bitwise,
assignment and other operators one by one.
Arithmetic Operators
There are following arithmetic operators supported by C++ language −
Assume variable A holds 10 and variable B holds 20, then −
Show Examples

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand
from the first

A - B will give -10

* Multiplies both operands A * B will give 200

/ Divides numerator by de-
numerator

B / A will give 2

% Modulus Operator and
remainder of after an integer

B % A will give 0

https://www.tutorialspoint.com/cplusplus/cpp_arithmatic_operators.htm


division

++ Increment operator, increases
integer value by one

A++ will give 11

-- Decrement operator,
decreases integer value by
one

A-- will give 9

Relational Operators
There are following relational operators supported by C++ language
Assume variable A holds 10 and variable B holds 20, then −
Show Examples

Operator Description Example

== Checks if the values of two
operands are equal or not, if
yes then condition becomes
true.

(A == B) is not true.

!= Checks if the values of two
operands are equal or not, if
values are not equal then
condition becomes true.

(A != B) is true.

> Checks if the value of left
operand is greater than the
value of right operand, if yes
then condition becomes true.

(A > B) is not true.

< Checks if the value of left
operand is less than the value
of right operand, if yes then

(A < B) is true.

https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_relational_operators.htm


condition becomes true.

>= Checks if the value of left
operand is greater than or equal
to the value of right operand, if
yes then condition becomes
true.

(A >= B) is not true.

<= Checks if the value of left
operand is less than or equal to
the value of right operand, if
yes then condition becomes
true.

(A <= B) is true.

Logical Operators
There are following logical operators supported by C++ language.
Assume variable A holds 1 and variable B holds 0, then −

Show Examples

Operator Description Example

&& Called Logical AND operator.
If both the operands are non-
zero, then condition becomes
true.

(A && B) is false.

|| Called Logical OR Operator.
If any of the two operands is
non-zero, then condition
becomes true.

(A || B) is true.

! Called Logical NOT Operator.
Use to reverses the logical
state of its operand. If a
condition is true, then Logical

!(A && B) is true.

https://www.tutorialspoint.com/cplusplus/cpp_logical_operators.htm


NOT operator will make false.

Bitwise Operators
Bitwise operator works on bits and perform bit-by-bit operation. The truth
tables for &, |, and ^ are as follows −

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows
−
A = 0011 1100
B = 0000 1101
-----------------
A&B = 0000 1100
A|B = 0011 1101
A^B = 0011 0001
~A  = 1100 0011
The Bitwise operators supported by C++ language are listed in the following
table. Assume variable A holds 60 and variable B holds 13, then −
Show Examples

Operator Description Example

& Binary AND Operator
copies a bit to the result if it (A & B) will give 12 which is

https://www.tutorialspoint.com/cplusplus/cpp_bitwise_operators.htm


exists in both operands. 0000 1100

| Binary OR Operator copies
a bit if it exists in either
operand.

(A | B) will give 61 which is
0011 1101

^ Binary XOR Operator
copies the bit if it is set in
one operand but not both.

(A ^ B) will give 49 which is
0011 0001

~ Binary Ones Complement
Operator is unary and has
the effect of 'flipping' bits.

(~A ) will give -61 which is
1100 0011 in 2's complement
form due to a signed binary
number.

<< Binary Left Shift Operator.
The left operands value is
moved left by the number
of bits specified by the right
operand.

A << 2 will give 240 which is
1111 0000

>> Binary Right Shift
Operator. The left operands
value is moved right by the
number of bits specified by
the right operand.

A >> 2 will give 15 which is
0000 1111

Assignment Operators
There are following assignment operators supported by C++ language −
Show Examples

Operator Description Example

= Simple assignment operator, C = A + B will assign value

https://www.tutorialspoint.com/cplusplus/cpp_assignment_operators.htm


Assigns values from right side
operands to left side operand.

of A + B into C

+= Add AND assignment operator,
It adds right operand to the left
operand and assign the result to
left operand.

C += A is equivalent to C =
C + A

-= Subtract AND assignment
operator, It subtracts right
operand from the left operand
and assign the result to left
operand.

C -= A is equivalent to C =
C - A

*= Multiply AND assignment
operator, It multiplies right
operand with the left operand
and assign the result to left
operand.

C *= A is equivalent to C =
C * A

/= Divide AND assignment
operator, It divides left operand
with the right operand and
assign the result to left operand.

C /= A is equivalent to C =
C / A

%= Modulus AND assignment
operator, It takes modulus using
two operands and assign the
result to left operand.

C %= A is equivalent to C
= C % A

<<= Left shift AND assignment
operator.

C <<= 2 is same as C = C
<< 2

>>= Right shift AND assignment
operator.

C >>= 2 is same as C = C
>> 2



&= Bitwise AND assignment
operator.

C &= 2 is same as C = C &
2

^= Bitwise exclusive OR and
assignment operator. C ^= 2 is same as C = C ^ 2

|= Bitwise inclusive OR and
assignment operator. C |= 2 is same as C = C | 2

Misc Operators
The following table lists some other operators that C++ supports.

Sr.No Operator & Description

1 sizeof
sizeof operator returns the size of a variable. For example,
sizeof(a), where ‘a’ is integer, and will return 4.

2 Condition ? X : Y
Conditional operator (?). If Condition is true then it returns
value of X otherwise returns value of Y.

3 ,
Comma operator causes a sequence of operations to be
performed. The value of the entire comma expression is the
value of the last expression of the comma-separated list.

4 . (dot) and -> (arrow)
Member operators are used to reference individual members of
classes, structures, and unions.

https://www.tutorialspoint.com/cplusplus/cpp_sizeof_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_conditional_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_comma_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_member_operators.htm


5 Cast
Casting operators convert one data type to another. For
example, int(2.2000) would return 2.

6 &
Pointer operator & returns the address of a variable. For
example &a; will give actual address of the variable.

7 *
Pointer operator * is pointer to a variable. For example *var;
will pointer to a variable var.

Operators Precedence in C++
Operator precedence determines the grouping of terms in an expression. This
affects how an expression is evaluated. Certain operators have higher
precedence than others; for example, the multiplication operator has higher
precedence than the addition operator −
For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator *
has higher precedence than +, so it first gets multiplied with 3*2 and then
adds into 7.
Here, operators with the highest precedence appear at the top of the table,
those with the lowest appear at the bottom. Within an expression, higher
precedence operators will be evaluated first.
Show Examples

Category Operator Associativity

Postfix () [] -> . ++ - -  Left to right

Unary + - ! ~ ++ - - (type)* &
sizeof 

Right to left

https://www.tutorialspoint.com/cplusplus/cpp_casting_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_operators_precedence.htm


Multiplicative  * / % Left to right

Additive  + - Left to right

Shift  << >> Left to right

Relational  < <= > >= Left to right

Equality  == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<=
&= ^= |= 

Right to left

Comma , Left to right



C++ Loop Types

There may be a situation, when you need to execute a block of code several
number of times. In general, statements are executed sequentially: The first
statement in a function is executed first, followed by the second, and so on.
Programming languages provide various control structures that allow for
more complicated execution paths.
A loop statement allows us to execute a statement or group of statements
multiple times and following is the general from of a loop statement in most
of the programming languages −

C++ programming language provides the following type of loops to handle
looping requirements.

Sr.No Loop Type & Description

1 while loop

Repeats a statement or group of statements while a given
condition is true. It tests the condition before executing the loop
body.

https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm


2 for loop
Execute a sequence of statements multiple times and abbreviates
the code that manages the loop variable.

3 do...while loop
Like a ‘while’ statement, except that it tests the condition at the
end of the loop body.

4 nested loops
You can use one or more loop inside any another ‘while’, ‘for’
or ‘do..while’ loop.

Loop Control Statements
Loop control statements change execution from its normal sequence. When
execution leaves a scope, all automatic objects that were created in that
scope are destroyed.
C++ supports the following control statements.

Sr.No Control Statement & Description

1 break statement

Terminates the loop or switch statement and transfers execution
to the statement immediately following the loop or switch.

2 continue statement
Causes the loop to skip the remainder of its body and
immediately retest its condition prior to reiterating.

3 goto statement
Transfers control to the labeled statement. Though it is not
advised to use goto statement in your program.

The Infinite Loop

https://www.tutorialspoint.com/cplusplus/cpp_for_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_do_while_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_nested_loops.htm
https://www.tutorialspoint.com/cplusplus/cpp_break_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_continue_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_goto_statement.htm


A loop becomes infinite loop if a condition never becomes false.
The for loop is traditionally used for this purpose. Since none of the three
expressions that form the ‘for’ loop are required, you can make an endless
loop by leaving the conditional expression empty.

#include <iostream>
using namespace std;

int main () {
for( ; ; ) {

printf("This loop will run forever.\n");
}

return 0;
}

When the conditional expression is absent, it is assumed to be true. You may
have an initialization and increment expression, but C++ programmers more
commonly use the ‘for (;;)’ construct to signify an infinite loop.
NOTE − You can terminate an infinite loop by pressing Ctrl + C keys.



C++ decision making statements
Decision making structures require that the programmer specify one or more
conditions to be evaluated or tested by the program, along with a statement
or statements to be executed if the condition is determined to be true, and
optionally, other statements to be executed if the condition is determined to
be false.
Following is the general form of a typical decision making structure found in
most of the programming languages −

C++ programming language provides following types of decision making
statements.

Sr.No Statement & Description

1 if statement

An ‘if’ statement consists of a boolean expression followed by
one or more statements.

2 if...else statement
An ‘if’ statement can be followed by an optional ‘else’

https://www.tutorialspoint.com/cplusplus/cpp_if_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_if_else_statement.htm


statement, which executes when the boolean expression is false.

3 switch statement
A ‘switch’ statement allows a variable to be tested for equality
against a list of values.

4 nested if statements
You can use one ‘if’ or ‘else if’ statement inside another ‘if’ or
‘else if’ statement(s).

5 nested switch statements
You can use one ‘switch’ statement inside another ‘switch’
statement(s).

The ? : Operator
We have covered conditional operator “? :” in previous chapter which can be
used to replace if...else statements. It has the following general form −
Exp1 ? Exp2 : Exp3;
Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the
colon.
The value of a ‘?’ expression is determined like this: Exp1 is evaluated. If it
is true, then Exp2 is evaluated and becomes the value of the entire ‘?’
expression. If Exp1 is false, then Exp3 is evaluated and its value becomes
the value of the expression.

https://www.tutorialspoint.com/cplusplus/cpp_switch_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_nested_if.htm
https://www.tutorialspoint.com/cplusplus/cpp_nested_switch.htm
https://www.tutorialspoint.com/cplusplus/cpp_conditional_operator.htm


C++ Functions
A function is a group of statements that together perform a task. Every C++
program has at least one function, which is main(), and all the most trivial
programs can define additional functions.
You can divide up your code into separate functions. How you divide up
your code among different functions is up to you, but logically the division
usually is such that each function performs a specific task.
A function declaration tells the compiler about a function's name, return
type, and parameters. A function definition provides the actual body of the
function.
The C++ standard library provides numerous built-in functions that your
program can call. For example, function strcat() to concatenate two strings,
function memcpy() to copy one memory location to another location and
many more functions.
A function is known with various names like a method or a sub-routine or a
procedure etc.
Defining a Function
The general form of a C++ function definition is as follows −
return_type function_name( parameter list ) {

body of the function
}
A C++ function definition consists of a function header and a function body.
Here are all the parts of a function −

Return Type − A function may return a value.
The return_type is the data type of the value the function returns.
Some functions perform the desired operations without returning a
value. In this case, the return_type is the keyword void.

Function Name − This is the actual name of the function. The
function name and the parameter list together constitute the
function signature.

Parameters − A parameter is like a placeholder. When a
function is invoked, you pass a value to the parameter. This value



is referred to as actual parameter or argument. The parameter list
refers to the type, order, and number of the parameters of a
function. Parameters are optional; that is, a function may contain
no parameters.

Function Body − The function body contains a collection of
statements that define what the function does.

Example
Following is the source code for a function called max(). This function takes
two parameters num1 and num2 and return the biggest of both −
// function returning the max between two numbers

int max(int num1, int num2) {
// local variable declaration
int result;

if (num1 > num2)
result = num1;

else
result = num2;

return result;
}
Function Declarations
A function declaration tells the compiler about a function name and how to
call the function. The actual body of the function can be defined separately.
A function declaration has the following parts −
return_type function_name( parameter list );
For the above defined function max(), following is the function declaration −
int max(int num1, int num2);
Parameter names are not important in function declaration only their type is
required, so following is also valid declaration −
int max(int, int);
Function declaration is required when you define a function in one source



file and you call that function in another file. In such case, you should
declare the function at the top of the file calling the function.
Calling a Function
While creating a C++ function, you give a definition of what the function
has to do. To use a function, you will have to call or invoke that function.
When a program calls a function, program control is transferred to the called
function. A called function performs defined task and when it’s return
statement is executed or when its function-ending closing brace is reached, it
returns program control back to the main program.
To call a function, you simply need to pass the required parameters along
with function name, and if function returns a value, then you can store
returned value. For example −

Live Demo

#include <iostream>
using namespace std;

// function declaration
int max(int num1, int num2);

int main () {
// local variable declaration:
int a = 100;
int b = 200;
int ret;

// calling a function to get max value.
ret = max(a, b);
cout << "Max value is : " << ret << endl;

return 0;
}

// function returning the max between two numbers
int max(int num1, int num2) {

// local variable declaration
int result;

http://tpcg.io/XuXfLz


if (num1 > num2)
result = num1;

else
result = num2;

return result;
}

I kept max() function along with main() function and compiled the source
code. While running final executable, it would produce the following result
−
Max value is : 200
Function Arguments
If a function is to use arguments, it must declare variables that accept the
values of the arguments. These variables are called the formal
parameters of the function.
The formal parameters behave like other local variables inside the function
and are created upon entry into the function and destroyed upon exit.
While calling a function, there are two ways that arguments can be passed to
a function −

Sr.No Call Type & Description

1 Call by Value

This method copies the actual value of an argument into the
formal parameter of the function. In this case, changes made to
the parameter inside the function have no effect on the
argument.

2 Call by Pointer
This method copies the address of an argument into the formal
parameter. Inside the function, the address is used to access the
actual argument used in the call. This means that changes made
to the parameter affect the argument.

https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_value.htm
https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_pointer.htm


3 Call by Reference
This method copies the reference of an argument into the formal
parameter. Inside the function, the reference is used to access the
actual argument used in the call. This means that changes made
to the parameter affect the argument.

By default, C++ uses call by value to pass arguments. In general, this means
that code within a function cannot alter the arguments used to call the
function and above mentioned example while calling max() function used
the same method.
Default Values for Parameters
When you define a function, you can specify a default value for each of the
last parameters. This value will be used if the corresponding argument is left
blank when calling to the function.
This is done by using the assignment operator and assigning values for the
arguments in the function definition. If a value for that parameter is not
passed when the function is called, the default given value is used, but if a
value is specified, this default value is ignored and the passed value is used
instead. Consider the following example −

Live Demo

#include <iostream>
using namespace std;

int sum(int a, int b = 20) {
int result;
result = a + b;

return (result);
}
int main () {

// local variable declaration:
int a = 100;
int b = 200;
int result;

// calling a function to add the values.

https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_reference.htm
http://tpcg.io/KoJLUN


result = sum(a, b);
cout << "Total value is :" << result << endl;

// calling a function again as follows.
result = sum(a);
cout << "Total value is :" << result << endl;

return 0;
}

When the above code is compiled and executed, it produces the following
result −
Total value is :300
Total value is :120



Numbers in C++
Normally, when we work with Numbers, we use primitive data types such as
int, short, long, float and double, etc. The number data types, their possible
values and number ranges have been explained while discussing C++ Data
Types.
Defining Numbers in C++
You have already defined numbers in various examples given in previous
chapters. Here is another consolidated example to define various types of
numbers in C++ −

Live Demo
#include <iostream>
using namespace std;

int main () {
// number definition:
short  s;
int    i;
long   l;
float  f;
double d;

// number assignments;
s = 10;     
i = 1000;   
l = 1000000;
f = 230.47;
d = 30949.374;

// number printing;
cout << "short  s :" << s << endl;
cout << "int    i :" << i << endl;
cout << "long   l :" << l << endl;
cout << "float  f :" << f << endl;
cout << "double d :" << d << endl;

http://tpcg.io/Q21eQX


return 0;
}

When the above code is compiled and executed, it produces the following
result −
short  s :10
int    i :1000
long   l :1000000
float  f :230.47
double d :30949.4
Math Operations in C++
In addition to the various functions you can create, C++ also includes some
useful functions you can use. These functions are available in standard C and
C++ libraries and called built-in functions. These are functions that can be
included in your program and then use.
C++ has a rich set of mathematical operations, which can be performed on
various numbers. Following table lists down some useful built-in
mathematical functions available in C++.
To utilize these functions you need to include the math header file <cmath>.

Sr.No Function & Purpose

1 double cos(double);
This function takes an angle (as a double) and returns the
cosine.

2 double sin(double);
This function takes an angle (as a double) and returns the sine.

3 double tan(double);
This function takes an angle (as a double) and returns the
tangent.



4 double log(double);
This function takes a number and returns the natural log of that
number.

5 double pow(double, double);
The first is a number you wish to raise and the second is the
power you wish to raise it t

6 double hypot(double, double);
If you pass this function the length of two sides of a right
triangle, it will return you the length of the hypotenuse.

7 double sqrt(double);
You pass this function a number and it gives you the square
root.

8 int abs(int);
This function returns the absolute value of an integer that is
passed to it.

9 double fabs(double);
This function returns the absolute value of any decimal number
passed to it.

10 double floor(double);
Finds the integer which is less than or equal to the argument
passed to it.

Following is a simple example to show few of the mathematical operations −
Live Demo

#include <iostream>
#include <cmath>

http://tpcg.io/qU7JSv


using namespace std;

int main () {
// number definition:
short  s = 10;
int    i = -1000;
long   l = 100000;
float  f = 230.47;
double d = 200.374;

// mathematical operations;
cout << "sin(d) :" << sin(d) << endl;
cout << "abs(i)  :" << abs(i) << endl;
cout << "floor(d) :" << floor(d) << endl;
cout << "sqrt(f) :" << sqrt(f) << endl;
cout << "pow( d, 2) :" << pow(d, 2) << endl;

return 0;
}

When the above code is compiled and executed, it produces the following
result −
sign(d)     :-0.634939
abs(i)      :1000
floor(d)    :200
sqrt(f)     :15.1812
pow( d, 2 ) :40149.7
Random Numbers in C++
There are many cases where you will wish to generate a random number.
There are actually two functions you will need to know about random
number generation. The first is rand(), this function will only return a
pseudo random number. The way to fix this is to first call
the srand() function.
Following is a simple example to generate few random numbers. This
example makes use of time() function to get the number of seconds on your
system time, to randomly seed the rand() function −

Live Demo

http://tpcg.io/Z1ZN0e


#include <iostream>
#include <ctime>
#include <cstdlib>

using namespace std;

int main () {
int i,j;

// set the seed
srand( (unsigned)time( NULL ) );

/* generate 10  random numbers. */
for( i = 0; i < 10; i++ ) {

// generate actual random number
j = rand();
cout <<" Random Number : " << j << endl;

}

return 0;
}

When the above code is compiled and executed, it produces the following
result −
Random Number : 1748144778
Random Number : 630873888
Random Number : 2134540646
Random Number : 219404170
Random Number : 902129458
Random Number : 920445370
Random Number : 1319072661
Random Number : 257938873
Random Number : 1256201101
Random Number : 580322989



C++ Arrays
C++ provides a data structure, the array, which stores a fixed-size
sequential collection of elements of the same type. An array is used to store
a collection of data, but it is often more useful to think of an array as a
collection of variables of the same type.
Instead of declaring individual variables, such as number0, number1, ..., and
number99, you declare one array variable such as numbers and use
numbers[0], numbers[1], and ..., numbers[99] to represent individual
variables. A specific element in an array is accessed by an index.
All arrays consist of contiguous memory locations. The lowest address
corresponds to the first element and the highest address to the last element.
Declaring Arrays
To declare an array in C++, the programmer specifies the type of the
elements and the number of elements required by an array as follows −
type arrayName [ arraySize ];
This is called a single-dimension array. The arraySize must be an integer
constant greater than zero and type can be any valid C++ data type. For
example, to declare a 10-element array called balance of type double, use
this statement −
double balance[10];
Initializing Arrays
You can initialize C++ array elements either one by one or using a single
statement as follows −
double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};
The number of values between braces { } can not be larger than the number
of elements that we declare for the array between square brackets [ ].
Following is an example to assign a single element of the array −
If you omit the size of the array, an array just big enough to hold the
initialization is created. Therefore, if you write −
double balance[] = {1000.0, 2.0, 3.4, 17.0, 50.0};
You will create exactly the same array as you did in the previous example.



balance[4] = 50.0;
The above statement assigns element number 5th in the array a value of 50.0.
Array with 4th index will be 5th, i.e., last element because all arrays have 0 as
the index of their first element which is also called base index. Following is
the pictorial representaion of the same array we discussed above −

Accessing Array Elements
An element is accessed by indexing the array name. This is done by placing
the index of the element within square brackets after the name of the array.
For example −
double salary = balance[9];
The above statement will take 10th element from the array and assign the
value to salary variable. Following is an example, which will use all the
above-mentioned three concepts viz. declaration, assignment and accessing
arrays −

Live Demo
#include <iostream>
using namespace std;

#include <iomanip>
using std::setw;

int main () {

int n[ 10 ]; // n is an array of 10 integers

// initialize elements of array n to 0         
for ( int i = 0; i < 10; i++ ) {

n[ i ] = i + 100; // set element at location i to i + 100
}
cout << "Element" << setw( 13 ) << "Value" << endl;

// output each array element's value                     
for ( int j = 0; j < 10; j++ ) {

http://tpcg.io/QRe4fY


cout << setw( 7 )<< j << setw( 13 ) << n[ j ] << endl;
}

return 0;
}

This program makes use of setw() function to format the output. When the
above code is compiled and executed, it produces the following result −
Element        Value

0          100
1          101
2          102
3          103
4          104
5          105
6          106
7          107
8          108
9          109

Arrays in C++
Arrays are important to C++ and should need lots of more detail. There are
following few important concepts, which should be clear to a C++
programmer −

Sr.No Concept & Description

1 Multi-dimensional arrays

C++ supports multidimensional arrays. The simplest form of the
multidimensional array is the two-dimensional array.

2 Pointer to an array
You can generate a pointer to the first element of an array by
simply specifying the array name, without any index.

3 Passing arrays to functions

https://www.tutorialspoint.com/cplusplus/cpp_multi_dimensional_arrays.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_to_an_array.htm
https://www.tutorialspoint.com/cplusplus/cpp_passing_arrays_to_functions.htm


You can pass to the function a pointer to an array by specifying
the array's name without an index.

4 Return array from functions
C++ allows a function to return an array.

https://www.tutorialspoint.com/cplusplus/cpp_return_arrays_from_functions.htm


C++ Strings
C++ provides following two types of string representations −

The C-style character string.
The string class type introduced with Standard C++.

The C-Style Character String
The C-style character string originated within the C language and continues
to be supported within C++. This string is actually a one-dimensional array
of characters which is terminated by a null character '\0'. Thus a null-
terminated string contains the characters that comprise the string followed by
a null.
The following declaration and initialization create a string consisting of the
word "Hello". To hold the null character at the end of the array, the size of
the character array containing the string is one more than the number of
characters in the word "Hello."
char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};
If you follow the rule of array initialization, then you can write the above
statement as follows −
char greeting[] = "Hello";
Following is the memory presentation of above defined string in C/C++ −

Actually, you do not place the null character at the end of a string constant.
The C++ compiler automatically places the '\0' at the end of the string when
it initializes the array. Let us try to print above-mentioned string −

Live Demo

http://tpcg.io/OzjL2L


#include <iostream>

using namespace std;

int main () {

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

cout << "Greeting message: ";
cout << greeting << endl;

return 0;
}

When the above code is compiled and executed, it produces the following
result −
Greeting message: Hello
C++ supports a wide range of functions that manipulate null-terminated
strings −

Sr.No Function & Purpose

1 strcpy(s1, s2);
Copies string s2 into string s1.

2 strcat(s1, s2);
Concatenates string s2 onto the end of string s1.

3 strlen(s1);
Returns the length of string s1.

4 strcmp(s1, s2);
Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater
than 0 if s1>s2.



5 strchr(s1, ch);
Returns a pointer to the first occurrence of character ch in
string s1.

6 strstr(s1, s2);
Returns a pointer to the first occurrence of string s2 in string
s1.

Following example makes use of few of the above-mentioned functions −
Live Demo

#include <iostream>
#include <cstring>

using namespace std;

int main () {

char str1[10] = "Hello";
char str2[10] = "World";
char str3[10];
int  len ;

// copy str1 into str3
strcpy( str3, str1);
cout << "strcpy( str3, str1) : " << str3 << endl;

// concatenates str1 and str2
strcat( str1, str2);
cout << "strcat( str1, str2): " << str1 << endl;

// total lenghth of str1 after concatenation
len = strlen(str1);
cout << "strlen(str1) : " << len << endl;

return 0;
}

http://tpcg.io/oA6mP3


When the above code is compiled and executed, it produces result something
as follows −
strcpy( str3, str1) : Hello
strcat( str1, str2): HelloWorld
strlen(str1) : 10
The String Class in C++
The standard C++ library provides a string class type that supports all the
operations mentioned above, additionally much more functionality. Let us
check the following example −

Live Demo

#include <iostream>
#include <string>

using namespace std;

int main () {

string str1 = "Hello";
string str2 = "World";
string str3;
int  len ;

// copy str1 into str3
str3 = str1;
cout << "str3 : " << str3 << endl;

// concatenates str1 and str2
str3 = str1 + str2;
cout << "str1 + str2 : " << str3 << endl;

// total length of str3 after concatenation
len = str3.size();
cout << "str3.size() :  " << len << endl;

return 0;
}

When the above code is compiled and executed, it produces result something

http://tpcg.io/upuWFC


as follows −
str3 : Hello
str1 + str2 : HelloWorld
str3.size() :  10



C++ Pointers
C++ pointers are easy and fun to learn. Some C++ tasks are performed more
easily with pointers, and other C++ tasks, such as dynamic memory
allocation, cannot be performed without them.
As you know every variable is a memory location and every memory
location has its address defined which can be accessed using ampersand (&)
operator which denotes an address in memory. Consider the following which
will print the address of the variables defined −

Live Demo
#include <iostream>

using namespace std;
int main () {

int  var1;
char var2[10];

cout << "Address of var1 variable: ";
cout << &var1 << endl;

cout << "Address of var2 variable: ";
cout << &var2 << endl;

return 0;
}

When the above code is compiled and executed, it produces the following
result −
Address of var1 variable: 0xbfebd5c0
Address of var2 variable: 0xbfebd5b6
What are Pointers?
A pointer is a variable whose value is the address of another variable. Like
any variable or constant, you must declare a pointer before you can work
with it. The general form of a pointer variable declaration is −
type *var-name;
Here, type is the pointer's base type; it must be a valid C++ type and var-

http://tpcg.io/fQ1InE


name is the name of the pointer variable. The asterisk you used to declare a
pointer is the same asterisk that you use for multiplication. However, in this
statement the asterisk is being used to designate a variable as a pointer.
Following are the valid pointer declaration −
int    *ip;   // pointer to an integer
double *dp;   // pointer to a double
float  *fp;    // pointer to a float
char   *ch     // pointer to character
The actual data type of the value of all pointers, whether integer, float,
character, or otherwise, is the same, a long hexadecimal number that
represents a memory address. The only difference between pointers of
different data types is the data type of the variable or constant that the
pointer points to.
Using Pointers in C++
There are few important operations, which we will do with the pointers very
frequently. (a) We define a pointer variable. (b) Assign the address of a
variable to a pointer. (c) Finally access the value at the address available in
the pointer variable. This is done by using unary operator * that returns the
value of the variable located at the address specified by its operand.
Following example makes use of these operations −

Live Demo
#include <iostream>

using namespace std;

int main () {
int  var = 20;   // actual variable declaration.
int  *ip;        // pointer variable

ip = &var;       // store address of var in pointer variable

cout << "Value of var variable: ";
cout << var << endl;

// print the address stored in ip pointer variable
cout << "Address stored in ip variable: ";
cout << ip << endl;

http://tpcg.io/gTdFv7


// access the value at the address available in pointer
cout << "Value of *ip variable: ";
cout << *ip << endl;

return 0;
}

When the above code is compiled and executed, it produces result something
as follows −
Value of var variable: 20
Address stored in ip variable: 0xbfc601ac
Value of *ip variable: 20
Pointers in C++
Pointers have many but easy concepts and they are very important to C++
programming. There are following few important pointer concepts which
should be clear to a C++ programmer −

Sr.No Concept & Description

1 Null Pointers

C++ supports null pointer, which is a constant with a value of
zero defined in several standard libraries.

2 Pointer Arithmetic
There are four arithmetic operators that can be used on pointers:
++, --, +, -

3 Pointers vs Arrays
There is a close relationship between pointers and arrays.

4 Array of Pointers
You can define arrays to hold a number of pointers.

5 Pointer to Pointer

https://www.tutorialspoint.com/cplusplus/cpp_null_pointers.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_arithmatic.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointers_vs_arrays.htm
https://www.tutorialspoint.com/cplusplus/cpp_array_of_pointers.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_to_pointer.htm


C++ allows you to have pointer on a pointer and so on.

6 Passing Pointers to Functions
Passing an argument by reference or by address both enable the
passed argument to be changed in the calling function by the
called function.

7 Return Pointer from Functions
C++ allows a function to return a pointer to local variable, static
variable and dynamically allocated memory as well.

https://www.tutorialspoint.com/cplusplus/cpp_passing_pointers_to_functions.htm
https://www.tutorialspoint.com/cplusplus/cpp_return_pointer_from_functions.htm


C++ References
A reference variable is an alias, that is, another name for an already existing
variable. Once a reference is initialized with a variable, either the variable
name or the reference name may be used to refer to the variable.
References vs Pointers
References are often confused with pointers but three major differences
between references and pointers are −

You cannot have NULL references. You must always be able to
assume that a reference is connected to a legitimate piece of
storage.

Once a reference is initialized to an object, it cannot be changed
to refer to another object. Pointers can be pointed to another
object at any time.

A reference must be initialized when it is created. Pointers can
be initialized at any time.

Creating References in C++
Think of a variable name as a label attached to the variable's location in
memory. You can then think of a reference as a second label attached to that
memory location. Therefore, you can access the contents of the variable
through either the original variable name or the reference. For example,
suppose we have the following example −
int i = 17;
We can declare reference variables for i as follows.
int& r = i;
Read the & in these declarations as reference. Thus, read the first
declaration as "r is an integer reference initialized to i" and read the second
declaration as "s is a double reference initialized to d.". Following example
makes use of references on int and double −

Live Demo

#include <iostream>

http://tpcg.io/SS8zU0


using namespace std;

int main () {
// declare simple variables
int    i;
double d;

// declare reference variables
int&    r = i;
double& s = d;

i = 5;
cout << "Value of i : " << i << endl;
cout << "Value of i reference : " << r  << endl;

d = 11.7;
cout << "Value of d : " << d << endl;
cout << "Value of d reference : " << s  << endl;

return 0;
}

When the above code is compiled together and executed, it produces the
following result −
Value of i : 5
Value of i reference : 5
Value of d : 11.7
Value of d reference : 11.7
References are usually used for function argument lists and function return
values. So following are two important subjects related to C++ references
which should be clear to a C++ programmer −

Sr.No Concept & Description

1 References as Parameters

C++ supports passing references as function parameter more
safely than parameters.

https://www.tutorialspoint.com/cplusplus/passing_parameters_by_references.htm


2 Reference as Return Value
You can return reference from a C++ function like any other data
type.

https://www.tutorialspoint.com/cplusplus/returning_values_by_reference.htm


C++ Date and Time
The C++ standard library does not provide a proper date type. C++ inherits
the structs and functions for date and time manipulation from C. To access
date and time related functions and structures, you would need to include
<ctime> header file in your C++ program.
There are four time-related types: clock_t, time_t, size_t, and tm. The types
- clock_t, size_t and time_t are capable of representing the system time and
date as some sort of integer.
The structure type tm holds the date and time in the form of a C structure
having the following elements −
struct tm {

int tm_sec;   // seconds of minutes from 0 to 61
int tm_min;   // minutes of hour from 0 to 59
int tm_hour;  // hours of day from 0 to 24
int tm_mday;  // day of month from 1 to 31
int tm_mon;   // month of year from 0 to 11
int tm_year;  // year since 1900
int tm_wday;  // days since sunday
int tm_yday;  // days since January 1st
int tm_isdst; // hours of daylight savings time

}
Following are the important functions, which we use while working with
date and time in C or C++. All these functions are part of standard C and
C++ library and you can check their detail using reference to C++ standard
library given below.

Sr.No Function & Purpose

1 time_t time(time_t *time);
This returns the current calendar time of the system in number
of seconds elapsed since January 1, 1970. If the system has no
time, .1 is returned.



2 char *ctime(const time_t *time);
This returns a pointer to a string of the form day month year
hours:minutes:seconds year\n\0.

3 struct tm *localtime(const time_t *time);
This returns a pointer to the tm structure representing local
time.

4 clock_t clock(void);
This returns a value that approximates the amount of time the
calling program has been running. A value of .1 is returned if
the time is not available.

5 char * asctime ( const struct tm * time );
This returns a pointer to a string that contains the information
stored in the structure pointed to by time converted into the
form: day month date hours:minutes:seconds year\n\0

6 struct tm *gmtime(const time_t *time);
This returns a pointer to the time in the form of a tm structure.
The time is represented in Coordinated Universal Time (UTC),
which is essentially Greenwich Mean Time (GMT).

7 time_t mktime(struct tm *time);
This returns the calendar-time equivalent of the time found in
the structure pointed to by time.

8 double difftime ( time_t time2, time_t time1 );
This function calculates the difference in seconds between
time1 and time2.

9 size_t strftime();



This function can be used to format date and time in a specific
format.

Current Date and Time
Suppose you want to retrieve the current system date and time, either as a
local time or as a Coordinated Universal Time (UTC). Following is the
example to achieve the same −

Live Demo
#include <iostream>
#include <ctime>

using namespace std;

int main() {
// current date/time based on current system
time_t now = time(0);

// convert now to string form
char* dt = ctime(&now);

cout << "The local date and time is: " << dt << endl;

// convert now to tm struct for UTC
tm *gmtm = gmtime(&now);
dt = asctime(gmtm);
cout << "The UTC date and time is:"<< dt << endl;

}

When the above code is compiled and executed, it produces the following
result −
The local date and time is: Sat Jan  8 20:07:41 2011

The UTC date and time is:Sun Jan  9 03:07:41 2011
Format Time using struct tm
The tm structure is very important while working with date and time in
either C or C++. This structure holds the date and time in the form of a C
structure as mentioned above. Most of the time related functions makes use

http://tpcg.io/DHKMA9


of tm structure. Following is an example which makes use of various date
and time related functions and tm structure −
While using structure in this chapter, I'm making an assumption that you
have basic understanding on C structure and how to access structure
members using arrow -> operator.

Live Demo
#include <iostream>
#include <ctime>

using namespace std;

int main() {
// current date/time based on current system
time_t now = time(0);

cout << "Number of sec since January 1,1970 is:: " << now << endl;

tm *ltm = localtime(&now);

// print various components of tm structure.
cout << "Year:" << 1900 + ltm->tm_year<<endl;
cout << "Month: "<< 1 + ltm->tm_mon<< endl;
cout << "Day: "<< ltm->tm_mday << endl;
cout << "Time: "<< 5+ltm->tm_hour << ":";
cout << 30+ltm->tm_min << ":";
cout << ltm->tm_sec << endl;

}

When the above code is compiled and executed, it produces the following
result −
Number of sec since January 1,1970 is:: 1588485717
Year:2020
Month: 5
Day: 3
Time: 11:31:57

http://tpcg.io/SMnO0N


C++ Basic Input/Output
The C++ standard libraries provide an extensive set of input/output
capabilities which we will see in subsequent chapters. This chapter will
discuss very basic and most common I/O operations required for C++
programming.
C++ I/O occurs in streams, which are sequences of bytes. If bytes flow from
a device like a keyboard, a disk drive, or a network connection etc. to main
memory, this is called input operation and if bytes flow from main memory
to a device like a display screen, a printer, a disk drive, or a network
connection, etc., this is called output operation.
I/O Library Header Files
There are following header files important to C++ programs −

Sr.No Header File & Function and Description

1 <iostream>
This file defines the cin, cout, cerr and clog objects, which
correspond to the standard input stream, the standard output
stream, the un-buffered standard error stream and the buffered
standard error stream, respectively.

2 <iomanip>
This file declares services useful for performing formatted I/O
with so-called parameterized stream manipulators, such
as setw and setprecision.

3 <fstream>
This file declares services for user-controlled file processing.
We will discuss about it in detail in File and Stream related
chapter.

The Standard Output Stream (cout)



The predefined object cout is an instance of ostream class. The cout object
is said to be "connected to" the standard output device, which usually is the
display screen. The cout is used in conjunction with the stream insertion
operator, which is written as << which are two less than signs as shown in
the following example.

Live Demo
#include <iostream>

using namespace std;

int main() {
char str[] = "Hello C++";

cout << "Value of str is : " << str << endl;
}

When the above code is compiled and executed, it produces the following
result −
Value of str is : Hello C++
The C++ compiler also determines the data type of variable to be output and
selects the appropriate stream insertion operator to display the value. The <<
operator is overloaded to output data items of built-in types integer, float,
double, strings and pointer values.
The insertion operator << may be used more than once in a single statement
as shown above and endl is used to add a new-line at the end of the line.
The Standard Input Stream (cin)
The predefined object cin is an instance of istream class. The cin object is
said to be attached to the standard input device, which usually is the
keyboard. The cin is used in conjunction with the stream extraction operator,
which is written as >> which are two greater than signs as shown in the
following example.

Live Demo
#include <iostream>

using namespace std;

http://tpcg.io/qFaiKd
http://tpcg.io/NDGHmy


int main() {
char name[50];

cout << "Please enter your name: ";
cin >> name;
cout << "Your name is: " << name << endl;

}

When the above code is compiled and executed, it will prompt you to enter a
name. You enter a value and then hit enter to see the following result −
Please enter your name: cplusplus
Your name is: cplusplus
The C++ compiler also determines the data type of the entered value and
selects the appropriate stream extraction operator to extract the value and
store it in the given variables.
The stream extraction operator >> may be used more than once in a single
statement. To request more than one datum you can use the following −
cin >> name >> age;
This will be equivalent to the following two statements −
cin >> name;
cin >> age;
The Standard Error Stream (cerr)
The predefined object cerr is an instance of ostream class. The cerr object is
said to be attached to the standard error device, which is also a display
screen but the object cerr is un-buffered and each stream insertion to cerr
causes its output to appear immediately.
The cerr is also used in conjunction with the stream insertion operator as
shown in the following example.

Live Demo
#include <iostream>

using namespace std;

int main() {

http://tpcg.io/3xp5lM


char str[] = "Unable to read....";

cerr << "Error message : " << str << endl;
}

When the above code is compiled and executed, it produces the following
result −
Error message : Unable to read....
The Standard Log Stream (clog)
The predefined object clog is an instance of ostream class. The clog object
is said to be attached to the standard error device, which is also a display
screen but the object clog is buffered. This means that each insertion to clog
could cause its output to be held in a buffer until the buffer is filled or until
the buffer is flushed.
The clog is also used in conjunction with the stream insertion operator as
shown in the following example.

Live Demo
#include <iostream>

using namespace std;

int main() {
char str[] = "Unable to read....";

clog << "Error message : " << str << endl;
}

When the above code is compiled and executed, it produces the following
result −
Error message : Unable to read....
You would not be able to see any difference in cout, cerr and clog with these
small examples, but while writing and executing big programs the difference
becomes obvious. So it is good practice to display error messages using cerr
stream and while displaying other log messages then clog should be used.

http://tpcg.io/Dewejb


C++ Data Structures
C/C++ arrays allow you to define variables that combine several data items
of the same kind, but structure is another user defined data type which
allows you to combine data items of different kinds.
Structures are used to represent a record, suppose you want to keep track of
your books in a library. You might want to track the following attributes
about each book −

Title
Author
Subject
Book ID

Defining a Structure
To define a structure, you must use the struct statement. The struct statement
defines a new data type, with more than one member, for your program. The
format of the struct statement is this −
struct [structure tag] {

member definition;
member definition;
...
member definition;

} [one or more structure variables]; 
The structure tag is optional and each member definition is a normal
variable definition, such as int i; or float f; or any other valid variable
definition. At the end of the structure's definition, before the final semicolon,
you can specify one or more structure variables but it is optional. Here is the
way you would declare the Book structure −
struct Books {

char  title[50];
char  author[50];
char  subject[100];
int   book_id;

} book;



Accessing Structure Members
To access any member of a structure, we use the member access operator
(.). The member access operator is coded as a period between the structure
variable name and the structure member that we wish to access. You would
use struct keyword to define variables of structure type. Following is the
example to explain usage of structure −

Live Demo

#include <iostream>
#include <cstring>

using namespace std;

struct Books {
char  title[50];
char  author[50];
char  subject[100];
int   book_id;

};

int main() {
struct Books Book1;        // Declare Book1 of type Book
struct Books Book2;        // Declare Book2 of type Book

// book 1 specification
strcpy( Book1.title, "Learn C++ Programming");
strcpy( Book1.author, "Chand Miyan");
strcpy( Book1.subject, "C++ Programming");
Book1.book_id = 6495407;

// book 2 specification
strcpy( Book2.title, "Telecom Billing");
strcpy( Book2.author, "Yakit Singha");
strcpy( Book2.subject, "Telecom");
Book2.book_id = 6495700;

// Print Book1 info
cout << "Book 1 title : " << Book1.title <<endl;

http://tpcg.io/zvIEi0


cout << "Book 1 author : " << Book1.author <<endl;
cout << "Book 1 subject : " << Book1.subject <<endl;
cout << "Book 1 id : " << Book1.book_id <<endl;

// Print Book2 info
cout << "Book 2 title : " << Book2.title <<endl;
cout << "Book 2 author : " << Book2.author <<endl;
cout << "Book 2 subject : " << Book2.subject <<endl;
cout << "Book 2 id : " << Book2.book_id <<endl;

return 0;
}

When the above code is compiled and executed, it produces the following
result −
Book 1 title : Learn C++ Programming
Book 1 author : Chand Miyan
Book 1 subject : C++ Programming
Book 1 id : 6495407
Book 2 title : Telecom Billing
Book 2 author : Yakit Singha
Book 2 subject : Telecom
Book 2 id : 6495700
Structures as Function Arguments
You can pass a structure as a function argument in very similar way as you
pass any other variable or pointer. You would access structure variables in
the similar way as you have accessed in the above example −

Live Demo

#include <iostream>
#include <cstring>

using namespace std;
void printBook( struct Books book );

struct Books {
char  title[50];
char  author[50];

http://tpcg.io/xvb7BQ


char  subject[100];
int   book_id;

};

int main() {
struct Books Book1;        // Declare Book1 of type Book
struct Books Book2;        // Declare Book2 of type Book

// book 1 specification
strcpy( Book1.title, "Learn C++ Programming");
strcpy( Book1.author, "Chand Miyan");
strcpy( Book1.subject, "C++ Programming");
Book1.book_id = 6495407;

// book 2 specification
strcpy( Book2.title, "Telecom Billing");
strcpy( Book2.author, "Yakit Singha");
strcpy( Book2.subject, "Telecom");
Book2.book_id = 6495700;

// Print Book1 info
printBook( Book1 );

// Print Book2 info
printBook( Book2 );

return 0;
}
void printBook( struct Books book ) {

cout << "Book title : " << book.title <<endl;
cout << "Book author : " << book.author <<endl;
cout << "Book subject : " << book.subject <<endl;
cout << "Book id : " << book.book_id <<endl;

}

When the above code is compiled and executed, it produces the following
result −
Book title : Learn C++ Programming
Book author : Chand Miyan



Book subject : C++ Programming
Book id : 6495407
Book title : Telecom Billing
Book author : Yakit Singha
Book subject : Telecom
Book id : 6495700
Pointers to Structures
You can define pointers to structures in very similar way as you define
pointer to any other variable as follows −
struct Books *struct_pointer;
Now, you can store the address of a structure variable in the above defined
pointer variable. To find the address of a structure variable, place the &
operator before the structure's name as follows −
struct_pointer = &Book1;
To access the members of a structure using a pointer to that structure, you
must use the -> operator as follows −
struct_pointer->title;
Let us re-write above example using structure pointer, hope this will be easy
for you to understand the concept −

Live Demo

#include <iostream>
#include <cstring>

using namespace std;
void printBook( struct Books *book );

struct Books {
char  title[50];
char  author[50];
char  subject[100];
int   book_id;

};
int main() {

struct Books Book1;        // Declare Book1 of type Book

http://tpcg.io/P8IeUE


struct Books Book2;        // Declare Book2 of type Book

// Book 1 specification
strcpy( Book1.title, "Learn C++ Programming");
strcpy( Book1.author, "Chand Miyan");
strcpy( Book1.subject, "C++ Programming");
Book1.book_id = 6495407;

// Book 2 specification
strcpy( Book2.title, "Telecom Billing");
strcpy( Book2.author, "Yakit Singha");
strcpy( Book2.subject, "Telecom");
Book2.book_id = 6495700;

// Print Book1 info, passing address of structure
printBook( &Book1 );

// Print Book1 info, passing address of structure
printBook( &Book2 );

return 0;
}

// This function accept pointer to structure as parameter.
void printBook( struct Books *book ) {

cout << "Book title : " << book->title <<endl;
cout << "Book author : " << book->author <<endl;
cout << "Book subject : " << book->subject <<endl;
cout << "Book id : " << book->book_id <<endl;

}

When the above code is compiled and executed, it produces the following
result −
Book title : Learn C++ Programming
Book author : Chand Miyan
Book subject : C++ Programming
Book id : 6495407
Book title : Telecom Billing
Book author : Yakit Singha



Book subject : Telecom
Book id : 6495700
The typedef Keyword
There is an easier way to define structs or you could "alias" types you create.
For example −
typedef struct {

char  title[50];
char  author[50];
char  subject[100];
int   book_id;

} Books;
Now, you can use Books directly to define variables of Books type without
using struct keyword. Following is the example −
Books Book1, Book2;
You can use typedef keyword for non-structs as well as follows −
typedef long int *pint32;

pint32 x, y, z;
x, y and z are all pointers to long ints.



C++ Classes and Objects
The main purpose of C++ programming is to add object orientation to the C

programming language and classes are the central feature of C++ that
supports object-oriented programming and are often called user-defined
types.
A class is used to specify the form of an object and it combines data
representation and methods for manipulating that data into one neat package.
The data and functions within a class are called members of the class.
C++ Class Definitions
When you define a class, you define a blueprint for a data type. This doesn't
actually define any data, but it does define what the class name means, that
is, what an object of the class will consist of and what operations can be
performed on such an object.
A class definition starts with the keyword class followed by the class name;
and the class body, enclosed by a pair of curly braces. A class definition
must be followed either by a semicolon or a list of declarations. For
example, we defined the Box data type using the keyword class as follows −
class Box {

public:
double length;   // Length of a box
double breadth;  // Breadth of a box
double height;   // Height of a box

};
The keyword public determines the access attributes of the members of the
class that follows it. A public member can be accessed from outside the class
anywhere within the scope of the class object. You can also specify the
members of a class as private or protected which we will discuss in a sub-
section.
Define C++ Objects
A class provides the blueprints for objects, so basically an object is created
from a class. We declare objects of a class with exactly the same sort of
declaration that we declare variables of basic types. Following statements
declare two objects of class Box −



Box Box1;          // Declare Box1 of type Box
Box Box2;          // Declare Box2 of type Box
Both of the objects Box1 and Box2 will have their own copy of data
members.
Accessing the Data Members
The public data members of objects of a class can be accessed using the
direct member access operator (.). Let us try the following example to make
the things clear −

Live Demo
#include <iostream>

using namespace std;

class Box {
public:

double length;   // Length of a box
double breadth;  // Breadth of a box
double height;   // Height of a box

};

int main() {
Box Box1;        // Declare Box1 of type Box
Box Box2;        // Declare Box2 of type Box
double volume = 0.0;     // Store the volume of a box here

// box 1 specification
Box1.height = 5.0;
Box1.length = 6.0;
Box1.breadth = 7.0;

// box 2 specification
Box2.height = 10.0;
Box2.length = 12.0;
Box2.breadth = 13.0;

// volume of box 1
volume = Box1.height * Box1.length * Box1.breadth;

http://tpcg.io/JeEWd6


cout << "Volume of Box1 : " << volume <<endl;

// volume of box 2
volume = Box2.height * Box2.length * Box2.breadth;
cout << "Volume of Box2 : " << volume <<endl;
return 0;

}

When the above code is compiled and executed, it produces the following
result −
Volume of Box1 : 210
Volume of Box2 : 1560
It is important to note that private and protected members can not be
accessed directly using direct member access operator (.). We will learn how
private and protected members can be accessed.
Classes and Objects in Detail
So far, you have got very basic idea about C++ Classes and Objects. There
are further interesting concepts related to C++ Classes and Objects which we
will discuss in various sub-sections listed below −

Sr.No Concept & Description

1 Class Member Functions

A member function of a class is a function that has its definition
or its prototype within the class definition like any other
variable.

2 Class Access Modifiers
A class member can be defined as public, private or protected.
By default members would be assumed as private.

3 Constructor & Destructor
A class constructor is a special function in a class that is called
when a new object of the class is created. A destructor is also a
special function which is called when created object is deleted.

https://www.tutorialspoint.com/cplusplus/cpp_class_member_functions.htm
https://www.tutorialspoint.com/cplusplus/cpp_class_access_modifiers.htm
https://www.tutorialspoint.com/cplusplus/cpp_constructor_destructor.htm


4 Copy Constructor
The copy constructor is a constructor which creates an object by
initializing it with an object of the same class, which has been
created previously.

5 Friend Functions
A friend function is permitted full access to private and
protected members of a class.

6 Inline Functions
With an inline function, the compiler tries to expand the code in
the body of the function in place of a call to the function.

7 this Pointer
Every object has a special pointer this which points to the object
itself.

8 Pointer to C++ Classes
A pointer to a class is done exactly the same way a pointer to a
structure is. In fact a class is really just a structure with functions
in it.

9 Static Members of a Class
Both data members and function members of a class can be
declared as static.

C++ Inheritance
One of the most important concepts in object-oriented programming is that
of inheritance. Inheritance allows us to define a class in terms of another
class, which makes it easier to create and maintain an application. This also
provides an opportunity to reuse the code functionality and fast
implementation time.

https://www.tutorialspoint.com/cplusplus/cpp_copy_constructor.htm
https://www.tutorialspoint.com/cplusplus/cpp_friend_functions.htm
https://www.tutorialspoint.com/cplusplus/cpp_inline_functions.htm
https://www.tutorialspoint.com/cplusplus/cpp_this_pointer.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_to_class.htm
https://www.tutorialspoint.com/cplusplus/cpp_static_members.htm


When creating a class, instead of writing completely new data members and
member functions, the programmer can designate that the new class should
inherit the members of an existing class. This existing class is called
the base class, and the new class is referred to as the derived class.
The idea of inheritance implements the is a relationship. For example,
mammal IS-A animal, dog IS-A mammal hence dog IS-A animal as well and
so on.
Base and Derived Classes
A class can be derived from more than one classes, which means it can
inherit data and functions from multiple base classes. To define a derived
class, we use a class derivation list to specify the base class(es). A class
derivation list names one or more base classes and has the form −
class derived-class: access-specifier base-class
Where access-specifier is one of public, protected, or private, and base-
class is the name of a previously defined class. If the access-specifier is not
used, then it is private by default.
Consider a base class Shape and its derived class Rectangle as follows −

Live Demo

#include <iostream>

using namespace std;

// Base class
class Shape {

public:
void setWidth(int w) {

width = w;
}
void setHeight(int h) {

height = h;
}

protected:
int width;
int height;

http://tpcg.io/ykk4hq


};

// Derived class
class Rectangle: public Shape {

public:
int getArea() {

return (width * height);
}

};

int main(void) {
Rectangle Rect;

Rect.setWidth(5);
Rect.setHeight(7);

// Print the area of the object.
cout << "Total area: " << Rect.getArea() << endl;

return 0;
}

When the above code is compiled and executed, it produces the following
result −
Total area: 35
Access Control and Inheritance
A derived class can access all the non-private members of its base class.
Thus base-class members that should not be accessible to the member
functions of derived classes should be declared private in the base class.
We can summarize the different access types according to - who can access
them in the following way −

Access public protected private

Same class yes yes yes

Derived classes yes yes no



Outside classes yes no no

A derived class inherits all base class methods with the following exceptions
−

Constructors, destructors and copy constructors of the base class.
Overloaded operators of the base class.
The friend functions of the base class.

Type of Inheritance
When deriving a class from a base class, the base class may be inherited
through public, protected or private inheritance. The type of inheritance is
specified by the access-specifier as explained above.
We hardly use protected or private inheritance, but public inheritance is
commonly used. While using different type of inheritance, following rules
are applied −

Public Inheritance − When deriving a class from a public base
class, public members of the base class become public members
of the derived class and protected members of the base class
become protected members of the derived class. A base
class's private members are never accessible directly from a
derived class, but can be accessed through calls to
the public and protected members of the base class.

Protected Inheritance − When deriving from a protected base
class, public and protected members of the base class become
protected members of the derived class.

Private Inheritance − When deriving from a private base class,
public and protected members of the base class become private
members of the derived class.

Multiple Inheritance
A C++ class can inherit members from more than one class and here is the
extended syntax −
class derived-class: access baseA, access baseB....



Where access is one of public, protected, or private and would be given for
every base class and they will be separated by comma as shown above. Let
us try the following example −

Live Demo

#include <iostream>

using namespace std;

// Base class Shape
class Shape {

public:
void setWidth(int w) {

width = w;
}
void setHeight(int h) {

height = h;
}

protected:
int width;
int height;

};

// Base class PaintCost
class PaintCost {

public:
int getCost(int area) {

return area * 70;
}

};

// Derived class
class Rectangle: public Shape, public PaintCost {

public:
int getArea() {

return (width * height);
}

http://tpcg.io/NPe3oQ


};

int main(void) {
Rectangle Rect;
int area;

Rect.setWidth(5);
Rect.setHeight(7);

area = Rect.getArea();

// Print the area of the object.
cout << "Total area: " << Rect.getArea() << endl;

// Print the total cost of painting
cout << "Total paint cost: $" << Rect.getCost(area) << endl;

return 0;
}

When the above code is compiled and executed, it produces the following
result −
Total area: 35
Total paint cost: $2450



C++ Overloading (Operator and Function)
C++ allows you to specify more than one definition for a function name or
an operator in the same scope, which is called function
overloading and operator overloading respectively.
An overloaded declaration is a declaration that is declared with the same
name as a previously declared declaration in the same scope, except that
both declarations have different arguments and obviously different definition
(implementation).
When you call an overloaded function or operator, the compiler determines
the most appropriate definition to use, by comparing the argument types you
have used to call the function or operator with the parameter types specified
in the definitions. The process of selecting the most appropriate overloaded
function or operator is called overload resolution.
Function Overloading in C++
You can have multiple definitions for the same function name in the same
scope. The definition of the function must differ from each other by the
types and/or the number of arguments in the argument list. You cannot
overload function declarations that differ only by return type.
Following is the example where same function print() is being used to print
different data types −

Live Demo
#include <iostream>
using namespace std;

class printData {
public:

void print(int i) {
cout << "Printing int: " << i << endl;

}
void print(double  f) {

cout << "Printing float: " << f << endl;
}
void print(char* c) {

cout << "Printing character: " << c << endl;

http://tpcg.io/cR3W4M


}
};

int main(void) {
printData pd;

// Call print to print integer
pd.print(5);

// Call print to print float
pd.print(500.263);

// Call print to print character
pd.print("Hello C++");

return 0;
}

When the above code is compiled and executed, it produces the following
result −
Printing int: 5
Printing float: 500.263
Printing character: Hello C++
Operators Overloading in C++
You can redefine or overload most of the built-in operators available in C++.
Thus, a programmer can use operators with user-defined types as well.
Overloaded operators are functions with special names: the keyword
"operator" followed by the symbol for the operator being defined. Like any
other function, an overloaded operator has a return type and a parameter list.
Box operator+(const Box&);
declares the addition operator that can be used to add two Box objects and
returns final Box object. Most overloaded operators may be defined as
ordinary non-member functions or as class member functions. In case we
define above function as non-member function of a class then we would
have to pass two arguments for each operand as follows −
Box operator+(const Box&, const Box&);



Following is the example to show the concept of operator over loading using
a member function. Here an object is passed as an argument whose
properties will be accessed using this object, the object which will call this
operator can be accessed using this operator as explained below −

Live Demo
#include <iostream>
using namespace std;

class Box {
public:

double getVolume(void) {
return length * breadth * height;

}
void setLength( double len ) {

length = len;
}
void setBreadth( double bre ) {

breadth = bre;
}
void setHeight( double hei ) {

height = hei;
}

// Overload + operator to add two Box objects.
Box operator+(const Box& b) {

Box box;
box.length = this->length + b.length;
box.breadth = this->breadth + b.breadth;
box.height = this->height + b.height;
return box;

}

private:
double length;      // Length of a box
double breadth;     // Breadth of a box
double height;      // Height of a box

};

http://tpcg.io/4Alfgt


// Main function for the program
int main() {

Box Box1;                // Declare Box1 of type Box
Box Box2;                // Declare Box2 of type Box
Box Box3;                // Declare Box3 of type Box
double volume = 0.0;     // Store the volume of a box here

// box 1 specification
Box1.setLength(6.0);
Box1.setBreadth(7.0);
Box1.setHeight(5.0);

// box 2 specification
Box2.setLength(12.0);
Box2.setBreadth(13.0);
Box2.setHeight(10.0);

// volume of box 1
volume = Box1.getVolume();
cout << "Volume of Box1 : " << volume <<endl;

// volume of box 2
volume = Box2.getVolume();
cout << "Volume of Box2 : " << volume <<endl;

// Add two object as follows:
Box3 = Box1 + Box2;

// volume of box 3
volume = Box3.getVolume();
cout << "Volume of Box3 : " << volume <<endl;

return 0;
}

When the above code is compiled and executed, it produces the following
result −
Volume of Box1 : 210
Volume of Box2 : 1560



Volume of Box3 : 5400
Overloadable/Non-overloadableOperators
Following is the list of operators which can be overloaded −

+ - * / % ^

& | ~ ! , =

< > <= >= ++ --

<< >> == != && ||

+= -= /= %= ^= &=

|= *= <<= >>= [] ()

-> ->* new new [] delete delete []

Following is the list of operators, which can not be overloaded −

:: .* . ?:

Operator Overloading Examples
Here are various operator overloading examples to help you in
understanding the concept.

Sr.No Operators & Example

1 Unary Operators Overloading

2 Binary Operators Overloading

3 Relational Operators Overloading

https://www.tutorialspoint.com/cplusplus/unary_operators_overloading.htm
https://www.tutorialspoint.com/cplusplus/binary_operators_overloading.htm
https://www.tutorialspoint.com/cplusplus/relational_operators_overloading.htm


4 Input/Output Operators Overloading

5 ++ and -- Operators Overloading

6 Assignment Operators Overloading

7 Function call () Operator Overloading

8 Subscripting [] Operator Overloading

9 Class Member Access Operator -> Overloading

https://www.tutorialspoint.com/cplusplus/input_output_operators_overloading.htm
https://www.tutorialspoint.com/cplusplus/increment_decrement_operators_overloading.htm
https://www.tutorialspoint.com/cplusplus/assignment_operators_overloading.htm
https://www.tutorialspoint.com/cplusplus/function_call_operator_overloading.htm
https://www.tutorialspoint.com/cplusplus/subscripting_operator_overloading.htm
https://www.tutorialspoint.com/cplusplus/class_member_access_operator_overloading.htm


Polymorphism in C++
The word polymorphism means having many forms. Typically,
polymorphism occurs when there is a hierarchy of classes and they are
related by inheritance.
C++ polymorphism means that a call to a member function will cause a
different function to be executed depending on the type of object that
invokes the function.
Consider the following example where a base class has been derived by
other two classes −

Live Demo

#include <iostream>
using namespace std;

class Shape {
protected:

int width, height;

public:
Shape( int a = 0, int b = 0){

width = a;
height = b;

}
int area() {

cout << "Parent class area :" <<endl;
return 0;

}
};
class Rectangle: public Shape {

public:
Rectangle( int a = 0, int b = 0):Shape(a, b) { }

int area () {
cout << "Rectangle class area :" <<endl;
return (width * height);

}

http://tpcg.io/LSyBTc


};

class Triangle: public Shape {
public:

Triangle( int a = 0, int b = 0):Shape(a, b) { }

int area () {
cout << "Triangle class area :" <<endl;
return (width * height / 2);

}
};

// Main function for the program
int main() {

Shape *shape;
Rectangle rec(10,7);
Triangle  tri(10,5);

// store the address of Rectangle
shape = &rec;

// call rectangle area.
shape->area();

// store the address of Triangle
shape = &tri;

// call triangle area.
shape->area();

return 0;
}

When the above code is compiled and executed, it produces the following
result −
Parent class area :
Parent class area :
The reason for the incorrect output is that the call of the function area() is
being set once by the compiler as the version defined in the base class. This



is called static resolution of the function call, or static linkage - the
function call is fixed before the program is executed. This is also sometimes
called early binding because the area() function is set during the
compilation of the program.
But now, let's make a slight modification in our program and precede the
declaration of area() in the Shape class with the keyword virtual so that it
looks like this −
class Shape {

protected:
int width, height;

public:
Shape( int a = 0, int b = 0) {

width = a;
height = b;

}
virtual int area() {

cout << "Parent class area :" <<endl;
return 0;

}
};
After this slight modification, when the previous example code is compiled
and executed, it produces the following result −
Rectangle class area
Triangle class area
This time, the compiler looks at the contents of the pointer instead of it's
type. Hence, since addresses of objects of tri and rec classes are stored in
*shape the respective area() function is called.
As you can see, each of the child classes has a separate implementation for
the function area(). This is how polymorphism is generally used. You have
different classes with a function of the same name, and even the same
parameters, but with different implementations.
Virtual Function
A virtual function is a function in a base class that is declared using the
keyword virtual. Defining in a base class a virtual function, with another



version in a derived class, signals to the compiler that we don't want static
linkage for this function.
What we do want is the selection of the function to be called at any given
point in the program to be based on the kind of object for which it is called.
This sort of operation is referred to as dynamic linkage, or late binding.
Pure Virtual Functions
It is possible that you want to include a virtual function in a base class so
that it may be redefined in a derived class to suit the objects of that class, but
that there is no meaningful definition you could give for the function in the
base class.
We can change the virtual function area() in the base class to the following −
class Shape {

protected:
int width, height;

public:
Shape(int a = 0, int b = 0) {

width = a;
height = b;

}

// pure virtual function
virtual int area() = 0;

};
The = 0 tells the compiler that the function has no body and above virtual
function will be called pure virtual function.



Data Abstraction in C++
Data abstraction refers to providing only essential information to the outside
world and hiding their background details, i.e., to represent the needed
information in program without presenting the details.
Data abstraction is a programming (and design) technique that relies on the
separation of interface and implementation.
Let's take one real life example of a TV, which you can turn on and off,
change the channel, adjust the volume, and add external components such as
speakers, VCRs, and DVD players, BUT you do not know its internal
details, that is, you do not know how it receives signals over the air or
through a cable, how it translates them, and finally displays them on the
screen.
Thus, we can say a television clearly separates its internal implementation
from its external interface and you can play with its interfaces like the power
button, channel changer, and volume control without having any knowledge
of its internals.
In C++, classes provides great level of data abstraction. They provide
sufficient public methods to the outside world to play with the functionality
of the object and to manipulate object data, i.e., state without actually
knowing how class has been implemented internally.
For example, your program can make a call to the sort() function without
knowing what algorithm the function actually uses to sort the given values.
In fact, the underlying implementation of the sorting functionality could
change between releases of the library, and as long as the interface stays the
same, your function call will still work.
In C++, we use classes to define our own abstract data types (ADT). You
can use the cout object of class ostream to stream data to standard output
like this −

Live Demo

#include <iostream>
using namespace std;

int main() {

http://tpcg.io/iaAqF8


cout << "Hello C++" <<endl;
return 0;

}

Here, you don't need to understand how cout displays the text on the user's
screen. You need to only know the public interface and the underlying
implementation of ‘cout’ is free to change.
Access Labels Enforce Abstraction
In C++, we use access labels to define the abstract interface to the class. A
class may contain zero or more access labels −

Members defined with a public label are accessible to all parts
of the program. The data-abstraction view of a type is defined by
its public members.

Members defined with a private label are not accessible to code
that uses the class. The private sections hide the implementation
from code that uses the type.

There are no restrictions on how often an access label may appear. Each
access label specifies the access level of the succeeding member definitions.
The specified access level remains in effect until the next access label is
encountered or the closing right brace of the class body is seen.
Benefits of Data Abstraction
Data abstraction provides two important advantages −

Class internals are protected from inadvertent user-level errors,
which might corrupt the state of the object.

The class implementation may evolve over time in response to
changing requirements or bug reports without requiring change in
user-level code.

By defining data members only in the private section of the class, the class
author is free to make changes in the data. If the implementation changes,
only the class code needs to be examined to see what affect the change may
have. If data is public, then any function that directly access the data
members of the old representation might be broken.
Data Abstraction Example



Any C++ program where you implement a class with public and private
members is an example of data abstraction. Consider the following example
−

Live Demo

#include <iostream>
using namespace std;

class Adder {
public:

// constructor
Adder(int i = 0) {

total = i;
}

// interface to outside world
void addNum(int number) {

total += number;
}

// interface to outside world
int getTotal() {

return total;
};

private:
// hidden data from outside world
int total;

};

int main() {
Adder a;

a.addNum(10);
a.addNum(20);
a.addNum(30);

cout << "Total " << a.getTotal() <<endl;
return 0;

http://tpcg.io/Dm4Yt3


}

When the above code is compiled and executed, it produces the following
result −
Total 60
Above class adds numbers together, and returns the sum. The public
members - addNum and getTotal are the interfaces to the outside world and
a user needs to know them to use the class. The private member total is
something that the user doesn't need to know about, but is needed for the
class to operate properly.
Designing Strategy
Abstraction separates code into interface and implementation. So while
designing your component, you must keep interface independent of the
implementation so that if you change underlying implementation then
interface would remain intact.
In this case whatever programs are using these interfaces, they would not be
impacted and would just need a recompilation with the latest
implementation.



Data Encapsulation in C++
All C++ programs are composed of the following two fundamental elements
−

Program statements (code) − This is the part of a program that
performs actions and they are called functions.

Program data − The data is the information of the program
which gets affected by the program functions.

Encapsulation is an Object Oriented Programming concept that binds
together the data and functions that manipulate the data, and that keeps both
safe from outside interference and misuse. Data encapsulation led to the
important OOP concept of data hiding.
Data encapsulation is a mechanism of bundling the data, and the functions
that use them and data abstraction is a mechanism of exposing only the
interfaces and hiding the implementation details from the user.
C++ supports the properties of encapsulation and data hiding through the
creation of user-defined types, called classes. We already have studied that a
class can contain private, protected and public members. By default, all
items defined in a class are private. For example −
class Box {

public:
double getVolume(void) {

return length * breadth * height;
}

private:
double length;      // Length of a box
double breadth;     // Breadth of a box
double height;      // Height of a box

};
The variables length, breadth, and height are private. This means that they
can be accessed only by other members of the Box class, and not by any
other part of your program. This is one way encapsulation is achieved.
To make parts of a class public (i.e., accessible to other parts of your



program), you must declare them after the public keyword. All variables or
functions defined after the public specifier are accessible by all other
functions in your program.
Making one class a friend of another exposes the implementation details and
reduces encapsulation. The ideal is to keep as many of the details of each
class hidden from all other classes as possible.
Data Encapsulation Example
Any C++ program where you implement a class with public and private
members is an example of data encapsulation and data abstraction. Consider
the following example −

Live Demo

#include <iostream>
using namespace std;

class Adder {
public:

// constructor
Adder(int i = 0) {

total = i;
}

// interface to outside world
void addNum(int number) {

total += number;
}

// interface to outside world
int getTotal() {

return total;
};

private:
// hidden data from outside world
int total;

};

http://tpcg.io/lZz6R0


int main() {
Adder a;

a.addNum(10);
a.addNum(20);
a.addNum(30);

cout << "Total " << a.getTotal() <<endl;
return 0;

}

When the above code is compiled and executed, it produces the following
result −
Total 60
Above class adds numbers together, and returns the sum. The public
members addNum and getTotal are the interfaces to the outside world and a
user needs to know them to use the class. The private member total is
something that is hidden from the outside world, but is needed for the class
to operate properly.
Designing Strategy
Most of us have learnt to make class members private by default unless we
really need to expose them. That's just good encapsulation.
This is applied most frequently to data members, but it applies equally to all
members, including virtual functions.



Interfaces in C++ (Abstract Classes)
An interface describes the behavior or capabilities of a C++ class without
committing to a particular implementation of that class.
The C++ interfaces are implemented using abstract classes and these
abstract classes should not be confused with data abstraction which is a
concept of keeping implementation details separate from associated data.
A class is made abstract by declaring at least one of its functions as pure
virtual function. A pure virtual function is specified by placing "= 0" in its
declaration as follows −
class Box {

public:
// pure virtual function
virtual double getVolume() = 0;

private:
double length;      // Length of a box
double breadth;     // Breadth of a box
double height;      // Height of a box

};
The purpose of an abstract class (often referred to as an ABC) is to provide
an appropriate base class from which other classes can inherit. Abstract
classes cannot be used to instantiate objects and serves only as an interface.
Attempting to instantiate an object of an abstract class causes a compilation
error.
Thus, if a subclass of an ABC needs to be instantiated, it has to implement
each of the virtual functions, which means that it supports the interface
declared by the ABC. Failure to override a pure virtual function in a derived
class, then attempting to instantiate objects of that class, is a compilation
error.
Classes that can be used to instantiate objects are called concrete classes.
Abstract Class Example
Consider the following example where parent class provides an interface to
the base class to implement a function called getArea() −



Live Demo

#include <iostream>

using namespace std;

// Base class
class Shape {

public:
// pure virtual function providing interface framework.
virtual int getArea() = 0;
void setWidth(int w) {

width = w;
}

void setHeight(int h) {
height = h;

}

protected:
int width;
int height;

};

// Derived classes
class Rectangle: public Shape {

public:
int getArea() {

return (width * height);
}

};

class Triangle: public Shape {
public:

int getArea() {
return (width * height)/2;

}
};

http://tpcg.io/5qXjq1


int main(void) {
Rectangle Rect;
Triangle  Tri;

Rect.setWidth(5);
Rect.setHeight(7);

// Print the area of the object.
cout << "Total Rectangle area: " << Rect.getArea() << endl;

Tri.setWidth(5);
Tri.setHeight(7);

// Print the area of the object.
cout << "Total Triangle area: " << Tri.getArea() << endl;

return 0;
}

When the above code is compiled and executed, it produces the following
result −
Total Rectangle area: 35
Total Triangle area: 17
You can see how an abstract class defined an interface in terms of getArea()
and two other classes implemented same function but with different
algorithm to calculate the area specific to the shape.
Designing Strategy
An object-oriented system might use an abstract base class to provide a
common and standardized interface appropriate for all the external
applications. Then, through inheritance from that abstract base class, derived
classes are formed that operate similarly.
The capabilities (i.e., the public functions) offered by the external
applications are provided as pure virtual functions in the abstract base class.
The implementations of these pure virtual functions are provided in the
derived classes that correspond to the specific types of the application.
This architecture also allows new applications to be added to a system
easily, even after the system has been defined.



C++ Files and Streams
So far, we have been using the iostream standard library, which
provides cin and cout methods for reading from standard input and writing
to standard output respectively.
This tutorial will teach you how to read and write from a file. This requires
another standard C++ library called fstream, which defines three new data
types −

Sr.No Data Type & Description

1 ofstream
This data type represents the output file stream and is used to
create files and to write information to files.

2 ifstream
This data type represents the input file stream and is used to read
information from files.

3 fstream
This data type represents the file stream generally, and has the
capabilities of both ofstream and ifstream which means it can
create files, write information to files, and read information from
files.

To perform file processing in C++, header files <iostream> and <fstream>
must be included in your C++ source file.
Opening a File
A file must be opened before you can read from it or write to it.
Either ofstream or fstream object may be used to open a file for writing.
And ifstream object is used to open a file for reading purpose only.
Following is the standard syntax for open() function, which is a member of
fstream, ifstream, and ofstream objects.



void open(const char *filename, ios::openmode mode);
Here, the first argument specifies the name and location of the file to be
opened and the second argument of the open() member function defines the
mode in which the file should be opened.

Sr.No Mode Flag & Description

1 ios::app
Append mode. All output to that file to be appended to the
end.

2 ios::ate
Open a file for output and move the read/write control to the
end of the file.

3 ios::in
Open a file for reading.

4 ios::out
Open a file for writing.

5 ios::trunc
If the file already exists, its contents will be truncated before
opening the file.

You can combine two or more of these values by ORing them together. For
example if you want to open a file in write mode and want to truncate it in
case that already exists, following will be the syntax −
ofstream outfile;
outfile.open("file.dat", ios::out | ios::trunc );
Similar way, you can open a file for reading and writing purpose as follows
−



fstream  afile;
afile.open("file.dat", ios::out | ios::in );
Closing a File
When a C++ program terminates it automatically flushes all the streams,
release all the allocated memory and close all the opened files. But it is
always a good practice that a programmer should close all the opened files
before program termination.
Following is the standard syntax for close() function, which is a member of
fstream, ifstream, and ofstream objects.
void close();
Writing to a File
While doing C++ programming, you write information to a file from your
program using the stream insertion operator (<<) just as you use that
operator to output information to the screen. The only difference is that you
use an ofstream or fstream object instead of the cout object.
Reading from a File
You read information from a file into your program using the stream
extraction operator (>>) just as you use that operator to input information
from the keyboard. The only difference is that you use
an ifstream or fstream object instead of the cin object.
Read and Write Example
Following is the C++ program which opens a file in reading and writing
mode. After writing information entered by the user to a file named afile.dat,
the program reads information from the file and outputs it onto the screen −

Live Demo

#include <fstream>
#include <iostream>
using namespace std;

int main () {
char data[100];

// open a file in write mode.
ofstream outfile;

http://tpcg.io/MLhc7C


outfile.open("afile.dat");

cout << "Writing to the file" << endl;
cout << "Enter your name: ";
cin.getline(data, 100);

// write inputted data into the file.
outfile << data << endl;

cout << "Enter your age: ";
cin >> data;
cin.ignore();

// again write inputted data into the file.
outfile << data << endl;

// close the opened file.
outfile.close();

// open a file in read mode.
ifstream infile;
infile.open("afile.dat");

cout << "Reading from the file" << endl;
infile >> data;

// write the data at the screen.
cout << data << endl;

// again read the data from the file and display it.
infile >> data;
cout << data << endl;

// close the opened file.
infile.close();

return 0;
}

When the above code is compiled and executed, it produces the following



sample input and output −
$./a.out
Writing to the file
Enter your name: Zara
Enter your age: 9
Reading from the file
Zara
9
Above examples make use of additional functions from cin object, like
getline() function to read the line from outside and ignore() function to
ignore the extra characters left by previous read statement.
File Position Pointers
Both istream and ostream provide member functions for repositioning the
file-position pointer. These member functions are seekg ("seek get") for
istream and seekp ("seek put") for ostream.
The argument to seekg and seekp normally is a long integer. A second
argument can be specified to indicate the seek direction. The seek direction
can be ios::beg (the default) for positioning relative to the beginning of a
stream, ios::cur for positioning relative to the current position in a stream
or ios::end for positioning relative to the end of a stream.
The file-position pointer is an integer value that specifies the location in the
file as a number of bytes from the file's starting location. Some examples of
positioning the "get" file-position pointer are −
// position to the nth byte of fileObject (assumes ios::beg)
fileObject.seekg( n );

// position n bytes forward in fileObject
fileObject.seekg( n, ios::cur );

// position n bytes back from end of fileObject
fileObject.seekg( n, ios::end );

// position at end of fileObject
fileObject.seekg( 0, ios::end );



C++ Exception Handling
An exception is a problem that arises during the execution of a program. A
C++ exception is a response to an exceptional circumstance that arises while
a program is running, such as an attempt to divide by zero.
Exceptions provide a way to transfer control from one part of a program to
another. C++ exception handling is built upon three keywords: try,
catch, and throw.

throw − A program throws an exception when a problem shows
up. This is done using a throw keyword.

catch − A program catches an exception with an exception
handler at the place in a program where you want to handle the
problem. The catch keyword indicates the catching of an
exception.

try − A try block identifies a block of code for which particular
exceptions will be activated. It's followed by one or more catch
blocks.

Assuming a block will raise an exception, a method catches an exception
using a combination of the try and catch keywords. A try/catch block is
placed around the code that might generate an exception. Code within a
try/catch block is referred to as protected code, and the syntax for using
try/catch as follows −
try {

// protected code
} catch( ExceptionName e1 ) {

// catch block
} catch( ExceptionName e2 ) {

// catch block
} catch( ExceptionName eN ) {

// catch block
}
You can list down multiple catch statements to catch different type of
exceptions in case your try block raises more than one exception in different
situations.



Throwing Exceptions
Exceptions can be thrown anywhere within a code block
using throw statement. The operand of the throw statement determines a
type for the exception and can be any expression and the type of the result of
the expression determines the type of exception thrown.
Following is an example of throwing an exception when dividing by zero
condition occurs −
double division(int a, int b) {

if( b == 0 ) {
throw "Division by zero condition!";

}
return (a/b);

}
Catching Exceptions
The catch block following the try block catches any exception. You can
specify what type of exception you want to catch and this is determined by
the exception declaration that appears in parentheses following the keyword
catch.
try {

// protected code
} catch( ExceptionName e ) {

// code to handle ExceptionName exception
}
Above code will catch an exception of ExceptionName type. If you want to
specify that a catch block should handle any type of exception that is thrown
in a try block, you must put an ellipsis, ..., between the parentheses enclosing
the exception declaration as follows −
try {

// protected code
} catch(...) {

// code to handle any exception
}
The following is an example, which throws a division by zero exception and
we catch it in catch block.



Live Demo

#include <iostream>
using namespace std;

double division(int a, int b) {
if( b == 0 ) {

throw "Division by zero condition!";
}
return (a/b);

}

int main () {
int x = 50;
int y = 0;
double z = 0;

try {
z = division(x, y);
cout << z << endl;

} catch (const char* msg) {
cerr << msg << endl;

}

return 0;
}

Because we are raising an exception of type const char*, so while catching
this exception, we have to use const char* in catch block. If we compile and
run above code, this would produce the following result −
Division by zero condition!
C++ Standard Exceptions
C++ provides a list of standard exceptions defined in <exception> which we
can use in our programs. These are arranged in a parent-child class hierarchy
shown below −

http://tpcg.io/Nuo9hc


Here is the small description of each exception mentioned in the above
hierarchy −

Sr.No Exception & Description

1 std::exception
An exception and parent class of all the standard C++
exceptions.

2 std::bad_alloc
This can be thrown by new.

3 std::bad_cast



This can be thrown by dynamic_cast.

4 std::bad_exception
This is useful device to handle unexpected exceptions in a C++
program.

5 std::bad_typeid
This can be thrown by typeid.

6 std::logic_error
An exception that theoretically can be detected by reading the
code.

7 std::domain_error
This is an exception thrown when a mathematically invalid
domain is used.

8 std::invalid_argument
This is thrown due to invalid arguments.

9 std::length_error
This is thrown when a too big std::string is created.

10 std::out_of_range
This can be thrown by the 'at' method, for example a
std::vector and std::bitset<>::operator[]().

11 std::runtime_error
An exception that theoretically cannot be detected by reading
the code.



12 std::overflow_error
This is thrown if a mathematical overflow occurs.

13 std::range_error
This is occurred when you try to store a value which is out of
range.

14 std::underflow_error
This is thrown if a mathematical underflow occurs.

Define New Exceptions
You can define your own exceptions by inheriting and
overriding exception class functionality. Following is the example, which
shows how you can use std::exception class to implement your own
exception in standard way −

Live Demo

#include <iostream>
#include <exception>
using namespace std;

struct MyException : public exception {
const char * what () const throw () {

return "C++ Exception";
}

};

int main() {
try {

throw MyException();
} catch(MyException& e) {

std::cout << "MyException caught" << std::endl;
std::cout << e.what() << std::endl;

} catch(std::exception& e) {
//Other errors

http://tpcg.io/FUdUJO


}
}

This would produce the following result −
MyException caught
C++ Exception
Here, what() is a public method provided by exception class and it has been
overridden by all the child exception classes. This returns the cause of an
exception.



C++ Dynamic Memory
A good understanding of how dynamic memory really works in C++ is
essential to becoming a good C++ programmer. Memory in your C++
program is divided into two parts −

The stack − All variables declared inside the function will take
up memory from the stack.

The heap − This is unused memory of the program and can be
used to allocate the memory dynamically when program runs.

Many times, you are not aware in advance how much memory you will need
to store particular information in a defined variable and the size of required
memory can be determined at run time.
You can allocate memory at run time within the heap for the variable of a
given type using a special operator in C++ which returns the address of the
space allocated. This operator is called new operator.
If you are not in need of dynamically allocated memory anymore, you can
use delete operator, which de-allocates memory that was previously
allocated by new operator.
new and delete Operators
There is following generic syntax to use new operator to allocate memory
dynamically for any data-type.
new data-type;
Here, data-type could be any built-in data type including an array or any
user defined data types include class or structure. Let us start with built-in
data types. For example we can define a pointer to type double and then
request that the memory be allocated at execution time. We can do this using
the new operator with the following statements −
double* pvalue  = NULL; // Pointer initialized with null
pvalue  = new double;   // Request memory for the variable
The memory may not have been allocated successfully, if the free store had
been used up. So it is good practice to check if new operator is returning
NULL pointer and take appropriate action as below −



double* pvalue  = NULL;
if( !(pvalue  = new double )) {

cout << "Error: out of memory." <<endl;
exit(1);

}
The malloc() function from C, still exists in C++, but it is recommended to
avoid using malloc() function. The main advantage of new over malloc() is
that new doesn't just allocate memory, it constructs objects which is prime
purpose of C++.
At any point, when you feel a variable that has been dynamically allocated is
not anymore required, you can free up the memory that it occupies in the
free store with the ‘delete’ operator as follows −
delete pvalue;        // Release memory pointed to by pvalue
Let us put above concepts and form the following example to show how
‘new’ and ‘delete’ work −

Live Demo

#include <iostream>
using namespace std;

int main () {
double* pvalue  = NULL; // Pointer initialized with null
pvalue  = new double;   // Request memory for the variable

*pvalue = 29494.99;     // Store value at allocated address
cout << "Value of pvalue : " << *pvalue << endl;

delete pvalue;         // free up the memory.

return 0;
}

If we compile and run above code, this would produce the following result −
Value of pvalue : 29495
Dynamic Memory Allocation for Arrays
Consider you want to allocate memory for an array of characters, i.e., string
of 20 characters. Using the same syntax what we have used above we can

http://tpcg.io/YFq73r


allocate memory dynamically as shown below.
char* pvalue  = NULL;         // Pointer initialized with null
pvalue  = new char[20];       // Request memory for the variable
To remove the array that we have just created the statement would look like
this −
delete [] pvalue;             // Delete array pointed to by pvalue
Following the similar generic syntax of new operator, you can allocate for a
multi-dimensional array as follows −
double** pvalue  = NULL;      // Pointer initialized with null
pvalue  = new double [3][4];  // Allocate memory for a 3x4 array
However, the syntax to release the memory for multi-dimensional array will
still remain same as above −
delete [] pvalue;            // Delete array pointed to by pvalue
Dynamic Memory Allocation for Objects
Objects are no different from simple data types. For example, consider the
following code where we are going to use an array of objects to clarify the
concept −

Live Demo

#include <iostream>
using namespace std;

class Box {
public:

Box() {
cout << "Constructor called!" <<endl;

}
~Box() {

cout << "Destructor called!" <<endl;
}

};
int main() {

Box* myBoxArray = new Box[4];
delete [] myBoxArray; // Delete array

http://tpcg.io/qxQQ36


return 0;
}

If you were to allocate an array of four Box objects, the Simple constructor
would be called four times and similarly while deleting these objects,
destructor will also be called same number of times.
If we compile and run above code, this would produce the following result −
Constructor called!
Constructor called!
Constructor called!
Constructor called!
Destructor called!
Destructor called!
Destructor called!
Destructor called!



Namespaces in C++
Consider a situation, when we have two persons with the same name, Zara,
in the same class. Whenever we need to differentiate them definitely we
would have to use some additional information along with their name, like
either the area, if they live in different area or their mother’s or father’s
name, etc.
Same situation can arise in your C++ applications. For example, you might
be writing some code that has a function called xyz() and there is another
library available which is also having same function xyz(). Now the
compiler has no way of knowing which version of xyz() function you are
referring to within your code.
A namespace is designed to overcome this difficulty and is used as
additional information to differentiate similar functions, classes, variables
etc. with the same name available in different libraries. Using namespace,
you can define the context in which names are defined. In essence, a
namespace defines a scope.
Defining a Namespace
A namespace definition begins with the keyword namespace followed by
the namespace name as follows −
namespace namespace_name {

// code declarations
}
To call the namespace-enabled version of either function or variable,
prepend (::) the namespace name as follows −
name::code;  // code could be variable or function.
Let us see how namespace scope the entities including variable and
functions −

Live Demo

#include <iostream>
using namespace std;

// first name space
namespace first_space {

http://tpcg.io/0xMQ1K


void func() {
cout << "Inside first_space" << endl;

}
}

// second name space
namespace second_space {

void func() {
cout << "Inside second_space" << endl;

}
}

int main () {
// Calls function from first name space.
first_space::func();

// Calls function from second name space.
second_space::func();

return 0;
}

If we compile and run above code, this would produce the following result −
Inside first_space
Inside second_space
The using directive
You can also avoid prepending of namespaces with the using
namespace directive. This directive tells the compiler that the subsequent
code is making use of names in the specified namespace. The namespace is
thus implied for the following code −

Live Demo

#include <iostream>
using namespace std;

// first name space
namespace first_space {

void func() {

http://tpcg.io/8ggeE3


cout << "Inside first_space" << endl;
}

}

// second name space
namespace second_space {

void func() {
cout << "Inside second_space" << endl;

}
}

using namespace first_space;
int main () {

// This calls function from first name space.
func();

return 0;
}

If we compile and run above code, this would produce the following result −
Inside first_space
The ‘using’ directive can also be used to refer to a particular item within a
namespace. For example, if the only part of the std namespace that you
intend to use is cout, you can refer to it as follows −
using std::cout;
Subsequent code can refer to cout without prepending the namespace, but
other items in the std namespace will still need to be explicit as follows −

Live Demo

#include <iostream>
using std::cout;

int main () {
cout << "std::endl is used with std!" << std::endl;

return 0;
}

http://tpcg.io/J1UkeN


If we compile and run above code, this would produce the following result −
std::endl is used with std!
Names introduced in a using directive obey normal scope rules. The name is
visible from the point of the using directive to the end of the scope in which
the directive is found. Entities with the same name defined in an outer scope
are hidden.
Discontiguous Namespaces
A namespace can be defined in several parts and so a namespace is made up
of the sum of its separately defined parts. The separate parts of a namespace
can be spread over multiple files.
So, if one part of the namespace requires a name defined in another file, that
name must still be declared. Writing a following namespace definition either
defines a new namespace or adds new elements to an existing one −
namespace namespace_name {

// code declarations
}
Nested Namespaces
Namespaces can be nested where you can define one namespace inside
another name space as follows −
namespace namespace_name1 {

// code declarations
namespace namespace_name2 {

// code declarations
}

}
You can access members of nested namespace by using resolution operators
as follows −
// to access members of namespace_name2
using namespace namespace_name1::namespace_name2;

// to access members of namespace:name1
using namespace namespace_name1;
In the above statements if you are using namespace_name1, then it will
make elements of namespace_name2 available in the scope as follows −



Live Demo

#include <iostream>
using namespace std;

// first name space
namespace first_space {

void func() {
cout << "Inside first_space" << endl;

}

// second name space
namespace second_space {

void func() {
cout << "Inside second_space" << endl;

}
}

}

using namespace first_space::second_space;
int main () {

// This calls function from second name space.
func();

return 0;
}

If we compile and run above code, this would produce the following result −
Inside second_space

http://tpcg.io/2ydw4V


C++ Templates
Templates are the foundation of generic programming, which involves
writing code in a way that is independent of any particular type.
A template is a blueprint or formula for creating a generic class or a
function. The library containers like iterators and algorithms are examples of
generic programming and have been developed using template concept.
There is a single definition of each container, such as vector, but we can
define many different kinds of vectors for example, vector <int> or vector
<string>.
You can use templates to define functions as well as classes, let us see how
they work −
Function Template
The general form of a template function definition is shown here −
template <class type> ret-type func-name(parameter list) {

// body of function
}
Here, type is a placeholder name for a data type used by the function. This
name can be used within the function definition.
The following is the example of a function template that returns the
maximum of two values −

Live Demo

#include <iostream>
#include <string>

using namespace std;

template <typename T>
inline T const& Max (T const& a, T const& b) {

return a < b ? b:a;
}

int main () {
int i = 39;

http://tpcg.io/6cvVGA


int j = 20;
cout << "Max(i, j): " << Max(i, j) << endl;

double f1 = 13.5;
double f2 = 20.7;
cout << "Max(f1, f2): " << Max(f1, f2) << endl;

string s1 = "Hello";
string s2 = "World";
cout << "Max(s1, s2): " << Max(s1, s2) << endl;

return 0;
}

If we compile and run above code, this would produce the following result −
Max(i, j): 39
Max(f1, f2): 20.7
Max(s1, s2): World
Class Template
Just as we can define function templates, we can also define class templates.
The general form of a generic class declaration is shown here −
template <class type> class class-name {

.

.

.
}
Here, type is the placeholder type name, which will be specified when a
class is instantiated. You can define more than one generic data type by
using a comma-separated list.
Following is the example to define class Stack<> and implement generic
methods to push and pop the elements from the stack −

Live Demo

#include <iostream>
#include <vector>
#include <cstdlib>
#include <string>

http://tpcg.io/ixzLqn


#include <stdexcept>

using namespace std;

template <class T>
class Stack {

private:
vector<T> elems;   // elements

public:
void push(T const&);  // push element
void pop();               // pop element
T top() const;            // return top element

bool empty() const {      // return true if empty.
return elems.empty();

}
};

template <class T>
void Stack<T>::push (T const& elem) {

// append copy of passed element
elems.push_back(elem);   

}

template <class T>
void Stack<T>::pop () {

if (elems.empty()) {
throw out_of_range("Stack<>::pop(): empty stack");

}

// remove last element
elems.pop_back();        

}

template <class T>
T Stack<T>::top () const {

if (elems.empty()) {
throw out_of_range("Stack<>::top(): empty stack");



}

// return copy of last element
return elems.back();     

}

int main() {
try {

Stack<int>         intStack;  // stack of ints
Stack<string> stringStack;   // stack of strings

// manipulate int stack
intStack.push(7);
cout << intStack.top() <<endl;

// manipulate string stack
stringStack.push("hello");
cout << stringStack.top() << std::endl;
stringStack.pop();
stringStack.pop();

} catch (exception const& ex) {
cerr << "Exception: " << ex.what() <<endl;
return -1;

}
}

If we compile and run above code, this would produce the following result −
7
hello
Exception: Stack<>::pop(): empty stack



C++ Preprocessor
The preprocessors are the directives, which give instructions to the compiler
to preprocess the information before actual compilation starts.
All preprocessor directives begin with #, and only white-space characters
may appear before a preprocessor directive on a line. Preprocessor directives
are not C++ statements, so they do not end in a semicolon (;).
You already have seen a #include directive in all the examples. This macro
is used to include a header file into the source file.
There are number of preprocessor directives supported by C++ like #include,
#define, #if, #else, #line, etc. Let us see important directives −
The #define Preprocessor
The #define preprocessor directive creates symbolic constants. The symbolic
constant is called a macro and the general form of the directive is −
#define macro-name replacement-text
When this line appears in a file, all subsequent occurrences of macro in that
file will be replaced by replacement-text before the program is compiled. For
example −

#include <iostream>
using namespace std;

#define PI 3.14159

int main () {
cout << "Value of PI :" << PI << endl;

return 0;
}

Now, let us do the preprocessing of this code to see the result assuming we
have the source code file. So let us compile it with -E option and redirect the
result to test.p. Now, if you check test.p, it will have lots of information and
at the bottom, you will find the value replaced as follows −
$gcc -E test.cpp > test.p



...
int main () {

cout << "Value of PI :" << 3.14159 << endl;
return 0;

}
Function-Like Macros
You can use #define to define a macro which will take argument as follows
−

Live Demo

#include <iostream>
using namespace std;

#define MIN(a,b) (((a)<(b)) ? a : b)

int main () {
int i, j;

i = 100;
j = 30;

cout <<"The minimum is " << MIN(i, j) << endl;

return 0;
}

If we compile and run above code, this would produce the following result −
The minimum is 30
Conditional Compilation
There are several directives, which can be used to compile selective portions
of your program's source code. This process is called conditional
compilation.
The conditional preprocessor construct is much like the ‘if’ selection
structure. Consider the following preprocessor code −
#ifndef NULL

#define NULL 0
#endif

http://tpcg.io/4pUj1I


You can compile a program for debugging purpose. You can also turn on or
off the debugging using a single macro as follows −
#ifdef DEBUG

cerr <<"Variable x = " << x << endl;
#endif
This causes the cerr statement to be compiled in the program if the symbolic
constant DEBUG has been defined before directive #ifdef DEBUG. You can
use #if 0 statment to comment out a portion of the program as follows −
#if 0

code prevented from compiling
#endif
Let us try the following example −

Live Demo

#include <iostream>
using namespace std;
#define DEBUG

#define MIN(a,b) (((a)<(b)) ? a : b)

int main () {
int i, j;

i = 100;
j = 30;

#ifdef DEBUG
cerr <<"Trace: Inside main function" << endl;

#endif

#if 0
/* This is commented part */
cout << MKSTR(HELLO C++) << endl;

#endif

cout <<"The minimum is " << MIN(i, j) << endl;

#ifdef DEBUG

http://tpcg.io/r3qAkV


cerr <<"Trace: Coming out of main function" << endl;
#endif

return 0;
}

If we compile and run above code, this would produce the following result −
The minimum is 30
Trace: Inside main function
Trace: Coming out of main function
The # and ## Operators
The # and ## preprocessor operators are available in C++ and ANSI/ISO C.
The # operator causes a replacement-text token to be converted to a string
surrounded by quotes.
Consider the following macro definition −

Live Demo

#include <iostream>
using namespace std;

#define MKSTR( x ) #x

int main () {

cout << MKSTR(HELLO C++) << endl;

return 0;
}

If we compile and run above code, this would produce the following result −
HELLO C++
Let us see how it worked. It is simple to understand that the C++
preprocessor turns the line −
cout << MKSTR(HELLO C++) << endl;
Above line will be turned into the following line −
cout << "HELLO C++" << endl;
The ## operator is used to concatenate two tokens. Here is an example −

http://tpcg.io/54XMO7


#define CONCAT( x, y )  x ## y
When CONCAT appears in the program, its arguments are concatenated and
used to replace the macro. For example, CONCAT(HELLO, C++) is
replaced by "HELLO C++" in the program as follows.

Live Demo

#include <iostream>
using namespace std;

#define concat(a, b) a ## b
int main() {

int xy = 100;

cout << concat(x, y);
return 0;

}

If we compile and run above code, this would produce the following result −
100
Let us see how it worked. It is simple to understand that the C++
preprocessor transforms −
cout << concat(x, y);
Above line will be transformed into the following line −
cout << xy;
Predefined C++ Macros
C++ provides a number of predefined macros mentioned below −

Sr.No Macro & Description

1 __LINE__
This contains the current line number of the program when it is
being compiled.

2 __FILE__

http://tpcg.io/xadPS5


This contains the current file name of the program when it is
being compiled.

3 __DATE__
This contains a string of the form month/day/year that is the date
of the translation of the source file into object code.

4 __TIME__
This contains a string of the form hour:minute:second that is the
time at which the program was compiled.

Let us see an example for all the above macros −
Live Demo

#include <iostream>
using namespace std;

int main () {
cout << "Value of __LINE__ : " << __LINE__ << endl;
cout << "Value of __FILE__ : " << __FILE__ << endl;
cout << "Value of __DATE__ : " << __DATE__ << endl;
cout << "Value of __TIME__ : " << __TIME__ << endl;

return 0;
}

If we compile and run above code, this would produce the following result −
Value of __LINE__ : 6
Value of __FILE__ : test.cpp
Value of __DATE__ : Feb 28 2011
Value of __TIME__ : 18:52:48

http://tpcg.io/uO9yHk


C++ Signal Handling
Signals are the interrupts delivered to a process by the operating system
which can terminate a program prematurely. You can generate interrupts by
pressing Ctrl+C on a UNIX, LINUX, Mac OS X or Windows system.
There are signals which can not be caught by the program but there is a
following list of signals which you can catch in your program and can take
appropriate actions based on the signal. These signals are defined in C++
header file <csignal>.

Sr.No Signal & Description

1 SIGABRT
Abnormal termination of the program, such as a call to abort.

2 SIGFPE
An erroneous arithmetic operation, such as a divide by zero or
an operation resulting in overflow.

3 SIGILL
Detection of an illegal instruction.

4 SIGINT
Receipt of an interactive attention signal.

5 SIGSEGV
An invalid access to storage.

6 SIGTERM
A termination request sent to the program.

The signal() Function



C++ signal-handling library provides function signal to trap unexpected
events. Following is the syntax of the signal() function −
void (*signal (int sig, void (*func)(int)))(int);
Keeping it simple, this function receives two arguments: first argument as an
integer which represents signal number and second argument as a pointer to
the signal-handling function.
Let us write a simple C++ program where we will catch SIGINT signal
using signal() function. Whatever signal you want to catch in your program,
you must register that signal using signal function and associate it with a
signal handler. Examine the following example −

#include <iostream>
#include <csignal>

using namespace std;

void signalHandler( int signum ) {
cout << "Interrupt signal (" << signum << ") received.\n";

// cleanup and close up stuff here 
// terminate program

exit(signum);
}

int main () {
// register signal SIGINT and signal handler 
signal(SIGINT, signalHandler);

while(1) {
cout << "Going to sleep...." << endl;
sleep(1);

}

return 0;
}

When the above code is compiled and executed, it produces the following
result −



Going to sleep....
Going to sleep....
Going to sleep....
Now, press Ctrl+c to interrupt the program and you will see that your
program will catch the signal and would come out by printing something as
follows −
Going to sleep....
Going to sleep....
Going to sleep....
Interrupt signal (2) received.
The raise() Function
You can generate signals by function raise(), which takes an integer signal
number as an argument and has the following syntax.
int raise (signal sig);
Here, sig is the signal number to send any of the signals: SIGINT,
SIGABRT, SIGFPE, SIGILL, SIGSEGV, SIGTERM, SIGHUP. Following
is the example where we raise a signal internally using raise() function as
follows −

#include <iostream>
#include <csignal>

using namespace std;

void signalHandler( int signum ) {
cout << "Interrupt signal (" << signum << ") received.\n";

// cleanup and close up stuff here 
// terminate program

exit(signum);
}

int main () {
int i = 0;
// register signal SIGINT and signal handler 
signal(SIGINT, signalHandler);



while(++i) {
cout << "Going to sleep...." << endl;
if( i == 3 ) {

raise( SIGINT);
}
sleep(1);

}

return 0;
}

When the above code is compiled and executed, it produces the following
result and would come out automatically −
Going to sleep....
Going to sleep....
Going to sleep....
Interrupt signal (2) received.



C++ Multithreading
Multithreading is a specialized form of multitasking and a multitasking is the
feature that allows your computer to run two or more programs concurrently.
In general, there are two types of multitasking: process-based and thread-
based.
Process-based multitasking handles the concurrent execution of programs.
Thread-based multitasking deals with the concurrent execution of pieces of
the same program.
A multithreaded program contains two or more parts that can run
concurrently. Each part of such a program is called a thread, and each thread
defines a separate path of execution.
C++ does not contain any built-in support for multithreaded applications.
Instead, it relies entirely upon the operating system to provide this feature.
This tutorial assumes that you are working on Linux OS and we are going to
write multi-threaded C++ program using POSIX. POSIX Threads, or
Pthreads provides API which are available on many Unix-like POSIX
systems such as FreeBSD, NetBSD, GNU/Linux, Mac OS X and Solaris.
Creating Threads
The following routine is used to create a POSIX thread −
#include <pthread.h>
pthread_create (thread, attr, start_routine, arg)
Here, pthread_create creates a new thread and makes it executable. This
routine can be called any number of times from anywhere within your code.
Here is the description of the parameters −

Sr.No Parameter & Description

1 thread
An opaque, unique identifier for the new thread returned by the
subroutine.

2 attr



An opaque attribute object that may be used to set thread
attributes. You can specify a thread attributes object, or NULL
for the default values.

3 start_routine
The C++ routine that the thread will execute once it is created.

4 arg
A single argument that may be passed to start_routine. It must be
passed by reference as a pointer cast of type void. NULL may be
used if no argument is to be passed.

The maximum number of threads that may be created by a process is
implementation dependent. Once created, threads are peers, and may create
other threads. There is no implied hierarchy or dependency between threads.
Terminating Threads
There is following routine which we use to terminate a POSIX thread −
#include <pthread.h>
pthread_exit (status)
Here pthread_exit is used to explicitly exit a thread. Typically, the
pthread_exit() routine is called after a thread has completed its work and is
no longer required to exist.
If main() finishes before the threads it has created, and exits with
pthread_exit(), the other threads will continue to execute. Otherwise, they
will be automatically terminated when main() finishes.
Example
This simple example code creates 5 threads with the pthread_create()
routine. Each thread prints a "Hello World!" message, and then terminates
with a call to pthread_exit().

#include <iostream>
#include <cstdlib>
#include <pthread.h>



using namespace std;

#define NUM_THREADS 5

void *PrintHello(void *threadid) {
long tid;
tid = (long)threadid;
cout << "Hello World! Thread ID, " << tid << endl;
pthread_exit(NULL);

}

int main () {
pthread_t threads[NUM_THREADS];
int rc;
int i;

for( i = 0; i < NUM_THREADS; i++ ) {
cout << "main() : creating thread, " << i << endl;
rc = pthread_create(&threads[i], NULL, PrintHello, (void *)i);

if (rc) {
cout << "Error:unable to create thread," << rc << endl;
exit(-1);

}
}
pthread_exit(NULL);

}

Compile the following program using -lpthread library as follows −
$gcc test.cpp -lpthread
Now, execute your program which gives the following output −
main() : creating thread, 0
main() : creating thread, 1
main() : creating thread, 2
main() : creating thread, 3
main() : creating thread, 4
Hello World! Thread ID, 0
Hello World! Thread ID, 1



Hello World! Thread ID, 2
Hello World! Thread ID, 3
Hello World! Thread ID, 4
Passing Arguments to Threads
This example shows how to pass multiple arguments via a structure. You
can pass any data type in a thread callback because it points to void as
explained in the following example −

#include <iostream>
#include <cstdlib>
#include <pthread.h>

using namespace std;

#define NUM_THREADS 5

struct thread_data {
int  thread_id;
char *message;

};

void *PrintHello(void *threadarg) {
struct thread_data *my_data;
my_data = (struct thread_data *) threadarg;

cout << "Thread ID : " << my_data->thread_id ;
cout << " Message : " << my_data->message << endl;

pthread_exit(NULL);
}

int main () {
pthread_t threads[NUM_THREADS];
struct thread_data td[NUM_THREADS];
int rc;
int i;

for( i = 0; i < NUM_THREADS; i++ ) {
cout <<"main() : creating thread, " << i << endl;



td[i].thread_id = i;
td[i].message = "This is message";
rc = pthread_create(&threads[i], NULL, PrintHello, (void *)&td[i]);

if (rc) {
cout << "Error:unable to create thread," << rc << endl;
exit(-1);

}
}
pthread_exit(NULL);

}

When the above code is compiled and executed, it produces the following
result −
main() : creating thread, 0
main() : creating thread, 1
main() : creating thread, 2
main() : creating thread, 3
main() : creating thread, 4
Thread ID : 3 Message : This is message
Thread ID : 2 Message : This is message
Thread ID : 0 Message : This is message
Thread ID : 1 Message : This is message
Thread ID : 4 Message : This is message
Joining and Detaching Threads
There are following two routines which we can use to join or detach threads
−
pthread_join (threadid, status)
pthread_detach (threadid)
The pthread_join() subroutine blocks the calling thread until the specified
'threadid' thread terminates. When a thread is created, one of its attributes
defines whether it is joinable or detached. Only threads that are created as
joinable can be joined. If a thread is created as detached, it can never be
joined.
This example demonstrates how to wait for thread completions by using the
Pthread join routine.



#include <iostream>
#include <cstdlib>
#include <pthread.h>
#include <unistd.h>

using namespace std;

#define NUM_THREADS 5

void *wait(void *t) {
int i;
long tid;

tid = (long)t;

sleep(1);
cout << "Sleeping in thread " << endl;
cout << "Thread with id : " << tid << "  ...exiting " << endl;
pthread_exit(NULL);

}

int main () {
int rc;
int i;
pthread_t threads[NUM_THREADS];
pthread_attr_t attr;
void *status;

// Initialize and set thread joinable
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

for( i = 0; i < NUM_THREADS; i++ ) {
cout << "main() : creating thread, " << i << endl;
rc = pthread_create(&threads[i], &attr, wait, (void *)i );
if (rc) {

cout << "Error:unable to create thread," << rc << endl;
exit(-1);

}



}

// free attribute and wait for the other threads
pthread_attr_destroy(&attr);
for( i = 0; i < NUM_THREADS; i++ ) {

rc = pthread_join(threads[i], &status);
if (rc) {

cout << "Error:unable to join," << rc << endl;
exit(-1);

}
cout << "Main: completed thread id :" << i ;
cout << "  exiting with status :" << status << endl;

}

cout << "Main: program exiting." << endl;
pthread_exit(NULL);

}

When the above code is compiled and executed, it produces the following
result −
main() : creating thread, 0
main() : creating thread, 1
main() : creating thread, 2
main() : creating thread, 3
main() : creating thread, 4
Sleeping in thread
Thread with id : 0 .... exiting
Sleeping in thread
Thread with id : 1 .... exiting
Sleeping in thread
Thread with id : 2 .... exiting
Sleeping in thread
Thread with id : 3 .... exiting
Sleeping in thread
Thread with id : 4 .... exiting
Main: completed thread id :0  exiting with status :0
Main: completed thread id :1  exiting with status :0



Main: completed thread id :2  exiting with status :0
Main: completed thread id :3  exiting with status :0
Main: completed thread id :4  exiting with status :0
Main: program exiting.



C++ Web Programming

What is CGI?
The Common Gateway Interface, or CGI, is a set of standards

that define how information is exchanged between the web server
and a custom script.

The CGI specs are currently maintained by the NCSA and
NCSA defines CGI is as follows −

The Common Gateway Interface, or CGI, is a standard for
external gateway programs to interface with information servers
such as HTTP servers.

The current version is CGI/1.1 and CGI/1.2 is under progress.

Web Browsing
To understand the concept of CGI, let's see what happens when we click a
hyperlink to browse a particular web page or URL.

Your browser contacts the HTTP web server and demand for the
URL ie. filename.

Web Server will parse the URL and will look for the filename. If
it finds requested file then web server sends that file back to the
browser otherwise sends an error message indicating that you
have requested a wrong file.

Web browser takes response from web server and displays either
the received file or error message based on the received response.

However, it is possible to set up the HTTP server in such a way that
whenever a file in a certain directory is requested, that file is not sent back;
instead it is executed as a program, and produced output from the program is
sent back to your browser to display.
The Common Gateway Interface (CGI) is a standard protocol for enabling
applications (called CGI programs or CGI scripts) to interact with Web
servers and with clients. These CGI programs can be a written in Python,
PERL, Shell, C or C++ etc.



CGI Architecture Diagram
The following simple program shows a simple architecture of CGI −

Web Server Configuration
Before you proceed with CGI Programming, make sure that your Web
Server supports CGI and it is configured to handle CGI Programs. All the
CGI Programs to be executed by the HTTP server are kept in a pre-
configured directory. This directory is called CGI directory and by
convention it is named as /var/www/cgi-bin. By convention CGI files will
have extension as .cgi, though they are C++ executable.
By default, Apache Web Server is configured to run CGI programs in
/var/www/cgi-bin. If you want to specify any other directory to run your
CGI scripts, you can modify the following section in the httpd.conf file −

<Directory "/var/www/cgi-bin">
AllowOverride None
Options ExecCGI
Order allow,deny
Allow from all



</Directory>

<Directory "/var/www/cgi-bin">
Options All

</Directory>

Here, I assume that you have Web Server up and running successfully and
you are able to run any other CGI program like Perl or Shell etc.
First CGI Program
Consider the following C++ Program content −

#include <iostream>
using namespace std;

int main () {
cout << "Content-type:text/html\r\n\r\n";
cout << "<html>\n";
cout << "<head>\n";
cout << "<title>Hello World - First CGI Program</title>\n";
cout << "</head>\n";
cout << "<body>\n";
cout << "<h2>Hello World! This is my first CGI program</h2>\n";
cout << "</body>\n";
cout << "</html>\n";

return 0;
}

Compile above code and name the executable as cplusplus.cgi. This file is
being kept in /var/www/cgi-bin directory and it has following content.
Before running your CGI program make sure you have change mode of file
using chmod 755 cplusplus.cgi UNIX command to make file executable.
My First CGI program
The above C++ program is a simple program which is writing its output on
STDOUT file i.e. screen. There is one important and extra feature available
which is first line printing Content-type:text/html\r\n\r\n. This line is sent
back to the browser and specify the content type to be displayed on the
browser screen. Now you must have understood the basic concept of CGI



and you can write many complicated CGI programs using Python. A C++
CGI program can interact with any other external system, such as RDBMS,
to exchange information.
HTTP Header
The line Content-type:text/html\r\n\r\n is a part of HTTP header, which is
sent to the browser to understand the content. All the HTTP header will be in
the following form −
HTTP Field Name: Field Content

For Example
Content-type: text/html\r\n\r\n
There are few other important HTTP headers, which you will use frequently
in your CGI Programming.

Sr.No Header & Description

1 Content-type:
A MIME string defining the format of the file being returned.
Example is Content-type:text/html.

2 Expires: Date
The date the information becomes invalid. This should be used
by the browser to decide when a page needs to be refreshed. A
valid date string should be in the format 01 Jan 1998 12:00:00
GMT.

3 Location: URL
The URL that should be returned instead of the URL requested.
You can use this filed to redirect a request to any file.

4 Last-modified: Date
The date of last modification of the resource.



5 Content-length: N
The length, in bytes, of the data being returned. The browser
uses this value to report the estimated download time for a file.

6 Set-Cookie: String
Set the cookie passed through the string.

CGI Environment Variables
All the CGI program will have access to the following environment
variables. These variables play an important role while writing any CGI
program.

Sr.No Variable Name & Description

1 CONTENT_TYPE
The data type of the content, used when the client is sending
attached content to the server. For example file upload etc.

2 CONTENT_LENGTH
The length of the query information that is available only for
POST requests.

3 HTTP_COOKIE
Returns the set cookies in the form of key & value pair.

4 HTTP_USER_AGENT
The User-Agent request-header field contains information about
the user agent originating the request. It is a name of the web
browser.

5 PATH_INFO
The path for the CGI script.



6 QUERY_STRING
The URL-encoded information that is sent with GET method
request.

7 REMOTE_ADDR
The IP address of the remote host making the request. This can
be useful for logging or for authentication purpose.

8 REMOTE_HOST
The fully qualified name of the host making the request. If this
information is not available then REMOTE_ADDR can be used
to get IR address.

9 REQUEST_METHOD
The method used to make the request. The most common
methods are GET and POST.

10 SCRIPT_FILENAME
The full path to the CGI script.

11 SCRIPT_NAME
The name of the CGI script.

12 SERVER_NAME
The server's hostname or IP Address.

13 SERVER_SOFTWARE
The name and version of the software the server is running.

Here is small CGI program to list out all the CGI variables.



#include <iostream>
#include <stdlib.h>
using namespace std;

const string ENV[ 24 ] = {
"COMSPEC", "DOCUMENT_ROOT", "GATEWAY_INTERFACE",  
"HTTP_ACCEPT", "HTTP_ACCEPT_ENCODING",            
"HTTP_ACCEPT_LANGUAGE", "HTTP_CONNECTION",        
"HTTP_HOST", "HTTP_USER_AGENT", "PATH",           
"QUERY_STRING", "REMOTE_ADDR", "REMOTE_PORT",     
"REQUEST_METHOD", "REQUEST_URI", "SCRIPT_FILENAME",
"SCRIPT_NAME", "SERVER_ADDR", "SERVER_ADMIN",     
"SERVER_NAME","SERVER_PORT","SERVER_PROTOCOL",    
"SERVER_SIGNATURE","SERVER_SOFTWARE" };  

int main () {
cout << "Content-type:text/html\r\n\r\n";
cout << "<html>\n";
cout << "<head>\n";
cout << "<title>CGI Environment Variables</title>\n";
cout << "</head>\n";
cout << "<body>\n";
cout << "<table border = \"0\" cellspacing = \"2\">";

for ( int i = 0; i < 24; i++ ) {
cout << "<tr><td>" << ENV[ i ] << "</td><td>";

// attempt to retrieve value of environment variable
char *value = getenv( ENV[ i ].c_str() );
if ( value != 0 ) {

cout << value;                                
} else {

cout << "Environment variable does not exist.";
}
cout << "</td></tr>\n";

}

cout << "</table><\n";



cout << "</body>\n";
cout << "</html>\n";

return 0;
}
C++ CGI Library
For real examples, you would need to do many operations by your CGI
program. There is a CGI library written for C++ program which you can
download from ftp://ftp.gnu.org/gnu/cgicc/ and follow the steps to install the
library −
$tar xzf cgicc-X.X.X.tar.gz
$cd cgicc-X.X.X/
$./configure --prefix=/usr
$make
$make install
You can check related documentation available at ‘C++ CGI Lib
Documentation.
GET and POST Methods
You must have come across many situations when you need to pass some
information from your browser to web server and ultimately to your CGI
Program. Most frequently browser uses two methods to pass this information
to web server. These methods are GET Method and POST Method.
Passing Information Using GET Method
The GET method sends the encoded user information appended to the page
request. The page and the encoded information are separated by the ?
character as follows −
http://www.test.com/cgi-bin/cpp.cgi?key1=value1&key2=value2
The GET method is the default method to pass information from browser to
web server and it produces a long string that appears in your browser's
Location:box. Never use the GET method if you have password or other
sensitive information to pass to the server. The GET method has size
limitation and you can pass upto 1024 characters in a request string.
When using GET method, information is passed using QUERY_STRING

ftp://ftp.gnu.org/gnu/cgicc/
https://www.gnu.org/software/cgicc/doc/index.html


http header and will be accessible in your CGI Program through
QUERY_STRING environment variable.
You can pass information by simply concatenating key and value pairs
alongwith any URL or you can use HTML <FORM> tags to pass
information using GET method.
Simple URL Example: Get Method
Here is a simple URL which will pass two values to hello_get.py program
using GET method.
/cgi-bin/cpp_get.cgi?first_name=ZARA&last_name=ALI
Below is a program to generate cpp_get.cgi CGI program to handle input
given by web browser. We are going to use C++ CGI library which makes it
very easy to access passed information −

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader.h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main () {
Cgicc formData;

cout << "Content-type:text/html\r\n\r\n";
cout << "<html>\n";
cout << "<head>\n";
cout << "<title>Using GET and POST Methods</title>\n";
cout << "</head>\n";
cout << "<body>\n";

https://www.tutorialspoint.com/cgi-bin/cpp_get.cgi?first_name=ZARA&last_name=ALI


form_iterator fi = formData.getElement("first_name");
if( !fi->isEmpty() && fi != (*formData).end()) { 

cout << "First name: " << **fi << endl;
} else {

cout << "No text entered for first name" << endl;
}

cout << "<br/>\n";
fi = formData.getElement("last_name");
if( !fi->isEmpty() &&fi != (*formData).end()) {

cout << "Last name: " << **fi << endl;
} else {

cout << "No text entered for last name" << endl;
}

cout << "<br/>\n";
cout << "</body>\n";
cout << "</html>\n";

return 0;
}

Now, compile the above program as follows −
$g++ -o cpp_get.cgi cpp_get.cpp -lcgicc
Generate cpp_get.cgi and put it in your CGI directory and try to access using
following link −
/cgi-bin/cpp_get.cgi?first_name=ZARA&last_name=ALI
This would generate following result −
First name: ZARA
Last name: ALI
Simple FORM Example: GET Method
Here is a simple example which passes two values using HTML FORM and
submit button. We are going to use same CGI script cpp_get.cgi to handle
this input.

<form action = "/cgi-bin/cpp_get.cgi" method = "get">
First Name: <input type = "text" name = "first_name">  <br />

https://www.tutorialspoint.com/cgi-bin/cpp_get.cgi?first_name=ZARA&last_name=ALI


Last Name: <input type = "text" name = "last_name" />
<input type = "submit" value = "Submit" />

</form>

Here is the actual output of the above form. You enter First and Last Name
and then click submit button to see the result.

First Name:  Last Name:  

Passing Information Using POST Method
A generally more reliable method of passing information to a CGI program
is the POST method. This packages the information in exactly the same way
as GET methods, but instead of sending it as a text string after a ? in the
URL it sends it as a separate message. This message comes into the CGI
script in the form of the standard input.
The same cpp_get.cgi program will handle POST method as well. Let us
take same example as above, which passes two values using HTML FORM
and submit button but this time with POST method as follows −

<form action = "/cgi-bin/cpp_get.cgi" method = "post">
First Name: <input type = "text" name = "first_name"><br />
Last Name: <input type = "text" name = "last_name" />

<input type = "submit" value = "Submit" />
</form>

Here is the actual output of the above form. You enter First and Last Name
and then click submit button to see the result.

First Name:  Last Name:  

Passing Checkbox Data to CGI Program
Checkboxes are used when more than one option is required to be selected.
Here is example HTML code for a form with two checkboxes −

<form action = "/cgi-bin/cpp_checkbox.cgi" method = "POST" target =
"_blank">

<input type = "checkbox" name = "maths" value = "on" /> Maths



<input type = "checkbox" name = "physics" value = "on" /> Physics
<input type = "submit" value = "Select Subject" />

</form>

The result of this code is the following form −

 Maths  Physics 

Below is C++ program, which will generate cpp_checkbox.cgi script to
handle input given by web browser through checkbox button.

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader.h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main () {
Cgicc formData;
bool maths_flag, physics_flag;

cout << "Content-type:text/html\r\n\r\n";
cout << "<html>\n";
cout << "<head>\n";
cout << "<title>Checkbox Data to CGI</title>\n";
cout << "</head>\n";
cout << "<body>\n";

maths_flag = formData.queryCheckbox("maths");
if( maths_flag ) {

cout << "Maths Flag: ON " << endl;



} else {
cout << "Maths Flag: OFF " << endl;

}
cout << "<br/>\n";

physics_flag = formData.queryCheckbox("physics");
if( physics_flag ) {

cout << "Physics Flag: ON " << endl;
} else {

cout << "Physics Flag: OFF " << endl;
}

cout << "<br/>\n";
cout << "</body>\n";
cout << "</html>\n";

return 0;
}
Passing Radio Button Data to CGI Program
Radio Buttons are used when only one option is required to be selected.
Here is example HTML code for a form with two radio button −

<form action = "/cgi-bin/cpp_radiobutton.cgi" method = "post" target =
"_blank">

<input type = "radio" name = "subject" value = "maths" checked =
"checked"/> Maths

<input type = "radio" name = "subject" value = "physics" /> Physics
<input type = "submit" value = "Select Subject" />

</form>

The result of this code is the following form −

 Maths  Physics 

Below is C++ program, which will generate cpp_radiobutton.cgi script to
handle input given by web browser through radio buttons.

#include <iostream>



#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader.h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main () {
Cgicc formData;

cout << "Content-type:text/html\r\n\r\n";
cout << "<html>\n";
cout << "<head>\n";
cout << "<title>Radio Button Data to CGI</title>\n";
cout << "</head>\n";
cout << "<body>\n";

form_iterator fi = formData.getElement("subject");
if( !fi->isEmpty() && fi != (*formData).end()) { 

cout << "Radio box selected: " << **fi << endl;
}

cout << "<br/>\n";
cout << "</body>\n";
cout << "</html>\n";

return 0;
}
Passing Text Area Data to CGI Program
TEXTAREA element is used when multiline text has to be passed to the
CGI Program.
Here is example HTML code for a form with a TEXTAREA box −



<form action = "/cgi-bin/cpp_textarea.cgi" method = "post" target =
"_blank">

<textarea name = "textcontent" cols = "40" rows = "4">
Type your text here...

</textarea>
<input type = "submit" value = "Submit" />

</form>

The result of this code is the following form −

 

Below is C++ program, which will generate cpp_textarea.cgi script to handle
input given by web browser through text area.

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader.h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main () {
Cgicc formData;

cout << "Content-type:text/html\r\n\r\n";
cout << "<html>\n";
cout << "<head>\n";



cout << "<title>Text Area Data to CGI</title>\n";
cout << "</head>\n";
cout << "<body>\n";

form_iterator fi = formData.getElement("textcontent");
if( !fi->isEmpty() && fi != (*formData).end()) { 

cout << "Text Content: " << **fi << endl;
} else {

cout << "No text entered" << endl;
}

cout << "<br/>\n";
cout << "</body>\n";
cout << "</html>\n";

return 0;
}
Passing Drop down Box Data to CGI Program
Drop down Box is used when we have many options available but only one
or two will be selected.
Here is example HTML code for a form with one drop down box −

<form action = "/cgi-bin/cpp_dropdown.cgi" method = "post" target =
"_blank">

<select name = "dropdown">
<option value = "Maths" selected>Maths</option>
<option value = "Physics">Physics</option>

</select>

<input type = "submit" value = "Submit"/>
</form>

The result of this code is the following form −

   

Below is C++ program, which will generate cpp_dropdown.cgi script to
handle input given by web browser through drop down box.



#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader.h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main () {
Cgicc formData;

cout << "Content-type:text/html\r\n\r\n";
cout << "<html>\n";
cout << "<head>\n";
cout << "<title>Drop Down Box Data to CGI</title>\n";
cout << "</head>\n";
cout << "<body>\n";

form_iterator fi = formData.getElement("dropdown");
if( !fi->isEmpty() && fi != (*formData).end()) { 

cout << "Value Selected: " << **fi << endl;
}

cout << "<br/>\n";
cout << "</body>\n";
cout << "</html>\n";

return 0;
}
Using Cookies in CGI
HTTP protocol is a stateless protocol. But for a commercial website it is
required to maintain session information among different pages. For



example one user registration ends after completing many pages. But how to
maintain user's session information across all the web pages.
In many situations, using cookies is the most efficient method of
remembering and tracking preferences, purchases, commissions, and other
information required for better visitor experience or site statistics.
How It Works
Your server sends some data to the visitor's browser in the form of a cookie.
The browser may accept the cookie. If it does, it is stored as a plain text
record on the visitor's hard drive. Now, when the visitor arrives at another
page on your site, the cookie is available for retrieval. Once retrieved, your
server knows/remembers what was stored.
Cookies are a plain text data record of 5 variable-length fields −

Expires − This shows date the cookie will expire. If this is
blank, the cookie will expire when the visitor quits the browser.

Domain − This shows domain name of your site.
Path − This shows path to the directory or web page that set the

cookie. This may be blank if you want to retrieve the cookie from
any directory or page.

Secure − If this field contains the word "secure" then the cookie
may only be retrieved with a secure server. If this field is blank,
no such restriction exists.

Name = Value − Cookies are set and retrieved in the form of
key and value pairs.

Setting up Cookies
It is very easy to send cookies to browser. These cookies will be sent along
with HTTP Header before the Content-type filed. Assuming you want to set
UserID and Password as cookies. So cookies setting will be done as follows

#include <iostream>
using namespace std;

int main () {
cout << "Set-Cookie:UserID = XYZ;\r\n";
cout << "Set-Cookie:Password = XYZ123;\r\n";



cout << "Set-Cookie:Domain = www.tutorialspoint.com;\r\n";
cout << "Set-Cookie:Path = /perl;\n";
cout << "Content-type:text/html\r\n\r\n";

cout << "<html>\n";
cout << "<head>\n";
cout << "<title>Cookies in CGI</title>\n";
cout << "</head>\n";
cout << "<body>\n";

cout << "Setting cookies" << endl;

cout << "<br/>\n";
cout << "</body>\n";
cout << "</html>\n";

return 0;
}

From this example, you must have understood how to set cookies. We
use Set-Cookie HTTP header to set cookies.
Here, it is optional to set cookies attributes like Expires, Domain, and Path.
It is notable that cookies are set before sending magic line "Content-
type:text/html\r\n\r\n.
Compile above program to produce setcookies.cgi, and try to set cookies
using following link. It will set four cookies at your computer −

/cgi-bin/setcookies.cgi
Retrieving Cookies
It is easy to retrieve all the set cookies. Cookies are stored in CGI
environment variable HTTP_COOKIE and they will have following form.
key1 = value1; key2 = value2; key3 = value3....
Here is an example of how to retrieve cookies.

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>

https://www.tutorialspoint.com/cgi-bin/setcookies.cgi


#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader.h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main () {
Cgicc cgi;
const_cookie_iterator cci;

cout << "Content-type:text/html\r\n\r\n";
cout << "<html>\n";
cout << "<head>\n";
cout << "<title>Cookies in CGI</title>\n";
cout << "</head>\n";
cout << "<body>\n";
cout << "<table border = \"0\" cellspacing = \"2\">";

// get environment variables
const CgiEnvironment& env = cgi.getEnvironment();

for( cci = env.getCookieList().begin();
cci != env.getCookieList().end();
++cci ) {

cout << "<tr><td>" << cci->getName() << "</td><td>";
cout << cci->getValue();                                
cout << "</td></tr>\n";

}

cout << "</table><\n";
cout << "<br/>\n";
cout << "</body>\n";
cout << "</html>\n";

return 0;



}

Now, compile above program to produce getcookies.cgi, and try to get a list
of all the cookies available at your computer −
/cgi-bin/getcookies.cgi
This will produce a list of all the four cookies set in previous section and all
other cookies set in your computer −
UserID XYZ
Password XYZ123
Domain www.tutlspoint.com
Path /perl
File Upload Example
To upload a file the HTML form must have the enctype attribute set
to multipart/form-data. The input tag with the file type will create a
"Browse" button.

<html>
<body>

<form enctype = "multipart/form-data" action = "/cgi-
bin/cpp_uploadfile.cgi"

method = "post">
<p>File: <input type = "file" name = "userfile" /></p>
<p><input type = "submit" value = "Upload" /></p>

</form>
</body>

</html>

The result of this code is the following form −

File:

Note − Above example has been disabled intentionally to stop people
uploading files on our server. But you can try above code with your server.
Here is the script cpp_uploadfile.cpp to handle file upload −

#include <iostream>

https://www.tutorialspoint.com/cgi-bin/getcookies.cgi


#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader.h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main () {
Cgicc cgi;

cout << "Content-type:text/html\r\n\r\n";
cout << "<html>\n";
cout << "<head>\n";
cout << "<title>File Upload in CGI</title>\n";
cout << "</head>\n";
cout << "<body>\n";

// get list of files to be uploaded
const_file_iterator file = cgi.getFile("userfile");
if(file != cgi.getFiles().end()) {

// send data type at cout.
cout << HTTPContentHeader(file->getDataType());
// write content at cout.
file->writeToStream(cout);

}
cout << "<File uploaded successfully>\n";
cout << "</body>\n";
cout << "</html>\n";

return 0;
}

The above example is for writing content at cout stream but you can open



your file stream and save the content of uploaded file in a file at desired
location.



CONCLUSION
C++ is a statically typed, compiled, general-purpose, case-sensitive, free-
form programming language that supports procedural, object-oriented, and
generic programming.
C++ is regarded as a middle-level language, as it comprises a combination
of both high-level and low-level language features.
C++ was developed by Bjarne Stroustrup starting in 1979 at Bell Labs in
Murray Hill, New Jersey, as an enhancement to the C language and
originally named C with Classes but later it was renamed C++ in 1983.
C++ is a superset of C, and that virtually any legal C program is a legal C++
program.


	INTRODUCTION
	C++ Overview
	C++ Environment Setup
	C++ Basic Syntax
	Comments in C++
	C++ Data Types
	C++ Variable Types
	Variable Scope in C++
	C++ Constants/Literals
	C++ Modifier Types
	Storage Classes in C++
	Operators in C++
	C++ Loop Types
	C++ decision making statements
	C++ Functions
	Numbers in C++
	C++ Arrays
	C++ Strings
	C++ Pointers
	C++ References
	C++ Date and Time
	C++ Basic Input/Output
	C++ Data Structures
	C++ Classes and Objects
	C++ Inheritance
	C++ Overloading (Operator and Function)
	Polymorphism in C++
	Data Abstraction in C++
	Data Encapsulation in C++
	Interfaces in C++ (Abstract Classes)
	C++ Files and Streams
	C++ Exception Handling
	C++ Dynamic Memory
	Namespaces in C++
	C++ Templates
	C++ Preprocessor
	C++ Signal Handling
	C++ Multithreading
	C++ Web Programming
	CONCLUSION

